
Chapter 4

Formal methods for software verification

Abstract The growing importance of software in every aspect of our life
has fostered the development of techniques aimed at certifying that a given
software product has a particular property. This is especially important in
critical application areas such as health care and telecommunications, where
software security certification can improve a software product’s appeal and
reduce users and adopters concern over the risks created by software faults.
In this chapter, we shall deal with a wide range of formal and semi-formal
techniques used for verifying software systems’ reliability, safety and security
properties. A central notion is the one of a certificate i.e. a metadata item
containing all information necessary for an independent assessment of all
properties claimed for a software artifact. Here we focus on the notion of
model-based certification, that is, on providing formal proofs that an abstract
model (e.g., a set of logic formulas, or a formal computational model, such
as a finite state automaton), representing a software system, has a particular
property. We start by laying out some of the work that has been done in
the context of formal method verification, including in particular the areas
of model checking, static analysis, and security-by-contract. Then, we go
on discuss the formal methods that have been used for analyzing/certifying
large-scale, C-based open source software.

4.1 Introduction

Software systems are trending towards increased size and increasingly com-
plex architectures. This is making it more and more difficult to achieve full
assurance of a software product’s non-functional properties by means of test-
based techniques alone (see Chapter 3). An important alternative option is
to use formal methods, that is, techniques based on logics, set theory and
algebra for the specification of software systems models and the verification
of the models’ properties. The use of formal methods has become widespread,
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64 4 Formal methods for software verification

especially during the early phases of the development process. Indeed, an ab-
stract model of a software system can be used to understand if the software
under development satisfies a given set of functional requirements and guaran-
tees certain non-functional properties. Also, the increasing number of reports
of security-relevant faults in software shows that the problem of verifying
security-related properties cannot be ignored, especially in the development
of high-integrity systems where safety and security are paramount.

There are several case studies proving the applicability of formal meth-
ods to security certification [17, 30]. Some practitioners are, however, still
reluctant to adopt formal methods. This reluctance is mainly due to a lack
of theoretical understanding, and to the misconceived perception that formal
techniques are difficult to learn and apply. The detection and the prevention
of faults is indeed one of the main motivations for using formal methods.
Verifying a formal system specification can help to detect many design flaws;
furthermore, if the specification is given in an executable language, it may also
be exploited to simulate the execution of the system, making the verification
of properties easier (early prototyping). Over the last few years software veri-
fication using formal methods has become an active research area. Special at-
tention is being given to the verification of concurrent and parallel programs,
in which testing often fails to find faults that are revealed only through the
use of very specific test cases or timing windows. However, the problem of us-
ing models for checking a software product’s memory-related non-functional
properties, also known as pointer analysis, remains to be solved. To under-
stand why, let us consider a slight variation of the digitcount function we
introduced in Chapter 3.

int digitcount(char* s)
{
int digit = 0;
int i;
for (i = 1; *(s+i) != ’\0’; i++)

if (’0’ <= *(s+i) <= ’9’)
digit++;

return digit;
}

While this coding of digitcount is functionally equivalent to the one of
Chapter 3, switching the type of the input argument from the array of char-
acters of the original version (whose maximum size can be defined in the
calling program) to a pointer to char - that is, an address pointing to a
memory area whose maximum size is not known - has interesting effects.
Assuming that the calling program had originally limited the size of arrays
passed to digitcount to 256, the number of states (defined, as before, as the
possible contents of the function’s local variables) of our new version of the
sample function may have increased dramatically as a result of this alterna-
tive coding. In this example, the state space may change in size but remains
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anyway finite; in general, because of the dynamic and unbounded nature of
C memory handling primitives (including allocations, deallocations, referenc-
ing, dereferencing etc.), models representing C programs with pointers must
take into account an infinite state space. With infinite state spaces,1 exhaus-
tive searches are no longer possible, and checking the properties of models
involving recursive pointer types may lead to undecidability [21].

4.2 Formal methods for software verification

Let us start with a survey on the categories of formal methods that are of
interest for security certification. Program verification techniques fall into
three broad categories: The first category involves non-formal or partially
formal methods such as testing, which we have discussed in some detail in
Chapter 3; the second category, known as model checking, involves formal
verification of software systems with respect to specifications expressed in a
logical framework, either using state space analysis or theorem proving; the
third category includes classic static program analysis techniques. We shall
now provide a brief introduction to both these categories.

4.2.1 Model Checking

Model checking [12] is a formal verification approach for detecting behavioral
anomalies (including safety, reliability and security-related ones) of software
systems based on suitable models of such systems. Model checking produces
valuable results, uncovering software faults that might otherwise go unde-
tected. Sometimes it has been extremely successful: in 1998, the SPIN model-
checker was used to verify the plan execution module in NASA’s DEEP
SPACE 1 mission and discovered five previously unknown concurrency er-
rors. However, model checking is not a panacea. Indeed, there are still several
barriers to its successful integration into software development processes. In
particular, model checking is hamstrung by scalability issues; also, there is
still a gap between model checking concepts and notations and the models
used by engineers to design large-scale systems.

Let us focus on the scalability problem, which is a major obstacle to using
model checking to verify (and certify) the security properties of software
products. Methods and tools to aid design and analysis of concurrent and
distributed software are often based on some form of a state reachability
analysis, which has the advantage of being conceptually simple. Basically,
the verifier states the non-functional properties she would like the program

1 In some cases, there are ways of representing infinite state spaces finitely, but this
would take us well outside the scope of this book.
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to possess; then, by means of a model checker tool, she searches the program
state space looking for error states, where the specified properties do not hold.
If some error states are detected, the verifier removes the faults which made
them reachable, and repeats the procedure. The reader may detect a certain
likeness to the testing process: indeed, one can never be sure that all error
states have been eliminated. Usually, state analysis is not performed directly
on the code; rather, one represents the program to be verified as a state
transition system, where states are values of variables, and transitions are
the instructions of the program. Fig. 4.1 shows the transition system for the
instruction for (int i = 1; ∗ (s + i) ! = ‘n0′; i + +) in our digitcount
example.

