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Ἀεί δέ ὡς πρός εὖ βουλομένους τούς ἐναντίους ἔργῳ παρασκευαζόμεθα· καί
οὐκ ἑξ ἐκείνων ὡς ἁμαρτησομένων ἔχει δε̃ι τάς ἐλπίδας, ἀλλ΄ ὡς ἡμω̃ν

ἀσφαλω̃ς προνοουμένων, πολύ τε διαφέρειν οὐ δε̃ι νομίζειν ἄνθρωπον ἀνθρώπου,
κράτιστον δέ εἶναι ὅστις ἐν το̃ις ἀναγκαιοτάτοις παιδεύεται.

Ἀγόρευσις του̃ Λακεδαιμονίου βασιλέως Ἀρχιδάμου
(ΘΟΥΚΙΔΙΔΟΥ: ῾Ιστορ̃ιαι, Βιβλίον Α΄)

We always base our preparations against an opponent on the assumption
that his plans are sound; indeed, it is right to rest our hopes not on a belief

in his blunders, but on the soundness of our provisions. Nor ought we to
believe that there is much difference between man and man, but to think

that superiority lies with him who is reared in the severest school.

Speech by the Spartan king Archidamus
according to Thoukidides’ History of the Peloponnesian War.

Translation adapted from www.wikipedia.org



Preface

Humans have always been involved in situations where decisions must be made
that best fit the circumstances. We read, for instance, in Homer’s Iliad,1 the
oldest written European composition (eighth century B.C.):

So he taunted. Deiphobus’ mind was torn –
should he pull back and call a friend to his side,
some hardy Trojan, or take the Argive on alone?
As he thought it out, the first way seemed the best.
He went for Aeneas

The decision taken may or may not affect and be affected by other de-
cision makers. The best decision may depend on one or more objectives of
the decision maker. The decision may concern a static situation or a situ-
ation that evolves in time. Thus, mathematical and algorithmic tools have
been developed in order to model, analyze, and resolve such decision-making
processes. Mathematical programming, multiobjective optimization, optimal
control theory, and static and dynamic game theory provide the language and
the tools to achieve such goals. The notions of optimality, Pareto efficiency,
and equilibrium are intimately related in a mathematical sense and tightly
connected through the notions of Karush–Kuhn–Tucker (KKT) optimality,
complementarity, variational inequalities, and fixed points. The problem un-
derlying the search for an optimal point, an efficient point, an equilibrium, or
a fixed point is essentially the same.

It is true that we can recognize in ancient texts the roots for the need
of such mathematical formalism. It is hard to deny that in the words of
the Lacedaemonian king Archidamus, as given by the historian Thoukidides
(fifth century B.C.), we start to recognize seeds of rationality desired by game
theory2:

1Translated by Robert Fagles, Penguin Classics.
2Translation adapted from www.wikipedia.org.
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We always base our preparations against an opponent on the assump-
tion that his plans are sound; indeed, it is right to rest our hopes not
on a belief in his blunders, but on the soundness of our provisions.
Nor ought we to believe that there is much difference between man
and man, but to think that superiority lies with him who is reared in
the severest school.

Or that the following verses of the Iliad depict a game situation3:

If you really want me to fight to the finish here,
have all Trojans and Argives take their seats
and pit me against Menelaus dear to Ares –
right between the lines –
we’ll fight it out for Helen and all her wealth.
And the one who proves the better man and wins,
he’ll take these treasures fairly, lead the woman home

However, only with the development of optimization, control, and game
theory has it been possible to fully achieve the analysis of such and other far
more complicated situations. The concepts of equilibrium and optimality are
of immense practical importance in decision-making problems of policies and
strategies, in understanding and predicting what will eventually happen in
systems in different application domains, ranging from economics and engi-
neering to military applications.

This book brings together recent developments in all these fields that sup-
port decision making as well as recent applications of these results to a wide
range of modern problems. The book consists of twenty-nine chapters con-
tributed by experts around the world who work with optimization, control,
game theory, and equilibrium programming either at a theoretical level and/or
at the level of using these tools in practice. Each chapter is of expository but
also of scholarly nature. Each includes a state-of-the-art overview relative to
its dedicated topic as well as key references in the field. The chapters can be
divided into six partially overlapping groups.

The first five chapters of the book are concerned with minimax theory,
fixed-points, and noncooperative game theory. The chapter by H. Tuy presents
a unified framework for studying existence and stability conditions for min-
imax of quasiconvex-quasiconcave functions that refines several known re-
sults from game theory, optimization, and nonlinear analysis. The chapter by
B. Ricceri surveys recent advances in minimax theory, including multiplicity
theorems for nonlinear equations and well-posedness results for optimization
problems. The chapter by J.B.G. Frenk and G. Kassay gives an overview
on the theory of noncooperative games, both zero-sum and nonconstant-sum
games. Based on the KKM lemma, they provide proofs of existence of saddle-
point strategies in the former case as well as of Nash equilibrium strategies

3Translated by Robert Fagles, Penguin Classics.
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in the latter case. The chapter by F. Szidarovszky gives an overview of the
existence and computation of equilibrium in nonlinear n-person games. The
chapter by G. Isac develops a new method for the study of existence of fixed
points for nonexpansive mappings defined on unbounded sets.

Cooperative game theory is concerned with situations in which decision
makers agree to cooperate in order to maximize their profits or minimize
their costs. In the chapter by I. Curiel, cooperative combinatorial games are
considered. Such games model situations in which the decision makers who
agree to cooperate encounter a combinatorial optimization problem in order
to maximize their profits or minimize their costs. Eight cooperative combina-
torial games are surveyed and analyzed. The chapter by X. Deng and Q. Fang
highlights the linear and integer programming approaches to cooperative com-
binatorial games as well as computational complexity issues. The chapter by
J.M. Bilbao et al. introduces the notions of bicooperative games and bisuper-
modular games and describes several solution concepts for them. The chapter
by Y. Marinakis et al. surveys more than thirteen cooperative combinatorial
games and provides insight through numerical examples.

The next five chapters are concerned with dynamic systems, in partic-
ular with differential games and time-dependent equilibria. The chapter by
A. Maugeri and C. Vitanza provides a review of the variational inequality
approach to problems in a variety of fields including traffic networks, mod-
els dynamic equilibrium problems as time-dependent variational inequalities,
presents existence results, and applies infinite dimensional Lagrangian duality
to these inequalities. The chapter by P.M. Pardalos et al. deals with differ-
ential games of multiple agents in a hierarchical structure setting as well as
in a cooperative setting. Controllability, observability, and optimality prob-
lems are studied. Maneuvers are introduced, using fiber bundles. The chapter
by V. Ostapenko is devoted to developing convex analysis concepts in the
context of pursuit-evasion differential games. The notion of matrix-convex
sets and H-convex sets are introduced, and their properties required for the
theory of differential games are studied. The chapter by A.A. Chikrii pro-
vides a general approach to solving game problems when the dynamics of the
conflict-controlled process is described by a system with fractional derivatives.
Solutions to such systems are derived and sufficient conditions for termination
in guaranteed time are obtained. The chapter by M.-G. Cojocaru et al. es-
tablishes the equivalence between the solutions to an evolutionary variational
inequality and the critical points of a projected dynamical system in infinite
dimensional spaces. A convergent algorithm is derived for the solution of evo-
lutionary variational inequalities, and it is illustrated for the case of traffic
networks.

Information is crucial in the process of decision making. The next two
chapters are largely concerned with the role and implications of information
in audit policies and auction design. In the chapter by K. Chatterjee et al., a
simple auditing model is constructed and analyzed in order to address three
principle issues: the information contained in the report, the commitment to
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the audit policy, and the audit effort. The approach is based on the concept
of perfect Bayesian equilibrium. An auction is a game with partial informa-
tion where an agent’s valuation of an object is hidden from other agents. The
chapter by R.L. Zhan provides a thorough survey on the current auctions de-
sign literature and synthesizes the developed theories underlying traditional
auctions with new elements and phenomena from emerging and rapidly grow-
ing areas, such as online auctions.

The next five chapters are concerned with multiobjective optimization,
bilevel optimization, and linear complementarity problems. The chapter by
G. Zhang et al. develops a fuzzy multiobjective linear bilevel model to handle
hierarchical situations where uncertainty is present in the parameters of either
the objective functions or the constraints of the leader and the follower and
where the leader and the follower may have multiple objectives. They derive
theorems characterizing the solutions and develop an approximation Kuhn–
Tucker approach to solve the problem. The chapter by D.T. Luc is devoted to
the theory of Pareto optimality and discusses existence, optimality in product
spaces, scalarization via support functions, duality, and solution methods.
Multiobjective optimization is overviewed in the chapter by M. Pappalardo.
Theorems of solution existence as well as optimality conditions and solution
methods are presented. In the chapter by R. Enkhbat et al., the weighted sum
approach to finding Pareto optimal solutions in multiobjective optimization is
studied in the context of one-parametric optimization techniques. The chapter
by B. De Schutter is devoted to the linear complementarity problem and to
its most general linear extension. A link is established between the extended
problem and max-plus equations that allows the application of the extended
model in the analysis and control of discrete-event systems such as traffic
signals, manufacturing systems, railway networks, etc.

The remaining eight chapters are largely devoted to applications. Five
chapters are devoted to network applications, one to military application, and
two to supply chain management. The chapter by M. Florian and D. W. Hearn
surveys user equilibrium formulations of static traffic assignment models based
on Wardrop’s first principle and presents the main solution algorithms for both
deterministic and stochastic models. M. Bjørndal and K. Jørnsten demon-
strate in the subsequent chapter that the famous traffic paradox, which es-
sentially differentiates between Wardropian user equilibrium formulations and
nonequilibrium formulations of congested traffic assignment models, also oc-
curs in congested electricity networks, where flows follow Kirchhoff’s juction
rule and loop rule. Hence, it is demonstrated that grid investments may prove
to be detrimental to social surplus. The chapter by J. Cole Smith and C. Lim
explores models and algorithms applied to a class of Stackelberg (two-stage)
games on networks, called network interdiction games. Two players are in-
volved, an operator who wishes to execute some function on an existing net-
work and an interdictor who acts first to strategically compromise certain
elements of the network. Recent applications of stochastic models, valid in-
equalities, and bilinear programming techniques to network interdiction games
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are discussed and the problem is extended to a three-stage game, where the
operator fortifies the network. The chapter by M. Min reviews game theo-
retical approaches in wireless networks, addressing mainly the issues of power
control, cooperation between terminals, security, and radio channel access con-
trol. The chapter by D. Lozovanu is dedicated to time-discrete systems on net-
works where the dynamics of the system is controlled by several players. Nash
and Pareto optimality principles are applied, existence results are derived, and
dynamic programming techniques are utilized. Efficient polynomial-time algo-
rithms are developed in order to find optimal strategies of players in dynamic
games on networks. G. Isac and A. Gosselin address a military application of
viability in terms of differential Lanchester type models. Set-valued analysis
is utilized to introduce the notion of Lanchester type differential inclusions
and to replace the Lanchester coefficients by intervals in order to overcome
the difficulties associated with these coefficients and to facilitate the appli-
cation of such models. In the chapter by A. Nagurney et al., static and dy-
namic models of global supply chains are developed as networks with three
tiers of decision makers. A discrete-time algorithm is proposed that allows for
the discretization of the continuous time trajectories. The proposed supernet-
work framework formalizes the modeling and analysis of global supply chains.
The final chapter by A. Chinchuluun et al. reviews classic game theoretical
approaches to modeling and solving problems in supply chain management.
Both noncooperative and cooperative single-period and multiperiod models
are discussed.

Gainesville, Chania, Thessaloniki A. Chinchuluun, P.M. Pardalos
April 2007 A. Migdalas, L. Pitsoulis
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Minimax: Existence and Stability

Hoang Tuy
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Abstract A unified framework is presented for studying existence and stability con-
ditions for minimax of quasiconvex quasiconcave functions. These theorems include
as special cases refinements of several known results from game theory, optimization,
and nonlinear analysis. In particular, existence conditions are developed that turn
out to be sufficient also for the continuity of the saddle value and stability of the
saddle point under continuous perturbation. Also, a lopsided minimax theorem is es-
tablished that yields as immediate corollaries both von Neumann’s classic minimax
theorem and Nash’s theorem on noncooperative equilibrium.

Key words: minimax theorems, quasiconvex quasiconcave functions, saddle
value, existence conditions, stability conditions, lopsided minimax, coopera-
tive equilibrium

1 Introduction

Let X,Y be two finite-dimensional Euclidean spaces. Given two closed convex
sets C ⊂ X, D ⊂ Y and a function F (x, y) : C ×D → R, we define

γ := inf
x∈C

sup
y∈D

F (x, y), η := sup
y∈D

inf
x∈C

F (x, y). (1)

We are interested in conditions under which γ = η ∈ R, i.e.,

inf
x∈C

sup
y∈D

F (x, y) = sup
y∈D

inf
x∈C

F (x, y) ∈ R. (2)

If this occurs, the common value of γ and η is called a saddle value of the
function F (x, y).

Investigations on the existence of a saddle value for various classes of func-
tions were at the beginning motivated by the theory of games. According to
a classic result of von Neumann [11], later improved by Kneser [9], a saddle
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value exists when C,D are compact convex subsets of X = R
n and Y = R

m,
respectively, while the function F (x, y) is continuous convex in x and con-
tinuous concave in y. Subsequently, it was realized that minimax theorems
also constitute a very useful tool in different areas of nonlinear analysis and
optimization. This has stimulated much research activity over the years for
generalizing and refining this result.

In the first period, much effort was spent on relaxing the assumptions on
convexity-concavity and continuity property of F (x, y) and also compactness
of both C,D. The best known result in this direction was Sion’s theorem [17],
which only required the function F (x, y) to be quasiconvex l.s.c. (lower semi-
continuous) in x, quasiconcave u.s.c. (upper semi-continuous) in y, and one
of the sets C,D (but not necessarily both) to be compact. The second period
began with the work of Wu [25] who established the first minimax theorem in
topological spaces, replacing the convexity-concavity assumption by a more
general topological property. Wu’s theorem required, however, rather restric-
tive assumptions and did not include several minimax results well-known at
the time.

In 1974, by a different approach, Tuy [19, 20] (see also [15, 21, 24]) proved
a topological minimax theorem in the same vein as, but much stronger than,
Wu’s theorem as it did contain most important results currently available
in the field ([9, 12, 13]). The proof of this theorem, besides, was very simple,
making use only of elementary set-theoretical arguments.

However, Tuy’s theorem still required compactness of at least one of the
sets C,D. This assumption turned out to be too restrictive for recent de-
velopments of mathematical programming and nonlinear analysis (see, e.g.,
[1,2] also [6,14]). To cover the cases considered in these works, weaker condi-
tions than compactness of C or D had to be developed, and quasiconvexity-
concavity of F (x, y) seemed to be a convenient condition for ensuring existence
of a saddle value when working in vector topological spaces. Furthermore, con-
ceptually, all the minimax results so far available for quasiconvex quasiconcave
functions look somewhat disparate, so in [22] an effort has been made to clar-
ify the relationship between different existence conditions formulated in these
theorems and on this basis strengthen and refine several known results.

Aside from existence, another important topic is stability condition for the
saddle point and continuity property of the saddle value. The central result
on this question, Golshtein’s theorem [5] (see also [16]), though proved more
than three decades ago, still remains, to our knowledge, an isolated result in
this area. Although the proof of this theorem is elaborate, its assumptions are
too restrictive if one only needs existence and some weak continuity of the
saddle value rather than these properties for the saddle point.

The purpose of the current paper is to provide a sufficiently simple unified
framework for studying existence and stability conditions for the saddle value
and saddle point of quasiconvex quasiconcave functions, and to establish or
to refine various strong minimax theorems known to date for this class of
functions. As it turns out, most of these existence conditions are also sufficient
to ensure stability, in a sense or another, of the saddle value and saddle point.
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After the Introduction, in the second section we discuss fundamental
minimax theorems for quasiconvex quasiconcave functions under weakest con-
ditions. Starting from a basic lemma, established by purely set-theoretical
arguments, various existence conditions are developed, mostly in more or less
refined form. Section 3 deals with continuity and stability of the saddle value
and saddle point under continuous perturbation. Some new results are pre-
sented that include the above-mentioned theorem of Golshtein as a corollary,
while providing, as a by-product, a simple proof for this sophisticated the-
orem. Finally, Section 4 presents a new lopsided minimax theorem that is
an extension of an ordinary minimax theorem but can also be used to de-
rive, in a simple way, Nash theorem on cooperative equilibrium in n-person
games [10].

Although for the sake of simplicity we restrict ourselves to finite dimen-
sional spaces, the reader should be aware that many of the results to be
presented can be easily extended to work in a much more general setting.

2 Existence Theorems

In this section, we discuss conditions to be imposed on the sets C,D and the
function F (x, y) in order to guarantee the existence of a saddle value. Note
that, according to our definition of a saddle value, we require that γ = η ∈ R.
Because always γ ≥ η, this excludes the cases γ = −∞ or η = +∞, which
obviously imply that γ = η = −∞ or γ = η = +∞, respectively.

Following [1], we say that for a given y ∈ D the function x �→ F (x, y)
is l.s.c. (lower semi-continuous) in every line segment if for every a, b ∈ C,
the univariate function φ(λ) = F ((1 − λ)a + λb, y) is l.s.c. on the segment
0 ≤ λ ≤ 1.

The following lemma is fundamental for deriving the basic existence the-
orem, which includes virtually all so far known minimax theorems for quasi-
convex quasiconcave functions.

Lemma 1. (Fundamental Lemma) Assume that the function F (x, y) is qua-
siconvex l.s.c. in x in every line segment and quasiconcave u.s.c. in y. Then
for every nonempty finite set M ⊂ C and every α < γ we have

∩x∈M{y ∈ D| F (x, y) ≥ α} 	= ∅. (3)

Proof. Proceeding by induction, we first prove (3) when |M | = 2. For every
x ∈ C let

D(x) := {y ∈ D| F (x, y) ≥ α}.
Because γ > α, clearly supy∈D F (x, y) > α ∀x ∈ C, and it follows from the
assumptions on F (x, y) that every set D(x), x ∈ C, is nonempty and closed.
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Arguing by contradiction, assume there are a, b ∈ C such that

D(a) ∩D(b) = ∅. (4)

Consider a point xλ = (1 − λ)a + λb with 0 ≤ λ ≤ 1. If y ∈ D(xλ) then, by
quasiconvexity of F (x, y) in x, we have α ≤ F (xλ, y) ≤ max{F (a, y), F (b, y)},
hence

D(xλ) ⊂ D(a) ∪D(b). (5)

Because D(xλ) is convex, while D(a),D(b) are disjoint by (4), D(xλ) cannot
simultaneously meet D(a) and D(b). Consequently, for every λ ∈ [0, 1], one
and only one of the following alternatives holds:

(a) D(xλ) ⊂ D(a); (b) D(xλ) ⊂ D(b).

Denote by La(Lb, respectively) the set of all λ ∈ [0, 1] satisfying (a) (satisfying
(b), respectively). Clearly 0 ∈ La, 1 ∈ Lb, La ∪ Lb = [0, 1] and, analogously
to (5):

D(xλ) ⊂ D(xλ1) ∪D(xλ2) whenever [λ1 ≤ λ ≤ λ2]. (6)

Therefore, λ ∈ La implies [0, λ] ⊂ La, and λ ∈ Lb implies [λ, 1] ⊂ Lb. Let
s = supLa = inf Lb and assume for instance that s ∈ La (the argument is
similar if s ∈ Lb). We show that (4) leads to a contradiction.

We cannot have s = 1, for this would imply D(b) ⊂ D(a). Therefore,
0 ≤ s < 1. Because α < γ ≤ supy∈D F (xs, y), it follows that F (xs, ȳ) > α for
some ȳ ∈ D. Because F (xλ, y) is l.s.c. in λ, there is ε > 0 such that F (xs+ε, ȳ)
> α and so ȳ ∈ D(xs+ε). But ȳ ∈ D(xs) ⊂ D(a), hence D(xs+ε) ⊂ D(a), i.e.,
s + ε ∈ La, contradicting the definition of s. Thus (4) cannot occur, and so
the proposition holds when |M | = 2.

Assuming now that the proposition holds for |M | = k, let us prove it
for |M | = k + 1. Let M = {x1, . . . , xk, xk+1} ⊂ C and D′ = D(xk+1).
From the above, for any α′ ∈ (α, γ) and any x ∈ C we have {y ∈
D| F (xk+1, y) ≥ α′, F (x, y) ≥ α′} 	= ∅, hence {y ∈ D′| F (x, y) ≥ α′} 	= ∅, i.e.,

∀x ∈ C ∃y ∈ D′ F (x, y) ≥ α′,

which implies that infx∈C supy∈D′ F (x, y) ≥ α′ > α. By the induction hypoth-
esis, the proposition holds for k points, so by applying it, with D replaced by
D′, we have

∩ki=1D
′
(xi) 	= ∅,

hence ∩k+1
i=1D(xi) 	= ∅.

Lemma 2. If {Ei| i ∈ I} is an arbitrary collection of closed convex sets in X
whose intersection is nonempty and compact, then there is a finite set J ⊂ I
such that ∩j∈JEj is nonempty and compact.
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Proof. Let Ki be the recession cone of Ei and K the recession cone of E =
∩i∈IEi. As is well-known, K,Ki are closed convex cones, and K = ∩i∈IKi.
Let A,Ai be the intersection of K,Ki, resp., with the unit sphere S = {x ∈
R
n| ‖x‖ = 1}. Clearly A = ∩i∈IAi and Ai, i ∈ I, are closed subsets of the

compact set S. Therefore, if E is bounded, i.e., A = ∅, there must exist a finite
set J ⊂ I such that ∩j∈JAj = ∅. Then the closed set ∩j∈JEj is nonempty
and bounded, hence compact.

An immediate consequence of the above lemmas is the following basic
theorem.

Theorem 1. Assume that the function F (x, y) is quasiconvex l.s.c. in x in
every line segment for fixed y, quasiconcave u.s.c. in y for fixed x, and, in
addition, that

(M) There exist a nonempty finite set M ⊂ C and a real number α ≤ γ
such that the set DM := {y ∈ D| minx∈M F (x, y) ≥ α} is nonempty and
compact.

Then
max
y∈D

inf
x∈C

F (x, y) = inf
x∈C

sup
y∈D

F (x, y). (7)

Proof. Because DM = ∩+∞
k=1D

M
k , with DM

k = {y ∈ D| minx∈M F (x, y) ≥
α− 1/k, and each DM

k is a closed convex set, by Lemma 2 there exists r such
that DM

r is nonempty and compact. Therefore, by replacing α with α− 1/r if
necessary we can assume that α < γ. For a fixed natural h, take a γh ∈ (α, γ)
and consider the sets

Dh(x) = {y ∈ D| min
x′∈M

F (x′, y) ≥ γh, F (x, y) ≥ γh}, x ∈ C.

These are all closed subsets of the compact set DM , and by Lemma 1 they
have the finite intersection property. Therefore, there exists yh ∈ DM such
that infx∈C F (x, yh) ≥ γh. Noting that DM is compact, while the function
y �→ infx∈C F (x, y) is u.s.c., it then follows that for γh → γ, the sequence
{yh} ⊂ DM has a cluster point ȳ ∈ DM such that infx∈C F (x, ȳ) ≥ γ.
We cannot have infx∈C F (x, ȳ) = +∞ because this would imply F (x, ȳ) =
+∞ ∀x ∈ C. Therefore γ ≤ maxy∈DM infx∈C F (x, y) < +∞, and because
always maxy∈D infx∈C F (x, y) ≤ γ = infx∈C supy∈D F (x, y), the equality (7)
follows.

Remark 1. Condition (M) obviously holds if D is compact while γ < +∞,
because for any a ∈ C and M = {a} ⊂ C, the set DM is nonempty. This is
essentially a boundedness condition for D and in fact it is present, in one form
or another, in all particular minimax theorems so far known for quasiconvex
quasiconcave functions.
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Here are various variants of such existence conditions:

(M′) There exists a finite set M ⊂ C such that for every α ∈ R, the set
{y ∈ D| minx∈M F (x, y) ≥ α} is compact;

( ˜M) There exists a finite set M ⊂ C such that minx∈M F (x, y)→ −∞ as
y ∈ D, ‖y‖ → +∞;

(H) There exist α ∈ R such that the set Dα := {y ∈ D| infx∈C F (x, y)
≥ α} is nonempty and compact;

(H′) For every α ∈ R, the set Dα := {y ∈ D| infx∈C F (x, y) ≥ α} is
compact;

(˜H) infx∈C F (x, y)→ −∞ as y ∈ D, ‖y‖ → +∞.
(H∗) The set D∗ := {y ∈ D| infx∈C F (x, y) = η} is nonempty and com-

pact.

Theorem 2. Any one of the above conditions implies (M), while

( ˜M) ⇔ (M′); (8)

(˜H) ⇔ (H′) ⇒ (H) ⇔ (H∗). (9)

Consequently, Theorem 1 still holds with condition (M) replaced by any one
of the above conditions.

Proof. (M′)⇒ (M). If (M′) holds, then, because the function minx∈M F (x, y)
is u.s.c. (as lower envelope of a family of u.s.c. functions in y), while for every
α ∈ R the set {y ∈ D| minx∈M F (x, y) ≥ α} is compact, it is easily seen that
this function has a maximum on D, i.e., maxy∈D minx∈M F (x, y) ∈ R. On the
other hand, from (M′) and the fact infx∈C F (x, y) ≤ minx∈M F (x, y), it follows
that for any α ∈ R, the set {y ∈ D| infx∈C F (x, y) ≥ α} is compact. Then
the u.s.c. function infx∈C F (x, y) must achieve a maximum on D, so that
η = maxy∈D infx∈C F (x, y). By taking ỹ ∈ D such that minx∈M F (x, ỹ) =
maxy∈D minx∈M F (x, y) ≥ η, we have ỹ ∈ DM := {y ∈ D| minx∈M F (x, y) ≥
η}, so the set DM , with η ≤ γ, is nonempty and bounded, i.e., condition (M)
holds.

( ˜M) ⇔ (M′). Immediate.
( ˜M)⇒ (H). If ( ˜M)holds, then for anyα ∈ R, the set {y ∈ D| minx∈M F (x, y)

≥ α} is compact, hence its closed subset {y ∈ D| infx∈C F (x, y) ≥ α}, too,
is compact. On the other hand for α < η, the latter set is nonempty, by the
definition of η, so (H) holds.

(H) ⇒ (M). If (H) holds, i.e., for some α ∈ R the set Dα is nonempty and
compact, then, because Dα = ∩x∈C{y ∈ D| F (x, y) ≥ α}, by Lemma 2 there
exists a nonempty finite set M ⊂ C such that DM is nonempty and compact;
furthermore, Dα 	= ∅ ⇒ α ≤ η ≤ γ, so (M) holds.

(˜H) ⇔ (H′). Immediate.



Minimax: Existence and Stability 9

(H′) ⇒ (H). If (H′) holds, then for every α ∈ R, the set Dα:={y∈D|
infx∈C F (x, y) ≥ α} is compact, and for α ≤ η the set Dα is nonempty from
the definition of η, so (H) holds.

(H) ⇔ (H∗). Immediate.

For any given x ∈ C, we say that the function y �→ F (x, y) is u.s.c.
in every line segment if for any a, b ∈ D the univariate function ψ(λ) =
F (x, (1− λ)a+ λb) is u.s.c. on the segment 0 ≤ λ ≤ 1. Using the obvious re-
lation infx∈C supy∈D F (x, y) = − supx∈C infy∈D(−F (x, y)), we easily deduce
from Theorems 1 and 2 the following propositions:

Theorem 3. Assume that the function F (x, y) is quasiconvex l.s.c. in x for
fixed y, quasiconcave u.s.c. in every line segment in y for fixed x, and, in
addition: (N) There exist a nonempty finite set N ⊂ D and a real number
β such that the set CN := {x ∈ C| maxy∈N F (x, y) ≤ β} is nonempty and
compact;

Then
min
x∈C

sup
y∈D

F (x, y) = sup
y∈D

inf
x∈C

F (x, y). (10)

Theorem 4. Theorem 3 still holds with condition (N) replaced by any one of
the conditions listed below:

(N′) There exists a finite set N ⊂ D such that for every β ∈ R, the set
{x ∈ C| maxy∈N F (x, y) ≤ β} is compact;

(˜N) There exists a finite set N ⊂ D such that maxy∈D F (x, y) → +∞ as
x ∈ C, ‖x‖ → +∞;
(K) There exist β ∈ R such that the set Cβ := {x ∈ C| supy∈D F (x, y)
≤ β} is nonempty and compact;
(K′) For every β ∈ R, the set Cβ := {y ∈ D| infx∈C F (x, y) ≤ β} is
compact;
(˜K) supy∈D F (x, y)→ +∞ as x ∈ C, ‖x‖ → +∞.
(K∗) The set C∗ := {x ∈ C| supy∈D F (x, y) = η} is nonempty and com-
pact.

Remark 2. Most known minimax theorems for quasiconvex quasiconcave func-
tions, including Sion’s well-known result and some refined versions of it as used
in nonlinear analysis (see, e.g., [1, 2]), are special cases of the above proposi-
tions.

Also note that the earliest proofs for minimax theorems used fixed point or
separation arguments in one form or another. The above proof, given originally
in [19, 20], was the first one using only elementary set-theoretical arguments
for establishing general topological minimax theorems. The results in the men-
tioned papers with their proofs have been presented, partially or in full, in
some books (see, e.g., [15, 24]). Nevertheless, exactly the same results were
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rediscovered in [4], with only a difference of notation. Also, the above simple
proof was many years later rediscovered in Joo [7, 8], according to Frenk and
Kassay [3].

In the above propositions, F (x, y) is always assumed to be l.s.c. in x, u.s.c.
in y. We now prove some minimax theorems for functions F (x, y) l.s.c. in
each variable, or u.s.c in each variable.

Lemma 3. Assume that the function F (x, y) is quasiconvex u.s.c in x in every
line segment for fixed y and quasiconcave u.s.c. in y for fixed x. If condition
(M) in Theorem 1 is satisfied, then for any α′ ∈ (α, γ), the family of sets

D(x) := {y ∈ DM | F (x, y) ≥ α′}, x ∈ C,

have the finite intersection property.

Proof. The proof is similar to that of Lemma 1, with the following change in
the argument for showing that (4) cannot occur.

For every y ∈ D(b), because s ∈ La, i.e.,D(xs) ⊂ D(a), we have y /∈ D(xs),
hence F (xs, y) < α′, and by upper semi-continuity of F (xλ, y) in λ there exists
an open interval Iy = (s1, s2) containing s (s1 = s1(y), s2 = s2(y)) such that
F (xλ, y) < α′ for all λ ∈ Iy. Then F (xsi

, y) < α′, i.e., y /∈ D(xsi
), i = 1, 2,

and using the closedness of the sets D(xsi
), i = 1, 2 we can find for each

i = 1, 2 a neighborhood Wi(y) of y such that F (xsi
, z) < α′ ∀z ∈ Wi(y).

Clearly Wy = W1(y) ∩W2(y) is a neighborhood of y such that F (xsi
, z) < α′

for all z ∈ Wy, i.e., z /∈ D(xsi
), i = 1, 2, and hence, z /∈ D(xλ) for all λ ∈ Iy.

Thus for every y ∈ D(b), there exist a neighborhood Wy and an interval Iy
satisfying

F (xλ, z) < α′ ∀λ ∈ Iy,∀z ∈Wy.

BecauseD(b) is a closed subset of the compact setDM , it is itself compact, and
from the family {Wy, y ∈ D(b)} one can extract a finite collection {Wy, y ∈
E}, |E| < +∞, still covering D(b). If λ ∈ I := ∩y∈EIy and y ∈ D(b), then
y ∈ Wy′ for some y′ ∈ E, hence F (xλ, y) < α′. Therefore, D(xλ) ⊂ D(a) for
all λ ∈ I, i.e., I ⊂ La, contradicting the definition of s.

Theorem 5. Assume that the function F (x, y) : C × D → R is quasiconvex
u.s.c. in x in every line segment for fixed y, quasiconcave u.s.c. in y for fixed x.
If condition (M) in Theorem 1 is satisfied, then the equality (7) holds.

Proof. The proof is similar to that of Theorem 1, but using Lemma 3 instead
of Lemma 1. Specifically, for a sequence γk ∈ (α, γ), γk ↗ γ consider the sets

Dk(x) = {y ∈ D| min
x′∈M

F (x′, y) ≥ γk, F (x, y) ≥ γk}, x ∈ C.

For k fixed they are all closed subsets of the compact set DM and by Lemma 3
they have the finite intersection property. Therefore, these sets have a
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nonempty intersection, i.e., there exists yk ∈ DM such that infx∈C F (x, yk) ≥
γk. Because DM is compact, while the function y �→ infx∈C F (x, y) is u.s.c.,
it follows that the sequence {yk} ⊂ DM has a cluster point ȳ ∈ DM such that
infx∈C F (x, ȳ) ≥ γ. Consequently, maxy∈D infx∈C F (x, y) ≥ γ and because
always maxy∈D infx∈C F (x, y) ≤ γ = infx∈C supy∈D F (x, y), the equality (7)
follows.

Theorem 6. Assume that the function F (x, y) : C × D → R is quasiconvex
l.s.c. in x for fixed y, quasiconcave l.s.c. in y in every line segment for fixed x.
If condition (N) in Theorem 3 is satisfied, then the equality (10) holds.

Remark 3. Propositions analogous to Theorems 1 and 1b can also be derived
from Theorems 5 and 6, for example:

If F (x, y) is as in Theorem 5 but satisfies either (H) or (H∗) (instead of
(M)), then (10) holds.

As a special case of Theorem 6, let us mention the following result of
Golshtein ([5], Theorem 2), which was established (by the way, by a rather
elaborate argument) to provide a tool for the foundation of a general duality
theory of convex programming:

Assume that the function F (x, y) : C×D → R is convex continuous in x for
fixed y and concave in y for fixed x. If the set C∗ := {x ∈ C| supy∈D F (x, y) =
γ} is nonempty and compact, then the equality (10) holds.

Proof. A concave function on a convex set is always l.s.c. in every line segment,
while the assumption about C∗ is nothing but condition (K*) in Theorem 4,
which in turn implies condition (N) in Theorem 3.

A point (x̄, ȳ) ∈ C ×D is said to be a saddle point of F (x, y) on the set
C ×D if it satisfies

F (x̄, y) ≤ F (x̄, ȳ) ≤ F (x, ȳ) ∀x ∈ C, ∀y ∈ D. (11)

As is well-known (see, e.g., [2], Proposition 1.2, Chapter VI), F (x, y) possesses
a saddle point on C ×D if and only if

min
x∈C

sup
y∈D

F (x, y) = max
y∈D

inf
x∈C

F (x, y)

and then (x̄, ȳ) is a saddle point if and only if (x̄, ȳ) ∈ C∗ ×D∗, where

C∗ := {x ∈ C| sup
y∈D

F (x, y) = η}, D∗ := {y ∈ D| inf
x∈C

F (x, y) = γ}, (12)

and γ = η is the saddle value.

Combining Theorems 1 and 3 yields:
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Theorem 7. Let F (x, y) be a function quasiconvex l.s.c in x for fixed y, qua-
siconcave u.s.c. in y for fixed x. Assume that

(MN) There exist two nonempty finite sets M ⊂ C, N ⊂ D along with
real numbers α, β such that α ≤ γ, η ≤ β, and the following sets are nonempty
and compact:

CN := {x ∈ C| max
y∈N

F (x, y) ≤ β}, DM := {y ∈ D| min
x∈M

F (x, y) ≥ α}.
(13)

Then the function F (x, y) possesses a saddle point on C ×D.

Proof. By Theorem 1, maxy∈D infx∈C F (x, y) = γ, and by Theorem 3,
minx∈D supy∈D F (x, y) = η, hence (11).

Corollary 1. With F (x, y) as in Theorem 7, if the sets C∗ and D∗ are non-
empty and compact, then F (x, y) has a saddle point (x̄, ȳ) on C ×D.

Proof. Then conditions (H∗) and (K∗) hold, and this implies (MN), by
Theorems 2 and 4.

3 Stability Theorems

We now turn to conditions for the existence and continuity of the saddle value
and/or the saddle point of a function depending upon a parameter.

Let C,D,X, Y be as previously specified, let Ω be a metric space and
F (u, x, y) : Ω×C×D → R, a function continuous on Ω×C×D, quasiconvex
in x for fixed (u, y) and quasiconcave in y for fixed (u, x). For every u ∈ Ω
define

γ(u) = inf
x∈C

sup
y∈D

F (u, x, y), η(u) = sup
y∈D

inf
x∈C

F (u, x, y). (14)

It is convenient to begin with a simple fact that will be often needed in
this section.

Lemma 4. Let D̂ be a compact set in Y and g(u, y) be an u.s.c. function
on Ω × D̂ satisfying maxy∈D̂ g(u

∗, y) < 0. Then there exists an open ball U
around u∗ such that

max
y∈D̂

g(u, y) < 0 ∀u ∈ U.

Proof. By upper semi-continuity, for fixed y ∈ D̂ there exists an open ball Uy
around u∗ and an open ball Vy around y such that g(u, y′) < 0 ∀u∈Uy,∀y′∈Vy.
Because D̂ is compact, a finite set J ⊂ D̂ exists such that D̂ ⊂ ∪y∈JVy. Setting
U = ∩y∈JUy yields an open ball U around u∗ such that for every y ∈ D̂, u ∈ U
we have y ∈ Vy′ for some y′ ∈ J, while u ∈ Uy′ , hence g(u, y) < 0.
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The following theorems have been established in [23], under slightly weaker
continuity conditions for F (u, x, y). For a given u∗ ∈ Ω, we set

γ∗ = γ(u∗), η∗ = η(u∗).

Theorem 8. Assume condition (M) holds, i.e., there exist a nonempty fi-
nite set M ⊂ C and a real number α ≤ γ∗ such that the set DM (u∗) :=
{y ∈ D| minx∈M F (u∗, x, y) ≥ α} is nonempty and compact. Then γ∗ = η∗

and there exist a compact set D0 ⊂ D and an open ball U around u∗ such that

∅ 	= {y ∈ D| min
x∈M

F (u, x, y) ≥ α} ⊂ D0 ∀u ∈ U, (15)

and the function η(u) = supy∈D infx∈C F (u, x, y) is upper semi-continuous
at u∗.

Proof. First, by Theorem 1, η∗=γ∗.Now, define ψ(u, y) := minx∈M F (u, x, y).
Clearly DM (u∗) = {y ∈ D| ψ(u∗, y) ≥ α} = ∩+∞

k=1D
M
k where DM

k (u∗) := {y ∈
Y | ψ(u∗, y) ≥ α−1/k} are closed convex sets. Hence, by Lemma 2 there exists
k0 such that DM

k0
(u∗) is compact, and by replacing α with α′ := α− 1/k0 < α

it can be assumed that α < γ∗ and

max
y∈DM (u∗)

ψ(u∗, y) > α.

Because ψ(u, y) is pointwise minimum of finitely many functions continuous
in (u, y) and quasiconcave in y, it is continuous in (u, y) and quasiconcave
in y. Therefore, the function u �→ maxy∈DM (u∗) ψ(u, y) is l.s.c. and because
maxy∈DM (u∗) ψ(u∗, y) > α, there is an open ball U around u∗ such that

max
y∈DM (u∗)

ψ(u, y) > α ∀u ∈ U. (16)

In particular, DM (u) := {y ∈ D| ψ(u, y) ≥ α} 	= ∅ ∀u ∈ U. Let us show that
the ball U can be chosen so that all sets DM (u), u ∈ U, are contained in a
compact set D0 ⊂ D.

Let ˜D = DM (u∗). It suffices of course to consider the case when D is
noncompact, so that D \ ˜D 	= ∅. For δ > 0 consider the sets

Dδ = {y ∈ D| δ ≤ d(y, ˜D) ≤ 2δ}, D0 = {y ∈ D| d(y, ˜D) ≤ 2δ},

where d(y, ˜D) = miny′∈ ˜D ‖y − y′‖ is the distance from y to the set ˜D.

Because ˜D is nonempty by Lemma 1 and compact by assumption, Dδ and
D0 are also nonempty and compact, and we have

ψ(u∗, y) < α ∀y ∈ Dδ. (17)

But the function ψ(u, y) is u.s.c. as it is pointwise minimum of a family of
continuous functions, so by Lemma 4 there exists an open ball around u∗

(which can be considered to be the same U) such that
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ψ(u, y) < α ∀u ∈ U, ∀y ∈ Dδ. (18)

Furthermore, asD\D0 	= ∅, we can consider the value ψ(u, y) at any u ∈ U and
y ∈ D \D0. From (16), there is a point y′ ∈ ˜D such that ψ(u, y′) > α. Then
the line segment [y, y′] joining y with y′ contains at least a point y′′ ∈ Dδ.
Because ψ(u, y′) > α > ψ(u, y′′) by (18), i.e., ψ(u, y′) > ψ(u, y′′), while
y′′ = τy + (1 − τ)y′, 0 < τ < 1, it follows from the quasiconcavity of the
function y �→ ψ(u, y) that its minimum over the line segment [y, y′] is attained
at y, i.e., ψ(u, y) < α. Therefore,

ψ(u, y) < α ∀u ∈ U, ∀y ∈ D\D0, (19)

which implies that {y ∈ D| ψ(u, y) ≥ α} ⊂ D0 ∀u ∈ U, proving (15). It
remains to prove the upper semi-continuity of η(u) at u∗.

By Theorem 1, maxy∈D infx∈C F (u∗, x, y) = η∗ ≥ α, hence the maximum of
infx∈C F (u∗, x, y) is achieved at a point inD0. So maxy∈D0 infx∈C F (u∗, x, y) =
η∗, and consequently, for any given ε > 0,

max
y∈D0

inf
x∈C

F (u∗, x, y) < η∗ + ε.

Because the function (u, y) �→ infx∈C F (u, x, y) is u.s.c. (pointwise minimum
of a family of continuous functions), by Lemma 4 there exists an open ball
W ⊂ U around u∗ such that

max
y∈D0

inf
x∈C

F (u, x, y) < η∗ + ε ∀u ∈W. (20)

But from (19)

sup
y∈D\D0

inf
x∈C

F (u, x, y) ≤ sup
y∈D\D0

ψ(u, y) ≤ α ∀u ∈W. (21)

Hence, by noting that α ≤ γ∗ = η∗,

η(u) := sup
y∈D

inf
x∈C

F (u, x, y) ≤ η(u∗) + ε ∀u ∈W.

This means that η(u) is u.s.c. at u∗, thereby completing the proof of the
theorem.

Theorem 9. Assume condition (N) holds, i.e., there exist a nonempty finite
set N ⊂ D and a real number β ≥ η∗ such that the set CN (u∗) := {x ∈
C| maxy∈N F (u∗, x, y) ≤ β} is nonempty and compact. Then η∗ = γ∗, and
there exist a compact set C0 ⊂ C and an open ball U around u∗ such that

∅ 	= {x ∈ C| max
y∈N

F (u, x, y) ≤ β} ⊂ C0 ∀u ∈ U, (22)

and the function γ(u) = infx∈C supy∈D F (u, x, y) is lower semi-continuous
at u∗.
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Proof. Analogous to Theorem 8.

As was recalled earlier, the function F (u, x, y) possesses a saddle point on
C ×D if and only if

min
x∈C

sup
y∈D

F (u, x, y) = max
y∈D

sup
x∈C

F (u, x, y), (23)

and then a point (x̄, ȳ) is a saddle point if and only if (x̄, ȳ) ∈ C∗(u)×D∗(u),
where

C∗(u) := argminx∈C(sup
y∈D

F (u, x, y)), D∗(u) := argmaxy∈D( inf
x∈C

F (u, x, y)).

Theorem 10. Assume condition (MN), i.e.,

(MN) There exist two nonempty finite sets M ⊂ X,N ⊂ Y, along with
real numbers α, β such that α ≤ γ∗, η∗ ≤ β, and the sets CN (u∗) := {x ∈
X| maxy∈N F (u∗, x, y) ≤ β}, DM (u∗) := {y ∈ Y | minx∈M F (u∗, x, y)
≥ α} are nonempty and compact.

Then there exists an open ball U around u∗ such that for each u ∈ U, the func-
tion (x, y) �→ F (u, x, y) possesses a saddle point on C ×D with the property
that the saddle value is a continuous function of u on U and the set-valued
map u �→ C∗(u)×D∗(u) is upper semi-continuous at every u ∈ U.

Proof. As mentioned at the beginning of the proof of Theorem 8, without loss
of generality we can assume that α < γ∗, η∗ < β. By Theorems 8 and 9, there
are two compact sets C0 ⊂ C, D0 ⊂ D, and an open ball U around u∗ such
that for each u ∈ U :

∅ 	= {x ∈ C| maxy∈N F (u, x, y) ≤ β} ⊂ C0, (24)
∅ 	= {y ∈ D| minx∈M F (u, x, y) ≥ α} ⊂ D0. (25)

We show that U can be selected so that for each u ∈ U :

min
x∈C

sup
y∈D

F (u, x, y) = η(u). (26)

Because supy∈D infx∈C F (u∗, x, y) = η∗ < β, we have

max
y∈D0

inf
x∈C

F (u∗, x, y) < β.

In view of the upper semi-continuity of the function (u, y) �→ infx∈C F (u, x, y),
by Lemma 4 there exists an open ball around u∗ (which can be considered to be
the same U) such that maxy∈D0 infx∈C F (u, x, y) < β ∀u ∈ U. Because D0 is
compact, this implies, by Theorem 1, infx∈C supy∈D0 F (u, x, y) < β ∀u ∈ U,
and so the set {x ∈ C| supy∈D F (u, x, y) ≤ β} is nonempty. But this set
is obviously contained in the set {x ∈ X| maxy∈N F (u, x, y) ≤ β}. Hence,
according to (24),
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∅ 	= {x ∈ X| sup
y∈D

F (u, x, y) ≤ β} ⊂ C0. (27)

This means that condition (K) holds, and, consequently, by Theorem 4 we
must have (26). Also, (27) implies that

∅ 	= C∗(u) = argminx∈C(sup
y∈D

F (u, x, y)) ⊂ C0.

Analogously, we show that the ball U can be chosen so that for each u ∈ U :

max
y∈D

inf
x∈C

F (u, x, y) = γ(u), ∅ 	= D∗(u) = argmaxy∈D( inf
x∈C

F (u, x, y)) ⊂ D0.

Hence,
min
x∈C

sup
y∈D

F (u, x, y) = max
y∈D

inf
x∈C

F (u, x, y) ∀u ∈ U,

and so for every u ∈ U , the set C∗(u)×D∗(u) of saddle points is nonempty.
Furthermore, the saddle value σ(u) is continuous at u∗ by virtue of

Theorems 8 and 9. Let us prove the upper semi-continuity of the mapping
u �→ C∗(u)×D∗(u) at u∗. Let (xν , yν) ∈ C∗(uν)×D∗(uν), xν → x∗, yν →
y∗, uν → u∗. Then F (uν , xν , yν) = σ(uν), hence, by continuity, F (u∗, x∗, y∗) =
σ(u∗), i.e.,

sup
y∈D

inf
x∈C

F (u∗, x, y) = F (u∗, x∗, y∗) = inf
x∈C

sup
y∈D

F (u∗, x, y)

whence (x∗, y∗) ∈ C∗(u∗) × D∗(u∗). This means that the mapping u →
C∗(u) × D∗(u) is closed and hence, u.s.c. at u∗, because C∗(u) × D∗(u) ⊂
C0 ×D0 with C0 ×D0 compact.

Because by Theorems 2 and 4 condition (HK) implies (MN), the state of
affairs at every u ∈ U is exactly the same as that at u∗. Therefore the saddle
value is continuous, and the set-valued mapping C∗(u)×D∗(u) is upper semi-
continuous, at every u ∈ U. This completes the proof of the theorem.

As immediate consequence of Theorem 10, we obtain the following impor-
tant result of Golshtein established in [5] by a much more elaborate proof.

Corollary 2. The conclusion of Theorem 10 remains valid if the following
condition is satisfied:

(CD) The sets C∗(u∗) := {x ∈ C| supy∈D F (u∗, x, y) = γ∗} and
D∗(u∗) := {y ∈ D| infx∈C F (u∗, x, y) = η∗} are nonempty and

compact.

Proof. Using the representations

C∗(u∗) = {x ∈ C| sup
y∈D

F (u∗, x, y) ≤ η∗} = ∩y∈D{x ∈ C| F (u∗, x, y) ≤ η∗},

D∗(u∗) = {y ∈ D| inf
x∈C

F (u∗, x, y) ≥ γ∗ = ∩x∈C{y ∈ D| F (u∗, x, y) ≥ γ∗},

one easily derives from Lemma 2 that assumption (CD) implies (MN) for some
nonempty finite sets M ⊂ C,N ⊂ D and real numbers α = γ∗, β = η∗.
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Corollary 3. The conclusion of Theorem 10 remains valid if the following
condition is satisfied:

( ˜M˜N) There exist two nonempty finite sets M ⊂ C, N ⊂ D satisfying

max
x∈M

F (u∗, x, y)→ −∞ as y ∈ D, ‖y‖ → +∞.

min
y∈N

F (u∗, x, y)→ +∞ as x ∈ C, ‖x‖ → +∞.

Proof. This follows from Theorems 10 and 2, 4.

4 Lopsided Minimax and Noncooperative Equilibrium

Consider a two-person zero-sum game (C,D,F (x, y)) where C,D are the strat-
egy sets of the players, and F (x, y) is the “loss” of the first player (the “gain”
of the second player) when the first player chooses x and the second player
chooses y. Following Theorem 7, if C,D are compact convex sets and F (x, y)
is a function continuous on C ×D, quasiconvex in x and quasiconcave in y,
then the game has an equilibrium expressed by a saddle point of the function
F (x, y).

Suppose now that F (x, y) is not quasiconvex in x while all other conditions
in the just stated minimax theorem are satisfied. If for each strategy x ∈ C
the second player always responds by a strategy y maximizing F (x, y), then
how will things change?

An answer to this question is provided by a proposition that is a direct
extension of the minimax proposition and can be termed a lopsided minimax
theorem because of the dissymmetry between the two players. As it turns out,
this extension, furthermore, includes as an immediate corollary the famous
theorem of Nash on noncooperative equilibrium in n-person games.

Theorem 11. Let C be a convex subset of R
m, D a convex compact subset

of R
n, F (x, y) a continuous function on C × D, quasiconcave in y for fixed

x. If Z : D �→ 2C is an upper semi-continuous set-valued map from D to C,
such that for every y ∈ D, Z(y) is a nonempty convex compact set, then

inf
x∈C

max
y∈D

F (x, y) ≤ max
y∈D

max
x∈Z(y)

F (x, y). (28)

Proof. We first show that the set C̄ = ∪y∈DZ(y) is compact. To this end, let
Wt, t ∈ T, be a family of open sets covering C̄. For each fixed y ∈ D, because
Z(y) is compact, there exists a finite set I(y) ⊂ T, such that Z(y) ⊂ ∪i∈I(y)Wi.
In view of the upper semi-continuity of the set-valued map Z, there exists an
open ball V (y) around y such that Z(y′) ⊂ ∪i∈I(y)Wi ∀y′ ∈ V (y). Then,
using the compactness of D, we can find a finite set E ⊂ D such that D is
entirely covered by ∪y∈EV (y). Clearly the finite family Wi, i ∈ I(y), y ∈ E}
is a covering of C̄. Thus from any open covering of C̄, one can extract a finite
subcovering. This proves the compactness of C̄ and hence also the compactness
of its convex hull C ′.
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Now for every x ∈ C define f(x) := {y ∈ D| F (x, y) = maxy′∈D F (x, y′)}.
Clearly, for every x ∈ C, f(x) is a nonempty convex compact subset of D.
We contend that x �→ f(x) is a closed set-valued map from C to D. In-
deed, consider a sequence (xk, yk) ∈ C × D such that yk ∈ f(xk), xk →
x0, yk → y0 (k → +∞). Because yk ∈ f(xk), we have F (xk, yk) ≥
F (xk, y) ∀y ∈ D, hence, by continuity, F (x0, y0) ≥ F (x0, y) ∀y ∈ D,
i.e., y0 ∈ f(x0), proving the closedness of the map x �→ f(x). In view of
the compactness of D, this closed set-valued map is upper semi-continuous
(see, e.g., [1], Chapter 3, Corollary 9) and hence, so is the set-valued map
Γ : C ′ × D :→ 2C

′×D defined by Γ (x, y) = Z(y) × f(x). By the Kakutani
fixed point theorem, there exists a point (x∗, y∗) ∈ Γ (x∗, y∗) = Z(y∗)×f(x∗),
i.e., such that y∗ ∈ f(x∗) and x∗ ∈ Z(y∗). If maxy∈D supx∈Z(y) F (x, y) = α,
i.e., F (x, y) ≤ α ∀y ∈ D, ∀x ∈ Z(y), then, because x∗ ∈ Z(y∗), y∗ ∈
f(x∗) ⊂ D, we have F (x∗, y∗) ≤ α and F (x∗, y∗) = maxy∈D F (x∗, y), hence
infx∈C maxy∈D F (x, y) ≤ α. This proves (28).

A special case of this lopsided minimax theorem is the following minimax
proposition mentioned at the beginning of this section:

Corollary 4. (von Neumann [12]) Let C ⊂ R
m,D ⊂ R

n be compact convex
sets, and F (x, y) a function continuous on C ×D, quasiconvex in x for fixed
y and quasiconcave in y for fixed x. Then

min
x∈C

max
y∈D

F (x, y) = max
y∈D

min
x∈C

F (x, y).

Proof. It suffices to define Z(y) = argminx∈CF (x, y)} and to observe that
maxx∈Z(y) F (x, y) = minx∈C F (x, y). Then by Theorem 11

min
x∈C

max
y∈D

F (x, y) ≤ max
y∈D

min
x∈C

F (x, y),

and the reverse inequality is always true.

The following theorem is simply an analogue of Theorem 11.

Theorem 12. Let C be a convex subset of R
m, D a convex compact subset

of R
n, F (x, y) a continuous function on C ×D, quasiconvex in y for fixed x.

If Z : D �→ 2C is an upper semi-continuous set-valued map from D to C, such
that for every y ∈ D, Z(y) is a nonempty convex compact set, then

sup
x∈C

min
y∈D

F (x, y) ≥ min
y∈D

min
x∈Z(y)

F (x, y). (29)

Remark 4. A weaker version of the above lopsided minimax theorem (with
both C,D compact) was established many years ago as an extension of Walras’
excess demand theorem in Mathematical Economics [18] and was proven to
be equivalent to the Kakutani fixed point theorem. Because in this case (29)
implies, for every α ∈ R :
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min
y∈D

inf
x∈Z(y)

F (x, y) ≥ α⇒ max
x∈C

min
y∈D

F (x, y) ≥ α,

the above theorem has the following transparent heuristic interpretation:

Suppose the utility function F (x, y) of a company depends upon a variable
x ∈ C under its control and a variable y ∈ D outside its control. If for every
y ∈ D there exists for the company a set Z(y) ⊂ C every element of which
guarantees a utility level no less than α, then, under suitable conditions, there
exists for the company an x∗ ∈ C guaranteeing a utility level no less than α,
whatever y ∈ D may be.

No wonder that Theorem 11 (or Theorem 12), which is an extension of an
ordinary minimax theorem, can also be used to directly derive Nash’s nonco-
operative equilibrium theorem for n-person games. A link is thus established
between minimax and noncooperative equilibrium concepts.

Consider an n-person game in which the strategy set Ci of the player i
is a subset of a finite-dimensional Euclidean space Xi. When the player i
chooses a strategy xi ∈ Ci, the situation of the game is described by the
vector x = (x1, . . . , xn) ∈

∏n
i=1 Ci. In that situation, the player i obtains a

payoff fi(x).
Assume that each player does not know which strategy is taken by the

other players. A vector x̃ ∈
∏n

i=1 Ci is then called a Nash equilibrium if for
every i = 1, . . . , n we have

fi(x̃1, x̃2, . . . , x̃n) = max
xi∈Ci

fi(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n).

By xī denote the vector formed by the xj with j 	= i :

xī = (x1, . . . , xi−1, xi+1, . . . , xn),

so that x = (x1, x1̄) = (x2, x2̄) = · · · = (xn, xn̄) (after rearranging the com-
ponents if necessary). With this notation, the equilibrium condition can be
written as

fi(x̃) = max
yi∈Ci

fi(yi, x̃ī).

Theorem 13. (Nash [10]) Assume that for each i = 1, . . . , n the set Ci is
convex compact, the function fi is continuous, and the function yi �→ fi(yi, xī)
is concave. Then there exists a Nash equilibrium.

Proof. Let C =
∏n

i=1 Ci and consider the function F (x, y) defined on C×C by

F (x, y) =
n
∑

i=1

(fi(x)− fi(yi, xī)).

The set C is convex, compact as the Cartesian product of n convex compact
sets, and the function F (x, y) is jointly continuous in x, y and convex in y
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for fixed x. By setting D = C, Z(y) := {y}, the conditions of Theorem 12
are satisfied. Because minx∈Z(y) F (x, y) = F (y, y) = 0, it follows from (29)
that supx∈C miny∈C F (x, y) ≥ 0, and hence, maxx∈C miny∈C F (x, y) ≥ 0,
because the function x �→ miny∈C F (x, y) is u.s.c. and the set C is compact.
Consequently, there exists x̃ ∈ C such that

F (x̃, y) =
n
∑

i=1

(fi(x̃)− fi(yi, x̃ī)) ≥ 0 ∀y ∈ C.

Fixing an arbitrary i and letting y := (yi, x̃ī) yields

fi(x̃)− fi(yi, x̃ī) +
∑

j �=i

(fi(x̃j , x̃ĵ)− fj(yj , x̃j̄)) ≥ 0 ∀y ∈ C.

But for each j 	= i we have hj = x̃j , so (x̃j , x̃j̄) = (yj , x̃j̄). Therefore, for every
i = 1, . . . , n :

fi(x̃) ≥ fi(yi, x̃ī) ∀yi ∈ Ci,

which implies that x̃ is a Nash equilibrium.

5 Conclusion

In this paper, we have developed a unified approach to existence and stability
conditions for the saddle value and saddle point of a quasiconvex quasiconcave
function. It turned out that, under usual assumptions, condition (M) ((N),
respectively) ensures not only existence but also upper (lower, respectively)
semi-continuity of the saddle value under continuous perturbation, and con-
dition (MN) ensures both existence and upper semi-continuity of the saddle
point. Also, a lopsided minimax theorem is established that yields as imme-
diate corollaries von Neumann’s minimax theorem for two-person zero-sum
games as well as Nash’s theorem on equilibrium in n-person games.

Acknowledgment. The author is grateful to Dr. T.X. Duc Ha for helpful comments.
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Abstract In this chapter, we give an overview of various applications of a recent
minimax theorem. Among them, there are some multiplicity theorems for nonlin-
ear equations as well as a general well-posedness result for functionals with locally
Lipschitzian derivative.

Key words: minimax theorems, multiplicity of solutions, nonlinear equations,
p-Laplacian, well-posed optimization problems

1 Introduction

Let X and Y be two nonempty sets, and let f : X × Y → R be a given
function.

The object of minimax theory, in its classic sense, is to find conditions on
X,Y and f that are sufficient to guarantee the validity of the equality

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

In this paper, we do not intend at all to offer a comprehensive survey of the
subject. For such a survey, we refer to the excellent [44].

The current paper should be rather considered, in the spirit, as a con-
tinuation of [33]. This latter was devoted to give an overview of the various
applications ([25,26,30–32,35]) of the following result proved in [29].

Theorem 1. Let X be a topological space, Y a compact real interval, and
f : X × Y → R. Assume that, for each ρ ∈ R, x0 ∈ X, y0 ∈ Y , the sets

{x ∈ X : f(x, y0) ≤ ρ}
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and
{y ∈ Y : f(x0, y) > ρ}

are connected. In addition, assume that at least one of the following three sets
of conditions is satisfied:

(h1) f(x, ·) is upper semicontinuous in Y for each x ∈ X, and f(·, y) is lower
semicontinuous in X for each y ∈ Y ;

(h2) f is upper semicontinuous in X × Y ;
(h3) X is compact, and f is lower semicontinuous in X × Y .

Then, one has

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

Recently, in [38], we revisited Theorem 1 extending it in the following way:

Theorem 2. Let X be a topological space, Y ⊆ R an interval, and f : X ×
Y → R a function such that f(x, ·) is continuous for all x ∈ X. Assume
that there exist a number ρ∗ > supY infX f , a point ŷ ∈ Y , and two sets
D1,D2 ⊆ Y , both dense in Y , such that for each ρ ∈]−∞, ρ∗[, the following
conditions hold:
(α) the set {y ∈ Y : f(x, y) > ρ} is an interval for all x ∈ X;
(β) the set {x ∈ X : f(x, y) ≤ ρ} is closed for all y ∈ D1 and compact for
y = ŷ, and the set {x ∈ X : f(x, y) < ρ} is connected for all y ∈ D2.

Then, one has

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

As it will be remarked later, when Y is compact, Theorem 2 holds without
requiring the existence of the point ŷ with the indicated property. Likewise,
when D1 = Y , it is enough to assume that f(x, ·) is upper semicontinuous for
all x ∈ X.

The aim of the current paper is just to survey some applications of
Theorem 2.

Theorems 1 and 2 belong to the class of the so-called topological mini-
max theorems, due to the fact that the assumptions are of purely topological
nature.

From a theoretical point of view, the best topological minimax theorem
is, in our opinion, the following result by H. König [18]:

Theorem 3. Let X,Y be two topological spaces, with X compact. Assume
that, for each x ∈ X, the function f(x, ·) is upper semicontinuous in
Y and that, for each y ∈ Y , the function f(·, y) is lower semicontinuous
in X. Further, assume that:

(i1) for each ρ ∈ R and each nonempty finite set H ⊆ Y , the set
⋂

y∈H
{x ∈ X : f(x, y) < ρ}

is connected;
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(i2) for each ρ ∈ R and each nonempty set H ⊆ X, the set
⋂

x∈H
{y ∈ Y : f(x, y) > ρ}

is connected.

Then, one has
sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

In [44] is well described the process of successive improvements ([16, 17, 48])
of the first topological minimax theorem [50], which just culminated with
Konig’s result.

We want to repeat that Theorem 3 is a great theoretical result. However,
if we pass to the natural question of how can assumptions (i1) and (i2) be
satisfied, then we encounter serious difficulties. In fact, the natural general
situation in which (i1) and (i2) are satisfied is when X and Y are convex
sets in topological vector spaces and all the sets {x ∈ X : f(x, y) < ρ} and
{y ∈ Y : f(x, y) > ρ} are convex. Out of such a setting, checking (i1) and (i2)
becomes extremely difficult, as the intersection of two even “extremely simple”
connected sets fails to be connected. In other words, we can conclude that,
apart from very specific situations, Theorem 3 becomes canonically applicable
when it assumes the fashion of Sion minimax theorem [46] which, in turn,
improved the most classic results of the theory, due to Von Neumann [49], Ky
Fan [13], and Nikaidô [27].

On the other hand, without further assumption on Y , there is no hope to
achieve the optimal version of Theorem 3 coming out from removing intersec-
tion in (i1) and (i2) (that is, assuming that they are satisfied simply when H
is a singleton). In this connection, consider the following example. Take:

X = {(t, u) ∈ R2 : t2 + u2 = 1}

Y = {(v, z) ∈ R2 : v2 + z2 ≤ 1}

and, for each (t, u) ∈ X, (v, z) ∈ Y,

f(t, u, v, z) = tv + uz.

So, for fixed (t, u) ∈ X, we have

sup
(v,z)∈Y

f(t, u, v, z) =
√

t2 + u2 = 1.

Moreover, for fixed (v, z) ∈ Y , we have

inf
(t,u)∈X

f(t, u, v, z) = −
√

v2 + z2.
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Hence, it follows that

0 = sup
(v,z)∈Y

inf
(t,u)∈X

f(t, u, v, z) < inf
(t,u)∈X

sup
(v,z)∈Y

f(t, u, v, z) = 1.

Now, come back to Theorems 1 and 2. On the basis of the discussion above,
they can be regarded as optimal versions of Theorem 3 when Y is a real
interval. Of course, this very severe restriction on Y (that, we repeat, is nec-
essary for being able to assume simply the connectedness of the single level
sets {x ∈ X : f(x, y) < ρ}) prevents the use of Theorems 1 and 2 in many
important instances (as the theory of duality [41], or the theory of monotone
operators [45]). Nevertheless, there are likewise important cases where the sec-
ond variable of the considered function f runs over an interval. In these cases,
the use of Theorems 1 and 2 allows one to get results that are incomparably
better than those that one could get applying Theorem 3.

In this connection, the most enlightening example is the case of an integral
functional on an Lp space.

So, let (T,F , µ) be a σ-finite nonatomic measure space, E a real Banach
space (E 	= {0}), and p a real number greater than or equal to 1.

As usual, Lp(T,E) denotes the space of all (equivalence classes of) strongly
µ-measurable functions u : T → E such that

∫

T
‖ u(t) ‖p dµ < +∞, equipped

with the norm ‖ u ‖Lp(T,E)= (
∫

T
‖ u(t) ‖p dµ)

1
p .

A set D ⊆ Lp(T,E) is said to be decomposable if, for every u, v ∈ D and
every S ∈ F , the function t→ χS(t)u(t)+(1−χS(t))v(t) belongs to S, where
χS denotes the characteristic function of S.

A function ϕ : T×E → R is said to be sup-measurable if for every strongly
µ-measurable function u : T → E, the function t→ ϕ(t, u(t)) is µ-measurable.

In [42], J. Saint Raymond established the following very interesting result:

Theorem 4. Let ϕ : T × E → R be a sup-measurable function, and let D ⊆
Lp(T,E) be a decomposable set.

Then, if we put

S = {u ∈ D : ϕ(·, u(·)) ∈ L1(T )},

for each ρ ∈ R, the set
{

u ∈ S :
∫

T

ϕ(t, u(t))dµ ≤ ρ
}

is arcwise connected.

Then, applying Theorem 1 via Theorem 4, we get

Theorem 5. Let Y ⊆ R be a compact interval, X ⊆ Lp(T,E) a decomposable
set, ϕ : T×E×Y → R a function that is sup-measurable in T×E and concave
in Y . Moreover, assume that ϕ(·, u(·), y) ∈ L1(T ) for all u ∈ X, y ∈ Y .
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Finally, suppose that the functional u →
∫

T
ϕ(t, u(t), y)dµ is lower semi-

continuous in X for each y ∈ Y , and that the function y →
∫

T
ϕ(t, u(t), y)dµ

is upper semicontinuous in Y for each u ∈ X.
Then, one has

sup
y∈Y

inf
u∈X

∫

T

ϕ(t, u(t), y)dµ = inf
u∈X

sup
y∈Y

∫

T

ϕ(t, u(t), y)dµ.

Note that to get Theorem 5 via Theorem 3, we would be forced, in practice, to
assume two spurious assumptions: X should be convex and weakly compact,
and ϕ(t, ·, y) should be convex for each (t, y) ∈ T × Y .

From Theorem 5, in turn, many consequences follow. Let us here recall
some of them.

Theorem 6. Let ϕ : T × E → R be a sup-measurable function. Assume that
there exist α ∈ L1(T ), γi ∈]0, 1[ and βi ∈ L

p
p−γi (T ) (i = 1, . . . , k) such that

−α(t) ≤ ϕ(t, x) ≤ α(t) +
k
∑

i=1

βi(t) ‖ x ‖γi

for almost every t ∈ T and for every x ∈ E.
Then, for every decomposable linear subspace X of Lp(T,E) and every

closed hyperplane V of X, one has

inf
u∈V

∫

T

ϕ(t, u(t))dµ = inf
u∈X

∫

T

ϕ(t, u(t))dµ.

Let us now observe a consequence of Theorem 6 that extends the classic fact
that, for γ ∈]0, 1[, the topological dual of Lγ(T,E) reduces to zero. Precisely,
we denote by M the set of all metrics d on Lp(T,E) of the following type:

d(u, v) =
k
∑

i=1

∫

T

βi(t) ‖ u(t)− v(t) ‖γi dµ

where u, v ∈ Lp(T,E), γi ∈]0, 1[, βi ∈ L
p

p−γi (T ), βi > 0 in T (i = 1, . . . , k).
Note that each d ∈ M is a metric inducing a vector topology that is weaker
than the ‖ · ‖Lp(T,E)-topology.

Theorem 7. For every d ∈ M and every decomposable linear subspace X of
Lp(T,E), the topological dual of (X, d) reduces to zero.

When we take X = Lp(T,E), the conclusion of Theorem 6 can be extended
to a class of functions ϕ with a more general growth.

Theorem 8. Let ϕ : T × E → [0,+∞[ be such that ϕ(·, x) is µ-measurable
for each x ∈ E and ϕ(t, ·) is Lipschitzian with Lipschitz constant M(t) for
almost every t ∈ T , where M ∈ L

p
p−1 (T ). Assume that ϕ(·, 0) ∈ L1(T ) and
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that there exists a sequence {λn} in ]0,+∞[, with limn→+∞ λn = +∞, such
that, for almost every t ∈ T and for every x ∈ E, one has

lim
n→+∞

ϕ(t, λnx)
λn

= 0.

Then, for every closed hyperplane V of Lp(T,E), one has

inf
u∈V

∫

T

ϕ(t, u(t))dµ = inf
u∈X

∫

T

ϕ(t, u(t))dµ.

Let us recall that a multifunction F : T → 2E is said to be measurable if,
for every open set Ω ⊆ E, one has {t ∈ T : F (t) ∩ Ω 	= ∅} ∈ F . A function
u : T → E is a selection of the multifunction F : T → 2E if u(t) ∈ F (t) for all
t ∈ T . We denote by SF the set of all selections of F belonging to L1(T,E).
An application of Theorem 8 gives

Theorem 9. Let E be separable, and let F : T → 2E be a measurable multi-
function, with nonempty closed values. Assume that dist(0, F (·)) ∈ L1(T ) and
that there exists a sequence {λn} in ]0,+∞[, with limn→+∞ λn = +∞, such
that, for almost every t ∈ T and for every x ∈ E, one has

lim
n→+∞

dist(λnx, F (t))
λn

= 0.

Then, SF intersects each closed hyperplane of L1(T,E).

We stress that each of the above recalled consequences of Theorem 5 is made
possible just because we do not assume the convexity of ϕ(t, ·, y).

The plan of the current paper is as follows.
In the next section, we prove Theorem 2 and derive some of its conse-

quences among which there are Theorems 12 and 13. In Section 3, we then
apply Theorem 12 to get a general multiplicity theorem for certain non-
linear equations in Hilbert spaces. Section 4 is devoted to an application
of Theorem 13 to a Neumann problem for elliptic equations involving the
p-Laplacian. Finally, in Section 5, using Theorem 2, we prove that the problem
of minimizing locally a C2 functional around noncritical points is well-posed.

2 Proof and Corollaries of Theorem 2

Let us start with the proof of Theorem 2.

Proof (Proof of Theorem 2). First, fix a nondecreasing sequence {Yn} of com-
pact subintervals of Y , with ŷ ∈ Y1, such that ∪n∈NYn = Y . Now, fix n ∈ N.
We claim that

sup
y∈Yn

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Yn

f(x, y). (2.1)
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Arguing by contradiction, suppose that

sup
y∈Yn

inf
x∈X

f(x, y) < inf
x∈X

sup
y∈Yn

f(x, y).

Fix ρ satisfying

sup
y∈Yn

inf
x∈X

f(x, y) < ρ < min
{

ρ∗, inf
x∈X

sup
y∈Yn

f(x, y)
}

.

Set
S = {(x, y) ∈ X × Yn : f(x, y) < ρ}

as well as, for each y ∈ Yn,

Sy = {x ∈ X : (x, y) ∈ S}.

Because supYn
infX f < ρ, one has Sy 	= ∅ for all y ∈ Yn. Let Yn = [an, bn].

Put

A =

{

(x, y) ∈ S : y < bn , sup
s∈]y,bn]

f(x, s) > ρ

}

and

B =

{

(x, y) ∈ S : y > an , sup
s∈[an,y[

f(x, s) > ρ

}

.

Observe that A,B are nonempty. Indeed, let x1 ∈ San and x2 ∈ Sbn . Because
ρ < infX supYn

f , there are t, s ∈ Yn such that min{f(x1, t), f(x2, s)} > ρ.
Because max{f(x1, an), f(x2, bn)} < ρ, it follows that t > an and s < bn.
Consequently, (x1, an) ∈ A and (x2, bn) ∈ B. Furthermore, observe that A,B
are open in S. Let us see this for A, the other case being analogous. So, let
(x0, y0) ∈ A. Because the function f(x0, ·) is lower semicontinuous, the set
{y ∈]y0, bn] : f(x0, y) > ρ} is nonempty and open in Yn and hence it contains
a point y∗ ∈ D1, by density. Now, by (β), the set

({x ∈ X : f(x, y∗) > ρ} × [an, y∗[) ∩ S

is clearly a neighbourhood of (x0, y0) in S that is contained in A. We now
prove that S = A ∪ B. Indeed, let (x, y) ∈ S \ A. We have seen above that
San × {an} ⊆ A, and so y > an. If y = bn, the fact that (x, y) ∈ B has been
likewise proved above. Suppose y < bn. Thus, we have sups∈]y,bn] f(x, s) ≤ ρ.
From this, it clearly follows that sups∈[an,y[ f(x, s) > ρ (note that f(x, y) < ρ),
and so (x, y) ∈ B. Furthermore, we have A∩B = ∅. Indeed, if (x1, y1) ∈ A∩B,
there would be t, s ∈ Yn, with t < y1 < s, such that min{f(x1, t), f(x1, s)} >
ρ. By (α), the set {u ∈ Y : f(x1, u) > ρ} is an interval, and so we would have
f(x1, y1) > ρ, against the fact that (x1, y1) ∈ S. Let pR be the projection from
X×R onto R. Now, consider the sets pR(A) and pR(B). Because pR(S) = Yn,
thanks to the properties of A,B seen above and to the upper semicontinuity
of f(x, ·) for all x ∈ X, they are nonempty, open in Yn, and cover Yn. So, by
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the connectedness of Yn, we have pR(A)∩ pR(B) 	= ∅. Because D2 is dense in
Y , there exists some y′ ∈ D2∩pR(A)∩pR(B). By (β), the set Sy

′
(and hence

Sy
′ × {y′} too) is connected. But Sy

′ × {y′} meets both A and B, and this
just contradicts its being connected. So, we have proved (2.1). Finally, let us
prove the theorem. Again arguing by contradiction, suppose that

sup
y∈Y

inf
x∈X

f(x, y) < inf
x∈X

sup
y∈Y

f(x, y).

Choose r satisfying

sup
y∈Y

inf
x∈X

f(x, y) < r < min
{

ρ∗, inf
x∈X

sup
y∈Y

f(x, y)
}

.

For each n ∈ N, put

Cn =
{

x ∈ X : sup
y∈Yn

f(x, y) ≤ r
}

.

Note that Cn 	= ∅. Indeed, otherwise, we would have

r ≤ inf
x∈X

sup
y∈Yn

f(x, y) = sup
y∈Yn

inf
x∈X

f(x, y) ≤ sup
y∈Y

inf
x∈X

f(x, y).

Furthermore, for each x ∈ X, we have

sup
y∈Yn

f(x, y) = sup
y∈D1∩Yn

f(x, y)

as f(x, ·) is lower semicontinuous and D1 is dense in Y . So, we have

Cn =
⋂

y∈D1∩Yn

{x ∈ X : f(x, y) ≤ r}.

Consequently, {Cn} is a nonincreasing sequence of nonempty closed subsets
of the compact set {x ∈ X : f(x, ŷ) ≤ ρ∗}. Therefore, one has ∩n∈NCn 	= ∅.
Let x∗ ∈ ∩n∈NCn. Then, one has

sup
y∈I

f(x∗, y) = sup
n∈N

sup
y∈Yn

f(x∗, y) ≤ r

and so
inf
x∈X

sup
y∈Y

f(x, y) ≤ r,

a contradiction. The proof is complete.

Remark 1. It is clear from the proof that when Y is compact, Theorem 2
holds without requiring the existence of the point ŷ with the indicated prop-
erty. Likewise, when D1 = Y , it is enough to assume that f(x, ·) is upper
semicontinuous for all x ∈ X.

It is important to note the next result, which is a consequence of Theorem 2.
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If (X, τ) is a topological space, for any f : X → R, we denote by τf
the smallest topology on X that contains both τ and the family of sets
{f−1(]−∞, r[)}r∈R.

Theorem 10. Let (X, τ) be a Hausdorff topological space, Y ⊆ R an interval,
and f : X × Y → R a function such that f(x, ·) is continuous for all x ∈ X.
Assume that there exist a number ρ∗ > supY infX f and a set D ⊆ Y , dense in
Y , such that, for each ρ ∈]−∞, ρ∗[ and each y ∈ D, the following conditions
hold:

(i) the set {s ∈ Y : f(x, s) > ρ} is an interval for all x ∈ X;
(ii) the set {x ∈ X : f(x, y) ≤ ρ} is compact and sequentially compact;

(iii) there exist a function Φy : X → R, bounded below on the set {x ∈ X :
f(x, y) ≤ ρ∗}, and a sequence {µn} in R+ converging to 0 such that, for
each λ > 0 small enough, the function f(·, y)+λΦy(·) is sequentially lower
semicontinuous, and, for each n ∈ N, the function f(·, y) + µnΦy(·) has
at most one τf(·,y)-local minimum lying in the set {x ∈ X : f(x, y) < ρ∗}.

Then, one has
sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

Before deriving Theorem 10 from Theorem 2, we establish the following
result [36]:

Theorem 11. Let (X, τ) be a Hausdorff topological space, and Φ, f : X → R
two functions. Assume that there is ρ > infX f such that the set f−1(]−∞, ρ[)
is compact and sequentially compact and has at least k connected components.
Moreover, suppose that the function Φ is bounded below in f−1(]−∞, ρ[) and
that the function f + λΦ is sequentially lower semicontinuous for each λ > 0
small enough.

Then, there exists λ∗ > 0 such that, for each λ ∈]0, λ∗[, the function f+λΦ
has at least k τf -local minima lying in f−1(]−∞, ρ[).

Proof. Denote by C the family of all connected components of f−1(]−∞, ρ[).
Note that these sets are closed in X because they are closed in f−1(]−∞, ρ[),
which is, in turn, closed inX. We now observe that there are k pairwise disjoint
closed nonempty sets C1, . . . , Ck such that

f−1(]−∞, ρ[) =
k
⋃

i=1

Ci.

We distinguish two cases. First, assume that C is finite. Let h be its cardinality.
Let B1, . . . , Bh be the members of C. Then, if we choose Ci = Bi for i =
1, . . . , k − 1 and Ck = ∪hi=kBi, we are clearly done. Now, assume that C is
infinite. In this case, we prove our claim by induction. The claim is true, of
course, if k = 1. Assume that it is true if k = p. So, we are assuming that
there are p pairwise disjoint closed nonempty sets D1, . . . , Dp, such that
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f−1(]−∞, ρ[) =
p
⋃

i=1

Di.

Notice that at least one of the sets Di must be disconnected, as, otherwise, we
would have {D1, . . . , Dp} = C, contrary to the assumption that C is infinite.
Then, if Di∗ is disconnected, there are two disjoint closed nonempty sets
E1, E2 such that Di∗ = E1 ∪E2. So, D1, . . . , Di∗−1,Di∗+1, . . . , Dp, E1, E2 are
p + 1 pairwise disjoint closed nonempty sets whose union is f−1(]−∞, ρ[).
So, our claim is true for k = p+ 1, and hence, by induction, for any k.

Now, fix i (1 ≤ i ≤ k). By compactness and Hausdorffness, it is clear that
there exists an open set Ai ⊂ X such that Ci ⊂ Ai and Ai ∩ ∪kj=1,j �=iCj = ∅.
Furthermore, it is easily seen that, if we put

Gi = {x ∈ Ai : f(x) < ρ},

we have
Gi = Ci.

Taken into account that, by assumption, infCi
Φ is finite, put

µi = inf
x∈Gi

Φ(x)− infCi
Φ

ρ− f(x) .

Let λ′ > 0 be such that f + λΦ is sequentially lower semicontinuous for each
λ ∈]0, λ′]. Fix µ > max{µi, 1

λ′ }. Then, there exists y ∈ Gi such that

µρ > µf(y) + Φ(y)− inf
Ci

Φ.

Moreover, because Ci is sequentially compact, there exists x∗i ∈ Ci such that

Φ(x∗i ) + µf(x∗i ) ≤ Φ(x) + µf(x)

for all x ∈ Ci. We claim that x∗i ∈ Gi. Arguing by contradiction, assume that
f(x∗i ) ≥ ρ. We then have

Φ(x∗i ) + µf(x∗i ) ≥ Φ(x∗i ) + µρ > Φ(x∗i ) +Φ(y) + µf(y)− inf
Ci

Φ ≥ Φ(y) + µf(y)

which is absurd. Now, let i vary. Put µ∗ = max{µ1, . . . , µk,
1
λ′ }. Clearly, each

set Gi is τf -open, and hence each x∗i is a τf -local minimum of Φ + µf for
all µ > µ∗. Consequently, the points x∗1, . . . , x

∗
k satisfy the conclusion, taking

λ∗ = 1
µ∗ , and the proof is complete.

Proof (Proof of Theorem 10). We have only to check that f satisfies the hy-
potheses of Theorem 2. So, let y ∈ D, and r < σ < ρ∗. By (ii), it clearly
follows that the set {x ∈ X : f(x, y) ≤ σ} is closed (because X is Hausdorff)
and that the set {x ∈ X : f(x, y) < σ} is compact and sequentially compact.
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From (iii), it follows that the functions f(·, y), Φy do not satisfy the con-
clusion of Theorem 11 with k = 2, and so, because function Φy is bounded
below in {x ∈ X : f(x, y) < σ} and the function f(·, y) + λΦy(·) is sequen-
tially lower semicontinuous for each λ > 0 small enough, it necessarily follows
that the set {x ∈ X : f(x, y) < σ} is connected. Now, observe that, because
{x ∈ X : f(x, y) < σ} ⊆ {x ∈ X : f(x, y) ≤ σ}, one has

{x ∈ X : f(x, y) ≤ r} =
⋂

r<σ<ρ∗

{x ∈ X : f(x, y) < σ}.

Therefore, the closed set {x ∈ X : f(x, y) ≤ r}, as the intersection of a non-
increasing sequence of compact and connected sets, is connected too. Finally,
let ρ ∈]−∞, ρ∗[. Because

{x ∈ X : f(x, y) < ρ} =
⋃

r<ρ

{x ∈ X : f(x, y) ≤ r},

it follows that the set {x ∈ X : f(x, y) < ρ} is connected. So, all the assump-
tions of Theorem 2 are satisfied, and the conclusion follows.

Remark 2. We do not know whether, in Theorem 10, condition (iii) can be
improved replacing τf(·,y) with τ . However, this is the case when we are allowed
to take Φy = 0. To see this, we first establish the following

Proposition 1. Let X be a Hausdorff topological space and f : X → R a
function. Assume that, for some r > infX f , f has at most one local minimum
lying in f−1(]−∞, r]) and that f−1(]−∞, ρ]) is compact for all ρ ∈]−∞, r].
Then, the set f−1(]−∞, r]) is connected.

Proof. Assume that the set f−1(]−∞, r]) is disconnected. Then, because it is
closed, there would be two nonempty, closed and disjoint sets A,B such that

f−1(]−∞, r]) = A ∪B.

Because the restriction of f to f−1(] − ∞, r]) is lower semicontinuous and
A,B are compact, there are x1 ∈ A and x2 ∈ B such that f(x1) = infx∈A f
and f(x2) = infx∈B f . Now, choose two open and disjoint sets Ω1, Ω2 ∈ X
such that A ⊆ Ω1 and B ⊆ Ω2. It is readily seen that f(x1) ≤ f(x) for all
x ∈ Ω1 and that f(x2) ≤ f(x) for all x ∈ Ω2. Therefore, x1 and x2 would
be two distinct local minima of f lying in f−1(] −∞, r]), against one of the
hypotheses.

Theorem 12. Let X be a Hausdorff topological space, Y ⊆ R an interval,
and f : X × Y → R a function such that f(x, ·) is continuous for all x ∈ X.
Assume that there exist a number ρ∗ > supY infX f and a set D ⊆ Y , dense in
Y , such that, for each ρ ∈]−∞, ρ∗[ and each y ∈ D, the following conditions
hold:
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(i′) the set {s ∈ I : f(x, s) > ρ} is an interval for all x ∈ X;
(ii′) the set {x ∈ X : f(x, y) ≤ ρ} is compact;

(iii′) the function f(·, y) has at most one local minimum lying in the set {x ∈
X : f(x, y) < ρ∗}.

Then, one has

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

Proof. The proof is exactly the same as that of Theorem 10, with the only
change of using Proposition 1 instead of Theorem 11.

The following consequence of Theorem 10 will be applied later to nonlinear
differential equations:

Theorem 13. Let (X, τ) be a Hausdorff topological space, Y ⊆ R an interval,
and f : X×Y → R a function such that f(x, ·) is continuous for all x ∈ X and

sup
y∈Y

inf
x∈X

f(x, y) < inf
x∈X

sup
y∈Y

f(x, y).

Assume that there exist a number ρ∗ > supY infX f and an open set D ⊆ Y ,
dense in Y , such that, for each ρ ∈]−∞, ρ∗[, the set {y ∈ Y : f(x, y) > ρ} is
an interval for all x ∈ X, and the set {x ∈ X : f(x, y) ≤ ρ} is compact and
sequentially compact for all y ∈ D.

Then, there exist a nonempty open set A ⊂ Y such that, for every y ∈ A
and for every function Φ : X → R, bounded below on the set {x ∈ X :
f(x, y) ≤ ρ∗} and such that, for each λ > 0 small enough, the function f(·, y)+
λΦ(·) is sequentially lower semicontinuous, there exists δ > 0 such that, for
each µ ∈]0, δ], the function f(·, y)+µΦ(·) has at least two τf(·,y)-local minima
lying in the set {x ∈ X : f(x, y) < ρ∗}.

Proof. Denote by D′ the set of all y ∈ Y such that there exist a function
Φy : X → R, bounded below on the set {x ∈ X : f(x, y) ≤ ρ∗}, and a
sequence {µn} in R+ converging to 0 such that, for each λ > 0 small enough,
the function f(·, y)+λΦy(·) is sequentially lower semicontinuous, and, for each
n ∈ N, the function f(·, y) + µnΦy(·) has at most one τf(·,y)-local minimum
lying in the set {x ∈ X : f(x, y) < ρ∗}. By Theorem 10, the set D ∩D′ is not
dense in Y . Consequently, because D is open and dense in Y , the set D′ is
not dense in Y , and so the set A = int(Y \D′) satisfies the conclusion.

Analogously, from Theorem 12 we get

Theorem 14. Let X be a Hausdorff topological space, Y ⊆ R an interval, and
f : X × Y → R a function such that f(x, ·) is continuous for all x ∈ X and

sup
y∈Y

inf
x∈X

f(x, y) < inf
x∈X

sup
y∈Y

f(x, y).
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Assume that there exist a number ρ∗ > supY infX f and an open set D ⊆ Y ,
dense in Y , such that, for each ρ ∈]−∞, ρ∗[, the set {y ∈ Y : f(x, y) > ρ} is
an interval for all x ∈ X, and the set {x ∈ X : f(x, y) ≤ ρ} is compact for
all y ∈ D.

Then, there exist a nonempty open set A ⊂ Y such that, for every y ∈ A,
the function f(·, y) has at least two local minima lying in the set {x ∈ X :
f(x, y) < ρ∗}.

Before ending this section, let us recall the important defintion of a saddle-
point.

A saddle-point of f : X × Y → R is any (x∗, y∗) ∈ X × Y such that

f(x∗, y∗) = inf
x∈X

f(x, y∗) = sup
y∈Y

f(x∗, y).

The characterization of saddle-points is as follows:

Proposition 2. (x∗, y∗) is a saddle-point of f if and only if the following
three conditions hold:

sup
Y

inf
X
f = inf

X
sup
Y
f,

inf
x∈X

f(x, y∗) = sup
Y

inf
X
f,

sup
y∈Y

f(x∗, y) = inf
X

sup
Y
f.

It is worth noticing that the mere validity of the condition

f(x∗, y∗) = sup
Y

inf
X
f = inf

X
sup
Y
f

is not enough to ensure that (x∗, y∗) is a saddle-point of f . For instance, take
X = ]0, 1], Y = [0, 1], and f(x, y) = xy. In this case, for each x ∈ X, we have

f(x, 0) = sup
Y

inf
X
f = inf

X
sup
Y
f = 0

but, clearly, f has no saddle-point, as the function supy∈Y f(·, y) does not
attain its infimum in X.

3 A General Multiplicity Theorem for Certain Nonlinear
Equations in Hilbert Spaces

In the current section, we apply Theorem 12 to get the following result [37]:

Theorem 15. Let X be a real Hilbert space and let J : X → R be a continu-
ously Gâteaux differentiable, nonconstant functional, with compact derivative,
such that
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lim sup
‖x‖→+∞

J(x)
‖x‖2 ≤ 0. (3.1)

Then, for each r ∈] infX J, supX J [ and each x0 ∈ J−1(]−∞, r[), at least one
of the following assertions holds:

(a) There exists λ > 0 such that the equation

x = λJ ′(x) + x0

has at least three solutions.
(b) There exists a unique y ∈ J−1([r,+∞[) such that

‖x0 − y‖ = dist(x0, J
−1([r,+∞[)) = dist(x0, J

−1(r)).

Among the most significant consequences of Theorem 15, there is the general
multiplicity theorem announced in the title of the section. It reads as follows:

Theorem 16. Let X be a real Hilbert space and let J : X → R be a continu-
ously Gâteaux differentiable, nonconstant functional, with compact derivative,
such that

lim sup
‖x‖→+∞

J(x)
‖x‖2 ≤ 0.

Then, for each r ∈] infX J, supX J [ for which the set J−1([r,+∞[) is not
convex and for each convex set S ⊆ X dense in X, there exist x0 ∈
S ∩ J−1(]−∞, r[) and λ > 0 such that the equation

x = λJ ′(x) + x0

has at least three solutions.

To derive Theorem 16 from Theorem 15, we use a very recent result by I. G.
Tsar’kov [47]. We state it below in a form that is enough for our purposes.

Theorem 17. Let X be a real Hilbert space and C ⊂ X a sequentially weakly
closed and nonconvex set.

Then, for each convex set S ⊆ dense in X, there exists x0 ∈ S \ C such
that the set {y ∈ C : ‖x0 − y‖ = dist(x0, C)} has at least two points.

In practice, when dim(X) = ∞, Theorem 17 is a more precise version of the
celebrated, classic result of Efimov and Stechkin on Chebyshev sets [12] (see
also [52] for a proof based on convex analysis methods).

Now, the way of drawing Theorem 16 from Theorem 15 is transparent. Let
us formalize it.

Proof (Proof of Theorem 16). Let r ∈] infX J, supX J [ be such that the set
J−1([r,+∞[) is not convex and let S ⊆ X be a convex set dense in X. Because
J ′ is compact, the functional J turns out to be sequentially weakly continuous
[54], Corollary 41.9). Hence, the set J−1([r,+∞[) is sequentially weakly closed
(possibly not weakly closed). Consequently, by Theorem 17, there exists x0 ∈
S ∩ J−1(] −∞, r[) such that (b) of Theorem 15 does not hold. Hence, (a) of
the same theorem holds, which is the conclusion.
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We are going to prove Theorem 15. We first recall that a Gâteaux differen-
tiable functional J on a real Banach spaceX is said to satisfy the Palais–Smale
condition if each sequence {xn} in X such that supn∈N |J(xn)| < +∞ and
limn→+∞ ‖J ′(xn)‖X∗ = 0 admits a strongly converging subsequence.

We also recall the following three critical points theorem [28]:

Theorem 18. Let X be a real Banach space and let J : X → R be a continu-
ously Gâteaux differentiable functional satisfying the Palais–Smale condition
and having at least two local minima.

Then J has at least three critical points.

We now are in a position to prove Theorem 15.

Proof (Proof of Theorem 15). Let r ∈] infX J, supX J [ and x0 ∈ J−1(]−∞, r[).
Assume that assertion (a) does not hold. So, let us suppose that, for each
λ > 0, the equation

x = λJ ′(x) + x0 (Eλ)

has at most two solutions. Now, define the function f : X × [0,+∞[→ R by
setting

f(x, λ) =
1
2
‖x− x0‖2 + λ(r − J(x))

for all (x, λ) ∈ X × [0,+∞[. Let us check that f satisfies the hypotheses of
Theorem 12, the space X being endowed with the weak topology. It is clear
that (i′) is satisfied. So, fix λ ∈ [0,+∞[. As we have already observed, the
functional J is sequentially weakly continuous. Hence, the functional f(·, λ)
is sequentially weakly lower semicontinuous. Fix ε > 0 so that 1

2 − ελ > 0. By
(3.1), there is δ > 0 such that

sup
‖x‖>δ

J(x)
‖x‖2 < ε.

Thus, we have

f(x, λ) >
(

1
2
− ελ

)

‖x‖2 − ‖x0‖‖x‖+
1
2
‖x0‖2 + λr

for all x ∈ X, with ‖x‖ > δ. Hence, we get

lim
‖x‖→+∞

f(x, λ) = +∞.

From this, by the reflexivity of X, by the Eberlein–Smulyan theorem and by
a classic result ([54], Example 38.25) we infer that f(·, λ) has weakly compact
sublevels, has a global minimum, and satisfies the Palais–Smale condition. On
the other hand, the critical points of f(·, λ) are exactly the solutions of (Eλ).
Hence, by assumption, f(·, λ) has at most two critical points. Then, thanks
to Theorem 18, f(·, λ) has exactly one global minimum and no other local
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minimum in the strong topology, and so, a fortiori, in the weak topology.
Hence, also conditions (ii′) and (iii′) are satisfied. Therefore, Theorem 12
ensures that

sup
λ≥0

inf
x∈X

f(x, λ) = inf
x∈X

sup
λ≥0

f(x, λ). (3.2)

Clearly, one has

inf
x∈X

sup
λ≥0

f(x, λ) =
1
2

inf
x∈J−1([r,+∞[)

‖x− x0‖2. (3.3)

Furthermore, observe that, because J−1([r,+∞[) is sequentially weakly closed,
there exists y ∈ J−1([r,+∞[) such that

‖x0 − y‖ = dist(x0, J
−1([r,+∞[)).

We claim that y ∈ J−1(r). Indeed, if J(y) > r, because J is continuous and
J(x0) < r, there would exist a point z in the line segment joining x0 and y
such that J(z) = r. So, we would have ‖x0 − z‖ <dist(x0, J

−1([r,+∞[)), an
absurdity. In particular, this implies that

dist(x0, J
−1([r,+∞[)) = dist(x0, J

−1(r)).

Now, observe that the function infx∈X f(x, ·) is upper semicontinuous in
[0,+∞[ and that limλ→+∞ infx∈X f(x, λ) = −∞, as r < supX J . Hence, there
is λ∗ ≥ 0 such that

inf
x∈X

f(x, λ∗) = sup
λ≥0

inf
x∈X

f(x, λ).

So, from (3.2) and (3.3), we get

inf
x∈X

(

1
2
‖x− x0‖2 − λ∗J(x)

)

= inf
x∈J−1(r)

(

1
2
‖x− x0‖2 − λ∗J(x)

)

.

From this, we infer that λ∗ > 0, as J(x0) < r, and that each global minimum
of the restriction of the functional x → 1

2‖x − x0‖2 − λ∗J(x) to J−1(r) is a
global minimum of the same functional on X. But, as we have seen above, for
each λ > 0, the functional x → 1

2‖x − x0‖2 − λJ(x) has exactly one global
minimum in X. On the other hand, a point y ∈ J−1(r) is a global minimum
for the restriction of the functional x→ 1

2‖x−x0‖2−λ∗J(x) to J−1(r) if and
only if ‖y − x0‖ =dist(x0, J

−1(r)), and so (b) follows.

Remark 3. The conclusion of Theorem 15 can be false when (3.1) is not satis-
fied. To see this, take, for instance, X = R, J(x) = x3− x, r = 0 and x0 = 1

2 .
We also believe that some more sophisticated example should show that the
assumption about the compactness of J ′ cannot be omitted.

Remark 4. In [14], Theorem 15 has been extended to a broader class of Banach
spaces, and [15] is devoted to a nonsmooth version of it.
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Further, observe that, applying Theorem 15 to both J and −J , we get the
following result

Theorem 19. Let X be a real Hilbert space and J : X → R a continu-
ously Gâteaux differentiable, nonconstant functional, with compact derivative,
such that

lim
‖x‖→+∞

J(x)
‖x‖2 = 0.

Then, for each r ∈] infX J, supX J [ and each x0 ∈ X \ J−1(r), at least one of
the following assertions holds:

(i) There exists λ ∈ R such that the equation

x = λJ ′(x) + x0

has at least three solutions.
(ii) There exists a unique y ∈ J−1(r) such that

‖x0 − y‖ = dist(x0, J
−1(r)).

Reasoning as in the proof of Theorem 16, we obtain the following consequence
of Theorem 19:

Theorem 20. Let X be a real Hilbert space and J : X → R a continu-
ously Gâteaux differentiable, nonconstant functional, with compact derivative,
such that

lim
‖x‖→+∞

J(x)
‖x‖2 = 0.

Then, for each r ∈] infX J, supX J [ for which the set J−1(r) is not convex and
for each convex set S ⊆ X dense in X, there exist x0 ∈ S \J−1(r) and λ ∈ R
such that the equation

x = λJ ′(x) + x0

has at least three solutions.

We conclude this section presenting an application of Theorem 16 to a two-
point boundary value problem.

Theorem 21. Let f : R→ R be a continuous nonconstant and nondecreasing
function satisfying

lim
|ξ|→+∞

∫ ξ

0
f(t)dt
ξ2

= 0. (3.4)

Then, for each r ∈] infξ∈R

∫ ξ

0
f(t)dt, supξ∈R

∫ ξ

0
f(t)dt[ and for each convex set

S ⊆ C∞
0 (]0, 1[) dense in W 1,2

0 (]0, 1[), there exist w ∈ S ∩ J−1
f (] −∞, r[) and

λ > 0 such that the problem
{

−u′′ = λf(u)− w′′(t) in [0, 1],
u(0) = u(1) = 0

has at least three (classic) solutions.



40 B. Ricceri

Proof. Consider the Sobolev space H1
0 (0, 1) endowed with the inner product

〈u, v〉 =
∫ 1

0

u′(t)v′(t)dt.

Define the functional Jf : H1
0 (0, 1)→ R putting

Jf (u) =
∫ 1

0

F (u(t))dt

for all u ∈ H1
0 (0, 1), where

F (ξ) =
∫ ξ

0

f(s)ds.

The functional Jf is continuously Gâteaux differentiable on H1
0 (0, 1) with

compact derivative, and one has

〈J ′
f (u), v〉 =

∫ 1

0

f(u(t))v(t)dt

for all u, v ∈ H1
0 (0, 1). Further, from (3.4), it readily follows that

lim
‖u‖→+∞

Jf (u)
‖u‖2 = 0.

So, Jf satisfies the assumption of Theorem 16. Fix r ∈] infR F, supR F [ (note
that r is in the interior of the range of Jf (see the argument below)). Now,
let us show that the set J−1

f (r) is not convex. First, we note that, for each

a ∈ R, there exists u ∈ H1
0 (0, 1) such that u

(

1
2

)

= a and
∫ 1

0
F (u(t))dt = r.

Indeed, set

A =
{

u ∈ H1
0 (0, 1) : u

(

1
2

)

= a

}

.

Fix r1, r2 satisfying infR F < r1 < r < r2 < supR F , and pick ξ1, ξ2 so that
F (ξ1) = r1, F (ξ2) = r2. Next, choose ε > 0 such that

r1(1− 4ε) + 4ε sup
[−ρ,ρ]

|F | < r < r2(1− 4ε)− 4ε sup
[−ρ,ρ]

|F |,

where ρ = max{|ξ1|, |ξ2|, |a|}. Finally, fix two functions u1, u2 ∈ A so that

max

{

sup
[0,1]

|u1|, sup
[0,1]

|u2|
}

≤ ρ, u1(t) = ξ1, u2(t) = ξ2

for all t ∈ [ε, 1
2 − ε] ∪ [ 12 + ε, 1− ε]. Then, we have
∫ 1

0

F (u1(t))dt ≤ r1(1− 4ε) + 4ε sup
[−ρ,ρ]

|F | < r
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as well as
∫ 1

0

F (u2(t))dt ≥ r2(1− 4ε)− 4ε sup
[−ρ,ρ]

|F | > r.

Because A is connected (being convex) and the functional u →
∫ 1

0
F (u(t))dt

is continuous, there is u ∈ A such that
∫ 1

0
F (u(t))dt = r, as claimed. Now,

because f is not constant, we can fix a, b ∈ R so that f(a) 	= f(b). According to
the previous claim, there are u, v ∈ H1

0 (0, 1) such that u
(

1
2

)

= a, v
(

1
2

)

= b and
∫ 1

0
F (u(t))dt =

∫ 1

0
F (v(t))dt = r. Finally, we claim that, for some µ ∈]0, 1[,

we have
∫ 1

0

F (u(t) + µ(v(t)− u(t)))dt 	= r.

Arguing by contradiction, assume the contrary. Hence, the derivative of the
function µ→

∫ 1

0
F (u(t) + µ(v(t)− u(t)))dt is zero in [0, 1]. That is,

∫ 1

0

f(u(t) + µ(v(t)− u(t)))(v(t)− u(t))dt = 0

for all µ ∈ [0, 1]. From this, it clearly follows that

∫ 1

0

(f(v(t))− f(u(t)))(v(t)− u(t))dt = 0.

Then, because f is nondecreasing, we infer that

(f(v(t))− f(u(t)))(v(t)− u(t)) = 0

for all t ∈ [0, 1]. So, because u
(

1
2

)

	= v
(

1
2

)

, we get

f

(

u

(

1
2

))

= f

(

v

(

1
2

))

,

a contradiction. Now, observe that Jf is convex, as f is nondecreasing. Con-
sequently, J−1(] − ∞, r]) is convex. Then, because J−1(r) is not convex,
J−1([r,+∞[) is not convex, too. Now, let S ⊆ C∞

0 (]0, 1[) be a convex set
dense in H1

0 (0, 1). Theorem 16 ensures the existence of w ∈ S ∩J−1
f (]−∞, r[)

and λ > 0 such that the equation

v = λJ ′
f (v) + w

has at least three solutions inH1
0 (0, 1). Note that v is one of them if and only if

∫ 1

0

v′(t)ω′(t)dt = λ

∫ 1

0

f(v(t))ω(t)dt+
∫ 1

0

w′(t)ω′(t)dt

=
∫ 1

0

(λf(v(t))− w′′(t))ω(t)dt
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for all ω ∈ H1
0 (0, 1). This clearly implies that v ∈ C2([0, 1]), with

−v′′(t) = λf(v(t))− w′′(t)

for all t ∈ [0, 1]. Consequently, the function v is a classic solution of the
problem

{

−u′′ = λf(u)− w′′(t) in [0, 1],
u(0) = u(1) = 0.

So, this problem has at least three solutions, and the proof is complete.

Another application of Theorem 16 can be found in [21].

4 An Application of Theorem 13

Let Ω ⊂ Rn be a bounded open set, with boundary of class C1, and let p be
a real number greater than n. Consider the Sobolev space W 1,p(Ω) with the
usual norm

‖u‖ =
(∫

Ω

(|∇u(x)|p + |u(x)|p)dx
)

1
p

.

Because p > n, W 1,p(Ω) is compactly embedded in C0(Ω). So, we have

c := sup
u∈W 1,p(Ω)\{0}

supx∈Ω |u(x)|
(∫

Ω
|∇u(x)|pdx+

∫

Ω
|u(x)|pdx

)
1
p

< +∞.

Let ϕ : Ω ×R→ R be a Carathéodory function such that sup|ξ|≤s |ϕ(·, ξ)| ∈
L1(Ω) for all s > 0.

For each u ∈W 1,p(Ω), put

Jϕ(u) =
∫

Ω

(

∫ u(x)

0

ϕ(x, t)dt

)

dx.

The functional Jϕ is (well-defined and) continuously Gâteaux differentiable on
W 1,p(Ω), with compact derivative (so, Jϕ is sequentially weakly continuous),
and one has

J ′
ϕ(u)(v) =

∫

Ω

ϕ(x, u(x))v(x)dx

for all u, v ∈W 1,p(Ω).
Consider now the following Neumann problem

⎧

⎨

⎩

−div(|∇u|p−2∇u) + |u|p−2u = ϕ(x, u) in Ω

∂u
∂ν = 0 on ∂Ω,
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where ν is the outer unit normal to ∂Ω. Let us recall that a weak solution of
the problem is any u ∈W 1,p(Ω) such that

∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)dx +
∫

Ω

|u(x)|p−2u(x)v(x)dx

−
∫

Ω

ϕ(x, u(x))v(x)dx = 0

for all v ∈W 1,p(Ω).
Hence, the weak solutions of the problem are precisely the critical points

in W 1,p(Ω) of the functional u→ 1
p‖u‖p − Jϕ(u).

The current section is devoted to get a multiplcity theorem for the above
problem as an application of Theorem 13.

The result is as follows:

Theorem 22. Let f : R → R be a continuous function for which there are
r > 0 and ξ1 ∈ R, with meas(Ω)|ξ1|p > pr, such that

sup
|ξ|≤c(pr)

1
p

∫ ξ

0

f(t)dt <
pr

meas(Ω)|ξ1|p
∫ ξ1

0

f(t)dt. (4.1)

Assume also that

lim sup
‖ξ|→+∞

∫ ξ

0
f(t)dt
|ξ|p ≤ 0. (4.2)

Then, there exist ρ > 0 and a nonempty open set B ⊂]0,+∞[ with the
following property: for each λ ∈ B and for each Carathéodory function
g : Ω × R → R, with sup|ξ|≤s |g(·, ξ)| ∈ L1(Ω) for all s > 0, there exists
δ > 0 such that, for every µ ∈ [0, δ], the problem

⎧

⎨

⎩

−div(|∇u|p−2∇u) + |u|p−2u = λf(u) + µg(x, u) in Ω

∂u
∂ν = 0 on ∂Ω

has at least two weak solutions whose norms in W 1,p(Ω) are less than ρ.

In the proof of Theorem 22, we will also use the following

Proposition 3. Let X be a nonempty set and Ψ, J two real functions on X.
Assume that there are r > 0, x0, x1 ∈ X such that

Ψ(x0) = J(x0) = 0,

Ψ(x1) > r,

sup
x∈Ψ−1(]−∞,r])

J(x) < r
J(x1)
Ψ(x1)

.
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Then, for each σ satisfying

sup
x∈Ψ−1(]−∞,r])

J(x) < σ < r
J(x1)
Ψ(x1)

(4.3)

one has

sup
λ≥0

inf
x∈X

(Ψ(x) + λ(σ − J(x))) < inf
x∈X

sup
λ≥0

(Ψ(x) + λ(σ − J(x))).

Proof. First of all, observe that

inf
x∈X

sup
λ≥0

(Ψ(x) + λ(σ − J(x))) = inf
x∈J−1([σ,+∞[)

Ψ(x).

Next, note that, by (4.3), one has

r ≤ inf
x∈J−1([σ,+∞[)

Ψ(x).

Moreover, because Ψ(x1) > r, from (4.3), we infer that J(x1) > σ. This
implies that the function λ → infx∈X(Ψ(x) + λ(σ − J(x)) tends to −∞ as
λ→ +∞. But, this function is upper semicontinuous in [0,+∞[, and hence it
attains its supremum at a point λ. We now distinguish two cases. If 0 ≤ λ < r

σ

(note that σ > 0 because Ψ(x0) = J(x0) = 0), then Ψ(x0) + λ(ρ − J(x0)) =
λσ < r. If r

σ ≤ λ, then, because (by (4.3) again) r−Ψ(x1)
σ−J(x1)

< r
σ , we have

Ψ(x1) + λ(σ − J(x1)) < r, and the proof is complete.

Remark 5. Let X be a nonempty set and Ψ, J two real functions on X having
a common zero. Consider the function η :]0,+∞[→ [0,+∞] defined by putting

η(t) =
supx∈Ψ−1(]−∞,t]) J(x)

t

for all t > 0. Then, it is easy to check that the following conditions are
equivalent:

(i) The function η is not nonincreasing.
(ii) There exist r > 0 and x1 ∈ X, with Ψ(x1) > r, such that

sup
x∈Ψ−1(]−∞,r])

J(x) < r
J(x1)
Ψ(x1)

.

Proof (Proof of Theorem 22). For each u ∈W 1,p(Ω), put

Ψ(u) =
1
p
‖u‖p.

Note that if Ψ(u) ≤ r, then supΩ |u| ≤ c(pr)
1
p , and so, by (4.1), if u1 denotes

the constant function in Ω taking the value ξ1, we have
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sup
u∈Ψ−1(]−∞,r])

Jf (u) ≤ meas(Ω) sup
|ξ|≤c(pr)

1
p

∫ ξ

0

f(t)dt

<
pr

|ξ1|p
∫ ξ1

0

f(t)dt = r
Jf (u1)
Ψ(u1)

.

Hence, by Proposition 3, for a suitable constant σ, we have

sup
λ≥0

inf
u∈W 1,p(Ω)

(Ψ(u) + λ(σ − Jf (u))) < inf
u∈W 1,p(Ω)

sup
λ≥0

(Ψ(u) + λ(σ − Jf (u))).

Observe that, by (4.2), we have for each λ ≥ 0

lim
‖u‖→+∞

(Ψ(u)− λJf (u)) = +∞

and so the functional Ψ − λJf has weakly compact sublevels. Hence, the
functional (u, λ)→ Ψ(u)+λ(σ−Jf (u)) ((u, λ) ∈W 1,p(Ω)× [0,+∞[) satisfies
all the assumptions of Theorem 13, the spaceW 1,p(Ω) being endowed with the
weak topology. Fix s∗ > supλ≥0 infu∈W 1,p(Ω)(Ψ(u) + λ(σ − Jf (u))). Let A ⊂
]0,+∞[ be a nonempty open set with the property declared in Theorem 13. Let
g : Ω×R→ R be a Carathéodory function with sup|ξ|≤s |g(·, ξ)| ∈ L1(Ω) for
all s > 0. Fix a, b ∈ A, with a < b. Then, for every λ ∈ [a, b], there exists δ > 0
such that, for each µ ∈ [0, δ], the functional Ψ + λ(σ − Jf )− µJg has at least
two local minima lying in the set {u ∈W 1,p(Ω) : Ψ(u) + λ(σ − Jf (u)) < s∗}.
Such local minima are critical points of the functional and so weak solutions
of problem (Pλ,µ). Finally, observe that

⋃

λ∈[a,b]

{u ∈W 1,p(Ω) : Ψ(u) + λ(σ − Jf (u)) < s∗}

⊆ {u ∈W 1,p(Ω) : Ψ(u) + a(σ − Jf (u)) < s∗}
∪{u ∈W 1,p(Ω) : Ψ(u) + b(σ − Jf (u)) < s∗}.

But the set on the right-hand side is bounded, and hence we can choose as ρ
the radius of a ball, centered at 0, containing this latter. The proof is complete.

Remark 6. Other recent applications of Theorem 13 can be found in [6, 7],
and [8]. We also recall that the minimax result in [34] (which is very close
to Theorem 14) was the starting point for a long series of applications to
nonlinear differential equations (see, for instance, [1–5, 9, 10, 19, 20, 22–24, 43,
51]).

5 An Application of Theorem 2 to Locally Minimizing
Functionals with Locally Lipschitzian Derivative

In the sequel, (X, 〈·, ·〉) is a real Hilbert space. For each x ∈ X, r > 0, we set
B(x, r) = {y ∈ X : ‖y − x‖ ≤ r}
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and
S(x, r) = {y ∈ X : ‖y − x‖ = r}.

Given a functional J : X → R and a set C ⊆ X, we say that the problem of
minimizing J over C is well-posed if the following two conditions hold:

• the restriction of J to C has a unique global minimum, say x̂;
• for every sequence {xn} in C such that limn→∞ J(xn) = J(x̂), one has

limn→∞ ‖xn − x̂‖ = 0.

The aim of this section is to prove, making use of Theorem 2, the following
general result:

Theorem 23. Let J : X → R be a C1 functional with locally Lipschitzian
derivative.

Then, for each x0 ∈ X with J ′(x0) 	= 0, there exists δ > 0 such that, for
every r ∈]0, δ[, one has

inf
B(x0,r)

J = inf
S(x0,r)

J

and the problems of minimizing J over S(x0, r) and over B(x0, r) are well-
posed.

Proof. Fix x0 ∈ X with J ′(x0) 	= 0. Fix also ρ > 0 so that

J ′(x) 	= 0

for all x ∈ B(x0, ρ) and

L := sup
x,y∈B(x0,ρ),x �=y

‖J ′(x)− J ′(y)‖
‖x− y‖ < +∞.

For each λ > 0, x ∈ X, set

Iλ(x) =
λ

2
‖x− x0‖2 + J(x).

Let λ ≥ L. For each x, y ∈ B(x0, ρ), we have

〈I ′λ(x)− I ′λ(y), x− y〉 = 〈λ(x− x0) + J ′(x)− λ(y − x0)− J ′(y), x− y〉

≥ λ‖x− y‖2 − ‖J ′(x)− J ′(y)‖‖x− y‖ ≥ (λ− L)‖x− y‖2. (5.1)

From (5.1), via a classic result ([53], Proposition 25.10), we then get that
the functional Iλ is striclty convex (resp. convex) in B(x0, ρ) if λ > L (resp.
λ = L). Denote by Γ the set of all global minima of the restriction of IL to
B(x0, ρ) and set

δ = inf
x∈Γ
‖x− x0‖.

Observe that δ > 0. Indeed, if δ = 0, then x0 would be a local minimum in X
for IL, and so
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0 = I ′L(x0) = J ′(x0)

against an assumption. Now, fix r ∈]0, δ[ and consider the the function Φ :
B(x0, ρ)× [L,+∞[→ R defined by

Φ(x, λ) = Iλ(x)− λr
2

2

for all (x, λ) ∈ B(x0, ρ)×[L,+∞[. As we have seen above, Φ(·, λ) is continuous
and convex in B(x0, ρ) for all λ ≥ L, and Φ(x, ·) is continuous and concave for
all x ∈ B(x0, ρ), with limλ→+∞ Φ(x0, λ) = −∞. So, applying jointly Theorem
2 and Proposition 2 to Φ, we get the existence of (x̂, λ̂) ∈ B(x0, ρ)× [L,+∞[
such that

J(x̂) +
λ̂

2
(‖x̂− x0‖2 − r2) = inf

x∈B(x0,ρ)

(

J(x) +
λ̂

2
(‖x− x0‖2 − r2)

)

= J(x̂) + sup
λ≥L

λ

2
(‖x̂− x0‖2 − r2).

Of course, we have ‖x̂ − x0‖ ≤ r, because the sup is finite. But, if it were
‖x̂ − x0‖ < r, we would have λ̂ = L. This, in turn, would imply that x̂ ∈ S,
against the fact that r < δ. Hence, we have ‖x̂− x0‖ = r. Consequently

J(x̂) +
λ̂r2

2
= inf

x∈B(x0,ρ)

(

J(x) +
λ̂

2
‖x− x0‖2

)

.

From this, we infer that λ̂ > L (because r < δ), that x̂ is a global min-
imum of J|S(x0,r), and that each global minimum of J|S(x0,r) is a global
minimum of Iλ̂|B(x0,ρ)

. Because λ̂ > L, this latter functional is strictly
convex, and so x̂ is its unique global minimum in B(x0, ρ) toward which
every minimizing sequence weakly converges ([11], p. 3). In particular, note
that if {yn} is a sequence in B(x0, ρ) such that limn→∞ J(yn) = J(x̂) and
limn→∞ ‖yn − x0‖ = r, then

lim
n→∞

(

J(yn) +
λ̂

2
‖yn − x0‖2

)

= inf
x∈B(x0,ρ)

(

J(x) +
λ̂

2
‖x− x0‖2

)

,

and so {yn} converges weakly to x̂. Because limn→∞ ‖yn−x0‖ = ‖x̂−x0‖ and
X is a Hilbert space, it follows that limn→∞ ‖yn − x̂‖ = 0. This shows that,
for each r ∈]0, δ[, the problem of minimizing J over S(x0, r) is well-posed.

Fix again r ∈]0, δ[. Now, let us show that infB(x0,r) J = infS(x0,r) J . To
this end, for each t ∈ [0, r], put

ϕ(t) = inf
S(x0,t)

J
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and denote by xt the unique global minimum of J|S(x0,t). Clearly, we have

inf
B(x0,r)

J = inf
[0,r]

ϕ.

Note also that, by the mean value theorem, J is Lipschitzian in B(x0, ρ), with
Lipschitz constant L1 := ‖J ′(x0)‖+ Lρ. Fix t, s ∈ [0, r]. We have

ϕ(s)− ϕ(t) ≤ J
(

x0 +
s

t
(xt − x0)

)

− J(xt) ≤ L1|t− s|

as well as

ϕ(t)− ϕ(s) ≤ J
(

x0 +
t

s
(xs − x0)

)

− J(xs) ≤ L1|t− s|.

Thus, ϕ is Lipschitzian and so it attains its infimum in [0, r] at a point t̂. In
other words, we have

inf
B(x0,r)

J = J(xt̂).

Recalling that J ′(x) 	= 0 for all x ∈ B(x0, r), we then infer that t̂ = r. So, xr
is also the unique global minimum of J|B(x0,r). Finally, let {yn} be a sequence
in B(x0, r) such that limn→∞ J(yn) = J(xr). By a remark above, to get that
limn→∞ ‖yn − xr‖ = 0, we have to show that limn→∞ ‖yn − x0‖ = r. Argue
by contradiction. If it was

lim inf
n→∞

‖yn − x0‖ < r,

then, for some γ ∈]0, r[, we would have ‖yn − x0‖ < γ for infinitely many n,
and so

inf
B(x0,r)

J = inf
B(x0,γ)

J = J(xγ)

against the fact that J ′(xγ) 	= 0. Thus, also the problem of minimizing J over
B(x0, r) is well-posed, and the proof is complete.

Observe that, in Theorem 23, the condition J ′(x0) 	= 0 is essential. In fact,
consider the case where J is even (and so J ′(0) = 0 because J ′ is odd). Then,
for any r > 0, J|S(0,r) has either none or at least two global minima.

Also, the local Lipschitzianity of J ′ is essential. In fact, if J ′ is not locally
Lipschitzian at x0 (and J ′(x0) 	= 0 as well), it may occur either that J|S(x0,r)

has at least two global minima for each r > 0 or that J|S(x0,r) has no global
minima for each r > 0. In this connection, consider the two following examples.

Example 1. Take X = R2 and

J(x, y) = x− |y|q

where 1 < q < 2. Note that J ∈ C1(R2) and ∇J(0) 	= 0. Let r > 0. Because
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lim
n→∞

nq−1(n−
√

n2 − 1) = 0,

for n ∈ N large enough, we have

J

(

−
√

r2 − r2

n2
,
r

n

)

= −
√

r2 − r2

n2
−
( r

n

)q

< −r = J(−r, 0).

Now, observe that J|S(0,r) attains its infimum at some point (x0, y0) with
x0 ≤ 0. The above inequality shows that x0 > −r (and so y0 	= 0). Conse-
quently, also (x0,−y0) is a global minimum of J|S(0,r).

Example 2. Take X = l2 and

J(x) = x1 −
( ∞
∑

n=2

a2
nx

2
n

)p

where 1
2 < p < 1 and {an} is a strictly increasing sequence of positive numbers

converging to 1. Note that J ∈ C1(l2) and J ′(0) 	= 0. Fix r > 0. Let {en} be
the canonical basis of l2. Moreover, set

I = {x ∈ l2 : x1 = 0}
and let A : l2 → l2 the operator defined by

A(x) = {anxn}
for all x ∈ l2. Note that ‖A(en)‖ = an and so supn∈N ‖A(en)‖ = 1. Note also
that ‖A(y)‖ < 1 for all y ∈ I ∩ S(0, 1). Further, it is easy to see that

S(0, r) = {−r
√

1− λ2e1 + λry : λ ∈ [0, 1], y ∈ I ∩ S(0, 1)}.
Consequently, we have

inf
S(0,r)

J = inf
y∈I∩S(0,1)

inf
λ∈[0,1]

−r
(
√

1− λ2 + r2p−1‖A(y)‖2pλ2p
)

.

Now, let η : [0,+∞[→ R be the continuous function defined by

η(t) = sup
λ∈[0,1]

(
√

1− λ2 + tλ2p)

for all t ≥ 0. Because p < 1, one readily sees that η is strictly increasing.
Hence, we have

inf
S(0,r)

J = −r sup
y∈I∩S(0,1)

sup
λ∈[0,1]

(
√

1− λ2 + r2p−1‖A(y)‖2pλ2p
)

= −r sup
y∈I∩S(0,1)

η(r2p−1‖A(y)‖2p) = −rη(r2p−1).

But, for every λ ∈ [0, 1] and y ∈ I ∩ S(0, 1), we have

J(−r
√

1− λ2e1 + λry) ≥ −rη(r2p−1‖A(y)‖2p) > −rη(r2p−1)

and hence J|S(0,r) has no global minima.
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22. Kristály, A., Varga, C.: On a Class of Nonlinear Eigenvalue Problems in RN .
Math. Nachr., 278, 1756–1765 (2005)



Recent Advances in Minimax Theory and Applications 51

23. Livrea, R.: Existence of Three Solutions for a Quasilinear Two Point Boundary
Value Problem. Arch. Math. (Basel), 79, 288–298 (2002)

24. Marano, S.A., Motreanu, D.: On a Three Critical Points Theorem for Non-
Differentiable Functions and Applications to Nonlinear Boundary Value Prob-
lems. Nonlinear Anal., 48, 37–52 (2002)

25. Naselli, O.: On a Class of Functions with Equal Infima Over a Domain and Its
Boundary. J. Optim. Theory Appl., 91, 81–90 (1996)

26. Naselli, O.: On the Solution Set of an Equation of the Type f(t, Φ(u)(t)) = 0.
Set-Valued Anal., 4, 399–405 (1996)
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1 Introduction to Noncooperative Game Theory

To introduce a static two-player zero-sum (noncooperative) game (for more
details and examples see [4, 18, 25, 40] or [2]) and its relation to a minimax
theorem, we consider two players called 1 and 2 and assume that the set of pure
strategies (also called actions) of player 1 is given by some nonempty set A, and
the set of pure strategies of player 2 is given by a nonempty set B.Without loss
of generality, we may assume that the sets A and B are topological spaces with
Borel σ-algebras B(A), respectively B(B). By definition, a Borel σ-algebra is
the smallest σ-algebra generated by the open sets ([33]). If player 1 chooses
the pure strategy a ∈ A and player 2 chooses the pure strategy b ∈ B, then
player 2 has to pay player 1 an amount f(a, b) with f : A × B → R a given
function. This function is called the payoff function of player 1. Because the
gain of player 1 is the loss of player 2 (this is a so-called zero-sum game), the
payoff function of player 2 is −f . Clearly player 1 likes to gain as much profit
as possible. However, at the moment he does not know how to achieve this
and so he first decides to compute a lower bound on his profit. To compute
this lower bound, player 1 argues as follows: if he decides to choose action
a ∈ A, then it follows that his profit is at least infb∈B f(a, b), irrespective of
the action of player 2. Therefore, a lower bound on the profit for player 1 is
given by

r∗ := supa∈A infb∈B f(a, b). (1)

Similarly, player 2 likes to minimize his losses but as he does not know how
to achieve this, he also decides to compute first an upper bound on his losses.
To do so, player 2 argues as follows. If he decides to choose action b ∈ B, it
follows that he loses at most supa∈A f(a, b), and this is independent of the
action of player 1. Therefore, an upper bound on his losses is given by

r∗ := infb∈B supa∈A f(a, b). (2)

Because the profit of player 1 is at least r∗ and the loss of player 2 is at most
r∗ and the losses of player 2 are the profits of player 1, it follows directly that
r∗ ≤ r∗. In general r∗ < r∗, but under some properties on the pure strategy
sets and payoff function, one can show that r∗ = r∗. If this equality holds
and in relations (1) and (2) the suprema and infima are attained, an optimal
strategy for both players is obvious. By the interpretation of r∗ for player 1
and the interpretation of r∗ for player 2 and r∗ = r∗ := v, both players will
choose an action that achieves the value v and so player 1 will choose that
action a0 ∈ A satisfying

infb∈B f(a0, b) = maxa∈A infb∈B f(a, b).

Moreover, player 2 will choose that strategy b0 ∈ B satisfying

supa∈A f(a, b0) = minb∈B supa∈A f(a, b).
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In case only r∗ = r∗ or equivalently

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b) (3)

both players can approximate their optimal pure strategies by so-called
ε-optimal pure strategies. A pure strategy a0 ∈ A for player 1 is called an
ε-optimal pure strategy if

infb∈B f(a0, b) ≥ v − ε.

A similar definition applies to an ε-optimal pure strategy for player 2. By
these observations, it is now important to know for which payoff functions
and pure strategy sets the so-called minimax result r∗ = r∗ holds and under
which conditions the supremum in relation (1) and the infimum in relation (2)
are attained. Before discussing this, we give an example for which the equality
r∗ = r∗ does not hold.

Example 1. Consider the continuous payoff function f : [0, 1]× [0, 1]→ [0,∞)
given by

f(a, b) = (a− b)2.
For this function, it holds for every 0 ≤ a ≤ 1 that infb∈[0,1](a−b)2 = 0 and so

r∗ := sup0≤a≤1 inf0≤b≤1(a− b)2 = 0.

Moreover, it follows that

sup0≤a≤1(a− b)2 = (1− b)2

for every 0 ≤ b < 1
2 and

sup0≤a≤1(a− b)2 = b2

for every 1
2 ≤ b ≤ 1. This shows

r∗ := inf0≤b≤1 sup0≤a≤1(a− b)2 = 4−1

and so r∗ does not equal r∗.

The above example shows a particular case for which it is not clear how the
players should select their strategies. A possible solution to this problem is to
extend the set of pure strategies to the larger set of so-called mixed strategies.
Recall in the next definition that a Borel finite measure on a topological
space D is a finite measure defined on the Borel σ-algebra B(D) of D (for
more details on Borel measures see [7, 8, 34]). Moreover, we also need in this
definition the unit simplex ∆k ⊆ Rk given by

∆k := {α� = (α1, ..., αk) ∈ Rk :
∑k

i=1
αi = 1, αi ≥ 0, 1 ≤ i ≤ k}. (4)
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Definition 1. Let D be a nonempty topological space and B(D) its Borel
σ-algebra. A Borel finite measure εd : B(D) → [0,∞) is called a one-point
Borel probability measure concentrated on the set {d} if εd(D0) = 1 for
D0 ∈ B(D) containing d and εd(D0) = 0 otherwise. A Borel finite measure
ν : B(D) → [0, 1] is called a Borel probability measure with finite support if
there exists some finite set {d1, . . . , dk) ⊆ D and some vector s(ν)� ∈ ∆k with
si(ν) > 0, 1 ≤ i ≤ k such that

ν =
∑k

i=1
si(ν)εdi

.

If we denote by PF (D) the set of all Borel probability measures on D with
a finite support, then within game theory, any element ν belonging to PF (D)
is called a mixed strategy and it has the following interpretation. If a player
with pure strategy set D selects the mixed strategy

ν =
∑k

i=1
si(ν)εdi

,

then with probability si(ν), 1 ≤ i ≤ k this player will use the pure strategy
di ∈ D. By this interpretation, it is clear that the set D of pure strategies
can be identified within the set of mixed strategies by the one-point Borel
probability measures {εd : d ∈ D}. We now assume that player 1, respectively
player 2 are using their sets of mixed strategies. This means that the payoff
function f should be extended to a function fe : PF (A)× PF (B) → R. This
extension is defined by

fe(λ, µ) :=
∑k

i=1

∑m

j=1
si(λ)sj(µ)f(ai, bj) (5)

with λ =
∑k

i=1 si(λ)εai
∈ PF (A) and µ =

∑m
j=1 sj(µ)εbj

∈ PF (B), and
it represents the expected profit for player 1 or expected loss of player 2
if player 1 selects the mixed strategy λ ∈ PF (A) and player 2 selects the
mixed strategy µ ∈ PF (B). Under some topological/algebraic conditions on
the function f and the sets A and B of pure strategies, it can be shown that
the game represented by fe and the mixed strategy sets PF (A) and PF (B)
has a solution. This means that we need to investigate under which necessary
and sufficient conditions the following minimax result holds:

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ). (6)

In case player 2 is only allowed to use his pure strategy set B, we will also
investigate under which necessary and sufficient conditions the game repre-
sented by fe and the sets B and PF (A) has a solution. Hence for this case,
we need to check under which conditions the minimax result

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb) (7)
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holds. Finally, if player 1 and player 2 are only allowed to use their pure
strategy sets, we again pose the same question and investigate under which
necessary and sufficient conditions the game represented by f and the sets
A and B has a solution or equivalently under which condition the classic
minimax result

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b). (8)

holds. A slight extension of a two-player zero-sum game is given by a so-called
two-player constant-sum game. In this case, each player has a payoff function
fi, i = 1, 2 and for these payoff functions there exists some c ∈ R such that

f1(a, b) + f2(a, b) = c

for every a ∈ A and b ∈ B. As in a zero-sum game, the gain for player
1, respectively player 2 is given by f1(a, b), respectively f2(a, b) when both
players select independently the strategies a, respectively b. Introducing for
this game the payoff functions ˜fi, i = 1, 2 given by

˜fi = fi − ci

with c1 + c2 = c, it is easy to see that the analysis of the original constant-
sum game reduces to the analysis of a zero-sum game with payoff function
˜f1 for player 1. The above two-player zero-sum (constant-sum) noncoopera-
tive game can also be extended to a nonconstant-sum noncooperative game
involving n ≥ 2 players. In this model we have n players, n ≥ 2 and player
i, 1 ≤ i ≤ n has a pure strategy set Xi and a payoff function fi : X → R
with X = Πn

i=1Xi (for a detailed definition of these games, the reader is re-
ferred to [4, 40] or [38]). Embedding the two-player zero-sum game into this
more general framework, we observe that in this case player 1 has payoff func-
tion f1 = f , and player 2 has payoff function f2 =−f . For the nonconstant-
sum case and n ≥ 2, we use the notation Xi to distinguish between the two
different models, and as before the pure strategy sets Xi, i = 1, . . . , n are
topological spaces. For the more general n-player nonzero-sum noncoopera-
tive games, the concept of a minimax or saddle-point approach used within
a two-player zero-sum game is generalized and replaced by a so-called Nash
equilibrium point ([28, 29]). In Section 6, these more general games will be
explained in detail. To analyse the minimax relations given in (6) up to (8)
for a two-player zero-sum (noncooperative) game, we start in Section 2 with
a discussion of Wald’s minimax theorem. This theorem plays a key role in
deriving necessary and sufficient conditions and will be proved using two dif-
ferent methods. The first proof uses the separation result of disjoint convex
sets in convex analysis, whereas the second one uses strong linear program-
ming duality and some elementary properties of compact sets. In Section 3,
these conditions together with an overview of important sufficient conditions
that have appeared in the literature are discussed. Also, we show that the
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sufficient conditions discussed in the literature can be easily verified using our
necessary and sufficient conditions. In Section 4, we then give the relations
between the different minimax theorems, and in Section 5 we consider the fa-
mous minimax result of the form (8) derived by Sion ([37]). Unfortunately, it
remains an open question whether this minimax result can be derived directly
from our necessary and sufficient conditions discussed in Section 3. Although
it is not well-known, a primitive version of Sion’s minimax theorem already
appeared in the classic paper by von Neumann ([21,30]). The proof of Sion’s
theorem given here is completely elementary and uses a proof technique origi-
nated by Joó ([11,19]), which differs from the original proof using the so-called
KKM (Knaster–Kuratowski–Mazurkiewicz) lemma. Observe the KKM lemma
is equivalent to the Brouwer fixed point theorem ([43]) and is discussed in Sec-
tion 6. Also in Section 6, we introduce the extension of a two-player zero-sum
game to a n-player nonzero-sum (noncooperative) game and introduce the
concept of a Nash equilibrium point. Moreover, we prove that under certain
conditions, a n-player nonzero-sum (noncooperative) game indeed has a Nash
equilibrium point using a simple proof that applies the aforementioned KKM
lemma. Unfortunately, it remains an open question whether it is possible to
prove the existence of a Nash equilibrium point by the elementary techniques
used for the two-player zero-sum model.

2 On Wald’s Minimax Theorem

We assume in this section that the reader is familiar with the basic notions
in set theory, analysis, and some elementary function theory (for more details
see [35]). Besides this basic knowledge, this section will be self-contained. To
show for the different minimax results listed in relation (6) up to (8) necessary
and sufficient conditions on the payoff function f and the sets A and B, we
first need to discuss in detail Wald’s minimax theorem, and this will be the
topic of this section. The derivation of the necessary and sufficient conditions
will be postponed until Section 3. For readers familiar with convex analysis, a
proof of Wald’s minimax theorem will be given using the (finite dimensional)
separating hyperplane result, whereas for readers more familiar with linear
programming, we will show Wald’s minimax result using the strong duality
theorem of linear programming and some elementary properties of compact
sets. We first start with a proof using tools from convex analysis. To do so,
we first need to recall some well-known definitions and introduce the proper
notation.

Definition 2. A subset C of a linear space is called convex if for every 0 <
β < 1 and x, y ∈ C, it follows that βx+ (1− β)y belongs to C.

In set notation, this means that βC + (1− β)C ⊆ C for every 0 < β < 1.
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Definition 3. A real-valued function k : C → R is called convex on the (con-
vex) subset C if

k(βx+ (1− β)y) ≤ βk(x) + (1− β)k(y)

for every 0 < β < 1 and x, y ∈ C, and it is called concave on C if −k is
convex. The function k : C → R is called affine on C if it is both convex and
concave on C.

Introducing the set

Rn
− := {x = (x1, . . . , xn) ∈ Rn : xi ≤ 0, 1 ≤ i ≤ n}

and
x�y =

∑n

i=1
xiyi

the inner product of the vectors x� = (x1, . . . , xn) ∈ Rn and y� =
(y1, . . . , yn) ∈ Rn (by x� we denote the transpose of the column vector x),
the most elementary minimax result is given by the following.

Theorem 1. If C ⊆ Rn is a convex set, then it follows that

infx∈C maxα∈∆n
α�x = maxα∈∆n

infx∈C α�x.

Proof. It is obvious that

infx∈C maxα∈∆n
α�x ≥ maxα∈∆n

infx∈C α�x. (9)

To show that we actually have an equality in relation (9), we assume by
contradiction that

infx∈C maxα∈∆n
α�x > maxα∈∆n

infx∈C α�x := γ. (10)

By relation (10), there exists some β satisfying

infx∈C maxα∈∆n
α�x > β > γ. (11)

Introduce now the mapping H : C → Rn given by

H(x) := x− βe

with e� = (1, 1, . . . , 1) ∈ Rn. If the set H(C) ∩ Rn
− is nonempty, there exists

some x0 ∈ C satisfying x0 − βe ≤ 0. This implies maxα∈∆n
α�x0 ≤ β, and

we obtain a contradiction with relation (11). Hence the set H(C) ∩ Rn
− is

empty, and by the separation result for disjoint convex sets ([32]) one can find
some α0 ∈ ∆n satisfying infx∈C α�

0 x ≥ β. This implies by the definition of γ
that γ ≥ infx∈C α�

0 x ≥ β contradicting relation (11), and the desired result
is proved.
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Let us introduce the following notation. The set F(A0) represents the
set of all finite subsets of the set A0 ⊆ A, and for every I ∈ F(A0) the set
P(I) denotes the set of all Borel probability measures concentrated on I. This
means for I = {a1, . . . , a|I|} ⊆ A and |I| <∞ denoting the cardinality of the
set I that λ belongs to P(I) if and only if

λ =
∑|I|

i=1
si(λ)εai

(12)

for some s(λ)� ∈ ∆|I|. By relation (12), it is clear that the set P(I) is convex
and in particular

P(I) = co({εa}a∈I) (13)

with co(C) denoting the convex hull of a set C. Remember co(C) represents
the set of all finite convex combinations of elements of the set C ([32]). By
the definition of PF (A0) with A0 ⊆ A, we also obtain that

PF (A0) = co({εa}a∈A0) = ∪I∈F(A0)P(I) (14)

and this set is also convex. In the next theorem, we will prove Wald’s mini-
max result. This result was proved in 1945 ([41]) using a more complicated
approach.

Theorem 2. For any payoff function f : A×B → R and every set I belonging
to F(A),

infµ∈PF (B) max λ∈P(I)fe(λ, µ) = maxλ∈P(I) infµ∈PF (B) fe(λ, µ).

Proof. Let I belong to F(A) and introduce the mapping L : PF (B) → R|I|

given by
L(µ) := (fe(εa, µ))a∈I .

By the definition of the mapping L and the function fe, we obtain

infµ∈PF (B) maxλ∈P(I) fe(λ, µ) = infx∈L(PF (B)) maxs(λ)∈∆|I| s(λ)
�x (15)

and

maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = maxs(λ)∈∆|I| infx∈L(PF (B)) s(λ)�x. (16)

Also by relation (5), it follows for every a ∈ I that the function

µ �−→ fe(εa, µ)

is affine on PF (B). This shows by the convexity of the set PF (B) that the
range L(PF (B)) ⊆ R|I| is a convex set. Applying now Theorem 1, we obtain

infx∈L(PF (B)) maxs(λ)∈∆|I| s(λ)
�x = maxs(λ)∈∆|I| infx∈L(PF (B)) s(λ)�x,

and by relations (15) and (16), the desired result follows.
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A symmetrical version of Wald’s minimax theorem needed in the proof of
Lemma 4 is given by

supλ∈PF (A) minµ∈P(J) fe(λ, µ) = minµ∈P(J) supλ∈PF (A) fe(λ, µ) (17)

for any J belonging to F(B). This can be easily derived from Theorem 2
(replace fe(λ, µ) by −fe(λ, µ) and reverse the sets A and B!). Using the next
lemma, it is also possible to give different equivalent representations of Wald’s
minimax theorem.

Lemma 1. Let f : A×B → R be a given payoff function. For any µ ∈ PF (B)
and A0 ⊆ A

supλ∈PF (A0) fe(λ, µ) = supa∈A0
fe(εa, µ),

and for any B0 ⊆ B and λ ∈ PF (A)

infµ∈PF (B0) fe(λ, µ) = infb∈B0 fe(λ, εb).

Proof. We only give a proof of the first equality because the second one can
be verified in a similar way. Because the set A0 ⊆ A can be identified with
the set of one-point Borel probability measures εa, a ∈ A0, it is obvious for
every µ belonging to PF (B) that

supλ∈PF (A0) fe(λ, µ) ≥ supa∈A0
fe(εa, µ).

Consider now an arbitrary λ belonging to PF (A0). By definition there exists
a finite set {a1, . . . , ak} ⊆ A0 and s(λ)� ∈ ∆k such that λ =

∑k
i=1 si(λ)εai

,
and hence we obtain

fe(λ, µ) =
∑k

i=1
si(λ)fe(εai

, µ) ≤ supa∈A0
fe(εa, µ).

Because λ belonging to PF (A0) is arbitrary, this implies

supλ∈PF (A0) fe(λ, µ) ≤ supa∈A0
fe(εa, µ)

and the desired result is verified.

By Lemma 1, it follows with A0 replaced by I ∈ F(A) and PF (A0) by P(I)
that

infµ∈PF (B) max λ∈P(I)fe(λ, µ) = infµ∈PF (B) maxa∈I fe(εa, µ) (18)

By a similar argument, we obtain

maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = maxλ∈P(I) infb∈B fe(λ, εb), (19)

and combining relations (18), (19) and Theorem 2, one can give different
equivalent representations of Wald’s minimax theorem. For its proof using
the strong duality theorem of linear programming, we need some elementary
properties of closed and compact sets.
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Definition 4. A topological space X is called compact if every collection of
open subsets of X that covers X contains a finite subcollection covering X.

It is well-known that X ⊆ Rn is compact if and only if it is bounded and
closed. ([35]). Moreover, an easy consequence of the above definition is the so-
called finite intersection property of compact sets given by the following ([33]):
any collection of closed subsets of a compact topological space X, for which
any finite subcollection has a nonempty intersection, must have a nonempty
intersection.

Definition 5. A function k : X → R with X a topological space is called
lower semicontinuous if all its lower level sets {x ∈ X : k(x) ≤ r}, r ∈ R are
closed subsets of X. It is called upper semicontinuous if all its upper level sets
{x ∈ X : k(x) ≥ r}, r ∈ R are closed subsets of X, and it is called continuous
if it is both upper and lower semicontinuous.

One can now show the following so-called Weierstrass–Lebesgue lemma
([33]). For completeness, a proof is listed.

Lemma 2. If the function k : X → (−∞,∞] is lower semicontinuous and X
is a compact topological space, then the function k is bounded from below and
attains its minimum on X.

Proof. Because k is a lower semicontinuous function with values > −∞, it
follows that the decreasing sequence On := {x ∈ X : k(x) > n}, n ∈ Z of open
sets covers X. This implies by the compactness of X that there exist a finite
subcover and as On+1 ⊆ On, one can find some m ∈ Z satisfying X ⊆ Om

and so the function k is bounded from below. To show that the function k
attains its minimum, introduce β := infx∈X k(x). If β = ∞ we are done.
Hence we assume that β <∞, and by the first part β is finite. Consider now
the collection of nonempty closed sets Fn = {x ∈ X : k(x) ≤ β+n−1}, n ∈ N.
Because Fn+1 ⊆ Fn, it follows that by the definition of β, ∩n∈IFn is nonempty
for every finite subset I of N . Hence by the finite intersection property of
compact sets, we obtain that the intersection ∩n∈NFn is nonempty, and this
shows that k attains its minimum on X.

A symmetrical version of the above result is given by the following. If
the function k : X → [−∞,∞) is upper semicontinuous and X is a compact
topological space, then the function k is bounded from above and attains
its maximum on X. As shown by the next observation, the above result is
useful in determining whether an optimal pure strategy for player 2 exists if
the minimax relations (7) or (8) hold. Because for any payoff function f :
A×B → R it follows for r finite that

{b ∈ B : supa∈A f(a, b) ≤ r} = ∩a∈A{b ∈ B : f(a, b) ≤ r}, (20)

we obtain immediately for b �−→ f(a, b), a ∈ A lower semicontinuous that the
function b �−→ supa∈A f(a, b) is also lower semicontinuous. This implies by
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Lemma 2 for B a compact topological space and using Lemma 1 that there
exists some b0 ∈ B satisfying

supa∈A f(a, b0) = infb∈B supa∈A f(a, b) = infb∈B supλ∈PF (A) fe(λ, εb).

By a symmetry argument, a similar observation holds for player 1 if A is a
compact topological space and a �−→ f(a, b) is upper semicontinuous for every
b ∈ B.

Definition 6. A function k : X → R with X a topological space is called
inf-compact if all its lower level sets {x ∈ X : k(x) ≤ r}, r ∈ R are compact.
It is called sup-compact if all its upper level sets {x ∈ X : k(x) ≥ r}, r ∈ R
are compact.

If B is a Hausdorff space, it is shown in Chapter 9 of [33] that a compact
subset of B is closed. This proves for B Hausdorff that every inf-compact (sup-
compact) function is actually lower semicontinuous (upper semicontinuous).
Using now Lemma 2 and Definition 6, one can prove the following important
result.

Lemma 3. If the pure strategy set B is a topological space and there exist
some I0 ∈ F(A) such that the function b �−→ maxa∈I0 f(a, b) is inf-compact
and b �−→ f(a, b) is lower semicontinuous for every a ∈ A, then

supI∈F(A) infb∈B supa∈I f(a, b) = infb∈B supa∈A f(a, b).

Moreover, the inf in the last expression is attained, and so, it can be replaced
by min.

Proof. Introducing β := supI∈F(A) infb∈B supa∈I f(a, b), we first verify that

infb∈B supa∈A f(a, b) ≤ β + ε

for every ε > 0. Consider for ε > 0 the nonempty set

Fα(ε) := {b ∈ B : maxa∈I0∪{α} f(a, b) ≤ β + ε}, α ∈ A\I0.

Because the function b �−→ f(a, b) is lower semicontinuous for every a ∈ A,
it follows by relation (20) that the nonempty set Fα(ε) is closed for every
α ∈ A\I0. Moreover, for every finite set I ⊆ A\I0, we obtain by the definition
of β that ∩α∈IFα(ε) is nonempty and

Fα(ε) ⊆ {b ∈ B : maxa∈I0 f(a, b) ≤ β + ε} (21)

for any α ∈ A\I0. By assumption, the last set in relation (21) is compact, and
we have shown that the collection Fα(ε), α ∈ A\I0 of closed sets satisfies the
finite intersection property. This shows that ∩α∈A\I0Fα(ε) is nonempty, and
because
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∩α∈A\I0Fα(ε) = {b ∈ B : supa∈A f(a, b) ≤ β + ε}, (22)

we obtain
inf
b∈B

sup
a∈A

f(a, b) ≤ β + ε.

Because ε > 0 is arbitrary, this implies infb∈B supa∈A f(a, b) = β, and to show
that the infimum is actually attained, we observe the following. Because by
relation (22) we obtain for every ε > 0 that

G(ε) := ∩α∈A\I0Fα(ε)

is a closed nonempty set of the compact set {b ∈ B : maxa∈I0 f(a, b) ≤
β+ ε}, the finite intersection property also holds for the decreasing collection
G(ε), ε > 0. This shows that

infb∈B supa∈A f(a, b) = minb∈B supa∈A f(a, b)

and so the infimum can be replaced by min.

An important special case of Lemma 3 is given by B a compact topological
space, and b �−→ f(a, b) is lower semicontinuous for every a ∈ A. Because
every closed subset of a compact set is compact (see Chapter 9 of [33]), it is
obvious that the conditions of Lemma 3 are satisfied. A symmetrical version
of Lemma 3 needed in the next proof of Wald’s minimax theorem is given by

infJ∈F(B) supa∈A minb∈J f(a, b) = maxa∈A infb∈B f(a, b), (23)

and this holds if the function a �−→ f(a, b) is upper semicontinuous for
every b ∈ B and there exist some J0 ∈ F(B) such that the function
a �−→ minb∈J0 f(a, b) is sup-compact. A sufficient condition for this is given
by A a compact topological space, and a �−→ f(a, b) is upper semicontinuous
for every b ∈ B. We are now able to give a proof of Wald’s minimax result
using the strong duality theorem for linear programming and relation (23).

Proof. (Alternative proof of Wald’s minimax theorem)

By relation (14) with A0 replaced by B, it follows for I belonging to F(A)
that

infµ∈PF (B) max a∈Ife(εa, µ) = infJ∈F(B) minµ∈P(J) maxa∈I fe(εa, µ). (24)

For every J ∈ F(B), the optimization problem

minµ∈P(J) maxa∈I fe(εa, µ) = min{z : z ≥ fe(εa, µ), a ∈ I, µ ∈ P(J)}

is a linear programming problem with a finite optimal solution. Hence by the
strong duality theorem for linear programming ([6]), we obtain the minimax
result given by
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minµ∈P(J) maxa∈I fe(εa, µ) = maxλ∈P(I) minb∈J fe(λ, εb). (25)

Applying now relations (24) and (25) yields

infµ∈PF (B) max a∈Ife(εa, µ) = infJ∈F(B) maxλ∈P(I) minb∈J fe(λ, εb). (26)

Moreover, because the set I is finite and hence ∆|I| ⊆ R|I| being closed and
bounded and hence compact (in the Euclidean topology) and λ �−→ fe(λ, εb)
is continuous on P(I) for every b ∈ B, we may use relation (23) with the set
A replaced by P(I) and the function f(a, b) by fe(λ, εb). This shows

infJ∈F(B) maxλ∈P(I) minb∈J fe(λ, εb) = maxλ∈P(I) infb∈B fe(λ, εb)

and so we obtain by relation (26) that

infµ∈PF (B) maxa∈I fe(εa, µ) = maxλ∈P(I) infb∈B fe(λ, εb).

Finally by Lemma 1 (replace B0 by B), Wald’s minimax result is verified.

Actually the minimax result

minµ∈P(J) maxa∈I fe(εa, µ) = maxλ∈P(I) minb∈J fe(λ, εb) (27)

was first proved by von Neumann in 1928 ([30]). In fact in this paper, a more
general minimax result for a continuous payoff function defined on the Carte-
sian product of compact simplices that is quasiconvex in B and quasiconcave
in A was shown. This result seems to have been forgotten in the literature
(the special case in relation (27) was published in [31]) and was later indepen-
dently generalized by Sion ([37]) in 1958. A useful consequence of Lemma 3
and Wald’s minimax result is given by Kneser’s minimax result ([22]).

Lemma 4. If the set A is a compact convex subset of a linear topological space,
B is a convex subset of a linear space, the payoff function f : A × B → R is
affine in both variables, and a �−→ f(a, b) is upper semicontinuous for every
b ∈ B, then

supa∈A infb∈B f(a, b) = infb∈B supa∈A f(a, b)

and in both expressions the sup can be replaced by max.

Proof. Because A is a compact convex topological space and the function
a �−→ f(a, b) is upper semicontinuous for every b ∈ B, we obtain by relation
(23) that

maxa∈A infb∈B f(a, b) = infJ∈F(B) maxa∈A minb∈J f(a, b). (28)

Considering now any λ belonging to PF (A) and b ∈ B, it follows that there
exists some finite set {a1, ..., ak} ⊆ A and s(λ)� ∈ ∆k such that

λ =
∑k

i=1
si(λ)εai

.
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This implies, using a �−→ f(a, b) is affine for every b ∈ B and A is a convex
set, that

maxa∈A minb∈J f(a, b) ≥ minb∈J f(
∑k

i=1
si(λ)ai, b) = minb∈J fe(λ, εb).

(29)
Because λ ∈ PF (A) is arbitrary, relation (29) yields

maxa∈A minb∈J f(a, b) ≥ supλ∈PF (A) minb∈J fe(λ, εb)

and by Lemma 1 and relation (14) with A0 replaced by A, this implies

maxa∈A minb∈J f(a, b) = supλ∈PF (A) minµ∈P(J) fe(λ, µ). (30)

Applying now the symmetrical version of Wald’s minimax theorem listed in
relation (17) to the last part of relation (30) yields

maxa∈A minb∈J f(a, b) = minµ∈P(J) supλ∈PF (A) fe(λ, µ). (31)

Hence by relations (28), (31), (14) and Lemma 1, we obtain

maxa∈A infb∈B f(a, b) = infµ∈PF (B) supa∈A fe(εa, µ). (32)

Because the function b �−→ f(a, b) is affine for every a ∈ A and the set B is
convex, we obtain as in the first part of this proof that

infµ∈PF (B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a, b) = infb∈B maxa∈A f(a, b)

and in combination with relation (32), the desired result follows.

Actually one can show that the minimax results of Wald, von Neumann,
and Kneser can be easily derived from each other. For more equivalent min-
imax results, the reader is referred to ([15]). An easy consequence of Wald’s
minimax theorem useful in Section 2 is given by the following.

Theorem 3. For any payoff function f : A×B → R

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ).

Proof. By Lemma 1 and Wald’s minimax theorem, we obtain for every I
belonging to F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) = maxλ∈P(I) infµ∈PF (B) fe(λ, µ). (33)

Because by relation (14)

supI∈F(A) maxλ∈P(I) infµ∈PF (B) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ)

the desired result follows using relation (33).
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3 On Necessary and Sufficient Conditions
for Minimax Theorems

In this section, we will derive necessary and sufficient conditions for the
different minimax equalities listed in relations (6) up to (8) by means of the ex-
tension of Wald’s minimax result listed in Theorem 3. Observe these minimax
results are equivalent to the existence of “optimal” strategies for two-player
zero-sum noncooperative games under different conditions on the use of the
strategy sets of the two players. To derive these conditions for relation (6), we
introduce the following class of functions.

Definition 7. The payoff function f : A×B → R belongs to the set U0 if

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈PF (B) supa∈A fe(εa, µ).

A game theoretic interpretation of a payoff function f belonging to the set
U0 is given by the observation that for player 2 using the mixed strategy set
PF (B) and the minimax approach, it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. However, it might be possible that the value for player 2
cannot be achieved if he uses the set PF (B) of mixed strategies.

Theorem 4. The minimax result in relation (6), given by

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ),

holds if and only if the function f belongs to the set U0.

Proof. By Theorem 3 and the definition of U0, the result follows immediately.

The importance of the above theorem is that the minimax equality in re-
lation (6) is replaced by an easier condition. Notice that U0 is automatically
satisfied if A is a finite set. In this way, Wald’s minimax theorem is a direct
consequence of Theorem 4. Moreover, we will show at the end of this sec-
tion that a minimax result derived by Ville ([39]) is an easy consequence of
Theorem 4. We do this by showing that the conditions imposed on the payoff
function f and the pure strategy sets A and B imply that the function f
should belong to the set U0. Actually by a symmetric argument (replace f by
−f and reverse the sets A and B!), one can also introduce the following class
of functions.

Definition 8. The payoff function f : A×B → R belongs to the set V0 if

infJ∈F(B) supλ∈PF (A) minb∈J fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

Using the same symmetry argument, the next corollary is an easy conse-
quence of Theorem 4.
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Corollary 1. The minimax result in relation (6), given by

infµ∈PF (B) supλ∈PF (A) fe(λ, µ) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ),

holds if and only if the function f belongs to V0.

To derive a necessary and sufficient condition for the minimax equality in
relation (7), we introduce the following class of functions.

Definition 9. The function f : A×B → R belongs to the set U1 if

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infb∈B supa∈A f(a, b).

A game theoretic interpretation of the payoff function f belonging to the
set U1 is given by the observation that for player 2 using the mixed strategy set
PF (B) and the minimax approach, it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. Moreover, the payoff function for player 2 is such that his
mixed strategy set is always dominated by his pure strategy set. A sufficient
condition for the listed minimax result was discussed in [20].

Theorem 5. The minimax result in relation (7), given by

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb),

holds if and only if the function f belongs to U1.

Proof. By Lemma 1, the minimax result listed in relation (7) is the same as

infb∈B supa∈A f(a, b) = supλ∈PF (A) infµ∈PF (B) fe(λ, µ).

Hence by Theorem 3 and the definition of U1, the desired result follows.

Finally we derive a necessary and sufficient condition for the minimax equality
listed in relation (8) involving the pure strategy sets A and B.

Definition 10. The function f : A×B → R belongs to the set U2 if

supλ∈PF (A) infb∈B fe(λ, εb) = supa∈A infb∈B f(a, b).

A game theoretic interpretation of the payoff function f belonging to the
set U2 is given by the observation that for player 1 using the mixed strategy set
PF (A) and the minimax approach, his mixed strategy set is always dominated
by his pure strategy set. This means that player 1 can restrict himself to the
set of pure strategies instead of using the set of mixed strategies. One can now
show the most well-known minimax result.
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Theorem 6. The minimax result in relation (8), given by

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b),

holds if and only if the function f belongs to the set U1 ∩ U2.

Proof. If the function f belongs to the set U1 ∩U2, then by Lemma 1 (replace
A0 by A) and Theorem 5 we obtain

infb∈B supa∈A f(a, b) = supλ∈PF (A) infb∈B fe(λ, εb).

By the definition of the set U2, this implies that relation (8) holds. To show the
reverse implication, consider an arbitrary λ belonging to PF (A). By relation
(14), there exists some I0 ∈ F(A) such that λ ∈ P(I0), and so we obtain

infb∈B fe(λ, εb) ≤ supI∈F(A) infb∈B supa∈I f(a, b). (34)

This implies

supλ∈PF (A) infb∈B fe(λ, εb) ≤ supI∈F(A) infb∈B supa∈I f(a, b).

Also by our minimax result listed in relation (8), we obtain

supI∈F(A) infb∈B supa∈I f(a, b) ≤ infb∈B supa∈A f(a, b)

= supa∈A infb∈B f(a, b)

and this shows that

supλ∈PF (A) infb∈B fe(λ, εb) ≤ supa∈A infb∈B f(a, b). (35)

Because the reverse inequality trivially holds, we can replace the inequality in
relation (56) by an equality, and so the function f belongs to U2. This implies
using again the minimax equality in relation (8) that

supλ∈PF (A) infb∈B fe(λ, εb) = infb∈B supa∈A f(a, b)

and by Theorem 5 the function f belongs to U1.

Again using a symmetry argument (replace f by −f and reverse the sets
A and B!) in the definition of the sets U1 and U2, one can introduce the
following class of functions.

Definition 11. The payoff function f : A×B → R belongs to the set V1 if

infJ∈F(B) supλ∈PF (A) minb∈J fe(λ, εb) = supa∈A infb∈B f(a, b),

whereas f : A×B → R belongs to the set V2 if

infµ∈PF (B) supa∈A fe(εa, µ) = infb∈B supa∈A f(a, b).
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By the same symmetry argument, one can easily derive the following corol-
lary from Theorem 6.

Corollary 2. The minimax result in relation (8), given by

infa∈A supb∈B f(a, b) = supb∈B infa∈A f(a, b),

holds if and only if f belongs to the set V1 ∩ V2.

Before giving a short overview of some minimax theorems that appeared
in the literature, we list some definitions and results for functions defined on a
metric space. Observe we also include the definition of a continuous function
on a metric space. Another equivalent definition of a continuous function on
a topological space was already given in Definition 5.

Definition 12. Let (X, ρ) be a metric space with metric ρ. The function k :
X → R is said to be continuous at the point x ∈ X if for every ε > 0 there
exists some δ > 0 such that |k(x) − k(y)| < ε for every y ∈ X satisfying
ρ(x, y) < δ. It is called continuous on X if it is continuous at every point
x ∈ X. A function k : X → R is called uniformly continuous on X if for
every ε > 0 there exists some δ > 0 such that for any x, y ∈ X satisfying
ρ(x, y) < δ, it holds that |k(x) − k(y)| < ε. Finally, a collection of functions
kγ : X → R, γ ∈ Γ is called equicontinuous if for every ε > 0 there exists
some δ > 0 such that for every x, y ∈ X satisfying ρ(x, y) < δ, it holds that
|kγ(x)− kγ(y)| < ε for every γ ∈ Γ.

Recall in a metric space (X, ρ) with metric ρ, the open ball B(x0, δ) with
center x0 and radius δ > 0 is given by

B(x0, δ) := {x ∈ X : ρ(x, x0) < δ}.

We now list the following well-known result ([24,33]).

Lemma 5. For (X, ρ) a compact metric space with metric ρ, a function k :
X → R continuous on X is uniformly continuous on X.

Proof. Let ε > 0 and consider an arbitrary x ∈ X. Because k is continuous
at x, there exists some δx > 0 such that |k(x) − k(y)| < 2−1ε for every y
belonging to B(x, δx). Clearly the collection of open balls B(x, 2−1δx), x ∈ X
is a covering of X, and this implies by the compactness of X that there exists
some finite set F = {x1, . . . , xn} ⊆ X satisfying

X = ∪ni=1B(xi, 2−1δxi
). (36)

Let now δ := 4−1 min1≤i≤n δxi
and consider two points y, z ∈ X satisfying

ρ(z, y) < δ. By relation (36) there exists some 1 ≤ i∗ ≤ n such that ρ(y, xi∗) <
2−1δxi∗ and so |f(xi∗)− f(y)| ≤ 2−1ε. By the triangle inequality of a metric
we also obtain, using ρ(z, y) < δ, that
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ρ(z, xi∗) ≤ ρ(z, y) + ρ(y, xi∗) < δ + 2−1δxi∗ ≤ δx∗
i
,

and so |f(z)− f(xi∗)| < 2−1ε. This shows that

|f(z)− f(y)| ≤ |f(z)− f(xi∗)|+ |f(xi∗)− f(y)| < 2−1ε+ 2−1ε = ε

and we have shown that the function k is uniformly continuous on X.

We now recall the minimax equality listed in relation (6). In 1938, Ville
([39]) proved a generalization of the well-known von Neumann minimax result
listed in relation (27). This result is shown in Theorem 7 and serves as an
important tool in infinite zero-sum or antagonistic game theory ([40]).

Theorem 7. If A and B are nonempty compact sets in metric spaces and the
payoff function f : A×B → R is continuous, then

supλ∈PF (A) infµ∈PF (B) fe(λ, µ) = infµ∈PF (B) supλ∈PF (A) fe(λ, µ).

To prove Theorem 7, we show that the conditions imposed on f and the
sets A and B imply that the function f belongs to the set U0. Applying then
Theorem 4 yields a proof of Ville’s minimax theorem. Actually we show the
following result.

Lemma 6. If the set A is a compact metric space with metric ρ and the collec-
tion of functions fb : A→ R , b ∈ B given by fb(a) := f(a, b) is equicontinuous
with f the payoff function, then f belongs to U0. In particular, if f is contin-
uous and the sets A and B are compact metric spaces, then f belongs to U0.

Proof. For the proof of the first part, it is obvious that

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) ≤ infµ∈PF (B) supa∈A fe(εa, µ).

To show the result, it is therefore sufficient to verify that for every ε > 0 there
exists some set Iε ∈ F(A) satisfying

infµ∈PF (B) supa∈A fe(εa, µ) ≤ infµ∈PF (B) supa∈Iε
fe(εa, µ) + ε.

Let ε > 0 be given. Because the collection of functions fb, b ∈ B is equicon-
tinuous, one can find some δ > 0 such that for every a1, a2 ∈ A satisfying
ρ(a1, a2) < δ, it holds that

|f(a1, b)− f(a2, b)| < ε

for every b ∈ B. Clearly the collection of open balls B(a, δ), a ∈ A covers A,
and by the compactness of A one can find a finite set Iε ∈ F(A) such that

A = ∪a∈Iε
B(a, δ). (37)

Consider now an arbitrary µ ∈ PF (B). By relation (37) and fb, b ∈ B equicon-
tinuous, it follows for any a ∈ A that there exists some a0 ∈ Iε such that
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|f(a, b)− f(a0, b)| < ε

for every b ∈ B. Hence by the definition of PF (B), this implies

fe(εa, µ) ≤ fe(εa0 , µ) + ε ≤ supa∈Iε
fe(εa, µ) + ε. (38)

Because a ∈ A is arbitrary, it follows by relation (38) that

supa∈A fe(εa, µ) ≤ supa∈Iε
fe(εa, µ) + ε

and this implies (using µ is arbitrary) the desired inequality. To verify the
second part, it follows by the continuity of the function f on the compact
metric space A×B and Lemma 5 that the function f is uniformly continuous
on A×B. This shows that the collection fb, b ∈ B is equicontinuous, and by
the first part the desired result follows.

Actually the conditions imposed by Ville can be improved in the following
way ([14]).

Theorem 8. If the pure strategy sets A and B are compact Hausdorff spaces,
and b �−→ f(a, b) is lower semicontinuous for every a ∈ A, and a �−→ f(a, b)
is upper semicontinuous for every b ∈ B, and the payoff function f belongs to
the space of Borel measurable functions that are Lebesgue absolutely integrable
with respect to any Borel product probability measure µ⊗ λ on B ×A, then

supλ∈PF (A) infµ∈PF (B) fe(λ, µ) = infµ∈PF (B) supλ∈PF (A) fe(λ, µ).

Again this result (for an alternative proof see [14]) can be verified by
showing that the above conditions imply that the function f belongs to U0.
Because its proof involves classic results from the set of Borel measures on a
compact Hausdorff space ([7,8]) and these results are beyond the scope of this
chapter, we refer the reader to [14] for more details on the used techniques.
We also like to mention for P(A) (P(B)) denoting the set of Borel probability
measures on A (B) that under the conditions of the next lemma, one can show
by a similar type of proof as in Lemma 1 that

supλ∈P(A) fe(λ, µ) = supa∈A fe(εa, µ) (39)

for every µ ∈ P(B) and

infµ∈P(B) fe(λ, µ) = infb∈B fe(λ, εb) (40)

for every λ ∈ P(A).

Lemma 7. If the pure strategy set A and B are compact Hausdorff spaces,
and the function b �−→ f(a, b) is lower semicontinuous for every b ∈ B, and
a �−→ f(a, b) is upper semicontinuous for every a ∈ A, and f belongs to the
space of Borel measurable functions that are Lebesgue absolutely integrable
with respect to any Borel product probability measure µ ⊗ λ on B, then the
function f belongs to U0.
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Proof. Because the function b �−→ f(a, b) is Lebesgue absolutely integrable
for any Borel probability measure µ on the set B, one can show (see Corollary
2.2 of [13]) that

infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈P(B) supa∈I fe(εa, µ)

for any I ∈ F(A). Hence we obtain

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ).
(41)

In the remainder of the proof, we will now verify that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) ≥ infµ∈PF (B) supa∈A fe(εa, µ). (42)

Assuming for the moment that this holds, it follows by (41) that f belongs
to U0. To prove relation (42), we observe for B a compact Hausdorff space
that the set P(B) is compact in the weak∗ topology ([7, 8]) and the function
µ �−→ fe(εa, µ) is lower semicontinuous with respect to the weak∗ topology
(see Lemma 12 of [14]). Hence by Lemma 3 (replace B by P(B) and f(a, b)
by fe(εa, µ)) and relation (39), it follows that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) = infµ∈P(B) supλ∈P(A) fe(λ, µ). (43)

Again by Lemma 12 of [14], the function µ �−→ fe(λ, µ) is upper semicon-
tinuous, and as P(A) is also weak∗ compact, we obtain by Kneser’s minimax
theorem (Lemma 4) (replace A by P(A) and f(a, b) by the biaffine function
fe(λ, µ)) and relation (40) that

infµ∈P(B) supλ∈P(A) fe(λ, µ) = supλ∈P(A) infb∈B fe(λ, εb). (44)

Again by the weak∗compactness of P(A) and relation (40), it follows that

supλ∈P(A) infb∈B fe(λ, εb) = infJ∈F(B) supλ∈P(A) infµ∈P(J) fe(λ, µ). (45)

It is now obvious that

infJ∈F(B) supλ∈P(A) infµ∈P(J) fe(λ, µ)
≥ infJ∈F(B) supλ∈PF (A) infµ∈P(J) fe(λ, µ)

and by Wald’s minimax theorem and Lemma 1

infJ∈F(B) supλ∈PF (A) infµ∈P(J) fe(λ, µ) = infµ∈PF (B) supa∈A fe(εa, µ). (46)

This implies by relations (43) up to (46) that

supI∈F(A) infµ∈P(B) supa∈I fe(εa, µ) ≥ infµ∈PF (B) supa∈A fe(εa, µ)

and so relation (42) is proved.
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We will now consider the minimax equality listed in relation (7) and in-
troduce the following definition used in ([20]).

Definition 13. The payoff function f : A×B → R is called weakly convexlike
on B (or belongs to the set WCB) if for every finite set I ⊆ A

infα∈∆n,bi∈B,1≤i≤n,n∈N
maxa∈I

∑n

i=1
αif(a, bi) ≥ infb∈B maxa∈I f(a, b).

An alternative representation of the above definition is given by

infµ∈PF (B) maxa∈I fe(εa, µ) ≥ infb∈B maxa∈I f(a, b)

for every I belonging to F(A). Because the set B can be identified with the
set (εb)b∈B , it follows for I ∈ F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) ≤ infb∈B maxa∈I f(a, b)

and this shows that in Definition 13, the inequality for a weakly convexlike
function on B can be replaced by an equality. Again a function belonging to
WCB has a clear game theoretical interpretation: for any finite set of pure
strategies of player 1, it follows that player 2 using its mixed strategy set
PF (B) can restrict himself to its set of pure strategies. The next result is
proved in ([20]).

Theorem 9. If B is a compact topological space, the payoff function f is
weakly convexlike on B, and b �−→ f(a, b) is lower semicontinuous on B, for
every a ∈ A, then

infb∈B supλ∈PF (A) fe(λ, εb) = supλ∈PF (A) infb∈B fe(λ, εb).

As before, we check that any function satisfying the assumptions above
belongs to the set U1, and so by Theorem 5 the minimax result in Theorem 9
is proved.

Lemma 8. If B is a compact topological space, and the payoff function f is
weakly convexlike on B, and b �−→ f(a, b) is lower semicontinuous for every
a ∈ A, then f belongs to U1.

Proof. Because the function f is weakly convexlike on B, it follows that

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infb∈B maxa∈I f(a, b).

By the compactness of the set B and b �−→ f(a, b) is lower semicontinuous for
every a ∈ A, we may apply Lemma 3, and this shows by the previous equality
that f belongs to U1.

Actually as shown by the following counterexample, the set of weakly
convexlike functions on B with B a compact set and b �−→ f(a, b) continuous
for every a ∈ A is strictly included in the set U1. Observe the function 1S
denotes the characteristic function of the set S, i.e., 1S(s) = 1 for s ∈ S and
1S(s) = 0 otherwise.
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Example 2. Let B = [0, 1] and A = {1, 2, 3} and introduce the continuous
functions b �−→ f(a, b), a ∈ A given by

f(1, b) = 2b1{b≤2−1} + 1{2−1<b≤1}, f(2, b) = 1{b≤2−1} + (2− 2b)1{2−1<b≤1}

and f(3, b) = 1{0≤b≤1}. Because A is a finite set, it follows

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = infµ∈PF (B) maxa∈A fe(εa, µ).

Using f(3, b) = 1 for every b, we obtain fe(ε3, µ) = 1 for every µ ∈ PF (B)
and so

infµ∈PF (B) maxa∈A fe(εa, µ) = 1.

At the same time, it is easy to see that infb∈B maxa∈A f(a, b) = 1, and
this shows that the function f belongs to U1. Introducing now the set
I0 = {1, 2} ⊆ A, it follows that

infb∈B maxa∈I0 f(a, b) = 1.

Moreover, because µ0 = 2−1ε0 + 2−1ε1 belongs to PF (B), we obtain

infµ∈PF (B) maxa∈I0 fe(εa, µ) ≤ max
a∈I0

fe(εa, µ0) = 2−1

and so f is not weakly convexlike on B.

We will now give an overview of the most important different payoff func-
tions f considered in the literature that were used to verify the minimax
equality in relation (8). For a more extensive overview, the reader should con-
sult [15] or [36]. In a paper by Ky Fan in 1953 ([10]), the following definition
is introduced. In the literature, these functions are also called convexlike or
concavelike.

Definition 14. The payoff function f : A × B → R is called Ky Fan convex
on B (or belongs to the set KFCB) if for every b1, b2 ∈ B and 0 < α < 1,
there exists some b0 ∈ B satisfying

f(a, b0) ≤ αf(a, b1) + (1− α)f(a, b2)

for every a ∈ A. It is called Ky Fan concave on A (or belongs to the set
KFCA) if for every a1, a2 ∈ A and 0 < α < 1, there exists some a0 ∈ A
satisfying

f(a0, b) ≥ αf(a1, b) + (1− α)f(a2, b)

for every b ∈ B. The payoff function f : A×B → R is called Ky Fan concave-
convex on the Cartesian product A×B if f is Ky Fan concave on A and Ky
Fan convex on B.
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To rewrite the definition of a Ky Fan convex (concave) function in our
notation, we introduce forD some topological space the set P2(D) ⊆ PF (D) of
two-point probability measures onD. This means that the probability measure
λ belongs to P2(D) if and only if

λ = s(λ1)εd1 + s(λ2)εd2

with di, 1 ≤ i ≤ 2 different elements of the pure strategy set D and s(λ)� =
(s(λ1), s(λ2)) ∈ ∆2 with s(λi) > 0, 1 ≤ i ≤ 2. Using this notation, it follows
that the payoff function f : A×B → R is Ky Fan convex on B if for every µ
belonging to P2(B) there exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ)

for every a ∈ A. Clearly this property also has a clear game theoretical inter-
pretation. For such a payoff function, every two-point mixed strategy of player
2 is dominated by a pure strategy. Actually by an easy induction argument,
one can also show for f Ky Fan convex on B that for any µ ∈ PF (B) there
exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ)

for any b ∈ B. This means that every mixed strategy of player 2 is dominated
by a pure strategy. In [10], the following minimax result is shown.

Theorem 10. If B is compact topological space, the payoff function f is Ky
Fan concave-convex on A× B, and b �−→ f(a, b) is lower semicontinuous for
every a ∈ A, then

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

and inf can be replaced by min in the above expression.

By the well-known symmetry argument (replace f by −f and reverse A and
B), one can easily derive from Theorem 10 that the above minimax result
holds if A is a compact topological space, the function f is Ky-Fan concave-
convex on A×B, and a �−→ f(a, b) is upper semicontinuous for every b ∈ B.
Another more general class of functions was introduced by König in 1968
([23]). Actually König only introduced the next class with β = 1

2 , but indicates
at the the end of his paper that the same results also holds with 0 < β < 1.

Definition 15. The payoff function f : A×B → R is called König convex on
B (or belongs to the set KCB) if there exists some 0 < β < 1 such that for
every b0, b1 ∈ B, there exists some b0 ∈ B satisfying

f(a, b0) ≤ βf(a, b1) + (1− β)f(a, b0)

for every a ∈ A. It is called König concave on A (or belongs to the set KCA)
if there exists some 0 < β < 1 such that for every a1, a2 ∈ A, there exists
some a0 ∈ A satisfying
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f(a0, b) ≥ βf(a1, b) + (1− β)f(a2, b)

for every b ∈ B. The payoff function f : A×B → R is called König concave-
convex on A×B, if f is König concave on A and König convex on B.

Although the above definition is rather technical, it has a clear interpre-
tation in game theory. Denoting by P2,β(D) ⊆ P2(D) the set of two-point
probability measures on the topological space D with probabilities β and
1 − β (β fixed), it means that any mixed strategy of player 2 belonging to
P2,β(B) is dominated by a pure strategy. In [23], the same minimax result
is shown as in Theorem 10 under the weaker conditions that B is a compact
topological space, b �−→ f(a, b) is lower semicontinuous for every a ∈ A, and
f is König concave-convex on A×B. Another more general class of functions
is considered in [12] or [17].

Definition 16. The payoff function f : A × B → R is called closely convex
on B (or belongs to the set CCB) if for every ε > 0, 0 < α < 1 and b1, b2 ∈ B,
there exists some b0 ∈ B satisfying

f(a, b0) ≤ αf(a, b1) + (1− α)f(a, b2) + ε

for every a ∈ A. It is called closely concave on A (or belongs to the set CCA) if
for every ε > 0, 0 < α < 1 and a1, a2 ∈ A there exists some a0 ∈ B satisfying

f(a0, b) ≥ αf(a1, b) + (1− α)f(a2, b)− ε

for every b ∈ B. The payoff function f : A×B → R is called closely concave–
closely convex on A×B if f is closely concave on A and closely convex on B.

Again in our notation, it follows that the payoff function f is closely convex
on B if for every ε > 0 and every µ ∈ P2(B) there exists some b0 ∈ B satisfying

f(a, b0) ≤ fe(εa, µ) + ε

for every a ∈ A. This also has an obvious game theoretical interpretation.
In [12], one also shows the minimax result in relation (8) under the weaker
condition that B is a compact topological space, b �−→ f(a, b) is lower semi-
continuous for every a ∈ A, and f is closely concave closely–convex on A×B.
To show the above results by means of Theorem 6, we need to verify that all
the considered payoff functions actually belong to the set U1 ∩ U2. In the next
result, we say that 0 ≤ β ≤ 1 is a König concave constant on A if for every
λ ∈ P2,β(A) there exists some a0 ∈ A satisfying f(a0, b) ≥ fe(λ, εb) for every
b ∈ B.

Lemma 9. It holds that KFCA ⊆ KCA ⊆ CCA ⊆ U2.

Proof. It is obvious that the inclusion KFCA ⊆ KCA holds. To show that
KCA ⊆ CCA, it is sufficient to verify that the set S ⊆ [0, 1] given by



78 J.B.G. Frenk, G. Kassay

S := {0 ≤ β ≤ 1 : β a a König concave constant} satisfies cl(S) = [0, 1].
Clearly the numbers 0 and 1 belong to S. Because the function f is König
concave on A, we know that there exists some 0 < β < 1 belonging to
S. Moreover, if the numbers βi, i = 1, 2 belong to S, it follows for every
λi = βiεa1 +(1−βi)εa2 ∈ P2,βi

(A) with ai ∈ A, i = 1, 2 that there exists some
elements a(βi) ∈ A, i = 1, 2 satisfying

f(a(βi), b) ≥ fe(λi, εb) (47)

for every b ∈ A and i = 1, 2. This implies using β belongs to S that for
λ = βεa(β1) + (1− β)εa(β2) ∈ P2,β(A), there exists some a0 ∈ A satisfying

f(a0, b) ≥ fe(λ, εb)

for every b ∈ B. Hence by relation (47), we obtain

f(a0, b) ≥ (ββ1 + (1− β)β2)f(a1, b) + (1− ββ1 − (1− β)β2)f(a2, b)

for every b ∈ B. This means for any βi ∈ S, i = 1, 2 that also ββ1 + (1− β)β2

belongs to S, and in [16] it is shown that such a set is dense in [0, 1]. To verify
the last inclusion, one can show by induction that for f closely concave on A,
it follows for every ε > 0 and λ ∈ PF (A) that there exists some a0 satisfying

f(a0, b) ≥ fe(λ, εb)− ε

for every b ∈ B. This implies for every ε > 0 and λ ∈ PF (A) that

inf
b∈B

f(a0, b) ≥ inf
b∈B

fe(λ, εb)− ε (48)

and hence
sup
a∈A

inf
b∈B

f(a, b) ≥ inf
b∈B

fe(λ, εb)− ε. (49)

Because λ ∈ PF (A) and ε are arbitrary, we obtain

sup
a∈A

inf
b∈B

f(a, b) ≥ sup
λ∈PF (A)

inf
b∈B

fe(λ, εb), (50)

and so f belongs to U2.

Actually one can show that the above inclusions are strict ([12]). Moreover,
one can also show the following result

Lemma 10. If B is a compact topological space and the function b �−→ f(a, b)
is lower semicontinuous for every a ∈ A, then KFCB = KCB = CCB ⊆ U1.

Proof. As in Lemma 9, one can show without any additional conditions that
KFCB ⊆ KCB ⊆ CCB , and to prove equality it is sufficient to verify for B
a compact topological space and b �−→ f(a, b) lower semicontinuous for every
a ∈ A that CCB ⊆ KFCB .We only give a proof of this result for B a compact
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metric space. (For B a compact topological space, one can apply a similar
proof replacing sequences by nets (see section 4 of [7]). If the function f is
closely convex on the compact metric space B, then for every n ∈ N, 0 < α < 1
and b1, b2 ∈ B, there exists some b0,n ∈ B satisfying

f(a, b0,n) ≤ αf(a, b1) + (1− α)f(a, b2) +
1
n

for every a ∈ A. Because B is a compact metric space, there exists some
converging subsequence b0,n, n ∈ K ⊆ N with limit b0 ∈ N. This implies by
the lower semicontinuity of the function b �−→ f(a, b) for every a ∈ A that

f(a, b0) ≤ lim infn∈K,n↑∞ f(a, b0,n) ≤ αf(a, b1) + (1− α)f(a, b2)

and so the function f is Ky Fan convex on B. To show the inclusion CCB ⊆ U1,
we can verify in a similar way as done in the last part of the proof of Lemma 9
that for f closely convex on B, it follows for every I ∈ F(A) that

infµ∈PF (B) maxa∈I fe(εa, µ) = infb∈B maxa∈I f(a, b)

This implies

supI∈F(A) infµ∈PF (B) maxa∈I fe(εa, µ) = supI∈F(A) infb∈B maxa∈I f(a, b)
(51)

and applying Lemma 3 to the last expression in relation (51), we obtain that
f belongs to U1.

Using now Lemmas 9 and 10, we obtain for B a compact topological space,
b �−→ f(a, b) is lower semicontinuous for every a ∈ A, and f closely concave–
closely convex on A×B that f belongs to the set U1 ∩ U2, and so by Theorem 6
the classic minimax result in relation (8) holds.

4 Relations Between the Different Minimax Theorems

In this section, we investigate in more detail the relations between the different
minimax results discussed in Section 3 and given by relations (6) up to (8).
Introducing the notation Li and Ri for the left-hand and right-hand sides of
relation (i) for i = 6, 7, 8, we obviously obtain that

L8 = L7 ≥ L6 ≥ R6 = R7 ≥ R8. (52)

This implies that
(8)⇒ (7)⇒ (6). (53)

Below we show by means of some counterexamples that none of the arrows in
relation (53) can be reversed. In the first counterexample, we show an instance
for which (7) holds and (8) does not hold.
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Example 3. Let A = [0, 1] ⊂ R, B = {b1, b2, b3} ⊂ R and introduce the
function f : A×B → R given by

f(a, b) =

⎧

⎨

⎩

a2 if b = b1
(a− 1)2 if b = b2

2−1 if b = b3

.

For this bifunction, we have

L8 := minb∈B supa∈A f(a, b) = 1/2,

whereas
R8 := supa∈A minb∈B f(a, b) = 1/4,

and so (8) does not hold. Because L8 = L7 = 2−1 and it is obvious to check
that R7 = 2−1, we obtain that (7) holds.

In the next counterexample, we show an instance for which (6) holds and
(7) does not hold.

Example 4. Take A = [0, 1], B = {b1, b2} ⊂ R, and introduce the function
f : A×B → R given by

f(a, b) =
{

a2 if b = b1
(a− 1)2 if b = b2

.

Consider now the mixed strategy λ∗ ∈ PF (A) given by λ∗ = 2−1εa1 + 2−1εa2

with a1 = 0 and a2 = 1. It is easy to check that

minb∈B fe(λ∗, εb) = 2−1,

and so it follows that R7 ≥ 2−1. Moreover, we observe by the definition of the
sets A and B that

L6 = inf0≤s1(µ)≤1 supa∈A{s1(µ)f(a, b1) + (1− s1(µ))f(a, b2)}. (54)

Using now that the last expression in relation (54) equals

inf0≤s1(µ)≤1 max{s1(µ), 1− s1(µ)} = 2−1, (55)

we obtain that L6 = 2−1. Because we already know that L6 ≥ R7 = R6 and
R7 ≥ 2−1, we obtain

L6 = R7 = R6 = 2−1,

It is now easy to check that L7 = 1, and hence we have found an instance for
which (6) holds and (7) does not hold.

To conclude these investigations, we give an instance showing that (6) can
also fail. Consider the set c0 of all (real valued) sequences converging to 0. It
is well-known that the space c0 endowed with the norm

‖a||c0 = supk∈N |ak|

is a Banach space.
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Example 5. Let A = {a = (ak) ∈ c0 : a1 = 0}, B = [0, 1] ⊂ R and take the
function f : A×B → R given by

f(a, b) = f((ak), b) =
{

1 if there exist some k ∈ N such that b = ak
0 otherwise

(56)
Consider some λ ∈ PF (A). Hence there exists a finite number of sequences ai=
(aik)k∈N , 1≤ i≤m, belonging to A and some vector s(λ)= (s1(λ), ..., sm(λ)),
si(λ) > 0 and

∑m
i=1 si(λ) = 1 such that

λ =
∑m

i=1
si(λ)εai .

Because the set [0, 1] contains more than a countable number of elements, one
can now choose a number b ∈ [0, 1] such that none of the above sequences
ai, 1 ≤ i ≤ m, contain this number. Using this number and the definition of
f , it can be easily seen that

infb∈[0,1] fe(λ, εb) = infb∈[0,1]

∑m

i=1
si(λ)f(ai, b) = 0,

and so R6 = 0. On the other hand, consider some µ ∈ PF (B). By de-
finition, one can find some finite set {b1, . . . , bp} ⊆ [0, 1] and a vector
s(µ) = (s1(µ), . . . , sp(µ)), sj(µ) > 0 with

∑p
j=1 sj(µ) = 1 such that

µ =
∑p

j=1
sj(µ)εbj

.

Taking the element a0 := (0, b1, . . . , bp, 0, 0, ...) ∈ c0, it is obvious by the
definition of f that

supa∈A fe(εa, µ) ≥
∑p

j=1
sj(µ)f(a0, bj) = 1. (57)

Because f is bounded by 1, this shows that

L6 := infµ∈PF (B) supa∈A fe(εa, µ) = 1,

and so we have verified that (6) does not hold.

5 On Sion’s Minimax Theorem

In this section, we give an alternative and elementary proof of Sion’s minimax
theorem. This famous result is a generalization of von Neumann’s minimax
theorem ([30]). Its original proof made use of the KKM lemma, which is
equivalent to Brouwer’s fixed point theorem ([9,42]). However, as it will turn
out, we do not need such a heavy machinery to verify this result. Actually
we will give a proof of a slightly more general result by using a less known
technique called the level set method originally developed by Joo ([19]). It
remains an open question whether it is possible to verify this minimax result
by means of Theorem 6.
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Definition 17. A real valued function k : C −→ R is called quasiconvex on
the (convex) set C if all its lower level sets {x ∈ C : k(x) ≤ r}, r ∈ R are
convex. It is called quasiconcave on C if −f is quasiconvex on C.

It is well-known ([3]) that an equivalent description of a quasiconvex func-
tion is given by

k(βx+ (1− β)y) ≤ max{k(x), k(y)}
for every 0 < β < 1 and x, y ∈ C. By this representation, it is easy to see
that the class of quasiconvex functions strictly contains the class of convex
functions. We now list the following result due to Sion ([37]).

Theorem 11. If the payoff function f : A×B → R with B a compact convex
subset of a linear topological space and A a convex subset of a linear topological
space satisfies a �−→ f(a, b) is quasiconcave and upper semicontinuous for
every b ∈ B, and b �−→ f(a, b) is quasiconvex and lower semicontinuous for
every a ∈ A, then the minimax result in relation (8) given by

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

holds, and in the above expressions inf can be replaced by max .

The following result is the starting point of the so-called level set method
and shown in ([19]). Remember the values r∗ and r∗ are given in relations
(1) and (2). As observed in Section 1, it is always assumed that r∗ > −∞.
Also for convenience, we denote the lower level set of level r of a function
k : C → R by

L(k, r) := {x ∈ C : k(x) ≤ r}.

Lemma 11. Let f : A×B → R be a given payoff function and introduce the
function fa : B → R given by fa(b) = f(a, b). Then r∗ = r∗ if and only if
∩a∈AL(fa, r) is nonempty for every r > r∗.

Proof. If r∗ = r∗, then for every r > r∗ = r∗ > −∞ there exists by the
definition of r∗ some b0 ∈ B satisfying supa∈A f(a, b0) < r. This shows that
b0 belongs to the intersection ∩a∈AL(fa, r) and so ∩a∈AL(fa, r) is nonempty.
To verify the reverse implication, it is sufficient to check that r∗ ≤ r∗ + ε for
every ε > 0. Take now r = r∗ + ε for some ε > 0. By our assumption, we know
that ∩a∈AL(fa, r) is nonempty and so there exists some b0 ∈ B satisfying
supa∈A f(a, b0) ≤ r. This implies r∗ = infb∈B supa∈A f(a, b) ≤ r = r∗ + ε, and
the proof is completed.

For relation (8) to hold, it is necessary and sufficient by Lemma 11 to
show that the intersection ∩a∈AL(fa, r) is nonempty for every r > r∗. It can
be easily verified that for arbitrary functions f , this result does not hold and
so we must impose some conditions on f. Before defining the proper class of
functions, we recall some well-known notions within topology. For X a subset
of a topological space with topology F , the set S ⊆ X is called open in X



Minimax Theorems, and Equilibrium Problems 83

if there exists some set O belonging to F with S = X ∩ O. The open sets
generated in this way are called the relative topology induced by X, and with
this topology the set X is a topological space. Another well-known notion
within topology is given in the next definition ([9, 33]).

Definition 18. For any topological space X, a set C ⊆ X is called connected
if for any two disjoint sets C1 and C2, both open (closed) in C and satisfying
C = C1 ∪ C2, it follows that C1 or C2 is empty.

In [26], the following class of functions is introduced.

Definition 19. Let X be a topological space. The function k : X → R is called
connected if for every r ∈ R the lower level set L(k, r) ⊆ X is connected.

It is well-known that every convex subset of a linear topological space X
is connected and so any quasiconvex function k : X → R is connected. As for
quasiconvex functions, one can give an equivalent definition of a connected
function.

Lemma 12. The function k : X → R is connected if and only if for every
x1, x2 ∈ X there exists some connected set Cx1x2 ⊆ X containing x1, x2 such
that k(x) ≤ max{k(x1), k(x2)} for every x ∈ Cx1x2 .

Proof. To show that a connected function satisfies the above property, con-
sider x1, x2 ∈ X and introduce r := max{k(x1), k(x2)}. Take now the set
Cx1x2 equal to the connected set L(k, r). This set satisfies the desired prop-
erty. To prove the reverse implication that the lower level sets are connected,
consider some nonempty lower level set L(k, r) with x1 belonging to L(k, r)
and let x2 be another arbitrary point belonging to L(k, r). (The empty set
is connected by definition.) By assumption, there exists some connected set
Cx1x2 ⊆ X containing x1, x2 such that

k(x) ≤ max{k(x1), k(x2)}

for every x belonging to Cx1x2 . This shows Cx1x2 ⊆ L(k, r), and as x2 is an
arbitrary element of L(k, r), we obtain

∪x2∈L(k,r)Cx1x2 = L(k, r). (58)

By construction, the intersection ∩x2∈L(k,r)Cx1x2 contains the vector x1 and
because for every x2 ∈ L(k, r) the set Cx1x2 is connected, also ∪x2∈L(k,r)Cx1x2

is connected (cf. [9]). Applying now relation (58) shows that the function k
is connected.

Using the above representation of a connected function, it can be shown
([11]) that the set of connected functions strictly includes the set of quasi-
convex functions. This means that there exists a connected function that is
not quasiconvex. To prove our main theorem, we also introduce the following
class of functions.
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Definition 20. Let X be a topological space. The collection of functions kγ :
X → R, γ ∈ Γ is called equiconnected if for every x1, x2 ∈ X there exists a
connected set Cx1,x2 ⊆ X containing x1, x2 such that

kγ(x) ≤ max{kγ(x1), kγ(x2)}

for every x ∈ Cx1x2 and γ ∈ Γ.

If X is a convex subset of a linear topological space and for every γ ∈ Γ
the function kγ is quasiconvex, then by taking

Cx1x2 = {βx1 + (1− β)x2 : 0 ≤ β ≤ 1}

it follows immediately that the collection of functions kγ , γ ∈ Γ is equicon-
nected.

Definition 21. The payoff function f : A×B → R belongs to the class C0 if

1. The function a �−→ f(a, b) is upper semicontinuous for every b ∈ B;
2. The function b �−→ f(a, b) is lower semicontinuous for every a ∈ A;
3. For every I ∈ F(A), the function b �−→ maxa∈I f(a, b) is connected;
4. The collection of functions −fb, b ∈ B with fb(a) := f(a, b) is equicon-

nected.

