
Chapter 3

Test based security certifications

Abstract Test-based certifications are a powerful tool for software users to
assess the extent to which a software product satisfies their security require-
ments. To exploit the full potential of this idea, it is necessary to have a shared
way to describe the security properties to be tested, as well as to define the
tests to be carried out and the testing environment itself. Since the early
days of the US Department of Defense’s Trusted Computer System Evalu-
ation Criteria (TCSEC) [17], also known as Orange Book, several attempts
have been made to standardize such descriptions, especially for operating sys-
tem platforms; the trend has been toward increasing expressive power and
complexity. A major result of this standardization activity is the Common
Criteria (CC) , an ISO standard that defines a general test-based framework
to specify, design and evaluate the security properties of IT products [12].
The introduction of CC came after almost two decades of joint work of many
international organizations aimed at creating a common security standard
that can be recognized at an international level. The rationale behind CC is
to formalize the language used by customers, developers and security evalua-
tors to have the same understanding when security requirements are specified
and evaluated. In this chapter, after a brief primer to software testing, we
will focus on test-based security certification, looking at the milestones that
have led to the introduction of the CC standard; then, the general conceptual
model underlying the CC standard will be explained.

3.1 Basic Notions on Software Testing

Software certification (see Chapter 1) is aimed at generating certificates
demonstrating non-functional properties of software systems, such as the ones
linked to dependability, security and safety. While the notion of interoper-
able software certificates as metadata items is a relatively new one, certi-
fication techniques build on well-known software validation and verification

27

28 3 Test based security certifications

techniques. Therefore, an in-depth discussion of test-based security certifi-
cation requires some background knowledge on the software testing process.
This section will provide such a background, focusing on the notion of risk-
oriented testing. Experienced readers may safely skip it. Our main reference
here is the excellent book by Paul Ammann and Jeff Offutt [1] and its rich
bibliography, as well as the recent book by Pezzè and Young [19].1

Informally, software development can be defined as the process of designing
(and implementing) a software product which meets some (functional and
non-functional) user requirements. In turn, software testing can be defined as
the process of validating a software product’s functionality, and, even more
importantly from our point of view, of verifying that the software has all
the desired non-functional properties (performance, robustness, security and
the like) its users expect. Hopefully, the testing process will also reveal the
software product’s defects.

In practice, software testing is performed as an iterative process: in each
iteration, some tests are designed and executed to reveal software problems,
and the detected problems are fixed. One should not expect miracles from
this procedure: software testing can reveal the presence of failures, but it
cannot provide proof of their absence.2

In this book, we distinguish between test-based certification as proceeding
from testing, and model-based certification as proceeding from abstract mod-
els of the software such as automata or graphs. Some researchers, including
Ammann and Offutt [1] justifiably argue that testing is also driven by ab-
stract models, which can be developed to provide a black-box or a white-box
view. Occasionally, black-box testing is carried out by professional testers who
do not need to be acquainted with the code. The main purpose of black-box
testing is to assess the extent to which functional and non-functional user re-
quirements are satisfied;3 each requirement is checked by a set of test cases.4

The most important component of a test case is the test case value, that is,
the input values fed into the software under test during a test execution of it.
To evaluate the results of a black-box test case, we must know in advance its
expected results or, in other words, the result that will be produced executing
the test if (and only if) the program satisfies its requirements. Strictly speak-
ing, a test case is the combination of test case values and expected results,
plus two additional components: prefix and postfix values. Prefix values are
inputs that, while not technically test values, are necessary to put the soft-
ware into the appropriate state to feed it with the actual test case values.
Postfix values are inputs that need to be sent to the software after the test

1 We will follow references [1, 19] in the remaining of this chapter.
2 The original statement is “But: program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate for showing their absence.” E. W.
Dijkstra, “The Humble Programmer”, Turing Award Lecture, 1972, Communications
of the ACM, 15(10).
3 Black-box tests can also be used to discover failures, such as crashes.
4 Test-related literature often uses the term test set to indicate a set of test cases.

3.1 Basic Notions on Software Testing 29

case values have been fed into it (e.g., for displaying results or terminating
the test execution). For the sake of conciseness, throughout this book we will
loosely use the term test case as a synonym of “test case value”. Determining
a software product’s expected behavior may well be easy for some toy func-
tion (what should a float squareroot(int) function output when fed with
a test case value of 4?), but it is a much harder nut to crack for more com-
plex programs (what should an image-enhancement software output when
fed with a test-case value like sampleimage.gif?)

White-box tests have a very different aim: to ensure that some aspects
of some code property are exercised in the hope that this will reveal any
errors not otherwise detected. Also, white-box test can be used to verify cod-
ing standards; for instance, those barring the interchangeable use of pointer
arithmetic and array reference in C. Therefore, they may consist of code
walkthroughs rather than of sample executions.5 In white-box testing , tests
are designed and validated by developers, or at least by people who know
well the code of the program under test.

Both white- and black-box testing can be risk-oriented. Risk orientation
simply means that when some pre-defined constraints to testing are specified,
(e.g., ones related to maximum test cost and available time for carrying out
the tests) both types of tests can be prioritized so that risks for the software
user are minimized as far as possible [10]. From the perspective of a software
user, we may define the risk of running a software product in a very simple
way, as follows:

R =
∑

{p}
PpIp (3.1)

where Pp is the probability of occurrence of a software failure p, and I is
the resulting impact of that problem, expressed in dollars of damage or profit
loss. Note that implicitly we are also defining the risk connected to each
specific problem p, that is, PpIp. The summation of Equation (3.1) ranges
over the entire set of problems the software may have. In general, not all of
these problems are known or can be forecasted at development time.

Of course, by using Equation (3.1) we are making the additional assump-
tion that software failures are independent from each other. Although this is
in general not the case, and often conditional probabilities must be used for
correctly quantifying total risk, Equation (3.1) is good enough for our present
purposes, that is, for illustrating the risks related to software delivery. Cur-
tailing the test on a problem or forgoing them altogether means that the
risk associated to that problem, not covered by the testing, will remain when
the software is used. Risk analysis consists in the identification of software
problems. It can be used for:

5 Of course, in many practical situations walkthroughs would not be acceptable as a
replacement for white-box execution tests.

30 3 Test based security certifications

• goal oriented testing : software failures having different risks will be cov-
ered by test procedures of different depths (and cost);

• prioritized (depth-first) testing : software areas with a higher risk receive
a higher priority in the testing process.

• comprehensive (width-first) testing : software testing will be carried out
to cover all rest categories at a pre-set minimum depth.

Risk-based testing consists of analyzing the software code and deriving a
test plan focusing on software modules most likely to experience a failure
that would have the highest impact. Both the impact and probability of each
failure must be assessed before risk-based test planning can proceed. The
impact Ip of the risk equation depends on the specific nature of the appli-
cation and can be determined by domain analysis. For instance, failures in
mission critical and safety critical modules may have assigned an higher im-
pact than failures in the rest of the code6. Impact assessment requires a thor-
ough understanding of failure costs, which is again highly domain-dependent.
Estimating the likelihood of failures Pp means determining how likely it is
that each component of the overall software product will fail. It has been
proven that code that is more complex has a higher incidence of errors or
problems [20]. For example, cyclomatic complexity is a well-known criterion
for ranking the complexity of source code [16]. Therefore, in procedural lan-
guages like C the prioritization of modules according to failures probability
can be done simply by sorting them by their cyclomatic complexity. Using
cyclomatic complexity rankings for estimating failure probabilities, together
with impact estimates from domain knowledge, analysts can pinpoint which
software modules should get the highest testing effort 7.

A fundamental way towards the reduction of product risks is the finding
and removal of errors in a software product. In the remainder of the chapter
we will connect the idea of removing errors with the one of certifying software
properties.

3.1.1 Types of Software Testing

Modern software products are often developed following processes composed
of pre-defined activities.8 The test process is also composed of several activi-
ties: during test planning, the test objects (e.g., the software functions to be
tested) are identified. In test case investigation, the test cases for these test

6 From a different point of view, software project management assigns highest impact
to failures in modules on the project’s critical path
7 Of course, different programming languages and paradigms may use different com-
plexity metrics than cyclomatic complexity for estimating failure probabilities.
8 Such processes do include agile ones. We shall discuss how testing is carried out
within community-based development process typical of open source software in
Chapter 6.

3.1 Basic Notions on Software Testing 31

objects are created and described in detail. Finally, during test execution, test
scripts are executed to feed the test cases to the software under test.