* ( s+ i )=h

i = 1

* (s+ i )=e

i = 2

* (s+ i )= l

i = 3

* (s+ i )= l

i = 4

* (s+ i )=o

i = 5

Fig. 4.1: Transition system of a digicount instruction

It is easy to see where the problem lies: the number of states may proliferate
even for relatively simple programs, making the model checking approach
computationally very expensive.

However, space search algorithms allowing more than 1020 states have
been available for several years now, and today’s model-checkers can easily
manage millions of state variables. Also, a number of techniques have been
developed to prevent state space explosion and to enable formal verification
of realistic programs and designs. Here, we will only recall an important
method in state space reduction, namely abstraction. Abstraction techniques
reduce the state space of a software system by mapping the set of states of the
actual system into an abstract, and much smaller, set of states in a way that
preserves all relevant system behaviors. Predicate abstraction [20] is one of
the most popular methods for systematic reduction of program state-spaces.
It abstracts program data by only keeping track of certain predicates on the
data, rather than of the data themselves. Each predicate is represented by a
Boolean variable in the abstract program, while the original data variables
are eliminated. The resulting Boolean program is an over-approximation of
the original program.

In practice, the verifier starts with a coarse abstraction of the system to
be checked, and checks this abstraction for errors. If checking reports an
unrealistic error-trace, the error-trace is used to refine the abstract program,
and the process proceeds iteratively until no spurious error traces can be
found. The actual steps of this iterative process follow an abstract-verify-
refine paradigm.
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Automated theorem proving [15] is a well-developed subfield of automated
reasoning that aims at proving mathematical theorems by means of a com-
puter program. Commercial use of automated theorem proving is mostly
concentrated in integrated circuit design and verification, although many sig-
nificant problems have been solved using theorem proving. Some of the fields
where theorem proving has been successfully used are mathematics, software
creation and verification, and knowledge based systems.

When assessing the correctness of the program, two distinct approaches us-
ing properties are in use, namely pre/post-condition and invariant assertion.
Large programs should specify pre- and post-conditions for every one of their
major procedures.2 A pre-condition is a logical formula whose value is either
the Boolean true or false. It is a statement that a given routine should not
be entered unless its pre-condition is guaranteed3. Obviously, a pre-condition
does not involve variables that are local to the procedure; rather, it may
involve relevant global variables, and the procedure’s input arguments.

Ideally, a pre-condition is a Boolean expression, possibly using the for-all
(∀) or there-exists (∃) quantifiers.

The post-condition of a procedure is also a Boolean formula which de-
scribes the outcome of the procedure itself. The results described in a post-
condition are accomplished only if the procedure is called while its pre-
condition is satisfied. The post-condition talks about all relevant global vari-
ables and the input arguments and relates them to the output results. Like
a pre-condition, a post-condition is a strictly Boolean expression, possibly
using the for-all (∀) or there-exists (∃) quantifiers. Pre/post-condition -based
approaches to software verification formulate the software correctness prob-
lem as checking the relationship between the pre-condition Boolean formula
that is assumed to hold at the beginning of program execution and the post-
condition formula that should hold at the end of program execution.

The pre/post-condition based verification process goes as follows: again,
the verifier states the non-functional properties she would like the program
to possess. Then, she formulates relevant pre-conditions and post-conditions
known to hold for smaller parts of the program, and uses these properties
and additional axioms to derive the desired non-functional properties.

One might legitimately ask where do these axioms come from and how pre-
and post-conditions can be formulated. The prototype of each procedure -
or better, its signature - is an important source of pre- and post-conditions.
When a procedure declares a formal parameter as passed by value, this means
that the actual argument will remain unchanged at the end of the procedure:
a basic post-condition. Also, procedures may modify global variables whose
names are not listed as actual arguments. It is possible to generate pre- and

2 In this section we use the word “procedure” as a generic term for both procedures
and functions. A function returns a value to the caller but has no side effects on the
caller local memory, whereas the purpose of a procedure is exactly to have such a
side-effect.
3 If the procedure is entered anyway, its behavior is unpredictable
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post-conditions by stating the global variables’ values before and after a call
to the procedure. As far as the axioms are concerned, they simply express
typical pre-conditions and post-conditions of the programming language’s
instructions. To further clarify this issue, let us use the elegant notation of
Hoare triplets [18], as follows: {P}S{Q}, where P is a precondition, S a
statement and Q a postcondition.

The meaning of a Hoare triplet is the one suggested by intuition: if P holds
before S is executed, then after the execution of S is executed, Q holds. For
example, {a > b} while (a > b) a−−{a = b} {(a, b : int)} means that
if the integer a is greater than b, the loop while (a > b) a−− will make them
equal. Let us now state the simplest possible axiom, the one corresponding
to the assignment instruction:

{Q(e/x)}x = e{Q} (4.1)

The axiom states the (rather intuitive) fact that if we have a pre-condition
which is true if e is substituted for x, and we execute the assignment x = e,
the same formula will hold as a post-condition. For example, if we want
to prove that {i = 0} i = i + 1 {i > 0}, we apply the assignment axiom to
obtain {i + 1 = 1} i = i + 1{i + 1 > 1}, from which the thesis is derived by
simple arithmetics.