For any set of quasiconvex functions kγ , γ ∈ Γ , it follows that the function
x �−→ supγ∈Γ k(x) is also quasiconvex. Using this observation, it is easy to see
for any payoff function f satisfying a �−→ f(a, b) is quasiconcave and upper
semicontinuous for every b ∈ B and b �−→ f(a, b) is quasiconvex and lower
semicontinuous for every a ∈ A actually belongs to the set C0. Hence the
payoff function f mentioned in Sion’s minimax theorem belongs to C0. One
can now show the following important intersection result.

Theorem 12. If the payoff function f belongs to the class C0, then for every
r > r∗ and I ∈ F(A) the intersection ∩a∈IL(fa, r) is nonempty.

Proof. If I = {a0} ⊆ A, then for every r > r∗ we obtain by the definition of
r∗ that r > infb∈B f(a0, b) and so L(fa0 , r) is nonempty. Suppose now for all
sets I belonging to F(A) and consisting of at most k elements that

∩a∈IL(fa, r) 	= ∅ (59)

for every r > r∗. To prove the result for all sets I ∈ F(A) consisting of at
most k + 1 elements, we assume by contradiction that there exists some set
I0 = {a0, . . . , ak} ⊆ A and some r0 > r∗ satisfying

∩ki=0L(fai
, r0) = ∅. (60)

Because the collection of functions −fb, b ∈ B is equiconnected, one can find
some connected set Ca0a1 ⊆ A containing a0 and a1 satisfying
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f(a, b) ≥ min{f(a0, b), f(a1, b)} (61)

for every a ∈ Ca0a1 and b ∈ B. We now introduce the set valued mapping
Φr : Ca0a1 −→ 2B , given by

Φr(a) = ∩γ∈{a2,a3,...,ak,a}L(fγ , r). (62)

(In case k = 1, put Φr(a) = L(fa, r).) By the definition of L(fγ , r), this yields

Φr(a) = {b ∈ B : maxγ∈{a2,a3,...,ak,a} f(γ, b) ≤ r}. (63)

Because the function

b �−→ maxγ∈{a2,a3,...,ak,a} f(γ, b)

is connected and lower semicontinuous (use b �−→ f(a, b) is lower semicontinu-
ous for every a ∈ A), it follows by relation (63) that the sets Φr(a), a ∈ Ca0a1

are connected and closed for every r > r∗. Moreover, by the induction hy-
pothesis in relation (59), the sets Φr0(a), a ∈ Ca0a1are nonempty and satisfy
by relation (61)

Φr0(a) ⊆ Φr0(a0) ∪ Φr0(a1) (64)

for every a ∈ Ca0a1 and by relation (60)

Φr0(a0) ∩ Φr0(a1) = ∅. (65)

Introducing now the nonempty sets

Si := {a ∈ Ca0a1 : Φr0(a) ⊆ Φr0(ai)}, i = 0, 1, (66)

we obtain by relation (65) that the intersection S0 ∩ S1 is empty. To show
that S0 ∪ S1 = Ca0a1 we first observe that S0 ∪ S1 ⊆ Ca0a1 . For the reverse
inclusion, consider for a given a ∈ Ca0a1 the closed sets

Ai(a) := Φr0(a) ∩ Φr0(ai), i = 0, 1.

By relation (64), we obtain that

A0(a) ∪A1(a) = Φr0(a) (67)

and because Φr0(a) is connected, it must follow by relation (67) and Ai(a), i =
0, 1 closed that A0(a) or A1(a) is empty. This means by relation (64) that
either Φr0(a) ⊆ Φr0(a0) or Φr0(a) ⊆ Φr0(a1) and so the point a belongs to
S0 ∪ S1. Hence we have verified that the sets Si, i = 0, 1 satisfy

S0 ∩ S1 = ∅, S0 ∪ S1 = Ca0a1 . (68)

We will now show that the sets Si, i = 0, 1 are also open in Ca0a1 . Let a∗

be an arbitrary point belonging to S0. By our induction hypothesis, we know
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that the sets Φr(a∗) are nonempty for every r > r∗ and this implies by the
definition of Φr(a∗) in relation (63) that

infb∈B maxγ∈{a2,a3,...,ak,a∗} f(γ, b) ≤ r

for every r > r∗. This shows by letting r ↓ r∗ that

infb∈B maxγ∈{a2,a3,...,ak,a∗} f(γ, b) ≤ r∗ < r0

and so one can find some b0 ∈ Φr0(a∗) ⊆ B (b0 ∈ B for k = 1) satisfying

f(a∗, b0) < r0. (69)

By the upper semicontinuity of a �−→ f(a, b0) and relation (69), there exists
some open neighborhood U(a∗) of a∗ satisfying f(a, b0) < r0 for every a ∈
U(a∗) and because b0 ∈ Φr0(a∗), this yields b0 ∈ Φr0(a) for every a ∈ U(a∗)∩
Ca0a1 or equivalently

b0 ∈ Φr0(a∗) ∩ Φr0(a)
for every a ∈ U(a∗) ∩ Ca0a1 . This implies by relation (68) and a∗ ∈ S0 that
Φr0(a) ⊆ Φr0(a0) for every a ∈ U(a∗) ∩ Ca0a1 or equivalently

U(a∗) ∩ Ca0a1 ⊆ S0.

Because a∗ ∈ S0 is arbitrary, we obtain that

S0 = ∪a∗∈S0(U(a∗) ∩ Ca0a1) = Ca0a1 ∩ (∪a∗∈S0U(a∗))

and so S0 is open in Ca0a1 . Similarly, one can verify that the set S1 is open
in Ca0a1 and by relation (68) and Ca0a1 connected we obtain that either S0

or S1 is empty. Because by relation (66) the point ai belongs to Si, i = 0, 1,
this yields a contradiction, and the proof is completed.

Applying Lemma 11 we immediately deduce from Theorem 12 the follow-
ing result.

Theorem 13. Let the payoff function f : A× B → R belong to the class C0.
If A is a finite set, then

infb∈B maxa∈A f(a, b) = maxa∈A infb∈B f(a, b),

whereas for A an infinite set

supI∈F(A) infb∈B maxa∈I f(a, b) = supa∈A infb∈B f(a, b).

Proof. The first formula is an immediate consequence of Lemma 11 and
Theorem 12. To verify the second formula, we observe

supa∈A infb∈B f(a, b) = supI∈F(A) supa∈I infb∈B f(a, b).

Applying now the first part yields the desired result.
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By Theorem 13 and Lemma 3, one can show the following result, which
contains as a special case (see observation after Definition 21) Sion’s minimax
theorem listed in Theorem 11.

Theorem 14. If B is a compact topological space and the payoff function f
belongs to the class C0, then

infb∈B supa∈A f(a, b) = supa∈A infb∈B f(a, b)

and inf can be replaced by min in the above expressions.

Proof. Because B is a compact topological space and b �−→ f(a, b) is lower
semicontinuous for every a ∈ A, we obtain by Lemma 3 and the observation
after this lemma that

infb∈B supa∈A f(a, b) = supI∈F(A) infb∈B maxa∈I f(a, b).

Applying now the second part of Theorem 13 and Lemma 2 yields the desired
result.

Actually by Lemma 3, one can slightly weaken the condition that A is a
compact topological space by replacing the compactness assumption by the
condition that there exists some set I ∈ F(A) such that for every r ∈ R, the
set ∩a∈I{b ∈ B : f(a, b) ≤ r} is compact. It is possible ([11]) to construct
a payoff function f that satisfies the conditions of Theorem 14 but does not
satisfy the conditions of Sion’s minimax result.

Definition 22. The payoff function f : A×B → R belongs to the class C1 if

1. The function a �−→ f(a, b) is upper semicontinuous for every b ∈ B;
2. The function b �−→ f(a, b) is lower semicontinuous for every a ∈ A;
3. For every J ∈ F(B), the function a �−→ minb∈J f(a, b) is connected;
4. The collection of functions fa, a ∈ A with fa(b) := f(a, b) is equiconnected.

By the symmetry argument and Theorem 14, it follows easily that the
minimax equality in relation (8) holds if the payoff function f belongs to the
class C1 and A is a compact topological space. Finally, we like to mention that
Wald’s minimax result is a special case of Sion’s minimax result. However,
from the proof of Theorem 12, it should be clear that the only properties of
convex sets that are important are the observation that any intersection of
convex sets is again convex and every convex set is connected. This shows that
Sion’s minimax result is actually a topological result based on connectedness.

6 On n-Player Nonzero-Sum Noncooperative Games

In this section, we will extend the two-player zero-sum noncooperative games
discussed in the previous sections to n-player nonzero-sum noncooperative
games, n ≥ 2. In this framework, there are n players, and each player
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i, 1 ≤ i ≤ n has a pure strategy set Xi and a payoff function fi : X −→ R
with X = Πn

i=1Xi denoting the Cartesian product of the sets Xi. In case each
player i, i = 1, . . . , n selects independently of each other the strategy xi, the
gain given by player i is given by fi(x1, . . . , xn) (for a complete description of
such games and examples see [4, 40] or [38]). In this section, we assume that
the sets Xi, 1 ≤ i ≤ n are subsets of (possibly different) linear topological
spaces Xi ([34]). We also assume in this section that the players only use their
pure strategy sets and they do not use their mixed strategy sets. For these
n-person noncooperative games, an important concept is given by a Nash
equilibrium point. Observe for n = 2 (taking f2 = −f1) this reduces to the
minimax concept used within a two-player zero-sum noncooperative game.

Definition 23. Let the payoff functions fi : X → R of each player be given.
The point x∗ = (x∗1, . . . , x

∗
n) is called a Nash equilibrium point if

fi(x∗1, . . . , x
∗
i , . . . , x

∗
n) ≥ fi(x∗1, . . . , xi, . . . , x∗n)

for every xi ∈ Xi and 1 ≤ i ≤ n.
We are now interested in under which conditions a Nash equilibrium point

exists for an n-person noncooperative game. To show this, we need the fol-
lowing definition ([5]).

Definition 24. Let X be a nonempty set and ϕ : X ×X → R some function.
The point x∗ is called an equilibrium point of the function ϕ if ϕ(x∗, y) ≥ 0
for every y ∈ X.

Using the above definition of an equilibrium point for the mapping ϕ, we
show the following result.

Lemma 13. Let X = Πn
i=1Xi be the Cartesian product of the sets Xi, i =

1, . . . , n. The point x∗ is a Nash equilibrium point if and only if x∗ is an
equilibrium point of the function ϕ : X ×X −→ R , given by

ϕ(x, y) =
∑n

i=1
fi(x1, . . . , xi, . . . , xn)− f(x1, . . . , yi, . . . , xn) (70)

with x = (x1, . . . , xn) and y = (y1, . . . , yn).

Proof. Let x∗ be a Nash equilibrium and consider an arbitrary y =
(y1, . . . , yn) ∈ X. By definition

fi(x∗1, . . . , x
∗
i , . . . , x

∗
n) ≥ f(x∗1, . . . , yi, . . . , x∗n)

for every 1 ≤ i ≤ n. This shows ϕ(x∗, y) ≥ 0 and so x∗ is an equilibrium point
of the function ϕ. For x∗ an equilibrium point of the function ϕ, consider some
1 ≤ i ≤ n and introduce the vector y = (x∗1, . . . , yi, . . . , x

∗
n) ∈ X. Clearly for

this vector y, it follows that

0 ≤ ϕ(x∗, y) = fi(x∗1, . . . , x
∗
i , . . . , x

∗
n)− fi(x∗1, . . . , yi, . . . , x∗n)

and as 1 ≤ i ≤ n is arbitrary, we obtain that x∗ is a Nash equilibrium point.
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Hence by the above lemma, we have reduced the proof of existence of a
Nash equilibrium point to the proof of existence of a equilibrium point for
the mapping ϕ listed in relation (70). To show in general the existence of an
equilibrium point of a mapping ϕ : X ×X −→ R, we observe that the point
x∗ is an equilibrium point of the mapping ϕ if and only if the intersection
∩y∈X{x ∈ X : ϕ(x, y) ≥ 0} is nonempty. Unfortunately, it seems not to be
possible (in general) to prove the existence of an equilibrium point by means
of LP duality or convex analysis techniques as was done for a two-person
noncooperative game. To show the existence of a Nash equilibrium under
certain conditions on the sets Xi and the payoff functions fi we need the so-
called KKM (Knaster–Kuratowski–Mazurkiewicz) lemma ([9]). Observe the
simplex ∆J for any subset J ⊆ {1, . . . , k} is given by

∆J := co({ej : j ∈ J})

with ej the jth unit vector in Rk.

Definition 25. The collection of sets Ei ⊆ Rk, 1 ≤ i ≤ k satisfy the KKM
property if ∆J ⊆ ∪i∈JEi for every set J ⊆ {1, . . . , k}.

The KKM lemma is given by the following result (for its proof see [42]).

Lemma 14. If the sets Ei ⊆ Rk, 1 ≤ i ≤ k are closed and satisfy the KKM
property, then ∩ki=1Ei is nonempty.

The KKM lemma is an easy consequence of Sperner’s lemma (see Theorem
2.5.6 of [43] or Lemma 3.5.1 of [27]), and Sperner’s lemma can be proved
by combinatorial arguments (cf. [1] or Theorem 3.4.3 of [27]). Because our
function ϕ in a so-called equilibrium problem is defined on the set X × X
with X a convex subset of a linear topological space X , we need to discuss
the extensions of the KKM lemma to these spaces. This can be done in the
following way. Let Φ : X → 2X be a set valued mapping with nonempty values,
where X is a convex subset of some (real) linear topological space X and 2X

the power set of X, and consider for a given collection {x1, . . . , xn} ⊆ X and
x ∈ X the (possibly empty) finite dimensional sets

E(x) = {λ ∈ ∆N :
∑n

j=1
λjxj ∈ Φ(x)}

with N := {1, . . . , n}. Denoting by L := lin({x1, . . . , xn}) the smallest linear
subspace containing the set {x1, x2, . . . , xn}, then clearly

E(x) = {λ ∈ ∆N :
∑n

j=1
λjxj ∈ Φ(x) ∩ L} ⊆ Rn. (71)

If we know that the sets E(x) ⊆ ∆N are closed for every x ∈ X, and for
a given collection {x1, . . . , xn} ⊆ X, the nonempty sets Ei := E(xi), 1 ≤
i ≤ n satisfy the KKM property, then by the KKM lemma we obtain that
∩ni=1E(xi) is nonempty. This shows that there exists some λ∗ ∈ ∆N satisfying
∑n

j=1 λ
∗
jxj ∈ ∩ni=1Φ(xi), and so we have verified that ∩ni=1Φ(xi) 	= ∅. To

introduce a topology on E(x), we recall the following definition.
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Definition 26. The set valued mapping Φ : X → 2X with X a convex subset
of a linear topological space X is called finitely closed if for every x ∈ X and
every finite dimensional subspace L ⊆ X the set Φ(x) ∩ L is closed in the
Euclidean topology on L.

It is obvious that Φ finitely closed implies E(x) is closed for every x ∈ X.
In the next lemma, we give a sufficient condition for Φ to be finitely closed.

Lemma 15. If the set-valued mapping Φ : X → 2X with X a convex subset of
a linear topological space X has closed values Φ(x), x ∈ X, then the mapping
Φ is finitely closed.

Proof. If L ⊆ X is a finite dimensional subspace, there exists some finite set
{z1, . . . , zn} ⊆ X of linearly independent vectors satisfying

L = lin({z1, . . . , zn}).

To show that Φ(x) ∩ L is closed in the Euclidean topology on L, we need
to verify for any sequence (xq)q∈N ⊆ Φ(x) ∩ L satisfying xq → x∞ in the
Euclidean topology on L that x∞ ∈ Φ(x)∩L. Because every element of L can
be uniquely represented as a linear combination of the vectors zi, 1 ≤ i ≤ n, it
follows that xq → x∞ in the Euclidean topology on L if and only if limq↑∞ βq =
β∞ with β�q = (βq,1, . . . , βq,n) ∈ Rn, β�∞ = (β∞,1, . . . , β∞,n) ∈ Rn,

xq =
∑n

j=1
βq,jzj , q ∈ N, (72)

and
x∞ =

∑n

j=1
β∞,jzj . (73)

Moreover, because X is a linear topological space, it follows that the mapping
h : Rn → X, given by h(α) =

∑n
j=1 αjzj , is continuous in this topology. This

shows, using xq = h(βq) ∈ Φ(x) for every q ∈ N , that

x∞ = h(β∞) = limq↑∞ h(βq) ∈ cl(Φ(x))

with the closure taken with respect to the topology on X . Using now that
Φ(x) is closed, we obtain that x∞ ∈ Φ(x) and so x∞ belongs to Φ(x) ∩ L.
We next recall the definition of a KKM mapping for set-valued functions
Φ : X → 2X .

Definition 27. Let X be a convex subset of a linear topological space
X . The set valued mapping Φ : X → 2X is called a KKM mapping if
co({x1, . . . , xk}) ⊆ ∪kj=1Φ(xj) for every finite subset {x1, . . . , xk} ⊆ X.

Clearly by the above definition, it follows for a KKM mapping Φ that x
belongs to Φ(x) for every x ∈ X. In the next lemma, we extend the KKM
lemma, to set-valued mappings.
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Lemma 16. If the set valued mapping Φ : X → 2X is a KKM mapping with
Φ(x) closed for every x ∈ X, then ∩ki=1Φ(xi) is nonempty for every finite set
{x1, . . . , xk} ⊆ X.

Proof. If Φ is a KKM mapping, then by definition

co({x1, . . . , xk}) ⊆ ∪kj=1Φ(xj) (74)

for every finite subset {x1, . . . , xk} ⊆ X. To prove the desired result, we verify
by induction that

co({x1, . . . , xq}) ∩ (∩qj=1Φ(xj)) 	= ∅ (75)

for every finite subset {x1, . . . , xq} ⊆ X. By relation (74) it follows that (75)
holds for q = 1. Suppose now that relation (75) holds for q ≤ k−1 (k ≥ 2) and
consider a subset {x1, . . . , xk} ⊆ X. Let∆k := {λ ∈ Rk : λi ≥ 0,

∑k
i=1 λi = 1}

and introduce for every 1 ≤ i ≤ k the sets Ei, given by

Ei = {λ ∈ ∆k :
∑k

j=1
λjxj ∈ Φ(xi)} ⊆ Rk.

For L denoting the linear subspace lin({x1, . . . , xk}), it is obvious that

Ei = {λ ∈ ∆k :
∑k

j=1
λjxj ∈ Φ(xi) ∩ L},

and as by Lemma 15 the set valued mapping Φ is finitely closed, it follows that
the sets Ei, 1 ≤ i ≤ k are closed in the Euclidean topology on L. Moreover,
to show that the sets Ei, 1 ≤ i ≤ k, satisfy the KKM property, we observe for
every J ⊆ {1, .., k} and λ ∈ co({ej : j ∈ J}) ⊆ ∆k that

λ = (λ1, . . . , λk), λj = 0, j /∈ J, λj ≥ 0, j ∈ J,
∑

j∈J
λj = 1.

This implies by relation (74) with k replaced by |J | that

∑k

j=1
λjxj =

∑

j∈J
λjxj ∈ co({xj : j ∈ J}) ⊆ ∪j∈JΦ(xj)

and we have verified that λ belongs to ∪j∈JEj . Because λ ∈ co({ej : j ∈ J})
is arbitrary, this shows that

co({ej : j ∈ J}) ⊆ ∪j∈JEj

and so the collection Ei, 1 ≤ i ≤ k satisfies the KKM property. Hence by the
KKM lemma, it follows that ∩ki=1Ei is nonempty and so there exists some
λ∗ ∈ ∆k satisfying

∑k
j=1 λ

∗
jxj ∈ ∩ki=1Φ(xi). This proves the induction for k

and the proof is completed.

We are now able to show that under certain conditions, a Nash equilibrium
point exists. To prove this, we first need the following lemma.
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Lemma 17. Let X be a convex subset of a linear topological space X . If the
function ϕ : X ×X → R satisfies ϕ(x, x) ≥ 0 and y �−→ ϕ(x, y) is convex on
X for every x ∈ X, then the set valued mapping Φ : X −→ 2X given by

Φ(y) = {x ∈ X : ϕ(x, y) ≥ 0}
is a KKM mapping.

Proof. Because ϕ(x, x) ≥ 0, it follows immediately that y belongs to Φ(y).
Suppose now by contradiction that there exists some finite set {y∗1 , . . . , y∗k} ⊆
X, k ≥ 2 such that y∗ belonging to co({y∗1 , . . . , y∗k}) does not belong to
∪kj=1Φ(y∗j ). By the first part, it follows that y∗ is not equal to y∗i for some
1 ≤ i ≤ k. This means that one can find some λ∗ ∈ ∆k with at least two
positive components smaller than 1 satisfying

max1≤i≤k ϕ(
∑k

j=1
λ∗jy

∗
j , y

∗
i ) < 0.

By the convexity of the function y �−→ ϕ(
∑k

j=1 λ
∗
jy

∗
j , y), this implies

0 ≤ ϕ(
∑k

j=1
λ∗jy

∗
j ,
∑k

i=1
λ∗i y

∗
i ) ≤

∑k

i=1
λ∗iϕ(

∑k

j=1
λ∗jyj , y

∗
i ) < 0

and we obtain a contradiction.

Finally, we can give a proof of the following important result.

Theorem 15. If the pure strategy sets Xi, 1 ≤ i ≤ n are convex compact
subsets of (maybe different) linear topological spaces Xi, the payoff functions
fi : X → R, 1 ≤ i ≤ n are continuous on X for every 1 ≤ i ≤ n and satisfy

xi �−→ fi(x1, . . . , xi, . . . , xn)

are concave for every 1 ≤ i ≤ n and every fixed (x1, . . . , xi−1, xi+1, . . . , xn),
then the n-person noncooperative game has a Nash equilibrium point.

Proof. By Lemma 13, we have to show for X = Πn
i=1Xi that the function

ϕ : X ×X −→ R, given by

ϕ(x, y) =
∑n

i=1
fi(x1, . . . , xi, . . . , xn)− fi(x1, . . . , yi, . . . , xn) (76)

with x = (x1, . . . , xn) and y = (y1, . . . , yn) has an equilibrium point, and
by the observations after Lemma 13 this means that ∩y∈XΦ(y) is nonempty
with Φ(y) := {x ∈ X : ϕ(x, y) ≥ 0}. First observe by the continuity of fi
(1 ≤ i ≤ n) that the function x �−→ ϕ(x, y) listed in relation (76) is continuous
on X for every y ∈ X. This shows for every y ∈ X that the set Φ(y) is closed
and because X is compact, that Φ(y) is compact as well. Moreover, because
xi �−→ fi(x1, . . . , xi, . . . , xn) is concave for every 1 ≤ i ≤ n, we obtain that the
function y �−→ ϕ(x, y) is convex, and together with ϕ(x, x) = 0 this implies by
Lemma 17 that the set-valued map Φ is a KKM map. Applying now Lemma
16, it follows for every finite subset F ⊆ X that ∩y∈FΦ(y) is nonempty. This
shows by the finite intersection property for compact sets that ∩y∈XΦ(y) is
nonempty, and we have shown the desired result.
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Nonlinear Games

Ferenc Szidarovszky
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Abstract This paper gives an overview of the existence and computation of equi-
librium in nonlinear n-person games. After some introductory examples, sufficient
existence results are presented in both cases of single-valued and multiple-valued
best responses. The uniqueness of the equilibrium is also shown under general con-
ditions. A special iterative method is discussed for the computation of the unique
equilibrium based on a variational inequality, and a single-objective optimization
model is introduced to provide the equilibria. An example of repeated oligopolies
completes the paper.

Key words: Nash equilibria, fixed points, variational inequality, optimization

1 Introduction

An n-person game is defined by specifying the players ( k = 1, 2, . . . , n ), the
set Sk of feasible strategies (choices) of each player k, and the payoff function
fk : S �→ R for each player k, where S is a subset of the Cartesian product
S1 × S2 × · · · × Sn. The set Sk contains all feasible decision alternatives for
player k, and the payoff function fk gives the consequence of the decisions
of all players for player k. If xl ∈ Sl is the selected strategy of player l (l =
1, 2, . . . , n), then fk(x1, . . . , xn) is the payoff (meaning profit, savings, etc.) of
player k.

In most cases, it is assumed that S = S1×S2×· · ·×Sn, in which case the
players may select their strategies independently of each other. However in
some applications, such as in production modeling, the resources are limited,
which poses an additional condition that the total amount of resources used
by all players is limited. We will use the strategic form representation of
n-person games in this chapter:

G = {n;S1, . . . , Sn, S; f1, . . . , fn } .
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For convenience, we will use the simplifying notation x = (x1, x2, . . . , xn)
and x−k = (x1, . . . , xk−1, xk+1, . . . , xn), so we may write x = (x−k, xk). The
best response mapping of player k with given x−k is defined as

gk(x−k) = arg max
xk

{ fk(x−k, xk) | (x−k, xk) ∈ S } (1)

assuming that maximum exists. Note that gk(x−k) is the set of strategies xk
of player k that maximize its payoff with any given x−k, where x−k shows the
choices of all other players. For the sake of convenience, we will write the best
response mapping as gk(x), where we know that gk does not depend explicitly
on xk. In many cases gk(x) is single valued, for example, when fk is strictly
concave in xk, however in most applications gk(x) is a subset of Sk.

The Nash equilibrium ([9]) of game G is a strategy vector x∗ =
(x∗1, . . . , x

∗
n) such that

(i) x∗ ∈ S;
(ii) x∗

k ∈ gk(x∗) for all k.

By using the definition of the best response mapping, condition (ii) can
be rewritten as

fk
(

x∗
−k, xk

)

≤ fk
(

x∗
−k, x

∗
k

)

(2)

for all k and (x∗
−k, xk) ∈ S. By introducing mapping

x �→ g(x) = g1(x)× g2(x)× . . .× gn(x), (3)

it is clear that x∗ is a Nash equilibrium if and only if x∗ ∈ g(x∗), that is, x∗

is a fixed point of the point-to-set mapping g. If g is single valued, then x∗ is
a Nash equilibrium if and only if x∗ = g(x∗).

The concepts of best response mapping and Nash equilibrium are illus-
trated in the following examples.

Example 1. Select n = 2, S1 = S2 = R+, assume S = S1×S2, and f1(x1, x2) =
f2(x1, x2) = x1 + x2. In this case, neither player has best response, because
if player k increases the value of xk (with unchanged strategy of the other
player), its payoff increases. Therefore no Nash equilibrium exists.

Example 2. Select again n = 2 and assume that both players have two feasible
strategies, that is S1 = S2 = {1; 2}. The payoff functions are given below:

f1(x1, x2) x2 = 1 x2 = 2

x1 = 1 1 2
x1 = 2 2 0

f2(x1, x2) x2 = 1 x2 = 2

x1 = 1 2 1
x1 = 2 4 5

These 2 × 2 matrices are called the payoff matrices of players 1 and 2.
The best responses are clearly as follows:
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g1(1, 1) = g1(2, 1) = 2, g1(1, 2) = g1(2, 2) = 1

and
g2(1, 1) = g2(1, 2) = 1, g2(2, 1) = g2(2, 2) = 2.

By using mapping (3), we have

g(1, 1) = (2, 1), g(1, 2) = (1, 1)
g(2, 1) = (2, 2), g(2, 2) = (1, 2)

so mapping g has no fixed point. Therefore there is no Nash equilibrium.

Example 3. By modifying the payoffs of the previous example as

f1(x1, x2) x2 = 1 x2 = 2

x1 = 1 2 0
x1 = 2 3 1

f2(x1, x2) x2 = 1 x2 = 2

x1 = 1 2 3
x1 = 2 0 1

we have
g1(1, 1) = g1(2, 1) = 2, g1(1, 2) = g1(2, 2) = 2

and
g2(1, 1) = g2(1, 2) = 2, g2(2, 1) = g2(2, 2) = 2

therefore

g(1, 1) = (2, 2), g(1, 2) = (2, 2)
g(2, 1) = (2, 2), g(2, 2) = (2, 2).

Hence we have a unique Nash equilibrium, x1 = x2 = 2.

Example 4. [15] Assume that n firms produce the same product or offer the
same service. Let xk denote the output of firm k, Ck(xk) the cost function of
firm k, and let p(s) be the price function, where s = x1 + x2 + · · ·+ xn is the
total output of the industry. If Lk denotes the capacity limit of firm k, then
Sk = [ 0, Lk ] is the set of all feasible strategies of firm k, and

fk(x1, . . . , xn) = xk · p
(

n
∑

i=1

xi

)

− Ck(xk) (4)

is its payoff function. If there is sufficient amount of energy, manpower,
etc., for all firms to produce maximum output, then we may assume that
S = S1 × S2 × · · · × Sn. This n-person game is called Cournot oligopoly
without product differentiation.

Assume that functions p and Ck(k = 1, 2, . . . , n) are twice continuously
differentiable, furthermore
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(A) p′(s)− C ′′
k (xk) < 0

and
(B) p′(s) + xkp′′(s) ≤ 0 for all xk ∈ [ 0, Lk ] and s ∈ [ 0,

∑n
i=1 Li ].

Introduce notation sk =
∑

i�=k xi, then the profit of firm k can be
rewritten as

fk(sk, xk) = xk p(sk + xk)− Ck(xk),

which is strictly concave in xk. Therefore the best response of firm k is unique
and can be obtained as follows. Notice first that

∂fk
∂xk

(x) = p(s) + xkp′(s)− C ′
k(xk). (5)

It is convenient to consider xk as a function of the total output s, then we

have three possibilities. If p(s)− C ′
k(0) ≤ 0, then the best choice of firm k is

xk(s) = 0. If p(s) + Lkp
′(s) − C ′

k(Lk) ≥ 0, then the best choice of firm k is
xk(s) = Lk. Otherwise the best choice is interior and can be obtained as the
unique solution of equation

p(s) + xkp′(s)− C ′
k(xk) = 0 (6)

in interval (0, Lk). The left-hand side of this equation is continuously differ-
entiable and strictly decreasing in xk with fixed values of s as a consequence
of assumption (A), furthermore its value at xk = 0 is positive and at xk = Lk
is negative. Therefore there is a unique solution xk = xk(s). By implicit dif-
ferentiation of equation (6), we have

p′(s) + x′k(s)p
′(s) + xk(s)p′′(s)− C ′′

k (xk(s))x′k(s) = 0

implying that

x′k(s) = −p
′(s) + xkp′′(s)
p′(s)− C ′′

k (xk)
≤ 0. (7)

By combining the above three cases, we conclude that xk(s) is unique for all
s ∈ [ 0,

∑n
i=1 Li ] and is nonincreasing in s. The Nash equilibrium therefore is

the unique solution s∗ of the single variable monotonic equation

n
∑

k=1

xk(s)− s = 0 (8)

where s∗ gives the total equilibrium output of the industry, and the equilib-
rium output of firm k is obtained as x∗k = xk(s∗).

Example 5. By dropping the differentiability of the price function in Cournot
oligopolies, we might lose the uniqueness of the Nash equilibrium. As an ex-
ample with multiple equilibrium, consider the special case of duopoly (n = 2)
with S1 = S2 = [ 0, 1.5 ], Ck(xk) = 0.5xk (k = 1, 2), and
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p(s) =

⎧

⎨

⎩

1.75− 0.5s, if 0 ≤ s ≤ 1.5;
2.5− s, if 1.5 ≤ s ≤ 2.5;
0, if s ≥ 2.5.

Then it can be shown that the set of all Nash equilibria is given as

X∗ = {(x1, x2)|0.5 ≤ x1 ≤ 1, 0.5 ≤ x2 ≤ 1, x1 + x2 = 1.5} .

2 Existence of Nash Equilibrium

As we have seen in the previous examples, there is no general guarantee for the
existence of a Nash equilibrium in n-person games. Our first result gives the
probability of the existence of Nash equilibria in special games with randomly
selected payoff functions.

Theorem 1. Let n = 2, S1 = { 1, 2, . . . ,m }, S2 = { 1, 2, . . . , n }, all f1(i, j)
values be independent, identically distributed with the same continuous distri-
bution, furthermore f2(i, j) = −f1(i, j) for all i and j. Then the probability
that this two-person zero-sum game has Nash equilibrium is

m!n!
(m+ n− 1)!

. (9)

Proof. Notice first that:

1. The probability that all values f1(i, j) are different is one;
2. The probability that (i, j) is an equilibrium is the same for all i and j;
3. The probability that there is an equilibrium equals mn times the proba-

bility that (1, 1) is an equilibrium;
4. (1, 1) is an equilibrium, if f1(1, 1) is the largest in its column and smallest

in its row in payoff matrix (f1(i, j))
m,n
i,j=1. That is, if we order the elements

f1(m, 1), f1(m−1, 1), . . . , f1(1, 1), f1(1, 2), . . . , f1(1, n) in an increasing or-
der, then

f1(m, 1), f1(m− 1, 1), . . . , f(2, 1)

have to be before f1(1, 1), and all elements

f1(1, 2), f1(1, 3), . . . , f1(1, n)

have to be after f1(1, 1). Because there are altogether m+n− 1 elements
in the set, the probability of a such order is

(m− 1)!(n− 1)!
(m+ n− 1)!

,

therefore the probability that there is a Nash equilibrium is

mn
(m− 1)!(n− 1)!

(m+ n− 1)!

where we used item 3 given above. This formula equals the assertion of
the theorem.
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We have also seen before that a vector x∗ ∈ S is a Nash equilibrium if and
only if x∗ is a fixed point of the point-to-set mapping (3). Therefore any
existence theorem of fixed points can be applied to find conditions for the
existence of Nash equilibria. The most frequently used fixed point theorem
is the Kakutani theorem ([7]), which can be directly applied to prove the
following very powerful existence result.

Theorem 2. ([10]) Assume that for all k,

(i) Sk is a nonempty, convex, compact subset of a finite dimensional Euclid-
ean space;

(ii) fk as an n-variable function of (x1, x2, . . . , xn) is continuous on S =
S1 × S2 × · · · × Sn;

(iii) fk is concave in xk with any fixed x−k ∈ Xi�=kSi.
Then there is at least one Nash equilibrium.

Example 6. Consider again the n-person oligopoly game without product
differentiation, which was analyzed earlier in Example 4. All strategy sets
Sk = [ 0, Lk ] are compact in the real line, all payoff functions are twice con-
tinuously differentiable, so continuous, furthermore conditions (A) and (B)
imply that fk is concave in xk. Therefore there is at least one Nash equilib-
rium. In Example 4, we have also proved the uniqueness of the equilibrium
and presented a simple computer procedure to find the equilibrium by solving
the single variable, monotonic equation (8).

In case when the best response is single valued, we have a much more
simple existence theorem.

Theorem 3. Assume that conditions (i) and (ii) of Theorem 2 hold, further-
more the best response mapping (3) is single valued. Then the game has at
least one Nash equilibrium.

Proof. Because g(x) is single valued and fk is continuous for all k, gk(x) is
also continuous. Hence mapping g is a continuous mapping of S into itself,
therefore the Brouwer fixed point theorem ([3]) implies the existence of at
least one fixed point of g, which is a Nash equilibrium.

The Nikaido–Isoda theorem can be proved also by using the Brouwer fixed
point theorem (see [4]), and the algorithm introduced in [14] can be used as
a practical method to find the equilibrium. There are many generalizations
of the Nakaido–Isoda theorem known from the literature. Such a result is the
following,

Theorem 4. Assume that for all k,

(i) Sk is a nonempty, convex, compact subset of a finite dimensional Euclid-
ean space;

(ii) fk is upper semicontinuous on S = S1 × · · · × Sn;
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(iii) for any fixed xk∈Sk, fk is lower semicontinuous in x−k on S−k = Xi�=kSi;
(iv) for any x ∈ S, the best reply g(x) is convex.

Then there is at least one Nash equilibrium.

Note that condition (iv) holds if fk is quasiconcave in xk on Sk.

The existence of equilibrium can be examined without assuming topoly-
gical structure of the strategy sets based on only monotonicity of the best
response. The fixed point theorem of [18] is the theoretical basis for such
approach, which was successfully applied in oligopoly models by [19].

Another family of existence results can be obtained by imposing certain
continuity and concavity conditions on the “aggregator” function H : S×S �→
R as

H(x, z) =
n
∑

k=1

fk(x−k, zk). (10)

It is easy to show that x∗ ∈ S is a Nash equilibrium if and only if for all z ∈ S,

H (x∗, z) ≤ H (x∗,x∗) . (11)

By using Fan’s inequality (see, for example, [1]), the following result can
be shown.

Theorem 5. ([17]) Assume that for all k, (i) Sk is a nonempty, convex,
compact subset of a finite dimensional Eudlidean space; (ii)

∑n
i=1 fi is up-

per semicontinuous on S = S1× · · · ×Sn; (iii) fk is lower semicontinuous on
S−k = Xi�=kSi with any fixed value of xk ∈ Sk; (iv) for any fixed x ∈ S, the
function H(x, z) is quasiconcave in z on S. Then there is at least one Nash
equilibrium.

The existence of a Nash equilibrium can be proved also based on certain
transfer continuity and transfer concavity. Let Z be a subset of a finite dimen-
sional Euclidean space and let A ⊂ Z. A function U : A×Z �→ R is said to be
diagonally transfer continuous in X if for every (x,y) ∈ A×Z, U(x,y) >
U(x,x) implies that there exist some point y′ ∈ Z and some neighborhood
N(x) ⊂ A of x such that U(y′, z) > U(z, z) for all z ∈ N(x).

Function U : Z × B �→ R is said to be diagonally transfer quasicon-
cave in y if, for any finite subset Y m =

{

y1, . . . ,ym
}

⊂ B, there exists a
corresponding finite subset Xm =

{

x1, . . . ,xm
}

⊂ Z such that for any subset
Xs =

{

xk1 , . . . ,xks
}

⊂ Xm (1 ≤ s ≤ m) and any xk0 from the convex hull
of Xs we have

min
1≤l≤s

U
(

xk0 ,ykl
)

≤ U
(

xk0 ,xk0
)

. (12)
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Theorem 6. ([2]) Assume that for all k, (i) Sk is a nonempty, convex, com-
pact subset of a finite dimensional Euclidean space; (ii) The aggregator func-
tion H(x,y) is diagonally transfer continuous in x. Then the n-person game
has a Nash equilibrium if and only if H is diagonally transfer quasiconcave
in y.

Example 7. ([2]) Consider a price-setting duopoly in which the firms operate
with zero cost. Assume S1 = S2 = [ 0, pmax ], where pmax is the maximum
feasible price to be selected by either firm. Let c > 0 be a given constant and
assume that

f1(p1, p2) =
{

p1, if p1 ≤ p2;
p1 − c, otherwise

and

f2(p1, p2) =
{

p2, if p2 ≤ p1;
p2 − c, otherwise.

This game can be interpreted as a duopoly, when each firm has committed
to pay brand-loyal customers a fixed amount c if the other firm beats its
price. The payoff functions are neither continuous, nor quasiconcave. However
the aggregator function H assembled from f1 and f2 is diagonally transfer
continuous and diagonally transfer quasiconcave. Therefore there is at least
one Nash equilibrium.

3 Uniqueness of Nash Equilibrium

Because Nash equilibra are fixed points of the point-to-set mapping g : S �→ S
defined in (3), any result on the uniqueness of fixed points can be directly
applied to establish the uniqueness of Nash equilibria.

Assume first that g(x) is single valued. Function g is called a contraction
if there is a constant ε ∈ [0, 1) such that

‖g(x)− g(y)‖ ≤ ε · ‖x− y‖ (13)

for all x,y ∈ S, where ‖ · ‖ is a vector norm. Under this condition, there is at
most one fixed point of function g. On the contrary, assume that x and y are
both fixed points, then x = g(x) and y = g(y), so

‖x− y‖ = ‖g(x)− g(y)‖ ≤ ε · ‖x− y‖ (14)

which cannot hold for x 	= y.

Introduce next function G(x) = x− g(x), then the equilibrium is clearly
unique, if G is one-to-one. In the mathematical literature, there are several
conditions that guarantee that G is one-to-one. Assuming that G is continu-
ously differentiable, the most frequently applied conditions are as follows. Let
J(x) denote the Jacobian of G(x).
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(i) All leading principle minors of J(x) are positive (that is, J(x) is a P-
matrix) (see [5]);

(ii) All leading principle minors of J(x) are negative (that is, J(x) is an N-
matrix) (see [6]);

(iii) Matrix J(x) + J(x)T is negative (or positive) semidefinite, and between
any pair x1 	= x2 of points there is a point x0 such that J(x0) + J(x0)T

is negative (or positive) definite (see [12]).

Assume next that g(x) is set valued. Mapping G is called strictly
monotone if for all x1 	= x2 and y1 ∈ G(x1) and y2 ∈ G(x2),

(x1 − x2)T (y1 − y2) > 0. (15)

Under condition (15), we cannot have multiple Nash equilibrium. Assume
that x1 	= x2 are both equilibria, then x1 ∈ g(x1) and x2 ∈ g(x2), so we may
select y1 = 0 and y2 = 0. Then the left-hand side of (15) is zero, which is a
contradiction. Notice that it is sufficient to assume that for x1 	= x2, x1 − x2

must not be perpendicular to y1 − y2 with any y1 ∈ G(x1) and y2 ∈ G(x2).

More complex uniqueness conditions can be given if the payoff func-
tions are continuously differentiable and the strategy sets Sk are defined
by a finite set of continuously differentiable inequalities. Consider game
{n;S1, . . . , Sn, S; f1, . . . , fn } in which S = S1 × S2 × · · · × Sn and for all k,

(i) Sk = {xk ∈ Rmk | qk(xk) ≥ 0 } is nonempty, qk is continuously differen-
tiable in an open set containing Sk, and all components of qk are concave;

(ii) There exists an x̄k such that qk(x̄k) > 0;
(iii) Payoff function fk is twice continuously differentiable in an open set con-

taining S.

Let now x∗ be a Nash equilibrium, then for all k,

x∗k = arg max
{

fk
(

x∗
−k, xk

)

|xk ∈ Sk
}

so the Kuhn–Tucker necessary conditions (see, for example, [8]) imply that
there exists a nonnegative vector u∗k such that

�kfk(x∗) + u∗k
T �k qk(x∗k) = 0

u∗k
T qk(x∗k) = 0

(16)

where �kfk is the gradient (as a row) vector of function fk with respect to
xk, and �kqk is the Jacobian matrix of qk. If in addition, fk is concave in xk
with any fixed x−k, then the Kuhn–Tucker conditions (16) are also sufficient.

Introduce with some nonnegative vector r ∈ Rn the following function
h : S �→ RM

h(x, r) =

⎛

⎜

⎜

⎜

⎝

r1 �1 f1(x)
r2 �2 f2(x)

...
rn �n fn(x)

⎞

⎟

⎟

⎟

⎠

(17)
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where M = m1 +m2 + · · · +mn, mk being the dimension of strategy vector
xk for k = 1, 2, . . . , n . The n-person game is said to be diagonally strictly
concave if with some r ≥ 0,

(

x1 − x0
)T (

h
(

x1, r
)

− h
(

x0, r
))

< 0. (18)

Notice that condition (18) means that −h is strictly monotone in the sense
of (15).

Theorem 7. ([13]) Assume that conditions (i)–(iii) hold, and the game is
diagonally strictly concave. Then the game has at most one Nash equilibrium.

Proof. Assume that x0 =
(

x0
1, . . . , x

0
n

)

and x1 =
(

x1
1, . . . , x

1
n

)

are both equi-
libria. Then from (16),

�kfk
(

xl
)

+ ulk
T �k qk

(

xlk
)

= 0
ulk

T
qk
(

xlk
)

= 0
(19)

for l = 0, 1. If the dimension of qk (as well as that of ulk) is pk, then the first
equation can be rewritten as

�kfk
(

xl
)

+
pk
∑

j=1

ulkj �k qkj
(

xlk
)

= 0 (20)

where ulkj and qkj denote the jth component of ulk and qk. Multiplying (20) by
rk(x1

k − x0
k)

T for l = 0 and by rk(x0
k − x1

k)
T for l = 1 and adding the resulted

equations for k = 1, 2, . . . , n, we get

0 =
{

(

x1 − x0
)T

h
(

x0, r
)

+
(

x0 − x1
)T

h
(

x1, r
)

}

+
n
∑

k=1

⎧

⎨

⎩

pk
∑

j=1

rk

[

u0
kj

(

x1
k − x0

k

)T �k qkj
(

x0
k

)

+ u1
kj

(

x0
k − x1

k

)T �k qkj
(

x1
k

)

]

⎫

⎬

⎭

.

The first term is positive as the consequence of assumption (18), therefore the
second (summation) term must be negative. By the concavity of functions qkj
we have

0 >
n
∑

k=1

⎧

⎨

⎩

pk
∑

j=1

rk
[

u0
kj

(

qkj
(

x1
k

)

− qkj
(

x0
k

))

+ u1
kj

(

qkj
(

x0
k

)

− qkj
(

x1
k

))]

⎫

⎬

⎭

.

Using the second equation of (19), we get an obvious contradiction:

0 >
n
∑

k=1

⎧

⎨

⎩

pk
∑

j=1

rk
[

u0
kjqkj

(

x1
k

)

+ u1
kjqkj

(

x0
k

)]

⎫

⎬

⎭

≥ 0. (21)
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Example 8 ([4]). Consider a quadratic game with Sk=
{

xk|xk ≥ 0,1Txk = 1
}

(k = 1, 2, . . . , n) being a simplex in Rmk and with payoff functions

fk(x) =
n
∑

j=1

[

cTkj + xTk Ckj

]

xj (22)

where cTkj is a constraint row vector and Ckj is a constant matrix. It is easy
to see that the Jacobian of h(x, r) has the special form

J(x, r) = DC (23)

with

C =

⎛

⎜

⎜

⎜

⎝

2C11 C12 . . . C1n

C21 2C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . 2Cnn

⎞

⎟

⎟

⎟

⎠

and

D =

⎛

⎜

⎜

⎜

⎝

r1Im1 0 . . . 0
0 r2Im2 . . . 0
...

...
. . .

...
0 0 . . . rnImn

⎞

⎟

⎟

⎟

⎠

where Imk
denotes the mk×mk identity matrix. It is known (see, for example,

[12]) that condition (18) holds if DC + CTD is negative definite.

4 Computation of Nash Equilibria

There are several different concepts in computing Nash equilibria. In this sec-
tion, we will outline the three most frequently used method families: solution
for fixed points, reduction to variational inequalities, and transforming the
equilibrium problem to an optimization problem.

Let g denote the best response mapping (3), then x∗ is a Nash equilibrium
if and only if x∗ ∈ g(x∗). If g(x) is single valued, then x∗ is a fixed point if
and only if x∗ = g(x∗). In this case, we have a (usually nonlinear) system of
algebraic equations to solve. The numerical analysis literature offers a large
variety of methods (see, for example, [16]) including the Newton method,
several variants of the gradient method, fixed point iteration, etc. If g(x) is
a set, then it is usually described by a system of x-dependent inequalities,
and we have to find a feasible solution of these inequalities. With surplus and
slack variables, we are able to rewrite the inequalities into equations, so any
method for solving systems of algebraic equations can be useful again.
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Assume next that all conditions of Theorem 7 are satisfied and all payoff
functions fk are concave in xk with any fixed value of x−k. Introduce the
generalized “aggregator” function

Hr(x,y) =
n
∑

k=1

rkfk(x−k, yk) (24)

with r = (rk) > 0. It is easy to see that x∗ ∈ S is an equilibrium if and only if

Hr (x∗,x∗) ≥ Hr (x∗,y) (25)

for all y ∈ S.

Theorem 8. ([20]) A vector x∗ satisfies (25) if and only if

max
x∈S

{

h (x∗, r)T (x− x∗)
}

= 0 (26)

where h(x, r) is defined by (17).

Proof. Assume first that x∗ satisfies (25). Because Hr(x∗,y) has its maximum
at y = x∗, for all y ∈ S

�yHr(x∗,x∗)(y − x∗) ≤ 0

which is (26).

Assume next that (26) is satisfied. Then the concavity of fk in xk and (18)
imply that

Hr(x∗,x∗)−Hr(x∗,y) ≥ h(y, r)T (x∗ − y) ≥
h(y, r)T (x∗ − y) + h(x∗, r)T (y − x∗) > 0.

Note that (26) is a variational inequality, so by finding its solutions, the
Nash equilibria are obtained.

Theorem 9. ([20]) A vector x∗ satisfies relation (25) if and only if (x∗,x∗)
is a Nash equilibrium of the two-person zero-sum game with sets S1 = S2 = S
of strategies, and payoff functions f1 = f , f2 = −f with f(x,y) = h(y, r)T

(x− y).

Proof. Assume first that x∗ satisfies (25). Then by Theorem 8, for all x ∈ S,

h (x∗, r)T (x− x∗) ≤ 0, (27)

that is
f (x,x∗) ≤ 0 = f (x∗,x∗) .
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We will next prove that f(x∗,x) ≥ 0 for all x ∈ S. Assume in contrary
that there exists an y ∈ S such that f(x∗,y) < 0.

Then by (18),

0 > f (x∗,y) = h (y, r)T (x∗ − y) > h (x∗, r)T (x∗ − y) ,

that is
h (x∗, r)T (y − x∗) > 0

contradicting (27).

Assume next that (x∗,x∗) is an equilibrium of the two-person zero-sum
game. Then for all x,y ∈ S,

f (x,x∗) ≤ f (x∗,x∗) ≤ f (x∗,y) .

Notice that the first inequality can be rewritten as

h (x∗, r)T (x− x∗) ≤ 0

therefore Theorem 8 implies that x∗ satisfies (25).

Consider now the following iteration algorithm to solve the variational
inequality (26). Let x(1) ∈ S be an arbitrary vector and solve the optimization
problem

max f
(

x,x(1)
)

(28)

s.t. x ∈ S.

Let x(2) be a solution and define µ1 = f(x(2),x(1)). If µ1 = 0, then x(1)

is an equilibrium, so the procedure terminates. Otherwise µ1 > 0. The gen-
eral kth step is the following. We already have x(1),x(2), . . . ,x(k) and scalars
µ1, . . . , µk−1 > 0. Then the new x(k+1) and µk are solutions of the problem

maxµ (29)

s.t. f
(

x,x(i)
)

≥ µ, (i = 1, 2, . . . , k)

x ∈ S.

Notice that f
(

x(k),x(i)
)

≥ µk−1 ≥ 0, (i = 1, 2, . . . , k − 1) and
f
(

x(k),x(k)
)

= 0, therefore µk ≥ 0.

The convergence of the algorithm is guaranteed by the following result.

Theorem 10. ([20]) There is a subsequence of the iteration sequence
{

x(1),

x(2), . . .
}

that converges to the unique Nash equilibrium.
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Proof. The proof consists of several steps.

1. We first show that µk → 0 as k →∞. Because at each step an additional
constraint is added, sequence {µk} is monotonic and bounded, therefore
it is convergent. Because S is compact, there is a convergent subsequence
{

x(ki)
}

of the iteration sequence
{

x(k)
}

. Clearly

0 ≤ µki−1 = max
{

min
1≤k≤ki−1

h
(

x(k), r
)T (

x− x(k)
)

|x ∈ S
}

= min
1≤k≤ki−1

h
(

x(k), r
)T (

x(ki) − x(k)
)

≤ h
(

x(ki−1), r
)T (

x(ki) − x(ki−1)
)

→ 0 as i→∞

implying that µki−1 → 0, and because sequence {µk} is monotonic, the
entire sequence must converge to zero.

2. Consider function

δ(t) = min
{

(h(x, r)− h(y, r))T (y − x) | ‖x− y‖ ≥ t, x,y ∈ S
}

(30)

which exists, because S is compact and ‖x−y‖ ≥ t is a closed inequality,
furthermore it is positive as the consequence of assumption (18). Let now
x∗ be an equilibrium. Define indices ki according to

δ
(∥

∥

∥x(ki) − x∗
∥

∥

∥

)

= min
1≤k≤i

δ
(∥

∥

∥x(k) − x∗
∥

∥

∥

)

, (i = 1, 2, . . .)

then for k = 1, 2, . . . , i, we have

δ
(∥

∥

∥x(ki) − x∗
∥

∥

∥

)

≤
[

h
(

x(k), r
)

− h (x∗, r)
]T (

x∗ − x(k)
)

= h
(

x(k), r
)T (

x∗ − x(k)
)

− h (x∗, r)T
(

x∗ − x(k)
)

≤ h
(

x(k), r
)T (

x∗ − x(k)
)

because h (x∗ − r)T
(

x(k) − x∗) ≤ 0 by Theorem 9. Therefore

δ
(∥

∥

∥x(ki) − x∗
∥

∥

∥

)

≤ min
1≤k≤i

h
(

x(k), r
)T (

x∗ − x(k)
)

≤ max
x∈S

min
1≤k≤i

h
(

x(k), r
)T (

x− x(k)
)

= min
1≤k≤i

h
(

x(k), r
)T (

x(i+1) − x(k)
)

= µi → 0 as i→∞.

Consequently, δ
(∥

∥x(ki) − x∗∥
∥

)

→ 0 as i→∞.
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3. Function δ clearly satisfies the following properties:
(i) δ(t) is continuous in t;
(ii) δ(t) > 0 as t > 0, because the game is diagonally strictly concave.
Therefore δ(ti)→ 0 implies that ti → 0 for any convergent sequence {ti},
which implies that

∥

∥x(ki) − x∗∥
∥→ 0 as i→∞, so x(ki) → x∗.

Assume next that all conditions of Theorem 7 are satisfied. If x∗ is an equi-
librium, then the Kuhn–Tucker conditions show that with some nonnegative
vectors u∗

k (1 ≤ k ≤ n), relations (16) hold. Introduce the notation

ψk(x, uk) = �kfk(x) + uTk �k qk(xk) (31)

and consider the following optimization problem

min
∑n

k=1 u
T
k qk(xk)

s.t. uk ≥ 0
qk(xk) ≥ 0
ψk(x, uk) = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

k = 1, 2, . . . , n. (32)

Theorem 11. If x∗ is an equilibrium, then there exist nonnegative vec-
tors u∗k(k = 1, 2, . . . , n) such that (x∗, u∗1, . . . , u

∗
n) is an optimal solution of

problem (32).

Proof. If x∗ is an equilibrium, then the Kuhn–Tucker necessary conditions
(16) are satisfied, so (x∗, u∗1, . . . , u

∗
n) is a feasible solution of problem (32) with

zero objective function value. Because at any feasible solution the objective
function is nonnegative, (x∗, u∗1, . . . , u

∗
n) must be optimal.

Theorem 12. If in addition, fk is concave in xk with any fixed x−k, then for
any optimal solution (x, u1, . . . , un) of problem (32), x is an equilibrium.

Proof. Under the additional condition, the Kuhn–Tucker conditions are also
sufficient.

The application of problem (32) will be illustrated in the following
examples.

Example 9 (Bimatrix games). Assume n = 2, linear strategy sets

S1 =
{

x1 |x1 =
(

x
(i)
1

)

∈ Rm, x1 ≥ 0,
∑

i x
(i)
1 = 1

}

S2 =
{

x2 |x2 =
(

x
(i)
2

)

∈ Rn, x2 ≥ 0,
∑

i x
(i)
2 = 1

}

,
(33)

and quadratic payoff functions

f1(x1,x2) = xT1 Ax2 and f2(x1,x2) = xT1 Bx2 (34)
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where A and B are given m× n constant real matrices.

In this case, we may select

q1(x1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x
(1)
1
...

x
(m)
1

x
(1)
1 + · · ·+ x(m)

1 − 1
−x(1)

1 − · · · − x
(m)
1 + 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with Jacobian

�1q1(x1) =

⎛

⎝

I
1T

−1T

⎞

⎠

where I is the m × m identity matrix and 1 is the m-element vector, all
components of which are equal to one. Similarly,

q2(x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x
(1)
2
...
x

(n)
2

x
(1)
2 + · · ·+ x(n)

2 − 1
−x(1)

2 − · · · − x
(n)
2 + 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with

�2q2(x2) =

⎛

⎝

I
1T

−1T

⎞

⎠ .

The objective function of problem (32) has now the special form

m
∑

i=1

u
(i)
1 x

(i)
1 + u(m+1)

1

(

∑

i

x
(i)
1 − 1

)

+ u(m+2)
1

(

−
∑

i

x
(i)
1 + 1

)

+
n
∑

j=1

u
(j)
2 x

(j)
2 + u(n+1)

2

⎛

⎝

∑

j

x
(j)
2 − 1

⎞

⎠+ u(n+2)
2

⎛

⎝−
∑

j

x
(j)
2 + 1

⎞

⎠ .

By introducing the notation

α = u
(m+2)
1 − u(m+1)

1 and β = u
(n+2)
2 − u(n+1)

2 ,
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problem (32) can be further simplified as

min uT
1 x1 + uT

2 x2 − α
(

1Tx1 − 1
)

− β
(

1Tx2 − 1
)

(35)
s.t u1 ≥ 0, u2 ≥ 0

x1 ≥ 0, x2 ≥ 0

1Tx1 = 1, 1Tx2 = 1

xT2 AT + uT
1 +

(

u
(m+1)
1 − u(m+2)

1

)

1T = 0T

xT1 B + uT
2 +

(

u
(n+1)
2 − u(n+2)

2

)

1T = 0T .

From the last two constraints

uT
1 = α1T − xT2 AT and uT

2 = β1T − xT1 B

so the objective function of (35) is the following:

(−xT2 AT + α1T )x1 + (−xT1 B + β1T )x2 − α(1Tx1 − 1)− β(1Tx2 − 1)
= −xT1 Ax2 − xT1 Bx2 + α+ β.

Hence we have a quadratic optimization problem with linear constraints:

max xT1 (A + B)x2 − α− β (36)
s.t. x1 ≥ 0, x2 ≥ 0

1Tx1 = 1, 1Tx2 = 1
Ax2 ≤ α1, BTx1 ≤ β1.

As a numerical example, select

A =
(

2 −1
−1 1

)

and B =
(

1 −1
−1 2

)

then

A + B =
(

3 −2
−2 3

)

.

Therefore, problem (36) is the following

max 3x(1)
1 x

(1)
2 − 2x(1)

1 x
(2)
2 − 2x(2)

1 x
(1)
2 + 3x(2)

1 x
(2)
2 − α− β

s.t. x(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 ≥ 0

x
(1)
1 + x(2)

1 = 1, x
(1)
2 + x(2)

2 = 1

2x(1)
2 − x

(2)
2 ≤ α

−x(1)
2 + x(2)

2 ≤ α
x

(1)
1 − x

(2)
1 ≤ β

−x(1)
1 + 2x(2)

1 ≤ β.
A computer program is applied to find three optimal solutions shown in
Table 1:
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Table 1. Solution of Example 9

xT
1 (1,0) (0,1) (3/5, 2/5)

xT
2 (1,0) (0,1) (2/5, 3/5)

α 2 1 1/5
β 1 2 1/5

Example 10 (Matrix games). Consider a special bimatrix game in which
B = −A, that is, the game is zero sum.

In this case, the optimization problem (36) is linear and it can be broken
up to two linear programming problems:

min α

s.t. Ax2 ≤ α1
1Tx2 = 1
x2 ≥ 0.

min β

s.t. ATx1 ≥ −β1
1Tx1 = 1
x1 ≥ 0.

(37)

Example 11. Consider now again the single-product oligopoly game without
product differentiation (Example 4 gave the definition and notation). We may
select

Sk = {xk|xk ≥ 0, Lk − xk ≥ 0}
so

qk(xk) =
(

xk
Lk − xk

)

.

Notice that

�kqk(xk) =
(

1
−1

)

and

�kfk(x) = p

(

∑

i

xi

)

+ xkp′
(

∑

i

xi

)

− C ′
k (xk) .

By introducing αk = u
(1)
k − u(2)

k and βk = u
(2)
k , the objective function of

problem (32) becomes
n
∑

k=1

(αkxk + βkLk),

and the last constraint can be written as

p

(

∑

i

xi

)

+ xkp′
(

∑

i

xi

)

− C ′
k (xk) + αk = 0
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from which we have

αk = −p
(

∑

i

xi

)

− xkp′
(

∑

i

xi

)

+ C ′
k(xk)

and by substituting this expression into the objective function, we have

n
∑

k=1

(

−xk

[

p

(

∑

i

xi

)

+ xkp′
(

∑

i

xi

)

− C ′
k(xk)

]

+ βkLk

)

.

Notice that u(1)
k = αk + βk must be nonnegative, so we have the following

optimization problem to solve

max
∑n

k=1{xk([p(
∑

i xi) + xkp′(
∑

i xi)− C ′
k(xk)])− βkLk} (38)

s.t. 0 ≤ xk ≤ Lk
βk ≥ max{0; p(

∑

i xi) + xkp′(
∑

i xi)− C ′
k(xk)}.

As a numerical example, select n = 3, Ck(xk) = kx3
k + xk, Lk = 1 (k =

1, 2, 3), and p(s) = 2− 2s− s2, where s =
∑3

k=1 xk.

In this particular case, problem (38) becomes

max
3
∑

k=1

{xk(2− 2s− s2 − 2xk − 2sxk − 3kx2
k − 1)− βk} (39)

s.t. 0 ≤ xk ≤ 1

x1 + x2 + x3 = s

βk ≥ max{0; 2− 2s− s2 − xk(2 + 2s)− 3kx2
k − 1}.

A computer program gives the optimal solution:

x∗1 = 0.1077

x∗2 = 0.0986

x∗3 = 0.0919

Theorem 11 and Theorem 12 show how to transform an equilibrium problem
into an optimization problem under certain conditions. We will next illustrate
that for any optimization problem, we can formulate a two-person zero-sum
game such that the equilibria of the game provide optimal solutions. Consider
therefore the very general optimization problem
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max f(x) (40)
s.t. x ∈ X

g(x) ≥ 0

where f : X �→ R, g : X �→ Rm are arbitrary functions, and X ⊆ Rn is an
arbitrary (possibly even discrete) set. The Lagrangian of this problem is

L(x,u) = f(x) + uTg(x) (41)

for all nonnegative vectors u ∈ Rm. Define now the zero-sum two-person game
with strategy sets S1 = X, S2 = Rm

+ , and payoff functions f1 = L, f2 = −L.

Theorem 13. If (x∗,u∗) is an equilibrium, then x∗ is an optimal solution of
problem (40).

Proof. Because (x∗,u∗) is an equilibrium, for all x and u,

f(x∗) + u∗Tg(x∗) ≥ f(x) + u∗Tg(x) (42)

−
[

f(x∗) + u∗Tg(x∗)
]

≥ −
[

f(x∗) + uTg(x∗)
]

. (43)

From (43), we see that u∗Tg(x∗) ≤ 0 with the choice of u = 0. Next we
show that g(x∗) ≥ 0. Assume that for a component, gi(x∗) < 0. Then select
sufficiently large value of ui, then (43) is violated. Therefore x∗ is a feasible
solution of (40).

Because u∗ ≥ 0 and g(x∗) ≥ 0, u∗Tg(x∗) ≥ 0, and comparing this in-
equality to u∗Tg(x∗) ≤ 0 (which was shown above), we see that

u∗Tg(x∗) = 0

Finally we show that x∗ is optimal. From (42),

f(x∗) = f(x∗) + u∗Tg(x∗) ≥ f(x) + u∗Tg(x) ≥ f(x)

for any feasible solution x, which shows the optimality of x∗.

5 A Dynamic Extension

Repeated games and dynamic extensions of different classes of games were
examined by many authors. In this section, a special dynamic oligopoly game
will be briefly discussed.

Consider a single-product oligopoly without differentiation (such as the
game introduced earlier in Example 4). The marginal profit of firm k is given as
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∂f

∂xk
(x) = p

(

n
∑

i=1

xi

)

+ xkp′
(

n
∑

i=1

xi

)

− C ′
k(xk). (44)

Assuming continuous timescale, it is realistic to assume that if the marginal
profit is positive, then the firm wants to increase its output. If the marginal
profit is negative, then the firm wants to decrease its output, and if the mar-
ginal profit is zero, then (assuming concavity of fk in xk) the output maxi-
mizes the profit, so the firm does not want to change output. This adjustment
concept can be naturally modeled as follows:

For k = 1, 2, . . . , n,

ẋk(t) = Kk ·
[

p

(

n
∑

i=1

xi(t)

)

+ xk(t)p′
(

n
∑

i=1

xi(t)

)

− C ′
k(xk(t))

]

, (45)

where Kk is a positive constant for k = 1, 2, . . . , n.

Clearly any steady state of this system is an interior equilibrium, however
corner equilibria (when xk = 0 or xk = Lk) are not always steady states of
this dynamic system. Most research on dynamic games is interested in the
asymptotic behavior of the trajectory as t→∞. Local asymptotic stability is
usually examined by linearization and based on the locations of the eigenvalues
of the Jacobian. The Jacobian of the system has a special structure

J = D + a · 1T (46)

where

D = diag(K1(p′
(

∑

i

xi

)

− C ′′
1 (x1)), . . . ,Kn(p′

(

∑

i

xi

)

− C ′′
n(xn)))

1T = (1, 1, . . . , 1)

and

a =

⎛

⎜

⎜

⎜

⎝

K1(p′(
∑

i xi) + x1p
′′(
∑

i xi))
K2(p′(

∑

i xi) + x2p
′′(
∑

i xi))
...

Kn(p′(
∑

i xi) + xnp′′(
∑

i xi))

⎞

⎟

⎟

⎟

⎠

.

Conditions (A) and (B) (introduced in Example 4) imply that the diagonal
elements of D are negative and all elements of a are nonpositive.

For the sake of simplicity, let di and ai denote the ith diagonal element of
D and the ith element of vector a.

The characteristic polynomial of the Jacobian can be given as follows

ϕ(λ) = det(D + a · 1T − λI) = det(D− λI) · det(I + (D− λI)−1a · 1T ).
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Now we will use the fact that for any n-element vectors u and v, det(I +
uvT ) = 1 + vTu, which can be proved by using mathematical induction with
respect to size of the vectors. Then

ϕ(λ) =
n
∏

k=1

(di − λ) ·
[

1 +
n
∑

k=1

ai
di − λ

]

= 0. (47)

The roots of the first product are all negative, and we will show that
all roots of the bracketed term are also real and negative implying the local
asymptotic stability of the steady state. Introduce function

g(λ) =
n
∑

i=1

ai
di − λ

(48)

where we may assume that the di values are different, as terms with identical
denominator can be written as one term by adding their numerators. Clearly

lim
λ→±∞

g(λ) = 0,

lim
λ→di+0

g(λ) =∞,

lim
λ→di−0

g(λ) = −∞

and

g′(λ) =
n
∑

i=1

ai
(di − λ)2

< 0.

The graph of this function is shown in Figure 1. Equation g(λ) = −1
has a solution before d1 and one solution between each pair (di, di+1)

Figure 1. Graph of function g(λ)
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(i = 1, 2, . . . , n− 1). Notice that this equation is equivalent to a polyno-
mial equation of degree n, so there are n real (or complex) roots. We found n
real roots, so all roots are real and negative. Hence the steady state is locally
asymptotically stable.
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Abstract Based on the notion of asymptotically contractive mapping due to Penot
[16], we propose in this paper a new method for the study of existence of fixed points
for nonexpansive mappings defined on unbounded sets.
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1 Introduction

The fixed-point theory is one of the most popular chapters considered in
nonlinear functional analysis.

Nonlinear functional analysis is an area of mathematics that has suddenly
grown up over the past few decades, influenced by nonlinear problems posed
in physics, mechanics, operations research, as well as in economics. In the
fixed-point theory, an important chapter is the study of fixed points for non-
expansive mappings.

Nonexpansive mappings are used in many practical problems. Many au-
thors have studied the existence of fixed points for nonexpansive mappings in
many papers as for example [1, 2, 4–6,10–13,16–21], among others.

The nonexpansivity is related, in some sense, with the contractivity. For
comparison of various definitions of contractive mapping, the reader is referred
to the classic paper [17].

Generally, in many papers, the existence of fixed points for nonexpansive
mappings have been considered with respect to bounded closed convex sets,
or with respect to compact convex sets.

In 1992, Luc [13] presented a fixed-point theorem for nonexpansive map-
pings with respect to unbounded sets using the notion of recessive compact-
ness.
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Using the notion of asymptotically contractive mapping, Penot [16] gener-
alized to unbounded sets some fixed-point theorems proved some time ago by
Browder [1], Göhde [6], Kirk [10], and Luc [13].

Inspired by Penot’s results, we present in this paper a new method for
the study of existence of fixed points, for nonexpansive mappings, defined on
unbounded sets. This method is based on the notion of “scalar asymptotically
contractive mapping.”

This method, which is somewhat related to the scalar asymptotic deriv-
ability [8, 9], seems to be an interesting method and it opens a new research
direction in the study of existence of fixed points for nonexpansive mappings
defined on a closed unbounded convex set.

2 Preliminaries

We denote by (E, ‖ · ‖) a Banach space and by (H, 〈·, ·〉) a Hilbert space. Let
C ⊂ E be a nonempty unbounded closed convex set and h : C → E be a
mapping. We recall some known definitions. We say that h is nonexpansive if
and only if, for any x, y ∈ C we have ‖h(x)−h(y)‖ ≤ ‖x−y‖. The mapping h
is said to be ρ-Lipschitzian, if there exists a constant ρ > 0 such that for any
x, y ∈ C we have ‖h(x)− h(y)‖ ≤ ρ‖x− y‖. If 0 < ρ < 1, then in this case we
say that h is a contractive mapping.

We recall that a Banach space (E, ‖ · ‖) is uniformly convex, if and only
if for every ε ∈ [0, 2[ there is a real number δ(ε) ∈]0, 1] such that whenever
‖x‖ ≤ r, ‖y‖ ≤ r, ‖x− y‖ ≥ εr, x, y ∈ E, r > 0, then it follows that

∥

∥

∥

∥

x+ y
2

∥

∥

∥

∥

≤ (1− δ(ε))r.

Any Hilbert space is uniformly convex and any Lp(Ω) space with 1 < p <∞
and Ω a domain in R

n is uniformly convex. For more details and results about
uniformly convex Banach spaces, the reader is referred to [3, 21], and [22].

We say that a mapping h : C → E is demi-closed on C if for any sequence
{xn}n∈N ⊂ C weakly convergent to an element x∗ ∈ E and such that the
sequence {h(xn)}n∈N is convergent in norm to an element y∗ we have that
x∗ ∈ C and h(x∗) = y∗. The demi-closedness is related to the notion of
strongly continuous mapping [3, 22].

It is known that, if h is nonexpansive and E is uniformly convex, then
I − h is demi-closed. (We denoted by I the identity mapping.)

For a proof of this result, see ([2], Theorem 8.4) and ([22], Proposition
10.9). It is remarked in [16] that the boundedness of C used in [2] and [22] is
not necessary.

We note that in some papers of Russian mathematicians, the demi-closed
operator is called regular operator.
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3 Scalar Asymptotically Contractive Mappings
in Hilbert Spaces

Let (H, 〈·, ·〉) be a Hilbert space and C ⊆ H be a nonempty unbounded closed
convex set.

Definition 1. We say that a mapping f : C → H is scalar asymptotically
contractive on C if and only if there exists an element x0 ∈ C such that

lim sup
x∈C, ‖x‖→∞

〈f(x)− f(x0), x− x0〉
‖x− x0‖2

< 1.

We have the following result.

Theorem 1. Let (H, 〈·, ·〉) be a Hilbert space, and let C ⊂ H be an unbounded
closed convex subset. Let f : C → H be a mapping such that the following
assumptions are satisfied:

(i) f is nonexpansive,
(ii) f(C) ⊆ C,
(iii) f is scalar asymptotically contractive on C. Then f has a fixed
point in C.

Proof. Let x0 ∈ C be the element defined in assumption (iii) and let {αn}n∈N

be a sequence in ]0, 1[ such that lim
n→∞

αn = 0. For any n ∈ N, we consider

the mapping fn : C → H defined by fn(x) = (1 − αn)f(x) + αnx0. Because
C is a convex set, we have that fn(x) ∈ C for any x ∈ C. (We used also
assumption (ii)). For any n ∈ N, the mapping fn is a contraction with rate
(1− αn) (because f is nonexpansive). Applying the Banach contractive prin-
ciple, we obtain an element xn ∈ C such that fn(xn) = xn. The sequence
{xn}n∈N is bounded. Indeed, if this is not the case, considering a subsequence
(if necessary), we may assume that {xn}n∈N is convergent to ∞, as n→∞.

Let β ∈]0, 1[ and ρ > 0 such that 〈f(x)− f(x0), x− x0〉 ≤ β‖x− x0‖2, for
x ∈ C satisfying ‖x‖ > ρ. For n ∈ N, large enough, we have

‖xn‖2 − ‖xn‖‖x0‖ ≤ 〈xn, xn − x0〉 = 〈(1− αn)f(xn) + αnx0, xn − x0〉

= 〈(1− αn)f(xn)− (1− αn)f(x0) + (1− αn)f(x0) + αnx0, xn − x0〉

= (1− αn)〈f(xn)− f(x0), xn − x0〉+ (1− αn)〈f(x0), xn − x0〉

+ αn〈x0, xn − x0〉,

which implies

‖xn‖2 − ‖xn‖‖x0‖ ≤ (1− αn)β‖xn − x0‖2 + (1− αn)‖f(x0)‖‖xn − x0‖
+ αn‖x0‖‖xn − x0‖ ≤ (1− αn)β(‖xn‖2 + 2‖xn‖‖x0‖+ ‖x0‖2)
+ (1− αn)‖f(x0)‖(‖xn‖+ ‖x0‖) + αn‖x0‖(‖xn‖+ ‖x0‖).
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Dividing both sides by ‖xn‖2 and taking limits, we obtain 1 ≤ β, which is a
contradiction. Thus {xn}n∈N is bounded and we can show that {f(xn)}n∈N is
also bounded (using the fact that f is nonexpansive).

Now, because for any n ∈ N we have

xn = (1− αn)f(xn) + αnx0,

we deduce that

‖xn − f(xn)‖ = αn‖x0 − f(xn)‖ → 0, as n→∞.

The spaceH being reflexive and {xn}n∈N a bounded sequence, we may assume
(eventually considering a subsequence) that {xn}n∈N is weakly convergent to
an element x∗ ∈ C, (we used also Eberlein’s Theorem). BecauseH is uniformly
convex and f is nonexpansive, we have that I − f is demi-closed. Therefore,
because ‖xn − f(xn)‖ → 0 as n → ∞, we deduce that f(x∗) = x∗ and the
proof is complete.

Corollary 1. Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone,
and f : K → K a nonexpansive mapping. If f is scalar asymptotically con-
tractive on K, then f has a fixed-point in K.

Remark 1. Corollary 1 is an existence theorem for fixed points on a closed
convex cone. The theory of fixed point on convex cones has many applications.

Corollary 2. Let (H, 〈·, ·〉) a Hilbert space, K ⊂ H a closed convex cone, and
h : K → K a k0-Lipschitzian mapping (k0 > 0) such that h(0) 	= 0. If there
exists an element x0 ∈ K such that

lim sup
x∈K,‖x‖→∞

x∈K

〈h(x)− h(x0), x− x0〉
‖x− x0‖2

< k

with k > k0, then k is an eigenvalue of h associated with an eigenvector in K.

Proof. We apply Theorem 1 taking f = 1
kh.

Remark 2. J.P. Penot introduced in [16] the following notion. Let (E, ‖ · ‖) be
a Banach space, and let C ⊂ E be an unbounded set. We say that f : C → E
is asymptotically contractive on C if there exists x0 ∈ C such that

lim sup
x∈C,‖x‖→∞

‖f(x)− f(x0)‖
‖x− x0‖

< 1.

Several examples of asymptotically contractive mappings are given in [16].

We remark that in the case of Hilbert spaces, any asymptotically contractive
mapping is scalar asymptotically contractive but the converse is not true.

The method presented above, on Hilbert spaces, to obtain the existence of
fixed points for nonexpansive mappings on unbounded sets, can be extended
on Banach spaces. In the next section, we present this extension.
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4 G-Scalar Asymptotically Contractive Mappings
in Banach Spaces

Let (E, ‖ · ‖) be a reflexive Banach space and C ⊂ E be an unbounded closed
convex set. Let B : E×E → R be a bilinear mapping satisfying the following
properties:

(b1) there exists b > 0 such that B(x, y) ≤ b‖x‖‖y‖ for any x, y ∈ E
(b2) there exists a > 0 such that a‖x‖2 ≤ B(x, x), for any x ∈ E.

If we denote by G = 1
aB and M = b

a , then we have that G(x, y) ≤M‖x‖‖y‖,
for any x, y ∈ E and ‖x‖2 ≤ G(x, x) for any x ∈ E. The function G used in
this section will be a such function.

Definition 2. We say that a mapping f : C → E is G-scalar asymptotically
contractive on C if there exists x0 ∈ C such that

lim sup
x∈C, ‖x‖→∞

G(f(x)− f(x0), x− x0)
‖x− x0‖2

< 1.

Remark 3.

1. If E is a Hilbert space and G is the inner product 〈·, ·〉, defined on E, then
in this case by Definition 2 we obtain the notion of scalar asymptotically
contractive mapping introduced by Definition 1.

2. If the mapping G used in Definition 2 satisfies the property
(b1′) G(x, y) ≤ ‖x‖‖y‖ for any x, y ∈ E,

then, in this case any asymptotically contractive mapping f (in Penot’s
sense) is G-scalar asymptotically contractive mapping.

The main result of this section is the following:

Theorem 2. Let (E, ‖ · ‖) be a reflexive Banach space and C ⊂ E be an
unbounded closed convex set. Let f : C → E be a mapping such that the
following assumptions are satisfied:

(i) f is nonexpansive,
(ii) f(C) ⊆ C,
(iii) I − f is demi-closed,
(iv) f is G-scalar asymptotically contractive on C.

Then f has a fixed point in C.

Proof. The proof follows the same ideas used in the proof of Theorem 1, but
we have some particular details.

Let {αn}n∈N be a sequence of ]0, 1[ such that lim
n→∞

αn = 0 and let x0 ∈ C
be the element used in assumption (iv). For every n ∈ N, we consider the
mapping fn : C → E defined by

fn(x) = (1− αn)f(x) + αnx0 for any x ∈ C.
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Obviously, the convexity of C with (ii) implies that fn(x) ∈ C, for any x ∈ C.
Because f is nonexpansive, we have that for any n ∈ N, fn is a contraction.

Applying, for any n ∈ N, the Banach contraction principle, we obtain an
element xn ∈ C such that fn(xn) = xn.

The sequence {xn}n∈N ⊂ C is bounded. Indeed, if this is not the case,
considering a subsequence (if necessary) we may assume that {‖xn‖}n∈N is
convergent to +∞. Using assumption (iv), we find β ∈]0, 1[ and ρ > 0 such
that G(f(x)− f(x0), x− x0) ≤ β‖x− x0‖2 for x ∈ C satisfying ρ < ‖x‖. We
have,

‖xn‖2 −M‖xn‖‖x0‖
≤ G(xn, xn − x0) = G((1− αn)f(xn) + αnx0, xn − x0)
= G((1− αn)f(xn) + αnx0 − (1− αn)f(x0) + (1− αn)f(x0), xn − x0)
= (1− αn)G(f(xn)− f(x0), xn − x0) + (1− αn)G(f(x0), xn − x0)
+ αnG(x0, xn − x0) ≤ (1− αn)β‖xn − x0‖2 + (1− αn)M‖f(x0)‖‖xn − x0‖
+ αnM‖x0‖‖xn − x0‖ ≤ (1− αn)β[‖xn‖2 + 2‖xn‖‖x0‖+ ‖x0‖2]
+ (1− αn)M‖f(x0)‖[‖xn‖+ ‖x0‖] + αnM‖x0‖[‖xn + x0‖].

Dividing both sides by ‖xn‖2 and taking limits, we obtain 1 ≤ β, which is a
contradiction.

Thus {xn}n∈N is bounded, and because f is nonexpansive, we can show
that {f(xn)}n∈N is also bounded.

Taking into consideration that

xn = (1− αn)f(xn) + αnx0, for any n ∈ N,

we deduce that

‖xn − f(xn)‖ = αn‖x0 − f(xn)‖ → 0 as n→∞.

Because the space E is reflexive and the sequence {xn}n∈N is bounded, we
may assume (eventually considering a subsequence) that {xn}n∈N is weakly
convergent to an element x∗ ∈ C. By the fact that I − f is supposed to be
demi-closed, we obtain that f(x∗) = x∗, and the proof is complete.

Considering Remark 3 (2) of this section, we deduce from Theorem 2 the
following corollary.

Corollary 3 ([16]). Let (E, ‖ · ‖) be a uniformly convex Banach space and
C ⊂ E be an unbounded closed convex subset. Let G : E×E → P be a bilinear
mapping satisfying properties (b1) and (b2) with a = b = 1. Let f : C → E be
a mapping such that the following assumptions are satisfied:

(i) f is nonexpansive
(ii) f(C) ⊆ C,
(iii) f is asymptotically contractive in Penot’s sense.

Then f has a fixed point in C.
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5 (G, A)-Scalar Asymptotically Contractive Mappings
in Banach Spaces

In this section, we put in evidence some relations between scalar asymptoti-
cally contractive, scalar asymptotically derivable, and asymptotic derivability.

Let (H, 〈·, ·〉) be a Hilbert space and C ⊂ H be an unbounded closed convex
set. Let x0 ∈ C be an element and f : C → H be a mapping. We introduced
in [7] the following notion. If C is a closed convex cone and T : H → H is a
continuous linear mapping, we say that T is a scalar asymptotic derivative of
f along C if

lim sup
x∈C, ‖x‖→∞

〈f(x)− T (x), x〉
‖x‖2 ≤ 0.

We recall that T is an asymptotic derivative of f along C if

lim sup
x∈C, ‖x‖→∞

‖f(x)− T (x)‖
‖x‖ ≤ 0.

If T is an asymptotic derivative of f along C, then T is a scalar asymptotic
derivative. M.A. Krasnoselskii introduced the concept of asymptotic deriva-
tive, which is much used in nonlinear analysis.

We can generalize the concept of scalar asymptotic derivative, considering
T a general mapping, not necessarily linear, eventually being an element of a
particular class of nonlinear mappings.

We consider the following notations: U = C−x0, u = x−x0, where x ∈ C
and g(u) = f(u + x0). Obviously, 0 ∈ U , g(0) = f(x0) and for any u ∈ U we
have f(u+ x0) = f(x). If

lim sup
u∈U, ‖u‖→∞

〈g(u)− g(0), u〉
‖u‖2 ≤ 0,

then we have

lim sup
x∈C,‖x‖→∞

〈f(x)− f(x0), x− x0〉
‖x− x0‖2

= lim sup
u∈U, ‖u‖→∞

〈g(u)− g(0), u〉
‖u‖2 ≤ 0.

If we consider g(0) as a scalar asymptotic derivative of g along U , then we
have that f is scalar asymptotically contractive on C.

This fact implies the following generalization of the notion of G-scalar
asymptotically contractivity. To do this, we need to recall some notions and
to introduce some conditions.

Let (E, ‖ · ‖) be a Banach space and let C ⊂ E be an unbounded closed
convex set. We recall that a semi-inner-product in Lumer’s sense [Trans. Amer.
Math. Soc. 100, 29–43 (1961)], is a mapping satisfying the following properties:

(s1) [x+ y, z] = [x, z] + [y, z], for any x, y, z ∈ E,
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(s2) [λx, y] = λ[x, y], for any λ ∈ R,
(s3) [x, x] > 0 for any x ∈ E, x 	= 0,
(s4) |[x, y]|2 ≤ [x, x][y, y], for any x, y ∈ E.

It is known that, for any Banach space we can define a semi-inner-product.
Also, it is known that the mapping x→ [x, x]1/2 is a norm on E. If this norm
coincides with the norm ‖ · ‖ given on E, we say that the semi-inner-product
is compatible with the norm ‖ · ‖.

We say that a mapping A : C → E is φ-asymptotically bounded on C if
there exist r, c > 0 such that:

(α1) ‖A(x)‖ ≤ cφ(‖x‖) for all x ∈ C with ‖x‖ > r,
(α2) lim

t→+∞
φ(t)
t = 0.

Now, suppose that a mapping G : E×E → P satisfies the following properties:

(β1) G(x1 + x2, y) = G(x1, y) +G(x2, y), for any x1, x2, y ∈ E,
(β2) G(λx, y) = λG(x, y), for any λ > 0 and any x, y ∈ E,
(β3) ‖x‖2 ≤ G(x, x), for any x ∈ E,
(β4) G(x, y) ≤M‖x‖‖y‖, for some M > 0 and any x, y ∈ E.

Obviously, any semi-inner-product compatible with the norm ‖ ·‖ satisfies the
properties (β1), (β2), (β3), and (β4).

Definition 3. We say that a mapping f : C → E is a (G,A)-scalar asymp-
totically contractive mapping on C, if there exists a mapping G : E ×E → P
satisfying the properties (β1)–(β4) and a ρ-contractive mapping A : C → E
such that

lim sup
x∈C, ‖x‖→∞

G(f(x)−A(x), x)
‖x‖2 < 1.

We have the following result.

Theorem 3. Let (E, ‖ · ‖) be a reflexive Banach space and C ⊂ E be an
unbounded closed convex set. Let f : C → E be a nonexpansive mapping. If
the following assumptions are satisfied:

(1) f(C) ⊆ C,
(2) I − f is demi-closed,
(3) f is (G,A)-scalar asymptotically contractive on C,
(4) A is φ-asymptotically bounded and A(C) ⊆ C,

then f has a fixed point in C.

Proof. First, we observe that f and A are bounded mappings, i.e., f(D) and
A(D) are bounded sets, whenever D ⊂ C is bounded. Let {λn}n∈N be a
sequence in ]0, 1[ such that lim

x→∞
λn = 0. For every n ∈ N, we consider the

mapping fn : C → E defined by

fn(x) = (1− λn)f(x) + λnA(x).
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Because C is convex and considering the assumptions (1) and (4), we have
that fn(C) ⊆ C.

Using the properties of f and A, we can show that, for any n ∈ N, fn is
a contractive mapping with the rate kn = (1 − λn) + λnρ ∈]ρ, 1[. Applying
the Banach contraction principle, we obtain an element xn ∈ C such that
fn(x) = xn. The sequence {xn}n∈N is a bounded sequence.

Indeed, if this is not the case considering (if necessary) a subsequence, we
may assume that {xn}n∈N →∞ as n→∞.

Because f is (G,A)-scalar asymptotically contractive, there exist β ∈]0, 1[
and ρ0 > 0 such that

G(f(x)−A(x), x) ≤ β‖x‖2 for x ∈ C satisfying ‖x‖ > ρ0.

For n ∈ N, large enough we have

‖xn‖2 ≤ G(xn, xn) = G((1− λn)f(xn) + λnA(xn), xn)
= G((1− λn)f(xn)− (1− λn)A(xn) +A(xn), xn)
= (1− λn)G(f(xn)−A(xn), xn) +G(A(xn), xn)
≤ (1− λn)β‖xn‖2 + cMφ(‖xn‖)‖xn‖.

Dividing both sides by ‖xn‖2 and taking limits we obtain 1 ≤ β, which is a
contradiction.

Thus {xn}n∈N is bounded and consequently {f(xn)}n∈N and {A(xn)}n∈N

are bounded sequences. Because for any n ∈ N we have

xn = (1− λn)f(xn) + λnA(xn),

and we obtain

‖xn − f(xn)‖ = λn‖A(xn)− f(xn)‖ → 0 as n→∞.

The space E being reflexive and {xn}n∈N being a bounded sequence, we may
assume (eventually considering a subsequence and Eberlein’s Theorem) that
{xn}n∈N is a weakly convergent sequence to an element x∗ ∈ C. Because I−f
is demi-closed, we have that f(x∗) = x∗ and the proof is complete.

Remark 4.

1. If the space (E, ‖ · ‖) is a uniformly convex Banach space, then in this
case in Theorem 3 it is not necessary to suppose that I− f is demi-closed.
2. If in Theorem 3, C is a closed convex cone, we have a fixed-point theorem
on closed convex cones. The fixed-points theorem on cones have many
applications.

Corollary 4. Let (E, ‖ · ‖) be a uniformly convex Banach space and C ⊂ E
be a closed convex cone. Let h : C → E be a k0-Lipschitzian mapping. If the
following assumptions are satisfied:
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(1) h(C) ⊆ C and h(0) 	= 0,
(2) the mapping f = 1

k0
h is (G,A)-scalar asymptotically contractive on C,

(3) A is φ-asymptotically bounded and A(C) ⊆ C.
Then k0 is a positive eigenvalue of h associated with an eigenvector in C.

Proof. We apply Theorem 3 to the mapping f = 1
k0
h.

Corollary 5. Let (E, ‖ · ‖) be a uniformly convex Banach space and C ⊂ E
be a closed convex cone. Let h : C → E be a k0-Lipschitzian mapping and
ψ : C → E be a ρ0-Lipschitzian mapping. If the following assumptions are
satisfied:

(1) h(C) ⊆ C and h(0) 	= 0 and ψ(C) ⊆ C,
(2) ρ0 < k0,
(3) ψ is φ-asymptotically bounded,
(4) lim sup

x∈C, ‖x‖→∞

G(h(x)−ψ(x),x)
‖x‖2 ≤ k0,

then any k ≥ k0 is an eigenvalue of h associated with an eigenvector in C.

Proof. For any k we apply Theorem 3 taking f = 1
kh and A = 1

kψ.

Now, we can generalize the notion of scalar asymptotic derivative.

Definition 4. We say that a mapping A : C → E is a G-scalar asymptotic
derivative of the mapping f : C → E along C if

lim sup
x∈C, ‖x‖→∞

G(f(x)−A(x), x)
‖x‖2 ≤ 0.

Remark 5. If A is a ρ-contraction and a G-scalar asymptotic derivative for f
along C, then f is a (G,A)-scalar asymptotically contractive mapping.

From, Theorem 3, we deduce the following result.

Corollary 6. Let (E, ‖ · ‖) be a reflexive Banach space and C ⊂ E be an
unbounded closed convex set. Let f : C → E be a nonexpansive mapping. If
the following assumptions are satisfied:

(1) f(C) ⊆ C,
(2) I − f is demi-closed,
(3) f has a G-scalar asymptotic derivative A : C → E such that A is
ρ-contractive, φ-asymptotically bounded and A(C) ⊆ C,

then f has a fixed point in C.
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6 Comments

We presented in this paper some fixed-point theorems for nonexpansive map-
pings on unbounded closed convex sets of a reflexive Banach space. The results
are based on some notions of scalar asymptotic contractivity inspired by the
notion of asymptotic contractivity defined recently in [16]. A relation with a
notion of scalar asymptotic derivability is established. A few existence results
for positive eigenvalues for nonlinear mappings defined on a closed convex
cone are also given. Applications of the results presented in this paper may
be the subject of another paper.
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Abstract This chapter is concerned with cooperative combinatorial games that
model situations in which the decision makers who agree to cooperate encounter
a combinational optimization problem to maximize profit or minimize cost. Eight
cooperative combinatorial games that have received most attention in the literature
are surveyed and analyzed, and the similarities and differences in their analysis are
pointed out.
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1 Introduction

Cooperative game theory is concerned with situations in which at least two
decision makers can increase their profits or decrease their costs by cooperat-
ing. One can think, for example, of a case where one person has the resources
to make a certain product, another one has the know-how to make it, and yet
a third one has the means to transport it to a market where it can be sold.
Alone, none of them can generate a profit. By working together they can.

In case a group of decision makers decide to cooperate to increase profits
or decrease costs, they will also have to decide how to allocate the total profit
or costs. This allocation method should appeal to each member of the group
otherwise he will not consent to cooperate.

Solution concepts from cooperative game theory can be used as allocation
methods in these situations.

In this chapter, we consider cooperative combinatorial games. These games
model situations in which the decision makers who decide to cooperate have to
solve a combinatorial optimization problem to maximize profits or minimize
costs. Although cooperative games that fit this description appeared earlier in
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the literature, the bundling of these games into a class was first done in [10].
Seven types of combinatorial games were discussed there with most attention
being given to the core of the games. This paper was followed by others that
studied other solution concepts from cooperative game theory as well as other
cooperative combinatorial games.

Potentially, every combinatorial optimization problem can give rise to a
cooperative combinatorial game. In this chapter, we will treat the eight co-
operative combinatorial games that have received the most attention in the
literature.

In Section 2, we will provide some background of cooperative game the-
ory. In the subsequent sections, we will study assignment and permutation
games, sequencing games, travelling salesman and routing games, minimum
cost spanning tree games, location games, and delivery games. In the last sec-
tion, we will briefly point out the similarities and differences in the analysis
of these games. We will also mention some work that deals with other coop-
erative combinatorial games than the eight given above and some topics that
are not treated in Sections 2–8.

2 Cooperative Games and Solution Concepts

Formally, a cooperative game in characteristic function form is defined as
follows.

Definition 1. A cooperative game in characteristic function form is an or-
dered pair < N, v > where N is a finite set, the set of players, and the char-
acteristic function v is a function from 2N to R with v(∅) = 0.

A subset S of N is called a coalition. The number v(S) gives the worth of
coalition S in the game. When no confusion about the player set N is possible,
the game< N, v > will be identified with the function v. The setN will usually
be taken to equal {1, 2, . . . , n}.

For it to be worthwhile for coalitions to form, the whole should be at least
as profitable as its parts. This property is captured in the following definition
of superadditivity.

Definition 2. A cooperative game v is called superadditive if

v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N with S ∩ T = ∅.

If the reverse inequality holds, the game is called subadditive. If equality holds,
the game is called additive.

A stronger property than superadditivity is convexity.

Definition 3. A cooperative game v is called convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N .

If the reverse inequality holds, the game is called concave.
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As mentioned in the introduction, the players will have to decide how to
allocate the total profit if they decide to work together. Naturally, a player will
compare the amount that he is to receive if he cooperates with the amount that
he can generate on his own. If the comparison turns out to be unfavourable for
the amount received under cooperation, he will prefer to work alone. Coalitions
can do a similar exercise and reach a similar conclusion. A solution concept
that takes these aspects of the game into consideration is the core. Let x ∈ RN

be an allocation with xi being the amount assigned to player i ∈ N , and let
∑

i∈N xi be denoted by x(N).

Definition 4. The core C(v) of the game v is defined to be the set

C(v) := {x ∈ Rn|x(N) = v(N), x(S) ≥ v(S) for all S ∈ 2N}.

If an allocation that is an element of the core is used to divide profits, then
no player or coalition can do better by splitting and working on his/its own.
Unfortunately, the core of a game can be empty. The concept of balancedness
can be used to characterize games with a nonempty core.

Definition 5. A collection B of nonempty subsets of N is called a bal-
anced collection if for all S ∈ B there exist positive numbers λS such that
∑

S∈B λS1S = 1N .

The numbers λS are called the weights of the elements of B.

Definition 6. A cooperative game v is called a balanced game if
∑

S∈B
λSv(S) ≤ v(N)

for every balanced collection B with weights {λS}S∈B.

For each coalition S, the subgame < S, vS > of a game v is defined by vS(T ) =
v(T ) for all T ⊂ S. A game v for which each subgame is balanced is called
totally balanced. The following theorem is due to Bondareva [5] and Shapley
[102].

Theorem 1. A cooperative game has a nonempty core if and only if it is
balanced.

This theorem is the cooperative game theoretic version of the well-known
duality theorem of linear programming.

Convex games are balanced, and the core of a convex game v is the convex
hull of the marginal vectors mπ(v) of the game v. These are defined as follows.

Definition 7. Let π be a permutation of N . The marginal vector mπ(v) of
the game v is defined by

mπ
i (v) := v(P (π, i) ∪ {i})− v(P (π, i)) for all i ∈ N ,

where P (π, i) := {j ∈ N |π(j) < π(i)} is the set of predecessors of i with
respect to the permutation π.
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Shapley [101] introduced and characterized a solution concept for cooperative
games that can be viewed as the average of the marginal vectors. Let ΠN

denote the set of all permutations of N .

Definition 8. The Shapley-value φ(v) of a cooperative game v is defined by

φi(v) :=
1
n!

∑

π∈ΠN

mπ
i (v) for all i ∈ N .

It follows that the Shapley-value of a convex game lies in the barycenter of
the core of the game. The Shapley-value of a nonconvex game need not be an
element of the core of the game.

A solution concept for cooperative games that coincides with the core for
convex games is the bargaining set that was introduced in [1]. The bargaining
set considers the imputations of a game. An imputation of a game v is a vector
x ∈ Rn that satisfies x(N) = v(N) and xi ≥ v({i}) for all i ∈ N . If x satisfies
only the first of these conditions, then x is called a pre-imputation of v. The
set of imputations of v is denoted by I(v) and the set of pre-imputations of
v is denoted by PI(v). An objection of player i against player j with respect
to an imputation x in the game v is a pair (y;S) where S is any coalition
that contains i but not j, and y = (yk)k∈S is an |S|-tuple of real numbers
satisfying

y(S) = v(S) and yk > xk for all k ∈ S.

A counter objection to the objection (y;S) is a pair (z;T ) with T being a
coalition that contains j but not i, and z = (zk)k∈T being a |T |-tuple of real
numbers satisfying

z(T ) = v(T ), zk ≥ yk for k ∈ S ∩ T and zk ≥ xk for k ∈ T \ S.

Definition 9. An imputation x ∈ I(v) is said to belong to the bargaining set
M(v) of the game v, if for any objection of one player against another with
respect to x, there exists a counter objection.

The bargaining set is always nonempty and contains the core. The fact that
for convex games the bargaining set and the core coincide was proven in [76].
In [108], a necessary and sufficient condition for the bargaining set to coincide
with the core for superadditive games was given.

To measure the degree of unhappiness of a coalition S with a payoff vector
x in a game v, we consider the excess e(S, x) of S with respect to x, which is
defined by

e(S, x) := v(S)− x(S).

Player i can compare the payoff he receives according to x with that of player
j by taking the maximum of all the excesses e(S, x) over the coalitions S
that contain i but not j. Let us denote this maximum by sij(x) and let T
be a coalition with sij(x) = e(T, x). By splitting off from the grand coalition,
forming T , and allocating to the other players in T the payoff given by x,
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player i remains with sij(x) and player j will have to see how he will fend for
himself. Therefore, sij(x) can be regarded as the weight of a possible threat
of i against j. If x is an imputation with xj = v({j}), then j will have no fear
of threats by any player because he can obtain v(j) by working alone. We say
that i outweighs j with respect to x if

xj > v({j}) and sij(x) > sji(x).

The kernel that was introduced in [20] consists of those imputations for which
no player outweighs another one.

Definition 10. The kernel K(v) of a game v is defined by

K(v) := {x ∈ I(v)|sij(x) = sji(x) or xj = v({j}) for all i, j ∈ N}.

The pre-kernel PK(v) of v is defined similarly with I(v) replaced by PI(v)
and the condition xj = v({j}) left out.

The kernel and the pre-kernel are always nonempty. The kernel is a subset
of the bargaining set. For superadditive games, the kernel and the pre-kernel
coincide.

The nucleolus of a game, introduced in [100], minimizes the maximum
excess in a lexicographical sense. Let θ(x) be the vector that arranges the
excesses of the 2n subsets of N in decreasing order. If x is lexicographically
smaller than y, we denote that by x <L y, and x ≤L y indicates that either
x <L y or x = y.

Definition 11. The nucleolus ν(v) of a game v is defined by

ν(v) := {x ∈ I(v)|θ(x) ≤L θ(y) for all y ∈ I(v)}.

The pre-nucleolus is defined similarly with I(v) replaced by PI(v).
The nucleolus of a game always consists of one point, which lies in the

kernel, and which is an element of the core whenever the core is nonempty. If
v is a convex game, we have PK(v) = K(v) = ν(v).

In [26], a class of games is introduced for which the nucleolus has a sim-
ple expression. This is the class of 1-convex games. Driessen and Tijs show
that for these games, the nucleolus coincides with the τ -value, which is easily
computed. The τ -value was introduced in [117]. It uses the upper vector and
lower vector of a game. The upper vector Mv of a game v is given by

Mv
i := v(N)− V (N \ {i}) for all i ∈ N.

The lower vector µv of v is given by

µvi := max
S:S�i

(v(S)−
∑

j∈S\{i}
Mv

j ) for all i ∈ N.

The upper vector gives an upper bound on what a player can expect to receive,
as if he asks for more the others would be better off by working without him.



136 I. Curiel

The lower vector gives a lower bound on what he will accept, as he can achieve
this by forming a coalition that reaches the maximum and giving to the other
members of the coalition their upper bounds.

Definition 12. A game v is called quasi-balanced if

µvi ≤Mv
i for all i ∈ N and µv(N) ≤ v(N) ≤Mv(N).

Every balanced game is quasi-balanced. The τ -value of a quasi-balanced game
is defined as a suitable convex combination of the upper and lower vectors.

Definition 13. Let v be a quasi-balanced game. The τ -value τ(v) of v is de-
fined by

τ(v) := λµv + (1− λ)Mv

where λ ∈ [0, 1] is uniquely determined by
∑

i∈N τi(v) = v(N).

The τ -value need not be an element of the core. In [26], necessary and sufficient
conditions for τ(v) to be an element of C(v) are given.

The τ -value is in general not easily computable but as mentioned above for
the class of 1-convex games, both the τ -value as well as the nucleolus can be
computed without much work. To define this class, we need the gap function
gv of the game v. The gap function is given by

gv(S) := Mv(S)− v(S) for all S ∈ 2N .

Definition 14. A game v is called 1-convex if

0 ≤ gv(N) ≤ gv(S) for all S ⊂ N,S 	= ∅.

If the reverse inequalities hold, then v is called 1-concave.

The following results can be found in [24,25], and [26].

Theorem 2. Let v be a 1-convex game. Then

τi(v) = νi(v) = Mv
i −

1
n
gv(N) for all i ∈ N.

Furthermore, the extreme points of the core of a 1-convex game are the n
vectors Mv − gv(N)ei where ei is the vector with 1 in the i-th place and 0
everywhere else.

From Theorem 2, it follows that for a 1-convex game, the τ -value and the
nucleolus lie in the barycenter of the core.

Another class of games given in [26] for which the τ -value has a simple
expression is the class of semiconvex games.

Definition 15. A game v is called semiconvex if v is superadditive and
gv(i) ≤ gv(S) for all i ∈ N and S ⊂ N with i ∈ S. If v is subadditive
and the reverse inequalities hold, then v is called semiconcave.
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Every convex game is semiconvex and every semiconvex game is quasi-
balanced.

Theorem 3. The τ -value of a semiconvex game v is given by τ(v) = λv +
(1 − λ)Mv where v = (v(1), v(2), . . . , v(n)) and where λ ∈ [0, 1] is such that
∑

i∈N τi(v) = v(N).

This brings us to the end of our short introduction of cooperative games and
their solutions concepts. We have limited ourselves to the topics that will
be most useful in the subsequent sections. For more extensive and detailed
treatments, the reader is referred to [84] and [25].

We have introduced all the game-theoretic concepts from the viewpoint of
profit games. With some adaptation (usually the reversal of an inequality),
they apply to cost games, too.

3 Assignment Games and Permutation Games

The assignment problem is a well-known and well-solved combinatorial opti-
mization problem, cf. [85]. Its mathematical formulation is

max
∑

i∈B
∑

j∈P aijxij
s.t.

∑

j∈P xij ≤ 1 for all i ∈ B
∑

i∈B xij ≤ 1 for all j ∈ P
xij ∈ {0, 1} for all i ∈ B, j ∈ P .

(1)

Here B and P are two disjoint sets and aij ≥ 0. This problem is also known
as the bipartite weighted matching problem.

The assignment game was introduced in [104]. It models a situation in
which the player set N can be partitioned into two sets B and P . A player
i ∈ B and a player j ∈ P can create a profit aij ≥ 0. Two players from the
same set cannot create a profit. The classic example takes one set to be the set
of buyers and the other the set of sellers. The value v(S) of coalition S in an
assignment game is the sum of the profits that pairs of players in S can create
and is given by (1) with 1 replaced by 1S(i) and 1S(j) in the first and second
inequality, respectively. In [104], it is proven that the assignment game has
a nonempty core by considering the dual problem of the linear programming
relaxation of the 0,1-programming problem that determines v(N). Because
the matrix involved in the assignment problem is totally unimodular, the
relaxation and the original problem have the same optimal solution(s). In
fact, it is shown in [104] that the core of the assignment game corresponds
with the set of optimal solutions of the dual problem of the relaxation of
(1). Below we give an alternative proof of the balancedness of the assignment
game.

A game that is related to the assignment game is the permutation game
introduced in [118]. The value of a coalition S in the permutation game v is
given by
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v(S) := max
π∈ΠS

∑

i∈S
kiπ(i). (2)

Here ΠS is the subset of ΠN that contains the permutations that do not
permute nonmembers of S, and kiπ(i) is the value of permutation π for player
i. Note that this value depends only on π(i), so on the position of player i
according to the permutation π.

An alternative formulation to (2) is

max
∑

i∈N
∑

j∈N kij
s.t.

∑

j∈N xij = 1S(i) for all i ∈ N
∑

i∈N xij = 1S(j) for all j ∈ N
xij ∈ {0, 1} for all i, j ∈ N .

(3)

In [19], it is shown that every assignment game is a permutation game but
that the reverse is not true. Because of this, the proof given below of the
balancedness of permutation games also implies balancedness of assignment
games.

Theorem 4. Let v be an assignment games or a permutation game. Then v
has a nonempty core.

Proof. In view of the result stated above, it is sufficient to show that a permu-
tation game has a nonempty core. From the Birkhoff–von Neumann theorem,
which states that the extreme points of the set of doubly stochastic matrices
are the permutation matrices, it follows that the value of (3) is equal to the
value of its linear relaxation. The dual problem of the linear problem is

min
∑

i∈N 1S(i)yi +
∑

j∈N 1S(j)zj
s.t. yi + zj ≥ kij for all i, j ∈ N .

(4)

Let (ŷ, ẑ) be an optimal solution for (4) for S = N . Then
∑

i∈N
(ŷi + ẑi) = v(N)

and for all S ∈ 2N
∑

i∈S
(ŷi + ẑi) =

∑

i∈N
1S(i)ŷi +

∑

i∈N
1S(i)ẑi ≥ v(S).

The inequality follows from the fact that (ŷ, ẑ) is a solution of problem (4) for
all S ∈ 2N . So u ∈ Rn given by ui = ŷi + ẑi is an element of the core of v.

In essence, this proof runs similarly to that in [104]. The linear program-
ming relaxation of the combinatorial optimization problem that determines
v(N) is shown to be equivalent to the original 0,1-programming problem, The
dual problem of the linear problem provides core elements of the game. This is
a rather efficient way of finding core elements as one does not need to compute
the value of all 2n − 1 nonempty coalitions.
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Several results concerning the core of assignment games can be found in
the literature. In [8], an iterative process is described to arrive at an optimal
assignment and a core allocation in a model of job matching. In [63], a general-
ization of this model is studied. In [2], Balinski and Gale show that the core of

an assignment game has at most (
2r
r ) extreme points where r = min{|B|, |P |}.

They prove that the core has the maximum number of extreme points for
square games (|B| = |P | = r) when there are r supercompatible pairs. A
pair of players (i, j) ∈ B × P is called supercompatible if for all S ⊂ B ∪ P
with i, j ∈ S, xij = 1 in any optimal solution of the problem that determines
v(S). In [91], Rochford introduces symmetrically pairwise bargained alloca-
tions (SPB allocations) for assignment games and proves that the set of SPB
allocations is equal to the intersection of the kernel and the core. Solymosi
shows in [108] that the bargaining set and the core of an assignment game
coincide. Because the kernel is always a subset of the bargaining set, it follows
that the set of SPB allocations is equal to the kernel.

In [110], Solymosi and Raghavan characterize assignment games that are
exact in terms of the assignment matrix entries aij . A cooperative game v
is called exact if for all S ⊂ N there is an x ∈ C(v) with x(S) = v(S).
Exact games are semiconvex, so for these games the τ -value has the simple
expression given in Theorem 3. Also in [110], assignment games for which the
core is a stable set are characterized in terms of the assignment matrix entries.
A stable set or von Neumann–Morgenstern solution contains imputations that
do not dominate each other. Furthermore, any imputation not in a stable set
is dominated by an imputation in the set.

In [54], it is shown that the extreme points of the core of an assignment
game are marginal vectors.

In [79], Núñez and Rafels define buyer-seller exact assignment games as
assignment games in which no aij can be increased without changing the core
of the game. In such a game, each mixed pair coalition attains its value in the
core. It is shown that every assignment game has a unique buyer-seller exact
representation.

Results on one-point solution concepts also exist. In [109], Solymosi and
Raghavan give an algorithm of order O(r3|P |) for computing the nucleolus of
an assignment game. In [80], it is shown that the τ -value of an assignment
game is the midpoint of the buyers-optimal core allocation and the sellers-
optimal core allocation. In [78], it is shown that the nucleolus of an assignment
game coincides with that of its buyer-seller exact representation. In [111], a
O(n4) algorithm for computing the nucleolus of a cyclic permutation game is
discussed. A cyclic permutation game is a permutation game for which the
value v(N) is given by a permutation consisting of a single cycle. In [64],
maximum cardinality matching games are discussed. It is shown that the
nucleolus of such a game can be computed efficiently.

Modifications and generalization of assignment and permutation games
are also found in the literature. In [19], tridimensional assignment games
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and bipermutation games are introduced. These are extended to multias-
signment and multipermutation games in [11]. The linear relaxation of the
0, 1-programming problem that determines these games is not equivalent to
the original problem and no proof of balancedness based on such a result can
be carried over from the assignment and permutation games to these gener-
alizations. In fact, multiassignment and multipermutation games need not be
balanced. Subclasses that contain balanced games are given. In [74], assign-
ment games in which one of the sets B,P is an infinite set are studied. In
[105], multisided matching games are discussed. In [112], Sotomayor looks at
an extension of assignment games in which the players can form more than one
partnership. In [53], a class of assignment games called neighbour games are
introduced and an O(n2) algorithm for computing the nucleolus of a neigh-
bour game is given. In [65], an O(n3) algorithm for computing the leximax
solution of a neighbour game is given.

The assignment and permutation situations modelled in this section as
cooperative games can alternatively be modelled as economies with indivisibi-
lities leading to similar results with respect to existence of core-elements plus
results on price equilibria. These models can be found in [11,19,40,57–59,67,
86,121].

In [103], Shapley and Scarf model a permutation situation as a game with-
out side payments also called a nontransferable utility game. They show that
the core defined by strong domination is always nonempty but the core de-
fined by weak domination can be empty. In [92, 120, 122], other implications
of the difference between weak and strong domination are explored.

An ordinal approach to bipartite as well as nonbipartite matching situ-
ations is taken in the literature on matchings. In these models, preference
relations are used instead of numbers that describe the value of a certain as-
signment or permutation for a player or coalition. A matching is called stable
if there do not exist two participants that prefer each other to the partner
that the matching assigns to them. In fact, the ordinal approach predates the
cardinal approach as it was introduced in 1962 by Gale and Shapley in [41].
They also proved the existence of stable matchings and provided an algorithm
to arrive at a stable matching. In [27] and [42], the strategy-proofness of this
algorithm is investigated. In [93], the strategy-proofness of matching proce-
dures in general is discussed. Further results on matchings can be found in
[11,66,75,94–98,113].

4 Sequencing Games

Sequencing games resemble permutation games in the sense that in sequencing
games, the value of a coalition S is also derived by maximizing a function
over the set of admissible permutations for S. However, the set of admissible
permutations in a sequencing game has some restrictions. These can be best
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understood by looking at the way sequencing games were introduced in [16]
from sequencing situations.

Definition 16. Asequencing situation consists of a finite setN = {1, 2, . . . , n}
and an ordered triple (σ;α; s) where σ ∈ ΠN , α ∈ Rn, and s ∈ Rn

+.

The classic example of a sequencing situation considers customers standing
in a queue in front of a counter waiting to be served. The order in which
they are standing is given by σ with i ∈ N having position σ(i) in the queue.
The service time of customer i is si > 0. Depending on his completion time,
each customer has costs that are given by a cost function ci : R+ → R. The
cost functions are taken to be linear, so ci(t) = αit+ βi. By rearranging, the
customers can decrease their total cost. To find an optimal permutation, it is
convenient to consider the urgency index ui = αi/si of customer i ∈ N . In
[107], it is shown that in order to minimize total cost, the customers should
be arranged in order of decreasing urgency indices. The cost savings that are
achieved in this way have to be divided among the customers. In [16], the
Equal Gain Splitting rule or EGS rule is introduced as a method to do this.
Let i and j be two customers who are standing next to each other with i in
front of j. We denote the gain that they can achieve by switching positions
by gij . Then

gij := (αjsi − αisj)+ = max{αjsi − αisj , 0}.

Definition 17. The EGS rule assigns to each customer i ∈ N in a sequencing
situation (σ;α; s) the amount

EGSi(σ;α; s) =
1
2

∑

k∈P (σ,i)

gki +
1
2

∑

j;i∈P (σ,j)

gij .

In [16], the EGS rule is characterized by the dummy, equivalence, and switch-
properties. In [56], gain splitting rules that divide gij in some way (not neces-
sarily equally) between i and j are studied. The split core is defined as the set
containing all allocations generated by gain splitting rules. The split core is
shown to be a subset of the core of the sequencing game that was introduced
in [16]. The value of a coalition S in a sequencing game is the total amount of
cost savings that S can achieve by rearranging its members without jumping
over nonmembers. To formalize this the concept of a connected coalition comes
in handy. A coalition is called connected if there are no nonmembers standing
between the members. Let T be a connected coalition. Then the value of T in
the sequencing game v corresponding with the sequencing situation (σ;α; s)
is given by

v(T ) :=
∑

i∈T

∑

k∈P (σ,i)∩T
gki.

For a coalition S that is not connected, we define a component of S as a
maximal connected subset of S. The components of S form a partition of S,
which is denoted by S/σ. The value of S in the sequencing game v is given by
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v(S) :=
∑

T∈S/σ
v(T ).

In [16], it is shown that sequencing games are convex and that EGS(σ;α; s) ∈
C(v) where v is the sequencing game corresponding with (σ;α; s).

In [17], σ-component additive games were introduced as a generalization
of sequencing games.

Definition 18. Let σ ∈ ΠN . Then a cooperative game v is called σ-component
additive if

(a) v({i}) = 0 for all i ∈ N ,
(b) v is superadditive,
(c) v(S) =

∑

T∈S/σ v(T ).

These games need not be convex. In [17] and [18], the β rule, an extension of
the EGS rule to σ-component additive games, is studied, and it is shown that
the β rule applied to a σ-component additive game generates an allocation
that is in the core of the game. In [14], σ-component additive games with
restricted cooperation are studied. It is shown that the allocation generated
by the β rule is equal to the nucleolus of the restricted game. This implies
that for sequencing games the allocation generated by the EGS rule is equal
to the nucleolus of the restricted game. In [89], Γ -component additive games,
a generalization of σ-component additive games, are studied. It is shown that
for these games the bargaining set is equal to the core and the kernel is equal
to the nucleolus. In [11], this result is used to derive conditions that guarantee
the equality of the nucleolus and the allocation generated by the EGS rule.

In [16], expressions for the Shapley-value and the τ -value of a sequencing
game are given in terms of the parameters of the corresponding sequencing
situation. So one does not need to compute the v(S)’s to obtain these values.
Both these values divide the gain generated by two players among them and
the players standing between them. The Shapley-value does it equally.

In both sequencing games and permutation games, the value v(N) is ob-
tained by maximizing over the set ΠN . But as shown in [11], the proof of
the balancedness of a permutation game cannot be mimicked for a sequenc-
ing game because in general it is not possible to extend the function to be
maximized to a linear function on the set of doubly stochastic matrices.

Two classes of σ-component additive games are sequencing games with
ready times and sequencing games with due dates. The first are studied in
[51] and the second in [6]. In [55] and [9], sequencing games with multiple
machines are studied. Several classes of balanced multimachine sequencing
games are identified.

In [37], a new monotonicity property for sequencing situations is studied.
Already in the very first paper on sequencing, [16], a relaxation of the game
was considered in which the members of a coalition were allowed to jump over
nonmembers. It was shown that such a game can have an empty core. In [17],
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four relaxations of sequencing games were discussed that permit rearrange-
ments of a coalition that involve jumping over nonmembers as long as this
does not cause a delay in the starting time of the nonmembers. The question
was posed whether these games were balanced. This question remained open
till recently when it was answered by Slikker in [106]. He showed that the
games generated by all four relaxations are balanced.

In [119], sequencing games are studied in which a particular player receives
a preferential treatment in that he alone in a coalition is allowed to select
another player in the coalition and switch places with this player even though
this involves jumping over nonmembers. It is shown that these games are
balanced.

In [13], a survey of sequencing games is given in which several aspects
mentioned in this chapter are treated in more detail.

5 Travelling Salesman Games and Routing Games

The travelling salesman problem is a very well-known NP-complete combina-
torial optimization problem. It can be stated as follows: Given a directed graph
with weights on the arcs, find a minimum weight cycle that visits each vertex
exactly once. For our purposes, we may assume without loss of generality that
the graph is complete and that the weights satisfy the triangle inequality. The
last property implies that going directly from vertex i to vertex j is not more
expensive than going from i to k and from k to j.

The travelling salesman problem together with the fixed route cost allo-
cation problem studied in [38] can be viewed as the parents of the travelling
salesman game introduced in [88]. A travelling salesman game models the fol-
lowing problem. In a given complete directed graph with weights on the arcs,
all vertices but one are associated with players. The vertex that does not cor-
respond with a player is denoted by 0. Each coalition S wants to construct a
tour that starts in 0, visits each vertex of S exactly once, ends in 0, and has
minimum weight. So S wants to find a minimal weight travelling salesman
tour on the complete graph with set of vertices equal to S ∪ {0}. Let e be a
bijection from {1, . . . , |S|} to S. Such a bijection describes a tour that starts
in 0 then visits e(1), then e(2), etc. The last vertex that the tour visits in S is
e(|S|) after which it returns to 0. Let E(S) denote the set of bijections from
{1, . . . , |S|} to S and let the weight of the arc going from i to j be denoted
by wij . Then the travelling salesman game c is defined by

c(S) := min
e∈E(S)

(w0e(1) + we(1)e(2) + · · ·+ we(|S|)0) for all S ∈ 2N \ ∅.

In [88], it was shown that a travelling salesman game need not be balanced
but that it will be balanced if it has three or less players. A 4-player travelling
salesman game with empty core was given.
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A travelling salesman game is called symmetric if wij = wji for all
i, j ∈ N ∪ {0}. In [115], it was shown that a 4-player symmetric travel-
ling salesman game is balanced. An example of a 6-player symmetric trav-
elling salesman game with empty core was given. In [69], it was proven that
a 5-player symmetric travelling salesman game is balanced. These proofs are
based on a result in [39] implying that for n ≤ 6, the n-vertex symmetric trav-
elling salesman problem can be formulated as a linear programming problem.
So the 0, 1-programming problem that determines the cost of a coalition S is
equivalent to its linear programming relaxation. A similar procedure as that
in Section 3 yields the nonemptiness of cores of these games.

In general, the integer constraints cannot be dropped and the procedure
does not work.

In [11] and [87], classes of (not necessarily symmetric) travelling salesman
games that are balanced are studied. In [87], this is done by showing that the
travelling salesman games under consideration coincide with routing games
that are always balanced. Routing games that were introduced in [88] model
the same type of situations as travelling salesman games. Only now the as-
sumption is that after an optimal tour has been found for the grand coalition
N , any other coalition S does not go through the trouble and expense of com-
puting an optimal tour but simply adopts the tour chosen by N by skipping
the vertices that do not belong to S. Let e ∈ E(N) be such that

w0e(1) + we(1)e(2) + · · ·we(n)0 = min
f∈e(N)

(w0f(1) + wf(1)f(2) + · · ·+ wf(n)0).

In the routing game < N, ce >, the cost ce(N) of the grand coalition is given
by

ce(N) = w0e(1) + we(1)e(2) + · · ·+ we(n)0,

and the cost ce(S) of coalition S is given by

ce(S) = w0eS(1) + weS(1)eS(2) + · · ·+ weS(|S|)0

where eS ∈ E(S) is defined by

e−1
S (i) < e−1

S (j)⇔ e−1(i) < e−1(j) for all i, j ∈ S.

Theorem 5. Let ce be a routing game with e being an optimal tour for N .
Then C(ce) 	= ∅.

The proof of Theorem 5 relies again on the equivalence of a 0, 1-programming
problem and its linear relaxation just as in Section 3.

A routing game defined with respect to a nonoptimal tour for N can have
an empty core. In [23], it is shown that a routing game ce has a nonempty
core if and only if ce(N) ≤ ce(S) + ce(N \ S) for all S ⊂ N . A procedure is
described to construct a nearest neighbour tour for which the corresponding
routing game satisfies this condition.
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Considering the cooperative combinatorial games that we have treated so
far, one may be induced to think that if a combinatorial optimization problem
is polynomially solvable, then the corresponding cooperative combinatorial
game has a nonempty core. However, already in 1988 this conjecture was
negated in [31]. There the wallpaper game, a subclass of travelling salesman
games arising from the wallpaper problem (that) is polynomially solvable,
cf. [73], was introduced. It was shown that a wallpaper game can have an
empty core. Actually, the fact that polynomial solvability does not imply
balancedness was a kind of hidden knowledge for much longer. In 1962 in [41],
it was shown that the roommate problem, which is a nonbipartite version of
the marriage problem, does not need to have a stable matching. Translating
this ordinal case to a transferable utility nonbipartite weighted matching game
with an empty core is straightforward. And since 1965, it was shown in [28]
that the weighted matching problem can be solved in polynomial time.

More recently, this problem and the related problem of deciding whether
a given travelling salesman game has a nonempty core were discussed in [82].

In [44], graphs that give rise to submodular travelling salesman games are
studied. The nucleolus of vehicle routing games is studied in [43].

6 Minimum Cost Spanning Tree Games

The minimum cost spanning tree problem is another well-known problem in
combinatorial optimization. Contrary to the travelling salesman problem, it
is a well-solved problem. The problem can be stated as follows: Given a con-
nected graph with costs on the edges, find a spanning tree (a connected sub-
graph without cycles with the same set of nodes as the original graph), that
has minimum cost among all spanning trees. If n is the number of nodes of
the graph, then the minimum cost spanning tree problem can be solved in
O(n2) time.

By associating each node of the graph except one with a player and as-
suming that every player wants to be connected with the node that is not a
player, we obtain a minimum cost spanning tree game. The costs of making
the appropriate connections have to be allocated among the players. In [7],
this problem was first treated but without explicit use of cooperative game
theory. In [4], a game-theoretic approach was first proposed. Let G = (N0, E)
be the complete graph with set of nodes N0 = N ∪ {0} and set of edges E.
Let kij = kji denote the cost of constructing the link {i, j} ∈ E.

Definition 19. The minimum cost spanning tree game (mcst-game) c on G
is given by

c(S) =
∑

{i,j}∈ETS

kij for all S ∈ 2N .

Here ETS
is the set of edges of a minimum cost spanning tree in the complete

graph GS = (S0, ES).
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In [4], Bird proposed the following cost allocation scheme. Let T be a minimum
cost spanning tree for the graph (N0, E). For each I ∈ N , the amount that
i has to pay is equal to the cost of the edge incident upon i on the unique
path from 0 to i in T . Because there can be more than one minimum cost
spanning tree, this cost allocation scheme may generate more than one cost
allocation in a mcst-game. Any cost allocation generated in this way will be
called a Bird tree allocation.

Theorem 6. Let c be a mcst-game. Let x be a Bird tree allocation for c. Then
x ∈ C(c).

It follows that mcst-games are balanced. An alternative way to prove this is
just as in Section 3 to consider the linear relaxation of the 0, 1-programming
problem that determines c(N). In [29], it is shown that the linear relaxation
is equivalent to the 0, 1-programming problem. Similar to the approach used
in Section 3, this leads to the construction of a core element for c.

In [4], the irreducible core IC(c) of a mcst-game c is introduced. The
irreducible core of c is the core of a mcst-game ĉ defined with the aid of a
minimum cost spanning tree of the original mcst-problem. In general, a mcst-
game need not be concave but the game ĉ is a concave game. In [4], it is shown
that the extreme points of the irreducible core of c are precisely the Bird tree
allocations.

In [46], mcst-games with efficient coalition structures are defined. The
components of this structure induce other mcst-games, and it is shown that
the core and nucleolus of the original game are the Cartesian products of
the cores and nucleoli of these games. In [47], permutationally concave games
are defined. A definition of concavity that is equivalent to the one given in
Section 2 states that a game c is concave if and only if for all S2 ⊂ S1 ⊂ N \R
we have

c(S1 ∪R)− c(S1) ≤ c(S2 ∪R)− c(S2). (5)

A game is called a permutationally concave game if property (5) holds for
certain coalitions given by a permutation π.

Definition 20. A game is called permutationally concave if there exists a
permutation π ∈ Πn such that for all 1 ≤ p2 ≤ p1 ≤ n and all R ⊂ N \Sπ(p1)
the following is true

c(Sπ(p1) ∪R)− c(Sπ(p1)) ≤ c(Sπ(p2) ∪R)− c(Sπ(p2)). (6)

Here Sπ(p) = {π−1(1), π−1(2), . . . , π−1(p)}.

In [47], it is shown that permutationally concave games are balanced and
that mcst-games are permutationally concave. If π is a permutation for which
(6) holds, then the marginal vector mπ(c) is in the core of c. Related to
this is the result derived in [4] that the set of restricted weighted Shapley-
values is a subset of the irreducible core. In the computation of a restricted
weighted Shapley-value, only so-called feasible permutations are considered.
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Inequality (6) is satisfied by every feasible permutation. It follows that any
convex combination of marginal vectors arising from feasible permutations is
in the core. The Shapley-value itself is in general not an element of the core of
an mcst-game. In [60], an axiomatization of the Shapley-value of mcst-games
is given. In [33], it is shown that deciding whether a given vector is in the
core of an mcst-game is NP-complete. In [36], similar results are obtained for
Steiner tree games. In [48], it is shown that the nucleolus of an mcst-game
is the unique point in the intersection of the core and the kernel. In [49],
the nucleolus of a standard tree game is characterized, and an algorithm to
compute it is discussed. In [77], population monotonic allocation schemes for
mcst-games are discussed, and an algorithm to compute such a scheme for an
mcst-game is presented. In [35], it is shown that computing the nucleolus of a
minimum cost spanning tree game is in general an NP-hard problem. In [71],
an O(n3|B|) algorithm that can be used to compute the nucleolus of a mcst-
game is discussed. There the set B is a subset of 2N . In [34], an algorithm to
compute the nucleolus for certain classes of mcst-games based on the ellipsoid
method and Maschler’s scheme for approximating the pre-kernel is given. In
[3], a noncooperative game is associated with every mcst-problem, and Nash
equilibria and subgame perfect Nash equilibria of the game are studied. In [11],
a short overview of work that discusses models that are related to mcst-games
is given.

7 Location Games

Several location problems have been studied in the literature. In general, these
problems treat situations in which certain facilities have to be placed in the
nodes or along the edges of a given graph. There may be restrictions and/or
demands with respect to the location of the facilities. There may be setup costs
involved in establishing the facilities and costs that depend on the distance
of the facilities from a given set in the graph. The problem is to minimize
the costs that arise. Several location games arising from the various location
problems have been studied. In [116], the following location game was studied.
A connected graph G = (V,E) is given. Each edge has a given length. The
distance d(v1, v2) between two nodes v1, v2 of G is defined to be the length of
a shortest path from v1 to v2. Two subsets N and Q of V are given. N is the
set of players. Each player is considered to be located in the corresponding
node. Q = {q1, . . . , qt} is the set of possible locations for the facilities. The
cost of establishing a center at qj is cj ≥ 0. Player i ∈ N demands that at
least one center be located at a distance of at most ri from him. The problem
is to find a location of the facilities that satisfies all demands and minimizes
costs. It is assumed that all the demands can be met. In the corresponding
location game c, the cost c(S) of coalition S is the minimum cost needed to
satisfy the demands of the members of S. Let A be the n×t-matrix defined by
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aij =
{

1 if d(i, qj) ≤ ri
0 otherwise.

Then for each S ∈ 2N \ ∅, the cost c(S) is given by

c(S) = min cx
s.t. Ax ≥ eS

x ∈ {0, 1}
(7)

where eS is the vector in Rn with 1 in the i-th place if i ∈ S and 0 otherwise.
In general, the location problem described above is NP-hard, and a location
game as defined above can have an empty core. But in [114] and [116], it was
shown that if the graph G is a tree, then the corresponding location problem
is polynomially solvable and the location game will be balanced. The proof
uses the fact established in [114] that the matrix A is balanced if G is a tree.
Therefore, problem (7) is equivalent to its linear programming relaxation. A
similar approach to that used in Section 3 yields the nonemptiness of the core
of the location game.

In [11], the following situation is studied. A connected graph G = (N,E)
is given. The set of nodes N corresponds with the set of players. Every edge
e ∈ E has a positive length le. The distance d(x, y) between two points x, y
anywhere on an edge is defined as the length of a shortest path from x to y.
The length of a path is the sum of the length of the edges and parts of edges
that belong to the path. For a finite subset A of points anywhere on the edges
of G and a node I ∈ N , we define the distance d(i, A) by

d(i, A) := min
x∈A

d(i, x).

Facilities can be constructed on any point along an edge of the graph. For
each i ∈ N , a weight wi is given such that the cost c({i}) is equal to widi
where di is the distance between i and the set of facilities. Each coalition S
is allowed to build pS facilities. We assume that pS < |S|. For each player
i ∈ N , his cost of not having access to any facility is denoted by L(i). This
cost is taken to be very high. Two types of games arising from this situation
are discussed in [11]. They are the p-center and the p-median game.

Definition 21. The p-center game cp is given by

cp(S) :=
{

LS if pS = 0
minA:|A|=pS

maxi∈S wid(i, A) if pS > 0.

Here LS = maxi∈S L(i).

Definition 22. The p-median game mp is given by

mp(S) :=
{

L(S) if pS = 0
minA:|A|=pS

∑

i∈S wid(i, A) if pS > 0.

Here L(S) =
∑

i∈S L(i).
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The p-center and p-median games arise from the p-center and p-median opti-
mization problems. In [61] and [62], it is shown that for p > 1, these problems
are NP-hard.

In [11], it is shown that under certain conditions, both games are balanced.
Also conditions are given that guarantee that cp and mp are 1-concave or
semiconcave.

Another location game studied in [11] is the simple plant location game.
In this game, the players correspond with the nodes of a tree. Facilities can
be located only in the nodes of the tree. With each node, a certain setup cost
is incurred if a facility is built in that node. With each edge of the tree, there
is associated a travel cost. The aim of a coalition is to minimize the sum of
the setup costs and travel costs of its members. Let oj denote the setup cost
if a facility is built in node j ∈ N .

Definition 23. The simple plant location game c is defined by

c(S) := min
∅�=A⊂N

(
∑

j∈A
oj +

∑

i∈S
wid(i, A)) for all S ⊂ N \ ∅.

Alternatively, c(S) can be formulated as the value of a set covering problem.
For each i ∈ N , let 0 = ri1 ≤ ri2 ≤ · · · ≤ rin be the ordered sequence of
distances between node i and all the nodes, including i. We define rin+1 to be
a number that is much larger than the sum of all setup costs and travel costs
that occur in the problem. The n2 × n-matrix H = [hikj ] is defined by

hikj =
{

1 if d(i, j) ≤ rik for i, j, k ∈ N
0 otherwise.

Let dik = wi(rik+1 − rik). Then c(S) is also given by

c(S) = min
∑n

j=1 ojxj +
∑

i∈S
∑n

k=1 dikzik
s.t.

∑n
j=1 hikjxixj + zik ≥ 1 for i ∈ S, k ∈ N

xj ∈ {0, 1} for j ∈ N
zik ∈ {0, 1} for i ∈ S, k ∈ N .

(8)

In general, the set-covering problem is NP-hard. In [68], it is shown that the
set covering problem (8), which arises from a simple plant location problem,
is equivalent to its linear programming relaxation. With the aid of the dual
problem of the set-covering problem that determines c(N), we can construct
an element of the core of the simple plant location game in a similar fashion
as was done in Section 3.

Two types of location games on trees that can have empty cores and that
are discussed in [11] are the median game with budget constraints and the
center game with budget constraints. In both games, the number of facilities
that a coalition is allowed to build is not prescribed but is limited by the
budget of the coalition. Let bi be the budget of player i and let the budget of
coalition S be b(S) =

∑

i∈S bi.
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Definition 24. The median game with budget constraints m is given by

m(S) :=
{

{minA⊂N,o(A)≤b(S)

∑

i∈S wid(i, A) if b(S) ≥ minj∈N oj
L(S) otherwise.

In [11], conditions are given that guarantee the balancedness of a median
game with budget constraints.

Definition 25. The center game with budget constraints c is given by

c(S) :=
{

minA⊂N,o(A)≤b(S) maxi∈S wid(i, A) if b(S) ≥ minj∈N oj
LS otherwise.

Conditions for the center game with budget constraints to be balanced are
given in [11].

In [90], location games arising from continuous single facility location prob-
lems are studied. Sufficient conditions for the nonemptiness of the core of such
a game are given.

8 Delivery Games

In a delivery game introduced in [52], each edge of a given undirected con-
nected graph corresponds with a player. Each edge j ∈ N has a travel cost
tj associated with it. A coalition S faces the following problem. Construct a
cheapest walk that starts and ends in a specified node v0 of the graph and
that visits each edge in S at least once. The cost of a walk is the sum of the
costs of the edges that it traverses. The cost c(S) of coalition S in the delivery
game c is the cost of such a walk minus the sum of the costs of the edges in
S. The example used in [52] to illustrate this game is that of a post office that
has to deliver mail along streets that correspond with edges in the graph and
thus players in the game. Each player is responsible for covering the costs of
traversing his street once. The other travel costs necessary to complete the
walk have to be allocated among the players. Let D(S) denote the set of walks
that start and end in v0 and that visit each edge of S at least once. For each
walk w ∈ D(S), let t(w) be the cost of w.

Definition 26. The cost c(S) of coalition S in the delivery game c is given by

c(S) := min
w∈D(S)

(t(w)−
∑

i∈S
ti).

The minimization problem above is known as the Chinese postman problem
and was introduced in [72]. In [30], a polynomial algorithm for solving it was
given. In [52], it was shown that delivery games need not be balanced. So
just like the wallpaper game and the nonbipartite weighted matching game



Cooperative Combinatorial Games 151

mentioned in Section 5, this is another example of a class of games that involve
a combinatorial optimization problem that can be solved in polynomial time
but that do not need to be balanced. In [52], bridge-connected Euler graphs
are introduced, and it is shown that the delivery game on a bridge-connected
Euler graph is balanced. A bridge in a graph is an edge that if removed causes
the graph to become disconnected. A graph is called a bridge-connected Euler
graph if each component that remains after all bridges have been removed
contains an Euler cycle. Let b be a bridge in a bridge-connected Euler graph.
The cost allocation that divides t(b) among all the players that really need
it to obtain service from v0, i.e., for which b is on every path from v0, is an
element of the core of the delivery game.

In [50], bridge-connected cyclic graphs, a subset of bridge-connected Euler
graphs, are introduced, and it is shown that the delivery game on a bridge-
connected cyclic graph is concave. In [45], graphs that generate balanced,
totally balanced, and submodular delivery games are studied. In [44], this is
extended to the study of locally balanced, locally totally balanced, and locally
submodular delivery games.

9 Conclusion

In this chapter, we have discussed cooperative games arising from combina-
torial optimization problems. We have focused on eight classes of games with
their variations and generalizations. From these classes, the variety of tech-
niques used to analyze these games becomes clear. To establish balancedness
and to find an element of the core, a general approach is possible when the
combinatorial optimization problem that determines the game is equivalent to
its linear optimization relaxation and the right-hand sides of the constraints
satisfy certain conditions discussed in [10] and [12]. The approach used in
these cases is similar to the one from [83] for linear production games. In
other cases, methods that explore the particular structure of the game under
consideration are used to establish balancedness. And in again other cases, the
games are not balanced in general and modifications and/or subclasses that
contain balanced games are studied. Another approach used for the classes of
games that are in general not balanced is the use of least tax cores as in [15]
and ε-cores as in [32] and [70]. In all these three articles, other games than
the ones considered in this chapter are also studied.

Algorithmic aspects of the core, conditions that characterize totally bal-
ancedness, and conditions that characterize concavity for classes of combina-
torial games not considered in this chapter are studied in [21, 22], and [81],
respectively.

The study of one-point solution concepts reveals a picture that is even
more diverse. Algorithms and/or formulae that compute or describe these
really depend on the game. For the nucleolus and the τ -value, the situation
is simplified in some cases because not all coalitions need to be considered.
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Computational complexity, a consideration that has always been present
in works on cooperative game theory given that most solution concepts involve
computing the value or cost of all coalitions (which makes them exponential
to compute unless there are simplifying circumstances), has been receiving
more attention in the last ten to fifteen years. Examples of this mentioned in
the previous sections are the questions of the core nonemptiness of a given
instance of a combinatorial optimization game and the membership of the
core of a given allocation x. Another example is the consideration of bounded
agents in [99]. These topics may seem to pertain more to computer science
than to game theory, but I believe that it is a sign of the maturity of an area
of study when it starts raising questions in other areas.

References

1. Aumann, R.J., Maschler, M.: The Bargaining Set for Cooperative Games. In:
Dresher M, Shapley LS, Tucker AW (eds) Advances in Game Theory. Princeton
University Press, Princeton (1954)

2. Balinski, M.L., Gale, D.: On the Core of the Assignment Game. In: Functional
Analysis, Optimization, and Mathematical Economics. Oxford University
Press, New York (1990)

3. Bergantiños, G., Lorenzo, L.: A Non-Cooperative Approach to the Cost
Spanning Tree Problem. Mathematical Methods of Operations Research, 59,
393–403 (2004)

4. Bird, C.G.: On Cost Allocation for a Spanning Tree: A Game Theoretic
Approach. Networks, 6, 335–350 (1976)

5. Bondareva, O.N.: Certain Applications of the Methods of Linear Programming
to the Theory of Cooperative Games. (In Russian) Problemy Kibernetiki, 10,
119–139 (1963)

6. Borm, P., Fiestras-Janeiro, G., Hamers, H., Sánchez, E., Voorneveld, M.: On
the Convexity of Games Corresponding to Sequencing Situations with Due
Dates. European Journal of Operational Research, 136, 616–634 (2002)

7. Claus, A., Kleitman, D.J.: Cost Allocation for a Spanning Tree. Networks, 3,
289–304 (1973)

8. Crawford, V.P., Knoer, E.M.: Job Matching with Heterogeneous Firms and
Workers. Econometrica, 49, 437–450 (1981)

9. Calleja, P., Borm, P., Hamers, H., Klijn, F., Slikker, M.: On a New Class
of Parallel Sequencing Situations and Related Games. Annals of Operations
Research, 109, 265-277 (2002)

10. Curiel, I.: Combinatorial Games, In: Peters HJM, Vrieze OJ (eds) Surveys in
Game Theory and Related Topics. CWI-tract 39. Centre for Mathematics and
Computer Science, Amsterdam (1987)

11. Curiel, I.: Cooperative Game Theory and Applications. Kluwer Academic
Publishers, Dordrecht (1997)

12. Curiel, I., Derks, J., Tijs, S.: On Balanced Games and Games with Committee
Control. OR Spektrum, 11, 83–88 (1989)

13. Curiel, I., Hamers, H., Klijn, F.: Sequencing Games: a Survey. In: Borm P,
Peters H (eds) Chapters in Game Theory. In honor of Stef Tijs. Kluwer
Academic Publishers, Dordrecht (2002)



Cooperative Combinatorial Games 153

14. Curiel, I., Hamesr, H., Tijs, S., Potters, J.: Restricted Component Additive
Games. Mathematical Methods of Operations Research, 45, 213-220 (1997)

15. Curiel, I., Pederzoli, G., Tijs, S.: Reward Allocations in Production Systems.
In: Eiselt HA, Pedrzoli G (eds) Lecture Notes in Economics and Mathematical
Systems. Springer-Verlag, Berlin (1988)

16. Curiel, I., Pederzoli, G., Tijs, S.: Sequencing Games. European Journal of Op-
erational Research, 40, 344–351 (1989)

17. Curiel, I., Potters, J., Rajendra Prasad, V., Tijs, S., Veltman, B.: Cooperation
in One Machine Scheduling. Zeitschrift für Operations Research, 38, 113–129
(1993)

18. Curiel, I., Potters, J., Rajendra Prasad, V., Tijs, S., Veltman, B.: Sequencing
and Cooperation. Operations Research, 42, 566–568 (1994)

19. Curiel, I., Tijs, S.: Assignment Games and Permutation Games. Methods of
Operations Research, 54, 323–334 (1986)

20. Davis, M., Maschler, M.: The Kernel of a Cooperative Game. Naval Research
Logistics Quarterly, 12, 223–259 (1965)

21. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic Aspects of the Core of
Combinatorial Optimization Games. Mathematics of Operations Research, 24,
751–766 (1999)

22. Deng, X., Ibarali, T., Nagamochi, H., Zang, W.: Totally Balanced Combinato-
rial Optimization Games. Mathematical Programming, 87, 441-452 (2000)

23. Derks, J., Kuipers, J.: On the Core of Routing Games. International Journal
of Game Theory, 26, 193–205 (1997)

24. Driessen, T.S.H.: Properties of 1-Convex Games. OR Spektrum, 7, 19–26
(1985)

25. Driessen, T.S.H.: Cooperative Games, Solutions and Applications. Kluwer Aca-
demic Publishers, Dordrecht (1988)

26. Driessen, T.S.H., Tijs, S.H.: The τ -value, the Core and Semiconvex Games.
International Journal of Game Theory, 4, 131–139 (1985)

27. Dubins, L.E., Freedman, D.L.: Machiavelli and the Gale-Shapley Algorithm.
American Mathematical Monthly, 88, 485–494 (1981)

28. Edmonds, J.: Maximum Matching and a Polyhedron with 0-1 Vertices. Journal
of Research of the National Bureau of Standards, 69B, 125–130 (1965)

29. Edmonds, J.: Optimum Branchings. Journal of Research of the National Bu-
reau of Standards, 71B, 233–240 (1967)

30. Edmonds, J., Johnson, E.L.: Matching, Euler Tours and the Chinese Postman.
Mathematical Programming, 5, 88–124 (1973)

31. Eggink, E.: The Core of Wallpaper Games: A Special Case of Travelling Sales-
man Games. (In Dutch) Master’s Thesis, Catholic University of Nijmegen,
Nijmegen (1988)

32. Faigle, U., Kern, W.: On Some Approximately Balanced Combinatorial Coop-
erative Games. Zeitschrift für Operations Research, 38, 141–152 (1993)

33. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: On the Compexity of
Testing Membership in the Core of Minimum Cost Spanning Tree Games.
International Journal of Game Theory, 26, 361-366 (1997)

34. Faigle, U., Kern, W., Kuipers, J.: On the Computation of the Nucleolus of a
Cooperative Game. International Journal of Game Theory, 30, 79–98 (2001)

35. Faigle, U., Kern, W., Paulusma, D.: Note on the Computational Complexity
of Least Core Concepts for Min-Cost Spanning Tree Games. Mathematical
Methods of Operations Research, 52, 23–38 (2000)



154 I. Curiel

36. Fang, Q., Cai, M., Deng, X.: Total Balancedness Condition for Steiner Tree
Games. Discrete Applied Mathematics, 127, 555–563 (2003)

37. Fernández, C., Borm, P., Hendrickx, R., Tijs, S.: Drop Out Monotonic Rules
for Sequencing Situations. Mathematical Methods of Operations Research, 61,
501–504 (2005)

38. Fishburn, P.C., Pollak, H.O.: Fixed Route Cost Allocation. American Mathe-
matical Monthly, 90, 366–378 (1983)

39. Fonlupt, J., Naddef, D.: The Travelling Salesman Problem in Graphs with
Some Excluded Minors. Mathematical Programming, 53, 147–172 (1992)

40. Gale, D.: Equilibrium in a Discrete Exchange Economy with Money. Interna-
tional Journal of Game Theory, 13, 61–64 (1984)

41. Gale, D., Shapley, L.S.: College Admission and the Stability of Marriage.
American Mathematical Monthly, 69, 9–15 (1962)

42. Gale, D., Sotomayor, M.: Ms. Machiavelli and the Stable Matching Problem.
American Mathematical Monthly, 92, 261–268 (1985)
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1 Introduction

Cooperative game theory studies the problem of the revenue allocation for a
set N of participants, called players, in a joint project where a value function
v is defined for each subset of players, representing the revenue achieved by
the players in the subset without assistance of other players. Much of cooper-
ative game theory is built around the question how to distribute the collective
income in fair and rational manners. Different philosophies result in different
solution concepts, e.g., the core, the Shapley value, the Nucleolus, the bar-
gaining set, and the von Neumann–Morgenstern solution set [9,65]. There are
arguments why each such proposal is a reasonable mathematical rendering of
the intuitive concept of “fairness.”

In general, each solution concept defines, for each cooperative game (N, v),
a set F of allocation vectors. Intuitively, an allocation is considered “fair” if
it belongs to this class. Such a set F could be a singleton such as the case
of the Shapley value and the Nucleolus. It could also contain an indefinite
number of vectors such as the core. Deciding whether an allocation is in a tar-
geted solution concept set is in general a nontrivial problem and has always
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been an important issue in the study of cooperative game theory. A partic-
ularly interesting theme to the study of such decision problems is that of
the bounded rationality, which argues that decisions made by real-life agents
may not spend an unbounded amount of resources to evaluate all the pos-
sibilities for optimal outcome [66]. Much effort has been made in the study
of the bounded rationality in computational resource for solution concepts of
cooperative games.

The computational complexity study on cooperative games is especially
interesting as the definition of a game involves an exponential number (in the
number of players) of values, one for each subset of players. Moreover, the
definitions of many solution concepts would involve an exponential number of
constraints. Megiddo [50] observed that, for many games, the game value is
calculated through succinctly defined structures and for such games, he sug-
gested that finding a solution should be done by a good algorithm (following
Edmonds [17]), i.e., within time polynomial in the number of players. Deng
and Papadimitriou [14] suggested computational complexities be taken into
consideration as another measure of fairness for evaluating and comparing
different solution concepts.

An especially fruitful case for the computational complexity approach in
cooperative game theory is the class of combinatorial optimization games (see,
e.g., [12]). In a cooperative game, when the value of a subset of players is
evaluated via a combinatorial optimization problem, subject to constraints of
resources controlled by members in the subset, the input size is usually poly-
nomial in the number of players. Therefore, such combinatorial optimization
games fit well into the framework of algorithm theory. Indeed, such a line of
research has been very active in the past decade. In this treatise, we should
focus on those in the study of the core and the Nucleolus.

The organization of the treatise is as follows. In Section 2, formal def-
initions of cooperative game and solution concepts are given. We also give
a sketch of combinatorial optimization game models and related algorithmic
and complexity results. In Section 3, we introduce Owen’s linear production
game [56] and Granot’s generalized model [31]. In view of the importance of
Owen’s model, we focus on the Linear Programming (LP) duality character-
ization of the core allocation in Owen’s work and exemplify its applications
with flow game and minimum cost spanning tree game. Additionally, com-
plexity results on these models are also discussed. In Section 4, the packing,
covering, and partition games are brought in as a natural extension of Owen’s
model with integrality condition explicit. The common necessary and suffi-
cient condition on the balancedness of these games is that a corresponding
LP relaxation has an integer optimal solution. The sufficiency of this condi-
tion follows immediately from Owen’s work [56]. Here, we use matching game,
vertex covering game, and minimum coloring game to illustrate a variety of
computational complexity results for this class of games. In Section 5, we fur-
ther investigate the linear and integer programming approach and LP duality
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techniques applied to facility location games. Finally in Section 6, we conclude
with some further discussions and remarks.

2 Definitions and Models

A cooperative game with side payments is a pair (N, v), whereN={1, 2, . . ., n}
is a finite set and v : 2N → R is a function with v(∅) = 0. The elements of
N are called players, and the subsets S of N are called coalitions. For each
coalition S ⊆ N , v(S) is the value of S that is interpreted as the profit or
cost achieved by the collective action of players in S without any assistance of
players in N \ S. The function v is called the characteristic function. A game
is called a profit (cost) game if v(S) measures the profit (cost) achieved by the
coalition S. In this section, we present the definitions only for profit games.
Symmetric statement holds for cost games.

The focus of cooperative game theory has always been how to fairly
distribute the collective income. We denote the income distributed to indi-
vidual players by a vector x = (x1, x2, . . ., xn) satisfying

∑n
i=1 xi = v(N),

called an allocation. Throughout this treatise, we use the shorthand notation
x(S) =

∑

i∈S xi for S ⊆ N . An allocation vector x is called an imputation of
the game (N, v) if it also satisfies the individual rationality condition:

∀i ∈ N : xi ≥ v({i}).

The set of imputations of game (N, v) is denoted by I(v). Additional require-
ments for fairness, stability, and rationality lead to different sets of allocations,
which are generally referred to as solution concepts. As limited by space, we
shall discuss two of the most important ones: the core and the Nucleolus.

2.1 The Core

The concept of the core was first introduced by Gillies [28] based on the
concept of subgroup rationality.

Definition 1. The core of a game (N, v) is defined by

C(v) = {x ∈ R|N | : x(N) = v(N) and x(S) ≥ v(S), ∀S ⊆ N}.

The constraints imposed on C(v) ensure that no coalition would have
an incentive to split from the grand coalition N and do better on its own.
Consider the following allocation linear program (AP):

AP :
min

∑

i∈N xi
s.t.

∑

i∈S xi ≥ v(S) ∀S ⊆ N.

It is quite obvious that C(v) 	= ∅ if and only if the optimum value of the
linear program (AP) is equal to v(N), in which case any optimal solution
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to (AP) lies in C(v). Taking the linear program dual to (AP), an equivalent
condition for C(v) 	= ∅ can be obtained based on the concept of balanced
sets. A collection B of nonempty subsets of N is balanced if there exists a set
of positive numbers γ

S
, S ∈ B, such that for each i ∈ N ,

∑

i∈S∈B γS
= 1.

A cooperative game (N, v) is balanced if
∑

S∈B γS
v(S) ≥ v(N) holds for

every balanced collection B with weights {γ
S

: S ∈ B}. Bondareva [3] and
Shapley [62] proved that a game has a nonempty core if and only if it is
balanced. For a subset S ⊆ N , we define the induced subgame (S, v

S
) on S,

in which v
S
(T ) = v(T ) for every subset T ⊆ S. A cooperative game is totally

balanced if all its subgames are balanced.
For the core of a cooperative game (as for other solution concepts that form

a subset of imputations), we have the following algorithmic and complexity
problems:

Testing nonemptiness: Can it be tested in polynomial time whether a given
instance of the game has a nonempty core?

Checking membership: Can it be checked in polynomial time whether a given
imputation belongs to the core?

Finding a core member: Is it possible to find an imputation in the core in
polynomial time?

The three problems are closely related, however, they may in general pos-
sess different complexities. It is possible that a core member can be found
in polynomial time but it is co-NP-complete for the membership checking
problem [18,24]. For a game of sum of edge weight defined on a graph, Deng
and Papadimitriou [14] proved that both problems of testing nonemptiness
and checking membership of the core are NP-hard.

Some related solution concepts arise from the core. Shapley and Shubik [64]
recommended the concepts of (strong) ε-core and weak ε-core for a cooper-
ative game. Their main idea is to relax the requirements of subgroup ratio-
nality by x(S) ≥ v(S) − ε and x(S) ≥ v(S) − ε|S| for each proper subset
S of N , respectively. Later, Tijs and Driesssen [72] introduced the concept
of multiplicative ε-tax core by using x(S) ≥ v(S) − ε[v(S) −

∑

i∈S v(i)] in-
stead. Faigle and Kern [22] modified the requirement of Tijs and Driessen’s
as x(S) ≥ (1 − ε)v(S) to define another approximate core, called multiplica-
tive ε-core. One explanation of these concepts is that cooperation may not be
as hopeless even when the core is empty. Cooperation may be possible with
the subsidies of the central authority. Therein, the computational complex-
ity approach is also very promising in order to properly foster the necessary
cooperation.

2.2 The Nucleolus

One of the dissatisfactions with the core and some other solution concepts
is that there is no definite outcome, though this may allow for flexibility in
applications of these concepts to some areas such as economics and political
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science. The Nucleolus, introduced by Schmeidler [61], trying to capture the
intuition of minimizing dissatisfaction of players, is one of the most well-
known solution concepts among various attempts to obtain a unique solution
and has been made popular especially because of a discovery by Aumann and
Maschler [1] in its association with a Talmudic myth.

Let (N, v) be a cooperative game with n players. Given an allocation x ∈
Rn, we define e(S, x) = x(S) − v(S) for each S ⊆ N . This number is called
the excess of S at x and can be interpreted as a measure of satisfaction of the
coalition S with the allocation x. Thus, we arrive at the core C(v) as the set of
allocations whose excesses are all non-negative. For an allocation x ∈ Rn, let
θ(x) denote the (2n − 2)-dimensional vector whose components are the non-
trivial excesses e(S, x), ∅ 	= S 	= N , arranged in a nondecreasing order. That
is, θi(x) ≤ θj(x), for 1 ≤ i < j ≤ 2n − 2. Denote by �l the “lexicographically
greater than” relationship between vectors of the same dimension.

Definition 2. The Nucleolus η(v) of a game (N, v) is the set of imputations
that lexicographically maximize θ(x) over the set of all imputations x ∈ I(v).
That is,

η(v) = {x ∈ I(v) : θ(x) �l θ(y) for all y ∈ I(v)}.

Surprisingly, such a complicatedly defined solution, according to Aumann
and Maschler [1], was the foundation that dictated a particular schema for the
estate division problem set by Rabbi Nathan that baffled Talmudic scholars
for two millennia. The problem is one of three wives married to a man who
promised them 100, 200, and 300 zuz, respectively, upon his death. The hus-
band died leaving an estate worth less than 600 zuz. According to the Talmud
recommendation, the wives would receive an equi-partition of the estate if
it is worth 100; but a proportional partition of the promised amount if it is
worth 300. And even more unexpectedly, if the estate is worth 200, the wives
will received 50, 75, and 75, even though the last two wives’ claims were not
equal. Such an intricacy has been made clear only after the work of Aumann
and Maschler, showing the Tamudic solution’s coincidence with the Nucleo-
lus. The Talmud rule has since been credited as anticipation of the modern
cooperative game theory.

Even though, by definition, the Nucleolus may contain multiple points, it
was proved by Schmeidler [61] that the Nucleolus of a game with the nonempty
imputation set contains exactly one element. Kopelowitz [44], with Maschler,
Peleg, and Shapley [52] proposed to compute the Nucleolus by recursively
solving the following sequential linear programs:

LPk :

max ε
x(S) = v(S) + εr ∀S ∈ Jr r = 0, 1, . . . , k − 1

x(S) ≥ v(S) + ε ∀S ∈ 2N \
k−1
⋃

r=0

Jr

x ∈ I(v)
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Here, we set J0 = {∅, N} and ε0 = 0 initially; the number εr is the optimum
value of the r-th program (LPr), and Jr = {S ∈ 2N : x(S) = v(S) + εr for
every x ∈ Xr}, where Xr = {x ∈ I(v) : (x, εr) is an optimal solution to LPr}.
It can be shown that after at most n − 1 iterations, one arrives at a unique
optimal solution (x∗, εk). The vector x∗ is just the Nucleolus of the game.

Because the computation of the Nucleolus requires solutions of sequential
linear programs, each with constraints exponential in the number of players,
it has been a challenge to obtain polynomial time algorithms [38,50]. Though
in some cases the Nucleolus can be calculated in polynomial time, such as
the assignment game [67] and the convex game [21, 46], it is in general very
hard [11, 19]. There are still some general algorithms for the computation of
the Nucleolus [36,59], however, they do not guarantee a polynomially bounded
running time except for some special classes of models.

2.3 Combinatorial Optimization Game Models

An important application of cooperative games is that they provide a mathe-
matical formulation for collective decision-making and optimization problems.
In such circumstances, very often, the characteristic function value of a coali-
tion can be represented succinctly as the optimum value of a combinatorial
optimization problem. Such cooperative games are called combinatorial opti-
mization games.

Combinatorial optimization has been a rich and fruitful research field. The
usual consideration in an optimization problem is a single objective function of
one agent. Often, however, problems arising from its application involve more
than one participant who may have different objectives and control different
resources. Cooperative game theory has developed important methodologies
to study fairness and rationality in collaborations and deal with conflicting
interests. In an example of the facility location model, customers from a given
set are in need of certain service that can be provided by connecting them
to some facilities. These facilities could be railway stations, libraries, or su-
permarkets. From a certain authority’s point of view, the goal is to minimize
the total cost, which is made up of the costs of building facilities and con-
necting the customers to the open facilities. On the other hand, it is expected
to find a fair allocation of the total cost to all customers such that none of
the coalitions of customers has any incentive to build their own facility or to
ask a competitor to serve them. The cooperative game theoretical approach
becomes the natural choice for such problems.

The combinatorial optimization games lead to the applications of a variety
of combinatorial optimization techniques, especially the linear and integer
programming techniques, which have proved to be powerful in design and
analysis of algorithms, as well as establishing complexity results. Here, one of
the most interesting results is the LP duality characterization of the core.

In this subsection, we give a sketch of several classic combinatorial opti-
mization game models and related algorithmic results.
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An example to formulate a two-sided market as a cooperative game, the
assignment game, was given by Shapley and Shubik [63]. The underlying struc-
ture is a bipartite graph (V1, V2;E), where V1 is the set of sellers and V2 is the
set of buyers. For the simplest case, each seller has an item to sell and each
buyer wants to purchase an item. The i-th seller values his item at ci dollars
and the j-th buyer values the item of the i-th seller at hij dollars. Between
this pair, we may define a value v({i, j}) = hij− ci if hij ≥ ci and set (i, j) an
edge in E with weight v({i, j}). Otherwise, there is no edge between i and j
as no deal is possible if the seller values the item more than the buyer does.
Consider a game with side-payment; the value v(S) of a subset S of buyers
and sellers is defined as the weight of a maximum weighted matching in the
bipartite subgraph G[S] induced by S. Shapley and Shubik [63] established
a complete characterization of the core of this model, which says the core is
exactly the set of optimal dual solutions to the linear program formulation of
the assignment problem. A major factor for this result is that the optimal so-
lution to the corresponding linear program can be achieved at integer points.
This approach has been exploited extensively in other game models, such as,
location games defined on trees in Tamir [68], partition games in Faigle and
Kern [23], and packing/covering games in Deng, Ibaraki, and Nagamochi [12].

The model of Shapley and Shubik is a theoretical formulation for a pure
exchange economy. The linear production game in Owen [56] applies their
ideas to a production economy. Therein, each player j (j ∈ N) is in possession
of an individual resource vector bj . For a coalition S of players, the profit
obtained by S is the optimum value of the following linear program:

max {cty : Ay ≤
∑

j∈S
b j , y ≥ 0}.

Thus, the characteristic function value is what the coalition can achieve in the
linear production model with the resources under their control. Owen showed
that one imputation in the core can also be constructed through an optimal
dual solution to the linear program that determines the value of N . However,
unlike the assignment game, there are in general some imputations in the core
that cannot be obtained in this way. The problem of checking membership of
the core for linear production games has been proved to be NP-hard [5, 24].

Kalai and Zemel studied games of network flows [40, 41]. In this game,
the players are associated with arcs of the network. The value of a coalition
is the maximum flow value from the ‘source’ to the ‘sink’ in the subnetwork
consisting of the original vertex set and those arcs corresponding with the
players in the coalition. For a simple network in which arc capacities are all
one, the core of the associated flow game coincides with the convex hull of the
indicator vectors of minimum cuts in the network. We note that although a
flow game can be formulated as a linear production game, the size of the re-
duction may be exponential in space, and consequently, the complexity results
are independent.
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Bird [2], and independently, Claus and Granot [6] have formulated a mini-
mum cost spanning tree game for cost allocation problem in a communication
network. In this game model, each player corresponds with a vertex of the net-
work, and there is one more external vertex 0 representing a central supplier.
The cost of a coalition S is defined as the weight of a minimum spanning tree
in the subnetwork induced by the vertex 0 and vertices in S. It was shown that
the core of this game is always nonempty and an imputation in the core can
be calculated easily from a minimum spanning tree of the network [2, 7, 34].
However, it was proved by Faigle et al. [18] that checking membership of the
core is co-NP-complete in this model.

As extensions to minimum cost spanning tree games, there are some related
game models that were investigated, such as minimum cost forest game [45]
and minimum base game on matroid [53]. In another direction, Megiddo has
formulated a network cost allocation problem differently by defining the cost
of a coalition as the weight of a minimum Steiner tree that contains not only
vertices corresponding with the coalition but also some switches in the net-
work [51]. This model results in a computationally harder problem because
given a subset S of vertices, it is NP-hard to evaluate the weight of a mini-
mum Steiner tree spanning S. By contrast with the minimum cost spanning
tree games, the core of this game may be empty. Fang et al. [25] further
proved that both problems of testing nonemptiness of the core and testing
total balancedness are NP-hard for the Steiner tree games.

A facility location game is introduced to formulate the cost allocation
problem in a facility location model. In this model, there is a set of customers
that needs a certain service from some facilities and a set of possible locations
for opening the facilities. For each coalition of customers, its value is defined
as the minimum total cost consisting of the costs of opening facilities and
connecting each customer in this coalition to an open facility. Goemans and
Skutella [29] proved that for this game, it is in general NP-hard to decide
whether the core is nonempty and decide whether a given allocation belongs
to the core. However, given the information that the core is nonempty, both
finding a core member and checking whether a given allocation belongs to
the core can be solved efficiently. In a special case where all the customers
and facilities are located on the vertices of a tree, it was proved by Kolen [43]
that testing nonemptiness and checking membership of the core are both
polynomially solvable.

There are still many game models arising from classic combinatorial op-
timization problems, including dominating set game [73], traveling salesman
(TSP) game [15,58,70], Chinese postman game [39], and so on.

In the following sections, we will highlight the linear and integer program-
ming techniques and computational complexity approach applied to the cores
and the Nucleoli of cooperative games. The focal point of our discussion will
be three typical combinatorial optimization games: linear production games,
packing/covering/partition games, and facility location games.
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3 Linear Production Games

The most interesting connections with combinatorial optimization theory in
the study of cooperative games is the characterization of the core. From
this aspect, LP duality has proven itself a very powerful tool. Shapley and
Shubik [63] proved that for the assignment game associated with a two-sided
market, the core is exactly the set of optimal dual solutions to the linear
program formulation of the assignment problem. This approach was further
exploited in Owen’s linear production game [56], where a core allocation can
be immediately obtained from an optimal solution to a corresponding dual
program. After Owen’s work, the linear production game has been fully uti-
lized as a unified model to explain the nonemptiness of the core for many
combinatorial optimization games.

In Owen’s model, there are n players, and each player possesses a cer-
tain amount of m different resources. The resources vector of player i (i =
1, 2, . . . , n) is bi = (bi1, b

i
2, . . . , b

i
m)t with bik ≥ 0 being the amount of the k-th

resource possessed by player i. These resources can be used to produce p dif-
ferent products, and each unit of product j (j = 1, 2, . . . , p) can be sold at a
given market price cj , and we denote c = (c1, c2, . . . , cp). Let A = [akj ]m×p
be the linear production matrix, where akj is the amount of the k-th resource
needed to produce one unit of the j-th product. Then the linear production
game Γlp = (N, v) is defined as follows:

(i) The player set is N = {1, 2, . . . , n};
(ii) For each coalition S ⊆ N , v(S) is the maximum profit that the coalition

S can achieve with the resources under its control, i.e.,

v(S) = max {cx : Ax ≤
∑

j∈S
b j , x ≥ 0}.

Theorem 1. ([56]) The linear production games are totally balanced.

A constructive proof presented by Owen [56] obtains an imputation in
the core from an arbitrary optimal dual solution to the linear program that
determines v(N). Let w be an optimal solution to the linear program:

min {
∑

j∈N
wtb j : wtA ≥ ct, w ≥ 0},

which is dual to the following linear program w.r.t. the grand coalition N ,

v(N) = max {cx : Ax ≤
∑

j∈N
b j , x ≥ 0}.

Define u = (u1, u2, . . . , un) by uj = wtb j , j ∈ N . The LP duality theorem
implies that u(N) = v(N). On the other hand, let x∗

S
be an optimal solution

to the linear program that determines v(S), then
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u(S) =
∑

i∈S
wtbi ≥ wtAx∗

S
≥ cx∗

S
= v(S).

Hence, u ∈ C(v).
Note that this proof describes a simple way to arrive at a core allocation,

implying that for linear production games, the problem of finding a core mem-
ber can be done in polynomial time. However, unlike the assignment games,
there are in general some core members that cannot be obtained in this way.
It is natural to ask if we can determine an imputation is in the core or not
with an efficient algorithm. A negative answer has been given by Chvátal [5]
and Fang et al. [24].

Theorem 2. ([5, 24]) For linear production games, the problem of checking
membership of the core is co-NP-complete.

In Owen’s linear production game, it is required that for each coalition
S ⊆ N , the total amount of the k-th resource controlled by S satisfies ad-
ditivity assumption, i.e., bk(S) =

∑

i∈S b
i
k (k = 1, 2, . . . ,m). A generalized

model investigated by Granot [31] retains the main linear program structure
of Owen’s model but allows right-hand sides of the resource constraints not to
satisfy the additivity assumption. That is, in the generalized linear production
game, the value of a coalition S ⊆ N is defined by

v(S) = max{cx : Ax ≤ b(S), x ≥ 0},

where b(S) = (b1(S), b2(S), . . . , bm(S))t and each bk(S) (k = 1, . . . ,m) is a
general function of S.

Theorem 3. ([31]) If the games consisting of player set N with value function
bk(S), S ⊆ N , for all k ∈ {1, 2, . . . ,m} are balanced (resp., totally balanced),
then the generalized linear production game is also balanced (resp., totally
balanced).

With the same technique as in Owen’s work, a core allocation can also be
constructed from an optimal dual solution to the corresponding linear program
when the generalized linear production game is balanced.

For certain classes of cooperative games, such as flow games and mini-
mum cost spanning tree games, there is a natural way to formulate them
as (generalized) linear production games. Therefore, Owen’s model, including
Granot’s generalized model, has been employed as a unified tool to show the
balancedness of these games.

Note that the linear production games are equivalent to the class of non-
negative totally balanced games [9,16]. However, the reductions in the equiv-
alence proof requires exponential time and space in the number of players.
Consequently, complexities results for different totally balanced games should
be independent.



Algorithmic Cooperative Game Theory 169

3.1 Flow Games

Flow games were first discussed by Kalai and Zemel [40, 41]. Consider a di-
rected network D = (V,E;ω), where V is the vertex set, E is the arc set, and
ω : E → R+ is the arc capacity function. Let s and t be two distinct vertices
by which we denote the ‘source’ and the ‘sink’ of the network, respectively.
We assume that each player controls one arc in the network. Then the flow
game Γf = (E, v) associated with the network D is defined as follows:

(i) The player set is E = {1, 2, . . . , n};
(ii) For each coalition S ⊆ E, v(S) is the value of a maximum flow from s to

t in the subnetwork of D consisting only of arcs belonging to S.

Let P be the set of s-t paths in D and A = [aij ] be the arc-path incidence
matrix, where the rows of A correspond with the arcs in E, and the columns
correspond with s-t paths in P, aij = 1 if arc i is on the jth s-t path, and
aij = 0 otherwise. Also define a vector h

S
∈ Rn with the j-th component

being ω(j) if j ∈ S and 0 otherwise. Thus the flow game Γf = (E, v) can be
formulated as a linear production game as follows:

∀S ⊆ E, v(S) = max{1ty : Ay ≤ h
S
, y ≥ 0}

It follows directly from Theorem 1 that the flow game Γf is totally balanced
and a core allocation can be obtained from a minimum cut of D, which cor-
responds with an optimal dual solution to the linear program associated with
v(E). However, like linear production games, checking membership of the core
is still NP-hard for flow games [24].

Theorem 4. ([12, 24]) The flow games are totally balanced, and finding a
core member can be done in polynomial time. On the other hand, checking
membership of the core is co-NP-complete.

Because the cardinality of (s, t)-paths is typically huge, the arc-path for-
mulation described above is of little use from an algorithmic point of view.
Hence, an alternative arc-flow formulation was exploited to study the core by
Kalai and Zemel [41]. A network is called simple if the capacity of each arc is
equal to 1. Given a simple network D = (V,E), for W ⊆ V , denote by δ+(W )
and δ−(W ) the sets of arcs leaving and entering W , respectively. Define a
function c : E → {0, 1} with c(e) = 1 if e ∈ δ+({s}), and c(e) = 0 otherwise.
Then the maximum flow problem in the network D has the following linear
program formulation:

(LPf )

max
∑

e∈E
c(e)y(e)

s.t.
∑

e∈δ+({v})
y(e)−

∑

e∈δ−({v})
y(e) = 0 ∀ v ∈ V \ {s, t}

0 ≤ y(e) ≤ 1 ∀ e ∈ E
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The dual program of (LPf ) is

(DLPf )

min
∑

e∈E
z(e)

s.t. z(e) + φ(v)− φ(w) ≥ c(e) ∀ e = (v, w) ∈ E
z(e) ≥ 0 ∀ e ∈ E

Theorem 5. ([41]) Let z be a core member of the flow game (E, v) defined
on a simple network D = (V,E). Then there exists φ = {φ(v) : v ∈ V } such
that (z, φ) is an optimal solution to (DLPf ).

Followed immediately from Theorem 5 and the fact that the minimum cuts
of D constitute the extreme dual solutions to the maximum flow problem, it
concludes that for a simple network, the core of the corresponding flow game
is exactly the convex hull of the indicator vectors of the minimum cuts. Kalai
and Zemel [41] also conjectured that Theorem 5 may serve as a practical
basis for calculating the Nucleolus. Recently, with an elegant application of
LP duality approach in Kalai and Zemel’s work [41], Deng, Fang, and Sun [11]
proposed an efficient algorithm for computing the Nucleolus of a simple flow
game, settling the conjecture. They also gave an NP-hardness proof on both
computation and recognition of the Nucleolus for general flow games.

Theorem 6. ([11]) Let (E, v) be the flow game defined on a simple network
D = (V,E). Then the Nucleolus η(v) can be computed in polynomial time.

Theorem 7. ([11]) Let D = (V,E;ω) be a network with general arc capacities
and (E, v) be the corresponding flow game. Then both problems of computing
the Nucleolus η(v) and checking whether a given core member is the Nucleolus
are NP-hard.

3.2 Minimum Cost Spanning Tree Games

The power of Granot’s generalized linear production model can be applied to
prove the nonemptiness of the core for several games beyond those of Owen’s
model. In particular, these include some games associated with network opti-
mization problems, such as the minimum cost spanning tree game, the network
synthesis game, and the weighted matching game [31].

The minimum cost spanning tree game, MCST game for short, has
been studied extensively after its introduction by Bird [2]. Denote by N =
{1, 2, . . . , n} a set of customers who all need to be connected to some cen-
tral supplier denoted by 0. Establishing a direct link between any pair (i, j)
(i, j ∈ N ∪ {0}) is assumed to cost a non-negative weight ω(i, j) = ω(j, i).
The objective is to create a connected graph on the vertex set N ∪ {0} and
to distribute the resulting total cost among all the customers. This brings out
the MCST game Γst = (N, v) in a natural way:
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(i) The player set is N = {1, 2, . . . , n};
(ii) For each coalition S ⊆ N , v(S) is the weight of a minimum spanning tree

in the induced subgraph G[S ∪ {0}].
Granot [31] formulated the MCST game as a generalized linear produc-

tion game with exponential number of constraints, and consequently proved
its balancedness. A shortcoming of his proof is that it does not provide an
efficient scheme to compute a core member. Tamir [69] further presented a
linear program formulation with polynomial size, showing that several dis-
crete network synthesis games, including MCST games, satisfy Owen’s linear
production game model.

Let us describe Tamir’s formulation as follows. For an MCST game Γst =
(N, v), the value of a coalition S ⊆ N can be represented as the optimum
value of the following mixed integer program (MP):

v(S) = min
∑

∀i,j∈N∪{0}
ωijyij

s.t.

∑

∀j∈N∪{0}
fkij −

∑

∀j∈N∪{0}
fkji =

{

1 if i = k
0 if i 	= k, 0 ∀ k ∈ S,∀ i ∈ N ∪ {0}

0 ≤ fkij ≤ yij ∀ k ∈ S, ∀ i, j ∈ N ∪ {0}
yij ∈ {0, 1} ∀ i, j ∈ N ∪ {0}

For each S ⊆ N , let ṽ(S) denote the optimum value of the LP-relaxation of
(MP). Tamir showed that each core member of the game (N, ṽ) is also in the
core of the original game Γst = (N, v). Thereby, the formulation (MP) casts
the MCST game as Owen’s linear production game, implying that the core of
the MCST game is nonempty and a core member can be generated from an
optimal dual solution to the linear program that determines ṽ(N).

It is very interesting that one of those dual optimal solutions corresponds
with the particular core member given in a “greedy” allocation scheme. This
“greedy” scheme was originally discussed in, e.g., Claus and Kleitman [7]
and Bird [2], and has been rigorously proved to yield a core allocation by
Granot and Huberman [33]: find a minimum spanning tree T ∗ on N ∪{0} and
allocate to each player i ∈ N the weight of the first edge that i encounters on
the unique path from i to 0 in T ∗.

Theorem 8. ([2,7,33,69]) The MCST games are balanced, and finding a core
member can be done in polynomial time.

Even though an imputation in the core can be found easily for an MCST
game, Faigle et al. [18] showed that it is NP-hard to decide whether a given
imputation is a core member. Tamir [69] also pointed out that a result of
Chvátal’s [5] implies NP-hardness of checking membership of the core for the
class of network synthesis games, which includes MCST games.

Theorem 9. ([18]) For MCST games, the problem of checking membership
of the core is co-NP-complete.
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In regard to the Nucleolus, a variety of algorithmic results have been es-
tablished for MCST games. Megiddo [50] first described an O(n3) algorithm
for computing the Nucleolus in a special case where the underlying graph
is a tree. Galil [27] subsequently reduced the number of operations in the
algorithm to O(nlogn). Faigle, Kern, and Kuipers [21] proposed an efficient
algorithm of computing the Nucleolus based on ellipsoid method for a class
of more general MCST games. An even more special case is obtained when G
itself is restricted to a chain. In Littlechild [48], he identified a class of O(n)
coalitions that are the only relevant coalitions for the computation of the Nu-
cleolus, and essentially developed an O(n2) algorithm. Later, this result was
improved to a linear time algorithm by Galil [27] and Granot et al. [35, 36].
For general cases, however, a negative answer for computing the Nucleolus
was given by Faigle, Kern, and Kuipers [19].

Theorem 10. ([19]) For MCST games, computing the Nucleolus is NP-hard.

4 Packing, Covering, and Partition Games

Another way to extend Owen’s model is to explicitly require integer solutions
in the definition of a linear production model, yielding some game models
with combinatorial nature. Specifically, one may define the game value v(S)
as the optimum value of an integer program instead of a linear program:

v(S) = max {cx : Ax ≤
∑

j∈S
bj , x ≥ 0 and x is integral}.

For the assignment game of Shapley and Shubik [63], the integer program
can be solved by its LP-relaxation, as there is always an integer solution for
the latter. In Shapley and Shubik’s model, bj is a unit vector and b(N) is
a vector of all ones. It is this particular structure of linear constraints that
makes the core to be identified with the set of optimal dual solutions to a
corresponding linear program. This property is further investigated by Faigle
and Kern for partition games [23], and by Deng, Ibaraki, and Nagamochi for
packing and covering games [12].

Let A be anm×n {0, 1}-matrix,M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}
be the corresponding index sets of rows and columns, respectively. Let
c = (c1, . . . , cm)t be an m-dimensional vector and d = (d1, . . . , dn)t be an
n-dimensional vector. For a subset S ⊆ N , let 1

S
∈ Rn denote the indicator

vector of S, where 1
S
(i) = 1 if i ∈ S, and 1

S
(i) = 0 otherwise.

The corresponding packing game Γpac = (N, v) is defined by

(i) The player set is N ;
(ii) For each coalition S ⊆ N , v(S) is the optimum value of the integer pro-

gram (IPpac):
v(S) = max xtc

s.t. xtA ≤ 1
S
, x ∈ {0, 1}m
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The corresponding covering game Γcov = (M,v) is defined by

(i) The player set is M ;
(ii) For each coalition T ⊆ M , v(T ) is the optimum value of the integer

program (IPcov):

v(T ) = min dtx
s.t. A

T,N
x ≥ 1, x ∈ {0, 1}n.

where A
T,N

is the submatrix consisting of the rows of A w.r.t. the coalition
T , and 1 ∈ R|T |

is the vector with all components being 1.

The corresponding partition game Γpar = (N, v) is defined by

(i) The player set is N ;
(ii) For each coalition S ⊆ N , v(S) is the optimum value of the integer pro-

gram (IPpar):
v(S) = max xtc

s.t. xtA = 1
S
, x ∈ {0, 1}m.

In the rest of this section, for all game models discussed, we let ILP∗ denote
the corresponding integer program that determines the value of the grand
coalition, and LP∗ and DLP∗ denote the corresponding LP-relaxation of ILP∗

and its dual program, respectively. The next theorem provides a description
on the combinatorial structure for the corresponding packing, covering, and
partition games to be balanced.

Theorem 11. ([12,23]) The core of the packing game Γpac is nonempty if and
only if the LP-relaxation LP ∗ has an integer optimal solution. In such case,
the core coincides with the set of optimal solutions to the dual program DLP ∗.
The same conclusion holds for the covering game Γcov and the partition game
Γpar.

There are many interesting cooperative games defined on graphs, which
can be formulated as packing and covering games [12]. For example,

(1) s-t edge connectivity game, s-t vertex connectivity game, and maximum
r-arborescence game;

(2) matching game and vertex covering game;
(3) independent set game and edge covering game;
(4) minimum coloring game.

These game models offer a variety of complexity results on the computational
problems related to their cores. For the games in the first category, all of them
are always balanced, and both problems of finding a core member and check-
ing membership of the core can be solved in polynomial time. An especially
interesting case is the matching game and the vertex covering game defined
on general graphs in the second category. For this pair of graph optimiza-
tion problems, one integer program is polynomially solvable and the other is
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NP-hard. The LP-relaxations of this pair are dual to each other, and the
condition for the balancedness is polynomially checkable for both games. This
is not necessarily true for all NP-hard combinatorial optimization problems.
For the minimum coloring games in the fourth category, both problems of
testing balancedness and checking membership of the core are NP-hard.

4.1 Matching Games and Assignment Games

The matching game is one of the most important combinatorial optimization
games and has attracted much attention from researchers. Let G = (V,E;ω)
be a graph with edge weight function ω : E → R+. The matching game
Γmt = (V, v) associated with graph G is defined by

(i) The player set is V ;
(ii) For each coalition S ⊆ V , v(S) is the weight of a maximum weighted

matching in the induced subgraph G[S].

Let A = [aij ] be the incidence matrix of graph G in which rows correspond
with edges in E, and columns correspond with vertices in V ; aij = 1 if edge
i and vertex j are incident, and aij = 0 otherwise. Then for each coalition
S ⊆ V ,

v(S) = max{xtω : xtA ≤ 1
S
, x ∈ {0, 1}|E|},

where ω = (ω1, ω2, . . . , ω|E|)t. This formulation casts the matching game in
the scope of packing games.

It is obvious that the assignment game is a special kind of matching games
whose underlying structure is a bipartite graph. Because the LP-relaxation
LP∗ for the maximum matching problem on a bipartite graph always has an
integer optimal solution (the incidence matrix A is totally unimodular [37]),
the corresponding assignment game is balanced, and the core is precisely the
set of optimal solutions to the dual program DLP∗.

Theorem 12. ([63]) The core of an assignment game coincides with the set of
optimal dual solutions to the linear program of the corresponding assignment
problem.

However, the above nice property breaks down for matching games on
general graphs. Deng, Ibaraki, and Nagamochi [12] showed that the core of
a matching game is nonempty only for some special classes of graphs. Their
constructive proof provides us a polynomial time algorithm to decide whether
the game is balanced and to generate a core member when the core is indeed
nonempty. In addition, for the problem of checking membership of the core,
it suffices to check whether the sum of the values on two endpoints of every
edge is at least one.

Later, Deng et al. [13] proved that the matching game is totally balanced
if and only if the underlying graph is bipartite. That is, a matching game is
totally balanced if and only if it can be formulated as an assignment game.
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Theorem 13. ([12,13]) For matching games, all problems of testing balanced-
ness and total balancedness, checking membership of the core, and finding a
core allocation can be solved in polynomial time.

Now we consider the algorithmic results on the Nucleolus for matching
games. Solymosi and Raghavan [67] constructed an O(n4) algorithm for com-
puting the Nucleolus in the bipartite case (i.e., assignment games). This was
also obtained in Granot, Granot, and Zhu [36]. Faigle et al. [20] introduced
a new solution concept, the Nucleon, as an alternative of the Nucleolus, and
presented an efficient algorithm for its computation. More recently, Kern and
Paulusma [42] proposed an efficient algorithm for computing the Nucleolus of
a matching game in the unweighted case. However, computing the Nucleolus
for general matching games remains unsolved. We guess it is NP-hard.

Theorem 14. ([36, 67]) The Nucleolus of an assignment game can be com-
puted in polynomial time.

Theorem 15. ([42]) The Nucleolus of an unweighted matching game can be
computed in polynomial time.

Tamir and Mitchell [71], with Granot [30], discussed a kind of generalized
matching games: b-matching games (also called roommate games). Given an
edge weighted graph G = (V,E;ω), let each vertex i ∈ V be associated with a
positive integer bi, and let δ(i) denote the set of edges incident to vertex i ∈ V .
A b-matching of graph G is an |E|-dimensional non-negative integer vector x
satisfying the degree constraints: x(δ(i)) ≤ bi for each i ∈ V . The b-matching
game on graph G is defined in a similar way as the matching game. It has the
players on the vertices of V , and for each coalition S ⊆ V , v(S) is defined as
the weight of a maximum weighted b-matching in the induced subgraph G[S].

This game generalizes the original matching game by substituting 1
S

with
the integer vector b

S
on the right-hand sides of the constraints in the inte-

ger program that determines v(S). Still, with a similar approach applied to
Owen’s linear production game, Tamir and Mitchell [71] proved that if the
LP-relaxation LP∗ for the maximum b-matching problem on G has an integer
optimal solution, then the core of this game is nonempty, and a core mem-
ber can be constructed from an optimal solution to the corresponding dual
program DLP∗. However, the substitution of b

S
makes the necessary and suf-

ficient condition on the balancedness for packing games (Theorem 11) fail for
general b-matching games.

4.2 Vertex Covering Game

In this subsection, we consider the vertex covering game to exemplify the
result of Theorem 11 on general covering games. Given a graph G = (V,E),
the associated vertex covering game Γvc = (E, v) is defined by

(i) The player set is E;
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(ii) For each coalition S ⊆ E, v(S) is the cardinality of a minimum vertex
cover in the edge induced subgraph G[S], i.e.,

v(S) = min{1ty : A
S,V
y ≥ 1, y ∈ {0, 1}|V |},

where the matrix A is the incidence matrix of G as described in the
matching game.

For the pair of matching game and vertex covering game defined on a
common unweighted graph, their corresponding LP-relaxations LP∗ are dual
to each other. However, the maximum matching problem can be solved in
polynomial time, whereas the problem of finding the minimum vertex cover
is in general NP-hard.

We remark that when we think of a computational task for a cooperative
game (N, v), we have the characteristic function v as an oracle that outputs
the value v(S) for a queried set S ⊆ N and consider that one oracle call can
be done in a constant time. In the vertex covering game, we take graph G as
the input, and the running time of algorithms is measured by the encoding
length of G, not by the oracle complexity model. Surprisingly, for this vertex
covering game that is associated with an NP-hard problem, Deng, Ibaraki,
and Nagamochi [12] showed that all the questions about the core can be
answered in polynomial time.

In detail, the core of a vertex covering game on graph G is nonempty if
and only if the size of a maximum matching is equal to the size of a minimum
vertex cover in the graph G [12]. It is very interesting that testing this condi-
tion can be transformed into an instance of 2-Satisfiability problem, yielding
a polynomial time algorithm. Moreover, when the game is balanced, an impu-
tation is in the core if and only if it is a convex combination of the indicator
vectors of maximum matchings.

Theorem 16. ([12]) For vertex covering games, all problems of testing core
nonemptiness, checking membership of the core, and finding a core member
can be solved in polynomial time.

4.3 Minimum Coloring Game

The minimum coloring games arise in applications if the smallest number of
conflict-free groups are sought in a system where vertices represent members
and edges represent conflicts between members. Such conflict graphs can be
found in many resource sharing problems, for example, the channel assignment
problem for mobil communication. Let χ(G) denote the chromatic number of
an undirected graph G, i.e., the minimum number of maximal independent
sets that together cover all vertices of G. The minimum coloring game Γcol =
(V, v) on a graph G = (V,E) is defined by

(i) The player set is V ;
(ii) For each coalition S ⊆ V , v(S) equals χ(G[S]), i.e., the chromatic number

of the induced subgraph G[S].
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This game can be formulated as a covering game as follows: for the con-
straint matrix A in the covering game formulation, the rows of A correspond
with the vertices in V , and the columns correspond with all the maximal
independent sets of G.

It is well-known that the computation of χ(G) is generally NP-hard. Un-
like the vertex covering games discussed above, all the algorithmic problems
related to the core are NP-hard for this game [12].

Theorem 17. ([12]) For minimum coloring games, all problems of testing
core nonemptiness, checking membership of the core, and finding a core mem-
ber are NP-hard.

Let ω(G) denote the size of a maximum clique in G that satisfies ω(G) ≤
χ(G), as widely known in graph coloring theory. A graph G is called perfect
if ω(G[S]) = χ(G[S]) holds for all subset S ⊆ V . The minimum coloring game
defined on a perfect graph possesses nice algorithmic properties on its core.
Given a perfect graph G, it was proved by Deng, Ibaraki, and Nagamochi [12]
that the associated minimum coloring game is balanced, and finding a core
member and checking membership of the core can both be solved in polyno-
mial time [12, 55]. Subsequently, it was also proved that a minimum coloring
game is totally balanced if and only if the associated graph is perfect by Deng
et al. [13]. It follows that the decision problem on the total balancedness of
a minimum coloring game is as hard as recognizing perfect graphs, which is
recently shown to be done in polynomial time [8].

Theorem 18. ([13]) The minimum coloring game on a graph G = (V,E) is
totally balanced if and only if graph G is perfect.

In Okamoto [55], the algorithmic issues were further investigated for other
solution concepts of minimum coloring games. A characterization of the Nucle-
olus for some special classes of graphs, including complete multipartite graphs
and chordal graphs, leads to an efficient algorithm for its computation.

5 Facility Location Games

In a facility location problem, customers from a given set N are in need of
a certain service from some facilities. For a given set F of possible locations
for the facilities, opening facility i ∈ F causes a predefined cost fi ≥ 0, and
connecting customer j ∈ N to this facility requires cost cij ≥ 0. The collective
goal is to minimize the sum of total cost, which is made up of the costs to open
facilities and to connect each customer to an open facility. This is referred to
as the unconstrained facility location problem. For the constrained case, some
further requests have to be taken into consideration, such as some facilities can
only handle a limit number of customers, or customers from different groups
cannot be assigned to the same facility.
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The corresponding facility location game Γfl = (N, v) is defined as follows:

(i) The player set is N = {1, 2, . . . , n};
(ii) For each coalition S ⊆ N , v(S) is the minimum total cost of providing

the service only to the players in S.

A systematic study on the core of the facility location game was carried
out by Goemans and Skutella [29]. Linear and integer programming approach
and LP duality technique are also crucial in their work.

To give the formulation of the facility location problem, let us first define
two kinds of variables. For each i ∈ F , the variable yi is set to 1 if facility i is
opened, and 0 otherwise; for each i ∈ F and j ∈ N , the variable xij is set to
1 if customer j is connected to facility i, and 0 otherwise. In order to model
the constrained case, for each facility i ∈ F , a collection of feasible subsets Fi
is introduced to represent all the possibilities of the set of customers that can
be connected to this facility, and accordingly, define Pi ⊆ {0, 1}n+1 by

Pi := {(0, . . . , 0)} ∪ {(1,1
S
)|S ∈ Fi},

where 1
S
∈ {0, 1}n is the indicator vector of the subset S. Then the general

facility location problem can be formulated as the following integer linear
program:

IP∗ :

min
∑

i∈F
fiyi +

∑

i∈F,j∈N
cijxij

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i∈F
xij = 1 for all j ∈ N

(yi, xi1, xi2, . . . , xin) ∈ Pi for all i ∈ F
xij , yi = 0, 1 for all i ∈ F, j ∈ N

Replacing each discrete vector set Pi by its conic hull cone(Pi) = {
∑

u∈Pi
λuu :

λu ≥ 0}, rather than the most nature convex hull conv(Pi), we obtain the
following LP-relaxation (LP∗):

LP∗ :

min
∑

i∈F
fiyi +

∑

i∈F,j∈N
cijxij

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i∈F
xij = 1 for all j ∈ N

(yi, xi1, xi2, . . . , xin) ∈ cone(Pi) for all i ∈ F
xij , yi ≥ 0 for all i ∈ F, j ∈ N

By making use of the technique of Lagrange dual, Goemans and Skutella [29]
proved that this LP-relaxation (LP∗) is equivalent to the cost allocation prob-
lem (CAP) of the associated facility location game:

CAP : max{
∑

j∈N
xj :

∑

j∈S
xi ≤ v(S), ∀S ⊆ N}.
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Theorem 19. ([29]) For a facility location problem and its corresponding
game model, the cost allocation problem (CAP) is equivalent to the dual of
the LP-relaxation LP ∗. In particular, their values are equal and the core of
the facility location game is nonempty if and only if there is no integrality gap
for LP ∗.

Note that for the unconstrained case,

conv(Pi) = cone(Pi) = {(yi, xi1, xi2, . . . , xin) : 0 ≤ xij ≤ yi, ∀j ∈ N}.

Theorem 19 implies that both checking membership of the core and finding a
core member may reduce to solving the dual program of LP∗ for a balanced
unconstrained facility location game. However, the problem of testing the
balancedness is NP-hard.

Theorem 20. ([29]) For the unconstrained facility location games, it is NP-
complete to decide whether the core is nonempty. If the unconstrained facility
location game is balanced, both problems of finding a core member and checking
membership of the core can be done in polynomial time.