Most software products have modular architectures, and testing can be
done at different levels of granularity [19]:

• Unit Testing : tests the implementation of individual coding units.
• Module Testing : tests the detailed design of software modules
• Integration Testing tests each subsystem’s design.
• System Testing : tests the entire system’s architecture.
• Acceptance Testing : tests the extent to which the entire system meets

requirements.

We are particularly interested in acceptance tests, because they are often
related to non-functional requirements, that is, to properties the software
product should possess in order to be acceptable for the customer. In prin-
ciple, acceptance tests could be written by the end user herself; in practice,
they are often co-designed with the customer, so that passing them with flying
colors is guaranteed to satisfy both the software supplier and the purchaser
that the software has all the desired properties. In a sense, obtaining the
customer sign-off of a set of non-functional properties can be seen as equiva-
lent to providing the same customer with a certificate of the same properties,
signed by an authority she trusts.

Each of the above types of software testing involves one or more testing
techniques, each of which is applied for different purposes, and requires the
design and execution of specific test cases. Software testing techniques include
[1]:

• Functionality testing, to verify the proper functionality of the software
under test, including its meeting business requirements, correctly per-
forming algorithms and providing the expected user experience.

• Forced error testing, to try extreme test cases (oversized and malformed
inputs, erratic user behavior, etc.) in order to break (and fix) the software
during testing, preventing customers from doing so in production.9

• Compatibility testing, to ensure that software is compatible with various
operating systems platforms and other software packages.

• Performance testing, to see how the software product under test behaves
under specific levels of load. Performance testing includes stress testing
to see how the system performs under extreme conditions, such as a very
large number of simultaneous users.

• Regression testing, to ensure that code added to address a specific prob-
lem did not introduce new problems.

• Scalability testing, a form of performance testing which aims to ensure
that the software will function well as the number of users and size of
databases increase.

9 This can also be seen as a form of stress testing. See below.

32 3 Test based security certifications

• Usability and accessibility testing, to ensure that the software is accessible
to all categories of users (including for example visually impaired ones,)
and is intuitive to use. This kind of testing is traditionally the bailiwick
of human computer interaction [5].

• Security testing, to make sure that valuable and sensitive data cannot be
accessed inappropriately or compromised under concerted attack.

Of course the above list is not exhaustive: there are several other types
of testing, including one very relevant to our purposes: regulatory-compliance
testing, which verifies whether a software product complies with the regula-
tions of the industry where it will be used (e.g., for the software controlling
a manufacturing tool, one may test whether the user interface can be easily
operated without taking off protection gloves). These regulations, and the
corresponding testing procedure may vary depending on the type of software
and application domain.

Since this book focuses on security certification, it is important to high-
light the strict relationship we would like to establish between testing and
certification. A key concept goes under the acronym IV&V, which stands for
Independent Verification and Validation. Here, the term independent means
that the tests on a software product are performed by non-developers; indeed,
sometimes the IV&V team is recruited within the same project, other times
within the same company developing the software. Conceptually, however,
the step between this and outsourcing IV&V to an independently accredited
lab is a small one.

It is also important to clarify the relation between security certification
and security testing, which is less strict than one might expect. Security
testing verifies all software features, from the password checking to channel
encryption to making sure that information is not disclosed to unauthorized
users. It also includes testing for known vulnerabilities, e.g., assessing how
a software product responds to hostile attacks like feeding a software with
so much input data that an input buffer overflow failure is produced, and
the machine on which the software is run can be taken over by the attacker.
Buffer overflows are by far the most commonly exploited bug on Linux.

Buffer overflows are the result of putting more data into a programs buffer
or input device than is defined/allowed for in the program. A simple example
of a C program susceptible to buffer overflow is given below:

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{
char buf[20];
if(argc < 2)
{

3.1 Basic Notions on Software Testing 33

printf("Usage: \%s <echo>\n", argv[0]);
exit(0);
}
strcpy(buf, argv[1]);
printf("You typed: \%s\n", buf);
return 0;
}

The program (we will call vultest) copies the string argv[1] passed to it
on the command line into an internal buffer whose address is buf. The internal
buffer holds at most 20 chars, so if we pass a longer string on the command line
we expect something bad to happen. What we get is the following behavior:

M-10:˜ edamiani\$./vultest aaaaaaaaaaaaaaaaaaaaaaaa
<echo> aaaaaaaaaaaaaaaaaaaa
Segmentation fault (core dumped)

The segmentation fault error message says that the buffer was filled with
more data than it can hold. More specifically, vultest wrote too much data
on the program stack, which was supposed to hold the arguments passed
to strcpy (i.e., the buf array). These data overwrote the return address to
the caller code, which is stored in the stack below the local variables; when
strcpy tried to jump back to the caller using this return address, it found an
illegal address in its stead (most likely the ASCII code for aa, 0x6565) and
tried to use it as the target for a jump, causing a violation. Suppose now the
input string, rather than a sequence of a chars, contains the address of some
code supplied by the attacker e.g., the one of a sh shell. This would give to the
attacker the opportunity to seize vultest’s execution environment. There is
an additional difficulty here: the attacker’s code (let’s call it attack) must be
stored at a valid memory address on the system. In other words, the attacker
has to know how to store her code in a valid address, obtain the address,
and pass it (instead of aa) to vultest to overflow the buffer. For instance,
the attacker can write attack, translate it into hexadecimal figures and load
these figures into an array; then, he can use a memory copy system call like
memcpy to copy the content of this array to some valid location in memory10

keeping the address to pass it to vultest.11

10 We will discuss memcpy in some detail in the next Chapter
11 Some pre-processing (e.g., format conversion) is required before the address can
be passed to vultest.

34 3 Test based security certifications

3.1.2 Automation of Test Activities

All types of software testing described above can be performed manually or
automated.

Manual software testing usually consists of having a human tester feed
test cases to the software interface, and performing other types of manual
interaction, including trying to hack the software. There are some areas for
which manual software testing is most appropriate (or, rather, is the only
possibility), such as exploratory security testing where testers do not execute
a pre-defined script, but rather explore the application and use their expe-
rience and intuition to identify vulnerabilities. Manual software testing has
two major disadvantages: first of all, it requires a huge effort and remarkable
skills on the part of the tester. Secondly, it is not fully repeatable: manual
exploratory tests tend to show high variability of results depending on who
is performing them.

Automated software testing can be seen as a way of accelerating the soft-
ware testing process while minimizing the variability of results. Automation is
based on test scripts that can be run automatically, repetitively, and through
several iterations of the test process. Automated software testing can help
to minimize the variability of results, speed up the testing process, increase
test coverage, and ultimately provide greater confidence in the quality of the
software being tested. Many testing tasks that defied automation in the past
have now become candidates for such automation due to advances in tech-
nology. For example, generating test cases that satisfy a set of functional
requirements was typically a hard problem that required intervention from
an experienced test engineer. Today, however, many tools are available, both
commercial and open source, that automate this task to varying degrees,
e.g., generating Unix shell scripts to feed input files into the program under
test and produce a report. We shall mention again these testing platforms in
Chapter 6. The interested readers are however referred to [19].

3.1.3 Fault Terminology

The remainder of this section presents three terms that are important in soft-
ware certification as well as in testing and will be used later in this chapter.
Like terms about certification, terms about testing are defined by standard
glossaries such as the IEEE Standard Glossary of Software Engineering Ter-
minology, DOD-STD-2167A and MIL-STD-498 from the US Department of
Defense. We focus on the types of problems that using a software product
may involve. Throughout the book, following [1], we shall adopt the following
definitions of software fault, error, and failure.

Definition 3.1 (Software Fault). A static defect in the software.

3.1 Basic Notions on Software Testing 35

Definition 3.2 (Software Error). An incorrect internal state that is the
manifestation of some fault.

Definition 3.3 (Software Failure). External, incorrect behavior with re-
spect to the requirements or other description of the expected behavior.

In order to clarify the definitions of fault, error, and failure, we shall use
a revised version of an example presented in [1]. Namely, let us consider the
following C program:

int digitcount (char s[])
{
int digit = 0;
int i;
for (i = 1; s[i] != ’\0’; i++)

if(s[i] >= ’0’ && s[i] <= ’9’)
digit++;

return digit;
}

The software fault in the above sample function is of course the instruction
for, where the function starts counting digit characters at index 1 instead of
0, as would be correct for C character arrays.