Verification becomes more difficult when we consider loops, a basic control
structure in nearly all programming languages. Loops are executed repeat-
edly, and each iteration may involve a different set of pre- and post-conditions.
Therefore, verification needs to focus on assertions which remain constant be-
tween iterations rather than on pre- and post-conditions. These assertions are
known as loop invariants, and remain true throughout the loop. To clarify
this concept, let us consider the code fragment below, which computes the
minimum in an array of positive integers:

min = 0;
int j;
for (j = 0; j <= n; j++)
{
if(s[j] < min)

min=s[j];
}

The invariant of this loop is that, at any iteration, s[k] < min for
k = 0, 1, . . . , j.4. To prove that an assertion of interest still holds after a
loop terminates, the verifier must start by proving that the loop does indeed
terminate. The verifier needs to identify an invariant and use it together
with axioms to derive the theorem that the desired assertion is true after last
iteration. It is interesting to remark that identifying pre-conditions, post-

4 The invariant holds even for j = k = 0, since the array is made of positive integers.
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conditions and invariants is useful even if the formal verification process is
not carried out. Consider the following code:

int digitcount (char s[])
{
if (!precond(s))

return -1;
/* .. rest of the digitcount code.. */

}

Here, the function digitcount is doing something unexpected: it is check-
ing its own precondition. If an input parameter violates the pre-condition,
that is, precond(s) is false, the function returns a value that is outside its ex-
pected range of return values, in this example −1. This precaution increases
the robustness of the function, preventing error conditions due to malformed
inputs. 5

A key difference between the model checking approach to software verifica-
tion and the theorem proving one we just explained, is that theorem provers
do not need to exhaustively visit the whole program state space in order to
verify properties, since the constraints are on states and not on instances of
states. Thus, theorem provers can reason about infinite state spaces and state
spaces involving complex datatypes and recursion.

A major drawback of theorem provers is that they require a great deal of
user expertise and effort: although theorem provers are supposed to support
fully automated analysis, only in restricted cases is an acceptable level of
automation is provided. This is mainly due to the fact that, depending on
the underlying logic, the problem of deciding the validity of a theorem varies
from trivial to impossible. For the case of propositional logic, the problem
is decidable but NP -complete, and hence only exponential-time algorithms
are believed to exist for general proofs. For the first order predicate calculus,
the theorem prover could even end up in non-termination. In practice, the
theoretical results require a human to be in the loop, to derive non-trivial
theorems and to guide the theorem prover in its search for a proof. Despite
these theoretical limits, practical theorem provers can solve many hard soft-
ware verification problems.

4.2.2 Static Analysis

Static program analysis aims to retrieve valuable information about a pro-
gram by analyzing its code. Static analysis of programs is a proven technology

5 Strictly speaking, here precond(x) is not a proper precondition of digitcount,
because digitcount is executed whether precond(x) is true or not; but the program-
mer can now be confident that the “real” digitcount code will be executed only if
precond(s) evaluates to true.
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in the context of the implementation and optimization of compilers and in-
terpreters. The Syntactic analysis carried out by compilers is a first step in
this direction: many faults due to typing mistakes can be tracked by modi-
fying the C syntax specification on which the compiler is based to generate
appropriate warning messages. Let us consider the following code fragment:

int digit = 0;
if(*s = ’\0’)

return digit;
else

/* rest of the digitcount code */

It is easy to see that this code always returns 0; this is due to the pro-
grammer erroneously using an assignment instead of a comparison operator.
The C syntax analyzer can be modified to generate a warning whenever an
assignment statement appears in a conditional expression (where a compar-
ison would be expected). In the modified syntax specification, the compiler
action upon detecting an assignment in a conditional expression is specified
as “print a warning message”.

In recent years static analysis techniques have been applied to novel ar-
eas such as software validation, software re-engineering, and verification of
computer and network security. Giving a way of statically verifying a secu-
rity property has, in principle, the advantage of making the checking of the
property more efficient; moreover it allows the writing of programs which are
secure-by-construction (e.g., when the performed analysis is proved to imply
some behavioural security properties). As most non-trivial properties of the
run-time behaviour of a program are either undecidable or NP -hard, it is
not possible to detect them accurately, and some form of approximation is
needed. In general, we expect static analysis to produce a possibly larger set
of possibilities than what will ever happen during execution of the program.
From a practical perspective, however, static analysis is not a replacement
for testing nor can it completely eliminate manual review. Static analysis is
effective only when operating on the source code of programs, whereas code
consumers typically deal with binary code which makes it difficult (if not
impossible) for them to statically verify whether the code satisfies their pol-
icy. This is not the case with open source, though; and this remark alone
would be sufficient to make static analysis an important topic for our pur-
poses. But there is more: static analysis has a proven record of effectiveness
for dealing with security-related faults. Often attackers do not even bother
to find new faults but try and exploit well-known ones, such as buffer over-
flow, which could have been detected and removed using static code analysis.
When performing static analysis of a program, the verifier uses tools like
lint and splint, which perform error checking of C source, to scan the
program’s source code for various vulnerabilities. Such scanning involves two
steps: control flow and data flow analysis.
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Control Flow Analysis (CFA) [24] is an application of Abstract Interpreta-
tion technologies. The purpose of CFA is to statically predict safe and com-
putable approximations to the dynamic behaviour of programs. The approach
is related to Data Flow Analysis and can be seen as an auxiliary analysis
needed to establish the information about the intra- and inter-procedural flow
of control assumed when specifying the familiar equations of data flow anal-
ysis. It can be expressed using different formulations such as the constraint-
based formalism popular for the analysis of functional and object-oriented
languages, or the Flow Logic style. Flow Logic is an approach to static anal-
ysis that separates the specification of when a solution proposed by analysis
is acceptable form the actual computation of the analysis information. By
predicting the behaviour of a software system, it leads to positive informa-
tion even when the system under evaluation does not satisfy the property of
interest, whereas the type-system approach is binary-prescriptive (a system
is either accepted or discarded). Moreover, it is a semantics-based approach
- meaning that the information obtained from the analysis can be proved
correct with respect to the semantics of the programming language, that is,
the result reflects an appropriate aspect of the program’s dynamic behaviour.
The formalization of Control Flow Analysis is due to Shivers in [29], where
the analysis is developed in the context of functional languages. The CFA
technique has been used extensively in the optimization of compilers, but
over the last few years it has also been used for verification purposes. In the
case of the Flow Logic approach, there is an extensive literature, showing
how it has been specified for a variety of programming language paradigms.
Moreover, this technique has been used to verify non-trivial security proper-
ties, such as stack inspection and a store authorization in a broadcast process
algebra. To fix our ideas, let us consider the simplest case [16], where control
flow analysis involves setting up a control flow graph, i.e., a Directed Acyclic
Graph (DAG) which represents the program’s control flow. Each node in the
DAG corresponds to a program instruction and the edges from one node to
another represent the possible flow of control. Control flow graphs for basic
instructions are shown in Figure 4.2.