In the rest of this section, we will restrict our attention to a special case
of unconstrained facility location games in which all players and facilities
are located on the vertices of a tree. For each player j ∈ N , the cost for
connecting j to facility i ∈ F is equal to the distance between them in the
underlying tree. This kind of game is referred to as simple facility location
games. Goemans and Skutella [29] proved that in this case, the core is always
nonempty. This result was also obtained by Kolen [43] and Curiel [9]. Let us
consider the integer program formulations given by Kolen [43] to exploit how
the LP duality approach is applied to simple facility location games.

Let T = (N,E) be a tree with |N | = n, the cost connecting i and j be
equal to the distance between them, denoted by d(i, j) for each pair i, j ∈ N .
Assume that the players correspond with vertices in N . For each vertex i ∈ N ,
let ri1 ≤ ri2 ≤ · · · ≤ rin be the ordered sequence of distances between vertex
i and all the vertices, including i. Also define rin+1 to be a number that is
larger than the sum of all opening costs and connecting costs involved. Define
an n2 × n-matrix H = [hikj ] by

hikj =
{

1 if d(i, j) ≤ rik for i, j, k ∈ N
0 otherwise.

Then the coalition values can be formulated as follows. For each j ∈ N , set
variable xj = 1 if and only if a facility is built in vertex j; for each i, k ∈ N ,
set variable zik = 1 if and only if there is no facility within distance rik from
vertex i. The number of built facilities that are within distance rik from vertex
i are given by

∑n
j=1 hikjxj . For each coalition S ⊆ N , the game value v(S) is

then the optimum value of the following integer program:
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min
n
∑

j=1

fjxj +
∑

i∈S

n
∑

k=1

(rik+1 − rik)zik

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n
∑

j=1

hikjxj + zik ≥ 1 for i ∈ S, k ∈ N

zik ∈ {0, 1} for i ∈ S, k ∈ N
xj ∈ {0, 1} for j ∈ N.

In this formulation, the total balancedness of the constraint matrix implies
the integrality of the LP-relaxation of the integer program (IP∗) that deter-
mines v(N) [43]. Accordingly, the nonemptiness of the core can be shown in
a similar way as that for Owen’s linear production game: let y∗ be an op-
timal dual solution of the LP-relaxation (LP∗) that determines v(N), then
u = (u1, u2, . . . , un) ∈ Rn with ui =

∑n
k=1 y

∗
ik is in the core of the game.

Theorem 21. ([9, 29, 43]) For a simple facility location game, the core is
nonempty, and finding a core member can be done in polynomial time.

Some different game models arising from facility location problems were
discussed in the literature. Tamir [68] considered a facility location model on a
tree where each customer has to be connected to a facility within a given dis-
tance. This can be formulated as a special case of the games discussed above.
Another game model, called fixed cost spanning forest game, was introduced
by Granot et al. [32]. In this model, there are no proximity constraints on
the distances between the customers and the facilities. Each customer must
be connected to some designated central facility, not necessarily the closest
one to the customer. In general, the core of this game may be empty. How-
ever, it was shown in Granot et al. [32] that when the underlying network is a
tree, the game is balanced and a core allocation can be found with a strongly
polynomial time algorithm.

6 Further Discussions and Remarks

In the study of cooperative games, it is suggested to have polynomial time
algorithms for finding and checking solutions to game models [50]. It is fur-
ther suggested that computational complexity be taken as one extra factor in
considering rationality and fairness of a solution concept and comparing dif-
ferent solution concepts [10,14] in a way derived from the concept of bounded
rationality [54,57,66]. In this line of approach, one may be lured to try to clas-
sify solution concepts by their complexities. However, very often, they may
display different orders in the complexity hierarchy from game to game. Some
concepts may be easier to compute in one game but more difficult in others.
But, still, we may ask this question: what is the worst-case complexity of a
solution concept? With all algorithms we know of, the concepts of the core,
the bargaining set, and the von Neumann–Morgenstern solution should be in
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an order of increasing complexity [10, 14]. However, it would be nice to have
a definite proof in terms of lower bound.

To make the study of complexity and algorithmic issues for cooperative
games meaningful in the associated application areas, it is vital to have com-
putational complexity as an integrated part of theoretical consideration for
solution concepts. Even in the case in which the solutions of a game model do
not exist or are difficult to compute, it may not be easy to simply dismiss the
problem as hopeless especially when the game arises from important applica-
tions. Various conceptual approaches, in particular the approximation in fair
allocations, are proposed to resolve this problem.

The core, the set of feasible outcomes of a social or economic situation
that cannot be improved upon by any coalition of players, is a fundamental
equilibrium concept. When the core is empty, it motivates conditions ensur-
ing nonemptiness of approximate cores in economies and game models. A
natural way to approximate the core is the least core, which was introduced
by Maschler, Peleg, and Shaplsy [52]. Let (N, v) be a profit cooperative game.
Given a real number ε, the ε-core is defined to contain the allocations such
that x(S) ≥ v(S) − ε for each nonempty proper subset S of N . The least
core, denoted by LC(v), is the intersection of all nonempty ε-core. Let ε∗ be
the minimum value of ε such that the ε-core is empty, then the least core is
the same as the ε∗-core. It is not hard to see that the least core is always
nonempty.

The concept of least core poses new challenges on algorithmic issues. The
most natural problem is how to efficiently compute the value ε∗ for a given
cooperative game. The catch is that the computation of ε∗ requires one to
solve a linear program with exponential number of constrains. Though there
are cases the value ε∗ can be computed in polynomial time, it is in general
very hard. If we consider the value of ε∗ as some subsidies given by the central
authority to ensure the existence of the cooperation, then it is significant to
give the approximate value of it even when the computation problem is NP-
hard. This needs new techniques in design and analysis of algorithms.

Another possible approach we are interested in is to interpret approxima-
tion as bounded rationality. For example, it would be interesting to know if
there are some of those games with the property that, for any ε > 0, checking
membership in the ε-core can be done in polynomial time but it is NP-hard
to tell if an imputation is in the core or not. In such cases, the restoration
of cooperation would be a result of bounded rationality. That is to say, the
players would not care an extra gain or loss of ε at the expense of another
order of degree of computational resources.

As an important solution concept in economics and game theory, the Nu-
cleolus and related solution concepts have been applied to study insurance
policies by Lemaire [47], to real estate by Raghavan and Solymosi [60], to
study peer group by Brânzei, Solymosi, and Tijs [4], and to bankruptcy by
Aumann and Maschler [1] as well as Malkevitch [49]. However, it has been a
challenge to obtain polynomial time algorithms for computing the Nucleolus.
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For some special game models, the Nucleolus can be computed in polyno-
mial time, such as, assignment games, simple flow games, and unweighted
matching games. On the other hand, it is NP-hard for more general game
models including minimum cost spanning tree games [18], flow games, and
linear production games [11].

There are still many unsolved complexity questions concerning the Nucle-
olus. Kern and Paulusma [42] conjectured that for general matching games,
computation of the Nucleolus is NP-hard. In addition, it is very interesting
for us to know the complexity of computing the Nucleolus for other games in
the class of packing and covering games, such as vertex covering games and
minimum coloring games. In Deng, Fang, and Sun [11], an elegant application
of LP duality approach yields a polynomial time algorithm for computing the
Nucleolus of a simple flow game. Because flow games fall into the scope of
packing games, we believe that LP duality technique will be useful in design
of algorithms for this class of games.

For cooperative games arising from NP-hard combinatorial optimization
problems, computation of the Nucleolus may in general be a hard task. But
till now, no such NP-hardness result is known. For example, facility loca-
tion problem is a classic NP-hard combinatorial optimization problem. We
guess that for facility location games, the Nucleolus is difficult to compute in
general, though there may be efficient algorithms for some special cases. More-
over, when computation of the Nucleolus is difficult, we are also interested in
seeking meaningful approximation concepts of the Nucleolus especially from
the political and economic background.
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Abstract The aim of the current chapter is to study several solution concepts
for bicooperative games. For these games introduced by Bilbao [1], we define a
one-point solution called the Shapley value, as this value can be interpreted in a
similar way to the classic Shapley value for cooperative games. The first result is an
axiomatic characterization of this value. Next, we define the core and the Weber set
of a bicooperative game and prove that the core of a bicooperative game is always
contained in the Weber set. Finally, we introduce a special class of bicooperative
games, the so-called bisupermodular games, and show that these games are the only
ones in which the core and the Weber set coincide.

Key words: bicooperative game, bisupermodular game, Bore, Shapley value,
Weber set

1 Introduction

The theory of cooperative games studies situations where a group of peo-
ple/players are associated to obtain a profit as a result of their cooperation.
Thus, a cooperative game is defined as a pair (N, v) , where N is a finite set
of players and v : 2N → R is a function satisfying that v (∅) = 0. For each
S ∈ 2N , the worth v (S) can be interpreted as the maximal gain or minimal
cost that the players forming coalition S can achieve by themselves against the
best offensive threat by the complementary coalition N \S. Hence, we can say
that a cooperative game has orthogonal coalitions (see Myerson [12]). Classic
market games for economies with private goods are examples of cooperative
games.

Games with nonorthogonal coalitions are games in which the worth of
coalition S depends on the actions of coalition N \ S. For instance, the joint
owners of a building are considering hiring a gardener to work in the common
areas of their residence. The garden is a public good. Each owner can decide to
support the proposal or to veto it. However, some of them may decide not to
take part in the decision making and would thus not necessarily be defenders
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or detractors of the project. This is the case with multicriteria decision making
when underlying scales are bipolar, i.e., a central value exists on each scale and
it is considered a neutral value. Thus, social situations involving externalities
and public goods are such cases.

These situations may be modeled in the following manner. We consider
pairs (S, T ), with S, T ⊆ N and S ∩ T = ∅. Thus, (S, T ) is a partition of N
in three groups. Players in S are defenders of modifying the status quo and
they want to accept a proposal; players in T do not agree with modifying the
situation and they will take action against any change. Finally, the members
of N \ (S ∪ T ) are not convinced of the profits derived from the proposal and
they vote abstention.

Thus, in our model we consider the set of all ordered pairs of disjoint
coalitions 3N = {(S, T ) : S, T ⊆ N, S ∩ T = ∅} , and define a worth function
b : 3N → R. For each (S, T ) ∈ 3N , the worth b (S, T ) can be interpreted as the
maximal gain (whenever b (S, T ) > 0) or minimal loss (whenever b (S, T ) < 0)
that the players of the coalition S can achieve when they decide to play
together against the players of T and the players of N \ (S ∪ T ) not taking
part. This leads us in a natural way into the concept of bicooperative game
introduced by Bilbao [1].

Definition 1. A bicooperative game is a pair (N, b) with N a finite set and b
is a function b : 3N → R with b (∅, ∅) = 0.

Similar to the cooperative case in which each coalition S ∈ 2N can be
identified with a {0, 1}-vector 1S , each pair (S, T ) ∈ 3N can be identified with
the {−1, 0, 1}-vector 1(S,T ) defined, for all i ∈ N, by

1(S,T ) (i) =

⎧

⎨

⎩

1 if i ∈ S,
−1 if i ∈ T,
0 otherwise.

A special kind of bicooperative games has been studied by Felsenthal and
Machover [5]who consider ternary voting games.This concept is a generalization
of voting games that recognizes abstention as an option alongside yes and
no votes. These games are given by mappings u : 3N → {−1, 1} satisfying
the following three conditions: u (N, ∅) = 1, u (∅, N) = −1, and 1(S,T ) (i) ≤
1(S′,T ′) (i) for all i ∈ N, implies u (S, T ) ≤ u (S′, T ′) . A negative outcome, −1,
is interpreted as defeat and a positive outcome, 1, as passage of a bill.

In Chua and Huang [3], the Shapley–Shubik index for ternary voting games
is considered. More recently, several works by Freixas [6, 7] and Freixas and
Zwicker [8] have been devoted to the study of voting systems with several
ordered levels of approval in the input and in the output. In their model,
the abstention is a level of input approval intermediate between yes and no
votes. A new approach to bicooperative games is presented by Grabisch and
Lange [11] by using the product of finite distributive lattices. They consider
a set of players N = {1, . . . , n} and the product L1 × · · · × Ln of the lattices
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Li = ({−1, 0, 1} ,≤) , i ∈ N , equipped with the pointwise order. Here, 1
means voting or playing in favor, −1 means voting or playing against, and 0
means abstention.

A one-point solution concept for cooperative games is a function that as-
signs to every cooperative game a n-dimensional real vector that represents
a payoff distribution over the players. The study of solution concepts is cen-
tral in cooperative game theory. The most important solution concept is the
Shapley value as proposed by Shapley [14]. The Shapley value assumes that
every player is equally likely to join to any coalition of the same size, and
all coalitions with the same size, are equally likely. Each component of the
Shapley value Φ (v) ∈ R

n is a weighted average of the marginal contributions
v (S ∪ {i})− v (S) of player i ∈ N , and it is given by

Φi (v) =
∑

S⊆N\{i}

s! (n− 1− s)!
n!

[v (S ∪ {i})− v (S)] ,

where s = |S| and n = |N | .
Another way to introduce the Shapley value is based on the marginal worth

vectors and corresponds with the following interpretation. Each permutation
π = (i1, i2, . . . , in) of the elements of N can be interpreted as a sequential
process of formation of the grand coalition N. Beginning from the empty set,
first the player i1 is included, next the player i2 and so until the inclusion
of the player in gives rise to the coalition N . In each one of these processes,
the corresponding marginal worth vector aπ (v) ∈ R

n evaluates the marginal
contribution of every player to the coalition formed by his predecessors, that is,

aπi (v) = v
(

πi ∪ {i}
)

− v
(

πi
)

for all i ∈ N,

where πi is the set of the predecessors of player i in the order π. The Shapley
value Φ (v) assigns the expected amount received by each player i ∈ N , that is,

Φi (v) =
1
n!

∑

π∈Πn

[

v
(

πi ∪ {i}
)

− v
(

πi
)]

.

where Πn is the set of all permutations of N and πi is the set of the prede-
cessors of player i in the order π.

A solution concept for cooperative games is a function that assigns a subset
of n-dimensional real vectors to every cooperative game (N, v). These vectors
represent the payoff distribution over the players.

The core [9] is one of the most studied solution concepts. The core of a
cooperative game (N, v) consists of all payoff vectors that distribute the total
savings v (N) among players and secure every coalition S ∈ 2N at least the
amount it can obtain by operating on its own, that is,

C (N, v) =
{

x ∈ R
n : x (N) = v (N) and x (S) ≥ v (S) for all S ∈ 2N

}

,

where x (S) =
∑

i∈S xi and x (∅) = 0.
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Although the core of a cooperative game is considered as a very natural
solution concept, most of the time it is empty. The core is nonempty for the
class of convex games [15]. This leads us to consider other solution concepts.
In 1978, Weber [17] proposed as a solution concept for a cooperative game:
a set that contains the core, which is always nonempty and easy to compute.
Its definition is based on the marginal worth vectors. The Weber set of game
v is the convex hull of all marginal worth vectors, that is,

W (N, v) = conv {aπ (v) : π ∈ Πn} .

Let us outline the contents of our work. In the next section, we study
some properties and characteristics of the distributive lattice 3N . The aim of
the third section is to introduce the Shapley value for a bicooperative game.
We obtain an axiomatization of the Shapley value in this context as well as
a nice formula to compute it. This value is the only one that satisfies our
five axioms. Four of them are extensions of the classic axioms for the Shapley
value: linearity, symmetry, dummy, and efficiency. The fifth axiom is refereed
to the structure of the family of coalitions in 3N . In the fourth section, we
define the above solutions concepts for bicooperative games and prove that the
core is always contained in the Weber set. The bisupermodular games, which
are introduced in the fifth section, play an important role in the relationship
between the Weber set and the core. We see that the bisupermodular games
are the only ones for which their Weber set and the core coincide, establishing
a characterization of these games. Throughout this chapter, we will write S∪i
and S \ i instead of S ∪ {i} and S \ {i}, respectively.

2 The Lattice 3N

Let N = {1, . . . , n} be a set and let 3N = {(A,B) : A,B ⊆ N, A ∩B = ∅} .
Grabisch and Labreuche [10] proposed a relation in 3N given by

(A,B) � (C,D)⇐⇒ A ⊆ C, B ⊇ D.

The set
(

3N ,�
)

is a partially ordered set (or poset) with the following prop-
erties:

1. (∅, N) is the first element: (∅, N) � (A,B) for all (A,B) ∈ 3N .
2. (N, ∅) is the last element: (A,B) � (N, ∅) for all (A,B) ∈ 3N .
3. Each pair {(A,B) , (C,D)} of elements of 3N has a join

(A,B) ∨ (C,D) = (A ∪ C,B ∩D) ,

and a meet
(A,B) ∧ (C,D) = (A ∩ C,B ∪D) .

Moreover,
(

3N ,�
)

is a finite distributive lattice. Two pairs (A,B) and (C,D)
are comparable if (A,B) � (C,D) or (C,D) � (A,B) ; otherwise, (A,B)
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and (C,D) are noncomparable. A chain of 3N is an induced subposet of 3N

in which any two elements are comparable. In
(

3N ,�
)

, all maximal chains
have the same number of elements, and this number is 2n+ 1. Thus, we can
consider the rank function ρ : 3N → {0, 1, . . . , 2n} such that ρ [(∅, N)] = 0 and
ρ [(S, T )] = ρ [(A,B)]+1 if (S, T ) covers (A,B) , that is, if (A,B) � (S, T ) and
there exists no (H,J) ∈ 3N such that (A,B) � (H,J) � (S, T ) . An element
of a lattice is ∨-irreducible if it covers only one element.

For the distributive lattice 3N , let P denote the set of all nonzero
∨-irreducible elements. Then P is the disjoint union C1 +C2 + · · ·+Cn of the
chains

Ci = {(∅, N \ i), (i,N \ i)}, 1 ≤ i ≤ n = |N |.
An order ideal of P is a subset I of P such that if x ∈ I and y ≤ x, then

y ∈ I. The set of all order ideals of P , ordered by inclusion, is the distributive
lattice J(P ), where the lattice operations ∨ and ∧ are just ordinary union
and intersection. The fundamental theorem for finite distributive lattices (see
[16, Theorem 3.4.1]) states that the map ϕ : 3N → J(P ) given by (A,B) �→
{(X,Y ) ∈ P : (X,Y ) � (A,B)} is an isomorphism (see Figure 1).

Example. LetN = {1, 2}. Then P = {(∅, {1}), (∅, {2}), ({2}, {1}), ({1}, {2})}
is the disjoint union of the chains (∅, {1}) � ({2}, {1}) and (∅, {2}) �
({1}, {2}). We will denote a = (∅, {1}), b = ({2}, {1}), c = (∅, {2}), and
d = ({1}, {2})}. Thus we obtain the lattice

J(P ) = {∅, {a}, {c}, {a, c}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}}.

In the following, we will denote by c
(

3N
)

the number of maximal chains in
3N and by c ([(A,B) , (C,D)]) the number of maximal chains in the sublattice
[(A,B) , (C,D)] .

Proposition 1. Thenumberofmaximal chainsof3N is (2n)!/2n,wheren= |N |.

Proof. The number of maximal chains of 3N is equal to the number of maximal
chains of J(P ), and this number is the number of extensions e(P ) of P to a
total order (see Stanley [16, Section 3.5]). Because P = C1 + · · ·+Cn, where
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Figure 1. J(P ) and 3N for two players
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the chain Ci satisfies |Ci| = 2 for 1 ≤ i ≤ n, we can apply the enumeration of
lattice paths method from Stanley [16, Example 3.5.4], and obtain

c
(

3N
)

= e(P ) =
(

2n
2, . . . , 2

)

=
(2n)!
2n

.

Proposition 2. For all (A,B) ∈ 3N , the number of maximal chains of the
sublattice [(∅, N) , (A,B)] is (n+ a− b)!/2a, where a = |A| and b = |B| .

Proof. Given the sublattice [(∅, N) , (A,B)] , we take N \ B = {i1, . . . , in−b}
and hence there are n− b elements (∅, N \ i) with i /∈ B (see Figure 2).

Because A ⊆ N \ B, then a ≤ n − b, and thus the set of the irreducible
elements of the sublattice can be written as

P[(∅,N),(A,B)] = C1 + · · ·+ Ca + Ca+1 + · · ·+ Ca+(n−b−a)

where for all ij ∈ A, 1 ≤ j ≤ a and ia+k /∈ A∪B, 1 ≤ k ≤ n− b−a, we obtain

Cj = {(∅, N \ ij) , (ij , N \ ij)} ,
Ca+k = {(∅, N \ ia+k)} .

That is, there are a chains such that |Cj | = 2 and there are n−b−a chains
such that |Ca+k| = 1. Because

|C1|+ · · ·+ |Ca|+ |Ca+1|+ · · ·+
∣

∣Ca+(n−b−a)

∣

∣ = 2a+ (n− b− a),

we can apply the enumeration of lattice paths method from Stanley
[16, Section 3.5] and we obtain

c ([(∅, N) , (A,B)]) =
(

2a+ (n− b− a)
2, . . . , 2, 1, . . . , 1

)

=
(n+ a− b)!

2a
.
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(i1, N \ i1), i1 ∈ A

(∅, N \ i1) (∅, N \ i2) (∅, N \ in−b)

(∅, N)

Figure 2. Irreducible elements of the sublattice
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Proposition 3. Let it be (A,B) , (C,D) ∈ 3N with (A,B) � (C,D) . The
number of maximal chains of the sublattice [(A,B) , (C,D)] is equal to the
number of maximal chains of the sublattice [(D,C) , (B,A)] .

Proof. First of all, note that if (A,B) � (C,D) , then A ⊆ C, B ⊇ D and
hence (D,C) � (B,A) . Therefore, [(D,C) , (B,A)] is a sublattice of 3N .

Let ϕ :
(

3N ,�
)

→
(

3N ,�
)

be the map defined by ϕ (A,B) = (B,A) . This
map is one to one as

ϕ (A,B) = ϕ (C,D)⇐⇒ (B,A) = (D,C)⇐⇒ (A,B) = (C,D) .

Clearly, (A,B) � (A1, B1) � · · · � (Ak, Bk) � (C,D) is a maximal chain in
the sublattice [(A,B) , (C,D)] if and only if

(D,C) � (Bk, Ak) � · · · � (B1, A1) � (B,A)

is a maximal chain in the sublattice [(D,C) , (B,A)] . Finally, it follows that

(X,Y ) ∈ [(A,B) , (C,D)]⇐⇒ (Y,X) ∈ [(D,C) , (B,A)] .

3 The Shapley Value for Bicooperative Games

We denote by BGN the real vector space of all bicooperative games on N,
that is

BGN =
{

b : 3N → R, b (∅, ∅) = 0
}

.

We consider the identity games
{

δ(S,T ) : (S, T ) ∈ 3N , (S, T ) 	= (∅, ∅)
}

, the
superior unanimity games

{

u(S,T ) : (S, T ) ∈ 3N , (S, T ) 	= (∅, ∅)
}

, and the

inferior unanimity games
{

u(S,T ) : (S, T ) ∈ 3N , (S, T ) 	= (∅, ∅)
}

, which are

defined, for any (S, T ) ∈ 3N such that (S, T ) 	= (∅, ∅) as follows.

The identity game δ(S,T ) : 3N → R is defined by

δ(S,T ) (A,B) =
{

1 if (A,B) = (S, T ) ,
0 otherwise.

The superior unanimity game u(S,T ) : 3N → R is given by

u(S,T ) (A,B) =
{

1 if (S, T ) � (A,B) , (A,B) 	= (∅, ∅) ,
0 otherwise.

The inferior unanimity game u(S,T ) : 3N → R is defined by

u(S,T ) (A,B) =
{

−1 if (A,B) � (S, T ) , (A,B) 	= (∅, ∅) ,
0 otherwise.
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It is easy to prove (see [2]) that all the above collections are bases of BGN .
A value on BGN is a function Φ : BGN → R

n, which associates to each
bicooperative game b a vector (Φ1 (b) , . . . , Φn (b)) representing the value that
every player has in the game b. In order to define a reasonable value for a
bicooperative game, we use the following interpretation of the Shapley value in
the bicooperative case. We consider that a player i estimates his participation
in game b, evaluating his marginal contributions b(S ∪ i, T )− b(S, T ) in those
coalitions (S ∪ i, T ) that are formed from others (S, T ) when i joins S and his
marginal contributions b(S, T ) − b(S, T ∪ i) in those (S, T ) that are formed
when i leaves T ∪ i.

Thus, a value for player i can be written as

Φi(b) =
∑

(S,T )∈3N\i

[

pi(S,T ) (b(S ∪ i, T )− b(S, T ))

+ pi
(S,T )

(b(S, T )− b (S, T ∪ i))
]

,

where for every (S, T ), the coefficient pi(S,T ) can be interpreted as the subjec-
tive probability that the player i has of joining the coalition S and pi

(S,T )
as

the subjective probability that the player i has of leaving the coalition T ∪ i.
Thus, Φi (b) is the value that the player i can expect in the game b.

Figure 3 shows the different sequential orders corresponding with the dif-
ferent chains from (∅, N) to (N, ∅) that contain (S, T ) and (S ∪ i, T ) and all
chains that contain the coalitions (S, T ∪ i) and (S, T ) .
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Figure 3. Chains that contain coalitions



A Survey of Bicooperative Games 195

If we assume that all sequential orders or chains have the same probability,
we can deduce formulas for these probabilities pi(S,T ) and pi

(S,T )
in terms of

the number of chains that contain these coalitions.
Applying Propositions 2 and 3, we obtain

pi(S,T ) =
c ([(∅, N) , (S, T )]) c ([(S ∪ i, T ) , (N, ∅)])

c (3N )

=

(n+ s− t)!
2s

· (n+ t− s− 1)!
2t

(2n)!
2n

=
(n+ s− t)! (n+ t− s− 1)!

(2n)!
2n−s−t,

pi
(S,T )

=
c ([(∅, N) , (S, T ∪ i)]) c ([(S, T ) (N, ∅)])

c (3N )

=

(n+ t− s)!
2t

· (n+ s− t− 1)!
2s

(2n)!
2n

=
(n+ t− s)! (n+ s− t− 1)!

(2n)!
2n−s−t.

Taking into account that pi(S,T ) and pi
(S,T )

are independent of player i, and
only depend of s = |S| and t = |T | , we can establish the following definition.

Definition 2. The Shapley value for the bicooperative game b ∈ BGN is given,
for each i ∈ N, by

Φi(b) =
∑

(S,T )∈3N\i

[

ps,t (b(S ∪ i, T )− b(S, T )) + p
s,t

(b(S, T )− b (S, T ∪ i))
]

,

where, for all (S, T ) ∈ 3N\i,

ps,t =
(n+ s− t)! (n+ t− s− 1)!

(2n)!
2n−s−t,

and

p
s,t

=
(n+ t− s)! (n+ s− t− 1)!

(2n)!
2n−s−t.

With the aim to characterize the Shapley value for bicooperative games,
we consider a set of reasonable axioms and we prove that the Shapley value
is the unique value on BGN that satisfies these axioms.
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Linearity axiom. For all α, β ∈ R, and b, w ∈ BGN ,

Φi(αb+ βw) = αΦi(b) + βΦi(w).

We now introduce the dummy axiom, understanding that a player is a
dummy player when his contributions to coalitions (S ∪ i, T ) formed with his
incorporation to S and his contributions to coalitions (S, T ) formed with his
desertion of T ∪ i coincide exactly with his individual contributions. Thus, a
player i ∈ N is a dummy in b ∈ BGN if, for every (S, T ) ∈ 3N\i, it holds

b(S ∪ i, T )− b(S, T )) = b ({i} , ∅) ,
b(S, T )− b (S, T ∪ i) = −b (∅, {i}) .

Note that if i ∈ N is a dummy in b ∈ BGN , then for all (S, T ) ∈ 3N\i,

b(S ∪ i, T )− b (S, T ∪ i) = b({i} , ∅)− b (∅, {i}) .

Because a dummy player i in a game b has no meaningful strategic role in
the game, the value that this player should expect in the game b must exactly
be the sum up of his contributions.

Dummy axiom. If player i ∈ N is dummy in b ∈ BGN , then

Φi(b) = b ({i} , ∅)− b (∅, {i}) .

In a similar way as in the cooperative case, for the comparison of roles in a
game to be meaningful, the evaluation of a particular position should depend
on the structure of the game but not on the labels of the players.

Symmetry axiom. For all b ∈ BGN and for any permutation π over N, it
holds that Φπi(πb) = Φi(b) for all i ∈ N , where πb (πS, πT ) = b (S, T ) and
πS = {πi : i ∈ S} .

In a cooperative game, it is assumed that all players decide to cooperate
among them and form the grand coalition N. This leads to the problem of
distributing the amount v (N) among them. Taking into account different
situations that can be modeled by a bicooperative game b, we suppose that the
amount b(N, ∅) is the maximal gain and b (∅, N) is the minimal loss obtained
by the players when they decide full cooperation. Then the maximal global
gain is given by b(N, ∅) − b (∅, N) . From this perspective, the value Φ must
satisfy the following axiom.

Efficiency axiom. For every b ∈ BGN , it holds
∑

i∈N
Φi(b) = b(N, ∅)− b (∅, N) .

It is easy to check that our Shapley value for bicooperative games verifies
the above axioms. But this value is not the unique value that satisfies these
four axioms. For instance, the value Φ(b) defined, for b ∈ BGN and i ∈ N, by
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Φi(b) =
∑

S⊆N\i

s! (n− s− 1)!
n!

[b (S ∪ i,N \ (S ∪ i))− b (S,N \ S)] ,

also verifies these axioms. However, note that, for any bicooperative game b ∈
BGN , this value is the Shapley value corresponding with the cooperative game
(N, v) , where v : 2N → R is defined by v (A) = b (A,N \A) if A 	= ∅, and
v (∅) = 0. This value is not satisfactory for any bicooperative game because
it considers the contributions to pairs of coalitions, in which all players take
part. Moreover, there is an infinite number of bicooperative games that give
rise to the same cooperative game.

For these reasons, if we want to obtain an axiomatic characterization of
our Shapley value for bicooperative games, we need to introduce an additional
axiom. Previously, we showed that a value on BGN that satisfies the above
four axioms is given by the expression

Φi(b) =
∑

(S,T )∈3N\i

[

ps,t (b(S ∪ i, T )− b(S, T )) + p
s,t

(b(S, T )− b (S, T ∪ i))
]

,

where ps,t and p
s,t

satisfy some conditions. We prove this result in several
steps. First of all, we show that a value for player i satisfying the linearity and
dummy axioms can be expressed as a linear combination of his contributions.

Theorem 1. Let Φi be a value for player i ∈ N that satisfies linearity and
dummy axioms. Then, for every b ∈ BGN ,

Φi(b) =
∑

(S,T )∈3N\i

[

pi(S,T ) (b(S ∪ i, T )− b(S, T ))

+pi
(S,T )

(b(S, T )− b (S, T ∪ i))
]

,

where
∑

(S,T )∈3N\i

pi(S,T ) = 1, and
∑

(S,T )∈3N\i

pi
(S,T )

= 1.

Proof. The set of identity games is a basis of BGN , and each game b ∈ BGN
can be written as

b =
∑

{(S,T )∈3N :(S,T ) �=(∅,∅)}
b(S, T )δ(S,T ).

By the linearity axiom,

Φi(b) =
∑

{(S,T )∈3N :(S,T ) �=(∅,∅)}
Φi(δ(S,T ))b(S, T ).

We denote by ai(S,T ) = Φi
(

δ(S,T )

)

for all (S, T ) 	= (∅, ∅) and thus, the value
Φi(b) is given by
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∑

(S,T )∈3N

ai(S,T )b(S, T )

=
∑

(S,T )∈3N\i

ai(S,T )b(S, T ) +
∑

{(S,T )∈3N :i∈S}
ai(S,T )b(S, T )

+
∑

{(S,T )∈3N :i∈T}
ai(S,T )b(S, T )

=
∑

{(S,T )∈3N\i:(S,T )�=(∅,∅)}
ai(S,T )b(S, T ) +

∑

(S,T )∈3N\i

ai(S∪i,T )b(S ∪ i, T )

+
∑

(S,T )∈3N\i

ai(S,T∪i)b(S, T ∪ i)

=
∑

(∅,∅) �=(S,T )∈3N\i

(

ai(S,T )b(S, T ) + ai(S∪i,T )b(S ∪ i, T ) + ai(S,T∪i)b(S, T ∪ i)
)

+ ai({i},∅)b({i} , ∅) + ai(∅,{i})b(∅, {i}).

Let us consider the games wi
(A,B) : 3N → R where, for each (A,B) ∈ 3N\i,

the game wi
(A,B) is defined by

wi
(A,B) (S, T ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wi
(A,B) (S \ i, T ) if i ∈ S,
wi

(A,B) (S, T \ i) if i ∈ T,
1 if i /∈ S ∪ T, (∅, ∅) 	= (S, T ) � (A,B) ,
0 otherwise.

Clearly, player i is a dummy in wi
(A,B) for each (A,B) ∈ 3N\i and hence

Φi(wi
(A,B)) = 0 by the dummy axiom. If we apply the above equality to the

game wi
(A,B), we get

∑

{(S,T )∈3N\i:(∅,∅)�=(S,T )�(A,B)}

(

ai(S,T ) + ai(S∪i,T ) + ai(S,T∪i)

)

= 0.

We show, by induction on ρ [(S, T )] , the rank of the coalitions, that for all
(S, T ) ∈ 3N\i, (S, T ) 	= (∅, ∅) , it holds that ai(S,T ) + ai(S∪i,T ) + ai(S,T∪i) = 0.
Note that the first element in

(

3N\i,�
)

is (∅, N \ i) , and so ρ [(∅, N \ i)] = 0.
Thus, we obtain

∑

{(S,T )∈3N\i:(S,T )�(∅,N\i)}

(

ai(S,T ) + ai(S∪i,T ) + ai(S,T∪i)

)

= ai(∅,N\i) + ai({i},N\i) + ai(∅,N) = 0.

Now assume the property for (H,J) ∈ 3N\i with ρ [(H,J)] ≤ k−1 and suppose
that (S, T ) ∈ 3N\i has ρ [(S, T )] = k. Then
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Φi(wi
(S,T )) =

∑

{(H,J)∈3N\i:(∅,∅)�=(H,J)�(S,T )}

(

ai(H,J) + ai(H∪i,J) + ai(H,J∪i)

)

= ai(S,T ) + ai(S∪i,T ) + ai(S,T∪i)

+
∑

{(H,J)∈3N\i:(∅,∅)�=(H,J)�(S,T )}

(

ai(H,J) + ai(H∪i,J) + ai(H,J∪i)

)

= ai(S,T ) + ai(S∪i,T ) + ai(S,T∪i) = 0,

where the last but one equality follows from the induction hypothesis, and the
last one follows from the dummy axiom. Now for each (S, T ) ∈ 3N\i, define

pi(∅,∅) = ai({i},∅), pi
(∅,∅) = −ai(∅,{i}), pi(S,T ) = ai(S∪i,T ), pi

(S,T )
= −ai(S,T∪i),

and we compute

Φi(b)

=
∑

(S,T )∈3N\i

[(

pi
(S,T )

− pi(S,T )

)

b(S, T )

+ pi(S,T )b(S ∪ i, T )− pi
(S,T )

b (S, T ∪ i)
]

=
∑

(S,T )∈3N\i

[

pi(S,T ) (b(S ∪ i, T )− b(S, T )) + pi
(S,T )

(b(S, T )− b (S, T ∪ i))
]

.

Finally, it is easy to check that player i is a dummy in the games u({i},N\i)
and u(N\i,{i}), and hence
∑

(S,T )∈3N\i

pi(S,T ) =
∑

(S,T )∈3N\i

ai(S∪i,T ) =
∑

{(S,T )∈3N :i∈S}
ai(S,T )

=
∑

{(S,T )∈3N :i∈S}
Φi
(

δ(S,T )

)

= Φi

⎛

⎝

∑

{(S,T )∈3N :i∈S}
δ(S,T )

⎞

⎠

= Φi
(

u({i},N\i)
)

= u({i},N\i) ({i} , ∅)− u({i},N\i) (∅, {i}) = 1.

∑

(S,T )∈3N\i

pi
(S,T )

=
∑

(S,T )∈3N\i

−ai(S,T∪i) =
∑

{(S,T )∈3N :i∈T}
−ai(S,T )

=
∑

{(S,T )∈3N :i∈T}
−Φi

(

δ(S,T )

)

= Φi

⎛

⎝

∑

{(S,T )∈3N :i∈T}
−δ(S,T )

⎞

⎠

= Φi

(

u(N\i,{i})

)

= u(N\i,{i}) ({i} , ∅)− u(N\i,{i}) (∅, {i})
= 1.
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Now, we show that if we add the symmetry axiom to the linearity and
dummy axioms, the coefficients pi(S,T ) and pi

(S,T )
only depend on the cardi-

nality of S and T.

Theorem 2. Let Φi be a value for player i ∈ N defined, for every game
b ∈ BGN , by

Φi(b) =
∑

(S,T )∈3N\i

[

pi(S,T ) (b(S ∪ i, T )− b(S, T ))

+ pi
(S,T )

(b(S, T )− b (S, T ∪ i))
]

.

If Φi satisfies the symmetry axiom, then pi(S,T ) = ps,t and pi
(S,T )

= p
s,t

for all

(S, T ) ∈ 3N\i with s = |S| and t = |T | .

Proof. Let Φi be a value for player i given by

Φi(b) =
∑

(S,T )∈3N\i

[

pi(S,T ) (b(S ∪ i, T )− b(S, T ))

+ pi
(S,T )

(b(S, T )− b (S, T ∪ i))
]

.

Let (S1, T1) and (S2, T2) be coalitions in 3N\i such that (S1, T1) 	= (∅, ∅) 	=
(S2, T2) satisfying that |S1| = |S2| < n−1 and |T1| = |T2| < n−1. Consider a
permutation π of N that takes πS1 = S2 and πT1 = T2 while leaving i fixed.
Then πδ(S1,T1) = δ(S2,T2) and

pi(S1,T1)
= Φi(δ(S1∪i,T1)) = Φi(δ(S2∪i,T2)) = pi(S2,T2)

,

pi
(S1,T1)

= −Φi(δ(S1,T1∪i)) = −Φi(δ(S2,T2∪i)) = pi
(S2,T2)

,

where the second equality follows from the symmetry axiom.
Now, let i, j ∈ N, i 	= j and let (S, T ) ∈ 3N\{i,j}. Let us consider the

permutation π of N that interchanges i and j while leaving the remaining
players fixed. Then πδ(S,T ) = δ(S,T ) and

pi(S,T ) = Φi(δ(S∪i,T )) = Φj(δ(S∪j,T )) = pj(S,T ),

pi
(S,T )

= −Φi(δ(S,T∪i)) = −Φj(δ(S,T∪j)) = pj
(S,T )

.

Moreover,

pi(N\i,∅) = Φi(δ(N,∅)) = Φj(δ(N,∅)) = pj(N\j,∅),

pi
(∅,N\i) = −Φi(δ(∅,N)) = −Φj(δ(∅,N)) = pj

(∅,N\j).

Hence, for every (S, T ) ∈ 3N\i there exist ps,t and p
s,t

such that pi(S,T ) = ps,t

and pi
(S,T )

= p
s,t

for all i ∈ N.
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The following theorem characterizes the values Φ = (Φ1, . . . , Φn) that sat-
isfy the above axioms and are efficient.

Theorem 3. Let Φ = (Φ1, . . . , Φn) be a value on BGN defined, for every game
b and for all i ∈ N , by

Φi(b) =
∑

(S,T )∈3N\i

[

ps,t (b(S ∪ i, T )− b(S, T )) + p
s,t

(b(S, T )− b(S, T ∪ i))
]

.

Then, the value Φ satisfies the efficiency axiom if and only if it is satisfied

pn−1,0 =
1
n
, p

0,n−1
=

1
n
,

and
(n− s− t) ps,t + tp

s,t−1
= (n− s− t) p

s,t
+ sps−1,t

for all 0 ≤ s, t ≤ n− 1 and 0 < s+ t ≤ n− 1.

Proof. For every b ∈ BGN , we have that
∑

i∈N Φi(b) is equal to

∑

i∈N

∑

(S,T )∈3N\i

[

ps,t (b(S ∪ i, T )− b(S, T )) + p
s,t

(b(S, T )− b(S, T ∪ i))
]

=
∑

i∈N

∑

(S,T )∈3N\i

[

ps,tb(S ∪ i, T )− p
s,t
b(S, T ∪ i) +

(

−ps,t + p
s,t

)

b (S, T )
]

=
∑

(S,T )∈3N

b (S, T )
[

sps−1,t − tps,t−1
+ (n− s− t)

(

−ps,t + p
s,t

)]

= b (N, ∅)npn−1,0 − b (∅, N)np
0,n−1

+
∑

(∅,∅) �=(S,T )∈3N

(S,T )/∈{(∅,N),(N,∅)}

b (S, T )
[

sps−1,t − tps,t−1
+ (n− s− t)

(

−ps,t + p
s,t

)]

.

If the coefficients satisfy the relations for the coefficients, then Φ satisfies
the efficiency axiom.

Conversely, fix (S, T ) ∈ 3N , (S, T ) 	= (∅, ∅) , and applying the preceding
equality to the identity game δ(S,T ), we have that

∑

i∈N Φi(δ(S,T )) is equal to

⎧

⎪

⎨

⎪

⎩

npn−1,0 if (S, T ) = (N, ∅) ,
−np

0,n−1
if (S, T ) = (∅, N) ,

sps−1,t − tps,t−1
+ (n− s− t)

(

p
s,t
− ps,t

)

otherwise.

Thus, if Φ satisfies the efficiency axiom, the relations for the coefficients are
true.
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As we have already indicated, these four axioms are not sufficient to char-
acterize the Shapley value for bicooperative games. Now, we introduce an
additional axiom and prove that our Shapley value is the unique value on
BGN that verifies the five axioms. This new axiom will take into account the
structure of the set of the coalitions in 3N .

First of all, note that the coalitions (S \ j, T ) and (S, T ∪ i) where j ∈ S
and i /∈ S ∪ T have the same rank

ρ [(S \ j, T )] = ρ [(S, T ∪ i)] = n+ s− t− 1.

However, the number of maximal chains in the sublattice [(∅, N) , (S \ j, T )]
is not the same as the number of maximal chains in [(∅, N) , (S, T ∪ i)] as, by
Proposition 2,

c ([(∅, N) , (S \ j, T )]) =
(n+ s− 1− t)!

2s−1
,

c ([(∅, N) , (S, T ∪ i)]) =
(n+ s− t− 1)!

2s
.

Hence, beginning from the coalition (∅, N) , the probability of formation of
the coalition (S, T ) with the incorporation of one player j to (S \ j, T ) must
be distinct from the probability of formation (S, T ) with the desertion of one
player i in (S, T ∪ i) .

In analogous form, if we consider (S, T \ k) with k ∈ T and (S ∪ i, T ),
which have the same rank, the number of maximal chains in [(S, T \ k) , (N, ∅)]
is not equal to the number of maximal chains in [(S ∪ i, T ) , (N, ∅)] . There-
fore the probability of formation of (N, ∅) beginning from (S, T \ k) when
one player k leaves the coalition T must be distinct from the probability of
formation of (N, ∅) when one player i forms the coalition (S ∪ i, T ) .

Taking into account these considerations, the values that one player must
obtain in the identity games must be proportional to the number of maximal
chains in the corresponding sublattices. It must be also considered that one
value verifying the above four axioms assigns a non-negative real number to
one player i in the identity game δ(S,T ) if this player belongs to S and a non-
positive real number if the player i belongs to T. From this point of view, our
value must be satisfied by the following axiom (see Figure 4).

Structural axiom. For every (S, T ) ∈ 3N\i, j ∈ S and k ∈ T, it holds

c ([(∅, N) , (S \ j, T )])
c ([(∅, N) , (S, T ∪ i)]) = −

Φj(δ(S,T ))
Φi
(

δ(S,T∪i)
) ,

c ([(S, T \ k) , (N, ∅)])
c ([(S ∪ i, T ) , (N, ∅)]) = −

Φk(δ(S,T ))
Φi
(

δ(S∪i,T )

) .

Theorem 4. Let Φ be a value on BGN . The value Φ is the Shapley value if and
only if Φ satisfies the efficiency axiom and each component satisfies linearity,
dummy, symmetry, and structural axioms.
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Figure 4. Structural axiom

Proof. If Φ is a value that satisfies linearity, dummy, symmetry, and efficiency,
then

Φi(b) =
∑

(S,T )∈3N\i

[

ps,t (b(S ∪ i, T )− b(S, T )) + p
s,t

(b(S, T )− b (S, T ∪ i))
]

and the coefficients ps,t and p
s,t

satisfy

pn−1,0 =
1
n
, p

0,n−1
=

1
n
,

and
(n− s− t) ps,t + tp

s,t−1
= (n− s− t) p

s,t
+ sps−1,t. (1)

Taking into account that the value Φ verifies the structural axiom, then

ps−1,t = 2p
s,t
, (2)

p
s,t−1

= 2ps,t. (3)

We prove that these coefficients, verifying all above conditions, are determined
in unique form. Indeed, consider a coalition (S, T ) with |S| = n−1 and |T | = 0.
If we apply equation (1) to this coalition, we obtain
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pn−1,0 = p
n−1,0

+ (n− 1) pn−2,0

and by (2), pn−2,0 = 2p
n−1,0

. Taking into account that pn−1,0 = 1
n and

combining the above equalities, we have that

1
n

= (1 + 2 (n− 1)) p
n−1,0

and hence

p
n−1,0

=
1

n (2n − 1)
=

1! (2n − 2)!

2n−1 (2n)!
2n, pn−2,0 =

2

n (2n − 1)
=

1! (2n − 2)!

2n−2 (2n)!
2n.

In similar way, if we apply (1) and (2) to a coalition (S, T ) with |S| = n−2
and |T | = 0, we get

2pn−2,0 = 2p
n−2,0

+ (n− 2) pn−3,0,

pn−3,0 = 2p
n−2,0

,

and hence

p
n−2,0

=
2! (2n− 3)!
2n−2 (2n)!

2n, pn−3,0 =
2! (2n− 3)!
2n−3 (2n)!

2n.

If we assume that

p
s+1,0

=
(n− s− 1)! (n+ s)!

2s+1 (2n)!
2n, ps,0 =

(n− s− 1)! (n+ s)!
2s (2n)!

2n

then, for |S| = s and |T | = 0, applying (1) and (2),

(n− s) ps,0 = (n− s) p
s,0

+ sps−1,0,

ps−1,0 = 2p
s,0
,

and combining both expressions, we obtain, for 1 ≤ s ≤ n− 1,

p
s,0

=
(n− s)! (n+ s− 1)!

2s (2n)!
2n, ps−1,0 =

(n− s)! (n+ s− 1)!
2s−1 (2n)!

2n.

If we apply the same reasoning with the equalities (1) and (3) beginning
with a coalition (S, T ) with |S| = 0 and |T | = n − 1, we obtain, for 1 ≤ t ≤
n− 1,

p0,t =
(n− t)! (n+ t− 1)!

2t (2n)!
2n, p

0,t−1
=

(n− t)! (n+ t− 1)!
2t−1 (2n)!

2n.

If we now consider (S, T ) with |S| = s and |T | = 1, we apply (1) and (3),

(n− s− 1) ps,1 + p
s,0

= (n− s− 1) p
s,1

+ sps−1,1,
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ps,1 =
1
2
p
s,0
, ps−1,1 =

1
2
p
s−1,0

,

and substitute the values already obtained, then

ps−1,1 =
(n− s+ 1)! (n+ s− 2)!

2s (2n)!
2n, p

s,1
=

(n− s+ 1)! (n+ s− 2)!
2s+1 (2n)!

2n.

If we assume that

ps−1,t−1 =
(n− s+ t− 1)! (n+ s− t)!

2s+t−2 (2n)!
2n,

p
s,t−1

=
(n− s+ t− 1)! (n+ s− t)!

2s+t−1 (2n)!
2n,

then applying p
s,t−1

= 2ps,t (3) we obtain, for all 0 ≤ s, t ≤ n − 1 and
s+ t ≤ n− 1,

ps,t =
(n+ s− t)! (n+ t− s− 1)!

2s+t (2n)!
2n.

Finally, applying (1) and (2),

(n− s− t) ps,t + tp
s,t−1

= (n− s− t) p
s,t

+ sps−1,t,

ps−1,t = 2p
s,t
,

it holds that

p
s,t

=
(n+ t− s)! (n+ s− t− 1)!

2s+t (2n)!
2n

for all 0 ≤ s, t ≤ n− 1 and s+ t ≤ n− 1.

4 The Core and the Weber Set

Now, some solution concepts for bicooperative games are introduced, where
a solution concept is a rule that assigns to every bicooperative game a set
of payoff vectors that distribute the total saving among the players. Taking
into account different situations that can be modeled by a bicooperative game
(N, b), the amount b (N, ∅) is the maximal gain and b (∅, N) is the minimal
loss obtained by the players when they decide full cooperation and so, the
maximal global gain is given by b (N, ∅) − b (∅, N) . A vector x ∈ R

n that
satisfies

∑

i∈N xi = b (N, ∅)− b (∅, N) is an efficient vector, and the set of all
efficient vectors is called preimputation set, which is defined by

I∗(N, b) =

{

x ∈ R
n :
∑

i∈N
xi = b (N, ∅)− b (∅, N)

}

.

The imputations for game b are the preimputations that satisfy the indi-
vidual rationality principle for all players, that is, each player gets at least the
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difference between the amount that he can attain by himself taking the rest
of players against and the value of the coalition (∅, N) ,

I(N, b) = {x ∈ I∗(N, b) : xi ≥ b(i,N \ i)− b (∅, N) for all i ∈ N} .

A satisfactory distribution criterion could be that every coalition (S, T ) ∈
3N receives at least the amount it can contribute to the coalition (∅, N) , that
is, the amount b(S, T ) − b (∅, N) . This leads us to the following definition of
the core of a bicooperative game.

Definition 3. Let b ∈ BGN . The core of b is the set

C(N, b) =
{

x ∈ I∗(N, b) : there exist y, z ∈ R
n such that x = y + z, and

y (S) + z (N \ T ) ≥ b(S, T )− b (∅, N) , for all (S, T ) ∈ 3N

}

.

Let x ∈ I∗(N, b) be such that x = y + z. Then

y (S)+z (N \ T ) ≥ b(S, T )−b (∅, N)⇐⇒ y (N \ S)+z (T ) ≤ b(N, ∅)−b (S, T ) .

Therefore, C(N, b) is also the set of vectors x ∈ I∗(N, b) such that there
exist y, z ∈ R

n with x = y+z and y (N \ S)+z (T ) ≤ b(N, ∅)− b (S, T ) for all
(S, T ) ∈ 3N . Thus, for each (S, T ) ∈ 3N , the payoff y (N \ S) plus the payoff
z (T ) must not exceed b(N, ∅)− b (S, T ) , which is the amount that is foregone
by forming the coalition (S, T ) instead of the coalition (N, ∅) .

Notice also that x ∈ C(N, b) if and only if there exist y, z ∈ R
n such that

x = y + z, and

y (S) + z (N \ T ) ≥ b(S, T )− b (∅, N) ,
y (N \ S) + z (T ) ≤ b(N, ∅)− b (S, T ) ,

for all (S, T ) ∈ 3N . These inequalities are similar in the bicooperative context
to the inequalities characterizing the core in a cooperative game v : 2N → R,

C(v) =
{

x ∈ R
n : x (S) ≥ v (S) − v (∅) , x (N \ S) ≤ v (N) − v (S) , ∀S ∈ 2N

}

.

In order to extend the idea of the Weber set to a bicooperative game (N, b) ,
it is assumed that all players estimate that (N, ∅) is formed as a sequential
process where at each step a player joins the defender coalition or a player
leaves the detractor coalition. These sequential processes are obtained for
each chain from (∅, N) to (N, ∅) . For each chain, a player can evaluate his
contribution when he joins the defenders or when he leaves the detractors.
This can be reflected in the vectors of R

n called superior marginal worth
vectors and inferior marginal worth vectors. Thus, we introduce the following
notation.

For N = {1, . . . , n} , let N = {−n, . . . ,−1, 1, . . . , n} . Let Λ : 3N → 2N

be the isomorphism defined by Λ (S, T ) = S ∪ {−i : i ∈ N \ T} ∈ 2N , for
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each (S, T ) ∈ 3N . For instance, Λ (∅, N) = ∅ and Λ (N, ∅) = N. Because
S∩T = ∅ ⇔ S ⊆ N\T , we see that i ∈ Λ (S, T ) and i > 0 imply −i ∈ Λ (S, T ) .

In the lattice
(

3N ,�
)

, we consider the set of all maximal chains going from
(∅, N) to (N, ∅) and denote this set by Θ

(

3N
)

. If θ ∈ Θ
(

3N
)

is the maximal
chain

(∅, N) � (S1, T1) � · · · � (Sj , Tj) � · · · � (S2n−1, T2n−1) � (N, ∅) ,

then we can write the following associated chain of sets in 2N ,

∅ ⊂ {i1} ⊂ · · · ⊂ {i1, . . . , ij} ⊂ · · · ⊂ {i1, . . . , i2n−1} ⊂ N,

where {i1, . . . , ij} = Λ (Sj , Tj) for j = 1, . . . , 2n. We define the vector θ (ij) =
(i1, . . . , ij) , where the last component ij ∈ N satisfies the following property:
if ij > 0, then the player ij ∈ Sj and ij /∈ Sj−1, that is, ij is the last player
who joins Sj , and if ij < 0, then the player −ij /∈ Tj and −ij ∈ Tj−1,
that is, −ij is the last player who leaves Tj−1. Equivalently, the elements in
θ (ij) = (i1, . . . , ij) are written following the order of incorporation in the
defenders coalitions or desertion from the detractors coalition (depending on
the sign of each ik) in the coalitions in chain θ . Moreover, we write

θ (ij) \ ij = (i1, i2, . . . , ij−1) = θ (ij−1)

and ik ∈ θ (ij) when ik is one component of the vector θ (ij) , that is 1 ≤ k ≤ j.
Note that an equivalence between maximal chains and vectors θ = (i1, . . . , i2n)
is obtained. Fix an order θ = (i1, . . . , i2n) , we also define α [θ (ij)] = (Sj , Tj)
such that Λ (Sj , Tj) = {i1, . . . , ij}. Moreover, α [θ (ij) \ ij ] = α [θ (ij−1)] =
(Sj−1, Tj−1) . In particular, α [θ (i2n)] = (N, ∅) and α [θ (i1) \ i1] = (∅, N).

For example, let it be N = {1, 2, 3} and let θ ∈ Θ
(

3N
)

be given by

(∅, N) � (∅, {1, 3}) � ({2}, {1, 3}) � ({2}, {1}) � ({2}, ∅) � ({2, 3}, ∅) � (N, ∅).

Its associated chain of sets in 2N is given by

∅ ⊂ {−2} ⊂ {−2, 2} ⊂ {−2, 2,−3} ⊂ {−2, 2,−3,−1} ⊂ {−2, 2,−3,−1, 3} ⊂ N.

and the maximal chain can be represented by the order θ=(−2, 2,−3,−1, 3, 1).
A coalition, for instance ({2} , ∅) , can be also represented by α [θ (−1)] and
by Λ−1 ({−2, 2,−3,−1}) .

Definition 4. Let θ ∈ Θ
(

3N
)

and b ∈ BGN . The inferior and superior mar-
ginal worth vectors with respect to θ are mθ (b) ,Mθ (b) ∈ R

n given by

mθ
i (b) = b (α [θ (−i)])− b (α [θ (−i) \ −i]) ,

Mθ
i (b) = b (α [θ (i)])− b (α [θ (i) \ i]) ,

for all i ∈ N. The vector aθ (b) = mθ (b)+Mθ (b) is called the marginal worth
vector with respect to θ.
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We show that the marginal worth vectors are preimputations.

Proposition 4. For any b ∈ BGN and θ ∈ Θ
(

3N
)

, we have
∑

i∈N
aθi (b) = b (N, ∅)− b (∅, N) .

Proof. Let b ∈ BGN and θ ∈ Θ
(

3N
)

. It holds that
∑

i∈N

aθ
i (b) =

∑

i∈N

[

mθ
i (b) + Mθ

i (b)
]

=
∑

i∈N

[b (α [θ (−i)]) − b (α [θ (−i) \ −i]) + b (α [θ (i)]) − b (α [θ (i) \ i])]

=

2n
∑

j=1

[b (α [θ (ij)]) − b (α [θ (ij) \ ij ])]

= b (α [θ (i1)]) − b (α [θ (i1) \ i1]) +
2n
∑

j=2

[b (α [θ (ij)]) − b (α [θ (ij−1)])]

= b (N, ∅) − b (∅, N) .

Proposition 5. Let b ∈ BGN and θ ∈ Θ
(

3N
)

. Then,
∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) = b (S, T )− b (∅, N) ,

for every (S, T ) in the chain θ.

Proof. Let θ ∈ Θ
(

3N
)

and (S, T ) in the chain θ with |S| = s, |T | = t, s+t ≤ n
and such that Λ (S, T ) = {i1, i2, . . . , in+s−t} where the ij are written following
the order of incorporation in θ, that is, θ (ij) = (i1, i2, . . . , ij) for all 1 ≤ j ≤
n+ s− t. Then,
∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) =
∑

{ij∈Λ(S,T ):ij>0}
Mθ

ij (b) +
∑

{ij∈Λ(S,T ):ij<0}
mθ

−ij (b)

=
∑

ij∈Λ(S,T )

[b (α [θ (ij)])− b (α [θ (ij) \ ij ])]

=
n+s−t
∑

j=1

[b (α [θ (ij)])− b (α [θ (ij) \ ij ])]

= b (S, T )− b (∅, N) .

Note that for (S, T ) = (N, ∅), we have
∑

j∈N

[

mθ
j (b) +Mθ

j (b)
]

= b (N, ∅)− b (∅, N) .
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Definition 5. Let b ∈ BGN . The Weber set of b is the convex hull of the
marginal worth vectors, that is, W (N, b) = conv

{

aθ (b) : θ ∈ Θ
(

3N
)}

.

As the preimputation set is a convex set, W (N, b) ⊆ I∗ (N, b) . However,
in general, the vectors of the Weber set are not imputations. For example, let
(N, b) with N = {1, 2} and b : 3N → R defined as b (∅, N) = −5, b (∅, i) = −4,
b (i, j) = −1, b (i, ∅) = 1, b (N, ∅) = 2, for all i, j ∈ N. If we consider θ =
(−2, 2,−1, 1) , then aθ1 (b) = mθ

1 (b) +Mθ
1 (b) = 3. As b (1, 2) − b (∅, N) = 4,

then aθ1 (b) < b (1, N \ 1)− b (∅, N) and aθ (b) /∈ I (N, b) .
Because I (N, b) is a convex set, then W (N, b) ⊆ I (N, b) if all marginal

worth vectors are imputations. For this, a sufficient condition is the zero-
monotonicity of the game b.

Definition 6. A bicooperative game b ∈ BGN is monotonic when for all coali-
tions (S1, T1) , (S2, T2) with (S1, T1) � (S2, T2), it holds that b (S1, T1) ≤
b (S2, T2).

Definition 7. The zero-normalization of a bicooperative game b ∈ BGN is the
game b0 ∈ BGN defined by

b0 (S, T ) = b (S, T )−
∑

j∈S
[b (j,N \ j)− b (∅, N)] , for all (S, T ) ∈ 3N .

Definition 8. A bicooperative game b ∈ BGN is called zero-monotonic if its
zero-normalization is monotonic.

Proposition 6. Let b ∈ BGN be a zero-monotonic bicooperative game. Then,
for every θ ∈ Θ

(

3N
)

, the marginal worth vector associated to θ is an impu-
tation for the game b.

Proof. Let θ ∈ Θ
(

3N
)

. Because the vector aθ (b) is efficient, we prove that

aθi (b) = b (α [θ (i)])− b (α [θ (i) \ i]) + b (α [θ (−i)])− b (α [θ (−i) \ −i])
= b0 (α [θ (i)]) +

∑

{ij∈θ(i):ij>0}
[b (ij , N \ ij)− b (∅, N)]

− b0 (α [θ (i) \ i])−
∑

{ij∈θ(i)\i:ij>0}
[b (ij , N \ ij)− b (∅, N)]

+ b0 (α [θ (−i)]) +
∑

{ij∈θ(−i):ij>0}
[b (ij , N \ ij)− b (∅, N)]

− b0 (α [θ (−i) \ −i])−
∑

{ij∈θ(−i)\−i:ij>0}
[b (ij , N \ ij)− b (∅, N)]

= b0 (α [θ (i)])− b0 (α [θ (i) \ i]) + b0 (α [θ (−i)])
− b0 (α [θ (−i) \ −i]) + b (i,N \ i)− b (∅, N) ≥ b (i,N \ i)− b (∅, N) ,

where the inequality follows the zero-monotonicity of b.
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Now we prove that the core of a bicooperative game is always included in
its Weber set. The proof is closely related to the proof given by Derks [4] of
the parallel result for cooperative games.

Theorem 5. If b ∈ BGN , then C (N, b) ⊆W (N, b) .

Proof. Assume that there exists x ∈ C (N, b) such that x /∈W (N, b). Because
x ∈ C (N, b) , then

∑

i∈N xi = b (N, ∅) − b (∅, N) , and there exist y, z ∈ R
n

such that x=y+z and y (S)+z (N \ T )≥b(S, T )− b (∅, N) for all (S, T )∈3N .
Because W (N, b) is convex and closed, by the Separation Theorem (see
Rockafellar [13]), there exists u ∈ R

n such that

w · u > x · u for all w ∈W (N, b) . (4)
In particular, the above inequality holds for all marginal worth vectors

w = aθ (b) with θ ∈ Θ
(

3N
)

. If the components of vector u are ordered in
nonincreasing order ui1 ≥ ui2 ≥ · · · ≥ uin−1 ≥ uin , let θ ∈ Θ

(

3N
)

be the
maximal chain given by θ = (−i1, i1,−i2, i2, . . . ,−in, in) . Note that θ (ij) \
ij = θ (−ij) for all 1 ≤ j ≤ n, θ (−ij) \ −ij = θ (ij−1) for all 2 ≤ j ≤ n and
α [θ (−i1) \ −i1] = (∅, N) . Then

aθ (b) · u =
n
∑

j=1

aθ
ij

(b) uij =
n
∑

j=1

[

Mθ
ij

(b) + mθ
ij

(b)
]

uij

=
n
∑

j=1

uij [b (α [θ (ij)]) − b (α [θ (ij) \ ij ]) + b (α [θ (−ij)]) − b (α [θ (−ij) \ −ij ])]

=
n
∑

j=1

uij [b (α [θ (ij)]) − b (α [θ (ij−1)])]

= uinb (N, ∅) +

n−1
∑

j=1

uij b (α [θ (ij)]) − ui1b (∅, N) −
n
∑

j=2

uij b (α [θ (ij−1)])

= uinb (N, ∅) − ui1b (∅, N) +

n−1
∑

j=1

(

uij − uij+1

)

b (α [θ (ij)])

≤ uinb (N, ∅) − ui1b (∅, N) +

n−1
∑

j=1

(

uij − uij+1

)

[

j
∑

k=1

yik +

j
∑

k=1

zik + b (∅, N)

]

= uin

[

n
∑

k=1

yik +

n
∑

k=1

zik + b (∅, N)

]

− ui1b (∅, N)

+

n−1
∑

j=1

(

uij − uij+1

)

[

j
∑

k=1

yik +

j
∑

k=1

zik + b (∅, N)

]

=
n
∑

j=1

uij

(

yij + zij

)

=
n
∑

j=1

uij xij = x · u

which is in contradiction with the inequality (4). We conclude that C (N, b) ⊆
W (N, b) .
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5 Bisupermodular Games

We now introduce a special class of bicooperative games.

Definition 9. A bicooperative game b ∈ BGN is called bisupermodular if, for
all (S1, T1) and (S2, T2), it holds

b((S1, T1) ∨ (S2, T2)) + b ((S1, T1) ∧ (S2, T2)) ≥ b (S1, T1) + b (S2, T2) ,

or equivalently

b(S1 ∪ S2, T1 ∩ T2) + b (S1 ∩ S2, T1 ∪ T2) ≥ b (S1, T1) + b (S2, T2) .

The next proposition characterizes the bisupermodular games as those
bicooperative games for which the marginal contributions of a player to one
coalition in 3N is never less than the marginal contribution of this player to
any coalition contained in it. This characterization will be used in the proofs
of the following results.

Proposition 7. Let b ∈ BGN . The bicooperative game b is bisupermodular if
and only if for all i ∈ N and (S1, T1), (S2, T2) ∈ 3N\i such that (S1, T1) �
(S2, T2) , it holds b (S2 ∪ i, T2) − b (S2, T2) ≥ b (S1 ∪ i, T1) − b (S1, T1) , and
b (S2, T2)− b (S2, T2 ∪ i) ≥ b (S1, T1)− b (S1, T1 ∪ i) .

Proof. Necessary condition. Let (S1, T1), (S2, T2) ∈ 3N\i with (S1, T1) �
(S2, T2). If S′

1 = S1 ∪ i and we apply the definition of bisupermodularity
to (S′

1, T1) and (S2, T2) , it follows

b (S′
1 ∪ S2, T1 ∩ T2) + b (S′

1 ∩ S2, T1 ∪ T2) ≥ b (S1 ∪ i, T1) + b (S2, T2) ,

and hence b (S2 ∪ i, T2) + b (S1, T1) ≥ b (S1 ∪ i, T1) + b (S2, T2) .
In an analogous form, taking T ′

2 = T2 ∪ i and applying the definition of
supermodularity to (S1, T1) and (S2, T

′
2) , it follows

b (S1, T1 ∪ i) + b (S2, T2) ≥ b (S1, T1) + b (S2, T2 ∪ i) .

Sufficient condition. Let (S1, T1), (S2, T2) ∈ 3N . If (S1, T1) � (S2, T2)
or (S2, T2) � (S1, T1), the equality trivially holds. So, we consider the case
(S1, T1) ∧ (S2, T2) 	= (S1, T1) and (S1, T1) ∧ (S2, T2) 	= (S2, T2).

Let θ ∈ Θ
(

3N
)

be a maximal chain that contains the coalitions (S2, T2)
and (S1, T1) ∨ (S2, T2) . As Λ (S1, T1) \ Λ (S2, T2) 	= ∅, we assume that
|Λ (S1, T1) \ Λ (S2, T2)| = k and Λ (S1, T1)\Λ (S2, T2) = {i1, i2, . . . , ik} , where
the ij are in the same order as they appear in the order θ, i.e.,

α [θ (i1)] � α [θ (i2)] � · · · � α [θ (ik)] .

Then, the chain θ is given by

∅ ⊂ · · · ⊂ Λ(S2, T2) ⊂ Λ(S2, T2) ∪ {i1} ⊂ · · · ⊂ Λ(S2, T2) ∪ {i1, . . . , ik} ⊂ · · · ⊂ N
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or equivalently

(∅, N) � · · · � (S2, T2) � · · · � (S1, T1) ∨ (S2, T2) � · · · � (N, ∅) .

If we denote Aj = {i1, i2, . . . , ij} , for all 1 ≤ j ≤ k, A0 = ∅ and (P,Q) =
(S1, T1) ∧ (S2, T2), it holds that Λ−1 [Λ (P,Q) ∪Aj ] � Λ−1 [Λ (S2, T2) ∪Aj ]
for all 1 ≤ j ≤ k. We can apply the hypothesis to Λ−1 [Λ (P,Q) ∪Aj ] and
Λ−1 [Λ (S2, T2) ∪Aj ], and we obtain

b
(

Λ−1 (Λ (P,Q) ∪Aj)
)

− b
(

Λ−1 (Λ (P,Q) ∪Aj−1)
)

≤ b
(

Λ−1 (Λ (S2, T2) ∪Aj)
)

− b
(

Λ−1 (Λ (S2, T2) ∪Aj−1)
)

for all 1 ≤ j ≤ k. Hence,

b ((S1, T1))− b ((S1, T1) ∧ (S2, T2)) = b
(

Λ−1 (Λ (P,Q) ∪Ak)
)

− b (P,Q)

=
k
∑

j=1

[

b
(

Λ−1 (Λ (P,Q) ∪Aj)
)

− b
(

Λ−1 (Λ (P,Q) ∪Aj−1)
)]

≤
k
∑

j=1

[

b
(

Λ−1 (Λ (S2, T2) ∪Aj)
)

− b
(

Λ−1 (Λ (S2, T2) ∪Aj−1)
)]

= b ((S1, T1) ∨ (S2, T2))− b (S2, T2) .

The following result allows the identification of the games for which the
marginal worth vectors are in the core.

Theorem 6. A necessary and sufficient condition so that all marginal worth
vectors of a bicooperative game b ∈ BGN are vectors of the core is that the
game b is bisupermodular

Proof. Sufficient condition. Let θ ∈ Θ
(

3N
)

. We know that the marginal worth
vectors are efficient, and we prove that the marginal worth vector aθi (b) =
mθ

i (b) +Mθ
i (b) satisfies

∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) ≥ b (S, T )− b (∅, N) , for all (S, T ) ∈ 3N .

By Proposition 5, for every (S, T ) in the chain θ, it holds
∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) = b (S, T )− b (∅, N) .

We prove that, for every coalition (S, T ) , not in the chain θ,
∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) ≥ b (S, T )− b (∅, N) .
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Indeed, let (S, T ) be a coalition that does not belong to the chain θ, such
that Λ (S, T ) = {i1,i2, . . . , ik} , k = n+ s− t, where the elements are written
following the order of θ; that is, α [θ (i1)] � α [θ (i2)] � · · · � α [θ (ik)] .

If we denote Aj = {i1, i2, . . . , ij} , for all 1 ≤ j ≤ k, and A0 = ∅, note
that, for all 1 ≤ j ≤ k, we have that Aj = Λ (S, T ) ∩ Λ (α [θ (ij)]), that is,
Λ−1 (Aj) = (S, T ) ∧ α [θ (ij)] . As b is a bisupermodular game, Proposition 7
implies that, for all 1 ≤ j ≤ k,

b (α [θ (ij)])− b (α [θ (ij) \ ij ]) ≥ b
(

Λ−1 (Aj)
)

− b
(

Λ−1 (Aj−1)
)

,

and we obtain
∑

j∈S
Mθ

j (b) +
∑

j∈N\T
mθ

j (b) =
∑

{ij∈Λ(S,T ):ij>0}
Mθ

ij (b) +
∑

{ij∈Λ(S,T ):ij<0}
mθ

j (b)

=
∑

ij∈Λ(S,T )

[b (α [θ (ij)])− b (α [θ (ij) \ ij ])]

=
n+s−t
∑

j=1

[b (α [θ (ij)])− b (α [θ (ij) \ ij ])]

≥
n+s−t
∑

j=1

[

b
(

Λ−1 (Aj)
)

− b
(

Λ−1 (Aj−1)
)]

= b (S, T )− b (∅, N) .

Necessary condition. For all (S1, T1) , (S2, T2) ∈ 3N , consider a maximal
chain θ ∈ Θ

(

3N
)

that contains (S1, T1) ∧ (S2, T2) = (S1 ∩ S2, T1 ∪ T2) and
(S1, T1) ∨ (S2, T2) = (S1 ∪ S2, T1 ∩ T2) . As the marginal worth vectors are
elements of C (N, b) , we have that

∑

j∈S1

Mθ
j (b) +

∑

j∈N\T1

mθ
j (b) ≥ b (S1, T1)− b (∅, N) ,

∑

j∈S2

Mθ
j (b) +

∑

j∈N\T2

mθ
j (b) ≥ b (S2, T2)− b (∅, N) ,

By the election of the maximal chain θ and Proposition 5, it is also satisfied
∑

j∈S1∩S2

Mθ
j (b) +

∑

j∈N\(T1∪T2)

mθ
j (b) = b ((S1, T1) ∧ (S2, T2))− b (∅, N) .

∑

j∈S1∪S2

Mθ
j (b) +

∑

j∈N\(T1∩T2)

mθ
j (b) = b ((S1, T1) ∨ (S2, T2))− b (∅, N) .
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Therefore,

b (S1, T1) + b (S2, T2)− 2b (∅, N)

≤
∑

j∈S1

Mθ
j (b) +

∑

j∈N\T1

mθ
j (b) +

∑

j∈S2

Mθ
j (b) +

∑

j∈N\T2

mθ
j (b)

=
∑

j∈S1∪S2

Mθ
j (b) +

∑

j∈S1∩S2

Mθ
j (b) +

∑

j∈N\(T1∪T2)

mθ
j (b) +

∑

j∈N\(T1∩T2)

mθ
j (b)

= b ((S1, T1) ∧ (S2, T2)) + b ((S1, T1) ∨ (S2, T2))− 2b (∅, N) .

Hence

b (S1, T1) + b (S2, T2) ≤ b ((S1, T1) ∧ (S2, T2)) + b ((S1, T1) ∨ (S2, T2)) .

As the core of a bicooperative game b ∈ BGN is a convex set, an immediate
consequence of this theorem is the following result.

Corollary 1. Let b ∈ BGN . A necessary and sufficient condition so that
W (N, b) = C (N, b) is that the bicooperative game b is bisupermodular.

Let b ∈ BGN . A special element of W (N, b) = conv
{

aθ (b) : θ ∈ Θ
(

3N
)}

is the value that assigns the same probability to all maximal chains. In the
next theorem, we prove that this value is the Shapley value of b.

Theorem 7. The Shapley value for b ∈ BGN is given, for each i ∈ N, by

Φi (b) =
∑

θ∈Θ(3N )

1
c (3N )

aθi (b) .

Proof. Let us consider b ∈ BGN and compute

Ψi(b) =
∑

θ∈Θ(3N )

1
c (3N )

aθi (b)

=
∑

θ∈Θ(3N )

1
c (3N )

[

mθ
i (b) +Mθ

i (b)
]

=
∑

θ∈Θ(3N )

1
c (3N )

[b (α [θ (−i)])− b (α [θ (−i) \ −i])]

+
∑

θ∈Θ(3N )

1
c (3N )

[b (α [θ (i)])− b (α [θ (i) \ i])] ,

If θ runs over all orders in Θ
(

3N
)

, the sets α [θ (i) \ i] determine all coalitions
(S, T ) ∈ 3N\i in which i is incorporated in the order, and the sets α [θ (−i)]
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determine all coalitions (S, T ) ∈ 3N\i in which player i has just left the pre-
ceding coalition in the order. Thus, the above expression can be written as

Ψi (b) =
∑

(S,T )∈3N\i

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

∑

θ∈Θ(3N):
α[θ(i)\i]=(S,T )

1
c (3N )

⎞

⎟

⎟

⎟

⎠

[b (α [θ (i)])− b (α [θ (i) \ i])]

+

⎛

⎜

⎜

⎜

⎝

∑

θ∈Θ(3N):
α[θ(−i)]=(S,T )

1
c (3N )

⎞

⎟

⎟

⎟

⎠

[b (α [θ (−i)])− b (α [θ (−i) \ −i])]

⎤

⎥

⎥

⎥

⎦

.

Now for each (S, T ) ∈ 3N\i, we define

pi(S,T ) =
∑

θ∈Θ(3N):
α[θ(i)\i]=(S,T )

1
c (3N )

, pi
(S,T )

=
∑

θ∈Θ(3N):
α[θ(−i)]=(S,T )

1
c (3N )

.

The number pi(S,T ) represents the quotient between the number of chains from
(∅, N) to (N, ∅) that contain (S, T ) and (S ∪ i, T ) and the total number of
maximal chains, and the number pi

(S,T )
represents the quotient between the

chains that contain the coalitions (S, T ∪ i) and (S, T ) and the total number
of maximal chains (see Figure 3). Applying Propositions 2 and 3, we obtain

pi(S,T ) =
c ([(∅, N) , (S, T )]) c ([(S ∪ i, T ) , (N, ∅)])

c (3N )

=

(n+ s− t)!
2s

· (n+ t− s− 1)!
2t

(2n)!
2n

=
(n+ s− t)! (n+ t− s− 1)!

(2n)!
2n−s−t,

pi
(S,T )

=
c ([(∅, N) , (S, T ∪ i)]) c ([(S, T ) (N, ∅)])

c (3N )

=

(n+ t− s)!
2t

· (n+ s− t− 1)!
2s

(2n)!
2n

=
(n+ t− s)! (n+ s− t− 1)!

(2n)!
2n−s−t.

Therefore, Ψi(b) = Φi (b) for all i ∈ N and b ∈ BGN .
As a consequence of Theorem 7, the Shapley value of a bisupermodular game
b is in C (N, b) and hence, the core of b is nonempty.
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Abstract Cooperative game theory is concerned primarily with groups of players
who coordinate their actions and pool their winnings. One of the main concerns
is how to divide the extra earnings (or cost savings) among the members of the
coalitions. Thus a number of solution concepts for cooperative games have been
proposed. In this chapter, a selection of basic notions and solution concepts for
cooperative games are presented and analyzed in detail. The paper is particularly
concerned with cost allocation methods in problems that arise from the field of
combinatorial (discrete) optimization.

Key words: cost allocation, combinatorial optimization games

1 Introduction

Game theory deals with decisions in which two or more players, possibly
with conflicting interests, interact. Each of these players tries to optimize his
own objective function. A game can be classified as a cooperative or a non-
cooperative game. The difference between the two is that in a cooperative
game, the players can make agreements in order to minimize their common
cost or to maximize their common payoff, while this is not possible in a non-
cooperative game. Even if all players in a cooperative game agree that it is
beneficial to minimize their total common cost (or to maximize their common
total payoff), each player might want to minimize his individual cost (or to
maximize his individual payoff). In this type of a situation, one may need a
cost allocation method (payoff allocation method) that reflects the common
objectives as well as each player’s objectives.

The main purpose of this paper is to demonstrate how cooperative game
theory can be applied to combinatorial optimization and supply chain man-
agement problems. It deals with cost allocation methods in problems that
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arise from the field of combinatorial (discrete) optimization. In the next sec-
tion, the solution concepts of the cooperative game theory, like the core of
the game, the Shapley value, the Bargaining set, the Nucleolus of the game,
and the Kernel of the game, are given and analyzed. In Section 3, the corre-
sponding combinatorial optimization game for the most important problems
of combinatorial optimization and of supply chain management, like Schedul-
ing problems, Assignment problems, and Routing problems, is presented. For
these games, the core, the nucleolus, and the other solution concepts were
calculated. Finally, the concluding remarks are given in the last section.

2 Cooperative Game Theory and Cost Allocation

2.1 Basic Concepts in Cooperative Game Theory

A cooperative n-person game [24] is defined by a pair (N ;u) where N =
{1, 2, . . . , n} is the set of players and u is a real valued function, called the
characteristic function, defined on S ⊆ N , with u(∅) = 0. Each subset S ⊆ N
is a coalition, and N is called the grand coalition. In cooperative cost games,
the characteristic function is often denoted by c(S) instead of u(S). The car-
dinality or the size of a coalition, |S|, is equal to the number of players in
S. The empty subset of N is called empty coalition. When the game involves
monetary or physical units that can be transferred between the players, then
the game is called Transferable Utility Game. The characteristic function in a
cost game refers to the cost that arises when a coalition chooses to cooperate.
The set of all cooperative games with player set N will be denoted GN .

A pre-imputation y is a vector in Rn such that the cost yi is allocated to
player i and such that

∑

i∈N yi = c(N). An imputation is a pre-imputation
that satisfies the requirement yi ≤ c({i}) for i ∈ N . For simplicity we write
y(S) for

∑

i∈S yi and c(i) for c({i}).
The excess of a nonempty coalition S with respect to a (cost allocation)

vector y is e(S, y) = c(S)− y(S).
The marginal cost of a player, mi is the marginal cost of that player in the

grand coalition, i.e., mi = c(N) − c(N{i}). Note that for a monotone game
mi ≥ 0 for all i.

A game can satisfy a number of properties:

• A game (N ; c) is monotone, if the characteristic function c is monotone,
i.e., c(S) ≤ c(T ) for S ⊂ T ⊂ N .

• A game (N ; c) is proper if the characteristic function is subadditive, i.e.,
c(S) + c(T ) ≥ c(S

⋃

T ) for all S, T ⊂ N,S
⋂

T = ∅. In a proper game
it is always profitable to form large coalitions, which is an incentive to
cooperate.

• The weakest form of subadditivity occurs if the characteristic function is
additive, i.e., c(S) + c(T ) = c(S

⋃

T ) for all S, T ⊂ N,S
⋂

T = ∅.
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• A game with an additive characteristic function is called an inessential
game. All others games are called essential.

• A cost game is convex if its characteristic function is concave (or submod-
ular).

2.2 Solution Concepts

For the characterization of a solution concept, there is a number of properties
or axioms that a solution concept must satisfy. A solution may satisfy some
of the properties. The most important of them are:

• Group rationality or Pareto optimality or Pareto efficiency:
∑

i∈N yi =
c(N). The total cost allocated to the players must be equal to the total
cost of the game.

• Individual rationality: yi ≥ c({i}),∀i ∈ N . The cost allocated in each
player should not be higher than the cost the player would have to pay if
he acted without the others.

• Kick-back: yi ≥ 0. The cost allocated to a player must always be non-
negative.

• Dummy player: If player i contributes nothing to any coalition, c(S) =
c(S \ {i}) + c(i) for all S ⊆ N, i ∈ S, then the cost allocated to i, yi, is
equal to c(i).

• Anonymity (or neutrality or symmetry): The order in which the players are
numbered should not affect the cost allocated to the players of the game.

• Monotonicity: If the overall cost increases, the allocation to a player should
not be lower than before the cost increase.

• Additivity: If the cost matrix C = {cij} is divided into two independent
cost matrices, C1 = {c1ij} and C2 = {c2ij}, where cij = c1ij + c2ij , for all i, j
then yi = y1

i + y2
i for all i.

The Core of a Game

If all players in a game decide to work together, then a question arises of
how to divide the total profit. If one or more players believe that a proposed
allocation is disadvantageous to them, they can decide to leave. The core is
the most significant solution concept of a cooperative game that easily can be
perceived as fair. In a game (N ; c), the core is defined as those imputations,
y, that satisfy:

y(S) ≤ c(S), S ⊆ N (1)
y(N) = c(N) (2)

Constraint (1) means that the total cost allocated to the players in a
coalition should not exceed the cost of a system dedicated to that coalition.
This constraint expresses the group and individual rationality constraints.
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Constraint (2) means that the total cost of the game is to be divided among
the players. This is the efficiency constraint. Because in a core solution there
is no incentive for any coalition to leave the grand coalition, the core solutions
are in some sense stable. Constraints (1) and (2) do not necessarily define a
unique point. Further, it is possible that the core is empty. Therefore, the core
can be seen as a description of candidate allocations, rather than a concept
that can be used to find a particular cost allocation. A solution belonging
to the core is a cost allocation in which the total cost is allocated to the
players in the game in such a way that no subset of players pays more than it
would have to do if it acted alone. Empty core means that there was always
a coalition that could do better by separating from the grand coalition.

It is often interesting to investigate whether a game can be guaranteed
to have a nonempty core. A sufficient condition for nonemptiness is that the
game is convex. However, the core may be nonempty even if the game is not
convex.

The fact that the core may be empty has led to the introduction of ε-cores.
The strong ε-core are those solutions y that satisfy the following:

∑

i∈S
yi ≤ c(S) + ε, S ⊆ N (3)

∑

i∈N
yi = c(N). (4)

The weak ε-core are those solutions y that satisfy the following:
∑

i∈S
yi ≤ c(S) + |S|ε, S ⊆ N (5)

∑

i∈N
yi = c(N). (6)

If ε is large enough, the strong and the weak ε-cores are always non-empty.
The minimal ε-value that produces a nonempty ε-core in a game with an empty
core could, for example, be seen as a measure of the distance from a nonempty
core. The minimal ε-value that makes the strong ε-core nonempty is computed
in the procedure for computing the nucleolus.

A Transferable Utility game (N, c) is called balanced [6] if it has a non-
empty core and totally balanced if the core of every subgame is nonempty,
where the subgame corresponding with some coalition T ⊂ N , T 	= ∅ is the
game (T, cT ) with cT (S) = c(S) for all S ⊂ T .

Shapley Value

The rationale behind the Shapley value [24,61] is that the marginal cost of each
player, when successively forming the grand coalition, is reflected. Each way
of forming the grand coalition is considered to be equally probable. Suppose
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that the grand coalition N , of a game (N, c) is formed by succesively adding
players in the order p1, p2, . . . , p|N |. There are |S| − 1)!(|N | − |S|)! ways of
adding players, such that player i = ps. Furthermore, let a particular coalition
S be the coalition defined by {p1, p2, . . . , ps}. The marginal cost of player i in
coalition S is (c(S) − c(S \ {i}). The Shapley value for player i is computed
as the sum over all the coalitions S, of the marginal cost of player i in the
coalition S, multiplied by the probability that the grand coalition is formed
that way, and is given by

φi =
∑

S⊆N |i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (c(S)− c(S \ {i})). (7)

The Shapley value is a unique solution to a game. It is the only value
that satisfies the three properties of additivity, symmetry, and the dummy
player property. Furthermore, the Shapley value is efficient and satisfies the
anonymity property. But even if the core is nonempty, the Shapley value may
not be included in the core.

Bargaining Set

The concept of an objection of a player is formalized and used in the definition
of the bargaining set in [2, 13,20]. Let

Γij = {S ∈ 2N |i ∈ S, j /∈ S}. (8)

An objection of player i against player j with respect to an imputation y in
the game c ∈ GN is a pair (x, S) where S ∈ Γij and x = (xk)k∈S is a |S|-tuple
of real numbers satisfying

x(S) = c(S) and xk > zk ∀k ∈ S. (9)

A counter objection to the objection (x, S) is a pair (z, T ) where T ∈ Γji and
z = (zk)k∈T is a |T |-tuple of real numbers such that

z(T ) = c(T ), zk ≥ xk for k ∈ S ∩ T and zk ≥ yk for k ∈ T \ S. (10)

An imputation y is said to belong to the bargaining set M(c) of the game
c, if for any objection of one player against another with respect to y, there
exists a counter objection.

The Nucleolus of a Game

The nucleolus of a game minimizes maximal discontent for the coalitions. In
a game (N ; c), it is defined for each imputation y an excess vector θ(y) of
dimension 2|N | − 2. Let the excess vector contain the excesses e(S, y) of each
nonempty subset of the grand coalition, with respect to y, in a nondecreasing
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order. This implies that if i < j, θi(y) ≤ θj(y) for all 1 ≤ i ≤ j ≤ 2|N |−2. If
there exists a positive integer q, such that θi(y) = θi(ȳ) whenever i < q and
θi(y) > θi(ȳ) for i = q, we say that θ(y) is lexicographically greater than θ(ȳ),
and denote this by θ(y) >L θ(ȳ). With θ(y) ≥L θ(ȳ) we mean that either
θ(y) >L θ(ȳ) or θ(y) = θ(ȳ). The nucleolus is defined as those imputations y
that have the lexicographically greatest associated vector. Schmeidler showed
[60] that for those games where the nucleolus,

∑

i∈N c(i) ≥ c(N), is nonempty,
the nucleolus is a unique point. He showed that if the core is nonempty, the
nucleolus is included in the core, and also that the nucleolus is a continuous
function of the characteristic function.

The nucleolus is efficient, individual rational, anonymous, and possesses
the dummy player property. The nucleolus is neither additive nor monotonic.
All coalitions are equal in the computation of the nucleolus. If all constraints
in an explicit formulation of the core are known, the nucleolus of a game (N ; c)
can be found by solving successive linear programs [24]. The nucleolus is the
cost allocation in which the total cost is allocated among the players in such
a way that the least satisfied subset of players is as satisfied as possible, and
the second least satisfied subset of players is as satisfied as possible, etc.

The prenucleolus n(c) [26] is defined to be the (unique) allocation y ∈ Rn

that lexicographically maximizes θ over the set of all allocations. The nucleolus
is obtained when it is computed the lexicographically maximum over the set of
all imputations. The prenucleolus and the nucleolus coincide whenever core(c)
is nonempty.

The (pre)nucleolus can be computed [26] by solving a sequence of linear
programs as follows. Let S0 = {∅, N} and first solve:

(LP1)max ε (11)
s.t.

∑

i∈N
yi = c(N) (12)

∑

i∈S
yi ≤ c(S)− ε ∀S /∈ S0. (13)

If ε1 is the optimal value of (LP1), let S1 be the collection of all coalitions
that become tight at ε = ε1 and solve

(LP2)max ε (14)
s.t.

∑

i∈N
yi = c(N) (15)

∑

i∈S
yi ≤ c(S)− ε1 ∀S ∈ S1 (16)

∑

i∈S
yi ≤ c(S)− ε otherwise (17)
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Continuing this way, a sequence ε1 < ε2 < · · · < εk is calculated until, finally,
the optimal solution of (LPk), namely the prenucleolus n(c) of the game,
is unique. This procedure requires the solution of at most |N | linear pro-
gramming problems, and for that reason usually the nucleolus is calculated
indirectly.

The Kernel of a Game

If a cost vector y has been proposed in the game c, player i can compare his
position with that of player j by considering the minimum cost cij(y) of i
against j with respect to y, defined by

cij = max
S∈Γij

e(S, y). (18)

The minimum cost of i against j with respect to y can be regarded as
the lowest cost that player i can pay without the cooperation of j. Player i
can do this by forming a coalition without j but with other players who are
satisfied with their cost according to y. Therefore, cij(y) can be regarded as
the weight of a possible threat of i against j. If y is an imputation, then player
j cannot be threatened by i or any other player when yj = c(j) because j can
be obtained by operating alone. We say that i outweighs j if

yj < c(j) and cij(y) < cji(y). (19)

The kernel consists of those imputations for which no player outweighs
another one.

3 Combinatorial Optimization Games

3.1 Sequencing/Scheduling Games

The main characteristic of a sequencing situation is that a number of jobs
have to be processed in some order on a number of machines in such a way
that some cost criterion is minimized. Sequencing situations can be classified
on the number of machines, on the specific properties of machines (parallel,
serial), on restrictions on the jobs, and on the order in which the jobs have to
be processed on the machines (job-shop, flow-shop). A review of scheduling
theory is given in [51].

Example 1. Consider a sequencing situation where there is one single machine
and 6 different players have a job that must be processed on this machine.
The initial order of the jobs is 1, 2, 3, 4, 5, 6, where the duration of each
job is 1, 4, 5, 2, 3, 4, respectively, and the corresponding cost for each job is
1, 7, 16, 3, 4, 16. The total cost of the initial order is 1 ∗ 1 + 5 ∗ 7 + 10 ∗
16 + 12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 596. After some analysis, it is calculated
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that the optimal order of the jobs is 6, 3, 2, 4, 5, 1 with total cost equal to
4 ∗ 16 + 9 ∗ 16 + 13 ∗ 7 + 15 ∗ 3 + 18 ∗ 4 + 19 ∗ 1 = 435, namely, we have
a cost saving equal to 161. This cost saving can be allocated to the play-
ers as follows: If players 1 and 2 switch the order of performing their jobs
on the machine, then a cost saving of 3 units is generated, which is divided
equally among them. So, if we have the initial order 1, 2, 3, 4, 5, 6 with cost
1 ∗ 1 + 5 ∗ 7 + 10 ∗ 16 + 12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 596, after the exchange
of job 1 with 2 the solution is 2, 1, 3, 4, 5, 6 with cost 4 ∗ 7 + 5 ∗ 1 + 10 ∗ 16 +
12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 593. The cost saving is divided equally among the
two players and the initial cost allocation is (1.5, 1.5, 0, 0, 0, 0). The follow-
ing table presents all the exchanges and the corresponding cost allocation.

Exchange Job order Total cost Cost allocation

1 2 3 4 5 6 1 ∗ 1 + 5 ∗ 7 + 10 ∗ 16+
12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 596

(1,2) 2 1 3 4 5 6 4 ∗ 7 + 5 ∗ 1 + 10 ∗ 16+
12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 593 (1.5, 1.5, 0, 0, 0, 0)

(1,3) 2 3 1 4 5 6 4 ∗ 7 + 9 ∗ 16 + 10 ∗ 1+
12 ∗ 3 + 15 ∗ 4 + 19 ∗ 16 = 582 (7, 1.5, 5.5, 0, 0, 0)

(1,4) 2 3 4 1 5 6 4 ∗ 7 + 9 ∗ 16 + 11 ∗ 3+
12 ∗ 1 + 15 ∗ 4 + 19 ∗ 16 = 581 (7.5, 1.5, 5.5, 0.5, 0, 0)

(1,5) 2 3 4 5 1 6 4 ∗ 7 + 9 ∗ 16 + 11 ∗ 3+
14 ∗ 4 + 15 ∗ 1 + 19 ∗ 16 = 580 (8, 1.5, 5.5, 0.5, 0.5, 0)

(1,6) 2 3 4 5 6 1 4 ∗ 7 + 9 ∗ 16 + 11 ∗ 3+
+14 ∗ 4 + 18 ∗ 16 + 19 ∗ 1 = 568 (14, 1.5, 5.5, 0.5, 0.5, 6)

(2,3) 3 2 4 5 6 1 5 ∗ 16 + 9 ∗ 7 + 11 ∗ 3+
14 ∗ 4 + 18 ∗ 16 + 19 ∗ 1 = 539 (14, 16, 20, 0.5, 0.5, 6)

(5,6) 3 2 4 6 5 1 5 ∗ 16 + 9 ∗ 7 + 11 ∗ 3+
15 ∗ 16 + 18 ∗ 4 + 19 ∗ 1 = 507 (14, 16, 20, 0.5, 16.5, 22)

(4,6) 3 2 6 4 5 1 5 ∗ 16 + 9 ∗ 7 + 13 ∗ 16+
15 ∗ 3 + 18 ∗ 4 + 19 ∗ 1 = 487 (14, 16, 20, 10.5, 16.5, 32)

(2,6) 3 6 2 4 5 1 5 ∗ 16 + 9 ∗ 16 + 13 ∗ 7+
15 ∗ 3 + 18 ∗ 4 + 19 ∗ 1 = 451 (14, 34, 20, 10.5, 16.5, 50)

(3,6) 6 3 2 4 5 1 4 ∗ 16 + 9 ∗ 16 + 13 ∗ 7+
15 ∗ 3 + 18 ∗ 4 + 19 ∗ 1 = 451 (14, 34, 28, 10.5, 16.5, 58)

In a one-machine sequencing situation [12], there is a queue of players, each
with one job, in front of a machine. Each player must have his job processed
on this machine. The finite set of players is denoted by N = {1, . . . , n}. The
positions of the players in the queue are described by the bijection σ ∈ ΠN .
We assume that there is an initial order σ0 ∈ ΠN on the jobs before the
processing of the machine starts. The processing time pi of the job of player
i is the time the machine takes to handle this job. For each player i ∈ N , the
cost of spending time in the system can be described by a linear cost function
ci : R+ → R defined by ci(t) = αit with αi > 0. A sequencing situation as
described above is denoted by (N,σ0, p, α) with p, α ∈ RN

++.
The completion time C(σ, i) of the job of player i if the jobs are processed

according to the order σ ∈ ΠN is given by
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C(σ, i) =
∑

{j∈N |σ(j)≤σ(i)}
pj . (20)

By rearranging from the initial order to an optimal order, an allocation
problem arises: how should the maximal total cost savings of the players
that can obtained be divided among the players? By defining the value of a
coalition S as the maximum cost savings, the coalition S can be achieved by
rearrangement and, so, we obtain the corresponding sequencing game (N,u),
which is defined by

u(S) = max
σ∈A(S)

{
∑

i∈S
αi[C(σ0, i)− C(σ, i)]},∀S ⊂ N (21)

where A(S) is the set of admissible orders for a coalition S. If the players
decide to save money by rearranging their position, they will need to divide
the cost savings that they generate. A division rule is the equal division rule
[13], which divides the cost savings equal to the players, but this method does
not distinguish between players who actually contribute to the savings and
those who do not. Curiel [13] proposed a rule, called Equal Gain Splitting
Rule (EGS), which does not have this disadvantage. In this rule, first the
gain gij that players i and j, who are standing next to each other with i
in front of j, can be achieved by switching positions. This gain is equal to
the difference of the sums of the costs of i and j before and after they change
places. If ui ≥ uj , then both players cannot gain anything by switching places.
On the other hand, if uj > ui, then the players can gain αjsi − αisj . So,
gij = max{αjsi − αisj , 0}. Finally the rule that Curiel proposed is

EGS =
1
2

∑

k∈P (σ,i)

gki +
1
2

∑

j:i∈P (σ,j)

gij for each i ∈ N. (22)

Curiel, also, proved that a sequencing game is convex, and as a result that
is totally balanced. Hammers et al. [42] give a generalization of the EGS rule,
which they call split core. The split core contains all allocations generated
by gain splitting rules. They also gave a monotonicity property for solutions
concepts, which may contain more than one element, and use it together
with efficiency and the dummy property to characterize the split core. They
showed that all solution concepts that satisfy efficiency, the dummy property,
and monotonicity are contained in the split core. The split core is a subset of
the core.

In the literature [6], many other classes of sequencing game are studied.
Hamers [38] extends the class of one-machine sequencing situations by impos-
ing ready times on the jobs. Borm et al. [5] consider some classes of sequencing
situations in which due dates are imposed on the jobs and different cost crite-
ria are used. Hamers et al. [40] consider sequencing situations with m parallel
and identical machines in which no restrictions on the jobs are imposed. Van
den Nouweland et al. [56] consider multiple machine flow-shop sequencing
situation with a dominant machine.
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3.2 Permutation and Assignment Games

Permutation games [67] arise from situations in which every player has one
job and one machine. Every job has to be processed on a machine and each
machine can process every job, but no machine is allowed to process more than
one job. If player i processes his job on the machine of player j, the processing
costs are αij . Let N = {1, . . . , n} be the set of players. The corresponding
permutation game (N,u) is the cooperative game defined by

u(S) =
∑

i∈S
αij − min

π∈PS

∑

i∈S
αiπ(i),∀S ⊂ N,S 	= ∅, u(∅) = 0. (23)

where the number u(S) denotes the maximal cost savings a coalition S can
obtain by processing their jobs according to an optimal schedule compared
with the situation in which every player processes his job on his own machine.

Example 2. Let N = {1, . . . , 4} be the player set with cost matrix

1 2 3 4
1 10 1 3 5
2 1 7 6 8
3 7 9 9 2
4 6 7 2 10

The permutation game based on the equation (23) is

S u(S) S u(S) S u(S)
1 0 1,3 19− 10 = 9 1,2,3 26− 13 = 13
2 0 1,4 20− 11 = 9 1.2.4 27− 13 = 14
3 0 2,3 16− 15 = 1 1,3,4 29− 11 = 18
4 0 2,4 17− 15 = 2 2,3,4 26− 15 = 11

1,2 17− 2 = 15 3,4 19− 4 = 15 1,2,3,4 36− 6 = 30

So, the optimal schedule for this game is to process player 1 to job 2,
player 2 to job 1, player 3 to job 4, and player 4 to job 3 with cost saving
10 + 7 + 9 + 10− 1− 1− 2− 2 = 36− 6 = 30.

An alternative way to calculate u(S) is as the value of the following integer
programming problem [13].

u(S) = max
∑

i∈N

∑

j∈N
αijxij (24)

s.t.
∑

j∈N
xij ≤ 1s(i), i ∈ N (25)

∑

i∈N
xij ≤ 1s(j), j ∈ N (26)

xij ∈ {0, 1}, ∀i ∈ N, j ∈ N (27)
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A subclass of permutation games is the class of assignment games. A game
associated with markets is the assignment game introduced by Shapley and
Shubik [62]. They modeled a two-side market with buyers and sellers and
showed that the core is exactly the set of optimal solutions to a linear pro-
gram dual to the optimal assignment problem [15]. In the assignment game,
a bipartite graph is used to represent M customers and N merchants in a
market. An edge (i, j) with weight αij represents the joint profit if customer
i buys from merchant j. Every customer buys from one merchant and every
merchant sells to one customer. Define xij to be one if customer i buys from
merchant j, and zero otherwise. A formulation of an assignment game is the
following [13]:

u(S) = max
∑

i∈M

∑

j∈N
αijxij (28)

s.t.
∑

j∈N
xij ≤ 1s(i), i ∈M (29)

∑

i∈M
xij ≤ 1s(j), j ∈ N (30)

xij ∈ {0, 1}, ∀i ∈M, j ∈ N (31)

Shapley and Shubik [62] showed that the core of an assignment game cor-
responds with the set of optimal solutions of the dual problem of the previous
formulation. Balinski and Gale [3] showed that the core of an assignment game
can have at most ( 2m

m ) extreme points where m is the minimum of |M | and
|N |. They also proved that in each extreme core point of an assignment game,
there is a player who receives a zero payoff. Nunez and Rafels [57] provided a
characterization of extreme points of the core, which is also valid for the class
of nonconvex games.

Solymosi and Raghanvan [63] gave an algorithm of order O(|M |3|N |) to
find the nucleolus of an assignment game, where |M | is assumed to be the
minimum of |M | and |N |. Hamers et al. [43] proposed an algorithm of order
p2, where p is the number of players for calculating the nucleolus of neighbor
games, where neighbor games are games that are the intersection of assign-
ment games and the class of component additive games. The core of neighbor
games is nonempty and coincides with the bargaining set, and the nucleolus
coincides with the kernel.

3.3 Matching Game

In the matching game [28,45], let the complete graphKm be where the players
N correspond with the nodes of the graph. A matching is a set M of edges
such that no two edges in M have a node in common. Each edge e in Kn is
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assigned a weight w(e), and the value u(S) of a coalition is equal to the weight
of a maximal matching in the subgraph induced by S. Here each individual
player i ∈ N has value u(i) = 0 while value u(N) > 0 may be possible.
The characteristic function of the game is equal with the value of a maximal
weighted matching in Kn. The matching game on K3 with unit edge weights
has an empty core. Solymosi and Raghavan [63] showed that the nucleolus
of a matching game can be computed in polynomial time in the bipartite
case, in the case where the edges of positive weight in the underlying graph
do not contain a circuit of odd length. Because the matching games deal
with allocating savings instead of costs, the inequalities of the basic solution
concepts (like core, nucleolus, etc.) are reversed.

Faigle et al. [28] introduced the nucleon as the multiplicative analogue of
the nucleolus and calculated the nucleon for the matching game. The nucleon
of the non-negative game (N,u) is the set of all allocation vectors x ∈ RN

+

that lexicographically maximize the satisfaction vector α(x), where for every
coalition S /∈ S0 the satisfaction vector is

α(x, S) =

{

x(S)
u(S) , if u(S) > 0
∞, if u(S) = 0.

(32)

They proved that the nucleon of a non-negative additive game equals the
nucleolus.

3.4 Network Flows and Multicommodity Flow Games

Kalai and Zemel studied games of flows [15,46]. In this game, the players are
associated with arcs of the networks. The value of a subgroup is the maximum
flow from s to t (source and sink, respectively) for the subgraph consisting
of the original node set and those edges corresponding with the subgroup of
players. On each of the arcs, there is a capacity restriction and an associated
simple control game that describes which coalitions of players are allowed to
use the arc. For a simple network game for which arc capacities are all one,
they also showed that the core is exactly the same as the set of solutions to
a linear program dual to a linear program formulation of the network flow
problem.

In the mulicommodity flow game [52], there is a graph with a multicom-
modity flow between each pair of nodes, satisfying node capacity and demand
constraints, and the payoff of a node is the total flow originated or terminated
at each node. A payoff allocation is in the core if and only if there is no subset
of nodes that can increase their payoff by deleting from the graph. Markakis
et al. proved that the core is nonempty in both the transrable utility case and
the nontransferable utility case.
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3.5 Minimum Cost Spanning Tree

A spanning tree is a tree (i.e., a connected acyclic graph) that spans all the
nodes of an undirected network. The cost of the spanning tree is the sum of the
costs (lengths) of its arcs. The minimum spanning tree problem is concerned
with the identification of a spanning tree of minimum cost. In the simple case,
no topological or capacity restrictions are imposed on the tree. The minimum
spanning tree problem in terms of graph theory can be presented as follows:
Given a graph G = (V, E), in which V = 1, . . . , n is the set of nodes and E is
the set of arcs, (i, j) ∈ E , which connects those nodes. The cost of connecting
node i to node j is Cij , where Cij = Cji,∀(i, j). It is assumed that the cost
of the connection matrix satisfies the triangle inequality.

Bird [4] and Claus and Kleitman [11] have formulated a minimum cost
spanning tree game, MCST game, for cost allocation of communication net-
works to its users and introduced several cost allocation criteria. In this game,
one player corresponds with a node of the graph. There is one more external
node 0. The cost for a subset of players is the weight of minimum spanning
tree of the subgraph induced by their corresponding nodes and node 0. The
characteristic function of this game, the weight of the minimum spanning tree
in a graph, can be calculated in polynomial time. More precisely, a minimum
cost spanning tree game is a cooperative game (N, c) where the characteristic
function c(S) is defined as the optimal objective function value to minimum
cost spanning tree problem over the vertices in S∪0 where 0 is the root vertex.
Bird, also, proposed a cost allocation rule [4,6,13]. Let c be a MCST game and
let Et ⊂ E be the set of arcs of a minimum cost spanning tree T for the graph
(N0, E). For each i ∈ N , let the amount that i has to pay be equal to the cost
of the edge incident upon i on the unique path from 0 to i in T . Let cij = cji
the cost of constructing the link (i, j). It is easy to see that in this way, the to-
tal costs are distibuted among the players. So, the cost of a coalition S ⊂ N in
MCST game is

∑

(i,j)∈ETS
cij . Because there can be more than one minimum

cost spanning tree for a graph, this way of dividing the costs need not lead
to a unique cost allocation in a MCST game. A pseudocode of Bird’s rule is
presented in [6]. Curiel [13] proved that Bird tree allocation rule is an extreme
point of the core. Bird [4] proposed the irreducible core of a MCST game as a
means of generating more core allocations over those given in the set of Bird
tree allocations. He proved that the irreducible core is a subset of the core for
all MCST games that have a minimum cost spanning tree with fixed costs on
the common edges. MCST games are the types of games that have received
the most attention in cooperative theory as the determination of a minimum
spanning tree in graph is the “easy” problem whereas the determination of a
traveling salesman tour in a graph, which will be studied in Section 3.7, is the
“hard” problem.

Example 3. In a complete graph, let the player set be denoted by {2, . . . , 6}
and the root node denoted by 1. The cost of the arcs is presented in the
following table,
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1

2
3

4 5
6

2
3

4
4 4

Figure 1. Optimal solution

1 2 3 4 5 6
1 0 3 2 5 6 7
2 3 0 5 4 8 7
3 2 5 0 5 4 4
4 5 4 5 0 7 7
5 6 8 4 7 0 6
6 7 7 4 7 6 0

By applying the Bird rule in this problem we take the optimal solution,
presented in Figure 1, with cost 17. This gives a cost allocation (3, 2, 4, 4, 4)
that is an element of the core. It is, in fact, an extreme point of the core of
this game.

An overview of MCST problem is given in Aarts [1] and the core, nucleolus,
and the Shapley value are studied in Granot and Huberman [36]. The core of
the MCST game consists of all vectors y that are fair in the sense that the
vector y should be considered fair if the amount y(S) of any coalition S has to
pay cumulatively never exceeds the cost c(S) of a minimum spanning tree on
S ∪ {0}, which is what S would have to invest in order to connect itself to 0
without any outside considerations [27]. Faigle et al. [27] proved that it is an
NP-hard problem to decide whether a given member is not a member of the
core. The core of a MCST game is a polyhedron in RN . Granot and Huberman
[36] showed that a solution in the core of a MCST game can be read from
an associated MCST graph. Thus, the core of a MCST game is never empty.
They also discussed and calculated the core, the nucleolus, and the Shapley
value for a minimum spanning tree game with more than one node incident to
the root. They proved that the intersection of core and prekernel of a MCST
game consists of precisely the nucleolus. Megiddo [55] presented a polynomial
algorithm to find the nucleolus and the Shapley value of the game. Tamir [66]
presented network synthesis games that include MCST games. Granot and
Granot [35] study fixed cost spanning forest problems in which the players
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form a subset of the set of nodes of an undirected graph, and Aarts [1] studies
chain games that are games that have a minimum spanning tree that is a
chain.

Fernandez et al. [32] introduced the multicriteria version of MCST game.
The characteristic function associates to each coalition S a set V (S) that
represents the Pareto minimum cost of constructing a distribution system
among the users in S from the source 0. A Pareto minimum cost spanning
tree for a given connected graph, with costs on the edges, is a spanning tree
that has Pareto-minimum costs among all spanning trees. They proved that
an extension of Bird’s rule provides dominance core elements in this game, but
also gave a family of core solutions that are different from the previous ones,
which are based on proportional allocations obtained using scalar solutions of
the multicriteria spanning tree problem. They also proved that the preference
core of this game is not empty.

Suijs [64] analyzed spanning network problems that feature random con-
nection cost. It is assumed that the agents who need to be connected to the
supplier are constant absolute risk averse expected utility maximizers. Be-
cause preferences may differ between agents, minimum cost spanning trees
have no meaning in this context. To tackle this problem of network formation
and cost allocation, the author applied stochastic cooperative game theory.
Stochastic cooperative games were designed to explicitely take into account
random payoffs and the individuals preferences over these random payoffs. For
stochastic spanning tree games, Suijs focused on core allocations and proved
that the core is nonempty and which graphs may give rise to core allocations.
Furthermore, he pointed toward a specific core allocation called the two-stage
Bird allocation. The first stage works just like the standard Bird allocation,
but in the second stage, agents are allowed to mutually insure (part of) their
random cost.

3.6 Steiner Tree Problem

In this problem, there are costs associated with connecting the nodes of a net-
work to a tree. In addition, there is a potential revenue to collect at each node
if it is connected. The problem is to decide which node to connect, and how,
so as to maximize the revenue collected minus the connecting costs. Megiddo
[54] has formulated this problem defining the cost of a minimum Steiner tree
game that contains all corresponding nodes in the original graph. In a cost
allocation setting, the Steiner Tree Problem could be solved in order to iden-
tify a coalition that is most unsatisfied with a proposed cost allocation in a
minimum spanning tree game. Kuipers et al. [48] proposed a cost allocation
rule for a variant of Steiner Tree Game, called Vertex Weighted Steiner Tree
Game. The Vertex Weighted Steiner Tree Game is similar to the Steiner Tree
Game except that each vertex of the game has a reward if and only if all
are connected in the tree. They proved that every 5-persons Vertex Weighted
Steiner Tree Game has a nonempty core.
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3.7 Traveling Salesman Problem Games

Consider a salesman who has to visit n cities. The Traveling Salesman Prob-
lem (TSP) asks for the shortest tour through all the cities such that no city
is visited twice and the salesman returns at the end of the tour back to the
starting city. We speak of a symmetric TSP, if for all pairs i, j the distance cij
is equal to the distance cji. Otherwise, we speak of the assymetric traveling
salesman problem. If the cities can be represented as points in the plain such
that cij is the Euclidean distance between point i and point j, then the corre-
sponding TSP is called the Euclidean TSP. Euclidean TSP obeys in particular
the triangle inequality cij ≤ cik + ckj for all i, j, k. The Traveling Salesman
Problem (TSP) is one of the most famous hard combinatorial optimization
problems. For a review on the traveling salesman problem, we refer to Lawer
et al. [50] and to Gutin et al. [37].

The Traveling Salesman Game (TSG) deals with the question of how to
allocate the total cost of a tour to the customers served on that tour. In the
traveling salesman cost allocation game (N, c), the players correspond with
the nodes of the graph. Further, the characteristic function in a TSG is defined
as the total cost of the minimum Hamiltonian cycle, meaning the minimum
tour of visiting all the nodes in S ∪{0}. In a TSG with a home city, the home
city (which is not a player and corresponds with the depot) must be included
in the minimum cost cycle of each S ⊂ N . The value of a subgroup S of players
that have been visited is minimum Hamiltonian tour in the subgraph induced
by S ∪ 0 [59]. Let K be the set of the available truck types, Vk the capacity
of truck type K, Di the demand of customer i, ckij the cost of transportation
between customers i and j, using truck type k, and xij equal to 1 if customer j
is visited immediately after customer i in the tour and is equal to 0 otherwise.
A formulation of the Traveling Salesman Game is the following [24]:

cTSP (S, k) = min
∑

i∈S0

∑

j∈S0,j �=i

ckijxij (33)

s.t.
∑

i∈S0

xij = 1, j ∈ S0 (34)

∑

j∈S0

xij = 1, i ∈ S0 (35)

∑

i∈Q

∑

j∈Q,j �=i

xij ≤ |Q| − 1
{

Q ⊂ S0

|Q| ≥ 2 (36)

xij ∈ {0, 1}, i, j ∈ S0 (37)

Conditions (34) and (35) state that exactly one edge should be used enter-
ing node j and leaving node i, respectively. Conditions (36) are the subtour
elimination inequalities.
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Engenval [24] presents two different TSG, the Standard Traveling Sales-
man Game in which the truck type, k, is given in advance, such that the
requirement Vk ≥

∑

i∈S
Di, holds. Then, the characteristic function for this

game is C(α)S = cTSP (S, k), for a given truck type k. The second game is
the Variable Cost Traveling Salesman Game in which the truck type is not
given in advance. Instead it is defined as the lowest capacity truck type that
can be used to serve a given coalition S. The characteristic function, now, is
C(β)S = cTSP (S, k), where k = argmink∈K{Vk|Vk ≥

∑

i∈N
Di}.

The Core of Traveling Salesman Problem Games

Example 4. A salesman is invited to travel among 3 different cities to present
the products of his company and return back to his company. One way to
do this is to go to each city and, then, to return to his city, but this is very
expensive for the companies, because they have to pay for a two-way ticket
from his city to their city and back. They decide to find an order for him to
visit the companies that minimizes the total costs. The costs of the travels in
Euro are presented in the following table

1 2 3 4
1 0 300 450 350
2 300 0 150 200
3 450 150 0 100
4 350 200 100 0

The optimal tour of this problem is 1, 2, 3, 4, 1 with cost 900 Euro.
The problem is how to divide the cost among the companies. They decide

to perform a game theoretic analysis of this problem. A core element is, for
example, (366.6, 316.6, 216.6). This cost allocation is obtained by divided the
travel costs from the company equally among the three companies, and making
company i pay all of the travel costs from company i to company j. This is
a core allocation element because if player 4 acts alone, he will have to pay
700 Euro, if player 3 acts alone, he will have to pay 900 Euro, and, finally,
if player 2 acts alone, he will have to pay 600 Euro. Also, if players 2 and 3
make a coalition, they will have to pay together 900 Euro, if players 2 and
4 make a coalition, they will have to pay together 850 Euro, and, finally, if
players 4 and 3 make a coalition, they will have to pay together 900 Euro.

An example with empty core is the following

Example 5. Consider the Traveling Salesman Game with player set N =
{2, . . . , 7} and the home depot denoted by 1. The cost of the edges are pre-
sented in the following table



234 Y. Marinakis et al.

1 2 3 4 5 6 7
1 0 10 10 10 20 20 20
2 10 0 20 20 20 10 20
3 10 20 0 20 10 20 20
4 10 20 20 0 20 20 10
5 20 20 10 20 0 10 10
6 20 10 20 20 10 0 10
7 20 20 20 10 10 10 0

The optimal tour is 1, 3, 5, 7, 6, 2, 4, 1 with cost equal to 80. If all players
form coalitions of size 4 (passing through the depot), we take that the possible
coalitions are 1, 3, 5, 6, 2, 1 with cost y3 + y5 + y6 + y2 ≤ 50, 1, 3, 5, 7, 4, 1 with
cost y3 +y5 +y7 +y4 ≤ 50 and 1, 4, 7, 6, 2, 1 with cost y4 +y7 +y6 +y2 ≤ 50. A
linear combination of these three inequalities is 2y2 + 2y3 + 2y4 + 2y5 + 2y6 +
2y7 ≤ 150, meaning that y2 + y3 + y4 + y5 + y6 + y7 ≤ 75, but we know that
y2 + y3 + y4 + y5 + y6 + y7 ≥ 80, so, the core of the problem is empty.

Dror [21] showed that the core of a TSG without a home city is empty.
Potters et al. [59] showed that three-person TS games have a nonempty core,
and, simultaneously, gave an example of an asymmetric traveling salesman
with four players that has an empty core, and provided some conditions for
an asymmetric traveling salesman game to have a nonempty core. Tamir [65]
showed that each four-person symmetric Traveling Salesman game has a non-
empty core and a five-person TS game can have an empty core. Kuipers [47]
proved that five-person TS games are balanced. Also Kuipers extended the
result of Tamir in a six-person game.

Faigle et al. [29] and Fekete [30] proposed a method for allocating the cost
in a TSP tour based on the concept of moat packing. A moat, in a given
graph in a plane, is a simple closed strip of constant width that separates
two nonempty complementary subsets of the nodes. The inside of the moat
is the region containing the depot, the other region is called the outside. A
moat packing is a collection of moats with pairwise disjoint interior. The cost
of a moat packing is twice the sum of all widths. They proved that if the
cost of any moat is distributed twice among the nodes on the outside, the
resulting distribution is such that no coalition pays more than its TSP cost.
Faigle et al. [29] proved that the core of TSP games may be empty, even
for the case of Euclidean distances and, simultaneously, provided an instance
of a traveling salesman game in the two-dimensional Euclidean space with
six players such that the core is empty. They proved that TSP games whose
weights satisfy the triangle inequality always have ε-approximately fair (core)
allocations for ε = 1

2 . ε-approximation means that a coalition S should be
charged with an allocation that does not exceed the cost c(S) by more than a
fraction ε. With use of the above observations, Faigle developed an LP-based
allocation rule guaranteeing that no coalitions pay more than α times their
own cost, where α is the ratio between the optimal TSP-tour and the optimal
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value of its Held–Karp relaxation, which is also known as the solution over
the subtour polytope.

One of the problems of the computation of the core and the nucleolus
to a TSG is that the number of characteristic function evaluations may be
very large when the number of customers is large. Engevall proposed [23,24] a
constraint generation approach in order to compute a solution in the core or to
conclude that the core is empty, and to compute the nucleolus. Note that in a
constraint generation approach, the subproblem that must be solved in order
to identify a constraint that is needed but not yet included is a traveling
salesman subtour problem. Engevall proved that in the special case of the
TSG, called standard Euclidean TSG, in which the cost matrix is proportional
to the Euclidean distance of the customers, the core might be empty.

Okamoto [58] showed that in general to test the core nonemptiness of
a given traveling salesman game is NP-hard. He proved that the core of a
traveling salesman game is always nonempty if the distance matrix is a sym-
metric Monge matrix. The Monge property is known as a polynomially solv-
able case of TSP. An N0 × N0 matrix D is a Monge matrix if D satisfies
dik + djl ≤ dil + djk for all i < j and k < l. If a matrix D is a Monge matrix,
then it is also said to have the Monge property. Note that a Monge matrix
does not need to satisfy the triangle inequality. The testing of non-emptiness of
the core is an NP-hard problem, and only for some special classes of traveling
salesman is there a possibility not to be an NP-hard problem. Okamoto proved
that the core of the traveling salesman with a Monge matrix is nonempty and
can be found in O(N2).

The Nucleolus of Traveling Salesman Problem Games

For the computation of the nucleolus of a TSG, Göthe-Lundgren et al. [34]
proposed a constraint generation approach. Engevall [24] proposed the de-
mand nucleolus, which is the solution that has a lexicographically greatest
modified excess vector. To define the demand nucleolus, the elements of the
excess vector are modified in such a way that the excess e(S, y) are multiplied
with the total demand of the coalition. The effect that the demand nucleolus
has on the cost allocation is that the importance of coalitions with a large
number is reduced, compared with the nucleolus.

Fixed Routing Games

Potters et al. [59] also introduced the class of fixed routing games. The idea
of a fixed routing game is that the salesman decides about the Hamiltonian
circuit he will use to visit, meaning that the order in which the players are
served is defined beforehand, and remains the same for all coalitions. Then
the value of a coalition S in a fixed routing game is defined as the costs of
the restricted tour that the salesman visits the players in S in the same order
as described by the original Hamiltonian circuit and skips all other players.
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They showed that fixed routing games have a nonempty core if the chosen
Hamiltonian circuit is an optimal route for the related TS problem and the
cost matrix satisfies the triangle inequality. Derks and Kuipers [19] gave a
number of procedures to construct tours that guarantee the nonemptiness of
the core of the game.

The Traveling Preacher Problem

This game [30, 31] can be considered as a variant of the Traveling Salesman
Game, with the difference that there is not a specified central root node for the
salesman. They proved that this problem can be solved in polynomial time,
showing that the difficulty of finding a core allocation for a combinatorial
optimization problem may be caused by the existence of the special node called
depot, rather than being a consequence of the hardness of the optimization
problem itself.

3.8 Chinese Postman Games

In the Chinese Postman Problem [6,22], one considers a situation in which a
postman has to deliver mail to each street of a certain city. He has to start
and finish at the post office. For each street, costs are involved each time
the postman visits the street. The postman should choose a route to visit all
streets in such a way that costs are minimized. The main differences between
several classes of Chinese Postman Problems can be found in the underlying
graph that describes the street plan of the city.

A cost allocation problem arises if in the underlying graph each edge cor-
responds with a different player. Because all the players need the mail delivery
service and the nature of this service requires the server to travel from the
post office and visit all edges (players) before returning to the post office, the
cost allocation problem is concerned with a fair allocation of the cost of a
cheapest Chinese Postman Problem tour in the graph. That is, the cost of a
cheapest tour, which starts at the post office, visits each edge at least once
and returns to the post office.

A Chinese Postman Problem is a tuple Γ = (N,G, u0, g, t) where N =
{1, . . . , n} is the set of players, G = (V,E) is a connected undirected graph
with vertex set V and edge set E, u0 ∈ V represents the post office, g : E → N
is a bijection relating the players to the edges, and t : E → R+ is a non-
negative cost function assigning costs to the edges. An S-tour [41] with respect
to u0 associated with coalition S ⊂ N is a closed walk (u0, e1, . . . , ek, u0) that
starts at the post office u0, visits each player in S at least once, and returns
to u0. The set of all S-tours is denoted by D(S).

Suppose a coalition S is served according to the S-tour (u0, e1, . . . , ek, u0)
∈ D(S), then the total costs of this tour are

∑k
j=1 t(ej). We will assume that

each player i ∈ S pays the costs t(g−1(i)) himself. In this way the separable
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costs are already allocated
∑

i∈S t(g
−1
i ) of an S-tour. The remaining nonsep-

arable costs for coalition S,
∑k

j=1 t(ej) −
∑

i∈S t(g
−1
i ), have to be allocated

to its members in some way. This gives rise to the Chinese Postman Game
(N, c) defined by

c(S) = min
(u0,e1,...,ek,.u0)∈D(S)

[
k
∑

j=1

t(ej)−
∑

i∈S
t(g−1

i )] (38)

for all S ⊂ N .
Hamers et al. [41] introduced and characterized a specific cost allocation

rule γ that divides the nonseparable costs of a minimal N -tour among all
players. They proved that in delivery games, the core may be empty and also
proved that for bridge-connected Euler graphs, the outcome of γ is always
a core element. Hamers [39] focused on the concavity property of delivery
games, that is for games arising from a delivery model corresponding with a
bridge-connected Euler graph.

3.9 Vehicle Routing Problem Games

The distribution or vehicle routing problem (VRP) is often described as the
problem in which vehicles based on a central depot are required to visit geo-
graphically dispersed customers in order to fulfill known customer demands.
The problem is to construct a low cost, feasible set of routes — one for each
vehicle. A route is a sequence of locations that a vehicle must visit along with
the indication of the service it provides [7]. The vehicle must start and finish
its tour at the depot.

Example 6. Consider a Vehicle Routing Problem, let the depot be denoted
with 1 and the set of customers denoted with (2, . . . , 8). The demand of each
customer is 10 units and the fleet of the vehicle is homogeneous with capacity
equal to 20 units. The problem is Euclidean and the distances of the customers
are according the following table (the meaning of value cost will be explained
in the following example):

1 2 3 4 5 6 7 8
1 0 10 10 10 10 10 100 100
2 10 0 cost cost cost cost 400 400
3 10 cost 0 cost cost cost 400 400
4 10 cost cost 0 cost cost 400 400
5 10 cost cost cost 0 cost 400 400
6 10 cost cost cost cost 0 400 400
7 100 400 400 400 400 400 0 5
8 100 400 400 400 400 400 5 0
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The Vehicle Routing Game (VRG) is a game (N, cv) where the total cost
of a VRP is to be divided among the players [24]. The players N of the game
are the customers, and the characteristic function cv(S), S ⊆ N is the optimal
cost of a VRP over the customers in S. It is assumed that the cost matrix for
each vehicle satisfies the triangular inequality and that it is always at least as
expensive to use a higher capacity truck as it is to use a lower capacity one.
Furthermore, it is assumed a sufficient supply of each truck type, so that the
least costly truck type for a route is always chosen. Göthe-Lundgren et al. [34]
presented models for the VRG; they discussed the case that the characteristic
function is defined as the optimal objective function to a basic VRP. Let Di

be the demand of customer i ∈ N , K the set of truck types in the fleet, Vk the
capacity of truck type k ∈ K, and q the highest capacity truck type that is
equal to arg maxk∈K{Vk}. The characteristic function value cv(S) of the VRG
can be obtained by solving a Set Partitioning Problem (SPP) formulation as
follows [24]:

Assume that for each feasible coalition S ∈ R, a minimal cost route is
known. The cost of such a route is denoted by cT (S), and is given by a
solution of a Traveling Salesman Problem (TSP) over the customers in S:

αir =

⎧

⎨

⎩

1, if customer i belongs to
(feasible) coalition Sr

0, otherwise
(39)

xr =

⎧

⎨

⎩

1, if the minimum cost route covering the customers
in coalition Sr ∈ R is used

0, otherwise
(40)

(V RP − SPP )cv(S) = min
∑

r|Sr∈R
cT (Sr)xr (41)

s.t.
∑

r|Sr∈R
αirxr = 1, i ∈ S (42)

xr ≥ 0, r|Sr ∈ R (43)
xr integer r|Sr ∈ R

The Core of Vehicle Routing Problem Games

Example 7. This example is a continuation of the previous example. If
cost = 15, then an optimal solution of the problem has a total cost 295,
and the routes are 1− 2− 3− 1, 1− 4− 5− 1, 1− 6− 1, and 1− 7− 8− 1.
Because one of the core constraints expresses that customers 7 and 8 will
not pay more than 100 + 5 + 100 = 205, customers 2, 3, 4, 5, 6 would have to
pay at least 90 together. The customers 2, 3, 4, 5, 6 form coalitions of size 2,
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for example y2 + y3 ≤ 10 + 15 + 10 = 35. For all i and j {(i, j ∈ 2, . . . , 8)},
yi+yj ≤ 10+15+10 = 35. A linear combination of these ten inequalities yields
4y2 +4y3 +4y4 +4y5 +4y6 ≤ 350, meaning that y2 + y3 + y4 + y5 + y6 ≤ 87.5,
which means that the core of the problem is empty.

On the other hand, if cost = 25, then we take the same optimal routes
but with cost 315. By making the same analysis as previously, the customers
2, 3, 4, 5, 6 would have to pay at least 110 together. The customers 2, 3, 4, 5, 6
form coalitions of size 2, for example y2 + y3 ≤ 10 + 25 + 10 = 45. For all i
and j {(i, j ∈ 2, . . . , 8)}, yi + yj ≤ 10 + 25 + 10 = 45. A linear combination
of these ten inequalities yields 4y2 + 4y3 + 4y4 + 4y5 + 4y6 ≤ 450, meaning
that y2 + y3 + y4 + y5 + y6 ≤ 112.5, which means that, now, the core of the
problem is not empty.

The core is defined by all solutions that fulfill:

y(S) ≤ cv(S), S ∈ RA, (44)
y(N) = cv(N) (45)

where RA = {S|S ⊂ N,S 	= ∅}.
If all constraints in the core formulation of a VRG are explicitly formu-

lated, it is necessary to solve 2|N | − 2 VRPs in order to evaluate cv(S). This
is computationally complicated for any nontrivial size of N . However, for the
VRG, it is possible to reduce the number of inequalities significantly by only
considering the feasible coalitions [24]:

y(S) ≤ cv(S), S ∈ R, (46)
y(N) = cv(N). (47)

Engevall [23] and Göthe-Lundgren et al. [34] observed that in any core
solution to the VRG, the customers that are covered by a route in any optimal
solution to the VRP over the grand coalition have to carry the full cost of
that route.

Göthe-Lundgren et al. [34] proved that the number of inequalities that
defines the core in the basic VRG can be reduced significantly by only con-
sidering coalitions that can be served by a single vehicle. They also proved
that the core of the basic VRG is empty if, and only if, there is an integrality
gap between the optimal solution to the Set Partitioning Problem formula-
tion and the optimal solution to the linear relaxation of the SPP formulation.
They gave an example of a basic VRG with an empty core. Engevall [24] pro-
posed a solution procedure in order to either find a solution in the core or to
conclude that the core is empty based on constraint generation (46). He also
proved that the core of the VRG is nonempty if and only if cv(N) is equal to
the optimal value of the linear relaxation of the SPP formulation of a VRP
over N .
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The Nucleolus of Vehicle Routing Problem Games

The computation of nucleolus in a VRG requires considerable computational
effort, because it leads to the need for solving complex combinatorial opti-
mization problems. A method that uses a constraint generation approach and
can be applied to compute the nucleolus in a basic VRPG with a nonempty
core is presented in [34]. Engevall [24] proposed that if the core of the game is
found to be empty, and a branch and price procedure were used to investigate
the existence of alternative optimal dual solutions to the relaxed VRP, the
branch and price procedure can be continued until an optimal solution to the
VRP and thus cv(N) is found.

3.10 Packing and Covering Games

A packing game (c,A,max) is associated with an integer program [16]. The
row of A is indexed by M , and the column of A is indexed by N . N is the set
of players. ∀S ⊆ N,u(S) is the value of the following integer program:

max xtc (48)
s.t. xtAM,S ≤ 1t|S|, x

tAM,S̄ ≤ 0tn−|S|, (49)

x ∈ {0, 1}m (50)

where AM,S is the submatrix of A with row set M and column set S, and
u(∅) is defined to be 0.

Deng et al. [17] gave a necessary and sufficient condition for maximum
packing games to have nonempty cores. They proved that the linear pro-
gramming relaxation of a maximum packing problem has an integral optimal
solution if and only if the associated game has a nonempty core, and if so the
core is characterized by the set of optimal solutions of the dual of the linear
programming relaxation.

The bin packing game can be stated as follows [53]: given n items of
sizes α1, . . . , αn and m bins each of size U , we denote the bin packing game
by G = [m,U ;α1, . . . , αn]. Let us assume that α1, . . . , αn and U are non-
negative integers satisfying αi ≤ U for all i ∈ {1, 2, . . . , n}. The set of items
{1, 2, . . . , n} is denoted by I, the set of bins by B, and the vector α1, . . . , αn
by α. For any subset of items I ′ ⊆ I, the value

∑

i∈I′ αi is calculated. The
set N of players consists of all items and all bins, and so |N | = n +m. The
characteristic function of the game, denoted by uG : 2N → R, is defined as
follows. When S is a coalition containing m′ = |S ∩B| bins and items S ∩ I,
the value uG(S) is equal to the weight of optimal bin packing with respect to

u(S) = max{
m′
∑

j=1

|∃I1, . . . ,∃Im′ ⊆ S ∩ I, Ij ∩ Ij′ = ∅(j 	= j′),

∑

i∈Ij

αi ≤ U(j = 1, . . . ,m′)}. (51)
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Faigle and Kern [25] proved that every bin packing game has a nonempty
ε-core with ε = 1

2 and constructed a class of bin packing games with empty
ε-core and ε = 1

7 . Furthermore, Woeginger [70] proved that every bin packing
game has a nonempty ε-core with ε = 1

3 . Matsui [53] proposed an algorithm
for finding an allocation x in the ε-core with minimum tax rate ε.

Let N be the set of players. For each coalition S ⊆ N , the cost of providing
a service to the players in S is C(S). The set covering problem can be stated
as follows [14]: given a universal set U , and a collection of subsets of U ,
T = {S1, S2, . . . , Sk}, and a cost function c : T → Q+, find a minimum cost
subcollection of T that covers all the elements of U . Given an instance of the
set cover problem over the setN , the cost of providing the service to a coalition
S is the cost of the optimal subcollection of T that covers all the elements in
S. Denavur et al. [14] proposed a greedy algorithm for the computation of the
set of players that will be served. In the vertex covering game, the players are
edges in the graph and the game value is the minimum set covering all the
edges.

3.11 Facility Location Games

The location of facilities in order to provide service for customers is a well
known problem in operation research. In the basic model, there is a number
of places that the facilities can be opened, a cost for opening each facility, and
a number of customers assigned to each facility with a predefined cost. The
goal of the problem is the minimization of the total cost. Let G = (N,E) be
a graph, where N is the set of nodes, which is the same as the set of players
in the game. Every edge e ∈ E has a positive length le. The distance d(x, y)
between two points x, y anywhere on the edges of the graph is defined as the
length of a shortest path from x to y. The length of a path is the sum of the
lengths of the edges and parts of edges that belong to the path. Let A be a
finite subset of points anywhere on the edges of G and let i ∈ N . The distance
d(i, A) between i and A is defined by [13]

d(i, A) = min
x∈A

d(i, x). (52)

The players can construct service facilities at any point on the graph, that
is, at any point along an edge of the graph and not only at the nodes of the
graph. The cost of a player i ∈ N is a linear function of the distance between
i and a facility that is closest to i. For each i ∈ N , a weight wi is given such
that if this distance is di, the cost for i is widi.

Tamir [65] has considered a cost allocation game for a location problem
for which he was able to reduce the exponential number of constraints for core
(x(S) ≤ c(S)) to a linear number. Curiel [13] denoted the number of facilities
that coalition S is allowed to build by ps and assumed that ps < |S|. Each
player has a cost L(i) associated with not having access to any facility. Curiel
studied two classes of games arising from such a situation. In the first, each
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coalition wants to minimize the maximum cost of its member and is called
p-center game, and in the second each coalition wants to minimize the sum
of the costs of its members and is called p-median game. The formulation of
these games is given in the following [13]:

For the p-center game:

cp(S) =

⎧

⎨

⎩

max
i∈S

L(i), if pS = 0

min
A:|A|=pS

max
i∈S

wid(i, A), if pS > 0 (53)

For the p-median game:

cp(S) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i∈S
L(i), if pS = 0

min
A:|A|=pS

∑

i∈S
wid(i, A), if pS > 0

(54)

In a p-center game, each coalition S with pS > 0 has to solve a p-center
problem, whereas in a p-median game each coalition S with pS > 0 has to
solve a p-median problem. P-center and p-median games have a nonempty
core under certain conditions and are balanced [13].

Curiel [13] also presented a simple plant location game that can be for-
mulated as follows. Let N be a set of players. The players correspond with
nodes of a tree and need to build facilities that can be located in the nodes of
the tree only. These are setup costs depending on the node where the facility
is located. There are also travel costs associated with edges of the tree. Each
coalition wants to minimize the sum of the setup costs and the weighted travel
costs of its members.

Denavur et al. [14] proposed a greedy algorithm for the computation of
the set of facilities that will be open, the set of cities to be connected to each
facility, and the amount to be charged to each city that has been connected in
an uncapacitated facility game. In this game, the opening of a facility causes
a fixed cost fi ≥ 0 and the cost of assigning customer j ∈ N to facility
i is denoted by cij ≥ 0. Goemans and Skutella [33] derived for any kind
of constrained facility location an equivalent relaxation in the natural space
of variables that contains a variable yi denoting whether facility i is open
and a variable xij denoting whether customer j is assigned to facility i. For
the unconstrained facility location problem, this canonical relaxation turns
out to simply be a classic LP relaxation of the problem. Kolen [49] proved
that the core is nonempty if and only if this canonical LP relaxation has
no integrality gap for the objective function being considered. Chardaire [10]
generalized Kolen’s result to some sorts of capacitated facility location games.
Geomans and Skutella [33] showed that testing the core nonemptiness is NP-
complete. Finally, Goemans and Skutella [33] proved that the cost allocation
problem is equivalent to the dual of the LP relaxation of the facility location
problem.
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Chardaire in his PhD thesis [9] calculated the core and the nucleolus of two
location games, the uncapacitated facility location game and the capacitated
facility location game. He proved that for the first game, a necessary and
sufficient condition for the nonemptiness of the core is for the integer problem
associated with the grand coalition and the straightforward LP relaxation of
that integer problem to have the same optimal values. Moreover, when the
core is not empty, he gave a compact reformulation of the core, polynomial
in the number of players, based on the dual of the LP relaxation associated
with the grand coalition. For the second problem, namely the Capacitated
case, the results that were obtained from Chardaire were not so strong as in
the first problem, but in the case that the distances are Euclidean the results
are similar as in the first case. Chardaire, also, studied the nucleolus of this
two games and he proved that when the core of the uncapacitated game is
non-empty, the nucleolus of the game is equal with the nucleolus of the relaxed
game. He proposed a constraint generation method to compute the nucleolus
of the uncapacitated game. He extended his approach in the capacitated case
and proved that if the distances of the problem are Euclidean and the core
is nonempty, then the constrained generation method for the computation of
the nucleolus can also be applied.

3.12 Supply Chain Management and Cooperative Games

The design and management of supply chain are nowadays one of the most
active research fields in the area of optimization. In the literature, few papers
have been published that use Cooperative Game Theory to study applications
of Supply Chain Management. Most of the works published until now con-
cern theoretical results and solution concepts in some combinatorial problems
(routing problems, location problem) as it was presented in the previous sec-
tions, and not practical applications. In Wang and Parlar [69], a newsvendor
game with three players is analyzed, first in noncooperative setting and then
under cooperation with and without Transferable Utility. Hartman et al. [44]
considered the newsvendor centralization game, a game in which multiple re-
tailers decide to centralize their inventory and split profits resulting from the
benefits of risk pooling and showed that this game has a nonempty core under
certain restrictions on the demand distribution.

Engevall [24] studied in his PhD thesis a distribution problem in Norsk
Hydro Olje AB that markets and sells gas-oil in Sweden. Norsk Hydro is re-
sponsible for the transportation of different qualities of gas and gas-oil to the
customers of Norsk Hydro. After the transportation of the goods to the cus-
tomers has taken place, he considered how to allocate the total transportation
cost for a tour, or for a set of tours, to the customers served.

Vidal and Goetschalckx [68] presented a model for the optimization of a
global supply chain that maximizes the after-tax profits of a multinational cor-
poration and that includes transfer prices and the allocation of transportation
costs as explicit decision variables. They formed the problem as a nonconvex
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optimization problem with a linear objective function, and both linear con-
straints and bilinear constraints. They also proposed a heuristic algorithm for
the solution of the problem.

4 Conclusion

In this paper, the most important cost allocation methods in problems that
arise from the field of combinatorial (discrete) optimization were presented.
Initially, the solution concepts of the cooperative game theory, like the core of
the game, the Shapley value, the Bargaining set, the Nucleolus of the game,
and the Kernel of the game, were given and analyzed. Then, for the most
important problems of combinatorial optimization and of supply chain man-
agement, the corresponding combinatorial optimization game was presented.
For these games, the core, the nucleolus, and the other solution concepts were
calculated.
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1 Introduction

The scientific life of the theory of Variational Inequalities has revealed itself
full of events and surprises. This theory arose in the 1970s as an innovative
and effective method to solve a group of equilibrium problems originated from
mathematical physics as the Signorini problem, the obstacle problem, and the
elastic-plastic torsion problem, and it is still an open question to decide who
must be considered the founder between G. Fichera and G. Stampacchia, who
first dealt with Variational Inequalities (see [10] and [15]).

The critical point for which the other theories, available in the literature,
have revealed themselves unable to solve the above-mentioned problems is that
these problems request a condition of complementarity type on the boundary
or on a part of the set where the problems are defined, and, in general, it is
not possible to express them as an optimization problem.

After an intense period of successes and of fundamental results obtained
by means of the Variational Inequality theory, which someone defines as the
Italian way of mathematics, maybe in consequence of the untimely death of
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G. Stampacchia in 1979, the interest for Variational Inequalities declined and
it seemed that the theory had no more to say.

On the contrary, in the beginning of the 1980s, it was proved by M.J.
Smith (see [22]) and S. Dafermos (see [2]) that the traffic network equilibrium
problem can be formulated in terms of a finite-dimensional Variational In-
equality and, hence, it is possible to study in this way existence, uniqueness,
stability of traffic equilibria, and to compute the solutions. In consequence of
this fact, the past decades have witnessed an exceptional interest for Varia-
tional Inequalities, and an enormous amount of papers and books have been
devoted to this topic. As a relentless river, more and more problems aris-
ing from the economic world, as the spatial price equilibrium problem, the
oligopolistic market equilibrium problem, the migration problem, and many
others (see [19]), are formulated in terms of a finite dimensional Variational
Inequality and, by means of this theory, solved.

The last event goes back to the end of the 1990s: the traffic network equi-
librium problem with feasible path flows that have to satisfy time-dependent
capacity constraints and demands has been formulated in [3] and [4] (see also
[11]) as an evolutionary Variational Inequality, for which existence theorems
and computational procedures are given. Starting from this first result, many
other problems with time-dependent data have been formulated in the same
terms. In [5] and [6], the authors consider the spatial price equilibrium prob-
lem when the prices and the commodity shipment bounds vary over the time.
[8] addresses the time-dependent spatial price equilibrium problem in which
the variables are commodity shipments. In [7] and [9], the authors consider a
time-depending financial network model consisting of multiple sectors, each of
which seeks to determine its optimal portfolio given time-dependent supplies
of the financial holdings.

Although in the theory of Variational Inequalities an important chapter
is constituted by parabolic or hyperbolic Variational Inequalities, the models
that formulate the above problem are different from the previous ones and
then they request an appropriate study and an improvement of some aspects
of Variational Analysis. All these problems have a common element: their
equilibrium conditions can be handled as generalized complementarity prob-
lems and moreover the evolutionary Variational Inequality formulation can be
expressed in a unified way (see [1]).

The aim of this paper is to present the essential aspects of the problems
considered and to focus on the new questions that the evolutionary framework
provides.

2 Time-Dependent Equilibrium Conditions
and Evolutionary Variational Inequalities

The driving forces of the problems that we examine are considered time-
dependent on a fixed time interval [0, T ]. Consequently, the response of the
system is time-dependent, too. Here the system is assumed to respond to
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changes of the driving forces so gradually in the considered timescale that, at
each instant, equilibrium conditions prevail. However, we can consider models
with presence of delay effects on the response (see [21]), but in this paper we
will just mention this subject.

We start considering a model of a traffic network on a finite directed graph
(see [3] and [4]). There is given a set W of origin-destination pairs and a set
R of routes. Each route r ∈ R links some origin-destination pair w ∈ R. This
leads to the set R(w) of all w ∈ W. The topology of the network is described
by the pair-route incidence matrix Φ = {Φw,r} with w ∈ W, r ∈ R, where

Φw,r =
{

1 if the route r connects the pair w
0 otherwise.

Because the feasible flows have to satisfy time-dependent capacity constraints
and demand requirements, the flow vectors are time-dependent flow vectors
f(t) ∈ R

R, where t varies in the fixed time interval T = [0, T ], while the
topology remains fixed. Each component fr(t) of f(t) gives the flow trajectory
f : T → R

R, which have to satisfy almost everywhere on T the capacity
constraints

λ(t) ≤ f(t) ≤ µ(t)

and the so-called “traffic conservation law”:

Φf(t) = ρ(t),

where the bounds λ ≤ µ and the demand ρ = (ρw)w∈W ≥ 0 are given. Con-
sidering a Lp setting with p ∈ (1,∞), we assume that λ and µ ∈ Lp(T ,RR)
and that ρ lies in Lp(T ,RW). Assuming in addition that

Φλ(t) ≤ ρ(t) ≤ Φµ(t) a.e. on T ,

we obtain that the set of feasible flows

K = {f ∈ E : λ(t) ≤ f(t) ≤ µ(t), Φ f(t) = ρ(t) a.e. on T } (1)

is nonempty (see [13]). Clearly K is convex and weakly compact.
The cost trajectory C, which assigns to each flow trajectory f ∈ K the

cost trajectory C(f), is a mapping C : K → E∗ = Lq(T ,RR)
(

1
p

+
1
q

= 1
)

and it results

 C(f), g !=
∫

T
〈C(f(t)), g(t)〉 dt =

∫

T

∑

s∈R
Cs(f) gs(t) dt.

The equilibrium condition is given by a generalized version of Wardrop’s con-
dition, namely:

Definition 1. h ∈ K is an equilibrium flow if and only if, for all w ∈ W and
r, s ∈ R(w) and a.e. on T there holds:

Cr(h)(t) < Cs(h)(t) =⇒ hr(t) = µr(t) or hs(t) = λs(t). (2)
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We remark that the kind of equilibrium defined by condition (2) is different
from the one obtained considering a minimization of an objective, like total
cost set by society or some authority.

The equilibrium approach defined by (2) is called user-oriented traffic equi-
librium and has the meaning that every agent in traffic strives for his indi-
vidual cost and it, when abandoning artificial assumptions of symmetry and
thus abandoning the existence of a potential, cannot be formulated as simple
optimization problems. The overall flow pattern obtained according to condi-
tion (2) fits very well in the framework of the theory of Variational Inequality.
In fact in [3] and [4], the following result is shown:

Theorem 1. h ∈ K is an equilibrium solution according to Definition 1 if and
only if h is a solution to the following Variational Inequality

“Find h ∈ K :

 C(h), f − h!=
∫

T
〈C(h(t)), f(t)− h(t)〉 dt ≥ 0 ∀f ∈ K.” (3)

The next equilibrium conditions that we present are those of the spatial price
equilibrium problem in the case of the price formulation. In this case, we have
n supply markets P1, P2, . . . , Pn and m demand markets Q1, Q2, . . . , Qm

of a commodity m, whose geometry remains fixed during the interval of time
T = [0, T ]. For each t ∈ T we have:

the supply price vector p(t) ∈ R
n;

the total supply vector g(t) ∈ R
n;

the demand price vector q(t) ∈ R
m;

the total demand vector f(t) ∈ R
m;

the flow vector x(t) ∈ R
nm;

the unit cost vector c(t) ∈ R
nm.

The feasible vectors u(t) = (p(t), q(t), x(t)) have to satisfy the time-dependent
constraints on prices and transportation flows, namely

u(t) ∈
n
∏

i=1

[

p
i
(t), pi(t)

]

×
n
∏

j=1

[

q
j
(t), qj(t)

]

×
n
∏

i=1

m
∏

j=1

[

xij(t), xij(t)
]

where p
i
(t), pi(t), qj(t), qj(t), xij(t), xij(t) are given.

The functional setting for the trajectories u(t) is the Hilbert space

L = L2(T ,Rn)× L2(T ,Rm)× L2(T ,Rnm)

and, hence, the set of feasible vectors u(t) is given by

K = K1 ×K2 ×K3

= {p ∈ L2(T ,Rn) : 0 ≤ p(t) ≤ p(t) ≤ p(t) a.e. on T }
× {q ∈ L2(T ,Rm) : 0 ≤ q(t) ≤ q(t) ≤ q(t) a.e. on T }
× {x ∈ L2(T ,Rnm) : 0 ≤ x(t) ≤ x(t) ≤ x(t) a.e. on T },
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where p(t), p(t) ∈ L(T ,Rn), q(t), q(t) ∈ L(T ,Rm), x(t), x(t) ∈ L(T ,Rnm).
K is a convex, closed, weakly compact set. Furthermore, we are giving the
mappings:

g = g(t, p(t)) : T ×K1 → L2(T ,Rn)

f = f(t, q(t)) : T ×K2 → L2(T ,Rm)

c = c(t, x(t)) : T ×K3 → L2(T ,Rnm)

which, at time t, assign to each price trajectory p ∈ K1 and q ∈ K2 the supply
g ∈ L2(T ,Rn) and the demand f ∈ L2(T ,Rm), respectively, and to the flow
trajectory x ∈ K3 the cost c ∈ L2(T ,Rnm). Now, we allow that, during
the activities of the market in the time interval [0, T ], supply and demand
excesses can occur, namely that there exists n non-negative functions si(t)
i = 1, 2 . . . , n and m non-negative functions tj(t) j = 1, . . . ,m such that

gi(t, p(t)) =
m
∑

j=1

xij(t) + si(t) i = 1, 2, . . . , n (4)

fj(t, q(t)) =
n
∑

i=1

xij(t) + tj(t) j = 1, 2, . . . ,m. (5)

The equilibrium conditions of this evolutionary market take the following
form:

Definition 2. u(t) = (p(t), q(t), x(t)) ∈ L is a dynamic market equilibrium if
and only if for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m and a.e. in T there
hold:

si(t) > 0 =⇒ pi(t) = p
i
(t)

p
i
(t) < pi(t) < pi(t) =⇒ si(t) = 0

i = 1, 2, . . . , n; (6)

tj(t) > 0 =⇒ qj(t) = qj(t)

q
j
(t) < qj(t) < qj(t) =⇒ tj(t) = 0

j = 1, 2, . . . ,m; (7)

pi(t) + cij(t, x(t))

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

> qj(t) if xij(t) = xij(t)

= qj(t) if xij(t) ≤ xij(t) ≤ xij(t)

< qj(t) if xij(t) = xij(t).

(8)

Conditions (6) and (7), in a reasonable way, are satisfied when the excesses
vanish in dependence of the prices; conditions (8) control the amounts of
commodity shipments between the supply and the demand markets according
to the equilibrium condition that the supply price plus the transportation cost
is greater, equal, or less than the demand price.
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Denoting by v : T ×K→ L the operator defined setting

v = v(t, u(t))

=

⎛

⎝

⎛

⎝gi(t, p(t))−
m
∑

j=1

xij(t)

⎞

⎠

i=1,...,n

,

(

fj(t, q(t))−
n
∑

i=1

xij(t)

)

j=1,...,m

,

(pi(t) + cij(t, x(t))− qj(t)) i=1,...,n
j=1,...,m

)

, (9)

also here the following characterization in terms of Variational Inequalities
holds (see [5] and [6]):

Theorem 2. u(t) = (p(t), q(t), x(t)) ∈ K is a dynamic market equilibrium if
and only if u(t) is a solution to

 v(u), ũ− u!=
∫ T

0

〈v(t, u(t)), ũ(t)− u(t)〉 dt

=
∫ T

0

⎧

⎨

⎩

n
∑

i=1

⎛

⎝gi(t, p(t))−
m
∑

j=1

xij(t)

⎞

⎠ (p̃i(t)− pi(t))

−
m
∑

j=1

(

fj(t, q(t))−
n
∑

i=1

xij(t)

)

(q̃j(t)− qj(t))

+
n
∑

i=1

m
∑

j=1

(pi(t) + cij(t, x(t))− qj(t)) (x̃ij(t)− xij(t))
}

dt ≥ 0

∀ũ = (p̃, q̃, x̃) ∈ K. (10)

For what concerns the quantity formulation of the spatial price equilibrium
problem, in this case the only change is that the supply prices pi and the
demand prices qj are considered as functions of the supply g and the de-
mand f and the equilibrium conditions are related to a vector w(t) =
(g(t), f(t), x(t), s(t), t(t)), which represents the variables of the model. More
precisely, we are giving two mappings p = p(t, g(t)) : T × L2([0, T ],Rn

+) →
L2([0, T ],Rn

+) and q = q(t, f(t)) : T × L2([0, T ],Rm
+ )→ L2([0, T ],Rm

+ ), which
assign to each supply g(t) the supply price p(t, g(t)) and to each demand f(t)
the demand price q(t, f(t)). We assume that capacity constraints on p, q and
the transportation cost c(t, x(t)) are fixed in such a way that:

p(t) ≤ p(t, g(t)) ≤ p(t), q(t) ≤ q(t, f(t)) ≤ q(t),

c(t) ≤ c(t, x(t)) ≤ c(t).
The set of feasible vectors w(t) is given by
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K =

{

w(t) = (g(t), f(t), x(t), s(t), t(t)) ∈

L2([0, T ],Rn)× L2([0, T ],Rm)× L2([0, T ],Rn)× L2([0, T ],Rm) :

w(t) ≥ 0 a.e. in [0, T ];

gi(t) =
m
∑

j=1

xij(t) + si(t), i = 1, . . . , n;

fj(t) =
n
∑

j=1

xij(t) + tj(t), j = 1, . . . ,m a.e. in [0, T ]

}

(11)

and the dynamic market equilibrium conditions in the case of the quantity
formulation take the following form:

Definition 3. w∗(t) ∈ K is a dynamic market equilibrium if and only if for
each i = 1, . . . , n and j = 1, . . . ,m and a.e. in [0, T ] there hold:

if s∗i (t) > 0, then pi(t, g∗(t)) = p
i
(t);

if p
i
(t) < pi(t, g∗(t)), then s∗i (t) = 0;

(12)

if tj(t) > 0, then qj(t, f∗(t)) = qj(t);

if qj(t, f∗(t)) < qj(t), then t∗j (t) = 0;
(13)

if x∗ij(t) > 0, then pi(t, g∗(t)) + cij(t, x∗(t)) = qj(t, f∗(t));

if pi(t, g∗(t)) + cij(t, x∗(t)) > qj(t, f∗(t)), then x∗ij(t) = 0.
(14)

Then in [8], [16], [17] the following result is shown:

Theorem 3. w∗ ∈ K is a dynamic market equilibrium if and only if w∗ is a
solution to the Variational Inequality

Find w∗ ∈ K such that

 v(w∗), w − w∗ !=
∫ T

0

〈v(t, w∗(t)), w(t)− w∗(t)〉 dt

=
∫ T

0

{

〈p(t, g∗(t)), g(t)− g∗(t)〉 − 〈q(t, f∗(t)), f(t)− f∗(t)〉

+〈c∗(t, x∗(t)), x(t)− x∗(t)〉 − 〈p(t), s(t)− s∗(t)〉
+〈q(t), t(t)− t∗(t)〉

}

dt ≥ 0 ∀w ∈ K. (15)

Here v denotes the operator v(t, w) = (p(t, g(t)), −q(t, f(t)), c(t, x(t)),
−p(t), q(t)).
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Now we pass to present the evolutionary financial equilibrium conditions
and the equivalent variational inequality formulation. We consider a multi-
sector, multiinstrument financial equilibrium problem with a general utility
function and including policy interventions in form of taxes and price controls.

Then we have m sectors, with a typical sector denoted by i, and n instru-
ments, with a typical financial instrument denoted by j, in the period [0, T ].
Let si(t) be the total financial volume held by sector i at the time t. xij de-
notes the amount of instrument j held as an asset in sector i’s portfolio, yij the
amount of instrument j held as liability in sector i’s portfolio. The assets xij
in sector i’s portfolio are grouped into the column vector xi(t) and the sector
asset vectors into the matrix x(t); similarly, yi(t) denotes the column vector
of the liabilities in sector i’s portfolio and y(t) the matrix of the sector liabil-
ity vectors. The instrument prices rj(t) are variables of the problem but are
fixed instrument floor prices rj(t) and instrument ceiling prices rj(t), which
represent the form of policy interventions; r(t), r(t), r(t) denote the column
vectors of the prices, of the floor prices, and of the ceiling prices, respectively.
Moreover, the policy interventions act by imposing a tax rate τij(t) on sector
i’s net yield on financial instrument j. We assume that the tax rates in this
model have the flexibility of adjusting the tax rate following the evolution
of the system. Then, assuming as the functional setting the Lebesgue space
L2([0, T ],Rp), the set of feasible assets and liabilities for the sector i becomes

Pi =

{

[

xi(t)
yi(t)

]

∈ L2([0, T ],R2n) :

n
∑

j=1

xij(t) = si(t),
n
∑

j=1

yij(t) = si(t) a.e. in [0, T ],

xij(t) ≥ 0, yij(t) ≥ 0 a.e. in [0, T ]

}

and the set of feasible instrument prices is

R =
{

r(t) ∈ L2([0, T ],Rn) :

rj(t) ≤ rj(t) ≤ rj(t), j = 1, . . . , n a.e. in [0, T ]
}

,

where r(t) and r(t) are assumed to belong to L2([0, T ],Rn). We introduce for
each sector i a utility function Ui(t, xi(t), yi(t), r(t)), which is constituted by
two terms (see [9] and [19]):

Ui(t, xi(t), yi(t), r(t))

= ui(t, xi(t), yi(t)) +
n
∑

j=1

(

rj(t)− rj(t)
)

(1− τij(t)) (xij(t)− yij(t)) (16)
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The first term is connected with the opposite of the risk-aversion and an
example of this type of function is the well-known one used in the quadratic
model (see [19] and [7]):

ui(t, xi(t), yi(t)) = −
[

xi(t)
yi(t)

]T

Qi(t)
[

xi(t)
yi(t)

]

where Qi(t) is a 2n × 2n matrix, which, following the concept that assess-
ment of risk is based on a variance-covariance matrix denoting the sector’s
assessment of the standard deviation of prices for each instrument, represents
a measure of this aversion.

In the general case, we require a lot of qualitative assumptions on
ui(t, xi(t), yi(t)). Precisely, we require that ui(t, xi(t), yi(t)) is defined and
concave on [0, T ]× R

n × R
n, is measurable in t, and continuous with respect

to xi and yi. Moreover, we assume that
∂ui
∂xij

and
∂ui
∂yij

exist and they are

measurable in t and continuous with respect to xi and yi. Further, we require
that the following growth conditions hold:

|ui(t, x, y)| ≤ αi(t) ‖x‖ ‖y‖, ∀x, y ∈ R
n,

a.e. in [0, T ], i = 1, . . . ,m;
(17)

∣

∣

∣

∣

∂ui(t, x, y)
∂xij

∣

∣

∣

∣

≤ βij ‖y‖,
∣

∣

∣

∣

∂ui(t, x, y)
∂yij

∣

∣

∣

∣

≤ γij ‖x‖,

i = 1, . . . ,m; j = 1, . . . , n,

(18)

where αi, βij , γij are non-negative functions of L∞([0, T ]). The second term
expresses the request to maximize the value of the asset holding and to min-
imize the value of the liabilities. Moreover, the second term incorporates the
tax rate through the presence of the (1− τij(t)) term premultiplying the
(

rj(t)− rj(t)
)

(xij(t)− yij(t)) .
We can provide the following definition of an evolutionary financial equi-

librium.

Definition 4. A vector of sector assets, liabilities, and instrument prices

(x∗(t), y∗(t), r∗(t)) ∈
m
∏

i=1

Pi×R is an equilibrium of the evolutionary financial

model if and only if it satisfies the system of inequalities:

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂xij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

− µ(1)
i (t) ≥ 0

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂yij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

− µ(2)
i (t) ≥ 0,

(19)
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and equalities:

x∗ij(t)
[

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂xij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

− µ(1)
i (t)

]

= 0

y∗ij(t)
[

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂yij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

− µ(2)
i (t)

]

= 0,

(20)
where µ(1)

i (t), µ(2)
i (t) ∈ L2([0, T ]) are Lagrangean functions, for all sectors i :

i = 1, . . . ,m and for all instruments j : j = 1, . . . , n and verifies the condition:

m
∑

i=1

(1− τij(t))
(

x∗ij(t)− y∗ij(t)
)

⎧

⎨

⎩

≤ 0 if r∗j (t) = rj(t)
= 0 if rj(t) < r

∗
j (t) < rj(t)

≥ 0 if r∗j (t) = rj(t).
(21)

The meaning of Definition 4 is that to each financial volume si(t) held by the
sector i, we associate the functions µ(1)

i (t), µ(2)
i (t), related, respectively, to the

assets and to the liabilities and that represent the “equilibrium disutilities”
for unit of the sector i. The financial volume invested in the instrument j as
assets x∗ij(t) is greater or equal to zero if the j-th component

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂xij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

of the disutility is equal to µ(1)
i (t), whereas if

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂xij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

> µ
(1)
i (t),

then x∗ij(t) = 0. The same occurs for the liabilities.

The functions µ(1)
i (t) and µ(2)

i (t) are Lagrangean functions associated, re-
spectively, with the constraints

n
∑

j=1

(xij(t)− si(t)) = 0 and
n
∑

j=1

(yij(t)− si(t)) = 0.

They are not known a priori, but this has not influence, as Definition 4 is
equivalent to a Variationsl Inequality in which µ(1)

i (t) and µ(2)
i (t) do not ap-

pear, as the following theorem shows:

Theorem 4. A vector (x∗(t), y∗(t), r∗(t)) ∈
m
∏

i=1

Pi × R is an evolutionary

financial equilibrium if and only if it satisfies the following Variational In-
equality:
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Find (x∗(t), y∗(t), r∗(t)) ∈
m
∏

i=1

Pi ×R such that

m
∑

i=1

∫ T

0

{

n
∑

j=1

[

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂xij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

]

×
[

xij(t)− x∗ij(t)
]

+
n
∑

j=1

[

−∂ui(t, x
∗
i (t), y

∗
i (t))

∂yij
− (1− τij(t))

(

r∗j (t)− rj(t)
)

]

×
[

yij(t)− y∗ij(t)
]

+
n
∑

j=1

(

x∗ij(t)− y∗ij(t)
)

×
[

rj(t)− r∗j (t)
]

}

dt ≥ 0

∀(x, y, r) ∈
m
∏

i=1

Pi ×R. (22)

Now, if we give a look to the variational inequalities and to the underlying
constraint sets that express the above equilibrium problems, we are led to
conclude that all these problems can be formulated in a unified way. In fact,
let us consider the nonempty, convex, closed, bounded subset of L2([0, T ],Rq)
given by:

K =
{

u ∈ L2([0, T ],Rq) : λ(t) ≤ u(t) ≤ µ(t) a.e. in [0, T ];

q
∑

i=1

ξiui(t) = ρ(t) a.e. in [0, T ], ξi ∈ {−1, 0, 1} , i ∈ {1, . . . , q}
}

. (23)

For chosen values of the scalars ξi, of the dimension q, and of the boundaries
λ, µ, we obtain each of the previous above cited constraint sets (see [1] for
details). Therefore, we obtain the following standard form for the above cited
problems:

Find u ∈ K such that

 F (u), v − u!=
∫ T

0

〈F (t, u(t)), v(t)− u(t)〉 dt ≥ 0 ∀v ∈ K, (24)

where K is given by (23) and F is a mapping from [0, T ]×K onto L2([0, T ],Rq).
Further, it directly derives from the proofs of Theroems 1–4 that problem

(24) is also equivalent to the following one:

Find u ∈ K such that
〈F (t, u(t)), v(t)− u(t)〉 ∀v ∈ K, a.e. in [0, T ], (25)

which can be useful for computational purpose.
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3 Qualitative Results

As observed in [3] and [4], there are two standard approaches to the existence
of equilibria, namely, with and without a monotonicity requirement. We shall
employ the following definitions. F : [0, T ]×K→ L2([0, T ],Rq) is said to be

• pseudomonotone if and only if for all u, v ∈ K

 F (u), v − u!≥ 0 =⇒ F (v), v − u!≥ 0;

• hemicontinuous if and only if for all v ∈ K, the function u→ F (u), v −
u! is upper semicontinuous on K;

• hemicontinuous along line segments if and only if for all u, v ∈ K, the
function w → F (w), v−u! is upper semicontinuous on the line segment
[x, y].

The following general result holds:

Theorem 5. Let F : [0, T ]×K→ L2([0, T ],Rq) and K ⊆ L2([0, T ],Rq) convex
and nonempty. Assume that

(a) there exists A ⊆ K nonempty, compact and B ⊆ K compact, convex such
that, for every u ∈ K \A, there exists v ∈ B with

 F (u), v − u!< 0;

and that either (b) or (c) below holds:

(b) F is hemicontinuous;
(c) F is pseudomonotone and hemicontinuous along line segments.

Then there exists u ∈ K such that  F (u), v − u!≥ 0, ∀v ∈ K.

We may apply this result with K given by (23). Then K is convex, closed, and
bounded, hence weakly compact. So, if we endow L2([0, T ],Rq) with the weak
topology, then K is compact and condition (a) in Theorem 5 is automatically
satisfied by choosing A = K and B = ∅.

If we endow the space L2([0, T ],Rq) with the strong topology, condition
(a) must be used (we can avoid the request of convexity of K, as observed in
[4]) as well as (b). Finally, because weak and strong topology coincide on line
segments, condition (c) is enough to ensure the existence of a solution.

Now let us suppose that F is a Carathéodory function, namely that F (t, u)
is measurable in t and continuous with respect to u and that the following
condition holds:

‖F (t, u)‖Rq ≤ f(t) + α(t) ‖u‖Rq (26)

with f(t) ∈ L2([0, T ]), α(t) ∈ L∞([0, T ]).
Then it is possible to show (see [6], Theorem 3) that F is hemicontinuous.

In consequence of this fact, we get the following existence result.
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Theorem 6. Assume that condition (26) holds. Then each of the following
conditions is sufficient for the existence of a solution to the Variational In-
equality (24):

1. There exist A ⊆ K nonempty, compact and B ⊆ K compact such that, for
every u ∈ K \A, there exists v ∈ B with  F (u), v − u!< 0;

2. F is pseudomonotone;
3. F is hemicontinuous with respect to the weak topology.

Interesting problems concerning the qualitative study of solutions to the Varia-
tional Inequality (24) are the stability and sensitivity analysis and the so-called
regularization theory of solutions. The sensitivity analysis tries to clarify the
behavior of solutions when some changes in the data occur, and the aim of
the stability analysis is to check if a small change in the mapping F produces
a small change in the solution. Some results in these fields can be found in
[8, 17,21].

The regularization theory deals with the problem to see if, imposing that
the data fulfill some regularity assumptions, as Hölder-continuity, differentia-
bility, and so on, the solutions to (24) verify in turn these major properties.
For example, in [13], Section 2.1, the author asks whether the solution to (24)
(or (25)) can be in C([0, T ],Rq). Even if some partial results are available, the
question is still open.

4 Lagrangean and Duality Theory

It is worth remarking that the Lagrangean theory provides interesting con-
tributions, absolutely necessary for the better understanding and handling
of the equilibrium problems considered. In fact, not only do the Lagrangean
variables have a meaning intrinsic to the nature of the problems considered,
but also the Lagrangean theory is essential in order to obtain the equivalence
between the equilibrium conditions and a Variational Inequality. However, in
our infinite dimensional setting, new problems arise with respect to the fi-
nite dimensional Lagrangean theory. The crucial difference with respect to
the finite dimensional setting is that the interior of the cone

C =
{

v ∈ L2([0, T ],Rq) : v(t) ≥ 0 a.e. in [0, T ]
}

(27)

is empty and, as a consequence, the separation theorems as well as the so-
called Slater regularity assumption do not hold. Then one can try to overcome
this difficulty either introducing the new concept of quasi-relative interior and
proving separation theorems by means of this new concept (see [13] for details
and applications) or using a more general regularity assumption that does not
require any condition on the interior of C. We will follow this second way and,
to this end, let us consider the Variational Inequality (24) and let us introduce
the following function:
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L(v, l1, l2,m) = Ψ(v)−
∫

Ω

〈l1(t), v(t)− λ(t)〉 dt

+
∫

Ω

〈l2(t), v(t)− µ(t)〉 dt+
∫

Ω

〈m(t), Φv(t)− ρ(t)〉 dt

∀v ∈ L2([0, T ],Rq), ∀l1, l2 ∈ C, ∀m ∈ L2([0, T ],Rl) (28)

which is called Lagrangean functional. In (28) we denote by

Ψ : L2([0, T ],Rq)→ R

the mapping
Ψ(v) = 〈F (u), v − u〉

with u solution to the Variaional Inequality (24). It results

min
v∈K

Ψ(v) = Ψ(u) = 0.

By the term Φv(t)− ρ(t), we denote the term
q
∑

i=1

ξivi = ρ(t), which appears

in the convex set K given by (23); here ρ ∈ L2([0, T ],Rl) and Φ is a l × q
matrix whose entries are −1, 0, 1.

Our aim is to prove the following characterization:

Theorem 7. u ∈ K is a solution to Variational Inequality (24) if and only if
there exist l1, l2 ∈ C and m ∈ L2([0, T ],Rl) such that (u, l1, l2,m) is a saddle
point of the Lagrange functional (28), namely

L(u, l1, l2,m) ≤ L(u, l1, l2,m) ≤ L(v, l1, l2,m)

∀v ∈ L2([0, T ],Rq), ∀l1, l2 ∈ C and ∀m ∈ L2([0, T ],Rl)
(29)

and in addition
∫ T

0

〈l1(t), u(t)− λ(t)〉 dt = 0,
∫ T

0

〈l2(t), u(t)− µ(t)〉 dt = 0. (30)

Proof. Let (u, l1, l2,m) be a saddle point of the Lagrange functional L. Taking
into account that L(u, l1, l2,m) = 0, from the right-hand part of (29) we get:

L(v, l1, l2,m) ≥ 0, ∀v ∈ L([0, T ],Rq). (31)

Considering (31) for each v ∈ K, namely for λ(t) ≤ v(t) ≤ m(t) and Φv(t) =
ρ(t), we obtain:

Φ(v) = 〈F (u), v − u〉 ≥ L(v, l1, l2,m) ≥ 0,∀v ∈ K (32)

and therefore u is a solution to (29).
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Vice versa, let u be a solution to (24) and, first, let us prove that there
exist l1, l2 ∈ C and m ∈ L([0, T ],Rl) such that

L′(u, l1, l2,m)(v − u) ≥ 0, ∀v ∈ L2([0, T ],Rq) (33)

and
∫ T

0

〈l1(t), u(t)− λ(t)〉 dt = 0,
∫ T

0

〈l2(t), u(t)−m(t)〉 dt = 0,

where L′(u, l1, l2,m) denotes the Fréchet derivative of L(u, l1, l2,m) at u.
We derive the estimate (33) using Theorem 5.3 of [14], provided that the
Kurcyusz–Robinson–Zowe condition (5.2) of [14] (see also [23] and [20]):

⎛

⎝

g′(u)

h′(u)

⎞

⎠ cone
(

L2([0, T ],Rq)− {u}
)

+ cone

⎛

⎝

c+ {g(u)}

0

⎞

⎠ =

⎛

⎝

L2([0, T ],Rq)

L2([0, T ],Rl)

⎞

⎠

(34)

is fulfilled (see also the remark at the end of page 120 of [14]). In order to
verify this condition, let us set g(v) = (λ − v, v −m) and h(v) = Φv − ρ. It
results g′(v)(w) = (−w,w), h′(v)(w) = Φw, and the condition (34) is fulfilled
because it results:

− cone
(

L2([0, T ],Rq)− {u}
)

+ cone (C + {λ− u})
= −L2([0, T ],Rq) + cone {u}+ C + cone {λ− u} = L2([0, T ],Rq), (35)

cone
(

L2([0, T ],Rq)− {u}
)

+ cone (C + {u−m}) = L2([0, T ],Rq), (36)

and

Φ cone
(

L2([0, T ],Rq)− {u}
)

= Φ
(

L2([0, T ],Rq)− cone {u}
)

= ΦL2([0, T ],Rq) = L2([0, T ],Rl). (37)

Then, the other assumption of Theorem 5.3 of [14] being fulfilled, (33) holds,
and, in virtue of the linearity of L(v, l1, l2,m) with respect to v, it follows that
u is a minimal point for L, namely

0 = L(u, l1, l2,m) ≤ L(v, l1, l2,m), ∀v ∈ L2([0, T ]).

So the right-hand part of (29) is proved. Now, taking into account that
L(u, l1, l2,m) is reduced to

L(u, l1, l2,m) = −
∫ T

0

〈l1(t), λ(t)−u(t)〉 dt+
∫ T

0

〈l2(t), u(t)−µ(t)〉 dt ≤ 0 (38)

for each l1, l2 ∈ C, ∀m ∈ L2([0, T ],Rl), our result is achieved.
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Some interesting consequences can be derived from Theorem 7 and from
the estimate (29). The first consequence concerns the meaning of the La-
grangean variables. Taking into account that

∫ T

0

〈l1(t), u(t)〉 dt =
∫ T

0

〈l1(t), λ(t)〉 dt = 0,

∫ T

0

〈l2(t), u(t)〉 dt =
∫ T

0

〈l2(t), µ(t)〉 dt = 0,

and that Φu(t) = ρ(t) form the right-hand part of (29), we get:

∫ T

0

〈F (t, u(t)), v(t)− u(t)〉 dt−
∫ T

0

〈l1(t), v(t)− u(t)〉 dt

+
∫ T

0

〈l2(t), v(t)− u(t)〉 dt+
∫ T

0

〈m,Φ(v − u)〉 dt ≥ 0,

∀v ∈ L2([0, T ],Rq)

and hence
F (t, u(t))− l1(t) + l2(t) + ΦT m(t) = 0. (39)

It is possible to derive from (30) and (39) interesting information about the
meaning of the Lagrangean variables l1, l2, andm. In fact, taking into account
that (30) can be rewritten as

l
i

1(t) (ui(t)− λi(t)) = 0, l
i

2(t) (ui(t)−mi(t)) = 0 a.e. in [0, T ],

it follows that when l
i

i(t) > 0, then ui(t) = λi(t), namely the variables l
i

i(t)
give information about the point for which the vector attains the minimal
value; a similar remark holds also for l

i

2(t).
Moreover, from (39) we deduce thatm gives information about the equilib-

rium value of the functional F − li + l2, which represents a generalized “cost”
functional. Many other consequences about the meaning of the Lagrangean
variables could be derived (we refer for this to [3–5,7, 9, 16]).

Another group of consequences concerns the duality theory. In fact, from
estimate (29), we immediately deduce that the so-called duality gap cannot
arise, namely that it results

max
l1, l2∈C

m∈L2([0,T ],Rl)

inf
v∈L2([0,T ],Rq)

L(v, l1, l2,m)

= min
v∈L2([0,T ],Rq)

sup
l1, l2∈C

m∈L2([0,T ],Rl)

L(v, l1, l2,m) = L(u, l1, l2,m). (40)

Moreover, taking into account (38) and (30), we can introduce a Dual Varia-
tional Inequality in the following way:
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find
(

u, l1, l2,m
)

∈ L2([0, T ],Rq)× K̃ :
∫ T

0

〈λ(t)− u(t), l1(t)− l1(t)〉 dt+
∫ T

0

〈u(t)− µ(t), l2(t)− l2(t)〉 dt ≥ 0

∀(u, l1, l2,m) ∈ K̃, (41)

where

K̃ =

{

(u, l1, l2,m) ∈
(

L2([0, T ],Rq)
)3 × L2([0, T ],Rl) :

l1(t), l2(t) ≥ 0, a.e. in [0, T ]; Φu(t)− ρ(t) = 0, a.e. in [0, T ];

F (t, u(t))− l1(t) + l2(t) + ΦT m(t) = 0, a.e. in [0, T ]

}

. (42)

So the Dual Variational Inequality associated with our problem is a Quasi-
Variational Inequality.

5 Conclusion

We conclude the current paper remarking that the time-dependent theory
of equilibrium problems have received from the related Variational Inequality
formulation a very fruitful setting and that Variational Inequalities seem to be
the key to solve some of the principal challenges of our time. In fact, they allow
us to manage the market and financial equilibria, following their evolution in
time and achieving a light on the next future.

New future research directions deal with the study of evolutionary equilibria
by means of projected dynamic systems theory, the introduction to the elastic
model for which the data depend also on the expected equilibrium solutions.
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Abstract This chapter deals with problems of differential games of multiple agents
moving in a region. We describe such a game by a hierarchical structure, which can
be simplified using a fiber bundle. Then, using geometric techniques, we study con-
trollability, observability, and optimality problems. In addition, we also consider a
cooperative problem when the agent’s motions must satisfy a separation constraint
throughout the encounter to be conflict-free. A classification of maneuvers based on
different commutative diagrams is introduced using their fiber bundles representa-
tion. In the case of two agents, these optimality conditions allow us to construct the
optimal maneuvers geometrically.

Key words: cooperative game, differential games, multiple agents, hierar-
chical structure, Yang–Mills field, controllability, observability

1 Introduction

The modern game theory basically deals with dynamical systems on smooth
manifolds. However, many practical systems like multiple agents do not have
such structures. The axiomatic control theories should adequately reflect in
terms of their internal language of notions and control problems (Cressman,
2003 [5]). In terms of these theories, the control structures can make up var-
ious hierarchies. According to Kalman, for example, the most general struc-
ture is represented by a controllability-reachability structure over which the
optimal control structure is built. This approach regarding the structure of
optimal control and Yang–Mills Fields was discussed in (Yatsenko, 1985 [27];
Butkovskiy, 1990 [4]).

In this chapter, the geometric description problem of multiple agents is
studied. We discuss mathematical aspects of the “Unified game (UGT)” and
“Theory of the control structures (TCS).” We consider a game as a hierarchi-
cal structure. It is assumed that each agent can be described by a fiber bundle.



268 P.M. Pardalos et al.

A joint maneuver has to be chosen to guide each agent from its starting posi-
tion to its target position while avoiding conflicts. Among all the conflict-free
joint maneuvers, we aim to determine the one with the least overall cost. The
cost of an agent’s maneuver is its energy, and the overall cost is a weighted sum
of the maneuver energies of all individual agents, where the weights represent
priorities of the agents.

As an example, we consider the hierarchical structure of such multiagent
system on Figure 1. Each agent of the system can be described by stochastic
or deterministic differential equation with a control. In the paper, we first re-
duce the model to a hierarchical geometric representation using fiber bundles.
Then we consider an integrated geometric model where the separated model
of agents is integrated into single model. For example, the interaction between
six robots on Figure 2 can be described by a hierarchical structure. The in-
tegrated model allows solving controllability, observability, and cooperative
control problems.

In Section 2, we consider geometric aspects of the nonlinear control
systems. The section constructs a formal model, where the optimal control
structure appears independently from the controllability-reachability struc-
ture and that of the space of local system states. The efficiency of this

Figure 1. Hierarchical structure of multiple agents
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1

2 3

4 5 6

Figure 2. Hierarchical structure of multiple robot

axiomatic approach is illustrated using structural analysis of a general prob-
lem of the optimal control. In Section 3, we analyze in detail the relationship
between gauge fields, identification problems, and control systems. The result
of the analysis is an estimation algebra of a nonlinear estimation problem.
The estimation algebra turns out to be a useful concept to explore finite-
dimensional nonlinear filters. In Section 4, we consider a Lie group related to
Yang–Mills gauge groups. We show that the estimation algebra of the iden-
tification problem is a subalgebra of the current algebra. Section 5 focuses
on nonlinear control systems and Yang–Mills fields. Section 6 is devoted to
geometric models of multiagent systems as controlled dynamical-information
objects. It is shown that these systems can be described by commutative
diagrams, which allow one to analyze a symmetry.

2 Geometric Structures

We briefly describe the role of topological, metric, and orderness structures.
Note that each standard ordinary differential control system or inclusion x′ ∈
I(x), x ∈ X, generates two independent topological structures on X. One
of them is generated by a family of inclusions of x ∈ X, i.e., the family of
reachability sets O(x0, ε) from x0 for time ε ≥ 0, and another one by a family
of a controllability area O(x0, ε) to x0 for time ε ≥ 0 (observability topology).

Let (X, τ) be a topological space, where X is an abstract nonempty set
and τ is a topology on X.

Definition 1. Control (or admissible control) γ(a, b) in (X, τ) is an image of
the continuous (in sense of topology τ) map ϕ: [0, 1]→ X,

x = ϕ(t), 0 ≤ t ≤ T, x ∈ X, (1)
a = ϕ(0), b = ϕ(T ). (2)

a ∈ X is an initial point and b ∈ X is a final point of the control γ(a, b).

Thus, the control γ(a, b) is pathwise connected and linearly ordered subset
(sequence) of X where a ∈ γ(a, b) and b ∈ γ(a, b) are the smallest and the
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largest of its elements, respectively. As results, maps (1) and (2) are admissible
parameterizations of the control γ(a, b).

The verification of Definition 1 consists of a validation of the controlla-
bility and finding optimal control of systems without using any differential
or difference structure. Furthermore, we shall consider that there is a metric
in topological spaces, which allows one to analyze control problems at vari-
ous levels of generality. We shall be looking for the “minimal” but not trivial
structures, which can be responsible for controls.

2.1 Metric Spaces

The concepts of a metric and a metric space are introduced by the following
definitions.

Definition 2. Metric space (X, ρ) is a pair (X, ρ) where X is an arbitrary
nonempty set and p is a metric structure of X, i.e., ρ is a real valued function
ρ = ρ(x, y), (x, y) ∈ X2 = X ×X, or map

ρ : X2 → R (3)

with the metric axioms:

ρ(a, b) ≥ 0 for ∀ (a, b) ∈ X2, (4)
ρ(a, a) = 0 for ∀ a ∈ X, (5)
ρ(a, b) < ρ(a, c) + ρ(c, b) (6)

for any a ∈ X, b ∈ X, c ∈ X, and (6) is called “triangle inequality.” Some-
times ρ is also called a global metric on X or distance in X.

The metric introduced by Definition 2 differs from the usual concept of
metric: there is neither the symmetry axiom (ρ(a, b) = ρ(b, a) for ∀ a ∈ X,
∀ b ∈ X) nor the requirement: ρ(a, b) > 0 if a 	= b. So, the given concept of
metric is more adequate to the situation in typical control problems. As is
known, the metric space (X, ρ) can also be considered as a topological space
(X, τ), where topology T is induced by metric ρ.

But the metric can measure control γ(a, b) introduced by Definition 1.
This can be done by the following definition.

Definition 3. The length l[γ(a, b)] of the control γ(a, b) is a real valued
function

l [γ(a, b)] = lim
N→∞

lN [γ(a, b)] , (7)

where

lN [γ(a, b)] =
N
∑

i=0

ρ(xi, xi+1), (8)
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where a = x0 < x1 < · · · < xN < xN+1 = b is the N-th partition TN of γ(a, b),
and the partition TN becomes finer with N → ∞. Of course, it is necessary
to prove or admit the existence and uniqueness of (7). If so, γ(a, b) is called
measurable (in metric ρ). The set γ(a, b) of all measurable γ(a, b) is denoted
by Γ (a, b):

Γ (a, b) = {γ(a, b)}. (9)

So, in the metric space (X, ρ) the admissible control γ(a, b) is just a mea-
surable (in sense of metric ρ) sequence and vice versa.

If we have several sequences in X:

γ1(x0, x1), γ2(x1, x2), . . . , γn(xn, xn+1) (10)

then we can define their sum

γ(x0, xn+1) =
n
∑

i=1

γi(xi−1, xi), (11)

which is also a sequence.
Inversely, if γ(a, b) is a sequence and xi ∈ γ(a, b), i = 1, . . . , n, x1 < · · · <

xn, then γ(a, b) can be represented as the sum of sequences:

γ(a, b) = γ1(a, x1) + γ2(x1, x2) + · · ·+ γn(xn, b). (12)

Definition 4. The sequence γi(xi−1, xi) in (11) is called a piece of the se-
quence γ(a, b). We accept that functional (7) is additive one:

ρ(a, b) ≥ 0 for ∀ (a, b) ∈ X2, (13)
ρ(a, a) = 0 for ∀ a ∈ X. (14)

2.2 Optimal Control

Consider the following problem of optimal control in (X, ρ).

1. Determine
l̄(a, b) = {inf l[γ(a, b)] : γ(a, b) ∈ Γ (a, b)}. (15)

2. Determine γ̄ = γ̄(a, b), if exists, such that

l[γ̄(a, b)] = l̄(a, b). (16)

This admissible γ̄(a, b) will be called the minimal of the optimal control
problem.

3. Describe all set {γ̄(a, b)} for fixed (a, b) ∈ X2 and for all (a, b) ∈ X2.

A simple but an important property of the minimal γ̄(a, b) is given by the
following theorem.
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Theorem 1. If the admissible γ(c, d) is the minimal of the optimal control
problem, then the sequence γ̄(a, b) is also minimal.

This is a consequence of the additivity property of (12). If any admissible
sequence γ(a, b) is minimal, it does not mean that γ(a, b) is also minimal.

It is easy to prove the inequality

ρ(a, b) ≤ l̄(a, b). (17)

Definition 5. The metric space (X, ρ) is an obstacleness metric space if there
exists at least one point (a, b) ∈ X2 such that

ρ(a, b) ≤ l̄(a, b).
The metric space (X, ρ) is a generalized metric space iff

ρ(a, b) = l̄(a, b) for ∀ (a, b) ∈ X2.

An example of a generalized space is the Euclidean space R
n.

The following theorem is valid:

Theorem 2. l̄ = l̄(a, b) is also metric on X, and (X, l̄) is also a metric space.

Definition 6. Metric l̄ = l̄(a, b) is called a secondary metric.

Generally, l̄(a, b) is distinguished from the initial metric ρ(a, b) on X.

Definition 7. If the secondary metric l̄ coincides with the metric ρ, then ρ is
called a self-secondary metric.

The following theorems are valid:

Theorem 3. The secondary metric is a self-secondary metric.

This is similar to the property of projection operator P : P 2 = P .

Theorem 4. The metric space (X, ρ) is a generalized space if the metric ρ is
the self-secondary metric.

We illustrate the application of the above introduced concepts by the
following:

Theorem 5. (Sufficient condition for minimal). The sequence γ(a, b) in
(X, ρ) is minimal if for any of its admissible γ(c, d), the next relation is true:

l̄(c, d) = l̄(c, x) + l̄(x, d) for ∀ x ∈ γ(c, d), (18)

where l̄ is a secondary metric of ρ.

It might seem that for γ(a, b) to be minimal, just one identity is sufficient:

l̄(a, b) = l̄(a, x) + l̄(x, b) for ∀ x ∈ γ(a, b). (19)

But it is not true, there exists a contrary example.
From topology standpoint, the secondary metric l̄ generally is weaker

(rougher) than the “initial” or “first” metric ρ. In other words, topology (X, ρ)
is stronger (thinner) than secondary topology (X, l̄).
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3 Identification of Agents and Yang–Mills Fields

In this section, we consider the models where each agent of the hierarchical
system is described by a stochastic differential equation.

3.1 Stochastic Agents

Consider the stochastic differential system:

dθ = 0, (20)
dxt = A(θ)xtdt+ b(θ)dwt, (21)
dyt = 〈(θ), xt〉dt+ dvt. (22)

Here {wt} and {vt} are independent, scalar, and standard Wiener processes,
and {xt} is an R

n-valued process. Assume that θ takes values in a smooth
manifold Θ → R

N , and the map θ → Σ(θ) := (A(θ), b(θ), c(θ)) in a smooth
map taking values in minimal triples. By the identification problem we shall
mean the nonlinear filtering problem associated with equation (21); i.e.,
the problem of recursively computing conditional expectations of the form
πt(φ)∆E[φ(xt, θ)|Yt], where Yt is the σ-algebra generated by the observa-
tions {ys : 0 ≤ s ≤ t} and φ belongs to a suitable class of functions on
R
n ×Θ.

For given yt, the joint unnormalized conditional density ρ∆ρ(t, x, θ) of xt
and θ satisfy the stochastic partial differential Stratonovitch equation

dρ = A0ρdt+B0ρdyt, (23)

where the operators A0 and B0 are given by

A0 :=
1
2

〈

b(θ),
∂

∂x

2〉

−
〈

∂

∂x
,A(θ)x

〉

− 〈c(θ), x〉2 /2, (24)

B0 := 〈c(θ), x〉. (25)

From the Bayes formula, it follows that

πt(φ) = σt(φ)/σt(l), (26)

where
σt(φ) =

∫

Θ

∫

Rn

φ(x, θ)ρ(t, x, θ)|dx||dθ|, (27)

where |dx| and |dθ| are fixed volume elements on R
n and Θ, respectively.

Further, if Q(t, θ) denotes the unnormalized posterior density of θ given t,
then it satisfies the equation:

dQ = E[〈c(θ), xt|θ〉, Yt]Q(t, θ)dyt. (28)
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The paper on nonlinear filtering theory (Hazewinkel, 1982 [10]) shows that
it is natural to look at equation (23) formally as a deterministic partial dif-
ferential equation,

∂ρ

∂t
= A0ρ+ ẏB0ρ. (29)

By the Lie algebra of the identification problem, we shall mean the op-
erator Lie algebra Ḡ generated by A0 and B0. For more general nonlinear
filtering problems, estimation algebras analogous to Ḡ have been emphasized
by Brockett (Mitter, 1990 [19]) and others as being objects of central interest.
In the papers (Krishnaprasad and Marcus, 1981 [14]), the Lie algebra Ḡ is
used to classify identification problems and to understand the role of certain
sufficient statistics.

3.2 The Estimation Algebra of Nonlinear Filtering Systems

To understand the structure of the estimation algebra, it is well-worth con-
sidering an example.

Example 1. Let dxt = θdwt; dθ = 0; dyt = xtdt + dvt. Then A0 = θ2

2
∂2

∂t2 −
x2

2 and B0 = x, and Ḡ = {A0, B0}I..A is spanned by the set of operators
(

θ2

2 −
x2

2

)

,
(

θ2nx
)∞
n=0

,
(

θ2n ∂
∂x

)∞
n=1

and {θ2n1}∞n=1. We then notice that,

G̃ ⊆ R
[

θ2
]

⊗
{

∂2

∂x2
, x
∂

∂x
,
∂

∂x
, x2, x, 1

}

L.A.

is a subalgebra of the Lie algebra obtained by tensoring the polynomial ring
R
[

θ2
]

with a 6-dimensional Lie algebra. Here, L.A. stands for the Lie algebra
generated by the elements in the brackets.

The general situation is very much as in this example. Consider the vector
space (over the reals) of operators spanned by the set,

S :=
{

∂2

∂xi∂xj
, xi

∂

∂xj
,
∂

∂xi
, xixi, xj , 1

}

,

i = 1, 2, . . . , n, j = 1, 2, . . . , n. (30)

This space of operators has the structure of a Lie algebra henceforth denoted
as G̃0 (of dimension 3n2 + 2n + l) under operator commutation (the com-
mutation rules being ∂2

∂xi∂xj
, xk = δjk ∂

∂xi
+ δik ∂

∂xj
etc., where δjk denotes

the Kronecker symbol). For each choice Θ, A0 and B0 take values in G̃0. It
follows that in general A0 and B0 are smooth maps from Θ into G̃0. Thus, let
us consider the space of smooth maps C∞(Θ; G̃0). This space can be given by
the structure of a Lie algebra (over the reals) in the following way:

given ϕ, φεC∞(Θ; G̃0),
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define the Lie bracket [·, ·]C on C∞(Θ; G̃0) by

[φ, ψ]C(P ) = [φ(P ), ψ(P )] for every P ∈ Θ. (31)

Here the bracket on the right-hand side of equation (31) is in G̃0. We denote
as G̃0 the Lie algebra (C∞(Θ; G̃0); [., .]C). Whenever the dimension of Θ is
greater than zero, G̃0 is infinite dimensional and is an example of a current
algebra. Current algebras play a fundamental role in the physics of Yang–Mills
fields where they occur as Lie algebras of gauge transformations. Elsewhere
in mathematics they are studied under the guise of local Lie algebras. The
following is immediate.

