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Abstract Analysis of supply chain politics can benefit from applying game-theory
concepts extensively. Game theory tries to enlighten the interactions between indi-
viduals or groups of people whose goals are opposed conflicting, or at least partially
competing. In this chapter, we review classic game theoretical approaches to mod-
eling and solving certain problems in supply chain management. Both noncooper-
ative and cooperative models are discussed and solution procedures are presented
in single-period and multiperiod settings. As used here, a “game” is a metaphor for
any interaction among the decision makers in a supply chain.
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1 Introduction

Inventory management of physical goods and other products or elements is
an integral part of logistic systems common to all sectors of the economy in-
cluding industry, agriculture, and defense. In a perfectly predictable economy,
inventory may be needed in order to take advantage of the economic feature
of a particular technology, to synchronize human tasks, or to regulate pro-
duction process to meet the changing demands. When uncertainty is present,
inventories are used as a protection against risk of stock being out.

The existence of inventory in a system generally implies the existence of
an organized complex system involving inflow, accumulation, and outflow of
some commodities, goods, items, or products. In business, for example, the
inflow of goods is generated through procurement, purchase, or production.
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The outflow is generated through demand for the goods. Finally, the difference
between the rate of outflow and the rate of inflow generates inventory of goods.

The regulation and control of inventory must proceed within the context
of this organized system. Rather than being interpreted as idle resources, in-
ventories should be regarded an essential element, the study of which may
provide insight in the aggregate operation of the system. The scientific analy-
sis of inventory systems defines the degree of interrelationship between inflow,
accumulation, and outflow, and identifies economic control methods for oper-
ating such systems.

Traditionally, inventory problems are concerned with a single decision
maker, who makes the decisions on the ordered or produced quantity un-
der certain assumptions on the demand, the planning horizon, etc., which
the decision maker faces. Although such models capture important aspects of
inventory problems, they totally ignore the decisions made by other competi-
tors. In particular, most of such models assume that, if there are two or more
products, they cannot be substituted for each other. However, in many real
situations this is not true. A customer who cannot find a specific product at
one retailer might decide to switch to another retailer who sells the same or
a similar product.

It is a fact that, in many production-inventory-transportation problems,
one can observe the existence of several decision makers with competi-
tive objectives. In order to have an inventory model, which is able to
adequately describe such situations, game theory method should be used.
Single-period news-vendor models have typically been used for analyzing such
situations [90].

In the current chapter, we are concerned with game theoretic approaches
to modeling and solving certain problems in supply chain analysis. The re-
mainder of the paper is organized as follows: Sections 2, 3, and 4 present basic
concepts we use throughout the paper. Section 5 presents the application of
noncooperative games in inventory management, and in Section 6 their ap-
plication to supply chain coordination is presented. Section 7 is devoted to
cooperative inventory games. Finally, new developments in Game Theory such
as bargaining game and biform games, with applications to supply chain, are
introduced in Section 8.

2 Basic Concepts in Game Theory

Game theory is a mathematical theory of decision making by participants in
conflicting or cooperating situations. Its goal is to explain, or to provide a nor-
mative guide for, rational behavior of individuals confronted with strategic de-
cisions or involved in social interaction. The theory is concerned with optimal
strategic behavior, equilibrium situations, stable outcomes, bargaining, coali-
tion formation, equitable allocations, and similar concepts related to resolving
group differences. Game theory has a profound influence on methodologies of
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many different branches of sciences, especially those of economics, operations
research, and management sciences.

Traditionally, game theory can be divided into two branches: noncoopera-
tive and cooperative game theory. Noncooperative game theory uses the notion
of a strategic equilibrium or simply equilibrium to determine rational outcomes
of a game. Numerous equilibrium concepts have been proposed in the liter-
ature (see [85] for an overview). Some widely used concepts are dominant
strategy, Nash equilibrium, and subgame perfect equilibrium.

Nash Equilibrium: Strategies chosen by all players are said to be in Nash equi-
librium if no player can benefit by unilaterally changing her strategy. Nash
[54,56] proved that every finite game has at least one Nash equilibrium.

Dominant strategy is one that achieves the highest payoff no matter what
the strategies of other players are. In other words, one that is optimal in
all circumstances. If strategies are dominant, they also constitute a Nash
equilibrium, however, the opposite is not necessarily true.

Subgame perfect equilibrium: Strategies in extensive form are in subgame
perfect equilibrium if the strategies constitute a Nash equilibrium at every
desicion point.

In cooperative game theory, groups of players are taken as primitives and
binding agreements can be made between players, which can form coalitions.
In such a game, a utility is created when two or more players cooperate and
form a coalition. Cooperative game theory can then determine a solution
concept that must satisfy a set of assumptions (called axioms). The most
important of them are

Pareto optimality: The total utility allocated to the players must be equal to
the total utility of the game.

Individual rationality: The utility allocated in each player should be higher
than the utility she gains by acting without the coalition.

Kick-back: The utility allocated to a player must always be non-negative.
Monotonicity: If the overall utility increases, the allocation to a player should

be higher.

There are several excellent books [5, 42, 51, 62, 71] on the subject, and the
reader should turn to them for further details.

3 The Classic Newsboy Problem

The classic newsboy problem is a one-period model in which a firm must
choose an inventory level x at a cost c per unit for the perishable product it
sells prior to knowing the true level of demand for it. When the demand is
realized, the goods are sold at a price r per unit, which is usually assumed
to be fixed. Demand is denoted by the random variable w with cumulative
distribution F (W ) = P (W ≤ w), which is assumed to have a continuous
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density f(w) = ∂F (W )/∂w. Moreover if it is assumed that f is strictly positive
on some interval, then F is strictly increasing and therefore it has an inverse
function F−1

w . As there is no initial inventory, the quantity ordered by the firm
is the total amount available for sale; the firm’s sale is the smallest amount
between the demand and the inventory level. Excess demand given by (w−x)+
is costly because it results in lost sales. It is therefore penalized by a shortage
cost per unit p. Excess inventory, given by (x−w)+, is costly as well because
the salvage value s is lower than the cost of procuring inventory. The firm’s
profit is therefore:

π =
{

(r − c)x− (w − x)p if x ≤ w,
(r − c)w + (s− c)x if x > w. (1)

The firm wants to choose an inventory level x to maximize the expected profit.

E(π) = rEmin{w, x}+ sE(x− w)+ − cx− pE(w − x)+. (2)

Equating marginal revenues with marginal costs yields the optimal inven-
tory x∗ as the implicit solution of the equation

F (x∗) =
r − c+ s
r + p− s ⇒ x∗ = F−1

w

(

r − c+ s
r + p− s

)

. (3)

The assumption that F is strictly increasing implies that x∗ is unique. If there
are no shortage costs and the salvage value is zero, then

F (x∗) =
r − c
r
⇒ x∗ = F−1

w

(

r − c
r

)

. (4)

For a survey on the news-vendor problem and several of its extensions,
see [40].

4 The Competitive Newsboy Model

In the competitive newsboy model, substitution often takes place between
different products sold by different retailers when the products have stochastic
demands. In such a situation, each retailer’s profit depends not only on her own
order quantity but also on her competitors’ order. In other words, if a customer
finds the shelves empty at the first firm she visits, she does not necessarily give
up but may travel to another firm in order to satisfy her demand. The actual
substitution between any two retailers takes place according to a substitution
rate that depends on their products and other factors such as location.

The simplest competitive model has two retailers i and j; each one of
them faces a demand wi and wj , respectively. Therefore w = wi + wj is the
industry demand. This allocation of the initial demand to each firm follows
some specific splitting rules. If there exists excess demand (wi−xi)+ at firm i,
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then the same proportion of the excess demand should be met by the inventory
of firm j. That is, a reallocation of the initial demand at firm i occurs. Hence,
the actual demand the firm j faces is

Rj = wj + βi(wi − xi)+, (5)

where βi ∈ [0, 1] is the substitution rate at which i’s excess demand is allocated
to firm j.