Control flow graphs for more complex statements can be constructed in-
ductively from the control flow graphs of simple statements. Function calls
are also represented as nodes in a control flow graph. When traversing a pro-
gram’s control flow graph if one comes across a node representing a function
call then the control flow graph of the corresponding function (if it exists) is
also traversed.

Data flow analysis determines the different properties a variable can have
through taking different paths in the program, in order to identify for poten-
tial faults. The nodes in the CFG are used to store information about certain
properties of data such as initialization of variables, references to variables,
and so forth.

For example, let us consider the following code fragment:

int digitcount (char* s)
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S1

S2

(a) S1, S2

E

S1

(c) If E then S1 else S2

S2

E

S

(d) While E do S

E

S

(b) If E then S

Fig. 4.2: Control flow graphs for basic instructions

{
int digit;
if (*s != ’\0’)
{
digit =0;
for (int i = 1; *(s+i) !=’ \0’; i++)

if (’0’ <= *(s+i) <= ’9’)
digit++;
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}
return digit;
}

Though the variable digit is initialized within the if statement, it is
not always guaranteed that digit will actually be initialized before being
accessed (when ∗s ==′ n0′, digit is uninitialized). Static analysis will point
out that variable digit is not initialized in one of the paths, a fact that may
escape testing unless the void string is used as a test case. Analysis of the
control flow graph can also be used for detecting memory-related faults like
dereferencing uninitialized pointers, forgetting to free allocated memory, and
so on.

To carry out this analysis, the verifier needs to use flow analysis and build
the control flow graph, adding memory-related information to nodes. For each
variable, such information will say whether at the execution of the instruction
corresponding to the node the variable is initialized or not (remember that
the variable will be considered as possibly not being initialized if there exists
at least a path through the graph on which the initialization is skipped).
As a formal notation, we can associate to each node S on the control graph
a set (let’s call it NonInit) consisting all variables for which a path exists
which terminates in S and does not include initialization. Similarly, we can
associate to S other sets such as NullPointer, including all pointers whose
value may be null at S. This way, the instruction corresponding to S can
be checked w.r.t. the sets associated to it. For instance if S dereferences a
pointer which is in NullPointer, or accesses a variable belonging NonInit, the
verifier receives a warning.

A major drawback of these analysis techniques is that they may generate
false positives. In general, the verifier has no idea of the semantics of the
program, and may consider faulty some code that the programmer has written
intentionally.

4.2.3 Untrusted code

Significant steps forward have been made in the use of software from sources
that are not fully trusted, or in the usage of the same software in different
platforms or environments. The lack of OS-level support for safe execution
of untrusted code has motivated a number of researchers to develop alterna-
tive approaches. The problem of untrusted binary code is solved when using
certified code (both proof-carrying code (PCC) [22, 23] and model-carrying
code (MCC) [27, 28]), which is a general mechanism for enforcing security
properties (see Chapter 9).

In this paradigm, untrusted mobile code carries annotations that allow a
host to verify its trustworthiness. Before running the guest software, the host
checks its annotations and proves that they imply the host’s security policy.
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Despite the flexibility of this scheme, so far, compilers that generate certified
code have focused on simple type safety properties rather than more general
security policies. A major difficulty is that automated theorem provers are not
powerful enough to infer properties of arbitrary programs and constructing
proofs by hand is prohibitively expensive. Moreover the security policy needs
to be shared and known a priori by both code producer and consumer. Unable
to prove security properties statically, real-world security systems such as the
Java Virtual Machine (JVM) have fallen back on run-time checking. Dynamic
security checks are scattered throughout the Java libraries and are intended
to ensure that applets do not access protected resources inappropriately. This
situation is unsatisfactory for a number of reasons: (i) dynamic checks are
not exhaustive; (ii) tests rely on the implementation of monitors, which are
error-prone; and (iii) system execution is delayed during the execution of the
monitor.

4.2.4 Security by contract

The security-by-contract mechanism [13, 14] draws ideas from both the above
approaches: firstly, it distinguishes between the notion of contract, containing
a description of the relevant features and semantics of the code, and the
policy, describing the contractual requirements of the platform/environment
where the code is supposed to be run; secondly, it verifies at run-time if the
contract and the policy match. This approach derives from the “design by
contract” idea used to design computer software. It prescribes that software
designers should define precise verifiable interface specifications for software
components based upon the theory of abstract data types and the conceptual
metaphor of a business contract.

The key idea of security-by-contract derives from the growing diffusion of
mobile computing and nomadic devices. Since the demand for mobile ser-
vices, which are dynamically downloaded by users carrying mobile devices, is
growing, there is a need for mechanisms for certifying security properties of
the downloaded application and for certifying how the application interacts
with the host device. The contract accompanying the application specifies
the relevant security actions while the policy defines the host’s requirements
i.e. the expected behaviour of applications when executed on the platform.
Contracts and policies are defined as a list of disjoint rules as follows.

<RULE> :=
SCOPE [ OBJECT <class> |

SESSION |
MULTISESSION ]
RULEID <identifier>
<formal specification>

where:
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• SCOPE defines at which level the specified contract will be applied [13]:
(i) object, the obligation must be fulfilled by objects of a given type,
(ii) session, the obligation must be fulfilled by each run of the applica-
tion, (iii) multisession, the obligation must be fulfilled by all runs of the
application;

• RULEID identifies the area at which the contract applies, as for instance,
files or connections;

• <formal specification> provides a rigorous and not ambiguous definition
of the rule semantics based on different techniques, such as, standard
process algebra, security automata, Petri Nets and the like.