For example, using the test case values [a, b, 0] and [0, 7, c] we no-
tice that digitcount([a, b, 0]) correctly evaluates to 1, while the test case
digitcount([0, 7, c]) incorrectly gives the same result. Note that only the
latter test execution of digitcount results in a software failure, although the
faulty instruction is executed the same number of times in both cases. Also,
both the execution with failure and the one without it involve a more elusive
concept, the one of software error. In order to fully understand it, we need
to execute our faulty function stepwise, meaning that we consider its state
(i.e., the content of the function’s local variables).

The state of digitcount consists of three memory locations, containing
values for the variables s, digit, i. For the first test case execution, the state
at the first iteration of the loop is (s = [a, b, 0], digit = 0, i = 1).
This execution state is a software error, because the value of the vari-
able i should be zero on the first iteration. However, since the value of
variable digit is (purely by chance!) correct, this time the error does
not cause a failure. In the second test case execution, the error state is
(s = [0, 7, c], digit = 0, i = 1). Here the error propagates to the vari-
able digit and causes a failure. Now, it is clear that when a software product
contains a fault, not all test cases will ensure that the corresponding error
will cause a failure, how it would be desirable in order to reveal and fix the
fault itself. In addition, even when a failure does occur, it is may be very
difficult to trace it back to the fault which caused it.

36 3 Test based security certifications

3.1.4 Test Coverage

Since the term “certification” has the same root as the term “certainty”,
one might be tempted to think that black-box tests can provide conclusive
evidence that a software product holds (or does not hold) a given property.
For instance, can we use black-box testing to prove to a software purchaser’s
satisfaction that the execution of the software product she is buying will
never require more than 1 MByte of user memory?

Unfortunately, this need for conclusive evidence clashes with a theoretical
limitation of software testing. Even for our simple digitcount function, using
8-bit ASCII character coding and excluding arrays of characters longer than
256 characters, one would require 264 executions to run all possible test cases.

We may understand better how the identification of the “right” test cases is
carried out via the notion of coverage criteria. In practice, coverage criteria
correspond to properties of test cases. The tester tries to select test cases
showing the whole range of their properties values, that is, providing the
maximum coverage.

Let us briefly examine some types of coverage that are relevant to our
purposes. A classic coverage criterion is to execute all if alternatives (i.e.,
cover all decisions) in the program. This criterion is called branch coverage.
The corresponding property of test cases we are interested in is which if
selectors (if any) they trigger. To satisfy this criterion, the tester will chose
test cases so that each of them causes the execution of one or more (non-
overlapping) branches controlled by if selectors in the program. Ideally, the
tester will obtain a test set which will cause the execution of all the program’s
branches, achieving full branch coverage. An analogous line of reasoning leads
us to the notion of full statement coverage criterion, that is, a set of test cases
which causes the execution of all the program’s statements.

Coverage criteria can be related to one another, in terms of a relation
called subsumption [11]. A coverage criterion C1 subsumes C2 if (and only
if) every test set that satisfies criterion C1 also satisfies C2. In the case of
branch and statement coverage, it is easy to see that if a test set covers every
branch in a program, then the same test set is guaranteed to have covered all
statements as well. In other words, the branch coverage criterion subsumes
the statement coverage criterion.12

It is important to realize that some coverage criteria cannot be satisfied
at all. For instance in the case of the following C function:

int digitcount (char s[])
{
int i;
int digit = 0;

12 Our intuition may tell us that if one coverage criterion subsumes another, it should
reveal more faults. However, this intuition is not supported by any theoretical result
[23].

3.2 Test-based Security Certification 37

if (digit) i=0;
for (i = 1; s[i] != ’\0’; i++)

if (s[i] >= ’0’ && s[i] <= ’9’)
digit++;

return digit;
}

there is no set of test cases ensuring full statement coverage, due to the
presence of dead code: the statement i = 0; can never be reached, regardless
of the input.

One may think to find an algorithm to decide whether such a test set
exists or not; unfortunately, there can be no algorithm for deciding whether
an arbitrary program can get full coverage with respect to an arbitrarily
chosen set of coverage criteria, even though some partial solutions (i.e., for
special classes of programs and/or criteria) have been proposed (see Chapter
4). In other words, achieving 100% coverage for any set of coverage criteria
is impossible in practice, and there is no way to design a test set that will
detect all faults.13.

Something can be done, anyway: coverage criteria can be used either to
generate test case values or to validate randomly generated or manually
picked ones. Both problems are in general (i.e., when the criteria are ar-
bitrary) undecidable; the latter technique, however, is the one adopted in
practice, because the validation problem turns out to be tractable much
more often than the generation one.14 There is however a drawback: vali-
dating randomly chosen test cases will allow us to assess the extent to which
a given test set provides coverage, but leave us clueless on how to increase it.
In terms of commercial automated test tools, a test case generator is a tool
that automatically creates test case values. A validator tool that takes a test
set and performs its coverage analysis with respect to some criterion. Both
types of tools are available as commercial and open source products. Some
well-known tools include xUnit (JUnit, CPPUnit, NUnit and so on), IBM
Rational Functional Tester, WinRunner, DejaGnu, SMARTS, QADirector,
Test Manager, T-Plan Professional, and Automated Test Designer (ATD).

3.2 Test-based Security Certification

For a long time, testing in general and security testing in particular have
been internal processes of software suppliers. Software purchasers had prac-

13 The result that finding all failures in a program is undecidable is due to Howden
[13]
14 More precisely, given a criterion checking whether some existing test cases satisfy,
it is feasible far more often than it is possible to generate tests for that criterion
starting from scratch.

38 3 Test based security certifications

tically no way to obtain an independent appraisal of a software product’s
security prior to buying it. Often, disclaimers coming with software prod-
ucts would exclude any guarantee, expressed or implied, of any security or
dependability property. This situation is now simply unacceptable for orga-
nizations purchasing safety and mission-critical systems. Generally speaking,
security certification standards have been devised to provide purchasers with
some guarantee of the security properties of their software.

Intuitively, the security certification process of a software product should
reveal all the problems and faults of the product’s security features, which
could lead to vulnerability to attacks. In the early days of security certifi-
cations software vendors would limit themselves to asserting (and testing)
the presence and functionality of security features, often as a part of non-
functional requirements elicitation, and left it to the user to make the link
between the support of a given security feature and the corresponding secu-
rity property. For instance, early certificates would state that a given software
system supported Access Control Lists (ACL) on data resources, leaving it
to the user to make the connection between the ACL mechanism and the
specific category of discretionary access control policies she was interested in.

Fig. 3.1: The conceptual model for test-based security certification

The software certification process has greatly evolved along the years. Fig-
ure 3.1 shows an abstract conceptual model for today’s test-based security
certification. The first phase of the security certification process is providing a
mapping between the security properties (in terms of security requirements)
the software purchaser is interested in and the security features the software
vendor has included in the product. Once a mapping has been specified be-
tween a set of security properties and the corresponding security features,
test-based security certifications provide test-backed proof that: (i) the soft-
ware product under certification actually possesses the required features and
(ii) such features perform exactly their intended functionalities and nothing
else. If the test process is carried out in a controlled environment and by

3.2 Test-based Security Certification 39

a trusted evaluation body, e.g., as mandated by an internationally accepted
assurance standard, this proof is usually acceptable enough to the software
purchaser.

In the next chapters, we shall use the term “assurance” to refer to all ac-
tivities necessary to provide enough confidence that a software product will
satisfy its users’ security requirements. In other words, security standards
specify which security requirements a product should satisfy, while assurance
standards specify how to collect and provide the evidence that it does. We
shall elaborate further on this issue in Section 3.3. Also, in this chapter we
shall use the term “proof” quite loosely: security feature testing (like any
other software test) can never be exhaustive, and the mapping between fea-
tures and properties may or may not have been formalized and proved. We
shall come back to these problems when dealing with model-based security
certification in Chapter 4.

In the remainder of this chapter, we shall briefly review some early security
certification standards adopted in the US, in Canada and in Europe. These
early mechanisms are still with us, providing much of the vocabulary shared
by software purchasers, vendors and security auditors.

