Game Theory Models and Their Applications
in Inventory Management and Supply Chain

Altannar Chinchuluun,! Athanasia Karakitsiou,?2 and Athanasia
Mavrommati?

L Center for Applied Optimization, Department of Industrial and Systems
Engineering, University of Florida, Gainesville, Florida, USA
altannar@ufl.edu

2 Decision Support Systems Laboratory, Department of Production Engineering,
Technical University of Crete, Chania, Greece
{atkar,atmavr}@verenike.ergasya.tuc.gr

Abstract Analysis of supply chain politics can benefit from applying game-theory
concepts extensively. Game theory tries to enlighten the interactions between indi-
viduals or groups of people whose goals are opposed conflicting, or at least partially
competing. In this chapter, we review classic game theoretical approaches to mod-
eling and solving certain problems in supply chain management. Both noncooper-
ative and cooperative models are discussed and solution procedures are presented
in single-period and multiperiod settings. As used here, a “game” is a metaphor for
any interaction among the decision makers in a supply chain.
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1 Introduction

Inventory management of physical goods and other products or elements is
an integral part of logistic systems common to all sectors of the economy in-
cluding industry, agriculture, and defense. In a perfectly predictable economy,
inventory may be needed in order to take advantage of the economic feature
of a particular technology, to synchronize human tasks, or to regulate pro-
duction process to meet the changing demands. When uncertainty is present,
inventories are used as a protection against risk of stock being out.

The existence of inventory in a system generally implies the existence of
an organized complex system involving inflow, accumulation, and outflow of
some commodities, goods, items, or products. In business, for example, the
inflow of goods is generated through procurement, purchase, or production.
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The outflow is generated through demand for the goods. Finally, the difference
between the rate of outflow and the rate of inflow generates inventory of goods.

The regulation and control of inventory must proceed within the context
of this organized system. Rather than being interpreted as idle resources, in-
ventories should be regarded an essential element, the study of which may
provide insight in the aggregate operation of the system. The scientific analy-
sis of inventory systems defines the degree of interrelationship between inflow,
accumulation, and outflow, and identifies economic control methods for oper-
ating such systems.

Traditionally, inventory problems are concerned with a single decision
maker, who makes the decisions on the ordered or produced quantity un-
der certain assumptions on the demand, the planning horizon, etc., which
the decision maker faces. Although such models capture important aspects of
inventory problems, they totally ignore the decisions made by other competi-
tors. In particular, most of such models assume that, if there are two or more
products, they cannot be substituted for each other. However, in many real
situations this is not true. A customer who cannot find a specific product at
one retailer might decide to switch to another retailer who sells the same or
a similar product.

It is a fact that, in many production-inventory-transportation problems,
one can observe the existence of several decision makers with competi-
tive objectives. In order to have an inventory model, which is able to
adequately describe such situations, game theory method should be used.
Single-period news-vendor models have typically been used for analyzing such
situations [90].

In the current chapter, we are concerned with game theoretic approaches
to modeling and solving certain problems in supply chain analysis. The re-
mainder of the paper is organized as follows: Sections 2, 3, and 4 present basic
concepts we use throughout the paper. Section 5 presents the application of
noncooperative games in inventory management, and in Section 6 their ap-
plication to supply chain coordination is presented. Section 7 is devoted to
cooperative inventory games. Finally, new developments in Game Theory such
as bargaining game and biform games, with applications to supply chain, are
introduced in Section 8.

2 Basic Concepts in Game Theory

Game theory is a mathematical theory of decision making by participants in
conflicting or cooperating situations. Its goal is to explain, or to provide a nor-
mative guide for, rational behavior of individuals confronted with strategic de-
cisions or involved in social interaction. The theory is concerned with optimal
strategic behavior, equilibrium situations, stable outcomes, bargaining, coali-
tion formation, equitable allocations, and similar concepts related to resolving
group differences. Game theory has a profound influence on methodologies of
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many different branches of sciences, especially those of economics, operations
research, and management sciences.

