
Chapter 5

OSS security certification

Abstract Open source software is being increasingly adopted for mission and
even for safety-critical applications. Experience has shwon that many open
source software products have achieved adequate functionality and scalability.
Security, however, requires a specific analysis, since open source software
development does not usually follow security best practices. Indeed, the lower
number of security events involving open source software may be ascribed to
its smaller market share rather than to its robustness. In this chapter we start
by taking a closer look to the meaning of the open source label, discuss the
connection between licenses and certificates. Then, we summarize the debate
on open source security and discuss some issues pertaining to open-source
assurance activity and to open source security certification.

5.1 Open source software (OSS)

The debate between open source and closed source supporters dates back to
the origin of software and is still far away from a conclusion. The advent
of the Internet has made this contraposition even more harsh. The closed
software model was originally introduced in the 1970s, when software com-
mercialization became a reality. Computer software was treated as a com-
pany asset, to be protected from competitors who might otherwise repro-
duce, study or modify the code, to resell, use, or learn from the product.
The closed source paradigm allowed software houses to protect their prod-
ucts from piracy or misuse, reverse engineering and duplication. Also, the
closed source paradigms allowed software suppliers to preserve competitive
advantage and vendor lock-in.

By contrast, the concept of free software was born as a social movement
(1983) aimed to protect user’s rights to freely access and modify software. In
1985, Richard Stallman founded the Free Software Foundation [20] (FSF) to
support such a movement. In 1998, a group of members of the FSF replaced

89

90 5 OSS security certification

the term free software with open source, in response to Netscape’s January
1998 announcement of a source code release for their Netscape Navigator
browser.

As Stallman himself pointed out, OSS development departs radically from
commercial software form the very beginning: an open source software so-
lution is not planned as a product to be offered to the market to achieve
a profit. Often, the initial idea and the design do not take place within the
boundaries of a traditional business organization. Some OSS projects, such as
business applications or middleware, are entirely autonomous. Others exist as
components, as for instance, part of the Linux kernel. Large, mature projects
such as the Apache Web server have they own autonomous evolution strategy,
although benefiting from the contributions of hundreds of outside submitters.
Whatever the status (component or application) of an open source project,
it will remain useful only as long as it has a well-specified assurance pro-
cess, that is, its maintainers properly update and test it. In this Chapter we
shall discuss when and how software certification can become a part of the
assurance effort of open source projects.

5.1.1 Open Source Licenses

The action of the FSF was instrumental for clarifying the semantics of the
open source label: an open source software product is a software product
made available under an open source license. Today, open source licenses are
not just declarations which grant to the user unlimited rights of accessing
and modifying the software product’s source code. Rather, licenses specify in
detail who is entitled to access the source code, and the allowed actions to
be performed on it. The reader should not miss the conceptual link between
a software license and a certificate: both of them assert some properties of
a software product, and both may be distributed and checked in a digital
format. A major difference between licenses and certificates is that the for-
mer seldom deals with software properties but, rather, the assertions made in
a software license focus on the rights and obligations of both purchaser and
supplier concerning the software product’s usage or redistribution. The word-
ing of the license may be such that the software supplier has no obligation
whatsoever, not even that the software program will be useful for any specific
particular purpose. In the license, however, the purchaser may get permission
from the supplier to use one or more copies of software in ways where such a
use would otherwise constitute infringement of the software supplier’s rights
under copyright law.1

1 Such use (e.g., creating archival copies of the software) may be permitted by law in
some countries, making it unnecessary to explicitly mention it in the license. In effect,
this part of a proprietary software license amounts to little more than a promise from
the software supplier not to sue the purchaser for engaging in activities that, under

5.1 Open source software (OSS) 91

Some licenses give very limited rights to the purchaser. Many proprietary
licenses are non-concurrent, that is, do not allow the software product to be
executed simultaneously on multiple CPUs, or set a limit to the number of
CPUs that can be used. Also, the right of transferring the license to another
purchaser, or to move the program from one computer to another may be
limited in the license.2 Finally, proprietary software licenses usually have an
expiration date. The license validity may range from perpetual to a monthly
lease. A time-limited license can be self enforcing: the supplier may insert
into the software product a security mechanism that, once the license has
expired, will disable the software product. An interesting by-product of time-
limited licenses is the emerging need for certifying that security mechanism
used to enforce license expiration do not impair the software performance or
dependability while the license is still valid.

Software suppliers have traditionally been lax on license enforcement and
then individual purchasers of proprietary software tend to pay little attention
to compliance. However, most large companies and organizations, including
universities, have established strong license compliance policies.

Open source is sometimes seen (or presented) as a way out from the com-
plex problem of guaranteeing compliance to proprietary software licenses.
However, OSS is itself distributed under a license and more than 30 licenses
actually exist [30]. To help in establishing some degree of uniformity, the Open
Source Initiative (OSI) [36], jointly founded by Eric Raymond and Bruce
Perens in February 1998, has promoted since long a specification (called Open
Source Definition (OSD)) of what must appear in a license in order for the
software covered by it to be considered open source. Licensers are however
free to use licenses that go beyond OSD minimum requirements, in the sense
of providing more rights to the user. Thus, OSD-compatible licenses are not
all the same.

OSI’s open source definition mandates that the license of an open source
software product must comply with ten criteria [26], described as follow.

1. Free redistribution. An open source license must permit anyone who ob-
tains and uses the covered software to give it away to others without
having to pay a royalty or other fee to the original copyright owner(s).

2. Access to source code. All types of open source licenses require everyone
who distributes the software to provide access to the program source code.
Often, distributors provide the source code along with the executable
form of the program, but the license does not bind them to do so; for
instance, they could make the code available via Internet download, or
on other media, free or for a reasonable fee to cover the media cost.

the law of the country where the purchase is made, would be considered exclusive
rights belonging to the supplier itself.
2 For instance, OEM Windows licenses are not transferable. When the purchaser
does not longer use the computer where the Windows software is pre-installed, the
Windows license must be retired.

92 5 OSS security certification

3. Derivative works. An open source license must allow users to modify the
software and to create new works (called derivatives) based upon it. An
open source license must permit the distribution of derivative works under
the same terms as the original software. This provision, together with the
requirement to provide source code, fosters the rapid evolution pace of
open source software.

4. Integrity of the author’s source code must be preserved.
5. No discrimination on users. An open source license does not discrimi-

nate against persons or groups. Everybody can use open source software,
provided they comply with the terms of the open source license.

6. No discrimination on purpose. An open source license does not discrim-
inate against application domains. In other words, the license may not
restrict anyone from using the software based on the purpose of such
usage. Specifically, it may not restrict the program from being used for
commercial purposes. This permits business users to take advantage of
open source products for commercial purposes.

7. License Distribution. The wording of an open source license must be made
available to all interested parties, and not to the purchaser alone.

8. Product Neutrality. An open source license must not be specific to a single
software product.

9. No transfer of restrictions. An open source license on a software product
must not restrict the use of other software products, both open source
and proprietary. In other words, an open source license must not mandate
that all other programs distributed together with the one the license is
attached to are themselves open source. This clause allows software sup-
pliers to distribute open source and proprietary software in the same
package. Some widespread licenses, including the GPL (General Public
License) presented below, require that all software components “consti-
tuting a single work” to fall to under the GPL if anyone of them is dis-
tributed under GPL. This requirement may seem to have been spelled out
clearly, but wrapping and dynamic invocation techniques have sometimes
been used as a work-around to it.

10. Technology Neutrality. An open source license must not prescribe or sup-
ply a specific technology.

It is beyond the scope of this book to provide a detailed analysis of all open
source licenses. Here, we shall limit ourselves to outlining the main features of
some widespread ones. The interested reader is referred to our main reference,
the classic book [30]. However, it is important to remark that organizations
and individuals supporting the open source paradigm (including the authors
of this book) firmly believe that the benefits given by a community of gifted
and enthusiastic software developers working at the evolution of a software
product are much more important than the (often illusory) advantages of
protecting the intellectual property rights on it.

5.1 Open source software (OSS) 93

• GNU General Public License (GPL) is one of the first open source licenses
and still by far the most widely used. It is considered a liberal license
inasmuch the original programmer does not retain any right on modified
versions of the software. Richard Stallman and Eben Moglen created the
GPL and started the Free Software Foundation to promote its use. For
instance, Linux is distributed under a GPL license.

• The Mozilla Public License (MPL) is another popular open source license.
It came about to distribute the original Mozilla open source web browser.
It is less liberal than GPL, inasmuch it requires the inclusion or publishing
of the source code within one year (or six months, depending on the
specific situation) for all publicly distributed modifications.

• The Berkeley Software Distribution (BSD) License was one of the earliest
non-proprietary licenses, and follows a very different philosophy than
GPL. BSD permits users to distribute BSD-licensed software for free or
commercially, without providing the source code; they also may modify
the software and distribute the changes without providing the source
code. A major difference between BSD and GPL is that organizations or
individuals who create modified versions of software originally licensed
under BSD can distribute them as proprietary software, provided that
they credit the developers of the original version. Two other widespread
open source licenses, the Apache Software License and the MIT License,
are very similar to the BSD License.