3.2.1 The Trusted Computer System Evaluation
Criteria (TCSEC) standard

As one of the biggest software buyers worldwide, the U.S Department of De-
fense (DoD) has been understandably keen on addressing the issue of stan-
dardizing security certifications . The U.S. Department of Defense’s National
Computer Security Center (NCSC) has sponsored the introduction of what
is known as the Trusted Computer System Evaluation Criteria (TCSEC) or
Orange Book. Originally, the Orange Book was devised as a way of stan-
dardizing security requirements coming from both the government and the
industry [21]; although it was originally written with military systems and ap-
plications in mind, its security classifications have been broadly used within
the entire computer industry. According to its proposers, the Orange Book
was created with the following basic objectives in mind [17].

1. Provide sound security guidelines for manufacturers to be able to build
products that satisfy the security requirements of applications.

2. Define a systematic way to (qualitatively) measure the level of trust pro-
vided by computer systems for secure, classified and other sensitive in-
formation.

3. Allow software purchasers to specify their own security requirements,
rather than take or leave fixed sets of security features defined by suppli-
ers.

40 3 Test based security certifications

The classifications in the Orange Book provide a useful shorthand for the
basic security features of operating systems.15

In the course of time, the NCSC has published different “interpretations”
of the Orange Book . These interpretations have clarified the Orange Book
requirements with respect to specific families of operating system compo-
nents. For example, the NCSC’s Trusted Network Interpretation of the Or-
ange Book, also known as Red Book, is an interpretation of Orange Book
security requirements as they apply to the networking components of a se-
cure operating system. The Red Book does not change the Orange book
original requirements; it simply indicates how a networking system should
operate to meet them. Interpretations come in several colors: in the same
way as the Red Book is an interpretation of the Orange Book for network
systems, there is a Blue Book interpreting the Orange Book for subsystem
components, and other books for other component families. The NCSC has
made available a complete set of Orange Book interpretations (the so-called
Rainbow Series), to assist software vendors in ensuring that their systems
comply with Orange Book requirements.

Orange Book security certification goes one step further with respect to
the situation where suppliers agreed on non-functional requirements about
the presence of some security features. Provisions that need to be present
for considering a system to be “secure” are mapped to specific security re-
quirements, which must be provided by purchasers. To help software users in
defining their own security requirements, the Orange Book introduced four
fundamental requirement types, which are derived from the objectives stated
above [17]: Policy, Accountability, Assurance and Documentation.

Despite promoting a novel view in supporting software purchasers’ own
security requirements, the Orange Book ended up with severe limitations in
many aspects, which prevented its generalized adoption. These limitations are
mainly due to the Book’s lack of flexibility in expressing security requirements
and in mapping them to security features. The original users of the Orange
Book were military and governmental organizations having very specific se-
curity requirements, mostly related to preventing disclosure of classified data.
This brought families of security requirements which are of paramount im-
portance for business applications (e.g., requirements related to availability
and integrity) to be insufficiently considered, and the Orange Book failed to
adapt to the security requirements of a wider general market [2].

Today, the Orange Book’s main legacy consists in its classification of soft-
ware products (mainly operating systems) into pre-set categories based on
the security requirements they satisfy (and, correspondingly, on the features
they possess). TCSEC categories are identified by labels forming an ordinal

15 While the Orange Book security categories have played an important role in filling
the communication gap between vendors, evaluators, and customers, the Orange Book
itself [17] is notoriously difficult to read. Also, the Orange Book is not readily available
to non-US parties, which has made a full understanding of TCSEC security ratings
rather difficult to achieve for security experts outside the US.

3.2 Test-based Security Certification 41

scale, allowing for qualitative assessment of security and system comparison.
Verifying the actual functionality of security features via suitable tests is left
to an external evaulation body, who should be neither the software supplier
nor the purchaser. The Orange Book provides some high-level guidelines for
testing security requirements, but does not mandate a specific test process
or laboratory setting. Also, software products are only listed on the NCSC’s
Evaluated Products List after a long evaluation process culminating in a
Final Evaluation Report from NCSC. It is important to remark that the sys-
tem submitted to NCSC for certification can include additional modules (e.g.,
hardware ones) specifically added to comply with TCSEC requirements. This
means that users will have to install this additional hardware or software in
order to meet the security requirements.

3.2.1.1 TCSEC categories and requirements

The Orange Book security categories range from D (Minimal Protection)
to A (Verified Protection). To be classified in a given category, a software
system must provide all the security features corresponding to that category.
Namely, categories are defined as follows (see also Table 3.1).

Category Class Comment
D - Minimal Protection - Category D includes any system

that does not comply with any
other category, or has failed to re-
ceive a higher classification.

C - Discretionary Protection C1 - Discre-
tionary Security
Protection

Category C applies to Trusted
Computer Bases (TCBs) with
optional object (i.e., file, directory,
devices etc.) protection.C2 - Controlled

Access Protection
B - Mandatory Protection B1 - Labelled Se-

curity Protection
Category B specifies that the
TCB protection systems should be
mandatory, not discretionary.B2 - Structured

Protection
B3 - Security Do-
mains

A - Verified Protection A1 - Verified Pro-
tection

Category A is characterized by
the use of formal security
verification methods to assure
that the mandatory and
discretionary security controls are
correctly employed.

A1 and above

Table 3.1: Orange book categories and classes

42 3 Test based security certifications

• D - Minimal Protection. This category includes any system that does
not comply with any other category, or has failed to receive a higher
classification. D-level certification is very rare.

• C - Discretionary Protection. Discretionary protection applies to Trusted
Computer Bases (TCBs) with optional object (i.e., file, directory, devices
and the like) protection.

– C1 - Discretionary Security Protection. This category includes sys-
tems whose users are all on the same security level; however, the
systems have provisions for Discretionary Access Control by provid-
ing separation of users and data, as for example Access Control Lists
(ACLs) or User/Group/World protection. An example of C1 require-
ments is shown in Table 3.2. C1 certification is quite rare and has
been used for earlier versions of Unix.

– C2 - Controlled Access Protection. This category has the same fea-
tures as C1, except for the addition of object protection on a single-
user basis, e.g., through an ACL or a Trustee database. C2 is more
fine-grained of C1 and makes users individually accountable for their
actions. An example of C2 requirements is shown in Table 3.2. C2 is
one of the most common certifications. Some of the Operating Sys-
tems using C2 certification are: VMS, IBM OS/400, Windows NT,
Novell NetWare 4.11, Oracle 7, DG AOS/VS II.

Class Requirements
C1 Username and Password protection and secure authorisations database

(ADB)
Protected operating system and system operations mode
Periodic integrity checking of TCB
Tested security features with no obvious bypasses
Documentation for User Security
Documentation for Systems Administration Security
Documentation for Security Testing
TCB design documentation

C2 Authorisation for access may only be assigned by authorised users
Object reuse protection (i.e., to avoid reallocation of secure deleted ob-
jects)
Mandatory identification and authorisation procedures for users, e.g.,
Username/Password
Full auditing of security events (i.e., date/time, event, user, suc-
cess/failure, terminal ID)
Protected system mode of operation
Added protection for authorisation and audit data
Documentation as C1 plus information on examining audit information

Table 3.2: C classes’ requirements

3.2 Test-based Security Certification 43

• B - Mandatory Protection. It specifies that the TCB protection systems
should be mandatory, not discretionary. A major requirement here is
the protection of the integrity of sensitivity labels and their adoption to
enforce a set of mandatory access control rules.

– B1 - Labelled Security Protection. B1 systems require all the features
required for class C2 and the requirements provided in Table 3.3.
Some of the operating systems and environments using B1 certifica-
tion include: HP-UX BLS, Cray Research Trusted Unicos 8.0, Digital
SEVMS, Harris CS/SX, SGI Trusted IRIX, DEC ULTRIX, Trusted
Oracle 7.

– B2 - Structured Protection. B2 systems require all the features re-
quired for class B1 and the requirements provided in Table 3.3. Some
of the systems using B2 certification are: Honeywell Multics, Cryptek
VSLAN, Trusted XENIX 4.0.

– B3 - Security Domains. B3 systems require all the features required
for class B2 and the requirements provided in Table 3.3. The only
B3-certified OS is Getronics/Wang Federal XTS-300.

• A - Verified Protection. It is the highest security category. Category A is
characterized by the use of formal security verification methods to assure
that the mandatory and discretionary access control models correctly
protect classified or other sensitive information stored or processed by
the system [17]. TCB must meet the security requirements in all aspects
of design, development and implementation.

– A1 - Verified Protection. A1 systems require all the features required
for class B3 and formal methods and proof of integrity of TCB. The
following are the only A1-certified systems: Boeing MLS LAN, Gem-
ini Trusted Network Processor, Honeywell SCOMP. All of them are
network components rather than operating systems.

