
Chapter 2

Basic Notions on Access Control

Abstract Security certifications deal with security-related properties and
features of software products. In this chapter we introduce some basic con-
cepts on software systems features related to security and dependability. Such
features are often designated with the acronym CIA: they include Confiden-
tiality features, ensuring that only authorized users can read data managed
by the software system, Integrity features, ensuring that only authorized users
can can modify the software system’s resources, and Availability features, en-
suring that only authorized users can use the software system. In this chapter
we shall introduce some concepts underlying some software security features
which are an important target for the software certification process. Specifi-
cally, we shall focus on access control subsystems, which are among the most
widespread security features added to operating systems, middleware and ap-
plication software platforms. Such subsystems will be among the targets of
certification discussed in this book.

2.1 Introduction

The software security field is a relatively recent one;1 but today software
security is so wide notion that has come to mean different things to different
people. For our purposes, we shall loosely define it as the set of techniques
aimed at designing, implementing and configuring software so that it will
function as intended, even under attack.

Security features, such as access control systems [6], are added to software
products in order to enforce some desired security properties. Although the
notion of specific security-related features and subsystems is an important
one, it is much easier for such features to protect a software product that

1 According to Gary McGraw [4], academic degrees on software security appeared as
recently as 2001. Our own online degree course on Systems and Network Security at
the University of Milan (http://cdlonline.unimi.it) was started in 2003.

15



16 2 Basic Notions on Access Control

is fault-free than one internally riddled with faults which may cause failures
which prevent security features from doing their job.

Our notion of software security is therefore twofold: firstly, software se-
curity is about protecting “plain” software systems by adding to them a
number of specific security features; secondly, software security is about pro-
gramming techniques for developing secure software systems, designing and
coding them to withstand (rather than prevent) attacks. The former notion
of software security follows naturally from a system-centric approach, where
access to software systems “from outside” must be controlled and regulated.
The second notion, instead, relies on the developers’ insight and focuses on
methods for identifying and correcting dangerous faults which may be present
in the software itself.

Most modern software systems do include some security features, but
adding such features does not guarantee security per se. Indeed, software
security is a system-wide issue that includes both adding security features
(such as an access control facility) and achieving security-by-coding (e.g., via
robust coding techniques that make attacks more difficult).

We can further clarify this distinction via a simple example. Let us assume
that a web server has a buffer overflow fault 2, and that we want to prevent
a remote attacker from overflowing the buffer by sending to the server an
oversize HTTP GET request. A way to prevent this buffer overflow attack
could be adding a software feature to the web server, a monitor function
that observes HTTP requests as they arrive over port 80, and drops them if
they are bigger than a pre-set threshold. Another way to achieve the same
result consists in fixing the web server source code to eliminate the buffer
overflow fault altogether. Clearly, the latter approach can only be adopted
when the server’s source code is available and its operation is well understood.

In most organizations, software security is managed by system adminis-
trators who set up and maintain security features such as access control and
intrusion detection systems, firewalls and perimeter defenses, as well as an-
tivirus engines. Usually, these system administrators are not programmers,
and their approach is more oriented to adding security features to protect
a faulty software than to correcting the faults in the software that allow
attackers to take advantage of it.

Furthermore, software development projects (like any other type of project)
have schedules and deadlines to respect for each step of the development pro-
cess. The pressure put on development teams make many developers care
for little else than making the software work [2], neglecting verification of
security properties.

As we shall see, security certifications try to deal simultaneously with both
aspects of software security: they certify the presence of some security features
as well as the outcome of testing their functionality. From this point of view
security is an emergent property of the entire software system rather than

2 The reader who is unaware of what a buffer overflow fault is can skip this example
and come back to it after reading Chapter 4.



2.2 Access Control 17

a set of individual requirements. This is an important reason why software
security must be part of a full lifecycle-based approach to software develop-
ment. In this chapter we shall introduce some concepts underlying software
security features which are an important target for the security certification
process. Specifically, we shall focus on access control subsystems, which are
among the most important security features added to operating systems, mid-
dleware and application software platforms. Such subsystems will be among
the targets of certification we shall discuss in the next chapters.

2.2 Access Control

Access Control (AC) is the ability to allow or deny the use of resources. In
other words, access control decides who subject is authorized to perform cer-
tain operations on a given object and who is not. The notion of controlling
access is independent of the nature of objects and subjects; objects can be
physical resources (such as a conference room, to which only registered par-
ticipants should be admitted) or digital ones (for example, a private image
file on a computer, which only certain users should be able to display), while
subjects can be human users or software entities.