Based on contract and policy definition, the matching algorithm verifies
if contracts and policies are compatible. A matching will succeed if for each
behaviour happening during the code execution both contract and policy
are satisfied. In Table 4.1, we present a simple example of a contract/policy
matching taken from [13].

Contract/Policy Rule Object can use one type of Object can use every type of
connection only connection only

Object can use HTTP
connection only

X X

Object can use HTTP
and SMS connections

X

Table 4.1: Contract/Policy Matching.

The matching algorithm is defined in a generic way, that is, independently
from the formal model used for specifying the rules. In [13] an example of
how the matching algorithm can be used with rules specified as Finite State
Automaton (FSA) is also provided. Differently from the model checking tech-
niques introduced in Section 4.3.2, which use finite state automaton to define
syntactic patterns the program should not contain, contracts/policies define
the expected behaviour of the application.

4.3 Formal Methods for Error Detection in OS C-based
Software

As we have seen in the previous sections, formal methods have been intro-
duced in the past to answer a simple question: “What should the code do?’.
In other words, formal methods were aimed at specifying some functional or
non-functional properties the software should possess. Although the response
to this question may seem trivial when looking at a toy function consisting of
a few lines of code, it is much more difficult to answer in the case of huge soft-
ware products (million of Lines Of Code (LOC)). In the previous sections, we
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outlined how formal methods can be used to compare what the code should
do, with what the code actually does.

The scenario described in this section is even more critical, because we
need to consider open source software. The application of formal methods to
open source software is somewhat difficult and it has sometimes been consid-
ered as a wrong choice. The open source paradigm is based on a cooperative
community-based code development, where code changes rapidly over time
and unambiguous specifications may simply not be available (see Chapter 5).
The code itself, in fact, is considered the first-line specification of an open
source system. This explains the problems faced by practitioners trying to
apply formal methods to huge undocumented open source software, such as
Linux. Usually open source software is not developed from a stable specifi-
cation and is based on programming languages which do not readily support
formal methods, like the C language used for coding Linux.

4.3.1 Static Analysis for C code verification

Much effort has been put into designing and implementing static analysis
techniques for the verification of security-critical software. The need for solu-
tion to the problem of finding potential vulnerabilities is especially acute in
the context of security-critical software written in C. As we have seen, the C
language is inherently unsafe, since the responsibility for checking the safety
of array and pointer references is entirely left to the programmer. Program-
mers are also responsible for checking buffer overflows. This scenario is even
more poignant in the context of an open source development community,
where different developers with heterogeneous skills and profiles contribute
to the software.

Software faults spotlighted in the last few years, the ones related to buffer
overflows have been the most frequently exploited. A notorious attack (the
so-called Morris worm) in November 1988, which infected about 10% of all the
computers connected to the Internet, exploited a buffer overflow in the finger
daemon of Sun 3 systems and VAX computers running variants of Berkeley
UNIX. This attack is often quoted as the first one that caused a widespread
infection, captured the attention of the world, resisted expert analysis, and
finally resulted in FBI investigations and legal actions. The Morris worm had
at least one positive effect: it increased the awareness of the software industry
about the dangers produced by Internet-based attacks. Also, as a result of
the Morris worm, the Carnegie Mellon Computer Emergency Response Team
(CERT) [8] was formed. Currently, the CERT institution represents the main
reporting center for Internet security problems.

Wagner et al. [31] describe an approach based on static analysis to de-
tect buffer overflow vulnerabilities. They start from the assumption that C
is insecure and developers, including expert ones, are themselves sources of
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vulnerabilities. Their solution applies static analysis to identify and fix se-
curity flaws before these can be exploited by a malicious adversary. In par-
ticular, the problem of detecting a buffer overflow is modeled as an integer
range constraint problem, which is solved by means of an algorithm based on
graph theoretic techniques. Also the authors focus on balancing precision and
scalability. The trade-off between precision and scalability introduces some
imprecision in the detection software, causing the identification of wrong
vulnerabilities (false positives) and the non-identification of real ones (false
negatives).

Wagner’s solution is based on two major ideas: (i) since most buffer over-
flows happen in string buffers, C strings are modeled as an abstract data
type; (ii) buffers are modeled as a pair (as,l) where as is the allocated size
for the string buffer, and l is the length, that is, the number of bytes used.

In summary, the authors provide a conceptual framework modeling string
operations as integer range constraints and then solving the constraint sys-
tem. The implementation of the framework is achieved via three main steps,
which are described below.

Constraint language definition. This step carries out the definition of a lan-
guage of constraints to model string operations. To this end, the concepts
of range, range closure, and arithmetic operations over ranges are intro-
duced. An integer range expression is defined as:

e ::= v‖n‖n× v‖e+ e‖e− e‖max(e · · · e)‖min(e · · · e)
where n is an integer and v is a set of range variables. From the range
expression a range constraint is then defined as e ⊆ v and an assignment
as α : v 7−→ α(v) ⊆ Z∞. An assignment α satisfies system of constraints
if all the assertions are verified when the variables are replaced with the
corresponding values α(v) in the assignment.

Constraint generation. In this step, after parsing the source code and
traversing the obtained parse tree, a system of integer range constraints
is generated. Each integer variable is associated with a range variable,
whereas a string variable is associated with two variables (the string’s al-
located size and the actual string length) plus a safety property len(s) ≤
alloc(s), where len(s) includes the terminating ‘\0’. For each statement
an integer range constraint is then generated. The safety property for each
string will be checked later.

Constraint resolution. Finally, an algorithm is used to find a bounding box
solution to the system of constraints defined by the previous steps. This is
guided by the fact that a program with k variables generates a statespace
Zk where the i -th component is the value of the i -th variable. The program
execution is modeled as a path and the goal becomes to find a minimal
bounding box including all possible paths in the k -dim space. To this end
a graph is built where each node represents a variable and an edge between
two nodes in the graph represents a constraint involving the two variables.
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The constraint solver works by propagating information along the paths
and finding a solution to the constraint system.