Traditionally, game theory can be divided into two branches: noncoopera-
tive and cooperative game theory. Noncooperative game theory uses the notion
of a strategic equilibrium or simply equilibrium to determine rational outcomes
of a game. Numerous equilibrium concepts have been proposed in the liter-
ature (see [85] for an overview). Some widely used concepts are dominant
strategy, Nash equilibrium, and subgame perfect equilibrium.

Nash Equilibrium: Strategies chosen by all players are said to be in Nash equi-
librium if no player can benefit by unilaterally changing her strategy. Nash
[54, 56] proved that every finite game has at least one Nash equilibrium.

Dominant strategy is one that achieves the highest payoff no matter what
the strategies of other players are. In other words, one that is optimal in
all circumstances. If strategies are dominant, they also constitute a Nash
equilibrium, however, the opposite is not necessarily true.

Subgame perfect equilibrium: Strategies in extensive form are in subgame
perfect equilibrium if the strategies constitute a Nash equilibrium at every
desicion point.

In cooperative game theory, groups of players are taken as primitives and
binding agreements can be made between players, which can form coalitions.
In such a game, a utility is created when two or more players cooperate and
form a coalition. Cooperative game theory can then determine a solution
concept that must satisfy a set of assumptions (called axioms). The most
important of them are

Pareto optimality: The total utility allocated to the players must be equal to
the total utility of the game.

Individual rationality: The utility allocated in each player should be higher
than the utility she gains by acting without the coalition.

Kick-back: The utility allocated to a player must always be non-negative.

Monotonicity: If the overall utility increases, the allocation to a player should
be higher.

There are several excellent books [5,42,51,62,71] on the subject, and the
reader should turn to them for further details.

3 The Classic Newsboy Problem

The classic newsboy problem is a one-period model in which a firm must
choose an inventory level x at a cost ¢ per unit for the perishable product it
sells prior to knowing the true level of demand for it. When the demand is
realized, the goods are sold at a price r per unit, which is usually assumed
to be fixed. Demand is denoted by the random variable w with cumulative
distribution F(W) = P(W < w), which is assumed to have a continuous
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density f(w) = OF(W)/0w. Moreover if it is assumed that f is strictly positive
on some interval, then F' is strictly increasing and therefore it has an inverse
function F, 1. As there is no initial inventory, the quantity ordered by the firm
is the total amount available for sale; the firm’s sale is the smallest amount
between the demand and the inventory level. Excess demand given by (w—z)T
is costly because it results in lost sales. It is therefore penalized by a shortage
cost per unit p. Excess inventory, given by (z —w)™T, is costly as well because
the salvage value s is lower than the cost of procuring inventory. The firm’s
profit is therefore:

(r—cx—(w—2a)pifx <w,
7r:{(r—c)w—i—(s—c)fifac>u). (1)

The firm wants to choose an inventory level x to maximize the expected profit.
E(m) = rEmin{w,r} + sE(zx —w)" — cx — pE(w — z)™". (2)

Equating marginal revenues with marginal costs yields the optimal inven-
tory z* as the implicit solution of the equation

r—c+s r—c+s

Fo*) = =55 o g = (*) (3)
r+p—3=s r+p—3s

The assumption that F is strictly increasing implies that x* is unique. If there

are no shortage costs and the salvage value is zero, then

r—=c

Fz*) = =2t =F! (TC>. (4)

r r

For a survey on the news-vendor problem and several of its extensions,

see [40].

4 The Competitive Newsboy Model

In the competitive newsboy model, substitution often takes place between
different products sold by different retailers when the products have stochastic
demands. In such a situation, each retailer’s profit depends not only on her own
order quantity but also on her competitors’ order. In other words, if a customer
finds the shelves empty at the first firm she visits, she does not necessarily give
up but may travel to another firm in order to satisfy her demand. The actual
substitution between any two retailers takes place according to a substitution
rate that depends on their products and other factors such as location.