Generally speaking, computer users are subject to access control from the
moment they turn on their machines, even if they do not realize it. On a
computer system, electronic credentials are often used to identify subjects,
and the access control system grants or denies access based on the credential
presented. To prevent credentials being shared or passed around, a two-factor
authentication can be used. Where a second factor (besides the credentials)
is needed for access. The second factor can be a PIN, or a biometric input.
Often the factors to be made available by a subject for gaining access to an
object are described as

• something you have, such as a credential,
• something you know, e.g. a secret PIN, or
• something you are, typically a fingerprint/eye scan or another biometric

input.

Access control techniques are sometimes categorized as either discretionary
or non-discretionary. The three most widely recognized models are Discre-
tionary Access Control (DAC) , Mandatory Access Control (MAC), and Role
Based Access Control (RBAC). MAC and RBAC are both non-discretionary.



18 2 Basic Notions on Access Control

2.2.1 Discretionary Access Control

The Trusted Computer System Evaluation Criteria (TCSEC) [5] defines the
Discretionary Access Control (DAC) model “a means of restricting access to
objects based on the identity of subjects and/or groups to which they belong.
DAC is discretionary in the sense that a subject with a certain access per-
mission is capable of passing on that permission (perhaps indirectly) to any
other subject (unless explicitly restrained from doing so by mandatory access
control)”. The Orange Book also states that under DAC “an individual user,
or program operating on the user’s behalf, is allowed to specify explicitly
the types of access other users (or programs executing on their behalf) may
have to information under the user’s control”. DAC provides a very impor-
tant security property: subjects to have full control over their own objects.
Subjects can manipulate their objects in a variety of ways based on their
authorizations.

Authorization determines which actions a subject can do on the system;
the semantics of actions depends on the nature of the objects involved. For in-
stance, within an operating systems platform, actions are variations or exten-
sions of three basic types of access: Read (R), where the subject can read file
contents or list directory contents, Write (W), where the subject can change
the name or the contents of a file or directory, and Execute (X), where, if
the object is a program, the subject can cause it to be run. As we shall
see below, these permissions are implemented differently in systems based
on Discretionary Access Control (DAC) than in Mandatory Access Control
(MAC).

Throughout the book, we shall repeatedly mention DAC, because many
operating systems today, including Unix and Unix look-alikes like Linux, use
DAC as part of their file protection mechanisms. DAC has also been adopted
for controlling access to networking devices such as routers and switches.
DAC’s high flexibility enables users to have full control to specify the privi-
leges assigned to each object.

A widely used framework for implementing DAC is the Matrix access
model. Formalized by Harisson, Ruzzo, and Ullman (HRU) [3], the Matrix
access model provides a conceptual abstraction which specifies the access
rights that each subject s has over each object o. The Matrix access model
is composed of rows representing the subjects, and columns representing the
objects. Each intersection cell between a subject s and an object o represents
the access rights for s over o. In other words, the access rights specified by
the cell ensure what type of access a subject has over an object (e.g. write ac-
cess, read access, execution access). An example of an access matrix is shown
in Figure 2.1. In this example, the access rights that are considered are (R)
read, (W) write, and (X) execute. An empty cell means that a specific subject
s has no right on a specific object o, conversely if a cell is assigned all the
access rights, it means that a specific subject s has full control over a specific
object o.



2.2 Access Control 19

S1

S2

S3

Sn

O1 O2 O3 On

W

R W X

W R W

R W

WR

WR

R X

R W X

R W X

R W

Fig. 2.1: Access matrix

2.2.1.1 Access Control Lists

Access Control Lists (ACLs) are data structures widely used to implement
both discretionary and mandatory access control models. Often, operating
systems implement DAC by maintaining lists of access permissions to be
attached to system resources. Each object’s access list includes the subjects
allowed to access the object and the actions they are allowed to execute on the
object. For example, the entry (Bob, read) on the ACL for a file foo.dat gives
to subject Bob permission to read the file. In an ACL-based implementation
of DAC, when a subject tries to execute an action on an object, the system
first checks the object’s list to see whether it includes an entry authorizing
such action. if not, the action is denied.3

ACLs have been implemented in different ways in various operating sys-
tems, although a partial standardization was attempted in the (later with-
drawn) POSIX security drafts .1e and .2c, still known as POSIX ACLs. In
practice, ACLs can be visualized as tables, containing entries that specify
individual subjects or group permissions to access system objects, such as
processes, or a file. These entries are called access control entries (ACEs)
within Microsoft Windows, Linux and Mac OS X operating systems.

2.2.2 Mandatory Access Control

While in DAC subjects are in charge of setting and passing around access
rights, the Mandatory Access Control (MAC) model enforces access control
based on rules defined by a central authority [6]. This feature makes MAC
more suitable to setup enterprise-wide security policies spanning entire orga-
nizations. MAC has been defined by the TCSEC [5] as “a means of restricting

3 A key issue in the efficient implementation of ACLs is how they are represented,
indexed and modified. We will not deal with this issue in detail here, even if such
implementation details may well be a target for a software security certification.