If xi and xj denote the firms’s inventory levels respectively, then the ex-
pected profit for the firm j is

E[πj(xi, xj)] = rEmin{xj , Rj}+ sE(xj −Rj)+ − pE(Rj − xj)+ − cxj . (6)

Parlar [63] is perhaps the first author to treat an inventory problem using
game theory. She examines an extension of the classic newsboy problems in
which two retailers (players) sell substitutable products. She modeled the
two-product single-period problem as a two-person nonzero-sum game and
showed that there exists a unique Nash equilibrium. In her two-player model,
substitution occurs with a certain probability.

5 Noncooperative Solution

Noncooperative solution deals with how rational individuals interact with
one another in an effort to achieve their own goals. The emphasis is on the
strategies of players and the consequences of interaction on payoffs. The pur-
pose is to make predictions on the outcome. The solution concepts that are
commonly used are the Nash equilibrium introduced by J.F Nash [54] and the
Stackelberg equilibrium introduced by the economist von Stackelberg [89].

5.1 Nash Equilibrium

Single-Period Model Formulation

A Nash equilibrium recommends a strategy to each player that the player can-
not improve upon unilaterally, that is, given that the other players follow the
recommendation. Because the other players are also rational, it is reasonable
for each player to expect opponents to follow the recommendation as well.
A vector x∗ = (x∗i )i∈N ∈ X is a Nash equilibrium if and only if for all i ∈ N

πi(x∗i , x
∗
−i) ≥ πi(xi, x∗−i) ∀xi ∈ X. (7)

In a Nash equilibrium, each player is doing the best she can do given the
strategies of the other players, x−i, i.e., player i has no incentive to deviate
from x∗i when all other players play x∗−i.

Player’s i best response (function) is the strategy x∗i that maximizes the
player’s i payoff. That is
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x∗i (x−i) = arg max
xi

πi(xi, x−i). (8)

The best response function is uniquely defined by the first-order condition if
πi is quasi-concave in xi. The Nash equilibrium assumes no one of the players
has the power to dominate the decision process.

When there is no cooperation between the firms and if both firms are
“rational,” one of the possible strategies they may adopt is the Nash strategy.
A pair of inventory levels (xi, xj) (i, j = 1, 2) is a Nash equilibrium if neither
firm can improve its expected profit by altering its inventory, that is

E[πi(x∗i , x
∗
j )] ≥ E[πi(xi, x∗j )] ∀ xi ≥ 0 (i, j = 1, 2)

(9)
E[πi(x∗i , x

∗
j )] ≥ E[πi(x∗i , xj)] ∀ xj ≥ 0 (i, j = 1, 2).

Equation (9) implies that, given the player’s j Nash solution x∗j , player i
will not do better if she does not play her Nash solution x∗i . That is, given
the x∗j , x∗i maximizes player’s objective function, and vice versa. Therefore,
the best response for each player will be

x∗i (xj) = F−1
Ri

(

ri − ci + si
ri + pi − si

)

(i, j = 1, 2). (10)

The best response function can be found by optimizing each player’s ex-
pected profit function w.r.t the player’s own order quantity, provided that
E[πi] is continuously differentiable in xi and it is concave for every xj . Tak-
ing together the best response function of each player, we obtain a best re-
sponse mapping R2 → R2 (see Figure 1). Obviously if x∗i is a best response
to x∗j ,∀ (i, j = 1, 2), then the outcome (x∗i , x

∗
j ) is a Nash equilibrium. Parlar

[63, Lemma 1-2, pp. 403–04] has proved that the slope of the best response

Figure 1. Best response functions in an inventory game
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functions is negative, which implies that each player response is monotoni-
cally decreasing in the other player’s strategy. Indeed, according to [63], the
player’s Nash solution is a unique point (x∗i , x

∗
j ) obtained by solving a system

of best responses:

x∗1(x
∗
2) = F−1

R∗
1

(

r1 − c1 + s1
r1 + p1 − s1

)

(11)

x∗2(x
∗
1) = F−1

R∗
2

(

r2 − c2 + s2
r2 + p2 − s2

)

(12)

where R∗
i = wi + βi(wj − x∗j )+, i, j = 1, 2.

Historically, most researchers establish the existence of an equilibrium
based on the study of the concavity or quasi-concavity of profit function.
Dasgupta and Maskin [27], Parlar [63], Mahajan and van Ryzin [48], Netessine
et al. [59], among others establish the existence of a Nash equilibrium based
on the two above-mentioned properties of the profit function.

However, the existence of a Nash equilibrium for a general case can be
established by employing the result of the supermodular game. A function
f(x1, x2) is supermodular if f(x1, x2) + f(y1, y2) ≥ f(x1, y2) + f(y1, x2), for
all (x1, x2) ≥ (y1, y2). Notice that supermodularity is a weaker condition than
concavity, see [95] for a detailed discussion. If the profits are supermodular,
then the best response mapping is increased in the other player’s strategy.
When the best response function has such a monotonicity property, the exis-
tence of a Nash equilibrium could be established. The theory of supermodular
games is a relatively recent development introduced and advanced by Topkis
[84]. See [12, 16, 46, 58, 60] for its application to the competitive news-vendor
problem.

As an extension of the model in [63], Wang and Parlar [92] studied the
three-product single-period problem. Lippman and McCardle [46] also study
an extension of the classic news-vendor problem in which the salvage value
of excess inventory and penalty for unmet demand are assumed to be zero.
Under this assumption, they examine the equilibrium inventory levels and
the rules to reallocate excess demand. They provide conditions under which
a Nash equilibrium exists for the case with two or more news-vendors. They
examine both the two-firm game and a game with an arbitrary number of
players. In their models, initial industry demand is allocated among the players
according to a prespecified “splitting rule.” This initial allocation may be
either deterministic or stochastic. For the two-firm game, they establish the
existence of a pure-strategy Nash equilibrium and show that the equilibrium
is unique when the initial allocation is deterministic and strictly increasing in
the total industry demand for each player. They have proved that competition
can lead to higher inventories.

Mahajan and van Ryzin [48] study a model with n retailers that provides
substitutable goods, assuming that the demand process is a stochastic
sequence of heterogeneous consumers who choose dynamically from the
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available goods (or choose not to purchase) based on a utility maximization
criterion. They demonstrate that an equilibrium exists and show that it is
unique for a symmetric game. Their results are similar to [46].

Recent extensions of these models include the work by Rudi and Netessine
[75]. They analyze a problem similar to [63] but for an arbitrary number of
products. Given mild parametric assumptions, they establish the existence of,
and characterize, a unique, globally stable Nash equilibrium. On the other
hand, with the substitution structure of their model, they conclude that, un-
der competition, some firms may stock less than under centralization. Under
the long-run average payoff criterion, the nonlinear programming formulation
developed by Filar et al. [33] can be used to compute Nash strategies. If the
discounted payoff criterion is considered, then Nonlinear Program (NLP) due
to Raghavan and Filar [72] is available. Chand et al. [21] and Drezner et al.
consider the case where the substitution between products take place in a
EOQ model.

Multiperiod Model Formulation

Because inventory models used in the literature often involve inventory replen-
ishment decisions that are made over an infinite period of time, multiperiod
games should be a logical extension of these inventory models. In the analy-
sis of substitutable product inventory problem over infinite horizon, concepts
of sequential games, introduced by [38], are used. Two retailers of different
products who compete for the substitutable demand of these products are the
players of the game. Each player’s decision sequence influences the evolution
of the process and affects the streams of rewards to all players. A sequential
game is said to have a myopic solution if its data can be used easily to specify
a one-period game such that infinite repetition of a Nash equilibrium of the
one-period game comprises an equilibrium for the sequential game.

The mathematical formulation considered is a nonzero-sum game because
what is earned (or lost) by one retailer may not be the loss (or earning) of the
other retailer although what is earned or lost by each retailer depends on both
strategies, not the strategy taken by just that retailer. Demand distributions
of the products and the substitution rates are known by both players. So,
being aware of all of the parameters and the strategies that can be employed
by the opponent, each retailer tries to find out the best strategy as a reply
to the opponent. Because the retailers somehow agree (although they do take
their actions independently in a strictly competitive environment, they know
all the parameters that would affect their decisions) on a pair of strategies,
called Nash strategies in the context of nonzero-sum games, this pair is said
to be an equilibrium point. Unilateral deviations of either of the players from
her Nash strategy do not improve her expected payoff.