Proposition 1. The Lie algebra G̃ of operators generated by

A0 :=
1
2

〈

b(θ),
∂

∂x

〉2

−
〈

∂

∂x
,A(θ)x

〉

− 〈c(θ), x〉2/2 (32)

and B0 := 〈c(θ), x〉, is a subalgebra of the current algebra C∞(Θ; G̃0).

3.3 Estimation Algebra and Identification Problem

It is known (Marcus, 1984 [17]) that G̃ admits a faithful representation as
a Lie algebra of vector fields on a finite dimensional manifold. Specifically,
consider the system of equations,

dθ = 0,

dz =
[

A(θ)− Pc(θ)cT (θ)
]

zdt+ Pc(θ)dyt,
dP

dt
= A(θ)P + PAT (θ) + b(θ)bT (θ)− Pc(θ)cT (θ)P,

ds =
1
2
〈c(θ), z〉2dt− 〈c(θ), z〉dyt. (33)

The system of equations (33) evolves on the product manifold Θ ×
R
n(n+3)/2+1. Associated with equations (33) there are the pair of vector fields

(first-order differential operators),

a∗0 = 〈(A(θ)− Pc(θ)cT (θ))z, ∂/∂z〉
+ tr ((A(θ)P + PAT (θ) + b(θ)bT (θ)− Pc(θ)cT (θ)P ), ∂/∂P )

+ 1/2〈c(θ), z〉2∂/∂s

and
b∗0 = 〈P (θ), ∂/∂z〉 − 〈c(θ), z〉∂/∂z.

Here ∂/∂P = [∂/∂Pij ] = (∂/∂P )T = n × n symmetric matrix of differential
operators. Consider the Lie algebra of vector fields generated by a∗0 and b∗0.
Because a∗0 and b∗0 are vertical vector fields with respect to the fibering Θ ×
R
n(n+3)/2+1 → Θ, then every vector field is in this Lie algebra. One of the

main results is the following (Lee and Marcus, 1980 [15]):
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Theorem 6. The map

Φk : G̃0 →
⋃

Θ × R
n(n+3)/2+1

defined by
b∗0 = 〈P (θ), ∂/∂z〉1/2〈c(θ), z〉∂/∂s

is a faithful representation of the Lie algebra of the identification problem as a
Lie algebra of (vertical) vector fields on a finite dimensional manifold fibered
over Θ.

Example 2. To illustrate Theorem 5, consider the Lie algebra of Example 1.
The embedding equations (33) take the form

dθ = 0,

dp =
(

θ2 − p2
)

dt,

dz = −pzdt+ pdyt,
ds = z2/2dt− zdyt.

Then

Φk(B0) = Φk(x) = b∗0 = p
∂

∂z
+ (−z) ∂

∂s
.

The induced maps on Lie brackets are given by

Φk(θ2k∂/∂z) = θ2k∂/∂z, k = 0, 1, 2, . . . ,

Φk(θ2kx) = θ2k(p∂/∂z − z∂/∂s), k = 1, 2, . . . ,

Φk(θ2kl) = θ2k∂/∂s, k = 1, 2, . . . .

The embedding equations have the following statistical interpretation. As-
sume that the initial condition for (12) is of the form

ρ0(x, θ) =
(

2π det
∑

(θ)
)−n/2

× exp

(

−
〈

x− µ(θ),
−1
∑

(θ)(x− µ(θ))

〉)

·Qθ,

where θ → (µ(θ), Σ(θ), Q0(θ)) is a smooth map,
∑

(θ) > 0, θ ∈ Θ and Q0 > 0
for θ ∈ Θ. Suppose equation (11) is initialized at,

(θ0, z0, P0, s0) =
(

θ0, µ(θ0),
∑

(θ0),− log(Q0(θ))
)

(34)

Append to the system (11) an output equation,

Q̄t = e−st . (35)
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Now if (33) is solved with initial condition (34), one can show by dif-
ferentiating Q̄t that Q̄t satisfies the equation (7). In other words, the system
(31)–(35) with initial condition (14) is a finite dimensional recursive estimation
for the posterior density Q(t, θ0). We have thus verified the homomorphism
principle of Brockett (Brockett, 1979 [3]): that finite dimensional recursive
estimators must involve Lie algebras of vector fields that are homomorphic
images of the Lie algebra of operators associated with the unnormalized con-
ditional density equation.

4 Sobolev Lie Group and Yang–Mills Fields

It has been remarked elsewhere that the Cauchy problem associated with
(29) may be viewed as a problem of integrating a Lie algebra representation.
In this connection, one should be interested whether there is an appropriate
topological group associated with G̃. We have the following general procedure.

Let M be a compact Riemannian manifold of dimension d. Let L be a Lie
algebra of dimension n < ∞. We can always view L as a subalgebra of the
general linear Lie algebra g�(m; R),m > n (Ado’s theorem).

Assumption 1 Let G = {exp(L)}G ⊂ g�(m; R) be the smallest Lie group
containing the exponentials of elements of L. We assume that G is a closed
subset of g�(m; R).

Define,

R = C∞(M; g�(m; R)),
L = C∞(M; L),
D = C∞(M;G).

Clearly R is an algebra under pointwise multiplication and

L ⊂ R, D ⊂ R.

Let (Uα,ϕα) be a C∞ atlas for M. Then for a f1, f2 ∈ R, define

‖ f1 − f2 ‖=
[

∫

ϕα(Uα)

dvol
k
∑

�=0

∣

∣D�(f1 − f2)ϕ−1
α

∣

∣

2

]1/2

, (36)

where
|f |2 = tr (f ′f). (37)

(Here k = d/2 + s, s > 0). Let Rk be the completion of R and Dk, the
completion of D in the norm ‖ · · · ‖k (Dk is closed in Rk). By the Sobolev
theorem, Rk is a Banach algebra and the group operation
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Dk ×Dk → Dk,

(f1, f2)→ f1f2 (38)

when (f1f2)(m) = f1(m)f2(m) is continuous. Thus Dk, is a topological group.
By proceeding as before, one can give a Sobolev completion of L to obtain

Lk, an infinite dimensional Lie algebra, where once again by the Sobolev
theorem the bracket operation

[., .]Lk × Ck → Lk,

(f1, f2)→ [f1, f2]

with [f1, f2](m) = [f1(m), f2(m)] is continuous. Now, for a small enough
neighborhood V (0) of 0 ∈ L, one can define

exp : V (0)→ Dk,

ξ → exp(ξ)

by pointwise exponentiation. This permits us to provide a Lie group structure
on Dk with Lk canonically identified as the Lie algebra of Dk.

The procedure outlined above appears to play a significant role in several
contexts (the index theorem Yang–Mills fields (Milter, 1980, 1981 [19,20])).

For our purposes, L will be identified with a faithful matrix representation
of G̃0. Thus we associate with the identification problem a Sobolev Lie group,
which is a subgroup of Dk corresponding with G̃0

Remark 1. One of the important differences between the problem of filtering
and the problems of Yang–Mills theories is that in the latter case there are
natural norms for Sobolev completion. This follows from the fact that in Yang–
Mills theories, the algebra L is compact (semisimple) and one has the Killing
form to work with. In filtering problems, G̃0 is never compact.

We use a representation of the form

ρ(t, x, θ) = exp(g1(t, θ)Al) . . . exp(gn(t, θ)An)ρ0 (39)

for the solution to the equation (8). In the case of Example 1, this takes
the form

ρ(t, xθ) = exp
(

g1(t, θ)
(

θ2

2
θ2

θx
− x

2

2

))

exp
(

g2(t, θ)θ2
∂

∂x

)

× exp (g3(t, θ)x) exp (g4(t, θ)l) ρ0.

Differentiating and substituting in (29), we can obtain
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∂g

∂t
(t, θ) = 1,

∂g2
∂t

(t, θ) = cosh(g1, θ)ẏ,

∂g3
∂t

= −1
θ

sinh(g1, θ)ẏ,

∂g4
∂t

=
∂q3
∂t

(t, θ)g2(t, θ) (40)

and gi(0, θ) = 0 for i = 1, 2, 3, 4, θ ∈ Θ. The above first-order partial differen-
tial equations may be easily solved by quadrature and one has the represen-
tation

ρ(t, x, θ) =
∫ ∞

−∞

√

1
2π sinh(|θ|t) exp

(

−1
2

coth2

(

|x|
|θ|

2

+ z

)

t|θ|
)

× exp

(

xz
√

|θ| sinh(|θ|t)

)

exp
(

g4 (t, θ) θ2
)

× exp
(

g2(t, θ)
√

|θ|z
)

ρ0

(

g3(t, θ)θ2
√

|θ|z, θ
)

dz, (41)

where ρ0(, θ) ∈ L2(R) for every θ ∈ Θ and is smooth in θ. Further, ΘR is a
bounded set and 0 closure Θ.

In equation (39), g1 should be viewed as canonical coordinates of the sec-
ond kind on the corresponding Sobolev Lie group. Now expand g2 and g3 to
obtain

g2(t, θ) =
∞
∑

k=0

θ2
∫ t

0

σ2k

(2k)!
ẏσdσ, k = 1, 2, . . . ,

g3(t, θ) = −
∞
∑

k=0

θ2k
∫ t

0

σ2k+1

(2k + 1)!
ẏσdσ, k = 1, 2, . . . . (42)

It follows that all the “information” contained by the observations {yσ : 0 ≤
σ ≤ t} about the joint unnormalized conditional density is contained in the
sequence

T∆
{∫

σk

k!
ẏσdσ; k = 0, 1, 2, . . .

}

. (43)

Thus T is nothing but a joint sufficient statistic for the identification problem.

5 Control Agents and Yang–Mills Fields

Consider an object, the motion equation for which can be represented as

ẋ = r(x, u), (44)
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where x = (x1, x2, x3) ∈ Q ⊂ R
3; a function r(x, u) is derived when an

equation for dynamics of a particle in a field is reduced to Cauchy form,
and the field is characterized by a variable u. The equations similar to (44)
are widely used in physics and its applications. The equations of the concrete
particle dynamics are considered in (Daniel and Viallet, 1980 [6]) and in many
other papers. At present, control dynamics equation construction problems
deserve a great attention. For instance, these problems include controllable
models of dynamics of particles in scalar, vector, and spinor fields.

This section builds up a controllable model for dynamics of a particle in
electromagnetic and charged fields. The model is based on the gauge field
concept (Daniel, 1980 [6]), which allows us to formulate different principles
for an automatic control of the dynamics of the particles.

Constructing a controllable model means creating a transformation from a
field u to Yang–Mills field. The essence of this transition is as follows (Mitter,
1979 [18]). Instead of u, consider an n-component vector field ̂f(x̂), x̂ ∈ T 1

in a 4-dimensional space-time T 1. Let M(x̂) be local gauge transformations
such that

̂f(x̂) = M(x̂) ̂f ′(x̂) (45)

and, for a fixed x, M(x) form a group G1 ∈ GL(n). Introduce an operator
∇α, i.e.,

∇α
̂f =
[

∂α +Kα(x̂) ̂f(x̂)
]

, (46)

which satisfies the conditions

M(x̂)∇′
α
̂f ′(x̂) = ∇α

̂f(x̂), ∇′
α = ∂α +K ′

α, (47)

whereKα = −QbC
b
α; {Qb} is a basis of Lie algebra ĝ for a groupG1, [Ga, Qb] =

gcabQc; Gc
ab are structural constants of the Lie algebra ĝ. The equations for

the values Cb
α are derived from the Lagrangian Y a

αβY
αβ
a , where

Y a
αβ =

∂Ca
β

∂x̂a
− ∂C

a
α

∂x̂β
− 1

2
gabc
(

Cb
αC

c
β − Cb

βC
c
α

)

, (48)

and the Lagrangian has the following form:

∂βY
αβ = Y αβ

b gbacC
c
β .

Relation (47) yields the law of transformation for a field of matrices Kα:

K ′
α(x̂) = M−1(x̂)Kα(x̂)M(x̂) +M(x)−1 ∂M(x̂)

∂x̂α
.

Such transformation satisfies the group law g. A set of these transformations
forms a gauge group, formally denoted as
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g̃ =
∏

x

g.

It is shown in (Yatsenko, 1985 [27]) that the values Cb
α are Yang–Mills

fields. The Yang–Mills field describes a parallel transfer in a charge field and
states its curvature. Such field can be brought in correspondence with the
notion of connectedness in some main fiber bundle (P, T 1, g̃), π : P → T 1,
where T 1 is a base and g̃ is a structure group.

A control in (P, T 1, g̃), π : P → T 1 is understood as a connectedness Cb
α.

Notice that one can consider a projection π as a control. Thus, it is possible
to deal with a “controllable” fiber bundle (P, T 1, g̃), π : P → T 1 and a vector
field r(x̂, u(Cb

α)) on P instead of the initial object described by equation (44).
To solve control problems, it is necessary to construct equivalent and ag-

gregated models. We construct an equivalent model of a controllable object
(P, T 1, g̃), π : P → T 1 as follows. Let π : P → T 1 be a main g̃-fiber-bundle and
let l : Z → T 1 be some m-dimensional g̃-vector fiber bundle with a trivial ac-
tion, exerted by g̃ onto Z. Assume also that a structure of a k > 1-dimensional
cellular set can be introduced on T 1. An equivariant embedding of π into 1
is understood as an embedding h : P → Z, commutating with projections. If
K > m, i.e., an action, exerted by ˜h onto Z is free outside a zero section for 1,
then the main g̃-fiber-bundle π : P → T 1 can be equivariantly embedded into
l : Z → T 1. An equivalent model of a controlled process is understood as a
ternary (Z, T 1, g̃). In its turn, an equivalent model admits an exact aggrega-
tion, performed by means of a factorization of an induced vector fiber bundle.
In this case, it is possible to assume that a vector fiber bundle is specified by
an interrelation system ω on some set X1. Introduce an equivalence relation
S on X1. This relation generates an object of the same nature, as the ini-
tial object X1, and a factor-object (F -object) is obtained, which possesses a
factorizing equivalence relation S. If (X1, ω) generates an object of the same
nature, possessed by an initial object, and this generation is carried out on a
subset X1 of X1, then a subobject X1(ω̃) (P -object) is derived. By using the
language of mathematical structure theory, it is possible to create a general
theory of aggregation of invariant models for nonlinear systems.

Consider the main automatic particle dynamics control principles, with
electromechanical systems with distributed parameters as an example. It is
shown in (Samoilenko, 1970 [21]) that a closed distributed automatic control
system can be represented by two subsystems S1 and S2, interrelated by the
electromagnetic field

S = S1 ∪ S2.

Represent B of fields of a whole control system state by a field of internal
states of each subsystem B1 and B2, of an interaction field B0, and a by-
side field B3. In addition, represent B0 by two components X and U , i.e.,
B0 = X + U , where X is an information carrier and U is a control field.
Consider U as the result of an influence exerted by X onto the control medium
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and simulated by an operator dependence U = ̂B(X,E), where ̂B is a control
operator and E is the control medium power supply field. An external field
B is also divided into two components, viz. into V and N , where V is a
field of control that is carried out according to a fixed space-time program,
and N is a field of disturbing effects. The control object is described by a
fiber bundle (P, T 1, g̃) with a control Cb

α(X,Y,U, V,N), where Y is a field of
an internal field state. It is clear that a section is only one in (P, T 1, g̃), if U ,
V , and N are physically implementable and uniquely specified. The general
problem, concerning calculation of an electromagnetic field of control system,
consists of finding such physically implementable operator ̂B and programmed
controlling influence V , under which the particle dynamics would meet certain
previously formulated requirements.

6 Multiagent Systems and Fiber Bundes

There is active research of controlled multiagent objects as information-
transforming systems during the last several years. Despite the achievements
that have been made in this area, effective mathematical methods for inves-
tigating such systems have not yet been developed. One possible approach is
based on the differential geometry methods of system theory (Van der Shaft,
is 1982, 1987 [24, 25]). This section is devoted to one of the problems of this
area of research, that of developing a method for analyzing a class of mathe-
matical models of symmetric controlled processes. Assuming that the process
is described by a commutative diagram (Van der Shaft, 1982, 1987 [24, 25]),
which is based on the lamination concept, we propose a geometric method for
“identifying” its hidden structure.

Investigation of the information-transformation laws in various systems is
one of the most essential stages in the creation of new agents. The goal of
the experimental and theoretical research is the implementation of optimal
strategy using complex structure nonequilibrium processes in such systems.
To investigate these processes, it is required to develop the corresponding
mathematical methods. In this context, we propose an approach, which is
based on the assumption that one can use models from the mathematical
system theory to adequately describe informational processes. The essence of
this approach is in the following.

Some dynamic system, S, which implements a transformation, F , or an
input informational action, U , into an output one, X, is considered. It is
assumed that one can affect the information-transforming process by a re-
configuring action that changes the dynamic behavior, structure, symmetry,
etc., of the process. We refer to the objects described in the preceding S as
dynamic information-transforming agents (DITA).

The connection between the input and output actions is necessary for
obtaining answers to questions about the method of programming the entire
system, optimizing the flow of informational signals, and the interconnections
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among the global system properties (stability, controllability, etc.) and the
corresponding local properties of the various subsystems. One has to answer
those questions also when solving pattern-recognition problems, constructing
an associative memory. A generalized description of DITA that contains a
large number of subsystems (for example, a neural network) is postulated in
this section: the controlled process in the DITA is described adequately by a
commutative diagram that generalizes the concept of a nonlinear controlled
dynamic system on a manifold. Taking into account the symmetry concept,
which is characteristic of classic mechanics (Arnold, 1983 [1]), one has to
transfer it to the DITA, “identify” the hidden structure of the informational
process, and demonstrate that the proposed model admits local and/or global
decompositions into smaller-dimensionality feedback subsystems.

We note that the decomposition idea was first applied to discretely sym-
metric automatic control systems by Yu. Samoylenko (the elementary cell
method) (Samoilenko, 1970 [22]). Continuous symmetry group dynamic sys-
tems were considered by Van der Shaft (Van der Shaft, 1987 [25]). Substantive
results on the decomposability of systems with symmetries have been obtained
by A.Y. Krener (Krener, 1973 [13]) and others. However, this question remains
open for DITAs.

Necessary concepts and definitions. Some definitions and concepts
that are necessary for describing the DITA structure and the conditions for
its decomposability are presented in this section. The necessary notions about
manifolds, connectivities, and distributions are given in (Griffiths, 1983 [8]).
We introduce the definition of a nonlinear DITA.

Definition 8. Consider a triple, F (B,M,ψ), where B is a smooth fiber over
M with the projection π : B → M ; πM is the natural projection of TM on
M ; and ψ is a smooth mapping such that the diagram presented in Figure 3
is commutative, by a “geometrical model of the agent.”

We interpret the manifold M as the DITA state space and the π−1(x) ∈ B
layer as the space of input action values that depends in the general case on the
current system state. If one chooses the coordinates (x, u), which correspond
with the Bx layer, then this definition of the DITA, F , corresponds locally
with the nonlinear transformation ψ : (x, u) → (x, ψ(x, u)) and the dynamic
system

ẋ(t) = ψ(x(t), u(t)), u(t) ∈ U. (49)

B
�Ψ

TM
�

�
�

���

π πM

�
�

�
��	

M

Figure 3. Diagram of a nonlinear controlled DITA
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where x is the DITA state vector, u = (u1, u2) are the control actions, u1(·, ·)
is the vector of the coded input informational action that depends in general
on time and on the current state, and u2(·, ·) is the action used to reconfigure
the dynamic properties of the DITA and to train it.

The control algorithm, u2, inputs to the system the capability of trans-
forming the set of input actions into a set of output signals that allows one to
identify the input images uniquely. In essence, it realizes the decoding process,
which identifies the input images. In the simplest case, it can be realized on
the basis of the successive input action segmentation method. Such a method
facilitates a unique separation of the input images by the use of the simplest
binary decoding rule.

Definition 9. Let M be a smooth manifold. We say that the smooth mapping
Q : G×M such that:

1. Q(e, x) = x for all x ∈M , and
2. Q(g,Q(h, x)) = Q(gh, x) for any g and h ∈ G, and all x ∈ M , is the left

action (or G-action) of the G Lie group on M .

We fix one of the variables for various time instants and examine the Q
action as a function of the remaining variables. Let Qg : M →M denote the
function x �→ Q(g, x) and Qx : G → M the function g|→ Q(g, x). We note
that as (Qg)−1 = Q−1

g , Qg is a diffemorphism.
We introduce the definition of group action on a manifold.

Definition 10. Let Q be the action of G on M . We say that the set G · x =
{Qg(x)|g ∈ G} is the orbit (Q-orbit) of the point x ∈ M . The action is free
at x if g|→ Qg(x) is one-to-one. It is free on M if and only if it is free at all
x ∈M .

We now introduce the concept of global symmetry of a controlled DITA.

Definition 11. Let F̂ (B,M,ψ) be a nonlinear controlled DITA, and θ and Q
be actions of G on B and M , respectively. Then, F has symmetry (G, θ,Q) if
the diagram presented in Figure 4 is cummutative for all g ∈ G.

We consider, within the framework of the presented definition, the special
case in which the symmetry lies “entirely within the state space.”

B
�Bg

B




π

M
�

�
�����

�����

�����

�����
TM TM

ψ

πM

ψ

πM

TQg

Qg

M



π

Figure 4. A commutative diagram of DITA with symmetries



Differential Games of Multiple Agents and Geometric Structures 285

Definition 12. Let B = M × U , where U is some manifold. Then, (G,Q) is
a symmetry of the state space of system F̂ (B,M,ψ) if (G, θ,Q) is a symmetry
of F̂ for θg = (Qg, IdU ) : (x, u)→ (Qg(x), u).

Global state space symmetry can be defined only for a DITA Bx of which
is a trivial lamination as otherwise the input spaces would depend on the state
and the problem is made substantially more complicated.

We introduce now the definition of local symmetry.

Definition 13. We assume that Q : G ×M → M is an action and that ε ∈
TeG. Then, Qξ(R×M →M) : (t, x)| → Q(exp tξ, x), where exp : TeG→ G is
the usual exponential mapping, is the R-action on M , and Qξ is the complete
flow on M . We say that the corresponding vector field on M , which is defined
by the expression

ξm(x) =
d

dt
Q(exp tξ, x)

∣

∣

∣

t=0
, (50)

is the infinitesimal action generator, which corresponds with ξ.

Let Xt denote the flow of the vector field X, that is, Xt = Ft(X0). It is
obvious from the definition of the infinitesimal generator that if (G, θ,Q) is a
symmetry of the F̂ (B,M,ψ) system, then the diagram presented in Figure 5
is commutative for all t ∈ R and ξ ∈ TeG.

On the basis of the local commutativity property, we present the following
definition of infinitesimal DITA symmetry.

Definition 14. Let F̂ (B,M,ψ) be a nonlinear DITA. Then, (G, θ,Q) is an
infinitesimal symmetry of F if, for each x0 ∈ M , there exists an open neigh-
borhood Ô of the point xO and ξ > 0 such that

(ξM )t ∗ ψ(ξ) = ψ((ξb)t(b)), (51)

for all b ∈ π−1(Ô), |t| < ξ, and ‖ ξ ‖< 1, ξ ∈ TeG, where ‖ · ‖ is an arbitrary
fixed norm on TeG.

One can define an infinitely small state space symmetry for nontrivial
laminations of the input actions manifold when one can introduce integratable
connectivity. For this, we introduce Definition 15.
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Figure 5. Diagram of a symmetric DITA
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Definition 15. Let H(·) be an integratable connectivity on B and (G, θ,Q)
be a symmetry of F . Then, (G, θ,Q) is an infinitesimal state space symmetry
if ξB(b) ∈ H(b) for all ξ ∈ TeG, that is, the infinitesimal generators θ are
horizontal.

We introduce a definition of feedback equivalence of two DITAs in analogy
with (Van der Shaft, 1982 [24]).

Definition 16. A system, F (B,M,ψ), is feedback equivalent to a system,
F ′(B,M, ˜ψ), if there exists an isomorphism, γ : B → B, such that the di-
agram presented in Figure 6 is commutative.

Isomorphism means that, for x ∈ M , γx is a mapping from the layer
over x′ into the layer over x′, and it is a diffeomorphism. Consequently, this
corresponds with a “control feedback.”

The local structure of DITAs with symmetries. Because we are
interested in the local structure of a DITA, we have to assume that the system
has an infinitesimal symmetry, which satisfies some nonsingularity condition.
For this, we set the dimensionality of M to n and that of G to k, where
k < n. We note that the action Q : G×M → M is free at the point m ∈ M
if Qm : G → M is one-to-one. This is equivalent to saying that the tangent
mapping Q is of full rank, that is, rank Q = dimG. Hence, Q is free on M if
and only if it is free in some neighborhood of m. We say that an action that
satisfies this condition is nonsingular at the point m.

The basic result of this section is that the existence of an infinitesimal
symmetry in a neighborhood of a singular point in a DITA makes it possible
to decompose the system into a cascade union of simpler subsystems. The
structure of these subsystems depends, in general, on the symmetry group G.
If, for example, G has a nontrivial center, then one of the subsystems is in
fact a quadrature subsystem.

Let, in addition, C = h ∈ G|jg = gh for all g ∈ G be the center of
the G group to which the kernel, C+, of the Lie semialgebra TeG, which has
the same dimensionality as C, corresponds. Hence, if G has an l-dimensional
center, there exist linearly independent vectors ξ1, . . . , ξk ∈ TeG such that
[ξi, ξj ] = 0 for all 1 ≤ i ≤ l and 1 ≤ j ≤ k.
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Figure 6. Diagram of feedback-equivalent DITAs
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Using the results of Van der Shaft, Markus, and Grizzle’s investigations
(Van der Shaft, 1982, 1987 [24,25]; Marcus, 1973, 1984 [16,17]; Grizzle, 1983
[9]) that deal with the properties of systems with symmetries as applied to
DITAs, one can formulate the following theorems.

Theorem 7. Let us assume that F̂ (B,M, ξ) is a controlled DITA with an
infinitesimal state space symmetry, (G, θ,Q), that G has an l-dimensional
center, and that Q is nonsingular at the point m ∈M . Then, the B coordinates
(x1, . . . , xn, u) in a neighborhood of m exist such that F̂ is given in these
coordinates by the expression.

Using the obtained results for systems for infinitesimal state space sym-
metries, one can propose the structure of the decomposed system. It suffices
to demonstrate for this that the decomposed system with infinitesimal sym-
metry is locally feedback-equivalent to the original system with infinitesimal
state space symmetry.

Definition 17. Let F̂ (B,M,ψ) be a controlled DITA and Ô be an open subset
of M . Then, we say that a system of the form F̂ (π−1(Ô), Ô, ψ)|π−1(O) is F̂ |Ô
(F̂ bounded on Ô).

Theorem 8. Let F̂ (B,M,ψ) have an infinitesimal symmetry (G, θ,Q) and Q
be nonsingular at the point m. There exist a neighborhood of m and a system
F with infinitesimal symmetry (G, θ,Q) such that F̂ |Ô is feedback equivalent
to the F̂ system.

Let F̂ (B,M,ψ) be a controlled DITA with symmetry (G, θ,Q) and Q be
nonsingular at the point m. Then, in a neighborhood of m, F̂ is feedback-
equivalent to F̂ with infinitesimal symmetry and has the structure shown in
Figure 7, where γ is the feedback function, the Li are nonlinear subsystems of
dimensions n−k and k−l, respectively, andQ is an l -dimensional “quadrature”
system

ẋi = fi(x1, . . . , xn−k, u), i = 1, . . . , n− k,
ẋj = fj(x1, . . . , xn−1, u), i = n− k + 1, . . . , k. (52)

The global structure of DITA. The decomposability of a DITA with
global symmetries is the result of factoring the DITA state space, which follows
from the properties of a symmetry.

We introduce the definition of proper action.

Definition 18. Let Q be a G-action on M . We say that Q acts properly if
(g,m)→ m is a proper mapping, that is, if the pre-images of compact sets are
compact.

This definition is equivalent to the following assertion: whenever xn
converges on M and Qgn

(xn) converges on M , gn includes a subsequence,
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Figure 7. Local structure of DITA with infinitesimal symmetries

which converges in G. Hence, if G is compact, this condition is satisfied auto-
matically. Membership in the same Q-orbit is an equivalence relation on M .
Let M/G be the set of equivalence classes and p : M →M/G be specified by
the relation p(m) = Gm. We introduce on M/G a relations topology, that is,
V ⊂ M/G is open if and only if p−1(V ) is open on M . In general, M/G can
be a rather poor space.

If G acts freely and properly on M , then M/G is a smooth manifold and
p : M →M/G is the principal lamination with Lie group G.

We introduce the following constraints on the principal lamination:

(1) p is a smooth full-rank function;
(2) p : M →M/G has a cross section (that is, a smooth mapping σ : M/G→

M such that p · σ a is the identity mapping on M/G if and only if M is
equivalent to M/G×G;

(3) the topological conditions that guarantee the existence of a section, that
is, if M/G or G is a contraction mapping, a cross section must exist, are
specified.

We formulate a theorem, which is necessary for obtaining a global factor-
ization of the DITA state space.

Let Qm : G → G ·m be specified by g → Q(G,m). The following result
about the global structure of a DITA with symmetries holds.

Theorem 9. We assume that F̂ (M × U,M,ψ) is a controlled DITA with a
state space symmetry (C,Q). Then, if Q is free and proper, and p : M →M/G
has a cross section σ, then F̂ is isomorphic to the system
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ẏ = Ψ(y, u),

ġ = (TeLg)(TeQσ(y))−1 [Ψ(σ(y), u)− (Tyσ)Ψ(y, u)] , (53)

defined on M/G×G.

We formulate an assertion on feedback equivalence of DITAs with
symmetries.

Assertion 1 Let the DITA F (M ×U,M,ψ) have a symmetry (G, θ,Q) such
that Q is free and proper. Then, there exists a system F with symmetry (G,Q)
to which F is feedback equivalent under the condition that p : M →M/G has
a cross section σ.

Combining Theorem 9 and Assertion 1, we obtain the following corollary

Corollary 1. Let DITA F̂ (M × U,M,ψ) have a symmetry (G, θ,Q), Q be
free and proper, and p : M → M/G have a cross section. Then, there exists
a model of DITA F with state space symmetry (G,Q) to which F̂ is feedback-
equivalent. Consequently, F has a global structure.

The feasibility of applying the results to the investigation of
agents. It is of interest to investigate the decomposability of DITAs com-
posed of neural-like agents that are described by the system of equations

ẋ(t) = ψ(x(t), u(t)). (54)

One can define for (54) a decomposed system L as a nontrivial cascade
of subsystem L1 and L2. If the Lie algebra L̂(L) is the semidirect sum of
finite-dimensional subalgebra L1 and the ideal of L2, it has a nontrivial cas-
cade decomposition into subsystems L1 and L2 such that L̂(L1) = L1, and
L̂(L2) = L2. Using this fact and Levy’s theorem, one can demonstrate that if
L̂(L) is finite-dimensional, the DITA admits a nontrivial decomposition into a
parallel cascade of Li systems with simple Lie algebras followed by a cascade
of one-dimensional systems, Lj . As a result, the basic informational transfor-
mation is done in subsystems with simple Lie algebras. The state space, M ,
of the original system, L, is adopted here as the state space of these systems.
Therefore, despite the fact that the system has been partitioned into simpler
parts, the overall dimensionality of these parts is, in general, larger than that
of the original system. (One can reduce at the local level this dimensionality
by replacing the Li system by matrix equivalents defined on the exponential
functions of the Lie algebras that correspond with them.) These results can
be compared with the conditions for decomposability obtained by analyzing
the DITA symmetries described in this section for which the subsystem di-
mensionality equals that of the original system. No assumptions about the
finite dimensionality of the Lie algebra are required here. We consider a class
of neural nets described by the linear-analytic equations
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ẋ(t) = f(x) +
k
∑

i=1

uigi(x). (55)

One can formulate for it the necessary and sufficient conditions for parallel-
cascade decomposability by Lie algebras. In doing so, one can pose the con-
dition that each component of the input action be applied to only one of
the subsystems, that is, the decomposition procedure partitions the inputs
into disjoint subsets. However, such an approach cannot be applied to the
decomposition of a DITA with scalar input.

If DITA F̂ (B,M,ψ) has an infinitesimal symmetry (G, θ,Q), local com-
mutativity of the diagram means that ψ ∗ εB = εm and π ∗ εB = εn. Let
∆B = span{ε‖εB ∈ TeG} and the same hold for ∆m. Then, ψ ∗ ∆B ⊂ ∆m

and π ∗ ∆B = ∆, and ∆m, is a controlled invariant distribution. Models of
neural networks, including affine ones, have invariant distributions that induce
decompositions of the system into simpler subsystems. However, because the
symmetry conditions are constraints, the decompositions are obtained as more
detailed and structured.

A class of dynamic information-transforming systems that are described
by a commutative diagram is examined in this section. Constraints on systems
with symmetry under which one can expose, explicitly the hidden structure of
the controlled process are formulated. We show that the effect of the DITA
on the information-transforming process depends substantially on the type of
system symmetry. The informational process is subject here to the action of
cascade group, transformations, or the action of a dynamic-transformation
operator with feedback. The obtained results can be expanded to adaptive
learning systems by introducing the corresponding optimization models. When
doing so, one can expect that a DITA of which the quality functional is invari-
ant in symmetry-conserving transformations will be described adequately by a
nonlinear system with optimal feedback and will have a differential-geometric
structure, which is of interest from the point of view of applications. We plan
to use the results of the investigations presented here in the study of a syn-
ergetic model of a neural network on the basis of potential-dependent ion
channels in biomembranes.

7 Fiber Bundles and Observability

In the past decade, an important work has been done on a differential geo-
metric approach to nonlinear input state-output systems, which in local co-
ordinates have the form

ẋ = g(x, u), y = h(x), (56)

where x is the state of the system, u is the input, and y is the output.
Most of the attention has been directed to the formulation in this context
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of fundamental system theoretic concepts like controllability, observability,
minimality, and realization theory.

In spite of some very natural formulations and elegant results, which have
been achieved, there are certain disadvantages in the whole approach, from
which we summarize the following points,

(a) Normally the equations
ẋ = g(x, u) (57)

are interpreted as a family of vector fields on a manifold parameterized
by u; i.e., for every fixed u, g(·, u) is a globally defined vector field. We
propose another framework by looking at (57) as a coordinatization of

B
�g

TX
�

�
�

���

�
�

�
��	

X

where B is a fiber bundle above the state space manifold X, and the fibers
of B are the state-dependent input spaces, and TX is as usual the tangent
bundle of X (the possible velocities at every point of X).

(b) The “usual” definition of observability has some drawbacks. In fact, ob-
servability is defined as distinguishability; i.e., for every x1 and x2 (ele-
ments of X) there exists a certain input function (in principle dependent
on x1 and x2) such that the output function of the system starting from
x1 under the influence of this input function is different from the output
function of the system starting from x2 under the influence of the same
input function. Of course, from a practical point of view this notion of
observability is not very useful, and also is not in accord with the usual
definition of observability or reconstructibility for general systems.
Hence, despite the work of Sussmann (Sussmann, 1983 [23]) on universal
inputs, i.e., input functions, which distinguish between every two states
x1 and x2, this approach remains unsatisfactory.

(c) In the class of nonlinear systems (56), memoryless systems

y = h(u) (58)

are not included. Of course, one could extend the system (56) to the form

ẋ = g(x, u), y = h(x, u), (59)

but this gives, if one wants to regard observability as distinguishability,
the following rather complicated notion of observability. As can be seen,
distinguishability of (59) with y ∈ R

p, u ∈ R
m and x ∈ R

n is equivalent
to distinguishability of

ẋ = g(x, u), y = h(x), (60)
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Figure 8. Input State-Output System for Ideal Diode

where h : R
n → (Rp)R

m

is defined by h(x)(u) = h(x, u).
Checking the Lie algebra conditions for distinguishability for the system
(60) is not very easy.

(d) It is often not clear how to distinguish a priori between inputs and outputs.
Especially in the case of a nonlinear system, it could be possible that a
separation of what we shall call external variables in input variables and
output variables should be interpreted only locally. An example is the
(nearly) ideal diode given by the I − V characteristic in Figure 8. For
I < 0, it is natural to regard I as the input and V as the output, while
for V > 0 it is natural to see V as the input and I as the output. Around
an input-output description should be given in the scattering variables
(I − V, I + V ). Moreover, in the case of nonlinear systems, it can happen
that a global separation of the external variables in inputs and outputs
is simply not possible! This results in a definition of a system, which
is a generalization of the usual input-output framework. It appears that
various notions like the definitions of autonomous (i.e., without inputs),
memoryless, time-reversible, Hamiltonian, and gradient systems are very
natural in this framework.

7.1 Nonlinear Model of Agents

The (say C∞) agents can be represented in the commutative diagram

B
�f

TX ×W
�

�
�

���

π πX

�
�

�
��	

X
(61)
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where (all spaces are smooth manifolds) B is a fiber bundle above X with
projection π, TX is the tangent bundle of X, πx the natural projection of
TX on X, and f is a smooth map. W is the space of external variables (think
of the inputs and the outputs). X is the state space, and the fiber π−1(x) in
B above ∈ X represents the space of inputs (to be seen initially as dummy
variables), which is state dependent (think of forces acting at different points
of a curved surface).

This definition formalizes the idea that at every point x ∈ X we have a
set of possible velocities (elements of TX) and possible values of the external
variables (elements of W ), namely the space

f(π−1(x)) ⊂ TxX ×W.

We denote the system (61) by Σ(X,W,B, f). It is easily seen that in local
coordinates x for X, v for the fibers of B, w for W , and with f factored in
f = (g, h), the system is given by

ẋ = g(x, v), w = h(x, v). (62)

Of course one should ask oneself how this kind of system formulation is con-
nected with the usual input-output setting. In fact, by adding more and more
assumptions successively to the very general formulation (61), we shall dis-
tinguish among three important situations, of which the last is equivalent to
the “usual” interpretation of system (56).

(i) Suppose the map h restricted to the fibers of B is an immersive map into
W (this is equivalent to assuming that the matrix ∂h/∂v is injective).
Then:

Lemma 1. Let h restricted to the fibers of 4 be an immersion into W . Let
(x, u) and w be points in B and W , respectively, such that h(x, v) = w. Then
locally around (x, v) and w there are coordinates (x, v) for B (such that v are
coordinates for the fibers of), coordinates (w1, w2) for W , and a map h such
that h has the form

(x, v)! h > (w1, w2) = (h(x, v), v). (63)

Proof. The lemma follows from the implicit function theorem.
Hence locally we can interpret a part of the external variables, i.e., w1, as

the outputs, and a complementary part, i.e., w2, as the inputs! If we denote
w1 by y and w2 by u, then system (62) has the form (of course only locally)

ẋ = y(x, u), y = h(x, u). (64)

(ii) Now we not only assume that ∂h/∂v is injective, which results in a local
input-output parameterization (64), but we also assume that the output
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set denoted by Y is globally defined. Moreover, we assume that W is a
fiber bundle above Y , which we call p : W → Y , and that h is a bundle
morphism (i.e., maps fibers of B into fibers of W ). Then:

Lemma 2. Let h : B →W be a bundle morphism, which is a diffeomorphism
restricted to the fibers. Let x ∈ X and y ∈ Y be such that h(π−1(x)) = p−1(y).
Take coordinates x around x for X and coordinates y around y for Y . Let (x, v)
be a point in the fiber above x and let (y, u) be a point in the fiber above y
such that h(x, v) = (y, u). Then there are local coordinates v around v for the
fibers of B, coordinates u around u for the fibers of W , and a map h : X → Y
such that h has the form

(x, v)! h > (y, u) = (h(x), v). (65)

Proof. Choose a locally trivializing chart (0, φ) of W around y. Then φ :
p−1(0) → 0 × U , with U the standard fiber of W . Take local coordinates u
around u ∈ U . Then (y, u) forms a coordinate system for W around (y, u).
Because h is a bundle morphism, it has the form

(x, v)! h > (y, u) = (h(x), h′(x, v)),

where (x, v) is a coordinate system for B around (x, v). Now adapt this last
coordinate system by defining

v = (h′)−1(x, u) with x fixed.

Because h restricted to the fibers is a diffeomorphism, v is well defined
and (x, v) forms a coordinate system for B in which h has the form

(x, v)! h > (y, u) = (h(x), u).

Hence under the conditions of Lemma 2, our system is locally (around x ∈ X
and y ∈ Y ) described by

ẋ = g(x, u), y = h(x). (66)

This input-output formulation is essentially the same as the one proposed by
Brockett and Takens, who take the input spaces as the fibers of a bundle above
a globally defined output space Y . In fact, this situation should be regarded
as the normal setting for nonlinear control systems.

(iii) Take the same assumptions as in (ii) and assume moreover that W is
a trivial bundle, i.e., W = Y × U , and that B is a trivial bundle, i.e.,
B = X ×V . Because h is a diffeomorphism on the fibers, we can identify
U and V . In this case, the output set Y and the input set U are globally
defined, and the system is described by

ẋ = g(x, u), y = h(x), (67)
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where for each fixed u, g(·, u) is a globally defined vector field on X. This
is the “usual” interpretation of (56).

Remark 2.

1. When h restricted to the fibers of B is not an immersion, we have a
situation where we could speak of “hidden inputs.” In fact, in this case
there are variables in the fibers of B that can affect the internal state
behavior via the equation ẋ = g(x, v) but that cannot be directly identified
with some of the external variables.

2. The splitting of the external variables into inputs and outputs as described
in Lemma 1 is of course by no means unique! This fact has interesting
implications, even in the linear case, which we shall not pursue further
here.

3. From Lemma 2, it is clear that the coordinatization of the fibers of the
bundle W uniquely determines, via h, the coordinatization of the fibers
of B. It should be remarked that a coordinatization of the fibers of W
is locally equivalent to the existence of an (integrable) connection on the
bundleW , and that one coordinatization is linked with another by what is
essentially an output feedback transformation, i.e., a bundle isomorphism
from W into itself. Again we do not comment further on this point.

4. A beautiful example of this kind of system is the Lagrangian system. Here
the output space is equal to the configuration space Q of a mechanical
system. The state space X is the configuration space with the velocity
space, so X = TQ. The space W is equal to T ∗Q (the cotangent bundle
of Q), with the fibers of T ∗Q representing the external forces. When we
denote the natural projection of TQ on Q by ρ, then B is just ρ∗T ∗Q
(the pullback bundle via ρ). Now given a function L : TQ → R (called
the Lagrangian), we can construct a symplectic form d(∂L/∂q̇)∧dq (with
(q, q̇) coordinates for TQ) on TQ, which uniquely determines a map g :
B → TTQ. Finally, in coordinates the system is given by

q̈ = F (q, q̇) +
∑

j

ujZj(q, q̇), y = q, (68)

with the vector fields F (q, q̇) and Zj(q, q̇) satisfying certain conditions.
Moreover the vector fields Zj commute, i.e., [Zi, Zj ] = 0 for all i, j, a fact
that has a very interesting interpretation.

5. Most cases where B can be taken as trivial are generated by a space X
such that TX is a trivial bundle. For instance, when X is a Lie group,
TX is automatically trivial.

7.2 Minimality and Observability

Minimality. We want to give a definition of minimality for a general nonlinear
agent.
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Definition 19. Let Σ(X,W,B, f) and Σ′(X ′,W,B′, f ′) be two smooth sys-
tems. Then we say Σ′ � Σ if there exist surjective submersions φ : X →
X ′, Φ : B → B′ such that the diagram

B
�f

TX ×W
�

�
�

���

�
�

�
��	

X
(69)

commutes.

Σ is called equivalent to Σ′ (denoted Σ ∼ Σ′) if φ and Φ are diffeomor-
phisms.

We call Σ minimal if Σ′ � Σ ⇒ Σ′
∼ Σ.

B
�

�
�

�
���

f

W �

×

id

�Φ
B′

�
�

�
�

���

f ′

W




π

X

TX

�
�

�
�

���

πX

�
φ∗

×

�
φ

X ′

TX ′

�
�

�
�

���

πX′




π′

Remark 3. This definition formalizes the idea that we call Σ′ less compli-
cated than Σ(Σ′ � Σ) if Σ′ consists of a set of trajectories in the state
space, smaller than the set of trajectories of Σ, but which generates the
same external behavior. (The external behavior Σe of Σ(X,W,B, f) consists
of the possible functions w : R → W generated by Σ(X,W,B, f). Hence,
when we define Σ := {(x,w) : R → X × W |x absolutely continuous and
(ẋ(t), w(t)) inf(π−1(x(t)))a.e.}, then Σe, is just the projection of Σ on WR).

Remark 4. Notice that we only formalize the regular case by asking that Φ and
φ be surjective as well as submersive. In fact we could, for instance, allow that
at isolated points φ or Φ are not submersive. However, we do not discuss this
problem here, and treat only the regular case as described in Definition 19.
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Remark 5. Notice that Σ1 � Σ2 and Σ2 � Σ2 need not imply Σ1 ∼ Σ1. This
fact leads to very interesting problems, which we do not pursue further at this
time.

Of course, Definition 19 is an elegant but rather abstract definition of
minimality. From a differential geometric point of view, it is very natural to
see what these conditions of commutativity mean locally. In fact, we will see
in Theorem 11 that locally these conditions of commutativity do have a very
direct interpretation. But first we have to state some preparatory lemmas and
theorems.

Let us look at (69). Because Φ is a submersion, it induces an involutive
distribution D on B given by

D := {Z ∈ TB|Φ∗Ż = 0}

(the foliation generated by D is of the form Φ−1(c) with c constant). In the
same way, φ induces an involutive distribution E on X. Now the information
in the diagram (69) is contained in three subdiagrams (we assume f = (g, h)
and f ′ = (g′, h′)):

B
�Φ

B′




h

W �

id

W



h′ I

B �Φ B′




π

X
�

φ
X ′



π′ II

B
�Φ

B′




g

TX �

φ∗
TX ′




g′ III
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Lemma 3. Locally the diagrams I, II, III are equivalent, respectively, to

I ′ : D ⊂ ker dh,
II ′ : π∗D = E,

III ′ : g∗D ⊂ TE = Tπ∗(D). (70)

Proof. I ′ and II ′ are trivial. For III ′ observe that, when φ induces a distri-
bution E on X, then φ∗ induces the distribution TE on TX.

Now we want to relate conditions I ′, II ′, III ′ with the theory of nonlinear
disturbance decoupling. Consider in local coordinates the system

ẋ = f(x) +
m
∑

i=1

uigi(x) on a manifold X.

We can interpret this as an affine distribution on manifold.

Theorem 10. Let D ∈ A(∆0). Then the condition

[∆,D] ⊆ D +∆0 (71)

(we call such a D ∈ A(∆0)∆(mod∆0) invariant) is equivalent to the two
conditions (a) there exists a vector field F ∈ ∆ such that [F,D] ⊆ D; (b) there
exist vector fields Bi ∈ ∆0 such that span {Bi} = ∆0 and [Bi,D] ⊂ D.

With the aid of this theorem, the disturbance decoupling problem is readily
solved. The key to connecting our situation with this theory is given by the
concept of the extended system, which is of interest in itself.

Definition 20. (Extended system). Let

B
�f

TX ×W
�

�
�

���

π πX

�
�

�
��	

X
Then we define the extended system of Σ(X,W,B, f) as follows: We define

∆0 as the vertical tangent space of B, i.e.,

∆0 := {Z ∈ TB|π∗Z = 0}.

Note that ∆0 is automatically involutive.
Now take a point (x, v) ∈ B. Then g(x, v) is an element of TxX. Now

define
∆(x, v) := {Z ∈ T(x,v)|π∗Z = g(x, v)}.
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So ∆(x, v) consists of the possible lifts of g(x, v) in (x, v). Then it is easy
to see that ∆ is an affine distribution on B, and that ∆−∆ = ∆0. We call the
affine system (∆,∆0) on B constructed in this way, together with the output
function h : B →W , the extended system Σe(X,W,B, f).

We have the following:

Lemma 4.

(a) Let D be an involutive distribution on B such that D ∩∆0 has constant
dimension. Then π∗D is a well-defined and involutive distribution on X
if and only if D +∆0 is an involutive distribution.

(b) Let D be an involutive distribution on B and let D ∩ ∆0 have constant
dimension. Then the following two conditions are equivalent: (i) π∗D is
a well-defined and involutive distribution on X, and g∗D ⊂ Tπ∗D. (ii)
[∆,D] ⊂ D +∆0.

Proof.

(a) Let D+∆0 be involutive. Because D and ∆0 are involutive, this is equiv-
alent to [D,∆0] ⊂ D+∆0. Applying Theorem 10 to this case gives a basis
{Z1, . . . , Zk} of D such that [Zi,∆0] ⊂= ∆0. In coordinates (x, u) for B,
the last expression is equivalent to Zi(x, u) = (Zix, Ziu(x, u)), where Zix
and Ziu are the components of Zi in the x- and u-directions, respectively.
Hence π∗D = span {Z1x, . . . , Zkx} and is easily seen to be involutive. The
converse statement is trivial.

(b) Assume (i); then there exist coordinates (x, u) for B such that D =
{∂/∂x1, . . . , ∂/∂xx} (the integral manifolds of D are contained in the sec-
tions u = const ). Then g∗D ⊂ Tπ∗D is equivalent to

(

∂g

∂xi

)

jecomp

= 0

with i = 1, . . . , k and j = k+l, . . . , n (n is the dimension ofX). From these
expressions, [∆,D] ⊂ D +∆0 readily follows. The converse statement is
based on the same argument.

Now we are prepared to state the main theorem of this section. First we
have to give another definition.

Definition 21. (Local minimality). Let Σ(X,W,B, f) be a smooth system.
Let x ∈ X. Then Σ(X,W,B, f) is called locally minimal (around x) if when
D and E are distributions (around x) that satisfy conditions I ′, II ′, III ′ of
Lemma 3, then D and E must be the zero distributions.

It is readily seen from Definition 19 that minimality of Σ(X,W,B, f) lo-
cally implies local minimality (locally every involutive distribution can be
factored out).

Combining Lemma 3, Definition 20, and Lemma 4 we can state:
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Theorem 11. Σ(X,W,B, f = (g, h)) is locally minimal if and only if the
extended system Σe(X,W,B, f = (g, h)) satisfies the condition that there exist
no nonzero involutive distribution D on B such that

(i) [∆,D] ⊂ D +∆0,

(ii) D ⊂ ker dh. (72)

Remark 6. It is very surprising that the condition of minimality locally comes
down to a condition on the extended system, which is in some sense an infin-
itesimal version of the original system.

Remark 7. Actually there is a conceptual algorithm to check local minimality.
Define

∆−1(∆0 +D) := {vector fields Z on B |[∆,Z] ⊆ ∆0 +D}.

Then we can define the sequence {Dmu}, µ = 0, 1, 2, . . . as follows:

D0 = ker dh,

Dµ = Dµ−1 ∩∆−1(∆0 +Dµ−1), µ = 1, 2, . . . .

Then {Dµ}, µ = 0, 1, 2, . . . , is a decreasing sequence of involutive distribu-
tions, and for some k � dim(ker dh)Dk = Dµ for all µ � k. Then Dk is the
maximal involutive distribution that satisfies

(i) [∆,Dk] ⊂ Dk +∆0,

(ii) Dk ⊂ ker dh.

From Theorem 11, it follows that Σ(X,W,B, f) is locally minimal if and
only if Dk = O.

Observability. It is natural to suppose that our definition of minimality
has something to do with controllability and observability. However, because
the definition of a nonlinear system (61) also includes autonomous systems,
(i.e., no inputs), minimality cannot be expected to imply, in general, some
kind of controllability. In fact, an autonomous linear system

ẋ = Ax, y = Cx

is easily seen to be minimal if and only if (A,C) is observable. Moreover, it
seems natural to define a notion of observability only in the case that the
system (61) has at least a local input-output representation; i.e., we make
the standing assumption that (∂h/∂v) is injective (see Lemma 1). Therefore,
locally we have as our system

ẋ = g(x, u), y = h(x, u) (73)

for every possible input-output coordinatization (y, u) of W . For such an
input-output system local minimality implies the following notion of observ-
ability, which we call local distinguishability.
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Proposition 2. Choose a local input-output parameterization as in (73).
Then local minimality implies that the only involutive distribution E on X
that satisfies

(i) [g(·, u), E] ⊂ E for all u (E is invariant under g(·, u)),
(ii) E ⊂ ker dxh(·, u) for all u (dxh means differentiation with respect to x)

is the zero distribution.

Proof. Let E be a distribution on X that satisfies (i) and (ii). Then we can
lift E in a trivial way to a distribution D on B by requiring that the integral
manifolds of D be contained in the sections u = const . Then one can see that
D satisfies [∆,D] ⊂ D +∆0 and D ⊂ ker dh. Hence D = 0 and E = 0.

Remark 8. It is easily seen that, under the condition (∂h/∂v) injective local
minimality. We can state the following Corollary 2.

Corollary 2. Suppose there exists an input-output coordinatization

ẋ = g(x, u), y = h(x). (74)

Then heal minimality implies local weak observability.

Proof. As can be seen from Proposition 2, local minimality in this more re-
stricted case implies that the only involutive distribution E on X that satisfies

(i) [g(·, u), E] ⊂ E for all u,

(ii) E ⊂ ker dh

is the zero distribution. It can be seen that the biggest distribution that sat-
isfies (i) and (ii) is given by the null space of the codistribution P generated
by elements of the form

Lg(·,u1)Lg(·,u2) · · ·Lg(·,uk)dh, with uj arbitrary.

Because this distribution has to be zero, the codistribution P equals T ∗
xX,

in every ∈ X. This is, apart from singularities (which we don’t want to con-
sider), equivalent to local weak observability.

Moreover, let (74) be locally weakly observable. Then all feedback transfor-
mations u �→ v = α(x, u) that leave the form (74) invariant (i.e., y is only the
function x) are exactly the output feedback transformations u �→ v = α(y, u).
It can be easily seen in local coordinates that after such output feedback is
applied, the modified system is still locally weakly observable.

In Proposition 2 and its corollary, we have shown that local minimality
implies a notion of observability, which generalizes the usual notion of local
weak observability. Now we will define a much stronger notion. Let us denote
the (defined only locally) vector field ẋ = g(x, u) for fixed u by gu and the
function h(x, u) by hu (with g and h as in (73)).
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Definition 22. Let Σ(X,W,B, f) = (g, h) be a smooth nonlinear system. It
is called strongly observable if for every possible input-output coordinatization
(73) the autonomous system

ẋ = gu(x), y = hu(x) (75)

with u constant is locally weakly observable, for all u.

Remark 9. Let Σ(X,W,B, f = (g, h)) be strongly observable. Take one input-
output coordinatization (y, u). The system has the form (in these coordinates)

ẋ = g(x, u), y = h(x, u).

Because the system is strongly observable, every constant input-function
(constant in this coordinatization) distinguishes between two nearby states.
However, in every other input-output coordinatization, every constant (i.e.,
in this coordinatization) input function also distinguishes. This implies that
in the first coordinatization, every C∞ input function distinguishes. Because
the C∞ input functions are dense in a reasonable set of input functions, every
input function in this coordinatization distinguishes.

Proposition 3. Consider the Pfaffian system constructed as follows:

P = dhu + Lgudhu + Lgu(Lgudhu) + · · ·+ Ln−1
gu dhu,

with n the dimension of X and Lgu the Lie derivative with respect to gu.
As is well-known, the condition that the Pfaffian system P as defined above
satisfies the condition Px = T ∗

xX for all x ∈ X (the so-called observability
rank condition) implies that the system

ẋ = gu(x), y = hu(x)

is locally weakly observable. Hence, when the observability rank condition is
satisfied for all u, the system is strongly observable.

We will call the Pfaffian system P the observability codistribution.

Remark 10. As is known, local weak observability of the system

ẋ = gu(x), y = hu(x)

implies that the observability rank condition (i.e., dimPx = T ∗
xX) is satisfied

almost everywhere (in fact, in the analytic case everywhere). Because we don’t
want to go into singularity problems, for us local weak observability and the
observability rank condition are the same.

Remark 11. It is easily seen that when for one input-output coordinatization
the observability rank condition for all u is satisfied, then for every input-
output coordinatization the observability rank condition for all u is satisfied.
This follows from the fact that the observability rank condition is an open
condition.
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Controllability. The aim of this section is to define a kind of controllabil-
ity that is “dual” to the definition of local distinguishability (Proposition 2)
and that we shall use in the following section. The notion of controllability
we shall use is the so-called “strong accessibility.”

Definition 23. Let ẋ = g(x, u) be a nonlinear system in local coordinates.
Define R(T, x0) as the set of points reachable from x0 in exactly time T ; in
other words,

R(T, x0) := {x1 ∈ X | ∃ state trajectory x(t) generated by g
such that x(0) = x0 and x(T ) = x1}.

We call the system strongly accessible if for all x0 ∈ X and for all T > 0
the set R(T, x0) has a nonempty interior.

For systems of the form (in local coordinates)

ẋ = f(x) +
m
∑

i=1

uigi(x) (76)

(i.e., affine systems) we can define A as the smallest Lie algebra that contains
{g1, . . . , gm} and that is invariant under f (i.e., [f,A] ⊂ A). It is known that
Ax = TxX for every x ∈ X implies that the system (76) is strongly accessible.
In fact, when the system is analytic, strong accessibility and the rank condition
Ax = TxX for every x ∈ X, are equivalent. We call A the controllability
distribution and the rank condition the controllability rank condition. Now it
is clear that for affine systems (76) this kind of controllability is an elegant
“dual” of local weak observability.

It is well-known that the extended system (see Definition 20) is an affine
system. Hence for this system we can apply the rank condition described
above. This makes sense because the strong accessibility of Σ(X,W,B, f) is
very much related to the strong accessibility of Σe(X,W , B, f), which can be
seen from the following two propositions.

Proposition 4. If Σe(X,W,B, f = (g, h)) is strongly accessible, then
Σ(X,W, B, f = (g, h)) is strongly accessible as well.

Proof. In local coordinates, the dynamics of Σe and Σ are given by

I ẋ = g(x, u) (Σ),
II ẋ = g(x, v) (Σe),

v̇ = u.

It is easy to show that if for Σe one can steer to a point x1, then the same
is possible for Σ (even with an input that is smoother).

The converse is harder:
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Proposition 5. Let Σ(X,W,B, f = (g, h)) be strongly accessible. In addition,
if the fibers of B are connected, then Σe(X,W,B, f = (g, h)) is strongly
accessible.

Proof. Consider the same representation of Σ and Σe as in the proof of
Proposition 4. Let x0 ∈ X and x1 be in the (nonempty) interior of RΣ(x0, T )
(the reachable set of system Σ). Then it is possible to reach x1 from x0 by
an input function v(t) that cannot be generated by the differential equation
v̇ = u. However, we know that the set of the v generated in this way is dense
in L2. (For this we certainly need that the fibers of B are connected.) Because
we only have to prove that the interior of a set is nonempty, this makes no
difference. Now it is obvious from the equations

ẋ = g(x, v), v̇ = u

that if we can reach an open set in the x-part of the (extended) state, then it
is surely possible in the hole (x, v)-state.

8 Conclusion

In this chapter, the problem of geometric description of multiple agents
is studied. The connection of the optimal game and Yang–Mills fields
has been established. A geometric model of a controlled agent as dy-
namic information-transforming system is examined. A description of the
information-transforming system within the framework of the geometric for-
malism is also proposed. After a classification of the fiber bundle types of
conflict and conflict-free maneuvers, a weighted energy can be proposed as the
cost function to select the optimal one. Various local and global controllability
and observability conditions are derived. For the general multiagent case, a
convex optimization algorithm is proposed to find the optimal multilegged
maneuvers. To completely characterize the optimal conflict-free maneuvers,
many issues remain to be addressed. Possible directions of future research
include the analysis of the proposed mathematical models in terms of its
performance and its robustness with respect to uncertainty of the agents’
positions and velocities, and a more realistic study for the agent dynamics.
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Abstract The current chapter is devoted to the development of convex analysis
concepts in the context of solving pursuit-evasion problems in differential games.
Classic convex analysis is generalized; new concepts such as matrix-convex sets and
H-convex sets are introduced and studied. With the help of these, it is shown possible
to describe a rather wide class of differential games where players’ strategies are
produced in a comparatively constructive manner. The main attention is on studying
those properties of matrix convexity that are required for the theory of differential
games.

Operational constructions for the initial positions sets, favorable to each player,
for the derivation of the players’ strategies are also described.
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constructions

1 Introduction

Many important results in differential games have been derived during the past
40 years. The book “Differential Games” by R. Isaacs [1] initiated the research
on this subject. The book introduced a wide range of applied plan problems
with inherent game characteristics, which, however, were not entirely con-
tained within the borders of the formed theory of optimum control. The ideas
described in [1] received precise mathematical formalization in subsequent
works by other authors [3,7–9,11,13,14]. The theory of differential games has
since matured and developed into an independent scientific discipline that has
its own field of problems and methods.

The large number of approaches, methods, and algorithms for decisions
in various classes of problems have been developed within the borders of
the differential games theory. These are problems of pursuit, pursuit-evasion,
keeping, escaping problem, and game problems of dynamic search. Firstly,
the general approaches for decisions in differential games of pursuit-evasion
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were founded. In these approaches, the structure of the game is described by
stable bridges [8, 9], one-parametrical semigroups (operational constructions)
[13,14], or alternative integral of L.S. Pontryagin [11]. The theorems of alter-
native break the phase space of the game into sets of initial positions that are
favorable for this or that player. Thus, the theorems of existence of optimum
strategies for the players are proved.

The next group of methods is also devoted to decisions in general differen-
tial games, but these are more constructive approaches, including approximate
methods [14] to them. However, numerical realization of these methods meets
difficulties due to the extensive calculations and the necessity for the deriva-
tion of special theories that would effectively describe the sets and operations
needed. Comprehensive numerical results have only been obtained for two-
and three-dimensional spaces.

A third group of methods are not applied to all differential games as a
whole, rather they are directed toward decisions in certain classes of games.
Such methods are the first method by L.S. Pontryagin [11], the method of
resolving functions [5], and a method based on H-convex sets [10, 14]. As a
rule, these methods are solving certain classes of linear differential games.
Thus, the convexity of the terminal set or of the areas of players’ controls
plays the important role. At a more detailed level of studying linear differential
games, generalized concepts of convexity are used in order to expand the field
of application of the methods of pursuit. Such concepts are the H-convexity
[4] and the matrix convexity, which constitutes a further development of the
H-convexity.

Issues of the application of elements from convex analysis and generalized
convex analysis to decisions in linear games of pursuit-evasion are addressed
in the current chapter.

2 Auxiliary Results

2.1 Notation

We use the following notations throughout the chapter.

En - n-dimensional Euclidean space with the scalar product 〈x, y〉 =
n
∑

i=1

xiyi, where x, y ∈ En;

Euclidean norm ‖x‖ =

√

n
∑

i=1

(xi)2;

E1 - one-dimensional space that coincides with the set of real numbers;
E - identity operator in space En or the identity matrix of dimensions
n× n;
‖A‖ = sup

x�=0

‖Ax‖
‖x‖ - norm of linear operator in En;
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A∗ - adjoint operator to the operator A that operates in En, or the trans-
posed matrix of matrix A.
clA - closure of the set A;
intA - interior of the set A;
∂A - boundary of the set A;

ρ (A,B) = max
{

sup
x∈A

inf
y∈B
‖x− y‖ , sup

y∈B
inf
x∈A
‖x− y‖

}

- Hausdorff distance

between the sets A and B;
A+B =

⋃

{x+ y : x ∈ A, y ∈ B} - sum of two sets A,B ⊂ En;
λA =

⋃

{λx : x ∈ A} - multiplication of the scalar λ with the set A ⊂ En;
A∗B = {z ∈ En : B + z ⊂ A} - geometric remainder of the two sets A
and B.
coA - convex hull of the set A (smallest convex set containing A);
coA - closed convex hull of the set A;
conA - conical hull of the set A (smallest cone containing A);
S (x, r) = {y ∈ En : ‖y − x‖ ≤ r} - sphere with the center at x and
radius r;
S = S (0, 1), ∂S = {x ∈ En : ‖x‖ = 1}.
WA (x∗) = sup

x∈A
〈x, x∗〉 - support function of the set A ⊂ En.

2.2 Multivalued Mappings and Philippov’s Lemma

Let us introduce the notation:
2Y - set of all subsets of the set Y ;
F : X → 2Y - multivalued mapping that assigns a subset F (x) of Y to the

point x ∈ X;
b
∫

a

F (t) dt - integral of the multivalued mapping F : [a, b]→ 2E
n

, that is,

the set of all integrals
b
∫

a

f (t) dt, where f (t) : [a, b]→ En is a measurable,

bounded, single-valued mapping such that f (t) ∈ F (t).
If f (t, u), f : E1 × Er → En, is a continuous function and U [a, b] is a set

of measurable functions u (t) with values in the compact set U ⊂ Er, then, by
definition,

b
∫

a

f (t, U) dt =
⋃

⎧

⎨

⎩

b
∫

a

f (t, u (t)) dt : u (·) ∈ U [a, b]

⎫

⎬

⎭

.

Theorem 1. [2] Under the made assumptions,
b
∫

a

f (t, U) dt is a convex set.

Let us consider the linear multivalued mapping F (t) = A (t)M , t ∈ [a, b],
where A (t) is a linear operator in the space En for each t ∈ [a, b], andM ⊂ En
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is a closed subset. We assume that the family of operators A (t), t ∈ [a, b] ,
is bounded and measurable. We shall understand the integral

∫ b

a
A (t)Mdt as

the set of all integrals of the form
∫ b

a
A (t)m (t) dt, where m (t) ∈M , t ∈ [a, b],

is a measurable bounded function. We do not impose any condition of bound-
edness on the set M . However, from Theorem 1, it is not difficult to obtain
the following result:

Corollary 1. The set
b
∫

a

A (t)Mdt is convex.

Let us recall the concept of the lexicographic order for vectors in En. Let
x =

(

x1, . . . , xn
)

∈ En, y =
(

y1, . . . , yn
)

∈ En. We say that x is less than y in
lexicographic sense if for some k = 1, . . . , n, xi = yi, i < k, xk < yk. It is easy
to see that if K ⊂ En is a compact set, then there exists the unique point
x∗ ∈ K, which is maximal in lexicographic sense for all x ∈ K.

Let f (u, v, t) be a continuous function with values in En, u ∈ U , v ∈ V ,
U ⊂ Er, V ⊂ Es, U and V compact sets. Let ξ (t) ∈ En be a measurable
function on [a, b] and let the equation f (u, v, t) = ξ (t) be solvable for any
v ∈ V , t ∈ [a, b]. Denote by u∗ (v, t) its lexicographic maximal solution.

Theorem 2. [6] If v (t) ∈ V is a measurable function on [a, b], then u∗ (v (t) , t)
is also a measurable function of t on [a, b].

This statement can be made more exact if we note that the constructed
function u∗ (v, t) is Borel measurable w.r.t. v.

Theorem 3. If x (t) ∈ En is a fully continuous function on the segment [a, b]
that fulfills almost everywhere the inclusion

ẋ ∈ f (x, t, U),

where f : En+1 × U → En is a continuous mapping, and U ⊂ Er is a compact
set, then there exists a function u (·) ∈ U [a, b] such that nearly everywhere

ẋ (t) = f (x (t) , t, u (t)).

3 Matrix Convexity

The concept of convex sets is generalized in the current section. The sums of
products of numbers by vectors are used in the definition of common convexity.
In the given generalization, the role of numbers is played by matrices leading,
thus, to the term “matrix convexity.” By analogy, common convexity can be
named “scalar.”
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Necessity for studying matrix convexity has emerged in control theory and
differential games theory. With the help of matrix convexity, it was possible
to describe a rather wide class of differential games where players’ strategies
are produced comparatively constructively. However, the main attention has
been given to the study of those properties of matrix convexity that were
important for the theory of differential games.

Matrix-convex sets are not necessarily convex in common scalar sense gen-
erally. However, a class of matrix-convex sets is a subclass of scalar-convex
sets under certain assumptions. Moreover, it has been shown that matrix-
convex sets are H-convex in a general enough case. It is necessary to note
that H-convex sets are well studied and described comparatively construc-
tively in a number of concrete examples. Thus, the subclass of convex sets is
constructed for each set of the matrices determining convexity.

3.1 Scalar-Convex Sets

Let us consider certain properties of common convex sets. The following is
the traditional definition of convexity.

Definition 1. A set M ⊂ En is called a convex set, if for any x, y ∈M and
any numbers λi ≥ 0 such that λ1 + λ2 = 1, the inclusion

λ1x+ λ2y ∈M (1)

is fulfilled.

We can write the inclusion (1) in a slightly different manner using the
concept of the sum of two sets.

Definition 2. A set M ⊂ En is called a convex set, if for any x, y ∈M and
any numbers λi ≥ 0, λ1 + λ2 = 1, the equality

λ1M + λ2M = M (2)

is fulfilled.

In order to show that a set M is a convex set, it is enough to show that
(2) is fulfilled for any λ1, λ2. On the other hand, what is possible to say about
the set M if λ1 and λ2 are fixed? It turns out that equality (2) gives convexity
in case M is a closed set. Let us formulate this statement as a lemma.

Lemma 1. Let λ1and λ2 be fixed positive numbers such that λ1 + λ2 = 1. A
closed set M is a convex set if and only if equality (2) is fulfilled.

If M is not a closed set, then Lemma 1 is not correct. One can consider,
as an example, the set of rational points from the segment [0, 1] that have
the degrees of two in the denominator. Then the equality (2) is fulfilled for
λ1 = λ2 = 1

2 .
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3.2 Matrix Convexity for Two Operators

Henceforth we shall assume that M is a convex set.
Let A,B be linear operators that operate in En and such that A+B = E.

We shall denote the family of these operators by R, R = {A,B}.

Definition 3. A set M ⊂ En is called an R- convex set if

AM +BM = M. (3)

Definition 3 differs from Definition 2 with respect to the linear opera-
tors that are represented by matrices in concrete bases and have replaced
the scalars λ1 and λ2. It is natural to call this type convexity “matrix con-
vexity” and the common convexity “scalar convexity.” If A = λ1E, B = λ2E,
where λ1, λ2 ∈ (0, 1), then Definition 3 is the definition of the common, scalar
convexity by virtue of (1).

Let us note that (3) is satisfied not only by scalar-convex sets but by other
sets as well.

Example 1. Consider the two-dimensional space

E2 =
{

x =
(

x1, x2
)

, xi ∈ E1
}

.

Let the linear operators A and B be defined by the following matrices

A =
(

1 0
0 0

)

, B =
(

0 0
0 1

)

.

Let M = {(0, 0) ; (1, 0) ; (0, 1) ; (1, 1)}.
The given set consists of four points, which are the vertices of a square.
Matrix A transfers the points (0, 1) and (1, 1) to the points (0, 0) and

(1, 0), respectively, while leaving the other two points in place. From this,
AM = {(0, 0); (1, 0)}. Similarly, BM = {(0, 0) ; (0, 1)}. It is not difficult to see
that AM +BM = {(0, 0) ; (1, 0) ; (0, 1) ; (1, 1)} = M . Thus, an example of a
nonconvex set that satisfies (3) for certain A and B has been constructed.

Because Definition 3 is a generalization of the common convexity, the
question under what conditions equation (3) guarantees scalar convexity arises
naturally.

Theorem 4. Let ‖A−B‖ < 1. Then scalar convexity of the set M follows
from (3).

Remark 1. Note that in case A = λ1EB = λ2Eλ1, λ2 ∈ [0, 1], the condition
‖A−B‖ < 1 turns into the condition |λ1 − λ2| < 1, which implies λ1 > 0,
λ2 > 0. The last condition coordinates to that of Lemma 1.
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Proof. Let us show that for any points x, y ∈M , the midpoint x̄ = 1
2 (x+ y)

of the segment [x, y] belongs to the set M . The convexity of M will follow
from this by virtue of Lemma 1 for λ1 = λ2 = 1

2 .
Let x1 = Ax+By, y1 = Ay +Bx. It follows from (3) that x1, y1 ∈M . We

note that
1
2

(x1 + y1) =
1
2

(A (x+ y) +B (x+ y)) =
1
2

(A+B) (x+ y) =
1
2

(x+ y) = x̄,

that is, a midpoint of the segment [x1, y1] is a midpoint of the segment [x, y].
Let us estimate the distance between x1 and y1:

‖x1 − y1‖ = ‖A(x− y) +B(y − x)‖=‖(A−B)(x− y)‖ ≤ ‖A−B‖·‖x− y‖.

This distance is already less than the distance between x and y by virtue
of the hypothesis of the theorem.

Construct next the sequences

xk = Axk−1 +Byk−1, yk = Ayk−1 +Bxk−1; k = 1, 2, . . ., x0 = x, y0 = y.

Using induction on k, one can show, as above, that

1
2

(xk + yk) = x̄,

‖xk − yk‖ ≤ ‖(A−B)‖ · ‖xk−1 − yk−1‖ = ‖(A−B)‖k · ‖x− y‖
Because ‖A−B‖ < 1, the sequences {xk}, {yk} converge to x̄. From equal-

ity (3) it follows that xk, yk ∈M for all k = 0, 1, 2, . . . . This relation and the
fact that M is closed imply x̄ ∈M . The theorem has been proved.

Let us study a class of R-convex sets. We will cite necessary and sufficient
conditions for R-convexity. Set

M (x∗) = {x ∈M : 〈x, x∗〉 = WM (x∗)}.

By definition, WM (x∗) = sup
x∈M
〈x, x∗〉. Therefore either the set M (x∗) is

empty, or the supremum is attained on its points. Let us note that it is natural
to assume that M (0) = M in the case x∗ = 0.

Theorem 5. For the realization of equality (3) it is necessary that, for all
x∗ 	= 0, the following inclusions are fulfilled:

M (x∗) ⊂M (A∗x∗) , M (x∗) ⊂M (B∗x∗). (4)

Proof. Let us consider the support function of the left part in (3)

WAM+BM (x∗) = sup {〈x, x∗〉 : x ∈ AM +BM}
= sup {〈Ax+By, x∗〉 : x, y ∈M}
= sup {〈x,A∗x∗〉+ 〈y,B∗x∗〉 : x, y ∈M}
= sup

x∈M
〈x,A∗x∗〉+ sup

x∈M
〈x,B∗x∗〉

= WM (A∗x∗) +WM (B∗x∗) .
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It follows from (3) that WM (A∗x∗) +WM (B∗x∗) = WM (x∗). From this
relation and from the obvious equality x∗ = (A∗ +B∗)x∗ it follows that, for
all x ∈M (x∗),

sup
y∈M
〈y,A∗x∗〉+ sup

y∈M
〈y,B∗x∗〉 − 〈x, (A∗ +B∗)x∗〉 = 0

or
[

sup
y∈M
〈y,A∗x∗〉 − 〈x,A∗x∗〉

]

+
[

sup
y∈M
〈y,B∗x∗〉 − 〈x,B∗x∗〉

]

= 0. (5)

Each of the expressions in the square brackets is non-negative. Therefore,
it follows from (3) that

sup
y∈M
〈y,A∗x∗〉 = 〈x,A∗x∗〉 , sup

y∈M
〈y,B∗x∗〉 = 〈x,B∗x∗〉

and, hence, x ∈M (A∗x∗), and x ∈M (B∗x∗), which proves the theorem.

The set {x ∈ En : 〈x, x∗〉 ≤ c} is understood as a half-space. The half-space
is determined by the vector x∗ and the number c.

It is known that every convex set can be represented as the intersection of
half-spaces:

M =
⋂

x∗∈H(M)

{x ∈ En : 〈x, x∗〉 ≤ c (x∗)}, (6)

where H (M) is a some set of nonzero vectors from En, c (x∗) is a number,
probably equal to +∞.

Lemma 2. Let a set M be represented in the form

M =
⋂

α∈a
{x ∈ En : fα (x) ≤ 0},

where {fα} is a set of convex functions, a is an arbitrary set of indices; and
there exists some number α0 such that the inequality fα0 (x) < 0 is correct for
any x ∈M . Let a0 = a {α0} and M0 =

⋂

α∈a0

{x : fα (x) ≤ 0}. Then M = M0.

Proof. Let us assume the opposite. Then, there exists x0 ∈M0 such that
x0 /∈M . Because fα (x0) ≤ 0 is fulfilled for any α ∈ a0, then the relation
x0 /∈M implies fα0 (x0) > 0. Because the function fα is continuous by virtue
of convexity, the set M is closed. Therefore, there exists x1 ∈M , which is the
point nearest to x0. Let us consider the point xλ = λx1 + (1− λ)x0. Because
x1 is the point nearest to x0, then xλ /∈M for all λ ∈ [0, 1). From the convex-
ity of M0 it follows that xλ ∈M0 for λ ∈ [0, 1]. The function g (λ) = fα0 (xλ)
is continuous on the segment [0, 1]. Moreover, g (0) > 0, but g (1) < 0 from the
hypothesis of the lemma. This implies the existence of a λ0 ∈ (0, 1) such that
g (λ0) = 0, that is, fαo

(xλ0) = 0. Comparing the given equality to the inclu-
sion xλ0 ∈M0 we obtain that, for any α ∈ a, fα (xλ0) ≤ 0, that is, xλ0 ∈M .
But as λo < 1, we obtain a contradiction. The lemma has been proved.
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Theorem 6. Let a set M be represented in the form (6). Then for the ful-
fillment of the equality (3) it is enough to show that, for all x∗ ∈ H (M),
inclusions (4) are fulfilled.

Proof. Let x∗ ∈ H (M). From Lemma 2, it follows that it is enough to consider
the case M (x∗) 	= ∅. Then there exists x ∈M (x∗) such that

sup
y∈M
〈y,A∗x∗〉 = 〈x,A∗x∗〉 , sup

y∈M
〈y,B∗x∗〉 = 〈x,B∗x∗〉.

It follows from this that equality (5) holds, and, consequently,

WAM+BM (x∗) = sup {〈y, x∗〉 : y ∈ AM +BM}
= 〈x, (A∗ +B∗)x∗〉 ≤ sup

x∈M
〈x, x∗〉 ≤ c (x∗) .

The last inequality means that the left part of (3) is included in the right
part. The reverse inclusion is obvious. The theorem has been proved.

Theorems 5 and 6 give a description of the class of R-convex sets. However,
this description is obviously not sufficient. The results deduced below give a
more constructive description of R-convexity in terms of H-convexity. Let us
give the definition of H-convexity.

Definition 4. Let H be a subset of the unit sphere in En, that is,
H ⊂ {x∗ ∈ En : ‖x∗‖ = 1}. The set M is called H-convex if it can be written
in the form

M =
⋂

x∗∈H
{x ∈ En : 〈x, x∗〉 ≤ c (x∗)}, (7)

where the scalar c (x∗) can accept any value (even +∞).

The representation (7) means that the H-convex set M is defined by an
intersection of half-spaces that are described only by vectors x∗ ∈ H. Other
half-spaces do not participate in the construction of M .

Note that a set of the form (6) is a H (M)-convex set. In case H coincides
with the entire unit sphere, H-convexity becomes common convexity.

Let us consider another example of H-convex sets.

Example 2. Let H = {±ei, i = 1, . . . , n}, where ei = (0, . . . , 0, 1, 0, . . . 0) is the
i-th unit vector. Then, the parallelepipeds with edges parallel to the axes of
the coordinates are H-convex sets. The set M is an H-convex set if and only
if it is represented in form

M =
{

x =
(

x1, . . . , xn
)

: ai ≤ xi ≤ bi, i = 1, . . . , n
}

,

where the numbers ai can accept the value −∞, and bi can accept the
value +∞.
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Let us connect the set H to the operators A and B. We shall denote by
H a set of unit vectors x∗ ∈ En that satisfy the conditions:

a) A∗x∗ = λA (x∗)x∗, B∗x∗ = λB (x∗)x∗;
b) the numbers λA (x∗) and λB (x∗) are non-negative.

Thus, vectors x∗ ∈ H are eigenvectors of the operators A∗ and B∗ with
non-negative eigenvalues.

We shall assume subsequently that H is the set determined as above.

Theorem 7. Let the set M be an R-convex and scalar-convex set, let
intM 	= ∅. Then M is an H-convex set.

Proof. It is known [15] that, for a convex set M , if x0 ∈ ∂M then, in any
neighborhood of x0, there exists a point x1 ∈ ∂M such that the cone of normal
directions at it is spanned by one vector. Let us denote this vector by n (x1)
and assume that ‖n (x1)‖ = 1.

Let us suppose that M is not a H-convex set and consider the set

M1 =
⋂

x∗∈H
{x ∈ En : 〈x, x∗〉 ≤WM (x∗)}.

The set M1 is the H-convex hull of M . Because M 	= M1, there exists a
point x0 ∈ ∂M such that x0 ∈ intM1. Indeed, if such a point does not exist,
then intM = intM1 and these sets would coincide by virtue of the closure of
M and M1.

The existence of a point x1 ∈ ∂M
⋂

intM1 for which the cone of normals is
spanned by one vector has been noticed above. It means that if x1 ∈M (x∗),
then x∗ = λ0n (x1) for some λ0 > 0. It is clear that n (x1) /∈ H. From the
definition of H it follows that n (x1) cannot be eigenvector of the operators
A∗ and B∗ with non-negative eigenvalues. Let A∗n (x1) 	= λn (x1) for λ ≥ 0.
But this means that A∗n (x1) does not belong to the cone of normals at the
point x1 and, therefore, x1 /∈M (A∗n (x1)). Thus, the necessary conditions of
Theorem 5 are violated. The obtained contradiction proves the theorem.

Theorem 8. Let M be an H-convex set. Then M is an R-convex set.

Proof. The proof follows from Theorem 6 for H (M) = H.

Let us discuss the hypothesis of Theorem 7. The necessity for requiring
the scalar convexity of M has been verified by Example 1 in which M is not
only an H-convex set but also a scalar-convex set. Moreover, the set M is an
R-convex set. The requirement intM 	= ∅ is also essential.

Example 3. Let M = {m}. In other words, M consists of one point. Then the
equality (3) is obviously fulfilled. However, it is not difficult to select A and
B for which a point is not a H-convex set. Thus, the operators A∗ and B∗

may have only one-dimensional subspace of eigenvectors. In this case, some
half-spaces and hyperplanes of dimension n− 1 will be H-convex sets.
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Let us consider various H-convex sets, where H is connected to A, B.

Example 4. Let

A = diag {α1, . . . , αn} , B = diag {β1, . . . , βn} , αi, βi ≥ 0.

Then the set H will be the set from Example 2 and the H-convex sets will
be the corresponding ones.

Example 5. Let A, B be represented by diagonal matrices in the same way as
in Example 4 but such that

α1 = · · ·= αm1 = α1, αm1+1 = · · ·= αm2 = α2, . . . , αmk−1+1 = · · ·= αn = αk,

β1 = · · ·= βm1 = β1, βm1+1 = · · ·= βm2 = β2, . . . , βmk−1+1 = · · ·= βn = βk.

Set ni = mi −mi−1, i = 1, . . . , k, m0 = 0. In this case, the H-convex sets
have the form

M =
{

x =
(

x1, . . . , xk
)

: xi ∈Mi

}

,

where xi is a vector from the space Eni , and Mi is a convex subset in Eni .

Example 6. Let us consider the case

A =
(

α γ
0 α

)

, B =
(

β −γ
0 β

)

,

where α, β > 0, and γ are arbitrary numbers. In this case, the vectors ± (0, 1)
are eigenvectors of A∗ and B∗.

The sets of the form M =
{

x =
(

x1, x2
)

: a ≤ x2 ≤ b
}

are H-convex sets,
where a may take the value −∞, and b the value +∞.

3.3 Matrix Convexity for Various Families of Operators

We generalize the results of the previous sections to the case of several oper-
ators. Let Rk = {A1, . . . , Ak} be a family of linear operators operating in En

such that A1 + · · ·+Ak = E.

Definition 5. A set M ⊂ En is called Rk-convex if

A1M +A2M + · · ·+AkM = M. (8)

Let Ai1 , . . . , Aim (1 ≤ m < k) be operators from Rk, and define A = Ai1 + · · ·
+Aim and B = E −A.

Lemma 3. Let M be an Rk-convex set. Then M is an R-convex set,
R = {A,B}.
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Proof. Let Aim+1 , . . . , Aik be operators from Rk.
Then B = Aim+1 + · · ·+Aik . Consider arbitrary x, y ∈M . Because M is

an Rk-convex set, then

Ax+By = Ai1x+ · · ·+Aimx+Aim+1y +Aiky ∈M
which proves the R-convexity of M .

Theorem 9. Suppose that, for some set of operators Ai1 , . . . , Aim from Rk,
the inequality ‖E − 2 (Ai1 + · · ·+Aim)‖ < 1 is fulfilled. Then an Rk-convex
set is also scalar-convex.

Proof. Let us set A = Ai1 + · · ·+Aim , B = E −A. It follows from Lemma 3
that if M is an Rk-convex set, then M is an R-convex set. From the hy-
pothesis of the theorem, it follows that ‖A−B‖ = ‖E − 2A‖ < 1. Applying
Theorem 4, we obtain the scalar convexity of M .

We shall denote by Hk a set of unit vectors x∗ ∈ En that satisfy the
following conditions:

(a) A∗
i x

∗ = λi (x∗)x∗, i = 1, . . . , k;
(b) the numbers λi (x∗) ≥ 0, i = 1, . . . , k.

Theorem 10. Let M be an Rk-convex and scalar-convex set with intM 	= ∅.
Then M is an Hk-convex set.

Proof. Denote by Hj the set of unit eigenvectors of A∗
j with corresponding

non-negative eigenvalues, that is, x∗ ∈ Hj if A∗
jx

∗ = λx∗, where λ ≥ 0.
From the definitions of Hk and Hj , it follows that

Hk =
k
⋂

j=1

Hj . (9)

Set A = Aj , B = E −A. By Lemma 3, the set M is an R-convex set. By
Theorem 7, it is an Hj-convex set. This implies that M may be represented
as the intersection of half-spaces of the form {x ∈ En : 〈x, x∗〉 ≤ c (x∗)},
x∗ ∈ Hj .

Because this holds for any j, then it follows from (9) that x∗ ∈ Hk and,
therefore, M is a an Hk-convex set.

Theorem 11. Let M be an Hk-convex set. Then M is an Rk-convex set.

Proof. We shall validate this statement using mathematical induction on k.
For k = 2, the conclusion of the theorem follows from Theorem 8.

Assume that the inductive hypothesis is correct for k − 1 and prove it
for k.

Set A = A1 + · · ·+Ak−1, B = Ak, and consider the case detA = 0. Denote
by ε0 the minimum modulus from all nonzero eigenvalues of operator A (real
and complex values). Then, for all ε ∈ (0, ε0), the operator A+ εE has an
inverse operator.
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Set
Aε
i = Ai +

ε

k − 1
E,Aε = A+ εE.

Then
k−1
∑

i=1

Aε
i = Aε.

Set Āε
i = (Aε)−1

Aε
i ,

Hε
k−1 =

{

x∗ ∈ ∂S : Āε
ix

∗ = λεi (x∗)x∗, λεi (x∗) ≥ 0, i = 1, . . . , k − 1
}

.

Because, for any x∗ ∈ Hk, the relation

λεi (x∗) =
(

λi (x∗) +
ε

k − 1

)

/(

k−1
∑

i=1

λi (x∗) + ε

)

≥ 0;

is fulfilled, then Hk ⊂ Hε
k−1. From this, it follows that M is an Hε

k−1-convex

set. By the inductive hypothesis
k−1
∑

i=1

Āε
iM = M . Multiplying both sides of the

equality by Aε we obtain
k−1
∑

i=1

Aε
iM = AεM . From this, we have

k−1
∑

i=1

Aε
iM +AkM = AεM +AkM.

Because the operator Aε +Ak = A+ εE +Ak = (1 + ε)E has an inverse
operator, we obtain, by analogous reasoning, AεM +AkM = (1 + ε)EM
from which

(1 + ε)−1

(

k−1
∑

i=1

Aε
iM +AkM

)

= M.

Let xi ∈M be arbitrary points and set

x̄ =
k
∑

i=1

Aixi, xε = (1 + ε)−1

(

k−1
∑

i=1

Aε
ixi +Akxk

)

.

Because lim
ε→0

Aε
i = Ai, then lim

ε→0
xε = x̄. Whereas for any ε ∈ (0, ε0) the

inclusion xε ∈M is fulfilled and M is a closed set, then x̄ ∈M . It follows that
M is an Rk-convex set.

The case detA 	= 0 is more simple and it is easy to reduce it to the previous
reasoning with ε = 0. The theorem has been proved.

Next, we generalize the results to the case of infinite number of operators.
Set R∞ = {A (t) , t ∈ [0, 1]}, where A (t) is a linear operator that operates

in En. We assume that R∞ is a bounded and measurable family of operators

and that
1
∫

0

A (t) dt = E.
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Definition 6. A set M is called R∞-convex if

1
∫

0

A (t)Mdt = M. (10)

Let Ωi, i = 1, . . . , k, be a collection of measurable subsets of the segment

[0, 1] such that Ωi

⋂

Ωj = ∅ for i 	= j and
k
⋃

i=1

Ωi = [0, 1].

Define Ai as

Ai =
∫

Ωi

A (t) dt,Rk = {A1, . . . , Ak}.

Lemma 4. Let M be an R∞-convex set. Then M is an Rk-convex set.

Proof. Let xi ∈M be arbitrary points, i = 1, . . . , k. Let us set x (t) = xi,
t ∈ Ωi. From the R∞-convexity it follows that

k
∑

i=1

Aixi =

1
∫

0

A (t)x (t) dt ∈M,

which implies the Rk-convexity of M . The lemma is proved.

We shall denote by H∞ the set of all unit vectors x∗ ∈ En such that, for
nearly all t ∈ [0, 1], the following conditions are fulfilled:

(a) A∗ (t) = λ (t|x∗)x∗,
(b) the numbers λ (t|x∗) ≥ 0.

Lemma 5. Let M be an R∞-convex set. Then it is a scalar-convex set.

Proof. From Corollary 1, it follows that
1
∫

0

A (t)Mdt is a convex set. From this

and from (10), the convexity of M is implied.

Theorem 12. Let M be an R∞-convex set and intM 	= ∅. Then M is an
H∞-convex set.

Proof. Let us set

At1,t2 =

t2
∫

t1

A (t) dt,Bt1,t2 = E −At1,t2 ,Rt1,t2 = {At1,t2 , Bt1,t2},

where t1, t2 ∈ [0, 1], t1 < t2.
From Lemma 4, it follows that M is an Rt1,t2-convex set.
Let
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Ht1,t2 =
{

x∗ ∈ ∂S : A∗
t1,t2x

∗ = λt1,t2 (x∗)x∗, λt1,t2 (x∗) ≥ 0
}

.

Because for x∗ ∈ H∞, then λt1,t2 (x∗)=
t2
∫

t1

λ (t|x∗) dt ≥ 0, andH∞ ⊂ Ht1,t2 .

Whereas M is Rt1,t2 -convex set then, from Theorem 7, it follows that M
is an Ht1,t2-convex set. Let us show that H∞ =

⋂

t1,t2∈[0,1]

Ht1,t2 . It will imply

the H∞-convexity of M .
Let t ∈ [0, 1) be an arbitrary number, and ∆t > 0 such that t+∆t ∈ [0, 1].

Assume that, for any ∆t > 0, x∗ ∈ Ht,t+∆t and, hence, the following equality
is fulfilled:

1
∆t

t+∆t
∫

t

A∗ (τ) dτx∗ = λt,t+∆t (x∗)x∗,

where λt,t+∆t (x∗) ≥ 0.
The limit, as ∆t→ 0, of the left side of the equality exists for nearly all

t ∈ [0, 1]. Therefore, passing to the limit, we obtain that, for nearly all t,

A∗ (t)x∗ = λ (t|x∗)x∗, λ (t|x∗) ≥ 0.

From this, it follows that x∗ ∈ H∞. The theorem has been proved.

Theorem 13. Let M be an H∞-convex set. Then M is an R∞-convex set.

Proof. Set C = sup {‖A (t)‖ , t ∈ [0, 1]}. Let x (t) be an arbitrary bounded
measurable function such that x (t) ∈M for all t ∈ [0, 1]. For any ε > 0 there
exists a collection of measurable subsets Ωi, i = 1, . . . , k, of the segment [0, 1]

such that Ωi

⋂

Ωj = ∅, i 	= j and
k
⋃

i=1

Ωi = [0, 1], and a collection of points

xi ∈M such that for the function xε (t) = xi, t ∈ Ωi, the following inequality
is fulfilled:

1
∫

0

‖xε (t)− x (t)‖ dt ≤ ε

C
.

It follows from this that
∥

∥

∥

∥

∥

1
∫

0

A (t)x (t) dt−
1
∫

0

A (t)xε (t) dt

∥

∥

∥

∥

∥

≤
1
∫

0

‖A (t)‖ · ‖x (t)− xε (t)‖ dt ≤ ε.

Let Hk be the same set as previously. Because, for any x∗ ∈ H∞,

λi (x∗) =
∫

Ωi

λ (t|x∗) dt ≥ 0,

then H∞ ⊂ Hk. Therefore, M is an Hk-convex set. Theorem 11 implies that
M is an Rk-convex set. From this it follows that
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1
∫

0

A (t)xε (t) dt =
k
∑

i=1

Aixi ∈M.

From the arbitrariness of ε > 0 and the closure of M we receive

1
∫

0

A (t)x (t) dt ∈M,

which implies the R∞-convexity of M .

3.4 H-convex Sets and Integration of Linear Multivalued
Mappings

We state and prove some lemmas that are needed later on.
LetH be an arbitrary subset of unit vectors from En, and let A : En → En

be a linear operator.

Lemma 6. Let the operator A have an inverse operator, and assume that
A∗x∗ ∈ conH is fulfilled for any x∗ ∈ H. If M is H-convex, then A−1M is
also H-convex.

Proof. The set M has the form

M =
⋂

x∗∈H
{x ∈ En : 〈x, x∗〉 ≤ c (x∗)}, (11)

where c (x∗) may take the value +∞.
From this

A−1M =
⋂

x∗∈H
{x ∈ En : 〈Ax, x∗〉 ≤ c (x∗)}

=
⋂

x∗∈H
{x ∈ En : 〈x,A∗x∗〉 ≤ c (x∗)}.

From the hypothesis of the lemma
A∗x∗

‖A∗x∗‖ ∈ H. Therefore,

A−1M =
⋂

x∗∈H

{

x ∈ En :
〈

x,
A∗x∗

‖A∗x∗‖
〉

≤ c (x∗)
‖A∗x∗‖

}

.

Thus, A−1M is an H-convex set and the lemma is proved.

Lemma 7. Let the operator A have an inverse operator, and assume that
A∗x∗ = λ (x∗)x∗ is fulfilled for all x∗ ∈ H, where λ (x∗) is a number. More-
over, if x∗ ∈ H, then (−x∗) ∈ H. Then, if M is an H-convex, the set AM is
also an H-convex set.
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Proof. Let M have the form (11), and assume that λ (x∗) > 0. Then

AM =
⋂

x∗∈H

{

x ∈ En :
〈

A−1x, x∗
〉

≤ c (x∗)
}

=
⋂

x∗∈H

{

x ∈ En :
〈

x,
(

A−1
)∗
x∗
〉

≤ c (x∗)
}

=
⋂

x∗∈H

{

x ∈ En :
1

λ (x∗)
〈x, x∗〉 ≤ c (x∗)

}

=
⋂

x∗∈H
{x ∈ En : 〈x, x∗〉 ≤ λ (x∗) c (x∗)}

that is, AM is an H-convex set.
If λ (x∗) < 0, then

AM =
⋂

x∗∈H
{x ∈ En : 〈x,−x∗〉 ≤ −λ (x∗) c (x∗)}.

The lemma has been proved.

Remark 2. The hypothesis of Lemma 6 follows from the hypothesis of
Lemma 7.

Let us consider a family of bounded and measurable on t operators
{A (t) , t ∈ [0, θ]} that operate in the space En, where θ is a fixed number.

In Subsection 3.3, a family of operators is determined on the interval [0, 1]
(θ = 1) that satisfies the condition

1
∫

0

A (t) dt = E. (12)

The first condition (θ = 1) is not essential, and it may be removed by a
change of the variable t = θτ , τ ∈ [0, 1]. The condition (12), or a more general
condition that is expressed in terms of existence of the inverse operator to
1
∫

0

A (t) dt is more essential. In the current section, the case when this condition

is not fulfilled will be studied.
In the current subsection, we shall understand as H a set of unit vectors

x∗ ∈ En that satisfy the conditions:

(a) A∗ (t)x∗ = λ (t|x∗)x∗ for any t ∈ [0, θ], where λ (t|x∗) is a number;
(b) the numerical function λ ( · | x∗) does not change sign on the interval [0, θ]

for fixed x∗.

Let A =
θ
∫

0

A (t) dt.
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Note that, for any x∗,

A∗x∗ =

θ
∫

0

λ (t|x∗) dtx∗.

Theorem 14. Let M be an H-convex set, and let x (s), s ∈ [0, θ], be a mea-
surable and bounded function with values in En. If, for each s ∈ [0, θ], the
inclusion

Ax (s) ∈M (13)

is fulfilled, then
θ
∫

0

A (t)x (t) dt ∈M. (14)

Proof. Without loss of the generality, it is possible to assume that θ = 1. Let
us consider the case when there exists an inverse operator A−1. From (13), it
follows that for all, s ∈ [0, θ],

x (s) ∈ A−1M.

From Lemma 7 and from Remark 2, it follows that the set A−1M is an
H-convex set. From the definition of operator A

1
∫

0

A−1A (t) dt = E. (15)

Let us take advantage of Theorem 13. Then, from (15), it follows that

1
∫

0

A−1A (t)x (t) dt ∈ A−1M.

From this the inclusion (14) is implied.
Consider the case when A may not have an inverse operator. Let

Aε (t) = A (t) + εE, Aε =

1
∫

0

Aε (t) dt = A+ εE.

For small enough positive ε, the operator Aε has an inverse operator. Whereas
Ax (s) ∈M , then Aεx (s) = Ax (s) + εx (s) ∈M + εDS, where D is a con-
stant such that ‖x (s)‖ ≤ D for s ∈ [0, 1]. Let us assume that M has the form
(11). Then Aεx (s) ∈M + εDS ⊂Mε, where

Mε =
⋂

x∗∈H
{x ∈ En : 〈x, x∗〉 ≤ c (x∗) + εD}.
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It follows from the first part of proof that
1
∫

0

Aε (t)x (t) dt ∈Mε.

From this, whereas
∥

∥

∥

1
∫

0

x (t) dt
∥

∥

∥ ≤ D, then

1
∫

0

A (t)x (t) dt ∈Mε − ε
1
∫

0

x (t) dt ⊂Mε + εDS ⊂M2ε.

By virtue of the arbitrariness of ε > 0 we obtain the inclusion (14) and
the theorem is proved.

Theorem 15. Let the hypothesis of Theorem 14 be fulfilled; let τ ∈ [0, θ] be
an arbitrary fixed number, and assume that 0 ∈M . Then

τ
∫

0

A (t)x (t) dt ∈M.

Proof. Let us introduce the function

x1(s) =

{

x(s), s ∈ [0, τ ],
0, s ∈ (τ, θ].

Because 0 ∈M , then Ax1 (s) ∈M for s ∈ [0, θ]. From this and from
Theorem 14 it follows that

τ
∫

0

A (t)x (t) dt =

θ
∫

0

A (t)x1 (t) dt ∈M.

The theorem has been proved.

Corollaries 2 and 3 are implied from Theorems 14 and 15.

Corollary 2. Let M be an H-convex set and assume that, for the set
W ⊂ En, the inclusion AW ⊂M is fulfilled. Then

θ
∫

0

A (t)Wdt ⊂M.

Corollary 3. Let the hypothesis of Corollary 2 be fulfilled; and assume that
0 ∈M . Then, for any τ ∈ [0, θ],

τ
∫

0

A (t)Wdt ⊂M.
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From Lemma 7 and Corollary 2, we have the following:

Corollary 4. If M is an H-convex set and the operator A has an inverse
operator, then

θ
∫

0

A (t)Mdt = AM. (16)

Theorem 16. Let M be an H-convex and compact set. Then (16) is fulfilled.

Proof. Set Bε = εA+ ε2E. The vectors x∗ ∈ H are the eigenvectors of the
operator A∗, and, therefore, of the operator B∗

ε . For small enough ε > 0, the
corresponding eigenvalues of the operator B∗

ε have the same sign with
the eigenvalues of the operator A∗, and, therefore, of the operators A∗ (t).
(We assume that zero has a sign identical to the sign of any number.)

Let m ∈M . Then, as 0 ∈M −m,

θ
∫

0

A (t)Mdt =

θ
∫

0

A (t) (M −m) dt+Am

⊂
θ
∫

0

A (t) (M −m) dt+Bε (M −m) +Am.

For small enough ε > 0, the operator A+Bε has an inverse operator. From
this and from Corollary 4

θ
∫

0

A (t) (M −m) dt+Bε (M −m) = (A+Bε) (M −m).

By virtue of the arbitrariness of ε and the compactness of M we obtain

θ
∫

0

A (t)Mdt ⊂ A (M −m) +Am = AM.

The reverse inclusion is obvious. The theorem has been proved.

4 Operational Constructions in Differential Games

4.1 Dynamics of Game Problems

Consider a dynamic system described by the differential equation

ż = f (z, u, v) , (17)



Convexity in Differential Games 327

where z ∈ En, u ∈ U , v ∈ V , U and V are compact in Euclidean spaces.
The players P (pursuer) and E (evader) dispose the parameters u and

v respectively. By admissible controls for players P and E we shall under-
stand the functions u (t) and v (t) with values in U and V respectively. The
sets of all admissible controls of players P and E determined on a segment
[a, b] (half-interval [a, b)) will be denoted by U [a, b], V [a, b] (U [a, b), V [a, b))
respectively.

We shall assume further that the function f and the sets U and V satisfy
the following assumptions:

Assumption 1 The function f (z, u, v) is continuous and locally Lipschitz
w.r.t. z (i.e., the function satisfies a Lipschitz condition w.r.t. z on every
compact set K ⊂ En with the Lipschitz constant LK depending on K).

Assumption 2 There exists a constant C ≥ 0 such that, for all z ∈ En,
u ∈ U , and v ∈ V ,

|〈z, f (z, u, v)〉| ≤ C
(

1 + ‖z‖2
)

.

Assumption 3 The set f (z, U, v) is a convex set for all z ∈ En, and v ∈ V .

Assumptions 1 and 2 guarantee the existence, uniqueness, and continuity of
the solution z (t) to equation (17) on all semi-axis [0,+∞) for arbitrary initial
condition z (0) = z0 and any admissible controls u (t) and v (t) for players P
and E in place of the parameters u and v in (17).

Denote by z (t|u (·) , v (·) , z0) the solution z (t) to equation (17) correspond-
ing with u (t), v (t), and the initial condition z (0) = z0.

Consider an arbitrary interval [0, θ], θ < +∞. Assumption 3 guarantees,
in the topology of uniform convergence on segment [0, θ], compactness of the
solutions set corresponding with various admissible controls u (·) for player P
and the initial position z0. This fact remains valid even if the initial position
z0 is not fixed and runs instead over some compact set K ⊂ En.

From the described property, it follows that if uk (·) ∈ U [0, θ], xk ∈ K,
k = 1, 2, . . . , are some sequences, and

zk(t) = z (t|uk (·) , v (·) , xk)

is the sequence of corresponding solutions to equation (17), then there exists
a subsequence { zkm

(·)} of the sequence { zk (·)} that converges uniformly on
[0, θ] to the function z0 (·). Moreover, there exist u (·) ∈ U [0, θ] and x ∈ K
such that

z0 (t) = z (t|u (·) , v (·) , x).
The same statement is valid if we consider directedness instead of se-

quences. This question will be addressed below.
The aims of the players are described with the help of a terminal set

M ⊂ En and a set of phase constraints N ⊂ En. The sets M and N are
assumed to be closed, moreover, M ⊂ N .
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Let us fix a moment θ > 0. The aim of player P is to achieve the inclusions
z (θ) ∈M , z (t) ∈ N , for all t ∈ [0, θ], i.e., to draw a trajectory z (t) on M at
moment θ, while keeping it in the set N . The aim of player E is opposite and
is to achieve either z (θ) /∈M or, for some t < θ, z (t) /∈ N .

Various strategies for player P may be used. There are ε-strategies in which
the greatest informational discrimination of the opponent is assumed: player
E informs player P of his control for some time ε > 0 in advance. Moreover,
player P uses the information about the current position. Because player E
disposes the parameter ε, ε-strategies are equivalent to the strategies in which
player P chooses his current control knowing the initial position and the entire
prehistory of the opponent’s actions. These strategies are constructed on the
basis of some Volterra mappings. Strategies in which player P chooses his
current control knowing the initial position and the current control of the
opponent are particular cases of the latter strategies. Such a strategy will be
called counter-strategy.

4.2 Convergence in the Set of Closed Subsets

In order to describe the initial positions sets that are favorable for any player
under the construction of strategies for the players, it is necessary to use
various operations on sets, namely addition, union, and intersection. It is also
necessary to consider sequences and directedness of sets and to study questions
of their convergence.

In a space of closed subsets, it is possible to introduce the concept of con-
vergence in various ways. The S-convergence [12], which describes convergence
of unbounded sets, is used here. In the case of bounded sets, S-convergence
coincides with convergence in Hausdorff metric

Let us recall the following definition.

Definition 7. Let X be an arbitrary set, and I an ordered set, i.e., such
that for any α1, α2 ∈ I we can find α ∈ I such that α ≥ α1 and α ≥ α2.
A mapping α→ xα of the set I into X is said to be a directedness and is
denoted by {xα} , α ∈ I.

Definition 8. A directedness { yβ}, β ∈ J , is said to be a subdirectedness of
a directedness {xα} , α ∈ I, if, for any α ∈ I, there exists an index β (α) ∈ J
such that, for any β′ ∈ J with β′ ≥ β (α), we can find α′ ∈ I, α′ ≥ α, such
that xα′ = yβ ′ .

The notions of directedness and subdirectedness are natural generaliza-
tions of the notions of sequence and subsequence. If I is a set of natural num-
bers then {xα} , α ∈ I, is the usual sequence, and its subsequences satisfy the
conditions of Definition 8.

Next, we introduce with an example, where the set I has its elements
arranged in increasing order, the notion of sets directed to increase.
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Example 7. Let [0, θ] be some interval. A partition ω is a finite sequence
of numbers {τ0, τ1, . . . , τk}, where k is an arbitrary number, such that
τ0 = 0 ≤ τ1 ≤ · · · ≤ τk = θ. Assume that |ω| = θ, and note that ω is a partition
of the interval [ 0, θ]. On the set I = {ω : |ω| = θ} of all partitions of the inter-
val [0, θ] we introduce a partial order. Let ωj =

{

τ j0 = 0 ≤ τ j1 ≤ · · · ≤ τ
j
kj

= θ
}

.

We write ω1 ≥ ω2 if all numbers τ2
i coincide with some numbers τ1

i , i.e., the
partition ω1 includes the partition ω2 and perhaps some other points, too.
For two arbitrary partitions ω1 and ω2, we shall understand ω = ω1 ∪ ω2 as
the partition formed by all numbers τ1

i and τ2
i in increasing order.

We say that the constructed set I is directed to increase as ω1

⋃

ω2 ≥ ω1

and the relation ω1

⋃

ω2 ≥ ω2 holds true for any ω1, ω2. We shall also say that
t belongs to the partition ω = { τ0 ≤ τ1 ≤ · · · ≤ τk = θ } (t ∈ ω ) if t = τi for
some i.

Definition 9. The directedness {xα} , α ∈ I, of elements of the topological
space X, is converging to an element x ∈ X if, for any neighborhood Wof
point x, there exists αW ∈ I such that xα ∈W for all α ≥ αW .

Let us note that a topological space X is a compact space if, and only if,
each directedness in X contains a subdirectedness converging to some point
of X.

Let X be a topological space, and let R (X) be the family of all its closed
subsets.

Definition 10. We shall say that the directedness {Fα} , α ∈ I, of closed sub-
sets from X, is S-convergent to the closed set F ⊂ X if:

1. for any x ∈ F and any neighborhood Wx of the element x we can find a
β ∈ I such that Fα

⋂

Wx 	= ∅ for all α ≥ β;
2. for any y /∈ F we can find a neighborhood Wy of the element y ∈ X and

a γ ∈ I such that Fα
⋂

Wy = ∅ for all α ≥ γ.

Example 8. Let X be a two-dimensional space of vectors (x, y). Assume that
Ft = { (x, y) : x− yt = 0 }. The set F0 = {(x, y) : x = 0 } is the coordinate
axis o′Wffl and the set Ft, t 	= 0, is the straight line y = (1/t) x. It is not
difficult to see that, for t→ 0, {Ft} S-converges to the set F0. The set Ft is
not included in an ε-neighborhood of the set F0 for any ε > 0 and t 	= 0.

The set Ft is a simple and a characteristic example of sets motion ac-
cording to some differential equations. Indeed, let us consider the system
ẋ = −y, ẏ = 0. If x (t) = x (0)− y (0) t, then the set Ft is a set of initial values
(x(0), y(0)) from which the trajectory reaches the set F0 precisely at moment t.

The following results describe the basic properties of S-convergence.

Theorem 17. It is possible to choose a converging subdirectedness from any
directedness {Fα} , α ∈ I, Fα ∈ R (X).
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Definition 11. The directedness {Fα} , α ∈ I, Fα ∈ R (X), is called nonde-
creasing if Fα ⊃ Fβ for α ≥ β, and it is called nonincreasing if Fα ⊂ Fβ for
α ≥ β.

Theorem 18. The nondecreasing directedness {Fα} , α ∈ I, S-converges
to cl

⋃

α∈I
Fα. The nonincreasing directedness {Fα} , α ∈ I, S-converges to

⋂

α∈I
Fα.

Definition 12. The subset M of a set R (X) is called S-closed if the
S-convergence of some directedness of elements from M to the closed subset
F ⊂ X implies F ∈M .

Theorem 19. The family of all S-closed sets from R (X) is the set of the
closed sets of some topology from R (X).

From this, the correctness of the next definition follows.

Definition 13. We call S-topology on R (X) a topology in which only
S-closed sets are closed.

Furthermore, if X is a Euclidean space or its closed subset (i.e., locally
compact Hausdorff space), then the following statement is of interest.

Theorem 20. Let X be a locally compact Hausdorff space. Then a con-
vergence of directednesses from R(X) in S-topology is equivalent to
S-convergence.

For a space X with metric d(·, ·) it is possible to introduce the Hausdorff
distance between two compact sets A,B ⊂ X if we assume that

ρ (A,B) = max
{

max
x∈A

min
y∈B

d (x, y) , max
y∈B

min
x∈A

d (x, y)
}

.

Theorem 21. Let X be a compact metric space. Then the S-topology coin-
cides with the topology induced by the Hausdorff metric ρ ( · , · ).

4.3 Operators over Sets

We consider the dynamic system that is described by equation (17) and sat-
isfies the Assumptions 1–3.

Definition 14. Let Pε, ε ≥ 0, be an operator that to each closed set M ⊂ En

corresponds a set PεM of all points z0 ∈ En that satisfy the condition: For
any admissible control v (t) , t ∈ [ 0, ε ], of player E there exists an admissible
control u (t) , t ∈ [ 0, ε ], of player P such that for the appropriate solution
z (t) = z (t | u (·), v (·), z0 ) to equation (17) with start at z0 the inclusion
z (ε ) ∈M is fulfilled, i.e., the trajectory z (t) reaches M at the moment ε.
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Using the operations of union and intersection, we can describe the oper-
ators Pε as follows:

PεM =
⋂

v(·) ∈V [0,ε]

⋃

u(·) ∈U [0,ε]

{ z0 ∈ En : z ( ε | u (·) , v (·) , z0 ) ∈M }. (18)

Remark 3. In Definition 14, one can consider controls u (·) and v (t) deter-
mined only on the half-open interval [ 0, ε ) as a change of the control values
u (t) and v (t) at one point does not change the trajectory. Here, it is always
possible to uniquely and continuously prolong on [0, ε ) the solution z (t) de-
termined on [0, ε ), assuming z (ε) = lim

t→ε
z (t). This fact will be used later on.

Remark 4. We can interpret the set PεM as a set of initial positions z0 from
which player P may hit the trajectory z (t) on M at moment ε if he knows the
control v (t) of player E over the entire interval [0, ε] in advance. If z0 /∈ PεM
then there exists a control for player E such that, for all admissible controls
of player P , the relation z (ε) /∈M holds. In this case, the players’ strategies
are preassigned, i.e., they choose their controls over the entire interval [0, ε].
Moreover, player E knows z0, and player P uses the information about z0 and
the chosen control v (t) , t ∈ [ 0, ε ].

Lemma 8. The set PεM is closed.

Proof. Let {zk} be a sequence from PεM converging to the point z0. For the
proof of the closure of PεM it should be shown that z0 ∈ PεM .

Because {zk} converges, one can assume that zk ∈ K, where K is a
compact subset from En. As zk ∈ PεM then, for any admissible control
v (·) ∈ V [0, ε], there exists an admissible control uk (· ) ∈ U [0, ε] and a mo-
ment δk ∈ [0, ε] such that zk (ε) ∈M , where zk (t) = z (t |uk (·) , v (·) , zk ).

By virtue of Assumption 3, a set of trajectories corresponding with various
admissible controls of player P and initial positions from K is a compact set
in topology of uniform convergence. Therefore, there exists a subsequence of
the sequence {zk (·)} converging to a solution z (t) of equation (17) that corre-
sponds with some admissible control u (·) ∈ U [0, ε] and control v (·).Without
loss of generality, one can assume that the sequence {zk ( ·)} converges to z ( ·).
Note that z0 is initial point of the solution z (t). By virtue of the closure of
M , we get z (ε) = lim

k→∞
zk (ε) ∈M . This implies z0 ∈ TεM . The lemma has

been proved.

Assume PN, εM = (PεM) ∩N . It is clear that PN, εM is a closed set if
M and N are closed sets. Thus, Lemma 8 allows us to apply the operators
P εM and PN, εM repeatedly.

Lemma 9. The following properties hold:

(1) PN,0M = M ;
(2) PN,εM1 ⊂ PN,εM2, if M1 ⊂M2;
(3) for any family of closed sets {Mα} , α ∈ I,

⋂

α∈I
PN,εMα ⊃ PN,ε

⋂

α∈I
Mα.
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Proofs of properties 1 and 2 follow directly from the definitions. Property
3 follows from property 2.

Lemma 10. The inclusion PN, ε1PN, ε2M ⊂ PN, ε1+ε2M holds.

Proof. It follows from Lemma 9 (property 2) that

PN, ε1PN, ε2M = (Pε1 (Pε2M) ∩N) ∩N ⊂ (Pε1Pε2M) ∩N.
Therefore, it is sufficient to prove the lemma for the operator Pε. It is not

difficult to do so by applying the representation (18). Informally, player P out-
puts from points z0 ∈ Pε1+ε2M the trajectory z (t) on M at moment ε1 + ε2
as he knows a preassigned control v (t) on the entire interval [0, ε1 + ε2]. If
z0 ∈ Pε1Pε2M , then player P outputs at first the trajectory on Pε2M at mo-
ment ε1 as he knows a control v (t), t ∈ [0, ε1), and subsequently he finds out a
control v (t) on [ε1, ε1 + ε2] and outputs the trajectory z (t) on M at moment
ε1 + ε2. Thus, in the second case, player P is less informed in advance about
the opponent’s actions than in the first case.

The inclusion considered in Lemma 9 (property 3) is in general strict, i.e.,
the inverse inclusion may not be fulfilled. We next consider a case where this
inclusion becomes equality.

Lemma 11. Let {Mα} , α ∈ I,Mα ⊂ N , be a nonincreasing directedness of
closed sets. Then

⋂

α∈I
PN,εMα = PN,ε

⋂

α∈I
Mα.

Proof. By virtue of Lemma 9 (property 3), it is sufficient to show inclusion
⋂

α∈I
PN,εMα ⊂ PN,ε

⋂

α∈I
Mα.

Let z0 ∈ PN,εMα for any α ∈ I. It means that z0 ∈ N and, for any control
v (·) ∈ V [0, ε), there exists a control uα (·) ∈ U [0, ε) such that for an appropri-
ate solution zα (t) = z (t |, uα (·) , v (·) , z0 ) the relation zα (ε) ∈M is fulfilled.
By virtue of Assumption 3, a set of solutions to equations (17), appropriate
to various admissible controls of player P , represents a compact set in topol-
ogy of uniform convergence. Therefore, there exists a subdirectedness of the
directedness {zα (·)} converging to some solution z (·) that corresponds with
some control u ( ·) and to control v (·), i.e., z (t) = z (t |u (·) , v (·) , z0 ). With-
out loss of generality, it is possible to assume that the directedness {zα (·)}
converges to z (·). As Mβ ⊂Mα and as β ≥ α, then zβ (ε) ∈Mα for all β ≥ α.
From this z (ε) = lim

β
zβ (ε) ∈Mα. By virtue of the arbitrariness of α we have

z (ε) ∈
⋂

α∈I
Mα implying z0 ∈ PN, ε

⋂

α∈I
Mα. The lemma has been proved.
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The next lemma follows from Theorem 18 and Lemma 11.

Lemma 12. Let {Mα} , α ∈ I, Mα ⊂ N , be a nonincreasing directedness of
closed sets. Then the directednesses {PN,εMα}, α ∈ I, S-converges to the set
PN,ε

⋂

α∈I
Mα.

Let ω = {τ0 = 0 ≤ τ1 ≤ · · · ≤ τk = t} be a finite partition of the interval
[0, t] (see Example 7), and assume that

Pω
NM = PN,δ1PN,δ2 . . . PN,δk

M,

where δi = τi − τi−1, i = 1, . . . , k.

Remark 5. If N = En we write PωM = Pδ1Pδ2 . . . Pδk
M . Let z0 ∈ PωM and

assume that at the initial moment of time, player P knows in advance the
control of player E at time δ1. Then, P may aim and hit on Pδ2 . . . Pδk

M at
moment δ1 = τ1. If he has a hit on Pδ2 . . . Pδk

M , then he will know the control
of player E at time δ2, and therefore player P may aim and hit on Pδ3 . . . Pδk

M
at time moment τ2 = δ1 + δ2. Continuing the process further, player P attains
an inclusion z (t) ∈M . In addition, player P chooses his control at the points
τi−1, i = 1, . . . , k, on an interval [τi−1, τi) knowing z(τi−1) and the future
control of player E on interval [τi−1, τi). Analogously, if z0 /∈ PωM , then player
E at moment τ0 = 0 can choose a control such that, for any control of player
P , a corresponding trajectory does not hit on the set Pδ2 . . . Pδk

M at moment
δ1 = τ1. Continuing the process further, we get z (t) /∈M . In addition, having
z (τi−1), player E chooses his control at the point τi−1 on the next interval
[τi−1, τi).

The next proposition follows from Lemma 11.

Lemma 13. Let |ω1| = |ω2| = t and ω1 ≥ ω2. Then Pω1
N M ⊂ Pω2

N M .

Definition 15. P̃N,tM =
⋂

|ω|=t

Pω
NM , P̃tM =

⋂

|ω|=t

PωM .

Because of Lemma 13, the families of sets {Pω
NM} , |ω| = t, is a nonin-

creasing directedness of closed sets. Consequently, from Theorem 18 we get
the following results:

Lemma 14. The directedness {Pω
NM}, |ω| = t, S-converges to the set P̃N, tM .

Theorem 22. The following equality holds:

P̃N, t1+t2M = P̃N, t1 P̃N, t2M.

Proof. Let ω(|ω| = t1 + t2) be an arbitrary partition formed by numbers
τi, i = 0, . . . , k, where τi ≤ t1, i = 1, . . . , k1, and τi > t1, i = k1 + 1, . . . , k. Let
us denote by ω1 an interval partition [0, t1] formed by numbers τi, i = 0, . . . , k1,
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and t1, and by an interval partition ω2 of [0, t2], formed by the zero and the
numbers τi − t1, i = k1 + 1, . . . , k.

Because of Lemma 13 and the definition of Pω
N , it follows that Pω1

N Pω2
N M ⊂

Pω
NM . From this, P̃N,t1 P̃N,t2M ⊂ Pω1

N P̃N,t2M ⊂ Pω1
N Pω2

N M ⊂ Pω
NM , because

of Lemma 9 (property 2), and by the arbitrariness of ω, we get

P̃N, t1 P̃N, t2M ⊂ P̃N, t1+ t2M.

To prove the inverse inclusion, let ω1, |ω1| = t1 and ω2, |ω2| = t2, be ar-
bitrary partitions formed by numbers τ1

i , i = 0, . . . , k1, and τ2
i , i = 0, . . . , k2,

respectively. Let us form a new partition ω from the numbers τ1
i and τ2

i + t1. It
is clear that |ω | = t1 + t2 and P ω1

N P ω2
N M = P ω

NM ⊃ P̃N, t1+t2
M . From this,

because of Lemma 11, we get

P̃N,t1+t2M ⊂
⋂

|ω1|=t1

⋂

|ω2|=t2

Pω1
N Pω2

N M

=
⋂

|ω1|=t1

Pω1
N

(

⋂

|ω2|=t2

Pω2
N M

)

= P̃N,t1 P̃N,t2M.

The theorem has been proved.

Remark 6. The family
{

P̃N,t

}

, t ≥ 0, is a family of operators acting on spaces
of closed subsets in N ⊂ En. Because of Theorem 22, this family is a one-
parameter semigroup (the parameter is t). Let us compare Theorem 22 with
a known result from differential equations theory. Consider the equation
ẋ = f (x) , x ∈ En. It is known that there exists a one-parameter group of
operators Gt acting in En such that a solution x (t) to the considered differ-
ential equation may be represented in the form x (t) = Gtx0, where x0 is an
initial position. In case x varies in a Banach space, it is possible to guarantee
only a semigroup property for Gt. Thus, the semigroup P̃N, t describes the
dynamic of the set M motion.

4.4 ε-Strategies Description and Game Move

The characteristic feature of an ε-strategy is that player P uses the informa-
tion about the future control of player P on some time interval with length
determined by player E.

It is possible to introduce different definitions of ε-strategies, however,
they are all equivalent. We will below turn our attention to one of them.
Assume that the game will take place on a finite interval [0, θ]. Player E
chooses at the initial moment of time a finite partition of the interval [0, θ], say
ω = { τ0 = 0 ≤ τ1 ≤ · · · ≤ τk = θ}. At moment τi−1, let the dynamic system
be at the point z (τi−1), i = 1, 2, . . . . Using this information, player E chooses
his control v i (t) , t ∈ [τi−1, τi). We assume that player P knows τi−1, z (τi−1)
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and vi (t) , t ∈ [τi−1, τi), and that he chooses his control ui (t) , t ∈ [τi−1, τi). If
we substitute vi(t) and ui (t) in (17), we can find a solution z (t) to equation
(17) with the beginning at z (τi−1). Because z (t) is Lipschitz, this solution
can be prolonged on the interval [τi−1, τi]. Thus, at moment τi, the dynamic
system is at the point z (τi) and we can repeat the process further. Because
the number of points is τi or finite, we construct a solution to equation (17)
on the entire interval [0, θ] using the described process.

Consider the game from Subsection 4.3.

Theorem 23.

1. Let z0 /∈ P̃θM . Then there exists an ε-strategy for player E such that, for
any ε-strategy of player P for the corresponding trajectory z (t) with the
beginning at z0, the inclusion z (θ) ∈M is fulfilled.

2. Let z0 /∈ P̃θM . Then there exists an ε-strategy for player E such that, for
any ε-strategy of player P for the corresponding trajectory z (t) with the
beginning at z0, the inclusion z (θ) /∈M is fulfilled.

Proof.

1. Let z0 ∈ P̃θM and assume that player E chooses a partition

ω = {τ0 = 0 ≤ τ1 ≤ · · · ≤ τk = θ}.

At the moment τ0 = 0, player E constructs a control v (·) ∈ V [0, τ1).
Player P knows this control. From Theorem 22, it follows that

z0 ∈ P̃θM = P̃τ1 P̃θ−τ1M ⊂ Pτ1 P̃θ−τ1M.

The definition Pε implies the existence of a u ( ·) ∈ U [0, τ1) such that

z (τ1) = z (τ1 |u ( ·), v ( ·) , z0) ∈ P̃θ−τ1M.

We take the position z (τ1) as the initial position and repeat a process.
As a result, at the i-th step, a control u ( ·) ∈ U [0, τi) will be constructed
such that, for the corresponding trajectory, the inclusion z (τi) ∈ Pθ−τi

M
is fulfilled. We have z (θ ) ∈M at k-th step.

2. Let z0 /∈ P̃θM . The definition of P̃θM implies the existence of a partition
ω = { τ0 = 0 ≤ τ1 ≤ · · · ≤ τk = θ} , δi = τi − τi−1, such that z0 /∈PωM .
Player E chooses a partition ω at the initial moment. Because
z0 /∈Pδ1 . . .Pδk

M , there exists a v ( ·) ∈ V [0, δ1) such that, for any control
u ( ·) ∈ V [0, δ1), the relation

z (τ1) = z (δ1) = z (δ1 |u ( ·), v ( ·), z0 ) /∈ Pδ, . . . Pδk
M

is fulfilled.
Let us take the point z (τ1) as the initial point and repeat the described
process. Then, at the i-th step, a control v ( ·) ∈ V [0, τi) will be con-
structed such that, for the corresponding trajectory, the relation



336 V. Ostapenko

z (τi) = z (δ1 + · · ·+ δi) /∈ Pδi+1 . . . Pδk
M.

is fulfilled. We get z (θ ) /∈M at the k-th step.

Theorem 23 is a theorem of alternatives. Because of this theorem, the
entire game space En is divided in two subsets P̃θM and En/P̃θM . The first
subset describes all initial positions favorable to player P , and the second
subset describes all initial positions favorable to player E.

Theorem 23 describes the game structure without phase constraints, i.e.,
N = En. Let us consider the case when N is subset of the space En.

Lemma 15. Let z0 ∈ P̃N,εM . Then for any v(·) ∈ V [0, ε) there exists a
u(·)∈ U [0, ε) such that z (ε |u(·), ν(·), ε ) ∈M and z (t |u(·), v(·), z0 ) ∈ N for
all t ∈ [0, ε).

Proof. Let ω =
{

τω = 0 ≤ τω1 ≤ · · · ≤ τωk(ω) = ε
}

be a partition of the interval
[0, ε]. Fix v (·) ∈ V [0, ε). The construction of Pω

NM and the definition
of PN,δM imply that if z0 ∈ Pω

NM then, for v(·) ∈ V [0, ε), there exists
a uω (·) ∈ U [0, ε) such that, for the corresponding trajectory zω (t), the
inclusions zω (ε) ∈M and zω (τωi ) ∈ N are fulfilled for all i = 1, . . . , k (ω).

Assumption 3 implies that one can chose a converging subdirectedness
from the directednesses of the trajectories {zω (·)}. Without loss of gener-
ality, it is possible to assume that {zω (·)} converges, and that z(t) is its
limit. The function z (·) is a solution to (17) corresponding with some control
u (·) ∈ U [0, ε) and the fixed control v (·). A solution z (·) has the properties
z (ε) ∈M and z (t) ∈ N for all t ∈ [0, ε]. The first property is obvious. We
shall prove the validity of the second property. We fix an arbitrary moment
t ∈ [0, ε]. For this t there exists a partition ωt such that t ∈ ωt. For all ω ≥ ωt,
the relation t ∈ ω will also be fulfilled. Therefore, zω (t) ∈ N for all ω ≥ ω t.
This implies z (t) ∈ N . The lemma has been proved.

Using Lemma 15 we can prove the next theorem.

Theorem 24.

1. Let z0 ∈ P̃N,θM . Then there exists an ε-strategy for player P such that,
for any ε-strategy of player E for the corresponding trajectory z(t) with
the beginning at z0, the inclusions z(θ) ∈M and z(t) ∈ N are fulfilled for
all t ∈ [0, θ].

2. Let z0 /∈ P̃N,θM . Then there exists an ε-strategy for player E such that,
for any ε-strategy of player P for the corresponding trajectory with the
beginning at z0, either z(θ) /∈M is fulfilled or there exists t ∈ [0, θ] such
that z(t) /∈ N .

5 Complex Analysis in Linear Differential Games

5.1 Linear Games with Scalar Matrix

Let us consider the game dynamics described by the equation
ż = Az +B(u, v), (19)
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where A : En → En is a linear operator and B : U × V → En is a continuous
mapping. Let us study the cases A = 0 and A = aE, where a is a number and
E is a unit identity matrix. For such games we can describe, under certain
convexity condition, the operators P̃t, illustrate further and exemplify the
essence of the methods used for the solution of wider game classes. The special
cases of Volterra mappings (disstrategies) will be considered.

The case A = 0 is called a simple moving. The equation (19) takes the
simple form

ż = B (u, v).

According to Assumption 3, the setB (U, v) is convex for all v ∈ V.Assume
that M and N are convex sets. Let us set

P ∗
t M =

⋂

v∈V

⋃

u∈U

{ z0 ∈ En : z0 + tB (u, v) ∈M }, P ∗
N,tM = N

⋂

P ∗
t M

(20)
We the set P ∗

N,θM represents. Analogous arguments can be considered for
any t ∈ [0, θ].

Let z0 ∈ P ∗
θ M . Then for any v ∈ V there exists uz0 (v ) ∈ U such that

z0 + θB (uz0 (v) , v) ∈M. (21)

It follows from (21) that the mapping uz0 : V → U depends on the ini-
tial position z0. The value u∗(v) can be found by solving the inclusion
z0+ θB(u, v)∈M with respect to u ∈ U . There can be many such solutions.
Let us assume that uz0(v) is the least of the solutions in lexicographic sense. In
this case, it follows from Philipov’s lemma (Theorem 2) that if v ( ·) ∈ V [0, θ]
then the function u (t) = uz0 (v (t)) is a measurable function and therefore
u ( ·) ∈ U [0, θ].

If player E has selected the control v ( ·) ∈ V [0, θ], then it follows from
(21) that for any t ∈ [0, θ]

z0 + θB (uz0 (v(t)) , v(t)) ∈M. (22)

If we divide both parts of inclusion (22) by θ and integrate w.r.t. t from 0
to θ, we get

z(θ) = z0 +

θ
∫

0

B (uz0 (v (t)) , v(t)) dt ∈ 1
θ

θ
∫

0

M dt = M.

Thus z(θ) ∈M . It means that z0 ∈ P̃θM . This implies that P ∗
θM ⊂ P̃θM .

Let z0 ∈ P ∗
N,θM and u∗ be constructed by the above mapping. Because

M ⊂ N , it follows from (22) that

θB (uz0 (v(t)) , v(t)) ∈ N − z0 (23)
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Because 0 ∈ N − z0, then, for any τ ∈ [0, θ ],

τ
∫

0

(N − z0) dt ⊂
θ
∫

0

(N − z0) dt.

From this and from (23)

τ
∫

0

B (uz0 (v (t)) , v (t)) dt ∈ 1
θ

τ
∫

0

(N − z0) dt ⊂
1
θ

θ
∫

0

(N − z0) dt = N − z0.

In result, we get z (τ) ∈ N . This implies that

P ∗
N,θM ⊂ P̃N,θM.

Remark 7. The mapping uz0 was originally constructed in order to output
the trajectory on the set M at the moment θ. However, the same mapping
allows a trajectory on the set N to contact with M . Why does this occur?
Let mz0 (v) = z0 + θB ( uz0 (v) , v ) ∈M and consider the convex hulls

M∗ = co {mz0(v), v ∈ V } , N∗ = co {z0, M∗} .

It follows from the construction that the end of the trajectory is z(θ) ∈M∗.
Thus, the entire trajectory lays in the set N∗. Therefore, if it “targets” on the
set M , as in inclusion (21), the trajectory will not automatically abandon the
set N∗ ⊂ N .

Let us now consider the case z0 /∈ P ∗
N,θM . Then either z0 /∈ N or there

exists vz0 ∈ V , depending on z0, such that for any u ∈ U

z0 + θB (u, vz0) /∈M. (24)

Because B (U, vz0) is convex, then, for any u(·) ∈ U [0, θ], there exists a
u ∈ U such that

θ
∫

0

B (u (t) , vz0) dt = θB (u, vz0).

It follows from this and from (24) that, for any u ( ·) ∈ U [0, θ],

z (θ) = z0 +

θ
∫

0

B (u (t) , vz0) dt = z0 + θ B (u, vz0) /∈M.

It is possible to consider the described process of the control construction
v(t) ≡ vz0 as a special case of an ε-strategy for player E in which the triv-
ial partition ω = {0, θ} is selected at the initial moment and the constant
control z0 on the interval [0, θ] is constructed. Therefore z0 /∈ P ∗

N,θMand so
P̃N,θM ⊂ P ∗

N,θM .
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Thus the following theorem has been proved.

Theorem 25.

1. Let z0 ∈ P ∗
N,θM . Then there exists a mapping uz0 : V → U such that for

any v ( ·) ∈ V [0, θ ]:
(a) uz0 (v(t)) is an admissible control of player P ,
(b) for the trajectory z(t) with the beginning at z0, corresponding with the

controls uz0 (v(t)) and v(t), the inclusions z(θ) ∈M and z(t) ∈ N are
fulfilled for all t ∈ [0, θ].

2. Let z0 /∈ P ∗
N,θM . Then either z0 /∈ N or there exists vz0 ∈ V such that,

for the trajectory z(t) with the beginning at z0, corresponding with the
arbitrary control u(·) ∈ U [0, θ] and to the control v(t) ≡ vz0 , the relation
z(θ) /∈M is fulfilled.

3. P̃N,θM = P ∗
N,θM.

Let us consider the case of scalar matrix. The previous arguments, with-
out any additional constructions, are transferred to the case of games with
dynamics ż = az +B (u, v), where a is a number.

Let us generalize the formula (20). Assume that

P ∗
θM =

⋂

v∈V

⋃

u∈U

{

z0 ∈ En : eaθz0 +

t
∫

0

ea(θ−t)dt B(u, v) ∈M
}

, (25)

P ∗
N,θM = N

⋂

P ∗
θM.

Theorem 26. The statements of Theorem 25 hold if the operators P ∗
N,θ are

replaced by the operators defined in (25).

Let z0 ∈ P ∗
θM . Then we construct a mapping uz0 : V → U using, instead

of the inclusion (24), the inclusion

eaθz0 +

θ
∫

0

ea(θ−s)ds B (uz0 (v) , v) ∈M. (26)

Let us assume that player E realizes the control v ( ·) ∈ V [0, θ ]. Then it
follows from (26) that, for any t ∈ [0, θ ] ,

eaθz0 +

θ
∫

0

ea(θ−s)ds B (uz0 (v(t)) , v(t)) ∈M. (27)

Let us divide (27) by
θ
∫

0

ea(θ−s)ds and then multiply by ea(θ−t) and integrate

w.r.t. t from 0 to θ. We get

z (θ) = eaθz0 +

θ
∫

0

ea(θ−s) B (uz0 (v (t)) , v (t)) dt
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∈
θ
∫

0

ea(θ−t)

⎛

⎝

θ
∫

0

ea(θ−s)ds

⎞

⎠

−1Mdt = M.

This implies that z0 ∈ P̃θM and P ∗
θM ⊂ P̃θM.

Let now z0 ∈ P ∗
N,θM . Using the fact that ea(·)z0 − z0 =

θ
∫

0

ea(θ−s)dsaz0, we

get from (27):

θ
∫

0

ea(θ−s) ds [B (uz0 (v (t)) , v(t)) + az0] ∈ N − z0 (28)

for any t ∈ [0, θ]. Fix τ ∈ [0, θ]. If we divide (28) by
θ
∫

0

ea(θ−s)ds and then

multiply by ea(τ−t) and integrate w.r.t. t from 0 to τ we get

τ
∫

0

ea(τ−t) [B (uz0 (v (t)) , v (t)) + az0] dt

∈
τ
∫

0

ea(τ−t)

( θ
∫

0

ea(θ−s)ds

)

−1 (N − z0) dt

=

τ
∫

0

eat

( θ
∫

0

easds

)

−1 (N − z0) dt ⊂ N − z0.

The last inclusion follows from the fact 0 ∈ N − z0 and eat > 0. From this

z (τ ) = eaτz0 +

τ
∫

0

ea(τ−t)B (uz0 (v (t)) , v (t)) dt ∈N.

Thus, z0 ∈ P̃N, θM and P ∗
N,θM ⊂ P̃N,θM .

Let now z0 /∈ P ∗
N, θM . Then either z0 /∈ N or there exists vz0 ∈ V such

that, for any u ∈ U ,

eaθz0 +

θ
∫

0

ea(θ−s)dsB (u, v z0) dt /∈M.

As B (U, v∗) is convex then, for any u(·) ∈ U [0, θ], there exists u ∈ U such
that

θ
∫

0

ea(θ−t)B (u(t), vz0) dt =

θ
∫

0

ea(θ−s)ds B (u, vz0).
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This implies that for any u ( ·) ∈ U [0, θ ]

z (θ ) = eaθz0 +

θ
∫

0

ea(θ−t)B (u (t) , vz0) dt /∈M.

Thus, z0 /∈ P̃N,θM and P̃N,θM ⊂ P ∗
N,θM .

Let us construct two examples showing that the convexity conditions on
the sets M and N are essential. We show that if M is not convex or a is a
matrix (not a scalar matrix), then there are cases for which P ∗

t M 	= P̃tM .

Example 9. We consider the game with dynamics ż = v, where n = 1, z ∈ E1,
V = {−1,+1}, M = {−1,+1} , θ = 1. It is not difficult to see that z0 = 0 ∈
P ∗

1M as for z0 = 0 z (1) = ±1 ∈M is fulfilled. We show that 0 /∈ P̃1M . Sup-
pose that player E has chosen the control

v (t) =

{

−1; t ∈ [0, 1/2)
+1; t ∈ [1/2; 1] .

It is not difficult to see that z (1) = 0 /∈M and therefore P ∗
1 M 	= P̃1M .

Example 10. We consider the game with dynamics ż = Az + v, where n = 2,

z ∈ E2, A =
(

0 0
0 1

)

, V =
{

(1, 0) ,
(

0, (e− 1)−1
)}

, M = co {(1, 0) , (0, 1)} ,
and θ = 1. It is not difficult to see that z0 = (0, 0) ∈ P ∗

1M . We show that
z0 /∈ P̃1M . Suppose, that player E has chosen the control

v (t) =

{

(1, 0); t ∈ [0, 1/2)
(

0, (e− 1)−1
)

; t ∈ [1/2; 1] .

Because eAt =
(

1 0
0 et

)

, it is not difficult to see that

z(1) =

(

1/2,

t
∫

1
2

etdt (e− 1)−1

)

.

The set M has the form M = {(λ1, λ2) , λi ≥ 0, λ1 + λ2 = 1}. As
1
2

+

e− e1/2
e− 1

	= 1 then z (1) /∈M . This implies that z0 /∈ M and therefore

P ∗
1 M 	= P̃1M .
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5.2 H-convexity in Linear Games

Games with scalar matrices were considered in the previous subsection and
sufficiently effective methods for their solution were produced. It was shown
that the convexity conditions for the sets M and N are essential. Example
10 showed that the ordinary convexity of M and N is not sufficient for an
arbitrary matrix A. However, for each matrix, it is possible to choose an
appropriate class of convexity such that if M and N belong to this class, then
it is again possible to construct effective solution methods.

Let us consider in addition to the space En, in which z changes, the
space L. Assume that dim L ≤ n. Let ϕ : L→ En be a linear inclusion op-
erator, π : En → L a linear mapping; A : En × En a linear operator; and
B : U × V → L a continuous mapping, where U and V are as previously com-
pact sets in Euclidean spaces.

The dynamics of the games to be studied are described by the equation

ż = Az + ϕB (u, v). (29)

The terminal set M and the set of the phase constraints N are in the form

M = { z ∈ En : π z ∈ML} , N = { z ∈ En : πz ∈ NL},

where ML ⊂ NL are closed sets in the space L.
Set C(t) = πeA(θ−t)ϕ, t ∈ [0, θ], and assume that

P ∗
N,θM =

⋂

v∈V

⋃

u∈U

{

z ∈ N : πeAθz +

θ
∫

0

C (t) dtB (u, v) ∈ML

}

.

Denote by H the set of the unit vectors x∗ ∈ L such that

(a) C∗ (t)x∗ = λ (t |x∗ )x∗ for all t ∈ [0, θ], where λ (t |x∗ ) is a number;
(b) for fixed x∗ the numerical function λ (· |x∗ ) does not change sign on the

interval [0, θ].

Note that the given definition of the set M coincides with the definition
in Subsection 3.4 for the operator family {A (t) , t ∈ [0, θ]} acting in En.

Theorem 27. Let ML be a H-convex set. If z0 ∈ P ∗
N,θM then there exists a

mapping u∗ : V → U such that for any v (·) ∈ V [0, θ]:

(a) uz0 (v (t)) is an admissible control of player P ;
(b) for the solution z (t) to equation (29) with the beginning at z0 and cor-

responding controls uz0 (v (t)) and v (t), the inclusion πz (θ) ∈ML is ful-
filled.

(c) if, furthermore, NL is an H-convex set and Az0 ∈ ϕL then πz (τ) ∈ NL

for all τ ∈ [0, θ].
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Proof. Let z0 ∈ P ∗
N,θ M . Then for any v ∈ V there exists uz0 (v) ∈ U such

that

πeAθz0 +

θ
∫

0

C (t) dtB (u, v) ∈ML (30)

By Philipov’s lemma (Theorem 2), a mapping uz0 (v) can be chosen such
that the function uz0 (v (t)) is measurable if v (t ) is an admissible control of
player E.

Let us assume that player E realizes some control v (t), t ∈ [0, θ]. Then,
for any s ∈ [0, θ],

θ
∫

0

C (t) dtB (uz0 (v) , v (s)) ∈ML − πeAθz0 (31)

The set ML − πeAθz0 is H-convex. Therefore, applying Theorem 14, we get
from (31)

πz (θ) = πeAθz0 +

θ
∫

0

C (t) B (uz0 (v (t)) , v (t)) dt ∈ML.

Thus, claims “a” and “b” of the theorem are proved. We shall now show
that the disstrategy constructed in (30) keeps the trajectory in NL under the
made assumptions. It follows from (30) and from ML ⊂ NL that

πeAθz0 +

θ
∫

0

πeA(θ−t)ϕ dtB (uz0 (v) , v) ∈ NL

or

πeAθz0 +

θ
∫

0

πeAtϕ dtB (uz0 (v) , v) ∈ NL (32)

As
t
∫

0

eAsA ds =eAt − E, (33)

it follows from (32) and (33) that

θ
∫

0

πeAtϕ dt [B (uz0 (v) , v) + x0] ∈ NL−πz0, (34)

where x0 is an element from L such that Az0 = ϕx0. Fix τ ∈ [0, θ]. Then, it
follows from (34) that for any s ∈ [0, τ ]:
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θ
∫

0

πeAtϕ dt [B (uz0 (v (τ − s)) , v (τ − s)) + x0] ∈ NL−πz0 (35)

Because 0 ∈ NL − πz0, applying Theorem 15 we get from (35):

τ
∫

0

πeAtϕ [B (uz0 (v (τ − t)) , v (τ − t)) + x0] dt ∈ NL−πz0

Taking into account (34) and replacing variables t by τ − t, we have

πz (τ) = πeAτz0 +

τ
∫

0

πeA(τ−t)ϕ B (uz0 (v (t)) , v (t)) dt ∈ NL.

This finishes the proof of the theorem.

Theorem 28. Let B (U, v) be a H-convex set for all v ∈ V . If z0 /∈ P ∗
N,θM

then either πz0 /∈ NLor there exists vz0 ∈ V such that, for the trajectory z (t)
corresponding with the arbitrary control u (·) ∈ U [0, θ] and control v (t) ≡ vz0
with the beginning at z0 the relation z (θ) /∈ML is fulfilled.

Proof. Let z0 /∈ P ∗
N,θM and πz0 ∈ NL. Then there exists vz0 ∈ V such that

for any u ∈ U :

πeAθz0 +

θ
∫

0

C (t) dtB (u, vz0) /∈ML. (36)

Because B (U, vz0) is a H-convex set, it follows from Theorem 16 that

θ
∫

0

C (t) B (U, vz0) dt =

θ
∫

0

C (t) dtB (U, vz0).

It follows from this and from (36) that for any u (·) ∈ U [0, θ]:

π z (θ) = πeAθz0 +

θ
∫

0

C (t) B (u (t) , vz0) dt /∈ML.

The theorem is proved.

It follows from Theorem 27 that under certain constraints on the sets
M and N , the inclusion P ∗

N,θM ⊂ P̃N,θM is fulfilled, i.e., P ∗
N,θM is an esti-

mation from below for the set P̃N,θM . Under the conditions of Theorem 25
P̃N,θM ⊂ P ∗

N,θM , that is, in this case P ∗
N,θM is an estimation from above for

P̃N,θM . Thus, the following results:



Convexity in Differential Games 345

Corollary 5. Let ML, NL, and B (U, v) for any v ∈ V , be H-convex sets and
either N = L or AEn ⊂ ϕL. Then

P̃N, θM = P ∗
N, θM.

Let us make a few remarks and give some examples. At first we turn our
attention to the fulfillment conditions of item (a) in the definition of the set
H. We will find that the following statement is useful later on.

Theorem 29. Let
(

πeAtϕ
)∗
x∗ = λ (t) x∗,

for any t ∈ [0, θ] , θ > 0, where λ (t) is a numerical function. Then x∗ is an
eigenvector of the operators

(

πAkϕ
)∗
, k = 0, 1, 2, . . .

Proof. The analyticity of mapping
(

πeAtϕ
)∗ implies the analyticity of the

function λ (t). Let λ (t) =
∞
∑

k=0

λk
tk

k! . Then it follows from the condition of the

theorem that ∞
∑

k=0

[

(

πAkϕ
)∗
x∗ − λkx∗

] tk

k!
≡ 0.

From this, because of the arbitrariness of t ∈ [0, θ], we get
(

πAkϕ
)∗
x∗ = λkx

∗

and this proves the theorem.

Corollary 6. Let the conditions of Theorem 26 be fulfilled, En = L, and π, ϕ
be identity operators. Then, λ (t) = eλt, where λ is an eigenvalue of A∗ asso-
ciated with an eigenvector x∗.

The opportunity for the application of the method of H-convex sets is
illustrated by the examples below. The set H for concrete classes of games
will be described there as well as the introduction of the operator π and ϕ.

Example 11. Let En = L, and let π and ϕ be the identity operators. Then
equation (29) has the form

ż = Az +B (u, v).

Let us denote by HA the set of the unit length eigenvectors of the operator
A∗, including a value associated with zero.

We will show that, in this case, one can take HA as H. Indeed, if x∗ is an
eigenvector of A∗ and λ (x∗) is an appropriate eigenvalue of A∗, then

eA
∗(θ−t)x∗ = eλ(x∗)(θ−t)x∗

whence λ ( t |x∗ ) = eλ(x∗)(θ−t) > 0. Thus, the conditions “a” and “b” in the
definition of H are fulfilled. It follows from Theorem 26 that if x∗ is an eigen-
vector of the operator eA

∗t, then x∗ is an eigenvector of the operator A∗

implying, thus that HA is the maximal set satisfying the conditions “a” and
“b” in the definition of H.

Because En = L, the conditions Az0 ∈ ϕL are fulfilled automatically.
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Example 12. We shall consider a game with dynamics

ẍ = Dẋ+B (u, v), (37)

where x ∈ L, and D is a linear operator acting in the space L. Equation (37)
describes a control moving according to the Newton’s law accounting friction
force. Rewrite the last equation in the form

{

ẋ = y

ẏ = Dy +B (u, v) .

In this case, the space En = L× L and the operators A, π, and ϕ may be
represented by the matrices

A =
[

0 EL

0 0

]

, π
[

El 0
]

, and φ =
[

0
EL

]

,

where EL is the unit operator acting in space L. Using the Cauchy formula,
it is not difficult to find that

eAt =

⎡

⎣

EL

t
∫

0

eDsds

0 eDt

⎤

⎦ ,

π eAt =
[

EL

t
∫

0

eDsds

]

,

and

π eAtϕ =

t
∫

0

eDsds.

This implies that, if x (0) = x0, and ẋ (0) = y0, the solution to equation (37)
is of the form:

x (t) = π z (t) = x0 +

t
∫

0

eDsds y0 +

t
∫

0

t−s
∫

0

eDτdτ B (u (s) , v (s)) ds.

Let HD be, as above, the set of the unit eigenvectors of D∗. We show that it
is possible to take HD as the set H. Indeed, if x∗ is an eigenvector of D∗ and
λ (x∗) the corresponding eigenvalue, then

(

π eA(θ−t)ϕ
)∗
x∗ = [λ (x∗)]−1

(

eλ(x∗)(θ−t) − 1
)

x∗.

Therefore, λ ( t |x∗ )=[λ (x∗)]−1 (
eλ(x∗)(θ−t) − 1

)

≥0 for t∈ [0, θ]. If λ(x∗)=0,
then λ ( t |x∗ ) = θ − t ≥ 0. Thus, the conditions “a” and “b” in the definition
of H are fulfilled.
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Let us show that HD is the maximal set satisfying the conditions “a” and
“b” in the definition of H. For this purpose, by virtue of Theorem 29, it is
sufficient to show that

(

π A2 ϕ
)

= D. Because

π eAtϕ =

t
∫

0

eDsds,

we have
d2

dt2
(

π eAtϕ
)

= π A2eAtϕ = DeDt.
The required equality follows from this for t = 0.
In the given example, the condition Az0 ∈ ϕL means

A

(

x0

y0

)

=
(

y0
Dy0

)

∈ ϕL =
(

0
L

)

,

whence x (0) = y0 = 0.

Example 13. In the previous examples, the set H did not depend on θ. We
consider here an example where such a dependence takes place. Let the game
dynamics be described by the equation

ẍ = −Dx+B (u, v), (38)

where x ∈ L. Rewrite (38) in the form
{

ẋ = y

ẏ = −Dx+B (u, v) .

In this case En = L× L,

A =
[

0 EL

−D 0

]

, π
[

El 0
]

, and ϕ =
[

0
EL

]

.

It is not difficult to show that

π eAt =
[

cos
(
√
D t
)

,
(
√
D
)−1 sin

(
√
D t
)

]

, π eAtϕ =
(
√
D
)−1 sin

(
√
D t
)

,

where the notations cos
(√
D t
)

and
(√
D
)−1 sin

(√
D t
)

are introduced for
the series:

cos
(
√
D t
)

= EL −
1
2!
D t2 +

1
4!
D2t4 − · · ·,

(
√
D
)−1 sin

(
√
D t
)

= ELt−
1
3!
D t2 +

1
5!
D2t5 − · · ·

From this, if x (0) = x0 and ẋ (0) = y0, the solution to equation (38) has the
form

x(t) = π z(t) = cos
(
√
D t
)

x0 +
(
√
D
)−1 sin

(
√
D t
)

y0
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+
(
√
D
)−1

t
∫

0

sin
(
√
D (t− s)

)

B
(

u(s), v(s)
)

ds.

Let x∗ ∈ L be a unit eigenvector of D∗ with a corresponding eigenvalue
λ (x∗). It is possible to take as H those unit eigenvectors of D∗ for which the
function

(√

λ (x∗)
)−1 sin

(√

λ (x∗) t
)

does not change sign on [0, θ]. Thus,

(

π eA(θ−t)ϕ
)∗
x∗ =

(
√
D∗
)−1 sin

(
√
D∗ (θ − t)

)

x∗

=
(
√

λ (x∗)
)−1 sin

(
√

λ (x∗) (θ − t)
)

x∗.

As in Example 12, the condition Az0 ∈ ϕL has also the form x (0) = 0.
The constructed set H depends essentially on θ and may be empty.
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Abstract A general approach to solving game approach problems for systems with
Volterra evolution is outlined. It is based on the method of resolving functions [11]
(the latter is also referred to as the method of Minkowski inverse functionals [12])
and employs the apparatus of the theory of set-valued mappings. Suggested scheme
encompasses a wide range of functional-differential systems, in particular integral,
integro-differential, and difference-differential systems of equations that specify dy-
namics of the conflict-controlled process.

In this chapter, we examine in great detail the case when dynamics of the conflict-
controlled process is described by a system with fractional derivatives. Note that we
deal with both the Riemann–Liouville and Dzhrbashyan–Nersesyan–Caputo frac-
tional derivatives.

Here solutions to such systems are given in the form of Cauchy formula analog.
Sufficient conditions for terminating the game of approach in some guaranteed time
are obtained. These conditions are based on the Pontryagin condition analog [48],
expressed in terms of the Mittag–Leffler matrix functions [13,14]. Using the asymp-
totic expansions of these functions allows one to develop conditions for solvability
of the game problems.

Key words: fractional derivative, set-valued mapping, Minkowski functional,
Mittag–Leffler function, Pontryagin’s condition

1 Introduction

This investigation is concerned with the processes with fractional derivatives.
It should be emphasized that systems of fractional order go back to the Abel
integral equation, to be specific, to representation of its solution [18,53]. The
key to understanding the operation of fractional integration lies also with
the Cauchy formula for multiple integration of a function. Extensive litera-
ture is devoted to investigating the operators of fractional integration and
differentiation. Monographs [24,32,38,40,46,53] are worthy of notice as they
give the reader a comprehensive idea of the subject. The studies [3, 33, 47]
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are devoted to the physical and geometrical interpretations of the fractional
integration and differentiation. In the past 20 years, fractional calculus has
found applications in physics [7], hydrology [4], finance [51], seismic analysis
[26], viscous damping [31], electrochemical problems involving diffusion [40],
fractional-order sinusoidal oscillators [41], robotics, as well as in the theory
of control of finite-dimensional [2, 22, 34, 35, 42–44] and infinite-dimensional
systems [36, 37] and in solving the Cauchy problem for systems of fractional
order [17,25].

It should be noted that to solve a system of differential equations with
Riemann–Liouville fractional derivative, a fractional integral of appropriate
order should be given, instead of a conventional Cauchy data at the initial
time t = 0. This is explained by the fact that the solution to such equation
has singularity at t = 0 and only generalized initial conditions are mean-
ingful in such case. Yet, from the physical standpoint, it is desirable to deal
with conventional Cauchy problem for a system of equations with fractional
derivatives.

M. M. Dzhrbashyan and A. B. Nersesyan in their joint paper [17] sug-
gested to consider an equation with fractional derivatives, in which instead
of Riemann–Liouville derivative, its regularized value is used and conven-
tional Cauchy data stands for the initial condition. Simultaneously, M. Caputo
performed the same expedient in his study [6]. That is why in the sequel
the regularized fractional derivative will be referred to as the Dzhrbashyan–
Nersesyan–Caputo fractional derivative.

In this paper, to study conflict-controlled processes described by fractional-
order systems, we use the method of resolving functions [11]. This method
was initiated by the paper of Pshenichnyi [49], devoted to the group pur-
suit problem in the case of “simple motions.” Later on, B. N. Pshenichnyi,
A. A. Chikrii, and J. S. Rappoport developed a general method for solv-
ing the linear problems of group pursuit, in their number those under the
state constraints. Important results for the group pursuit problems were ob-
tained by N. L. Grigorenko [20], with the help of analogous techniques, and by
N. N. Petrov [45], who examined such problems under the state constraints.
The gist of the method of resolving functions consists in constructing, on the
basis of known process parameters, certain numerical functions. These func-
tion integrally characterize the course of a conflict-controlled process, namely
the trajectory proximity to the terminal set, and play a key role in solving spe-
cific problems. On the one hand, this method appears as a general approach
to investigation of conflict-controlled processes, closely related with the Pon-
tryagin first direct method [48]. On the other hand, it substantiates the rule
of parallel pursuit, well-known to engineers engaged in design of rocket and
space technology.

After publication of the monograph [11], the method of resolving functions
has been extended to systems of variable structure [29] and to the integral and
integro-differential games for linear systems possessing polar singularity [19].
Game problems with a terminal functional were a subject of research in [15],
where some ideas of Fenchel–Moreau and Minkowski were used.
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Some of the results concerning systems with fractional derivatives, pro-
vided below, were obtained jointly with S. D. Eidelman.

2 Formulation of the Problem. Auxiliary Results.
Scheme of the Method

Let us denote by Rn the real n-dimensional Euclidean space and by R+ =
{t : t ≥ 0} the positive semi-axis. Consider the process evolving according to
the equation

z(t) = g(t) +

t
∫

0

Ω(t, τ)ϕ (u(τ), v(τ)) dτ, t ≥ 0. (1)

Function g(t), g : R+ → Rn, is Lebesgue measurable and bounded for t>0,
matrix function Ω(t, τ), t ≥ τ ≥ 0, is measurable in τ and also summable in
τ for any t ∈ R+. The control block is given by function ϕ (u, v) , ϕ : U ×V →
Rn, which is assumed to be jointly continuous in its variables on the direct
product of nonempty compacts U and V , i.e., U, V ∈ K(Rn). Control actions
of the players, u (τ), u : R+ → U , and v(τ), v : R+ → V , are measurable
functions.

In addition to the process (1), a terminal set is given having a cylindrical
form

M∗ = M0 +M, (2)

where M0 is a linear subspace from Rn and M ∈ K(L), where L is an orthog-
onal complement to M0 in Rn.

The goals of the first (u) and the second (v) player are opposite. The first
one strives in the shortest time to drive a trajectory of the process (1) to the
set (2), the second one strives to maximally postpone the instant of time when
the process trajectory hits the set M∗.

Let us take the side of the first player and assume that his opponent
chooses as controls arbitrary measurable functions with values from V . We
also assume that the game (1), (2) takes place on the interval [0, T ] and that
the first player chooses as controls measurable functions of the form:

u(t) = u (g (T ) , vt (·)) , t ∈ [0, T ] , u(t) ∈ U, (3)

where vt (·) = {v (s) : 0 ≤ s ≤ t} is a pre-history of the second player’s control
up to the instant t. If, for example, g(t) = A(t)z0, where A(t) is a matrix
function such that A(0) = E (E is a unit matrix) and z(0) = z0, then we may
consider that u(t) = u (z0, vt (·)), i.e., control of the first player appears as a
special type quasistrategy [11,28].

The goal of the paper is, under the information condition (3), to develop
sufficient conditions for solvability of the problem in favor to the first player in
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some guaranteed time, as well as to estimate this time and to find the control
of first player that allows for the realization of this result.

Now let us describe the method of solving this problem. Original assump-
tions about functions g(t), Ω (t, τ), ϕ (u, v) and sets U , V , M∗ allow us to re-
alize constructions already known from the theory of differential games [9–12].
Let us briefly outline them.

Define by π the orthoprojector acting from Rn onto L.
Setting

ϕ (U, v) = {ϕ (u, v) : u ∈ U}
let us consider the following set-valued mappings

W (t, τ, v) = πΩ (t, τ)ϕ (U, v) ,

W (t, τ) =
⋂

v∈V
W (t, τ, v),

defined on sets ∆× V and ∆ respectively, where

∆ = {(t, τ) : 0 ≤ τ ≤ t <∞} .

Condition 1 (Pontryagin’s condition). Set-valued mapping W (t, τ) takes
nonempty values on set ∆.

By virtue of continuity of the function ϕ (u, v) and the condition U ∈
K (Rn), the mapping ϕ (U, v) is continuous in v in Hausdorff metric.

Taking into account the assumptions concerning matrix function Ω (t, τ),
one can infer that the set-valued mappings W (t, τ, v) and W (t, τ) are measur-
able in τ [23]. Recall that a set-valued mapping F (t), F : [0, T ]→ 2R

n

is called
measurable if for any open set Y , Y ⊂ Rn, the set {t ∈ [0, T ] : F (t) ∩ Y 	= ∅}
is measurable.

Let us denote by P (Rn) a set of all nonempty closed sets from space Rn.
Then, obviously,

W (t, τ, v) : ∆× V → P (Rn),
W (t, τ) : ∆→ P (Rn).

In this case, the set-valued mappings W (t, τ, v) and W (t, τ) are usually re-
ferred to as normal in τ [23].

It follows from Pontryagin’s condition and some results of the papers [1,
16, 23] that for any t ≥ 0 there exists at least one τ -measurable selection
γ (t, τ) ∈ W (t, τ). By assumptions concerning the parameters of process (1)
such selection γ (t, τ) is a function that is summable in τ for any fixed t ≥ 0,
τ ∈ [0, t]. Denote

ξ (t, g (t) , γ (t, ·)) = πg (t) +

t
∫

0

γ (t, τ) dτ.
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Now let us define a function

α(t, τ, v) = sup{α ≥ 0 : [W (t, τ, v)− γ(t, τ)]

∩α[M − ξ(t, g(t), γ(t, ·))] 	= ∅}
(4)

and call it the resolving function. This function will play a key role in the
sequel.

By virtue of assumptions concerning the parameters of process (1) and
some known results from [11], one can infer that function (4) is measurable
in τ and upper semicontinuous in v.

In what follows, our prime concern will be with the joint dependence of
function α (t, τ, v) in variables τ and v. Let us fix some t and set α (τ, v) =
α (t, τ, v). We will say that function α (τ, v), α : [0, T ]× V → R+, is superpo-
sitionally measurable if for any measurable function v(τ), v : [0, T ]→ V , the
superposition α (τ, v (τ)), α : [0, T ] → R+, is a τ -measurable function. Suffi-
ciently general assumption ensuring function α (τ, v) to be superpositionally
measurable is that of its L×B measurability [1,16], i.e., of measurability with
respect to σ-algebra being a product of σ-algebras L ([0, T ]) and B (Rn). This
σ-algebra consists of subsets of the set [0, T ] × Rn generated by sets of the
form X×Y , where X is Lebesgue measurable subset of the interval [0, T ] and
Y is a Borel measurable subset of Rn.

Denote W (t, τ, v)− γ (T, τ) = H (τ, v), M − ξ (T, g (T ) , γ (T, ·)) = M1 and
introduce a set-valued mapping

Ξ (τ, v) = {α ∈ R+ : H (τ, v) ∩ αM1 	= ∅} . (5)

Then
α (τ, v) = sup {α ∈ R+ : α ∈ Ξ (τ, v)} .

Let us study properties of the set-valued mapping (5). The following general
result is true, which generalizes the known statement from [23] and follows,
in particular, from the work [30].

Lemma 1. Let X ∈ P (Rn) and F (w), F : X → P
(

Rk
)

, and H (w), H :
X → P (Rn), be normal set-valued mappings and let M (w, x), M : X×Rk →
P (Rn), be a Caratheodory mapping (measurable in w and continuous in x).

Then the mapping

Ξ (w) = {x ∈ F (w) : H (w) ∩M (w, x) 	= ∅}

is normal.

Setting in the statement of Lemma 1 w = (τ, v), x = α and respectively
F (w) = R+ and M (w, x) = αM1, we infer that the mapping Ξ (τ, v) is L×B
measurable, as the mapping H (τ, v) is L × B measurable by virtue of its
Lebesgue measurability in τ and continuity in v [16].
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Now let us show that the function α (τ, v) is L × B measurable. Indeed,
because the formula is true:

α (τ, v) = sup
α∈Ξ(τ,v)

α = C (Ξ (τ, v) ; 1) ,

where C (X, p) is a support function of set X in direction p [52], its L × B
measurability follows from the L×B measurability of the set-valued mapping
Ξ (τ, v) [23].

Thus, the function α (τ, v) is L × B measurable, bounded below by zero
and semicontinuous in v [11].

Let us show that the function inf
v∈V

α (τ, v) is measurable. To do this we will

treat V as a constant set-valued mapping. It is a measurable mapping [23].
The approximation set in V can be formed, for instance, by functions vm (τ) =
vm, where V∗ = {v1, v2, . . .} is a countable dense subset of set V . Then, by
virtue of L×B measurability of the considered function, it is superpositionally
measurable whence follows that functions α (τ, vm) are measurable in τ . Let
us now show that

inf
v∈V

α (τ, v) = inf
vm

α (τ, vm) .

For this purpose, we set α (τ) = inf
v∈V

α (τ, v) and fix τ . By definition of the

greatest lower bound, for any ε > 0 there exists an element vε ∈ V such that

α (τ, vε) ≤ α (τ) + ε.

On the other hand, from the upper semicontinuity in v of the function
α (τ, v), it follows that a neighborhood O (vε) of element vε exists such that
for any v ∈ O (vε)

α (τ, v) ≤ α (τ, vε) + ε.

In its turn, from here and from the definition of set V∗, it follows that an
element vm ∈ V∗ ∩O (vε) exists such that

α (τ, vm) ≤ α (τ, vε) + ε ≤ α (τ) + 2ε.

Then
inf
vm

α (τ, vm) ≤ α (τ) .

What is more, because the inverse inequality is always true in view of the
inclusion V∗ ⊂ V , then

α (τ) = inf
v∈V

α (τ, v) = inf
vm

α (τ, vm)

and therefore function α (τ) is measurable as the greatest lower bound of
countable set of measurable functions [23].

The following statement is a consequence of formula (4). If for some t the
inclusion ξ (t, g (t) , γ (t, ·)) ∈M is satisfied, then function α (t, τ, v) turns into
infinity for all τ ∈ [0, t], v ∈ V .
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Let us introduce a mapping

T (g (·) , γ (·, ·)) =

⎧

⎨

⎩

t ≥ 0 :

t
∫

0

inf
v∈V

α (t, τ, v) dτ ≥ 1

⎫

⎬

⎭

. (6)

If for some t the integral in expression (6) turns into infinity, then the inequal-
ity in braces is readily satisfied. If, on the other hand, the inequality in (6)
fails for any t, then we set T (g (·) , γ (·, ·)) = ∅.

We can now formulate the main result of the paper.

Theorem 1. Let in the game (1), (2) Pontryagin’s condition hold, M = coM
and let for some bounded function g (t), t > 0, and some measurable in τ
selection γ (t, τ), t ≥ τ ≥ 0, of the set-valued mapping W (t, τ) the following
relations be true:

T (g (·) , γ (·, ·)) 	= ∅ and T ∈ T (g (·) , γ (·, ·)), T < +∞.

Then a trajectory of process (1) can be brought from the initial state g(T ) to
the terminal set in time T , using control of the form (3).

Proof. Consider the case ξ (T, g (T ) , γ (T, ·))∈M . Let vT (·) be an arbitrary
measurable function with values in V . Analogously to [10,11], we introduce a
test function

h (t) = 1−
t
∫

0

α (T, τ, v (τ)) dτ, t ∈ [0, T ] .

Because the function α (T, τ, v) is L × B measurable, it is superpositionally
measurable as well, i.e., function α (T, τ, v (τ)) is measurable. On the other
hand, by assumptions concerning the parameters of process (1), (2) the latter
is bounded for almost all τ < T and therefore integrable on any finite interval
of time. From this it follows that the function h (t) is continuous, nonincreas-
ing, and h (0) = 1. Therefore, there exists an instant t∗ = t (v (·)), t∗ ∈ (0, T ],
such that h (t∗) = 0.

In the sequel the segments [0, t∗) and [t∗, T ] will be referred to as “active”
and “passive” respectively. Let us describe how the first player chooses his
control on each of them. For this purpose consider a set-valued mapping

U (τ, v) = {u ∈ U : πΩ (T, τ)ϕ (u, v)− γ (T, τ)
∈ α (T, τ, v) [M − ξ (T, g (T ) , γ (T, ·))]}.

(7)

Because the function α (T, τ, v) is L × B measurable, M ∈ K (Rn), and
the vector ξ (T, g (T ) , γ (T, ·)) is bounded, then the mapping

α (T, τ, v) [M − ξ (T, g (T ) , γ (T, ·))]
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is L×B measurable. In addition, it is obvious that the left side of inclusion in
(7) is jointly L×B measurable function in τ and v and continuous in u. From
here, in view of the known statement from [23], it follows that the mapping
U (τ, v) is L×B measurable. Therefore its selection

u (τ, v) = lex minU (τ, v) (8)

is L × B measurable function. Let us set control of the first player on the
active segment [0, t∗) equal to

u (τ) = u (τ, v (τ)) . (9)

By virtue of the function u (τ, v) L× B measurability, it is superpositionally
measurable, which implies the measurability of function u (τ).

Let us analyze the “passive” segment [t∗, T ]. We set in expression (7)
α (T, τ, v) ≡ 0 for τ ∈ [t∗, T ], v ∈ V , and choose control of the first player in
accordance with the above-outlined scheme using expressions (7)–(9).

In the case ξ (T, g (T ) , γ (T, ·)) ∈ M , control of the first player on the
interval [0, T ] is chosen from the same relations as on the passive segment,
i.e., by the scheme (7)–(9) with α (T, τ, v) ≡ 0, τ ∈ [0, T ], v ∈ V .

Let us show that if the control of the first player is chosen in the form (9),
then in both cases, in view of relations (7), (8), a trajectory of process (1) will
be brought to set M at instant T for any control of the second player.

From expression (1) we have

πz (T ) = πg (T ) +

T
∫

0

πΩ (T, τ)ϕ (u (τ) , v (τ)) dτ. (10)

Let us first analyze the case ξ (T, g (T ) , γ (T, ·))∈M . To do this, we add and

subtract from the right side of equality (10) the term
T
∫

0

γ (T, τ) dτ . Using the

above-outlined rule for control choice of the first player, we obtain from (10)
the inclusion

πz (T ) ∈ ξ (T, g (T ) , γ (T, ·))

⎡

⎣1−
t∗
∫

0

α (T, τ, v (τ)) dτ

⎤

⎦+

t∗
∫

0

α (T, τ, v (τ))Mdτ.

Because M is a convex compact, α (T, τ, v (τ)) is a nonnegative function
for τ ∈ [0, t∗), and

t∗
∫

0

α (T, τ, v (τ)) dτ = 1,

then
t∗
∫

0

α (T, τ, v (τ))Mdτ = M and, consequently, πz (T ) ∈ M and

z (T ) ∈ M∗.
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Suppose that ξ (T, g (T ) , γ (T, ·)) ∈ M . Then, taking into account the
control law of the first player, from equality (10) one can immediately de-
duce the inclusion πz (T ) ∈M .

3 Some General Properties of the Resolving Function.
Explicit Formulas

As seen from the method scheme, in order to evaluate the instant of the
game termination and to construct the control law of the first player in the
form (3), we need an explicit form of the resolving function. The following
statements provide solution to this problem under some specific assumptions,
namely when some parameters of the process (1), (2) appear as convex sets
(for example, polyhedral, elliptic, or spherical).

Lemma 2. Let in the game problem (1), (2) Pontryagin’s condition be satis-
fied, M = coM , and let the mapping W (t, τ, v) be convex-valued. Then

α (t, τ, v) = inf
p∈P (t)

{C (W (t, τ, v) ; p)− (p, γ (t, τ))} , (11)

where

P (t) = {p ∈ L : C (M ; p) + (p, ξ (t, g (t) , γ (t, ·))) = −1} . (12)

Proof. The nonemptiness of the intersection in definition of function α (t, τ, v),
in view of both sets’ closureness and convexity, in the terms of support func-
tions [52], is equivalent to the inequality

C (W (t, τ, v) ; p)− (p, γ (t, τ)) + α [C (M ;−p) + (p, ξ (t, g (t) , γ (t, ·)))] ≥ 0

for all p ∈ L, or put it otherwise, to the inequality

−α [C (M ;−p) + (p, ξ (t, g (t) , γ (t, ·)))]
≤ C (W (t, τ, v) ; p)− (p, γ (t, τ)) .

(13)

The right-hand side of the last inequality is non-negative for all p, in view
of Pontryagin’s condition and the choice of selection γ (t, τ). Therefore, if
C (M ;−p) + (p, ξ (t, g (t) , γ (t, ·))) ≥ 0, then for any α ≥ 0, inequality (13) is
readily satisfied.

Normalizing p with the help of expression (12), one can infer formula (11)
from inequality (13).

Lemma 3. Let the process (1), (2) be linear (ϕ (u, v) = u−v), for this process
Pontryagin’s condition holds, and let, in addition,

πΩ (t, τ)U = {x ∈ L : (pi, x) ≤ ai (t, τ) , i = 1, . . . , k} ,
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where ai : ∆ → R1 is a function that is summable in τ for all t ≥ 0, pi ∈ L.
Then, if ξ (t, g (t) , γ (t, ·))∈M then

α (t, τ, v) = max
m∈M

min
i∈I(m)

{

ai (t, τ)− (pi, πΩ (t, τ) v + γ (t, τ))
(pi,m− ξ (t, g (t) , γ (t, ·)))

}

, (14)

where

I (m) = {i ∈ {1, . . . , k} : (pi,m− ξ (t, g (t) , γ (t, ·))) > 0} .

Proof. It follows from formula (4) for the resolving function [11] that

α (t, τ, v) = max
m∈M

α (t, τ, v,m) ,

where
α (t, τ, v,m) = sup{α ≥ 0 : α (m− ξ (t, g (t) , γ (t, ·)))

∈W (t, τ, v)− γ (t, τ)},
(15)

and that function α (t, τ, v,m) is upper semicontinuous in m.
From the inclusion in relation (15), with account of assumptions of

Lemma 3, we have

α (m− ξ (t, g (t) , γ (t, ·))) ∈ πΩ (t, τ)U − πΩ (t, τ) v − γ (t, τ)

or, to take it differently,

α (pi,m− ξ (t, g (t) , γ (t, ·))) ≤ ai (t, τ)
− (pi, πΩ (t, τ) v + γ (t, τ)) , i = 1, . . . , k.

(16)

It follows from Pontryagin’s condition that the right-hand side of inequality
(16) is non-negative for all (t, τ) ∈ ∆, v ∈ V , i = 1, . . . , k, and therefore for all
i such that (pi,m− ξ (t, g (t) , γ (t, ·))) ≤ 0, inequality (16) is readily satisfied
for all α ≥ 0. Therefore,

α (t, τ, v,m) = min
i∈I(m)

{

ai (t, τ)− (pi, πΩ (t, τ) v + γ (t, τ))
(pi,m− ξ (t, g (t) , γ (t, ·)))

}

and, thus, function α (t, τ, v) is given by expression (14).

Corollary 1. If in the conditions of Lemma 3

U = {u : (pi, u) ≤ ai, i = 1, . . . , k}

and πΩ (t, τ)U = r (t, τ)U , where r (t, τ) is a function that is summable in τ
for any t, then ai (t, τ) ≡ air (t, τ).
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Corollary 2. Let the assumptions of Lemma 3 be satisfied, let set U be a
symmetric polyhedron about the origin:

U = −U = {u : (pi, u) ≤ ai, i = 1, . . . , k} ,

and πΩ (t, τ)U = r (t, τ)U , where r (t, τ) is a function, summable in τ for
any t, and let set M be homothetic to U (M = λU , λ ≥ 0).

Then if ξ (t, g (t) , γ (t, ·))∈M , the following formula is true

α (t, τ, v) = min
i∈I∗

{

air (t, τ)− (pi, πΩ (t, τ) v + γ (t, τ))
λai − (pi, ξ (t, g (t) , γ (t, ·)))

}

,

where
I∗ = {i ∈ {1, . . . , k} : λai − (pi, ξ (t, g (t) , γ (t, ·))) > 0} .

Lemma 4. Let in the game problem (1), (2) Pontryagin’s condition be satis-
fied, ϕ (u, v) = u− v, and let

πΩ (t, τ)U = {x ∈ L : (x− x0, F (t, τ) (x− x0)) ≤ 1} ,

where F (t, τ) is a matrix function, which is summable in τ for any t and
appears as a positively defined, symmetric square matrix for all (t, τ) ∈ ∆.

Then if ξ (t, g (t) , γ (t, ·))∈M

α (t, τ, v) = max
m∈M

α (t, τ, v,m) ,

where α (t, τ, v,m) is the greatest positive root of the quadratic equation for α:

(α (m− ξ (t, g (t) , γ (t, ·))) + πΩ (t, τ) v + γ (t, τ)− x0, F (t, τ)
× (α (m− ξ (t, g (t) , γ (t, ·))) + πΩ (t, τ) v + γ (t, τ)− x0)) = 0.

Proof of Lemma 4 is analogous to that of Lemma 3.

Lemma 5. Let for the process (1), (2) Pontryagin’s condition hold, ϕ (u, v) =
u− v, and let set U be an ellipsoid of the form

U = {u : (u− u0, F (u− u0)) ≤ 1} , (17)

and πΩ (t, τ)U = r (t, τ)U , where F is a symmetric square matrix, r (t, τ) is
a function, summable in τ for any t, and set M is homothetic to ellipsoid U ,
M = λU , λ ≥ 0.

Then, if ξ (t, g (t) , γ (t, ·))∈M , then the resolving function α (t, τ, v) ap-
pears as the greatest positive root of the quadratic equation for α:

(πΩ (t, τ) v + γ (t, τ)− αξ (t, g (t) , γ (t, ·))− u0,

F (πΩ (t, τ) v + γ (t, τ)− αξ (t, g (t) , γ (t, ·))− u0)) = r (t, τ) + λ.
(18)



360 A.A. Chikrii

The statement of Lemma 5 follows from the equality (4), by virtue of the
symmetry property of ellipsoid U (17).

Remark 1. If in the conditions of Lemma 5 F is a unit matrix, then in the
case of spherical U and M , quadratic equation (18) determines the resolving
function.

This result can be found in monograph [11].
In view of formula (6), the following statement is important.

Lemma 6. Let the process (1), (2) be linear (ϕ (u, v) = u− v), Pontryagin’s
condition be satisfied, and let U and M be convex sets.

If ξ (t, g (t) , γ (t, ·))∈M , then function α (t, τ, v) is concave in v and attains
its minimum in v.

Proof. Let us make use of the representation of resolving function in the form
(11), (12). In our case

α (t, τ, v) = inf
p∈P (t)

Q (t, τ, v, p) ,

where function

Q (t, τ, v, p) = C (πΩ (t, τ)U ; p)− (πΩ (t, τ) v, p)− (p, γ (t, τ))

is linear in v. Note that the lower bound in p of a set of linear functions is a
concave function. The corresponding inequality can be easily obtained. Then,
because of the compactness of set U , the concave function attains on this set
its minimum [20].

Various types of sufficient conditions for the continuity in v of function
α (t, τ, v) can be found in the book [11]. They ensure the attainability of the
lower bound in v in the definition of the game termination time.

4 Finiteness of the Game Termination Time

When solving specific problems, there is a need to have explicit formulas for
the functions under study that would allow one to draw a conclusion whether
(or not) the time of game termination is finite.

Denote

Φ (t) =

t
∫

0

inf
v∈V

α (t, τ, v) dτ.

Then the shortest time for the game termination (in the framework of ad-
vanced scheme) is defined by the formula

T (g (·) , γ (·, ·)) = inf {t ≥ 0 : Φ (t) ≥ 1} .
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Now we find an explicit form of function Φ (t) for some specific values of the
parameters of process (1), (2).

Let us consider the ellipsoids

Q = {x ∈ Rn : (x, Fx) ≤ 1} , QL = {x ∈ L : (x, FLx) ≤ 1} ,

where F and FL are positive symmetric matrices.

Lemma 7. Let for conflict-controlled process (1), (2) ϕ (u, v) = u−v, U = aQ
(a > 1), V = Q, M∗ = {0} and let an inverse matrix to Ω (t, τ) exist for all
t ≥ τ ≥ 0.

Then, if γ (t, τ) ≡ 0, then

Φ (t) =

t
∫

0

a− 1
√

(q, Fq)
dτ,

where q = Ω−1 (t, τ) g (t).

Proof. From formula (4) with account of assumptions of the lemma, it follows
that

α (t, τ, v) = sup {α ≥ 0 : Ω (t, τ) v − αg (t) ∈ aΩ (t, τ)Q} . (19)

Here selection γ (t, τ) may be chosen identically equal to zero because the
mapping W (t, τ) always contains zero. Note that as M∗ = {0}, then M =
M0 = {0}, L = Rn, and therefore π is an operator of identity transformation,
defined by a unit matrix E.

The inclusion in (19) can be rewritten in the form v − αq ∈ aQ, where
q = Ω−1 (t, τ) g (t). Because the vector v−αq linearly depends on α, then the
least upper bound in α in expression (19) is furnished by number α, such that
vector v− αq lies on the boundary of ellipsoid aQ. The last statement means
that

(v − αq, F (v − αq)) = a2

and therefore the resolving function appears as the greatest root of the
quadratic equation for α:

α2 (q, Fq)− 2α (v, Fq) + (v, Fv)− a2 = 0.

Then

α (t, τ, v) =
(v, Fq) +

√

(v, Fq)2 + (q, Fq) [a2 − (v, Fv)]

(q, Fq)

and
min
v∈Q

α (t, τ, v) =
a− 1
√

(q, Fq)
,

where minimum is furnished by the element v = − q√
(q,Fq)

.

The last equality implies the required result.
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Lemma 8. Let the parameters of process (1), (2) satisfy conditions: ϕ (u, v) =
u− v, πΩ (t, τ) = w (t, τ)E, where w (t, τ) is a numerical function, U = aQL

(a > 1), V = QL, M = lQL (l ≥ 0).
Then if γ (t, τ) ≡ 0 then

Φ (t) =

t
∫

0

|w (t, τ)| (a− 1)
√

(g, Fg)− l
dτ, (20)

where g = πg (t).

Proof. It is easily seen that in this case, Pontryagin’s condition is satisfied
and the set-valued mapping W (t, τ) contains zero. Set γ (t, τ) ≡ 0. According
to representation (4), the resolving function is the greatest number, satisfying
the inclusion

w (t, τ) v − απg (t) ∈ (a |w (t, τ)|+ αl)QL.

Setting w (t, τ) = w, πg (t) = g, we rewrite the above inclusion, taking into
account the symmetry of the ellipsoid (QL = −QL):

wv − αg ∈ (a |w|+ αl)QL. (21)

The value of α in (21) is maximal in the case, when vector from the left part
of inclusion lies on the boundary of the ellipsoid (a |w|+ αl)QL. To put it
otherwise,

(wv − αg, FL (wv − αg)) = (a |w|+ αl)2 .
As a result, we obtain the quadratic equation for α:

(

‖g‖2 − l2
)

α2 − 2α [w (g, FLv)− |w| al] + w2
[

(v, FLv)− a2
]

= 0.

Setting w = w (g, FLv)− |w| al, we have

α (·) =
w +

√

w2 + [(g, FLg)− l2]w2 [a2 − (v, FLv)]
(g, FLg)− l2

,

whence follows that

min
v∈QL

α (·) =
|w| (a− 1)
√

(g, FLg)− l
. (22)

Here the minimum is furnished by the element v = −sign w g√
(g,FLg)

.

Now, taking into account the notations, made above, one can deduce from
(22) formula (20).

In the case of spherical parameters of the conflict-controlled process, the
following statements are true.

Corollary 3. Under the conditions of Lemma 7, if F = E and γ (t, τ) = 0, then

Φ(t) =

t
∫

0

a− 1
‖Ω−1 (t, τ) g (t)‖dτ.
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Corollary 4. Under the conditions of Lemma 8, ifQL is a sphere in L (FL=E)
and γ (t, τ) ≡ 0, then

Φ(t) =

t
∫

0

|w (t, τ)| (a− 1)
‖πg (t)‖ − l dτ.

5 Comparison with the First Direct Method
of L. S. Pontryagin

The suggested method gives sufficient conditions for termination of the ap-
proach game (1), (2) in finite time T (g(·), γ(·, ·)), where γ (t, τ), t ≥ τ ≥ 0 is
some fixed selection. Under the same assumptions, the first direct method of
L. S. Pontryagin [11, 39, 48] ensures that the game can be terminated at the
instant of time

P (g (·)) = min

⎧

⎨

⎩

t ≥ 0 : πg (t) ∈M −
t
∫

0

W (t, τ) dτ

⎫

⎬

⎭

. (23)

In so doing, the first player applies the counter-control
u (t) = u (g (·) , v (t)) . (24)

Let us compare the times T (g (·) , γ (·, ·)) and P (g (·)). It is easy to see that
inf
γ(·,·)

T (g (·) , γ (·, ·)) ≤ P (g (·)) . (25)

The last inequality follows from the following statement.

Proposition 1. Let Pontryagin’s condition be satisfied for the conflict-con-
trolled process (1), (2). Then in order that the inclusion

πg (t) ∈M −
t
∫

0

W (t, τ) dτ (26)

holds, it is necessary and sufficient that there exists a selection γ (t, τ) of set-
valued mapping W (t, τ), which is summable in τ , 0 ≤ τ ≤ t, and such that

ξ (t, g (t) , γ (t, ·)) ∈M. (27)
Proof of this statement immediately follows from the definitions of function
ξ (t, g (t) , γ (t, ·)) and the integral of set-valued mapping.

Thus, inclusion (26) implies the inclusion (27) whence follows that the
function α (t, τ, v) turns into +∞. This clearly demonstrates the fact that the
case when the resolving function turns into infinity corresponds with the first
direct method of L. S. Pontryagin.

On the other hand, of interest is the case of equality in (25), i.e., when the
time of the game termination is unaffected by information on the prehistory
of second player’s control.

Using methods presented in [10,11], one may obtain the following result.
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Proposition 2. Let for the conflict-controlled process (1), (2) Pontryagin’s
condition be satisfied, the mapping W (t, τ ; v) be convex-valued, and the ter-
minal set be an affine manifold (M = {m} is a point). Then for any g (·)

min
γ(·,·)

T (g (·) , γ (·, ·)) = P (g (·)) .

Examples of game problems, demonstrating that each of the two conditions
of Proposition 2 is essential in the case of differential games, are given in [11].
In these examples, if one of mentioned conditions fails, relation (25) may turn
into a strict inequality. Also, local conditions for the equality and the strict
inequality in (25) in terms of cones are contained in [11].

6 Game Problems for Fractional Systems

In this section, we introduce in a standard way the classic notions of Riemann–
Liouville fractional integral and fractional derivative. To them corresponds
the equation with fractional derivative in which instead of standard Cauchy
condition at the initial instant t = 0, the fractional integral of appropriate
fractional order is given. The reason is that, generally speaking, the solution
of such equation has singularity at t = 0 and therefore only generalized initial
conditions have sense here. However, from the physical point of view, it is
desirable to have a standard Cauchy problem for equations with fractional
derivatives.

In [17], Dzhrbashyan and Nersesyan introduced an equation with fractional
derivative, in which instead of Riemann–Liouville derivative its regularized
value is used and a standard Cauchy condition stands for the initial condition.
Later on the new notion of fractional derivative was called the Dzhrbashyan–
Nersesyan–Caputo regularized derivative.

Let us define the fractional Riemann–Liouville integral of order β, β ∈
(0, 1), of a function z (t), t > 0, by the formula [53]

(

Iβ0+z
)

(t) =
1

Γ (β)

t
∫

0

z (s)

(t− s)1−β
ds,

where Γ (β) is the Euler γ-function. Then, the fractional Riemann–Liouville
derivative of order β has the form

(

Dβ
0+z
)

(t) =
d

dt

(

I1−β
0+

)

(t) ,

and the regularized Dzhrbashyan–Nersesyan–Caputo fractional derivative of
order β [17, 25] has the form

(

D
(β)
0+ z
)

(t) =
(

Dβ
0+z
)

(t)− t−β

Γ (1− β)
z (+0) .
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We will associate each of the fractional derivatives with appropriate game
problem.

Thus, let in the first problem the evolution of a conflict-controlled process
be described by the system of differential equations

Dβ ẑ = Aẑ + ϕ (u, v) , ẑ ∈ Rn, u ∈ U, v ∈ V, (28)

under the initial condition

I1−β ẑ|t=0 = ẑ0, (29)

and in the second problem by the system

D(β)z = Az + ϕ (u, v) , z ∈ Rn, u ∈ U, v ∈ V, (30)

under the initial condition
z|t=0 = z0. (31)

In the notations of fractional derivatives in (28), (30), some symbols are
omitted for the simplicity of exposition.

In addition to the dynamics of processes (28), (30), the terminal set of the
form (2) is given. The goals of the players in each of the cases are the same as
in the general problem statement. Note that in the problems (28), (29) and
(30), (31), the first player (u) chooses his control in the form of measurable
functions u (t) = u (ẑ0, vt (·)) and u (t) = u (z0, vt (·)), respectively, with values
in the domain U .

Let us proceed to the deduction of integral representations for functions
ẑ (t) and z (t). For this purpose, for any arbitrary positive number ρ and
complex number µ, we define a generalized matrix function of Mittag–Leffler

Eρ (B;µ) =
∞
∑

k=0

Bk

Γ (kρ−1 + µ)
,

where B is an arbitrary square matrix of order n with complex-valued ele-
ments. Matrix function Eρ (B;µ) is an integer function of argument B.

Theorem 2. Under the players’ controls chosen, the solution ẑ (t) to the sys-
tem (28), (29) is defined by the formula

ẑ (t) = tβ−1E1/β

(

Atβ ;β
)

ẑ0

+

t
∫

0

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

ϕ (u (τ) , v (τ)) dτ,
(32)

and the solution z (t) to the system (30), (31) by the formula

z (t) = E1/β

(

Atβ ; 1
)

z0

+

t
∫

0

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

ϕ (u (τ) , v (τ)) dτ.
(33)
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Proof. Let us first note that the function F (τ) = ϕ (u (τ) , v (τ)), τ > 0, is
measurable and essentially bounded. This implies that the integrals in for-
mulas (32), (33) converge absolutely. The proof consists of two parts. In the
first one, we will prove that the first terms in formulas (32), (33) are solutions
of the homogeneous equations, satisfying the initial conditions (29), (31), re-
spectively. In the second part we will show that the second term in formulas
(32), (33)

z2 (t) =

t
∫

0

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

F (τ) dτ (34)

is a solution to nonhomogeneous equations (32), (33).
The fact that z2 (t) satisfies the zero initial condition immediately follows

from the boundedness of the functions E1/β

(

A (t− τ)β ;β
)

and F (τ) and
that β > 0.

Denoting
ẑ1 (t) = tβ−1E1/β

(

Atβ ;β
)

ẑ0

we proceed to calculations:
(

Dβ ẑ1
)

(t) ≡ Dβ
[

tβ−1E1/β

(

Atβ ;β
)

ẑ0
]

=
1

Γ (1− β)
d

dt

⎛

⎝

t
∫

0

(t− τ)−β
τβ−1

∞
∑

k=0

Akτβk

Γ (β (k + 1))
dτ

⎞

⎠

=
1

Γ (1− β)

∞
∑

k=0

Akẑ0
Γ (βk + β)

d

dt

t
∫

0

(t− τ)−β
τβ(k+1)−1dτ

=
1

Γ (1− β)

∞
∑

k=0

Akẑ0B (1− β, βk + β)
Γ (βk + β)

d

dt
tβk

=
1

Γ (1− β)

∞
∑

k=1

AkΓ (1− β)Γ (βk + β)
Γ (βk + β)Γ (βk + 1)

βktβk−1ẑ0

=
∞
∑

k=1

βkAktβk−1

Γ (βk + 1)
ẑ0 =

∞
∑

k=1

Aktβk−1

Γ (βk)
ẑ0

k=k′+1= Atβ−1
∞
∑

k′=0

Ak′
tβk

′

Γ (βk′ + β)
ẑ0 = Aẑ1 (t) .