The simplest competitive model has two retailers ¢ and j; each one of
them faces a demand w; and wj, respectively. Therefore w = w; 4+ w; is the
industry demand. This allocation of the initial demand to each firm follows
some specific splitting rules. If there exists excess demand (w; —z;)™ at firm i,
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then the same proportion of the excess demand should be met by the inventory
of firm j. That is, a reallocation of the initial demand at firm 4 occurs. Hence,
the actual demand the firm j faces is

Rj =w; + ﬁz(wl — -Ti)+7 (5)

where 3; € [0, 1] is the substitution rate at which i’s excess demand is allocated
to firm j.

If ; and z; denote the firms’s inventory levels respectively, then the ex-
pected profit for the firm j is

Elrj(x;, ;)] = rEmin{z;, R;} + sE(z; — Rj)+ —pE(R; — :rj)+ —cxz;. (6)

Parlar [63] is perhaps the first author to treat an inventory problem using
game theory. She examines an extension of the classic newsboy problems in
which two retailers (players) sell substitutable products. She modeled the
two-product single-period problem as a two-person nonzero-sum game and
showed that there exists a unique Nash equilibrium. In her two-player model,
substitution occurs with a certain probability.

5 Noncooperative Solution

Noncooperative solution deals with how rational individuals interact with
one another in an effort to achieve their own goals. The emphasis is on the
strategies of players and the consequences of interaction on payoffs. The pur-
pose is to make predictions on the outcome. The solution concepts that are
commonly used are the Nash equilibrium introduced by J.F Nash [54] and the
Stackelberg equilibrium introduced by the economist von Stackelberg [89].

5.1 Nash Equilibrium
Single-Period Model Formulation

A Nash equilibrium recommends a strategy to each player that the player can-
not improve upon unilaterally, that is, given that the other players follow the
recommendation. Because the other players are also rational, it is reasonable
for each player to expect opponents to follow the recommendation as well.
A vector z* = (2 );eny € X is a Nash equilibrium if and only if for all i € N

mi(a),a%,) > miw, x,) Vo, € X. (7)

In a Nash equilibrium, each player is doing the best she can do given the
strategies of the other players, z_;, i.e., player ¢ has no incentive to deviate
from 2} when all other players play x* ,.

Player’s i best response (function) is the strategy z} that maximizes the
player’s 7 payoff. That is



838 A. Chinchuluun et al.

i(z-;) = arg m%}XWi(xi,iﬂ—z‘)~ (8)

x
The best response function is uniquely defined by the first-order condition if
m; is quasi-concave in x;. The Nash equilibrium assumes no one of the players
has the power to dominate the decision process.

When there is no cooperation between the firms and if both firms are
“rational,” one of the possible strategies they may adopt is the Nash strategy.
A pair of inventory levels (x;,x;) (i,j = 1,2) is a Nash equilibrium if neither
firm can improve its expected profit by altering its inventory, that is

Elri(x},z})] > Elmi(zi,2;)] V 2 >0 (i,j =1,2)

(9)
Elmi(z7, 23)] > Elmi(a7, 25)]V 23 >0 (i,j = 1,2).

Equation (9) implies that, given the player’s j Nash solution z7, player i
will not do better if she does not play her Nash solution z}. That is, given
the @7 , 7 maximizes player’s objective function, and vice versa. Therefore,
the best response for each player will be

" [ Ti— Gt S ..
i) = P! (P ) =1 (10

The best response function can be found by optimizing each player’s ex-
pected profit function w.r.t the player’'s own order quantity, provided that
Elm;] is continuously differentiable in x; and it is concave for every x;. Tak-
ing together the best response function of each player, we obtain a best re-
sponse mapping R* — R? (see Figure 1). Obviously if z} is a best response
to z7,V (i,j = 1,2), then the outcome (z7,z7) is a Nash equilibrium. Parlar
[63, Lemma 1-2, pp. 403-04] has proved that the slope of the best response

2 A

x;(-’ﬁ)

x; (x2)

P
>

M1

Figure 1. Best response functions in an inventory game
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functions is negative, which implies that each player response is monotoni-
cally decreasing in the other player’s strategy. Indeed, according to [63], the
player’s Nash solution is a unique point (7, x;‘) obtained by solving a system
of best responses:
silap) = Fi (Rt
1+ p1— st
i) = Fgf (Bt
T2+ p2 — 82
where RY = w; + Bi(w; — x})*,i,j = 1,2.