Specifically, in a multiple-period setting, we consider two retailers that si-
multaneously make inventory replenishment decisions at the beginning of each
period using a periodic review base-stock policy. If one retailer experiences a
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stock-out, a portion of the customers who are not satisfied will switch to the
other retailer. Leftover inventory at the end of the period is carried over to
the next period, incurring inventory holding cost.

At the beginning of each period t, (t = 1, 2, . . . , n), two retailers review
their inventories and simultaneously make replenishment decisions. Let wt

i

denote the exogenously given (random) demand for the product of retailer i
in period t. Product i is sold for ri per unit, (i = 1, 2). Ordering cost is a linear
function of the order quantity xti for product i in period t. ci, which satisfies
0 < ci < ri, is the ordering cost per unit of product i. Let Iti be the inventory
levels of the retailer’s i, at the beginning of period t. Orders are delivered
instantaneously so that zti = Iti + xti are the inventory levels just after the
orders are replenished. pi is the unit lost sale cost, and hi is the inventory
holding cost per unit of product i per period. Substitution rates are given as
the probabilities that a customer switches from one type of product to the
other when the product demanded is sold out. βi is the substitution rate at
which i’s excess demand is allocate to firm j. Further, the actual demand for
retailer i depends on the beginning inventory of retailer j in period t Itj as
well as on her own beginning inventory level at period t, Iti . That is,

Rt
i = wt

i + βj(wt
j − ztj)+ i, j = 1, 2 t = 1, 2, . . . , n (13)

The inventory balance equations are

It+1
i = [zti − wt

i − βj(wt
j − ztj)+]+ i, j = 1, 2, t = 1, 2, . . . , n (14)

Note that if retailer j cannot satisfy demand wt
j fully, then the remaining

demand [wt
j − ztj ]+ switches to retailer i or vice versa. By suppressing sub-

script t, i.e., considering the order-up-to-levels as zi = Ii + xi, i = 1, 2, when
the order-up-to-levels (z1, z2) are chosen by the two retailers in a singe period

E[πi(z1, z2)] = riEmin{Ri, zi}− hiE(zi −Ri)+ − piE(Ri − zi)+ − cixi (15)

is the one-period expected profit for retailer i.
Because future payoffs are in general worth less today, it is reasonable

to look at discounted payoffs. Suppose that each retailer starts with initial
inventories (I11 , I

2
2 ) respectively, the expected discounted profit of retailer i

for the remaining period until the end of the planning horizon is given by:

E[πi] = E

∞
∑

t=1

δt−1
i

[

ri min{zti , Rt
i} − hi(zti −Rt

i)
+ − pi(Rt

i − zti)+ − cixti
]

.

(16)
The discount factor is assumed stationary and will be denoted by δ, 0 < δ < 1.
By using manipulations proposed by Heyman and Sobel in [38], the objective
function can be converted to:

E[πi] = cix
1
i +

∞
∑

t=1

δt−1
i Gt

i(z
t
i), i = 1, 2 (17)
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where Gt
i(z

t
i) is the single-period objective function. If we assume that demand

is stationary and independently distributed among periods, i.e., wi = wt
i , we

obtain that Gt
i(z

t
i) = Gi(zi), furthermore if we assume that the inventory

policy is stationary as well, i.e., zti + zi, t = 1, . . . , n, then each retailer could
solve the problem under consideration as a sequence of the solution to a single-
period game, which is

z∗i = F−1
R∗

i
=
(

ri − ci
ri + hi + pi − ciδi

)

i = 1, 2. (18)

For a complete analysis, see Netessine et al.[59].
Avsarand and Baykal-Gürsoy [4] analyzed the substitutable product in-

ventory problem using the concepts of stochastic game theory. It is assumed
that there are two substitutable products that are sold by different retailers
and the demand for each product is random. Game theoretic nature of this
problem is the result of substitution between products. Because retailers com-
pete for the substitutable demand, ordering decision of each retailer depends
on the ordering decision of the other retailer. Under the discounted payoff
criterion, this problem is formulated as a two-person nonzero-sum stochastic
game. In the case of linear ordering cost, it is shown that there exists a Nash
equilibrium characterized by a pair of stationary base-stock strategies for the
infinite horizon problem. This is the unique Nash equilibrium within the class
of stationary base-stock strategies.

In addition, more elaborate models capture some effects that are not
present in static games. Netessine et al. [59] consider the case where when
a product is out of stock, the customer often faces a choice of either placing a
backorder or turning to a competitor selling a similar product. They consider
the four alternative backordering scenarios and formulate each problem as a
stochastic dynamic game. They proved that a stationary base-stock inven-
tory policy is a Nash equilibrium of the game and hence it can be found by
considering an appropriate static game.

van Mieghem and Dada [86] study a two-period game with capacity choice
in the first period and production decision under the capacity constraint in
the second period.

5.2 Stackelberg Equilibrium

Stackelberg equilibrium assumes that there is a player who has powerful posi-
tion and dominates in the desicion process, the leader, and the other players,
the followers, given that they are rational, are free to choose their optimal
strategies given their knowledge of the leader’s decision. If player i is the
leader, she will choose her optimal strategy x∗i , and the followers’s best re-
sponse x∗−i will be

x∗−i(x
∗
i ) = {x∗−i|π−i(xi, x∗−i) ≥ π−i(xi, x−i} (19)
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To find an equilibrium of a Stackelberg game, which is often called the Stack-
elberg equilibrium, we need to solve a dynamic multiperiod problem via back-
wards induction.

In a Stackelberg game, one firm, called leader, makes an order first, then
the other firm, called follower, makes her order. Because the follower makes
her decision after the leader announces hers, the Stackelberg solution will be
located on the reaction curve of the follower’s defined by equation:

x∗2(x1) = F−1
R2

(

r2 − c2 + s2
r2 + p2 − q2

)

(20)

which means that the follower will always choose her order quantity x2 to max-
imize her expected profit for each value of x1. Intuitively, the leader chooses
the best possible point on the follower’s best response function; i.e., she tries
to solve the following bilevel programming model [63]:

max E[π1(x1, x2)] (21)
where x2 solves

∂E[π2(x1, x2)]
∂x2

= 0. (22)

Whereas the existence of a Stackelberg equilibrium is easy to demonstrate
given the continues payoff function, uniqueness may be considerably harder
to demonstrate [18].

Raju and Zhang [69] analyze the Stackelberg game in which one of the
retailers is dominant and capable of unilaterally setting a retail price that will
be adopted by all other retailers.

Lariviere and Porteus [43] consider a simple supply-chain contract in which
a manufacturer sells to a retailer facing a news-vendor problem. The Stackel-
berg game they set up assumes that first the supplier establishes the wholesale
price and then the news-vendor chooses an order quantity, the long contract
parameter is the wholesale price. They show that the manufacturer’s profit
and sales quantity increase with market size, but the resulting wholesale price
depends on how the market grows. Anand et al. [1] extend the Stackelberg
equilibrium concept into multiple periods.

See Netessine and Rudi [57] for a Stackelberg game.

6 Supply Chain Coordination

In another line of research, there exists a large body of research that addresses
echelon inventory system with the stationary stochastic demand and fixed
lead time. Many of them use the following two-echelon gaming structure:
a “manufacturer” wholesales a product to a n ≥ 1 “retailers,” who in turn
retail it to the consumer. The literature on competitive supply chain inventory
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management recognizes that supply chain is usually operated by independent
agents with individual preferences and possibly conflicting objectives.

Total expected supply chain profit will be maximized if all decisions are
made by a single decision maker with access to all available information. This
is referred as the optimal case or first-best case and is often associated with
centralized control. Under centralized control, a system manager needs to know
how to design a mechanism to optimize the performance of the whole supply
chain.

However, in reality, no single agent has control over the entire supply chain,
and hence no agent has the power to optimize the supply chain, and each
player has his own incentives and state of information. This is referred as a
decentralized control structure. Under decentralized control, each player needs
to know how to behave in order to maximize his profit. In order to increase
the total profit of a decentralized supply chain and improve the performance
of the players, one strategy is to form contracts among players by modifying
their payoffs. The main purpose of a supply chain contract is to overcome
an inefficiency known as double marginalization [79]. This is because without
coordination, the supplier and the retailer only have the incentive to optimize
their own profit margin, and their collective decision is always less efficient
than what could have been achieved by the system-optimal. Thus, the aim
of a coordination contract is to provide the incentive for both players to im-
plement the system-optimal solution, which results in higher total profits for
the collective whole. Some contracts provide a means to bring the total profit
resulting from decentralized control to the centralized optimal profit. This is
referred to as channel coordination. Generally speaking, channel coordination
may be achieved by three steps: First, determine the optimal solution under
centralized control. Next, under decentralized control, apply game theory to
determine how the players will behave when they each seek to maximize their
own profits, and whether a Nash equilibrium exists. Finally, if the decentral-
ized and centralized solutions differ, investigate how to modify the players’
profit so that the new decentralized solution matches the centralized solution.