The differences between GPL and other open source licenses become very
relevant when a user creates a derivative from existing open source code. In
this case, with GPL the license is inherited. The new code must be distributed
under the same license as the original version. This may not be true for other
licenses.

5.1.2 Specificities of Open Source Development

The rapid pace of evolution and the multi-party development fostered by
the open-source licensing policies described above make open source soft-
ware products very different from proprietary ones. Generally speaking, open
source software is developed and modified by programmers who devote their
time, energy and skills without receiving any direct compensation for their
work [24]. In this context, the whole relation between software purchasers and
software suppliers changes dramatically. Open source gives much more power
to customers who need customized products that fit their business activities.
If a customer chooses to use open source software, say, for human resource
management, a software supplier can offer to customize the software for that
individual customer. In this case the customer will be charged a fee not for
using the software itself, but for the service of customizing it.

94 5 OSS security certification

Before discussing OSS security certification, it is therefore important to
look at the process of developing OSS [43]. OSS has fostered a new software
development style based on a heterogeneous mixture of existing methodolo-
gies and development processes. It does not provide any standard criteria to
select activities for the different projects; instead, it is up to developers to
agree on which methodology is more suitable for them [16]. Rather than by
a specific set of activities, the OSS development process is characterized by
its rapid release cycle, for teams that put together developers with diverse
skills and competences, for fast rate of code change over time and for the
use of readable code as a way to satisfy the need of a clear and unambiguous
documentation.3 Code is seen as the first specification of open source systems
and, as a result, those systems are often otherwise undocumented.

The above description may convey the idea that OSS “emerges” from a
Wikipedia-style “democratic” cooperation rather than from a disciplined de-
velopment process. This is however not the case for some major OSS projects.
In particular, here we are interested in the level of coordination which is cru-
cial for testing and security assurance.

As an example, let us briefly consider the Linux development process. We
will come to certifying Linux distributions in Chapter 6. Bill Weinberg4 de-
scribes the Linux kernel development and maintenance process as a “benev-
olent dictatorship”. It is probably more like feudalism: while contributions
to the kernel come from developers worldwide, the authority of including
and integrating them in the Linux kernel belongs to around 80 maintainers,
each responsible of a subsystem of the Linux kernel. Each subsystem has
its own versioning; sets of subsystems are integrated into patch sets that, in
turn, are used to set up “experimental” kernel versions (in the past, these
corresponded to odd-numbered kernel releases like 2.3.x and 2.5.x). When
the highest authority (Linus Torvalds and his team) considers an experimen-
tal kernel ready for deployment, a new production kernel is generated and
handed off for testing to the production kernel maintainers, who are responsi-
ble for the entire testing process. Starting from production kernels, companies
and consortia create Linux distributions aimed at the business or embedded
systems domain.

Linux kernel maintainers can also select external OSS projects, such as
device drivers, to be integrated into a Linux subsystem. Some examples are
security-related; for instance, the National Security Agency (NSA) Secure
Linux was adopted as a standard build option in the 2.6 Linux kernel.

3 OSS is seldom developed from a stable specification and a priori software requisites
are usually vague.
4 The description below is partly based on his contribution “The Open Source Devel-
opment Process”, originally published on the Embedded Computing Design magazine,
http://www.embedded-computing.com/departments/osdl/2005/1/.

5.1 Open source software (OSS) 95

5.1.2.1 The Open Source Code Assurance

Understanding the general quality assurance of OSS code is particularly im-
portant for the integration of the security certification process into OSS devel-
opment. Let us start with a formal definition of Software Assurance (SwA):
an activity aimed at increasing the level of confidence that a software prod-
uct operates as intended and is free of faults. In a traditional, lifecycle-based
software development process, assurance includes a number of tasks to be
carried out by developers and testers along the software lifecycle.

Feedback from
the Field

Requirements
and Use Cases

Architecture
and Design

Test Plans Code Tests and
Test Results

Abuse cases

Security
Requirements

Risk Analysis

External
Review

Risk-based
Security Tests

Code Review
(tools) Risk Analysis

Penetration
Testing

Security
Operations

Fig. 5.1: Assurance tasks in a traditional, lifecycle-based development process

Security assurance activities for OSS code could be performed at several
points in the code life cycle. Contributions to major OSS projects like Linux
are strictly monitored and must meet quality standards; here, we are in-
terested in the assurance process used to keep these standards. Of course,
different OSS projects will use different assurance procedures, but some con-
ditions are verified for all OSS projects. Upon submission, a contribution to
an OSS project must be well-formed, that is, coded and packaged according
to well-established OSS conventions. The first assurance activity is usually
checking for novelty and interest of the contribution, that is, the properties
(either functional or non-functional) it would add to the project. These checks
are usually made by core members of the community (in the case of the Linux
kernel, by the subsystem maintainers). Once a contribution makes is accepted
into a OSS project, it will be tested, and reviewed by the project’s commu-
nity to become part of the project’s mainstream code. In the specific case of
Linux, the process is two-tiered: if the subsystem or project containing the
new contribution is then picked up by a Linux distribution like SuSE, it will
be subject to that distribution-specific assurance procedure. Typical assur-
ance activities performed at distribution level include standards-compliance
testing (for example, LSB and POSIX), stability and robustness testing. To-
day, Linux security certification is also carried out at the distribution level
(Chapter 6).

It should be noted that the assurance process described above (see Figure
5.2) can be made three-tiered by adding a user-specific assurance activity
at adoption time. In the case of Linux, this assurance procedure is coarser-
grained, as adopters retain control over the inclusion of each specific sub-

96 5 OSS security certification

Fig. 5.2: The two- and three-tiered assurance process of OSS

system in the distribution, but of course not of individual contributions to
subsystems. However, regression is always possible, that is, the adopter can
always return to a previous version of the subsystem if an update does not
meet the adopter’s quality or dependability standards. Some adopters prefer
to entirely delegate security and quality assurance to their preferred distri-
bution; others try and influence the OSS product evolution at both design
and assurance time.5 We are now ready to summarize the set of properties
that distinguish OSS development from a traditional development processes
from the point of view of security assurance.

• Large distributed community of developers. It is one of strongest points of
OSS development. No matter how a big a company can be, it will never
have as many developers as some well known open source projects.

• Fast feedback from users. Fault reports, usability problems, security vul-
nerabilities reports are some examples of the feedback the open source
community receives constantly from the users. This communication tends
to be more frequent and intense, and above all more direct, than the one
taking place for proprietary software products. This feedback allow open
source developers to locate and fix reported faults very rapidly.

• Users are an integral part of the development process. Users have been
always considered part of the OSS development cycle. Keeping the users
involved helps them to express their point of views about functional re-

5 A notable example is the telecommunication sector, where Carrier Grade Linux
(CGL) defines a set of specifications as well as some assurance criteria which must
be met in order for Linux to be considered “carrier grade” (i.e., ready for use within
the telecommunications industry).

5.2 OSS security 97

quirements, security, usability, write documentation, and other tasks that
developers may neglect.

• Talented and highly motivated developers. The idea of having their code
reviewed by a member of the core group of an open source software, or
knowing that their code would be part of the next release of a widespread
software product attracts many motivated developers to contribute to
open source projects [16].

• Rapid release cycles. Thanks to a large, active and high motivated com-
munity of developers working around the clock, many open source soft-
ware provide more rapid release cycle and updates compared to software
developed inside companies. For example, in 1991 there was more than
one release per day for the Linux kernel [16].

• Terseness of analysis documentation. OSS is not based on the definition
of a set of formal and stable specifications and requisites to be used in
the development process; rather, community-wide discussions are used as
a kind of implicit specifications that drive the developers contribution to
the software.

The above properties of OSS development correspond to many advan-
tages (as well as to some disadvantages) compared to other types of software
development processes. In Section 5.2, we shall discuss in detail how these
advantages and disadvantages affect the adoption of OSS in critical security
areas and the certification of OSS security properties. However, we can an-
ticipate some interesting facts. First of all, while the open source specificity
in terms of development process and licenses may still play a marginal role
in the decisions of individual users, it has already a huge impact on adoption
patterns of companies and organizations. Sometimes companies do not have
the time and resources for a complete pre-adoption analysis of OSS and just
“go and use it”. This pattern of OSS adoption is often seen as a leverage
against vendors of proprietary software products. Other times, companies
rely on internal adoption guidelines, and look at the exploitation of OSS
community-based development as a way to reduce development costs and ac-
celerate the availability of new features. This opportunistic strategy does not
come for free, because it requires creating internal competence groups able to
influence the relevant development communities. Alternatively, brokers (often
individual consultants or small companies) familiar with the OSS develop-
ment process can be hired to manage partially or totally the interaction with
the development community.

5.2 OSS security

In the last few years, security has not been a major driver for open source
assurance [4]. Possible reasons include some reluctance by the OSS commu-
nity to set up a separate security assurance process, as opposed to a general

98 5 OSS security certification

quality assurance one. On Tuesday July 15th 2008, posting to the gmane dis-
cussion group, Linus Torvalds wrote:
“...one reason I refuse to bother with the whole security circus is that I think
it glorifies - and thus encourages - the wrong behavior.
It makes “heroes” out of security people, as if the people who don’t just fix
normal bugs aren’t as important.
In fact, all the boring normal bugs are way more important, just because
there’s a lot more of them. I don’t think some spectacular security hole should
be glorified or cared about as being any more “special” than a random spec-
tacular crash due to bad locking”.