Here B (z, w) =
1
∫

0

xz−1 (1− x)w−1
dx = Γ (z)Γ (w)

Γ (z+w) is Euler β-function.

Let us now show that function ẑ1 (t) satisfies the initial condition (29).



Game Dynamic Problems for Systems with Fractional Derivatives 367

(

I1−β ẑ1
)

(t) =
1

Γ (1− β)

t
∫

0

ẑ1 (τ)

(t− τ)β
dτ

=
1

Γ (1− β)

t
∫

0

τβ−1

(t− τ)β
∞
∑

k=0

Akτβk

Γ (βk + β)
ẑ0dτ

=
1

Γ (1− β)

∞
∑

k=0

Akẑ0
Γ (βk + β)

t
∫

0

τβ(k+1)−1 (t− τ)−β
dτ

=
1

Γ (1− β)

∞
∑

k=0

Aktβk

Γ (βk + β)
Γ (β (k + 1))Γ (1− β)

Γ (βk + 1)
ẑ0

=
∞
∑

k=0

Aktβk

Γ (βk + 1)
ẑ0

t→0→ ẑ0.

Consider the function

z1 (t) = E1/β

(

Atβ ; 1
)

z0 ≡ E1/β

(

Atβ
)

z0,

where E1/β

(

Atβ
)

is the matrix function of Mittag–Leffler.
Then

(

D(β)z1

)

(t) =
1

Γ (1− β)

⎡

⎣

d

dt

⎛

⎝

t
∫

0

(t− τ)−β
∞
∑

k=0

Akτβk

Γ (βk + 1)
dτ

⎞

⎠− t−β

⎤

⎦ z0

=
1

Γ (1− β)

⎡

⎣

∞
∑

k=0

Ak

Γ (βk + 1)
d

dt

t
∫

0

(t− τ)−β
τβkdτ − t−β

⎤

⎦ z0

=
1

Γ (1− β)

[ ∞
∑

k=0

Ak

Γ (βk + 1)
d

dt
B (1− β, βk + 1) t1−β+βk − t−β

]

z0

=
1

Γ (1− β)

[ ∞
∑

k=0

Aktβk−β Γ (1− β)Γ (βk + 1)
Γ (βk + 1)Γ (2 + βk − β)

(1− β + βk)− t−β

]

z0

=
1

Γ (1− β)

[

Γ (1− β)
∞
∑

k=0

Aktβ(k−1)

Γ (1 + β (k − 1))
− t−β

]

z0

= A

∞
∑

k=1

Ak−1tβ(k−1)

Γ (1 + β (k − 1))
z0 = Az1 (t) .

Moreover, z1 (t) satisfies the initial condition (31) as

lim
t→0

z1 (t) = lim
t→0

∞
∑

k=0

Aktβk

Γ (βk + 1)
z0 = z0.
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Let us analyze function z2 (t), defined by formula (34), and show that it
satisfies equations (28), (30), under the zero initial conditions.

We have

(

Dβz2
)

(t) =
(

D(β)z2

)

(t) =
1

Γ (1− β)

× d
dt

t
∫

0

(t− τ)−β

⎛

⎝

τ
∫

0

(τ − s)β−1
E1/β

(

A (τ − s)β ;β
)

F (s) ds

⎞

⎠ dτ.

(35)

Separately we will study the function

ψ (t) =

t
∫

0

(t− τ)−β

⎛

⎝

τ
∫

0

(τ − s)β−1
∞
∑

k=0

Ak (τ − s)βk

Γ (kβ + β)
F (s) ds

⎞

⎠ dτ

=
∞
∑

k=0

Ak

Γ (kβ + β)

t
∫

0

(t− τ)−β

⎛

⎝

τ
∫

0

(τ − s)β(k+1)−1
F (s) ds

⎞

⎠ dτ.

(36)

For this purpose, we consider the following integrals

İk =

t
∫

0

τ
∫

0

(t− τ)−β (τ − s)β(k+1)−1
F (s) dsdτ

=
∫∫

(∆t)

(t− τ)−β (τ − s)β(k+1)−1
F (s) dτds,

∆t = {(s, τ) : 0 ≤ s ≤ τ ≤ t}.
The latter integral converges absolutely, which allows, by virtue of Fubini
theorem, to change the order of integration using Dirichlet formula.

Then

İk =

t
∫

0

⎛

⎝

t
∫

s

(t− τ)−β (τ − s)β(k+1)−1
dτ

⎞

⎠F (s) ds

= B (1− β, βk + β)

t
∫

0

(t− s)βk F (s) ds

=
Γ (1− β)Γ (kβ + β)

Γ (kβ + 1)

t
∫

0

(t− s)βk F (s) ds.

(37)

From equalities (36), (37) it follows that
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ψ (t) = Γ (1− β)
∞
∑

k=0

Ak

Γ (kβ + 1)

t
∫

0

(t− s)βk F (s) ds.

Because the function F (t) is measurable and bounded, then ψ (t) has the
derivative almost everywhere:

dψ

dt
= Γ (1− β)

⎧

⎨

⎩

F (t) +
∞
∑

k=1

Akβk

Γ (βk + 1)

t
∫

0

(t− s)kβ−1
F (s) ds

⎫

⎬

⎭

= Γ (1− β)

⎧

⎨

⎩

F (t) +

t
∫

0

∞
∑

k=1

Ak (t− s)kβ−1

Γ (βk)
F (s) ds

⎫

⎬

⎭

= Γ (1− β)

⎧

⎨

⎩

F (t) +A

t
∫

0

(t− s)β−1
E1/β

(

A (t− s)β ;β
)

F (s) ds

⎫

⎬

⎭

.

(38)

Substituting (38) into (35), we obtain the equalities

Dβz2 = D(β)z2 = Az2 + ϕ (u, v) .

7 Fractional Conflict-Controlled Processes with Integral
Block of Control

Alongside the conflict-controlled processes (28), (29) and (30), (31), we will
analyze the processes differing from them by the block of controls appearing in
the integral form. To be specific, in the case of Riemann–Liouville derivative,
we will study the process

Dβ ŷ = Aŷ +

t
∫

0

(t− τ)γ−1
ϕ (u (τ) , v (τ)) dτ,

0 < γ < 1, 0 < β < 1,

(39)

under the initial condition
I1−β ŷ|t=0 = ŷ0 (40)

and in the case of regularized Dzhrbashyan–Nersesyan–Caputo derivative the
process

D(β)y = Ay +

t
∫

0

(t− τ)γ−1
ϕ (u (τ) , v (τ)) dτ (41)

under the initial condition
y|t=0 = y0. (42)
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Theorem 3. Under controls of the players chosen, the solution ŷ (t) to the
problem (39), (40) is given by the formula

ŷ (t) = tβ−1E1/β

(

Atβ ;β
)

ŷ0

+

t
∫

0

Γ (γ) (t− τ)γ+β−1
E1/β

(

A (t− τ)β ; γ + β
)

ϕ (u (τ) , v (τ)) dτ
(43)

and the solution y (t) to the problem (41), (42) by the formula

y (t) = E1/β

(

Atβ ; 1
)

y0

+

t
∫

0

Γ (γ) (t− τ)γ+β−1
E1/β

(

A (t− τ)β ; γ + β
)

ϕ (u (τ) , v (τ)) dτ.
(44)

Proof. Taking into account the reasoning, presented in the proof of Theorem
2, it suffices to show that the function

y2(t) =

t
∫

0

Γ (γ)(t− τ)γ+β−1E1/β

(

A(t− τ)β ; γ + β
)

ϕ (u(τ), v(τ)) dτ

is a solution of equations (43), (44) under the zero initial condition.
After application of formulas (32), (33) to systems (39), (41), under the

zero initial conditions we have

ŷ (t) ≡ y (t) =

t
∫

0

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

τ
∫

0

(τ − s)γ−1
F (s) dsdτ

=

t
∫

0

t
∫

s

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

(τ − s)γ−1
dτF (s) ds.

Let us calculate the integral

I (t− s) =

t
∫

s

(t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

(τ − s)γ−1
dτ

τ−s=τ̂=

t−s
∫

0

(t− s− τ̂)β−1
E1/β

(

A (t− s− τ̂)β ;β
)

τ̂γ−1dτ̂

=

t−s
∫

0

τ̂β−1E1/β

(

Aτ̂β ;β
)

(t− s− τ̂)γ−1
dτ̂ .
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In view of the matrix analog to formula (1.16) ([18], p. 120), we eventually
obtain

I (t− s) = Γ (γ) (t− s)γ+β−1
E1/β

(

A (t− s)β ; γ + β
)

,

whence follows that

ŷ (t) = y (t) = Γ (γ)

t
∫

0

(t− s)γ+β−1
E1/β

(

A (t− s)β ; γ + β
)

F (s) ds.

Remark 2. If γ + β ≥ 1, then the solutions (43), (44) appear as absolutely
continuous functions [53], having bounded derivatives almost everywhere.

Remark 3. Integrals in equations (39), (41) may have arbitrary τ -summable
kernels.

Thus, for the game problems with the fractional derivatives of Riemann–
Liouville and Dzhrbashyan–Nersesyan–Caputo of the types (28)–(29),
(30)–(31), (39)–(40), (41)–(42), the solutions can be presented by formu-
las (32), (33), (43), (44), which are specific cases of representation (1).

The above-outlined general method can be applied for solution to each of
the mentioned game problems.

8 Specific Case of Simple Matrix, the Origin
as a Terminal Set and Spherical Control Domains

For illustration of the method, we now analyze various specific cases in which
solution can be obtained in analytic form.

In a sequel, for the brevity of exposition and the unification of notions,
we will distinguish the four above-outlined problems by assigning to their
parameters the values of indices i, j: i = 1, 2, j = 1, 2. Then a trajectory
z11 (t) corresponds with the process with Riemann–Liouville derivative and
conventional block of control (28) and z12 (t) to that with the integral block
of control (39). In the turn, a trajectory z21 (t) corresponds with the process
with the regularized Dzhrbashyan–Nersesyan–Caputo derivative and the block
of control in conventional form, and z22 (t) to that with the integral block of
control (41).

Thus, we have the four processes

zij (t) = gij (t) +

t
∫

0

Ωij (t, τ)ϕ (u (τ) , v (τ)) dτ, i = 1, 2, j = 1, 2, (45)
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where

g11 (t) = G11 (t) ẑ0, G11 (t) = tβ−1E1/β

(

Atβ ;β
)

,

Ω11 (t, τ) = (t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

,

g12 (t) = G12 (t) ŷ0, G12 (t) = tβ−1E1/β

(

Atβ ;β
)

,

Ω12 (t, τ) = Γ (γ) (t− τ)γ+β−1
E1/β

(

A (t− τ)β ; γ + β
)

,

g21 (t) = G21 (t) z0, G21 (t) = E1/β

(

Atβ ; 1
)

,

Ω21 (t, τ) = (t− τ)β−1
E1/β

(

A (t− τ)β ;β
)

,

g22 (t) = G22 (t) y0, G22 (t) = E1/β

(

Atβ ; 1
)

,

Ω22 (t, τ) = Γ (γ) (t− τ)γ+β−1
E1/β

(

A (t− τ)β ; γ + β
)

.

(46)

Let

A = λE, ϕ (u, v) = u− v, M∗ = {0} , U = aS, a > 1, V = S, (47)

where λ is a number and S is the unit ball centered at the origin. Then L = Rn

and the orthoprojector π appears as the operator of identical transformation,
defined by the unit matrix. All the matrix functions Gij (t) and Ωij (t, τ) have
the forms

Gij (t) = ĝij (t)E, Ωij (t, τ) = wij (t, τ)E, i = 1, 2, j = 1, 2,

where ĝij (t) and wij (t, τ) are scalar functions. In addition, note that for
matrix B = λE, the following equality is true

Eρ (B;µ) = Eρ (λ;µ)E,

where Eρ (λ;µ) is the generalized scalar function of Mittag–Leffler [18,53].
Then

Wij (t, τ, v) = wij (t, τ) (aS − v) ,
Wij (t, τ) = |wij (t, τ)| (a− 1)S.

Consequently, Pontryagin condition holds if a ≥ 1.
Set γij (t, τ) ≡ 0. Then

ξij (t, gij (t) , γij (t, τ)) = gij (t) = ĝij (t) z0ij , z0ij 	= 0,

and
αij (t, τ, v) = sup

{

α ≥ 0 : αĝij (t) z0ij ∈ wij (t, τ) (aS − v)
}
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is the greatest root of the square equation for α:
∥

∥wij (t, τ) v − αĝij (t) z0ij
∥

∥ = |wij (t, τ)| a.

Therefore

αij (t, τ, v) =
(v0, q) +

√

(v0, q)
2 + ‖q‖2

(

a2
0 − ‖v0‖

2
)

‖q‖2
, (48)

where v0 = wij (t, τ) v, q = ĝij (t) z0ij , a0 = |wij (t, τ)| a.
It should be noted that ĝij(t) 	= 0 up to the instant of the game ter-

mination. The game can be terminated at the moments when this function
vanishes, with the help of the first direct method.

It is evident that

min
‖v‖≤1

αij (t, τ, v) =
|wij (t, τ)| (a− 1)
∥

∥ĝij (t) z0ij
∥

∥

,

where the minimum is furnished by the element

vij(t, τ) = −sign {ĝij (t)wij(t, τ)}
z0ij
∥

∥z0ij
∥

∥

.

Then the time of the game termination appears as the least root of the
equation

t
∫

0

(a− 1) |wij (t, τ)|
|ĝij (t)|

∥

∥z0ij
∥

∥

dτ = 1,

as the functions wij (t, τ) are continuous in t.
Let us introduce the functions

Φij (t) =

t
∫

0

|wij (t, τ)|
|ĝij (t)| dτ.

Then the time of the game termination can be given by the formula

Tij
(

z0ij , 0
)

= min

{

t ≥ 0 : Φij (t) ≥
∥

∥z0ij
∥

∥

a− 1

}

, (49)

where the functions Φij (t) have the forms

Φ11 (t) =

t
∫

0

∣

∣τβ−1E1/β

(

λτβ ;β
)∣

∣ dτ/
∣

∣tβ−1E1/β

(

λtβ ;β
)∣

∣ ,

Φ12 (t) = Γ (γ)

t
∫

0

∣

∣τγ+β−1E1/β

(

λτβ ;β + γ
)∣

∣ dτ/
∣

∣tβ−1E1/β

(

λtβ ;β
)∣

∣ ,



374 A.A. Chikrii

Φ21 (t) =

t
∫

0

∣

∣τβ−1E1/β

(

λτβ ;β
)∣

∣ dτ/E1/β

(

λtβ ; 1
)

,

Φ22 (t) = Γ (γ)

t
∫

0

∣

∣τγ+β−1E1/β

(

λτβ ;β + γ
)∣

∣ dτ/E1/β

(

λtβ ; 1
)

.

(50)

To determine whether (or not) the time of the game termination Tij
(

z0ij , 0
)

is finite, an asymptotic representation of the generalized scalar function of
Mittag–Leffler plays a key role. We take interest in specification of formu-
las (2.23), (2.24) from [18], p. 134, giving such representation for function
Eρ (x;µ) for real x, ρ > 1

2 and arbitrary µ.
From these formulas, it follows that for positive x

Eρ (x;µ) = ρxρ(1−µ)ex
ρ −

p
∑

k=1

x−k

Γ (µ− kρ−1)
+O

(

|x|−1−p
)

(51)

and for negative x

Eρ (x;µ) = −
p
∑

k=1

x−k

Γ (µ− kρ−1)
+O

(

|x|−1−p
)

. (52)

As seen from asymptotic representations (51), (52), in our example it is
reasonable to analyze two cases: λ > 0 and λ < 0.

Let λ > 0. Then the generalized functions of Mittag–Leffler, appearing in
the formulas for Φij (t), are positive. From this and from formula (1.15) ([18],
p. 120) here having the form

x
∫

0

Eρ

(

λx1/β ;µ
)

τµ−1dτ = xµEρ

(

λx1/β ;µ+ 1
)

, (µ > 0) , λ ∈ R, (53)

we infer formulas for functions Φij (t)

Φ11 (t) = tβE1/β

(

λtβ ;β + 1
)

/tβ−1E1/β

(

λtβ ;β
)

,

Φ12 (t) = Γ (γ) tγ+βE1/β

(

λtβ ;β + γ + 1
)

/tβ−1E1/β

(

λtβ ;β
)

,

Φ21 (t) = tβE1/β

(

λtβ ;β + 1
)

/E1/β

(

λtβ ; 1
)

,

Φ22 (t) = Γ (γ) tγ+βE1/β

(

λtβ ;β + γ + 1
)

/E1/β

(

λtβ ; 1
)

.

(54)

Set ρ = 1
β , x = λtβ in formula (48). It should be noted that as β ∈ (0, 1),

then ρ ∈ (1,∞) and therefore ρ > 1
2 . From this it follows the asymptotic

representation

E1/β

(

λtβ ;µ
)

=
1
β

(

λtβ
)

1
β (1−µ)

e(λt
β)1/β

−
p
∑

k=1

(

λtβ
)−k

Γ (µ− kβ)

+O
(

(

tβ
)−1−p

)

=
1
β
λ

1
β (1−µ)t1−µeλ

1/βt + · · · .
(55)
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Using this representation, the following relations can be deduced

tβE1/β

(

λtβ ;β + 1
)

=
1
β
λ

1
β (1−(β+1))tβt−βeλ

1/βt + · · · = 1
β
λ−1eλ

1/βt + · · ·

tβ−1E1/β

(

λtβ ;β
)

=
1
β
tβ−1λ

1
β (1−β)t1−βeλ

1/βt + · · · = 1
β
λ

1
β −1eλ

1/βt + · · ·

Γ (γ) tγ+βE1/β

(

λtβ ;β + γ + 1
)

= Γ (γ)
1
β
tγ+βλ

1
β (1−(γ+β+1))t1−(γ+β+1)eλ

1/βt + · · · (56)

=
Γ (γ)
β

λ−
γ+β

β eλ
1/βt + · · ·

E1/β

(

λtβ ; 1
)

=
1
β
λ

1
β (1−1)t(1−1)eλ

1/βt + · · · = 1
β
eλ

1/βt + · · · .

From formulas (54) and asymptotic representations (56), we obtain the
following equalities

lim
t→∞

Φ11 (t) =
1
βλ

−1

1
βλ

1
β −1

= λ−
1
β ,

lim
t→∞

Φ12 (t) =
Γ (γ)
β λ−

γ+β
β

1
βλ

1
β −1

= Γ (γ)λ−
γ+1

β ,

lim
t→∞

Φ21 (t) =
1
βλ

−1

1
β

= λ−1,

lim
t→∞

Φ22 (t) =
Γ (γ)
β λ−

γ+β
β

1
β

= Γ (γ)λ−
γ+β

β .

Thus, when λ > 0, the times under study are finite if the inequalities hold,
respectively:

T11

(

z011, 0
)

if λ−
1
β >

∥

∥z011
∥

∥

a− 1
,

T12

(

z012, 0
)

if Γ (γ)λ−
γ+1

β >

∥

∥z012
∥

∥

a− 1
,

T21

(

z021, 0
)

if λ−1 >

∥

∥z021
∥

∥

a− 1
,

T22

(

z022, 0
)

if Γ (γ)λ−
γ+β

β >

∥

∥z022
∥

∥

a− 1
.

Let us consider the case when λ < 0. Set in formula (52) ρ = 1
β , x = λtβ .

Then

E1/β

(

λtβ ;µ
)

= −
p
∑

k=1

λ−kt−kβ

Γ (µ− kβ)
+O

(

t−(1+p)β
)

.
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Using this asymptotic representation we obtain

tβE1/β

(

λtβ ;β + 1
)

= tβ

[

−
p
∑

k=1

λ−kt−kβ

Γ (β + 1− kβ)
+O

(

t−β(1+p)
)

]

= tβ
[

−λ
−1t−β

Γ (1)
− λ−2t−2β

Γ (1− β)
− · · ·

]

= −λ−1 − λ−2t−β

Γ (1− β)
− · · ·,

tβ−1E1/β

(

tλβ ;β
)

= tβ−1

[

−
p
∑

k=1

λ−kt−kβ

Γ (β − kβ)
+ · · ·

]

= tβ−1

[

−
p
∑

k=2

λ−kt−kβ

Γ (β − kβ)
+ · · ·

]

= tβ−1

[

−λ
−2t−2β

Γ (−β)
− · · ·

]

= −λ
−2t−2β

Γ (−β)
− · · ·, (57)

Γ (γ) tγ+βE1/β

(

tλβ ; γ + β + 1
)

= Γ (γ) tγ+β

[

−
p
∑

k=1

λ−kt−kβ

Γ (γ + β + 1− kβ)
+ · · ·

]

= −Γ (γ)
λ−1t−γ

Γ (γ + 1)
− · · ·,

E1/β

(

λtβ ; 1
)

= −
p
∑

k=1

λ−kt−kβ

Γ (1− kβ)
+O

(

t−β(1+p)
)

= − λ−1t−β

Γ (1− β)
− · · ·

Let us analyze an asymptotic behavior of functions Φij (t) given by formu-
las (54) in the case when λ < 0. Note that functions (57) are not of necessity
positive. However, using the inequality

∣

∣

∣

∣

∣

∣

t
∫

0

f (τ) dτ

∣

∣

∣

∣

∣

∣

≤
t
∫

0

|f (τ)| dτ

for arbitrary summable function f (τ), asymptotic representations (57) and
formulas (54), one can easily infer that

Φij (t)→∞
t→∞

, ∀i, j = 1, 2.

Thus, the times Tij
(

z0ij , 0
)

given by formula (49) are finite for any z0ij , i, j =
1, 2. This means that in the case when λ < 0, the process under study is com-
pletely conflict-controllable [11] in each of the problems (28)–(29), (30)–(31),
(39)–(40), and (41)–(42).

Let λ = 0. Then, taking into account formulas (54) for the functions Φij(t),
i, j = 1, 2, together with expression (49), one can calculate the precise values
of the termination times for the games under study, namely:

T11

(

z011, 0
)

= β

∥

∥z011
∥

∥

a− 1
,
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T21

(

z021, 0
)

=

[

Γ (β + 1)

∥

∥z021
∥

∥

a− 1

]
1
β

,

T12

(

z012, 0
)

=

[

β + γ
B(γ + β)

∥

∥z012
∥

∥

a− 1

]
1

γ+1

, (58)

T22

(

z022, 0
)

=

[

Γ (β + γ + 1)
Γ (γ)

∥

∥z022
∥

∥

a− 1

]
1

γ+β

.

9 “Parallel Approach” and the Method of Resolving
Functions

The rule of parallel approach (pursuit) for moving objects is well-known in
engineering practice. It is geometric-descriptive in the case of simple motions
in the plane and provides for the lines of sight being parallel in the course
of pursuit (the line of sight is a straight line connecting current states of the
players). This geometric phenomenon was rigorously justified with the help
of the method of resolving functions [11]. In the case when by the meeting is
meant an exact capture of the evader by the pursuer, this rule provides the
optimal time of pursuit.

Below is given a formal definition of the “parallel approach” for a wider
class of problems, including, in particular, the above-mentioned case of simple
motions in the plane.

Definition 1. In the game (1), (2), let g(t) = A(t)z0, A(0) = E, where A(t)
is a square matrix, z0 is the initial state of process (1), and let the terminal
set be a linear subspace: M∗ = M0. We say that the parallel approach has
place in the course of the game if the first player, employs a strategy, defining
the control u(t) = u (z0, vt(·)), such that for any control of the second player,
the projection of a trajectory of system (1) onto the subspace L, L = M⊥

0 , has
the form

πz(t) = ρ(t)πz0, t ≥ 0, (59)

where ρ(t) is a scalar function, vanishing at some finite instant of time.

Let us address the notion of “parallel approach,” defined by condition (59),
as applied to the problem treated in Section 8.

Preserving the notations for each of the four processes (45), (46), we will
study separately the case of (47). Note that each of the indices i and j corre-
sponds with some of the problems (28)–(29), (30)–(31) or (39)–(40), (41)–(42).

It can be shown that in the differential games with a simple matrix, spher-
ical control domains, and a linear subspace as the terminal set, the method
of resolving functions provides the “parallel approach.”
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From formula (4), with the account of assumptions (47), one can deduce
an expression for the resolving function

αij (t, τ, v) = sup
{

α ≥ 0 : −αĝij (t) z0ij ∈ ωij (t, τ) (aS − v)
}

.

Set

α (z, v) =
(z, v) +

√

(z, v)2 + ‖z‖2
(

a2 − ‖v‖2
)

‖z‖2
, ‖z‖ 	= 0.

Then

αij (t, τ, v) =
ωij(t, τ)
ĝij (t)

α
(

z0ij , v
)

. (60)

If ĝij (t) = 0 for some t > 0, then function αij (t, τ, v) turns into infinity, which,
as was mentioned in Section 5, corresponds with the first direct method of
L.S. Pontryagin.

From the proof of Theorem 1 for the case (47), one can infer an expression
for the set-valued mapping Uij(τ, v), defined by formula (7), which determines
a strategy of the pursuer

Uij (τ, v) =
{

u : u ∈ aS,−α∗
ij (Tij , τ, v) ĝij (Tij) z0ij ∈ ωij (Tij , τ) (u− v)

}

,
(61)

where

Tij = Tij
(

z0ij , 0
)

, α∗
ij (t, τ, v) =

{

αij (t, τ, v) , τ ∈ [0, t∗ij),
0, τ ∈

[

t∗ij , t
]

.
(62)

In each of the cases, the moment of switching t∗ij can be found from the
equation

1−
t∗ij
∫

0

αij (Tij , τ, v(τ)) dτ = 0. (63)

It follows from formulas (60), (61) that the set-valued mapping Uij (τ, v) con-
sists of a single element uij (τ, v) of the form

uij (τ, v) = v − α∗ (z0ij , v
)

z0ij ,

where

α∗ (z0ij , v(τ)
)

=
{

α
(

z0ij , v(τ)
)

, τ ∈ [0, t∗ij),
0, τ ∈

[

t∗ij , Tij
]

.

Substituting u(τ) = uij (τ, v(τ)) into formula (45), in view of conditions
(47) and the fact that π is an operator of identical transformation, we obtain

zij(t) = ĝij (t) z0ij +

t
∫

0

ωij (t, τ) (u(τ)− v(τ)) dτ

=

⎡

⎣ĝij (t)−
t
∫

0

ωij (t, τ)α∗ (z0ij , v(τ)
)

dτ

⎤

⎦ z0ij = ρij(t)z0ij .



Game Dynamic Problems for Systems with Fractional Derivatives 379

From formulas (60)–(63), it follows that at t = Tij , ρij(t) = 0.
Thus, when applied to the problems (45)–(47), the method of resolving

functions realizes the “parallel approach” as relation (59) holds true in the
course of approach.

Let us dwell upon on the case of simple motions, i.e., when λ = 0 in
condition (47).

Then, if the conflict-controlled process is described by a system of equa-
tions with Riemann–Liouville fractional derivatives (28) under the initial con-
dition in the form of the fractional integral (29), then, by virtue of formula
(60), the resolving function has the forma

α11(t, τ, v) = sup

{

α ≥ 0 : −α t
β−1

Γ (β)
ẑ0 ∈

(t− τ)β−1

Γ (β)
(aS − v)

}

=
(t− τ)β−1

tβ−1
α (ẑ0, v)

The bringing of a trajectory of the system Dβ ẑ = u − v from the initial
state ẑ0 into the origin is realized with the help of control

u(τ) = v(τ)− α∗ (ẑ0, v(τ)) ẑ0,

where

α∗ (z0, v(τ)
)

=

{

α (ẑ0, v(τ)) , τ ∈ [0, t∗11),
0, τ ∈

[

t∗11, β
‖ẑ0‖
a−1

]

,

and the instant t∗11 can be found from the equation

1−
t∗11
∫

0

α11 (T11, τ, v(τ)) dτ = 0, where T11 = β
‖ẑ0‖
a− 1

. (64)

The instant β ‖ẑ0‖
a−1 is just the instant of time when a trajectory hits the

origin. In so doing, presentation (59), where

ρ11(t) =
tβ−1

Γ (β)

⎡

⎣1−
t
∫

0

(t− τ)β−1

tβ−1
α∗ (ẑ0, v(τ)) dτ

⎤

⎦ ,

is true.
From the above formulas, it follows that at t = β ‖ẑ0‖

a−1 ρ11(t) = 0.
Under the same conditions (A = 0, ϕ (u, v) = u − v, U = aS, V = S,

M∗ = {0}), in the case when the process under consideration is described
by the equations with fractional derivatives of Riemann–Liouville having the
integral block of control, and the fractional integral as the initial condition,
the resolving function takes the form
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α12(t, τ, v) = sup
{

α ≥ 0 : −α t
β−1

Γ (β)
ŷ0 ∈

Γ (γ)
Γ (γ + β)

(t− τ)γ+β−1 (aS − v)
}

= B (γ + β)
(t− τ)γ+β−1

tβ−1
α (ŷ0, v) .

The bringing of a trajectory of the system

Dβ ŷ =

t
∫

0

(t− τ)γ−1 (u(τ)− v(τ)) dτ, I1−β ŷ|t=0 = ŷ0,

into the origin at the instant T12 =
[

β+γ
B(γ+β)

‖ŷ0‖
a−1

]1/γ+1

is provided by the
control

u(τ) = v(τ)− α∗ (ŷ0, v(τ)) ŷ0,

where

α∗ (ŷ0, v(τ)) =
{

α (ŷ0, v(τ)) , τ ∈ [0, t∗12),
0, τ ∈ [t∗12, T12],

and the instant t∗12 can be found from the equation

1−
t∗12
∫

0

α12 (T12, τ, v(τ)) dτ = 0.

The function ρ12(t), appearing in definition of the “parallel approach,” is given
by the formula

ρ12(t) =
tβ−1

Γ (β)

⎡

⎣1−
t
∫

0

B (γ + β)
(t− τ)γ+β−1

tβ−1
α∗ (ŷ0, v(τ)) dτ

⎤

⎦

and vanishes at t = T12.
For simple motions with the regularized fractional derivatives of

Dzhrbashyan–Nersesyan–Caputo (30) and Cauchy initial conditions, the
resolving function is defined by the formula

α21(t, τ, v)=sup

{

α≥ 0 : −αz0∈
(t− τ)β−1

Γ (β)
(aS − v)

}

=
(t− τ)β−1

Γ (β)
α (z0, v) .

The control of the pursuer

u(τ) = v(τ)− α∗ (z0, v(τ)) z0,

where

α∗ (z0, v(τ)) =
{

α (z0, v(τ)) , τ ∈ [0, t∗21)
0, τ ∈ [t∗21, T21],
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t∗21
∫

0

α21 (T21, τ, v(τ)) dτ = 1, T21 =
[

Γ (β + 1)
‖z0‖
a− 1

]1/β

,

guarantees the bringing of a trajectory into the origin at t = T21. In this case,
the function ρ21(t) is given by the expression

ρ21(t) = 1−
t
∫

0

(t− τ)β−1

Γ (β)
α∗ (z0, v(τ)) dτ,

and vanishes at t = T21.
For the same problem but with the integral block of control (41)–(42), the

following formula is true:

α22(t, τ, v) = sup
{

α ≥ 0 : −αy0 ∈
Γ (γ)

Γ (γ + β)
(t− τ)γ+β−1 (aS − v)

}

=
Γ (γ)

Γ (γ + β)
(t− τ)γ+β−1

α (y0, v) .

The control of the pursuer

u(τ) = v(τ)− α∗ (y0, v(τ)) y0,

where

α∗ (y0, v(τ)) =

{

α (y0, v(τ)) , τ ∈ [0, t∗22),

0, τ ∈ [t∗22, T22], T22 =
[

Γ (γ+β+1)
Γ (γ)

‖y0‖
a−1

]1/γ+β

,

and
t∗22
∫

0

α22 (T22, τ, v(τ)) dτ = 1,

brings a trajectory of the process into the origin at the time T22.
In so doing, the function ρ22(t) has the form

ρ22(t) = 1−
t
∫

0

Γ (γ)
Γ (γ + β)

(t− τ)γ+β−1α∗ (y0, v(τ)) dτ.

This function specifies the rate of the “parallel approach.”

10 Conflict-Controlled Functional-Differential Processes

Conflict-controlled process (1), (2), encompasses a much wider scope of game
problems than the games, described by the systems with fractional deriva-
tives, presented in Sections 6–8. In particular, in view of Cauchy formula, the
quasilinear differential games can be presented in the form (1).
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Note that the differential games with the integral block of control were not
studied earlier. However, even in case of ordinary differential game with simple
motions, an origin as the terminal set, and spheres as the control domains,
the time of transition into the origin (under an advantage of the first player)
differs in essence from that for the game with the integral block of control.

One can verify this, performing simple calculations in accordance with the
suggested scheme.

Now we will touch upon the game problems for the systems of second-order
Volterra integral equations, the systems of integral-differential equations, and
also the systems of difference-differential equations.

Let the dynamic of a process be described by the system of integral equa-
tions [19]

z (t) = f (t) +

t
∫

0

K (t, s) z (s) ds+

t
∫

0

Q (t, s)ϕ (u (s) , v (s)) ds, (65)

where the parameters of the process, namely functions f (·) , ϕ (·)
and matrix functions K (·) , Q (·), enjoy rather “good” properties. Then a
solution of system (65) can be presented by formula (1), where

g (t) = f (t) +

t
∫

0

R (t, s) f (s) ds,

Ω (t, τ) = Q (t, τ) +

t
∫

τ

R (t, s)Q (s, τ) ds,

and a resolvent R (t, s) has the form R (t, s) =
∞
∑

m=1
Km (t, s), Km (t, s) =

t
∫

s

K1 (t, τ)Km−1 (τ, s) dτ , K1 (t, s) = K (t, s).

In the case when kernels K (t, s) , Q (t, s) have the polar singularity, g (t)
and Ω (t, τ) can be expressed in convenient form in terms of Mittag–Leffler
function.

Let the dynamic system be described by the integral-differential equation

ż (t) = Az (t) +

t
∫

0

K (t, s) z (s) ds+ ϕ (u, v) , z (0) = z0, (66)

where A is a square matrix of order n, u ∈ U, v ∈ V, U, V ∈ K (Rn), and
both kernel K (t, s) and function ϕ (u, v) are continuous functions.

Then, under chosen controls, the solution to system (66) can be presented
by formula (1), where
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g (t) = Ω (t, 0) z0,

Ω (t, τ) = eA(t−τ) +

t
∫

τ

R̂ (t, s) eA(s−τ)ds

and

R̂ (t, s) =
∞
∑

m=1

K̂m (t, s) , K̂m (t, s) =

t
∫

s

K̂1 (t, τ) K̂m−1 (τ, s) dτ,

K̂1 (t, s) = eA(t−τ)K (t, s) .

It goes without saying that kernel K (t, s) can enjoy polar singularity,
and the control block ϕ (u, v) in (66) can be presented in the integral form
analogously to system (65).

If the dynamics of a process is given by the difference-differential equation

ż (t) = Az (t) +Bz (t− τ) + ϕ (u, v) (67)

or even by a more general equation (maybe with the integral control block),
then, in view of Cauchy formula, using Dirichlet formula and Fubini theorem
one can deduce representation (1).

Alongside the systems (28), (30) with fractional derivatives, the advanced
method allows one to study, in the frames of suggested scheme, the processes
of aftereffect type

Dβz = Az +

t
∫

0

K (t, τ) z (τ) dτ +

t
∫

0

Q (t, τ)ϕ (u (τ) , v (τ)) dτ. (68)

Performing calculations, one can obtain the solution of system (68) in the
form (1).

Also, the method of resolving functions can be successfully applied for
investigation of the game problems for systems (65)–(68). In so doing, suffi-
cient conditions for solvability of the approach problem in a finite time can
be obtained.
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Abstract In this paper, we establish the equivalence between the solutions to an
evolutionary variational inequality and the critical points of a projected dynamical
system in infinite-dimensional spaces. We then present an algorithm, with conver-
gence results, for the computation of solutions to evolutionary variational inequal-
ities based on a discretization method and with the aid of projected dynamical
systems theory. A numerical traffic network example is given for illustrative pur-
poses.
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1 Introduction

Numerous problems in engineering, in operations research and the manage-
ment sciences, as well as in economics and finance involve interactions among
decision-makers and the competition for resources. In such problems, the con-
cept of equilibrium plays a central role and provides a valuable benchmark
against which an existing state of such complex systems can be compared. Ex-
amples, par excellence, of such equilibrium problems include: congested urban
transportation networks, the Internet, multisector, multi-instrument financial
equilibrium problems, as well as a variety of decentralized supply chain net-
works (see, e.g., [27, 35,36]).
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Various methodologies have been developed to formulate and solve such
problems, which are often large-scale. For example, [13] showed that the traffic
network equilibrium conditions as formulated by [41] were a finite-dimensional
variational inequality and then utilized the theory to establish both existence
and uniqueness results of the equilibrium traffic flow pattern as well as to pro-
pose an algorithm with convergence results (see also [14]). Finite-dimensional
variational inequality theory has been applied to-date to the wide range of
equilibrium problems noted above, as well as to game theoretic problems,
such as oligopolistic market equilibrium problems (see, e.g., [15, 26, 36], and
the references therein).

As important as the study of the equilibrium state is that of the study
of the underlying dynamics or disequilibrium behavior of such systems. Note
that because such problems typically involve more than a single decision-
maker who is faced with constraints (such as, for example, budgetary, conser-
vation of flow, non-negativity assumptions on the variables, among others),
classic dynamical systems theory is no longer sufficient for the formulation
and solution of such problems. Toward that end, Dupuis and Nagurney [25]
introduced a new class of dynamical system with a discontinuous right-hand
side and provided the foundational theory for such projected dynamical sys-
tems. Moreover, they established, under suitable conditions, that the set of
stationary points of a projected dynamical system coincided with the set of
solutions of the associated finite-dimensional variational inequality. This con-
nection allowed for the investigation of the disequilibrium behavior preceding
the attainment of the equilibrium. Zhang and Nagurney [44] (see also [38]),
subsequently, developed the stability theory for finite-dimensional projected
dynamical systems. Such results are relevant because without such a theory,
the concept of equilibrium may not be valid.

Isac and Cojocaru [30, 31] initiated the systematic study of projected dy-
namical systems on infinite-dimensional Hilbert spaces in 2002 with the funda-
mental issue of existence of solutions to such problems answered by Cojocaru
[8] in her thesis (see also Cojocaru and Jonker [9]).

Evolutionary variational inequalities, which are also infinite-dimensional,
were originally introduced by Lions and Stampacchia [33] and by Brezis [5]
in order to study problems arising principally from mechanics. They provided
a theory for the existence and uniqueness of the solution of such problems.
Steinbach [42], on the other hand, studied an obstacle problem with a memory
term as a variational inequality problem and established existence and unique-
ness results under suitable assumptions on the time-dependent conductivity.
Daniele, Maugeri, and Oettli [21, 22] motivated by dynamic traffic network
problems, introduced evolutionary (time-dependent) variational inequalities
to this application domain and to several others as we shall highlight later.

As noted by Cojocaru, Daniele, and Nagurney [10], the theory and applica-
tion of evolutionary variational inequalities was developing in parallel to that
of projected dynamical systems. That reference reviews the theoretical founda-
tions of both of these methodologies and surveys the historical developments.
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Moreover, it makes explicit for the first time the connection between projected
dynamical systems on Hilbert spaces and evolutionary variational inequalities.
Finally, the authors provide an illustrative dynamic traffic network example.
In [11], the same authors established further results on the unified theory of
projected dynamical systems and evolutionary variational inequalities in the
context of double-layered dynamics. Moreover, stability analysis results were
provided for the curve of equilibria.

This paper expands upon the theme of that first and second joint paper of
ours – that of the synthesis and expansion of the theories of projected dynami-
cal systems and evolutionary variational inequalities to enable the richer mod-
eling and rigorous analysis of a plethora of complex dynamic problems subject
to constraints. In particular, here we provide a new proof of the equivalence
between solutions to an evolutionary variational inequality and the critical
points of a projected dynamical system in infinite dimensions. In addition,
we propose a new algorithm for the computation of solutions to evolutionary
variational inequalities that exploits the equivalence. Convergence results are
also provided.

We now recall some fundamentals and results of our prior work, which,
along with the preliminary results in Section 2, will allow us to establish the
main contributions of this paper.

Let K be a convex polyhedral set in R
n, F : K→ R

n and let us introduce
the operator

ΠK : R×K→ R
n

defined by means of the directional derivative in the sense of Gâteaux

ΠK(x,−F (x)) = lim
t→0+

PK(x− tF (x))− x
t

of the projection operator PK : R
n → K given by

‖PK(z)− z‖ = inf
y∈K

‖y − z‖.

In [25], Dupuis and Nagurney considered the differential equation with a dis-
continuous right-hand side

d x(t)
d t

= ΠK(x(t),−F (x(t)))

and the associated Cauchy problem
⎧

⎪

⎨

⎪

⎩

d x(t)
d t

= ΠK(x(t),−F (x(t)))

x(0) = x0 ∈ K,

(1)

whose solutions (see also [44]) they called projected dynamical systems (PDS).
A similar idea, in different contexts, can be found in the papers [1, 12, 29]
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and in the book [2], as we shall see in Remark 1. In [24] and [25], existence
theorems of an absolutely continuous solution are shown, provided that F is
assumed to be Lipschitz continuous and with linear growth.

The key trait of a projected dynamical system was first found by Dupuis
and Nagurney [25]. In particular, the authors proved the following theorem.

Theorem 1. The critical points of equation

d x(t)
d t

= ΠK(x(t),−F (x(t))), (2)

namely, the solutions such that
d x(t)
d t

≡ 0, are the same as the solutions to
the variational inequality

Find x ∈ K : 〈F (x), y − x〉 ≥ 0, ∀y ∈ K.

As noted above, variational inequalities in the finite-dimensional case
have been used to formulate a spectrum of problems arising in engineer-
ing, operations research and the management sciences, transportation science,
economics, and finance, as, for example, in the case of the traffic network
equilibrium, spatial price equilibrium, oligopolistic market equilibrium, and
financial equilibrium problems. All these applications have also benefited from
the theory of projected dynamical systems in terms of analysis and computa-
tion (see [10,35], and the references therein).

As also noted above, projected dynamical systems have been considered
in the framework of Hilbert spaces (see [8–10, 28] and [39]). We now provide
a definition of a projected dynamical system.

Definition 1. A projected dynamical system is given by a mapping Ψ : R+ ×
K→ K, which solves the initial value problem:

Ψ̇(t, x) = ΠK(Ψ(t, x),−F (Ψ(t, x))), Ψ(0, x) = x ∈ K.

In [8] and [9], the following theorem has been proved.

Theorem 2. Let H be a Hilbert space and let K ⊂ H be a nonempty, closed,
and convex subset. Let F : K→ H be a Lipschitz continuous vector field with
Lipschitz constant b. Let x0 ∈ K and L > 0 such that ‖x0‖ ≤ L. Then the
initial value problem (1) admits a unique solution in the class of the absolutely

continuous functions on the interval [0, l] where l =
L

‖F (x0)‖+ bL
.

In fact, in [8], the author shows that solutions to problem (1) on Hilbert
spaces can be extended to R+, so Definition 1 also holds in the context of
Hilbert spaces. The important consequence of such a theory in the Hilbert
space is that we can establish a connection between the solutions to an evo-
lutionary variational inequality and the stationary solutions to projected dy-
namical equations in Hilbert spaces (see [8] and [9]).
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For completeness and definiteness, we now provide some additional cita-
tions to evolutionary variational inequalities and applications. In [21] and [22],
Daniele, Maugeri, and Oettli formulated time-dependent traffic equilibria as
evolutionary variational inequalities. In [19], Daniele and Maugeri developed a
time-dependent spatial equilibrium model (price formulation) in which bounds
over the time on the supply and demand market prices and on the commodity
shipments between supply and demand market pairs were imposed. Moreover,
the authors addressed the time-dependent spatial price equilibrium problem in
which the variables were commodity shipments. In [18], Daniele introduced a
time-dependent financial network model consisting of multiple sectors, each of
which seeks to determine its optimal portfolio given time-depending supplies
of the financial holding.

Cojocaru, Daniele, and Nagurney [10] showed that all the above considered
problems can be formulated into a unified definition as we recall below. We
consider the nonempty, convex, closed, bounded subset of the Hilbert space
L2([0, T ],Rq) given by

K =
{

u ∈ L2([0, T ],Rq) : λ(t) ≤ u(t) ≤ µ(t) a.e. in [0, T ];

q
∑

i=1

ξji ui(t) = ρj(t) a.e. in [0, T ], (3)

ξji ∈ {−1, 0, 1} , i ∈ {1, . . . , q} j ∈ {1, . . . , l}
}

.

Let λ, µ ∈ L2([0, T ],Rq), ρ ∈ L2([0, T ],Rl) be convex functions. For chosen
values of the scalars ξji, of the dimensions q and l, and of the constraints λ, µ,
we obtain each of the previous above-cited model constraint set formulations
(see [10]), as follows:

• for the traffic network problem (see [21, 22]), we let ξji ∈ {0, 1}, i ∈
{1, . . . , q}, j ∈ {1, . . . , l}, and λ(t) ≥ 0 for all t ∈ [0, T ];

• for the quantity formulation of spatial price equilibrium (see [16]), we let
q = n+m+ nm, l = n+m, ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l};
µ(t) large and λ(t) = 0, for any t ∈ [0, T ];

• for the price formulation of spatial price equilibrium (see [17] and [19]), we
let q = n+m+mn, l = 1, ξji = 0, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}, λ(t) ≥ 0
for all t ∈ [0, T ], and ρj(t) = 0 for all t ∈ [0, T ] and j ∈ {1, . . . , l};

• for the financial equilibrium problem (see [18]), we let q = 2mn+n, l = 2m,
ξji = {0, 1} for i ∈ {1, . . . , n}, j ∈ {1, . . . , l}; µ(t) large and λ(t) = 0, for
any t ∈ [0, T ].

Then, setting

 Φ, u!=
∫ T

0

〈Φ(t), u(t)〉 dt
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where Φ ∈ L2([0, T ],Rq)∗ and u ∈ L2([0, T ],Rq), if F is given such that F :
K → L2([0, T ],Rq), we have the following standard form of the evolutionary
variational inequality:

find u ∈ K :  F (u), v − u!≥ 0, ∀v ∈ K. (4)

In [22], sufficient conditions that ensure the existence of a solution to (4) are
given.

Now the following general result holds in Hilbert spaces (see [8, 9, 28] and
[39]), as we shall prove in Section 4.

Theorem 3. Assume that the hypotheses of Theorem 2 hold. Then the solu-
tions to the variational inequality (4) are the same as the critical points of the
projected differential equation (PrDE) (2), that is, the points x ∈ K such that

ΠK(x(t),−F (x(t))) = 0,

and vice versa.

As a consequence, and by choosing the Hilbert space H to be L2([0, T ],Rp),
we find that the solutions to the evolutionary variational inequality:

find u ∈ K :
∫ T

0

〈F (u(t)), v(t)− u(t)〉 dt ≥ 0, ∀v ∈ K (5)

are the same as the critical points of the equation:

d u(t, τ)
d τ

= ΠK(u(t, τ),−F (u(t, τ))), (6)

that is, the points such that

ΠK(u(t, τ),−F (u(t, τ))) ≡ 0 a.e. in [0, T ],

which are obviously stationary with respect to τ.
As noted in [10], the meaning of the two “times” in (6) needs to be well

understood. Intuitively, at each instant t ∈ [0, T ], the solution of the evolu-
tionary variational inequality (5) represents a static state of the underlying
system. As t varies over [0, T ], the static states describe one (or more) curves
of the equilibria. In contrast, τ here is the time that describes the dynamics
of the system until it reaches one of the equilibria of the curve.

Section 2 is dedicated to the presentation of additional definitions and
preliminary results that we need in the subsequent sections. In Section 3, we
present a self-contained proof of Theorem 3 and we reference similar existing
results. In Section 4, we show how a solution to the evolutionary variational in-
equality (5) can be computed with the aid of the projected dynamical systems
theory. In Section 5, we present a proof of the convergence of the algorithm.
In Section 6, we present a numerical dynamic traffic network example that is
distinct from the one in [10].
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2 Definitions and Preliminary Results

Following Gwinner [28], let us recall some well-known objects of convex analy-
sis that we need in what follows.

Let H be a real Hilbert space, whose inner product we denote by 〈·, ·〉.

Definition 2. For a subset M ⊂ H, the polar M0 is defined by

M0 = {ξ ∈ H : 〈ξ, x〉 ≤ 1, ∀x ∈M}.

For a cone C, Definition 2 simplifies into

C0 = C− = {ξ ∈ H : 〈ξ, x〉 ≤ 0, ∀x ∈ C}.

Definition 3. Let K be a nonempty, closed, convex subset of H. For all z ∈ K,
we define the support cone (or tangent cone, or contingent cone) to K at x as
the set

TK(x) =
⋃

λ>0

λ (K− x).

Definition 4. We define the normal cone to K at x as the set

NK(x) = {ξ ∈ H : 〈ξ, z − x〉 ≤ 0, ∀z ∈ K}.

Proposition 1. We then have the following result:

(TK(x))0 = NK(x) = (TK(x))−.

Proof. It is clear (see [2], Proposition 2, page 220) that

(TK(x))0 ⊆ NK(x) = {ξ ∈ H : 〈ξ, z − x〉 ≤ 0, ∀z ∈ K},

because z − x ∈ TK(x), ∀z ∈ K. Vice versa, NK(x) ⊆ (TK(x))0 , because if
y = lim

n
λn(zn − x), zn ∈ K, λn ≥ 0 ∀n ∈ N, for each ξ ∈ NK(x):

〈ξ, λn(zn − x)〉 ≤ 0, ∀n ∈ N

and, hence,
〈ξ, y〉 ≤ 0, ∀y ∈ TK(x),

and the assertion is proved.

The set TK(x) is clearly a closed convex cone with vertex 0 and it is the
smallest cone C whose translate x+C has vertex x and contains K. The utility
of the support cone derives from the following result:

Theorem 4. If we denote by PK = Proj (K, ·) the projection onto K of an
element of H, then:

PK(x+ λh) = x+ λPTK(x)h+ o(λ)

for any x, h, and λ > 0.
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Proof. See [43] Lemma 4.6 page 300.

Corollary 1. If we define the projection of h at x with respect to K as the
directional derivative in the sense of Gâteaux

ΠK(x, h) = lim
λ→0+

PK(x+ λh)− x
λ

,

then
ΠK(x, h) = PTK(x)h,

namely, ΠK(x, h) is the projection of h on the support cone TK(x).

Definition 5. The set of unit inward normals to K at x is defined by

nK(x) = {v : ‖v‖ = 1 and 〈v, x− y〉 ≤ 0, ∀y ∈ K}.

Then, using Proposition 1, we have that

Proposition 2. The set of unit normals to K at x satisfies:

nK(x) = ∂B(0, 1) ∩ − (TK(x))0 ,

where ∂B(0, 1) = {z : ‖z‖ = 1}.
Now, because in infinite dimensions the interior as well as the relative algebraic
interior of a convex set can be empty, we introduce the concepts of quasi
interior of K, which may be nonempty.

Definition 6. We call the quasi interior of K (denoted by qi K) the set of
those x ∈ K for which TK(x) = H.

Definition 7. We define the quasi boundary of a closed convex set K (denoted
by qbdry K) as the set K \ qi K.

Then the following proposition holds.

Proposition 3. x ∈ qbdry K if and only if nK(x) 	= ∅.

Proof. Let x ∈ qbdry K. Then, by virtue of Proposition 2.1 in [6], there exists
a ξ 	= 0 such that 〈ξ, x〉 ≤ 〈ξ, y〉, ∀y ∈ K, and, hence:

〈

ξ

‖ξ‖ , x− y
〉

≤ 0 ∀y ∈ K.

vice versa, if nK(x) is nonempty, then there exists a ξ with ‖ξ‖ = 1 such that
〈ξ, x−y〉 ≤ 0, ∀y ∈ K. Then x /∈ qi K, because: if x ∈ qi K, then 〈ξ, x−y〉 ≤ 0,
∀y ∈ K implies 〈ξ, λ(x−y)〉 ≤ 0, ∀λ > 0 and ∀y ∈ K. If y ∈ TK(x), then we can
write y = lim

n
λn(zn − x) and so 〈ξ, λn(zn − x)〉 ≤ 0, ∀n ∈ N. When n → ∞,

then we get 〈ξ, y〉 ≤ 0, ∀y ∈ TK(x). Therefore, if x ∈ qi K, then TK(x) = H
and, hence, 〈ξ, y〉 ≤ 0 ∀y ∈ H. Choosing −y ∈ H, we get 〈ξ,−y〉 ≤ 0, that is,
〈ξ, y〉 = 0 ∀y ∈ H. Choosing y = ξ, we obtain ‖ξ‖ = 0, and then ξ = 0, which
is an absurdity as ‖ξ‖ = 1.
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Following an idea of Dupuis [23] on Euclidean space, later used in [25] for
the theory of finite-dimensional PDS, we present next a generalization of the
geometric interpretation of the operator ΠK on infinite-dimensional H-spaces.
A similar result, also in infinite-dimensional spaces, can be found in Isac and
Cojocaru [31] (see also [28] and [40]).

Theorem 5.
1. If x ∈ qi K, then for any h ∈ H it follows that: ΠK(x, h) = h;
2. If x ∈ qbdry K, then for any v ∈ H \ TK(x) there exists n∗(x) ∈ nK(x)

such that
β(x) = −〈v, n∗(x)〉 > 0,

ΠK(x, v) = v + β(x)n∗(x).

Proof. If x ∈ qi K, then TK(x) = H, by definition of qi K, and it follows that

ΠK(x, h) = PTK(x)h = PHh = h.

If x ∈ qbdry K, then setting v̂ = ΠK(x, v), we get:

v̂ = ΠK(x, v) = PTK(x)v,

namely:
〈v − v̂, w − v̂〉 ≤ 0, ∀w ∈ TK(x).

Because TK(x) is a cone with vertex 0, choosing, in turn, w = 0 and w = 2v̂,
we get:

〈v − v̂, v̂〉 = 0. (7)

Moreover, if we set w = y + v̂ with y ∈ TK(x), we obtain

〈v − v̂, y + v̂ − v̂〉 = 〈v − v̂, y〉 ≤ 0, ∀y ∈ TK(x)

and, hence,
v − v̂ ∈ (TK(x))0 . (8)

Because v 	= v̂, as v ∈ H \ TK(x) and v̂ ∈ TK(x) by assumption, then the
relation (8) implies the existence of some n∗ ∈ n(x) and β > 0 such that

v̂ − v = β n∗.

Moreover, the orthogonality 〈n∗, v̂〉 = 0 implies

β = −〈v, n∗〉,

and the assertion is proved.

We also obtain the following characterization (see also [28]).

Corollary 2. Let x ∈ K. Then for any v ∈ H:

ΠK(x, v) = Pv−NK(x)(0) = (v −NK(x))# .
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Proof. If x ∈ qi K, from Theorem 5 we derive

ΠK(x, v) = v.

On the other hand, if x ∈ qi K, by definition, TK(x) = H and NK(x) =
(TK(x))− = H− = {0} . Let us suppose now that x ∈ qbdry K. From Theorem
5 we know that

v − v̂ ∈ (TK(x))0 = NK(x),

where v̂ = ΠK(x, v). Then we get

v̂ ∈ v −NK(x).

Because v̂ = ΠK(x, v) = PTK(x)v, then we have v̂ ∈ TK(x) and, hence,
〈z, v̂〉 ≤ 0, ∀z ∈ (TK(x))0 = NK(x). Taking into account (7), we get

〈v̂, v − v̂ − z〉 ≥ 0, ∀z ∈ NK(x)

and, thus, v̂ = Pv−NK(x)(0).

3 Proof of Theorem 3

We shall now present a new proof of Theorem 3, in light of our results
in the previous sections. Theorem 3 is crucial in the study of projected
dynamics and perturbed equilibria. It also has an interesting history: the
first proof of this theorem appears in [25] in Euclidean space. In more general
spaces, such as Hilbert spaces (finite- or infinite-dimensional), there already
exist several proofs of this result, as one can see in [9], Theorem 2.2 [31],
Proposition 6. However, we give here a novel proof, independent of the previ-
ous ones (see [28]).

Let x∗ be a solution to the variational inequality

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K. (9)

Using the characterization of the solution by means of the projection, we get

x∗ = PK (x∗ − λF (x∗)) , ∀λ > 0.

Hence,

ΠK(x∗,−F (x∗)) = lim
λ→0+

PK(x∗ − λF (x∗))
λ

= lim
λ→0+

x∗ − x∗
λ

= 0.

vice versa, let x∗ be a stationary point of the projected dynamical system,
namely, x∗ is such that

0 = ΠK(x∗,−F (x∗)) = PTK(x)(−F (x∗)).
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First, let us consider the case when x∗ ∈ qbdry K and −F (x∗) /∈ TK(x). By
virtue of Theorem 5, there exist β∗ > 0 and n∗ ∈ nK(x∗) such that:

F (x∗) = β∗ n∗.

Because n∗ ∈ nK(x∗), we have

〈β∗ n∗, x∗ − y〉 ≤ 0, ∀y ∈ K

and, therefore,
〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

Let us consider now the case when x∗ ∈ qbdry K and −F (x∗) ∈ TK(x∗). In
this case we get

0 = ΠK(x,−F (x∗)) = PTK(x∗)(−F (x∗)) = −F (x∗)

and, hence, the variational inequality (9) is satisfied.
Finally, if x∗ ∈ qi K, then TK(x∗) coincides with H and we get

0 = PH(−F (x∗)) = −F (x∗)

as above. This completes the proof. &'

Remark 1. By virtue of Corollary 2, we derive that

d ẋ(t)
d t

= ΠK(x,−F (x)) = P−F (x)−NK(x)(0)

=
{

v̂ ∈ − (F (x) +NK(x)) : ‖v̂‖ = min
y∈−(F (x)+NK(x))

‖y‖
}

.

Then, the initial value problem
⎧

⎪

⎨

⎪

⎩

d ẋ(t)
d t

= ΠK(x(t),−F (x(t)))

x(0) = x0 ∈ K

(10)

consists of finding the “slow” solution (the solution of minimal norm) to the
differential variational inequality

ẋ(t) ∈ − (NK(x(t)) + F (x(t)))

under the initial condition
x(0) = x0.

Because
ΠK(x(t),−F (x(t))) = PTK(x(t))(−F (x(t))),

problem (10) is equivalent to finding the “slow” solution to the problem
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⎧

⎨

⎩

ẋ(t) ∈ PTK(x)(−F (x(t)))

x(0) = x0

(11)

where the operator F is single–valued.
Then, as already observed in the Introduction, the results of [2] Chapter 6,

Section 6, and of [1] Theorem 2, can be applied to our projected dynamical
system.

Remark 2. It is worth noting that the variational inequality (4) is equivalent
to the problem:

find u ∈ K : 〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v ∈ K, a.e. in [0, T ]. (12)

Moreover, this remark is interesting because it means that we may have the
possibility of applying to (12), among others, the direct method (that is,
finding the explicit closed form solution) in order to find solutions to the
variational inequality (4). We illustrate this in the case of a numerical example
in Section 6 (see also [20,34], and [18]).

4 Computational Procedure

We now consider the time-dependent variational inequality (5) where K is
given by (3). From Remark 2, it is equivalent to (12). Let the operator F be
strictly monotone (see, e.g., [32] and [35]), so that the solution u is unique and
assume that the regularity assumptions on the data introduced by Barbagallo
in [3] and [4] are satisfied in order to have u(t) ∈ C0([0, T ],Rq). Hence, it
follows that:

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀t ∈ [0, T ].

Consider now a sequence of partitions πn of [0, T ], such that:

πn =
(

t0n, . . . , t
Nn
n

)

, 0 = t0n < t
1
n < · · · < tNn

n = T

and
kn = max

{

tjn − tj−1
n : j = 1, . . . , Nn

}

with kn → 0 when n → ∞. Then, for each value tj−1
n , we consider the varia-

tional inequality

〈F
(

u
(

tj−1
n

))

, v − u
(

tj−1
n

)

〉 ≥ 0, ∀v ∈ K
(

tj−1
n

)

(13)

where

K
(

tj−1
n

)

=

{

v ∈ R
q : λ

(

tj−1
n

)

≤ v ≤ µ
(

tj−1
n

)

,

q
∑

i=1

ξji vi = ρj
(

tj−1
n

)

}

.
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We can compute now the unique solution to the finite-dimensional variational
inequality (13) by means of the critical point of the projected dynamical
system

ΠK

(

u
(

tj−1
n , τ

)

,−F
(

u
(

tj−1
n , τ

)))

= 0

and we can construct an interpolation function un(t) such that

lim ‖un(t)− u(t)‖L∞([0,T ],Rq) = 0.

Remark 3. We can overcome the regularization assumption on the solution
u, by considering a discretization procedure and by computing the solution
to the finite-dimensional variational inequality obtained after the discretiza-
tion (see [40]), using the corresponding projected dynamical system. We will
demonstrate how to accomplish this in Section 5.

5 Proof of the Convergence

The discretization procedure for the calculus to the solution of the evolution-
ary variational inequality (5) runs as follows.

We consider a sequence {πn} of partitions of [0, T ], such that:

πn = (t0n, . . . , t
Nn
n ), 0 = t0n < t

1
n < · · · < tNn

n = T

and
kn := max

{

tjn − tj−1
n : j = 1, . . . , Nn

}

with kn → 0 when n→∞.
We consider the space of R

m-value piecewise constant functions induced
by πn:

Pn ([0, T ],Rm) :=
{

v ∈ L∞ ([0, T ],Rm) :

v(tj−1
n , tjn] = vj ∈ R

m, j = 1, . . . , Nn

}

(14)

where vj denotes the constant value of v on (tj−1
n , tjn].

The mean value operators µn : L1 ([0, T ],Rm) → Pn ([0, T ],Rm) are then
introduced by:

µn v(tj−1
n , tjn] :=

1
tjn − tj−1

n

∫ tjn

tj−1
n

v(s) ds. (15)

The following Lemma (see, for instance, [7]) will be useful:

Lemma 1. Let 1 ≤ r <∞. Then, the linear operators

µn : Lr ([0, T ],Rm)→ Lr ([0, T ],Rm)

are uniformly bounded with norm 1 and:

µnv → v in Lr ([0, T ],Rm)

as n→∞, ∀v ∈ Lr ([0, T ],Rm) .



400 M.G. Cojocaru et al.

Consider now the following closed and convex set:

K :=
{

F (t) ∈ L2 ([0, T ],Rm) : λ ≤ F (t) ≤ ν, a.e. in [0, T ],

ΦF (t) = ρ(t), λ, ν ≥ 0,
}

(16)

where, for the time being, the upper and lower bounds and the ρ(t) are con-
stant (i.e., not time-dependent) functions, and and an affine-linear mapping
C : [0, T ]×K→ L2 ([0, T ],Rm):

C[t, F (t)] = A(t)F (t) +B(t), A(t) ∈ L∞, B(t) ∈ L2.

Thus, we are led to solve the problem of finding H(t) ∈ K:
∫ T

0

〈A(t)H(t) +B(t), F (t)−H(t)〉 dt ≥ 0, ∀F (t) ∈ K. (17)

In correspondence with each partition we can write:
∫ T

0

〈A(t)H(t) +B(t), F (t)−H(t)〉 dt

=
Nn
∑

j=1

∫ tjn

tj−1
n

〈A(t)H(t) +B(t), F (t)−H(t)〉 dt. (18)

Thus, in each interval [tj−1
n , tjn] we can consider the problem of finding

unj (t) ∈ K:

∫ tjn

tj−1
n

〈A(t)Hn
j (t) +B(t), Fn

j (t)−Hn
j (t)〉 dt ≥ 0, ∀Fn

j (t) ∈ K. (19)

Instead of (19), consider now the finite-dimensional problem of finding Hn
j ∈

Km ⊂ R
m:

〈An
j H

n
j +Bn

j , F
n
j −Hn

j 〉 ≥ 0, ∀Fn
j ∈ Km (20)

where

An
j =

1
tjn − tj−1

n

∫ tjn

tj−1
n

A(t) dt; Bn
j =

1
tjn − tj−1

n

∫ tjn

tj−1
n

B(t) dt (21)

and consider Hn
j as constant approximations of the solutions Hn

j (t) of (19).
Here Km is the convex subset of R

m with same lower and upper bounds and
the same demand of K.

Our aim is to prove that the functions:

Hn(t) =
Nn
∑

j=1

χ(tj−1
n , tjn)Hn

j (22)

are, in a suitable sense, piecewise constant approximations to solutions to the
original problem (17). We can then prove the following theorem (see [40]):
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Theorem 6. Let K be as in (16) and, moreover, let A(t) be positive definite
a.e. in [0, T ]. Then, the set U = {Hn}n∈N is (weakly) compact and its cluster
points are feasible. Moreover, if H̄ is a weak cluster point for U, then H̄
solves (17).

In Theorem 6, we have considered the constant convex set (16). Now we
turn back to the case of a time-dependent convex set:

K :=
{

F (t) ∈ L2 ([0, T ],Rm) : λ(t) ≤ F (t) ≤ ν(t), a.e. in [0, T ],

λ(t), ν(t) ≥ 0, ΦF (t) = ρ(t) a.e. in [0, T ]
}

(23)

and consider piecewise constant approximations for it. For the sake of clarity
and completeness, let us recall some basic definitions of set convergence.

Definition 8. Let S be a metric space and {Kn} a sequence of sets of S. We
say that Kn is Kuratowsky-convergent to K if and only if:

lim inf
n

Kn = lim sup
n

Kn = K,

where

lim sup
n

Kn :=
{

y ∈ S : ∃n1 < n2 < . . . , with yni
∈ Kn, y = lim

i
yni

}

lim inf
n

Kn :=
{

y ∈ S : ∃n0 ∈ N : ∀n > n0 ∃yn ∈ Kn, and lim
n
yn = y

}

.

Definition 9. Let S be a normed space and {Kn} a sequence of closed and
convex subsets therein. We say that Kn is Mosco convergent to K if and only if:

w − lim sup
n

Kn ⊂ K ⊂ s− lim inf Kn (24)

where w and s mean weak and strong topology, respectively.

We now turn to our set (23) and, in correspondence with each partition
πn of [0, T ] consider the sets:

K
n
j :=

{

F (t) ∈ L2 ([0, T ],Rm) , piecewise constant:

λ̄j,n ≤ Fj(t) ≤ ν̄j,n, a.e. in (tj−1, tj), (25)

ΦF (t) = ρ̄j,n, a.e. in (tj−1, tj)
}

,

where λ̄j,n = µj,n λ(t), ν̄j,n = µj,n ν(t) and ρ̄j,n = µj,n ρ(t) are the mean values
of λ(t), ν(t) and ρ(t) on (tj−1, tj). Thus, we can consider the set K

n = ∩K
n
j ,

which, ∀n ∈ N, has piecewise constant lower and upper bounds and demand,
which we denote by λ̄n, ν̄n and ρ̄j,n, respectively. Then, the following result
holds (see [28]).
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Lemma 2. The set sequence K
n converges to K (in Mosco sense).

We come back now to our problem of finding H(t) ∈ K(t):

∫ T

0

〈C[t,H(t)], F (t)−H(t)〉 dt ≥ 0, ∀F (t) ∈ K(t) (26)

and, ∀F (t) ∈ K(t), consider Fn(t) ∈ K
n such that Fn(t) → F (t) (strongly).

Such Fn(t) does exist thanks to the first part of the proof of Lemma 2. Now,

∀n ∈ N, let us consider a solution Hn(t) =
Nn
∑

j=1

χ(tj−1
n , tjn)Hn

j , where Hn
j is

the solution to the finite-dimensional variational inequality:

〈An
jH

n
j +Bn

j , F
n
j −Hn

j 〉 ≥ 0, ∀Fn
j ∈ K

n
j .

We are now able to present the final result (see [28]).

Theorem 7. Let A(t) be positive definite a.e. in [0, T ]. Then the sequence
Hn(t) defined in (22) admits weak cluster points. Each cluster point is feasible
and solves the original variational inequality.

6 A Numerical Dynamic Traffic Network Example

In this section, we present a numerical example that is taken from transporta-
tion science. For additional background, we refer the reader to [10], [21], [22],
and the references therein. We consider a transportation network consisting
of a single origin/destination pair of nodes and two paths connecting these
nodes of a single link each, as depicted in Figure 1.

The feasible set K is as in (3), where we take p := 2. We also have that
q := 2, j := 1, T := 2, ρ(t) := t, and ξji := 1 for i ∈ {1, 2}:

�

�

1

2

1 2

��

Figure 1. Network structure of the numerical example



Projected Dynamical Sys., Evolutionary Var. Ineq 403

K =

{

u ∈ L2([0, 2],R2)|

(0, 0) ≤ (u1(t), u2(t)) ≤
(

t,
3
2
t

)

a.e. in [0, 2];

2
∑

i=1

ui(t) = t a.e. in [0, 2]

}

.

In this application, u(t) denotes the vector of path flows at t. The cost
functions on the paths are defined as: u1(t)+1 for the first path and u2(t)+2
for the second path. We consider a vector field F defined by

F : L2([0, 2],R2)→ L2([0, 2],R2);

(F1(u(t), F2(u(t))) = (u1(t) + 1, u2(t) + 2).

The theory of EVI (as described above) states that the system has a unique
equilibrium, as F is strictly monotone, for any arbitrarily fixed point t ∈ [0, 2].
Indeed, one can easily see that 〈F (u1, u2) − F (v1, v2), (u1 − v1, u2 − v2)〉 =
(u1 − v1)2 + (u2 − v2)2 > 0, for any u 	= v ∈ L2([0, 2],R2). With the help of
PDS theory, we can compute an approximate curve of equilibria, by selecting

t0 ∈
{

k

4
|k ∈ {0, . . . , 8}

}

. Hence, we obtain a sequence of PDS defined by

the vector field −F (u1(t0), u2(t0)) = (−u1(t0) + 1,−u2(t0) + 2) on nonempty,
closed, convex, 1-dimensional subsets:

Kt0 :=
{{

[0, t0]×
[

0,
3
2
t0

]}

∩ {x+ y = t0}
}

.

For each, we can compute the unique equilibrium of the system at the
point t0, that is, the point:

(u1(t0), u2(t0)) ∈ R
2 such that − F (u1(t0), u2(t0)) ∈ NKt0

(u1(t0), u2(t0)).

Proceeding in this manner, we obtain the equilibria consisting of the
points:

{

(0, 0),
(

1
4
, 0
)

,

(

1
2
, 0
)

,

(

3
4
, 0
)

, (1, 0) ,
(

9
8
,
1
8

)

,

(

5
4
,
1
4

)

,

(

11
8
,
3
8

)

,

(

3
2
,
1
2

)}

.

The interpolation of these points yields the curve of equilibria.
We note that due to the simplicity of the network topology in Figure 1

and the linearity (and separability of the cost functions in this example), we
can also obtain explicit formulae for the path flows over time as given below:

⎧

⎨

⎩

u1(t) = t,

u2(t) = 0
if 0 ≤ t ≤ 1
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and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

u1(t) =
t+ 1

2
,

u2(t) =
t− 1

2
.

if 1 ≤ t ≤ 2

The above results demonstrate how the two theories of projected dynami-
cal systems and evolutionary variational inequalities that have been developed
in parallel can be connected to enhance the modeling, analysis, and compu-
tation of solutions to a plethora of time-dependent equilibrium problems that
arise in such disciplines as engineering, operations research/management sci-
ence, economics, and finance.
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Abstract This chapter constructs and analyzes a simple auditing model in order
to answer questions concerning three principal issues: (i) the information contained
in the report, (ii) commitment to the audit policy, and (iii) audit effort. The ap-
proach taken is based on the concept of perfect Bayesian equilibrium. We attempt
to examine the nature of such equilibria and arguments as to which equilibrium one
would expect to observe.

Key words: audit policies, audit game, commitment, perfect Bayesian equi-
librium

1 Introduction

This paper constructs and analyzes a simple model of auditing in which three
principal issues are explored, namely: (i) The information contained in the
report. An audit is a process of verification of a report of private informa-
tion available to the reporter but not to the auditor. What information is
contained in a report? Is it sufficient for the auditor to infer the private in-
formation exactly or is it imperfect? How does this affect what the auditor
does? (ii) Commitment to the audit policy: How does its absence affect report-
ing and investigation decisions? Can the auditor commit in advance to an
audit policy, even when it may not be optimal to carry out the policy at the
time of implementation, and, related to this, does auditing have only a purely
deterrent role or can it lead to recovery of assets as well? (iii) Audit effort.
How is audit intensity or effort determined?

Our attempts to answer these questions will involve using the concept of
Perfect Bayesian Equilibrium; we will attempt to examine the nature of such
equilibria and arguments as to which equilibrium one would expect to observe.
∗ Arijit Mukherji tragically passed away in October 2000. This paper is dedicated

to his memory.
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The paper therefore also serves the purpose of introducing the ideas of
equilibrium refinements (and the effects of assuming a player can commit to a
sequence of actions in advance) to the audience for this book and illustrating
the usefulness of these refinements through an important application. The
partially expository nature of our objectives mean that we have explained
proofs and examples in more detail than we would normally have chosen to do.

We present the basic structure of our model in an informal fashion in this
introduction and compare it with earlier work. In the next section, the model
is specified, emphasizing the nature of the ability to commit or its absence. We
formally derive results for the case when auditing results in perfect discovery
in Sections 3 and 4. In order to examine audit effort or intensity, Section 5
assumes that an audit is imperfect so that repeated auditing may be necessary
to verify the report. We conclude by discussing potential empirical implica-
tions of the competing theories of auditing. All proofs are contained in an
appendix.

The game that we consider has two players—a manager, who observes the
true value of the firm he or she manages and who decides whether to consume
some part of this value as perquisites, and an auditor, who does not know
the firm’s true value but is retained by the firm’s shareholders to monitor
the manager’s report of the value. The difference between the true and the
reported value then constitutes the unauthorized consumption of perquisites
by the manager. To focus on the interaction between the audit and reporting
strategy, we assume the auditor has no moral hazard problem in auditing and
acts in the interests of shareholders.

In our model, “nature” moves first and draws a value for the firm from a
commonly known probability distribution. The manager observes this value
and decides how much to report, retaining the residual as a perquisite. The
auditor observes the report and decides whether or not to audit at a cost c.
As an important distinguishing feature of our model, we assume that the
auditor cannot commit to the audit strategy in advance of the report but
must use the information conveyed by the report in the audit decision. Assume
for the moment that an audit consists of a single observation that leads to
perfect discovery (this is relaxed later). If there is no audit, the manager
obtains a payoff corresponding with the difference between true and reported
value, and the auditor (shareholders) obtains the reported amount.1 If there
is an audit, the auditor obtains the whole value of the firm less the cost of
observation, and the manager must pay a penalty proportional to the amount

1 We assume that both the manager and the auditor are rational economic agents.
In a tax audit context, Erard and Feinstein [7] consider the implications of as-
suming that some taxpayers are intrinsically honest and will not misreport their
true taxable income. In a model of analytical review, Newman et al. [19] consider
a model in which the auditee is honest with some probability and fraudulent with
the complementary probability. In our model, if the manager were able to con-
sume the residual, undetected, then he would prefer to do so. Graetz et al. [12]
were the first to consider intrinsically honest taxpayers.
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of underreporting. This penalty could be thought of as being nonpecuniary in
nature and hence not accruing to any individual.

We characterize a large number of equilibria in this model, including some
that resemble the audit policy obtained if the auditor can commit in advance
to the audit policy. This multiplicity of equilibria results from the many dif-
ferent interpretations that the auditor can place on a report, corresponding
with different reporting strategies, all of which provide the same information
to the auditor about the value of an audit. The equilibria of this model all
involve some pooling—managers with different true values make the same
report. Therefore auditing potentially has an information acquisition role in
any pooling equilibrium. The report identifies, in equilibrium, a range of val-
ues that the manager may have observed. If the report is audited, the actual
value is discovered in these cases, therefore producing information that was
unavailable before the audit. Some equilibria also involve partially separating
reporting strategies—managers with different values make different reports.
In the range of values in which the equilibrium is separating, the true value
can be inferred exactly from the report, and the role of the audit is purely to
deter. However, the auditor would still want to audit, as recovery of the fraud
amount involves verification that stealing has actually occurred.

Among all these equilibria, we show how to choose one as most plausible.
The equilibrium that we will argue for involves pooling only at the lower end
of the range of values and separation at all values above a cutoff. This max-
imally separating—and therefore maximally informative—equilibrium is cho-
sen by using the D1 refinement of sequential equilibrium proposed by Banks
and Sobel [2]. A pooling reporting strategy will have many out-of-equilibrium
reports that should never be sent by the manager, and D1 places restrictions
on what interpretation the auditor can make if such reports are received.
These interpretations must be credible because it is the auditor’s response
to those reports that ensure that they are never sent. In our context, what
matters is the strong monotonicity property this refinement associates with
beliefs. For any “unexpected move” (deviation from equilibrium), D1 requires
that the auditor believe that the manager observed that value of the firm that
would make such a deviation most desirable. This will rule out all but the
maximally informative equilibrium.2

The potential empirical implications of our analysis use the maximally
separating equilibrium as the basic prediction. We compare the qualitative
features of this equilibrium with those when the auditor can commit. In
the maximally separating equilibrium, every type of manager understates the
value of the firm. Audit probabilities are responsive and strictly decreasing in
the report. The prior distribution of firm values affects the equilibrium only
toward the two ends of the support. In contrast, the commitment equilib-
ria have audit probabilities that are constant over a lower range of reports.
The manager understates the report only when it will never be audited.

2 Reinganum [20] uses a similar device in a different context of plea bargaining.
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The prior distribution plays a crucial role in these other equilibria by changing
the intervals of reports that characterize the equilibrium.

We now consider how this model helps us to pose the questions we are
interested in exploring. Like Fellingham and Newman [8], an auditor and a
manager choose their strategies optimally given the conjectures each has of
the other’s behavior (in other words, the problem is formulated as an ex-
plicit extensive form game and therefore amenable to equilibrium analysis).
In Fellingham and Newman’s version, the manager has no private informa-
tion and the auditor and manager move simultaneously, one choosing whether
to commit fraud and the other whether to audit. Their framework does not
allow auditing to have any informational role, only one of pure deterrence.
It is clear that adding a reporting stage to their game without introducing
private information will not be enough to induce any qualitatively different
conclusions, as both the manager who has committed fraud and the one who
has not will find it optimal to deny fraud. In our approach, on the other hand,
the potential informational role of auditing, in an environment where strategic
misreporting could occur, can be examined along with its deterrent aspect.
This leads to a richer and more complete strategic analysis.

The second major issue is that of commitment. In the tax audit literature
especially, models have been proposed with features similar to ours except that
the order of moves between auditor and manager (or taxpayer) is reversed.
In these papers (Morton [16], Sanchez and Sobel [23], Border and Sobel [2],
Reinganum and Wilde [21], for example), the auditor announces a policy to
which he or she is committed no matter what information is conveyed by
the manager’s report. The equilibrium in such a model consists of the auditor
auditing every report below a certain cutoff with the same constant probability
and auditing reports above the cutoff with zero probability. The manager (or
taxpayer) reports the value truthfully up to the cutoff. If the value of the
firm is above the cutoff, the manager reports the cutoff value. Thus only
those who, in equilibrium, do not commit fraud are audited. The auditor
expects not to find any underreporting when he or she audits, though she
is committed to incur the costs of such an audit. There are several means
by which such a commitment can be sustained, such as bonding, reputation
effects, or delegation. We will discuss these below, but each appears to be
somewhat problematic. Our model offers an exploration of the policies that
may result in the absence of such commitment and an elucidation of the
distinctions between the two approaches.

The paper most similar to ours is Reinganum and Wilde [22] (especially
the appendix), who analyze a similar reporting game in a tax audit context.
The differences between their analysis and ours are as follows:

1. They consider only a single, perfectly informative equilibrium, whereas
we find all the pure reporting strategy equilibria and show how to refine
these to a unique equilibrium.
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2. Their model allows for an unbounded amount of fraud, by assuming that
there is a negative income tax. Because the manager cannot steal more
than the value of the firm, we place a lower bound on the amount of fraud.
We show this will rule out all perfectly informative equilibria.

3. We also directly model the audit technology, based on the nature of audit
sample information, and consider two distinct ways of modeling audit
intensity. (Although the appendix of Reinganum–Wilde deals with the
single-audit case we consider in the text, the main body of their paper
can be interpreted as an analysis of audit intensity, though this is not
linked to the single audit case as is done here. They refer to the single-
audit case as the costs being linear with respect to probability.)

We should say, however, that we acknowledge that Reinganum and Wilde
[22] was the first paper to raise the commitment issue and to analyze the
consequences of no commitment. Theirs is clearly the pioneering paper in this
area, though we feel that we too have made a contribution as described above.

Another recent paper, Khalil [13], has a title very similar to ours, though
the model he discusses is somewhat different. His paper is in the context of
regulation, modeled as a principal–agent problem with monitoring. The prin-
cipal first proposes a contract, the agent who could be one of two types either
accepts or rejects the contract, and if she accepts produces a level of output.
Given the output, the principal could choose to audit or not, to determine if
in fact the agent has produced the contractual output corresponding with his
type. Our model is with a continuum of types and we do not have a contract-
ing or production stage. The paper does, of course, address similar issues of
commitment and incentives to audit.

The third major area, imperfect audits and audit effort, is analyzed in
Section 5. When one unit of audit cost will discover a misstatement only
probabilistically, the audit may be repeated in order to gain higher confi-
dence in the report. This results in an equilibrium intensity of auditing and a
model of audit effort in which the auditor does not obtain perfect assurance
in the manager’s report. Baiman et al. [1] model a three-agent contracting
problem between the owner and manager of a firm and an independent au-
ditor. Although contracting issues among these agents are of high interest,
their results seem too strong, as they show that the auditor will always be
motivated to choose effective auditing to obtain full information whenever he
is engaged. This prevents the auditor from using a strategy that is contingent
on the manager’s report as well as partial auditing to obtain less than full
information. Our approach is to make exogenous but plausible assumptions
about the contracting relationship in order to focus on the details of the audit
and reporting strategy.

In a previous version of this paper, we showed that our framework applies
also to reporting value to the financial markets. The risk in this case is that
the manager’s report will be overstated (e.g., higher income or assets than
is permitted by accounting principles) so that the manager can show better
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performance in order to obtain bonuses or promotion. We argue that the
risks and benefits to both the auditor and manager for such misstatements
are qualitatively the same as for asset fraud. There is a perfectly informative
equilibrium for reporting fraud. The other main difference is that the audit
probability schedule is now an increasing function of the manager’s report. In
the interests of space, this extension does not appear in the paper.

2 The Perfect Audit Game

This section describes the benchmark case of asset fraud and perfect auditing.
Imperfect auditing and reporting fraud will be considered later. The game
has two players, a manager of a firm and an auditor. As an insider, only the
manager knows the value, v, of the firm, so let v be a random variable with a
continuous probability density function f(·), on bounded support [0, V ]. The
manager must issue a report, r, on the value of the firm. By underreporting
the value, r < v, the manager can obtain rents from the firm in which the
residual v−r is appropriated to his own use, i.e., asset fraud. The amount the
manager can report is restricted to lie in the interval [0, v]: the manager will
not contribute to the firm from his own pocket and cannot take more than
the value of the firm for his own use.

The auditor observes the report and may then choose to conduct an audit
at a cost c > 0, which will perfectly reveal v and the amount of the fraud.
If an audit reveals a misreport, then the manager must return the amount of
the fraud and will suffer some penalty that is assumed to be in proportion to
the amount of the fraud, M(v− r), with M > 0. Acting in the interests of the
owner, the auditor wishes to minimize the expected amount of misreporting
net of audit cost. Formally, the expected payoffs to the manager and expected
costs to the owner, respectively, when the manager observes v, reports r, and
the auditor audits with probability p, are

U = (1− p)(v − r)− pM(v − r) = [1− p(M + 1)](v − r)

C = pc+ (1− p)(v − r) = (v − r) + p[r − (v − c)].
The basic incentives in this game are straightforward to describe. The manager
wishes to report as little as possible, except to the extent that the audit deters
him. In particular, the manager will be attracted to low reports that are never
audited and carry no risk of discovery. Further, if a report is always audited or,
in fact, audited with any probability greater than 1/(1 +M) (the probability
that makes the manager’s expected payoffs identically zero), the manager will
never choose that report unless he is being truthful. As for the auditor, the
manager’s report may convey some information about the value of the firm, so
the auditor may wish to use this report to calculate the expected value of the
firm. A costly audit will be undertaken only when all available information
suggests that a sufficient amount of misreporting will be discovered to justify
the audit cost.
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The equilibrium concept that formally captures this is the sequential equi-
librium of Kreps and Wilson [15]. (This paper does not define the equilibrium
concept for infinite strategy spaces, so effectively we use the Perfect Bayesian
Equilibrium concept of Fudenberg and Tirole – see their textbook [10] for an
exposition.) In most of what follows, we confine our attention to equilibria
with pure reporting strategies.

Definition 1. A pure reporting strategy equilibrium of this game consists of
an audit probability schedule, p(r), reporting strategy, r(v), and posterior up-
dating rule, f(v|r), such that

1. for every v, r(v) maximizes the manager’s expected payoffs, U , for r ∈
[0, v] and given p(r),

2. for every r, p = p(r) ∈ [0, 1] minimizes the auditor’s expected costs,
E(C|r), where E is the expectation over v given the posterior f(v|r), and

3. for every equilibrium report, r, f(v|r) is the Bayes posterior for the prior,
f(v), given the reporting strategy r(v).

In general, an equilibrium will require that the expected amount of misstate-
ment in a report just be equal to the audit cost.3 This is because if there
is too much expected fraud in a report, the auditor will wish to audit with
probability one, in which case, the manager would not issue that report unless
he is being truthful and the report would not be misstated. And if there is too
little fraud in a report, the auditor will not audit, and (if it is a low report)
the manager will wish to send that report, thereby increasing the expected
misstatement. When reports are misstated just by the audit cost, the audi-
tor will be willing to audit probabilistically; an equilibrium audit policy must
then motivate the desired reporting behavior from the manager.

There is an alternate way of modeling this problem. Although an audit
occurs after the manager issues his report, in some circumstances it may be
possible for the auditor to formulate the audit policy prior to the report.
Morton [16] and Sanchez and Sobel [23] have analyzed auditing in this case
and have found that the following audit policy is optimal:

Definition 2. A commitment audit policy is an audit probability schedule

p(r) =
{

1
M+1 if r < r∗

0 if r ≥ r∗

for some cutoff report r∗ ∈ [0, V ] that the auditor chooses optimally. When v is
less than the cutoff, the manager cannot avoid being audited with a probability

3 This accounts for our decision to use a continuous, rather than discrete, formu-
lation for the value of the firm. In general, with discrete values and reports, the
manager must use a random reporting strategy to ensure the expected amount of
misstatement is equal to the audit cost, and there will seldom be a pure reporting
strategy equilibrium. Because of this, the continuous formulation is in fact more
tractable.
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just sufficient to deter fraud and so will be willing to report truthfully; when v is
greater than the cutoff, the manager will report the lowest amount, r∗, which
carries no risk of discovery. Thus the corresponding commitment reporting
strategy is

r(v) =
{

v if v ≤ r∗
r∗ if v ≥ r∗.

We have called this a commitment policy because it requires the auditor to
commit himself to a policy that he will later wish to abandon. To see why, note
that the auditor would not be willing to follow this policy after he receives the
report, as it calls for an audit of reports that are known not to be misstated,
and so is not an equilibrium in our sense. Even if the auditor announced
this policy in advance, if the manager knows it can be revised at the time
of audit, the manager may not find it credible and would instead predict the
auditor will use a policy that satisfies (2) and (3) above. It would be ideal for
the auditor to announce a policy, and have it be believed, but then follow a
different policy at the time of audit, but this is unlikely to fool a sophisticated
and rational reporter who understands the nature of the game.

If there is some mechanism by which the auditor can costlessly commit
himself, then the auditor would generally wish to do this, because, accord-
ing to the results of Morton [16] and Sanchez and Sobel [23], he could have
committed himself to an equilibrium policy in our sense but chose not to,
evidently to do better. However, the plausibility of such mechanisms need to
be considered carefully. Theoretically, one could publicly post a large bond
with a reliable third party, guaranteeing that the audit policy would be imple-
mented, on penalty of forfeiting the bond. Alternatively, one might argue that
long-run reputation effects might enable a commitment to audit reports that
are truthful (see Schelling [24] for a classic discussion of commitment tech-
niques). However, neither bonding nor public proclamation of the audit policy
is typically observed in practice, perhaps because of the difficulty of verifying
a probabilistic strategy. Another idea, suggested by Fershtman et al. [9], and
by Mookherjee and Png [17], is that the audit policymaker could delegate the
implementation of the audit to a computer, or to a subordinate with an in-
centive structure to follow the policy rather than discover fraud. Delegation is
very common in practice but, conceptually, it appears to push back the incen-
tive problem one level: what sustains a commitment to the computer program
or the incentive structure or how does the policymaker prevent himself from
altering the policy at the time of audit? Because of these difficulties with
commitment, we believe our equilibrium without commitment is plausible in
many circumstances.

In addition, a commitment audit policy is not a sensitive forum for ex-
ploring the role of information in reporting and auditing. With commitment,
whenever a report is audited, a misreport is never discovered because the
audit is done with sufficient intensity to deter fraud from that report. The
auditor does not attempt to extract information from a report, and the audit
never reveals any new information. Thus the deterrent effect of auditing has
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overwhelmed any use of information in the audit. In contrast, the sequential
equilibrium we use here is designed to explore just these issues. The next sec-
tion shows that an equilibrium audit policy does require the auditor to use
the information contained in the manager’s report.

3 Equilibria of Perfect Audits

This section analyzes the equilibria of the perfect audit game. We begin by
characterizing an equilibrium in which the manager’s reports are very infor-
mative. Like the commitment policy, the auditor will be able to infer the value
of the firm before auditing, yet unlike commitment, this is not because the
report is truthful as the auditor will be unwilling to incur the audit cost to
merely verify a truthful report. This audit policy is also qualitatively different
from the commitment policy in that lower reports will be audited with strictly
higher probability. There are additional equilibria of this audit game, includ-
ing some that resemble commitment audit policies (although the manager is
almost never truthful in his reporting strategy). All of these equilibria have
monotone reporting strategies in which the manager’s report is nondecreas-
ing in the value of the firm4. With a multiplicity of equilibria it is important
to select one as most plausible, so this section concludes by showing how to
eliminate all but the most informative equilibrium by using a refinement of
sequential equilibrium.

In analyzing this game, it is useful to focus on the nature of the manager’s
reporting strategy, which may be separating (the manager makes distinct re-
ports for distinct firm values) or pooling (the manager sometimes makes the
same report for distinct values). The auditor will use the report to determine
the updated value of the firm in deciding whether to audit, so separating re-
ports will give the auditor perfect information about the value of the firm. For
a separating report, to induce the auditor to audit, it must be that the amount
of fraud in each report is just equal to the audit cost, so this immediately sug-
gests that a separating equilibrium have reporting strategies r(v) = v−c. The
audit probability schedule must then be chosen to induce this strategy from
the manager.

However, for v < c, this strategy calls for the manager to make a negative
report, which was assumed not to be feasible. Therefore, the perfectly reveal-
ing reporting strategy must be modified to allow for pooling at the lowest
report, r = 0. This report must be audited with positive probability because
otherwise the manager would always report 0. With pooling, the auditor will
not be able to infer the firm value, but to induce auditing it must still be that
the average amount of fraud in this report is just equal to the audit cost. Thus
define a lower interval of firm values whose average is equal to c.

4 In the appendix, we discuss examples of both nonmonotone and probabilistic
reporting strategies.
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Definition 3. Let I0 = [0, v1] be a lower interval such that E(v | v ∈ I0) = c.

I0 is the unique lower interval of types that, if all and only types in that interval
chose the report r = 0, the auditor’s expected recovery from auditing r = 0
would just equal the audit cost. We will assume that Ev > c, as otherwise
there will exist only the trivial equilibrium in which it is never worthwhile for
the auditor to audit, even when the manager always defrauds the firm of its
entire value. Because f(v) is a continuous probability density function, the
interval I0 exists. We can now state

Proposition 1. There exists an equilibrium (unique as to the audit probabil-
ities of equilibrium reports) in which types v > v1 use the separating strategy
r(v) = v − c and types v < v1 report r = 0. The equilibrium audit probability
schedule is given by

1− (M + 1)p(r) = exp
r − (V − c)

c

for reports r ∈ (v1 − c, V − c] and by

1− (M + 1)p(0) = c exp−V − v1
c

for the report r = 0.

Because every report that is sent contains an average of c amount of mis-
statement, the auditor is indifferent to auditing or not and is willing to au-
dit with these probabilities. It is straightforward to verify that this audit
schedule will induce the required reporting strategy from the manager. The
more difficult part of the proof is uniqueness, which relies on an argument by
construction using an envelope technique.

This equilibrium is very different from a commitment audit policy as it is
a strictly decreasing audit schedule. From an ex ante perspective, the lowest
reports are most likely to contain fraud in relation to the prior expected value
of the firm, and these reports are audited most intensively. Further, in contrast
to the commitment audit policy, which never discovers a misreport, an audit
always discovers some amount of misreport except in the zero probability case
that v = 0.

There are other equilibria of this game, but the maximally informative
equilibrium just described will be the unique one to survive refinement. To
show this, we will characterize two additional classes of pure reporting strategy
equilibria. The most convenient way to categorize equilibria in signaling games
is by the nature of the pooling in the reporting strategy. We begin by asking,
when can the maximally separating equilibrium be perturbed by adding some
additional pooling? The answer is that, subject to mild conditions, almost
any interval partition, P , of the set of possible firm values, [0, V ], can be an
equilibrium, in which values in each interval in the partition pool by making
the same report5.
5 Partition equilibria have been explored in the accounting literature on financial

disclosure by Gigler [11] and, most recently, Morgan and Stocken [18].
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Proposition 2. Suppose there is an equilibrium in which p(r) < 1/(M + 1),
for all equilibrium reports, r. Then there is an interval partition, P , of [0, V ]
(in which the intervals may overlap at their end points) such that

1. I0 = [0, v1] ∈ P ,
2. for every other I, inf I > E(v | v ∈ I)− c;
3. every v ∈ I reports r = E(v | v ∈ I) − c, except for the highest interval

for which r may be less than this.

Conversely, suppose that P satisfies (1) and (2). Then there is an equilibrium
in which p(r) < 1/(M+1) for all equilibrium reports and in which the reporting
strategy is r(v) = E(v | v ∈ I)− c for v ∈ I.

These conditions can be motivated as follows: First, the partition, P , must
consist of connected intervals. This is because the usual “single-crossing” prop-
erty of the manager’s indifference curves holds here, so that if a given manager
type prefers a higher report to a lower report, then so do all higher types. Sec-
ond, the lowest interval I0 must be an element of the partition for any of these
equilibria as, also by the single-crossing property, these are all and only the
types who will report r = 0. Therefore, there are never any perfectly separat-
ing equilibria here because pooling at I0 is necessary. Third, the auditor must
be indifferent in order to choose 0 < p(r) < 1; so the report for each pool or
interval, I, of types is set so that

r(I) = E(v | v ∈ I)− c.

But all types v > 0 will obtain strictly positive payoff because p(r) < 1/(M+1),
which requires the final condition that v > r(I), for all v ∈ I.

Audit policies that look similar to the one used under commitment can
also be observed in the no-commitment equilibrium, although the reporting
strategy must be different from the commitment game in order to induce the
auditor to audit. Instead of reporting truthfully in the audit region, in which
case the auditor would not be willing to audit, the manager must misstate
the report by the amount c. Because the commitment audit policy leaves the
manager indifferent among reports in the audit region, r < r∗, it is often
possible to construct the required reporting strategies that leave the auditor
indifferent.

Proposition 3. Suppose an equilibrium exists in which

(i) p(r) =
{

1
M+1 if r < r∗

0 if r ≥ r∗

and the manager’s reporting strategy is pure and monotone. Then there is an
interval partition P of [0, V ] such that

(ii) I0 ∈ P
(iii) the highest interval of the partition contains [V − c, V ], and
(iv) for every interval I ∈ P , inf I ≥ E(v | I)− c.
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Furthermore, the highest interval is [r∗, V ] and the manager’s equilibrium
reporting strategy is

(v) r(v) =
{

r∗ if v ≥ r∗
E(v | I)− c if v ∈ I.

Conversely, suppose there is an interval partition of [0, V ] that satisfies (ii),
(iii), and (iv). Then let r∗ be the infimum of the highest interval in the par-
tition and there is an equilibrium in which the audit strategy is given by (i)
and the reporting strategy by (v).

This shows that there are many equilibria in which the auditor appears to use a
commitment audit policy. As before, when the reporting strategy is monotone,
all and only types in the lower interval I0 will report r = 0. At the other end
of the range of firm values, the manager will report r∗ whenever v > r∗.
In between, the manager cannot avoid the audit region and is indifferent
among all reports. If each interval of types uses the pooling strategy according
to (v) (which never requires the manager to overreport if (iv) is satisfied)
then the auditor will also be indifferent and be willing to audit according
to the commitment policy (i). This is nevertheless quite different from the
commitment equilibrium because (iv) and (v) together imply that, except
when v = 0, the manager always underreports the value of the firm.

In general, the cutoff value that is optimal in the commitment audit policy
may not be an equilibrium cutoff value here. However, even if the two audit
policies are identical, the auditor will be strictly better off with commitment
because, with commitment, the auditor can enforce truthful reporting and
ensure no misreporting when v < r∗6. Without commitment, the manager
will almost always misreport when v < r∗, and the auditor will recover this
fraud only with probability 1

1+M < 1. Thus, although the audit policies may
be identical, the reporting strategies are very different.

This multiplicity of equilibria (the appendix provides examples that show
there are also equilibria with nonmonotone and with mixed reporting strate-
gies) can be resolved by showing that the maximally separating equilibrium of
Proposition 1 is the most plausible.7 All equilibria of this game involve some

6 Although the manager is indifferent between truthful and misreporting, an infini-
tesimally higher audit probability will make the manager strictly prefer to report
truthfully.

7 We have received queries about mixed reporting strategies like the ones found in
Crawford and Sobel [6]. We should emphasize that our model is not a cheap talk
model like Crawford–Sobel. In Crawford–Sobel, messages are ‘cheap talk,’ i.e.,
messages are costless. In our model, messages are costly: a report of v involves
making a payment of v. In addition, if the true type of the manager is v, he prefers
not to report more than v, whereas Crawford–Sobel make no such restriction,
and overreporting might occur in equilibrium in their model. The following is
obviously not an equilibrium (as has been suggested): Take any interval Ii = [ai, bi]
in the partition equilibrium discussed in the paper. Let the manager randomize
over ai − c to bi − c. Any reports in this range are supposed by the auditor to



Strategic Audit Policies Without Commitment 419

pooling in the manager’s report (unlike the model of Reinganum and Wilde
[22]) and also contain out-of-equilibrium reports that are never sent by the
manager no matter what value he may observe. These off-equilibrium reports
are often of crucial importance because the auditor’s response to these reports
are precisely what prevents them from being sent and make the equilibrium
reports rational for the manager. Sequential equilibrium places almost no re-
strictions on how the auditor can interpret out-of-equilibrium moves, and so
he can interpret them in fairly silly ways in order to make an otherwise incred-
ible response to prevent the move from being made. Refinements of sequential
equilibrium generally focus on how to interpret out-of-equilibrium moves—
what sense will the auditor make if he observes a report that, according to
the equilibrium, should never have been sent—and place additional restric-
tions on these out-of-equilibrium beliefs by asking for the most reasonable
interpretation to place on reports that should not have occurred.

To illustrate the qualitative differences between the equilibria, we now
present some numerical examples. Suppose ṽ is uniformly distributed on the
interval [0, 100], suppose that the verification cost c = 20 and that the penalty
parameter M = 10. We will now construct partition equilibria of the type
described in Propositions 2 and 3.

Example 1. For these parameters, v1 = 40. An example of a hypothetical
three-element partition is given by the following: I0 = [0, 40], I1 = [40, 70],
and I2 = [70, 100]. All types v ∈ I0 report 40− c = 0. All types v ∈ I1 report
55−c = 35. All types v ∈ I2, the equilibrium report is 85−c = 65. All reports
are audited with probability p(r) ≤ 1

11 .

Example 2. In fact this is not the only three-element partition. Consider I0 =
[0, 40], I1 = [40, 76], and, I2 = [76, 100]. All types v ∈ I0 report 40 − c = 0.
For v ∈ I1 report 58 − c = 38. For v ∈ I2, the equilibrium report would be
88− c = 68.

Example 3. One can similarly build a four-element partition I0 = [0, 40], I1 =
[40, 60], I2 = [60, 80], I3 = [80, 100] for the same set of parameters.

Example 4. For all these equilibria, the first and last elements of the partition
are fixed. If we just restricted ourselves to partitions where the other elements

come from Ii. This is impossible to sustain as an equilibrium with nondegenerate
mixed auditing strategies, as E[v | Ii] − r = c, for such a mixed strategy to be
in equilibrium, and this cannot be true for two distinct values of the report r.
(Everything else in the expression above remains the same.) It is also unclear
how the manager with different values of v can be indifferent among such reports,
because it might involve reporting more than the actual value—a negative payoff.

With a continuum of types, the restriction to pure reporting strategies is a nat-
ural one to make, though the pathological examples with nonmonotone reports
show there could be mixed-strategy equilibria. The “disturbed” game interpre-
tation of mixed strategies (due to Harsanyi) in fact uses pure strategies with a
continuum of types to purify mixed strategies.
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were of equal length, one equilibrium induces the partition I0 = [0, 40], I1 =
[40, 60] , I2 = [60, 80], I3 = [80, 100] and the corresponding equilibrium reports
are {{0}, {30}, {50}, {70}}. Corresponding audit probabilities are any p such
that p < 1

11 for all reports.

There may be different equilibria for the same parameter set. We will now
present the “maximally separating equilibrium” described in Proposition 1.

Example 5. This equilibrium induces the partition I0 = [0, 40], I1 = [40, 100].
Corresponding equilibrium reporting strategies are {0}, {v − 20}. The corre-
sponding audit probabilities are respectively 0.000387148 if 0 is reported, and
1−exp(0.05r−4)

11 for reports r in the upper tail. We obtain p(0) = 0.000387148
by solving 1− 11p(0) = 20exp(− 100−40

20 ).

Example 6. In Proposition 3, we described the “commitment-like” partition
equilibria: an example follows. This equilibrium induces the partition I0 =
[0, 40], I1 = [40, 60], I2 = [60, 80], and I3 = [80, 100]. Corresponding equilib-
rium reports are {{0}, {30}, {50}, {80}}, with corresponding audit probabili-
ties {{ 1

11}, {
1
11}, {

1
11}, {0}}, respectively.

Example 7. We now show that for the same parameter values, one can con-
struct two distinct equilibria of the type described in Proposition 2, one of
which has a five-element partition and the other has a four-element partition,
with the additional feature that the “finer” partition (the one with five el-
ements) refines the “coarser” four-element partition. If we assume the same
parameter values as before, one can consider an equilibrium that induces the
four-element partition I0 = [0, 40], I1 = [40, 60], I2 = [60, 80], I3 = [80, 100],
with corresponding equilibrium reports {{0}, {30}, {50}, {80}}, and another
equilibrium that induces the five-element partition I

′

0 = [0, 40], I
′

1 = [40, 60],
I

′

2 = [60, 70], I
′

3 = [70, 80], I
′

4 = [80, 100], with corresponding equilibrium re-
ports {{0}, {30}, {45}, {55}, {80}}. As our previous examples illustrate, par-
tition equilibria cannot, in general, not be ranked in terms of “fineness.”

The above examples illustrate the magnitude of the issue of multiple equilibria
that we face and lead us to the next issue, that of refinements.

Although there are many refinements available in the literature, we shall
use “Divinity” by Banks and Sobel [2] and reformulated as “D1” by Cho and
Sobel [5], who show that it is generically equivalent in this sort of signaling
game to the “strategic stability” of Kohlberg and Mertens [14], the most
powerful refinement criterion available. It is difficult to characterize strategic
stability in infinite games like ours, so this equivalence may not hold here.
Nevertheless, it gives special plausibility to the use of D1. Also, for a general
class of signaling games, Cho and Sobel [5] have shown that D1 selects a
unique equilibrium, a result we confirm below.

In our context, D1 can be described as follows: the auditor observes an out-
of-equilibrium report, r, and is considering whether manager type v may have
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sent the report. The answer depends on the relative strength of the manager’s
incentives to send that report and what he speculates may happen if he sends
this report rather than his equilibrium report. If there is some other type v′

who would be willing to issue r under a wider range of possible responses by
the auditor than would v, then D1 requires that the auditor never believe that
v could send report r. More formally,

Definition 4. For any equilibrium, let A(v) be the set of audit probabilities
for r for which type v would either weakly or strictly prefer the report r to
his equilibrium report. Let B(v′) be the set of audit probabilities for r for
which some type v′ would strictly prefer the report r to his equilibrium report.
If A(v) ⊂ B(v′), then type v′ has stronger incentives to deviate from his
equilibrium report than v does, because v′ would strictly prefer a larger set of
possible auditor responses than v weakly prefers. In such a case, D1 requires
that the auditor cannot place any weight on the conjecture that type v sent the
off-equilibrium report. In particular, the equilibrium satisfies D1 if the Bayes
posterior for this report r and type v is zero: f(v | r) = 0.

Because the manager always prefers a lower audit probability (and because
it is continuous and monotonic in his expected payoff), this condition can
be simplified somewhat. All types who are deterred by lower probabilities
of audit are also deterred by higher probabilities. For every type, calculate
the audit probability for an out-of-equilibrium report that would leave the
manager indifferent between that report and his equilibrium report. Then, if
that report is observed, the auditor must believe it was sent by the type(s)
who have the largest such probability. An equilibrium survives D1 if all of the
off-equilibrium beliefs satisfy this criterion, and most importantly, the audit
probabilities specified for these out-of-equilibrium reports are optimal given
these beliefs.

We can now show that only the maximally informative equilibrium of
Proposition 1 survives D1. All of the others fail because D1 prevents the
auditor from adopting that allow him to audit with sufficient probability to
deter some manager types from making out-of-equilibrium reports.

Proposition 4. The only equilibrium to survive D1 is the maximally infor-
mative equilibrium of Proposition 1.

The idea of the proof is to consider the reports made by any two adjacent in-
tervals in the pooling partition. The reports in between are out-of-equilibrium.
For an out-of-equilibrium report, r′, sufficiently close to the higher report, r,
D1 requires that the auditor believe it was sent by the type inf I on the lower
boundary of the upper adjacent interval, I, as this type has the strongest
incentive to send such a report. But if r − E(v|I) = c so that the auditor is
willing to audit r, then r′ − inf I < c, if r′ is sufficiently close to r, and the
auditor is not willing to audit r′. But this cannot be an equilibrium because
the manager would then prefer the lower r′ that is not audited to the higher
report r that he is supposed to make.



422 K. Chatterjee et al.

This argument rules out the equilibria of Proposition 2, where there is
much pooling among high types, and also the commitment-like equilibria of
Proposition 3, where reports immediately below the cutoff report are out-
of-equilibrium. It does not rule out the maximally informative equilibrium.
Although all reports r′ ∈ (0, v1 − c) are never observed in equilibrium, D1
requires that the auditor believe that v1 sent such reports. But in this sepa-
rating equilibrium, v1 − r(v1) = c, so v1 − r′ > c for lower reports and the
auditor will wish to audit with probability one, which is what is required to
prevent the manager from sending those reports.

4 Comparative Statics

Because we have selected the maximally separating equilibrium as the most
reasonable solution to this game, we will concentrate on this equilibrium to
discuss the empirical implications of the analysis.

An increase in the penalty rate, M , will uniformly decrease all the audit
probabilities, because with higher penalties, one need audit less often to ob-
tain the same reporting behavior. However, M has no effect on the reporting
strategy. This is because the manager’s reporting strategy must be chosen to
leave the auditor indifferent between auditing or not, and the auditor is not
directly affected by M . This implies that the penalty rate will not affect the
initial amount of misreporting, but will affect the average amount discovered
after an audit—a higher penalty rate will increase the expected amount of
misreporting remaining after an audit.

Recall that the auditor’s costs are C = v − r + p(r − v + c). Given the
manager’s reporting strategy, the last term is expected to be zero, so the au-
ditor’s costs are just the initial amount of underreporting, which is unaffected
by M . Although we have held the auditor’s fee revenue from auditing con-
stant in this game, this suggests that audit fees will also be unaffected by
M if they are determined by the total costs of the auditor. The manager’s
expected payoff, U = [1−p(M +1)](v−r), is also unaffected by M . Although
the audit probability will change with M , there is no net effect on the term
[1 − p(M + 1)]. There is also no effect on the reporting strategy. In sum,
changes in the penalty rate will affect the audit strategy, but very little else.

A change in the audit cost, c, will have more consequential effects. As c
increases, there will be uniformly less auditing and more misreporting, so the
expected costs of the auditor and the expected payoffs to the manager will
both increase. Therefore, audit fees will increase with c. The reason c plays
a more fundamental role in the model than does M is that M enters the
model only through the term 1− (M + 1)p, in the manager’s expected payoff
function, so p can adjust to accommodate any changes in M without affecting
any other aspect of the solution. On the other hand, c determines the amount
of misreporting, as well as the cutoff value, v1, for types that will report r = 0.
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There are two ways in which a change in the prior distribution of firm
values may affect the equilibrium: through a change in v1 or a change in V .
Holding V constant for the moment, if it becomes more likely that the firm’s
value is larger (in the precise sense of a decrease in the conditional expectation
of the lower interval E(v | v ∈ I0), a condition that is not in general equivalent
to first-order stochastic dominance), then v1 must increase. The only effect
on the equilibrium is that a larger interval of firm values will report r = 0,
and p(0) will decrease to attract this larger interval. For values who continue
to make strictly positive reports, there is no change in either the reporting
strategy or audit probabilities. Because the expected amount of misreporting
at r = 0 must still be equal to c, there is no change in the total amount
of misreporting, or in the expected costs of the auditor. Less fraud will be
discovered, however, because p(0) has decreased.

If the upper bound, V , of the support increases, but without altering the
conditional expectation around the lower interval, [0, v1], then the audit prob-
ability schedule will increase, so that p(r) will be higher for every r. This will
decrease the manager’s expected payoff, but the expected amount of mis-
reporting and the auditor’s expected costs will be unchanged at c. It often
appears that the highest reports are audited most intensively in practice, par-
ticularly in a tax audit context. This may be one explanation of this practice
because, even though the wealthy taxpayer reports higher income than an in-
digent, the auditor may have very different priors for the two taxpayers (this
is also the explanation in Reinganum and Wilde [22]).

5 Imperfect Audits and Audit Effort

In this section, we examine how this model may be generalized to include
an effort choice for the auditor. To this point, the audit was assumed to be
perfect and would perfectly reveal the true value of the firm. The only effort
choice concerned the probability with which the auditor would undertake an
audit. Because audits are seldom perfect in fact, auditing will frequently be
sequential, in which further investigation is done after an initial examination
of the manager’s report. The details of this process are complicated and will
surely vary according to the circumstances, so we wish to make our first
step in the analysis of sequential audits as simple as possible. One natural
assumption is that an audit is imperfect and will discover a misreport only
with some probability less than one, which might be described as the reliability
of the audit technology. If the auditor audits only once and fails to discover
a misreport, he cannot be sure that the report was correctly stated; but it is
now reasonable to repeat the audit because the probability of discovering a
misreport (if one exists) is strictly increasing in the number of repetitions. Of
course, the total audit cost should also be increasing, so this will enable us to
examine the trade-offs the auditor faces in choice of audit effort, that is, in
the number of repetitions of the audit.
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Suppose π is the probability that an audit will discover a misreport if one
exists. Therefore, with probability π, a single audit will publicly reveal the
value of the firm, and the auditor can cease any further investigation; but
with probability 1−π, the audit will not discover any information to disprove
or confirm the manager’s report. The auditor’s decision problem now reflects
the imperfect reliability of the audit technology. Consistent with our earlier
approach that the auditor cannot commit in advance to an audit policy, we
assume that at each repetition the auditor will decide whether to investigate
further.8 This results in an infinite dynamic programming problem in which,
at each stage, i, the auditor will choose the probability of auditing, pi, to
minimize his expected current and future costs. Let Ei be an expectation
with respect to v based on whatever information the auditor has acquired up
to stage i. If he audits report r at stage i, he will incur the audit cost of c.
With probability π he will learn the value of the firm and will stop, but with
probability 1− π, he will not discover the value of the firm, and he will face
the costs of proceeding. Of course, he will also face these future costs if he
does not audit.9

Letting Ci+1 be the expected future costs beyond stage i, the auditor will
choose pi to minimize

Ci = Eipi[c+ π · 0 + (1− π)Ci+1] + (1− pi)Ci+1

If the auditor ceases to audit at stage N and beyond, his cost becomes

CN = EN (v − r).
Because the result of each audit is independent, the probability of not discov-
ering the value of the firm after auditing the report r with probabilities pi(r)
is
∏∞

i=0(1− pi(r)π), so the probability that the value will be discovered is

p(r) = 1−
∞
∏

i=0

(1− pi(r)π).

8 An alternative to this sequential decision problem might be called batch auditing
in which the auditor decides in advance of any auditing, but after observing the
manager’s report, how many repetitions to make, somewhat in the way sample
sizes are often calculated. This batch approach to repeated auditing may not
constitute a credible audit policy as the auditor may wish to change the batch
size after it is partially collected. Reinganum and Wilde’s [22] assumption of an
audit cost that is convex in the probability of discovery appears to be equivalent
to batch auditing. Other possible interpretations of their formulation are also
possible, including the size of the audit team assigned to a particular task.

9 This implicitly assumes a strict liability rather than negligence standard for the
auditor, as he will be subject to penalty whenever he fails to discover a misre-
port, no matter how intensively he audited. It would be interesting to explore a
negligence standard in which the auditor is penalized only if he fails to collect
sufficient competent evidence. We are not yet sure how to model such standards
of evidence. Also, in practice, auditors are liable to be sued whenever they do not
find a misreport, so the strict liability regime may be the more plausible.
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The payoffs to the manager are unchanged from the perfect audit game, except
that the manager cares now only about the probability of discovery and not
the probability or intensity of audit per se:

U = (1− p)(v − r)− pM(v − r) = [1− p(M + 1)](v − r).

The manager will choose his report to maximize U given p(r).
We note two features of this equilibrium that simplify the auditor’s decision

problem. First, an audit either reveals the firm’s value or not. If it does, then
auditing and the game terminates. If it does not, then the auditor gets no
additional information about v.10 Therefore the auditor’s information at every
stage that the game continues is identical to his information immediately after
the manager’s report: Ei(·) = E(· | r). Second, suppose in any stage that the
auditor strictly desires to audit. If a misreport is not discovered in that stage,
then, because the auditor has gained no additional information about v, he
will also strictly desire to audit in the next stage. This will continue in every
stage until the probability of discovery approaches one, which cannot be an
equilibrium as the manager would not misreport when he is certain to be
discovered. Therefore, in equilibrium, whenever the auditor is willing to audit
a report even once, it must be that he is indifferent to auditing in every stage,
and being indifferent, he can ignore the future costs. He will then choose pi
to minimize

Ci = Epi[c+ (1− π)(v − r)] + (1− pi)(v − r)
= E(v − r) + pi[c− πE(v − r)].

This shows that the auditor’s dynamic programming problem is, in this game,
equivalent to a myopic, one-period problem. With this we can now prove the
following:

Proposition 5. Suppose p(r), r(v) are equilibrium auditing and reporting
strategies when the audit is perfect and the audit cost is c′. Let pi(r) be any
audit probabilities such that for every r

p(r) = 1−
∞
∏

i=0

(1− pi(r)π).

Then pi(r), r(v) constitute a sequential sampling equilibrium when the audit
cost is c = c′ · π.

Because this proposition shows that every imperfect audit can be trans-
lated into a perfect audit, the same selection principles can be used to choose
the maximally informative equilibrium as the uniquely plausible outcome of
the model. It also shows that, in a qualitative sense, the basic model with

10 This is an important aspect of the specification.
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perfect auditing is very robust to the incorporation of audit effort. Aside from
observing repeated audits, imperfect auditing is essentially a change in the
audit cost. It is also apparent that many different combinations of pi(r) can
result in the same p(r). It is natural to focus on the monotonic audit strategy
in which the auditor audits n(r) times with probability one until the last,
which is audited with probability pn(r). These are uniquely determined by
the probability of discovery

p(r) = 1− (1− π)n(r)(1− pn(r)π).

With this convention, as the system becomes more reliable, the number of
repetitions declines.

6 Conclusion

In this paper, we have examined a simple model in which the strategic inter-
play between commitment and informational asymmetry can be studied. This
is an alternative to the more common contracting approach in accounting,
which assumes commitment and public verifiability. The inability of the au-
ditor to commit leads to a wide variety of equilibrium auditing and reporting
behavior. It is not enough for the auditor to merely specify an audit policy;
this policy must also be consistent with expectations about the manager’s
reporting strategy and, in particular, about the interpretations formed when
unexpected, out-of-equilibrium reports are observed. These additional restric-
tions imposed on the auditor have surprising implications in permitting more
rather than fewer equilibria. Further, in the equilibria where the auditor uses
an audit policy similar to the one used in the commitment equilibrium but
the manager never uses a truthful reporting strategy, these restrictions on the
auditor can change the manager’s behavior but not the auditor’s.

By examining the plausibility of various out-of-equilibrium expectations,
we were led to a unique equilibrium in which the manager always misreports
the value of the firm, and this misreport is sometimes discovered. This is the
polar opposite of the commitment model where the value of the firm is always
truthfully reported when it is below the cutoff, and the audit never discovers a
misreport. Casual empiricism suggests that both results are extreme, as audits
sometimes, but not always, discover a misreport. These extreme results are
generic in simple models, and to obtain the middle ground it may be necessary
to depart from strict rationality assumptions.

Another difference between the commitment and no-commitment models
is that comparatively little use is made in the latter of the probability dis-
tribution of types. The upper bound and lower tail of the distribution have
marginal effects on the equilibrium, but otherwise, the reporting and audit
strategies are largely independent of the distribution. The distribution is de-
termined by institutional features, and the equilibrium’s robustness here is an
attractive feature.
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In both models, the informational role of the audit is relatively minor. To
a large extent, it is the report that conveys information on the value of the
firm. In the commitment model, this is always true, and the audit plays an
exclusively deterrent role. Many of the equilibria without commitment have
fairly uninformative reports, which leaves room for the audit to discover some-
thing, but we have shown that the equilibrium in which the reporting strategy
is maximally informative is the most plausible in this case as well. It appears
that the informational aspect of auditing is subsidiary to its deterrent role.

Comparative statics on the maximally informative equilibrium highlight
the importance of the audit cost. A change in that cost has pervasive ef-
fects on both the audit policy and reporting strategy, whereas changes in the
penalty rate on the manager or the prior distribution of firm values are of less
consequence.

We have also examined a generalization to imperfect auditing and audit
effort. Formally, the auditor’s problem becomes an infinite dynamic program
as he may now wish to repeat the audit to obtain greater confidence that
the audit was reliable. With considerable relief, we were able to simplify the
problem to a static program and show that an imperfect audit was essentially
equivalent to an increase in the audit cost of a perfect audit. In addition to
showing how audit effort responds in equilibrium to the reliability of the audit,
this robustness gives greater credibility to the basic game.
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Appendix

Because there are many equilibria of this game, it is useful to begin by stating
some conditions that will be true of all equilibria.

Lemma 1. For any equilibrium,

1. p(r) > 0 when r = 0.
2. p(r) = 0 for V − c < r ≤ V.
3. p(r) ≤ 1/(1 +M) for any report chosen by the manager.
4. p(r) is nonincreasing among the reports that may be chosen by the

manager.
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Proof.

(1) If p(0) = 0, then the manager will always choose r = 0, as this maximizes
fraud and also has no risk of discovery. But then the posterior given r = 0
will be identical to the prior, and the expected recovery from auditing will
be Ev − c > 0. Thus, the auditor will wish to audit with probability one,
a contradiction.

(2) Because the manager can never report more than the value of the firm,
the maximum amount that can be recovered from a report r ∈ (V − c, V ]
is V − r < c. Therefore, the expected recovery from such reports is less
than the audit cost, and the auditor will never audit.

(3) A probability of audit of 1/(1 +M) is just sufficient to deter all underre-
porting, so if the manager chooses a report with p(r) > 1/(1+M), he must
be reporting truthfully. Consequently, there will be nothing to recover in
such a report, and the auditor will prefer to choose p(r) = 0.

(4) A lower report implies that the manager is appropriating more of the value
of the firm to his own use. If he can obtain more rents from the firm at a
lower risk of discovery, he will never issue the higher report, contradicting
the assumption that the manager will sometimes issue the higher report.

Proof of Proposition 1

Because every type v > v1 misreports by exactly c, and because all types
v < v1 report r = 0, which is an average misreport of c, the auditor is willing
to audit with these probabilities. In turn, it is straightforward to verify that it
is optimal for the manager to make these reports when faced with this audit
policy.

To prove that this audit policy is necessary given this maximally sepa-
rating reporting strategy, we construct the unique audit probability schedule
that will induce this reporting behavior using a general technique based on
the envelope theorem. Define the maximum value function of the manager’s
reporting problem when faced with some audit probability schedule, p(r):

u(v) = max
r

[1− p(r)(M + 1)](v − r) | 0 ≤ r ≤ V.

This is the manager’s indirect utility as a function of the firm value. By the
Maximum Theorem of Berge [3], u is continuous in v, and its total derivative
is equal to the partial of U with respect to v, whenever it exists:

u′(v) =
∂

∂v
[1− p(r(v))(M + 1)](v − r) = 1− p(r(v))(M + 1) =

u(v)
v − r(v) .

Using the boundary condition that the highest type is never audited,
p(r(V )) = 0 or u(V ) = V − r(V ). The solution to this differential equa-
tion is
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u(v) = [V − r(V )] exp−
∫ V

v

1
t− r(t) dt

for v > 0, and for continuity let u(0) = 0. When r(v) = v − c, then

u(v) = c exp
v − V
c

= [1− (M + 1)p(r(v))]c.

Substituting v = r + c yields

1− (M + 1)p(r) = exp
r − (V − c)

c
.

To find p(0), we use the fact that v1 is indifferent between, r = 0 and r = v1−c

[1− (M + 1)p(0)] = u(v1) = c exp−V − v1
c

and this concludes the proof.

Proof of Proposition 2

For the first half of the proposition, suppose p(r) is the audit policy in this
equilibrium. Because p(r) < 1/(M + 1) for all equilibrium reports r, every
type r > 0 must obtain strictly positive expected utility. This implies that
p(r) must be a strictly decreasing function of equilibrium reports, as otherwise
the manager could obtain higher expected payoff by making a lower report
without incurring any increased probability of audit.

Let I(r) be the set of types who are willing to choose r:

I(r) = {v | for all r′, [1− (M + 1)p(r)](v − t) ≥ [1− (M + 1)p(r′)](v − r′)}.

We will show that I(r) must be a connected interval. Let v and v′′ ∈ I(t) and
consider v′′ > v′ > v. If r′ is not an equilibrium report, then it cannot be
preferred by v′ to r, so suppose that r′ is an equilibrium report and further
that r′ < r. Because v prefers r to r′, some algebra shows that v′ > v does
also:

[1− (M + 1)p(r)](v′ − r)− [1− (M + 1)p(r′)](v′ − r′)
= [1− (M + 1)p(r)](v − r)− [1− (M + 1)p(r′)](v − r′)

+(M + 1)(v′ − v)[p(r′)− p(r)]
≥ 0

as v prefers r, v′ > v, and p(r) is decreasing for equilibrium r. An analogous
argument shows that r′ will not prefer any r′ > r because v′′ prefers r and
v > v′. Thus I(r) is a connected interval. These inequalities also show that
if v is indifferent between distinct equilibrium reports r and r′, then v′ > v
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strictly prefers one or the other. Thus, two distinct intervals can overlap at
most at a singleton.

Because, in an equilibrium, every v must have a maximizing report, every
v is in some I(r). Therefore, the set of all I(r), for equilibrium r, form a
partition of [0, V ], except that the end points of an interval of positive length
may overlap with its neighbor. By the Maximum Theorem of Berge [3], the
maximum value function

u(v) = max
r

[1− (M + 1)p(r)](v − r) | 0 ≤ r ≤ r

is continuous in r, so that such an end point does in fact overlap with the
neighboring interval and that type is indifferent between the reports of the
two intervals. Types in the interior of an interval are in no other interval and
so strictly prefer a unique report.

Because p(r) is strictly decreasing among equilibrium reports, only the
highest interval can have an audit probability of zero. All other intervals must
have a strictly interior audit probability, which requires that the auditor be
indifferent:

c = E(v | v ∈ I(r))− r,
for all equilibrium reports r. This may hold as a weak inequality for the highest
interval. This proves (iii), as well as (i) when r = 0.

To prove (ii), recall that whenever v > 0, the manager must receive a
strictly positive expected payoff and therefore must report less than the full
value of the firm. Thus, for the lower end point of each interval

inf I(r) > r ≥ E(v | v ∈ I(r))− c,

and (ii) is proved. This shows necessity and completes the first half of the
proof.

We now show that these same conditions are sufficient for a partition to be
the reporting pools of an equilibrium. The proof is by construction and uses
an envelope argument, which is shown to be equally applicable to pooling as
well as separating equilibria.

For a interval partition P of [0, V ], let I(v) ∈ P be the interval that
contains v. Let r(v) be the pure reporting strategy

r(v) = E(v′ | v′ ∈ I(v))− c.

Because I(v) is an interval, r(v) is a nondecreasing step function; by (ii),
inf I(v) > r(v) > 0 for v > 0, and by (i), inf I(0) = 0 = t(0), so reports are
nonnegative and no type is required to report an amount greater than the
firm value. Note also that r(V ) ≤ V − c.

We can now construct a maximum value function, u(v), for the manager
using the envelope condition that the total derivative is equal to the partial
derivative of the manager’s optimal objective function with respect to v. If
r(v) is to solve the reporting problem, then the value function must be



432 K. Chatterjee et al.

u(v) ≡ [1− (M + 1)p(r(v))][v − r(v)]
and the envelope condition is that

u′(v) =
∂

∂v
[1− (M + 1)p(r(v))][v − r(v)].

We specify as boundary condition that the highest type is never audited,
p(r(V )) = 0 or u(V ) = V − r(V ). The solution to this differential equation is

u(v) = [V − r(V )] exp−
∫ V

v

1
t− r(t) dt

for v > 0, and for continuity let u(0) = 0. The remainder of the proof consists
of constructing an equilibrium that yields this u(v) when the manager reports
r(v).

To specify audit probabilities for equilibrium reports, construct p(r(v)) so
that if v chooses r(v), he attains u(v):

[1− (M + 1)p(r(v))][v − r(v)] = u(v).

These audit probabilities are strictly less than 1/(M+1), as u(v)/[v − r(v)] > 0.
For reports off the equilibrium path, let

p(r) =
{

1 if r < V − c
r 0 otherwise.

The auditor is willing to choose these probabilities because, for equilibrium
reports, r(v) was constructed to leave the auditor indifferent. Probability as-
sessments for out-of-equilibrium reports can easily be constructed so that
when r < V − c, the auditor believes it is some type v ≥ r + c and wishes
to audit; when r > V − c, the auditor believes it is some type v ≤ r + c and
prefers not to audit.

Given these audit probabilities, we must show that r(v) is a maximizing
report for the manager. He will not choose any off-equilibrium report that is
audited with probability zero because there is the lower equilibrium report
r(V ) that is also never audited. He will not choose any other off-equilibrium
report because these are audited with probability one. Therefore, it remains
only to show that manager v prefers r(v) to any other equilibrium report
r(v′):

u(v) ≥ [1− (M + 1)p(r(v′))][v − r(v′)].
Using the definition of u(v′), this is equivalent to

u(v)
u(v′)

≥ v − r(v′)
v′ − r(v′)

or,

exp−
∫ v

v′

1
t− r(t) dt ≥ exp−

∫ v

v′

1
t− r(v′) dt.

But this last inequality holds because r(v) is a nondecreasing step function.
This proves sufficiency and completes the proof.
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Proof of Proposition 3

Because the audit probability 1/(M+1) gives the manager an expected payoff
of zero, if (i) is the audit strategy, then for v > r∗, the manager will report r∗,
the lowest report that is not audited, and for v ≤ r∗, will be indifferent among
all reports r ∈ [0, v]. Therefore, the manager will report r∗ if v is in the highest
interval I∗ = [r∗, V ]. From Proposition 1(ii), reports r ∈ (V − c, V ) will never
be audited, so it must be that r∗ ≤ V − c and this proves (ii). Also, according
to (i), the auditor cannot strictly prefer to audit r∗, so c ≥ E(v | [r∗, V ]− r∗),
and (iii) holds for I = I∗.

If the reporting strategy is monotone, the set of firm values for which the
manager issues the same report must be a connected interval. Because v = 0
is constrained to issue report r = 0, the set of values that issue that report
must be the interval I0 = [0, v1], in which E(v | I0) = c, in order to induce
the auditor to audit r = 0. This proves (i) and (ii) for I = I0.

For other intervals, I, the reports issued when the firm value is in I will be
audited probabilistically, so the expected misstatement must equal the audit
cost, E(v | I)− r = c, when r is reported by the values in I. This establishes
the reporting strategy for I 	= I∗. Finally, the manager is constrained never
to report more than the value of the firm, so if r is reported by the values in
I, this reporting strategy implies that r = E(v | I) − c ≤ inf I, and (iii) is
proved.

It is straightforward to verify the second half of the proposition so its proof
is omitted.

Example of Nonmonotone and Mixed Reporting
Strategies

Proposition 3 shows that there are an extremely large number of well-behaved
step function equilibria: subject to mild conditions, any pooling of types by
reporting strategy into connected intervals can be an equilibrium. However,
even these conditions are not sufficient, as by relaxing the requirement that
reporting strategies be monotone, we can also generate an equilibrium in which
the pools are not connected intervals and can then generate mixed reporting
strategy equilibria.

Example 8. Let V = 5 and c = 1. Consider the nonmonotone reporting strate-
gies for the nonconnected pools:

r(v) =

⎧

⎨

⎩

0 if v ∈ [0, 1] ∪ [2, 3]
1 if v ∈ (1, 2) ∪ (3, 4)
4 if v ∈ [4, 5]
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and audit strategy

p(r) =
{

1/(M + 1) if r < 4
0 otherwise.

Suppose v is uniformly distributed within each of these five intervals [n−1, n]
but that the probability mass of each interval, qn, may differ. Set the expected
recovery from auditing r = 0 and r = 1, respectively, to be equal to the audit
cost

(.5q1 + 2.5q3)
(q1 + q5)

= 1

(1.5− 1)q2 + (3.5− 1)q4)
q2 + q4)

= 1,

or
q1 = 3q3
q2 = 3q4

respectively. Clearly, these can be chosen small enough so that the auditor is
willing to audit r = 0 and 1, and there is some positive residual probability
for q5. The out-of-equilibrium beliefs necessary to support this as an equilib-
rium can be specified easily enough so that any report not used in equilibrium
is audited with probability 1.

However, in a preview of the argument used in Proposition 4, these equi-
libria do not survive plausible restrictions on beliefs off the equilibrium path.
Suppose a report of 3.99 is made and audited with a probability p. Obvi-
ously, this can only be from types in [3.99,5] because all other types will get
a negative payoff even if p = 0. Consider some v ∈ (4, 5]. The equilibrium
payoff for these types is v− 4, because a report of 4 is not audited. Therefore
such a type will be indifferent between deviating and playing equilibrium if
(v−3.99)(1− (M +1)p) = v−4. The quantity v−4

v−3.99 is increasing in v, there-
fore v = 4 will strictly prefer deviating for values of p for which higher types
would be indifferent, so that the deviation to 3.99 can only come from [3.99,4].
Given this, 3.99 will not be audited, so this equilibrium does not survive D1
(see the proof of Proposition 4) below.

Example 9. Let everything be as in Example 1 and assume specifically that
q1 = q2 = .10, q3 = q4 = .30, and q5 = .20. The proof of Proposition 4
shows that there is also an equilibrium with monotone reporting strategies
and connected pooling intervals. In particular, it is

r(v) =

⎧

⎨

⎩

0 if v ∈ [0, 2]
2 if v ∈ [2, 4]
4 if v ∈ [4, 5]

with the same audit strategy as in Example 8. This is an equilibrium because
v is uniform on each of the above three intervals, so E(v | v ∈ [0, 2]) = 1 and
E(v | v ∈ [2, 4]) = 3.
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To construct a mixed reporting strategy equilibrium, suppose the manager
randomizes among the reporting strategies of these two equilibria according
to the flip of a coin, i.e., independently of v. If the auditor observes a report
of 1 or 2, he knows which equilibrium is being played, but not if he observes
0 or 4. In either equilibrium, he is willing to audit reports less than 4, so he
is still willing even without being able to infer the equilibrium.

Proof of Proposition 4

We first show that D1 eliminates the pooling equilibria of Proposition 2, in
which the reporting strategy is monotonic and the equilibrium audit prob-
abilities are strictly decreasing. Let rn < rn+1 be two adjacent equilibrium
reports, with audit probabilities pn > pn+1, sent by types in the intervals
[vn, vn+1] and [vn+1, vn+2], respectively, with vn < vn+1 < vn+2. Consider an
out-of- equilibrium report r ∈ (rn, rn+1).

The largest audit probability, p, for r such that a type v ∈ [vn, vn+1] will
weakly prefer r to his equilibrium report rn is given by

1− (M + 1)p = [1− (M + 1)pn]
v − rn
v − r .

Because r > rn, the right-hand side is decreasing in v, so the v ∈ [vn, vn+1]
with the largest such p is the upper bound, vn+1. A parallel argument estab-
lishes that the v ∈ [vn+1, vn+2] who has the largest such p is the lower bound,
vn+1. This shows that among types in the two adjacent pools who make re-
ports just above and just below the out-of-equilibrium report, D1 requires
that the auditor believe it is only the boundary type who could have sent the
report. A similar argument also shows that the auditor will believe it is this
boundary type among all other pools.

We now ask what these beliefs imply about the auditor’s choice of au-
dit probabilitites for out-of-equilibrium reports. Consider first the out-of-
equilibrium reports r ∈ (0, v1 − c) that are common to every equilibrium
of Proposition 2, including the maximally informative equilibrium. The audi-
tor must believe all these are sent only by v1. But as v1 − r > c, he will audit
all these with probability one. This is fine, because the manager will then be
deterred from sending these reports, as was desired.

Now consider any other out-of-equilibrium report r ∈ (rn, rn+1), bounded
by two pools. By Proposition 2, to convince the auditor to audit rn+1 with
the required probability we must have

rn+1 = E(v | v ∈ [vn+1, vn+2])− c.

In particular, rn+1 > vn+1 − c, so there is an out-of-equilibrium report r ∈
(rn, rn+1), but sufficiently close to rn+1, such that r > vn+1−c or c > vn+1−r.
Therefore, the auditor will not audit this r, and because it is not audited, types
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who should have chosen higher reports will now choose here, thus destroying
every equilibrium containing a higher pool.

The maximally informative equilibrium also contains no reporting at the
highest reports, r ∈ [V −c, V ]. D1 requires that the auditor believe type V sent
these reports and so he will not audit, as in the lemma, which is as specified
for the maximally informative equilibrium.

Turning finally to the commitment-like equilibria of Proposition 3, note
that reports in (r∗− c, r∗] must never be chosen by the manager. If one were,
then v = r∗ is the largest that the firm value could be, because these reports
are being audited with probability 1/(M + 1), and values v ∈ (r∗, V ] would
prefer to choose r∗ and not be audited. Consequently, the auditor would not
audit such a report, a contradiction, and so reports in (r∗ − c, r∗] are out-
of-equilibrium. By similar arguments as above, D1 requires that the auditor
believe that v = r∗ sent such report, r; so v − r < c and the auditor will not
audit r, thus eliminating these equilibria as well.

Proof of Proposition 5

The pi(r) have been defined so that the probability of discovery is p(r). Be-
cause the manager cares only about this probability of discovery, he will be
willing to report r(v). Conversely, suppose that the manager reports according
to r(v). Then p(r) solves

max E [v − r + p(c′ − (v − r)) | r]
= E [v − r | r] + p[c− πE(v − r | r)]/π

so, p[c − πE(v − r | r)] is zero for every r. Therefore, whenever, p(r) > 0 in
perfect auditing, the manager will be willing to choose pi(r) > 0 at any stage
in imperfect auditing, and conversely as well. In particular, the manager will
be willing to choose a combination of pi(r) such that

p(r) = 1−
∞
∏

i=0

(1− pi(r)π)

as is required.
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Abstract Efficiency and optimality are the two primary and generally conflicting
goals in any auction design: the former focuses on the social welfare of the whole
seller–bidder system, whereas the latter emphasizes revenue-maximizing on the seller
side. In this chapter, we review the auctions design problem based on these two
aspects in various information structures and circumstances. The most recent results
are collected and analyzed. This chapter tends to complement the survey, Auction
Theory: A Guide to the Literature, by Klemperer [58] in 1999. The main objective of
this chapter is to provide a thorough survey on the current auctions design literature
and to synthesize the developed theories underlying traditional auctions with the
new elements and phenomena from the emerging and rapidly growing areas, such as
online auctions.
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1 Introduction

An auction is a game with partial information where a player’s valuation of an
object is hidden from other players. It serves as a popular method in resources
(goods) allocation to specify a set of rules to determine the winner(s) and the
related payments. A typical setting of the auction is that a seller attempts
to sell one or more items to a set of bidders. The involved players (seller and
bidders) do not have complete information about the value of the items on
sale in the sense that they do not know others’ values but know their own
values, which may or may not be affected by others. All players are assumed
to be selfish and payoff-maximizing. The auction theory studies the behavior
of the players in this noncooperative environment.

Auctions can be used to sell (allocate) almost all kinds of goods. Govern-
ments use them to sell public resources such as radio spectrum licenses and oil
drilling rights; firms and individuals use them to sell houses, flowers, antiques,
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etc. Auction theory itself is an important part of economic theory, and it helps
to understand properties of the markets, such as the price formulation and in-
formation structures. They also find applications in fields of computer science,
such as allocating bandwidth in the communication networks.

Depending on what environment an auction takes place in, we can catego-
rize the auctions in various ways in terms of characteristics of goods, bidders,
timing of process, and payment rules. Single-object auctions and multiobject
auctions are one of the most obvious and important classifications. Auctions
can be oral (bidders hear each other’s bids and make counter-offers) or writ-
ten (bidders submit closed, sealed-bids in writing). In an oral auction, the
number of bidders may be known, but in a sealed-bid auction it may be un-
known. In terms of the characteristics of the bidders, the auctions can be
symmetric and asymmetric, depending on whether the bidders’ private val-
ues or signals are drawn from a common distribution; they can be a private
value or common value model, depending on whether the bidder’s valuation
will change after others’ information is revealed. It is also obvious that the
situation will be different if bidders are risk averse instead of risk neutral. In
terms of payment rules, they can be classified as a first-price and second-price
auction, or discriminatory and uniform payment in the multiobject environ-
ment; there exists all-pay auction: the bidder with the highest valuation wins,
but all pay their bids. Depending on whether the price increases or decreases,
they can be ascending price auction (or English auction) or descending price
auction (also known as Dutch auction). In multiobject auctions, researchers
consider whether the items to be sold are identical or not (homogeneous or
heterogeneous); whether bids are allowed only for individual items or for com-
binations of items (individual or combinatorial); whether items are auctioned
one at a time or all at once (sequential or simultaneous). A detailed frame-
work for classifying and describing single-object auctions is provided in [30].
More technical contents and material can be found in the survey by Klemperer
[58], the two-volume of critical papers collection in [57], and in the book by
Krishan [59].

In this chapter, we categorize the auctions based on the the primary goal of
the auctions for the seller (or designer, planner): optimality and efficiency. Op-
timal auctions are designed to maximize the expected revenue of the seller by
a set of tools including posing a reserve price or charging an entry fee, whereas
the objective of efficient auctions is to maximize the social welfare, the sum of
the players’ surplus. In other words, the efficient design aims to maximize the
system welfare, whereas the optimal design aims to maximize the seller’s indi-
vidual revenue. Because optimality and efficiency usually cannot be achieved
simultaneously, the auction designers have to make the choice before starting
to address the rules. A financial self-interested agent may prefer the optimal
auctions, whereas a public agent like the government may prefer the efficient
auctions to gain more social welfare. Nevertheless, all agents need to balance
optimality and sufficiency to make the auctions practical.
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Most of the work ([25,46,84,106], among others) in the earlier stage (1960s
and 1970s) deals with the efficient auctions (mechanisms) design. Another im-
portant strand concerning the design of optimal auctions has evolved starting
with Myerson’s [89] and Riley and Samuelson’s [95] work in 1981. Since that,
much effort has been devoted to both issues in auction theory. This chapter
will trace the tradition but survey more recent findings in this field, which are
mainly discovered after the year 2000.

The rest of this chapter is organized as follows. The efficient auctions
design is presented in Section 2. We survey the optimal auctions design in
Section 3, where the revenue equivalence theorem and the role of the reserve
price are discussed with more detail. The trade-off between optimality and
efficiency is discussed in Section 4. We conclude in Section 5 with a discussion
on future research directions.

2 Efficient Auctions Design

The simplest and most thoroughly investigated auction model is the sym-
metric independent private values (SIPV) model with risk-neutral bidders, in
which (1) a single indivisible object is for sale (single-object auction); (2) each
bidder knows his own valuation about the object but no one else dose (private
value). The unknown valuations are independent and identically distributed
(independence, symmetry); (3) all bidders are ex ante identical (symmetry);
(4) bidders are risk-neutral. This model serves as a prototype in the research
of auction theory. All results in the literature either can be derived directly
from this model or come from relaxing some assumptions or with some other
features and information in different situations.

The standard methodology used in auctions design, like other fields in
game theory, is to derive and characterize the (Bayesian) Nash equilibrium,
which can be used to predict the bidders’ behavior and is a function of the auc-
tion’s rules and usually involves order statistics. Reference [16] and Chapter 8
in [114] give an excellent introduction to these methodologies.

The efficiency problem in the single-object auction where buyers have pri-
vate values is theoretically solved in Vickrey’s pioneering work [106]. The
winner is the buyer whose valuation of the good is highest and will pay the
second highest value. Truth-telling is a weakly dominant strategy for any
buyer. The mechanism is known as Vickrey’s auction,1 which also applies in
the case of multiple identical objects. This format is significantly extended
to a mechanism called Vickrey–Clarke–Groves (VCG) mechanism.2 The VCG
mechanism works for homogeneous goods as well as heterogenous ones in pri-
vate value environment. We do not intend to repeat the mechanism description
here. The designer usually needs to solve an optimal assignment problem:

1 It is also referred to as the second-price sealed-bid auction.
2 It is introduced in Clarke [25] and Groves [46].
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max
∑

j∈N

∑

S⊆M

vj(S)y(S, j) (1)

s.t.
∑

S�i

∑

j∈N
y(S, j) ≤ 1,∀i ∈M (2)

∑

S⊆M

y(S, j) ≤ 1,∀j ∈ N (3)

y(S, j) = {0, 1},∀S ⊆M, j ∈ N (4)

where N is the set of bidders, M is the set of objects, S is the subset in M for
any partition. vj(S) is the value of S from bidder j. y(S, j) are binary variables:
It is one if S is assigned to j; otherwise, it is zero. This assignment allows the
bidders to simultaneously submit “all-or-nothing bids” for combinations of
the items being sold. It leads to the combinatorial auction design problem.
Pekeč and Rothkopf [92] provide an excellent assessment of the current state
of the art on the practical combinatorial auction design.

The efficiency of the VCG mechanism comes from the payment rule that
a winning bidder pays the opportunity cost for the items won, that is the
difference between the total maximum social welfare with and without the
winning bidder himself. Some excellent work on VCG mechanism can be found
in [109] and [15].

However, because the efficiency heavily depends on the optimal solution to
the assignment problem, which is NP-hard, the VCG mechanism is impractical
to implement in general. The computation issues are discussed in [97,109], and
[15], among others.

Besides the standard efficient auction formats, there are various variations
of the VCG mechanism or the Vickrey auction especially in multiple objects
setting. Ausubel makes a great contribution to the development of this as-
pect in a series of papers: He studies a generalized Vickrey auction in [6],
an ascending-bid auction for multiple identical objects in [5], and a dynamic
auction for heterogeneous commodities where bidders are permitted to strate-
gically exercise their market power in [4]. The ascending-bid auction in [5] and
the dynamic auction in [4] share the same idea: A bidder wins a unit at the
price3 when some other bidders reduce their demands, and the sum of total
demands of all the others becomes lower than the number of units available.
Immediately thereafter, the total number of units available and the demand
of the winner are reduced by one. If no other bidder clinches at this price, the
auction continues until all units are allocated. In the case of single-object auc-
tion, Maskin [71] shows that under a broad class of assumptions, an ascending
auction is efficient if bidders’ private signals are single-dimensional, even with
asymmetries among bidders and common-value components to valuations.
Bikhchandani [14] analyzes the simultaneous sealed auctions and shows that
the pure strategy Nash equilibria are efficient in this setting.

3 Price vector, in the case of heterogeneous objects.



Optimality and Efficiency in Auctions Design: A Survey 441

The Vickrey auction and most of the standard simple auction formats
fail to be efficient if the private value assumption is dropped [70]. Recently,
researchers have made progress to accommodate the interdependent values
settings—where one buyer’s valuation depends on the private information of
another buyer. Researchers generalize the standard simple auction formats,
such as the Vickrey auction and English auction, to capture this new fea-
ture by modifying the bid report process and payment methods. When each
bidder’s signal is one-dimensional, the mechanisms in Dasgupta and Maskin
[31] and Perry and Reny [93, 94] attain efficiency. In [31], the Vickrey auc-
tion is extended to allow bidders to make contingent bids—bids that are the
functions of other bidders’ valuations—whereas in Perry and Reny’s method,
the efficiency is achieved by using a two-stage auction. In the first stage,
bidders’ true signals are revealed in any way, then in the second stage,
all possible pairs of bidders are formed, and each pair plays the Vickrey
auction.

By separating the winners and the prices determination processes,
Izmalkov proposes an efficient mechanism that consists of a number of se-
quential single-unit English auctions in [50]. Mezzetti [82] presents an efficient
mechanism in an environment where first, the final allocation of the goods is
determined, second, the bidders observe their own outcome-decision payoffs,
and last, final transfers are made. The mechanism incorporates the informa-
tion of bidders’ types and their pre-monetary transfer payoffs. However, in a
general mechanism design framework, Jehiel and Moldovanu [52] examine the
difficulty/impossiblity in implementing the efficient decision rules when types
are multidimensional and continuous, which is natural when there are multi-
ple nonidentical objects. When agents’ types are independently distributed,
efficient design is possible only when a certain “congruence condition relating
the social and private rates of information substitution is satisfied” ([52],
p. 1237). This is mainly because the bidder’s single-dimensional transfers
are not able to extract bidders’ multiple dimensional information. However,
relaxing the Jehiel–Moldovanu’s assumption that bidder’s private information
is independently distributed, McLean and Postlewaite [78] and Johnson et al.
[54] show the existence of efficient auction mechanisms. Eső and Maskin [37]
also investigate the efficient design issue when signals are multidimensional.

The inefficiency of standard auctions even exists in the sale of homogeneous
objects as illustrated in [5] and [8]. Particularly, in an ascending multiobject
auction, a bidder with large demands has an incentive to reduce demand in
order to pay less for those units he won. Ausubel and Cramton [8] demonstrate
the inefficiency in various auction settings: flat demand and downward-sloping
demand, independent private values and correlated values, and uniform pric-
ing and pay-your-bid pricing. The inefficiency results are demonstrated and
measured in many experimental studies that are not included in this survey.

Efficient mechanism design also has been studied under some other new
settings. Jackson and Kremer [51] compare the auction formats in a com-
petitive environment where large numbers of agents compete for a limited
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supply of resources. Chen et al. [22] consider the multiunit efficient auctions
for procurement in the supply chain settings that incorporate the transporta-
tion costs into the auctions.

3 Optimal Auctions Design

The problem of designing an auction that maximizes the seller’s revenue (op-
timal auction) is usually more challenging, especially in the case of multiple
heterogeneous objects. However, Myerson’s revelation principle (see [89]) al-
lows one, without loss of generality, to restrict attention to a direct-revelation
mechanism that is used to prove a surprising result called “revenue equivalence
theorem.” His paper provides the framework that has become the paradigm
for the research of optimal mechanism design for selling one or more homoge-
neous objects.

In this section, we will review the results on the revenue equivalence the-
orem under different circumstances. In the case that this theorem does not
hold, we compare different auction formats based on the revenue-generating
ability. Because the reserve price is one of the main tools to maximize the
seller’s revenue, we present the main results in this aspect. A buyout price
evolving from online auctions is also discussed. We will discuss the trade-off
between optimality and efficiency in auctions design in next section.

3.1 Revenue Equivalence Theorem

Vickrey ([105, 106]) examines the possibility that different auction formats
might give the same expected revenue to a seller of one or more homogeneous
objects. The results are significantly generalized by Myerson [89] and Riley and
Samuelson [95]. Myerson is considered to provide a more general treatment.

Consider an auction in which a seller is selling one or more homogeneous
objects4 to N bidders. Each buyer i has unit demand and he values the object
at vi, which is private information, but it is common knowledge that valuations
are independent identically distributed with cdf F and pdf f on the support
[0, v̄]. vi is used to represent the ith bidder’s type. v−i is the types of all
bidders but the ith. That is, v−i = (v1, v2, . . . , vi−1, vi+1, vi+2, . . . , vN ).

The buyer who is assumed to be risk neutral tends to maximize his own
expected surplus, defined as his valuation less the expected amount paid to
the seller. Although the auction mechanism consists of both allocation (p)
and payment rules (x), the seller’s expected revenue can be expressed only as
a function of the allocation rule and the expected surplus for the buyer with
type zero. More specifically, the allocation function (p) for bidder i can be
expressed as
4 Myerson’s original work only consider the single-object case. The extending re-

sult about multiple homogeneous objects is due to Maskin and Riley [72] and
Engelbrecht-Wiggans [33].
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pi(vi, v−i) =
{

1, if buyer i is awarded a unit,
0, otherwise.

If the functions pi(·, v−i) is increasing in vi, and let U(p, x, 0) be the ex-
pected surplus for the buyer with type zero, then the seller’s expected revenue
is given by

Evi,v−i

[

N
∑

i=1

(

vi −
1− F (vi)
f(vi)

pi(vi, v−i)
)

]

−N × U(p, x, 0). (5)

It follows that all mechanisms, which result in the same allocation p for
each realization of v, yield the same expected revenue provided U(p, x, 0) are
the same. This condition can be easily satisfied in most auction formats. This
result is called Revenue Equivalence Theorem.5 For example, all the “stan-
dard” auctions, such as the first-price and second-price auction, for selling
one object yield the same expected revenue as they all award the object to
the buyer with highest valuation, and the bidder with the lowest possible type
receives zero expected revenue.

Because this result is so fundamental and mathematically nice, researchers
explore different ways to derive, extend, and understand it. Engelbrecht-
Wiggans [33] extends the original result to multiple-unit auctions. Bulow and
Roberts [18] reinterpret it in the language of microeconomic theory, specifi-
cally, the logic of the marginal revenue versus the marginal cost.

Furthermore, the result also provides a way to design an optimal mech-
anism. This is achieved by simply choosing the allocation rule p(v) that
maximizes

∑N
i=1

(

vi − 1−F (vi)
f(vi)

pi(vi, v−i)
)

in (5). That is, the mechanism will

award the object according the rank of so-called virtual value vi − 1−F (vi)
f(vi)

,
provided this value is above zero. If the virtual value function is increasing in
vi, we can simply define the reserve price as

{

v0 : v0 − 1−F (v0)
f(v0)

= 0
}

. Here we
also can see the optimal auction is in conflict with the efficient auction. The
seller may keep the object even if his value is zero and the allocation rule is
based on the rank of virtual values not the actual values from bidders.

By relaxing one or more assumptions underlying hypotheses of the rev-
enue equivalence theorem, researchers either show that the theorem continues
to hold or rank the auction format in terms of revenue-generating ability in
more realistic settings. Milgrom and Weber [83] rank the classic auction for-
mats, showing that the second-price auction produces no less revenue than
the first-price auction if the bidders valuations are dependent and the sig-
nals are affiliated. A complete list of papers published before the year 2000
can be found in Klemperer’s extensive survey [58] under the sections such as

5 The result applies to the private-value models and to a more general common-
value models provided bidders’ types are independent.
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“Risk aversion”6 and “Correlation and affiliation.”7 The impact of the bid-
ding behavior on the revenue equivalence theorem is surveyed in Shen and Su
[100].

If the single-object assumption is relaxed, extra efforts are needed to de-
velop the theories. Maskin and Riley [72] study the optimal selling procedure
when the buyer has a multiunit demand. Palfrey [90] considers the bundling
decisions that depend on the number of buyers. If the objects are heteroge-
neous, the substitution and complementarity among the objects can further
complicate the problem. The typical approach in the literature is to analyze
the simplified models thoroughly, usually the one with two objects or bid-
ders, and get the insight from these models. Rochet and Stole [96] summarize
some revenue comparison results in the multiobject setting. Levin [63] identi-
fies the optimal auction formats when all objects are complement for bidders.
Armstrong [2] considers the revenue equivalence in the heterogeneous case
with restriction to a binary distribution.

Fibich et al. [41], using the perturbation analysis, show a weak version
of the revenue equivalence theorem in the sense that the revenues differences
across the auction mechanisms are only of second order in asymmetric auc-
tions, where the distribution function of each bidder undergoes a mild inde-
pendent change beyond the initially identical distributed function. Eső and
Futó [36] show that for every incentive compatible selling mechanism, there
exists a mechanism that provides deterministically the same revenue when
the seller is risk averse while bidders are risk neutral with independent pri-
vate values.

The proof of the revenue equivalence theorem largely relies on the Reve-
lation Principle developed in [89], however, Szentes [102] presents a method
to transfers an equilibrium strategy profile from the first-price auction to the
second-price auction. Using this method, he shows the revenue equivalence
when the independence and the private value assumptions of Vickrey’s classic
model are dropped.

3.2 Optimal Auctions Design and Revenue Comparison

Another stream in literature is to find a particular auction format to maximize
the seller’s revenue or to compare different formats in some nonstandard but
practical environments.

Krishna and Rosenthal [61] attempt to make revenue comparisons in the
case that one bidder is local who is interested in receiving a single item; the
other is global, who has the valuation for the entire set that are superaddi-
tive. An experiment is provided in [27] to compare a particular simultaneous
multiround auction with a particular multiround combinatorial auction. Eliaz
et al. [32] and Goeree et al. [44] study how to increase revenue through the

6 Relaxing the risk neutral assumption.
7 Relaxing the private information assumption.
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right-to-choose auctions8 to sell multiple heterogenous goods. Mondere and
Tenneholtz [88] address the optimal auction format in computational envi-
ronments such as the Internet. They present an upper bound on the revenue
with a fixed number of risk-averse participants and discuss the conditions that
make standard auctions to approach the theoretical bound.

Bundling, i.e., subcollections of objects, is quite commonly used to sell
multiple objects. Manelli and Vincent [68] identify environments in which
bundling is optimal within the class of all incentive compatible and individu-
ally rational mechanisms. Avery and Hendershott [11] propose a probabilistic
bundling method in their optimal auctions for multiple products. Like in [4],
they use a binary distribution to simplify the analysis. Under the restriction
of the binary distribution, Eső [35] studies the expected revenue maximization
mechanism with the risk-averse bidders and the correlated private values. He
finds that the sufficiently strong correlation of the valuations helps the seller
to extract all rents even from the risk-averse bidders, which complements the
result in [26].

Without the known demand distribution, Segal [103] investigates how to
set a price for each buyer on the basis of the demand distribution inferred
statistically from other buyers’ bids. Relaxing the single-dimensional private
information, Fang and Morris [38] show that the revenue equivalence between
the first-price and second-price auctions breaks down and there is no definite
revenue ranking in the multidimensional private value auction environments,
where each bidder observes his own private valuation as well as noisy signals
about his opponents’ private valuation. With resale opportunity, the Myerson
allocation [89] cannot achieve optimality. Haile [48] analyzes the resale game
when new information about the good on sale is revealed after a standard
auction, whereas Zheng [116] considers the model without the new information
appearing and focuses on the tension between a seller’s manipulation and the
counterbalance from resale. On the other hand, Skreta [101] studies a two-
period model where a seller reserves the right to sell the unsold object. In this
model, the seller will implement two revenue maximizing mechanisms with
possible different buyer-specific cut-offs in two periods.

The optimal auction design in a multiple objects model with multidimen-
sional bidder valuations is challenging, because it is difficult to represent the
monotonicity relationship in the incentive-compatibility condition, which is
fairly easy in a single-dimensional case, as shown in [89]. The breakthrough
is done by McAfee and McMillan [77] where they use a system of partial dif-
ferential equations to express the incentive-compatibility constraint to study
the nonlinear pricing mechanism. The latter, extended in [3], is adapted by
Zheng [115] to provide an explicit formula of optimal auctions in the multi-
dimensional setting. Manelli and Vincent [69] instead develop the procedure
to check the relationship between a mechanism and an extreme point of the

8 The winner of each stage has the right to choose one of the available objects. It
creates competition when the heterogenous objects are put together.
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feasible set in a similar multidimensional setting. Malakhov and Vohra [67]
study the optimal auction design with single and multidimensional types by
interpreting the problem through a linear program that is an instance of a
parametric shortest path problem on a lattice.

3.3 Reserve Price and Buyout Price

Setting a reserve price or charging an entry fee is one of the main ways to
implement the optimal auctions. Beginning with Myerson’s result [89] on the
risk-neutral independent-private-values (IPV) auction model, researchers have
extensively explored the role of the reserve price in different circumstances.

In Myerson’s original model, the reserve price is independent of the num-
ber of bidders, which is notable but puzzling because it conflicts with common
practice. Levin and Smith [64] show that the seller’s optimal reserve price con-
verges to his true value as the number of bidders grows when bidders’ valuation
are correlated. The similar phenomena exists in a ranked-item environment as
discussed in Feng et al. [40]. Ausubel and Cramton [10] generalize the Vickrey
auction to allow for reserve pricing in a multiunit auction with interdependent
values.

Engelbrecht-Wiggans [34] particularly studies the screening effect on the
number of bidders from the reserve price. In his two simple examples, he
illustrates that a reduced pool of bidders may outweigh any benefits from a
reserve price. Equilibrium reserve prices in sequential ascending auctions is
studied in [21], where Caillaud and Mezzetti analyze the bidder behavior in
two ascending-price auctions with the seller setting the reserve price before
the beginning of each auction.

The reserve price is valuable to a seller but she may have to commit not
selling the object below the reserve price in any mechanism. If without this
commitment, Menezes and Ryan [81] find that the value of the reserve price
may be completely undermined if the seller lacks enough power to negotiate
with the highest bidder if the reserve price is not met. However, if potential
bidders in an auction have to incur a cost to prepare their bids and thus
to learn their valuations, it is optimal to impose an announced reserve price
in the first-price auction without commitment as suggested in Burguet and
Sákovics [19].

When a seller wants to auction off many similar items over a long period
of time, McAfee et al. [76] propose methods on how to set reserve price by
using data from past auctions and information about the subsequent sales of
unsold items.

whereas the literature on the reserve price is large, existing research work
on buyout prices is recent and relatively limited. Buyout prices allow bidders
to instantaneously purchase an item at a specified price, mainly through online
auctions. The comprehensive survey by Klemperer [58] makes no mention of
buyout prices, whereas Lucking-Reiley [66] observes its use in online auction
practices but points out the lack of the theoretical literature in 2000.
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Among the first set of the theoretical papers on buyout prices, Kirkegaard
and Overgaad [56], Budish and Takeyama [17], Mathews [74], and Hidvegi
et al. [49] investigate the reason why the buyout price may increase the seller’s
revenue under various circumstances, such as the information revelation in the
sequential auctions [56]. Gallien and Gupta [45] extensively study the role of
the time sensitivity of both sellers and buyers in using the temporary and per-
manent buyout options. A similar model can also be found in Caldentey and
Vulcano [28], which studies a “dual auction and list price channel” resembling
an auction with buyout prices. The empirical study can be found in Wang
et al. [112]. Their main finding is that the combined mechanism can increase
both customers’ utility and sellers’ profit under certain conditions. The result
is empirically tested using data collected from eBay.

4 Optimality Versus Efficiency: Trade-off
and Asymptotic Properties

No mechanism designers can solely focus on either optimality or efficiency in
order to put the auctions in practice. They have to find a way to balance
these two aspects. However, not much research has been done in this area.
Krishna and Perrey [60] prove that in the independent private values model,
the VCG mechanism maximizes the revenue for the seller among all auctions
that implement the efficient allocation. Williams has shown the similar result
in [111].

It is well-known that optimality and efficiency conflict in general. Jehiel
and Moldovanu [53] show that there is a conflict between revenue maximiza-
tion and efficiency in multiobject auctions even with symmetric bidders.

With the perfect resale option, Ausubel and Cramton’s finding [7] reveals
that the efficiency is regained in an optimal auction: the seller will assign goods
to those with the highest valuation. Likhodedov and Sandholm [65] study
the trade-off between the optimality and efficiency objectives by designing a
deterministic dominant strategy mechanism that maximizes expected social
welfare (efficiency) subject to a minimum constraint on the seller’s expected
payoff (optimality).

However, when the number of bidders becomes very large (approaches
infinity), most standard auctions approach optimality and efficiency simulta-
neously regardless of whether the bidders are symmetric or asymmetric, risk-
neutral or risk-averse. See, for example, Swinkels [104] and Bali and Jackson
[12] for a more detailed analysis. Fibich et al. [42] provide more accurate
characteristics of how large should the number of bidders be and the con-
verge rates. Similar work can also be found in Monderer and Tennenholtz
[87] in which they prove that Clarke mechanism is an asymptotically optimal
multiobject auction.
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5 Conclusion and Future Directions

This chapter provides an overview of the main results on auctions design
from the year 2000. It focuses on the two themes in auctions design: efficiency
and optimality. This survey can provide readers a comprehensive guide to the
ongoing research in this field.

Although the theoretical and empirical research bases for traditional auc-
tions are well established, some current results, in particular, those restricting
to the assumptions of binary distributions, two bidders, or two objects, are
worth further investigation to handle more general cases.

Another important direction is to continue to incorporate some new ele-
ments arising from real-life applications, especially interacting with the supply
chain management and the online environment.

Recently, van Ryzin et al. [98, 107] studied optimal auction design in the
setting of inventory management. More research is needed to understand how
auctions can be embedded in the supply chain management, not limiting in
procurement, and how they can potentially redefine the supply chain with the
help of the Internet.

The features of the online auctions are usually investigated separately in
the current research. This trend is expected to continue to grow as we still
have not fully gained the understanding of elements involved in the online
auctions, such as unknown demand, fairness, reputation, and false identity.
The ultimate goal is to synthesize the current results and data from the current
online auction practice to design future trading mechanisms.

6 Bibliographic Notes

The double auctions, which are completely ignored here, are reviewed in Fried-
man and Rust [43]. Their recent development can be found in Chu and Shen
[23,24] and references therein.
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Abstract When modeling an organizational bilevel decision problem, uncertainty
often appears in the parameters of either objective functions or constraints of the
leader and the follower. Furthermore, the leader and the follower may have mul-
tiple objectives to consider simultaneously in their decision making. To deal with
the two issues, this study builds a fuzzy multiobjective linear bilevel programming
(FMOLBLP) model. It then proposes the definitions of optimal solutions and related
theorems for solving a FMOLBLP problem. Based on these theorems, it develops
an approximation Kuhn–Tucker approach to solve the FMOLBLP problem where
fuzzy parameters can be described by any form of membership functions of fuzzy
numbers. An example illustrates the applications of the proposed approach.

Key words: bilevel programming, bilevel decision making, fuzzy optimiza-
tion, fuzzy numbers, Kuhn–Tucker approach, multiobjective programming

1 Introduction

The bilevel decision making structure appears naturally in many critical re-
source planning, management, and policymaking areas, including tourism
resource planning, water resource management, financial planning, health-
care planning, land-use planning, production planning (coordination of multi-
divisional firms, network facility location), transportation planning (network
design, trip demand estimation), and power market planning [1–3,13,23]. The
decision maker at the upper level is termed the leader and at the lower level
the follower. When the leader at the upper level attempts to optimize his or
her objective, the follower at the lower level tries to find an optimized strategy
according to each of the possible decisions made by the leader [4, 7].

Bilevel decision making is handled by the bilevel programming (BLP) tech-
nique, introduced by Von Stackelberg [21]. BLP has been applied with remark-
able success in various domains [14–17]. The majority of the research on BLP
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has centered on the linear version of the problem [8–10,23]. A set of approaches
and algorithms for the linear BLP, such as the well-known Kuhn–Tucker ap-
proach [4,5], Kth-best approach [6,8], and Branch-and-bound algorithm [11],
have had successful applications.

There are two situations challenges that still exist in the BLP approaches.
The first one is the multiobjective issue. In the practice, multiple conflicting
objectives often need to be considered simultaneously by the leader, and/or
the follower, for critical resource planning problems. For example, a coordina-
tor of a multidivision firm considers three objectives in making an aggregate
production plan: maximise net profits, maximise quality of products, and max-
imise worker satisfaction. The three objectives could be in conflict with each
other but must be considered simultaneously. Any improvement in one objec-
tive may be achieved only at the expense of others. The normal multiobjective
decision-making problem has been well researched by many researchers such
as Hwang and Masud [12]. But in a bilevel model, the selection of an alterna-
tive solution for the leader is affected by his or her follower’s optimal reaction.
Therefore, how to find an optimal solution for the leader that has multiple
objectives under the consideration of both its constraints and its follower is
a new issue, called a multiobjective linear bilevel programming (MOLBLP)
problem.

The second one is the parameter uncertainty issue. The parameters of a
bilevel model are sometimes hard to fix at some crisp values in an experi-
mental and/or subjective manner through the experts’ understanding of the
nature of the parameters. The possible values of these parameters are of-
ten only imprecisely or ambiguously known to the experts who establish this
model. With this observation, it would be certainly more appropriate to in-
terpret the experts’ understanding of the parameters as fuzzy numerical data
that can be represented by means of fuzzy sets [24]. A bilevel problem in
which the parameters, either in objective functions and/or in constraints of
the leader and/or the follower, are described by fuzzy values is called a fuzzy
linear bilevel programming (FLBLP) problem. This study will deal with both
issues in the linear version, called a fuzzy multiobjective linear bilevel program
(FMOLBLP).

Based on our study reported in [19] and [20], we have first developed an
extended Kuhn–Tucker approach [27] to solve FBLP problems. This chapter
extends our previous research by developing an approximation Kuhn–Tucker
approach to solve FMOLBLP problems. The proposed approximation Kuhn–
Tucker approach allows the fuzzy parameters of a FMOLBLP model to be
any form of membership functions.

After the introduction, Section 2 reviews related definitions, theorems and
properties of fuzzy numbers, and the Kuhn–Tucker approach. A general fuzzy
numbers based approximation Kuhn–Tucker approach for solving FMOLBLP
problems is presented in Section 3. A numerical example is shown in Section 4
for illustrating the proposed approach. Conclusions and proposals for further
study are discussed in Section 5.
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2 Preliminaries

In this section, we present some basic concepts, definitions, and theorems that
are to be used in the subsequent sections. The work presented in this section
can also be found from our recent papers in [25–27].

2.1 Fuzzy Numbers

Let R be the set of all real numbers, Rn be n-dimensional Euclidean space,
and x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ∈ Rn be any two vectors,
where xi, yi ∈ R, i = 1, 2, . . . , n, and T denotes the transpose of the vector.
Then we denote the inner product of x and y by 〈x, y〉. For any two vectors
x, y ∈ Rn, we write x � y iff xi � yi, ∀i = 1, 2, . . . , n; x ≥ y iff x � y and
x 	= y; x > y iff xi > yi, ∀i = 1, 2, . . . , n.

Definition 1. A fuzzy number ã is defined as a fuzzy set on R, whose mem-
bership function µã satisfies the following conditions:

1. µã is a mapping from R to the closed interval [0, 1];
2. it is normal, i.e., there exists x ∈ R such that µã(x) = 1;
3. for any λ ∈ (0, 1], aλ = {x;µã(x) � λ} is a closed interval, denoted by

[aLλ , a
R
λ ].

Let F (R) be the set of all fuzzy numbers. By the decomposition theorem
of fuzzy sets, we have

ã =
⋃

λ∈[0,1]

λ[aLλ , a
R
λ ], (1)

for every ã ∈ F (R).
Let F ∗(R) be the set of all finite fuzzy numbers on R.

Theorem 1. Let ã be a fuzzy set on R, then ã ∈ F (R) iff µã satisfies

µã(x) =

⎧

⎨

⎩

1, x ∈ [m,n],
L(x), x < m,
R(x), x > n.

where m,n ∈ R, L(x) is a right-continuous monotone increasing function,
0 � L(x) < 1 and limx→−∞ L(x) = 0, R(x) is a left-continuous monotone
decreasing function, 0 � R(x) < 1 and limx→∞R(x) = 0.

Corollary 1. For every ã ∈ F (R) and λ1, λ2 ∈ [0, 1], if λ1 � λ2, then
ãλ2 ⊆ ãλ1 .

Definition 2. For any ã, b̃ ∈ F (R) and 0 � λ ∈ R, the sum of ã and b̃ and
the scalar product of λ and ã are defined by the membership functions
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µã+b̃(t) = sup min
t=u+v

{µã(u), µb̃(v)}, (2)

µã−b̃(t) = sup min
t=u−v

{µã(u), µb̃(v)}, (3)

µλã(t) = sup
t=λu

µã(u). (4)

Theorem 2. For any ã, b̃ ∈ F (R) and 0 � α ∈ R,

ã+ b̃ =
⋃

λ∈[0,1]

λ[aLλ + bLλ , a
R
λ + bRλ ],

ã− b̃ = ã+
(

−b̃
)

=
⋃

λ∈[0,1]

λ[aLλ − bRλ , aRλ − bLλ ],

αã =
⋃

λ∈[0,1]

λ[αaLλ , αa
R
λ ].

Definition 3. Let ãi ∈ F (R), i = 1, 2, . . . , n. We define ã = (ã1, ã2, . . . , ãn)

µã : Rn → [0, 1]

x �→
n
∧

i=1

µãi
(xi),

where x = (x1, x2, . . . , xn)T ∈ Rn, and ã is called an n-dimensional fuzzy
number on Rn. If ãi ∈ F ∗(R), i = 1, 2, . . . , n, ã is called an n-dimensional
finite fuzzy number on Rn.

Let F (Rn) and F ∗(Rn) be the set of all n-dimensional fuzzy numbers
and the set of all n-dimensional finite fuzzy numbers on Rn, respectively.

Proposition 1. For every ã ∈ F (Rn), ã is normal.

Proposition 2. For every ã ∈ F (Rn), the λ-section of ã is an n-dimensional
closed rectangular region for any λ ∈ [0, 1].

Proposition 3. For every ã ∈ F (Rn) and λ1, λ2 ∈ [0, 1], if λ1 � λ2, then
aλ2 ⊂ aλ1 .

Definition 4. For any n-dimensional fuzzy numbers ã, b̃ ∈ F (Rn), we define

1. ã � b̃ iff aLλ � bLλ and aRλ � bRλ , λ ∈ (0, 1];

2. ã � b̃ iff aLλ ≥ bLλ and aRλ ≥ bRλ , λ ∈ (0, 1];

3. ã ( b̃ iff aLλ > b
L
λ and aRλ > b

R
λ , λ ∈ (0, 1].

We call the binary relations �, �, and ( a fuzzy max order, a strict fuzzy
max order, and a strong fuzzy max order, respectively.
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2.2 The Extended Kuhn–Tucker Approach for Linear Bilevel
Programming

Let write a linear programming (LP) as follows.

min f(x) = cx
subject to Ax ≥ b

x ≥ 0,

where c is an n-dimensional row vector, b an m-dimensional column vector, A
an m× n matrix with m � n, and x ∈ Rn.

Let λ ∈ Rm and µ ∈ Rn be the dual variables associated with constraints
Ax ≥ b and x ≥ 0, respectively. Bard [4] gave the following proposition.

Proposition 4. (See [4]) A necessary and sufficient condition that (x∗) solves
the above LP is that there exist (row) vectors λ∗, µ∗ such that (x∗, λ∗, µ∗)
solves:

λA− µ = −c
Ax− b ≤ 0
λ(Ax− b) = 0
µx = 0
x ≥ 0, λ ≥ 0, µ ≥ 0

For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → R1, and f : X × Y → R1,
a linear BLP problem is given by Bard [4]:

min
x∈X

F (x, y) = c1x+ d1y (5a)

subject to A1x+B1y ≤ b1 (5b)
min
y∈Y

f(x, y) = c2x+ d2y (5c)

subject to A2x+B2y ≤ b2, (5d)

where x � 0, y � 0, c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n,
B1 ∈ Rp×m, A2 ∈ Rq×n, B2 ∈ Rq×m.

Let u ∈ Rp, v ∈ Rq and w ∈ Rm be the dual variables associated with
constraints (5b), (5d), and y ≥ 0, respectively. We have the following theorem.

Theorem 3. A necessary and sufficient condition that (x∗, y∗) solves the lin-
ear BLP problem (5) is that there exist (row) vectors u∗, v∗, and w∗ such that
(x∗, y∗, u∗, v∗, w∗) solves:

minF (x, y) = c1x+ d1y (6a)
subject to A1x+B1y ≤ b1 (6b)

A2x+B2y ≤ b2 (6c)
uB1 + vB2 − w = −d2 (6d)
u(b1 −A1x−B1y) + v(b2 −A2x−B2y) + wy = 0 (6e)
x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0, w ≥ 0. (6f)
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Theorem 3 means that the most direct approach to solve (5) is to solve the
equivalent mathematical program problem given in (6). One advantage that it
offers is that it allows a more robust model to be solved without introducing
any new computational difficulties.

3 Fuzzy Multiobjective Linear Bilevel Programming

In this section, we propose a formulation and necessary and sufficient condition
for solution of the fuzzy multiobjective linear bilevel programming problem.

3.1 The FMOLBLP Model

Definition 5. A topological space is compact if every open cover of the entire
space has a finite subcover. For example, [a, b] is compact in R (the Heine–
Borel theorem, See [22]).

Consider the following FMOLBLP problem:
For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs), and f : X × Y →

F ∗(Rt),

min
x∈X

F (x, y) =
(

c̃11x+ d̃11y, c̃21x+ d̃21y, . . . , c̃s1x+ d̃s1y
)T

(7a)

subject to Ã1x+ B̃1y � b̃1 (7b)

min
y∈Y

f(x, y) =
(

c̃12x+ d̃12y, c̃22x+ d̃22y, . . . , c̃t2x+ d̃t2y
)T

(7c)

subject to Ã2x+ B̃2y � b̃2 (7d)

where c̃i1, c̃j2 ∈ F ∗(Rn), d̃i1, d̃j2 ∈ F ∗(Rm), i = 1, 2, . . . , s, j = 1, 2, . . . , t,

b̃1 ∈ F ∗(Rp), b̃2 ∈ F ∗(Rq), Ã1 = (ãij)p×n, ãij ∈ F ∗(R), B̃1 =
(

b̃ij

)

p×m
,

b̃ij ∈ F ∗(R), Ã2 = (ẽij)q×n, ẽij ∈ F ∗(R), B̃2 = (s̃ij)q×m, s̃ij ∈ F ∗(R).
For the sake of simplicity, we set

X̃ × Ỹ =
{

(x, y) ; Ã1x+ B̃1 � b̃1, Ã2x+ B̃2y � b̃2

}

and assume that X̃ × Ỹ is compact. In a FMOLBLP problem, for each
(x, y) ∈ X̃ × Ỹ , the value of the objective functions F (x, y) = (F1(x, y),
F2(x, y), . . . , Fs(x, y)) and f(x, y) = (f1(x, y), f2(x, y), . . . , ft(x, y)) of leader
and follower are s-dimensional and t-dimensional fuzzy numbers, respectively.
Thus, we introduce the following concepts of optimal solutions to FMOLP
problems.

Definition 6. A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a complete optimal
solution to the FMOLBLP problem if it holds that F (x∗, y∗) � F (x, y) and
f(x∗, y∗) � f(x, y) for all (x, y) ∈ X̃ × Ỹ .
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Definition 7. A point (x∗, y∗) ∈ X̃×Ỹ is said to be a Pareto optimal solution
to the FMOLBLP problem if there does not exist (x, y) ∈ X̃ × Ỹ such that
F (x∗, y∗) � F (x, y) andf(x∗, y∗) � f(x, y) holds.

Definition 8. A point (x∗, y∗) ∈ X̃ × Ỹ is said to be a weak Pareto optimal
solution to the FMOLBLP problem if there is no (x, y) ∈ X̃ × Ỹ such that
F (x∗, y∗) ( F (x, y) and f(x∗, y∗) ( f(x, y) holds.

Associated with the FMOLBLP problem, we now consider the follow-
ing multiobjective leader multiobjective follower linear bilevel programming
(MOLBLP) problem:

For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F : X × Y → F ∗(Rs), and f : X × Y →
F ∗(Rt),

min
x∈X

(F (x, y))L(R)
λ =

(

(F1(x, y))
L
λ , (F1(x, y))

R
λ , · · · (Fs(x, y))

L
λ , (Fs(x, y))

R
λ

)T

, λ ∈ [0, 1]

(8a)

subject to A1
L
λx+B1

L
λy � b1

L
λ , A1

R
λ x+B1

R
λ y � b1

R
λ , λ ∈ [0, 1] (8b)

min
y∈Y

(f(x, y))L(R)
λ =

(

(f1(x, y))
L
λ , (f1(x, y))

R
λ , · · · (ft(x, y))

L
λ , (ft(x, y))

R
λ

)T

, λ ∈ [0, 1]

(8c)

subject to A2
L
λx+B2

L
λy � b2

L
λ , A2

R
λ x+B2

R
λ y � b2

R
λ , λ ∈ [0, 1] (8d)

where (Fi(x, y))
L
λ = ci1

L
λx+di1Lλy and (fj(x, y))

L
λ = cj2

L
λx+dj12Lλy, λ ∈ [0, 1],

ci1
L
λ , ci1Rλ , cj2Lλ , cj2Rλ ∈ Rn, di1Lλ , di1Rλ , dj2Lλ , dj2Rλ ∈ Rm, i = 1, 2, . . . , s, j =

1, 2, . . . , t, b1Lλ , b1Rλ ∈ Rp, b2Lλ , b2Rλ ∈ Rq, A1
L
λ =

(

aij
L
λ

)

,A1
R
λ =

(

aij
R
λ

)

∈ Rp×n,

A2
L
λ =

(

eij
L
λ

)

, A2
R
λ =

(

eij
R
λ

)

∈ Rq×n, B1
L
λ =

(

bij
L
λ

)

, B1
R
λ =

(

bij
R
λ

)

∈ Rp×m,

B2
L
λ =

(

sij
L
λ

)

, B2
R
λ =

(

sij
R
λ

)

∈ Rq×m.

For the sake of simplicity, we set X × Y =
{

(x, y);A1
L
λx+B1

L
λ � b1

L
λ ,

A1
R
λ x + B1

R
λ � b1

R
λ , A2

L
λx + B2

L
λ � b2

L
λ , A2

R
λ x+B2

R
λ � b2

R
λ

}

and assume
that X × Y is compact.

X̃ × Ỹ = X × Y from Definition 4.
The above problem can have (i) a complete optimal solution, (ii) a Pareto

optimal solution, and (iii) a weak Pareto optimal solution. The definitions of
these solutions are given in Definitions 9, 10, and 11.

Definition 9. A point (x∗, y∗) ∈ X × Y is said to be a complete optimal
solution to the MOLBLP problem if it holds that

(Fi(x∗, y∗))Lλ � (Fi(x, y))Lλ , (Fi(x∗, y∗))Rλ � (Fi(x, y))Rλ , i = 1, 2, . . . , s
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and

(fi(x∗, y∗))Lλ � (fi(x, y))Lλ , (fi(x∗, y∗))Rλ � (fi(x, y))Rλ , i = 1, 2, . . . , t

for λ ∈ [0, 1] and (x, y) ∈ X × Y .

Definition 10. A point (x∗, y∗) ∈ X × Y is said to be a Pareto optimal
solution to the MOLBLP problem if there is no (x, y) ∈ X × Y such that

(Fi(x∗, y∗))Lλ ≥ (Fi(x, y))Lλ , (Fi(x∗, y∗))Rλ ≥ (Fi(x, y))Rλ , i = 1, 2, . . . , s

and

(fi(x∗, y∗))Lλ ≥ (fi(x, y))Lλ , (fi(x∗, y∗))Rλ ≥ (fi(x, y))Rλ , i = 1, 2, . . . , t

hold.

Definition 11. A point (x∗, y∗) ∈ X × Y is said to be a weak Pareto optimal
solution to the MOLBLP problem if there is no (x, y) ∈ X × Y such that

(Fi(x∗, y∗))Lλ > (Fi(x, y))Lλ , (Fi(x∗, y∗))Rλ > (Fi(x, y))Rλ , i = 1, 2, . . . , s

and

(fi(x∗, y∗))Lλ > (fi(x, y))Lλ , (fi(x∗, y∗))Rλ > (fi(x, y))Rλ , i = 1, 2, . . . , t

hold.

Theorems 4 and 5 below will provide a complete solution to the MOLBLP
problem.

Theorem 4. Let (x∗, y∗) be the solution of the MOLBLP problem given in
expressions (8). Then it is also a solution of the FMOLBLP problem defined
by expressions (7).

Proof. The proof is obvious from Definition 4.

Lemma 1. [27] If there is (x∗, y∗) such that cLαx+ dLαy � cLαx
∗ + dLαy

∗, cLβx+
dLβy � cLβx

∗+dLβy
∗, cRαx+dRαy � cRαx

∗+dRαy
∗, and cRβ x+dRβ y � cRβ x

∗+dRβ y
∗,

for any (x, y)(0 � β < α � 1) and fuzzy sets c̃ and d̃ on R have the trapezoidal
membership function given by

µẽ(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 x < eLβ
α−β

eL
α−eL

β

(

x− eLβ
)

+ β eLβ � x < eLα

α eLα � x � eRα
α−β

eR
α−eR

β

(

x− eRβ
)

+ β eRα < x � eRβ

0 eRβ < x
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then

cLλx+ dLλy � cLλx
∗ + dLλy

∗,

cRλ x+ dRλ y � cRλ x
∗ + dRλ y

∗,

for any λ ∈ [β, α].

Theorem 5. For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters ãij,
b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij have trapezoidal membership functions in the
FMOLBLP problem (7),

µz̃(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 t < zLβ
α−β

zL
α−zL

β

(

t− zLβ
)

+ β zLβ � t < zLα

α zLα � t < zRα
α−β

zR
β −zR

α

(

−t+ zRβ
)

+ β zRα � t � zRβ

0 zRβ < t

, (9)

where z̃ denotes ãij , b̃ij , ẽij , s̃ij , c̃ij , b̃1, b̃2, and d̃ij, respectively, then (x∗, y∗)
is a complete optimal solution to the problem (7) if and only if (x∗, y∗) is a
complete optimal solution to the MOLBLP problem:

min
x∈X

(Fi(x, y))
L
α = ci1

L
αx+ di1Lαy, i = 1, 2, . . . , s

min
x∈X

(Fi(x, y))
R
α = ci1

R
αx+ di1Rαy, i = 1, 2, . . . , s

min
x∈X

(Fi(x, y))
L
β = ci1

L
βx+ di1Lβy, i = 1, 2, . . . , s

min
x∈X

(Fi(x, y))
R
β = ci1

R
β x+ di1Rβ y, i = 1, 2, . . . , s

(10a)

subject to A1
L
αx+B1

L
αy � b1

L
α,

A1
R
αx+B1

R
αy � b1

R
α ,

A1
L
βx+B1

L
βy � b1

L
β ,

A1
R
β x+B1

R
β y � b1

R
β ,

(10b)

min
y∈Y

(fi(x, y))
L
α = ci2

L
αx+ di2Lαy, i = 1, 2, . . . , t

min
y∈Y

(fi(x, y))
L
α = ci2

L
αx+ di2Lαy, i = 1, 2, . . . , t

min
y∈Y

(fi(x, y))
L
β = ci2

L
βx+ di2Lβy, i = 1, 2, . . . , t

min
y∈Y

(fi(x, y))
R
β = ci2

R
β x+ di2Rβ y, i = 1, 2, . . . , t

(10c)

subject to A2
L
αx+B2

L
αy � b2

L
α,

A2
L
αx+B2

L
αy � b2

L
α,

A2
L
βx+B2

L
βy � b2

L
β ,

A2
R
β x+B2

R
β y � b2

R
β .

(10d)
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Proof. If (x∗, y∗) is a complete optimal solution to the FMOLBLP problem,
then for any (x, y) ∈ X̃ × Ỹ , we have F (x∗, y∗) � F (x, y). Therefore, for any
λ ∈ [ β, α],

(Fi(x∗, y∗))
L
λ � (Fi(x, y))

L
λ and (Fi(x∗, y∗))

R
λ � (Fi(x, y))

R
λ , i = 1, 2, . . . , s

and

(fj(x∗, y∗))
L
λ � (fj(x, y))

L
λ and (fj(x∗, y∗))

R
λ � (fj(x, y))

R
λ , j = 1, 2, . . . , t.

Hence x∗ is a complete optimal solution to the MOLBLP problem given by
Definition 8.

If (x∗, y∗) is a complete optimal solution to the MOLBLP problem, from
Lemma 1, if (x∗, y∗) satisfies (10a) and (10c), then it satisfies (8a) and (8c).
Now we need only to prove, if(x∗, y∗) satisfies (10b) and (10d), then it satisfies
(8b) and (8d). In fact, for any λ ∈ [β, α],

aij
L
λ =

λ− β
α− β

(

aij
L
α − aij

L
β

)

+ aijLβ ,

bij
L
λ =

λ− β
α− β

(

bij
L
α − bij

L
β

)

+ bijLβ ,

b1
R
λ =

λ− β
α− β

(

b1
R
α − b1Rβ

)

+ b1Rβ ,

we have

A1
L
λx

∗ +B1
L
λy

∗ = (aijLλ )x∗ + (bijLλ )y∗

=
(

λ− β
α− β

(

aij
L
α − aij

L
β

)

+ aijLβ

)

x∗

+
(

λ− β
α− β

(

bij
L
α − bij

L
β

)

+ bijLβ

)

y∗

=
λ− β
α− β

(

aij
L
α

)

x∗ +
(

1− λ− β
α− β

)

(

aij
L
β

)

x∗

+
λ− β
α− β

(

bij
L
α

)

y∗ +
(

1− λ− β
α− β

)

(

bij
L
β

)

y∗

=
λ− β
α− β

(

(

aij
L
α

)

x∗ +
(

bij
L
α

)

y∗
)

+
(

1− λ− β
α− β

)

((

aij
L
β

)

x∗ +
(

bij
L
β

)

y∗
)

=
λ− β
α− β

(

A1
L
αx

∗ +B1
L
αy

∗)+
(

1− λ− β
α− β

)

(

A1
L
βx

∗ +B1
L
βy

∗)

� λ− β
α− β b1

L
α +

(

1− λ− β
α− β

)

b1
L
β = b1

L
λ ,
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from (10b). Similarly, we can prove

A1
R
λ x

∗ +B1
R
λ y

∗ � b1
R
λ ,

A2
L
λx

∗ +B2
L
λy

∗ � b2
L
λ ,

A2
R
λ x

∗ +B2
R
λ y

∗ � b2
R
λ ,

for any λ ∈ [β, α] from (10b) and (10d). The proof is complete.

Corollary 2. For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters
ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij have piecewise trapezoidal membership
functions in the FMOLBLP problem (7), given by

µz̃(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 t < zLα0

α1−α0

zL
α1

−zL
α0

(

t− zLα0

)

+ α0 zLα0
� t < zLα1

α1−α0

zL
α2

−zL
α1

(

t− zLα1

)

+ α1 zLα1
� t < zLα2

· · · · · ·
α zLαn

� t < zRαn

αn−αn−1

zR
αn−1

−zR
αn

(

−t+ zRαn−1

)

+ αn−1 zRαn
� t < zRαn−1

· · · · · ·
α0−α1

zR
α1

−zR
α0

(

−t+ zRα0

)

+ α0 zRα1
� t � zRα0

0 zRα0
< t

, (11)

where z̃ denotes ãij , b̃ij , ẽij , s̃ij , c̃ij , b̃1, b̃2, and d̃ij, respectively, then, (x∗, y∗)
is a complete optimal solution to the problem (7) if and only if (x∗, y∗) is a
complete optimal solution to the MOLBLP problem:

min
x∈X

(Fi(x, y))
L
αj

= ci1
L
αj
x+ di1Lαj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

min
x∈X

(Fi(x, y))
R
αj

= ci1
R
αj
x+ di1Rαj

y, i = 1, 2, . . . , s, j = 0, 1, . . . , n

(12a)
subject to A1

L
αj
x+B1

L
αj
y � b1

L
αj
, j = 0, 1, . . . , n

A1
R
αj
x+B1

R
αj
y � b1

R
αj
, j = 0, 1, . . . , n

(12b)
min
y∈Y

(fi(x, y))
L
αj

= ci2
L
αj
x+ di2Lαj

y, i = 1, 2, . . . , t, j = 0, 1, . . . , n

min
y∈Y

(fi(x, y))
R
αj

= ci2
R
αj
x+ di2Rαj

y, i = 1, 2, . . . , t, j = 0, 1, . . . , n

(12c)
subject to A2

L
αj
x+B2

L
αj
y � b2

L
αj
, j = 0, 1, . . . , n

A2
R
αj
x+B2

R
αj
y � b2

R
αj
, j = 0, 1, . . . , n.

(12d)
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Theorem 6 below gives the solution to the Pareto optimal solution of the
MOLBLP problem.

Theorem 6. For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters
ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij have piecewise trapezoidal membership
functions (11) in the FMOLBLP problem (7), then (x∗, y∗) is a Pareto optimal
solution to the problem (7) if and only if (x∗, y∗) is a Pareto optimal solution
to the MOLBLP problem (12).