Consider the case of a supply chain that consists of two echelons: the
first echelon is the supplier, usually the manufacturer, and the second echelon
consists of two retailers. At the beginning of the period, the retailers place
orders xi and sell them to the customer at a unit price ri. Supplier produces
the product with unit production cost k and supplies xi units to retailers at
a price ci. It is also assumed that supplier has infinite production capacity.
The demand wi during the period at each retailer is random but distributions
are known. Customers encountering a stock-out at retailer i visit retailer j,
(i, j = 1, 2) with probability βij before leaving the system.

Thus, the total demand faced by retailer i is

Ri = wi + βij(wj − xj)+. (23)

At the end of the season, the holding cost hi or shortage cost pi is incurred
depending on whether there is unsold stock or a stock-out.
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Assuming the whole supply chain is in centralized control, in order to
maximize the total profit, what are optimal orders for both retailers?

In centralized control, a stock-out penalty incurred only when customers
leave the system unsatisfied. This includes customers who visit only one re-
tailer and leave unsatisfied and customers who visit both retailers and leave
unsatisfied. In the latter case, the amount of the penalty incurred is assumed
to be the stock-out penalty cost of the retailer visited first by the customer.
The total profit is maximized if supplier should only provide what is needed
by the two retailers, i.e., supplier does not face any shortage or holding cost.
The expected total profit of the system E[π(xi, xj)] is

E[π(x1, x2)] = E

[

2
∑

i=1

ri min{yi, Ri} −
2
∑

i=1

hi(xi −Ri)+

−
2
∑

i=1

piE(Ri − xi)+ − k
2
∑

i=1

xi

]

, (24)

which only depends on the retailers’s sales quantity. We consider the whole
supply chain as an entity, and the money flow within the system is not in-
volved. Therefore, the optimal solution (x∗1, x

∗
2) does not depend on the whole-

sale prices, c1 and c2. Actually, supplier’s price decision creates only a transfer
payment among firms so it does not influence supply chain’s profit.

Because equation (24) is concave, the optimal order quantity of both re-
tailers can be found by solving the system of equations:

∂E[π(x1, x2)]
∂x1

= 0

(25)
∂E[π(x1, x2)]

∂x2
= 0

If the supply chain is under decentralized control, each retailer tries to maxi-
mize his own profit. Therefore retailer i (i = 1, 2) profit will be

E[πi(x1, x2)] = riEmin{xi, Rj}−hiE(xi−Ri)+−piE(Ri−xi)+−cixi. (26)

Because the decision of one retailer affects the total demand at the other re-
tailer, a game arises as the two retailers make their ordering decisions. Based
on the previously presented we know that the Nash equilibrium can be ob-
tained by solving of best responses:

x∗1(x
∗
2) = F−1

R∗
1

(

r1 − c1
r1 + p1 + h1

)

(27)

x∗2(x
∗
1) = F−1

R∗
2

(

r2 − c2
r2 + p2 + h2

)

(28)

where R∗
i = wi + βij(wj − x∗j )+, i, j = 1, 2
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and depends on the wholesale prices ci. If the chain is not coordinated, each
retailer selfishly optimizes its own profit. Hence decentralized decision making
may introduce inefficiency in the supply chain as a Nash equilibrium may not
be Pareto optimal, see [14] for a use of Pareto optimality in the supply chain
analysis.

The supply chain coordination can be obtained by determining the whole-
sale price ci so as to make the optimal solution (x∗1, x

∗
2) obtained by (25) a

Nash equilibrium, that is (x∗1, x
∗
2) must satisfy:

∂E[π(x1, x2)]
∂x1

|x1=x∗
1 ,x2=x∗

2
= 0

(29)
∂E[π(x1, x2)]

∂x2
|x1=x∗

1 ,x2=x∗
2

= 0.

The coordination mechanism modifies each decision maker’s objective so
that these modified objectives and the total objective of the supply chain yield
to the same optimal solution. The mechanism that is mainly used for coordi-
nation in the supply chain is a contract. A contract is an argument between
two parties. Most supply chain contracts include only two parties usually a
supplier and a retailer, but these simplifications allow for studying optimal
contracts. Different models of Supply Chain contracts have been developed
in the literature. They include the quantity discounts [93], the backup agree-
ments [31], the buy back or return policies [30], the quantity flexibility (QF)
contracts [82], the incentive mechanisms [44], and the revenue sharing (RS)
contracts [15].

Anupindi and Bassok [2] studied a model with one manufacture and two
retailers. They consider two systems: one competitive, where they make in-
dependent decisions and stock inventories separately, and one where they co-
operate to centralize stocks at a single location. They show that there exits
a threshold level for the “market search” above which manufacturer loses,
and that for high level of market search, even total supply chain’s profit may
decrease upon centralization. Market search is measured as the fraction of
customers who due to a stock-out at their retailer search for the good at
the other. In addition, they show that manufacturer could benefit, in either
system, by offering a contract with a holding cost subsidy.

Cachon and Zipkin [19] investigate a two-stage (supplier and retailers) ser-
ial supply chain with stationary stochastic demand, fixed transportation time
over an infinite horizon, and complete backordering. Both firms incur holding
costs and a backorder penalty per unit of time for each unit that is back-
ordered at the retailer; the supplier is not charged for its own backorders, it is
only charged when units are backordered at the retailer. That fee reflects the
supplier’s desire to maintain an adequate stock of its product at the retailer.
They compare the base-stock policies chosen under the competitive regime to
those selected so to minimize total supply chain costs. Furthermore, they use
a linear contract between the supplier and the retailer to modify the payoff of
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the players and make the total profit close to the global optimum. The model
proposed by Cachon [11] is also a two-echelon serial supply chain with sto-
chastic consumer demand. But when a customer arrives at the retailer and the
retailer has no stock, a lost sale occurs. As in [19], both firms are concerned
about the availability of inventory at the retailer, but in this model stock-outs
create opportunity costs rather than backorder penalties.

Wang et al. [91] extend Cachon and Zipkin’s model to a one-supplier and n-
retailers situation. If there exist multiple retailers, the supply from a supplier
might not satisfy the demand of multiple retailers. The problem is how to
design the distributing scheme of the supplier, and this makes models of supply
chain systems more complex. In order to guarantee optimal cooperation in the
system, several Nash equilibrium contracts are designed in echelon inventory
games and local inventory games.

Coordination technique proposed by Lee and Wang [44] assumes a two
stage supply chain with stationary demand, with holding and backorder costs
and fixed lead time. Furthermore, assume that supplier cares only about his
inventory. The nonlinear transfer payments proposed by Lee and Wang uses
the nonlinear transfer payment proposed by Clark and Scarf [24] but this type
of payment leads to a Nash equilibrium for the decentralized supply chain.
Using similar assumptions, Chen [22] studied a four-stages supply chain where
players try to minimize total supply chain costs. The coordination scheme
he proposed is linear transfer payments based on accounting inventory and
backorders level, where stage is accounting inventory is the actual inventory
that could fill its orders at stage i + 1 immediately. Porteus [68] proposed a
incentive scheme that is a combination of the above two, called responsibility
token.

In contrast, Klastorin et al. [41], to coordinate a two-echelon distribution
system, use price discounts contract. The supplier, in order to influence the
buyer’s behavior, offers a price discount to any retailer who places an order
that coincides with the beginning of retailer’s cycle. They show that under
specific conditions, this policy can lead to more efficient supply chain manage-
ment, and present a method for determining the optimal price discount in the
decentralized supply chain. For excellent reviews on supply chain coordination
and contracts, see Tsay et al. [83] and Cachon [13].