In turn, some security experts do not completely trust the open source
communities and consider open source middleware a potential “backdoor”
for attackers, potentially affecting overall system security. However, propri-
etary security solutions have their own drawbacks such as vendor lock-in,
interoperability limitations, and lack of flexibility. Recent research suggests
that the open source approach can overcome these limitations [3, 41].

A long debate has been going on in the security research community,
whether open source software should be considered more or less secure than
closed source software. A classical analysis is the one done by Wheeler
in [52]. This debate has not led to any definitive conclusion so far [13],
and it is unlikely to do so in the near future. It is however interesting
to note that the discussion has been mainly confined to software imple-
menting security solutions rather than extended to general system-level
software products or to software applications, although it is widely recog-
nized that most new threats to security are emerging at the application
level. According to another essay published by David Wheeler, the author
of “Secure Programming for Linux and Unix” [51] on his book’s website
(http://www.dwheeler.com/secure-programs): “There has been a
lot of debate by security practitioners about the impact of open source ap-
proaches on security. One of the key issues is that open source exposes the
source code to examination by everyone, including both attackers and defend-
ers, and reasonable people disagree about the ultimate impact of this situa-
tion”. Wheeler’s interesting essay contains a number of contending opinions
by leading security experts, but no conclusion is reached.

Probably, the only non-questionable fact is that open source software gives
both attackers and defenders greater control over software security properties.
Let us summarize Wheeler’s arguments in favor and against the notion that
a software being open source has a positive impact on its security-related
properties.

• Open source is less secure. The availability of source code may increase
the chances that an attacker will detect and exploit a software fault. Also,
the informality and flexibility of the open source development process
have been known to backfire. For instance, not all open source projects
provide documentation on the secure deployment of the software they
develop. This lack of information may cause faulty installations, which in

5.3 OSS certification 99

turn may result in security holes. Some open source development com-
munities do not bother with hardening their products against well-known
security vulnerabilities and do not provide any report on fault detec-
tion, even though some simple open source tools, such as FindBugs, are
available (see Chapter 4 for more details). Delay in implementing well-
understood security patches is a clear indication that security best prac-
tices are a low priority issue for some open source projects. This may
be understandable in some cases, because security requirements may be
quite different for different applications, but it could also indicate a lower
level of security awareness on the part of the OSS community.

• Open source is more secure. The greater visibility of software faults [13]
typical of open source products may also be exploited by defenders. Well
trained defenders, taking advantage of knowledge normally not available
with closed source software, have been known to ensure a short response
time, fixing software vulnerabilities as soon as the corresponding threats
are described. Defenders can also rely on the independent work of the
open source community to identify new security threats, since open source
software is usually subject to a community-wide review and validation
process.

Whatever the merits of these positions, this controversy is bound to remain
somehow academic. Open source projects largely differ from one another, and
the same arguments can be brought in favor or against the thesis depending
on the specific situation considered. In their paper “Trust and Vulnerability
in Open Source Software” [25], Scott A. Hissam and Daniel Plakosh rightly
observe that “just because a software is open to review, it should not auto-
matically follow that such a review has actually been performed”.6

Hopefully, however, the above discussion has clarified the need of some
form of security certification based on a rigorous and in-depth analysis. What
is still missing is a security certification framework allowing, on the one side,
suppliers to certify the security properties of their software and, on the other
side, users to evaluate the level of suitability of different open source security
solutions. We shall discuss the requirements for such a framework in the next
section.

5.3 OSS certification

In principle, the standard certification processes described in this book can
be employed to certify OSS products, as they are for proprietary ones. The
obstacle posed by the peculiar nature of OSS development process can in
fact be overcame, since some certification standards accept applications from
organizations adopting nearly every type of development process. Therefore

6 Incidentally, we remark that the same comment can be made for testing.

100 5 OSS security certification

forges, consortia or foundations promoting open source product development
do in principle qualify as applicants for obtaining the certification of OSS
products. For example, the norm ISO 9126 (see Chapter 1) explicitly men-
tions an application to OSS projects. Any OSS project compliant to these
standards can in theory acquire the same status as a conventional project.
This is also true for other certifications we described or mentioned in the
previous Chapters, like ISO 9000 for software suppliers, ITSEC (European),
or CC (international). The evaluation body will examine a software product’s
specified functionality, the quality of its implementation, and the compliance
with security standards.

However, some other obstacles do exist in terms of laboratory techniques.
In fact, an important prerequisite to most certifications is the availability
of a testing framework to support all controls required by the certification
process. We shall deal with this problem in Chapter 8

5.3.1 State of the art

Comparative evaluation of OSS non-functional properties, including security-
related ones is a time-honored subject. Much work has been done on open
source security testing: for instance, the Open Source Security Testing Method-
ology Manual (OSSTMM) (http://www.isecom.org/osstmm/) is a peer-
reviewed methodology for performing security tests and metrics. The OS-
STMM test cases are divided into five sections which collectively test: infor-
mation and data controls, personnel security awareness levels, fraud and so-
cial engineering control levels, computer and telecommunications networks,
wireless devices, mobile devices, physical security access controls, security
processes, and physical locations such as buildings, perimeters, and military
bases. OSSTMM focuses on the technical details of exactly which items need
to be tested, what to do before, during, and after a security test, and how
to measure the results. New tests for international best practices, laws, regu-
lations, and ethical concerns are regularly added and updated. The method-
ology refers to risk-oriented metrics such as Risk Assessment Values (RAVs)
and defines and quantifies three areas (operations, controls, limitations) as
its relevance to the current and real state of security.

The Qualify and Select Open Source Software (QSOS) is a methodology
designed to qualify, select and compare free and open source software in
an objective, traceable and argued way (http://www.qsos.org/). QSOS
aims to compare solutions against formalized requirements and weighted cri-
teria, and to select the most suitable product set available. QSOS is based on
an iterative approach where the evaluation step is based on metrics defining,
on the one hand, the risks from the customer perspective and, on the other
hand, the extent to which these risks are addressed by OSS solutions. In
general, all selection techniques require information that many open source

5.3 OSS certification 101

projects fail to make available. The Software Quality Observatory for Open
Source Software project (http://www.sqo-oss.eu/) includes techniques
computing account quality indicators from data that is present in a project’s
repository. However, such metadata need to take into account the specific
domain of the application. For instance, the dependency of loop execution
times on hardware features is a relevant quality indicator for time-critical
control loops, but has little interest for business application developers.

Several researchers [10] have proposed complex methodologies dealing with
the evaluation of open source products from different perspectives, such
as code quality, development flow and community composition and partic-
ipation. General-purpose open source evaluation models, such as Bernard
Golden’s Open Source Maturity Model (OSMM) [21] do not address the spe-
cific requirements of security software selection. However, these models as-
sess open source products based on their maturity, that is, their present
production-readiness, while evaluating security solutions also involves trying
to predict how fast (and how well) a security component will keep abreast
of new attacks and threats. Several other OSS adoption methodologies have
been proposed and developed into practical guidelines defining methodology-
(or enterprise-) specific benchmarks in terms of functionality, community
backing as well as maturity. Most of these methodologies, however, are bi-
ased toward business-related software systems and toward static integration.
Therefore, they are of limited use for complex products like telecommunica-
tion devices, which bundle or dynamically integrate hardware and software
components. For example, the Business Readiness Rating (BRR) method [40]
supports quantitative evaluation of open source software identifying seven
categories: functionality, software quality, service and support, documenta-
tion, development process, community, and licensing issues. However, addi-
tional work is required to deal with OSS non-functional properties (perfor-
mance, security, safety) across the different integration mechanisms, and with
white-box ones (terseness/sparseness, readability), which are crucial to OSS
bundling within complex products [49]. Focusing on security area, a security-
oriented software evaluation framework should provide potential adopters
with a way to compare open source solutions identifying the one which (i)
best suits their current non-functional requirements and (ii) is likely to evolve
fast enough to counter emerging threats. Our own works in [2, 5] are aimed at
providing a specific technique for evaluating open source security software, in-
cluding access control and authentication systems. Namely, a Framework for
OS Critical Systems Evaluation (FOCSE) [2] has been defined and is based
on a set of metrics aimed at supporting open source evaluation, through
a formal process of adoption. FOCSE evaluates an open source project in
its entirety, assessing the community composition, responsiveness to change,
software quality, user support, and so forth. FOCSE criteria and metrics are
also aimed at highlighting the promptness of reacting against newly discov-
ered vulnerabilities or incidents. Applications success, in fact, depends on the
above principle because a low reaction rate to new vulnerabilities or incidents