Although this technique provides a way to detect buffer overflow, it cannot
handle C pointers and aliasing. Other researchers working in static analysis
have focused on pointer analysis [1, 19] (see also Chapter 3). In order to
understand the notion of a pointer-related software fault, let us consider the
memcpy system call, whose prototype is:

void memcpy(void dest, const void source, sizet n).

memcpy copies the content of the memory pointed to by source (an address
within the caller’s address space) to the area, again in the caller’s address
space, pointed to by dest.6

Intuition suggests that a program failure may occur if the dest address
passed to memcpy is invalid. This type of pointer-related faults are known
to be difficult to detect through testing alone; even static analysis tends to
perform rather poorly, because pointer-related faults concern specific pointer
values rather than its type. Of course, one could wrap memcpy to check the
destination address before calling it; but this might introduce a non-negligible
overhead. The problem becomes more intricate if kernel pointers are involved
[19], because user space and kernel space addresses cannot be mixed without
undesirable results being produced. Let us consider the function

int var;
void getint(int *buf)
{
memcpy(buf, &var, sizeof(var))
}

which uses memcpy to copy the content of the variable var into the buffer
pointed to by buf. Let us assume that some malicious code initializes buf
with a value corresponding to some user space address before calling getint.
If the kernel blindly executes the copy using buf as the destination, a kernel
failure may occur. For instance, if the destination address were a typical
user space address like 0xbf824e60, it would simply not be in the range of
kernel space addresses (which start at 0xc0000000 and trying to write to it
within the kernel would provoke a kernel oops. If the kernel were configured
to panic on oops, then the machine would crash. At this point, the reader
might object that memcpy is surely coded in such a way to prevent this attack.
Unfortunately, this is not the case. Here is the implementation of memcpy in
linux− 2.6.24.2/lib/string.c:7

6 The behavior of memcpy is undefined when destination and source overlap
7 Note that this implementation handles overlapping source and destination areas
correctly, provided the target address is below the source address.
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/**
* memcpy - Copy one area of memory to another

* @dest: Where to copy to

* @src: Where to copy from

* @count: The size of the area.

*
* You should not use this function to access IO

* space, use memcpy_toio() or memcpy_fromio()

* instead.

*/
void *memcpy(void *dest, const void *src,

size_t count)
{
char *tmp = dest;
const char *s = src;

while (count--)

*tmp++ = *s++;
return dest;
}
EXPORT_SYMBOL(memcpy);

The memcpy implementation was kept as simple as possible, and for a good
reason: one cannot risk memcpy going to sleep, as it could happen if memcpy
was coded in a more sophisticated way.

Since memcpy includes no run-time checks for pointer-related faults, we
can only hope that a priori pointer analysis can be used to pinpoint the fact
that getint code can be unsafe. This can be done by annotating the pointer
type declarations with additional information supporting program analysis.
In [19], some qualifiers of pointer types are used to highlight pointers which
contain kernel addresses. The code calling getint can be annotated using
two qualifiers user and kernel as follows:

int memcpy(void * kernel to, void * kernel from,
int len);

int var;
void getint(int * user buf)
{
memcpy(buf, &var, sizeof(var))
}

When the above code is analyzed, the analyzer notices that getint receives
a user pointer buf, which is then passed to memcpy as a first parameter. A
type error is then raised and the potential fault identified. Of course, an
annotation-based technique like this one will generate some false positives,
i.e. cases in which the function was purposefully designed to handle both
kernel and user space addresses. However, the interesting experimental results
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reported by [19] show that the analysis of Linux kernel 2.4.20 and 2.4.23 has
identified 17 previously unknown faults due to mixing user space and kernel
space addresses.

Faults like writes via unchecked pointer dereferences are often exploited
by malicious code. A classic attack (often called stack smashing [31]) uses
unchecked string copy to cause a buffer overflow.

We have described this attack in Chapter 3; however, to recall this point,
let us consider the following C procedure that uses a pointer to copy an input
string into a buffer stored on the stack, incrementing the pointer after copying
each character without checking whether the pointer is past the end of the
buffer.

void bufcopy(char *src)
{
char buf[256];
char *dst = buf;
do

*dst = *src;
dst++; src++;

while (*src != "\0")
}

By providing a string longer than 256, an attacker can cause the above
procedure to write after the end of the buffer, overwriting other locations
on the stack, including the procedure’s own return address. In Chapter 3
we have seen how crafting the input string, the attacker can replace the
procedure’s return address with the address of malicious code stored, say,
in an environment variable, so that when the procedure returns, control is
transferred to the attacker’s code. Context-sensitive pointer analysis is used
to detect faults due to lack of bounds checking like the one above [1]. Two
types of pointer analysis have been defined: (i) CONServative pointer analysis
(CONS), which is suitable for C programs following the C99 standard and
(ii) Practical C Pointer (PCP), which imposes additional restrictions that
make it suitable also for programs that do not follow the C99 standard [7].

PCP includes several assumptions that model typical C usage. First of all,
PCP allows arithmetic applied to pointers of an array, such as buf + + in
the example above, only if the result points to another element of the same
array. When pointers to user-defined struct types are used, PCP applies
the notion of structural equivalence: two user defined types are structurally
equivalent if their physical layout is exactly the same. PCP allows assignments
(such as ∗dst = ∗ src) and type casts (such as dst = (atype ∗)src) only
between structurally equivalent types. For this reason, PCP has been shown
to provide a better accuracy in detection of format string vulnerabilities; also,
pointer analysis substantially reduces the overhead produced by dynamic
string-buffer overflow tools (30%-100%) [1].
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More advanced techniques mark all information coming from the outside
world as tainted. A potentially vulnerable procedure should be written to raise
an error if passed a tainted parameter. Chen and Wagner [10] introduced a
static analysis technique that can find taint violations. The provided solution
has been tested using the Debian 3.1 Linux distribution. The experiments
considered the 66% of Debian packages and found 1533 format string taint
warnings, 75% of which are real faults.