– A1 and above. The Orange Book mentions future provisions for secu-
rity levels higher than A2, although these have never been formally
defined.

3.2.1.2 A closer look

We now take a closer look to the security features corresponding to the Orange
Book categories, in order to spell out the main innovation of the TCSEC
approach, that is, the mapping between security requirements and security
features. We shall focus on C2-level security, which is a requirement of many
U.S. government installations.16 Here, we shall consider four of the most
important requirements of TCSEC C2-level security:

16 In the European Union, government agencies usually refer to ITSEC categories,
introduced in the next Section. The corresponding ITSEC rating is E3.

44 3 Test based security certifications

Class Requirements
B1 Mandatory security and access labeling of all objects, e.g., files, processes,

devices and so on
Label integrity checking (e.g., maintenance of sensitivity labels when data
is exported)
Auditing of labelled objects
Mandatory access control for all operations
Ability to specify security level printed on human-readable output (e.g.,
printers)
Ability to specify security level on any machine-readable output
Enhanced auditing
Enhanced protection of Operating System
Improved documentation

B2 Notification of security level changes affecting interactive users
Hierarchical device labels
Mandatory access over all objects and devices
Trusted path communications between user and system
Tracking down of covert storage channels
Tighter system operations mode into multilevel independent units
Covert channel analysis
Improved security testing
Formal models of TCB
Version, update and patch analysis and auditing

B3 ACLs additionally based on groups and identifiers
Trusted path access and authentication
Automatic security analysis
TCB models more formal
Auditing of security auditing events
Trusted recovery after system down and relevant documentation
Zero design flaws in TCB, and minimum implementation flaws

Table 3.3: B classes’ requirements

• Discretionary Access Control (also in C1). The owner of a resource, such
as a file, must be able to control access to it.

• Secure Object Reuse (C2 specific). The operating system must protect
data stored in memory for one process so that it is not randomly reused by
other processes. For example, operating systems must swipe per-process
memory after use, including kernel-level data structures, so that (user
and kernel) per-process data cannot be peeked after the memory has
been freed.17

• Identification and Authentication (C2 specific). Each user must uniquely
identify himself or herself when logging onto the system. After login, the
system must be able to use this unique identification to keep track the
user’s activities. In many operating systems, this is achieved by typing a

17 This requirement applies to the entire memory hierarchy, including disk storage:
after a file has been deleted, users must no longer be able to access the file’s content.
This requires some protection to be applied when the disk space formerly used by a
file is re-allocated, e.g., for use by another file.

3.2 Test-based Security Certification 45

username and password pair before being allowed access. We shall further
explore this requirement in Chapter 5.

• Auditing (C2 specific). System administrators must be able to audit the
actions of individual users, as well as all security-related events. Access
to this audit data must be limited to authorized administrators.

Let us now describe the mapping between these requirements and the
security features.

• Discretionary Access Control. From a system management perspective,
the discretionary access control requirement involves the presence and
functionality of a number of security features. For example, a mechanism
such as Access Control Lists must be in place for the system administra-
tor to control which users have access rights to which system resources,
including files, directories, servers, printers, and applications. Rights must
be definable on each resource basis and managed centrally from any single
location. A user-group management tool must also be present, through
which the system administrator can specify group memberships and other
user account parameters.

• Secure Object Reuse. This requirement involves the presence and func-
tionality of a number of security features corresponding to the different
levels of the memory hierarchy. When a program accesses data, those
data are placed in main memory, from where they can be swapped to
disk by the virtual memory mechanism. This means that at the level of
main memory, two security features are required to satisfy this require-
ment: (i) a Memory Management Unit (MMU) level mechanism ensuring
the protection of data in the machine’s physical memory, so that only au-
thorized programs can access them, and (ii) a swap partition protection
memory to ensure that no process can access the disk portion hosting the
virtual memory used by another process. When these two mechanisms are
in place and work correctly, it is impossible for a rogue application to take
advantage of another application’s data.

• Identification and Authentication. A simple password-based log-on proce-
dure may suffice, provided it uses a system-level encryption of passwords
so that they are never passed over the wire. This encryption prevents
unauthorized discovery of a user’s password through eavesdropping.18

• Auditing. An encrypted log feature must exist supporting logging of all
security related events such as user access to files, directories, printers and
other resources and log-on attempts. A simple symmetric key encryption
mechanism is sufficient to guarantee the secure access to logs mentioned
by the requirement.

The mapping described above underlies the entire certification process .
When checking a security requirement, the evaluator checks that all the cor-

18 However, more complex system can be used to satisfy other requirements as well.
We shall further explore these mechanisms in Chapter 5.

46 3 Test based security certifications

responding security features are in place and test them (according to some
pre-set test guidelines) to verify they are working correctly. If all tests succeed,
the product certifiably satisfies the requirements and gets the corresponding
certificate. It is important to understand that there are a number of other
requirements, such as the usability of the security features, that the TCSEC
guidelines do not directly address. For example, the fact that a software prod-
uct has achieved the C2 certification guarantees that it includes a security
feature (e.g., an ACL-based one) capable of controlling which users have ac-
cess rights to which resources; but such a feature can be extremely awkward
to use without a GUI. Again, as far as user accounts and group member-
ships are concerned, having checked the presence and functionality of a bare-
bones security feature for managing users and groups will not guarantee the
possibility of displaying log-in times, account expirations, and other related
parameters which will substantially increase the feature usability. These ad-
ditional requirements are not covered by certifications and therefore remain
part of the negotiation between software system vendors and purchasers.

3.2.2 CTCPEC

The Canadian Trusted Computer Product Evaluation Criteria or the CTCPEC
was proposed as a revised, “demilitarized” version of the US Orange Book.
The CTCPEC goal was to define a wider set of types to accommodate diverse
security requirements. The original TCSEC security requirement types were
extended to deal with software integrity, assurance, accountability, confiden-
tiality and availability as well as the original types defined by the Orange
Book [2]. In other words, the CTCPEC addressed the commercial market
demands by supporting a richer classification of security requirements and
more expressive mapping of these requirements to security features. Under-
standably, and regardless of the efforts to ensure backward compatibility, the
wider scope of the CTCPEC caused a growing incompatibility with the Or-
ange Book [2]. This incompatibility, in turn, became a major driver toward
a unified, international security certification standard.

3.2.3 ITSEC

At the same time when Canada was trying to define its new security cer-
tification standard, on the other side of the Atlantic several countries like
France, Germany, UK and the Netherlands started working together to de-
velop a certification designed to satisfy the security needs of the European
industry. Learning from the US experience, the Information Technology Se-
curity Evaluation Criteria (ITSEC) authors tried also to define a set of goals

3.3 The Common Criteria : A General Model for Test-based Certification 47

to overcome the limitations of the Orange Book as well as defining new goals
that fit in the European context. Version 1.2 of the ITSEC standard was
released in 1991 and is still used today. The major goals of the ITSEC as
described in [15] are:

• Generality. ITSEC certification criteria are not limited to any category
of software products.

• Interoperability. ITSEC ensures compatibility with the national catalogs
of security evaluation criteria used by each European country, and defi-
nition of mappings from these national catalogs to ITSEC.

• Neutrality. ITSEC is supported by third parties, taking a neutral role
between software.

• Scalability. ITSEC contains guidelines for testing security features, aimed
at achieving full automatization of the certification process.

3.3 The Common Criteria : A General Model for
Test-based Certification

The work done within ITSEC identified two major extension areas to test-
based security certification techniques. The first area regarded increasing the
expressive power of the security requirements, extending and formalizing their
type systems and specifying matching from the requirement to the feature
space. The second extension area dealt with automation of feature testing.
Both issues were addressed by a standardization group including representa-
tives of the US, Canada and European Union, the latter with the exception
of Italy (the group included neither Japan nor Australia). This joint effort,
started in 1993 under the label Common Criteria for IT Security (CC) be-
came an ISO standard (ISO/IEC 15408) in 1998. The final version of ISO/IEC
15408 was released in 1999. The Common Criteria (CC) certification stan-
dard has been defined to fulfill the needs of an international standard for
affordable software security certification . Common Criteria provides an uni-
fied process and a flexible framework to specify, design, and evaluate the
security properties of IT products [12].