102 5 OSS security certification

Metrics Putty WinSCP ClusterSSH
Age (GA) 2911 days 1470 days 1582 days

Last Update Age (GA) 636 days 238 days 159 days

Project Core Group (GA,DC) Yes Yes Yes

Number of Core Developers (DC) 4 2 2

Number of Releases (SQ,IA) 15 32 15

Bug Fixing Rate (SQ,IA) 0.67 N/A 0.85

Update Average Time (SQ,IA) 194 days 46 days 105 days

Forum and Mailing List Support N/A Forum Yes

(GA,DIS) Only

RSS Support (GA,DIS) No Yes Yes

Number of Users (UC) N/A 344K 927

Documentation Level (DIS) 1.39 MB 10 MB N/A

Community Vitality (DC,UC) N/A 3.73 5.72

Table 5.1: Comparison of open source SSH implementations at 31 December 2006

implies higher risk for users that adopt the software, potentially causing loss
of information and money. Finally, to generate a single estimation, FOCSE
exploits an aggregator often used in multi-criteria decision techniques, the Or-
dered Weighted Average (OWA) operator [50, 54], to aggregate the metrics
evaluation results. This way, two or more OSS projects, each one described by
its set of attributes, can be ranked by looking at their FOCSE estimations. In
[2], some examples of the application of FOCSE framework to existing criti-
cal applications are provided. Here, we provide a sketch of the FOCSE-based
evaluation of security applications that implement the Secure Shell (SSH)
approach. SSH is a communication protocol widely adopted in the Internet
environment that provides important services like secure login connections,
tunneling, file transfers and secure forwarding of X11 connections [55]. The
FOCSE framework has been applied for evaluating the following SSH clients:
Putty [39], WinSCP [53], ClusterSSH [48]. First, the evaluation of SSH client
implementations based on the security metrics and information gathered by
FLOSSmole database [17] is provided and summarized in Table 5.1.

Putty WinSCP ClusterSSH
fOW A 0.23 0.51 0.47

Table 5.2: OWA-based comparison of SSH clients

Then, an OWA operator is applied to provide a single estimation of each
evaluated solution. Finally, the FOCSE estimations are generated (see Table
5.2), showing that the solution more likely to be adopted is WinSCP. In
summary, FOCSE evaluation framework gives a support to the adoption of
open source solutions in mission critical environments.

5.3 OSS certification 103

As far as model-based certification is concerned, some ad hoc projects to-
ward applying model- and test-based certification techniques to individual
OSS products have been taken. For instance, the U.S. Department of Home-
land Security has funded a project called “Vulnerability Discovery and Re-
mediation, Open Source Hardening”, involving Stanford University, Coverity
and Symantec. The project was aimed at hunting for security-related faults in
open-source software, finding and correct the corresponding security vulner-
abilities, and to improve Coverity’s commercial tool for source code analysis.
This effort resulted in a system that does daily scans of code contributed
to popular open-source projects, and produces and maintains a database of
faults accessible to developers.

Looking at test-based certification, some major players developed and
published anecdotal experience in certifying open source platforms, includ-
ing Linux itself [44], achieving the Common Criteria (CC) EAL-4 security
certification. The work in [44] describes the IBM experience in certifying
Open Source and illustrates how the authors obtained the Common Crite-
ria security certification evaluating the security functions of Linux, the first
open-source product receiving such certification. We shall discuss the Linux
certification process in more detail in the following Chapters.

General frameworks are needed to provide a methodology for functional
and non-functional testing of OSS. Referring to the terminology we intro-
duced in Chapter 3, no widely accepted OSS-specific methodology is available
supporting white-box testing in terms of code terseness/sparseness, readabil-
ity and programming discipline. As far as black-box testing is concerned,
description of tests carried out on OSS at unit or component level are some-
times made available by the development communities or as independent
projects (see Chapter 6). However, complex systems whose components have
been developed independently may require additional support for integration
and system testing. Furthermore, to obtain a genuine certification, in terms of
inward security and outward protection of a complex software system which
includes open source, it is not sufficient that all elements of the system are
certified: the composition of security properties across the integration tech-
nique must also be taken into account. When OSS is introduced into the
context of complex modular architectures, certifying the overall security of
the product is a particularly critical point [13, 37].

The issues to be addressed in the context of a security assurance and cer-
tification involving an OSS software product can be classified in the following
four areas.

• Functional test and certification. Provide test and certification of func-
tionalities, supporting the use of OSS within critical platforms and envi-
ronments for operating and business support systems, gateway, signaling
and management servers, and for the future generations of voice, data
and wireless components; define a comprehensive approach to certifica-
tion of products dynamically integrating OSS, creating an OSS specific

104 5 OSS security certification

path to certify typical functionalities of complex networking systems like
routing, switching, memory management and the like.

• Integration support. Complement existing approaches providing the spe-
cific design tools needed to bring OSS into the design and implementation
path of advanced European products, providing the research effort needed
for successful OSS integration within complex systems and for using OSS
as a certified tool for complex systems development.

• Advanced description. Provide novel description techniques, suitable for
asserting the relevant properties of OSS also integrated in telecommuni-
cation devices and other embedded systems. Properties expressed should
include specific ones such as timing dependencies, usage of memory and
other resources.

• Governance and IPR issues. Develop variety of across-project indicators
on OSS dynamic integration and static bundling. Indicators will provide
company management (as opposed to the leaders of individual develop-
ment projects) with quantitative and value-related percentages of OSS
adoption (e.g., within product lines), so that company wide governance
policies regarding OSS adoption, as well as the integration techniques, can
be monitored and enforced. Also, it will guarantee IPR peace of mind by
providing support for assessing the IPR nature of products embedding
OSS.

5.4 Security driven OSS development

Although the lack of a formal software development process is usually not
seen as a drawback by OSS communities, it may become a problem in the
security area, because security assurance techniques often assume a stable
design and development process. Focusing on security aspects, discussions
in OSS communities rarely state formal security requirements; rather they
mention informal requirements (e.g., “the software must not crash due to
buffer overflow”). However, these informal specifications are difficult to certify
as such. In this context, the need arises for a mechanism for defining security
requirements in a simply and unambiguous way.

The CC’s Security Target (ST) can become a fundamental input to OS
communities, improving the OSS software development process by provid-
ing clear indications of the contributions expected by the developers to the
project [29, 31, 34]. The ST in fact describes the security problems that
could compromise the system and identifies the objectives which explain how
to counter the security problems. Also, the ST identifies the security require-
ments that need to be satisfied to achieve the objectives.

Intuitively, the ST assumes a twofold role as a community input: (i) it
provides guidelines (ST’s objectives and requirements), the developers need
to follow when contributing to the community; (ii) it supports CC-based

5.5 Security driven OSS development: A case study on Single Sign-On 105

evaluation and certification of the OSS. This is due to the fact that, thanks
to point (i), OSS systems can be designed and developed by already consid-
ering the ST to be used in a subsequent certification. Community developers
will then be asked to provide, during the software development process, all
documentations and tests required for certification during the software de-
velopment phase. This solution results in a scenario where security targets
become high-level specification documents to be jointly developed by the
communities, driving OSS security assurance and security certification pro-
cesses.

In the next section we illustrate through an example how an ad-hoc se-
curity target can be used to provide security specification and requirements.
These requirements can then be used to manage the development process of
OSS community contributing to the system under development.

5.5 Security driven OSS development: A case study on
Single Sign-On

The use case we provide is on an open source Single Sign-On [8] solution,
which allows users to enter a single username and password to access sys-
tems and resources, to be used in the framework of an open source e-service
scenario. Single Sign-On (SSO) systems are aimed at providing functionalities
for managing multiple credentials of each user and presenting these creden-
tials to network applications for authentication (see Chapter 2).

Starting from a definition of the ST for a SSO system, we identify different
trust models and the related set of requirements to be satisfied during the de-
velopment phase. Then, we turn to the community for the development and
informally evaluation of a fully functional SSO system. The ST-based solu-
tions ensures that the software product will be developed with certification
in mind.

5.5.1 Single Sign-On: Basic Concepts

Applications running on the Internet are increasingly designed by composing
individual e-services such as e-Government services, remote banking, and air-
line reservation systems [15], providing various kind of functionalities, such as,
paying fines, renting a car, releasing authorizations, and so on. This situation
is causing a proliferation of user accounts: users typically have to log-on to
multiple systems, each of which may require different usernames and authen-
tication information. All these accounts may be managed independently by
local administrators within each individual system [22]. In other words, users
have multiple credentials and a solution is needed to give them the illusion

106 5 OSS security certification

of having a single identity and a single set of credentials. In the multi-service
scenario, each system acts as an independent domain. The user first inter-
acts with a primary domain to establish a session with that domain. This
transaction requires the user to provide a set of credentials applicable to the
domain. The primary domain session is usually represented by an operating
system shell executed on the user’s workstation. From this primary domain
session shell, the user can require services from other secondary domains . For
each of such requests the user has to provide a set of credentials applicable
to the secondary domain she is connecting to.

From the account management point of view, this approach requires in-
dependent management of accounts in each domain and use of different au-
thentication mechanisms. In the course of time, several usability and security
concerns have been raised leading to a rethinking of the log-on process aimed
at co-ordinating and, where possible, integrating user log-on mechanisms of
the different domains.