6.1 Capacity Allocation in Supply Chain

In many situations, a single supplier provides products to several retailers. If
retailers orders are uncertain and capacity is costly, the supplier may not be
willing to have capacity that is high enough to cover all orders at any point
in time. When the total order from retailers exceeds the supplier’s capacity,
then he must allocate it among retailers based on some sort of rules. In such
a case, the two retailers compete for both supply and demand, and a game
called allocation game or shortage game as is refereed by Lee et al. [45] arises.



848 A. Chinchuluun et al.

Three allocation rules are commonly used: proportional, where the retailer
receives a proportion of the avaliable capacity as a percentages of his order
to the total orders; linear, where the retailer receives his order minus the
difference between total order and capacity divided by the number of retail-
ers; and uniform, where the supplier equally divides the avaliable capacity
among retailers [17]. However, when the supplier’s capacity is finite, the Nash
equilibrium exists only under certain conditions.

Assuming that the avaliable capacity of the supplier is κ, suppose that
retailer i makes an order xi < κ, (i = 1, 2), then retailer j, (j = 1, 2) can
react by making an order either xj ≤ κ − xi, where because total orders do
not exceed κ, each retailer gets exactly what she orders, or by making an
order xj > κ − xi, then the capacity is apportioned by any allocation rule
such that x̄1 + x̄2 = κ. Note that what the retailer i gets, x̄i(i = 1, 2), differs
from what he orders. Further assume that a pair of (x∗1, x

∗
2) is the unique

Nash equilibrium that solves the news-vendor problem faced by retailers; if
x∗1 +x∗2 ≤ κ, then there exists a unique Nash equilibrium allocation as neither
retailer has a profitable unileteral deviation.

Now, consider the case where x∗1 + x∗2 > κ, let x̂1 ∈ x∗2(x2) for which
it holds that x̂1 + x̄2 = κ and x̂2 ∈ x∗2(x1) such that x̄1 + x̂2 = κ, then
there exists a Nash equilibrium if and only if there exist a pair of allocations
(x̄1, x̄2) ∈ (x̂1, x̂2) such that x̄1 is the optimal solution to the problem:

max E[π1(x̄, κ− x̄)]
(30)

s.t max{κ− x̄2, 0} ≤ x̄ ≤ κ

and x̄2 solves the problem:

max E[π2(x̄, κ− x̄)]
(31)

s.t max{κ− x̄1, 0} ≤ x̄ ≤ κ.

See Dai [26] for a detailed analysis and proofs, and [16, 45] for application of
shortages game in the supply chain.

7 Cooperative Games

The subject of cooperative games was first introduced by von Newmann and
Mörgestern [88]. Cooperative game theory assumes that binding agreements
can be made between players on the advantage of the whole system. One of the
main questions is whether the cooperation is stable, i.e., there is an allocation
of the total benefit of the system among the players such that no group of play-
ers would like to leave the system. Cooperative game theory offers the concept
of core as a direct answer to that question. For a long time, cooperative game
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theory did not enjoy as much attention in inventory management literature
as noncooperative game theory. Papers employing cooperative game theory
to study inventory problems had been scarce but are becoming more popu-
lar. The vast majority of them model the system in a news-vendor setting.
In a news-vendor environment, retailers can increase their total profit if they
decide to cooperate. The basic cooperation rules that could appear are (1)
cooperative players might switch their excess inventory, if any, to anyone who
has excess demand so that the latter can save in lost sales penalty cost, and
(2) retailers might give a joint order and use this quantity to satisfy the total
demand they are faced with. The allocation rules for this cooperation should
be based on three criteria, namely nonemptiness of the core, computational
ease, and justifiability [36].

If there are n > 2 players in the game, then there might be coopera-
tion between some, but not necessarily all, of the players. We can ask which
coalitions of players are likely to form and what are the relative bargain-
ing strengths of the coalitions that do form. Label the players 1, 2, . . . , n. A
coalition of players, S, is then a subset of N = (1, 2, . . . , n). Let v(S) denote
the maximum value v(S) that coalition S can guarantee itself by coordinating
the strategies of its members, no matter what the other players do. This is the
called the characteristic function. By convention, we take v(∅) = 0. The worst
eventuality is that the rest of the players unite and form a single opposing
coalition T = N − S. This is then a 2-person noncooperative game and we
can calculate the maximum payoff that S can ensure for itself. In such a case,
the cooperation is worthwhile, that is, any two groups, which act together,
will get no less than that when they act independently. In other words, the
property of superadditivity holds, i.e.,

v(S ∪ T ) ≥ v(S) + v(T ). (32)

The distribution of individual rewards will affect whether any coalition is
likely to form. Each individual will tend to join the coalition that offers her
the greatest reward. Therefore, the game in such a form should provide an
indication of how the joint maximum payoff v(N) should be shared among the
N players. An imputation for an n-person game, with characteristic function v,
is defined as a distribution vector x = (x1, x2, . . . , xn) satisfying:

n
∑

i

xi = v(N) & xi ≥ v(i) ∀ i ∈ N (33)

with xi being the payoff to player i.
In other words, if x is an indication of how the joint payoff v(N) is dis-

tributed among the players and if a player i is rational, then she is willing
to join a coalition if and only if she gets no less than the amount she can
get by acting independently. The first condition is often referred to as group
rationality and the second condition as individual rationality.
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Let E(v) be the set of imputations, and x,y ∈ E(v). We say that y
dominates x over S if

yi > xi ∀ i ∈ S &
∑

i∈S
yi ≤ v(S). (34)

In other words, an imputation is dominated if it is dominated via some coali-
tion S ⊆ N . Members of the dominating coalition S benefit from forming S
and leaving the grand coalition.

The core of a game with characteristic function v is the set, C(v), of all im-
putations that are not dominated for any coalition. Therefore, an imputation
x is in a core if and only if:

n
∑

i

xi = v(N) &
∑

i∈S
xi ≥ v(S) ∀ S ⊆ N. (35)

The core collects undominated imputations. The core is a set-valued solution
concept for cooperative games, as it can select multiple payoff vectors. Non-
emptiness of the core means that there exists at least one allocation of the
joint profits among the players such that no group of players has an incentive
to leave. A game is balanced if it has a nonempty core (see Bondareva [9],
Shapley [77]), and it is called totally balanced if each subgame (S, v|S) is
balanced, where v|s(T ) = v(T ) for all T ⊆ S. A subgame is any part of a
game that remains to be played after a series of moves and it starts at a
point where both players know all the moves that have been made up to that
point [25].

Perhaps the first paper employing cooperative games in inventory manage-
ment is Wang and Parlar [92]. In a model of inventory competition with fixed
prices, they use cooperative game theory in one of its original uses: they start
with a noncooperative game, then suppose that the players can cooperate on
strategy choices with and without Transferable Utility.

What follows is based mainly on Slikker et al. [78]. A general cooperative
news-vendor situation is characterized by a set of retailers N , the stochastic
demand Wi for the good at retailer i ∈ N , furthermore ci and ri denote the
prices that retailers pay to producer and the customers pay to the retailers,
respectively. If several companies cooperate they can, after the realization of
demand is known, transship goods. tij represents the cost of transshipping
one unit from i to j, i, j ∈ N and tij ≥ 0. Let XS be a collection of possible
order vector of coalition S retailers defined by:

XS =
{

x ∈ R
N |xSi = 0 ∀ i ∈ N \ S and xSi ≥ 0 ∀ i ∈ S

}

(36)

and suppose that coalition S has order vector xS ∈ XS and they face demand
vector wS ∈ R

N with wS = 0 for all i ∈ N \ S. If after the realization of
demand, AS

ij is the amount of products that are transshipped from retailer i
to retailer j, the amount that is not transshipped is represented by AS

ij for
i = j. A reallocation matrix of xS is then
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AS =
{

AS ∈ R
N×N
+ |AS

ij = 0 if i /∈ S or j /∈ S
∑

j∈S
AS
ij = xSi ∀ i ∈ S} (37)

The profit of the coalition S is

πS(xs, ws) =
∑

j∈S
rj min

{

∑

i∈S
AS
ij , x

S
j

}

−
∑

i∈S

∑

j∈S
AS
ijtij −

∑

i∈S
cix

S
i (38)

The expected profit of coalition S depends on their order quantity vector xS

and the stochastic demand faced by each retailer, WS , that is

π̄S(xS ,WS) = E
[

πS(xS ,WS)
]

(39)

and the associated game is defined by

v(S) = max
x∈XS

π̄S(x,WS) ∀ S ⊆ N. (40)

Slikker et al. [78] proved that there exist coalitions and there exist a realloca-
tion matrix A∗S and an order quantity x∗S that maximizes the expected profit
of coalition formation, as well as that the above cooperative news-vendor game
has a nonempty core. Hartman et al. [37] and Müller et al. [49] consider the
game in the above-mentioned setting, except that retailers identically single
price c and r and in which the value of the group of retailers is their opti-
mal profit if they jointly determine an order size without taking into account
the transshipment cost. Both of the above-mentioned papers use the core to
show that there is always a cost allocation scheme such that news-vendors
will prefer to pool their inventory. The cost game they consider is

c(S) = (r − c)E[WS ]− v(S) ∀ S ⊆ N. (41)

Hartman et al. [37] prove that this game has a nonempty core under certain
assumptions about the demand distribution, and Mülleret al. [49] come up
with a more powerful result, namely that the core of the news-vendor games
are nonempty regardless of the distribution of the random demands.