A major goal of CC evaluation is to certify that the security policies
claimed by the developers are correctly enforced by the security functions
of the product under evaluation. The Common Criteria model tries to cap-
ture all the security aspects of the product and uses the term Target Of
Evaluation (TOE) for the technological product under evaluation. A TOE
can be software, firmware, hardware or a combination of the three [6]; also,
it can be a subsystem rather than an entire software system. In this case
only the sub-system defined as the TOE will be certified and not the entire
product. Figure 3.2 depicts the general model of the CC evaluation.

48 3 Test based security certifications

TOE
Security requirements
TOE documentation
TOE tests

Common
Criteria

Evaluation

CC certified
TOE

Input Output

Fig. 3.2: The General Model of the CC evaluation process

In the following of this section, we start by surveying the CC terminology
and rationale; in Chapter 6, we will present a detailed case study.

3.3.1 CC components

The CC defines a set of components and specifies the way they interact with
each other. CC components can be divided into three categories.

• Catalogs of reusable security functional and assurance requirements.
• Evaluation Assurance Levels (EALs) , specifying the assurance level used

in the certification process (from 1 to 7).
• The Protection Profile (PP) and specification of Security Target (ST) ,

describing respectively the security requirements and the security features
of the product to be certified.

It is important to remark that CC Protection Profiles and specifications of
Security Targets are themselves software artifacts, potentially to be published
and exchanged among suppliers, purchasers and independent third parties
such as evaluators.

3.3.1.1 The Protection Profile

The introduction of the Protection Profile (PP) is an important innovation
of the CC, inasmuch it allows groups or consortia of software purchasers to
define and share their own sets of security requirements. Of course, PPs do
not mandate how (i.e., via which features) these requirements must be im-
plemented; rather, they contain high-level descriptions of users’ needs. Also,
PPs are not written in a formal or controlled language; indeed, when com-
paring the PP structure defined in CC part 1 [6] to the publicly available
instances of PPs, one may notice that even their structure changes slightly.
To get a better idea of what a real PP looks like, we shall use examples taken
from real-world PPs, considering their structure rather than the standard one
defined by [6]. The general structure of a PP contains the sections showed in
Figure 3.3 and discussed below.

3.3 The Common Criteria : A General Model for Test-based Certification 49

1. PP introduction

• The PP identification
• PP overview
• Conventions and document organization
• Terms and keywords
• EAL

2. TOE description
3. Security problem definition

• Threats
• Organizational security policies
• Assumptions

4. Security objectives

• Security objectives of the TOE
• Security objectives of the TOE environment
• Security objectives rationale

5. Security requirements

• Security functional requirements
• Security Assurance requirements
• Security requirements rationale

6. PP rationale

Fig. 3.3: PP general structure

The PP introduction section provides general information about the PP,
allowing it to be registered through the Protection Profile registry, searched
and shared. This section includes the PP identification, that is, a descriptive
information to identify, catalogue, register, and cross-reference a PP. The PP
overview describes the scope of the PP and provides the necessary informa-
tion for customers to decide if a particular PP is appropriate for their needs.
The two other subsections of the PP introduction section (conventions and
document organization, and terms and keywords) help the reader to under-
stand how the PP document is organized and provide basic definitions of
any domain specific-term used in the document. Furthermore, the EAL for
which the PP claims conformance is also mentioned [18]. Figure 3.4 shows
the introduction of a well-known PP , the Controlled Access Protection Pro-
file (CAPP) specifying desirable high-level security requirements related to
discretionary access control.

The TOE description describes the software product from the customer
point of view, which includes the purpose of the TOE, the security function-
alities needed and the intended operational environment. Other information
concerning some technical details could be added such as cryptographic re-
quirements, remote access requirements, and so on. Figure 3.5 shows an ex-

50 3 Test based security certifications

Example of PP Introduction section.

• PP identification:

– Title: Controlled Access Protection Profile (CAPP)
– Registration: Information Systems Security Organization (ISSO)
– Keywords: access control, discretionary access control, general-purpose op-

erating system, information protection

• PP overview : The Common Criteria (CC) Controlled Access Protection Profile
, hereafter called CAPP , specifies a set of security functional and assurance re-
quirements for Information Technology (IT) products. CAPP-conformant prod-
ucts support access controls that are capable of enforcing access limitations on
individual users and data objects. CAPP-conformant products also provide an
audit capability which records the security-relevant events which occur within
the system.

• Conventions: This document is organized based on Annex B of Part 1 of the
Common Criteria .There are several deviations in the organization of this pro-
file. First, rather than being a separate section, the application notes have been
integrated with requirements and indicated as notes. Likewise, the rationale has
been

• Terms:

– A user is an individual who attempts to invoke a service offered by the
TOE.

– An authorized user is a user who has been properly identified and authen-
ticated. These users are considered to be legitimate users of the TOE.

– An authorized administrator is an authorized user who has been granted
the authority to manage the TOE. These users are expected to use this
authority only in the manner prescribed by the guidance given them.

– The Discretionary Access Control policy, also referred to as DAC, is the ba-
sic policy that a CAPP conformant TOE enforces over users and resources.

• EAL

Fig. 3.4: Example of the PP introduction section [4]

ample of a TOE description regarding a general purpose operating system
including some Components-Off-the-Shelf (COTS) provided by third parties.

The security problem definition section describes the expected operational
environment of the TOE. More specifically, it defines the known security
threats, the security assumptions and the organizational security policies. It
is important to notice that it is not mandatory to have statements for all the
three subsections. In other words, there may well be cases in which there are
no assumptions, or no organizational policies to speak of. However, defining
the security threats in a clear and unambiguous way is important, because it
makes the construction of the PP easier.

The threats subsection describes the potential threats that may put at risk
the TOE assets. In other words this subsection states what we want to pro-
tect the TOE from, including violations by system administrators, hackers,

3.3 The Common Criteria : A General Model for Test-based Certification 51

TOE Description. This protection profile specifies requirements for multilevel
general-purpose, multi-user, COTS operating systems together with the underly-
ing hardware for use in National Security Systems. Such operating systems are
typically employed in a networked office automation environment containing file
systems, printing services, network services and data archival services and can host
other applications (e.g., mail, databases). This profile does not specify any security
characteristics of security-hardened devices (e.g., guards, firewalls) that provide en-
vironment protection at network boundaries. When this TOE is used in composition
with other products to make up a larger national security system, the boundary pro-
tection must provide the appropriate security mechanisms, cryptographic strengths
and assurances as approved by NSA to ensure adequate protection for the security
and integrity of this TOE and the information it protects.

Fig. 3.5: Example of PP TOE description [4]

unauthorized users, and so forth. Table 3.4 shows some examples of threats
definitions suitable for an operating system.

Threat Description
T.ADMIN ERROR An administrator may incorrectly install or config-

ure the TOE resulting in ineffective security mech-
anisms.

T.ADMIN ROGUE An authorized administrator’s intentions may be-
come malicious resulting in user or TSF data being
compromised.

T.SPOOFING A malicious user, process, or external IT entity may
misrepresent itself as the TOE to obtain authenti-
cation data.

Table 3.4: Threats definition [4]

Organizational Security Policies (OSPs) are the set of roles, rules and
procedures adopted by the organizations using the TOE to protect its assets.
OSPs can be defined either by the organization that controls the operational
environment of the TOE or by external regulatory bodies [6]. Table 3.5 shows
a fragment of an OSP definition specifying the administration roles which will
be involved in setting the TOE access control policies, and some separation
constraints on them.

During the certification process, some assumptions will inevitably have
to be made, purely and simply because it is almost impossible to adopt the
same set of requirements for all customers. When software purchasers write a
PP, they need to take in consideration their specific needs which may change
among different groups of customers, even regarding the same product. Fo-
cusing on the operating system example, we might well have two groups of
customers who define two different PPs for the same operating system. One
group may assume that the operating system will include features capable
of enforcing access control to classified information, while the other group

52 3 Test based security certifications

OSP description
P.ACCOUNTABILITY The users of the TOE shall be held accountable for

their actions within the TOE.
P.AUTHORIZED USERS Only those users who have been authorized to ac-

cess the information within the TOE may access
the TOE.

P.ROLES The TOE shall provide multiple administrative
roles for secure administration of the TOE. These
roles shall be separate and distinct from each other.

Table 3.5: PP Organizational security policies from [4]

may assume that access will be regulated by suitable organizational security
policies. Table 3.6 illustrates some assumptions [18].

Assumptions Description
A.LOCATE The processing resources of the TOE will be located

within controlled access facilities which will prevent
unauthorized physical access.