A service that provides such a co-ordination and integration of multiple
log-on systems is called Single Sign-On [14] platform. In the SSO approach
the primary domain is responsible for collecting and managing all user cre-
dentials and information used during the authentication process, both to the
primary domain and to each of the secondary domains that the user may
potentially require to interact with. This information is then used by ser-
vices within the primary domain to support the transparent authentication
to each of the secondary domains with which the user requests to interact.
The advantages of the SSO approach include [12, 22]:

• reduction of i) the time spent by the users during log-on operations to
individual domains, ii) failed log-on transactions, iii) the time used to
log-on to secondary domains, iv) costs and time used for users profiles
administration;

• improvement to users security since the number of username/password
each user has to manage is reduced;7

• secure and simplified administration because with a centralized admin-
istration point, system administrators reduce the time spent to add and
remove users or modify their rights;

• improved system security through the enhanced ability of system admin-
istrators to maintain the integrity of user account configuration including
the ability to change an individual user’s access to all system resources
in a co-ordinated and consistent manner;

• improvement to services usability because the user has to interact with
the same login interface.

7 It is important to note that, while improving security since the user has less accounts
to manage, SSO solutions imply also a greater exposure from attacks; an attacker
getting hold of a single credential can in principle compromise the whole system.

5.5 Security driven OSS development: A case study on Single Sign-On 107

Also, SSO provides a uniform interface to user accounts management,
enabling a coordinated and synchronized management of authentication in
all domains.

5.5.2 A ST-based definition of trust models and
requirements for SSO solutions

Open source requirements for a SSO are unlikely to be much more detailed
than the informal description made in the previous section. Such informal
requirements can correspond to different SSO solutions, which could slightly
differ in their purposes, depending on the business and trust scenario where
they are deployed. In a traditional development process, formal specifica-
tions would be used in order to disambiguate this description and lead the
development to the desired outcome. As an OSS-targeted alternative, let us
show how this can be obtained by the definition of a community-wide Se-
curity Target. Namely, we will generate the Single Sign-On Security Target
(SSO ST) starting by the informal requirements followed in the development
of the Central Authentication Service (CAS) [6, 11] and by the Computer
Associates eTrust Single Sign-On V7.0 [46] Security Target.

5.5.2.1 Central Authentication Service (CAS)

Central Authentication Service (CAS) [6, 11] is an open source framework
developed by Yale University. It implements a SSO mechanism to provide
a Centralized Authentication to a single server and HTTP redirections. The
CAS authentication model is loosely based on classic Kerberos-style authen-
tication [35]. When an unauthenticated user sends a service request, this
request is redirected from the application to the authentication server (CAS
Server), and then back to the application after the user has been authenti-
cated. The CAS Server is therefore the only entity that manages passwords
to authenticate users and transmits and certifies their identities. The infor-
mation is forwarded to the application by the authentication server during
redirections by using session cookies.

CAS is composed of pure-Java servlets running over any servlet engine
and provides a very basic web-based authentication service. In particular, its
major security features are:

1. passwords travel from browsers to the authentication server via an en-
crypted channel;

2. re-authentications are transparent to users if they accept a single cookie,
called Ticket Granting Cookie (TGC). This cookie is opaque (i.e., TGC

108 5 OSS security certification

contains no personal information), protected (it uses SSL) and private (it
is only presented to the CAS server);

3. applications know the user’s identity through an opaque one-time Service
Ticket (ST) created and authenticated by the CAS Server, which contains
the result of a hash function applied to a randomly generated value.

Also, CAS credentials are proxiable. At start-up, distributed applications
get a Proxy-Granting Ticket (PGT) from CAS When the application needs
access to a resource, it uses the PGT to get a proxy ticket (PT). Then, the
application sends the PT to a back-end application. The back-end application
confirms the PT with CAS, and also gains information about who proxied
the authentication. This mechanism allows “proxy” authentication for Web
portals, letting users to authenticate securely to untrusted sites (e.g., student-
run sites and third-party vendors) without supplying a password. CAS works
seamlessly with existing Kerberos authentication infrastructures and can be
used by nearly any Web-application development environment (JSP, Servlets,
ASP, Perl, mod perl, PHP, Python, PL/SQL, and so forth) or as a server-
wide Apache module.

5.5.2.2 Single Sign-On Security Target (SSO ST)

The SSO ST can be used to define security requirements for SSO solutions
and to drive a certification-oriented SSO implementation (i.e., CAS++ [9]).8

As shown in Section 3.10, a security target is composed of 7 sections, each
of which needs to be defined for a specific Target Of Evaluation (TOE). Since
we have already explained the content of each ST section, here we shall focus
on the specificities of the TOE and on the different parts of the SSO ST. The
first section of the SSO ST we analyze is the TOE overview, which provides
the reader with some initial insight about the context we are dealing with,
and the type of product we are considering. The SSO ST defines the TOE
overview in Figure 5.3.

Example of TOE overview.

• TOE overview. This Security Target (ST) defines the Information Technology
(IT) security requirements for Single Sign-On secure e-Services. Single Sign-
On for secure e-services implements a SSO mechanism to provide a Centralized
Authentication to a single server and HTTP redirections. SSO system integrates
an authentication mechanism with a Public Key Infrastructure (PKI).

Fig. 5.3: TOE overview

8 The SSO ST presented here is defined starting from the Computer Associates eTrust
Single Sign-On V7.0 ST [46] and represents a proof of concept only. It has not been
subject to any formal certification process, neither created by any evaluation body.

5.5 Security driven OSS development: A case study on Single Sign-On 109

To gain a better understanding of the TOE, we split the TOE description
into two subsections where we describe the TOE type and architecture. Fig-
ure 5.4 illustrates the TOE description section and Figure 5.5 depicts CAS
architecture which is taken from [27] and used as a template for describing a
SSO architecture.

Example of TOE overview.

• Product type. While there is an increasing need for authenticating clients to
applications before granting them access to services and resources, individual
e-services are rarely designed in such a way to handle the authentication pro-
cess. The reason e-services do not include functionality for checking the client’s
credentials is that they assume a unified directory system to be present, making
suitable authentication interfaces available to client components of network ap-
plications. On some corporate networks, all users have a single identity across
all services and all applications are directory enabled.
As a result, users only log in once to the network, and all applications across the
network are able to check their unified identities and credentials when granting
access to their services. However, on most Intranet and on the open network
users have multiple identities, and a solution is needed to give them the illusion
of having a single identity and a single set of credentials. Single Sign-On (SSO)
systems are aimed at providing this functionality, managing the multiple iden-
tities of each user and presenting their credentials to network applications for
authentication.

• TOE architecture. The Central Authentication Server (CAS) is designed as a
standalone web application. It is currently implemented as several Java servlets
and runs through the HTTPS server on secure.its.yale.edu. It is accessed via
the three URLs described in Figure 5.5 below: the login URL, the validation
URL, and the optional logout URL.

Fig. 5.4: TOE description

In the security problem definition section of the ST document, we describe
the expected operational environment of the TOE, defining the threats and
the security assumptions.9 Table 5.3 shows the threats that may be addressed
either by the TOE or its environments, and Table 5.4 shows our assumptions
concerning the TOE environment. For the sake of conciseness, we assume
that no organizational security policies apply to our case, leaving it to the
interested reader to come up with one as an exercise.

Based on the security problems defined in Tables 5.3 and 5.4, the security
objectives section of the ST document contains a set of concise statements
as a response to those problems. The security objectives we defined for a
SSO application are listed in Table 5.5. We have also defined the security
objectives for the TOE environment listed in Table 5.6.

9 Since we consider the same security functionalities as in [46], many of the threats
and assumptions defined here are taken from [46]

110 5 OSS security certification

Web
Browser

General
Authenticat ion

Server

Arbitrary Web
Service

Back end (non
web) service

1. Init ial request

2. Authentication

3. Ticket transfer

4. Validation

4a. Ticket proxy 5a. Validation

Fig. 5.5: CAS architecture

Threat ID Threat Description
T.WeakCredentials Users may select bad passwords, which make the

system vulnerable for attackers to guess their pass-
words and gain access to the TOE.

T.Access Attackers may attempt to copy or reuse authenti-
cation information to gain unauthorized access to
resources protected by the TOE.

T.Impersonate Attackers may impersonate other users to gain
unauthorized access to resources protected by the
TOE.

T.Mismanage Administrators may make errors in the manage-
ment and configuration of security functions of the
TOE. Those errors may permit attackers to gain
unauthorized access to resources protected by the
TOE.

T.BlockSystem Attacker may attempt to login as an authorized
user and gain unauthorized access to resources pro-
tected by the TOE. The attacker may login multi-
ple times, thus locking out the authorized user.

T.Reuse An attacker may attempt to reuse authentication
data, allowing the attacker to gain unauthorized
access to resources protected by the TOE.

T.Undetected Attempts by an attacker to violate the security pol-
icy and tamper with TSF data may go undetected.

T.NotLogout A logged-in user may leave a workstation without
logging out, which could enable an unauthorized
user to gain access to the resources protected by
the TOE.

T.CredentialsTransfer An Attacker may listen to the communication traf-
fic to find any authentication information.

Table 5.3: TOE threats

5.5 Security driven OSS development: A case study on Single Sign-On 111

Assumption ID Assumption Description
A.Admin Administrator is trusted to correctly configure the

TOE.
A.Trust It is assumed that there will be no untrusted users

and no untrusted software on the Policy Server
host.

A.TrustedNetwork It is assumed that the TOE components commu-
nicate over a physically protected Local Area Net-
work.