20 2 Basic Notions on Access Control

access to objects based on the sensitivity (as represented by a label) of the
information contained in the objects and the formal authorization (i.e., clear-
ance) of subjects to access information of such sensitivity”.

In MAC access control system all subjects and objects are assigned dif-
ferent sensitivity labels to prevent subjects from accessing unauthorized in-
formation. The sensitivity labels assigned to the subjects indicate their level
of trust, whereas the sensitivity labels assigned to the objects indicate the
security clearance a subject needs to have acquired to access them. Generally
speaking, for a subject to be able to access an object, its sensitivity level
must be at least equal or higher than the objects’ sensitivity level.

One of the most common mandatory policies is Multilevel Security (MLS),
which introduces the notion of classification of subjects and objects and uses
a classification lattice. Each class of the lattice is composed of two entities,
namely:

• Security Level (L): which a hierarchical set of elements representing level
of data sensitivity

Examples:

Top Secret (TS), Secret (S), Confidential (C), Unclassified (U)

TS > S > C > U (2.1)

Essential (E), Significant (S), Not important (NI)

E > S > NI (2.2)

• Categories (C): a set of non-hierarchical elements that represent the dif-
ferent areas within the system

Example:

Accounting, Administrative, Management etc.

By combining the elements of the two components one obtains a par-
tial order operator on security classes, traditionally called dominates. The
dominates operator represents the relationship between each pair (L,C) with
the rest of the pairs. The dominates relation (whose notation is the sign º)
is defined as follows:

(L1, C1) º (L1, C2) ⇐⇒ L1 ≥ L2 ∧ C1 ⊇ C1 (2.3)

To better understand the relation among the different classes defined in
Eq. 2.3, let’s examine the structure created by the dominates relation º.
It is a lattice, often called classification lattice, which combines together the



2.2 Access Control 21

Security Classes (SC) and the relations between them. Being a lattice, the
classification structure satisfies the following properties:

Reflexivity of º ∀x ∈ SC : x º x
Transitivity of º ∀x, y, z ∈ SC : x º y, y º z =⇒ x º z
Antisymmetry of º ∀x, y ∈ SC : x º y, y º x =⇒ x = y
Least upper bound (lub) ∀x, y ∈ SC : ∃!z ∈ SC
• z º x and y º z
• ∀t ∈ SC : t º x and t º y =⇒ t º z

Greatest lower bound (glb) ∀x, y ∈ SC : ∃!z ∈ SC
• x º z and y º z
• ∀t ∈ SC : x º t and y º t =⇒ z º t

Figure 2.2 shows an example of a classification lattice with two security
levels: Classified (C), Unclassified (U), and two categories: Management and
Finance. By looking closely to the figure we can notice that the sensitivity and
the importance of the information increases as we move upward in the lattice.
For instance, starting from the bottom of the lattice, we have Unclassified
information U that does not belong to any category, and by moving along
any of the two side lines we find unclassified information. However, this time
the information belongs to a specific category, which gives this information
more importance. If we move upward in the lattice we get to more important
classified information.

C{Management,  Finance}

C{Management } C{Finance}

U{Management,  Finance}

U { }

C { }U{Managemen t } U{F inance}

Fig. 2.2: Classification Lattice



22 2 Basic Notions on Access Control

Two well-known security models that use a mandatory access control ap-
proach are the Bell-LaPadula, and the Biba model.

2.2.2.1 Bell-LaPadula Model

The Bell-LaPadula (BLP) model defines a mandatory security policy based
on information secrecy. It addresses the issue of confidential access to classi-
fied information by controlling the information flow between security classes.

BLP partitions the organizational domain into security levels and assigns
a security label to each level. Furthermore, each subject and object within
the system need to be associated with one of those predefined levels and
therefore associated with a security label. The security labels denominations
may change from one organization to another, based on the terminology used
in each organization. For instance in the context of military organizations, it
would make sense to have labels like Top secret, Secret, Classified, while in a
business organization we may find labels of the type Board Only which spec-
ifies the type of information that only the board of directors can access and
Managerial which specifies the information that can be accessed by managers
and so on.

A major goal of BLP is preventing the information to flow to lower or
incompatible security classes [6]. This is done by enforcing three properties:

• The Simple Security Property : A subject can only have read ac-
cess to objects of lower or equal security level (no read-up). For instance
looking at the example in Figure 2.3, we can see that Subject S1 can
read both objects O2 and O3, since they belong to a lower security level,
the same for subject S2, it can read object O2 since it belongs to the
same security level, whereas it is not authorized to read object O1, since
it belongs to a higher security level

• The *-property (star-property): A subject can only have write access
to objects of higher or equal security level (i.e, no write-down is allowed).
The example shown in Figure 2.4 depicts this property, where subject S2
can write both in object O1 and O2 since they belong respectively to a
higher and to the same security level, while subject S1 can write only to
object O1 since it belongs to the same security level.