A.PROTECT The TOE hardware and software critical to security
policy enforcement will be protected from unautho-
rized physical modification.

A.MANAGE There will be one or more competent individuals
assigned to manage the TOE and the security of
the information it contains.

Table 3.6: PP assumptions from [18]

Based on the security problems defined in the previous sections of the
PP, the security objectives section provides a set of concise statements as
responses to those issues. Every problem definition must be adequately ad-
dressed by one or more security objectives. Determining the security objec-
tives is a crucial step in PP construction, since it consists the base for defining
the testing activities to satisfy those objectives, and because testing without
clear objectives may lead to waste of time and effort. The PP includes also a
mapping between the security objectives and security problems to help the
evaluator to recognize the relations between the different security objectives
and their corresponding security problems. Some security objectives which
address some of the security problems mentioned above are shown in Table
3.7. Table 3.8, instead, shows the mapping between the security objectives
and the corresponding security problems.

The security objectives rationale is usually a short description of how the
security objectives will address security problems. It can be either written as
a separate subsection or embedded in the mapping table. Having it embedded
in the table showing the mapping (security problems → security objectives)
makes it much easier to understand. For instance if we take the mapping

3.3 The Common Criteria : A General Model for Test-based Certification 53

Security objective Description
Objectives to counter Threats

O.ADMIN GUIDANCE The TOE will provide administrators with the nec-
essary information for secure management of the
TOE.

O.ADMIN ROLE The TOE will provide administrator role to isolate
administrative actions

Objectives to enforce OSP
O.AUDIT GENERATION The TOE will provide administrators with the nec-

essary information for secure management of the
TOE.

O.ACCESS The TOE will ensure that users gain only autho-
rized access to it and to resources that it controls.

Objectives to uphold assumptions
O.PHYSICAL Those responsible for the TOE must ensure that

those parts of the TOE critical to security pol-
icy are protected from physical attack which might
compromise IT security objectives.

O.INSTALL Those responsible for the TOE must ensure that
the TOE is delivered, installed, managed, and op-
erated in a manner which maintains IT security
objectives.

Table 3.7: Examples of Security objectives [18]

Security objective Security problem
Threats

O.ADMIN GUIDANCE T.ADMIN ERROR
O.ADMIN ROLE T.ADMIN ROGUE

OSP
O.AUDIT GENERATION P.ACCOUNTABILITY
O.ACCESS P.AUTHORIZED USERS

Assumptions
O.PHYSICAL A.LOCATE
O.INSTALL A.MANAGE

Table 3.8: Mapping security objectives to security problem definitions [18]

between the threat O.ADMIN ROLE and the objective T.ADMIN ROGUE,
the standard document [4] defines the rationale as in Figure 3.6.

The Security Requirements section represents the core part of the PP doc-
ument, that is, the one dealing with the desired security properties. To be
able to assess or evaluate the security level of a TOE, a PP needs to define
a set of requirements that would allow the evaluator to know which software
features should be tested. Compared to the other PP sections, the security
requirements section is usually much larger. The reason behind that security
requirements need to be described clearly, including all the needed details to
avoid any ambiguous interpretation. The CC certification defines two types of

54 3 Test based security certifications

TOE Description. It is important to limit the functionality of administrative
roles. If the intentions of an individual in an administrative role become mali-
cious, O.ADMIN ROLE mitigates this threat by isolating the administrative ac-
tions within that role and limiting the functions available to that individual. This
objective presumes that separate individuals will be assigned separate distinct roles
with no overlap of allowed operations among the roles. Separate roles include an
authorized administrator and a cryptographic administrator.

Fig. 3.6: Rationale of the mapping between O.ADMIN ROLE and
T.ADMIN ROGUE [4]

security requirements: Security Functional Requirements (SFRs) and Security
Assurance Requirements (SARs) .

SFRs define the requirements that the security features of the product
under evaluation should satisfy. In other words SFRs specify how the TOE
should work to preserve its expected behavior. The CC standard includes
a predefined extendable catalogue of security functional requirements “that
are known and agreed to be of value by the CC part 2 authors” [8]. How-
ever, the SFRs are flexible and can be extended for particular scenarios. The
CC authors have divided the set of the SFRs into four hierarchies depicted
in Figure 3.7 (i.e., Classes, Families, Components and Elements), each one
providing more fine-grained security requirements [12]. For instance, in our

C l a s s 1

F a m i l y 1 F a m i l y 2 F a m i l y 3 F a m i l y 4

C o m p o n e n t 1 C o m p o n e n t 2 C o m p o n e n t 3

E l e m e n t 1 E l e m e n t 2 E l e m e n t 2

Fig. 3.7: The hierarchical structure of the SFRs

operating system example it is important to limit the functionality of ad-
ministrative roles. If the intentions of an individual in an administrative role
become malicious, O.ADMIN ROLE mitigates this threat by isolating the
administrative actions within that role and limiting the functions available
to that individual. This objective presumes that separate individuals will be
assigned separate distinct roles with no overlap of allowed operations between

3.3 The Common Criteria : A General Model for Test-based Certification 55

the roles. Separate roles may include an authorized administrator and an en-
cryption administrator, as well as provisions for enforcing division of labor
between the two. Figure 3.8 shows an example of SFRs.

FAU GEN.2.1 The TSF shall be able to associate each auditable event with the
identity of the user that caused the event.

• Application Note: There are some auditable events which may not be associated
with a user, such as failed login attempts. It is acceptable that such events do not
include a user identity. In the case of failed login attempts it is also acceptable
not to record the attempted identity in cases where that attempted identity
could be misdirected authentication data; for example when the user may have
been out of sync and typed a password in place of a user identifier.

• Rationale: O.AUDITING calls for individual accountability (i.e., “TOE users”)
whenever security-relevant actions occur. This component requires every au-
ditable event to be associated with an individual user.

Fig. 3.8: An example of SFRs [4]

In the example in Figure 3.8, the name of the SFRs is represented by the
standard notation used by CC, namely (classes, families, components
and elements). The first letter F indicates that this is a Functional
requirement. The two following letters indicate the requirement class (AU =
Security audit); the next three letters represent the family name (GEN =
Security audit data generation); the first digit represents the component
number and the second digit indicates the element number. The application
note and the rationale provide some details which are specific to this partic-
ular PP, to help in interpreting the requirements correctly.

The SARs describe some practical ways to check the effectiveness of the
security features of the product under evaluation [22]. The SARs catalogue
includes predefined requirements focusing on different phases of the prod-
uct life cycle such as development, configuration management, testing and so
forth. SARs specify the actions deemed necessary to provide enough confi-
dence that the software product will satisfy the security requirements, that
is, how to investigate the efficiency of the security functions for the required
level of security [8]. Figure 3.9 shows an example of SARs.

Syntactically, SARs follow the same notation standard introduced for
SFRs. However, they have an additional letter at the end called the action
element type. Since the assurance elements are the most fine-grained enti-
ties used by the CC , dividing them to even smaller entities may not lead to
significant results. For this reason, the standard defines three different action
types that identify each of the assurance elements [9].

• Developer action elements (letter D): identify the tasks that shall be
performed by the developer.

56 3 Test based security certifications

• ADO DEL.1.1D The developer shall document procedures for delivery of the
TOE or parts of it to the user.

• ADO DEL.1.2D The developer shall use the delivery procedures.
• ADO DEL.1.1C The delivery documentation shall describe all procedures

that are necessary to maintain security when distributing versions of the TOE
to a user’s site.

Fig. 3.9: An example of SARs [4]

• Content and presentation of evidence elements (letter C): describe the
required evidence and what the evidence shall show.

• Evaluator action elements (letter E): identify the tasks that shall be
performed by the evaluator.

Finally the PP Rationale is the section where the mapping between secu-
rity problems and security objectives, and the mapping between SFRs and se-
curity objectives are formalized. Also, the PP rationale discusses how threats
will be addressed. This is a section where more details could be added to help
understand how the TOE shall meet the stated security objectives. Further
details can be added concerning SFRs and SARs classes, families, compo-
nents and elements to help the evaluator to fully understand how the CC
components should be applied [9].

3.3.1.2 Security Target

The Security Target (ST) is a security specification of a software product. ST
contains the security requirements of a given software product, to be achieved
by a set of specific security functions. Unlike PPs, STs are implementation
dependent, which means that it specifies the implementation details about
each SFR. The content of the ST is depicted in Figure 3.10.