Proof. Let (x∗, y∗) be a Pareto optimal solution to the FMOLBLP problem.
We carry out a proof by contradiction. Let us suppose that there exists a
Pareto optimal solution to MOLBLP problem, which is not a solution of the
FMOLBLP problem (x̄, ȳ) ∈ X × Y such that, for λ= α, β

(

(F1(x∗, y∗))
L
λ , (F1(x∗, y∗))

R
λ , . . . , (Fs(x

∗, y∗))Lλ , (Fs(x
∗, y∗))Rλ

)T

≥
(

(F1(x̄, ȳ))
L
λ , (F1(x̄, ȳ))

R
λ , (Fs(x̄, ȳ))

L
λ , (Fs(x̄, ȳ))

R
λ

)T

.

Therefore

0 ≥
(

(F1(x̄, ȳ))
L
λ − (F1(x∗, y∗))

L
λ , (F1(x̄, ȳ))

R
λ (F1(x∗, y∗))

R
λ , . . . ,

(Fs(x̄, ȳ))
L
λ − (Fs(x∗, y∗))

L
λ , (Fs(x̄, ȳ))

R
λ − (Fs(x∗, y∗))

R
λ

)T

.

Hence

0 ≥ (Fi(x̄, ȳ))
L
λ−(Fi(x∗, y∗))

L
λ , 0 ≥ (Fi(x̄, ȳ))

R
λ −(Fi(x∗, y∗))

R
λ , i = 1, 2, . . . , s.

That is

(Fi(x̄, ȳ))
L
λ ≤ (Fi(x∗, y∗))

L
λ , (Fi(x̄, ȳ))

R
λ ≤ (Fi(x∗, y∗))

R
λ , i = 1, 2, . . . , s.

By using Lemma 1, for any λ ∈ [β, α], we have

(Fi(x̄, ȳ))
L
λ ≤ (Fi(x∗, y∗))

L
λ , (Fi(x̄, ȳ))

R
λ ≤ (Fi(x∗, y∗))

R
λ , i = 1, 2, . . . , s.

that is F (x∗, y∗) � F (x̄, ȳ). However, this contradicts the assumption that
(x∗, y∗) is a Pareto optimal solution to the FMOLBLP problem.

Let (x∗, y∗) be a Pareto optimal solution to the MOLBLP problem. If
(x∗, y∗) is not a Pareto optimal solution to the problem, then there exists
(x̄, ȳ) ∈ X × Y such that F (x∗, y∗) � F (x̄, ȳ). Therefore, for any λ ∈ [β, α],
we have

(

(F1(x∗, y∗))
L
λ , (F1(x∗, y∗))

R
λ , . . . , (Fs(x

∗, y∗))Lλ , (Fs(x
∗, y∗))Rλ

)T

≥
(

(F1(x̄, ȳ))
L
λ , (F1(x̄, ȳ))

R
λ , (Fs(x̄, ȳ))

L
λ , (Fs(x̄, ȳ))

R
λ

)T

.
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that is

(Fi(x̄, ȳ))
L
λ ≤ (Fi(x∗, y∗))

L
λ , (Fi(x̄, ȳ))

R
λ ≤ (Fi(x∗, y∗))

R
λ , i = 1, 2, . . . , s.

Hence, for λ = α and λ = β, we have

(Fi(x̄, ȳ))
L
λ ≤ (Fi(x∗, y∗))

L
λ , (Fi(x̄, ȳ))

R
λ ≤ (Fi(x∗, y∗))

R
λ , i = 1, 2, . . . , s.

which contradicts the assumption that (x∗, y∗) is a Pareto optimal solution
to the MOLBLP problem.

Hence we have proved Theorem 6.

Theorem 7 below gives the weak Pareto optimal solution to the MOLBLP
problem.

Theorem 7. For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters
ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij have piecewise trapezoidal membership
functions (11) in the FMOLBLP problem (7), then (x∗, y∗) is a weak Pareto
optimal solution to the problem (7) if and only if (x∗, y∗) is a weak Pareto
optimal solution to the MOLBLP problem (12).

Proof. The proof is similar to that for Theorem 6.

Theorem 8. For x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, if all the fuzzy parameters
ãij, b̃ij, ẽij, s̃ij, c̃ij, b̃1, b̃2, and d̃ij have piecewise trapezoidal membership
functions (11) in the FMOLBLP problem (7), then a necessary and sufficient
condition that (x∗, y∗) solves the FMOL BLP problem (7) is that there exist
(row) vectors u∗, v∗, and z∗ such that (x∗, y∗, u∗, v∗, z∗) solves:

min
x∈X

(F (x, y)) =
s
∑

j=1

wj1

(

n
∑

i=0

(

cj1
L
αi
x+ dj1Lαi

y
)

+
n
∑

i=0

(

cj1
R
αi
x+ dj1Rαi

y
)

)

(13a)
subject to A1

L
αi
x+B1

L
αi
y � b1

L
αi
, i = 0, 1, . . . , n

A1
R
αi
x+B1

R
αi
y � b1

R
αi
, i = 0, 1, . . . , n

(13b)

A2
L
αi
x+B2

L
αi
y � b2

L
αi
, i = 0, 1, . . . , n

A2
R
αi
x+B2

R
αi
y � b2

R
αi
, i = 0, 1, . . . , n

(13c)

u

(

n
∑

i=0

B1
L
αi

+
n
∑

i=0

B1
R
αi

)

+ v

(

n
∑

i=0

B2
L
αi

+
n
∑

i=0

B2
R
αi

)

− z

= −
t
∑

j=1

wj2

(

n
∑

i=0

dj2
L
αi

+
n
∑

i=0

dj2
R
αi

)

(13d)
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u

((

n
∑

i=0

b1
L
αi

+
n
∑

i=0

b1
R
αi

)

−
(

n
∑

i=0

A1
L
αi

+
n
∑

i=0

A1
R
αi

)

x

−
(

n
∑

i=0

B1
L
αi

+
n
∑

i=0

B1
R
αi

)

y

)

+ v

((

n
∑

i=0

b2
L
αi

+
n
∑

i=0

b2
R
αi

)

−
(

n
∑

i=0

A2
L
αi

+
n
∑

i=0

A2
R
αi

)

x−
(

n
∑

i=0

B2
L
αi

+
n
∑

i=0

B2
R
αi

)

y

)

+ zy = 0

(13e)

x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0, z ≥ 0,
s
∑

j=1

wj1 = 1 and
t
∑

j=1

wj2 = 1. (13f)

Proof. We can prove this result by combining Theorem 5 and Theorem 3, and
use the method of weighting [18].

Based on Theorem 8, we present an approximation Kuhn–Tucker approach
for solving the FMOLBLP problem (7).

3.2 The Approximation Kuhn–Tucker Approach

The systematic method to the solution of the FMOLBLP problem that uses
an approximation Kuhn–Tucker approach is as follows.

Step 1 Give the weights wj1 and wj2 for multiple fuzzy objectives
of the leader and the follower, respectively, thus

∑s
j=1 wj1 = 1 and

∑t
j=1 wj2 = 1.

Step 2 Transform the problem (7) to the problem (8) by using Theorem 5.

Step 3 Decompose the interval [0, 1] into 2l−1 mean subintervals with
(2l−1+1) nodes λi

(

i = 0, . . . , 2l−1
)

, which are arranged in the order 0 =
λ0 < λ1 < · · · < λ2l−1 = 1, and a range of errors ε > 0.

Step 4 Set l = 1, then solve (MOLBLP)l2, i.e., (10) by using the Kuhn–
Tucker approach when β = 0 and α =1, we obtain an optimization solution
(x, y)2l .

Step 5 Solve (MOLBLP) l+1
2 by Theorem 8 and the Kuhn–Tucker ap-

proach. We obtain an optimal solution (x, y)2l+1 .

Step 6 Check if ‖(x, y)2l+1 − (x, y)2l‖ < ε, then the solution (x∗, y∗) of
the FMOLBLP problem is (x, y)2l+1 , otherwise, update l to 2l and go back
to Step 4.

Step 7 Show the solution.

An example will be given in Section 4 to illustrate the proposed approach.
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4 A Numerical Example

Here we consider an illustrative example to demonstrate the theory developed
in the earlier sections. In particular, we illustrate the use of the systematic
methodology.

Consider the following FMOLBLP problem with x ∈ R1, y ∈ R1, and
X = {x � 0}, Y = {y � 0},

min
x∈X

F1(x, y) = 1̃x− 2̃y

min
x∈X

F2(x, y) = 1̃x+ 3̃y

subject to − 1̃x+ 3̃y � 4̃

min
y∈Y

f1(x, y) = 1̃x+ 1̃y

min
y∈Y

f2(x, y) = 1̃x− 2̃y

subject to 1̃x− 1̃y � 0̃

− 1̃x− 1̃y � 0̃

where

µ1̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t < 0
t2 0 � t < 1
2− t 1 � t < 2
0 2 � t

, µ2̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t < 1
t− 1 1 � t < 2
3− t 2 � t < 3
0 3 � t

,

µ3̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t < 2
t− 2 2 � t < 3
4− t 3 � t < 4
0 4 � t

, µ4̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t < 3
t− 3 3 � t < 4
5− t 4 � t < 5
0 5 � t

,

µ0̃(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 t < −1
t+ 1 −1 � t < 0
1− t2 0 � t < 1
0 1 � t

.

We now solve this problem by using the proposed approximation Kuhn–
Tucker approach.

Step 1. The weights for the two fuzzy objectives of the leader are (0.5, 0.5)
and of the follower (0.5, 0.5).

Step 2. The FMOLBLP problem is first transformed to the following MOL-
BLP problem by using Theorem 5

min
x∈X

(F1(x, y))
L
λ = 1̃Lλx+ (−2̃)Lλy, λ ∈ [0, 1]

min
x∈X

(F1(x, y))
R
λ = 1̃Rλ x+ (−2̃)Rλ y, λ ∈ [0, 1]
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min
x∈X

(F2(x, y))
L
λ = 1̃Lλx+ 3̃Lλy, λ ∈ [0, 1]

min
x∈X

(F2(x, y))
R
λ = 1̃Rλ x+ 3̃Rλ y, λ ∈ [0, 1]

subject to (−1̃)Lλx+ 3̃Lλy � 4̃Lλ , (−1̃)Rλ x+ 3̃Rλ y � 4̃Rλ , λ ∈ [0, 1]

min
y∈Y

(f1(x, y))
L
λ = 1̃Lλx+ 1̃Lλy, λ ∈ [0, 1]

min
y∈Y

(f1(x, y))
R
λ = 1̃Rλ x+ 1̃Rλ y, λ ∈ [0, 1]

min
y∈Y

(f2(x, y))
L
λ = 1̃Lλx+ (−2̃)Lλy, λ ∈ [0, 1]

min
y∈Y

(f2(x, y))
R
λ = 1̃Rλ x+ (−2̃)Rλ y, λ ∈ [0, 1]

subject to 1̃Lλx+ (−1̃)Lλy � 0̃Lλ , 1̃
R
λ x+ (−1̃)Rλ y � 0̃Rλ , λ ∈ [0, 1]

(−1̃)Lλx+ (−1̃)Lλy � 0̃Lλ , (−1̃)Rλ x+ (−1̃)Rλ y � 0̃Rλ , λ ∈ [0, 1]

Step 3. Let the interval [0, 1] be decomposed into 2l−1 mean subintervals
with (2l−1 + 1) nodes λi (i = 0, . . . , 2l−1), which is arranged in the order
0 = λ0 < λ1 < · · · < λ2l−1 = 1, and a range of errors ε = 10−6 > 0.

Step 4. When l = 1, we solve the following MOLBLP problem

min
x∈X

(F1(x, y))
L(R)
1 = 1x− 2y

min
x∈X

(F1(x, y))
L
0 = 0x− 3y

min
x∈X

(F1(x, y))
R
0 = 2x− 1y

min
x∈X

(F2(x, y))
L(R)
1 = 1x+ 3y

min
x∈X

(F2(x, y))
L
0 = 0x+ 2y

min
x∈X

(F2(x, y))
R
0 = 2x+ 4y

subject to − 1x+ 3y � 4
− 2x+ 2y � 3
0x+ 4y � 5

min
y∈Y

(f1(x, y))
L(R)
1 = 1x+ 1y

min
y∈Y

(f1(x, y))
R
0 = 2x+ 2y

min
y∈Y

(f2(x, y))
L(R)
1 = 1x− 2y

min
y∈Y

(f2(x, y))
L
0 = 0x− 3y

min
y∈Y

(f2(x, y))
R
0 = 2x− 1y
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subject to 1x− 1y � 0
0x− 2y � −1
2x− 0y � 1
− 1x− 1y � 0
− 2x− 2y � −1.

Step 5. We solve this MOLBLP problem by using the extended Kuhn–
Tucker approach [27] and the method of weighting.

min
x∈X

F (x, y) = 0.5 (6x+ 3y) = 3x+ 1.5y

subject to − 1x+ 3y � 4
− 2x+ 2y � 3
0x+ 4y � 5
min
y∈Y

f(x, y) = 0.5 (6x− 3y) = 3x− 1.5y

subject to 1x− 1y � 0
0x− 2y � −1
2x− 0y � 1
− 1x− 1y � 0
− 2x− 2y � −1.

By Theorem 8, we solve the following problem:

min
x∈X

F (x, y) = 3x+ 1.5y

subject to − 1x+ 3y � 4
− 2x+ 2y � 3
0x+ 4y � 5
1x− 1y � 0
0x− 2y � −1
2x− 0y � 1
− 1x− 1y � 0
− 2x− 2y � −1
3u1 + 2u2 + 4u3 − u4 − 2u5 − 0u6 − u7 − 2u8 − u9 = 1.5
x ≥ 0, y ≥ 0, u1 ≥ 0, . . . , u9 ≥ 0.

The result is

min
x∈X

(F1(x, y))
L(R)
1 = −2.5

min
x∈X

(F1(x, y))
L
0 = −3.75

min
x∈X

(F1(x, y))
R
0 = −1.25
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min
x∈X

(F2(x, y))
L(R)
1 = 3.75

min
x∈X

(F2(x, y))
L
0 = 2.5

min
x∈X

(F2(x, y))
R
0 = 5

min
y∈Y

(f1(x, y))
L(R)
1 = 1.25

min
y∈Y

(f1(x, y))
R
0 = 2.5

min
y∈Y

(f2(x, y))
L(R)
1 = −2.5

min
y∈Y

(f1(x, y))
L
0 = −3.75

min
y∈Y

(f1(x, y))
R
0 = −1.25

x = 0, y = 1.25

Step 6. The condition is not met, go to Step 4.
Step 4. When l = 2, we solve the following MOLBLP problem

min
x∈X

(F1(x, y))
L(R)
1 = 1x− 2y

min
x∈X

(F1(x, y))
L
1
2

=
√

2
2
x− 3

2
y

min
x∈X

(F1(x, y))
L
0 = 0x− 3y

min
x∈X

(F1(x, y))
R
1
2

=
3
2
x− 5

2
y

min
x∈X

(F1(x, y))
R
0 = 2x− 1y

min
x∈X

(F2(x, y))
L(R)
1 = 1x+ 3y

min
x∈X

(F2(x, y))
L
1
2

=
√

2
2
x+

5
2
y

min
x∈X

(F2(x, y))
L
0 = 0x+ 2y

min
x∈X

(F2(x, y))
L
1
2

=
3
2
x+

7
2
y

min
x∈X

(F2(x, y))
R
0 = 2x+ 4y

subject to − 1x+ 3y � 4

− 3
2
x+

5
2
y � 7

2
− 2x+ 2y � 3
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−
√

2
2
x+

7
2
y � 9

2
0x+ 4y � 5

min
y∈Y

(f1(x, y))
L(R)
1 = 1x+ 1y

min
y∈Y

(f1(x, y))
L
1
2

=
√

2
2
x+
√

2
2
y

min
y∈Y

(f1(x, y))
R
1
2

=
3
2
x+

3
2
y

min
y∈Y

(f1(x, y))
R
0 = 2x+ 2y

min
y∈Y

(f2(x, y))
L(R)
1 = 1x− 2y

min
y∈Y

(f2(x, y))
L
1
2

=
√

2
2
x− 3

2
y

min
y∈Y

(f2(x, y))
L
0 = 0x− 3y

min
y∈Y

(f2(x, y))
R
1
2

=
3
2
x− 5

2
y

min
y∈Y

(f2(x, y))
R
0 = 2x− 1y

subject to 1x− 1y � 0
√

2
2
x− 3

2
y � −1

2
0x− 2y � −1

3
2
x−
√

2
2
y �
√

2
2

2x− 0y � 1

− 3
2
x− 3

2
y � −1

2
− 1x− 1y � 0

−
√

2
2
x−
√

2
2
y �
√

2
2

− 2x− 2y � −1.

Step 5. We solve this MOLBLP problem by using the Kuhn–Tucker ap-
proach [4, 5] and the method of weighting.

min
x∈X

F (x, y) =
(√

2 + 9
)

x+ 5y

subject to − 1x+ 3y � 4
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− 3
2
x+

5
2
y � 7

2
− 2x+ 2y � 3

−
√

2
2
x+

7
2
y � 9

2
0x+ 4y � 5

min
y∈Y

f(x, y) =
(√

2 + 9
)

x+
(√

2− 11
)

y

subject to 1x− 1y � 0
√

2
2
x− 3

2
y � −1

2
0x− 2y � −1

3
2
x−
√

2
2
y �
√

2
2

2x− 0y � 1

− 3
2
x− 3

2
y � −1

2
− 1x− 1y � 0

−
√

2
2
x−
√

2
2
y �
√

2
2

− 2x− 2y � −1

The result is

min
x∈X

(F1(x, y))
L(R)
1 = −2.5

min
x∈X

(F1(x, y))
L
1
2

= −1.875

min
x∈X

(F1(x, y))
L
0 = −3.75

min
x∈X

(F1(x, y))
R
1
2

= −3.125

min
x∈X

(F1(x, y))
R
0 = −1.25

min
x∈X

(F2(x, y))
L(R)
1 = 3.75

min
x∈X

(F2(x, y))
L
1
2

= 3.125

min
x∈X

(F2(x, y))
L
0 = 2.5

min
x∈X

(F2(x, y))
L
1
2

= 4.375

min
x∈X

(F2(x, y))
R
0 = 5
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min
y∈Y

(f1(x, y))
L(R)
1 = 1.25

min
y∈Y

(f1(x, y))
L
1
2

=
5
√

2
8

min
y∈Y

(f1(x, y))
R
1
2

= 1.875

min
y∈Y

(f1(x, y))
R
0 = 2.5

min
y∈Y

(f2(x, y))
L(R)
1 = −2.5

min
y∈Y

(f2(x, y))
L
1
2

= −1.875

min
y∈Y

(f2(x, y))
L
0 = −3.75

min
y∈Y

(f2(x, y))
R
1
2

= −3.125

min
y∈Y

(f2(x, y))
R
0 = −1.25

x = 0, y = 1.25

Step 6. x = 0, y = 0.5 is the optimal solution as the condition ‖(x, y)22 −
(x, y)21‖ = 0 < ε is met.

Step 7. The solution of the problem is x = 0, y = 1.25 such that

min
x∈X

F1(x, y) = −˜2.5

min
x∈X

F2(x, y) = ˜3.75

min
y∈Y

f1(x, y) = ˜1.25

min
y∈Y

f2(x, y) = −˜2.5

where

µ−˜2.5(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, t < −3.75,
t+3.75
1.25 , −3.75 � t < −2.5,

−1.25−t
1.25 , −2.5 � t < −1.25,

0, −1.25 � t,

µ
˜3.75(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, t < 2.5,
t−2.5
1.25 , 2.5 � t < 3.75,
5−t
1.25 , 3.75 � t < 5,

0, 5 � t,
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µ
˜1.25(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, t < 0,
(

t
1.25

)2
, 0 � t < 1.25,

2.5−t
1.25 , 1.25 � t < 2.5,

0, 1 � t,

This example shows how the approximation Kuhn–Tucker approach is used
to solve a FMOLBLP problem.

5 Conclusion and Further Study

Uncertainty often occurs in bilevel decision making. Therefore, fuzzy parame-
ter based bilevel decision models can be more suitable to describe a real-world
bilevel decision situation. The leader and the follower often have multiple
objectives to consider simultaneously. In this chapter, we first developed a
model for FMOLBLP and then provided the complete solution, the Pareto
solution, and the weak Pareto solution. Based on these, we presented a gen-
eral fuzzy number based approximation Kuhn–Tucker approach to solve such
fuzzy multi-objective bilevel decision problems.

Further study on this topic includes the development of a model and re-
lated approaches for fuzzy multiobjective multifollower bilevel decision prob-
lems. In such problems, multiple followers are involved in bilevel decision
making. The leader’s decision will be affected not only by those followers’
individual reactions but also by the relationships among these followers. As
uncertain data could occur in the objectives and constraints of both the leader
and the followers, it will be a challenge to get an optimal solution for the leader
in the complex environment.

Acknowledgment. The work presented in this paper was supported by Australian
Research Council (ARC) under discovery grants DP0557154 and DP0559213.
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Abstract This chapter discusses some selected topics of the theory of Pareto opti-
mality. It includes existence criteria, optimality in product spaces, scalarization via
support functions, nonconvex duality, and solution methods.

Key words: efficient solution, nonconvex duality, normal cone method, par-
tial order, product space, vector variational principle

1 Introduction

An example of typical situations in which Pareto optimality is involved is the
house purchase problem. Suppose that a real-estate agency suggests to us
three houses A, B, and C of the same price that fits our budget. We set three
main criteria to evaluate the offers—appearance, comfort, and environment—
and range the score from 0 to 5. Here is the table of our evaluation:

A B C
Appearance 3 3 5
Comfort 4 4 4
Environment 5 4 3

By looking at this table, we can eliminate the offer B from our choice because
it is worse than A from all points of view. As to the remaining offers A and C,
we observe that A is better than C with regard to the appearance criterion
but worse than C with regard to the environment criterion. At this stage,
it is impossible to say which one is the best with regard to three criteria.
Actually they are both optimal according to what we are going to develop in
this chapter.

The concept of Pareto optimality originated in the economic equilibrium
and welfare theories at the beginning of the past century. The main idea
of this concept is that a society is enjoying maximum ophelimity when no
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one can be made better off without making someone else worse off. Named
after Vilfredo Pareto (1848–1923), an Italian economist, this theory is now
central in economics with broad range of applications in the social sciences,
engineering, management, and informations.

The first rigorous mathematical treatment of Pareto optimality was given
in the publication of Kuhn–Tucker [31] in 1951 on the necessary and sufficient
conditions for efficiency. At the same time, Koopmans [30] initiated the use
of Pareto optimality in operations research. Further contributions are due
to Zadeh [56], Klinger [28], DaCunha-Polak [14], Geoffrion [16], and some
others in the 1950s and 1960s. However, only in the 1970s and 1980s had an
impetuous development of Pareto optimality really begun. Today we count
thousands of papers and books on the subject and the research is intensive
both in the theory and applications.

The aim of the current chapter is to give an overview on some relevant
topics of Pareto optimality. The chapter is organized as follows. In Section 2,
we recall the definition of partial orders in a topological vector space and
give some instances of orders that are frequently used. In Section 3, the main
concepts of Pareto optimality are introduced: ideal minimal point, minimal
point, properly minimal point, and related notions. Section 4 is devoted to ex-
istence of minimal points; sufficient and necessary conditions for existence are
presented in a general setting. In Section 5, particular orders are introduced
in a product space. They help us to convert a constrained problem into a
problem without constraints and derive a general multiplier rule. An enlarged
order in the product space yields also a variational principle of Ekeland’s
type for set-valued mappings. Section 6 deals with some useful scalarizations.
Attention is paid to the scalarization via support functions that allow one to
generate all efficient solutions of convex problems. In Section 7, a nonstan-
dard duality approach is presented to solve multiobjective problems. In the
last section, two solution methods are provided to generate efficient solutions
of linear problems and convex problems in finite dimension. A majority of the
results are given without proofs, but with references in case they are not easy
to obtain. A few proofs are given because either they have certain interest in
understanding the subject or they have not been mentioned in the literature.

2 Partial Orders

Given a set of alternatives, the problem of choosing the best alternative ba-
sically depends on the way we classify or evaluate them. The most popular
evaluation method is to associate to each alternative a real value, and the
best alternative is defined as the one with the largest or the smallest value.
This, however, is not always possible as we have already seen in the real-
estate purchase problem in which every offer is associated with a triple of
real values. In that problem, the classification of offers is carried out in the
3-dimensional space, in which the notion of the smallest and the largest values



Pareto Optimality 483

is not available. In this section, we shall recall the concept of partial order in
a multidimensional space and point out some orders of particular interest.
Throughout the section, E denotes a locally convex space. For a subset A
of E, the notations cl(A), int(A), co(A), and Ac stand for the closure, the
interior, the convex hull, and the complement of A, respectively.

Definition 1. Let R be a binary relation on E that is R is a subset of E×E.
It is said to be a partial order on E if it is

(i) reflexive: (x, x) ∈ R for every x ∈ E;
(ii) transitive: (x, y), (y, z) ∈ R imply (x, z) ∈ R.

Being a partial order, R is called linear if it is compatible with the linear
structure of the space: (x, y) ∈ R implies (x + z, y + z), (tx, ty) ∈ R for all
z ∈ E and t > 0.

Here is a simple geometric structure of linear partial orders.

Proposition 1. If R ⊆ E × E is a linear partial order, then the set C :=
{x ∈ E : (x, 0) ∈ R} is a convex cone in E. Conversely, if C is a convex cone
in E, then the relation R defined by (x, y) ∈ R if and only if x − y ∈ C is a
linear partial order in E.

Proof. Let R be a linear partial order in E. Let (x, 0) ∈ R. By the linearity,
one has (tx, 0) ∈ R for all t > 0. Hence tx ∈ C := {y ∈ E : (y, 0) ∈ R} for
t > 0. When t = 0, by the reflectivity one has (0, 0) ∈ R, hence 0 ∈ C and C
is a cone. This cone is convex because for x, y ∈ C we have (x, 0) and (y, 0)
belong to R, hence by transitivity (x+ y, 0) ∈ R, and therefore x+ y ∈ C.

Conversely, assume that C is a convex cone in E. Because 0 ∈ C and
x − x = 0 for all x ∈ E, we have (x, x) ∈ R. This shows that R is reflexive.
Moreover, if x− y ∈ C and y − z ∈ C, then by the convexity of C we obtain
x − z = x − y + y − z ∈ C or equivalently, (x, y) ∈ R and (y, z) ∈ R imply
(x, y) ∈ R. In this way R is a partial order in E. It is linear because x−y ∈ C
implies t(x− y) ∈ C for t > 0 and (x+ z)− (y + z) ∈ C for all z ∈ E, which
means (x, y) ∈ R implies (tx, ty) ∈ R and (x+ z, y + z) ∈ R for all t > 0 and
z ∈ E. The proof is complete.

The order determined by a convex cone C is often written as x ≥C y if
and only if x− y ∈ C. The strict inequality x >C y is also in use to indicate
x ≥C y and x 	= y. Let A be a subset of E. The cone generated by A is
denoted by cone(A) and is defined by

cone(A) := {tx : t ≥ 0, x ∈ A}.

Given a convex cone C ⊆ E, the positive polar cone and the strictly positive
polar cone of C are defined respectively by

C ′ := {ξ ∈ E′ : 〈ξ, x〉 ≥ 0 for all x ∈ C}
C+ := {ξ ∈ E′ : 〈ξ, x〉 > 0 for all x ∈ C \ {0}},
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where E′ is the topological dual space of E. The linear part of the cone C
is denoted by �(C), that is �(C) = C ∩ (−C). When the linear part of C is
trivial, i.e., �(C) = {0}, we say that C is pointed. The following particular
cones will be of use.
1. The Pareto cone: Let R

n
+ be the positive octant of the n-dimensional

Euclidean space R
n. Then, for two vectors x = (x1, . . . , xn), y =

(y1, . . . , yn) in R
n, one has x ≥Rn

+
y if and only if xi ≥ yi , i = 1, . . . , n.

The cone R
n
+ is called the Pareto cone because the original Pareto opti-

mality is defined by the order generated by this cone. When n = 1, the
usual order of real numbers is exactly the order (≥R+). This order is total
in the sense that any two numbers x and y are comparable: either x ≥ y
or y ≥ x. When n > 1, the order (≥Rn

+
) is not total.

2. Correct cones: We say that a cone C in E is correct if clC+C \�(C) ⊆ C
or equivalently clC+C\�(C) ⊆ C\�(C). This kind of cone is very useful in
establishing the existence of optimal solutions for multiobjective problems.
Let us mention some typical cases of correct cones.
(i) Every closed and convex cone is correct;
(ii) If C \ �(C) is open, then C is correct;
(iii) If C consists of the origin and an intersection of half-spaces that are

either open or closed, then C is correct.
3. Cones with a convex bounded base: A subset B of a cone C ⊆ E is

said to be a base of C if it does not contain the origin in its closure and
C = {tb : b ∈ B, t ≥ 0}. When B is convex and/or bounded, we say that
the cone C has a convex and/or bounded base. We list some conditions
for a cone to have such a property:
(i) In a finite dimensional space, every convex cone whose closure is a

pointed cone has a convex and bounded base.
(ii) In a locally convex space, a cone C has a convex base if and only

if there is an open half-space containing C \ {0}. In particular, a cone
with a convex base is pointed; and a convex cone C has a convex base
if and only if C+ 	= ∅.

4. Cones with the Daniell property: A net {xi}i∈I in the space E is said
to be decreasing with respect to the convex cone C if xi >C xj for i < j
in I. It is said to be minorized if there is some element a ∈ E such that
xi ≥C a for all i ∈ I. The cone C is said to have the Daniell property
if every minorized decreasing net has an infimum and converges to this
infimum. Here are some sufficient conditions for a convex cone to have the
Daniell property.
(i) Every pointed, closed, and convex cone in a finite dimensional space

has the Daniell property;
(ii) If E is a Banach space and CE has a closed, convex, and bounded

base B, then for ε > 0 sufficiently small, the cone cl cone(B+B(0, ε)),
where B(0, ε) is the ball of radius ε centered at the origin, has the
Daniell property.

(iii) If C has the Daniell property, then any closed subcone of C has the
same property.
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3 Pareto Efficiency

The totalness property of the usual order on R makes it sense when speaking
about the maximum and the minimum of a set of real numbers. The situa-
tion is quite different in a space of higher dimension that is equipped with a
nontotal partial order. For instance, in the 2-dimensional Euclidean space R

2

ordered by the Pareto cone R
2
+, given a set of two elements (0, 1) and (1, 0),

neither relation (0, 1) ≥R2
+

(1, 0), nor (1, 0) ≥R2
+

(0, 1) is valid. So, this set,
regardless of being finite, has neither maximum, nor minimum. The nontotal-
ness of partial orders leads us to several concepts of optimality and this makes
the topic appealing. Generally speaking, Pareto efficiency can be defined in a
space with any order, not necessarily transitive. We restrict, however, our pre-
sentation to the case of partial orders only. This is because most of practical
models involve partial orders and most interesting theoretical results as well
as numerical methods are developed within this framework. Thus, we assume
that E is a locally convex space and CE is a convex, pointed cone that defines
a partial order (≥CE

) in E.

Definition 2. Let A ⊆ E be a nonempty set. We say that

(i) a point a ∈ A is an ideal (or utopia) minimal point of A if x ≥CE
a

for every x ∈ A. The set of all ideal minimal points of A is denoted by
IMin(A) or IMin(A|CE);

(ii) a point a ∈ A is a minimal (or Pareto minimal/efficient/nondominated)
point of A if whenever a ≥CE

x for some x ∈ A one has x ≥CE
a. The set

of all minimal points of A is denoted by Min(A) or Min(A|CE).

Sometimes one is interested also in the set of minimal points with respect to
the order generated by the cone {0}∪ intCE if intCE 	= ∅. This is the set of
weakly minimal points and denoted by WMin(A) or WMin(A|CE). It is clear
that a minimal point is weakly minimal, but the converse is not true. The
reason for studying weakly minimal points is that they are easier to compute
and have nicer properties than minimal points. The limit of a sequence of
minimal points of a compact set may be not minimal, but weakly minimal.
The concept of maximal points is defined similarly. The set of all maximal
points of A is denoted by Max(A) or Max(A|CE). It is clear that a point
belongs to Max(A|CE) if and only if it belongs to Min(A| − CE). A similar
conclusion remains true for ideal maximal points and weakly maximal points.
Below is an equivalent definition of minimal points.

Proposition 2. Let A ⊆ Y . Then

(i) a ∈ IMin(A) if and only if a ∈ A and A ⊆ a+ CE;
(ii) a ∈ Min(A) if and only if a ∈ A and A∩ (a−CE) = {a}. In other words

a ∈ Min(A) if and only if a ∈ A and there is no y ∈ A with a ≥CE
y and

a 	= y;
(iii) a ∈ WMin(A) if and only if a ∈ A and A ∩ (a− int CE) = ∅.
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In typical situations, ideal minimal and ideal maximal points do not exist.
When Y is the space R

n equipped with the Pareto cone, ideal minimality
means minimum of each component. For this reason, ideal points are not a
main concern of our study. Furthermore, among minimal points there are some
that are stable with respect to perturbations of the order. For instance, the
unit disk of the space R

2 ordered by the Pareto cone has minimal points on
the negative quarter of the boundary. The points x = (−1, 0) and y = (0,−1)
are minimal points of the disk, which are no longer minimal when we use the
perturbed partial order determined by the cone

C := {(x1, x2) ∈ R
2 : x1 + εx2 ≥ 0, εx1 + x2 ≥ 0}

for ε > 0. All other minimal points of the disk remain minimal with respect
to C if ε is small enough. This suggests the following concept of Pareto mini-
mality.

Definition 3. Assume that CE has a convex and bounded base B. If there
is a convex neighborhood V of the origin in Y such that the cone generated
by B + V is not identical to Y and a point a ∈ A is minimal with respect
to the order (≥cone(B+V )), then we say that a is a properly minimal point
of A. The set of all properly minimal points of A is denoted by PMin(A) or
PMin(A|CE).

It can be seen that the definition of proper minimality does not depend on
the choice of a convex, bounded base of CE . In other words, if B and B′ are
two convex, bounded bases of CE , then the sets of properly minimal points
defined by using B and B′ coincide.

To illustrate the above definitions, let us consider the following example.
Let A = {(x, y) ∈ R

2 : x2 + y2 ≤ 1 or x ≥ 0, |y| ≤ 1} ⊆ R
2 and let

CE = R
2
+. Then

IMin A = ∅
PrMin A = {(x, y) ∈ R

2 : x2 + y2 = 1, x < 0, y < 0}
Min A = {(x, y) ∈ R

2 : x2 + y2 = 1, x ≤ 0, y ≤ 0}
WMin A = Min A ∪ {(x,−1) : x ≥ 0}.

The relationship between the different concepts of minimality is seen in
the next proposition the proof of which follows from the definitions.

Proposition 3. For every nonempty set A ⊆ E one has

(i) PrMin(A) ⊆ Min(A) ⊆ WMin(A);
(ii) If IMin(A) 	= ∅, then IMin(A) = Min(A) and this set is a singleton.

The next theorem shows that properly minimal points are good represen-
tatives of the set of minimal points. We recall that the weak recession cone of
a set A ⊆ E is the cone Aw∞ consisting of the weak limits of nets {tαaα}α∈I
where aα ∈ A and tα > 0 tends to 0. We refer the interested reader to [35]
and [38] for more on recession cones in infinite dimensional spaces.
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Theorem 1. Assume that either of the following conditions holds:

(i) A is weakly compact and B is a closed, convex, and bounded base of CE;
(ii) The space E is Banach, A is weakly closed with Aw∞ ∩ (−B) = ∅, and B

is a weakly compact, convex base of CE.

Then PMin(A|CE) is dense in Min(A|CE).

This theorem has recently been proved in [19]. See also [7] and [12] for some
particular cases. The notion of proper minimality encompasses some known
concepts of efficiency. First we note that proper minimality can be considered
as a direct extension of Henig’s proper efficiency [22] to infinite dimension.
Recall that in the n-dimensional space R

n partially ordered by a closed and
convex cone C, a point x0 ∈ A ⊆ R

n is called a Henig-efficient point of
A with respect to C if there is a convex cone K⊆R

n, K 	= R
n such that

C \ {0} ⊆ int K and x0 ∈ Min(A|K). As noticed before, in this situation C
has a convex and bounded base and there is a convex neighborhood V of 0
such that cone(B + V ) ⊆ K. Hence x0 ∈ A is properly minimal if and only
if it is Henig-efficient. When C is not closed or when the space is infinite
dimensional, the existence of a convex cone K 	= X with C \ {0} ⊆ int K
and x0 ∈ Min(A|K) does not imply that x0 is properly minimal.

Now we recall some more concepts of efficiency from [7] and [12] that are
important in the study of the geometry of minimal points. Let A ⊆ X be
nonempty. A point x0 ∈ A is said to be

(a) a superefficient point of A if for every neighborhood V of 0 there is a
neighborhood U of 0 such that

cl cone(A− x0) ∩ (−C + U) ⊆ V ;

(b) a strictly efficient point of A if there is a neighborhood U of 0 such that

cl cone(A− x0) ∩ (−B + U) = ∅;

(c) a strongly efficient point of A if for every ξ ∈ X ′ there are neighborhoods
U and V of 0 such that 〈ξ, ·〉 is bounded on the set

cone(A− x0) ∩ [U − cone(B + V )].

Proposition 4. Let A be a nonempty set and let x0 ∈ A. The following as-
sertions are equivalent:

(i) x0 is a properly minimal point of A;
(ii) x0 is a strictly efficient point of A;
(iii) x0 is a strongly efficient point of A;
(iv) x0 is a superefficient point of A.

The proof of these equivalences is given in [19]. The interest of properly min-
imal points resides also in the fact that under some convexity hypotheses,
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properly minimal points are obtained by minimizing certain positive func-
tionals (see Proposition 9 of Section 6). We conclude this section by pointing
out that proper minimality is defined under the condition that the ordering
cone has a convex and bounded base. This concept can be extended to a more
general ordering cone in which case some of the equivalences of Proposition 4
may fail.

4 Existence

As in the previous section, E is a locally convex space partially ordered by a
convex and pointed cone CE . In order to present a general condition on the
existence of minimal points, let us define a section of a set A ⊆ E at x ∈ E
by Ax := A ∩ (x − CE). This is the set of all elements of A that are smaller
(with respect to the order ≥CE

) than x.

Definition 4. A set A ⊆ E is said to be CE-complete (resp. strongly
CE-complete) if it has no covering of the form

{(xα − cl CE)c : α ∈ Γ}
(

resp. {(xα − CE)c : α ∈ Γ}
)

where {xα}α∈Γ is a decreasing net in A.

We note that every strongly CE-complete set is CE-complete. The converse
is not always true. When CE is a closed cone, these two concepts coincide.

Some related notions are also present in the literature. Let us recall two
of them that are frequently cited:

(i) A subset A of E is said to be CE-compact if any cover of A of the form
{Ui + CE : i ∈ I, Ui are open} admits a finite subcover (see [20,34]);

(ii) A subset A ⊆ E is said to be CE-semicompact if any cover of A of the
form {(xi−clCE)c : i ∈ I, xi ∈ A} admits a finite subcover (see [13]).

It is clear that every compact set is CE-compact, and every CE-compact set is
CE-semicompact. The converse is not true in general. Here are some sufficient
conditions of CE-complete sets:

(i) Every CE-semicompact set is CE-complete. In particular every weakly
compact set in a locally convex space is CE-complete.

(ii) Every compact set is strongly C-complete if C has Sterna–Karwat’s prop-
erty: for every linear subspace L ⊆ E, the set C ∩ L is a linear subspace
if and only if �(C ∩L) is a linear subspace. In particular, when E is finite
dimensional, every compact set is strongly C-complete whatever C is.

The first condition and the second part of the second one can be found
in [34], the second condition can be derived from [50]. The following result is
already known (see [36]).
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Theorem 2. Let A be a nonempty set in E. The following assertions hold:

(i) Min(A) 	= ∅ if and only if there is x ∈ E such that Ax is nonempty and
strongly CE-complete;

(ii)When C is correct, Min(A) 	= ∅ if and only if there is x ∈ E such that Ax

is nonempty and CE-complete.

The next particular case is useful in practice.

Corollary 1. If A is a nonempty compact set in a finite dimensional space,
then Min(A) 	= ∅ whatever the cone CE is. If A is a nonempty compact set in
an infinite dimensional space and the cone CE is closed, then Min(A) 	= ∅.

Note that in an infinite dimensional space, a compact set may have no ef-
ficient points if the cone CE is not correct. In fact, let E be the space of
sequences whose terms are all zero except for a finite number. Elements
of E are written as infinite dimensional vectors (x1, x2, . . .). The space is
equipped with the max-norm: ‖(x1, x2, . . . .)‖ = max{|xi| : i = 1, 2, . . .}. The
ordering cone CE consists of sequences whose last nonzero term is positive.
This cone is convex and pointed but not correct because its closure is the
whole space E. Let x0 = (1, 0, 0, . . .), xn = (1,− 1

2n , . . . ,− 1
2n , 0, . . . 0), and

A = {xi : i = 0, 1, 2, . . .}. It is evident that limn→∞ xn = x0. Hence A is a
compact set. Despite this, Min(A) = ∅ because x0 >CE

x1 >CE
x2 · · ·

When the cone CE is closed, the following result is a useful criterion for a
point to be minimal. We shall say that a net {xi : i ∈ I} is loosely decreasing
if xi ≥CE

xj for i < j. When E = R and CE = R+, loosely decreasing nets
are exactly nonincreasing nets.

Theorem 3. Assume that CE is closed. The following assertions are equiva-
lent

(i) A point a ∈ A is minimal;
(ii) The set A \ {a} is covered by the family {(xλ −CE)c : λ ∈ Λ} for every

loosely decreasing net {xλ}λ∈Λ in A converging to a;
(iii) The set A \ {a} is covered by the family {(xλ − CE)c : λ ∈ Λ} for some

loosely decreasing net {xλ}λ∈Λ in A converging to a.

Proof. We first establish the implication (i) ⇒ (ii). Suppose to the contrary
that (ii) does not hold. There exist a loosely decreasing net {xλ}λ∈Λ converg-
ing to a and an element b ∈ A \ {a} such that b 	∈ (xλ−CE)c, or equivalently
b ∈ xλ − CE for all λ ∈ Λ. By passing to the limit and due to the closedness
of CE , we derive b ∈ a− CE . This contradicts (i).

The implication (ii) ⇒ (iii) is clear. We finally prove the implication
(iii)⇒ (i). Suppose to the contrary that a is not minimal. Then one can find
some element b ∈ A \ {a} such that b ∈ a−CE . In view of (iii), there is some
index λ0 ∈ Λ such that b ∈ (xλ0 − CE)c. This implies that a ∈ (xλ0 − CE)c,
and hence
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a 	∈ xλ0 − CE . (1)

On the other hand, the net {xλ}λ∈Λ being loosely decreasing, we have xλ ∈
xλ0 − CE for all λ ≥ λ0. By passing to the limit in the above inclusion, we
obtain a ∈ xλ0 − CE , which contradicts (1). The proof is complete.

As a consequence of the preceding theorem, we derive the following result
of [23], which was used to obtain a vector version of Ekeland’s variational
principle.

Corollary 2. Let E be a sequentially complete locally convex space, let {pλ :
λ ∈ Λ} be a base of seminorms determining the locally convex topology of E,
and let CE be pointed, closed, and convex cone in E. Assume that there is a
sequence {xn}∞n=0 ⊆ A such that

(i) xn+1 ∈ xn − CE, n = 0, 1, 2, . . .
(ii) limn→∞ supx,y∈Axn

pλ(x− y) = 0 for all λ ∈ Λ.
Then {xn}∞n=0 is convergent and its limit is a minimal point of A.

Proof. The condition (i) shows that the sequence {xn}∞n=0 is loosely decreas-
ing. The condition (ii) shows that it is fundamental, hence it converges to
some element a ∈ A, and the family {(xn − CE)c : n = 0, 1, . . .} is a covering
of the set A \ {a}. In view of Theorem 3, the limit a is minimal.

We now derive an existence condition for properly minimal points in a
Banach space.

Corollary 3. Let E be a Banach space and let CE be a cone with a closed,
bounded, and convex base B. Then every closed, bounded set has a properly
minimal point.

Proof. Let Vε be a ball centered at the origin with radius ε > 0. When ε is
small enough, the cone K :=cl cone(B + Vε) has the Daniell property. Let A
be a closed and bounded set in E. As K has interior, the set A is minorized
in the sense that it is contained in a + K for some element a ∈ E. Thus,
A is K-complete and as K is closed, it is correct. Applying Theorem 2, we
conclude that A has a properly minimal point.

Some more results on existence of minimal points can be found in [17,20,
23,43,44] and the references given in these.

5 Optimality in Product Spaces

5.1 Product Order and Set-Valued Optimization

Let X be a nonempty set, let Y and Z be two locally convex spaces, and let
CY ⊂ Y and CZ ⊂ Z be convex cones. In this section, we study the following
vector (or multiobjective) minimization problem with set-valued data
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(V )
Min F (x)
s.t. x ∈ X, G(x) ∩ CZ 	= ∅

where F and G are set-valued maps from X to Y and Z, respectively.

The feasible set of problem (V ) is given by

X0 := {x ∈ X : G(x) ∩ CZ 	= ∅}.

A couple (x0, y0) ∈ X0×Y with y0 ∈ F (x0) is called a minimizer of (V ) if y0 ∈
Min(F (X0)|CY ). The point x0 is often called an efficient solution of (V ) and
y0 is called an efficient value of (V ). Properly efficient solutions and weakly
efficient solutions are defined in a similar manner. To avoid misunderstanding,
sometimes one writes MinCY

instead of Min in the formulation of the problem
(V ) to underline with respect to which order one minimizes the map. When no
confusion likely occurs, one omits the subscript CY . The vector maximization
problem associated to F and G is written as

MaxCY
F (x)

s.t. x ∈ X, G(x) ∩ CZ 	= ∅

which is nothing, but the vector minimization problem with respect to the
ordering cone −CY :

Min−CY
F (x)

s.t. x ∈ X, G(x) ∩ CZ 	= ∅.

The constraint G(x) ∩ CZ 	= ∅ is a generalized form of the usual equality
and inequality constraints in mathematical programming. Indeed, if the space
Z is the product space R

p × R
q and the cone CZ is the product cone R

p
+ ×

{0}, and the map G is single-valued, say G(x) = (g1(x), . . . , gp+q(x)), then
the constraint becomes G(x) ∈ CZ , which is expressed by the system of p
inequalities and q equalities:

gi(x) ≥ 0, i = 1, . . . , p
gj(x) = 0, j = p+ 1, . . . , p+ q.

In mathematical programming, there are techniques to link the objective
function and the constraints of a given problem. For instance, given a math-
ematical programming problem

(P )
min f(x)
s.t. gi(x) ≥ 0, i = 1, . . . , p
gj(x) = 0, j = p+ 1, . . . , p+ q.

We can transform the objective function f into a constraint by introducing an
additional variable t ∈ R and a constraint f(x) ≤ t. Thus, (P ) is equivalent to
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(P ′)

min t
s.t. t− f(x) ≥ 0
gi(x) ≥ 0, i = 1, . . . , p
gj(x) = 0, j = p+ 1, . . . , p+ q.

A converse technique is to incorporate constraints into the objective function
so that a resulting problem is an optimization problem without constraints.
This is a penalty method that consists of adding a term φ(g1(x), . . . , gp+q(x))
to the objective function, where φ is a function that takes the null value if all
the constraints are satisfied and very big values (even the value +∞) when
the constraints are violated.

In this subsection, we shall see that by studying the problem in a product
space it is also possible to convert a constrained problem into an unconstrained
problem without using penalty functions. Let us first define some new orders
in the product space. We assume that CY and CZ have bounded and convex
bases BY and BZ , respectively. The cone CY × CZ is convex in Y × Z and
has a bounded base B = {(tb1, (1 − t)b2) : t ∈ [0, 1], b1 ∈ BY , b2 ∈ BZ}; the
space Y × Z being equipped with the product topology. We shall, however,
be interested in a smaller cone

K := cone(BY × CZ).

In general this cone is convex but not closed even when CY and CZ are closed.
The following inclusions are immediate:

K ⊆ CY × CZ

clK = cl(CY × CZ).

A bounded base BK of K can be given by

BK = {(tb1, (1− t)b2) : t ∈ (0, 1], b1 ∈ BY , b2 ∈ BZ}.

We give here an example to clearly see the distinction between these or-
dering cones. Let the space Y be R

2 with an ordering cone CY = R
2
+ and

a base BY = {(y1, y2) ∈ R
2 : y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}. Let Z be R

with CZ = R+ and a base BZ = {1}. Then the product cone CY × CZ is
the Pareto cone R

3
+, and the cone K consists of the origin and the vectors

(y1, y2, y3) ∈ R
3 satisfying y1 ≥ 0, y2 ≥ 0 and y3 > 0. The base BK is given

by BK = {(y1, y2, y3) ∈ R
3 : y1 ≥ 0, y2 ≥ 0, y3 > 0, y1 + y2 + y3 = 1}.

Given a nonempty set Q in the product space Y × Z, we are interested
in a link between the minimal points of Q with respect to the ordering cone
CY × CZ and the ones with respect to the cone K. The following inclusions
are clear:

(i) Min(Q|{0} × CZ)∩ Min(Q|K) ⊆ Min(Q|CY × CZ) ⊆ Min(Q|K)
(ii) Min(Q|K) ⊆ Min(Q|CY ×CZ)−{0}×CZ provided that Q has the domi-

nation property with respect to CY ×CZ , that is Min([(x, y)+CY ×CZ ]∩
Q|CY × CZ) 	= ∅ for every (x, y) ∈ Q.
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Sometimes the structure of the set Q is complicated, but the structure of its
enlargement by means of the cones CY ×CZ is simple; for instance when the
set Q is not convex, but the set Q − CY × CZ is convex or polyhedral. In
such situations, the next characterization is useful in establishing optimality
conditions of minimal points of Q (see [19] for the proof).

Proposition 5. Let Q ⊆ Y × Z be a nonempty set and (x0, y0) ∈ Q. Then
the following assertions are equivalent

(i) (x0, y0) ∈ Min(Q|K)
(ii) (0, 0) ∈ Min(Q− (x0, y0)− CY × CZ |K)
(iii) (0, 0) ∈ Min(cone(Q− (x0, y0)− CY × CZ)|K).

When the cones CY and CZ have interior, we have also the following equiva-
lent assertions:

(i) (x0, y0) ∈ Min(Q|cone(intK));
(ii) (0, 0) ∈ Min(cone(Q− (x0, y0)− CY × CZ)|cone(intK));
(iii) (0, 0) ∈ Min( clcone(Q− (x0, y0)− CY × CZ)|cone(intK)).

Let us now return to the vector problem (V ). The following observation
(Corollary 5.9 of [34], page 60) shows why it is important to study minimal
points in the product space Y × Z ordered by the special cone K. We write
(a, b) ∈ PYMin(Q|K) when there is a small convex neighborhood V of the
origin in Y such that BY + V does not contain the origin in its closure, and
(a, b) is a minimal point of Q with respect to the ordering cone cone[(BY +
V )× CZ ].

Lemma 1. A couple (x0, y0) is a minimizer (resp., proper minimizer) of (V )
if and only if (y0, 0) ∈ Min(Q|K) (resp., (y0, 0) ∈ PY Min(Q|K)) where Q =
⋃

x∈X
{(F (x), G(x)) + CY × CZ}.

The next result gives a general multiplier rule for set-valued vector prob-
lems (see also [54]). We shall denote by B� the set of linear functionals ξ ∈ Y ′

such that infy∈B〈ξ, y〉 > 0.

Theorem 4. Assume that (x0, y0) is a minimizer of (V ). If cone (Q−(y0, 0))
has a nonempty convex interior, then there exists (ξ, γ) ∈ [CY ×CZ ]′ \{(0, 0)}
such that

〈ξ, y〉+ 〈γ, z〉 ≥ 〈ξ, y0〉
for every y ∈ F (x), z ∈ G(x) and x ∈ X. Moreover, if int CZ 	= ∅ and there is
some x ∈ X such that G(x) ∩ int CZ 	= ∅, then ξ 	= 0. If, in addition (x0, y0)
is a proper minimizer of (V ), then ξ ∈ B�

Y .

Proof. Apply Lemma 1 and the classic separation theorem of convex sets.

A sufficient condition can also be given when a multiplier rule holds.
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Proposition 6. Assume that x0 is feasible and y0 ∈ F (x0). If there is (ξ, γ) ∈
C+
Y × C ′

Z (resp., (ξ, γ) ∈ B�
Y × C ′

Z) such that

〈ξ, y〉+ 〈γ, z〉 ≥ 〈ξ, y0〉

for every y ∈ F (x), z ∈ G(x), and x ∈ X, then (x0, y0) is a minimizer (resp.,
proper minimizer) of (V ).

Proof. Invoke Lemma 1 and Proposition 9 in the next section.

5.2 Enlarged Order and Variational Principle for Set-Valued Maps

Another case of minimality in a product space was recently studied by Isac
and Tammer [23] (see also [17]). Let X and Y be Banach spaces whose norms
are denoted by the same symbol ‖.‖. The product space X × Y is equipped
with the sum norm. Let CY be a closed, pointed, and convex cone in Y . We
fix an element e ∈ CY and consider the following cone in the product space
X × Y for ε ∈ (0, 1):

C(ε) := {(x, y) ∈ X × Y : y + εe‖(x, y)‖ ∈ −CY }.

It can be proven (see [23]) that this cone has a closed, convex, and bounded
base. The next corollary is an improvement of the maximal point theorem of
[23].

Corollary 4. Assume that A ⊆ X×Y is a nonempty, closed set such that its
projection on Y is minorized. Then the section of A at every point in A has
a properly minimal point with respect to the ordering cone −C(ε).

Proof. Let (a, b) be an element of A. Let (x, y) be in the section A(a,b) :=
A∩((a, b)+C(ε)) (with respect to the ordering cone −C(ε)). By the definition
of the cone C(ε), one has

y ∈ b− εe‖(x− a, y − b)‖ − CY (2)
⊆ b− CY .

Hence, the projection of the section A(a,b) on Y is majorized by b. It follows
from this and the hypothesis that the projection of A(a,b) on Y is bounded.
The relation (2) shows that the projection of A(a,b) on X is bounded, too, and
so the section A(a,b) is bounded itself. It is clear that it is closed because the
cone C(ε) is closed. It remains to apply Corollary 3 to complete the proof.

Let F be a set-valued map from X to Y . The graph of F is the set

graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x), x ∈ Y }.

Let ε > 0 and e ∈ CY \ {0}. We say that (x0, y0) ∈ graph(F ) is an (ε, e)-
minimizer of F if
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F (X) ∩ (y0 − εe− CY \ {0}) = ∅.

The following result is a set-valued version of the variational principle
given in [23].

Theorem 5. Assume that the graph of F is closed and the image F (X) is
minorized in Y . Then for every real number ε ∈ (0, 1) and every (ε2, e)-
minimizer (x0, y0) of F , there exists (xε, yε) in the graph of F such that

(i) yε ∈ y0 − εe‖xε − x0‖ − CY ;
(ii) ‖xε − x0‖ ≤ ε;
(iii) (xε, yε) is a minimizer of the set-valued map x �→ F̂ (x) := {y + εe‖x−

xε‖+ ‖y − yε‖ : y ∈ F (x))}.

Proof. Set A = graph(F ) and apply Corollary 3 to obtain a minimal point
(xε, yε) ∈ A(x0,y0) of the set A with respect to the cone −C(ε) in the product
space X × Y. We have

(xε − x0, yε − y0) ∈ C(ε) (3)
(x− xε, y − yε) 	∈ C(ε) \ {0} for(x, y) ∈ A \ {(xε, yε)} (4)

The relation (3) implies

yε ∈ y0 − εe‖(xε − x0, yε − y0)‖ − CY

⊆ y0 − εe‖xε − x0‖ − CY

which yields (i). The relation (ii) is obtained from the first one and from the
fact that (x0, y0) is an (ε2, e)-minimizer of F .
The relation (4) gives

y + εe(‖x− xε‖+ ‖y − yε‖) 	∈ yε − CY {0}

for every x ∈ X and y ∈ F (x). This is (iii).

For other variants of vector variational principle, see [10, 21], and the ref-
erences given in [23].

6 Scalarization

Consider the following multiobjective optimization problem:

(V P )
Max f(x)
s.t. x ∈ X0

where X0 is a nonempty set in the space X and f is a vector-valued function
from X0 to Y . The set of all efficient (resp. properly efficient, weakly efficient)
solutions of (V P ) is denoted by S(f,X0) (resp. PrS(f,X0), WS(f,X0)).
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A frequently used method in the study of the problem (V P ) is to convert
it into a scalar optimization problem of the form

(P )
max g ◦ f(x)
s.t. x ∈ X0

where g is a real-valued function on f(X0), called a scalarizing function. In this
section, we shall develop a class of scalarizing functions with such a property
that optimal solutions of (P ) furnish efficient solutions of (V P ).

6.1 General Case

Let us recall that a function g : Y0 → R ∪ {±∞} is said to be increas-
ing (with respect to the cone CY ) on the set Y0 ⊆ Y if a >CY

b for
a, b ∈ Y0 implies g(a) > g(b). An increasing function with respect to the cone
(intCY )∪{0} is called weakly increasing.

The following standard result expresses a relationship between the solution
set S(g ◦ f,X) of problem (P) and that of (VP) (see [34] for the proof).

Proposition 7. The following assertions are true:

(i) If g is increasing (respectively, weakly increasing), then every optimal
solution of (P) is an efficient solution (respectively, weakly efficient solu-
tion) of (VP);

(ii) Conversely, for every weakly efficient solution x of (VP), there exists a
continuous weakly increasing function g such that x is an optimal solution
of (P).

(iii) There exists a continuous weakly increasing function g such that the
weakly efficient solution set of (VP) coincides with the solution set of (P).

(iv) If Y is a normed space, CY has a compact base, and if both f(A) and
Max(f(A)|CY ) are compact, then there is a continuous, increasing func-
tion g such that the efficient solution set of (VP) coincides with the solution
set of (P).

Below are some useful scalarizations.
(1) Linear scalarization: Let ξ be a continuous linear function on Y .

Then ξ is increasing (respectively weakly increasing) if and only if ξ belongs
to the strictly polar cone C+

Y ( resp. C ′ \ {0}).
When Y is the space R

n and the ordering cone is R
n
+, the scalarized prob-

lem that uses a linear increasing function is written as

(Pξ)
max

∑n
i=1 ξifi(x)

s.t. x ∈ X0

for some positive vector ξ = (ξ1, . . . , ξn) ∈ R
n
+. The positive numbers

ξ1, . . . , ξn are called weights. Each number ξi expresses the importance of the
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criterion (component) fi with respect to the others. For instance, by choosing
the first component of ξ equal to one and the other components equal to zero,
we mean to take only the first criterion f1 into the consideration and neglect
the others. The scalar problem (Pξ) is called the weighted problem of (V P )
associated with the weight vector ξ. Certain generalizations of (Pξ) are also
in use. They are of the form:

(P ′
ξ)

max
∑n

i=1 ξi[fi(x)]
ρ

s.t. x ∈ X0

and

(P ′′
ξ )

max
∑n

i=1[ξifi(x)]
ρ

s.t. x ∈ X0

where ρ is a positive number a priori chosen and it is assumed that fi(x) ≥ 0
for all i = 1, . . . , n and x ∈ X0.

Linear scalarization is particularly helpful when the vector problem is lin-
ear or convex.

Proposition 8. Assume that (VP) is a linear problem with values in a finite
dimensional space. Then there exists a finite number of weight vectors ξi : i =
1, . . . , k such that the solution set of (V P ) is exactly the union of the solution
sets of the scalarized problems (Pξi), i = 1, . . . , k.

Several methods exist (see [3, 26, 55, 57]) that determine the weight vectors
stated in Proposition 8. For a convex problem, that is problem (VP) with X0

being a convex set and f a concave function, we have the following standard
result that can be proved by a separation of convex sets (see [9, 34]).

Proposition 9. Assume that (VP) is a convex problem. Then

(i) a point x ∈ X0 is a properly efficient solution of (VP) if and only if it
is an optimal solution of (P) with g ∈ C+

Y ;
(ii) a point x ∈ X0 is a weakly efficient solution of (VP) if only if it is an

optimal solution of (P) with g ∈ C ′

Y \ {0}.

It should be noticed that an efficient solution of a convex problem, which
is not proper, can be a solution of no scalar problem (P) with g ∈ C+

Y . Thus
we have the following inclusions for a convex problem

PrS(f,X0) = ∪g∈C+
Y
S(g ◦ f,A) ⊆ S(f,X0)

⊆ WS(f,X0) = ∪g∈C′
Y \{0}S(g ◦ f,X0).

Under some additional hypotheses on CY ,X0, and f (for instance when CY is
closed and has a bounded convex base, X0 is compact, and f is continuous),
one may have

S(f,X0) ⊆ cl[PrS(f,X0)].
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The equality
S(f,X0) = WS(f,X0)

can be realized if f is strictly convex. Another important feature of linear
scalarization is that for g ∈ C ′

Y , problem (P) is convex whenever (V P ) is
convex. This allows one to apply convex optimization techniques to solve the
vector problem.

(2) Scalarization by the smallest weakly increasing functions: Let
a ∈ Y and e ∈ int CY . Set

he,a(y) = sup{t ∈ R : y ∈ a+ te+ CY } for y ∈ Y.

This function is weakly increasing and has the property that if g is any other
weakly increasing function on Y , then the upper level set of g at g(a) must
contain the level set of he,a at 0 for some a ∈ Y .

In the finite dimensional case Y = R
n and CY = R

n
+, the function he,a is

expressed by

he,a(y) = min{yi − ai
ei

: i = 1, . . . , n}.

The associated scalar problem is of the form

(Pe,a)
min min{ fi(x)−ai

ei
: i = 1, . . . , n}

s.t. x ∈ X0

The usefulness of this scalarization is seen in the next result, which con-
cretizes the second assertion of Proposition 7.

Recall that f is quasiconvex on a convex set X0 if for every point x, y
in X0 and for every a ∈ R

n with a ≥CY
f(y) and a ≥CY

f(x), one has
a ≥CY

f(λx + (1 − λ)y) for all λ ∈ [0, 1]. This amounts to say that the
composite function ξ ◦ f is quasiconvex for all extreme directions of the polar
cone C ′

Y . We refer to [2] and [36] for the proof.

Proposition 10. For each vector e ∈ int(CY ), every weakly efficient solution
x of (VP) is an optimal solution of the scalarized problem (Phf(x),e

). Moreover,
this scalar problem is quasiconvex whenever f is quasiconvex.

6.2 Scalarization via Support Functions

The assertion (iii) of Proposition 7 is quite general. It states that by solving one
scalarized problem, one is able to obtain all solutions of the vector problem.
The construction of a scalarizing function with such a property is not easy. We
shall develop a constructive method for such a kind of scalarizing functions.

Given a nonempty set A ⊆ Y , its support function sA is defined on Y ′ by

sA(ξ) = sup
y∈A
〈ξ, y〉 for ξ ∈ Y ′;
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and the polar set of A is a subset A◦ ⊆ Y ′ defined by

A◦ = {ξ ∈ Y ′ : sA(ξ) ≤ 1}.

Let A be the family of subsets A of Y that satisfy A∩C 	= ∅. We shall adopt
the following convention

r

0
=

⎧

⎨

⎩

+∞ if 0 < r or r = +∞
−∞ if 0 > r or r = −∞
0 if r = 0.

Let Λ be a closed base of C+, that is C+ = {tξ : ξ ∈ Λ, t ≥ 0} and 0 	∈ Λ.
For every A ∈ A, we define a function gA : Y −→ [0,∞] by

gA(y) = sup
ξ∈Λ

〈ξ, y〉+
sA(ξ)

,

where 〈ξ, y〉+ = max{〈ξ, y〉, 0}. This function will play a crucial role in solving
problem (V P ). Below we list some of its properties which can be verified
without difficulty.

Proposition 11. Let A ∈ A. Then the following assertions hold:

(i) gA is nondecreasing, lower semicontinuous, and sublinear on Y and co-
incides with the support function of the set Ao ∩ C+.

(ii) gA is increasing on C provided that Λ is weakly compact and +∞ >
supξ∈Λ sA(ξ) > 0.

To simplify the presentation, we shall make the following assumption:

(H) f(X) is a bounded set with f(X) ∩ intC 	= ∅.

This assumption implies the existence of some ξ∗ ∈ Λ such that
sf(X)(ξ∗) > 0. Denote by A0 ⊆ A the family of nonempty bounded sub-
sets A ⊆ Y satisfying

f(X) ⊆ A ⊆ {ξ∗/sf(X)(ξ∗)}◦.

For each A ∈ A0 by using the scalarizing function gA, we consider the following
scalarized problem of (VP):

(PA)
max sup

ξ∈Λ

〈ξ, f(x)〉
sA(ξ)

s.t. x ∈ X.

The following result shows the importance of this particular scalarization
(see [40] for the proof).
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Theorem 6. Under hypothesis (H) one has

(i) the optimal value of problem (PA) is equal to 1;
(ii) every optimal solution of (PA) is a weakly efficient solution of (VP)

provided that Λ is weakly compact and that 0 < supξ∈Λ sA(ξ) < +∞;
(iii) every weakly efficient solution of (VP) is an optimal solution of (PA)

provided A = f(X) and f(X)− CY is a convex set.

We notice that the convexity required in the above theorem is satisfied
when X is a convex set and f is concave in the sense that f(tx1 +(1− t)x2)−
tf(x1)−(1−t)f(x1) ∈ CY for any t ∈ [0, 1] and for all x1, x2 ∈ X. Later on we
shall exploit the third conclusion of Theorem 6 to solve problem (V P ). The
idea as we shall see in Section 8 is to approximate the set f(X) by a sequence
of polytopes Ak for which the scalarizing functions gAk

are easy to construct.
The function gA will be the limit of gAk

, and the solution set of (PA) will be
obtained by limits of the approximate solution sets of (PAk

).

7 Nonconvex Duality and Stability

There exists a well-developed duality theory for vector optimization problems.
Duality for linear problems is found in [24, 29], convex duality via geometric
approach is given in [47], axiomatic duality is treated in [37], convex duality
with D.C constraints is presented in [8], and other approaches are presented
in [34, 49], and some others. In this section, we consider the multiobjective
problem (V P ) as described in the previous section. We do not construct dual
problems directly for (V P ), but for the special scalarized problem (PA). The
approach allows us to develop a method to generate all solutions of the prob-
lem (V P ). It is to note that even when the set X is convex and the function f
is concave, the scalarized problem (PA) is no longer a concave maximization
problem. Therefore, the usual Fenchel–Moreau–Rockafellar duality approach
of convex analysis is not suitable to our case. The construction below of [39]
is much inspired by the approach of Toland’s dualization (see [41, 48], and
[53] related to abstract duality and duality in optimization of the difference
of convex functions).

We assume the hypothesis (H) of the previous section. The problem (PA)
can be written as

(P ′
A)

max gA ◦ f(x)
s.t. x ∈ X

which is equivalent to
max sA◦∩C+ ◦ f(x)
s.t. x ∈ X.

We exchange the suprema in this latter problem to obtain the dual of (PA):
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(QA)
max sf(X)(ξ)
s.t. ξ ∈ A◦ ∩ C+.

This duality construction is very simple, yet it has useful properties. The
first one is that there is no gap between the optimal values of (PA) and
(QA), which is a common feature of Toland type duality. Thus, in view of
Theorem 6, the optimal value v(QA) of the dual problem is equal to 1, too.
The question that remains is how the optimal solutions of (PA) are linked
with the optimal solutions of (QA). Before tackling this question, let us give
an example to illustrate the construction of a scalarized problem and its dual.
Let Y = R

2, C = R
2
+, and let

X = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤

1
4
, x1 ≥ 0, x2 ≥ 0},

A = {(x1, x2) ∈ R
2 : 0 ≤ x1 ≤

1
2
, 0 ≤ x2 ≤

1
2
}.

Let f : X → R
2 be the identity function. The dual cone C+ coincides with

R
2
+ and the standard simplex Λ = {(ξ1, ξ2) ∈ R

2
+ : ξ1 + ξ2 = 1} can be used

as a base of C+. The support function sA satisfies

sA(ξ) =
1
2

for every ξ ∈ Λ.

The problem (PA) is written as

max sup(ξ1,ξ2)∈Λ(ξ1x1 + ξ2x2)
s.t. (x1, x2) ∈ X

which is simplified as
max max{x1, x2}
s.t. (x1, x2) ∈ X

because ξ1x1 + ξ2x2 is a linear function of ξ ∈ Λ for every fixed (x1, x2). In
order to construct the problem (QA), let us compute the polar of A:

A◦ = {(ξ1, ξ2) ∈ R
2 : ξ1x1 + ξ2x2 ≤ 1, ∀ (x1, x2) ∈ A}

= {(ξ1, ξ2) ∈ R
2 : ξ1 + ξ2 ≤ 2, ξ1 ≤ 2, ξ2 ≤ 2}.

The support function sf(X) is given by

sf(X) = sup
x∈X

[ξ1x1 + ξ2x2] =

√

ξ21 + ξ22
2

.

The dual problem (QA) is then written as

max
√

ξ21+ξ22
2

s.t. ξ1 + ξ2 ≤ 2, 0 ≤ ξ1 ≤ 2 and 0 ≤ ξ2 ≤ 2.
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Observe that in this example, (PA) is a maximization problem over a convex
set X whereas (QA) is a maximization problem over a polytope of the dual
space Y ′.

As promised, let us now derive a relationship between the solutions of
problem (PA) and those of (QA). Consider the following auxiliary problems

(Px)
max 〈ξ, f(x)〉
s.t. ξ ∈ A◦ ∩ C+

for a fixed x ∈ X, and

(Qξ)
max 〈ξ, f(x)〉
s.t. x ∈ X,

for a fixed ξ ∈ A◦ ∩ C+.

Recall that the normal cone to a convex set D ⊆ Y at a ∈ D is defined by

N(D, a) = {ξ ∈ Y ′ : 〈ξ, y − a〉 ≤ 0 for every y ∈ D}.

Below are some optimality conditions for problem (Px) and (Qξ) that can
be obtained from the construction of the auxiliary problems and from the
subdifferential theory of convex analysis. The notation ∂h stands for the
convex subdifferential of h.

Proposition 12. The following assertions hold:

(i) v(PA) = sup
x∈X

v(Px) and v(QA) = sup
ξ∈A◦∩C+

v(Qξ).

(ii) ξ ∈ A◦ ∩ C+ is an optimal solution of (Px) if and only if there is some
y ∈ −C such that 〈ξ, y〉 = 0 and f(x)− y ∈ N(A◦, ξ).

(iii) Assume that X is convex and f is concave and continuous. Then x ∈ X
is an optimal solution of (Qξ) if and only if

−N(X,x) ∩ ∂(−ξ ◦ f)(x) 	= ∅.

A duality relation between the optimal solutions of (PA) and those of (QA)
is given next (see [40] for the proof).

Theorem 7. The following assertions hold

(i) If x ∈ S(PA) and ξ ∈ S(Px), then ξ ∈ S(QA).
(ii) If ξ ∈ S(QA) and x ∈ S(Qξ), then x ∈ S(PA).

In both cases,

v(PA) = v(Px) = 〈f(x), ξ〉 = v(Qx) = v(QA).
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The expressions of the solution sets S(PA) and S(V P ) given in the next
corollary of Theorem 7 are helpful in development of numerical methods for
solving problem (V P ).

Corollary 5. Assume that either of the following conditions holds:

(i) A and C are polyhedral;
(ii) 0 ∈ intco(A ∪ (−C)).

Then one has

S(PA) =
⋃

ξ∈S(QA)

S(Qξ) =
⋃

ξ∈S(QA)

{x ∈ X : 〈f(x), ξ〉 = 1}.

Moreover, if Λ is weakly compact and if f(X) ⊆ C is bounded, closed with
f(X)− C being convex, then

S(V P ) =
⋃

ξ∈S(Qf(X))

{x ∈ X : 〈ξ, f(x)〉 = 1}.

In the remaining part of this section, we study the stability of problem (PA)
and its dual (QA). To this purpose, let us recall the convergence in the sense of
Kuratowski and Painlevé and the convergence with respect to the Hausdorff
distance. Let us fix a base Λ of the cone C ′

Y , which is assumed bounded, and
denote δ := supξ∈Λ ||ξ||. Given two nonempty closed subsets A1, A2 ⊆ Y , the
Hausdorff distance between them is defined by

h(A1, A2) = inf{t > 0 : A1 ⊆ A2 + tB, A2 ⊆ A1 + tB},

where B denotes the closed unit ball in Y . Let {An}∞n=1 ⊆ Y be a se-
quence of nonempty closed sets. Its upper limit and lower limit in the sense
of Kuratowski and Painlevé are defined as

lim sup
n→∞

An := { lim
i→∞

ani
: ani

∈ Ani
, i = 1, 2, . . .},

lim inf
n→∞

An := { lim
n→∞

an : an ∈ An, n = 1, 2, . . .}.

We say that this sequence H-converges to a closed set A if

lim
n→∞

h(An, A) = 0,

and KP-converges to A if

lim sup
n→∞

An ⊆ A ⊆ lim inf
n→∞

An.

For a nonempty set A ⊆ Y , together with the polar set A◦ we shall consider
two other polar sets:
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A−1 := {ξ ∈ Y ′ : 〈ξ, a〉 < −1 for all a ∈ A}

A− := {ξ ∈ Y ′ : 〈ξ, a〉 ≤ 0 for all a ∈ A}.
It is evident that A−1 ⊆ A− ⊆ A◦, and when A−1 is nonempty, the cone A− is
nontrivial and the set A◦ is unbounded. Direct verification gives the following
formula to compute the polar set of the sum A+εB. Let A ⊆ Y be nonempty
and let ε > 0, then the polar set (A+ εB)◦ is the set
{

ξ

1 + ε‖ξ‖ : ξ ∈ A◦
}

∪
{

ξ

ε‖ξ‖ − 1
: ξ ∈ A−1, ‖ξ‖ > 1

ε

}

∪
{

ξ : ξ ∈ A−, ‖ξ‖= 1
ε

}

.

With this formula, one can prove the following convergence of the function
gA defined in Subsection 6.2.

Lemma 2. Let {An}∞n=1 be a sequence of closed sets H-converging to a closed
set A with 0 ∈ int(A− C). Then {gAn

}∞n=1 pointwise converges to gA.

We obtain a convergence property for solutions of scalarized problems and
dual problems.

Theorem 8. Let {An}∞n=1 ⊆ A be a sequence of closed sets H-converging to
a closed set A with 0 ∈ int(A− C). Then

lim sup
n→∞

S(PAn
) ⊂ S(PA),

lim sup
n→∞

S(QAn
) ⊂ S(QA).

Proof. Apply Lemma 2 and Theorem 6.

The inclusions of this theorem does not allow one to obtain all solutions of
the problem (PA) when An are approaching A. The concept of approximate
solutions will be helpful. Given ε > 0, we say that x0 ∈ X is an ε-solution of
problem (P ′

A) if

gA ◦ f(x0) + ε ≥ gA ◦ f(x) for every x ∈ X.

The set of all ε-solutions of (P ′
A) (hence of (PA) as well) is denoted by Sε(P ′

A).

Theorem 9. Let {An}∞n=1 ⊆ A be a sequence of nonempty, closed sets, which
H-converges to a closed set A with 0 ∈ int(A−C) and let X be compact. Then

S(PA) ⊆ ∩ε>0 lim inf
n→∞

Sε(PAn
).

If in addition the sequence {An}∞n=1 is monotone (either increasing or de-
creasing by inclusions), then for every ε > 0 there is some n0 > 0 such that
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S(PA) ⊆ Sε(PAn
) for all n ≥ n0

and in particular
lim

n→∞,ε↓0
h(Sε(PAn

), S(PA)) = 0.

We see from this theorem (given in [39]) that by choosing ε > 0 and n appro-
priately, one can obtain all solutions of problem (PA) with help of problem
(PAn

).

8 Generating the Solution Set

To date, there exists a large variety of methods for solving multiobjective prob-
lems, starting with the classic ones (the weighting method, the ε-constraint
method, the goal programming method, etc.) that can be found in classic
textbooks ([9, 55, 57]) and more recent ones, such as the outer approxima-
tion method, the normal-boundary intersection method, and the normal cone
method for continuous case and evolutionary algorithm, metaheuristic algo-
rithm for combinatoric case (see [3–5,15,25,26,32,42,45–47,51,55,58] and the
references therein). Most of these methods allow us to find one or a few solu-
tions, the others are aimed at generating the whole solution set. The latter are
numerically difficult because except for the linear case, existing algorithms of
mathematical programming allow one to obtain a few solutions only. In this
section, we present a method based on normal cones to solve linear problems
and a method based on duality and scalarization to solve convex problems.
We refer the readers to [15,18,27] for nonconvex problems.

8.1 Linear Problems

Linear multiobjective problems are well studied. Known solution methods
such as the simplex method ([55,57]), the outcome space based method of [3],
etc., are quite suitable to solve them. In this subsection, we present the normal
cone method of [26] to generate all efficient solutions of linear problems. Let
us consider the following problem denoted by (LP):

(V P )
Min Cx
s.t. Ax ≥ b

where C is anm×n−matrix withm rows C1, . . . , Cm and A is an p×n−matrix
with p rows a1, . . . , ap, and b ∈ R

p. The order in R
m is given by the Pareto

cone R
m
+ .

Denote by M := {x : Ax ≥ b}. We recall that the normal cone to M at
x0 ∈M is the set N(M,x0) and given by

N(M,x0) := {v ∈ Rn : 〈v, x− x0〉 ≤ 0, x ∈M}.

The normal cone can be explicitly calculated by the following rule.
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Lemma 3. Let I(x0) be the active index set at x0 ∈M , i.e.,

I(x0) = {i ∈ {1, . . . , p} : 〈ai, x0〉 = bi}

and 〈aj , x0〉 > bj if j /∈ I(x0). Then N(M,x0) = cone{−ai : i ∈ I(x0)}.

Proof. By a direct verification.

Definition 5. Let I ⊆ {1, . . . , p}. We say that I is normal if there is x0 ∈M
such that N(M,x0) = cone{−ai : i ∈ I}, and I is positive if cone {−ai : i ∈
I} contains a vector of the form −

∑m
i=1 λiC

i with λ1 > 0, . . . , λm > 0.

Let F be a face of the polyhedral convex set M . We say that F is an
efficient solution face if every point of F is an efficient solution of (LP).

Theorem 10. Assume that there are no redundant constraints among
〈ai, x〉 ≥ bi, i = 1, . . . , p. Let F be a face of M determined by the system

〈ai, x〉 = bi, i ∈ IF ⊆ {1, . . . , p}

〈aj , x〉 ≥ bj , j ∈ {1, . . . , p} \ IF .
Then F is an efficient solution face if and only if IF is positive and normal.

The next three procedures allow to completely solve the problem (LP).

Procedure 1 (Finding an initial efficient solution vertex.)

Step 1. Solve the system

p
∑

i=1

µia
i =

m
∑

j=1

λj · Cj , µi ≥ 0, λj ≥ 1.

If it has no solutions, STOP ((VP) has no efficient solutions). Otherwise go
to Step 2.

Step 2. Let λ be a solution of the above system. Put v = CTλ. If v = 0,
STOP (every feasible solution of (VP) is efficient). Otherwise solve the scalar
linear problem

maxx∈M 〈v, x〉.
It is sure that this problem has optimal solutions. An optimal solution vertex
of this problem is an efficient solution vertex of (VP).

Procedure 2 (Determining all efficient edges emanating from an initial effi-
cient vertex x0.)
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Step 1. Determine the active index set

I(x0) := {i ∈ {1, . . . , p} : 〈ai, x0〉 = bi},

and pick I ⊆ I(x0) with |I| = n− 1 not previously considered.
If rank {ai : i ∈ I} = n− 1, go to Step 2.
Otherwise pick another I ⊆ I(x0).

Step 2. Verify whether I is positive by solving the system

∑

I⊂I

µia
i =

m
∑

j=1

λjC
j , µi ≥ 0, i ∈ I, λj ≥ 1, j = 1, . . . ,m.

If it has a solution, then go to Step 3 (I is positive).
Otherwise return to Step 1.

Step 3. Verify whether I is normal, which implies that the edge deter-
mined by I is efficient.

Find v 	= 0 by solving
〈ai, v〉 = 0, i ∈ I.

Solve the system

〈ai, x0 + tv〉 ≥ bi, i = 1, . . . , p.

Let the solution set be [t0, 0] or [0, t0] (t0 may be ∞ or −∞).
If t0 = 0, then Return to Step 1 (I is not normal).
If t0 	= 0, then [x0, x0 + t0v] is an efficient edge. Store it and return to Step

1 until no subset I ⊆ I(x0) with power (n− 1) left.

Procedure 3 (Finding an �-dimensional efficient solution face adjacent to x0.)
Let {[x0, x0 + tivi]; i = 1, . . . , k} be the family of all efficient edges ema-

nating from x0 that have been obtained by Procedure 2 (assume ti > 0).

Step 1. Pick J⊆{1, . . . , k} with |J |=�, not previously considered and set

xJ =
x0

�+ 1
+
∑

j∈J
λj

xj
�+ 1

where xj = x0 + tjvj and λj = tj if tj is finite, λj = 1 if tj =∞.

Step 2. Determine the active index set I(xJ).
If I(xJ) = ∅, then Return to Step 1.
Otherwise go to Step 3.

Step 3. (Verify whether I(xJ) is positive.)
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Solve the system of Step 2 (Procedure 2) with I = I(xJ).
If it has a solution, go to Step 4 (I(xJ ) is positive).
Otherwise return to Step 1.

Step 4. (Find an �-dimensional efficient face containing [x0, x0 + tjvj ] :
j ∈ J.)

Determine J0 := {j ∈ {1, . . . , k} : IJ ⊇ I(xJ)}.
Then the convex hull of {[x0, x0 + tjvj ] : j ∈ J0} is an �-dimensional

efficient face adjacent to x0.
Store it and pick J not containing J0 with |J | = � and continue Step 1.

Note that the set of efficient solutions of (VP) is pathwise connected, the
above procedures allow one to generate all efficient solutions of (VP) in a
finite number of iterations. Procedure 3 also gives a method generating all
maximal efficient faces adjacent to a given efficient vertex.

8.2 Convex Problem

The method we are going to describe is based on the scalarization and duality
we gave in the two preceding sections. This method is interesting from the
theoretical point of view and numerically implementable. Let us consider the
problem:

(V P )
Max f(x)
s.t. x ∈ X,

where X is a nonempty subset of R
n, f = (f1, . . . , fm) is a function from R

n

to R
m and R

m is equipped with the ordering cone int(Rm
+ ) ∪ {0}. Thus, we

are interested in finding all efficient solutions of the problem, namely the set

S(V P ) = {x ∈ X : (f(X)− f(x)) ∩ int R
m
+ = ∅}

which are weakly efficient with respect to the Pareto cone R
m
+ . It is to note

that the weakly efficient set is bigger than the efficient set and it is more
stable than the efficient set. A similar method can be developed for efficient
solutions, but the convergence analysis is more complicated.

Before presenting the solution method, let us introduce approximate so-
lutions for multiobjective problems and derive some scalarization and duality
properties from the analysis of Section 7.

Given ε > 0, we say that x0 ∈ X is an ε-solution of (V P ) if

f(X) ∩ ([f(x0) + (ε, . . . , ε)] + int R
m
+ ) = ∅.

The set of all ε-solutions of (VP) is denoted by Sε(V P ). The standard simplex

Λ = {ξ = (ξ1, . . . , ξm) ∈ R
m
+ :

m
∑

i=1

ξi = 1}
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will serve as a base of the nonnegative polar cone R
m
+ . We shall make use of

the notation A♦ = (A − R
m
+ ) ∩ R

m
+ for A ⊆ R

m
+ and assume throughout the

following hypothesis:

(H′) f(X) ⊂ intRm
+ and the set [f(X)]♦ is nonempty, compact and

convex.

This hypothesis is fulfilled, for instance, when X is nonempty compact
and convex, f is continuous and concave, and with help of a translation. By
setting A = [f(X)]♦, we have f(X) ⊆ A and A♦ = A.

Lemma 4. Let A = [f(X)]�, one has S(PA) = S(V P ). Moreover, for ε ≥ 0,
x0 ∈ X is an ε-solution of (VP) if and only if there is some vector ξ ∈ Λ such
that x0 is an ε-solution of (Qξ).

Proof. That the sets S(PA) and S(V P ) coincide is immediate from Theorem
6. Now, let x0 be an ε-solution of (VP). Then the set f(X) − R

m
+ , which

is convex according to the hypothesis (H′), does not meet the convex set
f(x0) + (ε, . . . , ε) + intRm

+ . Separating them, we find some ξ ∈ Λ such that

〈ξ, f(x)〉 ≤ 〈ξ, f(x0)〉+ ε

for every x ∈ X. This shows that x0 is an ε-solution of (Qξ). Conversely, if x0

is not an ε-solution of (VP), then there are some x ∈ X and c ∈ intRm
+ such

that f(x) = f(x0) + (ε, . . . , ε) + c. We derive for each ξ ∈ Λ that

〈ξ, f(x)〉 ≥ 〈ξ, f(x0)〉+ ε+ 〈ξ, c〉 > 〈ξ, f(x0)〉+ ε.

Hence x0 cannot be an ε-solution of (Qξ). The proof is complete.

The next result is obtained from Theorem 6, Lemma 4, and Corollary 5.

Proposition 13. Under the hypothesis (H ′), one has

S(V P ) =
⋃

ξ∈bd+(A◦)

S(Qξ) =
⋃

ξ∈bd+(A◦)

{x ∈ X : 〈ξ, f(x)〉 = 1},

where bd+(A◦) denotes the intersection of the boundary of the set A◦ with the
octant R

m
+ . In particular, if A is a polytope and Γ is a set of those vertices of

A◦ that lie in R
m
+ , then

S(V P ) =
⋃

ξ∈Γ
{x ∈ X : 〈ξ, f(x)〉 = 1}

In view of the above proposition, for generating the solution set of (V P ), it
suffices to determine A◦ or more precisely bd+(A◦) and then solve the scalar
problems (Qξ). In what follows, we present an algorithm to solve problem
(V P ) by approximating the set A◦ from outside. The idea is to start up with
a polyhedron S1 ⊃ A◦ and to build up a sequence of polyhedra
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S1 ⊃ S2 ⊃ . . . ⊃ Sk ⊃ . . . ⊃ A◦.

This can be done by the dual relation between a polyhedron and its polar,
which states that if two full-dimensional polyhedra P and S containing 0 are
polar to each other, then there exists a 1-1 correspondence between the set of
facets of P not containing 0 and the set of nonzero vertices of S.

Denote by q the vector (q1, . . . , qm), where q1, . . . , qm are the optimal val-
ues of the following problems

max fi(x)
s. t. x ∈ X.

It is easy to see that the vectors y1 = (q1, . . . , 0), . . . , ym = (0, . . . , qm) belong
to [f(X)]♦. Set

B1 = co{0, y1, . . . , ym}
B̂1 = B1 − R

m
+

S1 = {ξ ∈ R
m : 〈ξ, yi〉 ≤ 1, i = 1, . . . ,m} ∩ R

m
+

Ŝ1 = S1 − R
m
+ .

Denote by V1 the vertex set of S1, which actually consists of the vectors

v = (v1, . . . , vm) where vi ∈
{

0,
1
qi

}

, i = 1, . . . ,m.

We construct Sk+1 by induction. Assume that Sk is known together with its
vertex set Vk+1. Define

V ∗
k = {v ∈ Vk : sA(v) > 1}.

If V ∗
k = ∅, we set Sk+1 = Sk. Otherwise define

Sk+1 = Sk ∩ {ξ ∈ R
m : 〈ξ, yv〉 ≤ 1, v ∈ V ∗

k }

where yv is a maximum of the linear function 〈v, .〉 on A and

Ŝk+1 = Sk+1 − R
m
+

Bk+1 = co(Bk ∪ {yv : v ∈ V ∗
k })

B̂k+1 = Bk+1 − R
m
+ .

Here are some important properties of the sets Sk, Ŝk, Bk, and B̂k (see [40]
for the proof).

(i) For every k ≥ 1, the sets Bk and B̂k are polar to Ŝk and Sk, respectively.
(ii) Sk+1 ⊆ Sk.
(iii) A◦ ∩ R

m
+ ⊆ Sk and A◦ = (A◦ ∩ R

m
+ )− R

m
+ ⊆ Ŝk.

(iv) If V ∗
k = ∅ for some k ≥ 1, then Ŝk = A◦.
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(v) The sequence {Ŝk}∞k=1 H-converges to A◦.

Now we are in the position to present the algorithm for solving problem
(VP).

Step 1 (Initialization). Choose a small ε > 0. Find ai and bi ∈ R such that
ai ≥ fi(x) > bi for all x ∈ X and i = 1, . . . ,m. Set k = 1 and for
i = 1, . . . ,m:

fi(x) = fi(x)− bi, qi = ai − bi, yi = qiei

where e1 = (1, . . . , 0), . . . , em = (0, . . . , 1). Define

Sk = {ξ ∈ R
m
+ : 〈ξ, yi〉 ≤ 1, i = 1, . . . ,m}

and set Vk = {v = (v1, . . . , vm) : vi ∈
{

0, 1
qi

}

, i = 1, . . . ,m}.
Step 2. For each v ∈ Vk, solve problem (Pv):

max 〈v, y〉
s. t. y ∈ [f(X)]♦.

to obtain sA(v) and an optimal solution yv.
Step 3. Set V ∗

k = {v ∈ Vk : sA(v) > 1 + ε} .
If V ∗

k = ∅, then stop. Set

Eε =
⋃

v∈Vk

{x ∈ X : 〈f(x), v〉 ≥ 1}

Otherwise, go to the next step.
Step 4. Set

Sk+1 = Sk ∩ {z ∈ R
m : 〈z, yv〉 ≤ 1, v ∈ V ∗

k }
and find the vertex set Vk+1 of Sk+1. Set k = k + 1 and return to Step 2.

The convergence of this algorithm is seen in the next theorem (see [40] for
the proof).

Theorem 11. Assume that f(X) ⊆ intRm
+ and [f(X)]♦ is a nonempty, com-

pact, and convex set. Then

(i) for a given ε > 0, the algorithm terminates after a finite number of
iterations and

S(V P ) ⊆ Eε ⊆ Sεδk
(V P )

where δk = 1/(minv∈Vk

m
∑

i=1

vi);
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(ii) if problem (VP) is linear, then the algorithm terminates after a finite
number of iterations with zero tolerance ε = 0 and

S(V P ) =
⋃

v∈Vk

{x ∈ X : 〈f(x), v〉 = 1}.

We would like to point out that when the algorithm terminates, in view of
the convergence theorem, all elements of the set Eε are εδk-solutions of (VP).
Moreover, because A contains the origin of the space in its interior, there is
a positive γ such that all coordinates of elements of Vk are greater then γ.
Consequently, δk is majorized by 1/(mγ), and εδk converges to 0 as soon as ε
tends to 0. In practice, when implementing the algorithm, one normally does
not obtain the whole set Eε as no existing solvers are able to do it. So instead,
one finds some xv ∈ X such that yv = f(xv) solves Problem (Pv) and stores
the set Êε = {xv : v ∈ Vk}. This set is the best representative portion of the
weakly efficient solution set of (V P ) in the sense that each element of this set
is a weakly efficient solution, and for every weakly efficient solution x there
exists some element xv of the set Êε such that |〈v, f(xv)〉−〈v, f(x)〉| ≤ ε where
v is a vertex of the polyhedron Ŝk that approximates the polar of [f(X)]� from
outside.

References

1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)
2. Benoist, J., Borwein, J.M., Popovici, N.: A characterization of quasiconvex

vector-valued functions. CECM Preprint Nr. 170, Department of Mathematics
and Statistics, Simon Fraser University, Burnaby, Canada (2001)

3. Benson, H.P.: An Outer Approximation Algorithm for Generating all Efficient
Extreme Points in the Outcome Set of a Multiple Objective Linear Program-
ming Problem. J. Global Optimization, 13, 1–24 (1998)

4. Benson, H.P.: Vector Maximization with Two Objective Functions. J. Optim.
Theory Appl., 28, 253–257 (1979)

5. Benson, H.P., Sun, E.: Outcome Space Partition of the Weight Set in Multiob-
jective Linear Programming. J. Optimization Theory and Applications, 105,
17–36 (2000)

6. Borwein, J.M.: The Geometry of Pareto Efficiency Over Cones. Mathematische
Operationsforschung und Statistik, Serie Optimization, 11, 235–248 (1980)

7. Borwein, J.M., Zhuang, D.: Supper Efficiency in Vector Optimization. Trans-
actions of the American Mathematical Society, 339, 105–122 (1993)

8. Bot, R.I., Wanka, G.: Duality for Multiobjective Optimization Problems with
Convex Objective Functions and D.C. Constraints. J. Mathematical Analysis
and Applications, 315, 526–543 (2006)

9. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and
Methodology. North-Holland, New York (1983)

10. Chen, G.Y., Huang, X.X., Hou, S.H.: A General Approximate Variational Prin-
ciple for Set-Valued Maps. J. Optimization Theory and Applications, 106,
151–164 (2000)



Pareto Optimality 513

11. Chen, P.C., Hansen, P., Jaumard, B.: On-Line and Off-Line Vertex Enumera-
tion by Adjacency Lists. Operations Research Letters, 10, 403–409 (1991)

12. Cheng, Y.H., Fu, W.T.: Strong Efficiency in a Locally Convex Space. Math
Meth. Oper. Res., 50, 373–384 (1999)

13. Corley, H.W.: An Existence Result for Maximization with Respect to Cones,
J. Optimization Theory and Applications, 31, 277–281 (1980)

14. DaCunha, N.O., Polak, E.: Constrained Minimization under Vector-Valued Cri-
teria in Finite Dimensional Space. Journal of Mathematical Analysis and Ap-
plications, 18, 103–124 (1967)

15. Das, I., Dennis, J.E.: Normal-Boundary Intersection: A New Method for Gen-
erating the Pareto Surface in Nonlinear Multicriteria Optimization Problems.
SIAM Journal on Optimization, 8, 631–657 (1998)

16. Geoffrion, A.M.: Proper Efficiency and the Theory of Vector Maximization.
Journal of Mathematical Analysis and Applications, 22, 618–630 (1968)

17. Gopfert, A., Hassan, R., Tammer, C., Zalinescu, C.: Variational Methods in
Partially Ordered Spaces, Springer, New York (2003)

18. Gourion, D., Luc, D.T.: Generating the Weakly Efficient Set of Non-convex
Multiobjective Problems, Journal of Global Optimization, Published online 5
December 2007

19. Guerraggio, A., Luc, D.T.: Properly Maximal Points in Product Spaces. Math-
ematics of Operations Research, 31, 305–315 (2006)

20. Ha, T.X.D.: Existence and Density Results for Proper Efficiency in Cone Com-
pact Sets. Optimization, 111, 173–194 (2001)

21. Ha, T.X.D.: Variants of the Ekeland Variational Principle for a Set-Valued Map
Involving the Clarke Normal Cone. J. Mathematical Analysis and Applications,
316, 346–356 (2006)

22. Henig, M.I.: Proper Efficiency with Respect to Cones. J. Optimization Theory
and Applications, 36, 387–407 (1982)

23. Isac, G., Tammer, C.: Nuclear and Full Nuclear Cones in Product Spaces:
Pareto Efficiency and an Ekeland Type Variational Principle. Positivity, 9,
511–539 (2005)

24. Isermann, H.: The Relevance of Duality in Multiple-Objective Linear Program-
ming. In: Starr, M.K., Zeleny, M. (eds.) Multiple Criteria Decision Making.
North-Holland Publ., Amsterdam (1977)

25. Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer,
Berlin (2004)

26. Kim, N.T.B., Luc, D.T.: Normal Cones to a Polyhedral Convex Set and Gener-
ating Efficient Faces in Linear Multiobjective Programming. Acta Mathematica
Vietnamica, 25, 101–124 (2000)

27. Klamroth, K., Tind, J., Wiecek, M.: Unbiased Approximation in Multicrite-
ria Optimization. Mathematical Methods of Operations Research, 56, 413–437
(2002)

28. Klinger, A.: Vector-Valued Performance Criteria. IEEE Transactions on
Automatic Control, 6, 849–855 (1958)

29. Kolumban, J.: Dualität bei Optimierungsaufgaben. Proceedings of the Con-
ference on the Constructive Theory of Functions (Approximation Theory),
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Abstract To define optimality when we are in presence of several conflicting objec-
tives, we need “good” definition of order in R

p. After this, we can study many types
of problems: existence of solutions, optimality conditions, and solution methods.

Key words: multiobjective optimization, orders and cones, Pareto optimal-
ity, scalarization

1 Introduction

Multiobjective optimization problems typically have conflicting objectives,
and a gain in one objective very often is an expense of another. Therefore
the definition of optimality is not obvious as in the scalar case. However in
many contexts, mathematical models involving more than one objective seem
much more adherent to the real problems. This happens, for example, in many
engineering design problems (aircraft gas turbine engine, unmanned vehicle
configuration, pumpling assemblies, networks management, and so on), where
it is necessary to increase productivity, strength, and efficiency, but at the
same time they want to decrease noise, vibration, production and maintenance
costs, and in many economics or finance problems like optimal portfolio where
we are in presence of many variance criteria.

The chapter is organized as follows. In Section 2, we introduce our problem
and we outline the relationships between multiobjective optimization, partial
orders, and cones. In Section 3, we deal with results concerning the existence of
solutions of multiobjective optimization. In Section 4, optimality conditions
are illustrated both in the differentiable and in the nondifferentiable case.
Section 5 is devoted to scalarization techniques. Section 6 deals with a brief
survey of solution methods. A wide bibliography concludes the chapter.
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2 Multiobjective Optimization

The definition of optimal solution for a scalar (i.e., single objective) optimiza-
tion problem is based on the usual order relation of the set R. In an analogous
way, in order to define optimal solution for a multiobjective optimization
problem, we need to introduce an order relation on R

p.
A binary relation on R

p is a subset A of R
p × R

p. An element x ∈ R
p is

said to be in relation with y ∈ R
p if and only if (x, y) ∈ A.

Definition 1. Let A be a binary relation on R
p. We say that it is

1. reflexive if (x, x) ∈ A for every x ∈ R
p;

2. antisymmetric if (x, y) ∈ A and (y, x) ∈ A imply x = y;
3. transitive if (x, y) ∈ A, (y, z) ∈ A imply (x, z) ∈ A;
4. complete if (x, y) ∈ A or (y, x) ∈ A for each x, y ∈ R

p, x 	= y.

A binary relation is said to be a partial order on R
p if it is reflexive,

transitive, and antisymmetric. If a partial order is complete then it is called
total order. A partial order is called linear if it satisfies the following two
conditions:

1. (x, y) ∈ A implies (x+ z, y + z) ∈ A for every x, y, z ∈ R
p;

2. (x, y) ∈ A implies (tx, ty) ∈ A for every x, y ∈ R
p and for every t > 0.

We can define a partial order on R
p by means of pointed convex cones.

Definition 2. A subset X of R
p, is said to be a cone if λx ∈ X for every

x ∈ X and for every λ > 0.

Let us consider a convex cone C ⊂ R
p; it gives the binary relation

AC = {(x, y) ∈ R
p × R

p : x− y ∈ C},

and in what follows we will write

x ≥C y instead of x− y ∈ C.

This binary relation is reflexive if 0 ∈ C. If we require that C be pointed, that
is C ∩ (−C) = {0}, then there are not x, y ∈ R

p, with x 	= y, such that

x ≥C y and y ≥C x,

therefore relation ≥C is antisymmetric.
When C = R

p
+, then ≥C is obviously reflexive, antisymmetric, transitive,

but not complete; moreover for x = (x1, . . . , xp), y = (y1, . . . , yp) we have:

x ≥C y ⇐⇒ xi ≥ yi ∀ i = 1, . . . , p.

The partial order generated by this cone is called Pareto-order.
Now we can define the minimum points of a subset of R

p with respect to
the partial order generated by a pointed convex cone C.
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Definition 3. Let X be a nonempty subset of R
p and C a pointed convex

cone. We say that

(i) x ∈ X is an efficient point of X with respect to C if x ≥C y, for some
y ∈ X, then y ≥C x; we denote the set of efficient points by Xeff ;

(ii)supposing that intC (i.e., the interior of C) is nonempty, x ∈ X is a
weakly efficient point of X with respect to C if x is an efficient point of X
with respect to (intC ∪ {0}); we denote the set of weakly efficient points
by Xweff .

A classic result establishes a one-to-one correspondence between linear partial
orders and pointed convex cones:

Theorem 1. Let A be a binary relation on R
p. Then A is a linear partial

order if and only if there exists a pointed convex cone C such that

(x, y) ∈ A ⇔ (y − x) ∈ C.

We are now able to introduce a multiobjective minimization problem. From
now on, suppose that a convex and pointed cone C ⊂ R

p is given. Let us
consider the vector-valued functions f : R

n → R
p, g : R

n → R
m, h : R

n → R
k.

We will consider the following multiobjective minimization problem:
{

minC f(x),
x ∈ R := {x ∈ R

p : g(x) ≤ 0, h(x) = 0}, (1)

where minC marks vector minimum with respect to the cone C; y ∈ R is a
(global) vector minimum point (for short v.m.p.) of (1) if and only if f(y)
is an efficient point of the image of the feasible region through the objective
function f , that is

Z = f(R) = {z ∈ R
p : ∃ x ∈ R : f(x) = z},

with respect to C. At C = R
p
+, (1) becomes the classic Pareto multiobjective

problem.

Definition 4. A decision vector x∗ is Pareto optimal if there does not exist
another decision vector x ∈ R such that fi(x) ≤ fi(x∗), ∀i = 1, . . . , p, and
fj(x) < fj(x∗), for at least one index j.

Analogous definition can be given for local Pareto optimality. As in scalar
optimization, global optima are obviously also local and the opposite holds if,
for example, the feasible region is convex and the objective functions fi are
quasiconvex. When (intC 	= ∅), a multiobjective minimization problem that
is often associated with (1) is the following one, called weak problem:

w −minC f(x),
x ∈ R (2)
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where w − minC marks vector minimum with respect to the cone intC ∪ 0;
y ∈ R is a weak v.m.p. of (2) if and only if f(y) is a weakly efficient point of
the image f(R) with respect to C. We remark that the solutions of (1) are
solutions also of (2), but not necessarily vice versa.

These definitions of optimality (via cones) arise because it is not possible
to adopt the following and more natural definition. Given

zidi = min
R

fi(x),

we could define optimal solution of (1) the vector zid = (zid1 , . . . , z
id
p ). Unfor-

tunately, it very often happens that

zid /∈ Z.

The point zid is called ideal point and, if zid ∈ Z, then it is surely the optimal
solution of our multiobjective problem. In any case, to compute it is very
useful because it is always a lower bound of the Pareto optimal set in the
sense that for every efficient point y, we have

zidi ≤ yi, ∀i.

Analogously, we can define the nadir point

zndi = max
R

fi(x),

and we obtain an upper bound in the sense that for every efficient point y,
we have

zndi ≥ yi, ∀i.
As noted, when we are in presence of a Pareto solution, we could improve

the value of an objective function but we may worsen another objective func-
tion. It is easy to propose examples where such a worsening can go to infinity.
In any case, when this does not happen, we are in presence of proper Pareto
optimal solution:

Definition 5. A Pareto solution x∗ is called proper if there exists M > 0 such
that, for every index i and for every x ∈ R such that fi(x) < fi(x∗), there
exists an index j such that fj(x∗) < fj(x) and moreover

[(fi(x∗)− fi(x))/(fj(x)− fj(x∗))] ≤M.

Proper minima are, in a certain sense, those Pareto-minima whose optimality
is preserved under small perturbations of the ordering cone. Thus, proper
minima require some kind of stability.

For the sake of completeness, we must recall that there are also other
concepts of optimality, some of them even referred to nonconical dominance
structure, but they will be not considered here.
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3 Existence of Solutions

The main condition that ensures the existence of efficient solutions for a mul-
tiobjective problem is some kind of compactness in the value space of the
objective functions.

Definition 6. We say that a set Y ⊆ R
p is called R

p
+-compact if ∀y ∈ Y the

set (y − R
p
+) ∩ Y is compact.

It is possible to prove the following results:

Theorem 2. If Y ⊆ R
p is nonempty and R

p
+-compact, then Yeff 	= ∅.

Theorem 3. If Y ⊆ R
p is nonempty, closed, convex, and R

p
+-compact, then

Yeff is connected.

Indeed in Theorems 2 and 3, it would be sufficient to assume the semi-
compactness as we show.

Definition 7. A set Y is said to be semicompact if every open cover of Y of
the form {ya − R

p
+ : ya ∈ Y, a ∈ A} has a finite subcover.

Thus in order to obtain an existence result for problem (1), we need some as-
sumptions ensuring the compactness or the semicompactness of the set f(R).
To do this we give the following definition:

Definition 8. A function f : R
n → R

p is said to be R
p
+-semicontinuous if

f−1(y − R
p
+) is closed for all y ∈ R

p.

Then we have:

Theorem 4. If R is compact and f is R
p
+-semicontinuous, then f(R) is R

p
+-

semicompact.

It is also possible to prove that f is R
p
+-semicontinuous if and only if every

fi is lower semicontinuous. In this way, we have obtained a generalization to
multiobjective problems of the classic Weierstrass theorem.

In the applications, a relevant case is the linear multiobjective problem
that is the case where f, g, and h are affine functions. In this case, there
are many results concerning the structure of solutions-set. One of the most
important is the following: two efficient extreme points are edge-connected in
the sense that they are connected by means of a path of efficient edges of
the polyhedron. This result is very useful for the construction of a solution
method of simplex-type.

4 Optimality Conditions

In this section, we present optimality conditions for multiobjective optimiza-
tion both in the differentiable and in the nondifferentiable case. The literature
about this topic is very wide.
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4.1 Differentiable Case

The starting point is the classic generalization of the Fermat theorem, and it
concerns a sort of steepest descent result:

Theorem 5. If f is differentiable, R = R
p, and x∗ is a weak Pareto optimal

solution, then
max

k=1,..,p
〈∇fk(x∗), w〉 ≥ 0, ∀w ∈ R

p.

Suppose, now, that we are in presence of constraints. Taking into account
the classic definition of Bouligand tangent cone T (R;x∗) of the set R at the
point x∗, we have:

Theorem 6. If f is differentiable and x∗ is a weak Pareto optimal solution,
then

max
k=1,..,p

〈∇fk(x∗), w〉 ≥ 0, ∀w ∈ T (R;x∗).

The analysis of the structure of the set T (R, x∗) in terms of the func-
tions g and h leads us to the Karush–Kuhn–Tucker theory for multiobjective
optimization.

Theorem 7. Let us suppose that f, g, h are continuously differentiable and
that x∗ is a weak Pareto optimal solution. Then there exist multipliers λ ∈
R
p
+, µ ∈ R

m
+ , ν ∈ R

k such that
{

λ∇f(x∗) + µ∇g(x∗) + ν∇h(x∗) = 0
〈µ, g(x∗)〉 = 0. (3)

As in the scalar case, a fundamental question arises in establishing when
the multiplier λ is regular, i.e., it is not equal to 0. But, in contrast with
the scalar case, we have two different types of regular multiplier: λ 	= 0 and
λi > 0.

Let us consider the following system in the unknown w:
⎧

⎨

⎩

〈∇fi(x∗), w〉 < 0 ∀i = 1, . . . , p
〈∇gi(x∗), w〉 ≤ 0 ∀i ∈ I(x∗)
〈∇hi(x∗), w〉 = 0 ∀i = 1, . . . , k.

(4)

where I(x∗) is the active constraint set.
When system (4) has no solution, we say that Abadie constraint qual-

ification holds; it ensures the existence of a multiplier λ 	= 0 in the KKT
theorem.

For obtaining the second case we need, obviously, more stronger constraint
qualifications. Given s ∈ {1, . . . , p}, let us consider the following system in the
unknown w

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈∇fs(x∗), w〉 < 0
〈∇fi(x∗), w〉 ≤ 0 ∀i 	= s
〈∇gi(x∗), w〉 ≤ 0 ∀i ∈ I(x∗)
〈∇hi(x∗), w〉 = 0 ∀i = 1, . . . , k.

(5)
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When system (5) has no solution, we say that Guignard constraint qualifi-
cation holds; it ensures the existence of a multiplier λ in the KKT theorem
such that λi > 0, ∀i = 1, . . . , p.

Other important topics developed and analyzed in literature are those
concerning boundedness and uniqueness of KKT multipliers. This depends on
the fact that in scalar optimization, results of such types are fundamental in
showing convergence properties of solution methods. Other results have been
established in literature for first-order sufficient conditions and second-order
necessary conditions.

4.2 Nondifferentiable Case

Several necessary optimality conditions for nondifferentiable multiobjective
problems have been proposed in literature in these past two decades. Gener-
alized derivatives are necessary. A way to rely on nonsmooth tools is some
kind of componentwise approach; that is, considering generalized derivatives
of the components of the given functions. Because components are taken into
account, this approach has one drawback: practically it works only in the
Pareto-case.

In this approach, we can consider classic Dini–Hadamard derivatives of a
real function f : R

n �→ R.

Definition 9. Let x̄ and v ∈ R
n. We call

D+f(x̄)(v) := lim sup
v′→v,t→0+

f(x̄+ tv′)− f(x̄)
t

,

the upper Dini–Hadamard derivative. By changing limsup with liminf, we have
the definition of lower Dini–Hadamard derivative.

The following result holds:

Theorem 8. If x̄ is a weak Pareto optimal solution, then

max
k=1,..,p

D+fk(x̄;w) ≥ 0, ∀w ∈ T (R; x̄).

Relying on the concept of Kuratowski limit, a very different approach has
been presented in recent papers [20]. It can be considered somehow a global
one because set-valued directional derivative of vector functions are introduced
without relying on the component.

Definition 10. The global Dini–Hadamard derivatives, D+f(x̄)(v) and D−

f(x̄)(v) are, respectively, the set of Pareto maximum and Pareto minimum
points (when they are finite) of

∞
⋂

k=1

cl
{

f(x̄+ tv′)− f(x̄)
t

; (t, v′) ∈ B̃ 1
k
(v)
}

,

where B̃ 1
k
(v) = (0, 1

k )×B 1
k
(v).
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The following result holds:

Theorem 9. If x̄ is a weak Pareto optimal solution, then

∞
⋂

k=1

cl
{

f(x̄+ tv′)− f(x̄)
t

; (t, v′) ∈ B̃ 1
k
(v)
}

∩(−intRp
+) = ∅, ∀v

Another frequently used concept is the Clarke’s generalized Jacobian of a
Lipschitz function f : R

n → R
m :

∂f(x) = conv{A : ∃xi −→ x,∃∇f(xi) and ∇f(xi) −→ A}

where conv denotes the convex hull. In this case, we have the following:

Theorem 10. Assume that f, g, and h are Lipschitz functions and x̄ is a Pareto
weak optimal solution. Then there exist multipliers λ ∈ R

p
+, µ ∈ R

m
+ , ν ∈ R

k

such that:
{

0 ∈ ∂(λf + µg + νh)(x̄)
〈µ, g(x̄)〉 = 0. (6)

The proof of this theorem needs more sophisticated instruments like Eke-
land’s variational principle, generalized mean value theorem, and topological
properties of Clarke’s gradient.

In any case, we observe that necessary optimality conditions using the
global approach of the Dini–Hadamard derivatives are sharper than those
using Clarke’s Jacobian because we have the following result:

Theorem 11.
D+f(x̄)(v) ⊆ ∂f(x)v.

5 Scalarization Approach

Generally, there are many (possibly infinite) efficient points of a multiobjective
problem. One of the most analyzed topics in multiobjective optimization is
the scalarization of (1), namely how to build a scalar minimization problem,
which leads one to find all the solutions of (1).

The classic scalarization, which is called weight-method, consists in con-
sidering the following scalar minimum problem

{

min 〈q, f(x)〉
x ∈ R (7)

where q ∈ R
p
+ and

∑

qi = 1.
Every solution of (7) is a weak Pareto solution of (1). Moreover, if, for a

fixed weight-vector q ≥ 0, (7) admits a unique solution, then it is a Pareto
solution of (1). If qi > 0, ∀i, then every solution of (7) is a Pareto solution
of (1).

The definition of convexlike function will be useful in the next theorem.
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Definition 11. Let C be a convex cone in R
p and consider a function F :

R
n → R

p. We say that F is C-convexlike if for every x, y ∈ R
n and α ∈ [0, 1],

there is z ∈ R
n such that

αF (x) + (1− α)F (y)− F (z) ∈ C.

Theorem 12. Let f be R
p
+-convexlike and R convex. If y is a v.m.p. of (1),

then there exists q̄ ∈ R
p
+, q̄ 	= 0, such that y is a solution of (7), at q = q̄.

Unfortunately, we remark that if we solve (7) varying the parameter p ∈
int R

p
+, we do not find necessarily all the solution of (1).

This approach can be generalized to the case of ordering cones different
from the Pareto one. In such cases, the weight must be chosen in the polar
cone:

Definition 12. Let C ⊂ R
p be a convex cone. The polar cone of C is given by

C∗ := {z ∈ R
p : 〈z, c〉 ≥ 0, ∀ c ∈ C}.

There are other scalarization techniques. Among them, one of the most popu-
lar is the so-called ε-constraints method. We must select an objective function
and we transform the other objectives in constraints by imposing on them
some upper bounds (the εi) and obtaining the following scalar problem:

⎧

⎨

⎩

min fr(x),
fi(x) ≤ εi ∀i = 1, . . . , p, i 	= r
x ∈ R.

(8)

We have the following result:

Theorem 13.

(i) Every solution of (8) is a weak Pareto optimal solution of (1).
(ii) A decision vector x∗ ∈ R is a Pareto optimal solution of (1) if and only

if it is solution of (8) for every r = 1, . . . , p with εi = fi(x∗), i 	= r.
(iii) If x∗ ∈ R is the unique optimal solution of (8) for some r and with

εi = fi(x∗), i 	= r, then it is a Pareto optimal solution of (1).

6 Solution Methods

To find all Pareto optimal solutions is the main aim of multiobjective opti-
mization problem. Nevertheless, when and if we have all the Pareto optimal
solutions, we have the problem of “choosing” the best according to some cri-
terion. This second phase needs a so-called decision maker.



526 M. Pappalardo

Generally the solution methods are divided in four classes:

(i) No-preference methods.
We do not have a decision maker and the method terminates when it
produces a Pareto solution.
(ii) A posteriori methods.
They produce Pareto optimal solutions (possibly all) and a decision maker
chooses the best according his personal criterion.
(iii) A priori methods.
The decision maker specifies his preference criterion and the method pro-
duces a Pareto optimal solution that is the best according the decision-
maker preference.
(iv) Interactive methods.
The decision maker specifies his preference while the algorithm is pro-
ducing Pareto optimal solutions and the algorithm continues taking into
account this preference.

Analyze briefly these methods.

No-preference methods: One of the most popular no-preference meth-
ods is the so-called goal method. Such a method consists in finding, in the
objectives-space, a Pareto solution that minimizes the distance with a “land-
mark,” which, very often, is the ideal point. Therefore the method consists in
solving the following scalar problem:

{

min ||f(x)− zid||s,
x ∈ R, (9)

where 1 ≤ s ≤ +∞. This means that we are choosing the point x∗, which is
the nearest to zid according to the s-distance. We have the following result:

Theorem 14. Every solution of (9) is a Pareto solution of (1).

When (1) is linear, it is useful to choose p = 1 or p = +∞, In fact the
problem (9), in this case, becomes a linear programming problem by adding
some auxiliary variables.

A posteriori methods: In order to obtain Pareto solutions (possibly all),
we may use weight-method or ε-constraint method, which we have described
in Section 5. Another interesting method of such a class is the so-called goal-
attainment method. To the objectives vector we associate a vector of “goals,”
say (F1, . . . , Fp), and we define the following scalar problem:

⎧

⎨

⎩

min γ
fi(x)− wiγ ≤ Fi
x ∈ R,

(10)

where γ is a real variable. The coefficients wi control the attaining (by defect
or by surplus) of the goals and they permit us to express the trade-off among
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the objectives. In fact if wi = 0, for some i, this means that the objective i
must be respected; if wi = Fi, we shall obtain for every objective the same
percentage of variance.

A priori methods: Two of the most used a priori method are the value-
function method and the lexicographic method. In the first, the decision maker
establishes his value function V : R

p → R, and we solve the scalar problem:

min V (f(x))
x ∈ R. (11)

If the function V is linear, we obtain the weight-method. In the lexicographic
method, the decision maker arranges the objectives in a decreasing order, and
we solve the scalar problem:

min f1(x)
x ∈ R. (12)

If this problem has a unique solution, then this is solution of (1) and the algo-
rithm terminates; otherwise, take a solution x∗ of (12) and solve the problem:

⎧

⎨

⎩

min f2(x)
f1(x) ≤ f1(x∗)
x ∈ R.

(13)

The procedure continues iteratively.

Interactive methods: These methods combine the preceding methods in
some interactive procedure.
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1 Introduction

Consider the multiobjective optimization problem:

min
x∈D

f(x)

with the vector function f(x) = (f1(x), f2(x), . . . , fm(x)) and a given set
D ∈ R

n.
Multiobjective optimization problems are widely used not only in mathe-

matics but also in engineering and economics. History of multiobjective opti-
mization goes back to F.Y. Edgeworth (1881) and V. Pareto (1896), who has
already given the definition of standard optimality concept in multiobjective
optimization.

There are many works [3,4,7,13–15,17,20–22] devoted to theoretical and
numerical aspects of multiobjective optimization. One of the main approaches
of finding Pareto optimal solutions is to solve the scalarized optimization
problems with given weights:

min
x∈D

m
∑

i=1

αifi(x), (1)
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where fi : D → R, i = 1, 2, . . . ,m, are functions and D ⊂ R
n, αi ≥ 0, i =

1, 2, . . . ,m, are given.
In general, Problem (1) is a nonlinear optimization problem where the

global minimizer has to be found. Depending on structure of the functions
and the feasible set, Problem (1) can be classified into a specific class of
global optimization problems. For instance,

• If fi, i = 1, 2, . . . ,m are convex and D is convex, then Problem (1) is convex
programming,

• If fi, i = 1, 2, . . . ,m are concave and D is convex, then Problem (1) is
concave programming,

• If fi, i = 1, 2, . . . , s are convex and fi, i = s + 1, . . . ,m are concave, then
Problem (1) is DC programming.

If fi, i = 1, 2, . . . ,m are nonconvex, then Problem (1) belongs to the class of
global optimization problem. Finally, if αi = αi(t), t ∈ [tA, tB ], Problem (1)
reduces to parametric multiobjective optimization.

The main purpose of this paper is to consider parametric multiobjective
optimization problems and propose appropriate algorithms for solving them.
The paper is organized as follows.

In Section 2, we recall basic concepts of multiobjective optimization.
Section 3 is devoted to multiobjective optimization problems with paramet-
ric weights. Parametric multiobjective linear programming is presented in
Section 4.

2 Basics of Multiobjective Optimization

Let us consider multiobjective optimization problems in finite dimensional
spaces of the general form

min
x∈D

f(x), (2)

where D is a nonempty subset of R
n and f is a given vector function with

f(x) = (f1(x), . . . , fm(x)).

Definition 1. x ∈ D is called a Pareto optimal point (or an efficient solution)
if there is no x ∈ D with

fi(x) ≤ fi(x) for all i ∈ {1, 2, . . . ,m}

and f(x) 	= f(x).

The Pareto optimal concept is the main optimality notion used in multi-
objective optimization. The main approach for determination of Pareto
optimal points is the weighted sum approach. If we introduce appropriate
weights α1, α2, . . . , αm, we obtain the scalarized optimization problem:

min
x∈D

m
∑

i=1

αifi(x) (3)
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Definition 2. x ∈ D is called a properly Pareto optimal point of problem (2),
if x is a Pareto optimal point and there is a real number µ > 0 such that, for
every i ∈ {1, 2, . . . ,m} and every x ∈ D with fi(x) < fi(x), there exists at
least one j ∈ {1, 2, . . . ,m} with fj(x) > fj(x) and

fi(x)− fi(x)
fj(x)− fj(x)

≤ µ.

Theorem 1. [13]. Let α1, α2, . . . , αm > 0 be given real numbers. If x ∈ D is a
solution of the scalar optimization problem (3), then x is a (properly) Pareto
optimal point of the multiobjective optimization problem (2).

Definition 3. x is called a strongly Pareto optimal point of Problem (2) (or
a strongly efficient solution) if

fi(x) ≤ fi(x) for all x ∈ D and i ∈ {1, 2, . . . ,m}.

Lemma 1. Every strongly Pareto optimal point of Problem (2) is a Pareto
optimal point.

Proof. Let x ∈ D be a strongly Pareto optimal point, i.e.,

fi(x) ≤ fi(x) for all x ∈ D and i ∈ {1, 2, . . . ,m}.

Then there is no x ∈ D with f(x) 	= f(x) and fi(x) ≤ fi(x) for all i ∈
{1, 2, . . . ,m}. Hence, x is a Pareto optimal point.

3 Multiobjective Optimization Problems

Consider the multiobjective optimization problems of the following type:

min
x∈D

f(x), (4)

where f : R
n → R

m, f(x) = (f1(x), f2(x), . . . , fm(x)), and fi : R
n → R,

i = 1, 2, . . . ,m, and gj : R
n → R, j = 1, 2, . . . , s, are twice continuously

differentiable convex functions. Let

D = {x ∈ Rn|gi(x) ≤ 0, j ∈ J}, J = {1, 2, . . . , s}.

Consider the problem of finding a Pareto optimal solution for problem (4)
where all weights depend on a parameter. Then the scalarized optimization
problem is

min
x∈D

f(x, t), t ∈ [tA, tB ] (5)

where f(x, t) =
∑m

i=1 αi(t)fi(x); αi : [tA, tB ] → R+, i = 1, 2, . . . ,m, are
positive defined continuous functions and tA, tB are given. According to
Theorem 1, it is clear that every solution to (5) for t ∈ [tA, tB ] is a Pareto
optimal solution to (4) for t ∈ [tA, tB ]. Now Problem (5) can be considered as
a one-parametric convex minimization problem. Assume that:
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(H1:) There exists a continuous function x : [tA, tB ]→ R
n such that x(t) is a

global minimizer for (5).
(H2:) x(tA) is known.

The KKT conditions for Problem (5) state that
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dxf(x, t) +
∑

j∈J µjDxgj(x, t) = 0
gj(x, t) ≤ 0, µj ≥ 0, j ∈ J
µjgj(x, t) = 0, j ∈ J
t ∈ [tA, tB ],

(6)

where Dxf(x, t) = (∂f(x,t)
∂x1

, . . . , ∂f(x,t)
∂xn

).
Consider the auxiliary parametric optimization problem

min f(x, t), t ∈ [tA, tB ] (7)

s.t. gj(x) = 0, j ∈ ˜J ⊂ J (8)

Let υ0 = (x0(t), µ0(t)) satisfy the KKT conditions for Problem (7)–(8) with
˜J = J0.

This system can be written in the following compact notation:

F (υ, t) = 0, t ∈ [tA, tB ], (9)

where υ = (x0(t), µ0(t)).
In order to apply Newton’s method to System (9), we have to solve a linear

system DυF (υ(t), t) as matrix. The same matrix is used to compute υ̇(t):

DυF (υ(t), t)υ̇(t) = −DtF (υ(t), t) (10)

Therefore, using Newton’s method as corrector, we have [9]:

DυF (υki−1
i , ti)(υki

i − υki−1
i ) = −F (υki−1

i , ti)

and
DυF (υki−1

i , ti)(υ̇ki−1
i ) = −DtF (υki−1

i , ti).

Now we can adapt algorithm PATH1 ([9]) for solving Problem (5) as follows.

Algorithm PATH1

Step 1. Given x0, J0, µ
0, εt, ευ, ευ̇,∆tmin,∆tmax, t0 := tA, k := 1.

Step 2. Determine a step size ∆tk ∈ [∆tmin,∆tmax].
Step 3. Find an approximateKKTpointυk = (xk, µk) solvingProblem (7)–(8)

for t = tk with ‖υk − υ(tk)‖ < ευ, υ(t) = (x(tk), µ(tk)).
Step 4. If

{

gj(xk(tk)) < −‖Dxgj(xk)‖ευ, j 	∈ Jk−1

(µk)j > ευ, j ∈ Jk−1

then Jk := Jk−1 and go to Step 6.
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Step 5. Find t solving the system:
{

gj(xk(t)) ≤ 0, j ∈ J\Jk−1

µkj (t) ≥ 0, j ∈ Jk−1

Step 6. Solve system (9) approximately, i.e.,

|˜t− t| < εt,
‖υ̃k − υk(˜t)‖ ≤ ευ,

‖ ˙̃υk − υ̇k(˜t)‖ ≤ ευ̇,
υ̃ = (x̃k, µ̃k).

Step 7. From index sets:

˜J = Jk−1

⋃

{j 	∈ Jk−1 : gj(x̃k,˜t) + |Dxgj(x̃k,˜t) ˙̃x
k

+Dtgj(x̃k,˜t)|εt
≥ −εt − [‖Dxgj(x̃k,˜t)‖+ 1]ευ},

˜J+ : = {j ∈ Jk−1 : µ̃kj ≥ | ˙̃µ
k

j |εt + ευ + εt},
˜J0 : = ˜J\ ˜J+.

Step 8. If | ˜J0| = 1, then construct the index set Jk as:

Jk = {j : gj(x̃k) = 0}.

Otherwise, go to the next step.
Step 9. Solve Problem (7)–(8) for t = tk and Jk := {j : gj(x̃) = 0}.
Step 10. Set k := k + 1 and go to Step 2.

We note that Algorithm PATH1 generates a sequence of approximate global
minimizers in Problem (5). The convergence of this algorithm is given by the
following theorem.

Theorem 2. [9] Assume that the assumptions (H1)–(H2) hold. Then
for ε, εt, ευ, ευ̇,∆tmax sufficiently small, algorithm PATH1 generates a
discretization

tA = t0 < t1 < · · · < ti < ti+1 < tN = tB

with corresponding points (x̃i, µ̃i) such that ‖(x̃i, µ̃i)−(x(ti), µ(ti))‖<ε, i=1,
2, . . . , N .

Remark 1. A search for t in Step 5 is carried out by bisection strategy in [9].

Remark 2. Choice of parameters εt, ευ, ευ̇ and∆tmin,∆tmax is done according
to [9].

Consider the following example.
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Example 1.

min

(

(x1 − 4)2

x2
2

)

s.t. −2x1 + x2 ≤ 2
4x1 − 3x2 ≤ 12
−4x1 − x2 ≤ 4.

Formulate Problem (5) for f1(x1, x2) = (x1 − 4)2, f2(x) = x2
2, α1(t) = t,

α2(t) = 1− t, t ∈ (0, 1) as follows:

min (1− t)(x1 − 4)2 + tx2
2, t ∈ (0, 1)

s.t. −2x1 + x2 ≤ 2
4x1 − 3x2 ≤ 12
−4x1 − x2 ≤ 4.

We can check that the KKT conditions give the following solution for this
problem:

⎧

⎪

⎨

⎪

⎩

x∗1 =
84− 36t
9 + 7t

,

x∗2 =
76(1− t)
9 + 7t

t ∈ (0, 1).

4 Parametric Multiobjective Optimization
in Linear Programming

Consider multiobjective linear programming problems as a special case of
Problem (4)

min
x∈D

f(x), (11)

where f : R
n → R

s with f(x) = (f1(x), . . . , fp(x)), fi(x) =< ci, x >, ci =
(ci1, c

i
2, . . . , c

i
n) ∈ R

n, i = 1, 2, . . . , p, and D= {x ∈ R
n | Ax = b, x ≥ 0}.

A is a real (m × n) matrix, and b ∈ R
m is a given vector, < · > denotes

the scalar product in R
n.

Introduce the scalarized function F (x, t) with linear parametric weights.

F (x, t) =
p
∑

i=1

(αit+ βi) < ci, x >, t ∈ [tA, tB ].

Then the corresponding scalarized minimization problem is

min
x∈D

F (x, t), t ∈ [tA, tB ], (12)
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where the coefficients αi and βi (i = 1, . . . , p) are given and αit + βi > 0 for
all t ∈ [tA, tB ] and i = 1, . . . , p.

It is clear that all assumptions of Theorem 1 are satisfied and a solution
to linear programming Problem (12) for any t ∈ [tA, tB ] is a Pareto optimal
solution. We can see that Problem (12) is a parametric linear programming
and there exist special path following methods [18]. The following statement
allows us to solve Problem (12) numerically.

Theorem 3. [5]. Assume that Problem (12) has a nondegenerate basic solu-
tion for each t ∈ [tA, tB ]. Then Problem (12) can be solved in a finite number
of discretization tA < t1 < · · · < tB . Now we can apply algorithm LPT ([5])
to Problem (12) as follows.

Algorithm LPT

Input: Nondegenerate problem (4.2). Output tA < t1 < · · · < tB .

Step 1. Set k := 1 and solve (4.2) for t = tk := tA. Let xk = (xi1 , xi2 , . . . , xim)
be a basic solution and Bk = (ai1 , . . . , aim) is its corresponding basic.

Step 2. Compute the optimality criteria ∆k
j1

and ∆k
j2

at the basis Bk :

∆k
j1 =

m
∑

s=1

c
′

isxisj − c
′

j ,

∆k
j2 =

m
∑

s=1

c
′′

isxisj − c
′′

j , j = 1, . . . , n,

where
xisj = (B−1

k aj)s, s = 1, . . . ,m, j = 1, . . . , n;

c
′

j =
p
∑

i=1

βic
i
j , c

′′

j =
p
∑

i=1

αic
i
j , j = 1, . . . , n.

Step 3. Find ˜t and l from the condition:

˜t = min
∆j2>0

(−∆j1

∆j2

) = −∆l1

∆l2

.

If ˜t does not exist, then ˜t = +∞ and terminate.
Step 4. If ˜t ≥ tB then stop. Discretization process is

tA < t1 < · · · < tB.

Step 5. Compute xisl as

xisl = (B−1
k al)s, s = 1, . . . ,m,
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Step 6. Find a number r as follows:

xir
xirl

= min
xisl>0

xis
xisl

Step 7. Construct a new basis Bk+1 by replacing air in Bk by al. xk+1 is a
corresponding basic solution.

Step 8. Set k = k + 1 and tk = ˜t, then go to Step 2.

Let us illustrate algorithm LPT on the following examples.

Example 2.

min F (x) = (−2− 3t)x1 + (1− 2t)x2 − 3tx3 − 4x4, t ∈ [−20, 20]
s.t. x1 + 2x2 + x3 + 3x4 + x5 = 7
−3x1 + 4x2 + 3x3 − x4 + x6 = 15
2x1 − 5x2 + 2x3 + 2x4 + x7 = 2
xj ≥ 0, j = 1, . . . , 7.

The algorithm LPT provides the following solution:

x∗ =

⎧

⎪

⎨

⎪

⎩

(0, 0, 0, 1, 4, 16, 0) if − 20 ≤ t < − 9
2

(0, 8
19 , 0,

39
19 , 0,

292
19 , 0) if − 9

2 ≤ t <
2
65

( 13
3 ,

4
3 , 0, 0, 0,

68
3 , 0) if 2

65 ≤ t ≤ 20

Example 3. [14] Determine all Pareto optimal solutions of the following
problem:

min

{

−4x1 − 2x2

8x1 − 10x2

s.t. x1 + x2 ≤ 70
x1 + 2x2 ≤ 100
x1 ≤ 60
x2 ≤ 40
x1 ≥ 0, x2 ≥ 0.

Let the vector t of the weights be given as (t, 1 − t) with t ∈ (0, 1). Then
the scalarized parametric optimization problem is

min (−8 + 4t)x1 + (8t− 10)x2, t ∈ (0, 1)
s.t. x1 + x2 ≤ 70

x1 + 2x2 ≤ 100
x1 ≤ 60
x2 ≤ 40
x1 ≥ 0, x2 ≥ 0.
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All solutions of this problem are

x∗ =

⎧

⎪

⎨

⎪

⎩

(40, 30), if 0 < t < 1
2

(40λ+ 60(1− λ), 30λ+ 10(1− λ)), λ ∈ [0, 1] if t = 1
2

(60, 10) if 1
2 < t < 1

Example 4. [17] Find all Pareto optimal solutions of the following problem:

min

(

−2x1 − x2 + 25

x1 − 2x2 + 18

)

s.t. −x1 + 3x2 ≤ 21

x1 + 3x2 ≤ 27
4x1 + 3x2 ≤ 45

3x1 + x2 ≤ 30

x1 ≥ 0, x2 ≥ 0

The scalarized optimization problem with parametric weight (t, 1 − t) ∈
(0, 1) is

min F (x, t) = t(−2x1 − x2 + 25) + (1− t)(x1 − 2x2 + 18)

= (1− 3t)x1 + (−2 + t)x2 + 43t+ 18, t ∈ (0, 1)

s.t. −x1 + 3x2 ≤ 21

x1 + 3x2 ≤ 27

4x1 + 3x2 ≤ 45

3x1 + x2 ≤ 30

x1 ≥ 0, x2 ≥ 0

All solutions of this problem found by algorithm LPT are given as follows:

x∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(0, 7) if 0 < t ≤ 1
8

(3, 8) if 1
8 < t ≤

1
2

(6, 7) if 1
2 < t ≤

11
13

(9, 3) if 11
13 < t < 1

5 Conclusion

We have proposed methods and algorithms for solving parametric multiobjec-
tive optimization problems in a finite number of discretization intervals. Some
numerical examples are provided.
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The Extended Linear Complementarity
Problem and Its Applications in Analysis
and Control of Discrete-Event Systems

Bart De Schutter
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Delft, The Netherlands
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Abstract In this chapter, we give an overview of complementarity problems with
a special focus on the extended linear complementarity problem (ELCP) and its
applications in analysis and control of discrete-event systems such as traffic signal
controlled intersections, manufacturing systems, railway networks, etc. We start by
giving an introduction to the (regular) linear complementarity problem (LCP). Next,
we discuss some extensions, with a particular emphasis on the ELCP, which can be
considered to be the most general linear extension of the LCP. We then discuss
some algorithms to compute one or all solutions of an ELCP. Next, we present a
link between the ELCP and max-plus equations. This is then the basis for some
applications of the ELCP in analysis and model-based predictive control of a special
class of discrete-event systems. We also show that — although the general ELCP
is NP-hard — the ELCP-based control problem can be transformed into a linear
programming problem, which can be solved in polynomial time.

Key words: linear complementarity problem, extended linear complemen-
tarity problem, algorithms, control applications, discrete-event systems, max-
plus-linear systems

Introduction

The linear complementarity problem (LCP) is one of the fundamental prob-
lems in optimization and mathematical programming [10,54]. Several authors
have introduced (both linear and nonlinear) extensions of the LCP, and some
of these linear extensions will be discussed in more detail below. The im-
portance of the LCP and its generalizations is evidenced by a broad range
of applications in the fields of engineering and economics such as quadratic
programming, determination of Nash equilibriums, nonlinear obstacle prob-
lems, and problems involving market equilibriums, invariant capital stock,
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optimal stopping, contact and structural mechanics, elastohydrodynamic lu-
brication, traffic equilibriums, operation planning in deregulated electricity
markets, manufacturing systems, etc. (see the other chapters of this book, the
books and overview papers [10,29–31,38], and the references therein).

Apart from the LCP, the focus of this chapter will be on yet another ex-
tension of the LCP, which we have called the extended linear complementarity
problem (ELCP) [17], and which can in some way be considered as the most
general linear extension of the LCP. This problem arose from our research on
discrete-event systems (max-plus-linear systems, max-plus-algebraic applica-
tions, and min-max-plus systems [18, 24]) and hybrid systems (traffic signal
control, and first-order hybrid systems with saturation [15,21]). Furthermore,
the ELCP can also be used in the analysis of several classes of hybrid systems
such as piecewise-affine systems [35, 61], max-min-plus-scaling systems [26],
and linear complementarity systems [20,36].

This chapter is organized as follows: In Section 1, we present the LCP
and the ELCP, and we discuss how they are related. In Section 2, we present
some other (linear) generalizations of the LCP, and we show that they can be
considered as special cases of the ELCP. Next, we discuss some algorithms to
compute one or all solutions of an ELCP in Section 3. In Section 4, we then
explain the relation between systems of max-plus equations and the ELCP,
which is the basis for several applications of the ELCP in analysis and control
of discrete-event systems, some of which are then discussed in more detail in
Section 5. We conclude this chapter with a summary.

As this chapter is mainly intended to be an overview, the proofs will be
reduced to a minimum (with appropriate references to the papers where the
full proofs can be found) and only be given in case they are functional.

1 Linear Complementarity Problem

1.1 Notation

All vectors used in this paper are assumed to be column vectors. The transpose
of a vector a is denoted by aT. Furthermore, inequalities for vectors have to
be interpreted entrywise. We use In to denote the n by n identity matrix and
0m×n to denote the m by n zero matrix. If the dimensions of the identity
matrix or the zero matrix are omitted, they should be clear from the context.

1.2 Linear Complementarity Problem

One of the possible formulations of the LCP is the following [10]:

Given M ∈ R
n×n and q ∈ R

n, find vectors w, z ∈ R
n such that

w = Mz + q (1)
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w, z � 0 (2)

wTz = 0. (3)

Note that if w and z are solutions of the LCP, then it follows from (2) and
(3) that

ziwi = 0 for i = 1, . . . , n ,

i.e., for each i we have the following conditions: if wi > 0, then we should
have zi = 0, and if zi > 0, then wi = 0. So the zero patterns of w and
z are complementary. Therefore, condition (3) is called the complementarity
condition of the LCP.

For an extensive state-of-the-art overview of the LCP (and related prob-
lems), we refer the interested reader to [10,29–31,38].

1.3 Extended Linear Complementarity Problem

The ELCP is defined as follows [17]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q, and m index sets
φ1, . . . , φm ⊆ {1, . . . , p}, find x ∈ R

n such that

Ax � c (4)
Bx = d (5)
m
∑

j=1

∏

i∈φj

(Ax− c)i = 0. (6)

The feasible set of the ELCP (4)–(6) is defined by

F = {x ∈ R
n | Ax � c,Bx = d}.

The surplus variable surp(i, x) of the ith inequality of Ax � c is defined as
surp(i, x) = (Ax− c)i.

Condition (6) represents the complementarity condition of the ELCP. One
possible interpretation of this condition is the following: Because Ax � c, all
the terms in (6) are nonnegative. Therefore, (6) is equivalent to

∏

i∈φj

(Ax− c)i = 0 for j = 1, . . . ,m .

So we could say that each set φj corresponds with a group of inequalities
in Ax � c, and that in each group at least one inequality should hold with
equality (i.e., the corresponding surplus variable is equal to 0).

The solution set of an ELCP can be characterized as follows [17]:

Theorem 1. In general the solution set S of an ELCP consists of the union
of faces of a polyhedron.
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This solution set can be represented using four sets:

• a set X fin of finite vertices of S,
• a set X ext of generators for the extreme rays of S,
• a basis X cen for the linear subspace associated with the maximal affine

subspace of S,
• and a set Λ of pairs of so-called maximal cross-complementary subsets of
X ext and X fin (where each pair corresponds with a face of S).

In Section 3.1, we will present an algorithm to compute these sets. Then x is a
solution of the ELCP if and only if there exists an ordered pair (X ext

s ,X fin
s ) ∈ Λ

such that

x =
∑

xcen
k ∈X cen

λkx
cen
k +

∑

xext
k ∈X ext

s

κkx
ext
k +

∑

xfin
k ∈X fin

s

µkx
fin
k (7)

with λk ∈ R, κk � 0, µk � 0 for all k and
∑

k

µk = 1.

We can also reverse Theorem 1 [17]:

Theorem 2. The union of any arbitrary set of faces of an arbitrary poly-
hedron can be described by an ELCP.

Remark 1. The complementarity conditions of both the LCP and the ELCP
consist of a sum of products. However, in contrast with the ELCP where the
products may contain one, two, or more factors, the products in complemen-
tarity condition of the LCP always contain exactly two factors. Moreover, any
variable in the LCP is contained in precisely one index set φj , whereas in the
ELCP formulation it may be contained in any number of index sets.

We also have the following complexity result:

Theorem 3. In general the ELCP with rational data is an NP-hard problem.

The proof of this result is based on the fact that in general, the LCP with
rational data is also NP-hard [7].

1.4 The Link between the LCP and ELCP

It is easy to verify that the following lemma holds:

Lemma 1. The LCP is a special case of the ELCP.

Moreover, we also have a reverse statement [23]:

Theorem 4. If the surplus variables of the inequalities of an ELCP are
bounded (from above1) over the feasible set of the ELCP, then the ELCP
can be rewritten as an LCP.
1 We only need boundedness from above because the surplus variables are always

nonnegative due to the condition Ax � c.
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Proof. Consider the ELCP (4)–(6). If there is an equality condition Bx = d
present, then we remove it using the following procedure: we can replace
Bx = d by Bx � d, and impose equality conditions on these inequalities by
adding the index sets φm+1 = {p+ 1}, . . . , φm+q = {p+ q}. So from now on
we consider the following formulation of the ELCP2:

Ax � c (8)
m
∑

i=1

∏

j∈φi

(Ax− c)j = 0. (9)

The proof of the theorem consists of two main steps:

1. First, we transform the ELCP into a mixed integer problem to get rid
of the ELCP complementarity condition at the cost of introducing some
additional binary variables.

2. Next, we transform all variables (both binary and real-valued ones) into
nonnegative real ones, which will lead to an LCP.

Step 1: Transformation into a mixed integer problem
Define a diagonal matrix Dupp ∈ R

p×p with (Dupp)ii = dupp
ii an upper bound

for surp(i, x) = (Ax − c)i over the feasible set F of the ELCP. So for each
i ∈ {1, . . . , p} we have dupp

ii � (Ax − c)i for all x ∈ F . Now consider the
following system of equations:

δ ∈ {0, 1}p, x ∈ R
n (10)

0 � (Ax− c)i � dupp
ii δi for i = 1, . . . , p (11)

∑

i∈φj

δi � #φj − 1 for j = 1, . . . ,m , (12)

where #φj denotes the number of elements of the set φj . Problem (10)–(12)
will be called the equivalent mixed integer linear feasibility problem (MILFP).

Now we show that the MILFP is equivalent to the ELCP (8)–(9) in the
sense that x is a solution of the ELCP (8)–(9) if and only if there exists a δ such
that (x,δ) is a solution of (10)–(12). Equation (8) is implied by (11). Note that
(10) and (12) imply that for each j, at least one of the δi’s with i ∈ φj is equal
to 0. If δi′ = 0, then it follows from (11) that (Ax− c)i′ = 0. This implies that
in each index set φj , there is at least one index for which the corresponding
surplus variable equals 0. Hence, the complementarity condition (9) is also

2 Note, however, that if we want to solve an ELCP using, e.g., the algorithm of
Section 3.1, then the formulation (5)–(6) leads to a more efficient solution than
does the reformulation (8)–(9).
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implied by (10)–(12). So (10)–(12) imply (8)–(9), and it is easy to verify that
the reverse statement also holds. As a consequence, the MILFP is equivalent
to the ELCP.

Define S ∈ R
m×p with sji = 1 if i ∈ φj and sji = 0 otherwise, and t ∈ R

m

with tj = #φj − 1. The MILFP can now be rewritten compactly as

Find x ∈ R
n and δ ∈ {0, 1}p such that

0 � Ax− c � Duppδ (13)

Sδ � t. (14)

Step 2: Now we transform the MILFP into an LCP.
This will be done in three steps.

(a) First we transform condition δ ∈ {0, 1}p into the LCP framework. All the
variables of an LCP should be real-valued, but the vector δ in the MILFP
is a binary vector. However, the condition δi ∈ {0, 1} is equivalent to the
set of conditions

δi ∈ R, δi � 0, 1− δi � 0, δi(1− δi) = 0.

So if we introduce a vector vδ ∈ R
p of auxiliary variables, then the condi-

tion δ ∈ {0, 1}p is equivalent to

δ, vδ ∈ R
p, δ, vδ � 0, vδ = 1p − δ, δTvδ = 0,

where 1p is a p-component column vector consisting of all 1’s.
(b) The inequality 0 � Ax − c can be adapted to the LCP framework by

introducing an auxiliary vector vA ∈ R
p with vA = Ax− c � 0. To obtain

a complementarity condition for vA, we introduce wA ∈ R
p such that

va, wA � 0 and vTAwA = 0 (note that we can always take wA = 0 to get
these conditions satisfied). Hence, 0 � Ax− c can be rewritten as

va, wA � 0, vA = Ax− c, vTAwA = 0,

with vA, wA ∈ R
p. The inequalities Ax − c � Duppδ and Sδ � t can be

dealt with in a similar way.
(c) All variables in an LCP are nonnegative whereas this condition is not

present in the MILFP. Therefore, we split x in its positive part x+ =
max(x, 0) and its negative part x− = max(−x, 0). So x = x+ − x− with
x+, x− � 0 and (x+)Tx− = 0. To obtain independent LCP-like comple-
mentarity conditions for x+ and x−, we introduce additional auxiliary
vectors v+, v− ∈ R

n with v+ = x+ and v− = x− such that (v−)Tx+ = 0
and (v+)Tx− = 0 with x+, x−, v+, v− � 0.
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Combining these three steps results in the following equivalent LCP:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

vδ
v−

v+

vA
vDupp

vS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

w

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Ip 0 0 0 0 0
0 0 In 0 0 0
0 In 0 0 0 0
0 A −A 0 0 0

Dupp−A A 0 0 0
−S 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

M

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δ
x+

x−

wA

wDupp

wS

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

z

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1p
0
0
−c
c
t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

q

(15)

w, z � 0 (16)

wTz = 0, (17)

with w, z ∈ R
3p+2n+m. The solution of the original ELCP can be extracted

from the solution of the LCP (15)–(17) by setting x = x+ − x−.

The introduction of the MILFP in this proof was inspired by the paper
[5], in which a class of hybrid systems is discussed consisting of mixed logical
dynamic systems, which can be shown to be equivalent to systems with an
ELCP-based model description [35].

2 Other Extensions of the LCP

Several authors have introduced linear and nonlinear extensions and general-
izations of the LCP. Some examples of “linear” extensions of the LCP are

• the Horizontal LCP [10]:
Given M , N ∈ R

n×n and q ∈ R
n, find w, z ∈ R

n such that

w, z � 0
Mz +Nw = q

zTw = 0.

• the Vertical LCP [10] (also known as the Generalized LCP of Cottle and
Dantzig [9]):

Let M ∈ R
m×n with m � n and let q ∈ R

m. Suppose that M and q
are partitioned as follows:

M =

⎡

⎢

⎢

⎢

⎣

M1

M2

...
Mn

⎤

⎥

⎥

⎥

⎦

and q =

⎡

⎢

⎢

⎢

⎣

q1
q2
...
qn

⎤

⎥

⎥

⎥

⎦

,

with Mi ∈ R
mi×n and qi ∈ R

mi for i = 1, . . . , n and with
n
∑

i=1

mi = m.

Now find z ∈ R
n such that
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z � 0
q +Mz � 0

zi

mi
∏

j=1

(qi +Miz)j = 0 for i = 1, . . . , n.

• the Extended LCP of Mangasarian and Pang [33,48]:
Given M , N ∈ R

m×n and a polyhedral set P ⊆ R
m, find x, y ∈ R

n

such that

x, y � 0
Mx−Ny ∈ P
xTy = 0.

• the Extended Horizontal LCP of Sznajder and Gowda [62]:
Given k + 1 matrices C0, C1, . . . , Ck ∈ R

n×n, q ∈ R
n and k − 1 vectors

d1, d2, . . . , dk−1 ∈ R
n with positive components, find x0, x1, . . . , xk ∈

R
n such that

x0, x1, . . . , xk � 0
dj − xj � 0 for j = 1, . . . , k − 1

C0x0 = q +
k
∑

j=1

Cjxj

xT
0 x1 = 0

(dj − xj)Txj+1 = 0 for j = 1, . . . , k − 1.

• the Generalized LCP of Eaves [27]:
Given n positive integers m1,m2, . . . ,mn, n matrices A1, A2, . . . , An ∈
R
p×mi , and a vector b ∈ R

p, find x1, x2, . . . , xn ∈ R
mi such that

x1, x2, . . . , xn � 0
n
∑

i=1

Aixi � b

n
∑

i=1

mi
∏

j=1

(xi)j = 0.

• the Generalized LCP of Ye [66]:
Given A, B ∈ R

m×n, C ∈ R
m×k and q ∈ R

m, find x, y ∈ R
n and

z ∈ R
k such that

x, y, z � 0
Ax+By + Cz = q

xTy = 0.
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• the Generalized LCP of De Moor and Vandenberghe [13]:
Given Z ∈ R

p×n and m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p}, find
u ∈ R

n (with u 	= 0) such that

u � 0
Zu = 0
m
∑

j=1

∏

i∈φj

ui = 0.

• the (Extended) Generalized Order LCP of Gowda and Sznajder [34]:
Given B0, B1, . . . , Bk ∈ R

n×n, and b0, b1, . . . , bk ∈ R
n, find x ∈ R

n

such that

(B0x+ b0) ∧ (B1x+ b1) ∧ . . . ∧ (Bkx+ bk) = 0

where ∧ is the entrywise minimum: if x, y ∈ R
n, then (x ∧ y)i =

min (xi, yi) for i = 1, . . . , n.
This problem is the Extended Generalized Order LCP. If we take B0 = In
and b0 = 0n×1 we get the (regular) Generalized Order LCP.

• the mixed LCP [10]:
Given A ∈ R

n×n, B ∈ R
m×m, C ∈ R

n×m, D ∈ R
m×n, a ∈ R

n and
b ∈ R

m, find u ∈ R
n and v ∈ R

m such that

v � 0
a+Au+ Cv = 0
b+Du+Bv � 0

vT(b+Du+Bv) = 0.

It is quite easy3 to show [17] that all these generalizations are special cases of
the ELCP. Furthermore, in [20] we have shown that the following extension
of the LCP is also a special case of the ELCP:

• the Linear Dynamic Complementarity Problem [59], which is defined as
follows:

Given A ∈ R
n×n, B ∈ R

n×k, C ∈ R
k×n and D ∈ R

k×k, find for a given
x0 ∈ R

n sequences {yl}n−1
l=0 , {ul}n−1

l=0 with yl, ul ∈ R
k for all l such that

y0 = Cx0 +Du0

y1 = CAx0 + CBu0 +Du1

...

yn−1 = CAn−1x0 + CAn−2Bu0 + · · ·+ CBun−2 +Dun−1,

3 Regarding the Extended LCP of Mangasarian and Pang, note that we may assume
without loss of generality that P can be represented as P = {u ∈ R

m |Su � t}
for some matrix S ∈ R

l×m and vector t ∈ R
l.
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and such that for each index i ∈ {1, 2, . . . , k} at least one of the follow-
ing statements is true:

[

(y0)i . . . (yn−1)i
]T = 0 and

[

(u0)i . . . (un−1)i
]T � 0

[

(y0)i . . . (yn−1)i
]T � 0 and

[

(u0)i . . . (un−1)i
]T = 0,

where z � 0 for a vector z ∈ R
n indicates that z is lexicographically

nonnegative, i.e., either zi = 0 for all i or the first nonzero component
of z is positive.

Hence, we have

Theorem 5. The ELCP can be considered as a unifying framework for the
LCP and its various generalizations.

The underlying geometrical explanation for the fact that all the general-
izations of the LCP mentioned above are particular cases of the ELCP is that
they all have a solution set that consists of the union of faces of a polyhedron,
and that the union of any arbitrary set of faces of an arbitrary polyhedron
can be described by an ELCP (see Theorem 2). More generally, if we define
a “linear” generalization of the LCP as a problem consisting of an explicit or
implicit system of linear (in)equalities in combination with a “general” com-
plementarity condition, i.e., an ELCP-like complementarity condition that
constrains the solutions of the problem to lie on the (relative) boundary of
the feasible set, then the solution set of this “linear” generalization will con-
sist of the union of faces of a polyhedron, which implies that such a “linear”
generalization of the LCP is a special case of the ELCP.

For more information on the generalizations discussed above and for ap-
plications and methods to solve these problems, the interested reader may
consult the references cited above and [1,28,37,39,47,50,52,54,64,68] and the
references therein.

3 Algorithms for the ELCP

In this section, we present some algorithms to compute all or just one so-
lution of an ELCP. For algorithms to solve a (regular) LCP, we refer to
[4, 6, 10,40–43,51,54,56,58,60,65,67] and the references therein.

3.1 An Algorithm to Compute All Solutions

In order to compute the entire solution set of the ELCP (4)–(6), we first
homogenize the ELCP by introducing a scalar α � 0 and defining

u =
[

x
α

]

, P =
[

A −c
01×n 1

]

and Q = [B − d ] .

Then we get a homogeneous ELCP of the following form:
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Given P ∈ R
p×n, Q ∈ R

q×n and m subsets φj of {1, 2, . . . , p}, find u ∈ R
n

(with u 	= 0) such that

Pu � 0 (18)
Qu = 0 (19)
m
∑

j=1

∏

i∈φj

(Pu)i = 0. (20)

So now we have a system of homogeneous linear equalities and inequalities
subject to a complementarity condition. Recall that the complementarity con-
dition (20) can also be written as

∏

i∈φj

(Pu)i = 0 for j = 1, . . . ,m . (21)

The solution set of the system of homogeneous linear inequalities and
equalities (18)–(19) is a polyhedral cone P and can be described using two sets
of generators: a set of central generators C and a set of extreme generators E .
The set C can be considered as a basis for the linear subspace of P. The
generators in E generate the extreme rays of P. Now u is a solution of (18)–(19)
if and only if it can be written as

u =
∑

ck∈C
αk ck +

∑

ek∈E
βk ek, (22)

with αk ∈ R and βk � 0.
To calculate the sets C and E , we use an iterative algorithm that is an adap-

tation of the double description method of Motzkin [53]. During the iteration,
we already remove generators that do not satisfy the (partial) complementar-
ity condition because such rays cannot yield solutions of the ELCP. In the
kth step of the algorithm, the partial complementarity condition is defined as
follows:

∏

i∈φj

(Pu)i = 0 for all j such that φj ⊂ {1, 2, . . . , k}. (23)

So we only consider those groups of inequalities that have already been
processed entirely. For k � p, the partial complementarity condition (23)
coincides with the full complementarity condition (21) or (20). This leads to
the following algorithm:

Algorithm 1 : Calculation of the Central and Extreme Generators

Initialization:
• C0 := {ci | ci is the ith column of In for i = 1, . . . , n}
• E0 := ∅

Iteration:
for k := 1, 2, . . . , p+ q ,
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• Calculate the intersection of the current polyhedral cone (described by
Ck−1 and Ek−1) with the half-space or hyperplane determined by the
kth inequality or equality of (18)–(19). This yields a new polyhedral
cone described by Ck and Ek.

• Remove the generators that do not satisfy the partial complementarity
condition.

Result: C := Cp+q and E := Ep+q

Not every combination of the form (22) satisfies the complementarity condi-
tion. Although every linear combination of the central generators satisfies the
complementarity condition, not every positive combination of the extreme
generators satisfies the complementarity condition. Therefore, we introduce
the concept of cross-complementarity:

Definition 1. (Cross-complementarity) Let E be the set of extreme gen-
erators of an homogeneous ELCP. A subset Es of E is cross-complementary if
every combination of the form

u =
∑

ek∈Es

βk ek,

with βk � 0, satisfies the complementarity condition.

In [17], we have proved that in order to check whether a set Es is cross-
complementary, it suffices to test only one strictly positive combination of
the generators in Es, e.g., the combination with βk = 1 for all k. Now we
can determine Γ , the set of maximal cross-complementary sets of extreme
generators: Γ = { Es | Es is maximal and cross-complementary}.
Algorithm 2: Determination of the Cross-Complementary Sets
of Extreme Generators

Initialization:
• Γ := ∅
• Construct the cross-complementarity graph G with a node ei for each

generator ei ∈ E and an edge between nodes ek and el if the set {ek, el}
is cross-complementary.

• S := {e1}
Depth-first search in G:
• Select a new node enew that is connected by an edge to all nodes of

the set S and add the corresponding generator to the test set: Snew :=
S ∪ {enew}.

• if Snew is cross-complementary
then Select a new node and add it to the test set.
else Add S to Γ : Γ := Γ ∪ {S}, and go back to the last point

where a choice was made.
Continue until all possible choices have been considered.

Result: Γ
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Now u is a solution of the homogeneous ELCP if and only if there exists a set
Es ∈ Γ such that u can be written as

u =
∑

ck∈C
αk ck +

∑

ek∈Es

βk ek, (24)

with αk ∈ R and βk � 0.
Finally, we have to extract the solution set S of the original ELCP (cf.

equation (7)), i.e., we have to retain solutions of the form (24) that have an
α component equal to 1 (uα = 1). So we transform the sets C, E , and Γ as
follows:

• If c ∈ C, then cα = 0. We drop the α component and put the result in
X cen (i.e., the basis the linear subspace associated with the maximal affine
subspace of S).

• If e ∈ E , then there are two possibilities:
– If eα = 0, then we drop the α component and put the result in X ext

(i.e., the set of generators for the extreme rays of S).
– If eα > 0, then we normalize e such that eα = 1. Next, we drop the

α component and put the result in X fin (i.e., the set of finite vertices
of S).

• For each set Es ∈ Γ , we construct the set of corresponding extreme gen-
erators X ext

s and the set of corresponding finite vertices X fin
s . If X fin

s 	= ∅,
then we add the pair (X ext

s ,X fin
s ) to Λ, the set of pairs of maximal cross-

complementary sets of finite vertices and extreme generators (where each
pair corresponds with a face of S).

For a more detailed and precise description of these algorithms and a worked
example, the interested reader is referred to [17]. Also note that the running
time and memory requirements of the algorithms presented above increase
exponentially with the size of the ELCP (see [14] for more details). This
implies that the above ELCP algorithm, which determines the entire solution
set of the ELCP, is not well suited for large ELCPs with a large number of
variables and (in)equalities, or a complex solution set. Therefore, we will now
present some method to compute only one solution of an ELCP.

3.2 Algorithms to Compute One Solution

Some of the methods that could be used to compute one solution of an ELCP
are

• via global minimization [49]:
We could minimize the left-hand side of the complementarity condition
(6) subject to the linear equality and inequality constraints (4)–(5). This
results in a nonlinear nonconvex optimization problem with linear con-
straints, that could, e.g., be solved using multistart local optimization
(SQP), simulated annealing, tabu search, etc. [56].



554 B. De Schutter

• as a system of multivariate polynomial equations:
if we introduce a dummy variable si, then the ith inequality of the system
Ax � c can be transformed into an equality: Ai,.x − s2i = ci. Note that
si = 0 if and only if Ai,.x = ci. If we repeat this reasoning for each
inequality, then we find that the complementarity condition (6) results in
m
∑

j=1

∏

i∈φj

si = 0. The resulting system of multivariate polynomial equations

could then be solved using, e.g., a homotopy method [44].
• using a combinatorial approach:

We could select one index ij out of each set φj for j = 1, . . . ,m. Each
index ij then corresponds with an inequality of Ax � c that should hold
with equality. So in that case, we just get a system of linear equalities and
inequalities. If this system has a solution, we have obtained a solution of
the ELCP; if not, we have to select another combination of indices, and
repeat the process.

• using a mixed-integer linear programming approach:
This approach is based on Theorem 4 and applies if the surplus variables of
the inequalities of the ELCP are bounded over the feasible set. Note that a
sufficient condition for this is that the feasible set of the ELCP is bounded.
For engineering problems, such bounds are often available, e.g., as a con-
sequence of physical or other constraints, operating ranges, etc. If we add
a dummy linear objective function to the MILFP (10)–(12), we obtain
a mixed-integer linear programming problem. This problem can then be
solved using, e.g., a branch-and-bound method [32, 63] or a branch-and-
cut method [8]. Moreover, there exist good commercial and free solvers
for mixed-integer linear programming problems (such as, e.g., CPLEX,
Xpress-MP, GLPK, lp solve, etc.; see [2, 45] for an overview).

Note that all these approaches are essentially of combinatorial nature. How-
ever, based on our own experiences, the bests results are usually obtained
using the mixed-integer linear programming approach.

4 Link with Max-Plus Equations

In this section, we consider max-plus equations as they arise in various appli-
cations in the max-plus algebra and in the analysis and control of max-plus-
linear systems. But first we give a short introduction to the basic concepts of
the max-plus algebra.

4.1 Max-Plus Algebra

The basic operations of the max-plus algebra [3, 11] are maximization and
addition, which are represented by ⊕ and ⊗, respectively,
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x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def= R ∪ {−∞}. The structure (Rε,⊕,⊗) is called the max-plus

algebra. The operations ⊕ and ⊗ are called the max-plus-algebraic addition
and max-plus-algebraic multiplication, respectively, as many properties and
concepts from linear algebra can be translated to the max-plus algebra by
replacing + by ⊕ and × by ⊗. Note that 0 is the identity element for ⊗ and
that −∞ is absorbing for ⊗.

The matrix En is the n×n max-plus-algebraic identity matrix: (En)ii = 0
for all i and (En)ij = −∞ for all i, j with i 	= j. The basic max-plus-algebraic
operations are extended to matrices as follows. If A,B ∈ R

m×n
ε , C ∈ R

n×p
ε

then

(A⊕B)ij = aij ⊕ bij = max(aij , bij)

(A⊗ C)ij =
n
⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

for all i, j. Note the analogy with the definitions of matrix sum and product
in conventional linear algebra.

The max-plus-algebraic matrix power of A ∈ R
n×n
ε is defined as follows:

A⊗0
= En and A⊗k = A⊗A⊗k−1

for k = 1, 2, . . . For scalar numbers x, r ∈ R

we have x⊗r = r · x.

4.2 Systems of Max-Plus-Polynomial Equations

In the next section, we shall see that many max-plus-algebraic problems can
be written in the following form:

mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗ckij = bk for k = 1, . . . , p1 (25)

mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗ckij � bk for k = p1 + 1, . . . , p1 + p2 , (26)

i.e., the max-plus-algebraic equivalent of a system of polynomial equations.
Therefore, we call (25)–(26) a system of multivariate polynomial equalities
and inequalities in the max-plus algebra, or a system of max-plus-polynomial
equations for short. Note that the exponents can be negative or real. Using the
notations introduced in Section 4.1, it is easy to verify that in conventional
algebra, this problem can be rewritten as follows:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk}
and {ckij} with i ∈ {1, . . . ,mk}, j ∈ {1, . . . , n} and k ∈ {1, . . . , p1, p1 +
1, . . . , p1 + p2}, find x ∈ R

n such that
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max
i=1,...,mk

(

aki +
n
∑

j=1

ckijxj

)

= bk for k = 1, . . . , p1 (27)

max
i=1,...,mk

(

aki +
n
∑

j=1

ckijxj

)

� bk for k = p1 + 1, . . . , p1 + p2 . (28)

Let us now we show that (27)–(28) can be recast as an ELCP.

4.3 Translation into an ELCP

Clearly, the kth equation of (27) is equivalent to the system of linear inequal-
ities

aki + cki1x1 + cki2x2 + · · ·+ ckinxn � bk for i = 1, . . . ,mk ,

where at least one inequality should hold with equality. So equation (27)
will lead to p1 groups of linear inequalities, where in each group at least one
inequality should hold with equality.

Using the same reasoning, equations of the form (28) can also be trans-
formed into a system of linear inequalities, but without an extra condition.

If we define p1 + p2 matrices Ck and p1 + p2 column vectors dk such that
(Ck)ij = ckij and (dk)i = bk − aki, then our original problem is equivalent
to p1 + p2 groups of linear inequalities Ckx � dk, where there has to be at
least one inequality that holds with equality in each group Ckx � dk for
k = 1, . . . , p1.

Now we define

Ã =

⎡

⎢

⎢

⎢

⎣

−C1

−C2

...
−Cp1+p2

⎤

⎥

⎥

⎥

⎦

, c̃ =

⎡

⎢

⎢

⎢

⎣

−d1
−d2

...
−dp1+p2

⎤

⎥

⎥

⎥

⎦

,

and p1 sets φj such that φj = {sj + 1, . . . , sj +mj} for j = 1, . . . , p1, where
s1 = 0 and sj+1 = sj+mj for j = 1, . . . , p1−1. Our original problem (27)–(28)
is then equivalent to the following ELCP:

Find x ∈ R
n such that

Ãx � c̃
p1
∑

j=1

∏

i∈φj

(Ãx− c̃)i = 0.

Conversely, we can also show that any ELCP can be written as a sys-
tem of max-plus equations of the form (27)–(28), which yields the following
theorem [19]:
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Theorem 6. A system of multivariate polynomial equalities and inequalities
in the max-plus algebra is equivalent to an ELCP.

Proof. We have already shown that (27)–(28) can be recast as an ELCP.
To show that the ELCP (4)–(6) can also be recast as a system of the form
(27)–(28), we consider the equivalent ELCP of the form (8)–(9), and we rewrite
the ELCP inequalities into the form c−Ax � 0, and we note that if in a group
of several homogeneous inequalities of this form at least one inequality should
hold with equality, then the maximum of the left-hand sides of the inequalities
in this group should be equal to 0. Hence, we get one equation of the form
(27) for the ELCP inequalities that belong to some subset φj and an equation
of the form (28) for the other ELCP inequalities.

5 Applications: Analysis and Control of
Max-Plus-Linear Systems

5.1 Max-Plus-Linear Discrete Event Systems

Typical examples of discrete-event systems are flexible manufacturing sys-
tems, telecommunication networks, parallel processing systems, traffic control
systems, and logistic systems. The class of discrete-event systems essentially
consists of man-made systems that contain a finite number of resources (e.g.,
machines, communications channels, or processors) that are shared by several
users (e.g., product types, information packets, or jobs) all of which contribute
to the achievement of some common goal (e.g., the assembly of products, the
end-to-end transmission of a set of information packets, or a parallel compu-
tation) [3].

In general, models that describe the behavior of a discrete-event system are
nonlinear in conventional algebra. However, there is a class of discrete-event
systems – the max-plus-linear discrete-event systems – that can be described
by a model that is “linear” in the max-plus algebra [3]. The max-plus-linear
discrete-event systems can be characterized as the class of discrete-event sys-
tems in which only synchronization and no concurrency or choice occurs. More
specifically, these systems can be described by a model of the form

xi(k) = max
(

max
j=1,...,n

(aij + xj(k − 1)),

max
j=1,...,m

(bij + uj(k))
)

for i = 1, . . . , n (29)

yi(k) = max
j=1,...,n

(cij + xj(k)) for i = 1, . . . , l, (30)

where x(k) represents the time instants at which the internal processes of the
system start for the kth time (i.e., the state of the system), u(k) represents
the time instants at which the system is fed with new data or products for the
kth (i.e., the input of the system), and y(k) represents the time instants at
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which the kth batch of final data or finished products leave the system (i.e.,
the output of the system). The additions with aij , bij , and cij in (29)–(30)
correspond with the time delays like processing times, production times, trav-
eling times, etc. The maximizations correspond with synchronization: a new
activity can only start as soon as all predecessor activities are finished.

In a manufacturing context, x(k) contains the time instants at which the
processing units start working for the kth time, u(k) the time instants at
which the kth batch of raw material is fed to the system, and y(k) the time
instants at which the kth batch of finished product leaves the system.

Using the notations from max-plus algebra introduced in Section 4.1, the
model (29)–(30) can be written as

xi(k) =
n
⊕

j=1

aij ⊗ xj(k − 1) ⊕
m
⊕

j=1

bij ⊗ uj(k) for i = 1, . . . , n

yi(k) =
n
⊕

j=1

cij ⊗ xj(k) for i = 1, . . . , l,

or in a more compact matrix-vector format as

x(k) = A⊗ x(k − 1) ⊕ B ⊗ u(k) (31)
y(k) = C ⊗ x(k). (32)

This latter form also illustrates where the name “max-plus-linear” systems
comes from: for these systems, the state and the output are a linear combi-
nation (in the max-plus sense) of the previous state and the input.

Using the model (31)–(32), we can compute the output sequence y(1), . . . ,
y(N) of the system for a given input sequence u(1), . . . , u(N) and initial state
x(0) as follows:

y(k) = C ⊗A⊗k ⊗ x(0) ⊕ C ⊗A⊗k−1 ⊗B ⊗ u(1)⊕

C ⊗A⊗k−2 ⊗B ⊗ u(2) ⊕ · · · ⊕ C ⊗B ⊗ u(k) (33)

for k = 1, . . . , N .
To illustrate the definition presented above, we now consider a simple

(max-plus-linear) manufacturing system, determine its evolution equations,
and write them in the forms (29)–(30) and (31)–(32).

Example 1. Consider the production system of Figure 1.
This manufacturing system consists of three processing units (P1, P2, and

P3) and works in batches (one batch for each finished product). Raw material
is fed to P1 and P2, processed and sent to P3 where assembly takes place. The
processing times for P1, P2, and P3 are respectively d1 = 11, d2 = 12, and
d3 = 7 time units. It takes t1 = 2 time units for the raw material to get from
the input source to P1, and t3 = 1 time unit for a finished product of P1 to
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P1

P2

�

�

���������

��������� P3
�u(k) y(k)

t1 =2

t2 =0

t3 =1

t4 =0

t5 =0

d1 =11

d2 =12

d3 =7

Figure 1. A simple manufacturing system

get to P3. The other transportation times and the set-up times are assumed
to be negligible. A processing unit can only start working on a new product
if it has finished processing the previous product. Each processing unit starts
working as soon as all parts are available.

Let us now determine the time instant at which processing unit P1 starts
working for the kth time. If we feed raw material to the system for the kth
time, then this raw material is available at the input of processing unit P1

at time t = u(k) + 2. However, P1 can only start working on the new batch
of raw material as soon as it has finished processing the previous, i.e., the
(k− 1)th batch. Because the processing time on P1 is d1 = 11 time units, the
(k−1)th intermediate product will leave P1 at time t = x1(k−1)+11. Because
P1 starts working on a batch of raw material as soon as the raw material is
available and the current batch has left the processing unit, this implies that
we have

x1(k) = max(x1(k − 1) + 11, u(k) + 2 ). (34)

Using a similar reasoning, we find the following expressions for the time in-
stants at which P2 and P3 start working for the kth time and for the time
instant at which the kth finished product leaves the system:

x2(k) = max(x2(k − 1) + 12, u(k) + 0 ) (35)

x3(k) = max(x1(k) + 11 + 1, x2(k) + 12 + 0, x3(k − 1) + 7 ) (36)

= max(x1(k − 1) + 23, x2(k − 1) + 24, x3(k − 1) + 7, u(k) + 14 )
(37)

y(k) = x3(k) + 7 + 0. (38)

Let us now rewrite the evolution equations of the production system using
the symbols ⊕ and ⊗. It is easy to verify that (34) can be rewritten as

x1(k) = 11⊗ x1(k − 1) ⊕ 2⊗ u(k).
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Equations (35)–(38) result in

x2(k) = 12⊗ x2(k − 1) ⊕ u(k)
x3(k) = 23⊗ x1(k − 1) ⊕ 24⊗ x2(k − 1) ⊕ 7⊗ x3(k − 1) ⊕ 14⊗ u(k)
y(k) = 7⊗ x3(k).

If we rewrite these evolution equations in max-algebraic matrix notation, we
obtain the description

x(k) =

⎡

⎣

11 −∞ −∞
−∞ 12 −∞

23 24 7

⎤

⎦⊗ x(k − 1) ⊕

⎡

⎣

2
0

14

⎤

⎦⊗ u(k)

y(k) =
[

−∞ −∞ 7
]

⊗ x(k).

5.2 Max-Plus-Algebraic Problems and Analysis
of Max-Plus Systems

It is easy to verify that the following max-plus-algebraic problems can be
recast as a system of max-plus-polynomial equations and inequalities and
thus also as an ELCP [14,19]:

• solving two-sided max-plus-linear equations:
Given A,B ∈ R

m×n
ε , and c, d ∈ R

m
ε , find x ∈ R

n
ε such that

A⊗ x ⊕ c = B ⊗ x ⊕ d.

• max-plus-algebraic matrix decomposition:
Given a matrix A ∈ R

m×n
ε and an integer p > 0, find B ∈ R

m×p
ε and

C ∈ R
p×n
ε such that

A = B ⊗ C.
• determining state space realizations of max-plus-linear systems:

Given a partial impulse response {Gk}Nk=1 of a max-plus-linear system
with unknown system matrices A, B, and C, and a system order n,
determine the system matrices of the system.

For a single-input system, the impulse response is the output of the system
for the input sequence given by u(1) = 0 and u(k) = −∞ for all k > 0 (i.e.,
an impulse signal), and for the initial state x(0) =

[

−∞ −∞ · · · −∞
]T.

In general, for a multiinput system, the sequence of the ith columns of
the Gk’s corresponds with the output sequence obtained when an impulse
signal is applied to the ith input and the other inputs are kept at −∞.
Using (33), it is then easy to verify that the impulse response satisfies

Gk = C ⊗A⊗k−1 ⊗B for all k.

If {Gk}Nk=1 is known, this results in a system of max-plus-polynomial equa-
tions in A, B, and C.
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• transformation of state space models:
Given system matrices A, B, C, find L, Â, and Ĉ such that

[

A
C

]

=
[

Â

Ĉ

]

⊗ L.

If we can find such a decomposition, and if we define

Ã = L⊗ Â, B̃ = L⊗B, C̃ = Ĉ,

then it is easy to verify that the state space models corresponding with
the triplets (A, B, C) and (Ã, B̃, C̃) of systems matrices have the same
impulse response, i.e.,

C ⊗A⊗k ⊗B = C̃ ⊗ Ã⊗k ⊗ B̃ for all k.

In that case, we say that (A, B, C) and (Ã, B̃, C̃) are equivalent realiza-
tions of the same max-plus-linear system.
An alternative transformation is the following:

Given system matrices A, B, C, find M , Â, and B̂ such that
[

A B
]

= M ⊗
[

Â B̂
]

.

In this case, we should consider

Ã = Â⊗M, B̃ = B̂, C̃ = C ⊗M.

Other applications related to the max-plus algebra that result in an ELCP
include computing singular value decompositions, QR decompositions, and
other matrix factorizations in the extended max-plus-algebra, and systems of
max-min-plus equations [22].

5.3 Model-Based Predictive Control of Max-Plus-Linear Systems

Framework

As a final application, we consider model predictive control (MPC) of max-
plus-linear systems. MPC [46] was pioneered simultaneously by Richalet et al.
[57] and Cutler and Ramaker [12]. Since then, MPC has probably become the
most applied advanced control technique in the process industry. A key ad-
vantage of MPC is that it can accommodate constraints on the inputs and
outputs. Usually MPC uses linear or nonlinear discrete-time models. How-
ever, we now consider the extension of MPC to max-plus-linear discrete-event
systems [25].

In MPC, we determine at each event step k the optimal input sequence
u(k), u(k + 1), . . . , u(k + Np − 1) over a given prediction horizon Np. We
assume that at event step k, the previous value x(k − 1) of the state can
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be measured or estimated using previous measurements. We can then use (33)
to estimate the evolution of the output of the system for the input sequence
u(k), . . . , u(k +Np − 1):

ŷ(k + j|k) = C ⊗A⊗j ⊗ x(k − 1) ⊕
j
⊕

i=0

C ⊗A⊗j−i ⊗B ⊗ u(k + i), (39)

where ŷ(k + j|k) is the estimate of the output at event step k + j based on
the information available at event step k. If the due dates r for the finished
products are known and if we have to pay a penalty for every delay, a well-
suited output cost criterion is the tardiness:

Jout(k) =
Np−1
∑

j=0

l
∑

i=1

max(ŷi(k + j|k)− ri(k + j), 0). (40)

On the other hand, we also want to keep the throughput time and the internal
buffer levels as low as possible. Therefore, we will maximize the input time
instants. For a manufacturing system, this would correspond with a scheme
in which raw material is fed to the system as late as possible. This results in
the following input cost criterion

Jin(k) =
Np−1
∑

j=0

m
∑

i=1

u(k + j). (41)

The input and output cost criteria are combined as follows in the overall
performance function J :

J(k) = Jout(k) + λJin(k),

with λ > 0.
Because for discrete-event systems the inputs u(k) correspond with con-

secutive feeding times, this sequence should be nondecreasing, resulting in the
constraint

u(k + j) � u(k + j − 1) for j = 0, . . . , Np − 1 .

Furthermore, we sometimes also have constraints such as minimum or maxi-
mum separation between input and output events:

a1(k + j) � u(k + j)− u(k + j − 1) � b1(k + j) for j = 0, . . . , Np − 1
a2(k + j) � ŷ(k + j|k)− ŷ(k + j − 1|k) � b2(k + j) for j = 0, . . . , Np − 1 ,

maximum due dates for the output events:

ŷ(k + j|k) � r(k + j) for j = 0, . . . , Np − 1 ,
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or maximum deviations from the due dates:

r(k + j)− δ−(k + j) � ŷ(k + j|k)
� r(k + j) + δ+(k + j) for j = 0, . . . , Np − 1 ,

If we define

ũ(k) =

⎡

⎢

⎢

⎢

⎣

u(k)
u(k + 1)

...
u(k +Np − 1)

⎤

⎥

⎥

⎥

⎦

, ỹ(k) =

⎡

⎢

⎢

⎢

⎣

ŷ(k|k)
ŷ(k + 1|k)

...
ŷ(k +Np − 1|k)

⎤

⎥

⎥

⎥

⎦

,

we can collect all the above constraints into one system of linear equations of
the form

Ac(k)ũ(k) +Bc(k)ỹ(k) � cc(k). (42)

The MPL-MPC Problem and its Link with the ELCP

If we combine the material of the previous subsection, we finally obtain the
following problem:

At event step k, find the input sequence vector ũ(k) that minimizes
J(k) = Jout(k) + λJin(k) subject to the evolution equations (39) and the
constraints (42).

This problem will be called the max-plus-linear MPC (MPL-MPC) problem
for event step k. MPL-MPC also uses a receding horizon principle, which
means that at event step k, the future control sequence u(k), . . . , u(k+Np−1)
is determined such that the cost criterion is minimized subject to the con-
straints. At event step k, the first element of the optimal sequence (i.e., u(k))
is then applied to the system. At the next event step, the horizon is shifted,
the model is updated with new information of the measurements, and a new
optimization at event step k + 1 is performed, and so on.

Let us now have a closer look at the MPL-MPC problem. We could consider
both ũ(k) and ỹ(k) as optimization variables. Clearly, as the constraints of
the MPL-MPC problem are a combination of max-plus-polynomial constraints
and linear constraints, they can be recast as an ELCP. This implies that the
optimal sequence ũ(k) can be determined by optimizing J(k) over the solution
set of this ELCP.

Algorithms for the MPL-MPC Problem

Now we discuss some methods to solve the MPL-MPC problem. The material
in this section is inspired by [25], but due to the fact that we focus on one
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particular performance function (i.e., (40)–(41)), we can make some significant
simplifications in our explanation and in our approach with respect to [25].

As indicated above, we can solve the MPL-MPC problem by first determin-
ing the entire solution set of the ELCP that corresponds with the constraints
of the MPL-MPC problem in a parameterized way using the algorithms of
Section 3.1, and then optimizing J(k) over this solution set. However, as the
MPL-MPC problem has to be solved at each event step, this approach is not
feasible in practice.

Alternatively, we could consider the MPL-MPC problem as a nonlinear
nonconvex optimization problem and use standard multistart nonlinear non-
convex local optimization methods to compute the optimal control policy.
However, in practice this approach is also often not feasible.

We could also apply the mixed-integer programming approach as follows:
note that because A, B, and C are known, the evolution equations (39) can
be rewritten as

ỹi(k) = max
j=1,...,mNp

(hij + ũj(k), gj(k)) for i = 1, . . . , lNp, (43)

for some matrix H and a vector g(k) that depends on x(k − 1) (see [25] for
the exact expressions). We can now eliminate ỹ(k) from the objective function
J(k), resulting in an expression of the form

J(k) =
lNp
∑

i=1

(

max
j=1,...,mNp

(hij + ũj(k), gj(k))− r̃i(k)
)

+ λ
mNp
∑

j=1

ũj(k)

= max
i=1,...,K

max
j=1,...,mNp

(pij ũj(k) + qj(k))

= max
i=1,...,K

(P ũ(k) + q(k))i

for an appropriately defined matrix P , vector q, and constant K where r̃(k)
is defined in a similar way as ỹ(k) and where we have made recursive use
of the following basic property: for α, β, γ ∈ R we have max(α, β) + γ =
max(α+ γ, β + γ). If we now introduce a scalar dummy variable t such that

t = max
i=1,...,K

(P ũ(k) + q(k))i, (44)

then the MPL-MPC problem reduces to minimizing a linear objective func-
tion (J(k) = t) subject to the constraints (42), (43), and (44). Note that these
constraints are a combination of max-plus and linear constraints, i.e., they cor-
respond with an ELCP. As shown in the proof of Theorem 4, these constraints
thus can be rewritten as a system of mixed-integer linear equations (in fact,
the detour via the ELCP is not necessary, and the equations can directly
be transformed into mixed-integer linear constraints). Hence, the MPL-MPC
problem can be recast as a mixed-integer linear programming problem.

If in addition the matrix Bc(k) in (42) only has nonnegative entries, we
can make a further simplification, which will ultimately result in a linear
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programming problem. In fact, if all entries of Bc(k) are nonnegative (this
occurs, e.g., when there are no constraints on ỹ(k), or if there are only upper
bound constraints on ỹ(k)), then we can also easily eliminate ỹ(k) from the
linear constraints (42), resulting in

(Ac(k)ũ(k))� +
lNp
∑

i=1

(Bc)�i max
j=1,...,mNp

(hij + ũj(k), gj(k)) � (cc(k))� for all �,

or equivalently an expression of the form

max
i=1,...,L

(S(�)(k)ũ(k) + s(�)(k))� � (cc(k))� for all �,

for an appropriately defined matrix S(�)(k) and vector s(�)(k), or even more
simply

S�(k)ũ(k) + s(k) � c(�)(k) for all �, (45)

for an appropriately defined vector c(�)(k). As now we have eliminated ỹ(k)
completely, we have to minimize

J(k) = max
i=1,...,K

(P ũ(k) + q(k))i

over the linear constraint (45). If we again introduce a dummy variable t and
solve the following linear optimization problem

min
t,ũ(k)

t

subject to (45) and t � (P ũ(k) + q(k))i for i = 1, . . . ,K ,

then it is easy to verify that in the optimal solution, at least one of the
bounds on t is tight, i.e., (44) holds. So in this case, we can find the optimal
solution of the MPL-MPC problem via linear programming, for which efficient
algorithms exist such as (variants of) the simplex method or interior point
methods [55,56].

For a worked example and a comparison of several of these alternative
MPL-MPC algorithms, we refer the interested reader to [25].

In [24, 26], we have extended the above results to max-min-plus-scaling
systems, a class of discrete-event systems that can be modeled using the op-
erations maximization, minimization, addition and scalar multiplication. Re-
lated work involving the determination of optimal switching times for traffic
signals and for first-order linear hybrid systems with saturation is described
in [15,16].

6 Conclusion

In this chapter, we have presented the extended linear complementarity prob-
lem (ELCP) and its relation to the regular linear complementarity problem
(LCP) and to various linear generalizations of the LCP. We have shown that
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the ELCP can in a way be considered to be the most general linear extension
of the LCP. We have also discussed some properties of the solution set of an
ELCP and presented some algorithms to solve an ELCP: we have considered
an algorithm for determining the complete solution set of an ELCP and also
several algorithms to determine only one solution. Next, we have shown that
a system of max-plus-polynomial equations is equivalent to an ELCP, which
allows us to solve several problems that arise in the max-plus algebra and
in the analysis and control of max-plus-linear systems. In particular, for the
model-based predictive control of max-plus-linear systems, the original ELCP-
based problem can be reduced to a linear programming problem, which can
be solved very efficiently.
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1 Introduction

Traffic equilibrium models are commonly in use for the prediction of traffic
patterns on transportation networks that are subject to congestion phenom-
ena. Even though their application in various transportation planning contexts
has increased dramatically over the past 25 years, due to the development of
efficient solution algorithms and the increasing power of various computing
platforms, they are based on concepts that were stated more than 70 years ago.
The idea of traffic equilibrium originated as early as 1924, when Knight [20]
gave a simple and an intuitive description of a postulate of traffic behaviour
under congested conditions, as follows:

Suppose that between two points here are two highways, one of which
is broad enough to accommodate without crowding all the traffic which
may care to use it, but is poorly graded and surfaced, while the other is
a much better road, but narrow and quite limited in capacity. If a large
number of trucks operate between the two termini and are free to choose
either of the two routes, they will tend to distribute themselves between
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the roads in such proportions that the cost per unit of transportation, or
effective returns per unit of investment, will be the same for every truck on
both routes. As more trucks use the narrower and better road, congestion
develops, until a certain point it becomes equally profitable to use the
broader but poorer highway.

Some 28 years later, Wardrop ([30]) stated two principles that formalize this
notion of equilibrium and introduced the alternative behaviour postulate of
the minimization of the total travel costs. His first principle states that “the
journey times on all routes actually used are equal and less than those which
would be experienced by a simple vehicle of any unused route.” Under certain
assumptions, another interpretation of this principle is that the routes actually
used are the shortest in time under prevailing traffic conditions and their
perception by the travellers. Wardrop’s first principle of equilibrium of route
choice, which is identical with the notion postulated by Knight, has become
accepted over the past 40 years as a sound behavioural principle to describe
the spreading of trips over alternative routes. The traffic flows that satisfy this
principle are usually referred to as “user optimal” flows, as each user chooses
the route that is perceived to be the best. On the other hand, the “system
optimal” flows are characterized by Wardrop’s second principle, which states
the “the average journey time is minimum.”

The first mathematical model of network equilibrium was formulated by
[3]. This seminal contribution was the starting point for other research and
then application of such route choice models. The purpose of this paper is to
present the elements of the network equilibrium assignment models used in
transportation planning, to review their mathematical properties and most
commonly used solution methods, and to outline past and current applica-
tions. For more complete presentations of the topic of this paper, see references
[13] and [25].

2 Model Formulation: Deterministic Models

The network models that are most commonly used are steady-state models,
in spite of the fact that all traffic phenomena are temporal. A given period of
time for which the demand for travel is quantified is considered and then the
flow pattern that results from the action of the demand and the performance
of the transport infrastructure available needs to be determined.

A deterministic network equilibrium assignment model of route choice may
be formulated by using the following notation. The transportation network
consists of nodes n ∈ N , which represent origins and destinations of traffic
and intersections and arcs a ∈ A, which represent the road network. The
number of vehicles on link a is va (a ∈ A) and the cost of travelling on a
link is given by a user cost function sa(v) (a ∈ A), where v is the vector of
link flows over the entire network. These cost functions may model the time
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delay for travel on that arc, in which case it is referred to as a volume-delay
function; however, it may model other costs such as tolls or fuel consumption.
The vector valued user cost function s(v) is assumed to be monotonic (strictly
monotonic), i.e.,

[s(v1)− s(v2)](v1 − v2) ≥ (>)0, a ∈ A, v1 	= v2 (1)

continuous, and differentiable. The origin to destination demands gi, i ∈ I,
where I is the set of origin–destination (O-D) pairs, are distributed over di-
rected paths k ∈ Ki, where Ki is the set of paths for O-D pair i and it is
assumed that ki 	= ∅. Also K =

⋃

i∈I
Ki. The flows on paths k, hk satisfy

conservation of flow and non-negativity constraints:
∑

k∈Ki

hk = gi, i ∈ I, hk ≥ 0, k ∈ K. (2)

The corresponding link flows va are given by

va =
∑

k∈K
δakhk, a ∈ A, (3)

where

δak =
{

1 if link a belong to path k,
0 otherwise.

The link costs are additive in the sense that the cost of a path sk(v) is the
sum of the user costs on the links of the path, that is,

sk(v) =
∑

a∈A
δaksa(v), k ∈ K. (4)

If ui (= ui(v)), i ∈ I, are the costs of shortest paths for O-D pairs i, so that

ui = min
k∈Ki

[sk(v)], i ∈ I, (5)

the demands for travel gi, i ∈ I, are given by functions Gi(u), where u is the
vector of least cost travel times for all the O-D pairs of the network:

gi = Gi(u) ≥ 0, i ∈ I. (6)

The vector of demand functions, G(u), is assumed to be strictly monotonic
decreasing, i.e.,

[G(u1)−G(u2)](u1 − u2) < 0, i ∈ I, (7)

continuous, and bounded from above.
A network equilibrium model that satisfies Wardrop’s user optimal prin-

ciple is formulated by stating that
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sk(v∗)− u∗i
{

= 0 if h∗k > 0
≥ 0 if h∗k = 0 , k ∈ Ki, i ∈ I (8)

over the feasible set (2) and (3). It is relatively straightforward to show that
equation (8) may be restated in the “complementarity” form

u∗i ≤ sk(v∗) and [sk(v∗)− u∗i ]h∗k = 0, k ∈ Ki, i ∈ I (9)

and the equations (8) and (5) are equivalent to

s∗k1
≤ s∗k2

, if h∗k1
> 0, k1, k2 ∈ Ki, i ∈ I. (10)

Another very useful restatement of Wardrop’s first principle serves to convert
the model to a variational inequality as done by Smith [28] and Dafermos [7].
This is accomplished by noting that equation (8) is equivalent to

[sk(v∗)− u∗i ](hk − h∗k) ≥ 0, k ∈ Ki. (11)

Above hk, k ∈ Ki, is any feasible path flow. If h∗k > 0, then sk(v∗) = u∗i , as
hk may be smaller than h∗k. If h∗k = 0, then equation (11) is satisfied when
sk(v∗) − u∗i ≥ 0. By summing equation (11) over k ∈ Ki; i ∈ I, it is found
that

∑

i∈I

∑

k∈Ki

sk(v∗)(hk − h∗k) ≥
∑

i∈I
u∗i (gi − g∗i ). (12)

By using equations (3) and (4), a change of summation on the left-hand side
yields

∑

a∈A
sa(v∗)(va − v∗a) ≥

∑

i∈I
u∗i (gi − g∗i ). (13)

Because the vector demand function G(u) is strictly monotonic decreasing, it
is invertible. Let wi(g) denote the inverse of the demand function. Substituting
for ui gives

∑

a∈A
sa(v∗)(va − v∗a)−

∑

i∈I
wi(g∗)(gi − g∗i ) ≥ 0 (14)

over the feasible set (2) and (3), which may be rewritten in vector notation as

s(v∗)(v − v∗)− w(g∗)(g − g∗) ≥ 0. (15)

It can be verified that equation (14) implies equation (8) by constructing a
flow pattern that differs from the equilibrium flow on only one path k1 ∈ Ki,
for which hk1 = h∗k1

+ δ, 0 ≤ |δ| ≤ h∗k1
.