Static analysis can be complemented with run-time techniques, such as
white lists of memory addresses pointers are allowed to contain. An instruc-
tion modifying the value of a pointer can only be executed within a procedure
which checks whether the modified value will be in the white list. Ringen-
burg and Grossman [25] used white lists together with static analysis for
preventing format string attacks, Their solution takes advantage of the dy-
namic nature of white-lists of %n-writable address changes, which are used
to improve flexibility and encode specific security policies.

4.3.2 Model Checking for large-scale C-based Software
verification

After introducing pointer analysis techniques, let us now survey some tools
supporting automatic discovering of security flaws. We are particularly inter-
ested in model checking tools able to analyze huge software products such as
an entire Linux distribution.

In [26], the MOPS static analyzer [9] is used to check security properties of
a Linux distribution. MOPS relies on Finite State Automaton (FSA), whose
state transitions correspond to syntactic patterns the program should not
contain. For instance, syntactic patterns can express violations on pointer
usage, structural type compatibility, and the like. The MOPS analysis pro-
cess starts by letting users encode all the sequences of operations that do
not respect the security properties they are interested in as paths leading to
error states within FSAs. Program execution is then monitored against the
FSAs; if an error state is reached, the program violates the security prop-
erty. MOPS monitor takes a conservative view: potentially false positives are
always reported, and then users have to manually check if an error trace is
really a security vulnerability. MOPS-based experiments have been applied to
the entire Red Hat Linux 9 distribution, which consists of 839 packages with
about 60 millions of lines of code, and required the definition of new security
properties to be model checked. To extend pattern expressiveness, [26] intro-
duces pattern variables, which can describe different occurrences of the same
expression. To improve scalability the concept of compaction is used, that is,
simplifying the program to be analyzed by checking the relevant operations
only, and MOPS is integrated with existing build processes and interposed
with gcc. Error reporting in MOPS is then enhanced by dividing error traces



82 4 Formal methods for software verification

in groups and selecting a representative used by the users to determine if a
bug has been discovered. With this extension, MOPS shows all programming
errors and at the same time reduces the number of traces to be analyzed by
the users by hand.

Below, we describe four main security properties defined in [26] and the
results of the analysis of Red Hat Linux (see Table 4.2). The results show the
feasibility of using MOPS for large scale security analysis.

Property Warnings Bugs
TOCTTOU 790 41

Standard File Descriptors 56 22
Temporary Files 108 34

strncpy 53 11

Table 4.2: Model-Checking Results

Time-To-Check-To-Time-Of-Use (TTCTTOU). This technique checks whether
access rights to an object have expired at the time it is used. A classic ap-
plication is to find vulnerabilities of file systems due to race conditions.
Let us consider the classic example of a process P that tries to access a
file system object O and, once access has been granted, passes a refer-
ence to O as an argument of a system call, say, to display information
in O. If a context switch takes place after P ’s access rights to O have
been checked but before P executes of the system call, permissions may
be changed while P is suspended. When P is scheduled again, it no longer
has the right to access O; however, it goes on to pass the reference to O
it already holds to the system call. Of this reference still allows displaying
O, a vulnerability has been detected. In practice, three different types of
vulnerabilities have been found: (i) Access Checks, discussed in the above
example, (ii) Ownership Stealing, where an attacker creates a file where
a program inadvertently writes, (iii) Symlinks, where the file a program
is writing to gets changed by manipulating symbolic links. As shown in
Table 4.2, 41 of 790 warnings (i.e., traces violating the security property)
have been found to be real software faults.

Standard file descriptor. This attack uses the three standard file descrip-
tors of Unix (i.e., stdin, stdout, stderr) to exploit system vulnerabilities.
Attackers can be able to append data to important files and then gain
privileges, or read data from files that they are not supposed to access, by
manipulating the standard file descriptors. As shown in Table 4.2, 22 of
56 warnings have been found to be real faults.

Secure Temporary Files. An attacker exploits the practice of using tempo-
rary files to exchange data with other applications, writing logs, or storing
temporary information. In Unix-like systems, these data are usually writ-
ten to the /tmp directory, where each process can read/write. Also, the
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functions to create temporary files are unsecure since they return a file
name rather than a descriptor. An attacker guessing the file name is able
to create a file with the same name and then access the information that
will be stored in. As shown in Table 4.2, 34 of 108 warnings have been
found to be real faults.

strncpy. String copying is a classic source of potential attacks leading to
buffer overflow attacks. strncpy is not safe since it leaves to the devel-
oper the responsibility of manually appending the null character (‘n′) that
should terminate every C string. Both scenarios have been modeled with
a FSA. However, this security property produced a set composed by 1378
unique warnings, which makes a complete manual analysis burdensome.
An alternative to a complete analysis is selecting semi-randomly set of
packages that contain at least one warning. In the experiments, 19 pack-
ages have been selected with 53 warnings, 11 of which have been identified
as faults. If all warnings have the same probability of being faults, there
are about 268 bugs among the 1378 unique warnings.

4.3.3 Symbolic approximation for large-scale OS
software verification

A recent software solution aimed at the verification of large-scale software
systems is based on an approach called symbolic approximation [2, 3, 4, 5, 6].
Symbolic approximation mitigates the state space explosion problem of model
checking techniques (see Section 4.2.1), by defining an approximate logical
semantics of C programs. The approach models program states as logical de-
scriptions of what is true at each node in the program execution graph. These
descriptions are compared with a program specification in order to identify
those situations in which the program may do something bad. The seminal
works in this field are the ones by Peter Breuer et al. [2, 4, 6]. These works
were aimed at providing a formal solution for detecting deadlock, double-
free and other errors in the several million lines of code in the Linux kernel.
The application of their formal analysis to the Linux code detected faults
and errors never identified by thousands of developers who had reviewed the
Linux code. The analyzer, written in C, is based on a general compositional
program logic called NRBG (the acronym comes from “Normal”, “Return”,
“Break”, “Goto”, which represent different types of control flow).8 A pro-
gram fragment analyzed in NRBG terms is considered as operating in three
phases: i) initial, a condition p holds at start of the execution of the fragment,
ii) during, the fragment is executed, and iii) final, a condition q holds at the
end of the execution of the fragment. Based on this logic, individual program

8 NRBG logic is also defined for the treatment of loops, conditional statements and
other functions such as lock, unlock, and sleep. Component G is used to represent
the goto statement.
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fragments are modeled in Hoare triplets. For instance, a normal exit from a
program fragment is modeled as follows:

p N(a; b) q = p N(a) r ∧ r N(b) q

To exit normally with q, the program flows normally through fragment a,
achieve an intermediate condition r, enter fragment b, and exit it normally.