7.1 Shapley Value

A solution concept that selects precisely one payoff vector for every cooper-
ative game is the Shapley value. Used on the marginal contributions of all
players in the game (N, v), the Shapley value [76], Φ(v) = (Φi(v))i∈N is de-
fined by:

Φi(v) =
∑

S⊆N\{i}

|S|!(|N | − 1− |S|)!
|N |! (v(S ∪ {i})− v(S)) (42)
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So far, applications of Shapley value in inventory management are rather
scarce, an exception is the paper of Robinson [73], who reexamines the al-
location rules proposed by [34] in continuous review single-period inventory
model and in terms of Shapley value, and the discussion presented in Granot
and Sosic [35].

The Shapley value means that each player should be paid according to
how valuable her cooperation is for the other players. In general, the Shapley
value need not generate a core element. Hence, it may not be a reasonable
prediction of the outcome of a game; because it is not in the core, there exists
some subset of players that can deviate and improve their payoffs.

8 Bargaining Theory

In recent years, there is a trend in supply chain literature that considers
the use of bargaining theoretic models to expand the view of negotiation
and coordination in the supply chain. In this chapter, we present modeling
paradigm for supply chain coordination using the notion of bargaining.

Bargaining theory helps to explore the relationship between the expected
outcome from direct negotiation. Nash defines a bargaining problem as the
situation in which two individuals have the opportunity to collaborate for
mutual benefits in more than one way [55]. In other words, the bargaining
problem arises in situations where there are gains Π from collaboration and
is defined as the corresponding attempt to resolve a bargaining situation,
i.e., to determine the particular form of cooperation and the corresponding
division (π1, π2) of the bargaining surplus Π.

In a bargaining game, two or more players, who have competitive pref-
erences, negotiate to follow a common mixed strategy in order to conclude
with an outcome that is fair and satisfactory for all of them, that is how
to divide bargaining surplus (gains) created from collaboration. It is assumed
that both players are rational, self-interested, and risk neutral (expected value
maximizers) with complete information. The possible outcome of the agree-
ment depends on the negotiation power of each player.

A bargaining set B is a set of outcomes that can be jointly achieved by the
players, B = {(π1, π2) ∈ R

2 : π1 + π2 ≤ Π and πi ≥ 0}. The players either
reach an agreement (π1, π2) ∈ B, or fail to reach agreement, in which case the
disagreement event D = (d1, d2) occurs and each gets nothing. An outcome is
Pareto-efficient if it dominated over all possible outcomes, i.e., if no outcome
exists that is strictly preferred by one player and not less preferred by any
other player.

Given the bargaining set, a solution to the bargaining problem is concerned
with the question of which outcome will eventually prevail, i.e., a solution is a
rule that picks out one element of the bargaining set. Apparently, two different
approaches of solutions to the bargaining problem exist in bargaining theory:
(1) axiomatic (cooperative game) approach, which requires that the resulting
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solution should possess a list of axioms, and (2) strategic (noncooperative
game) approach, in which the outcome is predicted by the notion of subgame
perfect equilibrium.

8.1 Axiomatic Solution

The cooperative bargaining process was initiated by J. Nash [55]. In case of co-
operative bargaining, the outcomes of negotiation are often described in terms
of utilities; the notion of utility that satisfies the assumptions von Neumann–
Morgenstern is used to quantify individual preferences. Consequently, for each
player there is a function, called utility function u, which represents and scales
her preference over the bargaining set. If π̄i, π̂i ∈ B, and if for a player
i(i = 1, 2), ui(π̄i) ≥ ui(π̂i), then we can conclude that the outcome π̄i is
preferred to outcome π̂i for the player i. Such a utility function is not unique,
that is if ui is a utility function, then the function vi = aui+β is also a utility
function for real numbers a, β and a > 0.

He started with a class of problems for which the bargaining set is convex
and compact, and for which free disposal is allowed. A bargaining problem,
as stated by Nash is concerned with the set of utility pairs, P ∈ R

2, that
can be derived from the bargaining set B, P = {(p1, p2) ∈ R

2 : (p1, p2) =
[u1(π1), u2(π2)] (π1, π2) ∈ B}, where P is convex, compact, nonempty set,
and a pair of utilities D = (δ1, δ2) = (u1(d1), u2(d2)) ∈ P a vector on R

2,
which is assigned to be the disagreement point. Only if these requirements
are satisfied the bargaining problem 〈P,D〉 can properly be called a Nash
bargaining problem.

Nash did not build his solution around what the bargainer is doing. He
tried to answer the question,“What would a good solution look like?” He came
up with a short list of sensible-sounding conditions that a bargaining solution
should satisfy. The nice thing about having a set of conditions to start with
is that they will limit the set of solutions that you might consider.

“Rather than solve the two-person bargaining game by analyzing the bar-

gaining process, one can attack the problem axiomatically by stating gen-

eral properties that ‘any reasonable solution’ should possess. By specifying

enough such properties one excludes all but one solution” [55].

Nash proved that a solution to the bargaining problem 〈P,D〉 is a func-
tion φ(·), also known as arbitration function that assigns a single outcome
(p1, p2) ∈ P to every bargaining problem 〈P,D〉. Nash proposes that a bar-
gaining solution should satisfy four conditions.

Pareto efficiency. Suppose (p1, p2) = φ(P,D) is the solution to the bargaining
problem 〈P,D〉, and a pair (p̂1, p̂2) ∈ P then should hold that (p1, p2) >
(p̂1, p̂2). This condition basically says that there is no feasible point (p̂1, p̂2)
that is Pareto superior to the solution.
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Independence of linear transformation. If vi = riui+ci, for i = 1, 2 and r1 > 0
is a linear transformation of the utility function ui that generates P, then
vi generates P ′ = {(r1p1 + c1, r2p2 + c2) ∈ R

2 : (p1, p2) ∈ P}. Because
vi represents the same preference as ui if both are applied to the same
bargaining set B, the bargaining problem 〈P ′,D′〉 represents the same
bargaining problem with 〈P,D〉 if D′ = (r1δ1+c1, r2δ2+c2), which is easy
to check. Thus a solution to φ(P ′,D′) = rφ(P,D)+ c. This condition says
that if you transform all the elements in 〈P,D〉, you will also transform
the solution.

Symmetry. If the bargaining problem 〈P,D〉 is symmetric, and if δ1 = δ2,
then (p1, p2) = φ(S,D)⇒ p1 = p2. In symmetric situations, both players
get the same.

Independence of irrelevant alternatives. If 〈P,D〉 and 〈P ′,D′〉 are bargaining
problems with P ⊂ P ′ and φ(P ′,D′) ∈ P, then φ(P,D) = φ(P ′,D′). This
axiom states that the bargain solution does not depend on other available
outcomes that the player had the opportunity to choose but did not. See
[61] for details and proofs.

The solution that satisfies these four properties is unique and is characterized
by the payoff pair (p,p2), which maximizes the product of the player’s benefits
from cooperation, the so-called Nash product.