The existence of a solution of the network equilibrium model is ensured
by the continuity of the cost and demand functions and the fact that the
feasible set is compact if cycle flows do not occur and the demand functions
are bounded from above [1, 7].

The following example illustrates that a solution may not exist when the
link cost functions are not continuous. The network consists of one O-D pair
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40 401 2

2

1

s1(v1) = 4v1

4v2

4v2 + 10 

v2 < 20

v2 ≥ 20
s2(v2) = 

Figure 1. Network with discontinuous cost functions

and two links as shown in Figure 1. The demand from 1 to 2 is 40. When
v1 = v2 = 20, the cost of link 2 is higher than the cost of link 1, but for
v1 = 20 + ε and v2 = 20− ε > 0, the cost of link 1 is higher than the cost of
link 2. In practical applications, the continuity requirement is usually satisfied.

It is important that a network model, which is used to predict traffic
flows for different network and demand scenarios, yields unique link flows
and origin to destination costs. If this were not so, the comparison of the
different future situations would be difficult to carry out as differences between
scenarios would depend on the nonuniqueness of the flows. Fortunately, for
many applications, the network equilibrium models have unique flows and
origin to destination demands. This is ensured when the link cost functions are
strictly monotonic and the demand functions (and their inverses) are strictly
monotonic decreasing, as assumed above.

To demonstrate this ([1,28]), suppose that there are two distinct solutions
(v1, g1) and (v2, g2). Writing equation (15) once with v = v1, g = g1 and
v∗ = v2, g∗ = g2 and once with v∗ = v1, g∗ = g1 and v = v2, g = g2 and
adding the two inequalities gives

[s(v2)− s(v1)](v1 − v2)− [w(g2)− w(g1)](g1 − g2) ≥ 0. (16)

By imposing equations (1) and (7), it follows that equation (16) is satisfied if
and only if each term is equal to zero. Hence

[s(v1)− s(v2)](v1 − v2) = 0, a ∈ A, (17)

[w(g1)− w(g2)](g1 − g2) = 0, i ∈ I (18)

with the conclusion that g1 = g2 and sa(v1) = sa(v2) if the link cost functions
are monotonic and v1 = v2 if the link cost functions are strictly monotonic.
Because u∗i , i ∈ I, are the lengths of shortest paths for each O-D pair i based
on the link costs sa(v∗), it follows that they are unique as well.

It is worthwhile to note that the path flows h∗k, k ∈ K, are not unique,
in general. Given the link flows v∗a, a ∈ A, the corresponding path flows are
given as the solution of the simultaneous linear equations

v∗a =
∑

i∈I

∑

k∈Ki

δakh
∗
k, a ∈ A. (19)
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Because in most applications |K| ≥ |A|, the number of variables h∗k far exceeds
the number of constraints and the decomposition of link flows into path flows
is not unique. The consequence is that the analysis of the path flows h∗k, k ∈ K,
requires some care, but they contain nevertheless valuable information.

Another important property of the network equilibrium model is that it
is stable. Roughly speaking, the equilibrium flows depend continuously upon
the travel demands and link cost functions. Small changes in the travel de-
mands result in small changes in the traffic flows. This was demonstrated by
Dafermos and Nagurney [8] for the model of this section and by Hall [17]
for the fixed-demand variant of the network equilibrium model. This prop-
erty is very desirable in applications, provided that the model is a suitable
representation of the observed link flows.

Most of the applications of network equilibrium assignment in practice
have been achieved for simpler versions of the model (15) subject to equations
(2) and (3). They were facilitated by the fact that, if the Jacobians ∇s(v) and
∇w(g) of the cost functions and inverse demand functions w(u) are symmetric,

∂sa(v)
∂vã

=
∂sã(v)
∂va

, for all a, ã ∈ A

and
∂wi(g)
∂gi

=
∂wi(g)
∂gi

, for all i, ĩ ∈ I,

then equation (17) is equivalent to a convex cost optimization problem as, by
Green’s lemma, the vectors s(v) and w(g) can be viewed as gradients of the

line integrals
u
∫

0

s(x)dx and
g
∫

0

w(y)dy, respectively. The assumptions made on

s(v) and g(u) imply that

Z(v, g) =

v
∫

0

s(x)dx−
g
∫

0

w(y)dy (20)

is a convex function in (v, g), and the minimization of Z(v, g) is equivalent to
solving equation (17). If, furthermore, the link cost functions are separable,
i.e., sa(v) = sa(va), a ∈ A, and so are the inverse demand functions, wi(u) =
wi(ui), i ∈ I, the strict monotonicity assumptions on s(v) and w(u) imply
that sa(va) are strictly increasing and wi(ui) are strictly decreasing and their
Jacobians are diagonal matrices. The equivalent convex optimization problem
becomes simply

min[Z(v, g)] =
∑

a∈A

va
∫

0

sa(x)dx−
∑

i∈I

gi
∫

0

wi(y)dy (21)

subject to equations (2) and (3).
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In the case of fixed demand, the problem takes the classic form

min[S(v)] =
∑

a∈A

va
∫

0

sa(x)dx (22)

subject to equations (2) and (3) with gi = ḡi, i ∈ I, i.e., constant demand.

3 Model Formulation: Stochastic Models of Traffic
Assignment

Stochastic network equilibrium models are based on the hypothesis that trav-
ellers make systematic errors in their perception of the travel costs, in contrast
with the deterministic models where it is assumed that the travellers have per-
fect knowledge of the costs. The choice of the probability density functions,
which are postulated to represent the systematic perception errors, result in
different models. Stochastic network equilibrium models are preferred for ap-
plications when the network is not subject to a high level of congestion and
the choice of paths is not determined solely by the travel times or costs, but
also by preference variations.

In order to formulate stochastic network equilibrium models, it is necessary
to introduce prk, the probability that an individual chosen from the population
gi will choose path k ∈ Ki. This is defined as

prk = prk(Zi), k ∈ Ki, i ∈ I, (23)

where Zi is the vector of perceived travel times of all paths k for an O-D pair i.
The perceived travel times on link a are assumed to be given by a probability
density function

za ∼ D(sa, θsa),

where sa is the actual travel cost, θsa is its variance, and θ is a constant.
Thus, the probability of choosing path k is given by

prk = Pr

[

zk = min
k′∈Ki

(zk′)
]

, k ∈ Ki, i ∈ I, (24)

the probability that the path is perceived to be the shortest.
If D(sa, θsa) is assumed to be the normal distribution, then the vector of

perceived travel times, zi, is multivariate normally distributed. The weak law
of large numbers implies that, on the average, the path flows hk satisfy

prk =
hk
gi
, k ∈ Ki, i ∈ I. (25)

It is possible to show [11] that the stochastic network equilibrium model is
equivalent to solving the optimization problem
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min
v

(

∑

i∈I
giE

{

min
k∈Ki

[zk|sk(v)]
}

)

+
∑

a∈A
vasa(va)−

∑

a∈A

va
∫

0

sa(x)dx (26)

subject only to non-negativity constraints. The objective (26) is not convex
in general, but it can be shown that there is only one stationary point and,
in the neighborhood of this point, the objective function is strictly convex in
the flow variables. Hence the resulting link flows are unique.

An interesting special case of stochastic network equilibrium models occurs
when the path probabilities are given by a logit function:

prk =
exp[−θsk(v)]
∑

k′∈Ki

exp[−θsk′(v)]
, k ∈ Ki, i ∈ I. (27)

In this particular case, it is easy to show that the equivalent optimization
problem is

min
h

(

∑

i∈I

∑

k∈Ki

hk lnhk

)

+ θ
∑

a∈A

va
∫

0

sa(x)dx (28)

subject to the usual constraints (2) and (3).
When the link travel costs are constant, i.e., sa(va) = s̄a, then the solutions

of this model are dependent on the way that the network is represented as all
paths are perceived to be independent, even if they share links.

4 Solution Algorithms for Network Equilibrium
Assignment Models

4.1 Deterministic Symmetric Models

As shown in Section 2, if the link cost functions and the demand functions
are separable, a network equilibrium model that has a unique solution may be
reformulated as an equivalent convex cost differentiable optimization problem.
Because the feasible flows satisfy equations (2) and (3), the conservation of
flow and non-negativity constraints and the only interactions between the link
flows for different origins or different O-D pairs occur in the objective function.
This makes it possible to construct a wide range of algorithms for solving the
problem, each based on a particular decomposition of the flows.

It is possible to classify the algorithms for the symmetric network equilib-
rium problem according to the way that the problem is decomposed, which
may be by O-D, by origin, or by using simplicial decomposition of the prob-
lem based on the extreme points of the feasible region (2) and (3). The most
commonly used algorithms are based on the linear approximation algorithm
[16] and operate in the space of link flows. The adaptation of this algorithm
and some of its variants are described first. Then algorithmic approaches that
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were devised for the solutions in the space of path flows, which are referred
to as path equilibration algorithms, are briefly discussed. The convergence
properties of the algorithms are noted but not proved in detail as they may
be found in nonlinear programming texts such as [23].

One of the simplest convergent algorithms for minimizing a convex func-
tion subject to linear constraints is the linear approximation method.
Bruynooghe et al. [4] were the first to propose the method; however, the
later work of LeBlanc et al. [22] and Nguyen [24] made this method popular
in practice. Computer codes are widely available for solving both the fixed
demand and the variable demand version of the network equilibrium models.
The fixed-demand problem is

min [S(v)] =
∑

a∈A

va
∫

0

sa(x)dx

s.t.
∑

k∈Ki

hk = ḡi, i ∈ I,

hk ≥ 0, k ∈ K,
va =

∑

k∈K
δakhk, a ∈ A.

Given an initial feasible solution, a feasible direction of descent is generated
by solving a subproblem that is obtained by a first-order approximation of the
objective function. The linearized approximation for an intermediate iteration
l at a solution vl is

S(vl) +∇S(vl)(y − vl). (29)

By eliminating the constant terms S(vl) and ∇S(vl)vl, the linearized sub-
problem simplifies to

min

[

∑

i∈I

∑

k∈Ki

∑

a∈A
sa(vla)δakyk

]

(30)

s.t.
∑

k∈Ki

yk = ḡi, i ∈ I, (31)

yk ≥ 0, k ∈ K. (32)

By changing the order of summation in equation (30) and by using equation
(4), the objective becomes

min

[

∑

i∈I

∑

k∈Ki

sk(vl)yk

]

(33)

subject to equations (31) and (32).
The solution of this problem is obtained by computing shortest paths for

each O-D pair i and allocating the demand ḡi to that path (‘all-or-nothing’
assignment). This yields the link flow
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zla =
∑

k∈K
δaky

l
k, a ∈ A (34)

and the direction of descent is

dla = (zla − vla), a ∈ A. (35)

An iteration of the linear approximation algorithm is completed by finding
the solution of

min
0≤λ≤1

[S(vl + λdl)] (36)

or, equivalently, by finding λ, 0 < λ < 1, for which
∑

a∈A
sa(vla + λdla)d

l
a = 0 (37)

unless the minimum of equation (36) is attained for λ = 0 or λ = 1.
The following algorithm results.

Linear approximation method
Step 0. Find v1; s1 = s(vl), l = 1.
Step 1. Perform an ‘all-or-nothing’ assignment based on the current arc
costs s(vl) and obtain yl. Let dl = yl − vl.
Step 2. Verify whether a predetermined stopping criterion is satisfied. If it
is, stop; otherwise continue to step 3.
Step 3. Find optimal step size λl by solving equation (37).
Step 4. Update arc flows vl+1 = vl +λldl and arc costs sl+1 = s(vl+1), set
l = l + 1 and return to step 1.

The algorithm generates paths at each iteration, but these are not kept.
Hence the storage requirements are modest and do not increase with the num-
ber of iterations. Also, it is easy to obtain a lower bound on the value of the op-
timal objective function. Because S(v) is a convex function and ∇S(v) = s(v),

S(v∗) ≥ S(vl
′
) + s(vl

′
)(yl

′ − vl′), l′ = 1, 2, . . . , l. (38)

The right-hand side of equation (38) provides a lower bound on S(v∗) at each
iteration. The best lower bound (BLB) at a current iteration l is

BLB = max
l′=1,2,...,l

[S(vl
′
) + s(vl

′
)(yl

′ − vl′)]. (39)

As a consequence, a natural stopping criterion, denoted the relative gap
(RGAP) is

RGAP =
S(vl)−BLB

S(vl)
× 100. (40)

BecauseS(vl)−BLB is an estimateof thedifferencebetweenanoptimal solution
and the current solution, the computations are terminated when RGAP ≤ ε1,
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where ε1 > 0 is a predetermined parameter. Other stopping criteria that are
used may be a maximum number of iterations, lmax, or the quantity [s(vl)vl−
s(vl)yl], which tends to zero as the optimum solution is approached.

This last stopping criterion is

s(vl)vl − s(vl)yl
∑

i ḡi
≤ ε2, (41)

where ε2 > 0 is another predetermined parameter. The left-hand side of equa-
tion (41) has the physical interpretation of the difference between average trip
costs on currently used paths and the average trip costs on current shortest
paths. This quantity does not decrease monotonically with increasing number
of iterations.

An intuitive interpretation of this algorithm is that the travellers adjust
their route choice from congested routes to less congested routes until all
routes are of about equal length. This explains its resemblance to many heuris-
tic algorithms that have been suggested and used to solve this problem. On the
other hand, the linear approximation algorithm exhibits slow convergence in
the vicinity of the optimal solution because its asymptotic rate of convergence
is sublinear. This has motivated the development of variants of this algorithm
that attempt to improve the rate of convergence. One of these variants is
presented later in this section.

The variable-demand network equilibrium model ([18]) may be solved by
a partial linear approximation method, first suggested by Evans [11], which
employs the linearization of only some of the variables of the objective func-
tion. In equation (21), only the link cost functions are linearized. The resulting
subproblem at iteration l is

min
[
∑

i∈I

∑

k∈Ki

∑

a∈A
sa(vla)δakyk

]

−
∑

i∈I
wi(gli)xi (42)

s.t.
∑

k∈Ki

yk − xi = 0, i ∈ I, (43)

yk ≥ 0, k ∈ K, yi ≥ 0, i ∈ I. (44)

This subproblem is solved by determining uli, i ∈ I, to be the costs of the
shortest paths based on the current link costs s(vl) and then simplifying (42)
by using equations (43) and (44) to solve

min
∑

i∈I
[uli − wi(gli)]xi (45)

s.t. xi ≥ 0, i ∈ I. (46)

By applying the Kuhn–Tucker conditions (see [23]), xli are determined ana-
lytically as follows:

xli =
{

Gi(uli) if Gi(uli) ≥ 0,
0 otherwise. (47)
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The demands xli are then assigned to the shortest paths in order to obtain yla,
a ∈ A, and the direction of descent is dl = [(yl − vl); (xl − gl)].

Even though the solutions obtained with the linear approximation method
are usually acceptable for the solution of the fixed or variable network equi-
librium models for large-scale problems, the slow convergence of the method
in the neighborhood of the solution has motivated the development of several
variants that improve its asymptotic rate of convergence. These include the
adaptation of the PARTAN (parallel tangents) method [2, 12, 21] and the re-
stricted simplicial decomposition method, which are described in more detail
below.

The motivation for exploring the PARTAN variant of the linear approxi-
mation method is that, for unconstrained minimization problems, the PAR-
TAN algorithm is equivalent to the conjugate gradient algorithm [23]. This
algorithm alternates a regular iteration of the linear approximation algorithm
with a direction generated by using every other solution, vl−1 and vl+1. The
solution at this alternate iteration is obtained by finding αl, αl ≤ αlmax, which
minimizes the objective function for the solution vl−1 +α(vl+1 − vl−1) where
αlmax is the largest step size that maintains the non-negativity of the path
flow. It can be shown that, at a current iteration l, the largest step size that
may be taken is given by the formula

αlmax =
1

1− λ̄lλ̄l−1ᾱl−1
,

where λ̄l = 1 − λl and ᾱl−1 = 1 − αl−1. The algorithm may be stated as
follows.

Linear approximation with PARTAN
Step 0. Find a feasible solution vl; s1 = s(v1); l = 1.
Step 1. Find the linear approximation direction, dl = yl − vl.
Step 2. If a predetermined stopping criterion is satisfied, stop; otherwise

continue to step 3.
Step 3. Find optimal step size λl.
Step 4. Update arc flows ṽl = vl + λldl.
Step 5. If l = 1, then vl+1 = ṽl; sl+1 = s(vl+1); l = l + 1 and return to

step 1; otherwise, the PARTAN direction is dlp = ṽl − vl−1.
Step 6. Find the optimal PARTAN step size αl as the solution of

min S(vl−1 + αdlp)

s.t. 0 ≤ α ≤ αlmax.

Step 7. Update arc flows vl+1 = vl−1 + αldlp and arc costs sl+1 =
s(vl+1); l = l + 1, and return to step 1.

The restricted simplicial decomposition algorithm ([18,19]) is an extension
of the simplicial decomposition methods proposed by von Hohenbalken [29]
for solving nonlinear programs with pseudo-convex, continuously differentiable
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objective functions and linear constraints. Its application for solving the fixed-
demand network equilibrium problem (22) subject to equations (2) and (3) is
as follows. Because the feasible region Θ is bounded, there are a finite number
of extreme points, and every flow in Θ can be written as a convex combination
of these extreme points. If Θz denotes a set of retained extreme points of Θ
and Θv a set that is empty or contains the flows at a current iteration, and
q ≥ 1 denotes an integer parameter that controls the number of extreme points
at an iteration, the algorithm is as follows.

Restricted simplicial decomposition
Step 0. v0 is a feasible solution; set Θ0

z = ∅, Θ0
v = v0 and l = 0.

Step 1. Solve the subproblem

min
[
∑

a∈A
sa(vla)ya

]

s.t.
∑

k∈Ki

yk = ḡi, i ∈ I, yk ≥ 0, k ∈ K,

za =
∑

k∈K
δakyk.

which is the same as step 1 of the linear approximation method that is
solved by an ‘all-or-nothing’ allocation of the demands ḡi to shortest paths
for each O-D pair i. Let the solution be zl.
Step 2. If s(vl)(zl − vl) ≥ 0, stop; vl is the optimal solution. Otherwise,
if |Θl

z| < q, then Θl+1
z = Θz ∪ zl and Θl+1

v = Θl
v. If |Θl

v| = q, replace the
extreme point of Θl

z that has the minimal weight in the expression for vl

in the convex combination of elements of Θl with zl to obtain Θl+1
z and

let Θl+1
v = vl. Set Θl+1 = Θl+1

z ∪Θl+1
v . Go to step 3.

Step 3. Let vl+1 = argmin{S(v)| v ∈ convex hull of Θl+1}. vl+1 =
m
∑

j=1

λjzj ,

wherem = |Θl+1| and zj ∈ Θl+1. Remove all elements zj with λj = 0 from
Θl+1
z and Θl+1

v . Set l = l + 1 and return to step 1.

The efficiency of the algorithm depends to a large extent on the solution of
the (master) problem in step 3. In order to achieve convergence, the master
problem need not be solved exactly. It is only necessary to ensure that a
sufficient decrease in the objective is achieved in successive iterations. This
may be achieved by approximating the objective of the master problem with a
quadratic function. Then, under appropriate assumptions, there is an almost
closed form solution for the (approximate) master problem.

Path equilibration algorithms for the symmetric fixed-demand network
equilibrium are considered next. In this approach, the problem is decomposed
and a sequence of problems, for each O-D pair i, is solved in the space of
path flows. This general approach, which is equivalent to a Gauss–Seidel de-
composition (or relaxation), is also known as ‘cyclic decomposition,’ because
in a step of the algorithm, a single O-D problem is solved by keeping the
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flows of all other O-D pairs fixed. The algorithm terminates when there is no
improvement in the solution for all O-D pairs i, which constitute a ‘cycle.’

The subproblem solved for each O-D pair i is the fixed-demand network
equilibrium problem

min
[
∑

a∈A

vi
a+v̄a
∫

0

sa(x)dx
]

(48)

s.t.
∑

k∈Ki

hk = ḡi, i ∈ I, (49)

hk ≥ 0, k ∈ Ki, (50)

where
v̄a =

∑

i′ �=i

∑

k∈Ki

δakhk (51)

and
via =

∑

k∈Ki

δakhk. (52)

The Gauss–Seidel solution strategy may be stated as follows.

Cyclic decomposition by O-D pair
Step 0. Given an initial solution, set i = 0, i′ = 0.
Step 1. If i′ = |I|, stop; otherwise set i = i mod |I|+ 1 and continue.
Step 2. If the current solution is optimal for the ith subproblem (48) to
(52), set i′ = i′+1 and return to step 1; otherwise solve the ith subproblem,
update flows, set i′ = 0 and return to step 1.

The convergence of the Gauss–Seidel strategy is ensured as the objective func-
tion is convex and any local minimum is a global minimum as well.

Path equilibration algorithms used to solve equations (48) to (52) operate
in the space of path flow and obtain a solution where all used paths are of equal
cost. Because the number of paths grows exponentially with the network size
(|N |, |A|), path equilibration algorithms are usually implemented by using a
restriction strategy, where the paths that carry flow are generated as required.
Let K+

i = {k ∈ Ki|hk > 0} be the set of paths with positive flows. The
simplest such algorithm, due to Dafermos [5], finds the shortest path and
longest path and transfers flow between these paths in order to equalize their
cost. The algorithm may be stated as follows.

Path equilibration algorithm
Step 0. Find an initial solution via, sa(v

i
a+v̄a) and determine the initialK+

i .
Step 1. Find k1 such that sk1 = min

k∈Ki

sk and k2 such that sk2 = max
k∈K+

i

sk.

If sk2 − sk1 ≤ ε, stop.
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Step 2. Find λ by solving the one variable problem

minλ
[
∑

a∈A

ya
∫

0

sa(x)dx
]

(53)

s.t. 0 ≤ λ ≤ hk2 , (54)
ya = via + (δak1 − δak2)λ+ v̄a. (55)

Step 3. Using the λ obtained, update hk1 = hk1 + λ, hk2 = hk2 − λ and
recalculate the va, sa, and K+

i . Go to 1.

This algorithm is just one of many path equilibration schemes possible. To
generate a direction of descent for the subproblem (48) to (52), the reduced
gradient or the projected gradient algorithm may be used, as they are well-
known convergent nonlinear programming methods.

4.2 Deterministic Asymmetric Models

For simplicity, only algorithms for the fixed-demand network equilibrium prob-
lem are presented, i.e., for finding v∗ feasible that satisfies

s(v∗)(v − v∗) ≥ 0, for all feasible v. (56)

A large class of algorithms for this problem, which are referenced as relax-
ation methods, result when the cost function is modified at each iteration
by fixing the interaction between blocks of variables and thus removing, at
each iteration, the asymmetry of the cost functions. These algorithms include
the nonlinear Jacobi method and the nonlinear Gauss–Seidel method. They
are sometimes referred to as diagonalization methods, because the resulting
Jacobians of the relaxed vector of cost functions are diagonal.

In order to describe a relaxation algorithm, it is convenient to introduce a
smooth function

ŝ(v, ṽ) : Θ ×Θ → R
n

with the property that ŝ(v, v) = s(v) and ∇v ŝ(v, ṽ) is positive definite and
symmetric. Hence, if vl+1 = vl, then vl+1 is a solution of the asymmetric net-
work equilibrium model and is the unique solution of the variational inequality
problem

ŝ(vl+1, vl)(v − vl+1) ≥ 0, v, vl+1 feasible (57)

which is obtained by solving the strictly convex differentiable optimization
problem

vl+1 = argmin
v

[

∑

a∈A

∫ va

0

ŝa(x, vl)dx

]

. (58)

Different algorithms result from the choices made for the function ŝ(v, ṽ): the
nonlinear Jacobi method obtained for
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ŝa(v, vl) = sA(vl1, . . . , va, . . . , v
l
|A|) (59)

and the nonlinear Gauss–Seidel method results for

ŝa(v, vl) = sA(vl+1
1 , . . . , vl+1

a , va, . . . , v
l
a+1, . . . , v

l
|A|). (60)

An algorithm defined by equation (58) is globally convergent [6] if

‖∇vs
−1/2(v1, ṽ1)∇ṽs(v2, ṽ2)∇vs

−1/2(v3, ṽ3)‖2 < 1
for vi, ṽi feasible, i = 1, 2, 3. (61)

This sufficient condition for the convergence of the relaxation methods is
difficult to verify and rather restrictive. The intuitive interpretation of this
condition is that the Jacobian of the vector of cost functions is weakly asym-
metric. In summary, one way to state this class of relaxation algorithms is the
following.

Relaxation algorithm
Step 0. Find a feasible solution vl, l = 1.
Step 1. Determine vl+1 as the solution of equation (58).
Step 2. If ‖vl+1 − vl‖ ≤ ε, stop; otherwise, l = l + 1 and go to step 1.

Among the algorithms that have been proposed for solving the asymmetric
network equilibrium models are the simplicial decomposition method, gap
descent methods, projection algorithms, and a dual cutting plane method.
These methods are not presented here, but the interested reader should consult
references [13] and [25].

4.3 Stochastic Symmetric Models

The solution algorithms for this problem employ a simulation in order to ob-
tain a direction of descent for the objective function (26). In order to evaluate
the objective function exactly, an exhaustive path enumeration for all O-D
pairs of the network would be necessary. This is clearly prohibitive from a
computational perspective. An algorithm that implements the basic step

vl+1 = vl + αldl, (62)

where the step size αl satisfy

∞
∑

l=1

αl =∞,
∞
∑

i=1

α2
l <∞ (63)

and dl, the direction of descent, is determined by a Monte Carlo simulation
([26]). This simulation is performed by sampling all links for a travel time
realization, computing shortest paths and performing an ‘all-or-nothing’ as-
signment on these paths. This procedure is repeated several times and then
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a flow vector ŷa is obtained by averaging the link flows. The number of times
that the procedure is repeated determines the variance of ŷa. The direction
of descent, dla, is ŷa − va.

It can be proved that, when the step sizes satisfy equation (63), this algo-
rithm converges to the unique solution of the stochastic network equilibrium
model. Because αl = 1/l satisfies equation (63), this choice is often made,
and the method is referred to as the ‘method of successive averages.’ This
method lacks a natural stopping criterion, and the descent in the values of
the objective function is not monotonic.

Attention is now directed to the logit-based stochastic network equilibrium
model

min
h

(

∑

i∈I

∑

k∈Ki

hk lnhk

)

+ θ
∑

a∈A

va
∫

0

sa(x)dx (64)

subject to equations (2) and (3). This problem may also be solved by the
method of successive averages, without requiring simulation in order to obtain
a direction of descent. At each iteration l, the direction of descent is obtained
by computing shortest paths based on current link costs and by performing
an ‘all-or-nothing’ assignment on these paths.

It can be shown theoretically and empirically that the flow pattern that
results from stochastic network equilibrium models tends toward the flow pat-
tern obtained with the deterministic model as the network becomes congested.
This may be recognized intuitively by inspecting the terms of the correspond-
ing objective functions (26) and (64).

5 Combined Mode Models

The network equilibrium models presented so far do not distinguish between
different classes or different modes of traffic. In many applications, the network
equilibrium models are more complex and lead to more elaborate models that
identify explicitly different modes, such as private car and public transit, or
different classes of traffic that may correspond with different vehicle types or
different socioeconomic classes. Some examples of such models are presented
next.

Suppose that the vehicles traveling on the network are subdivided into
|M | different types. The link cost function on each link is different for each
vehicle type and depends on the different types of vehicle that use the link,
sma (v), a ∈ A, where v is the vector of flows (vma ), a ∈ A, m ∈M . The demand
for each vehicle type ḡmi is known. The corresponding deterministic network
equilibrium model is given by the variational inequality

∑

m∈N

∑

a∈A
sma (v∗)(vma − vm

∗

a ) ≥ 0 (65)

s.t.
∑

k∈Km
i

hk = ḡmi , i ∈ I, m ∈M, (66)
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hk ≥ 0, k ∈ Km
i , i ∈ I, m ∈M, (67)

vma =
∑

i∈I

∑

k∈Km
i

δakhk. (68)

Unless some simplifying assumptions are made regarding the link cost func-
tions, the solution of this model requires an efficient algorithm for a very large
scale variational inequality model.

One way to simplify this multiclass model is to induce symmetry and
separability in the link cost functions. For instance, it is postulated that the
user cost functions simplify to

sma (v) = sa

(

∑

m∈M
vma

)

+ tma , a ∈ A, m ∈M (69)

which implies that the travel time depends on the total number of vehicles on
the link and that only a constant term, tma , differentiates between the vari-
ous classes of traffic. Then, with the appropriate manipulation, an equivalent
convex cost minimization problem is obtained:

min

⎡

⎣

∑

a∈A

va
∫

0

sa(x)dx

⎤

⎦+
∑

a∈A

∑

m∈M
tma v

m
a (70)

s.t.
∑

k∈Km
i

hk = gmi , i ∈ I, m ∈M, (71)

hk ≥ 0, k ∈ K, (72)

vma =
∑

k∈Km
i

δakhk, a ∈ A, m ∈M, (73)

va =
∑

m∈M
vma . (74)

This model may be solved efficiently by an adaptation of the linear approxi-
mation method and has been used extensively in applications. Other variants
of equations (71) to (74) are possible as well.

Another example of a combined model is a two-mode model of traffic [15]
where one mode is the private car and the other mode is public transit. A
mode choice function

Gi(ui) =
1

1 + exp[α+ β(u1
i − u2

i )]
, i ∈ I (75)

gives the probability (or proportion) of trips that will use mode 1, which has
a travel cost of u1

i , and the competing mode 2 has a travel cost of u2
i . A

two-mode network equilibrium model may be formulated by assuming that a
‘user optimal’ route choice is made on both mode 1 and mode 2 (which may
correspond with a transit mode):
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sk(v∗)− um
∗

i

{

= 0 if h∗k > 0
≥ 0 if h∗k = 0 , k ∈ K

m
i , i ∈ I, m = 1, 2 (76)

subject to conservation of flow and non-negativity constraints
∑

k∈Km
i

hk = gmi , i ∈ I, m ∈ 1, 2, (77)

hk ≥ 0, k ∈ Km
i , i ∈ I, m ∈ 1, 2 (78)

and
umi (v) = min

k∈Km
i

[sk(v)], i ∈ I, m = 1, 2. (79)

The link cost functions sma (v), m = 1, 2, a ∈ A, are asymmetric and not
separable, in general.

This model may be cast in the form of a variational inequality by carrying
out the usual derivation by using equation (11). The resulting variational
inequality is
∑

a∈A
s1a(v

∗)(v1a− v1
∗

a ) +
∑

a∈A
s2a(v

∗
a)(v

2
a− v2

∗

a )−
∑

i∈I
wi(g1

∗

i )(g1i − g1
∗

i ) ≥ 0, (80)

where wi(g1
∗

i ) is the inverse of equation (75). The Jacobi method may be used
to obtain a solution to this model.

The two multiclass multimode models presented above are just two exam-
ples of the multitude of combined models that are formulated for particular
transportation planning applications. Some of these models are so complex
that their solution is obtained by ad hoc equilibration procedures that are
inspired by the method of successive averages.

6 Application and Validation of Network Equilibrium
Assignment Models

The validation of network equilibrium models has been reported in relatively
few published empirical studies in spite of the fact that literally thousands of
applications have been successfully carried out. The early studies of Florian
and Nguyen [14] on the urban network of the City of Winnipeg, Canada,
and of Dow and Van Vliet [10] on the urban network of the City of Leeds,
UK, are examples of successful validation exercises. A practical problem that
arises when applying the fixed-demand network equilibrium models is the
determination of the O-D matrix. Synthetic demand models or O-D surveys
are used to determine the demand for travel with various degrees of success.
Even when survey data are available, they do not include information for all
the trips taken during the peak hour, and various adjustment methods are used
to reconcile the differences between the flow predictions and the observed link
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va

1

sa (va)
bottleneck
conditions

Figure 2. Volume-delay function with ‘spill back’ effect

counts. The process of calibrating a network equilibrium model involves the
network representation, the calibration and allocation of user cost functions
(known also as volume-delay functions) to the links of the network, as well as
eventual adjustments of the O-D matrix. Often significant approximations are
made in order to build the necessary database for the application of the model.
Yet, it may still be the best predictive tool available for evaluating the impact
of network changes in the short and medium term. The link flows obtained
in the validation studies mentioned above simulate the average hourly flows
during the peak period quite well, and the origin to destination travel times
are satisfactorily reproduced as well.

The static nature of the network equilibrium model, which renders its
solution to be efficient, is also one of its main drawbacks in the simulation of
traffic flows. The application of network equilibrium models is based implicitly
on the assumption that the traffic is not subject to severe bottlenecks that
may cause the traffic to back up and ‘spill back’ to upstream links. When
this assumption is not satisfied, monotonically increasing user cost functions
do not model properly the phenomenon of increased travel time and reduced
flow on links that contain traffic bottlenecks as indicated in Figure 2.

The use of the network equilibrium model is not particularly demanding
in computer expenditure. The planning network of the Southern California
Association of Governments has (in 2004) 3339 centroids (zones), 30,678 nodes
and 109,770 directional links. There are 6 classes of traffic (3 private and 3
commercial vehicle types). An iteration on an IBM Thinkpad notebook (Intel
Centrino, 1.6 MHz) takes 4 minutes, and about 50 iterations are required for a
reasonable convergence of less than 1% relative gap. The ever-increasing power
of processors that are used to build personal computers and workstations will
render the computation of equilibrium flows on even larger networks possible
in elapsed times of the order minutes.

7 Conclusion

The study of network equilibrium assignment models and related solution al-
gorithms may be considered to have reached a mature stage. A variety of
models may be formulated and solved efficiently on contemporary computing



Traffic Assignment: Equilibrium Models 591

platforms. Applications of network equilibrium models are abundant and rel-
atively common in the practice of transportation planning. However, some of
the basic premises of the formulation of these models such as the additivity of
link costs to form the cost of a path and the static analysis of ‘average flows’
during a selected time period open the way to the study of more complex
models.
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Verkehrsflusses Strassenbau und Strassenverkehrstechnik, Vol. 86, Karlsruhe,
Germany, Herausgegeben von Bundesminister für Verkehr, Abteilung Strassen-
bau, Bonn, 198–204 (1968,1969)

5. Dafermos, S.: An Extended Traffic Assignment Model with Applications to
Two-Way Traffic. Transportation Science, 5, 366–389 (1971)

6. Dafermos, S.: An Iterative Scheme for Variational Inequalities. Mathematical
Programming, 26, 40–47 (1983)

7. Dafermos, S.: Traffic Equilibrium and Variational Inequalities. Transportation
Science, 14, 42–54 (1980)

8. Dafermos, S., Nagurney, A.: Sensitivity Analysis for the Asymmetric Network
Equilibrium Problem. Mathematical Programming, 28, 174–184 (1984)

9. Daganzo, C.F., Sheffi, Y.: On Stochastic Models of Traffic Assignment. Trans-
portation Science, 11, 253–274 (1977)

10. Dow, P., Van Vliet, D.: Capacity Restrained Road Assignment. Traffic Engi-
neering and Control, 20, 261–273 (1979)

11. Evans, S.P.: Derivation and Analysis of Some Models for Combining Trip Dis-
tribution and Assignment. Transportation Research, 10, 37–57 (1976)
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Abstract The famous Braess’ paradox, which sometimes occurs in user-optimal
traffic equilibrium models, demonstrates that adding a new link to the network may
lead to a degradation in network performance. User-equilibrium is characterized by
each user competing noncooperatively for the network resources by choosing the
path that is best for himself, without paying attention to the effect this has on the
other users (eventually including himself). Similar effects occur in congested elec-
tricity networks, where flows follow Kirchhoff’s junction rule and loop rule. Thus,
due to the special nature of electricity networks, we show that grid investments,
which at first sight seem an improvement of the grid, may prove to be detrimental
to social surplus, even without considering investment costs. Moreover, some agents
will have incentives to advocate these changes. It is also demonstrated that a ther-
mal limit, which is internal to a market, may result in market integration being
disadvantageous. The possibility of such paradoxical effects, and the incentives that
they provide to different agents, should clearly be taken into consideration both in
the process of grid development and market development.

Key words: congested electrical networks, Kirchhoff’s junction and loop
rules, user-equilibrium flows, Braess’ paradox

1 Introduction

In this article, we are addressing grid investments. In general, there are two
aspects of this question, the first is that of detecting beneficial investments,
and the second is how to induce them under the chosen market regime. We
will show that network “improvements,” i.e., strengthening a line or building
a new line, may in fact be detrimental to social surplus, and that some agents
will have incentives to advocate these changes. The reason that electricity
markets possess such characteristics is that in a deregulated electricity market
model, the economic equilibrium model must include physical equilibrium
constraints in the form of Kirchhoff’s junction rule and loop rule. This means



594 M. Bjørndal, K. Jørnsten

that electrons behave “noncooperatively,” and hence, given injections and
withdrawals, power cannot be routed. The main reason for the occurrence of
the paradoxical behavior, which is addressed in this article, is due to the fact
that, in general, Nash equilibria are Pareto inefficient.

2 Braess’ Paradox and Generalizations

In user-optimizing traffic assignment problems where each individual user
chooses the path with the lowest travel cost, it is well-known that the equi-
librium flow in a network is generally different from the system optimal flow,
i.e., the flow minimizing total travel cost. In his original example, Braess [3]
showed that adding a new link to a congested network may in fact increase
travel cost for all, and this phenomenon is referred to as the Braess’ paradox.
Braess’ paradox and variations of it have been the subject of several papers,
like Murchland [15], Stewart [20], Frank [11], Dafermos and Nagurney [9],
Steinberg and Zangwill [19], and Steinberg and Stone [18], among others.

Hallefjord et al. [12] discuss paradoxes in traffic networks in the case of
elastic demand. When travel demand is elastic, it is not evident what a para-
doxical situation is, and in this case there is a need for characterizations of
different paradoxes. An example is given, where total flow decreases while
travel time increases due to adding a new link to the network. This is a rather
extreme type of paradox. A different paradox is when the network “improve-
ment” leads to a reduction in social surplus.

The reason for the traffic equilibrium paradoxes is the behavioral assump-
tion that a traveler chooses the path that is best for himself, without paying
attention to the effect this has on the other users (eventually including him-
self). In user-equilibrium, a user cannot decrease travel time by unilaterally
changing his travel route, leading us to seeing the equilibrium as a Nash equi-
librium of an underlying game. Korilis et al. [14] investigate the noncoopera-
tive structure of certain networks, where the term noncooperative emphasizes
that the networks are “operated according to a decentralized control para-
digm, where control decisions are made by each user independently, according
to its own individual performance objectives.” Nash equilibria are generally
Pareto inefficient as demonstrated by Dubey [10], and Korilis et al. [14] use the
Internet as an example while referring more generally to queuing networks.

Cohen and Horowitz [8] give examples of Braess’ paradox for other non-
cooperative networks like mechanical systems (strings) and hydraulic and
electrical networks, and point to the need for specifications of conditions un-
der which general networks behave paradoxically. This is partly provided by
Calvert and Keady [7], and Korilis et al. [14] propose methods for avoid-
ing degradation of performance when adding resources to noncooperative
networks.

In the following sections, we will give examples of paradoxical situa-
tions that can occur in deregulated electricity markets due to the fact that
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electrons behave “noncooperatively.” This behavior is reflected by the power
flow equations. When computing the economic equilibria, we assume compet-
itive markets, i.e., the given supply and demand functions reflect truthfully
marginal cost and willingness to pay. When assessing different grid configu-
rations, we compare social surpluses, i.e., consumers’ willingness to pay less
production cost.

3 Grid Investments in Electricity Networks

In Wu et al. [21], a 3-node example is given, showing that strengthening a line
by increasing its admittance may lead to larger minimum cost. The network
and initial optimal dispatch is displayed in Figure 1 (assuming a linear lossless
“DC” approximation of the power flow equations). In optimal dispatch, the
nodal prices will be related by p1 < p2 < p3 because line 1-3 is congested in
direction from node 1 to node 3 (for an argument, see Wu et al. [21]). When
the admittance of line 2-3 is increased, the power flow equations change, and
flow will increase on path 1-3-2 if injections are maintained. This will result
in line 1-3 becoming overloaded, and injection in node 1 must be reduced. If
consumption is to be maintained, injection in node 3 must increase, leading
to larger minimum cost.

In a similar 3-node example exhibited in Figure 2, Bushnell and Stoft
[4] show that a new line hurts the network but still collects congestion rent,
defined as the merchandizing surplus, i.e., the price difference of the end,
points of the line times the flow over the line.

In the example there is high cost production in node 1 and relatively lower
cost production in node 2. Consumption takes place in node 3 where there is
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35
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2

Figure 1. Increasing admittance increases cost
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Figure 2. New line increases cost

a fixed demand equal to 900 MW. Initially, there are only two links, 1-3 and
2-3, each with a capacity of 1000 MW, and demand is supplied entirely by
the low cost producers in node 2.

In part B of Figure 2, a new line has been built between nodes 1 and
2. This is a weak line with a capacity of only 100 MW, and it introduces
loop flow having as a consequence that the transfer capacity between nodes
2 and 3 is greatly reduced. Assuming reactances equal to 1 on every link and
no production in node 1 to generate counter flow on line 1-2, it is reduced
from 1000 to 300 MW. By inducing injections in node 1, the minimum cost of
supplying 900 MW to node 3 is obtained by injecting 600 MW in node 2 and
300 MW in node 1, which is obviously a more costly dispatch. The new line is
congested in direction 2 to 1, and as p1 > p2, the new line receives congestion
rent (p1 − p2)q21 > 0.

In the following, we will give examples of paradoxes in a 4-node network
with the classic Braess’ configuration, sometimes referred to as the Wheat-
stone bridge topology, and with elastic demand and production in every node.
We assume linear cost and demand functions, represented by pi = ciq

s
i and

pi = ai − biqdi where pi is the price in node i, qsi is the quantity produced in
node i, qdi is the quantity consumed in node i, and ai, bi, and ci are positive
constants. Net injection in node i is given by qi = qsi − qdi . With input data
given in Table 1 and a thermal capacity of 15 units on line 1-2, optimal dis-
patch and optimal prices are given in Figure 3. Part A shows the situation
without line 2-4, whereas part B includes this line. We use a linear and lossless
“DC” approximation with reactances equal to 1 one every line.

By introducing the new line, total production and consumption has been
reduced together with social surplus. On the other hand, grid revenue defined
as the merchandizing surplus, MS, where

MS = −
∑

i

piqi =
1
2

∑

i

∑

j

(pj − pi)qij ,
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Table 1. Cost and Demand Parameters

Node Consumption Production
ai bi ci

1 20 0.05 0.1

2 20 0.05 0.3

3 20 0.05 0.4

4 20 0.05 0.5

p2=17.577
q2=10.123

p2=17.635
q2=11.483

p3=17.056
q3= −16.234

p4=16.478
q4= −37.493

p1=14.741
q1=42.244

p3=16.813
q3= −21.717

p4=16.048
q4= − 46.935

p1=15.284
q1=58.529

25.123 14.239

12.244

27.244 1.995

15.000

3.40643.529

15.000

Part A: No Line between Nodes 2 and 4
 Social Surplus: 2878.526
 Grid Revenue: 45.848

Part B: New Line between Nodes 2 and 4
 Social Surplus: 2852.660
 Grid Revenue: 69.444

Figure 3. Optimal dispatch before and after line 2-4

Table 2. Allocation Effects of New Line

Node 1 Node 2 Node 3 Node 4
Before After Before After Before After Before After

Production 152.843 147.415 58.589 58.783 42.031 42.641 32.097 32.955

Consumption 94.314 105.171 48.466 47.300 63.749 58.874 79.031 70.448

Net Exports 58.529 42.244 10.123 11.483 -21.717 -16.234 -46.935 -37.493

Producer Surplus 1168.048 1086.554 514.901 518.321 353.328 363.646 257.552 271.511

Consumer Surplus 222.379 276.522 58.724 55.933 101.597 86.655 156.149 124.075

Surplus of Region 1390.427 1363.076 573.624 574.254 454.925 450.301 413.701 395.585

increases. The effect on individual agents varies, i.e., some agents lose whereas
others are better off, as displayed in Table 2. If surplus changes for an agent,
it means that the nodal price that he faces has been altered. More specifically,
if the price of node i increases as a consequence of the new line, producer i
gains while consumer i loses. If the price falls, the opposite is valid.

Considering the surplus of each region (i.e., the combined producer and
consumer surpluses of each node), it is evident that in general, some regions
are better off due to the new line, whereas others lose. However, it is not



598 M. Bjørndal, K. Jørnsten

Z1 Z2 Z3 Z4

Figure 4. Allocations to two zones

difficult to construct examples in which every region loses because of the new
line. For instance, changing the example above by letting c2 = 0.37 makes
every region worse off, whereas the grid revenue increases when line 2-4 is
introduced.

In the discussion so far, we have considered optimal nodal pricing as the
means of managing congestion. Zonal pricing, which is an approximation of
optimal nodal prices, where we require prices to be uniform within specified
zones, constitutes an alternative, and is used in for instance the Nordic power
market (see Bjørndal and Jørnsten [2]). In the given example, assuming only
two zones, there are four zone allocations that separate nodes 1 and 2. These
are displayed in Figure 4. Different zone allocations affect social surplus, and
for the parameters of our example, Z4 is best without the new line, whereas
Z1 is best when the new line is included. This illustrates that modifications
to the grid should lead to a reconsideration of zone allocations.

Prices, net injections and power flows for Z1 and Z4 are displayed in
Figure 5, together with total social surplus and grid revenue. As is evident
from the numbers, also under zonal pricing total social surplus is reduced when
the new line is built. This is so for fixed zone allocations (i.e., the partition
of nodes into zones remains the same after the new line is in place), but it is
also valid even if the best zone allocation is chosen at every point. For fixed
zone allocations, grid revenue is reduced when building the new line. However,
if the new line changes the partition of nodes from Z4 to Z1, grid revenue
increases considerably, thus it may provide a strong incentive on the part of
the grid owners to build the line.

In Table 3, we show the surpluses for each region. In general, the change of
surplus for individual agents can be positive or negative. In Z1, every region
surplus as well as the grid revenue decreases due to the new line. If parameters
are changed so that c2 = 0.35 and the thermal capacity of line 1-2 is 5 units,
the effect of the new line on every region would be negative when choosing the
social beneficial zone allocations (i.e., switching from Z4 to Z1 when building
line 2-4). Grid revenue on the other hand would increase.

In the examples cited so far, the reductions in social surplus are relatively
minor. In the original example in Table 1, the reduction in total social surplus
is equal to 25.866, or 0.9%. This is partly due to the assumption of identi-
cal demand functions in every node. By allowing more unequal distributions
of consumption, the reductions can be of considerable size. For instance, in-
creasing bi, i = 1, 2 to 0.25, i.e., the size of the markets in nodes 1 and 2 are
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Z1

Z4

p2=17.080
q2=−1.460

p2=17.395
q2=5.873

p2=17.841
q2=16.283

p3=17.841
q3=1.146

p4=15.372
q4=−69.027

p1=15.044
q1=51.327

p3=17.395
q3=−8.622

p4=15.437
q4=−60.375

p1=15.437
q1=63.124

p2=17.164
q2=0.489

p3=17.164
q3=−13.814

p4=17.164
q4=−22.396

p1=14.524
q1=35.721

p3=17.080
q3=−15.693

p4=17.080
q4=−24.234

p1=14.713
q1=41.387

13.54015.000

15.000 15.000

15.000 9.768

4.046
20.721

5.721

26.387 2.153

20.873 9.956

21.327

11.37236.32748.124 12.251

Part A: No Line between Nodes 2 and 4
 Social Surplus: 2858.235
 Grid Revenue: 97.979

Part C: No Line between Nodes 2 and 4
 Social Surplus: 2869.871
 Grid Revenue: 5.380

Part B: New Line between Nodes 2 and 4
 Social Surplus: 2844.051
 Grid Revenue: 94.296

Part D: New Line between Nodes 2 and 4
 Social Surplus: 2821.270
 Grid Revenue: −49.495

Figure 5. Zonal solutions Z1 and Z4 before and after the new line

Table 3. Region Surpluses

Z1 Z4
Before After Before After

Node 1 1361.881 1354.600 1399.745 1377.242

Node 2 571.474 571.434 572.168 577.110

Node 3 449.917 448.685 446.096 444.489

Node 4 376.983 375.036 446.482 471.924

assumed to be only 20% of the markets in nodes 3 and 4, social surplus in
optimal dispatch is reduced from 2541.968 to 2394.397, i.e., by 5.8%, when
the new line is built. This is more than 2.5 times the cost of the thermal limit
itself, as social surplus in unconstrained dispatch is equal to 2600.506. If there
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is no consumption in nodes 1 and 2, social surplus is reduced from 2395.869 to
2129.125, i.e., by 11.1%. Also when increasing demand by shifting the demand
curves positively (for instance by raising the ai’s), the paradox becomes more
severe.

The persistence of the paradox depends on cost parameters as well. Con-
sider for instance varying c2. When c2 ∈ [0, 0.080), the new line improves
social surplus. When c2 ∈ [0.080, 0.102), the new line has no effect on social
surplus because the thermal limit is not binding in optimal dispatch, neither
with nor without line 2-4. Finally, when c2 ≥ 0.102, the new line reduces social
surplus, implying that the paradox also occurs when production in node 2 is
so costly that it is not being used. The reduction reaches a maximal value at
c2 = 0.350. Varying c4 in the same manner, the thermal capacity is binding
for all values of c4. When c4 < 0.179, line 2-4 improves social surplus, whereas
the paradox arises for c4 > 0.179.

4 Admittance Versus Thermal Capacity

From the derivation of the “DC”-approximation in Wu et al. [21], assuming
voltage magnitudes equal to 1 for every node, we have that

qij =
1
xij

sin(δi − δj) = Yij sin(δi − δj)

where δi is the phase angle at node i, qij is the power flow over line ij, xij is the
reactance of line ij, and the admittance Yij of line ij is equal to the reciprocal
of the reactance of the line. Because the sine function has a maximal value of
1, we must have that qij ≤ Yij . Considering also the thermal limit Cij of line
ij, qij is bounded by min{Cij , Yij}. This means that “strengthening” a line
has two interpretations: increasing the admittance or increasing the thermal
limit.

From the optimal dispatch problem (refer for instance Wu et al. [21]), we
know that the shadow price of the thermal limit qij ≤ Cij is non-negative,
i.e., µij ≥ 0, which means that social surplus cannot be reduced by improving
the thermal limit of any line. What we have shown by the previous examples
is that whenever there is at least one binding thermal limit, say on line ij,

∂Social Surplus

∂Ykl

may be negative for some link kl. That is, by either increasing the admittance
of an existing line or by building a new line,1 we may reduce social surplus.

Consider now varying the thermal capacity of line 1-2. In Figure 6, social
surpluses are shown as functions of C12. The functions are concave and in-
creasing, and the difference between the curves is the greatest for C12 = ε and
1 That is, increasing the admittance from the 0 level
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Figure 6. Social surplus and thermal capacity of line 1-2

vanishes when C12 is so large that the thermal limit is no longer binding in
any of the network configurations considered. This occurs at C12 = 42.587,
which is the flow over line 1-2 in unconstrained dispatch, assuming line 2-4 is
included in the network. From this point, social surplus is constant and equal
to 2916.525, and increasing the thermal capacity is not beneficial in either
network configuration.

As is shown by Wu et al. [21], in optimal dispatch, the merchandizing
surplus MS is equal to the congestion rent defined by

CR =
∑

i

∑

j

µijCij .

Because line 1-2 is the only congested line in our example,2 grid revenue is
equal to µ12C12, i.e., for a given thermal capacity C12, the size of the grid
revenue is determined by the value of

µ12 =
∂Social Surplus

∂C12
.

As is indicated by the curves of Figure 6, building line 2-4 will increase grid
revenue because at every C12 < 42.587, the social surplus function with line
2-4 is steeper than the function depicting social surplus without line 2-4.

Note however that whether the grid revenue increases due to the new line
is not indicative of whether the paradox occurs. Grid revenue may increase
also when the new line is beneficial. For instance, letting c4 = 0.15, total social
surplus increases from 3448.992 to 3457.022 when the new line is built. Grid
revenue increases from 58.969 to 64.530, i.e., total social surplus increases
more than the grid revenue, leaving a net increase for the market participants
as well, due to the new line.

In Figure 7, social surplus is shown as a function of the admittance of line
2-4. For reference, social surplus without line 2-4 is also exhibited. We note
that the difference between social surplus with and without line 2-4 increases
2 Assuming µ12 > 0, while µij = 0 for ij �= 12
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Figure 7. Social surplus and admittance of line 2-4

with the admittance Y24. When Y24 →∞, social surplus approaches the value
2828.161 asymptotically, signifying that the paradox becomes more severe the
stronger is the new line, but there is a maximal degradation of social surplus
equal to 2878.526− 2828.161 = 50.365.

5 Interpretation in Terms of Load Factors

The load factors of line 1-2 for different trades can be expressed as functions
of Y24. When the new line is introduced with an admittance of Y24, the power
flow equations become the following:

Kirchhoff’s junction rules:

q1 = q12 + q14
q2 = −q12 + q23 + q24
q3 = −q23 + q34

Kirchhoff’s loop rules:

q24 = −Y24q12 + Y24q14

q24 = Y24q23 + Y24q34

Conservation of energy:

q1 + q2 + q3 + q4 = 0.

By solving the power flow equations for different trades, we find the load factor
matrix

BY24
12 =

⎛

⎜

⎜

⎜

⎝

0 3+2Y24
4(1+Y24)

1
2

1+2Y24
4(1+Y24)

− 3+2Y24
4(1+Y24)

0 − 1
4(1+Y24)

− 1
2(1+Y24)

− 1
2

1
4(1+Y24)

0 − 1
4(1+Y24)

− 1+2Y24
4(1+Y24)

1
2(1+Y24)

1
4(1+Y24)

0

⎞

⎟

⎟

⎟

⎠

,
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where the entry of row k and column l is βkl12, which is the load factor of a
trade from node k to node l on line 1-2 (in direction from 1 to 2). In the
linear “DC” approximation, load factors are constants for given admittances,
and βklij = −βlkij . The negative numbers indicate that the corresponding trades
generate counter flows on line 1-2.

When Y24 → ∞, trades between nodes 2, 3, and 4 have no influence on
line 1-2, which can be seen from

B∞
12 = lim

Y24→∞
BY24

12 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1
2

1
2

1
2

− 1
2 0 0 0

− 1
2 0 0 0

− 1
2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Nodes 2, 3, and 4 thus become one market with identical nodal prices. Net
injection in node 1, on the other hand, distributes equally on lines 1-2 and 1-4
(load factors are equal to 1

2 ), implying that the maximal export from region 1
is equal to 30 = 2C12. An interpretation of this situation is that nodes 2 and
4 are electrically “the same,” which is similar to a cost of zero on line 2-4 in a
traffic equilibrium network. In the case of our electrical network, this makes
the paradox maximal.

The paradox of the example of Table 1 and Figure 3 can be interpreted in
terms of the load factors. The load factor matrix without line 2-4 is equal to

B0
12 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 3
4

1
2

1
4

− 3
4 0 − 1

4 −
1
2

− 1
2

1
4 0 − 1

4

− 1
4

1
2

1
4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

whereas the load factor matrix with line 2-4 (with admittance equal to 1) is
equal to

B1
12 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 5
8

1
2

3
8

− 5
8 0 − 1

8 −
1
4

− 1
2

1
8 0 − 1

8

− 3
8

1
4

1
8 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Considering optimal dispatch without line 2-4, q1 = 58.529, q2 = 10.123,
q3 = −21.717, and q4 = −46.935. As is evident from matrices B0

12 and
B1

12, the load factors of trades between net injection and net consumption
nodes have developed unfavorably when introducing line 2-4. The positive
load factors β13

12 and β14
12 stays the same or increases, meaning that the cor-

responding trades use as much or more of the capacity of line 1-2 under
the new network configuration. The negative load factors β23

12 and β24
12 have
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decreased in absolute value, indicating that the trades that they represent
produce smaller counter flows on line 1-2, thus relieving the capacity con-
straint to a lesser extent. Under the new network configuration, the injection
vector (58.529, 10.123,−21.717,−46.935) is no longer feasible. According to
the characterization used by Bushnell and Stoft [6], the old dispatch belongs
to the “newly infeasible region,” and the “newly feasible” region that follows
from the new line provides no better dispatch, thus the paradox.

6 Example: Market Integration

A consequence of the paradoxical characteristics of certain electricity net-
works is that in the presence of congestion constraints, social surplus can be
reduced when markets are integrated. In Figure 8, market 1 consists of nodes
1, 2, and 3 and market 2 consists of nodes 4 and 5. We assume linear cost
and demand functions, with parameters given in Table 4. We want to consider
integrating the markets by building lines 2-4 and 3-5. Disregarding any ther-
mal constraints, we find that social surplus would increase from 3126.177 to
3157.895. The system price settles on 16.842, which is higher than the price
of market 1 and lower than the price of market 2.

Assume now there is a capacity limit of 10 units on line 1-2. In Figure 9,
we show optimal dispatch without the connecting lines. Social surplus is equal

1

2

3

4

5

Market 1 Market 2

Separate Markets

Integrated Market

Unconstrained Dispatch:
 Social Surplus: 3126.177
 Price Market 1: 16.271
 Price Market 2: 17.778

Unconstrained Dispatch:
 Social Surplus: 3157.895
 Market Price: 16.542 

Figure 8. Market integration: unconstrained dispatch

Table 4. Market Integration: Unconstrained Dispatch

Node Consumption Production
ai bi ci

1 20 0.05 0.1

2 20 0.05 0.8

3 20 0.05 0.4

4 20 0.05 0.6

5 20 0.05 0.3
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p3=16.537
q3=−27.924

p5=17.778
q5=14.815

p2=18.775
q2=−1.038

p4=17.778
q4=−14.815

p1=14.299
q1=28.962

8.962 14.815

10.000

18.962 Social Surplus: 3000.433
Grid Revenue: 67.139

Figure 9. Optimal dispatch: before integration

p3=16.784
q3=−22.354

p5=17.444
q5=7.019

p4=18.103
q4=−7.762

p2=18.762
q2=−1.297

p1=14.147
q1=24.399

3.462

3.557

4.304

4.399

14.399

10.000

Social Surplus: 2988.241
Grid Revenue: 72.535

Figure 10. Optimal dispatch: after integration

to 3000.433. In Figure 10, the new lines have been built, and social surplus
is reduced to 2988.241, implying that the thermal limit on line 1-2, which
is internal to market 1, prevents the realization of potential benefits from
market integration.

7 Suggested Cures

Given that an investment has already been carried out, in traffic equilibrium
networks marginal cost pricing can lead to improved overall system perfor-
mance from the grid modification, even when Braess’ paradox occurs in user-
equilibrium (Pas and Principio [16]). Penchina [17] discusses different cures,
including various tolls and reversible one-way signs, showing that the “best”
remedy depends on traffic, and although system optimum is achieved under
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marginal cost pricing, in some cases there is a trade-off between the optimal-
ity and complexity of the suggested cure. In electricity networks there is no
equivalent methodology, as electrons do not respond to marginal cost pric-
ing. To alter flows for a given set of injections, we would have to alter line
impedances.

Considering the investment decision itself, the obvious way to avoid the
paradox in our Wheatstone bridge example is to build line 1-3 instead of
line 2-4. This would resolve the capacity problem of line 1-2 but may be
unacceptable for other reasons, for instance investment cost. Generally, the
issue of how to encourage beneficial investments and discourage detrimental
investments has been treated in the literature, for instance by Baldick and
Kahn [1], Bushnell and Stoft [4–6], and Hogan [13]. As is also demonstrated by
Bushnell and Stoft [4,5], transmission congestion contracts (TCCs), where new
contracts are allocated according to a feasibility rule, which helps internalizing
the external effects of detrimental grid investments, can provide at least a
partial solution. However, the results depend on transmission rights matching
actual dispatch, and hourly TCCs are so far not available for instance in the
Norwegian power market, thus the problem posed is not completely solved,
neither in theory nor practice.

As is confirmed by some of the examples in this chapter, and also pointed to
by Bushnell and Stoft [6], the performance of a network depends on expected
dispatch, which is influenced by future supply and demand conditions, which
are constantly changing and subject to uncertainty. Thus, as market condi-
tions change, so can the performance of the different network configurations
considered. This is further complicated by typically long asset lifetimes and
the lumpiness of the investment decisions, which sometimes makes it desirable
to expand the network in a manner that is not immediately beneficial but will
be in the long run. Ideally, we should compare different expansion paths rather
than various fixed networks, as the investment problem is dynamic in nature.

8 Conclusion

Depending on the parameters of the problem considered (cost, demand, ther-
mal capacity, and admittance), a new line may be detrimental to social sur-
plus. In general, some agents are better off whereas others lose in such a
situation. In this article, we provide examples where, in optimal dispatch,
every region loses while the grid revenue increases. For fixed zone allocations,
there is the possibility that every region-surplus and grid revenue is reduced
as a consequence of a new line. We have also demonstrated that a thermal
limit, which is internal to a market, may result in market integration being
disadvantageous. The possibility of such paradoxical effects and the incentives
that they provide to different agents must clearly be taken into consideration
both in the process of grid development and market development.
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There are many interesting research questions that can be raised based
on the possible occurrence of paradoxical effects. To mention a few: Can a
regulatory regime be designed to reduce the negative effects of the paradoxical
phenomena? Given a certain number of grid investments, that when added to
the existing network yield a desired effect, does there exist a network expansion
path, consisting of expanding the network with one link at a time, that yields
positive effects in each step? When investigating the regulatory regime, it is
important to consider not only whether the regulation is based on price-caps or
revenue-caps, or whether we have a rate-of-return-regulation. The incentive-
effects of a specific regulation may also be influenced by the mechanisms for
relieving congestion — the opposite also being true.
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Abstract This chapter explores models and algorithms applied to a class of Stack-
elberg games on networks. In these network interdiction games, a network exists
over which an operator wishes to execute some function, such as finding a shortest
path, shipping a maximum flow, or transmitting a minimum cost multicommodity
flow. The role of the interdictor is to compromise certain network elements before
the operator acts, by (for instance) increasing the cost of flow or reducing capacity
on an arc. We begin by reviewing the field of network interdiction and its related
theoretical and mathematical foundations. We then discuss recent applications of
stochastic models, valid inequalities, continuous bilinear programming techniques,
and asymmetric analysis to network interdiction problems. Next, note that inter-
diction problems can be extended to a three-stage problem in which the operator
fortifies the network (by increasing capacities, reducing flow costs, or defending net-
work elements from the interdictor) before the interdictor takes action. We devote
one section to ongoing research in this area and conclude by discussing areas for
future research.

Key words: network interdiction, network fortification, bilinear program-
ming, Stackelberg games, mixed-integer programming, duality

1 Introduction

In this chapter, we discuss developments in the fields of network interdiction
and fortification problems, with a particular focus on advances in mathemati-
cal and algorithmic contributions made in the past decade. We describe these
problems in the context of a two-player game. One player, called the “opera-
tor,” wishes to optimally utilize some network, for instance, by conducting a
maximum flow across the network or by sending messages via a least-cost path.
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The “interdictor” will attempt to compromise the network in some manner
in order to worsen the operator’s optimal solution. Some typical interdiction
actions include reducing the capacity of certain arcs (perhaps to zero, which
disables the use of the arc altogether), increasing transportation costs on arcs,
and monitoring traffic arriving on certain links and nodes. The interdictor is
usually constrained by some budget that restricts the amount of damage or
alteration that can be done to the network.

Hence, one classic interdiction game is a two-stage, two-player game in
which the interdictor acts first to strategically compromise certain elements
of the network, and the operator follows with an optimal decision based on
the resulting network. That is, these problems take on the form of Stackelberg
games [96], which involve a leader (interdictor) and follower (operator). Even
if there does not exist an actual human interdictor, natural disasters or acci-
dental failures can serve as the interdictor in worst-case analyses. In this case,
“Murphy’s Law,” the pessimistic philosophy that the worst possible event will
transpire, determines the set of network elements compromised by nature.

This scenario can be expanded for the case in which the operator has the
option of expending limited resources to fortify some aspects of the network,
thus providing a measure of protection for the network against the interdictor.
These fortification measures can prohibit the interdictor from taking interdic-
tion actions on certain aspects of the network or can install additional capacity
(and perhaps new links) in anticipation of the interdictor’s next move. In this
case, we now consider a three-stage game with two players, in which the op-
erator acts first to fortify the network, followed by the interdictor’s action,
which is in turn followed by the operator’s optimal recourse solution on the
resulting network.

This line of research differs from the field of survivable network design,
which is geared more toward the design of networks that can withstand acci-
dental disruptions or attacks on limited portions of the network infrastructure.
A common assumption on such networks is that link failures are rare, and
hence the network must be able to withstand any single failure. References
[30,52,94] regard network design problems for scenarios in which any one link
can fail. Grötschel and Monma [44] and Grötschel, Monma, and Stoer [45]
study mathematical programming techniques for multiconnectivity problems
by identifying a set of strong valid inequalities for the problem, along with
separation routines for their identification within a branch-and-cut algorithm.
Some systems, such as SONET ring networks [107, 108], are inherently sur-
vivable due to their topologies. (See [13, 41, 42, 62, 90, 92, 97] for a series of
network design optimization studies on SONET rings.) Each of these network
design problems fall under the fortification rubric presented here, where one
“fortifies” a network that initially has no links and protects against an enemy
that could destroy any single link. By contrast, we will not confine our study
to any particular topology, as done in SONET ring network design studies,
and will allow for more general disruptions than single-link (or double-link,
etc.) failures.
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It is of interest to note that some survivable network design studies (see
[35], for example) enumerate sets of possible network failures, called “fail-
ure scenarios,” and then employ Benders decomposition to decompose the
problem into a master network design problem and a recourse network flow
problem for each possible failure scenario. However, the set of possible inter-
diction actions that can be taken by the interdictor is potentially too large
to enumerate. For instance, if the interdictor can compromise any five out of
twenty links, there exist 15,504 possible scenarios that must be enumerated.
Thus, we require fundamentally new algorithms for interdiction/fortification
problems.

Before proceeding to discuss classic and emerging techniques for these
problems, we illustrate how three different applications fall into this frame-
work.

Example 1 (Nuclear smuggling interdiction). Our first example arises in the
context of defense against thieves who intend to move from one point in
a network to another. The genesis of this line of work study arose in the
deployment of nuclear sensors in the Former Soviet Republics. These nuclear
sensors are designed to interdict thieves, who intend to steal nuclear material
and transport it across national boundaries. This work has been pioneered
by Morton, Pan, and Charlton in various studies over the past few years
[72,76,77].

A joint American/Russian program called the Second Line of Defense
(SLD) was established in 1998 to help mitigate the success of these thieves
in smuggling nuclear material. One of the responsibilities of the SLD was to
study the deployment of nuclear sensors on links or vertices of the smuggler’s
transportation network. The deterministic version of this problem is mod-
eled by considering a directed network having a single source and destination,
where each link (i, j) is associated with two probabilities: pij is the probability
of avoiding detection with no sensor monitoring link (i, j), and qij is the prob-
ability of avoiding detection with a sensor monitoring link (i, j). This model
assumes 0 ≤ qij < pij ≤ 1, and assumes that all of these link probabilities are
independent of one another. Because the location of these sensors is public
knowledge (which is unfortunately all too common in such applications, as
demonstrated in [18]), the smuggler has full knowledge of the location of each
sensor and will be assumed to follow a path that maximizes the probability
of traversing from the origin to the destination undetected. The interdiction
problem is thus to deploy a (limited) set of sensors such that the smugger’s
maximum-reliability path is minimized. Hence, in this context, the network
operator is the smuggler, and the interdictor is the SLD team that deploys
nuclear monitors.

For instance, consider the situation depicted in Fig. 1. In this example, a
smuggler wishes to transit from Los Angeles to Washington, using only the
arcs depicted in the network. We permit the deployment of two sensors on any
of the six intermediate nodes (all nodes but Los Angeles and Washington). If a



612 J.C. Smith, C. Lim

Figure 1. Example nuclear interdiction instance with two deployed sensors

sensor is installed at a node, then the outgoing arcs are all considered to be
monitored. Because of the network topology and the limited number of sensors
that can be deployed, it is impossible to force the smuggler to pass through a
monitored node. However, it is possible to force the smuggler to avoid sensors
by traversing two links that have a p-value of 0.8. The only deployment of
sensors that force the smuggler to utilize two such links places these sensors in
Denver and El Paso. The smuggler will then maximize his evasion probability
by traversing the path Los Angeles – Albuquerque – Detroit – Washington,
whose reliability (with no monitored links) is given by 0.64.

Example 2 (Distributed packet filtering in computer networks). The dramatic
increase in the use of computer communications has carried with it a trouble-
some array of attacks on critical networks. One of the pressing problems facing
major computer networks appears in the form of Distributed Denial of Ser-
vice (DDoS) attacks, wherein a set of compromised hosts concurrently sends
large amounts of traffic targeted at a server, gateway, or network [25,32]. The
aim of the attack is to disrupt normal operation of the targeted network sys-
tem by depleting its resources. Many DDoS attacks disguise their true origin
by inscribing bogus information in the source address field of the IP (Inter-
net Protocol) packet header, referred to as IP source address spoofing. This
causes recovery to take of the order hours and days, at which point damage
has already been done.

A proactive approach to DDoS defense called “route-based distributed
packet filtering” [82] is aimed at preventing spoofed DDoS packets from reach-
ing their targets. We deploy filters on nodes in the network, which determine
whether a packet, given its purported source and destination address and the
set of routes used in the network, must necessarily be misrepresenting its true
origin. We also assume that attacks do not originate from nodes on which a
filter is located. See [71] for a detailed study of this problem.
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Figure 2. Computer network topology and routes

Note that these filters are only capable of testing necessary conditions for
the true packet origin address to match its purported origin address: The
filters could fail to prevent a spoofed packet from reaching its destination
if the packet encounters filters that cannot prove that the purported origin
has indeed been spoofed. To illustrate this scenario, consider the network and
routing plan depicted in Fig. 2. Intuitively, routing is done along a path having
the fewest number of links. Ties are broken on a path from node i to node
j, i < j, by using the path that visits the lowest-possible indexed node first.
Suppose that a filter is placed on node 2. Then if an attack is launched from
node 1 by sending a spoofed packet with purported origin 5 to destination 3,
the filter will stop the attack: Node 5 does not use node 2 as an intermediate
node in its routes. However, if the forged address is node 4 instead of node 5,
the filter will not stop the attack, because node 4 does indeed use node 2 as
an intermediate routing node.

In this scenario, the operator plays the role of the DDoS attacker, trying to
launch the most effective attack possible, while the interdictor deploys filters
to limit the worst attack possible from the operator. Armbruster et al. [4]
analyze the case in which the interdictor seeks to place the fewest number
of filters possible in the network such that all attacks are halted. This is an
NP-hard problem in general, and many filters are usually necessary to obtain
such “perfect security.” In the example of Fig. 2, filters must be placed at all
nodes except node 6 to achieve perfect security. A more interesting metric is
the “traceback number,” as described in [68–70]. In this problem, we seek to
deploy the fewest number of filters such that for any pair of nodes u and v in
the network, the number of nodes that can attack node v using the purported
origin address of u is not more than some threshold value τ . (This guarantees
that a node under attack need not investigate more than τ suspects.)

Example 3 (Emergency service protection). Finally, consider the situation in
which a set of emergency services is responsible for providing service to several
clients. For instance, these emergency services might be fire stations whose
clients are residences and businesses. A typical model assumes that when a
node requires emergency services, a service facility located closest to the node
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Figure 3. Node to facility assignment

Figure 4. Revised assignment after interdiction of two facilities

will respond. One classic facility location problem seeks to establish a set of
p emergency facilities such that the sum of shortest distances from each node
to its closest facility is minimized. Figure 3 depicts an example in which the
facilities are located at the gray squares, followed by the assignment of nodes
to their closest facility.

Two recent works [22,23] analyze the situation in which an interdictor can
attack up to k out of these p facilities, removing them from serving client
nodes. This situation is shown in Fig. 4 after the interdictor has removed two
of the five nodes. Hence, in this scenario, the interdictor removes facilities
from the network, while the operator assigns each node to its closest facility.
However, research performed in [22, 23] expands this game to include a for-
tification stage, where the operator acts first to protect a subset of facilities
from the interdictor. The interdictor must then confine all attacks to those
unprotected facilities.

The remainder of this chapter is organized as follows. In Section 2, we provide
a literature review of interdiction research and the theoretical/methodological
fundamentals behind solving interdiction and fortification problems. We
discuss advances in interdiction algorithms in Section 3, and then provide
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an analysis of fortification optimization techniques in Section 4. Finally,
we conclude the chapter in Section 5 with a discussion of future research
directions.

2 Literature Review

This section describes classic literature on network interdiction and forti-
fication models and algorithms. Section 2.1 recaps models for interdiction
problems where the network operator is faced with solving a shortest path,
maximum flow, or (more generally) a minimum cost network flow problem.
Section 2.2 provides theory and algorithms that have arisen from various do-
mains including survivable network design, bilinear programming, and bilevel
programming. These tools form a partial foundation for addressing contem-
porary interdiction and fortification problems.

2.1 Development of Fundamental Interdiction Models

Since Wollmer [104] proposed an algorithm that discretely interdicts a pre-
scribed number of arcs in a network in order to minimize the follower’s max-
imal flow, the network interdiction problem has been studied for more than
four decades with broad applicability to military and homeland security op-
erations (see [3,5,18,26,28,34,36,40,53,61,67,103,105,106]). A generic form
of the interdiction problem in which the leader minimizes the follower’s max-
imum objective can be formulated as follows.

Minimize
x∈X

maximize p(x)�y (1)
subject to Dy ≤ r(x) (2)

y ≥ 0 , (3)

where x and y are the leader and the follower variables, respectively, and
where p(x) and r(x) are the vector of unit flow profits and the vector of
available resources, respectively. Typically, y represents flows, and the set of
constraints Dy ≤ r(x) includes flow conservation, arc capacity constraints,
and side constraints as necessary. Note that p(x) and r(x) depend on the
leader’s decisions x. Hence, subject to the leader’s own feasible solution set
X, the leader controls the unit flow profits and/or resources in order to min-
imize the follower’s maximum profit. It is common that X takes the form of
X = {x : b�x ≤ B, 0 ≤ x ≤ e} where e is a vector of ones, that is, a
single budget constraint with variables having values between 0 and 1. When
xj = 1, the resource j is interdicted, whereas xj = 0 refers to survival of
the resource. If x can take on any continuous value between 0 and 1, then
a resource can be partially interdicted. Else, if a resource must be entirely
destroyed under the leader’s attack (or not damaged at all), then x is further
restricted to take on binary values. Hence, the budget constraint corresponds
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with X = {x : b�x ≤ K, x binary}. A special case in which the leader can
interdict at most K resources is when b = e.

Among various network problems, the interdiction literature is mainly fo-
cused on the three types of follower’s network problems: shortest path, maxi-
mum flow, and minimum cost (or maximum profit) flow problems. From now
on, we consider a directed graph G(N,A) with a node set N and an arc set
A. While a single index is assigned for each node, we will use either a single
index or a pair of node indices to represent each arc, as necessary for ease of
presentation.

Shortest Path Interdiction

In the shortest path interdiction problem, the follower traverses from a source
node s to a sink node t using the shortest path. By means of interdiction, the
leader can increase the length of arc j ∈ A from cj to cj + dj . Note that if
dj is sufficiently large, the arc j is practically unavailable when completely
interdicted.

This problem description is similar to the situation encountered in
Example 2 by taking logarithms of the pij- and qij-values. However, placing
a sensor on a node in Example 2 reduced the evasion probability of all arcs
exiting that node, while this problem only permits altering the cost of one
arc at a time.

Define RS(i) and FS(i), ∀i ∈ N , to be the reverse star and forward star
of node i, respectively, i.e., RS(i) = {j ∈ A : arc j enters node i} and
FS(i) = {j ∈ A : arc j leaves node i}. Define N0 = N \ {s, t} to be the
set of intermediate nodes. Then, this problem can be formulated as follows.

Maximize
x∈X

minimize
∑

j∈A
(cj + djxj)yj (4)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(5)

yj ≥ 0 ∀j ∈ A , (6)

where X = {x : b�x ≤ B, 0 ≤ x ≤ e}. In the objective function in (4),
the length of arc j ∈ A is increased by dj when interdicted, that is, when
xj = 1. The set of constraints in (5) represents the follower’s flow conservation
restrictions. Note that the leader’s variables x appear only in the objective
function, while the right-hand-side of the follower’s problem is free of the
leader’s variables. Letting π denote the dual variables associated with the flow
conservation constraints, the problem can be written as a single maximization
linear program as follows.

Maximize πt − πs (7)
subject to πi − πj − dkxk ≤ ck ∀k = (i, j) ∈ A (8)

x ∈ X . (9)
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Note that the resulting problem is a linear program. Fulkerson and Harding
[34] solve the dual of (7)–(9) via the parametric solution of the minimum cost
flow problem. Instead of maximizing the shortest path, Golden [40] solves a
minimum interdiction cost problem while ensuring the shortest path is in-
creased to a certain threshold value τ . That is, the objective function is given
by b�x while a threshold constraint πt − πs ≥ τ is added to the problem in
(7)–(9) together with X now having only nonnegativity constraints. Assum-
ing that interdiction actions must be binary, Israeli and Wood [53] propose a
Benders decomposition algorithm enhanced by so-called supervalid inequalities
in order to solve the mixed-integer program.

Closely related to the shortest path interdiction problem is the problem
of identifying the most vital arc, which when removed, induces the greatest
increase in the length of the shortest path. Corley and Sha [29] present an
algorithm that repeatedly investigates s−t paths in the order from the shortest
to the longest until finding an arc that is commonly used in those paths
investigated so far but not in the next shortest path. For the same problem,
noting that such an arc is in the shortest path, Malik et al. [63] propose a more
efficient algorithm that examines arcs only in the shortest path. Recently, the
shortest path interdiction problem under uncertainty has been studied by
Hemmecke et al. [49], Held et al. [47], and Held and Woodruff [48].

Maximum Flow Interdiction

The maximum flow interdiction problem concerns minimizing the maximum
flow between designated source and sink nodes, s and t, on a capacitated
network. Letting uj denote the capacity of arc j, ∀j ∈ A, and adding a dummy
arc (t, s) having uts = ∞ into the arc set A, the problem can be stated as
follows.

minimize
x∈X maximize yts (10)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj = 0 ∀i ∈ N (11)

yj ≤ uj(1− xj) ∀j ∈ A \ {(t, s)} (12)
yj ≥ 0 ∀j ∈ A . (13)

The inner maximization problem is a capacitated maximum flow problem,
which includes the flow conservation constraints in (11) and arc capacity con-
straints in (12). Note that the leader’s variables appear in the right-hand side
of the arc capacity constraints. Hence, interdicting an arc has an effect of
decreasing the corresponding arc capacity. Assuming a nonempty feasible re-
gion of the inner maximization problem, we can use the same reformulation as
done for the shortest path interdiction problem. Let α and β denote dual vari-
ables associated with the flow conservation and the arc capacity constraints,
respectively. Then, we have that
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Minimize
∑

j∈A
uj(1− xj)βj (14)

subject to αi − αj + βk ≥ 0 ∀k = (i, j) ∈ A \ {(t, s)} (15)
αt − αs ≥ 1 (16)
β ≥ 0 (17)
x ∈ X . (18)

Unlike the shortest path interdiction problem in (7)–(9), this problem is not
linear due to the bilinear terms xjβj in the objective function. However, ob-
serve that we can further restrict the dual variables α and β of the follower
problem to be binary, because changing the right-hand side of the structural
constraints in the primal problem induces the change of at most one unit of
the maximum flow (see Wood [106]). In fact, at optimality, the variables βij
will equal to 1 if arc (i, j) ∈ A is a member of the minimum cut corresponding
with the optimal maximum flow solution, and zero otherwise. We will also
obtain αs = 0, αt = 1, and αi = 0 if i belongs to the same side of the op-
timal cut-set as s, and αi = 1 otherwise. Therefore, a standard linearization
technique can be used in order to reformulate the problem as a linear mixed-
integer program by substituting xjβj with a single variable wj and adding
linear constraints wj ≤ xj , wj ≤ βj , wj + (1− βj) ≥ xj , and wj ≥ 0. In fact,
the latter two constraints are unnecessary because the bilinear terms appear
only in the objective function with negative signs. Wood [106] also extends
this discussion to the multicommodity flow case.

Some earlier studies include those by Wollmer [104] and McMasters and
Mustin [67], in which a prescribed number of arcs are removed in order to
maximize the reduction in the maximum flow via the topological dual problem
under the assumption that the network is planar. Ghare et al. [36] propose a
branch-and-bound method for the problem in which the planarity assumption
is dropped but the leader’s variables are still binary. (See [28, 84] for other
approaches to find vital arcs.) Burch et al. [19] present an approximation
algorithm for the maximum flow interdiction problem, and Cormican et al. [26]
study a stochastic version of the maximum flow interdiction problem.

Minimum Cost Flow Interdiction

The minimum cost flow interdiction problem is the most general case among
interdiction problems in this section. In the minimum cost flow interdiction
problem, the follower minimizes a linear cost flow function, and the leader
takes interdiction actions to maximize the follower’s minimum value. Define
di to be the supply (if positive) or demand (if negative) present at node i,
∀i ∈ N where

∑

i∈N di = 0. The minimum cost flow interdiction problem can
be formulated as follows.

Maximize
x∈X

minimize
∑

j∈A
cjyj (19)
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subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj = di ∀i ∈ N (20)

yj ≤ uj(1− xj) ∀j ∈ A (21)
yj ≥ 0 ∀j ∈ A . (22)

Note that the above problem is similar to the maximum flow interdiction
problem except for the objective function and right-hand side of (20). Using
the same reformulation as in the maximum flow interdiction problem, we have
that

Maximize
∑

i∈N
diαi −

∑

j∈A
uj(1− xj)βj (23)

subject to αi − αj − βk ≤ ck ∀k = (i, j) ∈ A (24)
β ≥ 0 (25)
x ∈ X . (26)

Recall that we were able to further restrict dual variables α and β to be
binary in the maximum flow interdiction problem. However, this cannot be
applied to the current problem because the change in the objective function
value per unit flow change is dependent on the cost vector c. Due to its re-
quirement of sophisticated global optimization techniques, very few studies
have been conducted for this type of problem. Wollmer [105] presents an ap-
proximation algorithm that repeatedly employs a single arc search algorithm.
Recently, Lim and Smith [61] propose exact algorithms for solving discrete as
well as continuous interdiction problems via linear mixed-integer programs.
This technique is developed in more detail in Section 3.

2.2 Related Areas of Research

In this section, we provide a review of topics that are related to the develop-
ment of network interdiction and fortification problems, including survivable
network design, bilinear programming, and bilevel programming theory and
methodology.

Survivable Network Design

Most modern network design algorithms have begun to take into account
the survivability aspect of a network, which measures the susceptibility of a
network to failures of small subsets of its arcs. It is important to design net-
works that are robust with respect to accidental failures like transportation
breakdowns, road closures, and telephone line breaks, or to failures made ma-
liciously by enemy entities. The Survivable Network Design (SND) problem
seeks a minimum-cost robust network configuration that provides a number
of alternative paths between nodes of the network. Many SND studies have
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focused on telecommunication applications (see [2, 24, 30, 74, 75, 83, 85, 87] for
example). Given point-to-point traffic demands, one general SND problem
assigns capacities to arcs (perhaps from among a finite set of alternatives)
in order to minimize construction/expansion costs, while satisfying certain
survivability constraints under any single node or arc failure. A critical sur-
vivability requirement is the minimum degree of flow feasibility after a network
component failure. That is, the network is survivable if specified percentages
of demands can be satisfied when any single node or arc fails. Some alternative
survivability conditions impose upper bounds on path lengths [2] and/or re-
quire the existence of multiple paths between each point-to-point demand [30].

We remark that the aforementioned studies only consider the random fail-
ure of network components. Furthermore, most of these research efforts an-
alyze single component failures (some exceptions can be found in [75], who
consider the simultaneous failure of pairs of arcs, and [35], who consider the
case of multiple arc failures in a Benders decomposition scheme). However,
when the network is maliciously attacked, this random failure assumption
might not be reasonable because the enemy will attempt to make the maxi-
mum impact on the network (see [79] for example). Also, as mentioned before,
for the common scenario in which the enemy can simultaneously attack mul-
tiple arcs, enumerating failure scenarios consisting of “any k arcs” for some
integer k becomes computationally intractable.

Bilinear Programming

As discussed in [61], the disjointly constrained bilinear programming problem
formulation plays an important role in solving interdiction problems. These
problems minimize a bilinear objective function over two polytopes, which
constrain disjoint sets of variables that comprise bilinear terms in the objec-
tive function. Bilinear programs arise in a wide range of applications such as
bimatrix games [64], quadratic assignment problems [37, 59], and global lo-
gistics systems [43] (see [58] for more applications of bilinear programming).
Nonetheless, because the optimization of bilinear programs is strongly NP-
hard [80], conventional local optimization methods do not guarantee global
optimality. However, due to the well-known property that there exists a glob-
ally optimal solution among combinations of extreme points taken from each
polytope (see [58,89] for example), bilinear programming has received a great
deal of attention in the global optimization area.

Konno [58] proposes a cutting plane algorithm for optimizing bilinear pro-
grams that employs concavity cuts, also known as Tuy cuts, in one of polytopes
to yield an ε-optimum, at which the optimality gap is no more than a pre-
scribed positive value ε > 0. A similar cutting plane method of Vaish and
Shetty [101] is convergent to a globally optimal solution, but a finite conver-
gence is not guaranteed. Using concavity cuts in conjunction with negative
edge extensions (see [38]) and disjunctive cuts, Sherali and Shetty [89] de-
sign a finitely convergent cutting plane algorithm. Audet et al. [6] propose
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a finitely convergent branch-and-bound algorithm, in which the problem is
reformulated to equivalent min-max and max-min problems and branching is
performed based on the complementarity slackness conditions of these prob-
lems. This method is further strengthened by a cutting plane generation phase
as a preprocessing step [1]. In addition to the above solution methods, bilinear
programming problems can be solved via general concave minimization algo-
rithms such as extreme point ranking [21,57,65,66,73,78,86,88,95,98], cutting
plane [39,54,81,99,100,109,110], and branch-and-bound [11,31,50,51,93,99]
methods. We refer the reader to [8,27,102] for excellent comprehensive reviews
of general bilinear programming methods.

Bilevel Programming

When the leader’s and the follower’s objectives are different, interdiction
problems are closely related to bilevel programming (also known as two-level
programming or hierarchical optimization) [7, 17, 33, 60], which is a mathe-
matical programming version of a Stackelberg game [96]. In this game, two
players sequentially make decisions in a noncooperative manner. The bilevel
program consists of two sets of decision variables. One set, the lower-level
variables, is constrained to be the solution of an optimization problem given
the values of the other set of decision variables, called upper-level variables.
Even for a linear bilevel program in which all objectives and constraints are
linear, this problem is known to be strongly NP-hard [12,46,55]. Two notable
solution methods for solving this type of problem are implicit enumeration of
extreme points [14,20] and reformulation using Karush–Kuhn–Tucker (KKT)
optimality conditions [9, 33].

Similar to bilinear programs, it is known that an optimal solution to the
linear bilevel problem can be found among the extreme points of the inter-
section of lower- and upper-level polytopes [8]. Candler and Townsley [20]
propose an implicit enumeration of all bases for the lower-level problem by
sequentially solving two linear programs: one is the lower-level problem given
the values of upper-level variables, and the other is the problem having upper-
level variables and lower-level variables associated with an optimal basis for
the previous lower-level problem. Bialas and Karwan [15] design a more ex-
plicit enumeration method, in which the next best adjacent extreme point of
the relaxed linear program is repeatedly searched until the values of lower-level
variables are optimal to the lower-level problem.

3 Advances in Interdiction Models and Algorithms

In this section, we discuss four emerging aspects of network interdiction stud-
ies. We begin by analyzing extensions needed for stochastic network interdic-
tion in Section 3.1, in the context of maximum flow interdiction. A review
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of cutting plane advances in solving stochastic shortest path (or maximum-
reliability, as described in Example 2) is discussed in Section 3.2. Then, the
shortest path interdiction in which the follower has a different perception
about the arc lengths is presented in Section 3.3. Finally, we focus on the
problem of handling continuous multicommodity network flow interdiction
problems in Section 3.4, employing classic bilinear and bilevel programming
concepts.

3.1 Stochastic Maximum Flow Interdiction

Cormican et al. [26] analyze stochastic optimization problems in discrete in-
terdiction of maximum flow. In their work, the effectiveness of interdicting
arc j ∈ A is not deterministic: Interdiction either succeeds perfectly or fails
completely. Letting Ĩj be a random variable that equals to 1 if an attempted
interdiction of j ∈ A is successful and zero otherwise, the interdiction problem
(14)–(18) now becomes:

Minimize
{

E
[

h(x, Ĩ)
]

|x ∈ X
}

, where (27)

h(x, Ĩ) = Minimize
∑

j∈A
uj(1− Ĩjxj)βj (28)

subject to αi − αj + βk ≥ 0 ∀k = (i, j) ∈ A \ {(t, s)} (29)
αt − αs ≥ 1 (30)
β ≥ 0 . (31)

Call this problem StochOBJ (as interdiction actions are reflected in the
objective). An alternative and equivalent reformulation of this problem, called
StochCON, is given by

Minimize
{

E
[

g(x, Ĩ)
]

|x ∈ X
}

, where (32)

g(x, Ĩ) = Minimize
∑

j∈A
ujβj (33)

subject to αi − αj + βk ≥ −Ĩkxk ∀k = (i, j) ∈ A \ {(t, s)} (34)
αt − αs ≥ 1 (35)
β ≥ 0 , (36)

which is derived by relaxing the primal restriction xj ≤ uj(1−xj) to xj ≤ uj ,
but penalizing primal flow that takes place on interdicted arcs. This penalty
term is given by −

∑

j∈A yjxj Ĩj . Because each unit of flow from s to t yields an
objective reward of only one, and because the penalty for using a successfully
interdicted arc also equals to one, there will exist an optimal solution in which
no flow is transmitted over an interdicted arc.
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One method for solving this problem lies in scenario decomposition. In
this approach, one enumerates a set of Q scenarios I1, . . . , IQ, that describe
whether or not interdiction is successful on each arc. That is, Iq is an |A|-
dimensional binary vector whose components Iqj equal to 1 if interdiction
would be successful on arc j ∈ A and 0 otherwise, for each q = 1, . . . , Q. The
probability of scenario q occurring is given by 0 < rq ≤ 1, for all q = 1, . . . , Q,
where

∑Q
q=1 r

q = 1. One might then use Benders decomposition to solve a
master problem of the form:

Minimize
Q
∑

q=1

rqθq (37)

subject to θq ≥
∑

j∈A
β j uj(1− Iqj )xj ∀q = 1, . . . , Q, β ∈ Ψ (38)

x ∈ X , (39)

where Ψ is the set of extreme points to (29)–(31) enumerated thus far in
the decomposition process. The Benders subproblem would then take on the
form (28)–(31) given a value of x obtained from the master problem solution.
Also, one could derive a similar algorithm using (33)–(36), in which the dual
feasible regions change depending on the scenario.

Naturally, this process suffers computationally from the vast number of re-
quired scenarios, and worse, the effectiveness of the obtained solution depends
on the sampling of scenarios. A more sophisticated process derives lower and
upper bounds on the optimal objective function value to StochOBJ. Define
the deterministic problem, DetCON, as the modification to StochCON in
which binary random variables Ĩj in the right-hand side of (34) is replaced
by their expected values Ik, ∀k ∈ A. The optimal objective function value to
DetCON is a lower bound on the true optimal objective of StochOBJ (this
result is attributable to Jensen’s inequality [16, 56]). Furthermore, letting x̂
be the solution to DetCON, h(x, I) is an upper bound on the true optimal
objective of StochOBJ.

Cormican et al. [26] analyze the case in which the probability of success-
fully interdicting arc j ∈ A is given by 0 < pj ≤ 1. (These interdiction
probabilities are assumed to be independent of one another.) Using the fore-
going bounding scheme, they observe that bounds provided by DetCON can
be tightened by incorporating scenarios that partition the set of possible out-
comes, and whose realization probabilities are determined according to the in-
dependent interdiction probabilities pj , ∀j ∈ A. Hence, the foregoing Benders
decomposition scheme is applied to generate lower and upper bounds on the
optimal objective for StochCON, and these bounds are subsequently refined
by creating finer partitions of the set of possible outcomes. This process is
also extendable to the cases in which capacities are uncertain, and in which
multiple attempts at interdicting an arc are permitted to take place.
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3.2 Step Inequalities for Shortest Path Interdiction

In this subsection, we consider a recent strategy intended to improve the
efficacy of solving integer programming models for shortest path interdiction
problems. Because tighter linear programming (LP) relaxation is a crucial
factor in improving the solution efficiency of integer programming problems,
we discuss a class of valid inequalities for shortest path interdiction problems.

Morton et al. [72] and Pan and Morton [77] examine nuclear smuggling
interdiction models and algorithms (see Example 2 in Section 1), in which
the origin-destination pair is uncertain. Define a set Ω of scenarios (as done
in Section 3.1) that enumerate all possible origin-destination pairs. For each
scenario ω ∈ Ω, the origin is given by sω and the destination is given by tω,
and the probability of realizing this origin-destination pair is given by ρω.
In these studies, individual links (i, j) ∈ A can be interdicted; recall that
interdiction decreases the evasion probability on link (i, j) from pij to qij ,
where 0 ≤ qij < pij ≤ 1.

The Benders decomposition strategy used to solve these problems is still
valid in this case. A set of master problem variables θω are defined for each
ω ∈ Ω, which represent the maximum evasion probability in scenario ω given
the interdiction decisions, and an objective of

minimize
∑

ω∈Ω
ρωθω

is defined to minimize the expected maximum evasion probability. However,
the resulting Benders master problem is an integer program whose linear re-
laxation can be quite loose. To combat this problem, a set of valid inequalities
has been proposed to improve the integer programming model.

Morton et al. [72] consider a transformation of this problem to a bipar-
tite network G(N,A) with bipartition N = {N1 ∪ N2}, N1 ∩ N2 = ∅. This
transformation is useful for the case in which evader sources and destinations
are disjoint locations, and where interdiction can only be performed at nodes
along some border that separates the possible origins and destinations. Hence,
an evader will pass through exactly one border point on the way to the desti-
nation. For each ω ∈ Ω, the transformation to a bipartite network would thus
compute the most reliable path from sω to a boundary node k ∈ N (using
only intermediate nodes on the “source” side of the border), and the most re-
liable path from k to the destination node dω (using only intermediate nodes
on the “destination” side of the border). These paths can be computed by
Dijkstra’s algorithm after taking the logarithm of each arc reliability. Let γωk
represent the product of these path reliabilities. If a sensor is placed on node
k, then the evasion probability is given by γωk qk; else, it is given by γωk pk.
After this transformation, one can construct a bipartite network in which
N1 = {all possible origin nodes} and in which N2 = {all border checkpoints},
and where the evasion probabilities (which now depend on the scenario ω) are
given as above.
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Given a set of sensor locations x̂, let N2(0) = {k ∈ N2: no sensor is located
at k}, and N2(1) = {k ∈ N2: a sensor is located at k}. The evader then chooses
a route corresponding with max{maxk∈N2(0){γωk pk},maxk∈N2(1){γωk qk}}. This
strategy yields a rule that can be exploited in the form of valid inequalities.
First, define

k ∈ argmink∈N2
{γωk qk} . (40)

Note that the evader will discard any link (sω, k̂) such that γω
k̂
pk̂ ≤ γωk�qk� , as

the maximum evasion probability is always bounded below by γωk�qk� . Suppose
there remain H arcs incident from sω after this preprocessing, and that these
arcs connect sω to nodes 1, . . . , H in N2 such that γω1 p1 ≥ γω2 p2 ≥ · · · ≥ γωHpH ,
and for convenience, define γωH+1pH+1 = γωk�qk� . The evader will check arc
(sω, 1) to see if it is interdicted, and will traverse this link if not. Else, the
evader will check arc (sω, 2), and so on, until a link is found that is not
interdicted. If all arcs from sω to nodes 1, . . . , H are interdicted, the evader
will select the interdicted arc (sω, k ).

A step inequality is used to capture this decision-making process. The
foregoing greedy algorithm can be captured by the logical inequality:

θω ≥ γω1 p1 − (γω1 p1 − γω2 p2)xsω1 − · · · − (γωHpH − γωH+1pH+1)xsωH , (41)

where xsωi is a binary variable that equals to 1 if arc (sω, i) has been inter-
dicted and 0 otherwise. Observe that if xsω1 = xsω2 = · · · = xsωh = 1 for
0 ≤ h ≤ H, then (41) reduces to

θω ≥ γωh+1ph+1 − (γωh+1ph+1 − γωh+2ph+2)xsω,h+1

− · · · − (γωHpH − γωH+1pH+1)xsωH ,

which yields a valid inequality as it implies that θω ≥ γωh+1ph+1. Furthermore,
Morton et al. [72] observe that this inequality is valid for any subset
{κ1, . . . , κm} ⊆ {1, . . . , H + 1}, as long as this subset includes the ele-
ment H + 1. Assuming that κ1 < · · · < κm, and defining rωi = γωκi

pκi
for

i = 1, . . . ,m, we then get the valid inequality

θω ≥ rω1 − (rω1 − rω2 )xsωκ1 − · · · − (rωm−1 − rωm)xsωκm
. (42)

Given linear relaxation values of x̂, it is possible to determine a set
{κ1, . . . , κm} ⊆ {1, . . . , H+1} that corresponds with a most-violated inequal-
ity (in terms of the left-hand side of (42) given x̂, minus the current master
problem estimate of θω) in polynomial time. Pan and Morton [77] then extend
this logic to handle the case of nonbipartite graphs, showing also that their
generalized inequality can also be separated in polynomial time.

3.3 Shortest Path Interdiction with Asymmetric Information

In this subsection, we consider the deterministic shortest path interdiction
problem when the follower has a different perception than the leader about
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arc length data. To formulate the problem, let c̄j and c̄j+d̄j ∀j ∈ A denote the
follower’s perception of arc lengths before and after interdiction, respectively.
One important consideration in solving these problems regards the action of
the follower when alternative optimal solutions are present. Despite the fact
that two solutions may be equally preferable to the follower, those solutions
might have very different objectives for the leader. Bayrak and Bailey [10]
model this problem under these two considerations when there exist alterna-
tive choices to the follower. First, assuming that the follower is cooperative
when alternative solutions exist (i.e., the follower breaks ties among alterna-
tive optimal solutions in favor of the leader), the problem can be formulated
as the following bilevel program:

Maximize
∑

j∈A
(cj + djxj)yj (43)

x ∈ X, (44)

where

y = argmin
∑

j∈A
(c̄j + d̄jxj)yj (45)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N \ {s, t}

(46)

yj ≥ 0 ∀j ∈ A . (47)

Note that the follower’s decision y is a solution of the shortest path problem
that has a different objective function in (45).

Bayrak and Bailey [10] reformulate the leader’s optimization problem as
follows, using concepts from KKT conditions and strong duality.

Maximize
∑

j∈A
(cj + djxj)yj (48)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(49)

αi − αj ≤ c̄k + d̄kxk ∀k = (i, j) ∈ A (50)

αt − αs =
∑

j∈A
(c̄j + d̄jxj)yj (51)

yj ≥ 0 ∀j ∈ A (52)
x ∈ X . (53)

Note that (49) and (50) represent primal and dual feasibility conditions of the
shortest path problem in (45)–(47). Constraint (51) enforces strong duality.
The problem is now a nonlinear mixed-integer program due to the bilinear
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terms xjyj , ∀j ∈ A. When the interdiction actions are discrete, the problem
can be linearized by substituting wj = xjyj and adding linearization con-
straints wj ≤ xj , wj ≤ yj , wj + (1 − yj) ≥ xj , and wj ≥ 0. We refer to [10]
for an alternative linear formulation.

This formulation is optimistic for the leader, assuming cooperation on
the part of the follower. In the presence of alternative shortest paths to the
follower, the solution to (48)–(53) would select a KKT solution that yields the
maximum objective value according to (48). In reality, using such a solution
can be risky because the follower may not act cooperatively. Hence, one can
assume the worst-case scenario when the follower has alternative choices. To
find this pessimistic solution, consider the following problem given the leader’s
variables x.

Minimize
∑

j∈A

[

M(c̄j + d̄jxj) + (cj + djxj)
]

yj (54)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(55)

yj ≥ 0 ∀j ∈ A . (56)

When M is sufficiently large, the problem would yield an optimal solution
based on c̄ and d̄, but among all alternative optimal solutions with respect
to c̄ and d̄, would choose a solution that is optimal with respect to c and d.
Using the model (54)–(56) [10], formulate the pessimistic problem as follows.

Maximize
x∈X

f(x)− g(x) , (57)

where

f(x) = minimize
∑

j∈A

[

M(c̄j + d̄jxj) + cj + djxj
]

ŷj (58)

subject to
∑

j∈FS(i)

ŷj −
∑

j∈RS(i)

ŷj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(59)

ŷj ≥ 0 ∀j ∈ A (60)

and

g(x) = minimize
∑

j∈A
M(c̄j + d̄jxj)yj (61)

subject to
∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(62)

yj ≥ 0 ∀j ∈ A . (63)

Using the dual of the problem in f(x) and rewriting −g(x) as a maximization
problem, the problem in (57) can be written as follows.
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Maximize αs − αt −
∑

j∈A
M(c̄j + d̄jxj)yj (64)

subject to αi − αj ≤M(c̄k + d̄kxk) + ck + dkxk ∀k = (i, j) ∈ A (65)

∑

j∈FS(i)

yj −
∑

j∈RS(i)

yj =

⎧

⎨

⎩

1
−1

0

for i = s
for i = t
for i ∈ N0

(66)

yj ≥ 0 ∀j ∈ A (67)
x ∈ X . (68)

This problem can be solved using the same standard linearization technique
when x is binary.

3.4 Continuous Interdiction on Multicommodity Flow Networks

Finally, we discuss new developments in solving continuous interdiction prob-
lems. As demonstrated several times in this chapter, one often converts
minimax models to minimization models by taking the dual of the inner
maximization problem and combining the minimization of the interdictor’s
problem and the follower’s dual problem. If interdiction terms appear on the
right-hand side of the follower’s problem, the resulting single minimization
problem is a bilinear programming problem, whose bilinear terms can be lin-
earized if at least one variable in each bilinear term is restricted to be binary-
valued. However, if both variables in a bilinear term can take on fractional
values, linearization constraints are no longer directly applicable.

In this subsection, we describe techniques to solve a continuous multicom-
modity network flow interdiction problem, which we term as MFNIP. Define
a set of commodities K, where for each k ∈ K, Sk and Dk represent the set
of supply nodes and demand nodes for commodity k, respectively, and define
Nk

0 = N \ {Sk ∪Dk} to be the set of transshipment nodes for commodity k.
Let skl be the amount of supply for commodity k ∈ K present at l ∈ Sk, and
let dkl be the amount of demand for commodity k ∈ K present at l ∈ Dk.

A flow profit of rkj is obtained for each unit of commodity k ∈ K trans-
mitted across arc j ∈ A. The sum of commodities that can be shipped on
arc j ∈ A is limited by uj . However, the interdictor can reduce this amount
to uj(1 − xj) for any value of xj ∈ [0, 1]. The interdictor is given a budget
of B, and interdicting all of arc j ∈ A incurs a cost of bj . Assuming that
partial interdictions are proportional to the cost of interdicting an entire arc,
we define the interdiction space X as

X ≡

⎧

⎨

⎩

x ∈ R|A| :
∑

j∈A
bjxj = B, 0 ≤ xj ≤ 1 ∀j ∈ A

⎫

⎬

⎭

. (69)

The equality in (69) is due to the assumption that b�e ≥ B and the ob-
servation that an optimal solution to MFNIP exists in which the interdictor
exhausts all of the interdiction budget.
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Model MFNIP minimizes {Λ(x) : x ∈ X}, where

Λ(x̂) = max
∑

j∈A

∑

k∈K
rkj y

k
j (70)

subject to
∑

i∈FS(l)

yki −
∑

j∈RS(l)

ykj = 0 ∀k ∈ K, ∀l ∈ Nk
0 (71)

∑

i∈FS(l)

yki −
∑

j∈RS(l)

ykj = skl ∀k ∈ K, ∀l ∈ Sk (72)

∑

i∈FS(l)

yki −
∑

j∈RS(l)

ykj = −dkl ∀k ∈ K, ∀l ∈ Dk (73)

∑

k∈K
ykj ≤ uj(1− x̂j) ∀j ∈ A (74)

ykj ≥ 0 ∀j ∈ A, ∀k ∈ K. (75)

Taking the dual of the inner problem (70)–(75) and combining its dual
minimization with the minimization of Λ(x), we get the following nonlinear
programming problem called BLPI, which is equivalent to MNFIP:

Minimize
∑

k∈K

∑

l∈Sk

skl α
k
l −

∑

k∈K

∑

l∈Dk

dkl α
k
l

+
∑

j∈A
ujβj −

∑

j∈A
ujxjβj (76)

subject to αki − αkj + βh ≥ rkh, ∀k ∈ K, ∀h = (i, j) ∈ A (77)

αkl unrestricted ∀k ∈ K, ∀l ∈ N, βj ≥ 0 ∀j ∈ A (78)
x ∈ X. (79)

Let g(x,α,β) denote the objective function given by (76), and let Θ denote
the dual feasible region constrained by (77) and (78). Note that fixing x yields
a linear program in terms of (α,β), and vice versa. Hence, the problem BLPI
has an optimal solution (x ,α ,β ) such that x and (α ,β ) are extreme
points of X and Θ, respectively (see [89] for example).

Lim and Smith [61] prescribe an algorithm that partitions MFNIP into
|A| subproblems. The partitioning concept stems from the fact that for each
extreme point x̂ of X, there exists a single basic variable x̂r such that x̂r ∈
[0, 1], whereas all other variables are nonbasic at their lower bounds of zero or
upper bounds of one. (This fact is due to the presence of a single constraint,
aside from the simple bounding constraints on the x-variables.)

Suppose that we designate xr as a basic variable (that is, the one variable
that can take on any value between 0 and 1). Then the remaining nonbasic
variables are confined to take on binary values if x is to be an extreme point
of X. Consider the following subproblem:
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SP: Minimize g(x,α,β) (80)
subject to b�x = B (81)

0 ≤ xr ≤ 1 (82)
xj ∈ {0, 1} ∀j ∈ A \ {r} (83)
(α,β) ∈ Θ. (84)

From the equality in (81), we can substitute xr in terms of the binary x-
variables using the following transformation:

xr =
B −

∑

j∈A\{r} bjxj

br
. (85)

Employing this substitution and noting that B − br ≤
∑

j∈A\{r} bjxj ≤ B,
we can now formulate the following mixed-integer bilinear program, in which
all quadratic terms involve at least one binary variable:

SP(r): Minimize
∑

k∈K

∑

l∈Sk

skl α
k
l −

∑

k∈K

∑

l∈Dk

dkl α
k
l

+
∑

j∈A
ujβj −

n
∑

j∈A\{r}
ujxjβj

+
(

urβr
br

)

∑

j∈A\{r}
bjxj −

Burβr
br

(86)

subject to
∑

j∈A\{r}
bjxj ≥ B − br (87)

∑

j∈A\{r}
bjxj ≤ B (88)

xj ∈ {0, 1} ∀j ∈ A \ {r} (89)
(α,β) ∈ Θ. (90)

Using linearization to eliminate the nonlinear terms xjβj with wj ∀j ∈ A\{r},
and xjβr with vj ∀j ∈ A \ {r}, we have the following linear mixed-integer
program.

MILP(r): Minimize
∑

k∈K

∑

l∈Sk

skl α
k
l −

∑

k∈K

∑

l∈Dk

dkl α
k
l

+
∑

j∈A
ujβj −

∑

j∈A\{r}
ujwj

+
(

ur
br

)

∑

j∈A\{r}
bjvj −

Burβr
br

(91)

subject to Constraints (87)− (90) (92)
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wj − βj ≤ 0 ∀j ∈ A \ {r} (93)
wj − βjxj ≤ 0 ∀j ∈ A \ {r} (94)

βr + βrxj − vj ≤ βr ∀j ∈ A \ {r} (95)
vj ≥ 0 ∀j ∈ A \ {r}, (96)

where βj is an upper bound on βj , ∀j ∈ A.
Observe that in the linearization of vj = βrxj , ∀j ∈ A \ {r}, we need not

state the upper bounding constraints on vj , as these variables appear only in
the objective function multiplied by a positive number, and in the bounding
constraints. Hence, the equations vj ≤ βrxj and vj ≤ βr that would normally
be included in a linearization are removed in this formulation. The typical
lower bounding constraints on wj , ∀j ∈ A \ {r}, are also not present in the
formulation, as they too will not be binding at optimality.

Given a solution to SP(r), we recover the value of xr according to (85). Let
[x(r),α(r),β(r)] and z(r) denote an optimal solution and optimal objective
value of SP(r), respectively. Then, r ∈ argminr∈A{z(r)} yields an overall
optimal solution x(r ) and objective value z(r ). Lim and Smith [61] pursue
computational details regarding the implementation of this algorithm, includ-
ing the derivation of tight β-values, and the description of heuristics tailored
for this problem and its variant in which the x-variables are discrete.

4 Fortification in Network Design

In this section, we consider the problem of building or fortifying a multi-
commodity flows network to defend against network interdiction in various
scenarios. As mentioned in Section 1, this problem takes the form of a three-
stage, two-player game, in which the operator acts first to construct a network
and transmit an initial set of flows through the network. The interdictor acts
next to destroy a set of constructed arcs, and the operator acts last to transmit
a final set of flows in the network.

Smith et al. [91] prescribe optimal network design algorithms for three dif-
ferent profiles of interdiction: an interdictor acting optimally to minimize the
operator’s maximum profits obtained from transmitting flows, or destroying
arcs based on capacities and based on initial flows. The first profile assumes
that the interdictor knows all the information that the operator has, whereas
only partial information is exposed to the interdictor in the two latter sce-
narios. (Recall that this information asymmetry is presented in Section 3.3 in
the context of shortest path network interdiction.) We discuss their develop-
ments in this chapter, with a focus on the case in which both players have full
information regarding the network data and act optimally.
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4.1 Problem Description

We first define notation for the current problem and describe the three inter-
diction scenarios. Each arc i ∈ A is associated with a nonnegative construction
cost ci, and the operator is limited by a budget of C for constructing arcs in
the network. Furthermore, define K to be the set of commodities, and let djk
denote the supply/demand of commodity k ∈ K at node j ∈ N . Without loss
of generality, we assume that

∑

j∈N d
j
k = 0, ∀k ∈ K. We are given a per-unit

flow profit pik for transmitting a unit of commodity k over arc i for each i ∈ A
and k ∈ K. This value includes the (nonpositive) per-unit flow cost on arc i,
plus (positive) revenue for successfully shipping a unit of commodity k if it
enters a destination node of k. This reward is subtracted from the flow profit
if arc i exits a destination node for k.

Define the following set of decision variables. Let xi, ∀i ∈ A, be a binary
decision variable that equals to 1 if arc i is constructed and 0 otherwise. For
the flow decision variables, we let fki and gki , ∀i ∈ A, ∀k ∈ K, represent the
flow of commodity k on arc i before and after interdiction, respectively. Also,
let wi ∈ [0, 1], ∀i ∈ A, represent the remaining percentage of arc i’s capacity
after interdiction. Although wi is determined by the interdictor, we view it as
a decision variable induced by the operator’s choice of x-variables.

It is possible that there may not exist a feasible multicommodity flow
in the network (especially after interdiction), or that it might not be cost-
effective to route all of the requested demands for some commodity. Thus, we
create dummy arcs in the network to allow some origin nodes to send less than
their supplies and destination nodes to receive less than their demands. These
dummy arcs have zero construction and flow profits (unless some disposal
or shortage costs are appropriate) and large enough interdiction costs and
capacities to ensure that they cannot be destroyed by the interdictor.

The objective function maximizes some convex combination of the profit
obtained from transmitting flows across the network before and after interdic-
tion, where profit is measured by revenues gained from successful shipment
of goods minus arc construction costs. Suppose that 100ρ% of flows occur
before interdiction for some ρ ∈ [0, 1]. Then our total profit is ρ times our pre-
interdiction flow profits plus (1 − ρ) times our post-interdiction flow profits,
minus the arc construction costs.

We consider three interdiction scenarios. In case 1, the interdictor acts to
(optimally) minimize the operator’s maximum post-interdiction flow profit.
In case 2, the interdictor destroys arcs having the largest capacity until his
budget is exhausted or until no arcs remain. Finally, in case 3, the interdictor
destroys arcs on which the largest pre-interdiction flows exist.

To illustrate these interdiction schemes, suppose that the network operator
can build arcs on the network depicted in Fig. 5. There exist two commodities
in the problem whose origin-destination pairs are (1, 3) and (2, 4). Each origin
(destination) node can supply (receive) at most 10 units. Recall that we permit
shortages in supplies and demands by drawing dummy arcs from node 1 to
node 3, and from node 2 to node 4. These arcs are omitted in Fig. 5(a) for
ease of readability.
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(10, 4, −1)

(10, 4, −1)

(20, −1, −1) (10, −6, 9)

1
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3

(15, −1, 9)

(a) Example network design in-
stance.

1

42

3

10 units of
commodity 1

10 units of
commodity 2

(b) Optimal network design
and flows without interdic-
tion.

Figure 5. Network topology and optimal solution without interdiction

1

42

3

10 units of
commodity 1

10 units of
commodity 2

(a) Optimal design and pre-
interdiction flows.

1

42

3

10 units of
commodity 1

(b) Optimal post-interdiction
flows.

Figure 6. Network design and flows under case 1 interdiction

The arcs are labeled by their capacity, unit flow profit of commodity 1, and
unit flow profit of commodity 2, i.e., (ui, p1i , f

2
p ) ∀i = 1, . . . , 5. For this instance,

suppose that the operator achieves a revenue of 5 for each unit of commodity
1 delivered, and a revenue of 10 for each unit of commodity 2 delivered, while
the unit flow cost is 1 for any commodity on any arc. Assume that each arc
can be constructed by the operator and destroyed by the interdictor with a
common cost of 10, i.e., ci = bi = 10 ∀i = 1, . . . , 5. Let the operator’s budget
be C = 50 and the interdictor’s budget be B = 20. Finally, let the profit
weight be ρ = 0.5. If no interdiction action is taken, the optimal design and
flows would be given by those in Fig. 5(b), yielding a profit of 110 (= 130−20)
in this scenario.

Figure 6 depicts the optimal network design for the first case, where the
interdictor optimally destroys arcs to minimize the operator’s flow profit after
interdiction. While the network design is same as the one in case 2, the inter-
dictor optimally disrupts arcs (2, 3) and (2, 4) by observing that commodity 2
yields a greater profit to the network operator than commodity 1 does. Then,
the operator can send post-interdiction flows only on arc (1, 3) as in Fig. 6(b).
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The profit is 45 (= (0.5)(130) + (0.5)(40) − 40). (The interdictor also has an
alternative optimal solution in which arcs (2, 4) and (3, 4) are destroyed.)
Despite the fact that arc (3,4) does not carry any pre- or post-interdiction
flow, the operator must build this arc to prevent the interdictor from simply
destroying arcs (1,3) and (2,4), which, without the presence of (3,4), would
leave the operator with no post-interdiction flows. (The operator also has an
alternative optimal solution in which only arcs (1,3) and (2,4) are constructed
and in which no post-interdiction flows exist.)

For the second case in which interdiction is made based on the arc capac-
ities, Fig. 7(a) depicts the optimal network design and pre-interdiction flows,
and Fig. 7(b) depicts the optimal post-interdiction flows. From this network
design, the interdictor would destroy arcs (1,2) and (2,4), as they have the
largest capacities. Note that the operator needs to alter the initial flows of
commodity 2 using arcs (2,3) and (3,4) after interdiction. The overall profit
is now reduced to 75 (= (0.5)(130) + (0.5)(120)− 50).

Finally, in the third case, the interdictor will destroy arcs having the largest
initial flows. Figure 8 illustrates the optimal network design and flow patterns.
Note that the initial flow on arc (1, 3) is slightly smaller than those on arcs

1

42

3

10 units of
commodity 1

10 units of
commodity 2

(a) Optimal design and pre-
interdiction flows.

1

42

3

10 units of
commodity 1

10 units of
commodity 2

10 units of
commodity 2

(b) Optimal post-interdiction flows.

Figure 7. Network design and flows under case 2 interdiction

1

42

3

10 units of
commodity 2 10 units of

commodity 2

10 - units of
commodity 1

(a) Optimal design and pre-interdiction
flows.

1

42

3

10 units of
commodity 1

10 units of
commodity 2

(b) Optimal post-
interdiction flows.

Figure 8. Network design and flows under case 3 interdiction
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(2, 3) and (3, 4) by some ε > 0 units so that the interdictor can be induced to
destroy the latter two arcs as desired by the network operator. The network
operator’s profit is 85− 2ε (= (0.5)(120− 4ε) + (0.5)(130)− 40).

4.2 Case 1: Optimal Interdiction

First, suppose that the interdictor optimally disrupts arcs so as to minimize
the operator’s profit. The interdictor has complete information of the network
design, including arc capacities, flow profits, and demands. Given a network
design x, therefore, the interdictor solves the continuous multicommodity flow
network interdiction problem. Using the formulation as a bilinear program
(BLP) presented in Section 3.4, the interdiction problem is given by

Minimize
∑

k∈K

∑

j∈N
dkjα

k
j +
∑

i∈A
(uixi)wiβi (97)

subject to (α,β) ∈ Θ (98)
w ∈W , (99)

where Θ is the dual feasible region of the operator’s multicommodity flows
problem, and where W = {w ∈ R|A| :

∑

i∈A bi(1 − wi) = B, 0 ≤ wi ≤ 1,
∀i ∈ A}. Note that the x-variables appear only in the objective function. As
discussed in the previous section, a global optimum of this problem can be
found among pairs of extreme points from respective feasible regions. Let ΘE

and WE denote sets of extreme points of Θ and W, respectively. Accordingly,
let Π ⊆ ΘE×WE be the set of pairs of such extreme points. Furthermore, let
φπ(x) denote the objective function value of (97) at π ∈ Π given x. Then, the
network design problem can be formulated as the following bilevel program.

Maximize ρ
∑

k∈K

∑

i∈A
pki f

k
i + (1− ρ)min{φπ(x) : π ∈ Π}

−
∑

i∈A
cixi (100)

subject to
∑

i∈A
cixi ≤ C (101)

∑

i∈FS(j)

fki −
∑

i∈RS(j)

fki = dkj ∀k ∈ K ∀j ∈ N (102)

∑

k∈K
fki ≤ uixi ∀i ∈ A (103)

fki ≥ 0 ∀i ∈ A ∀k ∈ K. (104)
xi ∈ {0, 1} ∀i ∈ A. (105)

The objective (100) minimizes the pre-interdiction flow costs weighted by
ρ, plus the post-interdiction flow costs weighted by (1 − ρ), minus the arc
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construction costs. The arc construction budget constraint is given in (101),
and the flow constraints before interdiction are given in (102)–(104).

Observing the linearity of φπ(x) with respect to x, we have that
min{φπ(x) : π ∈ Π} is concave with respect to x. Therefore, we can
prescribe a cutting-plane algorithm (or outer-linearization method), which we
call BCPA, that generates Benders cuts in an iterative fashion. At iteration
j of BCPA, we have the following master problem.

Maximize ρ
∑

k∈K

∑

i∈A
pki f

k
i + (1− ρ)z −

∑

i∈A
cixi (106)

subject to (100)–(105) (107)
z ≤ φπ(x) ∀π ∈ Πj , (108)

where Πj ⊆ Π is the set of π-vectors obtained in prior iterations by solving
the interdiction problem. The BCPA algorithm can be summarized as follows.

Algorithm BCPA

Step 0. Set Π1 = ∅ and j = 1.
Step 1. Solve the problem (97)–(99) to obtain a solution xj and zj .
Step 2. Given xj , solve the problem (97)–(99) to obtain a solution π and its
objective value φπ(xj).
Step 3. If zj ≤ φπ(xj), then xj is optimal and stop. Else, put Πj+1 =
Πj ∪ {π}, increment j ← j + 1, and return to Step 1.

4.3 Case 2: Interdiction Based on Capacity

Suppose that the interdictor repeatedly destroys arcs having the largest ca-
pacity until the budget B is exhausted. For our initial discussion, we assume
that all arc capacities are unique (we discuss the implication of this assump-
tion further at the end of this subsection). Hence, we can order the arc indices
i = 1, . . . , |A| so that ui < ui+1 ∀i = 1, . . . , |A| − 1, and so the interdictor
will prefer to destroy arc i before destroying i+ 1. Note that in general, this
overall ordering can be based on any input data criteria.

Smith et al. [91] present a model that makes use of the fact that there
will exist only one w-variable that can be fractional, as the interdictor is
essentially solving a linear knapsack problem. They define binary decision
variables δi, ∀i ∈ A, equal to one if and only if all constructed arcs with an
index smaller than i are completely destroyed, and all constructed arcs with
an index greater than arc i are not affected by the interdictor. Arc i itself may
be completely or partially interdicted or unaffected by the interdictor.

We assume that the interdictor exhausts the entire interdiction budget.
This assumption forces us to build at least enough capacity so that the inter-
dictor can destroy B units; we handle this assumption by adding a dummy
arc between two dummy nodes disconnected from the rest of the network.
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This arc will have a zero arc construction cost, zero flow profit, any arbitrary
capacity, and an interdiction cost of B. Then, the constraints that govern the
interdictor’s decision can be written as follows.

∑

i∈A
δi = 1 (109)

wi ≤
i
∑

h=1

δh ∀i ∈ A (110)

wi ≥ xi −
|A|
∑

h=i

δh ∀i ∈ A (111)

∑

i∈A
bi(xi − wi) = B (112)

δi ∈ {0, 1} ∀i ∈ A. (113)

Constraint (109) requires that exactly one variable serves as the dividing point,
such that all arcs having a higher capacity than ui are destroyed (enforced by
(110)), and all arcs having a smaller capacity than ui are not interdicted at
all (enforced by (111)).

4.4 Case 3: Interdiction Based on Flow

Finally, suppose that the interdictor destroys the arcs having the largest pre-
interdiction flows. Despite the similarity with the previous case in the inter-
dictor’s greedy strategy, the interdiction decision does not depend on a simple
set of binary decision variables x, and thus the optimization model in the
previous section must be modified for this case.

Once again, we determine an index r such that arc r may be partially
destroyed, implying that every arc having a greater flow than the flow on arc
r must be completely destroyed, and all arcs with a smaller flow than the flow
on arc r cannot be interdicted. Unlike the previous case, we do not define a
decision variable to determine the identity of r, but instead we must solve one
integer program for each possible value that r can take. Note that arcs having
a larger flow than the flow on arc r will be completely destroyed whereas those
with smaller flows will survive. Define ε > 0 as an arbitrarily small constant.
Then, we replace (109)–(113) with the following constraints:

∑

k∈K
fkj −

∑

k∈K
fkr ≤Mjr(xj − wj)− εxj ∀j ∈ A, j 	= r (114)

∑

k∈K
fkj −

∑

k∈K
fkr ≥ −Mrj(1− (xj − wj)) + εxj ∀j ∈ A, j 	= r (115)

∑

i∈A
bi(xi − wi) = B (116)
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0 ≤ wr ≤ 1 ∀r ∈ A (117)
wi ∈ {0, 1} ∀i ∈ A− {r} (118)
xr = 1, (119)

where Mij = ui + ε. The addition of the constraints in (114)–(119) captures
the flow-based greedy interdiction model, assuming that the interdictor com-
pletely destroys all arcs having more flow than the flow on r and does not
interdict arcs having less flow than arc r. By the disjunction of (114) and
(115), the flow of arc j must satisfy either

∑

k∈K f
k
j ≤

∑

k∈K f
k
r − εxj or

∑

k∈K f
k
j ≥

∑

k∈K f
k
r + εxj . This guarantees the uniqueness of the interdic-

tor’s solution (the implications of which are discussed in more detail below).
Note that if xj = 0, then wj = 0 as well. The right-hand side of (114) would
then be zero, and because

∑

k∈K f
k
j must be zero, this inequality is valid. The

right-hand side of (115) is −Mrj , so this inequality remains valid as well even
if
∑

k∈K f
k
r = ur. Now assume that xj = 1. If there exists more initial flow on

arc j than on r (i.e.,
∑

k∈K f
k
j ≥

∑

k∈K f
k
r + εxj), then as xj = 1, we have by

(114) that arc j must be interdicted (by setting wj = 0). Similarly, (115) forces
wj = xj if there is less flow on j than r (i.e.,

∑

k∈K f
k
j ≤

∑

k∈K f
k
r − εxj).

In order to find an optimal solution, we optimize a network fortification
model in which the interdictor’s decisions are governed by (114)–(119) for
each r = 1, 2, . . . , |A|. Out of these |A| solutions, we select the best solution
as the global optimum. More details about this process can be found in [91].

5 Future Research

This chapter offers an introduction to network interdiction modeling and al-
gorithms and provides a discussion of new lines of research that have been
initiated in this field over the past decade. However, we believe that this col-
lection of work is only the start of mathematical investigation in this field.

Many interdiction studies have traditionally been limited to those prob-
lems for which linearization constraints can be applied to eliminate trouble-
some nonlinear terms. However, there seem to exist numerous applications
in which interdiction actions are continuous and in which a simple applica-
tion of linearization constraints is not sufficient to solve the problem. We
discussed one study in Section 3.4 (regarding the work of Lim and Smith [61])
in which linearization is not applicable, but even their study captures only
knapsack-constrained interdiction decisions. Future research in the field must
address the case in which interdiction decisions are more general than the
cases described in this chapter. We anticipate that lessons gleaned from bi-
linear programming and global optimization theory will be required to obtain
the most effective algorithms for this class of problems.

We have also assumed in this chapter that information in the network
game is symmetric. Naturally, this is not always the case. Although asymmet-
ric situations do arise in some interdiction studies (see [10,72], in addition to
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our discussion in Section 3.3), most of these studies seem to regard an inci-
dental difference in the perception of data. We believe that in many cases, it
is possible to alter our opponent’s perception of data, in order to induce an
ineffective action. For instance, in the case of shortest path interdiction, the
network operator could potentially have the option of fortifying network arcs
at a substantial cost, or perhaps simply creating the perception that the net-
work has been fortified at certain areas. Substantially different optimization
challenges arise in our preliminary analyses in this case, which will also neces-
sitate the investigation of a new line of optimization studies and will probably
require the development of sophisticated and effective heuristic techniques.
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1 Introduction

The promising wireless networking environment has been studied extensively
in various aspects. It has intrinsic features such as limited resource (com-
putational resource, network resource, battery power, etc.) and mobility of
terminals in the network. These limitations have been setbacks to direct appli-
cations of traditional (wired-network) approaches to wireless networks. Many
problems are NP-hard, and as a result, heuristics and approximation schemes
have been developed to get good (but may not be optimal) solutions to the
problems. Some of the problems are tackled with optimization techniques such
as integer programming or global optimization. However, as opposed to the
situation in optimization where no interactions of players are assumed, in re-
ality the interactions of players may influence the choices for an equilibrium or
a stable operating point of systems. We focus on game theoretical approaches
to the problems of power control, cooperation between hosts, and channel
access control. Several variations are also discussed briefly.

The rest of this chapter is as follows. In Section 2, problems in wireless
networks are identified, and in Section 3, game theoretical approaches to the
problems are discussed. Section 4 concludes this chapter.
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2 Problems in Wireless Networks

In this section, we introduce problems in game theoretic wireless network fields
and review some related works not using game theoretic approaches.

2.1 Power Control

In wireless networks, most devices work on their own batteries. The limita-
tion of battery power gets worse when devices communicate because much
more power is consumed to transmit than to compute. As a result, optimal
power consuming networks have been studied for various scenarios such as
broadcasting, multicasting, routing, and target coverage (for wireless sensor
networks). The power control problem for wireless data is to assign each de-
vice’s transmission power to promote the quality and efficiency of the wireless
networking system.

Ariyavisitakul [6] studied signal-to-interference ratio (SIR) based power
control in a Code-Division Multiple Access (CDMA) system (see Figure 1).
The author pointed out that uplink power control models based on absolute
signal strength at every base station are impractical. Instead, the author pro-
posed a SIR-based periodic power control model and showed its capability
of responding to any change of interference by each user in the system. The
numerical results show that a CDMA system using power control based on
SIR has an advantage of higher performance than a system with power control
based on signal strength. The main advantage is its capability to make use of
interference from other coverage areas to stabilize individual control processes.
Research in [53, 54] confirms the improved performance of SIR-based power
control models. Reference [54] provides the simulation results showing step-
wise removal algorithm using SIR outperforms the fixed transmitting power.
Reference [53] proves that iterative power control algorithm converges both
synchronously and asynchronously when outdated or incorrect interference

Figure 1. Feedback power control
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measurements are used. Moreover, SIR-based power control methods converge
to a fixed unique point at which total transmitting power is minimized.

Game theoretical approaches can be found in many papers in the literature
[1–3,5, 18–21,40–43].

2.2 Cooperation and Security

A wireless ad hoc network consists of wireless mobile hosts without any
infrastructure or any central administration. Such a networking environ-
ment requires each mobile host in the network to cooperate by forwarding
received packets. Many ad hoc routing protocols have been proposed, assum-
ing absence of selfish nodes that do not cooperate for the network operation
[13, 16, 23, 35–38, 46]. However due to the high consumption of battery power
for transmissions, some hosts may act selfishly, in other words instead of co-
operating they may try to preserve their own battery as much as possible.
The cooperation problem is to design a cooperation enforcing mechanism in
the presence of selfish nodes.

References [29, 32] study, through simulations, the impact of selfish be-
haviors on the network performance in terms of network throughput, average
delay of correctly delivered packets, and routing overhead. The simulation
results show even in the presence of a small percentage of selfish nodes, the
network performance suffers from a severe degradation. The observation pro-
vides the necessity of a cooperative security scheme through the collaboration
between nodes in order to detect selfish behaviors.

Buchegger and Boudec [9,10] applied the grudgers concept in Dawkins [15]
to cooperative routings. Dawkins divided birds into three categories: sucker,
cheats, and grudgers. Suckers always help (groom parasites off from other
birds’ heads), and cheats make other birds help them but do not help others.
Grudgers are originally suckers but they bear a grudge against cheats and
eventually do not help cheats. The CONFIDANT protocol in [9] uses a rep-
utation system to locally manage the feedbacks on misbehaviors, and once
noncooperative behavior exceeding threshold value has been detected, it is
informed to other nodes and eventually the misbehaving nodes are excluded
from the routing (see Figure 2). The system consists of reputation system,
trust manager, monitor, and path manager. Reference [10] provides perfor-
mance analysis of the protocol proposed in [9] by extending Dynamic Source
Routing (DSR) protocol [23]. The simulation results show the network with up
to 60% of misbehaving nodes performs almost as good as the network without
any misbehaving node using the proposed protocol. The performance metrics
of throughput, overhead, and utility clarifies the significance of cooperative
mechanism on routing. Yang et al [52] proposed a token-based cooperative
solution applied to Ad-Hoc on Demand Distance Vector (AODV) protocol
[38]. Every network operation requires a periodically renewed token, and the
renewal of token is done by the collaborative monitoring at local neighbors.
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Figure 2. CONFIDANT protocol

Figure 3. CORE protocol

Michiardi and Molva [31] proposed a generic cooperation enforcing mech-
anism based on reputation system. The authors introduced three types of
reputation concepts: subject reputation, indirect reputation, and functional
reputation. The indirect reputation will be updated only when indirect in-
formation about cooperating neighbors has been received in order to prevent
denial-of-service type attacks. In other words, the indirect reputation is only
used to increase the reputation of a neighbor. The functional reputation en-
ables the calculation of a global value of reputation that takes into account
different aspects/observations. The request of a node with the negative repu-
tation rating factor (which is a combination of the reputation concepts) will be
denied of the execution (see Figure 3). Buttyán and Hubaux [11] introduced
the concept of nuglet protected by tamper-resistant security module. The nu-
glet counter counts the number of forwarding packets minus the number of
requests to send a packet. In order for a node to send a packet, the nuglet
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counter must be positive, in other words the node must have contributed
enough to its network community. The proposed scheme does not require
explicit collaboration among nodes, but it ensures its proper operation by
integrating public-key infrastructure into the packet forwarding mechanism.

Crowcroft et al [14] proposed an incentive model for cooperation enforce-
ment in mobile ad hoc networks. The model provides a mechanism to allow
users to make choice of the flows on potential routes in a decentralized fash-
ion. The decisions are based on the congestion prices (consisting of power and
bandwidth factors) of the relevant nodes and the willingness-to-pay parame-
ter. In order to encourage the cooperation, whenever a node acts as a transit
node for other nodes, the node gains credit balance, which can be used for
payment later. The routes for series of traffic are assumed to be determined
by ad hoc routing such as AODV or DSR. The total flow rate generated by
user s is given by the following equation:

xs(t) =
∑

r∈RS(s)

yr(t) =
ws(t)

minr∈RS(s)

∑

j∈r µjr(t)
. (1)

The credit balance of the user s is used to adjust the willingness-to-pay para-
meter of the user s as follows:

ws(t) = αsbs(t), for some parameter αs > 0. (2)

And the credit balance itself is discounted over time as follows:

dbs
dt

= −β(bs(t)− 1)− ws(t) +
∑

r:s∈r
yrµsr(t). (3)

The variables in the above equations are summarized in Table 1. The paper
includes simulation results for 10-node network under three circumstances:
static, dynamic (where nodes join or leave), and mobile (where some nodes
move).

Game theoretical approach has been used in the literature [30, 33, 34, 44,
45,47].

Table 1. Variables Used in [14]

xs(t): the total flow rate of user s at time t
RS(s): the subset of routes that originates at source s
yr(t): the flow along the route r at time t
ws(t): the willingness-to-pay parameter of user s at time t
µjr(t): the congestion price that user j charges for forwarding the unit

flow along the route r at time t; the price consists of power and
bandwidth prices and is defined differently depending on j’s role
(source, transit, or destination) on r

bs(t): the credit balance of user s at time t
yr: the traffic flow along the route r
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2.3 Channel Access Control

Wireless communication shares the communication medium, and this feature
puts importance on the radio channel access control problem to guarantee the
quality of communication. Various performance metrics such as throughput,
channel access delay, channel utilization, and fairness can be considered.

Reference [25] analyzes the performance of the Slotted Aloha (S-Aloha)
scheme for broadband wireless networks. The authors showed that due to
the lack of available resources, a complex mechanism such as CDMA would
not provide the better performance, but may increase the network complexity.
Also, the activity of users will not tend to be simultaneous, and hence a simple
and efficient mechanism such as S-Aloha will provide good performance with
low network complexity.

In [48], Genetic Algorithm (GA) is used to implement a Fixed Channel
Allocation (FCA) scheme in BFWA (Broadband Fixed Wireless Access) net-
works (see Figure 4). The solution (channel assignment) is modeled as a string
of nodes assigned at each channel, and the aim is to achieve uniform channel
utilization, which is defined as the average number of APs (Access Points)
using a particular channel. To be fair to all APs, the APs are divided equally
among the C channels in the system. The fitness function at the i-th iteration
is defined as:

F (t) =
C
∑

i=1

Fi(t), (4)

where C is the total number of the channels in the system, and Fi(t) is de-
fined as:

Fi(t) =
ci
∑

j=1

ci
∑

k=1,k �=j

[PAj ,Ak
(t) + PAj ,Sk

(t) + PSj ,Ak
(t) + PSj ,Sk

(t)], (5)

Figure 4. BFWA network
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where ci is the total number of APs using channel i, and PX,Y (t) is the
received interference power at X from Y at iteration t. Here X,Y can be
either APs (Aj , Ak) or SUs (Sj , Sk). The implemented scheme FCA-GA is
used as a benchmark to measure the suboptimality of the proposed schemes
such as Dynamic Channel Allocation using GA (DCA-GA), Least Interfered
Method (LI), etc. In the LI method, each AP scans the interference power of
each channel and selects the channel with the lowest interference power. The
simulation shows a quite interesting result that FCA-GA has zero channel
fluctuation whereas other schemes have relatively high fluctuation. In con-
trast with FCA-GA, which requires complete knowledge of the entire network,
DCA-GA requires partial and local interference information and performs the
best among the rest of the schemes. However, LI also requires partial infor-
mation only.

Reference [26] considers the burst error properties of wireless communica-
tion channels and proposes a Time-Division Multiple Access (TDMA)-based
uplink access control scheme that makes use of Channel State Information
(CSI) of each mobile device (see Figure 5). One interesting result of the sim-
ulation is the performance of the proposed scheme (CHARISMA) under dif-
ferent mobile device speeds. The results are described to be almost static for
different speed situations due to the adaptive CSI refresh mechanism.

A scalable modeling framework is introduced in [12] for the analytical
study of medium access control protocols. The proposed model allows individ-
ual modeling of each node with many layer-specific parameters. Regarding the
node placement, no spatial probability distribution or any particular arrange-
ment is assumed. It also allows the computation of individual performance
metrics. The proposed framework can model three types of impacts: physical
layer, MAC layer, and topology. Signals used at physical layer are modeled
by the successful frame reception probability as follows:

Figure 5. CHARISMA protocol
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Table 2. Variables Used in [12]

nr: number of users in the network

{cr
ik}2nr−1

k=1 : the k-th combination of active transmitting nodes except i
cr

ik: the complement set of tr
ik

Cr
i : a random variable about the occurrence of a specific combina-

tion cr
ik of transmitters

qr
i : the probability that a frame transmitted by i is successfully

received at r
f(cr

ik): P{successful frame reception | Cr
i = cr

ik}
τi: the probability that node i transmits a frame at any time, ac-

cording to the MAC protocol in place
qi: the probability of successful transmission of node i

hi(·): a time-invariant function relating qi and τi

π: [π1π2...πn]T ; πi = f(cr
i0)f(ci

r0)
Φ: the interference matrix [φij ]; φij = h′

i(0)πi if j �= i, 0 o.w.

qri =
∑

k

f(crik)
∏

m∈cr
ik

(1− τm)
∏

n∈cr
ik

τn. (6)

The schedulings established at MAC layer are modeled by the transmission
probability as follows:

qi =
∑

k

∑

l

f(crik)f(c
i
rl)P (Cri = crik)P (Cir = cirl) (7)

and
τi = hi(qi), i ∈ V, (8)

where P (Cri = crik) =
∏

m∈cr
ik

(1− τm)
∏

n∈cr
ik
τn. The topology of the network

is modeled by a linear model as follows:

(I + Φ)q = π (9)

and
τ = h′i(0)(I + Φ)−1π. (10)

For the validation of the model, they modeled IEEE 802.11 DCF (distributed
coordination function) and compared the analytical results with simulation
results using Qualnet [39]. The results show pretty accurate prediction by the
model in terms of throughput.

Game theoretical approach has been used in the literature [4,17,22,28,49,51]

3 Game Theoretical Approaches

In this section, we discuss game theoretical approaches to the problems dis-
cussed in Section 2.
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3.1 Power Control

Ji and Huang [21] studied the uplink power control problem as a noncoop-
erative N -person game in many different cases. In the uplink power control
problem, each user wants to choose the transmitting power that maximizes
its own utility (defined as a function of power and SIR). The authors pro-
posed two algorithms: one for searching individual equilibrium and the other
for individual optimal power control. The second algorithm is based on the
simplified assumption: each base station will control the transmitting power
of its carried users without consideration of the interferences The algorithm
has only two steps: (I) the base station informs each user of its total receiver
power rk(P ) and (II) each user selects its power according to

pj =
rk(P )
hkj

− λj , (11)

where hkj represents the path gain from the j-th user to the k-th base station,
and λj denotes the user j’s relative preference of good Quality of Service (QoS)
over saving of power. Special cases of unconstrained or constrained power
control for linear utility functions are studied, and the application to indoor
wireless communication is proposed. As a more general case, an exponential
utility function is presented.

Shah et al [43] proposed a power control model using utility and pricing
based on noncooperative game. The utility and pricing concepts are borrowed
from economic concepts. As the utility function, SIR is used to represent the
level of satisfaction. However as opposed to the discrete definition of the utility
function for voice communications, the utility function for data communica-
tions is modeled as continuous. The rationale behind this definition is that
the throughput is generally proportional to SIR. The authors pointed out that
Nash equilibrium achieved by noncooperative game using only utility (using
SIR) is Pareto inefficient. This observation motivates the introduction of pric-
ing function. The power control game based on utility and (linear) pricing can
be formulated as follows.

max
pi

ui − Fi, ∀ i = 1, . . . , N, (12)

where ui is the utility function for a node i and Fi = βpi, in other words the
price of a node i is linear to the node i’s power pi. Saraydar et al [40] inves-
tigated the Pareto efficiency of a pricing policy and characterized the Nash
equilibria achieved using pricing based on supermodularity. Characterized by
strategic complementarities, in supermodular games, each player’s increase of
its strategy tends to increase other player’s strategies. These games have Nash
equilibria, and there are an upper and a lower bound on Nash strategies of
each user. The price function c for node i is defined as follows.

ci(pi,p−i) = cαipi, (13)
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where p−i = [p1, . . . , pi−1, pi+1, . . . , pN ] is the vector consisting of elements
other than the i-th element. The experiment results show significant utility
benefit of using pricing policy against power control game without pricing.
Goodman and Mandayam [18, 19] defined net utility function, which is the
difference of utility and price. More simulation results for similar approach
are provided in the paper.

Heikkinen [20] studied power control game against nature under incom-
plete information. The power control game is formulated as follows.

α∗ = max
x

min
p

p′Gx

p′Fx
, (14)

where G is the link gain matrix and F is the interference matrix. The game is
defined by two players: power vector selector and nature. Power vector selector
chooses the transmit power vector x and nature chooses a distribution p. The
author verified that a mixed strategy equilibrium capacity (SIR) can be inter-
preted as the optimal outcome from an incomplete information game against
nature by constructing a belief system such that the given mixed strategy
Nash-equilibrium with complete information coincides with a Bayesian Nash-
equilibrium of a game against nature under incomplete information. The belief
system is defined to consist of:

• a set Si of types, for each player i
• a probability distribution on the set S−i of the types of the other players,

for each type si
• an action ai, for each type si
• a payoff function ui : A→ R, for each type si

The author also provided a game-theoretic rationale for no power control
under lack of information, in other words it can be optimal for power selector
to play any mixed strategy, preferably one with minimal sum of powers.

Saraydar et al [41] studied base station assignment problem based on max-
imum received signal strength (MRSS) and base station assignment problem
based on maximum SIR (MSIR). The authors formulated four power con-
trol games: MCPG-MRSS using MRSS without pricing, MCPGP-MRSS using
MRSS and pricing, MCPG-MSIR using MSIR without pricing, and MCPGP-
MSIR using MSIR and pricing. Each problem is defined as follows:

(MCPG-MRSS) max
pj∈Pj

uaj ,j(p), ∀j ∈ N (15)

(MCPGP-MRSS) max
pj∈Pj

uaj ,j(p)− caj
pj , ∀j ∈ N (16)

(MCPG-MSIR) max
pj∈Pj

max
i∈K

uij(p), ∀j ∈ N (17)

(MCPGP-MSIR) max
pj∈Pj

max
i∈K

uij(p)− caj
pj , ∀j ∈ N, (18)

where uaj ,j(p) is the utility of terminal j at its assigned base station aj , uj
is the utility of user j, and ci is a constant pricing factor announced by base
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station i. The authors proposed two pricing schemes: global pricing and local
pricing. In local pricing, a base station broadcasts the pricing factor locally.
The authors proved the inefficiency of NPG (noncooperative power control
game without pricing) in [42]. Based on the supermodularity theory, intro-
duced in [40], the authors proved that when NPGP (noncooperative power
control game with pricing) has Nash equilibria, the one making highest net
utility is the Nash equilibrium with the minimum total transmit powers. An
algorithm producing the Pareto-dominant equilibrium (minimum power vec-
tor yielding Nash equilibrium with highest net utility) is introduced in the
paper.

Alpcan et al [1] proposed two uplink power update algorithms: Parallel
Update Algorithm (PUA) and Random Update Algorithm (RUA). In PUA,
the users optimize their power levels periodically using the response func-
tion, which represents the optimal response of the user to the parameters
in the model. RUA is a stochastic modification of PUA, in which the users
periodically optimize their power levels with a predefined probability. The au-
thors presented the sufficient conditions of each algorithm for global stability
and convergence to the unique equilibrium solution from any feasible starting
point. For the pricing, two pricing schemes are presented: centralized pricing
scheme and decentralized, market-based pricing scheme. In centralized pric-
ing scheme, the users are divided into classes and the base station sets the
prices for the classes. In decentralized, market-based pricing scheme, the base
station sets a single price and the users choose whether to pay or not. The
simulation results show RUA performs better than PUA in a delay-free sys-
tem, and PUA performs better than RUA in a system with delay. Whereas [1]
deals with a single-cell system, [2] models a multicell wireless data network as
a switched hybrid system where handoffs of mobiles between the individual
base stations are discrete switching events between different subsystems. For
the dynamic case where mobiles connect to base stations dynamically, the
authors use the concept of dwell-time, which is the minimum amount of time
between two switches, and average dwell-time. The paper also studies the sta-
bility under feedback delays to conclude that the feedback delay does not
affect the stability, but it may affect convergence rates, i.e., larger delays
may slow convergence rates and hence they may decrease the robustness of
the system. Reference [3] proposes two iterative algorithms (synchronous and
asynchronous update schemes) based on the approach in [2].

Reference [5] studies S-modular (meaning either submodular or super-
modular) games and its application to power control. The authors defined a
General Updating Algorithm (GUA) and proved its convergence to equilib-
rium. GUA is defined as follows: There are N infinite increasing sequences
{T i

k}, i = 1, . . . , N, k = 1, 2, 3, . . .. At time T i
k, player i uses the best response

policy to the policies used by all other players just before T i
k. This scheme in-

cludes parallel updates when {T i
k} does not depend on i. The convergence of

GUA to equilibrium explains the properties of the S-modular games, namely
that a Nash equilibrium exists and can be obtained by greedy best-response
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type algorithms, and best-response policies are monotonic in other players’
policies. The result is applied to power control and leads to sufficient condi-
tions for convergence of GUA.

3.2 Cooperation and Security

Michardi and Molva [30] applied an m-dimensional version of Albert Tucker’s
Prisoner’s Dilemma (PD) game to the cooperation problem in mobile ad hoc
networks. The PD game can be illustrated with an example: two men who
are charged with a conspiracy are held separately by the police. Each has two
options (see Table 3), to confess or not, and (1) if one confesses and the other
does not, the former will be set free and the other will get a long sentence. (2) If
both confess, both will get a medium-length sentence. (3) If neither confesses,
both will get a short sentence. Obviously the mutually beneficial strategy is
that both do not confess, and as a result, both get a short sentence. However
from each prisoner’s point of view, confess strategy will give the prisoner
shorter sentences regardless of the other prisoner’s strategy. Hence the unique
Nash equilibrium is the confess strategy for both. In the m-dimensional PD
game, each node can cooperate, ‘c’, or defect, ‘d’. The payoffs for ‘c’ and ‘d’
are defined based on the total number of cooperating nodes, and the Nash
equilibrium is analyzed. The authors presented a sufficient condition for at
least the half of the nodes in the network to cooperate. Reference [33] presents
the utility function to model the selfishness problem based on the energy that
a node spends for its own communications and the energy that the node used
for network operations.

In [34], the same authors studied the formal assessment of the features
of cooperation enforcement mechanisms including their mechanism CORE
[31,33] using both cooperative and noncooperative game theory. Using coop-
erative game theory, cooperation enforcement mechanisms guarantee a coali-
tion of cooperating nodes of size at least half of the size of the network. In
addition, the necessary condition for a node to join in a coalition is presented.
Meanwhile using noncooperative game theory, strategies are introduced and
compared using simulation. The game is modeled as an infinitely repeated PD
game, and three strategies (spiteful, TIT-FOR-TAT, and CORE) are intro-
duced. In all the three strategies, a node cooperates on first move. In spiteful,
a node cooperates with the other node only if both have always cooperated. In
TIT-FOR-TAT, a node copies the opponent’s last move. In CORE, the deci-
sion is made based on the reputation. One interesting point is that the authors
considered imperfect private monitoring assumption where noise exists in the

Table 3. A’s Outcome, Prisoner’s Dilemma

A’s action \ B’s action c d

c Medium sentence Set free

d Long sentence Short sentence



Game Theoretical Approaches in Wireless Networks 657

network environment. The simulation results show significantly different evo-
lution graph between perfect private monitoring assumption (which assumes
a noise-free environment) and imperfect private monitoring assumption.

Srinivasan et al [44] proposed a distributed and scalable acceptance algo-
rithm (to decide whether to accept or to reject a relay request) based on the
Generous TIT-FOR-TAT (GTFT) strategy [7]. In the GTFT strategy, each
player cooperates based on reciprocal cooperation, but each is a little generous
and on occasion one cooperates even when the others did not cooperate in
the previous game. The GTFT algorithm adopts this idea, and the condition
for each node to accept a relay request is as follows:

ψjh(k) ≤ τj and φjh(k) ≥ Lijψjh(k)− ε, (19)

meaning a relay request for the type j is accepted only when the node h has
relayed less traffic for type j sessions than what it should and the node h
has relayed less traffic than others have done for h. By using a small positive
value ε, the small generosity for each node is generated. The GTFT algorithm
has the following advantages: each action is based on locally gathered informa-
tion and it is scalable as the number of variables it requires is independent of
the number of the nodes. Reference [45] discusses some implementation issues
such as NAR (Normalized Acceptance Rate) calculation, security issues with
the presence of malicious users, implementation of m-GTFT as an extension
of AODV, and acknowledgment messages.

Urpi et al [47] proposed a general model describing selfishness. The pro-
posed model assumes that time is discretely divided into frames t1, . . . , tn and
defines the following variables for each frame tk as in Table 4. Nodes are di-
vided into n energy classes, e1, . . . , en, and to represent the importance of the
energy resource, αek

is defined to have a value between 0 and 1. The authors
discussed strategies in the literature [9–11, 31, 44, 45] based on the proposed
model.

Table 4. Variables Used in [47]

Ni(tk): the set of node i’s neighbors
Bi(tk): the remaining energy of i

T j
i (tk): the number of packets that i generated as source and that it has to

send to neighbor j
F i

j (tk−1): the number of packets that j forwarded for i during the previous
frame

Rj
i (tk−1): the number of packets that i received as final destination from j

during the previous frame

R̃j
i (tk−1): the number of packets that i received from a source j during the

previous frame
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3.3 Channel Access Control

MacKenzie and Wicker [28] used game theory to analyze S-Aloha scheme from
the perspective of a selfish user. The authors modeled S-Aloha protocol as a
stochastic game where the current state of the game is represented by the
number of users (n) who currently have packets to send. Each player has two
possible actions: transmit (T) or wait (W). The constant transmission cost
c is used, and payoff for a transmission is either 1 − c or c depending on
whether a single or multiple users transmitted at a given slot. The objective
is defined to maximize each user’s discounted expected payoff over the slots
from now until she transmits successfully. The discount factor δ is set very
close to 1 due to nearly insignificant delay for a single slot. The equilibria
of the selfish Aloha game were proved using the existence of Markov perfect
equilibrium (MPE) in general stochastic games with a countable number of
states and actions. The authors compared the selfish Aloha system with the
centrally controlled Aloha system. The steady-state probability’s drop rate
by the selfish Aloha system converges in contrast with the rapid drop rate by
the centrally controlled Aloha system. This result supports that the selfish
Aloha system is more robust than a centrally controlled system where the
selfish Aloha shows performance comparable with that of a centrally controlled
system.

Jin and Kesidis [22] also studied the equilibria of an S-Aloha system.
The authors considered a noncooperative users group sharing a channel via
S-Aloha. Each user selects a desired throughput based on her QoS require-
ment and willingness to pay. At m-th iteration of the game, each user n then
adjusts her transmission-probability qmn to attain her desired throughput yn.
The next transmission-probability is determined as

qm+1
n = min{yn/xmn , 1}, (20)

where xmn =
∏

i�=n(1− qmi ). By eliminating undesirable cases, the equilibrium
point q∗n satisfies

q∗n = min{yn/x∗n, Q}, (21)

for some large Q < 1. The authors discussed local convergence to an equilib-
rium point using a modified game, where the next transmission-probability is
computed by a convex function of current probability and the right-hand side
of (20).

Wong and Wassell [49] proposed a game theoretical approach for Dy-
namic Channel Allocation (DCA) problem using a payoff function. Similar
to LI (Least Interfered Method) introduced in [48], in DCA using GT (Game
Theory), AP (Access Point) will scan all available channels at the start of a
MAC frame and select the channel with the lowest interference power. The
authors defined the payoff function πj,k(t) for a pair of APs j and k at time
t as follows:

πj,k(t) = Gj(t)((1− PI(t))Oj,k(t) + Sj,k(t)), (22)
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where Gj(t) is the packet throughput for AP j defined as the percentage of
time a packet is transmitted or received. PI(t) is the probability that AP j and
AP k use the same channel, Oj,k(t) is the average fraction of Tj(t) (the period
between two scans for AP j) that would coincide with Tk(t), and Sj,k(t) is the
average fraction of Tj(t) that coincides with the SCAN portion of AP k. A
mixed strategy is used and an AP plays strategy s1 with probability p and s2
with 1− p. Using the function Uj,k(x, y) that is defined as the payoff for AP j
when AP j plays strategy x and AP k plays strategy y, the authors provided
the probability p that maximizes the mixed payoff:

πMIX = p2U(s1, s1)+ p(1− p)U(s1, s2)+ (1− p)pU(s2, s1)+ (1− p)2U(s2, s2)
(23)

and hence

p =
2U(s2, s2)− U(s1, s2)− U(s2, s1)

2(U(s1, s1) + U(s2, s2)− U(s1, s2)− U(s2, s1))
. (24)

The IEEE 802.11 distributed coordination function (DCF), which has been
the de facto access standard, suffers from the fairness problem and is stud-
ied by game theoretical approaches in [17, 51]. Fang and Bensaou [17] mod-
eled the fair bandwidth allocation problem as a constrained maximization
problem. Using Lagrange relaxation and duality theory, they provided both
noncooperative and cooperative game formulations. The problem is based on
the flow contention graph where a vertex represents an active flow/link, and
an edge between two vertices represents wireless proximity between each other
(see Figure 6). In a flow contention graph, flows in the same maximal clique
(considered as a channel resource) cannot transmit at the same time, and
this property is used in cooperative game approach. The authors proved that

Figure 6. Link layer wireless network and its flow contention graph
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Figure 7. Price-based Congestion Control policy

the noncooperative game has a unique Nash equilibrium. The simulation re-
sults show better fairness by the noncooperative game approach and better
throughput by the cooperative game approach. Xiao et al [51] presented a new
backoff algorithm based on Nash equilibrium strategy aiming for fairness and
compared its performance with that of the backoff algorithm in DCF.

Batiti et al [8] proposed a Price-based Congestion Control (PCC) pol-
icy to achieve a better channel utilization (see Figure 7). The PCC policy
operates in two steps. In the first step, the AP determines the percentage
increase/decrease in the number of active stations to drive the system to the
optimal operating point. In the second step, the AP computes the cost levels
that stimulate/discourage new users to achieve the percentage determined in
the first step. The authors evaluated the performance under saturated/not-
saturated scenarios using long/mixed packets. In saturated mode, each station
always has a nonempty queue, and in not-saturated mode, each station gen-
erates new packets to transmit according to Poisson distribution. The results
support the feasibility of a price-based congestion control policy in a Wi-Fi
hot spot.

4 Conclusions

In this chapter, we reviewed game theoretical approaches in wireless networks.
The restrictive natures of wireless communication, for example limited battery,
scarce and shared communication medium, together with the resulting eco-
nomical issues, make game theory a reasonable fit of approach to the problems.
Game theoretical approaches will play an important role in driving wireless
networking in bloom.
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Abstract We consider time-discrete systems with a finite set of states. The start-
ing and the final states of the dynamical system are fixed. We assume that the
dynamics of the system is controlled by p actors (players), and each of them intends
to optimize his own integral-time cost of the system’s passages by a certain trajec-
tory. Applying Nash and Pareto optimality principles for such a model, we obtain
multiobjective control problems, solutions of which correspond with solutions of non-
cooperative and cooperative dynamic games, respectively. Necessary and sufficient
conditions for the existence of Nash equilibrium and Pareto optimum in considered
game control models are derived. Such conditions for stationary and nonstationary
cases of the dynamic games are formulated. In the following, we extend dynamic
programming technique for determining Nash equilibrium and Pareto optimum for
dynamic games in positional form, especially for dynamic games on networks. Ef-
ficient polynomial-time algorithms are elaborated for finding optimal strategies of
players in dynamic games on networks. These algorithms are applied for studying
and solving cyclic games. In addition, computational complexity of the proposed al-
gorithms for the considered class of dynamic problems is discussed. Some extensions
and generalizations of obtained results are suggested.

Key words: time-discrete systems, multiobjective control, dynamic games,
Nash equilibria, Pareto optima, dynamic programming, polynomial-time
algorithms

1 Problems Formulation

Weformulate themultiobjective controlproblemsapplying thegame-theoretical
concept to the following classic discrete control problem [2,4, 44,65].
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1.1 Single-Objective Discrete Control Problem

Let us consider a discrete dynamical system L with a finite set of states
X ⊂ Rn. At every time-step t = 0, 1, 2, . . . , the state of the system L is
x(t) ∈ X. Two states x0 and xf are given in X, where x0 = x(0) represents
the starting point of L and xf is the state in which the system L must be
brought, i.e., xf is the final state of L. We assume that the system L should
reach the final state xf at the time-moment T (xf ) such that

T1 ≤ T (xf ) ≤ T2,

where T1 and T2 are given. The dynamics of the system L is described as
follows

x(t+ 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . (1)

where
x(0) = x0 (2)

and
u(t) = (u1(t), u2(t), . . . , um(t)) ∈ Rm

represents the vector of control parameters (see [2, 4, 33, 65]). For any time
step t, the feasible set Ut(x(t)) for the vector u(t) of control parameters is
given, i.e.,

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . . (3)

We assume that in (1) the vector functions

gt(x(t), u(t)) = (g1t (x(t), u(t)), g
2
t (x(t), u(t)), . . . , g

n
t (x(t), u(t)))

are determined uniquely by x(t) and u(t) at every time-step t = 0, 1, 2, . . . .
So, x(t+ 1) is determined uniquely by x(t) and u(t). In addition, we assume
that at each moment of time t, the cost

ct(x(t), x(t+ 1)) = ct(x(t), gt(x(t), u(t)))

of the system’s passage from the state x(t) to the state x(t+ 1) is known.
Let

x0 = x(0), x(1), x(2), . . . , x(t), . . .

be a trajectory generated by given vectors of control parameters

u(0), u(1), . . . , u(t− 1), . . . .

Then either this trajectory passes through the state xf at the time-moment
T (xf ) or it does not pass through xf .

We denote by

Fx0xf
(u(t)) =

T (xf )−1
∑

t=0

ct(x(t), gt(x(t), u(t))) (4)
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the integral-time cost of system’s passage from x0 to xf if T1 ≤ T (xf ) ≤ T2;
otherwise we put

Fx0xf
(u(t)) =∞.

Problem 1. To find vectors of control parameters

u(0), u(1), u(2), . . . , u(t), . . . ,

which satisfy condition (3) and minimize functional (4).

If T1 = T2, we obtain the discrete control problem with fixed number of
stages, i.e., the problem from [4]; if T1 = 0, T2 = ∞, we have the discrete
control problem with free number of stages [2, 33,65].

1.2 Multiobjective Control Based on Concept of Noncooperative
Games: Nash Equilibria

Consider the dynamic system L with the finite set of states X, where at every
time-step t the state of L is x(t) ∈ X. The dynamics of the system L is
controlled by p players, and it is described as follows

x(t+ 1) = gt(x(t), u1(t), u2(t), . . . , up(t)), t = 0, 1, 2, . . . . (5)

where
x(0) = x0

is a starting point of the system, L and ui(t) ∈ Rmi represents the vector
of control parameters of player i ∈ {1, 2, . . . , p}. The state x(t + 1) of the
system L at the time-step t + 1 is obtained uniquely if the state x(t) at the
time-step t is known, and players 1, 2, . . . , p independently fix their vectors
of control parameters u1(t), u2(t), . . . , up(t), respectively. For each player i ∈
{1, 2, . . . , p}, the admissible sets U i

t (x(t)) for the vectors of control parameters
ui(t) are given, i.e.,

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . . ; i = 1, p. (6)

We assume that U i
t (x(t)), t = 0, 1, 2, . . . ; i = 1, p, are nonempty finite sets and

U i
t (x(t)) ∩ U j

t (x(t)) = ∅, i 	= j, t = 0, 1, 2, . . . .

Let us consider that players 1, 2, . . . , p fix their vectors of control
parameters

u1(t), u2(t), . . . , up(t); t = 0, 1, 2, . . . ,

respectively, and the starting state x(0) = x0 and the final state xf are known.
Then for the fixed vectors of control parameters u1(t), u2(t), . . . , up(t), either
a unique trajectory
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x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf exists and T (xf ) represents the time-moment when the state
xf is reached, or such a trajectory from x0 to xf does not exist. We denote by

F i
x0xf

(u1(t), u2(t), . . . , up(t)) =
T (xf )−1
∑

t=0

cit(x(t), gt(x(t), u
1(t), u2(t), . . . , up(t)))

the integral-time cost of the system’s passage from x0 to xf for the player
i ∈ {1, 2, . . . , p} if the vectors u1(t), u2(t), . . . , up(t) satisfy condition (6) and
generate a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf such that
T1 ≤ T (xf ) ≤ T2;

otherwise we put

F i
x0xf

(u1(t), u2(t), . . . , up(t)) =∞.

Note that cit(x(t), gt(x(t), u
1(t), u2(t), . . . , up(t))) = cit(x(t), x(t+1)) repre-

sents the cost of the system’s passage from the state x(t) to the state x(t+1)
at the stage [t, t+ 1] for the player i.

Problem 2. To find vectors of control parameters

u1∗
(t), u2∗

(t), . . . , ui−1∗
(t), ui

∗
(t), ui+1∗

(t), . . . , up
∗
(t),

which satisfy the condition

F i
x0xf

(u1∗
(t), u2∗

(t), . . . , ui−1∗
(t), ui

∗
(t), ui+1∗

(t), . . . , up
∗
(t))

≤ F i
x0xf

(u1∗
(t), u2∗

(t), . . . , ui−1∗
(t), ui(t), ui+1∗

(t), . . . , up
∗
(t))

∀ui(t) ∈ Rmi , t = 0, 1, 2, . . . ; i = 1, p.

So, we consider the problem of finding the solution in the sense of Nash
[50,53].

An important particular case of Problem 2 represents the zero-sum control
problem of two players with given costs

ct(x(t), x(t+ 1)) = c2t (x(t), x(t+ 1)) = −c1t (x(t), x(t+ 1))

of the system’s passage from the state x(t) to the state x(t+ 1), which deter-
mine the payoff function

Fx0xf
(u1(t), u2(t)) = F 2

x0xf
(u1(t), u2(t)) = −F 1

x0xf
(u1(t), u2(t)).

In this case, we seek for a saddle point (u1∗(t), u2∗(t)) of the function
Fx0xf

(u1(t), u2(t)), i.e., we consider the following problem.
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Problem 3. To find vectors of control parameters u1∗(t), u2∗(t) such that

Fx0xf
(u1∗(t), u2∗(t)) = max

u1(t)
min
u2(t)

Fx0xf
(u1(t), u2(t))

= min
u2(t)

max
u1(t)

Fx0xf
(u1(t), u2(t)).

We will describe the classification of necessary and sufficient conditions for
the existence of Nash equilibria in such dynamic games, which has been ob-
tained in [37–46]. Furthermore we will describe the classification of dynamical
games for which Nash equilibria exist, and algorithms for solving such kind
of problems will be proposed.

1.3 Multiobjective Control Based on Concept of Cooperative
Games: Pareto Optima

We consider the dynamical system L, which is controlled by p players
1, 2, . . . , p. Assume that players coordinate their actions in the control pro-
cesses by using common vector of control parameters u(t) = (u1(t), u2(t), . . . ,
up(t)) ∈ Rm (see [4, 10, 33]). So, the dynamics of the system is described
according to (1)–(3).

Let
u(0), u(1), u(2), . . . , u(t− 1), . . .

be a players’ coordinated control, which generates a trajectory

x(0), x(1), x(2), . . . , x(t), . . . .

Then either this trajectory passes through the state xf at the finite moment
T (xf ) or it does not pass through xf . We denote by

F i
x0xf

(u(t)) =
T (xf )−1
∑

t=0

cit(x(t), gt(x(t), u(t))), i = 1, p

the integral-time cost of the system’s passage from x0 to xf if

T1 ≤ T (xf ) ≤ T2;

otherwise we put
F i
x0xf

(u(t)) =∞.

Here cit(x(t), gt(x(t), u(t))) = cit(x(t), x(t + 1)) represents the cost of the
system’s passage from the state x(t) to the state x(t+1) at the stage [t, t+1]
for the player i, i ∈ {1, 2, . . . , p}.

Problem 4. To find the vectors of control parameters u∗(t) such that there
is no other control vector u(t) 	= u∗(t), for which
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(F 1
x0xf

(u(t)), F 2
x0xf

(u(t)) . . . , F p
x0xf

(u(t)))

≤ (F 1
x0xf

(u∗(t)), F 2
x0xf

(u∗(t)) . . . , F p
x0xf

(u∗(t)))

and for any i0 ∈ {1, 2, . . . , p}

F i0
x0xf

(u(t)) < F i0
x0xf

(u∗(t)).

So, we consider the problem of finding Pareto solution [50,52,58].
Unlike Nash equilibria, Pareto optima for multiobjective discrete control

always exists if there is an admissible solution u(t), t = 0, 1, 2, . . . , T (xf ),
which generates a trajectory x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf from x0

to xf .

2 Alternate Players Control and Nash Equilibria
for Dynamic Games in Positional Form

In order to formulate the theorem of the existence of Nash equilibria for the
considered multiobjective control problem from Section 1.2, we will use the
following condition.

We assume that an arbitrary state x(t) ∈ X of the dynamic system L
at the time-moment t represents a position (x, t) ∈ X × {0, 1, 2, . . . } for one
of the players i ∈ {1, 2, . . . , p}. This means that in the control process, the
next state x(t+ 1) ∈ X is determined (chosen) by the player i if the dynamic
system L at the time-moment t has the state x(t), which corresponds with the
position (x, t) of the player i. This situation corresponds with the case when
the expression

gt(x(t), u1(t), u2(t), . . . , ui−1(t), ui(t), ui+1(t), . . . , up(t))

in (5) for a given position (x, t) of player i depends only on the control vector
ui(t), i.e.,

gt(x(t), u1(t), u2(t), . . . , ui−1(t), ui(t), ui+1(t), . . . , up(t)) = gt(x(t), u
i(t)).

So, further the notations (x, t) and x(t) have the same sense.

Definition 1. We say that the alternate players control condition is satisfied
for the multiobjective control problems if for any fixed (x, t) ∈ X×{0, 1, 2, . . . }
the equations in (5) depend only on one of the vectors of control parame-
ters. The multiobjective control problems with such an additional condition
are called game control models in positional form.

The following lemma presents a necessary and sufficient condition for the
alternate players control condition to hold.
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Lemma 1. The alternate players control condition for the multiobjective con-
trol problems holds if and only if at every time-step t = 0, 1, 2, . . . for the set
of states X there exists a partition

X = X1(t) ∪X2(t) ∪ · · · ∪Xp(t); (Xi(t) ∩Xj(t) = ∅, i 	= j) (7)

such that the equations in (5) can be represented as follows

x(t+ 1) = gt(x(t), u
i(t)) if x(t) ∈ Xi(t); t = 0, 1, 2, . . . ; i = 1, p, (8)

i.e.,
gt(x(t), u1(t), u2(t), . . . , ui(t), ui+1(t), . . . , up(t))

= gt(x(t), u
i(t)) if x(t) ∈ Xi(t); t = 0, 1, 2, . . . ; i = 1, p.

Here, Xi(t) corresponds with the set of positions of the player i at the time-step
t (note that some of Xi(t) in (7) can be empty sets).

Proof. ⇒ Let us assume that the alternate players control condition for
the multiobjective control problem holds. Then for a fixed time-step t, the
equations in (5) depend only on one of the vectors of control parameters
ui(t), i ∈ {1, 2, . . . , p}. Therefore, if we denote by Xi(t) the set of states of
the dynamical system that corresponds with the positions of player i at time-
step t, the equation in (5) can be regarded as a solution that satisfies (8).
⇐ Let us assume that the partition (7) is given for any t = 0, 1, 2, . . . ,

and the expression in (5) is represented in form (8). This means that the
equation at every time-step t depends only on one of the vectors of the control
parameters.

On the basis of these results, we can prove the important fact that the set of
positions can be characterized in the following way:

Corollary 1. If the alternate player control condition for the multiobjective
control problem holds, then the set of positions Zi ⊆ X×{0, 1, 2, . . . } of player
i can be represented as follows

Zi =
⋃

t

(Xi(t), t), i = 1, p.

Let us assume that the alternate players control for the problem from
Section 1.2 holds. Then the set of possible system’s transactions of the dy-
namical system L can be described by a directed graph G = (Z,E) with the
set of vertices Z =

⋃p
i=1 Zi, where Zi, i = 1, p, represents the set of positions of

player i. An arbitrary vertex z ∈ Z in G corresponds with a position (x, t) for
one of the players i ∈ {1, 2, . . . , p}, and a directed edge e = (z′, z′′) reflects the
possibility of the system’s transaction from the state z′ = (x, t) to the state
z′′ = (y, t + 1) determined by x(t) and the control vector ui(t) ∈ U i

t (x(t))
such that

y = x(t+ 1) = gt(x(t), u
i(t)) if x(t) ∈ Zi.
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If we associate to edges e = ((x, t), (y, t + 1)) of this graph the costs
ci((x,t),(y,t+1)) = ci((x, t), (y, t+1)), we obtain the control problem on network.

Here graph G has a structure of a T2-partited directed graph with the
given starting position (x0, 0) and the final position (xf , T (xf )), where T1 ≤
T (xf ) ≤ T2.

Taking into account this representation of the dynamics of the system L,
the following theorem is proved in [43–45].

Theorem 1. Let us assume that for the multiobjective control problem there
exists a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from the starting state x0 to the final state xf generated by the vectors of
control parameters

u1(t), u2(t), . . . , up(t), t = 0, T (xf )− 1,

where ui(t) ∈ U i
t (x(t)), i = 1, p, t = 0, T (xf )− 1 and T1 ≤ T (xf ) ≤ T2.

Moreover, we assume that the alternate players control condition is satisfied.
Then for this problem there exists the optimal solution in the sense of Nash
u1∗

(t), u2∗
(t), . . . , up

∗
(t).

Further, in Section 4 we prove this theorem in the more general case, when
the dynamics of the system L is determined by a directed graph of transactions
that may contain cycles.

As an important result from Theorem 1, we obtain the following corollary.

Corollary 2. Assume that for any u1(t) ∈ U1
t (x(t)), t = 0, 1, 2, . . . in

the max-min control problem there exists a control u2(t) ∈ U2
t (x(t)),

t = 0, T (xf )− 1 such that u1(t) and u2(t) generate a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from the starting state x0 to the final state xf , where T1 ≤ T (xf ) ≤ T2.
Moreover we assume that the alternate player control condition is satisfied.
Then for the payoff function Fx0xf

(u1(t), u2(t)) in the max-min control prob-
lem there exists a saddle point (u1∗(t), u2∗(t)), i.e.,

Fx0xf
(u1∗(t), u2∗(t)) = max

u1(t)
min
u2(t)

Fx0xf
(u1(t), u2(t))

= min
u2(t)

max
u1(t)

Fx0xf
(u1(t), u2(t)).

All results related to existence theorems and algorithms for solving the
problems on networks can be transferred for the problems from Sections 1, 2.
Therefore in the following we will study the control problems on networks.
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3 Algorithms for Solving Single-Objective Control
Problems on Networks

We describe two algorithms for solving single-objective control problem, which
further will be developed for multiobjective control models.

3.1 Dynamic Programming Algorithm for Solving Optimal
Control Problem on Networks

We consider optimal control problem for which the dynamics of the system
L is described by a directed graph G = (X,E), where the vertices x ∈ X
correspond with the states of L, and an arbitrary edge e = (x, y) ∈ E signifies
the possibility of the system’s passage from the state x = x(t) to the state
y = x(t+ 1) at every moment of time t = 0, 1, 2, . . . . So, the set E(x) = {e =
(x, y)|(x, y) ∈ E} of edges originated in x corresponds with an admissible set
of control parameters, which determines the next possible state y = x(t+1) of
L, if the stage x = x(t) at the moment of time t is given. Therefore we consider
E(x) 	= ∅, ∀x ∈ X. In addition, we assume that to each edge e = (x, y) ∈ E
there is an associated cost function ce(t), which depends on time and which
expresses the cost of the system L to pass from the state x = x(t) to the state
y = x(t+ 1) at the stage [t, t+ 1] (like a transition). So, this graph of states’
transitions contains edges, which represent the time-depending cost functions.
In addition, in G two vertices x0 and xf , which correspond with the starting
and the final states of the system L, are given. We call such a special graph a
dynamic network [43].

For a given dynamic network, we regard the following problem:

Problem 5. To find a sequence of system’s transitions (x(0), x(1)),
(x(1), x(2)), . . . , (x(T − 1), x(T )), which transfer the system L from the
starting state x0 = x(0) to the final state xf = x(T ) such that T satisfies
the condition

T1 ≤ T ≤ T2

and the integral-time cost

Fx0xf
(T ) =

T−1
∑

t=0

c(x(t),x(t+1))(t)

of system’s transitions by a trajectory

x0 = x(0), x(1), x(2), . . . , x(T ) = xf

is minimal.
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This problem generalizes the well-known shortest path problem in a
weighted directed graph [12] and arose as an auxiliary one when solving the
minimum-cost flow problem on dynamic networks [17–21,48].

We describe the dynamic programming algorithm for solving this problem
and the problem from Section 1.1.

First we describe the algorithm for solving the problem in the case T1 =
T2 = T . Denote by

Fx0xf
(T ) = min

x0=x(0),x(1),...,x(T )=xf

T−1
∑

t=0

c(x(t),x(t+1))(t)

the minimal integral-time cost of system’s transaction from x0 to xf with T
stages. If xf cannot be reached by using T stages, then we put Fx0xf

(T ) =∞.
For Fx0x(t)(t), the following recursive formula can be gained

Fx0x(t)(t) = min
x(t−1)∈X−

G (x(t))

{

Fx0x(t−1)(t− 1) + c(x(t−1),x(t))(t− 1)
}

,

where X−
G (y) = {x ∈ X | e = (x, y) ∈ E}

If we put
Fx0x(0)(0) = 0,

then it is easy to observe that using dynamical programming method, we can
tabulate the values Fx0x(t)(t), t = 1, 2, . . . , T . So, if T1 = T2 = T , then the
problem can be solved in time O(|X|2T ) (here we do not take into account
the number of operations for calculations of values of functions ce(t) for the
given t).

In the case when T (xf ) ∈ [T1, T2], with T1 	= T2, the problem can
be reduced to T2 − T1 + 1 problems with T = T1, T = T1 + 1, T =
T1 + 2, . . . , T = T2, respectively; by comparing the minimal integral-costs of
these problems, we find the best one and T (xf ).

An important case of the considered problem is the one with T1 = 0,
T2 = ∞. This case has sense only for positive and nondecreasing cost functions
ce(t) on edges e ∈ E. It is obvious that for this case 0 ≤ T (xf ) ≤ |X|, and the
problem can be solved in time O(|X|3) (the case with free number of stages).

3.2 An Extension of Dijkstra’s Algorithm for Optimal Control
Problem with a Free Number of Stages

Let us assume that in the dynamic network, all cost functions ce(t), e ∈ E,
are positive and T1 = 0, T2 =∞, i.e., we have the problem with free number
of stages.

For this case, we describe an algorithm, which extends Dijkstra’s algorithm
for finding the tree of optimal paths in a weighted directed graph [12,14]. Such
an algorithm will find the optimal paths in dynamic network for our problem
if the following additional condition is satisfied.
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1 3 4

2

Figure 1. The Network for which Optimization Principle is not satisfied

Let us assume that the cost functions ce(t), e ∈ E, in the dynamic net-
work have the following property. If P ∗(x0, x) is an arbitrary optimal path
from x0 to x that can be represented as P ∗(x0, x) = P ∗

1 (x0, y) ∪ P ∗
2 (y, x),

where P ∗
1 (x0, y) and P ∗

2 (y, x) have no common edges, then the leading part
P ∗

1 (x0, y) of the path P ∗(x0, x) is also an optimal path of the problem in
G with the given starting state x0 and final state y. If such a property
holds, then we say that for the dynamic network, the optimization prin-
ciple is satisfied. As example, the graph on Fig. 1 with cost functions on
edges c(1,2)(t) ≡ c(1,3)(t) ≡ c(2,3)(t) = 1, c(3,4)(t) = 3t determines a net-
work for which the optimization principle is satisfied. In the case c(1,2)(t) ≡
c(2,3)(t)=1; c(1,3)(t) = 3; c(3,4)(t) = 3t, the network does not satisfy the opti-
mization principle because the leading part P ∗

1 (1, 3) = {(1, 3)} of the optimal
path P ∗(1, 4) = {(1, 3), (3, 4)} is not optimal. In the case, when on the network
the cost functions ce(t), e ∈ E, are positive and the optimization principle is
satisfied, the following algorithm determines all optimal paths P ∗(x0, x) from
x0 to each x ∈ X, which correspond with the optimal strategies in the problem
for p = 1.

Algorithm 1. Determining the Tree of Optimal Paths
Preliminary step (Step 0): Set Y = {x0}, E∗ = ∅. Assign to every vertex

x ∈ X two labels t(x) and F (x) as follows:

t(x0) = 0; t(x) =∞, ∀x ∈ X \ {x0};
F (x0) = 0; F (x) =∞, ∀x ∈ X \ {x0}.

General step (Step k, k ≥ 1): Find the set

E′ = {(x′, y′) ∈ E(Y ) |F (x′)+c(x′,y′)(t(x′)) = min
x∈Y

min
y∈X(x)

{F (x)+c(x,y)(t(x))},

where

E(Y ) = {(x, y) ∈ E |x ∈ Y, y ∈ X\Y }, X(x) = {y ∈ X\Y | (x, y) ∈ E(Y )}.

Find the set of vertices X ′ = {y′ ∈ X \ Y | (x′, y′) ∈ E′}. For every y′ ∈ X ′

select one edge (x′, y′) ∈ E′ and build the union E
′
of such edges. After that,

change the labels t(y′) and F (y′) for every vertex y′ ∈ X ′ as follows

t(y′) = t(x′) + 1, F (y′) = F (x′) + c(x′,y′)(t(x′)), ∀(x′, y′) ∈ E
′
.
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Replace the set Y by Y ∪X ′ and E∗ by E∗ ∪E′
. Note Xk = Y, Ek = E∗.

If Xk 	= X then fix the tree GT k = (Xk, Ek) and go to next step k + 1,
otherwise fix the tree GT = (X,E∗) and STOP.

Note, that the tree GT = (X,E∗) contains optimal paths from x0 to each
x ∈ X. After k steps of the algorithm, the tree GT k = (Xk, Ek) represents a
part of GT . If it is necessary to find the optimal path from x0 to xf , then the
algorithm can be interrupted after k steps as soon as the condition xf ∈ Xk

is satisfied, i.e., in this case the condition Xk 	= X in the algorithm must be
replaced by xf ∈ Xk. The labels F (x), x ∈ X, indicate the costs of optimal
paths from x0 to x ∈ X, and t(x) represents the number of edges in these
paths.

The correctness of the algorithm is based on the following theorem:

Theorem 2. Let (G, c(t), x0, xf ) be a dynamic network, where the vector-
function c(t)=(ce1(t), ce2(t), . . . , ce|E|(t)) has positive and bounded components
for t ∈ [0, |X| − 1]. Moreover, let us assume that the optimization principle
on the dynamic network is satisfied. Then the tree GT k = (Xk, Ek) obtained
after k steps of the algorithm gives the optimal paths from x0 to every x ∈ Xk,
which correspond with optimal strategies in the problem for p = 1.

Proof. We prove the theorem by using the induction principle on the number
of steps k of the algorithm. In the case when k = 0, the assertion is evident.

Let us assume that the theorem holds for any k ≤ r and let us show
that it is true for k = r + 1. If GT r = (Xr, Er) is the tree obtained after
r steps and GT r+1 = (Xr+1, Er+1) is the tree obtained after r + 1 steps
of the algorithm, then X◦ = Xr+1 \ Xr and E◦ = Er+1 \ Er represent
the vertex set and edge set obtained by the algorithm at step r + 1. Let
us show that if y′ is an arbitrary vertex of X◦, then in GT r+1 the unique
directed path P ∗(x0, y

′) from x0 to y′ is optimal. Indeed, if this is not the
case, then there exists an optimal path Q(x0, y

′) from x0 to y′, which does
not contain the edge e = (z′, y′) ∈ E◦. The path Q(x0, y

′) can be represented
as Q(x0, y

′) = Q1(x0, x
′) ∪ {(x′, y)} ∪Q2(y, y′), where x′ is the last vertex of

the path Q(x0, y
′) belonging to Xr when we pass from x0 to y′. It is easy to

observe that if the conditions of the theorem hold, then

cost (Q(x0, y
′)) ≥ cost (P ∗(x0, y

′)),

where

cost (Q(x0, y
′)) =

mQ
∑

t=0

cet
(t),

e0, e1, . . . , emQ
are the corresponding edges of the directed pathQ(x0, y

′) when
we pass from x0 to y′ and

cost (P ∗(x0, y
′)) =

mp
∑

t=0

ce′t(t),
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were e′0, e
′
1, . . . , e

′
mp

are the corresponding edges of the directed path P ∗(x0, y
′)

when we pass from x0 to y′.
According to the algorithm, we can state that

F (x′) + c(x′,y′)(t(x′)) > F (z′) + c(z′,y′)(t(z′)) = F (y′),

where e′ = (z′, y′) is the last edge of the path P ∗(x0, y
′). Then

cost (Q1(x0, x
′) ∪ {(x′, y)}) > cost (P ∗(x0, y

′)),

because
F (x′) + c(x′,y)(t(x′)) = cost (Q1(x0, x

′) ∪ {(x′, y)})
and F (y′) = cost (P ∗(x0, y

′)).
The cost functions ce(t), ∀ e ∈ E, are positive, therefore,

cost (Q(x0, y
′)) = cost (Q1(x0, x

′) ∪ {(x′, y)} ∪Q2(y, y′))

> cost (Q1(x0, x
′) ∪ {(x′, y)}) > cost (P ∗(x0, y

′)),

i.e., Q(x0, y
′) is not an optimal path from x0 to y′. This means that the tree

GT r+1 = (Xr+1, Er+1) contains an optimal path from x0 to every y′ ∈ Xr+1.

All results described in this section are given in [37,38].

4 Multiobjective Control and Noncooperative Games
on Dynamic Networks

In this section, we use the concept of noncooperative games for our problem
and formulate the following two multiobjective control models concerning sta-
tionary and nonstationary strategies [43–45].

4.1 The Problem of Determining the Optimal Stationary
Strategies in Dynamic c-Game

Let G = (X,E), be the graph introduced in Section 2 with the given starting
and final states x0, xf ∈ X. Assume that the vertex set X is divided into

p disjoint subsets X1,X2, . . . , Xp (X =
p
⋃

i=1

Xi, Xi ∩ Xj = ∅, i 	= j) and

regard vertices x ∈ Xi as states of player i, i = 1, p. Moreover we assume
that to each edge e = (x, y) of the graph, p functions c1e(t), c

2
e(t), . . . , c

p
e(t) are

assigned, where cie(t) expresses the cost of system’s passage from the state
x = x(t) to the state y = x(t+ 1) at the stage [t, t+ 1] for player i.
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We define the stationary strategies of players 1, 2, . . . , p as maps:

s1: x→ y ∈ X(x) for x ∈ X1 \ {xf},
s2: x→ y ∈ X(x) for x ∈ X2 \ {xf},

−−−−−−−−−−−
sp: x→ y ∈ X(x) for x ∈ Xp \ {xf},

where X(x) = {y ∈ X | e = (x, y) ∈ E}.
Taking into account that G = (X,E) is a finite graph, we obtain that the

set of strategies of player i

Si = {si : x→ y ∈ X(x) for x ∈ Xi \ {xf}}, i = 1, p

is a finite set.
Let s1, s2, . . . , sp be an arbitrary set of strategies of players. We denote by

Gs = (X,Es) the subgraph generated by edges e = (x, si(x)) for x ∈ Xi\{xf}
and i = 1, p. Obviously, for fixed s1, s2, . . . , sp, either a unique directed path
Ps(x0, xf ) from x0 to xf exists in Gs or such a path does not exist in Gs. The
set of edges of path Ps(x0, xf ) is denoted by E(Ps(x0, xf )).

For fixed strategies s1, s2, . . . , sp and fixed states x0 and xf , we define the
quantities

H1
x0xf

(s1, s2, . . . , sp),H2
x0xf

(s1, s2, . . . , sp), . . . , Hp
x0xf

(s1, s2, . . . , sp)

in the following way.
Let us assume that the path Ps(x0, xf ) exists in Gs. Then it is unique and

we can assign to its edges numbers 0, 1, 2, 3, . . . , ks, starting with the edge that
begins in x0. These numbers characterize the time steps te(s1, s2, . . . , sp) when
the system passes from one state to another, if the strategies s1, s2, . . . , sp are
applied. We put

Hi
x0xf

(s1, s2, . . . , sp) =
∑

e∈E(Ps(x0,xf ))

cie(te(s1, s2, . . . , sp)),

if
T1 ≤ |E(Ps(x0, xf ))| ≤ T2; (9)

otherwise we put Hi
x0xf

(s1, s2, . . . , sp) =∞.
We regard the problem of finding maps s∗1, s

∗
2, . . . , s

∗
p for which the follow-

ing conditions are satisfied

Hi
x0xf

(s∗1, s
∗
2, . . . , s

∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
p)

≤ Hi
x0xf

(s∗1, s
∗
2, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
p), ∀ si ∈ Si, i = 1, p.

So, we consider the problem of finding the optimal solutions in the sense
of Nash.
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This problem can be regarded as dynamic game on network (G,X1,X2,
. . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf , T1, T2) determined by the graph G, the
partition X1,X2, . . . , Xp, the vector-functions ci(t) = (cie1(t), c

i
e2(t), . . . ,

cie|E|
(t)), i = 1, p, the starting and final states x0, xf , and the time-span

[T1, T2]. Note that in the considered problem. T1 and T2 satisfy the conditions:
0 ≤ T1 ≤ |X| − 1, T1 ≤ T2; for T1 ≥ |X|, the problem has no sense. If T1 = 0,
T2 = ∞, then we shall use the notation (G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . ,
cp(t), x0, xf ). The last version of the problem has been studied in [3]. In [45]
this problem is named dynamic c-game.

Note that this problem is NP-hard even in the case p = 1. Indeed, if
T1 = T2 = |X| − 1 and c1e(t) = 1, ∀e ∈ E, then we obtain the problem
of finding the Hamiltonian path from x0 to xf in the graph G = (X,E). If
T1 = 0 and T2 ≥ |X| − 1, then a polynomial-time algorithm for determining
optimal stationary strategies of players in dynamic c-game with constant costs
cie(t) on edges e ∈ E can be derived.

4.2 The Problem of Determining the Optimal Nonstationary
Strategies in Dynamic c-Game

We define the nonstationary strategies of players as maps:

u1: (x, t)→ (y, t+ 1) ∈ X(x)× {t+ 1} for X1 \ {xf}, t = 0, 1, 2, . . . ;
u2: (x, t)→ (y, t+ 1) ∈ X(x)× {t+ 1} for X2 \ {xf}, t = 0, 1, 2, . . . ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
up: (x, t)→ (y, t+ 1) ∈ X(x)× {t+ 1} for Xp \ {xf}, t = 0, 1, 2, . . . .

Here (x, t) has the same meaning as the notation x(t), i.e., (x, t) = x(t).
For any set of nonstationary strategies u1, u2, . . . , up, we define the

quantities

F 1
x0xf

(u1, u2, . . . , up), F 2
x0xf

(u1, u2, . . . , up), . . . , F p
x0xf

(u1, u2, . . . , up)

in the following way.
Let u1, u2, . . . , up be an arbitrary set of strategies. Then either u1, u2, . . . ,up

generate in G a finite trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf and T (xf ) represents the time moment when xf is reached, or
u1, u2, . . . , up generate in G an infinite trajectory

x0 = x(0), x(1), x(2), . . . , x(t), x(t+ 1), . . .

which does not pass through xf , i.e., T (xf ) =∞. In such trajectories, the next
state x(t+ 1) is determined uniquely by x(t) and a map uk, k ∈ {1, 2, . . . , p}
as follows
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x(t+ 1) = uk(x(t), t), x(t) ∈ Xk.

If the state xf is reached at finite moment of time T (xf ) and

T1 ≤ T (xf ) ≤ T2,

then we set

F i
x0xf

(u1, u2, . . . , up) =
T (xf )−1
∑

t=0

ci(x(t),x(t+1))(t), i = 1, p;

otherwise we put

F i
x0xf

(u1, u2, . . . , up) =∞, i = 1, p.

Thus we regard the problem of finding the nonstationary strategies u∗1,
u∗2, . . . , u

∗
p for which the following condition is satisfied

F i
x0xf

(u∗1, u
∗
2, . . . , u

∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
p)

≤ F ∗
x0xf

(u∗1, u
∗
2, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
p), ∀ui, i = 1, p.

So, we consider the problem of finding the optimal solution in the sense of
Nash [44–47].

In the following, we show that a polynomial-time algorithm for solving
this problem can be elaborated.

5 The Main Results for Dynamic c-Game with Constant
Costs of Edges and Determining Optimal Stationary
Strategies of Players

In this section, we study the dynamic c-game with constant costs cie(t) = cie,
i = 1, p, on edges e ∈ E for the network (G,X1,X2, . . . , Xp, c

1, c2, . . . ,cp, x0, xf ,
T1, T2). First we stress our attention to the case of the problem without re-
striction on the number of stages for dynamical system, i.e., T1 = 0, T2 =∞.
Namely, this case is important for elaboration of polynomial-time algorithms
for determining Nash equilibria in the multiobjective control problem in
positional form. On the basis of results for this particular case, we will extend
algorithms for the general case of the problem.