Historically, most researchers establish the existence of an equilibrium
based on the study of the concavity or quasi-concavity of profit function.
Dasgupta and Maskin [27], Parlar [63], Mahajan and van Ryzin [48], Netessine
et al. [59], among others establish the existence of a Nash equilibrium based
on the two above-mentioned properties of the profit function.

However, the existence of a Nash equilibrium for a general case can be
established by employing the result of the supermodular game. A function
f(xy,x9) is supermodular if f(x1,22) + f(y1,92) > f(x1,y2) + f(y1,22), for
all (z1,22) > (y1,y2). Notice that supermodularity is a weaker condition than
concavity, see [95] for a detailed discussion. If the profits are supermodular,
then the best response mapping is increased in the other player’s strategy.
When the best response function has such a monotonicity property, the exis-
tence of a Nash equilibrium could be established. The theory of supermodular
games is a relatively recent development introduced and advanced by Topkis
[84]. See [12,16,46, 58, 60] for its application to the competitive news-vendor
problem.

As an extension of the model in [63], Wang and Parlar [92] studied the
three-product single-period problem. Lippman and McCardle [46] also study
an extension of the classic news-vendor problem in which the salvage value
of excess inventory and penalty for unmet demand are assumed to be zero.
Under this assumption, they examine the equilibrium inventory levels and
the rules to reallocate excess demand. They provide conditions under which
a Nash equilibrium exists for the case with two or more news-vendors. They
examine both the two-firm game and a game with an arbitrary number of
players. In their models, initial industry demand is allocated among the players
according to a prespecified “splitting rule.” This initial allocation may be
either deterministic or stochastic. For the two-firm game, they establish the
existence of a pure-strategy Nash equilibrium and show that the equilibrium
is unique when the initial allocation is deterministic and strictly increasing in
the total industry demand for each player. They have proved that competition
can lead to higher inventories.

Mahajan and van Ryzin [48] study a model with n retailers that provides
substitutable goods, assuming that the demand process is a stochastic
sequence of heterogeneous consumers who choose dynamically from the
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available goods (or choose not to purchase) based on a utility maximization
criterion. They demonstrate that an equilibrium exists and show that it is
unique for a symmetric game. Their results are similar to [46].

Recent extensions of these models include the work by Rudi and Netessine
[75]. They analyze a problem similar to [63] but for an arbitrary number of
products. Given mild parametric assumptions, they establish the existence of,
and characterize, a unique, globally stable Nash equilibrium. On the other
hand, with the substitution structure of their model, they conclude that, un-
der competition, some firms may stock less than under centralization. Under
the long-run average payoff criterion, the nonlinear programming formulation
developed by Filar et al. [33] can be used to compute Nash strategies. If the
discounted payoff criterion is considered, then Nonlinear Program (NLP) due
to Raghavan and Filar [72] is available. Chand et al. [21] and Drezner et al.
consider the case where the substitution between products take place in a
EOQ model.

Multiperiod Model Formulation

Because inventory models used in the literature often involve inventory replen-
ishment decisions that are made over an infinite period of time, multiperiod
games should be a logical extension of these inventory models. In the analy-
sis of substitutable product inventory problem over infinite horizon, concepts
of sequential games, introduced by [38], are used. Two retailers of different
products who compete for the substitutable demand of these products are the
players of the game. Each player’s decision sequence influences the evolution
of the process and affects the streams of rewards to all players. A sequential
game is said to have a myopic solution if its data can be used easily to specify
a one-period game such that infinite repetition of a Nash equilibrium of the
one-period game comprises an equilibrium for the sequential game.