A.Users It is assumed that users will protect their authen-
tication data.

Table 5.4: TOE security assmptions

Objective ID Objective Description
O.Audit The TOE must provide ways to track unexpected

behaviors
O.Authentication The TOE must identify and authenticate all users

before providing them with application authentica-
tion information.

O.DenySession The TOE must be able to deny session establish-
ment based the maximum number of sessions a user
can have open simultaneously and an idle time-out.

O.Reauthenticate The TOE must be able to require the user to be
re-authenticated under specified conditions.

O.StrongAuthentication The TOE must integrate strong authentication
mechanism based on two-factor authentication
such as a smartcard and biometric properties of
the user.

O.Authorization The TOE shall determine the level of informa-
tion/services the requester can see/use.

O.AUthoManagement The TOE shall provide support for authorization
management.

O.Provisioning Before sending any request the TOE shall ensure
that it satisfies all the required pre-conditions de-
fined by the administrators.

O.Centralization User profiles should be maintained within the TOE.
O.SafeTransport The TOE architecture implies the exchange of

user information between the TOE server and ser-
vices to fulfill authentication and authorization
processes. Secure data transfer shall be assured.

O.Control The TOE shall provide a unique access control
point for users who want to request a service.

Table 5.5: TOE security objectives

112 5 OSS security certification

Objective ID Objective Description
OE.Admin Those responsible for the administration of the

TOE are competent and trustworthy individuals,
capable of managing the TOE and the security of
the information it contains.

OE.Install Those responsible for the TOE must establish and
implement procedures to ensure that the hardware,
software and firmware components that comprise
the system are distributed, installed and configured
in a secure manner.

OE.Operation There must be procedures in place in order to en-
sure that the TOE will be managed and operated
in a secure manner.

OE.Auth The users must ensure that their authentication
data is held securely and not disclosed to unau-
thorized persons.

Table 5.6: Security objectives for TOE environment

We can finally define the security requirements that need to be satisfied by
the TOE in order to reach the defined objectives. This is a crucial step; in a
OSS community, it is very important to put in charge of requirements defini-
tion someone having a deep understanding of the security objectives. The set
of requirements is divided into security functional requirements (SFRs) and
security assurance requirements (SARs), which have been taken respectively
from CC Part2 [18], and Part3 [19].

The SFRs we defined for the TOE are listed in Table 5.7. For the sake
of simplicity, we shall show only one example of SFR description (see Figure
5.6).

Component Name
FAU GEN.1 Audit data generation
FAU GEN.2 User identity association
FIA SOS.1 Verification of secrets
FIA UAU.1 Timing of authentication
FIA UAU.2 User authentication before any action [Primary Au-

thentication]
FIA UAU.5 Multiple authentication mechanisms
FIA UAU.6 Re-authenticating [Primary Authentication]
FIA UID.2 User identification before any action [Primary Au-

thentication]
FTA SSL.3 TSF-initiated termination
FTA TSE.1 TOE session establishment
FTP ITC.1 Inter-TSF trusted channel

Table 5.7: Security Functional Requirements for the TOE

5.5 Security driven OSS development: A case study on Single Sign-On 113

FAU GEN.1 Audit data generation
Hierarchical to: No other components.
FAU GEN.1.1 The TSF shall be able to generate an audit record of the following
auditable events:

a) Start-up and shutdown of the audit functions;
b) All auditable events for the [not specified] level of audit; and
c) [the following auditable events:

• User login/logout
• Failed attempts to login
• User session timeout].

Fig. 5.6: Example of SFR

Looking at the original requirement defined by CC Part2 [18] for the ex-
ample in Figure 5.6, it is clear that we need to change FAU GEN.1.1 before
being able to adopt it in our ST. The first operation is a selection operation.
CC Part2 [18] defines the point (b) of FAU GEN.1.1 as follows: “All auditable
events for the [selection, choose one of: minimum, basic, detailed, not speci-
fied] level of audit”. To adapt it to our case, we had to select one of the given
alternatives. The second operation is an assignment operation in which more
parameters can be specified. The original version of point (c) in CC part2
[18] is defined as [assignment: other specifically defined auditable events]. To
use it in our ST, we need to specify the auditable events of our interest.

The security assurance requirements in SSO ST are the assurance com-
ponents of Evaluation Assurance Level 2 (EAL2) taken from CC Part3 [19].
None of the assurance components has been refined. The EAL2 assurance
requirements are listed in Table 5.8.

We are now ready to consider another important section of the SSO ST,
namely the TOE specification summary, where more details about the secu-
rity functions of the TOE are given. This section also provides also a mapping
between the security functions of the TOE and the SFRs. The example in
Figure 5.7 describes the auditing mechanism of a SSO solution taken from
[27].

5.5.2.3 Trust Models

Trust models are the basis for designing interoperable systems. A trust model
describes a software system by defining its underlying environment as well as
its components, and the rules governing their interactions. Here, we focus on
the definition of trust models for SSO environments, based on the function-
alities that these environments support. We do not only consider the security
functionalities and requirements in SSO ST (described in the previous sec-

114 5 OSS security certification

Assurance Class Assurance components

ADV: Development
ADV ARC.1 Security architecture description
ADV FSP.2 Security-enforcing functional specifica-
tion
ADV TDS.1 Basic design

AGD: Guidance documents
AGD OPE.1 Operational user guidance
AGD PRE.1 Preparative procedures

ALC: Life-cycle support
ALC CMC.2 Use of a CM system
ALC CMS.2 Parts of the TOE CM coverage
ALC DEL.1 Delivery procedures

ASE: Security Target evaluation

ASE CCL.1 Conformance claims
ASE ECD.1 Extended components definition
ASE INT.1 ST introduction
ASE OBJ.2 Security objectives
ASE REQ.2 Derived security requirements
ASE SPD.1 Security problem definition
ASE TSS.1 TOE summary specification

ATE: Tests
ATE COV.1 Evidence of coverage
ATE FUN.1 Functional testing
ATE IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA VAN.2 Vulnerability analysis

Table 5.8: EAL2 Security Assurance Requirements

tion), but adopt a wider perspective, including also functional aspects of the
SSO solutions. We identify three models.

Authentication and Authorization Model (AAM). This model is one of
the traditional security/trust models describing all frameworks that pro-
vide authentication and authorization features [42]. It represents the basic
mechanism in which a user requires an access to a service that checks
the users’ credentials to decide whether access should be granted or de-
nied. The AAM model identifies two major entities: users, which request
accesses to resources, and services, potentially composed by a set of intra-
domain services, which share these resources. This model is based on the
classic client-server architecture and provides a generic protocol for au-
thentication and authorization processes.

Federated Model (FM). This model represents one of the emergent secu-
rity/trust models in which several homogeneous entities interact to pro-
vide security services, such as identity privacy and authentication. The
FM model identifies two major entities: users, which request accesses to
resources, and services, which share these resources. The major difference
with the previous model resides in the service definition and composition:
in federated systems the services are distributed on different domains and
they are built on the same level allowing mutual trust and providing func-
tionalities as cross-authentication [32].

Full Identity Management Model (FIMM). This model represents one of
the most challenging security and privacy/trust models. Besides dealing

5.5 Security driven OSS development: A case study on Single Sign-On 115

AU.1: Auditing generation
CAS uses Log4J to write event logs to either flat files or to an Oracle table (source=
http://ja-sig.org/wiki/pages/viewpagesrc.action?pageId=969).
The logged events include:

1. sees login screen
2. successful authentication
3. requested warnings
4. unsuccessful authentication
5. authentication warning screen presented
6. inactivity timeout
7. wall clock timeout (TGT)
8. bad attempt lockout
9. logout

AU.2: Auditing information

Each log entry includes:

• date / time
• event type (e.g., TICKET GRANT, TICKET VALIDATE)
• username (if applicable)
• client IP address (if applicable)
• result (SUCCESS/FAILURE)
• service url (if applicable)
• service ticket (if applicable)

These logs are used mainly for usage reports and for security reviews and incident
response. The requirements of the security group are:

• ability to identify who was logged on based on IP address
• ability to identify who was logged on based on date and time
• online logs retained for at least two weeks
• archived logs retained for at least one quarter

This function contributes to satisfy the security requirements FAU GEN.1 and
FAU GEN.2

Fig. 5.7: Example TOE specification summary describing the Logs mechanism of CAS

with all the security aspects covered by the previous two models, it pro-
vides mechanisms for identity and account management and privacy pro-
tection [1, 38]. The FIMM model identifies three major entities: users,
which request accesses to resources, services, which share these resources,
and identity manager, which gives functionalities to manage users identi-
ties.

116 5 OSS security certification

Requirement AAM Model FM Model FIMM Model

Authentication X X X
Strong Authentication X X X
Authorization X X
Provisioning X X
Federation X X
C.I.M. (Centralized Identity) X X
Management
Client Status Info X X X
Single Point of Control X
Standard Compliance X X X
Cross-Language availability X X X
Password Proliferation Prevention X X X
Scalability X X X

Table 5.9: Requirements categorization basing on the specific trust model.