A return exit (R) from a program fragment (i.e., the way code flows out
of the parts of a routine through a “return” path) is modeled as follows:

p R(a; b) q = p R(a) q ∨ r R(b) q

Here, two paths are possible: (i) return from program fragment a, or (ii)
terminate a normally, enter fragment b, and return from b.

A static analyzer tool allows the detail of the logic above to be specified
by the user for the different program constructs and library function calls of
C, giving rise to different logics for different problem analysis. The tool in-
corporates a just-in-time compiler for the program logic used in each analysis
run. Logic specifications have the following form:

ctx precontext, precondition :: name(arguments)[subspecs] = postconditions

with ctx postcontext

Here, precondition is the input condition for the code fragment, while
postconditions is a triple of conditions applying to the standard exit paths
(N,R,B) for the program name. The precontext and postcontext contain the
conditions pertaining to the additional exit paths provided by the gotos in
the program. As an example, let us consider the forever while loop logic.

ctx e, p :: while(1)[body] = (b,r,F) with ctx f

where ctx f, p :: fix(body) = (n,r,b) with ctx f

A normal exit occurs when the loop body hits a break statement with the
condition (b) holding. The normal loop body termination condition (n) and
the associated loop body return (r), and the break (b) conditions are defined
to be the fixpoint (‘fix(body)’) of the loop body, above the start condition
(p). That is:

n ≥ p ∧ n :: body = (n,r,b)

in the specification language terminology, or

p ⇐ n ∧ n N(body) n ∧ n R(body) r ∧ n B(body) b

in the abstract logic. A return exit happens when a return statement is ex-
ecuted from within the body of the while (r). The post-context f contains
the ways to exit the loop through a goto, as determined by the logic for the
loop body.
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Each logic specification for the analyser covers the full C language. Be-
low, we briefly discuss how the solution by Breuer et al. [2, 4, 6] can be
used to locate instances of a well-known fault in programming for Symmetric
Multi-Processing (SMP) systems called “sleep under spinlock”. A spinlock is
a well-known classical SMP resource-locking mechanism in which a thread
waiting to obtain a lock continuously checks if the lock is available or not
(a situation called busy waiting). The waiting thread occupies the CPU en-
tirely until the spinlock is released by another thread on another CPU in
the SMP system. Suppose now that, in a 2-CPU SMP system, the thread
holding the lock (turns off interrupts and) calls a sleepy function (one which
may be interrupted and scheduled out of the CPU for some time) and then
is scheduled out of its CPU. If two new threads end up busy-waiting for the
same spinlock before the spinlock holder can be rescheduled, the system is
deadlocked: the two threads occupy both CPUs entirely and interrupts are
off. This vulnerability is critical since an adversary can exploit it to bring a
denial of service attack [11].

To identify the calls to sleepy functions under spinlock, the logic speci-
fication in [6] provided a single unlock logic pattern for all the variants of
spin-unlock calls in the Linux kernel. The logic decrements a spinlock total
counter (see Figure 4.3). Similarly, the specification provided a single lock
logic pattern for all the variants of spinlock calls of Linux.

ctx e, p :: unlock(label l) = (p[n+1/n],F,F) with ctx e
ctx e, p :: lock(label l) = (p[n-1/n],F,F) with ctx e

Fig. 4.3: Logic specification of unlock and lock function

A logical objective function was specified for this analysis which gauges
the maximum upper limit of the spinlock counter at each node of the syntax
tree. A set of trigger/action rules creates the sleepy call graph. When a new
function is marked as sleepy, all callers of the function plus all callers of its
aliases are marked as sleepy as well. The analysis creates a list with all the
calls that may sleep under a spinlock.

files checked 1055
alarms raised 18 (5/1055 files)
false positives 16/18

real errors 2/18 (2/1055 files)
time taken about 24h (Intel P3M,

733 MHz, 256M RAM)
LoC about 700K

Table 4.3: Linux Kernel 2.6.3: testing for sleep under spinlock
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The Linux kernel 2.6.3 was tested to find occurrences of sleep under spin-
lock (see Table 4.3 for more details); 1055 files of about 700K LOC were
considered and 18 alarms raised. The real faults found amounted to 2 of the
18 alarms. The fact that many of the alarms were false positives should not
necessarily be seen as a problem when the effort of analyzing false positives
is considered in relation to the effort involved in finding faults manually.

4.4 Conclusion

Formal method verification is an important aspect of software security aimed
at reducing risks caused by software faults and vulnerabilities. Model-based
certification gathers a variety of formal and semi-formal techniques, dealing
with verification of software systems’ reliability, safety and security proper-
ties. In particular, model-based techniques provide formal proofs that an ab-
stract model (e.g., a set of logic formulas, or a formal computational model
such as a finite state automaton), representing a software system, holds a
given property. As discussed in this chapter, much work has been done in
the context of static analysis, formal methods and model checking. These
solutions have gained a considerable boost in the recent years and are now
suitable for software verification in critical security contexts and for verifica-
tion of large scale software systems such as a Linux distribution. However,
some drawbacks still need to be addressed. Firstly, these techniques produce
a non-negligible rate of false positives, which require a considerable effort for
understanding which warnings correspond to real faults. Secondly, model-
based techniques do not support configuration evolution: it is not guaranteed
that a certification obtained for one configuration will still holds when the
configuration changes.
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