The mathematical formulation considered is a nonzero-sum game because
what is earned (or lost) by one retailer may not be the loss (or earning) of the
other retailer although what is earned or lost by each retailer depends on both
strategies, not the strategy taken by just that retailer. Demand distributions
of the products and the substitution rates are known by both players. So,
being aware of all of the parameters and the strategies that can be employed
by the opponent, each retailer tries to find out the best strategy as a reply
to the opponent. Because the retailers somehow agree (although they do take
their actions independently in a strictly competitive environment, they know
all the parameters that would affect their decisions) on a pair of strategies,
called Nash strategies in the context of nonzero-sum games, this pair is said
to be an equilibrium point. Unilateral deviations of either of the players from
her Nash strategy do not improve her expected payoff.

Specifically, in a multiple-period setting, we consider two retailers that si-
multaneously make inventory replenishment decisions at the beginning of each
period using a periodic review base-stock policy. If one retailer experiences a



Game Theory Models in Inventory 841

stock-out, a portion of the customers who are not satisfied will switch to the
other retailer. Leftover inventory at the end of the period is carried over to
the next period, incurring inventory holding cost.

At the beginning of each period ¢, (t = 1,2,...,n), two retailers review
their inventories and simultaneously make replenishment decisions. Let w!
denote the exogenously given (random) demand for the product of retailer
in period ¢. Product 7 is sold for r; per unit, (¢ = 1,2). Ordering cost is a linear
function of the order quantity x! for product i in period t. ¢;, which satisfies
0 < ¢; < 1, is the ordering cost per unit of product i. Let If be the inventory
levels of the retailer’s i, at the beginning of period ¢. Orders are delivered
instantaneously so that z! = If + z! are the inventory levels just after the
orders are replenished. p; is the unit lost sale cost, and h; is the inventory
holding cost per unit of product ¢ per period. Substitution rates are given as
the probabilities that a customer switches from one type of product to the
other when the product demanded is sold out. (; is the substitution rate at
which i’s excess demand is allocate to firm j. Further, the actual demand for
retailer i depends on the beginning inventory of retailer j in period ¢ I ; as
well as on her own beginning inventory level at period ¢, I{. That is,

R = wj + B(wh =2t i, j=1,2 t=1,2,....n (13)

The inventory balance equations are

I =l —w) = Bj(wh — 20T i j=1,2, t=1,2,...,n (14)

Note that if retailer j cannot satisfy demand w§ fully, then the remaining
demand [w} — 2] switches to retailer i or vice versa. By suppressing sub-
script t, i.e., considering the order-up-to-levels as z; = I; + z;, i = 1,2, when

the order-up-to-levels (z1, z2) are chosen by the two retailers in a singe period
E[m(zl, Zz)] = TiE min{Ri, Zl} — th(Zl — Rl)+ 7plE(R74 — Zi)+ — C;X; (15)

is the one-period expected profit for retailer 7.

Because future payoffs are in general worth less today, it is reasonable
to look at discounted payoffs. Suppose that each retailer starts with initial
inventories (I1,I3) respectively, the expected discounted profit of retailer i
for the remaining period until the end of the planning horizon is given by:

E[r;] = EZéf_l [rmin{z!, R{} — hi(2} — RY)T — pi(R} — 2)* — cal] .
t=1
(16)
The discount factor is assumed stationary and will be denoted by 4,0 < § < 1.
By using manipulations proposed by Heyman and Sobel in [38], the objective
function can be converted to:

Blm] = ciz} + Y 071Gz, i=1,2 (17)

t=1
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where G%(z?) is the single-period objective function. If we assume that demand
is stationary and independently distributed among periods, i.e., w; = wf, we
obtain that Gi(z!) = G;(z;), furthermore if we assume that the inventory
policy is stationary as well, i.e., z{ + z;,t = 1,...,n, then each retailer could
solve the problem under consideration as a sequence of the solution to a single-
period game, which is

.
f_pol i Ci = 1.2, 18
it =i = () - L (18)

For a complete analysis, see Netessine et al.[59].