5.5.3 Requirements

In order to compare our ST with a traditional analysis document, we need a
requirement list for a Single Sign-On solution. The requirements that a SSO
should satisfy are more or less well known within the security community, and
several SSO projects published partial lists.10 However, as is typical of the
OSS development source, the requirements elicitation phase has been infor-
mal and no complete list of requirements has been published. A comparative
analysis of the available lists brought us to formulating the following require-
ments (including the security ones). Focusing on security requirements, this
informal list of requirements can be substituted by a ST-based requirements
definition, which makes the development process stable and unambiguous.
For each requirement we also report the trust model (AMM, FM, FIMM) to
which it refers.11

Authentication (AAM,FM,FIMM). A major requirement of a SSO system
is to provide an authentication mechanism. Usually authentication is per-
formed by means of a classic username/password log-in, whereby a user
can be unambiguously identified. Authentication mechanisms should usu-
ally be coupled with a logging and auditing process to prevent and, eventu-
ally, discover malicious attacks and unexpected behaviors. From a purely

10 For an early attempt at a SSO requirements list, see
middleware.internet2.edu/webiso/docs/draft-internet2-webiso
-requirements-07.html.
11 Note that different trust models fulfill a different set of requirements (see Table
5.9). SSO solution, therefore, should be evaluated by taking into consideration only
the requirements supported by the corresponding trust model.

5.5 Security driven OSS development: A case study on Single Sign-On 117

software engineering point of view, authentication is the only “necessary
and sufficient” functional requisite for a SSO architecture.

Strong Authentication (AAM,FM,FIMM). For highly secure environments,
the traditional username/password authentication mechanism is not enough.
Malicious users can steal a password and impersonate the user. New ap-
proaches are therefore required to better protect services against unautho-
rized accesses. A good solution to this problem integrates username/password
check with a strong authentication mechanism based on two-factor authen-
tication such as a smartcard and biometric properties of the user (finger-
prints, retina scans, and so on).

Authorization (AAM,FIMM). After the authentication process, the system
can determine the level of information/services the requester can see/use.
While applications based on domain specific authorizations can be defined
and managed locally at each system, the SSO system can provide support
for managing authorizations (e.g., role or profile acquisitions) that apply
to multiple domains.

Provisioning (AAM,FIMM). Provisions are those conditions that need to
be satisfied or actions that must be performed before a decision is taken [7].
A provision is similar to a pre-condition (see Chapter 4) it is responsibility
of the user to ensure that a request is sent in an environment satisfying all
the pre-conditions. The non-satisfaction of a provision implies a request
to the user to perform some actions.

Federation (FM,FIMM). The concept of federation is strictly related to the
concept of trust. A user should be able to select the services that she wants
to federate and de-federate to protect her privacy and to select the services
to which she will disclose her own authorization assertions.

C.I.M. (Centralized Identity Management) (AAM,FIMM). The centraliza-
tion of authentication and authorization mechanisms and, more generally,
the centralization of identity management implies a simplification of the
user profile management task. User profiles should be maintained within
the SSO server thus removing such a burden from local administrators.
This allows a reduction of costs and effort of user-profile maintenance and
improves the administrators’ control on user profiles and authorization
policies.

Client Status Info (AAM,FM,FIMM). The SSO system architecture im-
plies the exchange of user information between SSO server and services
to fulfill authentication and authorization processes. In particular, when
the two entities communicate, they have to be synchronized on what con-
cern the user identity; privacy and security issues need to be addressed.
Different solutions of this problem could be adopted involving either the
transport (e.g., communication can be encrypted) or the application layer.

Single Point of Control (AAM). The main objectives of a SSO implemen-
tation are to provide a unique access control point for users who want
to request a service, and, for applications, to delegate some features from
business components to an authentication server. This point of control

118 5 OSS security certification

should be unique in order to clearly separate the authentication point from
business implementations, avoiding the replication and the ad-hoc imple-
mentation of authentication mechanisms for each domain. Note that every
service provider will eventually develop its own authentication mechanism.

Standard Compliance (AAM,FM,FIMM). It is important for a wide range
of applications to support well-known and reliable communication pro-
tocols. In a SSO scenario, there are protocols for exchanging messages
between authentication servers and service providers, and between tech-
nologies, within the same system, that can be different. Hence, every entity
can use standard technologies (e.g., X.509, SAML for expressing and ex-
changing authentication information and SOAP for data transmission) to
interoperate with different environments.

Cross-Language availability (AAM,FM,FIMM). The widespread adoption
of the global Internet as an infrastructure for accessing services has con-
sequently influenced the definition of different languages and technolo-
gies used to develop these applications. In this scenario, a requisite of
paramount importance is integrating authentication to service implemen-
tations written in different languages, without substantial changes to ser-
vice code. The first step in this direction is the adoption of standard com-
munication protocols based on XML.

Password Proliferation Prevention (AAM,FM,FIMM). A well-known mo-
tivation for the adoption of SSO systems is the prevention of password
proliferation so to improve security and simplify user log-on actions and
system profile management.

Scalability (AAM,FM,FIMM). An important requirement for SSO systems
is to support and correctly manage a continuous growth of users and sub-
domains that rely on them, without substantial changes to system archi-
tecture.

5.5.4 A case study: CAS++

Our SSO ST is meant to drive the development of open source SSO systems.
As a case study, let us it as a guide to extend the Central Authentication
Service (CAS) [6, 11] to an enhanced version we will call CAS++.12. Our
extension integrates the CAS system with the authentication mechanism im-
plemented by a Public Key Infrastructure (PKI) [33]. CAS++ implements a
fully multi-domain stand-alone server that provides a simple, efficient, and
reliable SSO mechanism through HTTP redirections, focused on user privacy
(opaque cookies) and security protection. CAS++ permits a centralized man-

12 Of course CAS++ is not the only implementation available on the Net. In par-
ticular, SourceID [47], an Open Source implementation of the SSO Liberty Alliance,
Java Open Single Sign-On (JOSSO) [28], and Shibboleth [45] are other available SSO
solutions.

5.5 Security driven OSS development: A case study on Single Sign-On 119

Fig. 5.8: CAS++ certificate-based authentication flow

agement of user profiles granting access to all services in the system with a
unique pair username/password. The profiles repository is stored inside the
SSO server application and is the only point where users credentials/profiles
are accessed, thus reducing information scattering. In our implementation,
services do not need an authentication layer because this feature is managed
by CAS++ itself.

CAS++ relies on standard protocols such as SSL, for secure communi-
cations between the parties, and on X.509 digital certificates for credentials
exchange. Besides being a “pure-Java” module like its predecessor, CAS++
is a fully J2EE compliant application integrable with services coded with
every web-based implementation language. It enriches the traditional CAS
authentication process through the integration of biometric identification (by
fingerprints readers) and smart card technologies in addition to traditional
username/password mechanism, enabling two authentication levels.

CAS++ strong authentication process flow is composed of the following
steps (see Figure 5.8):13

1. the user requests an identity certificate to the CA (Certification Author-
ity);

2. the user receives from the CA a smart card that contains a X.509 identity
certificate, signed with the private key of the CA, that certifies the user
identity. The corresponding user private key is encrypted with a sym-
metric algorithm (e.g., 3DES) and the key contained inside the smart
card can be decrypted only with a key represented by user fingerprint
(KFingerprintUser) [23];

13 Note that, the first two actions are performed only once when the user requests
the smart card along with an identity certificate.

120 5 OSS security certification

Fig. 5.9: CAS++ information flow for service request evaluation

3. to access a service the public key certificate, along with the pair user-
name/password, is encrypted with the CAS++ public key (KPuCAS++)
and sent to CAS++;

4. CAS++ decrypts the certificate with its private key, verifies the signature
on the certificate with the CA public key, and verifies the validity of this
certificate by interacting with the CA;

5. CAS++ retrieves from the CA information about the validity of the user
certificate encrypted with KPuCAS++;

6. if the certificate is valid, CAS++ extracts the information related to the
user, creates the ticket (TGC, Ticket Granting Cookie) and returns it to
the user encrypted with the public key of the user (KPuUser). At this
point, to decrypts the TGC, the user must retrieve the private key stored
inside the smart card by mean of her fingerprint. As soon as the card
is unlocked, the private key is extracted and the TGC decrypted. This
ticket will be used for every further access, in the same session, to any
application managed by the CAS++ Single Sign-On server.

At this point, for every further access in the session, the user can be
authenticated by the service providing only the received TGC without any
additional authentication action.14

The service access flow, that takes place over secure channels and is similar
to the one in CAS, is composed of the following steps (see Figure 5.9):

1. the user, via a web browser, requests access to the service provider;
2. the service provider requests authentication information through a HTTP

redirection to the CAS++ Server;

14 Note that the TGC lifetime should be relatively short to avoid conflicts with the
CA’s certificate revocation process, which could cause unauthorized accesses.

5.6 Conclusions 121

3. the CAS++ Server retrieves the user TGC and the service requested
URL. If the user has been previously authenticated by CAS++ and has
the privilege to access the service a Service Ticket is created;

4. the CAS++ Server redirects the user browser to the requested service
along with the ST;

5. service receives the ST and check its validity sending it to the CAS++
Server;

6. if the ST is valid the CAS++ Server sends to the Service an XML file
with User’s credentials;

7. the user gains access to the desired service.