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

(p1 − δ1)(p2 − δ2). (43)

If the symmetric axiom is ignored, the bargaining solution comes to depend on
the bargaining powers of the two players, this is the generalized or asymmetric
Nash bargaining solution,

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

(p1 − δ1)α(p2 − δ2)β (44)

where α, β, α+β = 1 represents the negotiation power of each player. Among
the factors that affect negotiation power are their utility, their risk preference,
and their position on the market.

The Nash bargaining solution can be extended to apply in the case with n
players, and it can be shown that the unique bargaining solution that satisfies
the axioms is the function that satisfies:

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

n
∏

i=1

(pi − δi). (45)

Kalai and Smorodinsky [39] replace the rather controversial axiom of Inde-
pendence of irrelevant alternatives with alternative, which they refer to as the
axiom of monotonicity. Let pmi (P) = max{pi : pi ∈ P} be the maximum that
player i could attain (for i = 1, 2) in a bargaining situation 〈P,D〉 given that



Game Theory Models in Inventory 855

the players are individually rational. The payoff combination defined in this
way is called ideal point. The Kalai–Smorodinsky solution requires then that
if the ideal point belongs to bargaining games 〈P,D〉 and 〈P ′,D′〉 ∈ B and if
P ′ ⊂ P, then player i will receive at least as much as in 〈P,D〉 as in 〈P ′,D′〉.
The Kalai–Smorodinsky solution is then a unique function that selects the
maximum element in P on the line that joins the disagreement point (δ1, δ2)
with the ideal point. For details and proofs, see [53].

To apply the Nash bargaining problem to the supply chain analysis, con-
sider a supply chain with one supplier and one retailer. At the beginning of
the period, the retailer places orders x and sells them to the customer at a
unit price r. Supplier produces the product with unit production cost k and
supplies x units to retailers at a price c. It is also assumed that supplier has
infinite production capacity. The demand w faced by the retailer during the
period is random but distribution is known. She also faces a unit holding,
and shortage costs, denoted by h and p, respectively. Let π̃s and π̃r be the
supplier’s and retailer’s profit, respectively, πs = E[π̃s] and πr = E[π̃r] their
expected profits with:

πs = cx− kx = (c− k)x (46)

and
πr = rEmin{w, x} − cx− L(x) (47)

where L(x) = hE(x− w)+ + pE(w − x)+.

In addition, assume that the supply chain makes a positive expected profit
ΠC that is greater than the disagreement points and therefore the rational
players will always prefer to participate in the game. Furthermore, we assume
that disagreement point for supplier is ds = kx and the retailer’s disagreement
point is dr = L(x).

The solution refers to the resulting payoff allocation that each of the play-
ers agrees upon. Given that both players are risk neutral, the necessary Pareto
efficiency condition ensures the negotiated quantity is always the one that
coordinates the whole chain, i.e., x = xC (where xC is the coordinating quan-
tity). In other words, this bargaining formulation gives us channel coordination
for free [52]. Because the negotiated quantity is always xC , then ds = kxC

and the retailers disagreement point is dr = L(xC), similar assumptions have
been employed in [52]. Suppose that the supplier and retailer negotiate to
split the total expected profits of the system. Consequently, the bargaining
set can be written as B = {(πs, πr) ∈ R

2 : πs + πr ≤ ΠC , and πs, πr ≥ 0},
which is assumed to be a convex and compact set, in addition the for-
mulation of disagreement points guarantees that it is nonempty. The cor-
responding Nash bargaining problem is P = {(ps, pr) ∈ R

2 : (ps, pr) =
[E(us(πs), E(ur(πr)] (πsπr) ∈ B}, where P is a convex, compact, nonempty
set, and D = (δs, δr) = (us(ds), ur(dr)) ∈ P. Applying the Nash solution
concept results in the two players maximizing the following expression

max
(ps,pr)≥(δs,δr)∈P

(ps − δs)(ΠC − ps − δr). (48)
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Taking the derivative with respect to ps and pr and equating to zero, we get
respectively:

ps =
ΠC − δr + δs

2
(49)

pr =
ΠC − δs + δr

2
. (50)

Nagarajan and Bassok [52] consider a cooperative, multilateral bargaining
game similar to that where n suppliers are selling complementary components
to an assembler. They propose a three-stage game: First (stage 3) the suppli-
ers form coalitions, second (stage 2) the coalitions compete for a position in
the bargaining sequence, third (stage 1) the coalitions negotiate with the as-
sembler on the wholesale price and the supply quantity. They show that each
player’s payoff is a function of the player s negotiation power, the negotiation
sequence, and the coalitional structure.

Chae and Heidhues [20] study the effects of integration among downstream
local distributors on the entry of upstream producers in a bargaining theoretic
framework. They modeled both price formation and the entry of upstream
producers in an input market. Using a bargaining solution that generalizes
the Nash solution, they showed that a higher degree of concentration among
downstream distributors reduces incentives to enter the upstream production
industry. The reason is that higher concentration among downstream distrib-
utors reduces the bargaining power of upstream producers.

8.2 Strategic Approach

Whereas the cooperative approach is static, in the sense that only the out-
come is analyzed without taking into account the bargaining procedure, the
strategic approach to bargaining theory, initiated by St̊ahl [80] and Rubin-
stein [74], is more concerned with these situations and analyzes exactly the
bargaining procedures, in the attempt to find theoretical predictions of what
agreement, if any, will be reached by the bargainers.

To this end, we now present the model developed by Rubinstein [74], in
which the procedure is modeled explicitly as a game in real time. Here we think
of bargaining as a sequential game. That is, there is a well-defined sequence of
moves, and players have preferences over the time of agreement as well as the
terms of agreement. There are two players i, i = 1, 2, whose task is to divide a
single surplus of size 1. Each player is concerned only about the share of the
surplus that she receives and prefers to receive more rather than less. Time
proceeds without end as t = 0, 1, 2, . . . .

The procedure is as follows. At t = 0, one player, say player 1, makes an
offer, (π1, π2), where π1 is player 1’s share and p2 is player 2’s share where
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π1 + π2 ≤ 1, which is either accepted or rejected. If player 2 accepts the offer,
the game ends and the surplus is divided accordingly. If player 2 rejects, she
makes a counter offer at period t+1, which is either accepted or rejected with
counter offer from 1 and so on. If no offer is ever accepted, the payoffs are 0.
To simplify matters, we assume that both players have linear utility functions
u1 = π1 and u2 = π2. Player i’s utility for getting a share πi of the surplus at
time t is equal to ui = πiθ

t
i , where θ ∈ [0, 1] is a fixed discount factor, and it is

used to translate expected utility in any given future into present value terms.
Rubinstein [74] proved that there is a unique subgame-perfect equilibrium in
this game, based on playing the following strategies in every period:

1. Player 1 proposes an offer:
(

π1 = 1−θ2
1−θ1θ2

, π2 = θ2(1−θ1)
1−θ1θ2

)

and accepts player

2’s offer if and only if π1 ≥ θ1(1−θ2)
1−θ1θ2

.

2. Player 2 proposes an offer:
(

π1 = θ1(1−θ2)
1−θ1θ2

, π2 = 1−θ1
1−θ1θ2

)

and accepts player

1’s offer if and only if π2 ≥ θ2(1−θ1)
1−θ1θ2

.

Extentions of the Rubistein’s model include the case where there is possibility
for the negotiation to break down [7] and the influnce of a outside option in
the negotiation proposed and implemented in different settings by [8, 50, 67].
The main assumption of these models is that a player can choose to decide to
leave a negotiation if there is an outside deal that can optimize her objective.

To apply the noncooperative bargaining game, Ertogal and Wu [32] con-
sider a bargaining situation between a supplier and a retailer (buyer) who ne-
gotiate to split certain system surplus, say π . The supplier and the retailer are
to make several offers and counter offers before settling on a final agreement.
Before entering negotiation, the supplier and retailer each have recallable out-
side options Ws and Wb, respectively. It is assumed that π ≥ Ws + Wr,
otherwise at least one of the players would have no incentive to enter the
negotiation.

The sequence of events in our bargaining game is as follows:

1. With equal probability
p

2
, one of the two players proposes an offer that

splits the system surplus π into certain amounts.

2. The other player may either:

(a) accept the offer (the negotiation ends), or

(b) reject the offer and wait for the next round.