Avsarand and Baykal-Giirsoy [4] analyzed the substitutable product in-
ventory problem using the concepts of stochastic game theory. It is assumed
that there are two substitutable products that are sold by different retailers
and the demand for each product is random. Game theoretic nature of this
problem is the result of substitution between products. Because retailers com-
pete for the substitutable demand, ordering decision of each retailer depends
on the ordering decision of the other retailer. Under the discounted payoff
criterion, this problem is formulated as a two-person nonzero-sum stochastic
game. In the case of linear ordering cost, it is shown that there exists a Nash
equilibrium characterized by a pair of stationary base-stock strategies for the
infinite horizon problem. This is the unique Nash equilibrium within the class
of stationary base-stock strategies.

In addition, more elaborate models capture some effects that are not
present in static games. Netessine et al. [59] consider the case where when
a product is out of stock, the customer often faces a choice of either placing a
backorder or turning to a competitor selling a similar product. They consider
the four alternative backordering scenarios and formulate each problem as a
stochastic dynamic game. They proved that a stationary base-stock inven-
tory policy is a Nash equilibrium of the game and hence it can be found by
considering an appropriate static game.

van Mieghem and Dada [86] study a two-period game with capacity choice
in the first period and production decision under the capacity constraint in
the second period.

5.2 Stackelberg Equilibrium

Stackelberg equilibrium assumes that there is a player who has powerful posi-
tion and dominates in the desicion process, the leader, and the other players,
the followers, given that they are rational, are free to choose their optimal
strategies given their knowledge of the leader’s decision. If player ¢ is the
leader, she will choose her optimal strategy z;, and the followers’s best re-
sponse z* ; will be

wli(w7) = {xlm (e, 22y) > moi(ws, v} (19)
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To find an equilibrium of a Stackelberg game, which is often called the Stack-
elberg equilibrium, we need to solve a dynamic multiperiod problem via back-
wards induction.

In a Stackelberg game, one firm, called leader, makes an order first, then
the other firm, called follower, makes her order. Because the follower makes
her decision after the leader announces hers, the Stackelberg solution will be
located on the reaction curve of the follower’s defined by equation:

* - Ty — C2 + S92
oo = ! () .

which means that the follower will always choose her order quantity xo to max-
imize her expected profit for each value of x;. Intuitively, the leader chooses
the best possible point on the follower’s best response function; i.e., she tries
to solve the following bilevel programming model [63]:

max E[T{'](l‘l,l‘g)] (21)
where x5 solves
8E[7r2(x17332)]

o —0. (22)

Whereas the existence of a Stackelberg equilibrium is easy to demonstrate
given the continues payoff function, uniqueness may be considerably harder
to demonstrate [18].

Raju and Zhang [69] analyze the Stackelberg game in which one of the
retailers is dominant and capable of unilaterally setting a retail price that will
be adopted by all other retailers.

Lariviere and Porteus [43] consider a simple supply-chain contract in which
a manufacturer sells to a retailer facing a news-vendor problem. The Stackel-
berg game they set up assumes that first the supplier establishes the wholesale
price and then the news-vendor chooses an order quantity, the long contract
parameter is the wholesale price. They show that the manufacturer’s profit
and sales quantity increase with market size, but the resulting wholesale price
depends on how the market grows. Anand et al. [1] extend the Stackelberg
equilibrium concept into multiple periods.

See Netessine and Rudi [57] for a Stackelberg game.

6 Supply Chain Coordination

In another line of research, there exists a large body of research that addresses
echelon inventory system with the stationary stochastic demand and fixed
lead time. Many of them use the following two-echelon gaming structure:
a “manufacturer” wholesales a product to a n > 1 “retailers,” who in turn
retail it to the consumer. The literature on competitive supply chain inventory
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management recognizes that supply chain is usually operated by independent
agents with individual preferences and possibly conflicting objectives.

Total expected supply chain profit will be maximized if all decisions are
made by a single decision maker with access to all available information. This
is referred as the optimal case or first-best case and is often associated with
centralized control. Under centralized control, a system manager needs to know
how to design a mechanism to optimize the performance of the whole supply
chain.