• The Discretionary Security Property : This property allows a sub-
ject to grant access to another subject, maintaining the rules imposed by
the MAC. So subjects can only grant accesses for the objects over which
they have the necessary authorizations that satisfy the MAC rules.



2.2 Access Control 23

Low Security
Label

High Security
Label

Read Read

Read

S 1

S 2

O 1

O 2

O 3

Read

Fig. 2.3: BLP simple security property

Low Security
Label

High Security
Label

Write Write

Write

S 1

S 2

O 1

O 2

O 3

Write

Write

Fig. 2.4: BLP *-security property

2.2.2.2 Biba Model

Whereas the main goal of BLP is to ensure confidentiality, Biba’s similar
mechanism aims to ensure integrity. The basic idea behind Biba is to prevent
low-integrity information to flow to higher-integrity objects, while allowing
the opposite. Very often, the Biba model has been referred to as the reverse of
the BLP model, since it exactly reverses the rules defined by the BLP. Before
discussing the properties of the Biba model and looking to some examples,
we once again remind the reader that the approach used by Biba is explicitly
based on integrity rather than confidentiality or disclosure of information as
in BLP. As mentioned earlier integrity refers to the ability of altering data
objects. So the model prevents high integrity objects from being altered or
changed by an unauthorized subject.

In a military environment, the Biba model will allow a subject with a high
security label to insert mission-critical information like a military mission’s
target and its coordinates, whereas subjects with lower security labels can
only read this information. This way the integrity of the system can be pre-
served more efficiently since the flow of information goes only from higher to
lower levels [1]. The Biba model guarantees the following properties:



24 2 Basic Notions on Access Control

• Simple Integrity Property : A subject can only have read access to
objects of higher or equal security level (no read-down).

• Integrity *-property (star-property): A subject can only have write
access to objects of lower or equal security level (no write-up).

2.2.3 Role Based Access Control

Instead of providing access rights at user or group level as in DAC, Role-
Based Access Control (RBAC) uses the roles assigned to users as a criteria
to allow or deny access to system resources. Typically, RBAC models define
users as individuals with specific roles and responsibilities within an organiza-
tion. This relationship creates a natural mapping based on the organization’s
structure, and thus assigns access rights to each role rather than to each indi-
vidual. The relation between roles and individuals is many-to-many, like the
one between roles and system resources. A specific role may include one or
more individuals, and at the same time a specific role can have access rights
to one or more resources. Figure 2.5 depicts these relations.

The main idea behind RBAC is to group privileges in order to give or-
ganizations more control in enforcing their specific security polices. In other
words, within an organization, the access control system deals with the job
function of individuals rather than with their real identities. When permit-
ting or denying access to a specific resource, the access right is intended to
permit or deny access to a specific role and not to a specific individual.

Within the RBAC, a role is defined as “a set of actions and responsibilities
associated with a particular working activity” [6]. The scope or the extent of
the role can be limited to specific task or mission to accomplish, for instance
processing a client request, or preparing a report, or it can concern a user’s
job like for instance manager, director.

2.3 Conclusions

Today’s information systems and platforms include security features aimed
at protecting confidentiality and integrity of digital resources. Controlling ac-
cess to resources across an entire organization is a major security challenge.
Access control models address this challenge by defining a set of abstractions
capable of expressing access policy statements for a wide variety of infor-
mation resources and devices. Access control systems are among the most
widespread security features added to operating systems, middleware and
application software platforms; therefore, certification of their security prop-
erties is of paramount importance. Many operating systems today, including
Unix and Unix look-alikes like Linux, use DAC as part of their protection



References 25

Role 1 Role 2

Users

Resources

Fig. 2.5: Role-based access control users-roles-resources relations

mechanisms. DAC has also been adopted for controlling access to networking
devices such as routers and switches. DAC’s high flexibility enables resource
owners to specify privileges assigned to each object.

References

1. E.G. Amoroso. Fundamentals of Computer Security Technology. Prentice Hall
PTR, 1994.

2. M.G. Graff and K.R. Van Wyk. Secure Coding: Principles and Practices. O’Reilly,
2003.

3. M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, August 1976.

4. G. McGraw. From the ground up: The dimacs software security workshop. In
IEEE Security and Privacy, volume 1, pages 59–66, March 2003.

5. USA Department of Defense. DEPARTMENT OF DEFENSE TRUSTED COM-
PUTER SYSTEM EVALUATION CRITERIA. USA Department of Defence,
1985.

6. P. Samarati and S. De Capitani di Vimercati. Foundations of Security Analysis
and Design, chapter Access Control: Policies, Models, and Mechanisms, pages
137–196. Springer Berlin / Heidelberg, 2001.