3. With a certain probability (1 − p), the negotiation breaks down and the
players take their corresponding outside options.

4. If the negotiation continues, the game restarts from step 1.
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They assume that in subgame perfect equilibrium there is an infinite number
of solutions leading to gains ranging from mb to Mb for the buyer, and mr to
Mr for the supplier, where:

Ms(Mr): The maximum share the supplier (the retailer) could receive in a
subgame perfect equilibrium for any subgame initiated with the supplier’s
(the retailer’s) offer.

ms(mr): The minimum share the supplier (the retailer) could receive in a
subgame perfect equilibrium for any subgame initiated with the supplier’s
(the retailer’s) offer.

They formulate and solve the negotiation-sequencing problem as a network
flow problem. They proved that the following system of equations defines the
subgame perfect equilibrium for the bargaining between the two players:

Ms = π −
[p

2

[

(1− p)Wr +
p

2
(π −Ms +mr) + π −Ms

]

+ (1− p)Wr

]

(51)

ms = π −
[p

2

[

(1− p)Wr +
p

2
(π −ms +Mr) + π −ms

]

+ (1− p)Wr

]

(52)

Mr = π −
[p

2

[

(1− p)Ws +
p

2
(π −Mr +ms) + π −Mr

]

+ (1− p)Ws

]

(53)

mr = π −
[p

2

[

(1− p)Ws +
p

2
(π −mr +Ms) + π −mr

]

+ (1− p)Ws

]

(54)

and the unique subgame perfect equilibrium strategies of the players are given
as follows:

1. If the supplier is the offering party, she will ask for Xs = π − Wr −
p2

2(2− p) (π − Ws − Wr) share of the surplus and leave π − Xs to the

retailer.

2. If the retailer is the offering party, she will ask for Xr = π − Ws −
p2

2(2− p) (π − Ws − Wr) share of the surplus and leave π − Xr to the

supplier.

This result has important implications in that the bargaining game will end
in one iteration when one of the two players initiates the negotiation with
the perfect equilibrium offer. They further show that there is a first-mover
advantage in this game, but the advantage diminishes as the probability of
breakdown approaches zero. Wu [94] expands the model to analyze the trade-
off between direct and intermediated exchanges.

Bernstein and Marx [6] address the problem of supply chain performance
when one supplier sells to multiple competing retailers and who have bar-
gaining power. They model a retailer’s bargaining power through its ability
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to set a reservation profit level below which it will not participate in the sup-
ply chain. They also allow endogenously chosen reservation profit levels for
the buyers that may depend on the retailer’s opportunities within the supply
chain, rather than taking those reservation profit levels as fixed and depen-
dent only on outside opportunities. The retailers may compete in terms of
the prices they charge or in terms of the amount of inventory they carry.
Their results indicate that supply chain performance is not maximized, or it
is maximized conditional on the number of retailers that offer the supplier’s
product, but some retailers are excluded from trade. They conclude that in
equilibrium, retailer’s choices of reservation profit levels may induce the sup-
plier to trade only with a strict subset of the retailers, even when all retailers
must be included in order for channel profit to be maximized.

de Fontenay and Gans [28] analyze vertical integration in the case of up-
stream competition in which they demonstrate that vertical integration can
alter the joint payoff of integrating parties in ex post bargaining.

Van Mieghem [87] and Chod and Rudi [23] consider settings in which two
firms trade capacity after receiving demand information. In [23], the authors
consider two independent firms that invest in resources such as capacity or
inventory based on imperfect market forecasts. After investment decisions are
made, the firms update their forecasts of the market conditions and have the
option to trade. Although the negotiation of this trade is formulated in a
cooperative fashion, the firms do not cooperate in the investment stage. The
problem is formulated as a noncooperative bargaining game, and the existence
and uniqueness of an embedded Nash bargaining solution is proved. In Van
Mieghem’s work [87], after demand revelation, the manufacturer may purchase
some of the excess capacity of the subcontractor. She formulates this problem
as a noncooperative stochastic investment game. Her results indicate that all
decentralization costs are eliminated only when the bargaining parameters
depend on demand realization.

8.3 Biform Games

A biform game is a hybrid noncooperative/cooperative game model designed
for modeling business interactions. It can be thought of as a noncooperative
game with cooperative games as outcomes, and those cooperative games lead
to specific payoff. The biform game was first formalized by Brandenburger and
Stuart [10]. Hence the noncooperative solution concept of Nash equilibrium
extends naturally to the biform game.

To define a biform game, consider a set of players N , indexed by i =
1, . . . , n, and for each player i ∈ N , a finite set Xi of strategies. At the non-
cooperative stage (first stage), players make decision among their strategies,
this game can be analyzed just like any other noncooperative game. Com-
petition is then modeled by a cooperative game (second stage) in which the
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characteristic value function depends on the chosen actions. The core of this
cooperative game is employed to determine the outcome of the game. Even
though the core of such game is nonempty, it may yield to a range of out-
comes, rather than a unique outcome; as a result, it is not immediately clear
what value each player can expect. In such cases, it is necessary to describe
each player’s preferences over intervals. In a biform game, these preferences
are represented by the numbers αi for each player i. Each player then expects
to earn in each possible cooperative game a weighted average of the minimum
and maximum values in the core, with αi being the weight. The parameter αi
can also be interpreted as an index player’s i in her bargaining power.

Brandenburger and Stuart [10] proposed the biform game in which play-
ers make strategic investments, and then they play a cooperative game de-
termined by their investments. The biform game formulation is employed
in Plambeck and Taylor [66] where two independent, price-setting original
equipment manufacturers (OEMs) are investing in innovations. They allow
OEMs to outsource their productions to an independent contract manufac-
turer (CM); a bargaining game is employed to model the negotiations among
(OEMs) and (CM). They show that the bargaining outcome induces the CM
to invest in the system-optimal capacity level and to allocate capacity op-
timally among the OEMs. A subsequent paper [65] considers the situation
where a manufacturer writes quantity flexibility contracts with two buyers.
Then, the buyers invest in innovation, and the manufacturer builds capacity.
Without renegotiation, quantity flexibility is necessary for the client capacity
allocation, but reduces incentives for investment. Typically, allowing renego-
tiation reduces the flexibility in an optimal contract and increases the total
expected profit.

He models the problem as a multivariate, multidimensional, competitive
news-vendor problem. He argues that ex ante contracts may be too expen-
sive or impossible to enforce, while the supplier’s investments (in quality, IT
infrastructure, and technology innovation) may be noncontractible.

In the application of the biform game to the news-vendor problem, order-
ing decisions of different retailers are made competitively whereas allocation
decisions take place cooperatively.

In a recent article, Rudi et al. [70] consider a two-retailer model with trans-
shipment of stock. They aim to find prices for which the joint decentralization
profit achieves the centralized system profit.

Anupindi et al. [3] use a hybrid noncooperative/cooperative model to for-
mulate a game where multiple retailers stock at their own locations as well as
at several centralized warehouses. In the noncooperative stage, retailers make
stocking decisions, for this stage they develop conditions for the existence of
a pure Nash equilibrium. In the cooperative stage, retailers use cooperative
game theory to characterize possible opportunities for cooperation, similar to
Müller et al. [49].
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Granot and Sosic [35] analyze a similar problem, they consider a network
of retailers with stochastic demands: Each chooses its inventory level but in
this models retailers are able to hold any inventory left from one period to the
other, then demand is realized; and the retailers bargain cooperatively over
the transshipment of excess inventory to meet excess demand. Their model
has three stages: decision about the order quantity, decision about how much
inventory to share with others, and finally the transshipment stage.

Stuart [81] provides a model of the competitive news-vendor problem in
which there is price competition following the inventory decisions. The price
competition is modeled by considering the core of the induced cooperative
game. She shows that with no uncertainty, the inventory decision is equiva-
lent to the capacity decision in Cournot competition. With uncertainty, the
analysis again reduces to Cournot competition if the demand uncertainty is
characterized by an appropriately constructed, expected demand curve.

Unpublished manuscripts and papers in the bibliography are available through

CiteSeer, the Autonomous Citation Indexing and Scientific Literature Digital Li-

brary, at http://citeseer.ist.psu.edu and science-specific search engine Scirus

at http://www.scirus.com/srsapp/.
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