5.5.4.1 Evaluating CAS++ Against the ST Document

CAS++ is based on the Authentication and Authorization Model. Also,
CAS++ fulfills most of our ST requirements; specifically, it provides a central
point of control to manage authentication, authorization, and user profiles.15

Furthermore, CAS++ enriches the traditional CAS authentication process
with the integration of biometric identification (via fingerprints readers) and
smart card technologies and it is planned to include provisioning features
in future releases. Note that, the lower level of CAS++ system is language
independent and relies on traditional established standards, such as HTTP,
SSL and X.509, without adopting emerging ones, such as SOAP and SAML.
Focusing on client status info, all communications between user browser, ser-
vices providers and authentication server in CAS++ scenario are managed
by the exchange of opaque cookies and by the use of encrypted channels.
Finally, since CAS++ development has been driven by SSO ST, the process
of certifying CAS++ based on the CC standards, becomes straightforward.

5.6 Conclusions

Software Assurance (SwA) relates to the level of confidence that software
functions as intended and is free of faults. In open source development, many
stakeholders have a vested interest in the finalization of a standard assurance
process for open source encompassing the areas of functionality, reliability,
security, and interoperability. Most major OSS projects have some kind of
assurance process in place which includes specific code reviews, and in some
cases code analysis. Indeed, anecdotal evidence shows that code review is

15 The centralization of users profiles affects system scalability. A solution that pro-
vides a balance between centralization and scalability needs is under study.

122 5 OSS security certification

provenly faster and more effective in large communities.16 As far as security
certification is concerned, the process must be as public as possible, involving
academia, the private sector, nonprofit organizations, and government agen-
cies. Since no formal requirements elicitation is normally done in the OSS
development process, the CC ST document can be used to collect and focus
the stakeholders’ view on the software product’s desired security features.

References

1. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. To-
wards privacy-enhanced authorization policies and languages. In Proc. of the
19th IFIP WG11.3 Working Conference on Data and Application Security.

2. C.A. Ardagna, E. Damiani, and F. Frati. Focse: An owa-based evaluation frame-
work for os adoption in critical environments. In Proc. of the 3rd IFIP Working
Group 2.13 Foundation on Open Source Software, Limerick, Ireland, June 2007.

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to
secure e-government services. Encyclopedia of Digital Government, Idea Group
Inc., 2006.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middle-
ware for securing e-gov applications. In Proc. of The First International Con-
ference on Open Source Systems, Genova, Italy, July 2005.

5. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Adopting open source for
mission-critical applications: A case study on single sign-on. In Proc. of the 2nd
IFIP Working Group 2.13 Foundation on Open Source Software, Como, Italy,
June 2006.

6. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-
on with cas (central authentication service). In Proc. of the EUNIS04 - IT
Innovation in a Changing World.

7. C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Provisions and obli-
gations in policy management and security applications. In Proc. of the 28th
Conference on Very Large Data Bases (VLDB 2002), Honk Kong, China, Au-
gust 2002.

8. D.A. Buell and R. Sandhu. Identity management. IEEE Internet Computing,
7(6).

9. S. De Capitani di Vimercati F. Frati P. Samarati C.A. Ardagna, E. Damiani.
Cas++: an open source single sign-on solution for secure e-services. In Proc. of
the 21st IFIP TC-11 International Information Security Conference, Karlstad,
Sweden, May 2006.

10. A. Capiluppi, P. Lago, and M. Morisio. Characterizing the oss process: a hori-
zontal study. In Proc. of the 7th European Conference on Software Maintenance
and Reengineering, Benevento, Italy, March 2003.

11. Central Authentication Service.
12. J. De Clercq. Single sign-on architectures. In Proc. of the International Confer-

ence on Infrastructure Security (InfraSec 2002).
13. C. Cowan. Software security for open-source systems. IEEE Security & Privacy,

1(1):38–45, January-February 2003.

16 The Interbase database software contained a backdoor access (username
politically and password correct) which was found soon after it was released as
open source, thanks to large-scale code review by the interested community.

References 123

14. B. Galbraith et al. Professional Web Services Security. Wrox Press, 2002.
15. S. Feldman. The changing face of e-commerce. IEEE Internet Computing, 4(3).
16. J. Feller and B. Fitzgerald. Understand Open Source Software Development.

Addison-Wesley, 2002.
17. FLOSSmole. Collaborative collection and analysis of free/libre/open source

project data. ossmole.sourceforge.net/.
18. The International Organization for Standardization and the International Elec-

trotechnical Commission. Common Criteria for Information Technology Secu-
rity Evaluation, Part 2: Security functional components, 2007. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf.

19. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Secu-
rity Evaluation, Part 3: Security assurance components, 2007. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R2.pdf.

20. Free Software Foundation. www.fsf.org/.
21. B. Golden. Succeeding with Open Source. Addison-Wesley, 2004.
22. The Open Group. Single Sign-On.
23. F. Hao, R. Anderson, and J. Daugman. Combining cryptography with biometrics

effectively. In Technical report, Cambridge University - Computer Laboratory
Technical Report UCAM-CL-TR-640.

24. A. Hars and O. Shaosong. Working for free? motivations of participating in open
source projects. In Proc. of the 34th Annual Hawaii International Conference
on System Sciences, Maui, Hawaii, USA, January 2001.

25. S.A. Hissam, D. Plakosh, and C. Weinstock. Trust and vulnerability in open
source software. In IEE Proceedings - Software, volume 149, pages 47–51, Febru-
ary 2002.

26. Open Source Initiative. The Open Source Definition, July 2006. opensource.
org/docs/osd/.

27. JA-SIG. Ja-sig central authentication service. www.ja-sig.org/products/
cas/.

28. Java Open Single Sign-On (JOSSO).
29. F. Keblawi and D. Sullivan. Applying the common criteria in systems engineering.

IEEE Security and Privacy, 4(2):50–55, March 2007.
30. A.M. St. Laurent. Understanding Open Source and Free Software Licensing.

O’Reilly Media, Inc., 2004.
31. J. Lee, S. Lee, and B. Choi. A cc-based security engineering process evalua-

tion model. In Proc. of the 27th Annual international Conference on Computer
Software and Applications (COMPSAC 2003), Dallas, Texas, USA, November
2003.

32. Liberty Alliance Project.
33. U.M. Maurer. Modelling a public-key infrastructure. In Proc. of the 4th European

Symposium on Research in Computer Security (ESORICS 1996), Rome, Italy,
September 1996.

34. D. Mellado, E. Fernandez-Medina, and M. Piattini. A common criteria based se-
curity requirements engineering process for the development of secure information
systems. Computer Standards & Interfaces, 29(2):244–253, February 2007.

35. B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, September 1995.

36. Open Source Initiative (OSI). opensource.org/.
37. C. Payne. On the security of open source software. Info Systems Journal, 12:61–

78, 2002.
38. PRIME (Privacy and Identity Management for Europe).
39. PuTTY. A free telnet/ssh client. www.chiark.greenend.org.uk/$\

sim$sgtatham/putty/.

124 5 OSS security certification

40. Business Readiness Rating. Business Readiness Rating for Open Source, 2005.
www.openbrr.org/wiki/images/d/da/BRR_whitepaper_2005RFC1.
pdf.

41. E.S. Raymond. The cathedral and the bazaar. Available at:
www.openresources.com/documents/cathedral-bazaar/, August 1998.

42. P. Samarati and S. De Capitani di Vimercati. Foundations of Security Analysis
and Design, chapter Access Control: Policies, Models, and Mechanisms, pages
137–196. Springer Berlin / Heidelberg, 2001.

43. W. Scacchi, J. Feller, B. Fitzgerald, S.A. Hissam, and K. Lakhani. Understanding
free/open source software development processes. Software Process: Improvement
and Practice, 11(2):95–105, 2006.

44. K.S. Shankar and H. Kurth. Certifying open source: The linux experience. IEEE
Security & Privacy, 2(6):28–33, November-December 2004.

45. Shibboleth Project.
46. Sygnacom solutions. Computer Associates eTrust Single Sign-On V7.0 Secu-

rity Target V2.0, October 2005. www.commoncriteriaportal.org/files/
epfiles/ST_VID3007-ST.pdf.

47. SourceID Open Source Federated Identity Management.
48. Cluster SSH. Cluster admin via ssh. sourceforge.net/projects/

clusterssh.
49. I. Stamelos, L. Angelis, A. Oikonomou, and G.L. Bleris. Code quality analysis in

open source software development. Info Systems Journal, 12:43–60, 2002.
50. V. Torra. The weighted owa operator. International Journal of Intelligent Sys-

tems, 12(2).
51. D.A. Wheeler. Secure Programming for Linux and Unix HOWTO. Available :

http://www.dwheeler.com/secure-programs/, 2003.
52. D.A. Wheeler. Free-Libre/Open Source Software (FLOSS) and Software As-

surance/Software Security, December 2006. www.dwheeler.com/essays/oss\
_software_assurance.pdf.

53. WinSCP. Free sftp and scp client for windows. winscp.net/eng/index.php.
54. R.R. Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transaction Systems, Man, Cybernetics, 18(1).
55. T. Ylönen. Ssh - secure login connections over the internet. In Proc. of the Sixth

USENIX Security Symposium, July.