However, in reality, no single agent has control over the entire supply chain,
and hence no agent has the power to optimize the supply chain, and each
player has his own incentives and state of information. This is referred as a
decentralized control structure. Under decentralized control, each player needs
to know how to behave in order to maximize his profit. In order to increase
the total profit of a decentralized supply chain and improve the performance
of the players, one strategy is to form contracts among players by modifying
their payoffs. The main purpose of a supply chain contract is to overcome
an inefficiency known as double marginalization [79]. This is because without
coordination, the supplier and the retailer only have the incentive to optimize
their own profit margin, and their collective decision is always less efficient
than what could have been achieved by the system-optimal. Thus, the aim
of a coordination contract is to provide the incentive for both players to im-
plement the system-optimal solution, which results in higher total profits for
the collective whole. Some contracts provide a means to bring the total profit
resulting from decentralized control to the centralized optimal profit. This is
referred to as channel coordination. Generally speaking, channel coordination
may be achieved by three steps: First, determine the optimal solution under
centralized control. Next, under decentralized control, apply game theory to
determine how the players will behave when they each seek to maximize their
own profits, and whether a Nash equilibrium exists. Finally, if the decentral-
ized and centralized solutions differ, investigate how to modify the players’
profit so that the new decentralized solution matches the centralized solution.

Consider the case of a supply chain that consists of two echelons: the
first echelon is the supplier, usually the manufacturer, and the second echelon
consists of two retailers. At the beginning of the period, the retailers place
orders x; and sell them to the customer at a unit price r;. Supplier produces
the product with unit production cost k and supplies x; units to retailers at
a price ¢;. It is also assumed that supplier has infinite production capacity.
The demand w; during the period at each retailer is random but distributions
are known. Customers encountering a stock-out at retailer ¢ visit retailer j,
(¢,j = 1,2) with probability [;; before leaving the system.

Thus, the total demand faced by retailer i is

R = w; + Bij(wj — ;). (23)

At the end of the season, the holding cost h; or shortage cost p; is incurred
depending on whether there is unsold stock or a stock-out.
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Assuming the whole supply chain is in centralized control, in order to
maximize the total profit, what are optimal orders for both retailers?

In centralized control, a stock-out penalty incurred only when customers
leave the system unsatisfied. This includes customers who visit only one re-
tailer and leave unsatisfied and customers who visit both retailers and leave
unsatisfied. In the latter case, the amount of the penalty incurred is assumed
to be the stock-out penalty cost of the retailer visited first by the customer.
The total profit is maximized if supplier should only provide what is needed
by the two retailers, i.e., supplier does not face any shortage or holding cost.
The expected total profit of the system E[r(x;,x;)] is

2

E[ﬂ'(l‘l,ig)} =F Z’I’i mln{yz,Rz} - Z hz(fﬂl - ]%1)+

i=1 i=1
2 2

- ZpiE(Ri — ;)" —kzxi ; (24)
i=1 i=1

which only depends on the retailers’s sales quantity. We consider the whole
supply chain as an entity, and the money flow within the system is not in-
volved. Therefore, the optimal solution (x7, x3) does not depend on the whole-
sale prices, ¢; and co. Actually, supplier’s price decision creates only a transfer
payment among firms so it does not influence supply chain’s profit.

Because equation (24) is concave, the optimal order quantity of both re-
tailers can be found by solving the system of equations:

3E[7r(x1,x2)] :0
ox
1 (25)
OE[r(x1,22)]
6:52 =0

If the supply chain is under decentralized control, each retailer tries to maxi-
mize his own profit. Therefore retailer i (i = 1,2) profit will be

E[ﬂ'l‘((ﬂl, 1'2)] = TiE min{xi, RJ} 7h1E(£BZ 7Ri)+ 7plE(R1 71’l‘)+ —C; ;. (26)

Because the decision of one retailer affects the total demand at the other re-
tailer, a game arises as the two retailers ma