The ST is a basis for agreement between the developers, evaluators and,
where appropriate, users on the TOE security properties and on the scope
of the evaluation. A ST can be derived from a given PP by instantiation; in
general, each ST corresponds to a particular PP definition. A ST may then
claim conformance to a PP by providing the implementation details concern-
ing the security requirements defined by that PP [14]. Also, ST may augment
the requirements derived from the PP. Indeed, there might be cases where
there is no PP that matches the security properties of a specific product. In
this case, the product developer can still create its own ST without claiming
conformance to any PP [14].

An important aspect of ST requirements specification is the definition of
the threats and security objectives of the TOE and its environment. Threats
identify situations that could compromise the system assets, while security

3.3 The Common Criteria : A General Model for Test-based Certification 57

1. ST introduction

• ST reference
• TOE reference
• TOE overview
• TOE description

2. Conformance claims

• CC conformance claim
• PP claim, Package claim
• Conformance rationale

3. Security problem definition

• Threats
• Organizational security policies
• Assumptions

4. Security objectives

• Security objectives for TOE
• Security objectives for the operational environment
• Security objectives rationale

5. Extended components definition

• Extended components definition

6. Security requirements

• Security functional requirements
• Security Assurance requirements
• Security requirements rationale

7. TOE summary specification

• TOE summary specification

Fig. 3.10: Content of a Security Target

objectives contain all the statements about the intents to counter identified
threats and/or satisfy identified organization security policies and assump-
tions. Based on threats and security objectives, the ST defines the security
requirements that the TOE security features need to satisfy to achieve the
security objectives.

To help establishing an association between the components of the CC and
the CC certification process, Figure 3.11 shows where the CC components are
used during the CC process. First, software developers need to decide whether
their ST will claim conformance to any PP, if yes the specified PP will be
included in the certification documents and the ST will be validated against
it. Additionally, a set of other documents including design documentation,
customer guidance, configuration management and testing must be made

58 3 Test based security certifications

T O E

E v a l u a t i o n L a b

C e r t i f i c a t i o n B o d y

- T O E
- P ro tec t i on P ro f i l e
- S e c u r i t y T a r g e t
- D o c u m e n t a t i o n
- T e s t s

D e v e l o p e r

D e v e l o p

E v i d e n c e

E v a l u a t i o n R e p o r t

Ce r t i f i ca te

Fig. 3.11: CC process scheme

available to the evaluation body. The role of CC evaluation body is to inspect
and analyze all evidence provided by developers.

A fundamental aspect that was taken into consideration when defining
the CC is the ability to repeat and reproduce the evaluation results. For
this reason, the CC authors have defined an additional document (Common
Certification Methodology) that specifies the minimum set of actions to be
performed by an evaluator during a CC evaluation [7].

3.3.1.3 Evaluation Assurance Levels

The Common Criteria standard defines seven hierarchical Evaluation Assur-
ance Levels (EAL), which balance the desired level of security and the cost of
deploying the corresponding degree of assurance [3]. EAL identifies different
sets of security assurance requirements, which are shown in Table 3.9. In case
the predefined requirements do not match the level of assurance required, the
EAL might be augmented by adding additional assurance requirements.

An example of EALs achieved by operating systems and other software
products are given in Figure 3.10.

3.4 Conclusions 59

EAL Description
EAL1 Functionally tested (black-box testing)
EAL2 Structurally tested
EAL3 Methodologically tested and checked
EAL4 Methodologically designed, tested and reviewed
EAL5 Semiformally designed and tested
EAL6 Semiformally verified design and tested
EAL7 Formally verified design and tested

Table 3.9: Evaluation Assurance Levels

Product Description
Apple No evaluations
Linux EAL 2, for Red Hat Enterprise Linux 3, February 2004
Linux EAL 3+, for SuSE Linux Enterprise Server V8, Service Pack 3,

RC4, January 2004
Solaris EAL 4, for Solaris 8, April 2003
Solaris EAL 4, for Trusted Solaris 8, March 2004

Windows EAL 4+, for Windows 2000 Professional, Server, and Advanced
Server with SP3 and Q326886, October 2002

Table 3.10: An example of Evaluation Assurance Levels achieved by software products

3.4 Conclusions

Test-based security certification approaches can provide some confidence (al-
though no certainty) that a software product will preserve its properties of
data confidentiality, integrity and availability even under hostile conditions.
Many high technology, safety-critical products like aircrafts, include large
distributed software systems. In such safety-critical systems, each computa-
tional node must be certified to perform its functions safely. As more and
more safety-critical and mission-critical software systems communicate with
other systems, malicious attempts to subvert those communications multiply,
and security concerns become increasingly important. The Common Criteria
defines seven Evaluation Assurance Levels (EALs) 1 (low) through 7 (high).
The threat level and the value of the information jointly determine the appro-
priate level of confidence in both the correctness of the security functionality
(EAL level) and the extent of the security functionality, specified in a Protec-
tion Profile. The consequences of some information being compromised may
range from negligible effects to severe damage.

It is important to remark that security certification standards are strictly
related to safety ones. The DO-178B standard for safety, like the Common
Criteria standard for security, is mostly concerned with program correctness.
The difference lies in the fact that DO-178B addresses post-certification qual-
ity assurance, while the Common Criteria covers topics such as vulnerability,
user documentation and software delivery. DO-178B defines Level A through
Level E.; there is no safety impact if Level E software fails, while if Level A

60 3 Test based security certifications

software fails, the safety impact is catastrophic. Another characteristic com-
mon to both safety and security is that earning certification is much more
difficult, risky, and therefore expensive if the certification was not an original
design goal. This occurs when certification requirements are extended as the
result of revised policies or regulations. Certifications are expensive, although
open source tools that analyze source code for faults are becoming available.

References

1. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge Univer-
sity Press, New York, NY, USA, 2008.

2. E. Mate Bacic. The canadian trusted computer product evaluation criteria. In
Proc. of the Sixth Annual Computer Security Applications Conference, Tucson,
AZ, USA, December 1990.

3. K. Caplan and J.L. Sanders. Building an international security standard. IEEE
Educational Activities Department, 22(3):29–34, March 1999.

4. Information Assurance Directorate. US Government Protection Profile for Mul-
tilevel Operating Systems in Medium Robustness Environments, 2007.

5. A.J. Dix, J.E. Finlay, G.D. Abowd, and R. Beale. Human-Computer Interaction.
Prentice Hall, 2004.

6. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and general model, 2006.

7. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Evaluation methodology, 2007.

8. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 2: Security functional components, 2007.

9. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 3: Security assurance components, 2007.

10. P.G. Frankl, R.G. Hamlet, B. Littlewood, and L. Strigini. Evaluating testing
methods by delivered reliability. IEEE Transaction on Software Engineering,
24(8):586–601, August 1998.

11. P.G. Frankl and E.J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, October 1988.

12. D.S. Herrmann. Using the Common Criteria for IT security evaluation. Auer-
bach Publications, 2002.

13. W.E. Howden. Reliability of the path analysis testing strategy. IEEE Transac-
tions on Software Engineering, 2(3):208–215, September 1976.

14. ISO/IEC. Guide for the production of Protection Profiles and Security Targets,
2004.

15. C. Jahl. The information technology security evaluation criteria. In Proc. of the
13th International Conference on Software Engineering, Austin, TX, USA, May
1991.

16. Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 1(2):308–320, 1976.

17. USA Department of Defense. DEPARTMENT OF DEFENSE TRUSTED COM-
PUTER SYSTEM EVALUATION CRITERIA. USA Department of Defence,
1985.

References 61

18. Information Systems Security Organization. Controlled Access Protection Profile
version 1.d, 1999.

19. M. Pezzè and Michal Young. Software Testing and Analysis: Process, Principles,
and Techniques. Wiley.

20. S.L. Pfleeger and J.D. Palmer. Software estimation for object oriented systems. In
Fall International Function Point Users Group Conference, San Antonio, Texas,
October 1990.

21. D. Russell and G.T. Gangemi. Computer Security Basics. O’REILLY, 1991.
22. K.S. Shankar, O. Kirch, and E. Ratliff. Achieving capp/eal3+ security certifica-

tion for linux. In Proc. of the Linux Symposium, volume 2, page 18, 2004.
23. H. Zhu. A formal analysis of the subsume relation between software test adequacy

criteria. IEEE Transactions on Software Engineering, 22(4):248–255, April 1996.