So, let us consider the dynamic c-game with constant costs of edges cie(t) =
cie, i = 1, p, e ∈ E, and without restriction on the number of stages by a
trajectory from x0 to xf . In this case, the dynamic c-game is determined by
the network (G,X1,X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf ), where G = (X,E) is a
directed graph with sink vertex xf ∈ X. Note that if G contains a vertex
x ∈ X, for which there is no directed path from x to xf , then it can be
deleted without changing the sense of the problem.
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The Nash equilibria condition and the algorithm for determining optimal
stationary strategies of players have been obtained in [3].

First of all, we note that the definition of payoff functionsHi
x0xf

(s1, s2, . . . ,
sp), i = 1, p, differs here a little from the definition from [3, 5]. In [3, 5]
Hi

x0xf
(s1, s2, . . . , sp) for every s1, s2, . . . , sp is defined in the following way. If

s1, s2, . . . , sp generate in G a subgraph Gs, which contains a unique directed
path Ps(x0, xf ) from x0 to xf , then

Hi
x0xf

(s1, s2, . . . , sp) =
∑

e∈E(Ps(x0,xf ))

cie. (10)

If in Gs there is no directed path from x0 to xf , then a unique directed cycle
Cs with the set of edges E(Cs) can be obtained when we pass through directed
edges from x0. Therefore there exists a unique directed cycle Cs, which we
can get from x0, and a unique directed path P ′

s(x0, x
′), which connects x0 and

Cs (the vertex x′ is a unique common vertex of P ′
s(x0, x

′) and Cs). In this
case, Hi

x0xf
(s1, s2, . . . , sp) is defined as follows

Hi
x0xf

(s1, s2, . . . , sp) =

⎧

⎨

⎩

+∞, if
∑

e∈E(Cs) c
i
e > 0;

∑

e∈E(P ′
s(x0,x′)) c

i
e, if

∑

e∈E(Cs) c
i
e = 0;

−∞, if
∑

e∈E(Cs) c
i
e < 0.

(11)

For positive costs cie on edges e ∈ E of the network, the problems from
[3, 5] and Section 2 coincide. Therefore the results we formulate below are
related to all problems with positive and constant costs on edges.

Further, we need the following definitions.

Definition 2. Let s0k and s1k de two different strategies of player k ∈ {1, 2, . . . ,
p} in the dynamic c-game. We say that the strategy s0k dominates the strategy
s1k if for every x ∈ X the following condition holds

Hi
xxf

(s1, s2, . . . , sk−1, s
0
k, sk+1, . . . , sp)

≤ Hi
xxf

(s1, s2, . . . , sk−1, s
1
k, sk+1, . . . , sp)

∀(s1, s2, . . . , sk−1, sk+1, . . . , sp) ∈ S1 × S2

× · · · × Sk−1 × Sk+1 × · · · × Sp; i = 1, p

(12)

and there exist strategies s1, s2, . . . , sk−1, sk+1, . . . , sp such that

Hi0
xxf

(s1, s2, . . . , sk−1, s
0
k, sk+1, . . . , sp)

< Hi0
xxf

(s1, s2, . . . , sk−1, s
1
k, sk+1, . . . , sp)

(13)

for one of the players i0 ∈ {1, 2, . . . , p} and at least for a vertex x ∈ X.

Definition 3. The strategy s1k is called not essential strategy for the player
k ∈ {1, 2, . . . , p} in the dynamic c-game if there exists a strategy s0k ∈ Sk,
which dominates s1k; otherwise the strategy s1k is called an essential one.
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The following theorem represents one of the most important results we
shall use for determining Nash equilibria in the considered multiobjective
control problems on networks.

Theorem 3. Let (G,X1,X2, . . . , Xp, c
1, c2, . . . , cp, x0, xf ) be a dynamic

network for which the vertex xf in G is attainable from every x ∈ X.
Assume that the vectors ci = (cie1 , c

i
e2 , . . . , c

i
e|E|

), i ∈ {1, 2, . . . , p} have
positive and constant components. Then in the dynamic c-game on net-
work (G,X1,X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf ) for the players 1, 2, . . . , p, there
exists an optimal solution in the sense of Nash s∗1, s

∗
2, . . . , s

∗
p, which satisfies

the following properties:
- the graph Gs∗ = (X,Es∗) generated by s∗1, s

∗
2, . . . , s

∗
p has a structure of

the directed tree with the sink vertex xf ;
- s∗1, s

∗
2, . . . , s

∗
p represent the solution of the dynamic c-game on network

(G,X1,X2, . . . , Xp, c
1, c2, . . . , cp, x, xf ) with an arbitrary starting position x ∈

X and the given final position xf .

This theorem has been formulated in [3]. Moreover, in [3] the sketch of its
proof is given. Here we give the proof of this theorem in more detailed form.

In order to prove this theorem, we need the following auxiliary result.

Lemma 2. Let s′k be a strategy of player k, k ∈ {1, 2, . . . , p}, in the dynamic
c-game with the network satisfying conditions of Theorem 3. In addition let
Gs′k = (X,Es′k) be a graph obtained from G by deleting all edges e = (x, y) ∈
E, originating in x ∈ Xk, except edges (x, s′k(x)). If in Gs′k the vertex xf is
not attainable from at least one of the vertices x ∈ X, then the strategy s′k is
not essential.

Proof. Assume that for a given strategy s′k of player k in the corresponding
graph Gs′k , the vertex xf is not attainable from vertices x ∈ X ′ and it is
attainable from the rest of the vertices x ∈ X \ X ′, where X ′ 	= ∅. Fix a
strategy s0k ∈ Sk, for which the graph Gs0k = (X,Es0k) has the property that
xf is attainable from every x ∈ X, and let us show that s0k dominates s′k, i.e.,
the strategy s′k is not essential.

It is easy to observe that in Gs′k , there are no edges e = (x, y) directed
from x ∈ X ′ to y ∈ X \ X ′. This means that Hi0

xxf
(s1, s2, . . . , sk−1, s

′
k,

sk+1, . . . , sp) =∞ for (s1, s2, . . . , sk−1, sk+1, . . . , sp) ∈ S1 × S2 × · · · × Sk−1 ×
Sk+1 × · · · × Sp, which involves the validity of condition (12) for x ∈ X ′.

Moreover, if here we take into account that in the graph Gs0k the
vertex xf is attainable from every x ∈ X ′, then we obtain that at
least for a set of strategies s1, s2, . . . , sk−1, s

0
k, sk+1, . . . , sp, the values

Hi0
xxf

(s1, s2, . . . , sk−1, s
0
k, sk+1, . . . , sp) are finite and therefore condition

(13) holds.
In the following, let us show that condition (12) also holds for x ∈ X \X ′.

Indeed, let s1, s2, . . . , sk−1, sk+1, . . . , sp be an arbitrary set of strategies of
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players 1, 2, . . . , k− 1, k+ 1, . . . , p. If s1, s2, . . . , sk−1, s
′
k, sk+1, . . . , sp generate

in Gs′k a directed path Ps(x, xf ) from x ∈ X \ X ′ to xf , then this path
does not pass through vertices x ∈ X ′. This means that in Gs0k , the set
of strategies s1, s2, . . . , sk−1, sk+1, . . . , sp generates the same path Ps(x, xf )
from x ∈ X \X ′ to xf . So, condition (12) for x ∈ X \X ′ is also satisfied. This
proves that the strategy s0k dominates s′k, i.e., s′k is not essential.

Corollary 3. Let G = (X,E) be a directed graph in which the vertex xf
is attainable from every x ∈ X. Then for an arbitrary essential strategy s′k
of player k ∈ {1, 2, . . . , p}, the corresponding graph Gs′k = (X,Es′k) has the
property that xf is attainable from every x ∈ X.

Corollary 4. Let a dynamic c-game with the network satisfying conditions
of Theorem 3 be given. Assume that in this dynamic c-game Nash equilib-
ria exist. Then for the considered game, there exist such a Nash equilibrium
s∗1, s

∗
2, . . . , s

∗
k−1, s

∗
k, s

∗
k+1, . . . , s

∗
p that the corresponding graph Gs∗ = (X,Es∗)

has a structure of the directed tree with the sink vertex xf .

Proof of Theorem 3. We prove this theorem by using the induction principle
on the number of players in the dynamic c-game. It is easy to observe that
for p = 1, our problem becomes a well-known optimal paths problem in a
weighted directed graph G with sink vertex xf . For this problem, there exists
a tree of optimal paths Gs∗ = (X,Es∗) with sink vertex xf , which determines
a strategy s∗ : x → y ∈ X, where s∗(x) = y, (x, y) ∈ Es∗ . So, for p = 1 the
theorem holds.

Let us assume that the assertion holds for any p ≤ k, k ≥ 1 and let us
show that it is true for p = k + 1. We regard the dynamic c-game on the
network with p = k + 1 players. Without loss of generality, we may assume
that x0 ∈ X1.

We consider the two following cases:
Case 1. The set X1 contains only one position, X1 = {x0} (|X1| = 1), and

for the starting position x0 there are no entering edges (x, x0) ∈ E.
Case 2. The set X1 may contain more than one position (|X1| ≥ 1), and

for the starting position x0 there may exist entering edges (x, x0) ∈ E.
At first, let us prove the theorem in case 1. We denote possible admissible

strategies of the first player by s11, s
2
1, . . . , s

q
1. Each strategy sk1 : x0 → y ∈

X(x0), k = 1, q, corresponds with an edge esk
1

= (x0, s
k
1(x0)) ∈ E(x0). We

call a strategy s′1 of player 1 an admissible strategy, if for the rest of play-
ers 2, 3, . . . , p there exist strategies s′2, s

′
3, . . . , s

′
p such that the corresponding

graphGs′ = (X,Es′), generated by strategies s′1, s
′
2, . . . , s

′
p, contains a directed

path P (x0, xf ) from x0 to xf . It is easy to observe that for each admissible
strategy s′k in the graph Gs′k = (X,Es′k), the vertex xf is attainable from
every x ∈ X. So, an arbitrary admissible strategy, s′1 is an essential one.

Let us state that the first player fixes his first possible strategy s1 = s11
and we consider the problem of finding the optimal solutions in the sense
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of Nash with respect to the rest of the players 2, 3, . . . , p. Then in the po-
sitional form, the obtained game can be regarded as the dynamic c-game
with p − 1 players, because the position x0 of the first player can be con-
sidered as a position of any other player (we consider it as a position of
the second player). So, for s1 = s11 we obtain a new dynamic c-game with
p−1 players on the network (Gs11 ,X1

2 ,X3, . . . , Xp, c
2
1, c

3
1, . . . , c

p
1, x0, xf ), where

X1
2 = X1 ∪ X2 and Gs11 = (X,Es11) is the graph, obtained from G by

deleting edges e = (x0, y) ∈ E, for which y 	= s11(x0); ci1 : Es11 → R1

are the functions obtained, respectively, from the function ci as a result
of the contraction of the set E to the set Es11 , i.e., ci1e = cie, ∀e ∈ Es11 ,
i = 2, p. If we consider the game in the normal form, then it is a game with
p − 1 players, determined by p − 1 payoff functions H2

x0xf
(s11, s2, s3, . . . , sp),

H3
x0xf

(s11, s2, s3, . . . , sp), . . . , H
p
x0xf

(s11, s2, s3, . . . , sp), where s2 ∈ S2, s3 ∈
S3, . . . , sp ∈ Sp. According to the induction principle for this game with p−1 =
k players, there exist optimal by Nash strategies s1∗2 , s

1∗
3 , . . . , s

1∗
p , and the

graph G1
s∗ = (X,E1

s∗), which corresponds with the strategies s11, s
1∗
2 , . . . , s

1∗
p ,

has a structure of a directed tree with the sink xf .
In analogous way, we consider the case when the first player fixes his

second admissible strategy s21. Then, according to the induction principle, we
find the optimal by Nash strategies s2∗2 , s

2∗
3 , . . . , s

2∗
p of players 2, 3, . . . , p in

the dynamic c-game, which in the normal form is determined by the payoff
functions Hi

x0xf
(s21, s2, s3, . . . , sp), i = 2, p. The strategies s21, s

2∗
2 , s

2∗
3 , . . . , s

2∗
p

generate the graph G2
s∗ = (X,E2

s∗), which has a structure of the tree with the
sink xf .

Further, we consider the case when the first player fixes his third admissible
strategy s31 and we find the optimal by Nash strategies s31, s

3∗
2 , . . . , s

3∗
p .

Continuing this process, we find the following set of strategies of players
1, 2, . . . , p

s11, s
1∗
2 , s

1∗
3 , . . . , s

1∗
p ;

s21, s
2∗
2 , s

2∗
3 , . . . , s

2∗
p ;

−−−−−−−−−−
sq1, s

q∗
2 , s

q∗
3 , . . . , s

q∗
p

and the corresponding directed trees G1
s∗ , G

2
s∗ , . . . , G

q
s∗ with sink vertex.

Among these sets of players’ strategies in the dynamic c-game, we choose
the set sj∗1 , s

j∗
2 , s

j∗
3 , . . . , s

j∗
p , for which

H1
x0xf

(sj∗1 , s
j∗
2 , . . . , s

j∗
p ) = min

1≤i≤q
Hi

x0xf
(si1, s

i∗
2 , . . . , s

i∗
p ) (14)

Let us show that sj∗1 , s
j∗
2 , . . . , s

j∗
p are optimal by Nash strategies for the

players 1, 2, . . . , p in the dynamic c-game.
Indeed,

Hi
x0xf

(sj∗1 , s
j∗
2 , . . . , s

j∗
i−1, s

j∗
i , s

j∗
i+1, . . . , s

j∗
p )
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≤ Hi
x0xf

(sj∗1 , s
j∗
2 , . . . , s

j∗
i−1, si, s

j∗
i+1, . . . , s

j∗
p ), ∀si ∈ Si, i = 1, p,

as sj∗2 , s
j∗
3 , . . . , s

j∗
p are the optimal by Nash strategies in the dynamic c-game

for s1 = sj∗1 . Taking into account that the graph Gj∗
s∗ = (X,Ej∗

s∗), generated
by the strategies sj∗1 , s

j∗
2 , s

j∗
3 , . . . , s

j∗
p , has a structure of a directed tree with

sink vertex and j∗ is chosen according to (14), we have

H1
x0xf

(sj∗1 , s
j∗
2 , . . . , s

j∗
p ) ≤ H1

x0xf
(s1, s

j∗
2 , . . . , s

j∗
p ), ∀s1 ∈ S1.

So, in case 1 the theorem holds.
Note that the given proof of case 1 takes place also if the vertex x0 contains

entering edges. For the proof of the general statement of the theorem, we shall
use the case when x0 does not contain entering edges.

Now let us prove the theorem in case 2. We assume that the set X1 may
contain more than one position (|X1| ≥ 1), and for the starting position x0

there may exist entering edges (x, x0).
Let us show that this case can be reduced to case 1.
On the basis of Lemma 2, if in the dynamic c-game Nash equilibria exists,

then an optimal strategy of the first player s∗1 will correspond with the case
when the graph Gs∗1 = (X,Es∗1 ) has the property that xf is attainable from
every x ∈ X. Therefore we select all possible strategies s11, s

2
1, . . . , s

q
1, for

which the corresponding graphs Gs11 = (X,Es11), Gs21 = (X,Es21), . . . , Gsq
1 =

(X,Esq
1) have the property that xf is attainable from every x ∈ X. After

that, we construct an auxiliary graph G = (X,E), which is obtained from the
graphs Gs11 , Gs21 , . . . , Gsq

1 by using a special construction.
In order to describe how to obtain G from Gs11 , Gs21 , . . . , Gsq

1 , we will
distinguish the vertex sets from different graphs Gsi

1 , Gsj
1 by using the no-

tations Xi and Xj , which mean that Xi is a vertex set of Gsi
1 and Xj is a

vertex set of Gsj
1 ; for vertices of the corresponding graphs, we also use the

notation xi ∈ Xi and xj ∈ Xj .
The graph G is obtained from Gs11 , Gs21 , . . . , Gsq

1 in the following way: the
sink vertices x1

f , x
2
f , . . . , x

q
f of the corresponding graphs we identify in G by a

common sink vertex x′f (see Fig. 2).
After that, we add a new vertex x′0, which is connected by directed edges

e′
si
1

= (x′0, x
i
0), i = 1, q, with corresponding vertices xi0 ∈ Xi. We associate

costs c′
ei
1

= ε, where ε > 0 is a small value, to these edges e′
si
1
, i = 1, q; all

costs on edges from Gsi
1 are preserved as in the initial graphs.

On G, we consider the dynamic c-game with the starting position x′0
and the final position xf . According to case 1 there exists Nash equilibrium
s∗1, s

∗
2, . . . , s

∗
p, for which the corresponding graph Gs∗ = (X,Es∗) has a struc-

ture of directed tree with sink vertex. If we fix in Gs∗ the edge e′
si∗
1

= (x′0, x
i∗
0 )

for which xi∗0 = s∗(x′0), then we find the subtree G
i∗
s∗ = (Xi∗, Ei∗

s∗) of Gs∗,
generated by the set Xi∗. This tree corresponds with the tree Gs∗ = (X,Es∗)
of optimal by Nash strategies s∗1, s

∗
2, . . . , s

∗
q .
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Figure 2. The auxiliary network with starting position x′
0

Remark 1. For the dynamic c-game with payoff functionsHi
x0xf

(s1, s2, . . . , sp),
i = 1, p, defined according to (10), (11), Theorem 3 holds for nonnegative
costs cie, e ∈ E, i = 1, p, if

∑

e∈E(Cs) c
i
e 	= 0 for every directed cycle Cs in

G. For the dynamic c-game from Section 4.1, Theorem 3 holds for arbitrary
nonnegative costs cie, e ∈ E, i = 1, p.

Theorem 4. Let (G,X1,X2, . . . , Xp, c
1, c2, . . . , cp, x0, xf ) be a network for

which the vertex xf in G is attainable from every x ∈ X. Assume that the
vectors ci = (cie1 , c

i
e2 , . . . , c

i
e|E|

), i ∈ {1, 2, . . . , p} have positive and constant
components. Then on the vertex set X of the network game, there exist p real
functions

ε1 : X → R1, ε2 : X → R1, . . . , εp : X → R1,

which satisfy the conditions:

(a) εi(x)− εi(y) + ci(x,y) ≥ 0, ∀(x, y) ∈ Ei, i = 1, p,
where Ei = {e = (x, y) ∈ E|x ∈ Xi, y ∈ X};

(b) min
y∈XG(x)

{εi(x)− εi(y) + ci(x,y)} = 0, ∀x ∈ Xi, i = 1, p;

(c) the subgraph G0 = (X,E0) generated by the edge set E0 = E0
1 ∪ E0

2 ∪
∪ · · · ∪E0

p , E
0
i = {e = (x, y) ∈ Ei|εi(x)− εi(y) + ci(x,y) = 0}, i = 1, p, has

the property that the vertex xf is attainable from any vertex x ∈ X, and
G0 contains a subgraph G

0
= (X,E

0
), E

0 ⊂ E, which possesses the same
property, and besides that

εi(x)− εi(y) + ci(x,y) = 0, ∀(x, y) ∈ E0
, i = 1, p.

If ε1, ε2, . . . , εp are arbitrary real functions, which satisfy conditions
(a)–(c), then the optimal by Nash strategies in the dynamic c-game with
the network (G,X1,X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf ) can be found as follows:
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choose in G
0

an arbitrary directed tree GT = (X,E∗) with the sink vertex xf
and fix in GT the following maps:

s∗1 : x→ y ∈ XGT (x) for x ∈ X1;

s∗2 : x→ y ∈ XGT (x) for x ∈ X2;

−−−−−−−−−−−
s∗p : x→ y ∈ XGT (x) for x ∈ Xp,

where XGT (x) = {y ∈ X|(x, y) ∈ E∗}.

Proof. According to Theorem 3 in the dynamic c-game with network (G,X1,
X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf ), there exist optimal by Nash strategies s∗1,
s∗2, . . . , s

∗
p of players 1, 2, . . . , p, and these strategies generate in G a directed

tree GTs∗ = (X,Es∗) with sink vertex xf . In this tree, we find the functions

ε1 : X → R1, ε2 : X → R1, . . . , εp : X → R1,

where εi(x) = Hi
xxf

(s∗1, s
∗
2, . . . , s

∗
p), ∀x ∈ X, i = 1, p. It is easy to verify that

ε1, ε2, . . . , εp satisfy conditions (a) and (b). In addition we can see that in G0

there exists the graph G
0

= (X,E
0
), which satisfies condition (c), because

GT ⊆ G0
. Moreover, if in G

0
a directed tree GTs′ = (X,Es′), different from

GTs∗ , with sink vertex is chosen, then GTs′ generates another optimal by
Nash solution s′1, s

′
2, . . . , s

′
p.

Now let us show that if

ε1 : X → R1, ε2 : X → R1, . . . , εp : X → R1,

are arbitrary functions, which verify conditions (a)–(c), then an arbitrary
directed tree GT = (X,Es∗) of G

0
generates the maps

s∗1 : x→ y ∈ XGT (x) for x ∈ X1;

s∗2 : x→ y ∈ XGT (x) for x ∈ X2;

−−−−−−−−−−−
s∗p : x→ y ∈ XGT (x) for x ∈ Xp,

which correspond with an optimal by Nash solution.
We use induction on the number p of players in the dynamic c-game. In

the case p = 1, the statement is true, because X1 = X and conditions (a)–(c)
for positive c1e provide existence of the tree GT = (X,Es∗) of optimal paths,
which correspond with the solution s∗1 for the problem of finding the shortest
paths from x ∈ X to xf in G.

Assume that the statement holds for p ≤ k, k ≥ 1, and let us prove it for
p = k + 1. We consider that the first player fixes his strategy s1 = s∗1 and
consider the problem of finding optimal by Nash strategies in the network
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game with respect to other players. The obtained game in the positional form
can be interpreted as a c-game with p − 1 players, as the positions of the
first player can be considered as the positions of any other player. Further,
we consider them as the positions of the second player.

Thus, if s1 = s∗1, we obtain a new game with p− 1 players in the network
game (G1,X1

2 ,X3, . . . , Xp, c
2
1, c

3
1, . . . , c

p
1, x0, xf ), where X1

2 , G1 and the func-
tions ci1, i = 2, . . . , p, are defined as in the proof of Theorem 3. In the normal
form, this game is determined by the functions

H2
x0xf

(s∗1, s2, . . . , sp), H
3
x0xf

(s∗1, s2, . . . , sp), . . . , H
p
x0xf

(s∗1, s2, . . . , sp),

s2 ∈ S2, s3 ∈ S3, . . . , sp ∈ Sp, where S2, S3, . . . , Sp are the respective sets of
admissible strategies of players 2, 3, . . . , p.

In the new network game (G1,X1
2 ,X3, . . . , Xp, c

2
1, c

3
1, . . . , c

p
1, x0, xf ), con-

sider p− 1 functions

ε2 : X → R1, ε3 : X → R1, . . . , εp : X → R1,

which satisfy the conditions
(a) εi(x)− εi(y) + ci1(x,y) ≥ 0, ∀(x, y) ∈ E1

i , i = 2, p, where
E1

2 = {e = (x, y) ∈ E1|x ∈ X1
2 , y ∈ X},

E1
i = {e = (x, y) ∈ E1|x ∈ Xi, y ∈ X}, i = 3, p;

(b) min
y∈XG1 (x)

{ε2(x)− ε2(y) + c21(x,y)} = 0, ∀x ∈ X1
2 ,

min
y∈XG1 (x)

{ε2(x)− ε2(y) + ci1(x,y)} = 0, ∀x ∈ Xi, i = 3, p;

(c) the subgraph G10
= (X,E10

) generated by the edge set E10
= E10

2 ∪
E0

3 ∪ · · · ∪E0
p , E

10

2 = {e = (x, y) ∈ E1
2 |ε2(x)− ε2(y) + c21(x,y) = 0}, E0

i = {e =
(x, y) ∈ Ei|εi(x) − εi(y) + ci1(x,y) = 0}, i = 3, p, has the property that the

vertex xf is attainable from any vertex x ∈ X, and G10
contains a subgraph

G
10

= (X,E
10

), which possesses the same property, and besides that

εi(x)− εi(y) + ci1(x,y) = 0, ∀(x, y) ∈ E10

, i = 2, p.

According to the induction assumption, in the network game (G1,X1
2 ,X3,

. . . , Xp, c
2
1, c

3
1, . . . , c

p
1, x0, xf ), the solution s∗2, s

∗
3, . . . , s

∗
p generated by the

directed tree GT = (X,Es∗),

s∗2 : x→ y ∈ XGT (x) for x ∈ X1
2 ;

s∗3 : x→ y ∈ XGT (x) for x ∈ X3;

−−−−−−−−−−−
s∗p : x→ y ∈ XGT (x) for x ∈ Xp,
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where s∗2(x) = s∗1(x) for x ∈ X1 and s∗2(x) = s∗2(x) for x ∈ X2, is optimal
by Nash.

Thus
Hi

xxf
(s∗1, s

∗
2, s

∗
3, . . . , s

∗
i−1, s

∗
i , s

∗
i+1, . . . , s

∗
p)

≤ Hi
xxf

(s∗1, s
∗
2, s

∗
3, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
p),

∀si ∈ Si, 2 ≤ i ≤ p.
Also, it is easy to verify that

H1
xxf

(s∗1, s
∗
2, . . . , s

∗
p) ≤ H1

xxf
(s1, s∗2, . . . , s

∗
p), ∀s1 ∈ S1,

because for fixed s∗2, s
∗
3, . . . , s

∗
p in G, the problem of finding

min
s1∈S1

H1
xxf

(s1, s∗2, . . . , s
∗
p) for x ∈ X

becomes the problem of finding the shortest paths from x to xf in the graph
G′ = (X,E′), generated by set E1 and edges (x, s∗i (x)), x ∈ Xi, i = 2, p, with
the costs c1e on edges e ∈ E′. On this graph, the following condition is satisfied

ε1(x)− ε1(y) + c1(x,y) ≥ 0; ∀(x, y) ∈ E′,

which involves

H1
xxf

(s∗1, s
∗
2, . . . , s

∗
p) ≤ H1

xxf
(s1, s∗2, . . . , s

∗
p), ∀s1 ∈ S1,

because H1
xxf

(s∗1, s
∗
2, . . . , s

∗
p) = ε1(x), ∀x ∈ X.

Hence s∗1, s
∗
2, . . . , s

∗
p is an optimal solution in the sense of Nash in the

dynamic c-game.

Remark 2. Let

ε1 : X → R1, ε2 : X → R1, . . . , εp : X → R1,

be arbitrary real functions on X in G, and c1, c2, . . . , cp are p new cost
functions on edges e ∈ E obtained from c1, c2, . . . , cp as follows:

ci(x,y) = εi(x)− εi(y) + ci(x,y), ∀(x, y) ∈ E, i = 1, p. (15)

Then the dynamic c-games determined on networks (G,X1,X2, . . . , Xp,
c1, c2, . . . , cp, x0, xf ) and (G,X1,X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf ), respecti-
vely, are equivalent, because the payoff functions Hi

xxf
(s1, s2, . . . , sp) and

H
i

xxf
(s1, s2, . . . , sp) in such games differ only by a constant, i.e.,

Hi
xxf

(s1, s2, . . . , sp) = H
i

xxf
(s1, s2, . . . , sp) + εi(x)− εi(xf ).

In [3,5], transformation (15) is named the potentional transformation of edges’
costs of players in G.
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Remark 3. The conditions of Theorem 4 guarantee the existence of optimal
stationary strategies s∗1, s

∗
2, . . . , s

∗
p of players 1, 2, . . . , p for every starting po-

sition x ∈ X in the dynamic c-game on network (G,X1,X2, . . . , Xp, c
1, c2, . . . ,

cp, x, xf ) with positive and constant cost functions c1, c2, . . . , cp. If c1, c2, . . . , cp

are arbitrary constant functions, then the conditions of Theorem 4 represent
necessary and sufficient conditions for the existence of optimal stationary
strategies s∗1, s

∗
2, . . . , s

∗
p in the dynamic c-game on network (G,X1,X2, . . . , Xp,

c1, c2, . . . , cp, x, xf ) for every starting position x ∈ X.

On the basis of the obtained results, we can propose the following algo-
rithm for determining Nash equilibria in the considered dynamic game with
constant costs of edges on networks.

Algorithm 2. Determining Nash Equilibria for the Dynamic c-Game
on Acyclic Network

Let us consider a dynamic c-game for which the graph G = (X,E) has a
structure of acyclic directed graph with sink vertex xf .

Preliminary step (Step 0): Fix X0 = {xf} and put εi(xf ) = 0, ∀i = 1, p;
General step (Step k, k ≥ 1): If X \Xk−1 = ∅ then STOP; otherwise find

a vertex xk ∈ X \ Xk−1 for which XG(xk) ⊆ Xk−1, where XG(xk) = {y ∈
X|(xk, y) ∈ E}. If xk ∈ Xik , ik ∈ {1, 2, . . . , p}, then find an edge (xk, yk) for
which

εik(yk) + cik
(xk,yk)

= min
y∈XG(xk)

{εik(y) + cik
(xk,y)

}.

After that put
εi(xk) = εi(yk) + ci(xk,yk), i = 1, p

and
Xk = Xk−1 ∪ {xk}.

Then go to the next step.

If the functions εi, i = 1, p, are known, then the optimal strategies of
players s∗1, s

∗
2, . . . , s

∗
p can be found as follows. Find a tree GTs∗ = (X,Es∗) in

the graph G
0

= (X,E
0
) and fix the strategies

si(x) : x→ y ∈ Xi, (x, y) ∈ Es∗ , i = 1, p.

Algorithm 3. Determining Nash Equilibria in Dynamic c-Game on
Arbitrary Network, Based on Reduction to the Case with Acyclic
Network

Let us have a dynamic c-game with p players and let the directed graph
G have an arbitrary structure, i.e., G may contain directed cycles. Moreover,
we consider that for xf there are no leaving edges (xf , x) ∈ E. We show that
the problem in this case can be reduced to the problem of finding the optimal
strategies in an auxiliary game in a network without directed cycles.
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We construct an auxiliary directed graph G = (Z,E) without directed
cycles, where Z and E are defined as follows:

Z = Z0 ∪ Z1 ∪ Z2 ∪ · · · ∪ Z |X|−1,

where
Zj = {zj0, z

j
1, z

j
2, . . . , z

j
|X|−1}, j = 0, |X| − 1,

so, Z0, Z1, . . . , Z|X|−1 represent the copies of the set X;

E = E0 ∪ E1 ∪ E2 ∪ · · · ∪E|X|−2 ∪ Ef ,

where
Ej = {(zjk, z

j+1
l )|(xk, xl) ∈ E}, j = 0, |X| − 2;

Ef = {(zjk, z
|X|−1
f )|(xk, xf ) ∈ E, j = 0, |X| − 3}.

It is easy to observe that the vertex z|X|−1
f is attainable in this graph

from any z0k ∈ Z0. If we delete in G all vertices zik, for which there is no
directed path from zik to zif , then we obtain an acyclic directed graph G

′
=

(Z ′, E
′
) with sink vertex z|X|−1

f . In the following, we divide vertex set Z ′

into p subsets Z ′
1, Z

′
2, . . . , Z

′
p corresponding with the position sets of players

1, 2, . . . , p, respectively:

Z ′
1 = {zjk ∈ Z ′|xk ∈ X1, j = 0, |X| − 1}

Z ′
2 = {zjk ∈ Z ′|xk ∈ X2, j = 0, |X| − 1}

− −−−−−−−−−−
Z ′
p = {zjk ∈ Z ′|xk ∈ Xp, j = 0, |X| − 1}.

We define on the edge set E
′
the cost functions as follows:

ci
(zj

k,z
j+1
l )

= ci(xk,xl)
, ∀(zjk, z

j+1
l ) ∈ Ej , j = 0, |X| − 2, i = 1, p;

ci
(zj

k,z
|X|−1
f )

= ci(xk,xf ), ∀(z
j
k, z

|X|−1
f ) ∈ Ef , j = 1, |X| − 3;

After that, we consider the dynamic c-game with the network (G
′
Z ′

1, Z
′
2, . . . ,

Z ′
p, c

1, c2, . . . , cp, z00 , z
|X|−1
f ), where G

′
is an acyclic directed graph with sink

vertex z|X|−1
f . If we use Algorithm 3, then we find the values εi(zjk), ∀z

j
k ∈ Z ′,

i = 1, p. It is easy to observe that if we put εi(xf ) = 0, i = 1, p, and εi(xk) =
εi(z|X|−1

k ), ∀xk ∈ X \ {xf}, i = 1, p, then we obtain functions εi : X → R,
which satisfy conditions (a)–(c) from Theorem 4. Thus, we find the tree GT =
(X,Es), which corresponds with optimal strategies s∗1, s

∗
2, . . . , s

∗
p of players in

our dynamic c-game.
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Algorithm 3 is inconvenient because of the great number of vertices in the
auxiliary network.

Further, we present a simpler algorithm for finding the optimal strategies
of players.

Algorithm 4. Determining Nash Equilibria for the Dynamic c-Game
with an Arbitrary Network

Preliminary step: Assign to every vertex x ∈ X a set of labels ε1(x),
ε2(x), . . . , εp(x) as follows:

εi(xf ) = 0, ∀i = 1, . . . , p,
εi(x) =∞, ∀x ∈ X \ {xf}, i = 1, . . . , p.

General step (step k (k ≥ 1)): For every vertex x ∈ X \ {xf}, change
labels εi(x), i = 1, . . . , p, in the following way. If x ∈ Xk, then find the vertex
x for which

εk(x) + ck(x,x) = min
y∈X(x)

{εk(y) + ck(x,y)}.

If εk(x) > εk(x) + ck(x,x), then replace εi(x) by εi(x) + ci(x,x), i = 1, . . . , p. If
εk(x) ≤ εk(x) + ck(x,x), then do not change the labels.

Repeat the general step n times. Then labels εi(x), i = 1, . . . , p, x ∈ X,
become constant.

Let us note that these labels satisfy the conditions of Theorem 4. Hence,
using labels εi(x), i = 1, . . . , p, x ∈ X, and Theorem 4, we construct optimal
by Nash strategies of players 1, 2, . . . , p. Algorithm 4 has the computational
complexity O(p|X|2|E|).

For the general case of the dynamic c-game, the following theorem holds.

Theorem 5. Let (G,X1,X2, . . . , Xp, c
1, c2, . . . , cp, x0, xf , T1, T2) be a dy-

namic network for which in G there exists a directed path Ps(x0, xf ) from x0

to xf such that condition (9) holds (0 ≤ T1 ≤ |X| − 1, T1 ≤ T2). In addition,
assume that in the network (G,X1,X2, . . . , Xp, c

1, c2, . . . , cp, x0, xf , T1, T2)
vectors ci = (cie1 , c

i
e2 , . . . , c

i
e|E|

), i ∈ {1, 2, . . . , p} have positive and constant
components. Then in the dynamic c-game on network (G,X1,X2, . . . , Xp,
c1, c2, . . . , cp, x0, xf , T1, T2), there exists an optimal solution in the sense of
Nash s∗1, s

∗
2, . . . , s

∗
p.

This theorem can be proved by using the constructive scheme of the proof
of Theorem 3 with some modifications.

6 Computational Complexity of Problem of Determining
Optimal Stationary Strategies in Dynamic c-Game

The results from Section 5 allow us to describe a class of dynamic c-games
for which polynomial-time algorithms for determining the optimal station-
ary strategies of players can be elaborated. This class is related to dynamic
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c-games with constant cost functions on edges of the network and without
restrictions on the number of stages.

In general, if additional condition (9) on the number of stages for the
considered problem is given, then it is NP -hard. This problem remains NP -
hard even when p = 1, T1 = T2 = |X| − 1 and the costs of edges are constant,
because in this case it becomes a Hamiltonian path problem in G with the
given starting vertex x0 and the final vertex xf .

In the following, we can see that if G has a structure of acyclic directed
graph, then the problem of determining the optimal stationary strategies in
the dynamic c-game with the given restriction on the number of stages and
constant costs of edges can be reduced to a similar problem on an auxiliary
time-expanded network (see Section 8.1).

7 On Determining the Optimal Stationary Strategies
for Dynamic c-Game with Nonconstant Cost Functions
on Edges

Again we consider the problem of determining Nash equilibria for dynamic
c-game without restrictions on the number of stages by a trajectory from x0

to xf . The dynamic c-game is determined by the network (G,X1,X2, . . . , Xp,
c1(t), c2(t), . . . , cp(t), x0, xf ) where the components ciek

(t) of the vector
functions ci(t) = (cie1(t), c

i
e2(t), . . . , c

i
e|E|

(t)), i = 1, p, may be nonconstant
functions.

First of all, we note that Nash equilibria in such games may fail to hold
even in the case of positive and nondecreasing cost functions cie(t), i = 1, p,
e ∈ E, defined on edges of the dynamic network.

An example, which confirms this affirmation, is the following: we consider
the dynamic network, represented by Fig. 3, which consists of the directed
graph G = (X,E), for which the partition of vertex set X = X1 ∪X2, X1 =
{1, 2}, X2 = {3, 4, 5}, where x0 = 1, xf = 5, is given.

All cost functions on edges are constantly equal to 1 except the following:

c1(1,3)(t) ≡ c2(1,3)(t) ≡ 3;

5

4

31

2

Figure 3. The network for which Nash equilibria may not exist
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c2(3,5)(t) =

{

1 if t ≤ 1,

M if t > 1;

c1(4,5)(t) =

{

1 if t ≤ 2,

M if t > 2,

where M is a great number. It is easy to check that the optimal stationary
strategies in the sense of Nash for the dynamic c-game on this network do not
exist. Nevertheless, we describe a class of dynamic c-game with nonconstant
costs cie(t), i = 1, p, on edges e ∈ E of the network for which Nash equilibria
exist.

At first, we extend the optimization principle for the stationary case of
the problem on dynamic networks with p players. We define the optimization
principle with respect to player i, i ∈ {1, 2, . . . , p}, on dynamic networks
(G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf ).
Let Ei be a subset of edges from E starting in vertices x ∈ Xi, i.e.,

Ei = {(x, y) ∈ E |x ∈ Xi}, i = 1, p. Hereby, the set Ei represents the
admissible set of the system’s passages from the state x ∈ Xi to the state
y ∈ X for the player i. Furthermore, the set Ei indicates the set of edges of
player i. By Esi

we denote the subset of Ei generated by a fixed strategy si
of player i, i ∈ {1, 2, . . . , p}, i.e., Esi

= {(x, y) ∈ Ei |x ∈ Xi, y = si(x)}.
Let s1, s2, . . . , si−1, si+1, . . . , sp be a set of strategies of players 1, 2, . . . ,

i− 1, i+ 1, . . . , p and let GS\si
= (X,ES\si

) be the subgraph of G, where

ES\si
= Es1 ∪ Es2 ∪ · · · ∪Esi−1 ∪ Ei ∪ Esi+1 ∪ · · · ∪Esp

.

The graph GS\si
represents the subgraph of G generated by the set of edges

of player i and edges of E when the players 1, 2, . . . , i− 1, i+ 1, . . . , p fix their
strategies s1, s2, . . . , si−1, si+1, . . . , sp, respectively. On GS\si

, we consider the
single objective control problem with respect to cost functions cie(t) of player
i, starting vertex x0 and final vertex xf .

Definition 4. Let us assume that for any given set of strategies

s1, s2, . . . , si−1, si+1, . . . , sp

the cost functions cie(t), e ∈ ES\si
in GS\si

have the property that if an
arbitrary optimal path P ∗(x0, x) can be represented as P ∗(x0, x) = P ∗

1 (x0, z)∪
P ∗

2 (z, x) (P ∗
1 (x0, z) and P ∗

2 (z, x) have no common edges), then the leading part
P ∗

1 (x0, z) of P ∗(x0, x) is an optimal one. We call this property the optimization
principle for dynamic networks with respect to player i.

Theorem 6. Let(G,X1,X2, . . . , Xp, c
1(t), c2(t), . . . , cp(t), x0, xf )beadynamic

network with p players for which the vertex xf in G is attainable from any
vertex x ∈ X. Assume that the vector-functions ci(t) = (cie1(t), c

i
e2(t), . . . ,

cie|E|
(t)), i = 1, p have non-negative and nondecreasing components. More-

over, let us assume that the optimization principle on the dynamic network is
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satisfied with respect to each player. Then, in the dynamic c-game on network
(G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf ) for players 1, 2, . . . , p, there
exists an optimal solution in the sense of Nash s∗1, s

∗
2, . . . , s

∗
p.

This theorem can be proved in the same way as Theorem 3. The proof of
this theorem is given in [38].

In general, if for the dynamic c-game with positive and nondecreasing cost
functions cie(t), e ∈ E, i = 1, p, Nash equilibria s∗1, s

∗
2, . . . , s

∗
p exists, then the

optimal trajectory x0, x1, . . . , xf , generated by these strategies, corresponds
with the optimal trajectory for the nonstationary dynamic c-game. In the next
section, we show that for the nonstationary dynamic c-game, Nash equilibria
exists if at least one directed path from x0 to xf exists. A polynomial time
algorithm for determining optimal trajectory from x0 to xf is proposed in
Section 8.

Here it is important to note that the optimal strategies of players
s∗1, s

∗
2, . . . , s

∗
P in the dynamic c-game depend on starting position x0. In

addition, in [37] the following result is proved:

Theorem 7. Let (G,X1,X2, . . . , Xp, c
1(t), c2(t), . . . cp(t), x0, xf ) be a dy-

namic network with p players for which in G any vertex x ∈ X is attainable
from x0 and vector-functions ci(t) = (cie1(t), c

i
e2(t), . . . , c

i
e|E|

(t)), i = 1, p, have
non-negative and nondecreasing components. Moreover, let us consider that
the optimization principle for the dynamic network is satisfied with respect to
each player. Then, in G there exists a tree GT ∗ = (X,E∗) for which any vertex
x ∈ X is attainable from x0, and a unique directed path PGT∗(x0, x) from x0

to x in GT ∗ corresponds with optimal strategies s∗1, s
∗
2, . . . , s

∗
p of players in the

dynamic c-game on network (G,X1,X2, . . . , Xp, c
1(t), c2(t), . . . , cp(t), x0, x)

with starting position x0 and final position x. For different vertices x and
y, the optimal paths P ′

GT∗(x0, x) and P ′′
GT∗(x0, y) correspond with different

strategies of players s∗1, s
∗
2, . . . , s

∗
p and s

∗

1, s
∗

2, . . . , s
∗

p in different games with
starting vertex x0 and final positions x, y, respectively.

If the optimization principle in the dynamic c-game is satisfied with re-
spect to each player, then the following algorithm finds the tree of optimal
paths GT ∗ = (X,E∗) in G, when G has no directed cycles, i.e., G is an
acyclic graph. We assume that the positions of the network are numbered
with 0, 1, 2, . . . , |X|−1 according to partial order determined by the structure
of the acyclic graph G. This means that if y > x, then there is no directed
path P (y, x) from y to x. The algorithm consists of |X| steps and constructs
a sequence of trees GT k = (Xk, Ek), k = 0, |X| − 1, such that at the final
step k = |X| − 1, we obtain GT |X|−1 = GT ∗.

Algorithm 5. Determining the Tree of Optimal Paths in an Acyclic
Network

Preliminary step (step 0): Set GT ◦ = (X◦, E◦), whereX◦ = {x0}, E◦ = ∅.
Assign to every vertex x ∈ X a set of labels H1(x),H2(x), . . . , Hp(x), t(x)
as follows:
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Hi(x0) = 0, i = 1, p,
Hi(x) =∞, ∀x ∈ X \ {x0}, i = 1, p,
t(x0) = 0,
t(x) =∞, ∀x ∈ X \ {x0}.

General step (step k, k ≥ 1): Find in X \ Xk−1 the least vertex xk and
the set of incoming edges E−(xk) = {(xr, xk) ∈ E |xr ∈ Xk−1} for xk. If
|E−(xk)| = 1 then go to (a); otherwise go to (b):

(a) Find a unique vertex y such that e′ = (y, xk) ∈ E−(xk) and calculate

Hi(xk) = Hi(y) + ci(y,xk)(t(y)), i = 1, p;
t(xk) = t(y) + 1.

After that, form the sets Xk = Xk ∪ {xk}, Ek = Ek−1 ∪ {(y, xk)} and put
GT k = (Xk, Ek). If k < |X| − 1, then go to next step k + 1; otherwise fix
E∗ = E|X|−1, GT ∗ = (X,E∗) and STOP.

(b) Select the greatest vertex z ∈ Xk−1 such that in graph GT k =
(

Xk−1∪{xk}, Ek−1∪E−(xk)
)

there exist at least two parallel directed paths

P ′(z, xk), P ′′(z, xk) from z to xk without common edges, i.e., E(P ′(z, xk)) ∩
E(P ′′(z, xk)) = ∅. Let e′ = (xr, xk) and e′′ = (xs, xk) be respective edges of
these paths with common end vertex in xk. So, e′, e′′ ∈ E−(xk). For vertex z
determine iz such that z ∈ Xiz .

If
Hiz (xr) + ciz

(xr,xk)
(t(xr)) ≤ Hiz (xs) + ciz

(xs,xk)
(t(xs))

then delete the edge e′′ = (xs, xk) from E−(xk) and from G; otherwise delete
edge e′ = (xr, xk) from E−(xk) and from G. After that, check again the
condition |E−(xk)| = 1? If |E−(xk)| = 1, then go to (a) otherwise go to (b).

Remark 4. The values Hi(x), i = 1, p for x ∈ X in Algorithm 5 express
the respective costs of the players in the dynamic c-game with the starting
position x0 and the final position x.

8 Determining Nash Equilibria for Nonstationary
Dynamic c-Games

Now we study the problem of finding Nash equilibria for nonstationary
dynamic c-games. For this case of the problem, we will use a time-expanded
network utilized in [43–48].

8.1 Time-Expanded Networks for Nonstationary Dynamic
c-Games

Let (G,X1,X2, . . . , Xp, c
1(t), c2(t), . . . , cp(t), x0, xf , T1, T2) be a network that

determines our dynamic c-game. We assume that in G = (X,E), the vertex
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xf ∈ X is attainable from every x ∈ X. Additionally, we construct an auxiliary
network (G,Z1, Z2, . . . , Zp, c

1(t), c2(t), . . . , cp(t), y0, yf ) where the graph G =
(Y,E) is obtained as follows:

Y = Y 0 ∪ Y 1 ∪ Y 2 ∪ · · · ∪ Y T1 ∪ Y T1+1 ∪ · · · ∪ Y T2 (Y t ∩ Y k = ∅, t 	= k);

Y t = (X, t) corresponds with the set of states at the time-step t, t = 0, T2;

E = E0 ∪ E1 ∪ E2 ∪ · · · ∪ET1 ∪ ET1+1 ∪ · · · ∪ET2−1 ∪ Ef ;

where

Et = {((x, t), (y, t+1))|(x, t) ∈ Y t, (y, t+1) ∈ Y t+1, (x, y) ∈ E}, t = 0, T2 − 1;

Ef ={((x, t), (y, T2))|(x, t) ∈ Y t, (y, T2) ∈ Y T2 , (x, y) ∈ E, t = T1 − 1, T2 − 2}.
In the case T1 = T2, we obtain a T2-partied network. So, the sets Y t = (X, t),
t = 0, T2, represent T2 + 1 copies of the set X where level sets (layers) Y t

and Y t+1 are linked by the edges of the form
(

(x, t), (y, t+ 1)
)

if (x, y) ∈ E.

Additionally, in G there exist edges
(

(x, t), (y, T2)
)

that connect the set (X, t)

and (X,T2), t = T1, T2 − 2. The cost functions on the edges
(

(x, t), (y, t+1)
)

,
(

(x, t), (y, T2)
)

in G can be interpreted as an in the initial network, i.e.,

c((x,t),(y,t+1))(t) = c(x,y)(t), t = 0, T2 − 1;

c((x,t),(y,T2))(t) = c(x,y)(t), t = T1 − 1, T2 − 2.

The sets Zi of the players’ position in that auxiliary network are Zi =
⋃

t(Xi, t), i = 1, p.

Lemma 3. Let P (y0, yf ) be an arbitrary directed path from y0 to yf in the
graph G. Then the number of edges |E(P (y0, yf ))| of the directed path satisfies
the condition

T1 ≤ |E(P (y0, yf ))| ≤ T2.

Moreover in G there exists a directed path P (y0, yf ) from y0 to yf if and only
if in G there exists a directed path P (x0, xf ) from x0 to xf (P (x0, xf ) may
contain directed cycles), which contains the same number of edges

|E(P (x0, xf )| = |E(P (y0, yf ))|.
Proof. Let P (y0, yf ) be an arbitrary path from y0 to yf in G and let us
show that

T1 ≤ |E(P (y0, yf ))| ≤ T2,

where E(P (y0, yf )) is the set of edges of the path P (y0, yf ). Indeed the path
P (y0, yf ) contains at least T1 edges because it passes through all the layers
Y 0, Y 1, Y 2, . . . , Y T1−1 and then goes to one of positions y ∈

⋃T2
i=T1

Y i. On the
other hand, the number of the edges of the path P (y0, yf ) cannot exceed T2

because each vertex (x, t) of the level sets Y T1 , Y T1+1, . . . , Y T2 is connected
with (xf , T2) in G (if in G there exists an edge (x, xf )).
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Corollary 5.

• Let G be a graph without directed cycles. Then G is an acyclic graph, and
in G there exists a directed path P (y0, yf ) from y0 to yf with the property

T1 ≤ |E(P (y0, yf ))| ≤ T2

if and only if in G there exists a path P (x0, xf ) from x0 to xf with the
property

T1 ≤ |E(P (x0, xf ))| ≤ T2.

• Let G be a graph that may contain directed cycles. If P (y0, yf ) is an arbi-
trary path from y0 to yf in G with the vertex set

X(P (y0, yf )) = {y0, y1, y2, . . . , yT (xf ) = yf},

where yt = (xt, t), t = 0, T (xf ), then {x0, x1, x2, . . . , xT (xf ) = xf} gener-
ates in G a directed path P (x0, xf ) from x0 to xf (P (x0, xf ) may contain
directed cycles).

So one may conclude that the auxiliary time-expanded network gives all
admissible directed paths from x0 to xf for the considered problems (for non-
cooperative and cooperative case). On the basis of this result, an algorithmic
solution is presented.

8.2 Determining Nash Equilibria

Now we show that the problem of finding Nash equilibria for nonstationary
dynamic c-games can be reduced to the stationary case of the game on an
auxiliary time-expanded network with constant cost functions on the edges.

Theorem 8. Let (G,X1,X2, . . . , Xp, c
1(t), c2(t), . . . , cp(t), x0, xf , T1, T2) be a

network with positive and nondecreasing cost functions cie(t), i = 1, p, on edges
e ∈ E. Moreover, let us assume that in G = (X,E) there exists a directed path
PG(x0, xf ) from x0 to xf such that

T1 ≤ |E(PG(x0, xf ))| ≤ T2,

i.e., PG(x0, xf ) = {x0, e0, x1, e1, x2, . . . , xT (xf )−1, eT (xf )−1, xT (xf )}, where
T1 ≤ T (xf ) ≤ T2 (here PG(x0, xf ) may contain directed cycles). Then for
the nonstationary dynamic c-game on the network, there exist nonstationary
strategies in the sense of Nash u∗1, u

∗
2, . . . , u

∗
p.

Proof. Let us consider arbitrary stationary strategies s1, s2, . . . , sp of the
players in the dynamic c-game on the auxiliary time-expanded network
(G,Z1, Z2, . . . , Zp, c

1(t), c2(t), . . . , cp(t), y0, yf ). It is obvious that in the initial
dynamic c-game on (G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf , T1, T2),
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we uniquely can determine the nonstationary strategies u1, u2, . . . , up of the
players as follows:

si(x, t) = ui(x, t) for (x, t) ∈ Xi × {1, 2, . . . , T}, i = 1, p.

So, between the set of stationary strategies of the players on the network
(G,Z1, Z2, . . . , Zp, c

1(t), c2(t), . . . , cp(t), y0, yf ) and the set of nonstationary
strategies of the players on (G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf ,
T1, T2), there exists a bijective mapping, which preserves integral-time costs
on certain trajectories: If s∗1, s

∗
2, . . . , s

∗
p is an equilibrium solution in the sense of

Nash for the stationary case of the problem on the network (G,Z1, Z2, . . . , Zp,
c1(t), c2(t), . . . , cp(t), y0, yf ), then we observe that

u∗(x, t) = s∗(x, t) for (x, t) ∈ Xi × {1, 2, . . . , T2}, i = 1, p,

is an equilibrium solution in the sense of Nash for the nonstationary case of the
game on the network (G,X1,X2, . . . , Xp, c

1(t), c2(t), . . . , cp(t), x0, xf , T1, T2).
Because the time t on the time expanded network for every position is de-
termined by the level set, the cost functions ci(x,t)(t), i = 1, p, on the auxil-
iary network can be considered as constant. Therefore, if in G there exists a
directed path PG(y0, yf ) from y0 to yf , then for the dynamic c-game on the
auxiliary network, Nash equilibria exist.

According to Lemma 3, such a path PG(y0, yf ) exists in G because in G
there exists a directed path

PG(x0, xf ) = {x0, e0, x1, e1, x2, . . . , xT (xf )−1, eT (xf )−1, xT (xf )}

where T1 ≤ T (xf ) ≤ T2 (PG(x0, xf )) may contain directed cycles).

On the basis of this theorem, now we can propose the following algorithm
for determining the equilibrium nonstationary strategies of the players in such
dynamic c-games.

Algorithm 6. Determining the Optimal Nonstationary Strategies
in Dynamic c-Game

1. We construct the auxiliary time-expanded network

(G,Z1, Z2, . . . , Zp, c
1(t), c2(t), . . . , cp(t), y0, yf ).

2. Define the equilibrium stationary strategies s∗1, s
∗
2, . . . , s

∗
p in the dynamic

c-game on

(G,Z1, Z2, . . . , Zp, c
1(t), c2(t), . . . , cp(t), y0, yf ).

3. Put

u∗i (x, t) = s∗i (x, t) for (x, t) ∈ Xi × {1, 2, . . . , T2}, i = 1, p.

In the next section, we extend our approach for multiobjective control prob-
lems on networks with Pareto optimality principles.
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9 Multiobjective Control and Cooperative Games
on Dynamic Networks

Now we shall use the concept of cooperative games and will formulate multiob-
jective control problems on networks applying the Pareto optimality principle.
In an analogous way as in the previous section, we distinguish two versions of
the problem concerning stationary and nonstationary strategies.

9.1 Stationary Strategies on Networks and Pareto Solutions

On G, we consider now the following cooperative game:
The stationary strategies of players 1, 2, . . . , p are defined as a map

s: x→ y ∈ X(x) for x ∈ X \ {xf}.

For an arbitrary stationary strategy s ∈ S = {s|s : x → y ∈ X(x) for x ∈
X \ {xf}}, we denote by Gs = (X,Es) the subgraph of G generated by
edges e = (x, s(x)) for x ∈ X \ {xf}. Then for every s ∈ S in G, either
a unique directed path Ps(x0, xf ) from x0 to xf exists or such a path does
not exists in G. For a given s and fixed x0 and xf , we define the quantities
H

1

x0xf
(s),H

2

x0xf
(s), . . . ,H

p

x0xf
(s) in the following way.

Let us assume that the path Ps(x0, xf ) exists in G. Then it is unique and
we can assign to its edges, starting with the edge that begins in x0, numbers
0, 1, 2, . . . , ks. These numbers determine the time steps te(s) when the system
passes from one state to another if the stationary strategy s is applied. We put

H
i

x0xf
(s) =

∑

e∈E(Ps(x0,xf ))

cie(te(s)), if T1 ≤ |E(Ps(x0, xf ))| ≤ T2;

otherwise we put H
i

x0xf
(s) =∞.

We consider the problem of finding the set S∗
P of Pareto solutions (or

a Pareto solution) in the set of stationary strategies S. Note that s∗, where
s∗ ∈ S∗

P , is called a Pareto solution if in S\S∗
p there is no strategy s′ such that

H
i

x0xf
(s′) ≤ Hi

x0xf
(s∗), i = 1, p,

and H
i0
x0xf

(s′) < H
i0
x0xf

(s∗) for an index i0 ∈ {1, 2, . . . , p}.

9.2 Pareto Solution for the Problem with Nonstationary
Strategies on Networks

The nonstationary strategy for our cooperative dynamic game is defined as
a map

u: (x, t)→ (y, t+ 1) ∈ X(x)× {t+ 1} for x ∈ X \ {xf}, t = 0, 1, 2, . . .
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The payoff functions

F
1

x0xf
(u), F

2

x0xf
(u), . . . , F

p

x0xf
(u)

of the game are defined in the following way:
Let u be an arbitrary strategy. Then u either generates in G a finite

trajectory
x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf and T (xf ) represents the time moment when xf is reached, or
u generates in G an infinite trajectory

x0 = x(0), x(1), x(2), . . . , x(t), x(t+ 1), . . .

which does not pass through xf , i.e., T (xf ) =∞. In both cases, the next state
x(t+ 1) is determined uniquely by x(t) and u(t) as follows:

x(t+ 1) = u(x(t), t), t = 0, 1, 2, . . . .

If the state xf is reached at a finite moment of time T (xf ) (i.e., the attain-
ability T1 ≤ T (xf ) ≤ T2 is guaranteed), then we set

F
i

x0xf
(u) =

T (x0)−1
∑

t=0

ci(x(t),x(t+1))(t), i = 1, p;

otherwise we put
F
i

x0xf
(u) =∞, i = 1, p.

10 Determining Pareto Solutions for Multiobjective
Control Problems on Networks

Note that in the considered multiobjective control problems, Pareto solution
always exists if in G there exists at least one directed path P (x0, xf ) from
x0 to xf . We propose algorithms for solving the stationary and nonstationary
cases of the problems.

10.1 Determining Pareto Stationary Strategies

First of all, an algorithm for determining Pareto stationary solutions for mul-
tiobjective control problems on networks without restrictions on the number
of stages when the costs on the edges are constant and positive functions is
proposed:
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Algorithm 7. Determining Pareto Solutions for the Problem with
Constant Costs on Edges

Preliminary step (step 0): Set X0 = {xf}; E0 = ∅; Hi

xfxf
= 0, i = 1, p.

General step (step k, k ≥ 1): If Xk−1 	= X, then find the set of edges

E(Xk−1) =
{

e = (y, x) ∈ E
∣

∣

∣x ∈ Xk−1, y ∈ X \Xk−1
}

.

Then find an edge e′ = (y′, x′) in E(Xk−1) such that the following condi-
tions are satisfied:

(a) H
ir
y′xf

= H
ir
x′xf

+ cir(y′,x′) = min
(y,x)∈E(Xk−1)

{

H
ir
xxf

+ cir(y,x)

}

for an index

ir ∈ {1, 2, . . . , p};
(b) there is no edge (y, x) ∈ E(Xk−1) such that

H
i

xxf
+ ci(y,x) ≤ H

i

x′xf
+ ci(y′,x′), i = 1, p and

H
i0
xxf

+ ci0(y,x) < H
i0
x′xf

+ ci0(y′,x′) for an index i0 ∈ {1, 2, . . . , p}.

For given y′, fix
H

i

y′xf
= H

i

x′xf
+ ci(y′,x′), i = 1, p.

After that, we put Xk = Xk−1 ∪ {y′}, Ek = Ek−1 ∪ {(y′, x′)} and go to the
next step. If Xk−1 = X (k = n), then find the tree GTn−1 = (X,En−1),
which determines the optimal Pareto strategy s∗ of players as follows:

s∗(y) = x for y ∈ X \ {xf} if (y, x) ∈ En−1.

Algorithm 7 is an extension of Dijkstra’s algorithm [12, 14] for a multi-
objective version of the optimal paths problem in a weighted directed graph.
The algorithm determines the Pareto stationary strategy s∗ of players for
the multiobjective control problem on the network (G,X, c1, c2, . . . , cp, x, xf ,
T1, T2) with an arbitrary starting position x ∈ X and a given final position
xf ∈ X, i.e., the tree GTn−1 = (X,En−1) gives all Pareto optimal paths from
every x ∈ X to xf .

Theorem 9. Algorithm 7 finds Pareto stationary strategies of the players in
the multiobjective control problem on the network (G,X, c1, c2, . . . , cp, x, xf )
for every given starting position x and final position xf . The running-time of
the algorithm is O(|X|3p).

Proof. We prove this theorem by using induction principle on number of
players p. In the case p = 1, Algorithm 7 becomes Dijkstra’s algorithm for
determining the tree of shortest paths in a weighted directed graph, therefore
the theorem holds.

Let us assume that the theorem holds for any p ≤ q, q ≥ 1, and let us
show that it is true for p = q + 1.
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We consider an auxiliary graph G′
q+1 = (X,Eq+1

⋃

(E \ E(Xp+1))),
where Eq+1 represents the set of edges e′ = (y′, x′) found at the iterations
of Algorithm 7 with ir = q + 1 and

Xq+1 = {y′ ∈ X | e′ = (y′, x′) ∈ Eq+1},

E(Xp+1) = {e ∈ E | e = (y′, x) ∈ E}.
Based on conditions (a) and (b) of Algorithm 7, we may conclude that if
we find Pareto solution of the multiobjective problem on G′ with respect to
players 1, 2, . . . , q, q + 1, then we obtain the same solution of the problem as
the one on G. Taking into account that in G every vertex y′ ∈ Xq+1 has only
one leaving edge, we may regard our problem on G′ as a multiobjective one
with respect to players 1, 2, . . . , q. According to induction principle, Algorithm
7 finds Pareto solution for the multiobjective problem with respect to players
1, 2, . . . , q. In such a way, we obtain the Pareto solution s∗ of the problem on
the auxiliary graph G′, which at the same time is the Pareto solution of the
problem on G with respect to players 1, 2, . . . , q, q + 1.

It is also easy to observe that the number of elementary operations at the
general step of the algorithm is O(|X|2p). Therefore, the running-time of the
algorithm is O(|X|3p).

Remark 5. Other approach for solving multiobjective control problem with
the Pareto optimality principle is based on its reducing to the single objective
control problem with a certain convolution criterion

Hx0xf
(s) =

p
∑

i=1

αiH
i

x0xf
(s),

where
p
∑

i=1

αi = 1; αi ≥ 0, i = 1, p.

Note that in such a way, we can find a Pareto solution for some classes of
the problem with positive nondecreasing costs cie(t), i = 1, p, on the edges of
the networks. But in the general case, via such an approach, not all Pareto
solutions can be determined.

10.2 Pareto Solution for the Nonstationary Case of the Problem

In order to solve the nonstationary case of the problem, we shall use the
time-expanded networks. The time-expanded network for the cooperative case
of the problem is defined in the same way as for the noncooperative case.
There is only one single exception: we do not take into account the partition
Y = Z1 ∪ Z2 ∪ · · · ∪ Zp.

The problem of determining nonstationary Pareto strategies for the multi-
objective control problem on the network (G,X, c1(t), c2(t), . . . , cp(t), x0, xf ,
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T1, T2) can be reduced to the problem from Section 10.1 on the auxiliary time-
expanded network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ). This reduction is based
on the following theorem:

Theorem 10. Let (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ) be an auxiliary time-
expanded network for a given network (G,X, c1(t), c2(t), . . . , cp(t), x0, xf ,
T1, T2). If s∗ is a Pareto stationary strategy of the players for the multiobjective
control problem on the network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ), then

u∗(x, t) = s∗(x, t) for (x, t) ∈ X × {1, 2, . . . , T2}

is a nonstationary Pareto strategy for the multiobjective control problem on
the network (G,X, c1(t), c2(t), . . . , cp(t), x0, xf , T1, T2).

This theorem can be proved in an analogous way as Theorem 8.
For finding nonstationary Pareto strategies of the players for the multiob-

jective control problem, the following algorithm can be used:

Algorithm 8. Determining Pareto Solutions for the Nonstationary
Case of the Problem

1. For a given network (G,X, c1(t), c2(t), . . . , cp(t), x0, xf , T1, T2), construct
the auxiliary time-expanded network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ).

2. Determine Pareto stationary strategies for the multiobjective con-
trol problem on the network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ) using
Algorithm 7.

3. Put u∗(x, t) = s∗(x, t) for (x, t) ∈ X × {1, 2, . . . , T2}.

10.3 Computational Complexity of the Stationary
Case of the Problem and an Algorithm for Its Solving
on Acyclic Networks

Note that our stationary multiobjective control problem on the general net-
work is NP -complete [22], even in the case p = 1, T1 = T2 = |X| − 1,
because it becomes the Hamiltonian path problem in a directed graph where
all cost functions on the network are constantly equal to 1. Therefore, in
the general case this problem is NP -hard. But if G has the structure of
an acyclic graph, then the stationary Pareto solution s∗ on the network
(G,X, c1(t), c2(t), . . . , cp(t), x0, xf , T1, T2) can be found by using Pareto sta-
tionary strategy s∗ for the problem on the auxiliary network (G,Y, c1(t), c2(t),
. . . , cp(t), y0, yf ) in the following way.

Algorithm 9. Determining Stationary Pareto Solution on Acyclic
Networks

Preliminary step (step 0): Fix an arbitrary Pareto solution

s∗ : y → z ∈ Y (y) for y ∈ Y
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for the problem on network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf ) by us-
ing Algorithm 7. Then put W 0 = {(x0, 0), (x1, 1), . . . , (xT (xf ), T (xf ))},
X0 = {x0, x1, . . . , xT (xf )} and fix s∗(xt) = x(t + 1) for xt ∈ X0,
t = 0, T (xf )− 1, where (x0, 0), (x1, 1), . . . , (xT (xf ), T (xf )) is a trajectory
generated by Pareto stationary strategy s∗ in the auxiliary time-expanded
network (G,Y, c1(t), c2(t), . . . , cp(t), y0, yf , T1, T2). If in the auxiliary time-
expanded network there is no directed path from y0 to yf , then for the con-
sidered problem on the network (G,X, c1(t), c2(t), . . . , cp(t), x0, xf , T1, T2),
Pareto stationary strategy does not exist.

General step (step k, k ≥ 1): If Xk−1 = X, then STOP, otherwise deter-
mine the set

Ws∗(Xk−1) =
{

(x, t) ∈ (X \Xk−1)× {1, 2, . . . , T2}
∣

∣

∣ s∗(x, t) ∈W k−1
}

.

If Ws∗(Xk−1) 	= ∅, then find a vertex (x′, t′) ∈ Ws∗(Xk−1) with a minimal t′

for a given x′ and fix s∗(x′) = z if s∗(x′, t′) = (z, t+ 1). After that, construct
sets Xk = Xk−1 ∪ {x′}, W k = W k−1 ∪ {(x′, t′)} and go to the next step.

Some similar multiobjective problems on dynamic networks have been
studied in [31].

11 Application of the Dynamic c-Game for Studying
and Solving Multiobjective Control Problems

Let us show that the results from Section 8 can be used for studying and
solving the multiobjective control problems from Section 1.

At first, we consider the problem from Section 1.2 (Problem 2), for
which the alternate players control condition is satisfied. We regard
this problem as a dynamic c-game determined by an acyclic network
(G,Z1, Z2, . . . , Zp, c

1, c2, . . . , cp, y0, yf ), where the graph G = (Y,E) with
partition Y =

⋃p
i=1 Zi and constant functions ci : E → R, i = 1, p, are

defined in the following way.
The set of vertices Y consists of T2 + 1 copies of the set of states corre-

sponding with moments of time t = 0, 1, 2, . . . , T2, i.e., Y =
⋃T2

t=0(X, t) with
the partition Y =

⋃p
i=1 Zi, determined by the alternate players condition

Zi =
⋃T2

t=0(X
i(t), t).

The set of edges E is also represented as

E = E0 ∪ E1 ∪ E2 ∪ · · · ∪ET1 ∪ ET1+1 ∪ · · · ∪ET2−1 ∪ Ef ;

where
Y t = (X, t), t = 0, T2;

Et = {((x, t), (y, t+1))|(x, t) ∈ Y t, (y, t+1) ∈ Y t+1, (x, y) ∈ E}, t = 0, T2 − 1;
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Ef ={((x, t), (y, T2))|(x, t) ∈ Y t, (y, T2) ∈ Y T2 , (x, y) ∈ E, t = T1 − 1, T2 − 2}.
Note that (x, t) ∈ (X, t), and here the notation (x, t) has the same meaning
as x(t), i.e., (x, t) = x(t).

In our network, we fix y0 = (x0, 0) ∈ (X, 0) and yf = (xf , T2) ∈ (X,T2).
We define the cost functions ci, i = 1, p, as follows:

ci((x,t),(y,t+1)) = ci(x(t),y(t+1)), if y(t+ 1) = gt(x(t), u
i(t))

for given ui(t) ∈ U i
t (x(t)), x(t) ∈ Zi, i = 1, p, t = 0, T2 − 1;

ci((x,t),(y,T2))
= ci(x(t),y(t+1)), if y(t+ 1) = gt(x(t), u

i(t))

for given ui(t) ∈ U i
t (x(t)), x(t) ∈ Zi, i = 1, p, t = T1 − 1, T2 − 2.

It is easy to see that in this network, every directed path PG(z0, zf ) from
z0 to zf contains |E(PG(z0, zf ))| edges such that T1 ≤ |E(PG(z0, zf ))| ≤ T2.
So, if we define the admissible solution u1(t), u2(t), . . . , up(t) as a set of vectors
of control parameters, which satisfy conditions (5), (6) and T1 ≤ T (xf ) ≤ T2,
then we may conclude that there exists a bijective mapping between the set
of admissible solutions of the control problem in positional form and the set
of admissible strategies in the dynamic c-game. This means that Theorem 1
holds and the following algorithm can be used.

Algorithm 10. Determining Nash Equilibria for Multiobjective
Control Problem in Positional Form

1. Construct the auxiliary network (G,Z1, Z2, . . . , Zp, c
1, c2, . . . , cp, y0, yf )

according to the rules described above.
2. Find the optimal stationary strategy in the dynamic c-game determined

by the network (G,Z1, Z2, . . . , Zp, c
1, c2, . . . , cp, y0, yf ) and the directed path

P ∗
s∗ = {z0 = (x∗0, 0), (x∗1, 1), . . . , (x∗t , t), (x

∗
t+1, t+ 1)}, . . . , zf = (x∗f , T2)}.

3. Starting from the final position (x∗f , T2), find recursively

ui∗(t), t = T2 − 1, T2 − 2, . . . , 1, 0,

such that
x∗(t+ 1) = gt(x∗(t), u1∗(t), u2∗(t), . . . , up∗(t)).

Then u1∗(t), u2∗(t), . . . , up∗(t) is a solution of the problem.

In an analogous way, the problem of determining Pareto solution for the
multiobjective control problem from Section 1.3 can be reduced to the control
problem on network (G, c1, c2, . . . , cp, z0, zf ). Here we should not take into
account the partition Z =

⋃p
i=1 Zi.
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12 Zero-Sum Games on Networks and Polynomial Time
Algorithm for Max-Min Paths Problem

In the previous section, we have studied dynamic c-games with positive
cost functions on edges. Therefore, we cannot use those results for zero-sum
games. In the following, we study zero-sum games of two players with ar-
bitrary cost functions on edges and propose polynomial-time algorithms for
their solution. The main results related to this problem have been obtained
in [34–36,39,40,49].

12.1 Problem Formulation

In this section, we study the antagonistic dynamic c-game of two players on
network with arbitrary constant cost functions on edges. This case of the prob-
lem corresponds with the max-min paths problem on networks, which gener-
alizes classic combinatorial problems of the shortest and the longest paths in
weighted directed graphs. This max-min paths problem arose as an auxiliary
one when searching optimal stationary strategies of players in cyclic games. In
addition, we shall use the considered dynamic c-game for studying and solving
zero-sum control problem from Section 1.2. The main results are concerned
with the existence of polynomial-time algorithms for determining max-min
paths in networks as well as the elaboration of such algorithms.

Let G = (X,E) be a directed graph with vertex set X and edge set E.
Assume that G contains a vertex xf ∈ X such that it is attainable from each
vertex x ∈ X, i.e., xf is a sink in G. On edge set E, the function c : E → R is
given, which assigns a cost ce to each edge e ∈ E. In addition, the vertex set is
divided into two disjoint subsets XA and XB (X = XA ∪XB , XA ∩XB = ∅),
which we regard as position sets of two players.

On G, we consider a game of two players. The game starts at the position
x0 ∈ X. If x0 ∈ XA, then the move is done by the first player, otherwise it
is done by the second one. The move means the passage from the position x0

to the neighbor position x1 through the edge e1 = (x0, x1) ∈ E. After that,
if x1 ∈ XA, then the move is done by the first player, otherwise it is done by
the second one and so on. As soon as the final position is reached, the game
is over. The game can be finite or infinite. If the final position xf is reached
in finite time, then the game is finite. In the case when the final position xf
is not reached, the game is infinite. The first player in this game has the aim
to maximize

∑

i cei
whereas the second one has the aim to minimize

∑

i cei
.

Strictly the considered game in normal form can be defined as follows. We
identify the strategies sA and sB of players with the maps

sA : x→ y ∈ X(x) for x ∈ XA;
sB : x→ y ∈ X(x) for x ∈ XB ,

where X(x) represents the set of extremities of edges e = (x, y) ∈ E, i.e.,
X(x) = {y ∈ X|e = (x, y) ∈ E}. Because G is a finite graph, then the sets of
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strategies of players

SA = {sA : x→ y ∈ X(x) for x ∈ XA};
SB = {sB : x→ y ∈ X(x) for x ∈ XB}

are finite sets. The payoff function Hx0(sA, sB) on SA × SB is defined in the
following way.

Let be in G a subgraph Gs = (X,Es) generated by edges of form (x, sA(x))
for x ∈ XA and (x, sB(x)) for x ∈ XB . Then either a unique directed path
Ps(x0, xf ) from x0 to xf exists in Gs or such a path does not exist in Gs. In
the second case in Gs, there exists a unique directed cycle Cs, which can be
reached from x0.

For given sA and sB, we set

Hx0(sA, sB) =
∑

e∈E(Ps(x0,xf ))

ce,

if in Gs there exists a directed path Ps(x0, xf ) from x0 to xf , where E(Ps(x0,
xf )) is a set of edges of the directed path Ps(x0, xf ). If in G there is no directed
path from x0 to xf , then we define Hx0(sA, sB) as follows. Let P ′

s(x0, y0) be a
directed path, which connects the vertex x0 with the cycle Cs, and P ′

s(x0, y0)
has no other common vertices with Cs except y0. Then we put

Hx0(sA, sB) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

+∞, if
∑

e∈E(Cs)

ce > 0;

∑

e∈E(P ′
s(x0,y0))

ce, if
∑

e∈E(Cs)

ce = 0;

−∞, if
∑

e∈E(Cs)

ce < 0.

This game is related to zero-sum positional games of two players, and it
is determined by the graph G with the sink vertex xf , the partition X =
XA ∪ XB , the cost function c : E → R, and the starting position x0. We
denote the network, which determines this game, by (G,XA,XB , c, x0, xf ).

In [39,40], it is shown that if G does not contain directed cycles, then for
every x ∈ X the following equality holds

v(x) = max
sA∈SA

min
sB∈SB

Hx(sA, sB) = min
sB∈SB

max
sA∈SA

Hx(sA, sB), (16)

which means the existence of optimal strategies of players in the considered
game. Moreover, in [39, 40] it is shown that in G there exists a tree GT =
(X,E∗) with the sink vertex xf , which gives the optimal strategies of players
in the game for an arbitrary starting position x0 ∈ X. The strategies of players
are obtained by fixing

s∗A(x) = y, if (x, y) ∈ E∗ and x ∈ XA \ {xf};
s∗B(x) = y, if (x, y) ∈ E∗ and x ∈ XB \ {xf}.
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In the general case for an arbitrary graph G, equality (16) may fail to hold.
Therefore, we formulate necessary and sufficient conditions for the existence
of optimal strategies of players in this game and propose a polynomial-time
algorithm for determining the tree of max-min paths from every x ∈ X to xf .
Furthermore, we show that our max-min paths problem on the network can
be regarded as a zero value ergodic cyclic game. So, the proposed algorithm
can be used for solving such games.

In [34,35], the formulated game on network (G,XA,XB , c, x0, xf ) is named
the dynamic c-game. Some preliminary results related to this problem have
been obtained in [39,40]. More general models of positional games on networks
with p players have been studied in [43].

12.2 Algorithm for Solving the Problem on Acyclic Networks

The formulated problem for acyclic networks has been studied in [35,39,40].
Let G = (X,E) be a finite directed graph without directed cycles and a

given sink vertex xf . The partition X = XA ∪ XB (XA ∩ XB = ∅) of the
vertex set of G is given, and the cost function c : E → R on edges is defined.
We consider the dynamic c-game on G with a given starting position x ∈ X.

It is easy to observe that for fixed strategies of players sA ∈ SA and
sB ∈ SB , the subgraph Gs = (X,Es) has a structure of directed tree with sink
vertex xf ∈ X. This means that the value Hx(sA, sB) is determined uniquely
by the sum of edge costs of the unique directed path Ps(x, xf ) from x to xf . In
[39,40], it is proved that for acyclic c-game on network (G,XA,XB , c, x0, xf ),
there exist the strategies of players s∗A, s∗B such that

v(x) = Hx(s∗A, s
∗
B) = max

sA∈SA

min
sB∈SB

Hx(sA, sB) = min
sB∈SB

max
sA∈SA

Hx(sA, sB)

(17)
and s∗A, s∗B do not depend on starting position x ∈ X, i.e., (17) holds for every
x ∈ X.

The equality (17) is evident in the case when ext(c, x) = 0, ∀x ∈ X \{xf},
where

ext(c, x) =

⎧

⎨

⎩

max
y∈X(x)

c(x,y), x ∈ XA;

min
y∈X(x)

c(x,y), x ∈ XB .

In this case, v(x) = 0, ∀x ∈ X, and the optimal strategies of players can be
obtained by fixing the maps s∗A : XA \ {xf} → X and s∗B : XB \ {xf} → X
such that s∗A ∈ VEXT(c, x) for x ∈ XA \ {xf} and s∗B ∈ VEXT(c, x) for
x ∈ XB \ {xf}, where

VEXT(c, x) = {y ∈ X(x)|c(x,y) = ext(c, x)}.

If the network (G,XA,XB , c, x0, xf ) has the property that ext(c, x) = 0,
∀x ∈ X \ {xf}, then it is named the network in canonic form. So, for the
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acyclic c-game on network in canonic form, equality (17) holds and v(x) = 0,
∀x ∈ X.

In the general case, equality (17) can be proved by using properties of
the potentional transformation c′(x,y) = c(x,y) + ε(y) − ε(x) on edges e =
(x, y) of the network, where ε : X → R is an arbitrary real function on X
(the potentional transformation for positional games has been introduced in
[5, 35]). The fact is that such transformation of the costs on edges of the
acyclic network in c-game does not change the optimal strategies of players,
although values v(x) of positions x ∈ X are changed by v(x) + ε(xf )− ε(x).
It means that for an arbitrary function ε : X → R, the optimal strategies
of the players in acyclic c-games on the networks (G,XA,XB , c, x0, xf ) and
(G,XA,XB , c

′, x0, xf ) are the same.
Taking into account that the vertices x ∈ X of the acyclic graph G can be

numbered with 1, 2, . . . , |X|, such that if x > y, then in G there is no directed
path from y to x. Therefore, we can use the following recursive formula

ε(xf ) = 0;

ε(x) =

⎧

⎨

⎩

max
y∈X(x)

{c(x,y) + ε(y)} for x ∈ XA \ {xf};
min

y∈X(x)
{c(x,y) + ε(y)} for x ∈ XB \ {xf}

(18)

to tabulate the values ε(x), ∀x ∈ X. It is evident that the transformation
c′(x,y) = c(x,y) + ε(y) − ε(x) satisfies condition ext(c′, x) = 0, ∀x ∈ X. This
means that the following theorem holds.

Theorem 11. For an arbitrary acyclic network (G,XA,XB , c, x0, xf ) with a
sink vertex xf , there exists a function ε : X → R, which determines the
potentional transformation c′(x,y) = c(x,y) + ε(y) − ε(x) on edges e = (x, y)
such that the network (G,XA,XB , c, x0, xf ) has the canonic form. The values
ε(x), x ∈ X, which determine function ε : X → R, can be found by using
recursive formula (18).

On the basis of this theorem, the following algorithm for determining
optimal strategies of players in the c-game is proposed in [35].

Algorithm 11. Determining Optimal Strategies of Players on an
Acyclic Network

1. Find the values ε(x), x ∈ X, according to recursive formula (18) and the
corresponding potentional transformation c′(x,y) = c(x,y) + ε(y)− ε(x) on
edges (x, y) ∈ E.

2. Fix arbitrary maps s∗A(x) ∈ VEXT(c′, x) for x ∈ XA \ {xf} and s∗B(x) ∈
VEXT(c′, x) for x ∈ XB \ {xf}.

Remark 6. The values ε(x), x ∈ X, represent the values of the acyclic c-game
on (G,XA,XB , c, x0, xf ) with starting position x, i.e., ε(x) = v(x), ∀x ∈ X.
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Algorithm 11 needs O(|X|2) elementary operations because the tabulation of
the values ε(x), x ∈ X, using formula (18) for acyclic networks needs this
number of operations.

12.3 The Main Results for the Problem on an Arbitrary Network

First of all, we give an example showing that equality (16) may fail to hold.
On Fig. 4 is given the network with the starting position x0 = 1 and the final
position xf = 4, where positions of the first player are represented by circles
and positions of the second player are represented by squares; values of cost
functions on edges are given alongside them.

It is easy to observe that

max
sA∈SA

min
sB∈SB

H1(sA, sB) = 2, min
sB∈SB

max
sA∈SA

H1(sA, sB) = 3.

The following theorem gives conditions for the existence of settle point
with finite v(x) for each x ∈ X in the c-game.

Theorem 12. Let (G,XA,XB , c, x0, xf ) be an arbitrary network with the sink
vertex xf ∈ X. Moreover, let us consider that

∑

e∈E(Cs) ce 	= 0 for every di-
rected cycle Cs from G. Then for the c-game on (G,XA,XB , c, x0, xf ), condi-
tion (16) holds for every x ∈ X if and only if there exists a function ε : X →
R, which determines the potentional transformation c′(x,y) = c(x,y)+ε(y)−ε(x)
on edges (x, y) ∈ E such that ext(c′, x) = 0, ∀x ∈ X. If

∑

e∈E(Cs) ce 	= 0
for every directed cycle and in G there exists the potentional transformation
c′(x,y) = c(x,y) + ε(y)− ε(x) on edges (x, y) ∈ E, then ε(x) = v(x), ∀x ∈ X.

Proof. =⇒ Let us consider that
∑

e∈E(Cs) ce 	= 0 for every directed cycle
Cs in G and condition (16) holds for every x ∈ X. Moreover, we consider
that v(x) is a finite value for every x ∈ X. Taking into account that the
potentional transformation does not change the cost of cycles, we obtain that
this transformation does not change optimal strategies of players although
values v(x) of positions x ∈ X are changed by v(x)− ε(x) + ε(xf ). It is easy
to observe that if we put ε(x) = v(x) for x ∈ X, then the function ε : X → R
determines the potentional transformation c′(x,y) = c(x,y)+ε(y)−ε(x) on edges
(x, y) ∈ E such that ext(c′, x) = 0, ∀x ∈ X.

3

2

2

2

3

1 4

−1

−2

Figure 4. The network for which saddle point may not exist
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⇐= Let us consider that there exists the potentional transformation
c′(x,y) = c(x,y) + ε(y) − ε(x) on edges (x, y) ∈ E such that ext(c′, x) = 0,
∀x ∈ X. The value v(x) of the game after the potentional transformation
is zero for every x ∈ X, and optimal strategies of players can be found by
fixing s∗A and s∗B such that s∗A(x) ∈ VEXT(c′, x) for x ∈ XA \ {xf} and
s∗B(x) ∈ VEXT(c′, x) for x ∈ XB \ {xf}. Because the potentional transforma-
tion does not change optimal strategies of players, we put v(x) = ε(x)−ε(xf )
and obtain (16).

Corollary 6. The values v(x), x ∈ X, can be found as follows: v(x) = ε(x)−
ε(xf ), i.e., the difference ε(x)−ε(xf ) is equal to the cost of the max-min path
from x to xf . If ε(xf ) = 0, then v(x) = ε(x), ∀x ∈ X.

Corollary 7. If for every directed cycle Cs in G the condition
∑

e ce 	= 0
holds, then the existence of the potentional transformation c′(x,y) = c(x,y) +
ε(y)− ε(x) on edges (x, y) ∈ E such that

ext(c′, x) = 0,∀x ∈ X (19)

represents necessary and sufficient conditions for validity of equality (16) for
every x ∈ X. In the case when in G there exists cycle Cs with

∑

e∈E(Cs) ce = 0,
condition (19) becomes only necessary one for validity of equality (16) for
every x ∈ X.

Corollary 8. If in the c-game there exist the strategies s∗A and s∗B, for which
(16) holds for every x ∈ X, and these strategies generate in G a tree
Ts∗ = (X,Es∗) with the sink vertex xf , then there exists the potentional trans-
formation c′(x,y) = c(x,y) + ε(y)− ε(x) on edges (x, y) ∈ E such that the graph
G0 = (X,E0), generated by the set of edges E0 = {(x, y) ∈ E | c′(x,y) = 0},
contains the tree Ts∗ as a subgraph.

Taking into account the above-mentioned results, we propose the following
algorithm for determining the optimal strategies of players in the c-game based
on the constructing of the tree of min-max paths if such a tree exists in G.

Algorithm 12. Determining Optimal Strategies of Players on an
Arbitrary Network

Preliminary step (step 0): Set X∗ = {xf}, ε(xf ) = 0.
General step (step k, k ≥ 1): Find the set of vertices

X ′ = {x ∈ X \X∗ | (x, y) ∈ E, y ∈ X∗}.

For each x ∈ X ′ calculate

ε(x) =

⎧

⎨

⎩

max
y∈XX∗ (x)

{ε(y) + c(x,y)}, x ∈ XA ∩X ′;

min
y∈XX∗ (x)

{ε(y) + c(x,y)}, x ∈ XB ∩X ′,
(20)
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where XX∗(x) = {y ∈ X∗ | (x, y) ∈ E}. Then in X∗ ∪X ′ find the subset

Uk =
{

x ∈ X∗ ∪X ′
∣

∣

∣ ext
y∈XX∗∪X′ (x)

{ε(y)− ε(x) + c(x,y)} = 0
}

and change X∗ by Uk, i.e., X∗ = Uk. After that we check X∗ = X? If
X∗ 	= X, then go to the next step. If X∗ = X, then define the potentional
transformation c′(x,y) = c(x,y) + ε(y) − ε(x) on edges (x, y) ∈ E and find the
graph G0 = (X,E0), generated by the set of edges E0 = {(x, y) ∈ E|c′(x,y) =
0}. In G0, fix an arbitrary tree GT = (X,E∗), which determines the optimal
strategies of players as follows:

s∗A(x) = y, if (x, y) ∈ E∗ and x ∈ XA \ {xf};
s∗B(x) = y, if (x, y) ∈ E∗ and x ∈ XB \ {xf}.

Now let us show that this algorithm finds the tree of max-min paths GT =
(X,E∗) if such a tree exists in G.

Denote by Xi the subset of X, where x ∈ Xi if in GT there exists the
directed path PT (x, x0) from x to x0 that contains i edges, i.e., Xi = {x ∈
X
∣

∣

∣ |E(PGT (x, x0))| = i}. So, X = X0 ∪X1 ∪X2 ∪ · · · ∪Xr (Xi ∩Xj = ∅),
where X0 = {xf} and Xi, i ∈ {1, 2, . . . , r}, represents level i of the vertex
set of GT . If in G there exist several max-min trees GT1 = (X,E∗

1 ), GT2 =
(X,E∗

2 ), . . . , GTq = (X,E∗
q ), then we select the one that has r = min

1≤i≤q
ri

number of levels.

Theorem 13. If in G there exists a tree of max-min path GT = (X,E∗) with
the sink vertex xf , then Algorithm 12 finds it using k = r iterations. The
running time of the algorithm is O(|X|3).

Proof. We prove the theorem by using the induction principle on number r
of levels of max-min tree. If r = 1, the theorem is evident. Assume that the
theorem is true for any r ≤ q and let us show that it is true for r = q + 1.

Denote by X0,X1, . . . , Xr the level sets of the tree GT = (X,E∗), X =
X0 ∪X1 ∪X2 ∪ · · · ∪Xr (Xi ∩Xj = ∅). It is easy to observe that if we delete
from GT the vertex set Xr and corresponding pendant edges e = (x, y) for
every x ∈ Xr, then we obtain a tree GT

∗
= (X,E

∗
), X = X \Xr. This tree

GT
∗

represents the tree of max-min paths for the subgraph G = (X,E) of G
generated by vertex set X.

If we apply Algorithm 12 with respect toG, then according to the induction
principle we find the tree of max-min paths GT

∗
, which determines ε : X → R

and the potentional transformation c(x,y) = c(x,y) − ε(x) + ε(y) on edges
(x, y) ∈ E such that ext(c′, y) = 0, ∀y ∈ X. So, Algorithm 12 on G determines
uniquely the values ε(x) according to (20).

It is easy to observe that in G, an arbitrary vertex x ∈ Xr determined on
the basis of (20) satisfies the condition:
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ε(x) =

⎧

⎨

⎩

max
y∈X(x)

{ε(y) + c(x,y)}, x ∈ Xr ∩XA;

min
y∈X(x)

{ε(y) + c(x,y)}, x ∈ Xr ∩XB .

This means that if we apply Algorithm 12 on G, then after r−1 iterations the
vertex set Ur−1 coincides with X \Xr. So, Algorithm 12 determines uniquely
the values ε(x), x ∈ X. Nevertheless, here we have to note that in the process
of the algorithm Xk ⊂ Uk and Xk may differ from Uk for some k = 1, 2, . . . , r.

Taking into account that one iteration of the general step of the algorithm
needs O(|X|2) elementary operations and k ≤ r (r ≤ |X|), we obtain that the
running time of the algorithm is O(|X|3).

Remark 7. The considered max-min paths problem can be used for the zero-
sum control problem with alternate players control (see Corollary 2). For
p = 2 on the basis of construction from Section 11, we obtain the network
(G,Z1, Z2, c, z0, zf ), where G = (Z,E), Z = Z1 ∪ Z2 (Z1 ∩ Z2 = ∅), and
c = c1e = −c2e, ∀e ∈ E. This network determines the max-min paths prob-
lem, solution of which corresponds with the solution of the zero-sum control
problem.

13 Polynomial Time Algorithm for Solving Acyclic
l-Game on Networks

Acyclic l-game on networks has been introduced in [35, 36] as an auxiliary
problem for studying and solving cyclic games, which we will consider in the
next section.

13.1 Problem Formulation

Let (G,XA,XB , c) be a network, where G = (X,E) represents a directed
acyclic graph with the sink vertex xf ∈ X. On E is defined a function
c: E → R and on X is given a partition X = XA ∪ XB (XA ∩ XB = ∅)
where XA and XB correspond with positions sets of two players A and B,
respectively.

We consider the following acyclic game from [35]. Again, we define the
strategies of players as maps

sA: x→ y ∈ X(x) for x ∈ XA \ {xf};
sB : x→ y ∈ X(x) for x ∈ XB \ {xf}.

We define the payoff function Hx0 : SA × SB → R in this game as follows.
Let sA ∈ SA and sB ∈ SB be fixed strategies of players. Then the graph

Gs = (X,Es), generated by edges (x, sA(x)), x ∈ X \ {xf}, and (x, sB(x)),
x ∈ X\{xf}, has a structure of directed tree with the sink vertex xf . Therefore
it contains a unique directed path Ps(x0, xf ) with n(Ps(x0, xf )) edges. We put
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Hx0(sA, sB) =
1

n(Ps(x0, xf ))

∑

e∈E(Ps(x0,xf ))

ce.

The payoff function Hx0(sA, sB) on SA × SB defines a game in normal
form, which is determined by the network (G,XA,XB , c, x0, xf ).

We consider the problem of finding the strategies s∗A and s∗B , for which

v(x0) = Hx0(s
∗
A, s

∗
B) = max

sA∈SA

min
sB∈SB

Hx0(sA, sB).

13.2 The Main Properties of Optimal Strategies in Acyclic
l-Games

First of all, let us show that for the considered max-min problem there exists
a saddle point.

Denote

v(x0) = Hx0(s
0
A, s

0
B) = min

sB∈SB

max
sA∈SA

Hx0(sA, sB)

and let us show that v(x0) = v(x0).

Theorem 14. For an arbitrary acyclic l-game, the following equality holds:

v(x0) = Hx0(s
∗
A, s

∗
B) = max

sA∈SA

min
sB∈SB

Hx0(sA, sB) = min
sB∈SB

max
sA∈SA

Hx0(sA, sB)

Proof. First of all, let us note the following property of acyclic l-game,
determined by (G,XA,XB , c, x0, xf ): If the cost function c is changed by
c′ = c+h (h is an arbitrary real number), then we obtain an equivalent acyclic
l-game determined by (G,XA,XB , c

′, x0, xf ) for which v′(x0) = v(x0)+h and
v
′′(x0) = v(x0)+h. It is easy to observe that if h = −v(x0), then for the acyclic
l-game with network (G,XA,XB , c

′, x0, xf ) we obtain v′(x0) = 0. This means
that acyclic l-game becomes acyclic c-game for which the following property
holds:

0 = v′(x0) = max
sA∈SA

min
sB∈SB

H
′
x0

(sA, sB) = min
sB∈SB

max
sA∈SA

H
′
x0

(sA, sB) = 0.

Taking into account that

H
′
x0

(sA, sB) = Hx0(sA, sB)− v(x0)

we obtain that

min
sB∈SB

max
sA∈SA

(

Hx0(sA, sB)− v(x0)
)

= max
sA∈SA

min
sB∈SB

(

Hx0(sA, sB)− v(x0)
)

= v(x0)− v(x0),

i.e. v(x0)− v(x0) = 0. So, v(x0) = v(x0).
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Theorem 15. Let be given an acyclic l-game determined by the network
(G,XA,XB , c, x0, xf ) with the starting position x0. Then there exists the value
v(x0) and the function ε: X → R, which determines the potential transforma-
tion c′(x,y) = c(x,y) + ε(x)− ε(y) of costs on edges e = (x, y) ∈ E such that the
following conditions hold

(a) v(x0) = ext(c′, x), ∀x ∈ X \ {xf};
(b) ε(x0) = ε(xf ).

The optimal strategies of players in acyclic l-game can be found as follows:
fix the arbitrary maps s∗A: XA \ {xf} → X and s∗B: XB \ {xf} → X such
that s∗A(x) ∈ VEXT(c′, x) for x ∈ XA \ {xf} and s∗B(x) ∈ VEXT(c′, x) for
x ∈ XB \ {xf}.

Proof. The proof of the theorem follows from Theorem 11 if we regard the
acyclic l-game as acyclic c-game on network (G,XA,XB , c

′, x0, xf ) with the
cost function c′ = c− v(x0).

Corollary 9. The difference ε(x)−ε(x0), x ∈ X, represents the costs of max-
min path from x to xf in the acyclic c-game on network (G,XA,XB , c

′, x0, xf )
with c′(x,y) = c(x,y) − v(x0), ∀(x, y) ∈ E.

13.3 Polynomial Time Algorithm for Finding the Value
and the Optimal Strategies in the Acyclic l-Game

The algorithm, which we describe below, is based on results from Section 13.2.
In this algorithm, we shall use the following properties:

1. The value v(x0) of acyclic l-game on network (G,XA,XB , c, x0, xf ) is
nonnegative if and only if the value v(x0) of acyclic l-game on network
(G,XA,XB , c, x0, xf ) is nonnegative; moreover v(x0) = 0 if and only if
v(x0) = 0.

2. If M1 = mine∈E ce and M2 = maxe∈E ce, then M1 ≤ v(x0) ≤M2.
3. If in the network (G,XA,XB , c, x0, xf ) the cost function c : E → R is

changed by the function ch : E → R, where

che = ce − h, ∀e ∈ E (21)

(h isanarbitraryconstant),thentheacyclic l-gameson(G,XA,XB , c, x0, xf )
and (G,XA,XB , c

h, x0, xf ), respectively, have the same optimal strate-
gies s∗A, s∗B. In addition, the values v(x0) and vh(x0) of these games
differ by a constant h: vh(x0) = v(x0) − h. So, the acyclic l-games on
(G,XA,XB , c, x0, xf ) and (G,XA,XB , c

h, x0, xf ) are equivalent.
According to the above-mentioned properties, if v(x0) is known, then
the acyclic l-game can be reduced to the acyclic c-game by using shift
transformation (18) with h = v(x0). After that, we can find the op-
timal strategies in the game with network (G,XA,XB , c

h, x0, xf ) by
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using Algorithm 11. The most important moment for us in the pro-
posed algorithm represents the problem of finding value h, for which
vh(x0) = 0. Taking into account properties 1 and 2, we will seek for
this value by using dichotomy method on segment [M1,M2], such that
at each step of this method we will solve a dynamic c-game with network
(G,XA,XB , c

k, x0, xf ), where ck = c − hk. The main idea of the general
step of the algorithm is the following. We make shift transformation (21)
with h = hk, where hk is a midpoint of the segment [M1

k ,M
2
k ] at step k.

After that, we apply Algorithm 11 for the dynamic c-game on network
(G,XA,XB , c

hk , x0, xf ) and find vhk
(x0). If vhk

(x0) > 0, then we fix seg-
ment [M1

k+1,M
2
k+1], where M1

k+1 = M1
k and M2

k+1 = M1
k+M2

k

2 ; otherwise

we put M1
k+1 = M1

k+M2
k

2 and M2
k+1 = M2

k . If vhk
(x0) = 0 then STOP.

Algorithm 13. Determining the Value and Optimal Strategies in an
Acyclic l-Game

Preliminary step (step 0): Find the value v(x0) and optimal strategies s∗A
and s∗B of the dynamic c-game on (G,XA,XB , c, x0, xf ) by using Algorithm
11. If v(x0) = 0, then fix s∗A and s∗B as the solution of l-game, put v(x0) = 0,
and STOP; otherwise fixM1

1 = mine∈E ce,M2
1 = maxe∈E ce, L = maxe∈E |ce|.

General step (step k, k ≥ 1): Find hk = M1
k+M2

k

2 and make the shift
transformation of edges costs

cke = ce − hk for e ∈ E.

Solve the dynamic c-game on network (G,XA,XB , c
k, x0, xf ) and find the

value vk(x0) and the optimal strategies s∗A, s∗B . If vk(x0) = 0, then fix the
optimal strategies s∗A and s∗B and put v(x0) = hk. If |vk(x0)| ≤ 1

4|X|2L , then

fix s∗A and s∗B ; find v(x0) = Hx0 (s∗A,s∗B)

n(Ps∗ (x0,xf )) and STOP. If vk(x0) > 1
4|X|2L ,

then fix M1
k+1 = M1

k , M2
k+1 = hk and go to step k + 1. If vk(x0) < − 1

4|X|2L ,
then fix M1

k+1 = hk, M2
k+1 = M2

k and go to step k + 1.

Theorem 16. Let (G,XA,XB , c, x0, xf ) be a network with integer cost func-
tion c : E → R, and L = maxe∈E |ce|. Then Algorithm 13 finds correctly the
value v(x0) and optimal strategies s∗A, s∗B in the acyclic l-game. The running
time of the algorithm is O(|X|2 logL+ 2|X|2 log |X|).
Proof. Let (G,XA,XB , c

k, x0, xf ) be a network after final step k of
Algorithm 13. Then

|vk(x0)| ≤
1

4|X|2L
and the number εk(x), x ∈ X, determined according to Algorithm 11 (when
we solve acyclic c-game), represents the approximation solution of the system

⎧

⎨

⎩

ε(y)− ε(x) + ck(x,y) ≤ 0 for x ∈ XA, (x, y) ∈ E;
ε(y)− ε(x) + ck(x,y) ≥ 0 for x ∈ XB , (x, y) ∈ E;
ε(x0) = ε(xf ).
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This means that εk(x), x ∈ X, and hk represent the approximative solution
of the system

⎧

⎨

⎩

ε(y)− ε(x) + c(x,y) ≤ h for x ∈ XA, (x, y) ∈ E;
ε(y)− ε(x) + c(x,y) ≥ h for x ∈ XB , (x, y) ∈ E;
ε(x0) = ε(xf ).

According to [29, 30], the exact solution h = v(x), ε(x), x ∈ X, of this sys-
tem can be obtained from hk, εk(x), x ∈ X, by using the special round-off
procedure in time O(log(L + 1)). Therefore, the strategies s∗A, s∗B after the
final step k of the algorithm correspond with the optimal solution of acyclic
l-game.

Taking into account that the tabulation of values ε(x), x ∈ X, in G
needs O(|X|2) operations and the number of iterations of the algorithm is
O(log(L+ 1) + 2 log |X|), we obtain that the running time of the algorithm is
O(|X|2 log(L+ 1) + 2|X|2 log |X|).

14 Cyclic Games: Algorithms for Finding the Value
and the Optimal Strategies of Players

Cyclic games have been introduced in [15,24,51] as extension of control models
for discrete systems with infinite time horizon and mean integral-time cost by
a trajectory. Here we show that the problem of finding optimal strategies of
players in such games is tightly connected with the problem of finding optimal
strategies of players in the dynamic c-game and the acyclic l-game. On the
basis of these results, we propose algorithms for determining the value and
the optimal strategies in cyclic games.

14.1 Problem Formulation and the Main Properties

Let G = (X,E) be a finite directed graph in which every vertex x ∈ X has
at least one leaving edge e = (x, y) ∈ E. On edge set E is given a function
c: E → R, which assigns a cost ce to each edge e ∈ E. In addition, the vertex
set X is divided into two disjoint subsets XA and XB (X = XA ∪XB , XA ∩
XB = ∅), which we will regard as positions sets of two players.

On G, we consider the following two-person game from [15, 24, 64, 66].
The game starts at position x0 ∈ X. If x0 ∈ XA, then the move is done by
the first player, otherwise it is done by the second one. The move means the
passage from the position x0 to the neighbor position x1 through the edge
e1 = (x0, x1) ∈ E. After that, if x1 ∈ XA, then the move is done by the first
player, otherwise it is done by the second one and so on indefinitely. The first

player has the aim to maximize lim
t→∞

inf
1
t

t
∑

i=1

cei
whereas the second player

has the aim to minimize lim
t→∞

sup
1
t

t
∑

i=1

cei
.
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In [15], it is proved that for this game there exists a value v(x0) such that
the first player has a strategy of moves that ensures limt→∞ inf 1

t

∑t
i=1 cei

≥
v(x0) and the second player has a strategy of moves that ensures
limt→∞ sup 1

t

∑t
i=1 cei

≤ v(x0). Furthermore, in [15] it is shown that the
players can achieve the value v(x0) applying the strategies of moves that do
not depend on t. This means that the considered game can be formulated
in the terms of stationary strategies. Such statement of the game in [24] is
named the cyclic game.

The strategies of players in the cyclic game are defined as maps

sA: x→ y ∈ X(x) for x ∈ XA,
sB : x→ y ∈ X(x) for x ∈ XB ,

where X(x) = {y ∈ X | e = (x, y) ∈ E}. Because G is a finite graph, then the
sets of strategies of players

SA = {sA: x→ y ∈ X(x) for x ∈ XA};
SB = {sB : x→ y ∈ X(x) for x ∈ XB}

are finite sets. The payoff function Hx0 : SA × SB → R in the cyclic game is
defined as follows.

Let sA ∈ SA and sB ∈ SB be fixed strategies of players. Denote by Gs =
(X,Es) the subgraph of G generated by edges of form (x, sA(x)) for x ∈ XA

and (x, sB(x)) for x ∈ XB . Then Gs contains a unique directed cycle Cs,
which can be reached from x0 through the edges e ∈ Es. We consider that the
value Hx0(sA, sB) is equal to mean edges cost of cycle Cs, i.e.,

Hx0(sA, sB) =
1

n(Cs)

∑

e∈E(Cs)

ce,

where E(Cs) represents the set of edges of cycle Cs and n(Cs) is a number of
the edges of Cs. So, the cyclic game is determined uniquely by the network
(G,XA,XB , c) and the starting position x0. In [15,24], it is proved that there
exist the strategies s∗A ∈ SA and s∗B ∈ SB such that

v(x) = Hx(s∗A, s
∗
B) = max

sA∈SA

min
sB∈SB

Hx(sA, sB)

= min
sB∈SB

max
sA∈SA

Hx(sA, sB),∀x ∈ X.

So, the optimal strategies s∗A, s
∗
B of players in cyclic games do not depend on a

starting position x0, although for different positions x, y ∈ X the values v(x)
and v(y) may be different. It means that the positions set X can be divided
into several classes X = X1 ∪X2 ∪ · · · ∪Xk according to values of positions
v1, v2, . . . , vk, i.e., x, y ∈ Xi if and only if vi = v(x) = v(y). In the case k = 1
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the network (G,XA,XB , c) is named the ergodic network [24]. In [34,39], it is
shown that every cyclic game with an arbitrary network (G,XA,XB , c) and
a given starting position x0 can be reduced to a cyclic game on an auxiliary
ergodic network (G′,X ′

A,X
′
B , c

′).
It is well-known [28, 66] that the decision problem associated with cyclic

game is inNP
⋂

co-NP . Some exponential and pseudo-polynomial algorithms
for finding the value and the optimal strategies of players in cyclic game are
proposed in [66]. Our aim is to propose polynomial time algorithms for deter-
mining optimal strategies of players in cyclic games. We argue such algorithms
on the basis of results that have been announced in [39,40].

14.2 Determining the Best Response of the First Player
for the Fixed Strategy of the Second One

In order to find the best response of the first player for the fixed strategy of
the second one, we shall use the model from Section 14.1 in the case XB = ∅,
i.e., X = XA. This case of the model corresponds with the problem of finding
in G the maximal mean cost cycle, which can be reached from x0. An efficient
polynomial time algorithm for finding maximal mean cost cycle in a weighted
directed graph is proposed in [11, 27]. In [34, 61, 62], it is shown that for a
strongly connected graph, this problem can be represented as the following
linear programming problem:
to maximize the object function

H =
∑

e∈E
ceαe

on subject
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

e∈E−(x)

αe −
∑

e∈E+(x)

αe = 0, ∀x ∈ X;

∑

e∈E
αe = 1;

αe ≥ 0, e ∈ E,
where E−(x) is a set of edges e = (y, x) ∈ E, which have their extremities in
x, and E+(x) is a set of edges e = (x, y) ∈ E, originated in x. The variable
αe is associated with each edge e ∈ E.

An arbitrary admissible solution α of the considered linear programming
problem determines in G a flow circulation with the constant (equal to 1) sum
of flow values by edges of the directed weighted graphG. It is easy to show that
any admissible solution of the linear programming problem can be represented
in the form of convex combination of flow values of elementary directed cycles
with the constant (equal to 1) sum of flow values by edges of these cycles.
Thus, associating to each solution α of polyhedral admissible set Zα of the
problem the directed subgraph Gα = (Xα, Eα) generated by the edges e ∈ E
with αe > 0, we obtain that any of the extreme points α′ of the polyhedral
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set Zα will correspond with the subgraph Gα′ of G, which has the structure
of an elementary directed cycle. So, the following lemma holds.

Lemma 4. If α′ is a solution of the problem, which corresponds with an ex-
treme point of Zα, then the graph Gα′ represents an elementary cycle in G.

On the basis of this lemma in [34,61], the following theorem is proved.

Theorem 17. If α∗ is an optimal basic solution of the considered linear pro-
gramming problem, then the cycle Eα∗ is the maximal mean cost cycle in G.

So, the problem of finding the maximal mean cost cycle in G can be found
by using the polynomial algorithm. Moreover, on the basis of the duality
theory, we can find the condition for determining the value v of maximal
mean cycle and the solution. Indeed, if for our linear programming problem
we define the dual problem:
to minimize

z = v

on subject
ε(x)− ε(y) + v ≥ c(x,y), ∀(x, y) ∈ E,

then we obtain the following result, which is similar to the one from [5].

Theorem 18. For a given strongly connected directed graph G = (X,E),
there exist the value v and the function ε : X → R such that

c′(x,y) = ε(y)− ε(x) + c(x,y) − v ≤ 0, ∀(x, y) ∈ E
and

max
y∈X(x)

c′(x,y) = 0, ∀x ∈ X.

Moreover, if we fix in G an arbitrary map s∗ : x → y ∈ X(x) such that
c′(x,s(x)) = 0, ∀x ∈ X, then an arbitrary directed cycle C in Gα∗ = (X,Eα∗)
is a solution of the problem.

Let us show that if sB is an arbitrary fixed strategy of the second player,
then the best response s∗A of the first player can be found by using the approach
described above. Indeed, if the second player fixes his strategy sB , then this
means that inG the set of edges EsB

= {(x, sB(x))|x ∈ XB} is fixed. Therefore
we obtain the subgraph G = (X,E), where E = EA ∪ EsB

, where EA =
{(x, y) ∈ E|x ∈ XA}, and in order to obtain the best response of the first
player, we have to find in this graph the maximal mean cost cycle, which
corresponds with solution

s∗A : Hx(s∗A, sB) = max
sA

Hx(sA, sB) for ∀x ∈ X.

The approach based on the alternate best response of players in cyclic
games of course can be used for solving some classes of cyclic games. But
such approach cannot be estimated from the computational point of view.
Therefore in the following, we will propose another approach for determining
the optimal strategies in cyclic games.
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14.3 Some Preliminary Results

First of all, we need to recall some preliminary results from [24,34,35,39,40].
Let (G,XA,XB , c) be a network with the properties described in

Section 14.1. In the analogous way as for dynamic c-games, here we denote

ext(c, x) =

⎧

⎨

⎩

max
y∈X(x)

c(x,y) for x ∈ XA,

min
y∈X(x)

c(x,y) for x ∈ XB ,

VEXT(c, x) = {y ∈ X(x) | c(x,y) = ext(c, x)}.
We shall use the potential transformation c′(x,y) = c(x,y) +ε(y)−ε(x) for costs
on edges e = (x, y) ∈ E, where ε: X → R is an arbitrary function on the
vertex set X. In [24], it is noted that the potential transformation does not
change the value and the optimal strategies of players in cyclic games.

Theorem 19. Let (G,XA,XB , c) be an arbitrary network with the properties
described in Section 14.1. Then there exists the value v(x), x ∈ X and the
function ε: X → R, which determines the potential transformation c′(x,y) =
c(x,y) + ε(y)− ε(x) for costs on edges e = (x, y) ∈ E, such that the following
properties hold

(a) v(x) = ext(c′, x) for x ∈ X,
(b) v(x) = v(y) for x ∈ XA ∪XB and y ∈ VEXT(c′, x),
(c) v(x) ≥ v(y) for x ∈ XA and y ∈ XG(x),
(d) v(x) ≤ v(y) for x ∈ XB and y ∈ XG(x),
(e) max

e∈E
|c′e| ≤ 2|X|max

e∈E
|ce|.

The values v(x), x ∈ X on network (G,XA,XB , c) are determined uniquely
and the optimal strategies of players can be found in the following way: fix
the arbitrary strategies s∗A: XA → X and s∗B: XB → X such that s∗A(x) ∈
VEXT(c′, x) for x ∈ XA and s∗B(x) ∈ VEXT(c′, x) for x ∈ XB.

The proof of Theorem 19 is given in [24].
Further, we shall use Theorem 19 in the case of the ergodic network

(G,X1,X2, c), i.e., we shall use the following corollary.

Corollary 10. Let (G,XA,XB , c) be an ergodic network. Then there exists
the value v and the function ε: X → R, which determines the potential trans-
formation c′(x,y) = c(x,y) + ε(y) − ε(x) for costs of edges e = (x, y) ∈ E such
that v = ext(c′, x) for x ∈ X. The optimal strategies of players can be found
as follows: fix arbitrary strategies s∗A: XA → X and s∗B: XB → X such that
s∗A(x) ∈ VEXT(c′, x) for x ∈ XA and s∗B(x) ∈ VEXT(c′, x) for x ∈ XB.
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14.4 The Reduction of Cyclic Games to Ergodic Ones

Let us consider an arbitrary network (G,XA,XB , c) with the given starting
position x0 ∈ X, which determines a cyclic game. In [34,39], it is shown that
this game can be reduced to a cyclic game on an auxiliary ergodic network
(G′,WA,WB , c), G′ = (W,E′) in which the value v(x0) is preserving and
x0 ∈W = X ∪ U ∪ Z.

The graph G′ = (W,E′) is obtained from G if each edge e = (x, y) is
changed by a triple of edges e1 = (x, u), e2 = (u, z), e3 = (z, y) with the costs
ce1 = ce2 = ce3 = ce. Here u ∈ U , z ∈ Z and x, y ∈ X; W = X ∪ U ∪ Z. In
addition, in G′ each vertex u is connected with x0 by edge (u, x0) with the
cost c(u,x0) = M (M is a great value) and each vertex z is connected with x0

by edge (z, x0) with the cost c(z,x0) = −M . In (G′,WA,WB , c), the sets WA

and WB are defined as follows: WA = XA ∪ Z; WB = XB ∪ U .
It is easy to observe that this reduction can be done in linear time.

14.5 Polynomial Time Algorithm for Solving Ergodic Zero-Value
Cyclic Games

Let us consider an ergodic zero-value cyclic game determined by the network
(G,XA,XB , c, x0), where G = (X,E). Then according to Theorem 19, there
exists the function ε : X → R, which determines the potentional transforma-
tion c′(x,y) = c(x,y) + ε(y)− ε(x) on edges (x, y) ∈ E such that

ext(c, x) = 0, ∀x ∈ X. (22)

This means that if xf is a vertex of the cycle Cs∗ determined by optimal
strategies s∗A and s∗B , then the problem of finding the function ε : X → R,
which determines the canonic potentional transformation, is equivalent to the
problem of finding the values ε(x), x ∈ X in max-min paths problem on G
with the sink vertex xf where ε(xf ) = 0.

So, in order to solve the zero-value cyclic game, we fix each time a vertex
x ∈ X as a sink vertex (xf = x) and solve a max-min paths problem on G with
the sink vertex xf . If for the given xf = x the function ε : X → R obtained
on the basis of Algorithm 12 determines the potentional transformation that
satisfies (22), then we fix s∗A and s∗B such that s∗A(x) ∈ VEXT(c′, x) for x ∈ XA

and s∗B(x) ∈ VEXT(c′, x) for x ∈ XB . If for the given x the function ε : X → R
does not satisfy (22), then we select another vertex x ∈ X as a sink vertex and
so on. This means that the optimal strategies of players in zero-value ergodic
cyclic games can be found in time O(|X|4).

14.6 Polynomial Time Algorithm for Determining the Value
and Optimal Strategies of Players in Ergodic Cyclic Games

Assume that the ergodic cyclic game is determined by the network
(G,XA,XB , c, x0), and the value of the game may be different from zero.
The graph G is assumed to be strongly connected.
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At first, we propose a polynomial time algorithm for determining the value
of this game and optimal strategies of players in the case when vertex x0

belongs to a max-min cycle induced by optimal strategies of players.
We consider an auxiliary dynamic c-game determined by an auxiliary net-

work (G,XA,XB ∪ {x′0}, c, x0, x
′
0), where the graph G = (X ∪ {x′0}, E) is

obtained from G by adding a copy x′0 of vertex x0 together with copies
e′ = (x, x′0) of edges e = (x, x0) ∈ E with costs ce′ = ce; for the rest of
the edges e ∈ E, costs ce and ce coincide. So, for x′0 in G, there are no leaving
edges (x′0, x).

It is evident that if the value v of the ergodic cyclic game on (G,XA,XB , c,
x0) is known, then the problem of finding the optimal strategies of play-
ers is equivalent to the problem of finding the min-max paths on network
(G,XA,XB ∪ {x′0}, c′, x0, x

′
0) with the cost function

c′e = ce − v(x0) for e ∈ E.

This means that if s∗A and s∗B are optimal strategies of players in the ergodic
cyclic game on (G,XA,XB , c, x0), then sA(x) = sA(x) for x ∈ XA \ {x0};
sB(x) = sB(x) for x ∈ XB \ {x0} are optimal strategies of players in the
dynamic c-game on (G,XA,XB ∪ {x′0}, c′, x0, x

′
0), where c′ = c− v.

In the analogous way as for acyclic l-game, here we may mention the
following properties.

1. The value v(x0) of the ergodic cyclic game on network (G,XA,XB , c, x0)
is nonnegative if and only if the value v(x0) of the dynamic c-game on
network (G,XA,XB ∪ {x′0}, c, x0, x

′
0) is nonnegative; moreover v(x0) = 0

if and only if v(x0) = 0.
2. If M1 = mine∈E ce and M2 = maxe∈E ce, then M1 ≤ v(x0) ≤M2.
3. If in networks (G,XA,XB , c, x0) and (G,XA,XB ∪ {x′0}, c, x0, x

′
0) cost

functions c : E → R and c : E → R are changed by c′ = c + h and
c = c′ + h, respectively, then the values v(x0) and v(x0) are changed by
v′(x0) = v(x0) + h and v′(x0) = v(x0) + h, respectively.
On the basis of these properties, we will seek for the unknown value
v(x0) = v(x), which we denote by h, using the dichotomy method on
segment [M1,M2] such that at each step of this method, we will solve
a dynamic c-game with network (G,XA,XB ∪ {x′0}, ch, x0, x

′
0), where

ch = c − h. So, the main idea of the general step of the algorithm is
the following. We make shift transformation

ck = c− hk for e ∈ E,

where hk is a midpoint of segment [M1
k ,M

2
k ] at step k. After that, we

apply Algorithm 12 for the dynamic c-game on network (G,XA,XB ∪
{x′0}, ch, x0, x

′
0) and find vhk

(x0). If vhk
(x0) > 0, then we fix segment

[M1
k+1,M

2
k+1], where M1

k+1 = M1
k and M2

k+1 = M1
k+M2

k

2 ; otherwise we put

M1
k+1 = M1

k+M2
k

2 and M2
k+1 = M2

k . If vhk
(x0) = 0, then STOP.
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Algorithm 14. Determining the Value of Ergodic Cyclic Game
and Optimal Strategies of Players when the Vertex x0 Belongs to
Max-Min Cycle

Preliminary step (step 0): Find the value v(x0) and optimal strategies s∗A
and s∗B of the dynamic c-game on (G,XA,XB ∪ {x′0}, c, c, x0, x

′
0) by using

Algorithm 12. If v(x0) = 0, then fix s∗A and s∗B and STOP; otherwise fix
M1

1 = mine∈E ce, M2
1 = maxe∈E ce and L = maxe∈E |ce|.

General step (step k, k ≥ 1): Find hk = M1
k+M2

k

2 and make the shift
transformation of edges costs

cke = ce − hk for e ∈ E.

Solve the dynamic c-game on network (G,XA,XB ∪ {x′0}, ck, x0, x
′
0) and find

the value vk(x0) and the optimal strategies s∗A, s∗B. If vk(x0) = 0, then fix the
optimal strategies s∗A and s∗B and put v(x0) = hk. If |vk(x0)| ≤ 1

4|X|2L , where
l = maxe∈E |ce|, then fix s∗A and s∗B . After that, find s∗A = s∗A, s∗A = s∗A in G
and calculate the value v(x0) of max-min mean cycle generated by s∗A and s∗B
in G and STOP. If vk(x0) > 1

4|X|2L , then fix M1
k+1 = M1

k , M2
k+1 = hk and go

to step k + 1. If vk(x0) < − 1
4|X|2L , then fix M1

k+1 = hk, M2
k+1 = M2

k and go
to step k + 1.

Theorem 20. Let a dynamic c-game determined by the network (G,
XA,XB , c, x0) be given with integer cost function c : E → R. Then
Algorithm 14 finds correctly the value v(x0) and optimal strategies s∗A,
s∗B of the ergodic cyclic game. The running time of the algorithm is
O(|X|3 log(L+ 1) + |X|3 log |X|), where L = maxe∈E |ce|.

The proof of this theorem is identical to the proof of Theorem 16.
In the case when x0 may not belong to max-min cycle determined by

optimal strategies of players in cyclic game, we solve |X| problems by fixing
each time the starting position x0 = x for x ∈ X. Then at least for a position
x0 = x ∈ X, we obtain the value of cyclic game and the optimal strategies of
players.

14.7 Polynomial Time Algorithm for Solving Cyclic Games Based
on Reduction to Acyclic l-Games

On the basis of the obtained results, we can propose polynomial time
algorithm for solving cyclic games.

We consider an acyclic game on the ergodic network (G,XA,XB , c, x0)
with the given starting position x0. The graph G = (X,E) is considered to be
strongly connected and X = {x0, x1, x2, . . . , xn−1}. Assume that x0 belongs
to the cycle Cs∗ determined by the optimal strategies of players s∗A and s∗B .

We construct an auxiliary acyclic graph GTr = (W r, Er), where

W r = {w0
0} ∪W 1 ∪W 2 ∪ · · · ∪W r, W i ∩W j = ∅, i 	= j;
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W i = {wi
0, w

i
1, . . . , w

i
n−1}, i = 1, r;

E = E0 ∪ E1 ∪ E2 ∪ · · · ∪Er−1;

Ei = {(wi+1
k , wi

l)| (xk, xl) ∈ E}, i = 1, r − 1;

E0 = {(wi
k, w

0
0)| (xk, x0) ∈ E, i = 1, r}.

The vertex set Wr of GTr is obtained from X if it is doubled r times and
then a sink vertex w0

0 is added. The edge subset Ei ⊆ E in GTr connects the
vertices of the set W i+1 and the vertices of the set W i in the following way: if
in G there exists an edge (xk, xl) ∈ E, then in GTr we add the edge (wi+1

k , wi
l).

The edge subset E0 ⊆ E in GTr connects the vertices wi
k ∈W 1∪W 2∪· · ·∪W r

with the sink vertex w0
0, i.e., if there exists an edge (xk, x0) ∈ E, then in GTr

we add the edges (wi
k, w

0
0) ∈ E0, i = 1, r.

After that, we define the acyclic network (GT ′
r,WA,WB , c

′), GT ′
r =

(Wr, Er) where GT ′
r is obtained from GTr by deleting the vertices wi

k ∈ W r

from which the vertex w0
0 cannot be attainable. The sets WA,WB and the

cost function c′: Er → R are defined as follows:

WA = {wi
k ∈W0|xk ∈ XA}, WB = {wi

k ∈W0|xk ∈ XB};

c′
(wi+1

k ,wi
l )

= c(xk,xl) if (xk, xl) ∈ E and (wi+1
k , wi

l) ∈ Ei; i = 1, r − 1;

c′(wi
k,w

0
0) = c(xk,x0) if (xk, x0) ∈ E and (wi

k, w
0
0) ∈ E0; i = 1, r.

Now we consider the acyclic c-game on the acyclic network (GT ′
r,WA,WB ,

c′) with the sink vertex w0
0 and the starting position wr

0.

Lemma 5. Let v = v(x0) be a value of the ergodic cyclic game on G, and the
number of edges of the max-min cycle in G is equal to r. Moreover, let vr(wr

0)
be the value of the l-game on (GT ′

r,WA,WB , c
′) with the starting position wr

0.
Then v(x0) = vr(wr

0).

Proof. It is evident that there exists a bijective mapping between the set of
cycles with no more than r edges (which contains the vertex x0) in G and
the set of directed paths with no more than r edges from wr

0 to w0
0 in GT ′

r.
Therefore v(x0) = vr(wr

0).

On the basis of this lemma, we can propose the following algorithm for finding
the optimal strategies of players in cyclic games.

Algorithm 15. Determining the Optimal Stationary Strategies of
Players in Cyclic Games with the Known Vertex x0 of Max-Min
Cycle of the Network

We construct the acyclic networks (GT ′
r,WA,WB , c

′), r = 2, 3, . . . , n,
and for each of them solve l-game. In such a way, we find the values
v2(w2

0), v3(w
3
0), . . . , vn(wn

0 ) for these l-games. Then we consecutively fix
v = v2(w2

0), v3(w
3
0), . . . , vn(wn

0 ) and each time solve the c-game on network
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(G,XA,XB , c
′), where c′ = c− v. Fixing each time the values ε′(xk) = v(xk)

for xk ∈ X, we check if the following condition

ext(cr, xk) = 0, ∀xk ∈ X

is satisfied, where cr(xk,xl)
= c′(xk,xl)

+ ε(xl) − ε(xk). We find r for which this
condition holds and fix the respective maps s∗A and s∗B such that s∗A(xk) ∈
VEXT(c′, xk) for xk ∈ XA and s∗B(xk) ∈ VEXT(c′, xk) for xk ∈ XB . So, s∗A
and s∗B represent the optimal strategies of players in cyclic games on G.

Remark 8. Algorithm 15 finds the value v(x0) and optimal strategies of
players in time O(|X|5 logL + 4|X|3 log |X|), because Algorithm 13 needs
O(|X|4 logL+4|X|2 log |X|) elementary operations for solving acyclic l-game
on network (GT ′

r,WA,WB , c
′), where L = maxe∈E |ce|.

In the general case, if the pertinence of x0 to the max-min cycle is unknown,
then we use the following algorithm.

Algorithm 16. Determining the Optimal Strategies of Players
in Ergodic Cyclic Games (General Case)

Preliminary step (step 0): Fix Y1 = X.
General step (step k): Select a vertex y ∈ Y1, fix x0 = y, and apply

Algorithm 15. If ext(cr, x) = 0, ∀x ∈ X for r ∈ {2, 3, . . . , n}, then fix s∗A ∈
VEXT(ck, x) for x ∈ XA and s∗B ∈ VEXT(ck, x) for x ∈ XB and STOP;
otherwise put Yk+1 = Yk \ {y} and go to next step k + 1.

Remark 9. Algorithm 16 finds the value v and optimal strategies of players in
time O(|X|6 logL+ 4|X|4 log |X|), because in the worst case Algorithm 15 is
repeated |X| times.

15 Nash Equilibria Condition for Cyclic Games
with p Players

The cyclic game with p players is determined by the network (G,X1,X2,
. . . , Xp, c

1, c2, . . . , cp, x0), where G = (X,E) is a directed graph in which
every vertex x ∈ X has at least one leaving edge e = (x, y) ∈ E. A partition
X = X1 ∪X2 ∪ · · · ∪Xp (Xi ∩Xj = ∅, i 	= j) on the vertex set X is given,
and p functions c1 : E → R1; c2 : E → R1; . . . ; cp : E → R1 on the edge set
E are defined. The strategies of players

si : x→ y ∈ XG(x) for x ∈ Xi, i = 1, p

and the payoff functions H
i

x0
: S1 × S2 × · · · × SP → R, i = 1, p, in the cyclic

game with p players are defined in analogous way as for the zero-sum cyclic
game from Section 14. Denote by Gs = (X,Es) a subgraph of G, generated by
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fixed strategies s1, s2, . . . , sp of players 1, 2, . . . , p. Then Gs contains a unique
directed cycle Cs, which can be reached from the given starting position x0

through the edges e ∈ Es. The values H
i

x0
(s1, s2, . . . , sp) are considered to be

equal to mean edges costs of cycle Cs, i.e.,

H
i

x0
(s1, s2, . . . , sp) =

1
n(Cs)

∑

e∈E(Cs)

cie,

where n(Cs) is a number of edges of cycle Cs, and E(Cs) is a set of edges of
this cycle.

Intuitively, it is clear that for cyclic games with p players, Nash equilibria
may not exist. An example, for which Nash equilibria in the cyclic game of two
players (with maximum criteria) does not exist, is given in [24]. This example
is related to a cyclic game on a complete bipartite graphG = (X1∪X2, E) with
the set of positions X1 = {x1, x2, x3} of the first player and the set of positions
X2 = {y1, y2, y3} of the second player; E = {(xi, yj)|i = 1, 3, j = 1, 3}. The
cost functions of the players on edges (in both directions) are defined by the
matrices

C1 =

⎛

⎝

0 0 1
ε 0 0
0 ε 0

⎞

⎠ ; C2 =

⎛

⎝

1 0 0
0 1 0

1− ε 0 1

⎞

⎠

If ε is a small value (for example ε = 0.1), then Nash equilibria for such game
does not exist.

Here we formulate a necessary and sufficient condition for existence of
Nash equilibria in so called ergodic cyclic games with p players, which extend
zero-sum ergodic cyclic games.

Definition 5. Let s∗1, s
∗
2, . . . , s

∗
p be a solution in the sense of Nash for the

cyclic game determined by the network (G,X1,X2, . . . , Xp, c
1, c2, . . . , cp, x0),

where G = (X,E) is a strongly connected directed graph. We call this
game as an ergodic cyclic game if s∗1, s

∗
2, . . . , s

∗
p represent the solution in

the sense of Nash for the cyclic game on the network (G,X1,X2, . . . , Xp,
c1, c2, . . . , cp, x) with an arbitrary starting position x ∈ X and

H
i

x(s
∗
1, s

∗
2, . . . , s

∗
p) = H

i

y(s
∗
1, s

∗
2, . . . , s

∗
p), ∀x, y ∈ X, i = 1, p.

Theorem 21. The dynamic c-game determined by the network (G,X1,
X2, . . . , Xp, c

1, c2, . . . , cp, x0), where G = (X,E) is a strongly connected
directed graph, is ergodic one if and only if on X there exist p real functions

ε1 : X → R1, ε2 : X → R1, . . . , εp : X → R1,

and p values v1, v2, . . . , vp such that the following conditions are satisfied:
(a) εi(x)− εi(y) + ci(x,y) − vi ≥ 0, ∀(x, y) ∈ Ei, i = 1, p;

(b) min
y∈XG(x)

{εi(x)− εi(y) + ci(x,y) − vi} = 0, ∀x ∈ Xi, i = 1, p;
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(c) the subgraph G
0

= (X,E
0
) generated by the edge set E

0
= E0

1 ∪ E0
2 ∪

∪ · · · ∪E0
p , E

0
i = {e = (x, y) ∈ Ei|εi(x)− εi(y) + ci(x,y)− vi = 0}, i = 1, p, has

the property that it contains a connected subgraph G
0

= (X,E
0
), for which

every vertex x ∈ X has only one leaving edge e = (x, y) ∈ E0
and besides that

εi(x)− εi(y) + ci(x,y) − vi = 0, ∀(x, y) ∈ E0
, i = 1, p.

The optimal solution of the problem can be found by fixing the maps:

s∗1 : x→ y ∈ X
G

0(x) for x ∈ X1;
s∗2 : x→ y ∈ X

G
0(x) for x ∈ X2;

−−−−−−−−−−−−−−
s∗p : x→ y ∈ X

G
0(x) for x ∈ Xp,

where X
G

0(x) = {y|(x, y) ∈ E0}.

Remark 10. The value vi, i = 1, p, coincides with the value of the payoff
function H

i

x(s
∗
1, s

∗
2, . . . , s

∗
p), i = 1, p. If vi = 0, then the ergodic cyclic game co-

incides with the dynamic c-game on the network (G,X1,X2, . . . , Xp, c
1, c2, . . . ,

cp, x0, x0).

Some extension of cyclic games for stochastic cases has been considered in
[13,25,26].

16 On Determining Pareto Optima for Cyclic Games
with p Players

To determine Pareto solution for the cyclic game with p players, we can use
the continuous model from Section 14.2 and extend it for the multiobjective
case of the problem in the following way:
to minimize the vector function

H(α) = (H
1
(α),H

2
(α), . . . ,H

p
(α))

on subject
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

e∈E−(x)

αe −
∑

e∈E+(x)

αe = 0, ∀x ∈ X;

∑

e∈E
αe = 1;

αe ≥ 0, e ∈ E,
where

H
i
(α) =

∑

e∈E c
i
eαe, i = 1, p;

E−(x) = {e = (y, x)|(y, x) ∈ E}; E+(x) = {e = (x, y)|(x, y) ∈ E}.
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Pareto optima for this multicriterion problem can be found by using the ap-
proach from [7–9,16,60]. Solutions of this continuous problem will correspond
with solutions of the discrete multicriterion problem on a given strongly con-
nected graph G = (X,E) with cost functions ci : E → R, i = 1, p.

Note that Pareto solution for the cyclic game with p players on G does
not depend on partition X = X1 ∪X2 ∪ · · · ∪Xp.

17 A General Approach for Algorithmic Solutions
of Discrete Optimal Control Problems
and its Game-Theoretic Extension

In this section, we study the control models for which the object function is
defined algorithmically. We show that such statement of the control models
allows us to extend the algorithms from Sections 1–7 for a larger class
of problems.

17.1 General Optimal Control Model

Let L be a dynamical system with the set of states X ⊆ Rn where at
every moment of time t = 0, 1, 2, . . . , the state of L is x(t) ∈ X, x(t) =
(

x1(t), x2(t), . . . , xn(t)
)

∈ Rn. The dynamics of the system L is described
as follows

x(t+ 1) = gt
(

x(t), u(t)
)

, t = 0, 1, 2, . . . , (23)

where
x(0) = x0 (24)

is the starting point of the system L, and u(t) =
(

u1(t), u2(t), . . . , um(t)
)

∈
Rm represents the vector of control parameters. For vectors of control para-
meters u(t), t = 0, 1, 2, . . . , the admissible sets Ut

(

x(t)
)

are given, i.e.,

u(t) ∈ Ut
(

x(t)
)

, t = 0, 1, 2, . . . . (25)

We assume that the vector functions

gt
(

x(t), u(t)
)

=
(

g1t
(

x(t), u(t)
)

, g2t
(

x(t), u(t)
)

, . . . , gnt
(

x(t), u(t)
)

)

are determined uniquely by x(t) and u(t) at every moment of time t =
0, 1, 2, . . . . So, x(t+ 1) is determined uniquely by x(t) and u(t).

Let
x(0), x(1), . . . , x(t), . . . (26)

be a process generated according to (23)–(25) with given vectors of control
parameters u(t), t = 0, 1, 2, . . . .

For each state x(t), t = 0, 1, 2, . . . of process (26), we define the numerical
determination Ft

(

x(t)
)

by using the following recursive formula
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Ft+1

(

x(t+ 1)
)

= ft

(

x(t), u(t), Ft
(

x(t)
)

)

, t = 0, 1, 2 . . .

where
F0

(

x(0)
)

= F0

is a given representation of the starting state x(0) of the system L; ft(·, ·, ·),
t = 0, 1, 2, . . . are arbitrary functions. In this model, Ft(x(t)) expresses the
cost of system’s passage from x0 to x(t). In the following, we distinguish two
optimization problems:

Problem 6. For a given T , determine vectors of control parameters u(0),
u(1), . . . , u(T − 1), which satisfy the conditions

x(t+ 1) = gt
(

x(t), u(t)
)

, t = 0, 1, 2, . . . , T − 1;
x(0) = x0, x(T ) = xf ,

u(t) ∈ Ut
(

x(t)
)

, t = 0, 1, 2, . . . , T − 1;
Ft+1

(

x(t+ 1)
)

= ft

(

x(t), u(t), Ft
(

x(t)
)

)

, t = 0, 1, 2, . . . , T − 1;
F0

(

x(0)
)

= F0

(27)

and minimize the object function

Ix0x(T )

(

u(t)
)

= FT
(

x(T )
)

(28)

Problem 7. For given T1 and T2, determine T ∈ [T1, T2] and a control se-
quence u(0), u(1), . . . , u(T − 1), which satisfy condition (27) and minimize
objective function (28).

Remark 11. It is obvious that the optimal solution of Problem 7 can be ob-
tained by its reducing to Problem 6 fixing the parameter T = T1, T =
T1 + 1, . . . , T = T2. By choosing the optimal value of the solutions of the
problems of type 6 with T = T1, T = T1 + 1, . . . , T = T2, we obtain the
solution of the Problem 7 with T ∈ [T1, T2].

It is easy to observe that a large class of dynamic optimization problems
can be represented as a problem mentioned above. As example, if

ft

(

x(t), u(t), Ft
(

x(t)
)

)

= Ft
(

x(t)
)

+ ct
(

x(t), u(t)
)

,

where
F0(x0) = 0

and ct
(

x(t), u(t)
)

represents the cost of the system’s passage from the state
x(t) to the state x(t + 1), then we obtain the discrete control problems with
integral-time, which are introduced and treated in [1–3,41–45,47]. Some classes
of control problems from [2,4] may be obtained if

ft

(

x(t), u(t), Ft
(

x(t)
)

)

= Ft
(

x(t)
)

· ct
(

x(t), u(t)
)

, t = 1, 2, . . . ,
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where
F0(x0) = 1

or
ft

(

x(t), u(t), Ft
(

x(t)
)

)

= max{Ft
(

x(t)
)

, ct
(

x(t), u(t)
)

},

where
F0(x0) = 0.

We propose a general scheme based on dynamic programming for solving
these problems.

17.2 Algorithm for Determining Optimal Solution of the Problem
with Fixed Starting and Final States

We propose a general procedure for determining the optimal solutions of the
formulated problems in the case when ft(x, u, F ), t = 0, 1, 2, . . . , are non-
decreasing functions with respect to the third argument, i.e., with respect to F .
So, we shall consider that for the fixed x and u, the functions ft(x, u, F ), t =
0, 1, 2, . . . satisfy the condition

ft(x, u, F ′) ≤ ft(x, u, F ′′) if F ′ ≤ F ′′. (29)

Then the following algorithm determines the optimal solution of Problem 6.

Algorithm 17. Determining the Solution of General Optimal Control
Problem

1. Set F ∗
0

(

x(0)
)

= F0; F ∗
t

(

x(t)
)

=∞; x(t) ∈ X, t = 1, 2, . . . ; X0 = {x0}.
2. For t = 0, 1, 2, . . . , T − 1 determine:

Xt+1 = {x(t+ 1) ∈ X |x(t+ 1) = gt
(

x(t), u(t)
)

,

x(t) ∈ Xt, u(t) ∈ Ut
(

x(t)
)

}

and for every x(t+ 1) ∈ Xt+1 determine

F ∗
t+1

(

x(t+ 1)
)

= min
{

ft

(

x(t), u(t), F ∗
t

(

x(t)
)

)

|x(t+ 1) = gt(x(t), u(t)),

x(t) ∈ Xt, u(t) ∈ Ut
(

x(t)
)

}

;

3. Find the sequence

xT = x∗(T ), x∗(T − 1), x∗(T − 2), . . . , x∗(1), x∗(0) = x0

and
u∗(T − 1), u∗(T − 2), . . . , u∗(1), u∗(0),

which satisfy the conditions
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F ∗
T−τ

(

x∗(T − 1)
)

= fT−τ−1

(

x∗(T − τ − 1), u∗(T − τ − 1),

F ∗
T−τ−1

(

x(T − τ − 1)
)

)

, τ = 0, 1, 2, . . . , T.

Then u∗(0), u∗(1), u∗(2), . . . , u∗(T − 1) represent the optimal solution of
Problem 6.

Theorem 22. If ft(x, u, F ), t = 0, 1, 2, . . . , T are nondecreasing functions
with respect to the third argument F , i.e., the functions ft(x, u, F ), t =
0, 1, 2, . . . , T satisfy condition (29), then the algorithm determines the optimal
solution of Problem 6. Moreover, an arbitrary leading part x∗(0),x∗(1), . . . ,
x∗(k) of the optimal trajectory x∗(0), x∗(1), . . . , x∗(k), . . . , x∗(T ) is again an
optimal one.

Proof. We prove the theorem by using the induction principle on the number
of stages T . In the case T ≤ 1, the theorem is evident. We consider that the
theorem holds for T ≤ k and let us prove it for T = k + 1.

Assume toward contradiction that u∗(0), u∗(1), . . . , u∗(T − 2), u∗(T − 1) is
not an optimal solution of Problem 6 and u′(0), u′(1), . . . , u′(T−2), u′(T−1) is
an optimal solution of Problem 6, which differs from u∗(0), u∗(1), . . . , u∗(T −
2), u∗(T − 1). Then u′(0), u′(1), . . . , u′(T − 2), u′(T − 1) generate a trajectory
x0 = x′(0), x′(1), . . . , x′(T ) = xT with corresponding numerical evaluations of
states

F ′
t+1

(

x′(t+ 1)
)

= ft

(

x′(t), u′(t), F ′
t

(

x′(t)
)

)

, t = 0, 1, 2, . . . , T − 1;

where F ′
0

(

x′(0)
)

= F0 and

F ′
T

(

x′(T )
)

< F ∗
T

(

x′(T )
)

, (30)

because x′(T ) = x∗(T ). According to the induction principle for Problem 6
with T − 1 stages the algorithm finds the optimal solution. So, for arbitrary
x(T − 1) ∈ X, we obtain the optimal evaluations F ∗

T−1

(

x(T − 1)
)

for x(T −
1) ∈ X. Therefore

F ∗
T−1

(

x′(T − 1)
)

≤ F ′
T−1

(

x′(T − 1)
)

.

According to the algorithm

fT−1

(

x∗(T − 1), u∗(T − 1), F ∗
T−1

(

x∗(T − 1)
)

)

≤ fT−1

(

x′(T − 1), u′(T − 1), F ∗
T−1

(

x′(T − 1)
)

)

.
(31)

Because ft(F, x, u), t = 0, 1, 2, . . . are nondecreasing functions with re-
spect to F , then

fT−1

(

x′(T − 1), u′(T − 1), F ∗
T−1

(

x′(T − 1)
)

)

≤ fT−1

(

x′(T − 1), u′(T − 1), F ′
T−1

(

x′(T − 1)
)

)

.
(32)
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Using (31) and (32), we obtain

F ∗
T

(

x(T )
)

= fT−1

(

x∗(T − 1), u∗(T − 1), F ∗
T−1

(

x∗(T − 1)
)

)

≤ fT−1

(

x′(T − 1), u′(T − 1), F ∗
T−1

(

x′(T − 1)
)

)

≤ fT−1

(

x′(T − 1), u′(T − 1), F ′
T−1

(

x′(T − 1)
)

)

= F ′
T

(

x(T )
)

,

i.e.,
F ∗
T

(

x(T )
)

≤ F ′
T

(

x(T )
)

,

which is contrary to (30). So the algorithm finds the optimal solution of
Problem 6 with T = k + 1.

Theorem 23. Let X and Ut(x), x ∈ X, t = 0, 1, 2, . . . , T−1, be the finite sets.
Then the algorithm uses at most M · |X| · T elementary operations (excluding
the operations for calculation of the values of functions ft(F, x, u) for given
F, x and u), where

M = max
x∈X, t=0,1,2,...,T−1

|Ut(x)|.

Proof. It is sufficient to prove that at step t, the algorithm uses no more than
M · |X| elementary operations. Indeed, for finding the value Ft+1

(

x(t + 1)
)

for x(t + 1) ∈ X, it is necessary to use
∑

x∈X |Ut(x)| operation. Because
∑

x∈X |Ut(x)| ≤ |X| · M , then at step t the algorithm uses no more than
|X| ·M elementary operations. So in general the algorithm uses no more than
M · |X| · T elementary operations.

17.3 The Discrete Optimal Control Problem on Network

Let L be a dynamical system with a finite set of states X, and at every
discrete moment of time t = 0, 1, 2, . . . , the state of the system L is x(t) ∈ X.
Note that here we associate x(t) with an abstract element (in Sections 17.1
and 17.2 x(t) represents a vector from Rn). Two states x0 and xf are chosen
in X, where x0 is a starting state of the system L, x0 = x(0), and xf is
the final state of the system, i.e., xf is the state in which the system must
be brought. We consider the optimal control problem, when the dynamics
of the system is described by a directed graph of transactions G = (X,E)
with given costs ce(t) on edges e ∈ E, i.e., we consider the control problem
from Section 3.1. So, we are seeking for the sequence of the system’s passages
(x(0), x(1)), (x(1), x(2)), . . . , (x(T −1), x(T )) ∈ E (which transfers the system
L from the state x0 = x(0) to the state xf = x(T ) with minimal integral-time
cost) by a trajectory x0 = x(0), x(1), x(2), . . . , x(T ) = xf . We will discuss two
variants of the problem:

(1) the number of the stages (time T ) is fixed;
(2) T is unknown and it must be determined.
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It is easy to observe that for solving these problems, we can use the algo-
rithm from Section 17.2. We put

F0

(

x(0)
)

= 0

and

Ft+1

(

x(t+ 1)
)

= Ft
(

x(t)
)

+ c(
x(t),x(t+1)

)(t) for
(

x(t), x(t+ 1)
)

∈ E.

So we obtain the algorithm, which is based on dynamic programming tech-
niques. The running time for solving this problem in case 1 by using Algorithm
17 is O(n2T ).

A more general optimal control model on network is obtained if to
each edge e ∈ E at given moment of time t we associate a function
fet

(x(t), Ft(x(t))) that depends on state x(t) and on numerical evalua-
tion Ft(x(t)) of this state. Here fet

(x(t), Ft(x(t))) has the same sense as
ft(x(t), u(t), Ft(x(t))) in the previous model, where u(t) = et, i.e., fet

(x(t),
Ft(x(t))) = ft(x(t), u(t), Ft(x(t))). For the given trajectory of system passages

x(0), x(1), . . . , x(t), x(t+ 1)

the following recursive formulae

Ft+1(x(t+ 1)) = fet
(x(t), Ft(x(t))), t = 0, 1, 2, . . .

for determining numerical evaluations of the states are given, where

F0(x(0)) = F0

is considered to be known.
In this model, we seek for a trajectory

x(0), x(1), . . . , x(T − 1), x(T ) = xf

which transfers the system L from the starting state x0 to the final state xf
with minimal FT (xf ).

If fet
(x(t), Ft(x(t))), ∀e ∈ E, t = 1, 2, . . . , are increasing functions, then

the control problem on network can be solved by using Algorithm 17.

17.4 The Game Control Model with p Players

Now we extend the control model using the concept of noncooperative games.
We assume that the dynamics of the system L is controlled by p players:

x(t+ 1) = gt
(

x(t), u1(t), u2(t), . . . , up(t)
)

, t = 0, 1, 2, . . . , (33)

where
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x(0) = x0

is a given starting point of L, and ui(t) is a vector of control parameters of
player i. For each player i ∈ {1, 2, . . . , p}, the admissible sets U i

t (x(t)), t =
1, 2, . . . , for vectors of control parameters ui(t), are given. Additionally, a
numerical determination F i

t (x(t)) of the state x(t) at the time moment t for
player i is defined according to the following recursive formula

F i
t+1(x(t+ 1)) = f it (x(t), u

1(t), u2(t), . . . , up(t), F i
t (x(t))),

t = 0, 1, 2, . . . , (34)

where
F i

0(x(0)) = F i
0 (35)

are given representations of the starting state x0 of the system L for player
i; ft(·, ·, . . . , ·), t = 0, 1, 2, . . . , i = 1, 2, . . . , p, are arbitrary functions. Here
F i
t (x(t)) expresses the cost of the system’s passage from the starting state
x0 to the state x(t) for player i by a trajectory x0, x(1), x(2), . . . , x(t), deter-
mined by a fixed set of vectors of control parameters u1(t), u2(t), . . . , up(t),
t = 0, 1, 2, . . . .

In this model, we assume that players choose vectors of control parameters
in order to achieve the final state xf from the starting state at the moment
of time T (xf ), where

T1 ≤ T (xf ) ≤ T2.

Moreover, each player has to minimize his own cost of system’s passage to xf

Iix0xf
(u1, u2, . . . , up) = F i

T (xf )(xf ).

Note that for given u1(t), u2(t), . . . , up(t), the cost of the system’s passage
from x0 to xf can be calculated on the basis of (34)–(35) if the corresponding
trajectory

x0, x(1), x(2), . . . , x(t), . . .

passes through the final state xf . If for given u1(t), u2(t), . . . , ur(t) the tra-
jectory x0, x(1), x(2), . . . , x(t), . . . does not pass through the state xf , then
we put

Iix0xf
(u1, u2, . . . , up) =∞.

In this model, we are seeking for a Nash equilibrium. So, we consider the
problem of finding u1∗(t), u2∗(t), . . . , up∗(t), for which the following condition
is satisfied:

Iix0xf
(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t))

≤ Iix0xf
(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui(t), ui+1∗(t), . . . , up∗(t)), i = 1, p.

In the following, we will assume that for the considered control problem
the alternate players control condition (see Section 2) is satisfied. This will
allow us to regard our problem as the game control problem on networks.
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17.5 The Game Control Problem on Network and an Algorithm
for Its Solving

In this section, we consider the game control problem on networks and propose
an algorithm for determining the optimal strategies of players in the case when
the structure of the network corresponds with T -partite directed graph.

General Statement of the Game Control Problem on Network

Let G = (X,E) be a finite directed graph that describes the dynamics of
the system L. So, an arbitrary directed edge e = (x, y) ∈ E expresses the
possibility of the dynamical system to pass from the state x = x(t) to the state
y = x(t+1) at every moment of time t = 0, 1, 2, . . . . Two states x0 = x(0) and
xf , which correspond with the starting and the final states of L, respectively,
are distinguished in G. It is known that the system L has to reach the final
state at the time moment T (xf ) such that T1 ≤ T (xf ) ≤ T2; if T2 = T1 = T ,
then the system will reach the final state at the time T .

Assume that the vertex set X of G is divided into p subsets X = X1∪X2∪
∪ · · ·∪Xp (Xi∩Xj = ∅, i 	= j), where vertices x ∈ Xi are regarded as positions
of player i, i = 1, 2, . . . , p.

On G, we consider the following dynamic game. The game starts at the
position x0 = x(0), for which the starting numerical representations

F 1
0 (x0) = F 1

0 , F
2
0 (x0) = F 2

0 , . . . F
p
0 (x0) = F p

0

of players 1, 2, . . . , p are given. These quantities express the values of payoff
functions of players 1, 2, . . . , p at the time moment t = 0. If x0 ∈ Xi0 , then the
move is done by player i0. This means that the system L is transferred from the
state x0 = x(0) to the state x1 = x(1) such that e0 = (x(0), x(1)) ∈ E. After
that at the time moment t = 1, the values F i

1(x(1)), i = 1, p are calculated
according to the following formula:

F i
1(x(1)) = f ie0(x(0), F i

0(x(0))), i = 1, p,

where f ie0 , i = 1, p, are arbitrary given functions associated to the edge
e0. Note that in G for each edge e ∈ E at every time step the functions
f1
et

(·, ·), f2
et

(·, ·), . . . , fpet
(·, ·) are considered to be given.

If at time step 1 position x(1) ∈ Xi1 then the move is done by player
i1. This means that player i1 transfers the system L from the state x(1) to
another state x(2) such that e1 = (x(1), x(2)) ∈ E. After that, the values

F i
2(x(2)) = f ie1(x(1), F i

1(x(1))), i = 1, p

are calculated, and so on.
In general if x(t) ∈ Xit , then the move is done by player it, i.e., the

system L is transferred from the state x(t) to the state x(t + 1) such that
et = (x(t), x(t+ 1)) ∈ E. At time step t+ 1, the quantities
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F i
t+1(x(t+ 1)) = f iet

(x(t), F i
t (x(t))), i = 1, p

are determined.
As soon as the final state is reached, i.e., x(t + 1) = xf , the game is

over and the values of payoff functions of players are equal to F 1
T (xf )(xf ),

F 2
T (xf )(xf ), . . . , F p

T (xf )(xf ), respectively, where T (xf ) = t+1. In this dynamic
game, each player i has the aim to minimize his own payoff function F i

T (xf )(xf )
such that T1 ≤ T (xf ) ≤ T2.

More strictly, the game control problem on G can be formulated as follows.
We define the nonstationary strategies of players as maps:

ui : (x, t)→ (y, t+ 1) ∈ X(x)× {t+ 1} for x ∈ Xi \ {xf},
t = 0, 1, 2, . . . , i = 1, p,

where X(x) = {y ∈ X | (x, y) ∈ E}. Here (x, t) has the same meaning as the
notation x(t), i.e., (x, t) = x(t).

For any set of nonstationary strategies u1, u2, . . . , up of players we define
the quantities:

I1x0xf
(u1, u2, . . . , up), I2x0xf

(u1, u2, . . . , up), . . . , Ipx0xf
(u1, u2, . . . , up)

in the following way:
Let u1, u2, . . . , up be an arbitrary set of strategies. Then either u1,u2, . . . , up

generate in G a finite trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf , where T (xf ) represents the time moment when xf is reached,
or u1, u2, . . . , up generate an infinite trajectory

x0 = x(0), x(1), x(2), . . . , x(t), . . . ,

which does not pass through xf , i.e., T (xf ) = ∞. If the state xf is reached
at the finite moment of time T (xf ) and T1 ≤ T (xf ) ≤ T2, then we put

Iix0xf
(u1, u2, . . . , up) = F i

T (xf )(xf ), i = 1, p

where F i
T (xf )(xf ) is calculated recursively by using the following formula:

F i
t+1(x(t+ 1)) = f i(x(t),x(t+1))(x(t), F

i
t (x(t))), t = 0, T (xf )− 1;

F i
0(x(0)) = 0;

x(t+ 1) = ui(x(t)), t = 0, T (xf )− 1.

If the state xf cannot be reached at the finite moment of time, then we set

Iix0xf
(u1, u2, . . . , up) =∞, i = 1, p.
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Thus we regard the problem of finding the nonstationary strategies u1∗,
u2∗, . . . , up∗, for which the following condition is satisfied:

Iix0xf
(u1∗, u2∗, . . . , ui−1∗, ui∗, ui+1∗, . . . , up∗)

≤ Iix0xf
(u1∗, u2∗, . . . , ui−1∗, ui, ui+1∗, . . . , up∗),∀ui, i = 1, p.

So, we consider the problem of finding the solution in the sense of Nash.
It is easy to observe that if

F i
t+1(x(t+ 1)) = F i

t (x(t)) + ci(x(t),x(t+1))(t)

for (x(t), x(t+ 1)) ∈ E, i = 1, p, then we obtain the problem from [4,38].

The Game Control Problem on T -Partite Networks and Algorithm
for Its Solving

Now we show that if G has a structure of T + 1-partite graph, then Nash
equilibria for game control problem exists. Moreover, we propose an algorithm
for finding optimal strategies of players.

So, we assume that G has a structure of (T + 1)-partite graph: the vertex
set X in G is divided into T + 1 nonempty sets: X = Z0 ∪ Z1 ∪ · · · ∪ ZT ,
Zi ∩ Zj = ∅, i 	= j; the edge set E in G is divided into T nonempty sets:
E = E0∪E1∪· · ·∪ET−1, Ei∩Ej = ∅, i 	= j, such that each edge e = (x, y) ∈ Et

starts in x ∈ Zt and enters y ∈ Zt+1, t = 0, T − 1. On G, we consider the
problem with T1 = T2 = T . So, x0 ∈ Z0 and xf ∈ ZT . Moreover, we assume
that each set Zt represents a position set for one of the players i ∈ {1, 2, . . . , p}.
So, for each Zt there exists it ∈ {1, 2, . . . , p} such that Zt ⊆ Xit , where
X = X1 ∪X2 ∪ · · · ∪Xp and Xi is a set of positions of player i.

In this case, for game control problem it is possible to extend Algorithm 17
if for every et ∈ E, t = 0, 1, 2, . . . , the functions f iet

(x, F i) are nondecreasing
with respect to F i. The values of payoff functions Iix0xf

(u1, u2, . . . , up) =
F i
t (x(t)) can be found by using the following procedure:

Preliminary step (Step 0): For starting position x(0) = x0, set F i
0(x(0)) =

F i
0, i = 1, p;

General step (Step t, t ≥ 0): Assume that at the time moment t, the
position set Zt is controlled by player it ∈ {1, 2, . . . , p}, i.e., Zt ⊆ Xit . Then
for an arbitrary state x(t+ 1) ∈ Zt+1, find a vertex x′(t) ∈ Xt such that

f it(x′(t),x(t+1))

(

x′(t), F i
t

(

x′(t)
)

)

= min
x(t)∈X−(x(t+1))

{

f it(x(t),x(t+1))

(

x(t), F it
t

(

x(t)
)

)}

,

where X−(x(t+ 1)) = {x(t) ∈ Zt | (x(t), x(t+ 1)) ∈ Et}. Then calculate

F i
t+1

(

x(t+ 1)
)

= f i(x′(t),x(t+1))

(

x′(t), F i
t

(

x′(t)
)

)

, i = 1, p.



740 D. Lozovanu

If t < T − 1, then go to the next step; otherwise STOP.

If F i
t (x(t)) are known for every x(t) ∈ X, then u1, u2, . . . , up can be found

starting from the end position xf by fixing each time uik(x(t)) = x(t+ 1), for
which

F ik
t+1(x(t+ 1)) = f ik(x(t),x(t+1))(x(t), F

ik
t (x(t))) if x(t) ∈ X−(x(t+ 1)) ∩Xik .

For fixed u1, u2, . . . , ui−1, ui+1, . . . , up, the proposed procedure becomes
Algorithm 17 for the control problem with respect to ui. Therefore on the
basis of results from Section 17.2, we obtain the following theorem.

Theorem 24. If in T + 1-partite graph G = (X,E), there exists a directed
path from x0 ∈ Z0 to xf ∈ ZT , then for the game control problem on G, there
exists Nash equilibrium.

Perhaps the proposed algorithm and Theorem 24 can be extended for game
control problem on an arbitrary acyclic directed graph. This may involve
existence of Nash equilibria for the game control problem on an arbitrary
network and for the game control problem in general if the alternate players’
control condition holds.

The proposed approach allows us to determine the optimal nonstationary
strategies of players in dynamical games from [43], but do not allow us to
determine the optimal strategies of players for dynamical games from [3].

A similar multicriterion control problem with Pareto optimality principle
can be formulated and dynamic programming techniques for its solving can
be developed.

17.6 Multicriterion Discrete Control Problem: Pareto Optimum

In this section, we extend the control model from Section 17.1 using the con-
cept of cooperative games.

General Statement of the Problem

We assume that the dynamics of the system L is controlled by p players, who
coordinate their actions using the common vector of control parameters u(t).
So the dynamics of the system L is described according to (23)–(25).

Let x(0), x(1), . . . , x(t), . . . be a process generated according to (23)–(25)
with the giving vector of control parameter u(t), t = 0, 1, 2, . . . . For each state
we define the quantities F i

t (x(t)), i = 1, 2, . . . , p in the following way:

F i
t+1(x(t+ 1)) = f it (x(t), u(t), F

i
t (x(t))) (36)

where
F i

0(x(0)) = F i
0, i = 1, 2, . . . , p (37)
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are given representations of the starting state x(0) of the system L;
f it (x(t), u(t), F

i
t (x(t))), t = 0, 1, 2, . . . are arbitrary functions. So, F i

t (x(t))
expresses the cost of the system’s passage from the state x(0) to the state
x(t) for player i.

In this model, we assume that players choose vectors of control parameters
in order to achieve the final state xf from the starting state x0 at the moment
of time T (xf ), where T1 ≤ T (xf ) ≤ T2.

For the given u(t), the cost of the system’s passage from x0 to xf for player
i is calculated on the basis of (23)–(25), (36), (37), and we put

Iix0xf
(u(t)) = F i

T (xf )(xf ),

if the trajectory passes through xf at the time moment T (xf ), such that
T1 ≤ T (xf ) ≤ T2; otherwise we put

Iix0xf
(u(t)) =∞.

We consider the problem of finding Pareto solution u∗(t), i.e., there is no
other vector u(t), for which

(

I1x0xf
(u(t)), I2x0xf

(u(t)) . . . , Ipx0xf
(u(t))

)

≤
(

I1x0xf
(u∗(t)), I2x0xf

(u∗(t)) . . . , Ipx0xf
(u∗(t))

)

and for any i0 ∈ {1, 2, . . . , p}

Ii0x0xf
(u(t)) < Ii0x0xf

(u∗(t)).

Multicriterion Problem on Network and Algorithm for Its Solving
on T -Partite Networks

We formulate the multicriterion control model on network in general form on
the basis of the control model from Section 3.

Let G = (X,E) be a directed graph of transactions for the dynamical
system L with the given starting state x0 ∈ X and the final state xf ∈ X.
In addition, for the state x0, starting representations F 1

0 (x0) = F 1
0 , F 2

0 (x0) =
F 2

0 , . . . , F
p
0 (x0) = F p

0 are given, which express the payoff functions of players
at the time-moment t = 0. We define the control u∗ on G as a map

u : (x, t)→ (y, t+ 1) ∈ XG(x)× {t+ 1} for x ∈ X \ {xf}, t = 1, 2, . . . .

For an arbitrary control u, we define the quantities:

I1x0xf
(u), I2x0xf

(u), . . . , Ipx0xf
(u)

in the following way.
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Let
x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

be a trajectory from x0 to xf generated by control u, where T (xf ) is a
time-moment, when the state xf is reached. Then we put

Iix0xf
(u) = F i

T (xf )(xf ) if T1 ≤ T (xf ) ≤ T2, i = 1, p,

where F i
t (x(t)) are calculated recursively by using the following formula

F i
t+1(x(t+ 1)) = f i(x(t),x(t+1))(x(t), F

i
t (x(t))), t = 0, T (xf )− 1;

F i
0(x(0)) = F i

0,

where f1
e (·, ·), f2

e (·, ·), . . . , fpe (·, ·) are arbitrary functions. If T (xf ) /∈ [T1, T2],
then we put

Ii(u) =∞, i = 1, p.

We regard the problem of finding Pareto solution u∗.

In the following, let us show that if the graph G has a structure of (T +1)-
partite graph and T1 = T2 = T , then the algorithm from Section 17.2 can be
extended for the multicriterion control problem on network.

So, assume that the vertex set X is represented as X = Z0∪Z1∪ · · ·∪ZT ,
Zi ∩ Zj = ∅, i 	= j, and the edge set E is divided into T nonempty subsets
E = E0 ∪ E1 ∪ · · · ∪ ET−1 such that an arbitrary edge e = (y, z) ∈ Et begins
in y ∈ ZT and enters z ∈ Zt+1, t = 0, T − 1.

In this case, for the nondecreasing function f ie(·, ·) with respect to the
second argument, the values Ii(u) = F i

t (xt) can be calculated by using the
following procedure.

Preliminary step (Step 0): For the starting position x(0) = x0, set
F i

0(x(0)) = F i
0, i = 1, p; for any x ∈ X \ {x0} put F i

t (x(t)) = ∞, i = 1, p,
t = 1, T .

General step (Step t, t ≥ 0): For an arbitrary state x(t+1) ∈ Xt+1, find a
vertex x′(t) ∈ Xt such that there is no other vertex x(t) ∈ Xt \{xf} for which

(

f1
(x(t),x(t+1))(x(t), F

1
t (x(t))), f2

(x(t),x(t+1))(x(t), F
2
t (x(t)))

, . . . , fp(x(t),x(t+1))(x(t), F
p
t (x(t)))

)

≤
(

f1
(x′(t),x(t+1))(x

′(t), F 1
t (x′(t))), f2

(x′(t),x(t+1))(x
′(t), F 2

t (x′(t)))

, . . . , fp(x′(t),x(t+1))(x
′(t), F p

t (x′(t)))
)

and
f i0(x(t),x(t+1))(x(t), F

i0
t (x(t))) < f i0(x′(t),x(t+1))(x

′(t), F i0
t (x′(t)))
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for any i0 ∈ {1, 2, . . . , p}.
Then calculate

F i
t+1(x(t+ 1)) = f i(x′(t),x(t+1))(x

′(t), F i
t (x

′(t))), i = 1, p.

If t < T − 1, then go to the next step; otherwise STOP.

If F i
t (x(t)) are known for every vertex x(t) ∈ X, then Pareto optimum u∗

can be found starting from the end position xf by fixing each time u∗(x(t)) =
x(t+ 1) for which

F i
t+1(x(t+ 1)) = f i(x(t),x(t+1))(x(t), F

i
t (x(t))), i = 1, p.

18 The Game-Theoretic Approach for Dynamic Flow
Problems on Networks

The game-theoretic approach we have used can be developed for the more
general dynamic models such as minimum cost dynamic flow problems on
networks. In the following, we can see that the optimal control problem on
the network from Section 3 represents the particular case of the considered
minimum cost flow problem on dynamic networks studied in [17–21,25,48,56].
This particular case is obtained for single source–single sink uncapacitated
problems when the cost functions on edges do not depend on the amount of
flow but depend only on time.

The minimum cost dynamic flow problem has a large implementation for
many practical problems: product distribution, scheduling planning, telecom-
munication, transportation, communication, and management problems can
be formulated and solved as minimum cost flow problems. The minimum cost
flow problem on networks can be used for studying and solving the distribution
problem, the synthesis problem of communication networks, or the allocation
problem.

At first, we formulate the single-commodity case of the problem. Let a
dynamic network N = (X,E, u, τ, d, ϕ) be given that consists of the directed
graph G = (X,E) with the set of vertices X and the set of edges E, the
capacity function u: E × T→ R+, the transit time function τe: E → R+, the
demand function d: X × T→ R, and the nonlinear cost function ϕ: E×R+×
T → R+, where T = {0, 1, 2, . . . , T}. We consider that all the flow is dumped
into the network at time 0. In order for the flow to exist, we require that
∑

t∈T
∑

x∈X dx(t) = 0.
Without loosing generality, we assume that in the network there is only

one source x0 ∈ X and one sink xf ∈ X and there are no edges entering the
source or leaving the sink. All other vertices x ∈ X, for which dx(t) = 0, ∀t ∈ T,
are intermediary ones. In the case of many sources and sinks, the considered
problem can be reduced to the initial one by introducing an additional artificial
source and an additional artificial sink as well as edges leading from the new
source to true sources and from true sinks to the new sink. The transit times of
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these new edges are zero, and the capacities of edges connecting the artificial
source with all other sources are bounded by the demands of these sources;
the capacities of edges connecting all other sinks with the artificial sink are
bounded by the demands of these sinks.

We consider the discrete time model, in which all times are integral and
bounded by horizon T . Time is measured in discrete steps, so that if one unit
of flow leaves node x at time t on arc e = (x, y), one unit of flow arrives at
node y at time t+ τe, where τe is the transit time of arc e.

A feasible dynamic flow on N is a function α: E × T → R+ that satisfies
the following conditions:

∑

e∈E+(x)
t−τe≥0

αe(t− τe)−
∑

e∈E−(x)

αe(t) = dx(t), ∀ t ∈ T, ∀x ∈ X;

0 ≤ αe(t) ≤ ue(t), ∀ t ∈ T, ∀ e ∈ E;

αe(t) = 0, ∀ e ∈ E, t = T − τe + 1, T ;

where E+(x) = {(y, x) | (y, x) ∈ E}, E−(x) = {(x, y) | (x, y) ∈ E}.
Here the function α defines the value αe(t) of flow entering edge e at time t.

It is easy to observe that the flow does not enter edge e at time t if it has to
leave the edge after time T ; this is ensured by the last condition.

To model transit costs, which may change over time, we define the cost
function ϕe(αe(t), t) with the meaning that flow of value ξ = αe(t) entering
edge e at time t will incur a transit cost of ϕe(ξ, t).

The total cost c(α) of dynamic flow is defined as follows:

c(α) =
∑

t∈T

∑

e∈E
ϕe(αe(t), t).

The dynamic minimum-cost flow problem consists in finding a feasible flow
that minimizes this objective function.

In order to describe the game-theoretic approach for the considered prob-
lem, we shall use the multicommodity version of the optimal dynamic flow
problem. Such a problem consists of shipping a given set of commodities from
their respective sources to their sinks through a network in order to optimize
the given criterion so that the total flow going through edges does not exceed
their capacities. The minimum cost multicommodity dynamic flow problem
asks for a feasible flow over time with given time horizon, satisfying all sup-
plies and demands with minimum cost. This dynamic problem is considered
on directed networks with a set of commodities, time-varying capacities of
edges, fixed transit times on arcs, and a given time horizon. We assume that
cost functions, defined on edges, are nonlinear and depend on time and flow,
and the demand function also depends on time.

So, we consider a directed network N = (X,E,K,w, u, τ, d, ϕ) with set of
vertices X, set of edges E, and set of commodities K that must be routed
through the same network. Each edge e ∈ E has a nonnegative time-varying
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capacity wk
e (t), which bounds the amount of flow of each commodity k ∈ K

allowed on each arc e ∈ E in every moment of time t ∈ T. We also consider that
every arc e ∈ E has a nonnegative time-varying capacity for all commodities,
which is known as the mutual capacity ue(t). Moreover, each edge e ∈ E
has an associated nonnegative transit time τe, which determines the amount
of time it takes for flow to travel from the tail to the head of that edge.
The underlying network also consists of demand function d: X ×K × T→ R
and cost function ϕ: E × R+ ×K × T → R+, where T = {0, 1, 2, . . . , T}. All
assumptions made above hold and in this case of the problem.

A feasible dynamic flow on N is a function α: E × K × T → R+ that
satisfies the following conditions:

∑

e∈E+(x)
t−τe≥0

αke(t− τe)−
∑

e∈E−(x)

αke(t) = dkx(t), ∀ t ∈ T, ∀x ∈ X, ∀k ∈ K;

∑

k∈K
αke(t) ≤ ue(t), ∀ t ∈ T, ∀e ∈ E;

0 ≤ αke(t) ≤ wk
e (t), ∀ t ∈ T, ∀ e ∈ E, ∀k ∈ K;

αke(t) = 0, ∀ e ∈ E, t = T − τe + 1, T , ∀k ∈ K.
The total cost of the dynamic multicommodity flow is defined as follows:

c(α) =
∑

t∈T

∑

e∈E
ϕe(α1

e(t), α
2
e(t), . . . , α

k
e (t), t).

The object of the minimum cost multicommodity flow problem is to find a
feasible flow that minimizes this objective function.

It is important to notice that in many practical cases, cost functions are
presented in the following form:

ϕe(α1
e(t), α

2
e(t), . . . , α

k
e (t), t) =

∑

k∈K
ϕke(α

k
e(t), t).

To develop algorithms for solving such kind of problems, we have used the
special dynamic programming techniques based on time-expanded networks
[19,23,48,55] together with classic optimization methods [57,63].

If we associate to each commodity a player, we can regard this problem as
a game problem, where players interact between them, and the choices of one
player influence the choices of the others. Control decisions are made by each
player according to its own individual performance objectives and depending
on the choices of the other players. The game theory fits perfectly in the realm
of such a problem, and an equilibrium or stable operating point of the system
has to be found.

Game theoretic models are widely employed in the context of flow control,
routing, virtual path bandwidth allocation, and pricing in modem networking.
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Flow problems in multimedia applications (teleconferencing, digital libraries)
over high-speed broadband networks can serve as a good example of this. The
problem of providing bandwidth that will be shared by many users ([1, 6]) is
also a very important problem. As it is typical for games in such a problem, the
interaction among the users on their individual strategies has to be imposed.
The game theoretic approach can also be applied in a problem of power control
in radio systems.

19 Pareto–Nash Equilibria for Multiobjective Games

In this section, we consider multiobjective games, which generalize nonco-
operative ones [32, 53, 54] and Pareto multicriterion problems [58–60]. The
payoff functions of players in such games are presented as vector functions,
where players intend to optimize them in the sense of Pareto on their sets of
strategies. At the same time in our game model it is assumed that players are
interested to preserve Nash optimality principle when they interact between
them on the set of situations. Such statement of the game leads to a new
equilibria notion that we call Pareto–Nash equilibria. Such concept can be
used for multiobjective control problems, and algorithms for their solving can
be derived.

19.1 Problem Formulation

The multiobjective game with p players is denoted by G = (X1,X2, . . . ,
Xp, F 1, F 2, . . . , F p), where Xi is the set of strategies of player i, i = 1, p,
and F i = (F 1

i , F
2
i , . . . , F

ri
i ) is the vector payoff function of player i, defined

on the set of situations X = X1 ×X2 × · · · ×Xp:

F i : X1 ×X2 × · · · ×Xp → Rri , i = 1, p.

Each component F k
i of F i corresponds with a partial criterion of player i and

represents a real function defined on set of situations X = X1×X2×· · ·×Xp:

F k
i : X1 ×X2 × · · · ×Xp → R1, k = 1, ri, i = 1, p.

We call the solution of the multiobjective game G = (X1,X2, . . . , Xp, F 1,
F 2, . . . , F p) Pareto–Nash equilibrium and define it in the following way.

Definition 6. The situation x∗ = (x∗1, x
∗
2, . . . , x

∗
p) ∈ X is called Pareto–Nash

equilibrium for the multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p)
if for every i ∈ {1, 2, . . . , p}, the strategy x∗i represents Pareto solution for the
following multicriterion problem:

max
xi∈Xi

→ f
i

x∗(xi) = (f i1x∗(xi), f i2x∗(xi), . . . , f iri
x∗ (xi)),

where

f ikx∗(xi) = F k
i (x∗1, x

∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p), k = 1, ri, i = 1, p.
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This definition generalizes well-known Nash equilibria notion for classic
noncooperative games (single-objective games) and Pareto optimum for mul-
ticriterion problems. If ri = 1, i = 1, p, then G becomes classic noncooperative
game, where x∗ represents Nash equilibria solution; in the case p = 1, the game
G becomes Pareto multicriterion problem, where x∗ is Pareto solution.

An important special class of multiobjective games represents zero-sum
games of two players. This class is obtained from the general case of the
multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p) when p = 2, r1 =
r2 = r and F 2(x1, x2) = −F 1(x1, x2).

Zero-sum multiobjective game is denoted by G = (X1,X2, F ), where
F (x1, x2) = F 2(x1, x2) = −F 1(x1, x2). Pareto–Nash equilibrium for this game
corresponds with saddle point x∗ = (x∗1, x

∗
2) ∈ X1×X2 for the following max-

min multiobjective problem:

max
x1∈X1

min
x2∈X2

→ F (x1, x2) = (F 1(x1, x2), F 2(x1, x2), . . . , F r(x1, x2)). (38)

Strictly we define the saddle point x∗ = (x∗1, x
∗
2) ∈ X1 ×X2 for zero-sum

multiobjective problem (38) in the following way.

Definition 7. The situation (x∗1, x
∗
2) ∈ X1 ×X2 is called the saddle point for

max-min multiobjective problem (38) (i.e., for zero-sum multiobjective game
G = (X1,X2, F )) if x∗1 is Pareto solution for multicriterion problem:

max
x1∈X1

→ F (x1, x
∗
2) = (F 1(x1, x

∗
2), F

2(x1, x
∗
2), . . . , F

r(x1, x
∗
2)),

and x∗2 is Pareto solution for multicriterion problem:

min
x2∈X2

→ F (x∗1, x2) = (F 1(x∗1, x2), F 2(x∗1, x2), . . . , F r(x∗1, x2)).

If r = 1, this notion corresponds with classic saddle point notion for min-
max problems, i.e., we obtain saddle point notion for classic zero-sum games
of two players.

In this section, we show that theorems of J. Nash [53] and J. Neumann
[52,54] related to classic noncooperative games can be extended for our multi-
objective case of games. Moreover, we show that all results related to discrete
multiobjective games, especially matrix games, can be developed in analogous
way as for classic ones. Algorithms for determining the optimal strategies of
players in considered games will be developed.

19.2 The Main Results

First we formulate the main theorem, which represents an extension of the
Nash theorem for our multiobjective version of the game.
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Theorem 25. Let G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p) be a multiobjective
game, where X1,X2, . . . , Xp are convex compact sets and F 1, F 2, . . . , F p rep-
resent continuous vector payoff functions. Moreover, let us assume that for
every i ∈ {1, 2, . . . , p}, each component F k

i (x1, x2, . . . , xi−1, xi, xi+1, . . . , xp),
k ∈ {1, 2, . . . , ri}, of the vector function F i(x1, x2, . . . , xi−1, xi, xi+1, . . . , xp)
represents a concave function with respect to xi on Xi for fixed x1, x2, . . . ,
xi−1, xi+1, . . . , xp. Then for the multiobjective game G = (X1,X2, . . . , Xp, F 1,
F 2, . . . , F p) there exists Pareto–Nash equilibria situation x∗ = (x∗1, x

∗
2, . . . ,

x∗p) ∈ X1 ×X2 × · · · ×Xp.

Proof. Let α11, α12, . . . , α1r1 , α21, α22, . . . , α2r2 , . . . , αp1, αp2, . . . , αprp
be an

arbitrary set of real numbers that satisfy the following condition
⎧

⎪

⎨

⎪

⎩

ri
∑

k=1

αik = 1, i = 1, p;

αik > 0, k = 1, ri, i = 1, p.
(39)

We consider an auxiliary noncooperative game (single-objective game) G =
(X1,X2, . . . , Xp, f1, f2, . . . , fp), where

fi(x1, x2, . . . , xp) =
ri
∑

k=1

αikF
k
i (x1, x2, . . . , xp), i = 1, p.

It is evident that fi(x1, x2, . . . , xi−1, xi, xi+1, . . . , xp) for every i ∈ {1, 2, . . . , p}
represents a continuous and concave function with respect to xi onXi for fixed
x1, x2, . . . , xi−1, xi+1, . . . , xp because α11, α12, . . . , α1r1 , α21, α22, . . . , α2r2 , . . . ,
αp1, αp2, . . . , αprp

satisfy condition (39) and F k
i (x1, x2, . . . , xi−1, xi, xi+1, . . . ,

xp) is a continuous and concave function with respect to xi on Xi for fixed
x1, x2, . . . , xi−1, xi+1, . . . , xp, k = 1, ri, i = 1, p.

According to Nash theorem [53] for the noncooperative game G =
(X1,X2, . . . , Xp, f1, f2, . . . , fp), there exists Nash equilibria situation x∗ =
(x∗1, x

∗
2, . . . , x

∗
p), i.e.

fi(x∗1, x
∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p)

≤ fi(x∗1, x∗2, . . . , x∗i−1, x
∗
i , x

∗
i+1, . . . , x

∗
p), ∀xi ∈ Xi, i = 1, p.

Let us show that x∗ = (x∗1, x
∗
2, . . . , x

∗
p) is Pareto–Nash equilibria solution

for the multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p). Indeed, for
every xi ∈ Xi we have

ri
∑

k=1

αikF
k
i (x∗1, x

∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p)

= fi(x∗1, x
∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p)
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≤ fi(x∗1, x∗2, . . . , x∗i−1, x
∗
i , x

∗
i+1, . . . , x

∗
p)

=
ri
∑

k=1

αikF
k
i (x∗1, x

∗
2, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
p)

∀xi ∈ Xi, i = 1, p.

So,

ri
∑

k=1

αikF
k
i (x∗1, x

∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p)

≤
ri
∑

k=1

αikF
k
i (x∗1, x

∗
2, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
p), ∀xi ∈ Xi, i = 1, p,

(40)

for given α11, α12, . . . , α1r1 , α21, α22, . . . , α2r2 , . . . , αp1, αp2, . . . , αprp
which

satisfy (39).
Taking in account that the functions f ikx∗ = F k

i (x∗1, x
∗
2, . . . , x

∗
i−1, xi, x

∗
i+1,

. . . , x∗p), k = 1, ri, are concave functions with respect to xi on convex set Xi

and αi1, αi2, . . . , αik satisfy the condition
ri
∑

k=1

αik = 1, αik > 0, k = 1, ri, then

according to the theorem from [16] (see also [7–9]), condition (40) implies that
x∗i is Pareto solution for the following multicriterion problem:

max
xi∈Xi

→ f
i

x∗(xi) = (f i1x∗(xi), f i2x∗(xi), . . . , f iri
x∗ (xi)), i ∈ {1, 2, . . . , p}.

This means that x∗ = (x∗1, x
∗
2, . . . , x

∗
p) is Pareto–Nash equilibria solution for

the multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p).

So, if conditions of Theorem 25 are satisfied, then Pareto–Nash equilibria
solution for the multiobjective game can be found by using the following
algorithm.

Algorithm 18. Determining Pareto–Nash Equilibria of Multiobjec-
tive Game

1. Fix an arbitrary set of real numbers α11, α12, . . . , α1r1 , α21, α22, . . . , α2r2 ,
. . . , αp1, αp2, . . . , αprp

, which satisfy condition (39);
2. Form the single objective gameG = (X1,X2, . . . , Xp, f1, f2, . . . , fp), where

fi(x1, x2, . . . , xp) =
ri
∑

k=1

αikF
k
i (x1, x2, . . . , xp), i = 1, p;

3. Find Nash equilibria x∗ = (x∗1, x
∗
2, . . . , x

∗
p) for noncooperative game

G = (X1,X2, . . . , Xp, f1, f2, . . . , fp) and fix x∗ as a Pareto–Nash equilibria
solution for multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p).
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Remark 12. Algorithm 18 finds only one of the solutions for the multiobjective
game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p). In order to find all solutions in
Pareto–Nash sense, it is necessary to apply algorithm 18 for every α11, α12, . . . ,
α1r1 , α21, α22, . . . , α2r2 , . . . , αp1, αp2, . . . , αprp

that satisfy (39) and then to
form the union of all obtained solutions.

Note that the proof of Theorem 25 is based on reduction of the mul-
tiobjective game G = (X1,X2, . . . , Xp, F1, F2, . . . , Fp) to an auxiliary one
G = (X1,X2, . . . , Xp, f1, f2, . . . , fp) for which Nash theorem from [53] can
be applied. In order to reduce the multiobjective game G to an auxiliary
one, G linear convolution criteria for vector payoff functions in the proof of
Theorem 25 have been used. A similar reduction of the multiobjective game
to a classic one can be used applying the convolution criteria the standard
procedure.

For zero-sum multiobjective game of two players, the following theorem
holds.

Theorem 26. Let G = (X1,X2, F ) be a zero-sum multiobjective game of two
players, where X1,X2 are convex compact sets and F (x1, x2) is a continuous
vector function on X1 × X2. Moreover, let us assume that each component
F k(x1, x2), k ∈ {1, 2, . . . , r}, of F (x1, x2) for fixed x1 ∈ X1 represents a con-
vex function with respect to x2 on X2, and for every fixed x2 ∈ X2 it is
a concave function with respect to x1 on X1. Then for the zero-sum multi-
objective game G = (X1,X2, F ), there exists saddle point x∗ = (x∗1, x

∗
2) ∈

∈ X1 ×X2, i.e., x∗1 is Pareto solution for multicriterion problem:

max
x1∈X1

→ F (x1, x
∗
2) = (F 1(x1, x

∗
2), F

2(x1, x
∗
2), . . . , F

r(x1, x
∗
2))

and x∗2 is Pareto solution for multicriterion problem:

min
x2∈X2

→ F (x∗1, x2) = (F 1(x∗1, x2), F 2(x∗1, x2), . . . , F r(x∗1, x2)).

Proof. The proof of Theorem 26 can be obtained as a corollary from Theorem
25 if we regard our zero-sum game as a game of two players of form G =
(X1,X2, F 1(x1, x2), F 2(x1, x2), where F 2(x1, x2) = −F 1(x1, x2) = F (x1, x2).

The proof of Theorem 26 can be obtained also by reducing our zero-sum
multiobjective game G = (X1,X2, F ) to a classic single-objective case G =
(X1,X2, f) and applying Neumann theorem from [54], where

f(x1, x2) =
r
∑

k=1

αkF
k(x1, x2)

and α1, α2, . . . , αr are arbitrary real numbers, such that

r
∑

k=1

αk = 1; αk > 0, k = 1, r.
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It is easy to show that if x∗ = (x∗1, x
∗
2) is a saddle point for the zero-sum

game G = (X1,X2, f), then x∗ = (x∗1, x
∗
2) represents a saddle point for the

zero-sum multiobjective game G = (X1,X2, F ).
So, if conditions of Theorem 26 are satisfied, then a solution of zero-sum

multiobjective game G = (X1,X2, F ) can be found by using the following
algorithm.

Algorithm 19. Determining the Saddle Point of Payoff Functions
in Zero-Sum Multiobjective Game

1. Fix an arbitrary set of real numbers α1, α2, . . . , αr, such that

r
∑

k=1

αk = 1; αk > 0, k = 1, r;

2. Form the zero-sum game G = (X1,X2, f), where

f(x1, x2) =
r
∑

k=1

αkF
k(x1, x2).

3. Find a saddle point x∗ = (x∗1, x
∗
2) for the single-objective zero-sum game

G = (X1,X2, f). Then fix x∗ = (x∗1, x
∗
2) as a saddle point for zero-sum

multiobjective game G = (X1,X2, F ).

Remark 13. Algorithm 19 finds only a solution for the given zero-sum mul-
tiobjective game G = (X1,X2, F ). In order to find all saddle points, it is
necessary to apply Algorithm 19 for every α1, α2, . . . , αr satisfying conditions
r
∑

k=1

αk = 1; αk > 0, k = 1, r, and then to form the union of obtained solutions.

Note, that for reducing the zero-sum multiobjective games to classic ones
can be used the convolution criteria from [16,60].

19.3 Discrete and Matrix Multiobjective Games

Discrete multiobjective games are determined by the discrete structure of sets
of strategies X1,X2, . . . , Xp. If X1,X2, . . . , Xp are finite sets, then we may
consider Xi = Ji, Ji = {1, 2, . . . , qi}, i = 1, p. In this case, the multiobjective
game is determined by vectors

F i = (F 1
i , F

2
i , . . . , F

ri
i ), i = 1, p,

where each component F k
i , k = 1, ri, represents p-dimensional matrix of size

q1 × q2 × · · · × qp.
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If p = 2, then we have bimatrix multiobjective game, and if F2 = −F1,
then we obtain a matrix multiobjective one. In an analogous way as for single
objective matrix games, here we can interpret the strategies ji ∈ Ji, i = 1, p,
of players as pure strategies.

It is evident that for such matrix multiobjective games, Pareto–Nash
equilibria may not exist because Nash equilibria may not exist for bima-
trix and matrix games in pure strategies. But to each finite discrete mul-
tiobjective game, we can associate a continuous multiobjective game G =
(Y1, Y2, . . . , Yp, f1, f2, . . . , fp) by introducing mixed strategies yi = (yi1, yi2,
. . . , yiri

) ∈ Yi of player i and vector payoff functions f1, f2, . . . , fp, which we
define in the following way:

Yi = {yi = (yi1, yi2, . . . , yiri
) ∈ Rri

∣

∣

∣

ri
∑

j=1

yij = 1, yij ≥ 0, j = 1, ri};

f i = (f1
i , f

2
i , . . . , f

ri
i ),

where

fki (y11, y12, . . . , y1r1 , y21, y22, . . . , y2r2 , . . . , yp1, yp2, . . . , yprp
)s

=
r1
∑

j1=1

r2
∑

j2=1

· · ·
rp
∑

jp=1

F k(j1, j2, . . . , jp)yij1yij2 . . . yijp
; k = 1, ri, i = 1, p.

It is easy to observe that for an auxiliary multiobjective game G =
(Y1, Y2, . . . , Yp, f1, f2, . . . , fp), conditions of Theorem 25 are satisfied and
therefore Pareto–Nash equilibria y∗ = (y∗11, y

∗
12, . . . , y

∗
1r1 , y

∗
21, y

∗
22, . . . , y

∗
2r2 , . . . ,

y∗p1, y
∗
p2, . . . , y

∗
prp

) exist.
In the case of matrix games, the auxiliary zero-sum multiobjective game

of two players is defined as follows: G = (Y1, Y2, f);

Y1 = {y1 = (y11, y12, . . . , y1r) ∈ Rr
∣

∣

∣

r
∑

j=1

y1j = 1, y1j ≥ 0, j = 1, r};

Y2 = {y2 = (y21, y22, . . . , y2r) ∈ Rr
∣

∣

∣

r
∑

j=1

y2j = 1, y2j ≥ 0, j = 1, r};

f = (f1, f2, . . . , fr),

fk(y11, y12, . . . , y1r, y21, y22, . . . , y2r) =
r
∑

j1=1

r
∑

j2=1

F k(j1, j2)y1j1y2j2 ; k = 1, r.

The game G = (Y1, Y2, f) satisfies conditions of Theorem 26 and therefore
saddle point y∗ = (y∗1 , y

∗
2) ∈ Y1 × Y2 exists.

So, the results related to discrete and matrix game can be extended for
multiobjective case of the game and can be interpreted in an analogous way
as for single-objective games. In order to solve these associated multiobjective
games, Algorithms 18 and 19 can be applied.
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19.4 Some Comments and Interpretation of Multiobjective Games

The considered multiobjective games extend classic ones and represent a
combination of cooperative and noncooperative games. Indeed, the player i
in multiobjective game G = (X1,X2, . . . , Xp, F 1, F 2, . . . , F p) can be regarded
as a union of ri subplayers with payoff functions F 1

i , F
2
i , . . . , F

ri
i , respectively.

So, the game G represents a game with p coalitions 1, 2, . . . , p, which interact
between them on the set of situations X1 ×X2 × · · · ×Xp.

The introduced Pareto–Nash equilibria notion uses the concept of coopera-
tive games because according to this notion, subplayers of the same coalitions
should optimize in the sense of Pareto their vector functions F on the set of
strategies Xi. On the other hand, Pareto–Nash equilibria notion takes into
account also the concept of noncooperative games because coalitions interact
between them on the set of situations X1 ×X2 × · · · ×Xp and are interested
to preserve Nash equilibria between coalitions.

The obtained results allow us to describe a class of multiobjective games
for which Pareto–Nash equilibria exist. Moreover, a suitable algorithm for
finding Pareto–Nash equilibria is proposed.

20 Conclusion

The considered control models generalize classic ones and comprise a large
class of practical and theoretical problems. A general concept of the game-
theoretical approach for control problems with integral-time cost criterion by
a trajectory with given starting and final states is described. The classifica-
tion of necessary and sufficient conditions for the existence of Nash equilibria
and Pareto optima in the considered game control models is obtained. The
dynamic programming techniques for such class of problems is developed, and
polynomial time algorithms for determining Nash equilibria and Pareto op-
tima are elaborated. Efficient algorithms are derived for the dynamic c-game
on network and the game control problem in positional form. The obtained
results can be used in general decision-making system.
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Abstract During the First World War, F.W. Lanchester published his book
Aircraft in Warfare: The Dawn of the Fourth Arm [31] in which he proposed several
mathematical models based on differential equations to describe combat situations.
Since then, his work has been extensively modified to represent a variety of compe-
titions, ranging from isolated battles to entire wars.

There exists a class of mathematical models known under the name of differential
Lanchester type models. Such models have been studied from different points of
view by many authors in hundreds of papers and unpublished reports. We note that
Lanchester type models are used in the planning of optimal strategies, supply, and
tactics.

In our first paper on the subject [27], we studied Lanchester type models from
a viability standpoint through the introduction of the new notion of winning cone.
We have also considered a variation on optimal control that we call Optimal Control
by Viability. Although the subject was mentioned, the difficulties and well-known
problems associated with Lanchester coefficients was not considered in this first part.

Herein, we turn our attention to these coefficients and, to overcome this obsta-
cle and facilitate the application of such models, we will introduce the notion of
Lanchester type differential inclusions through the replacement of the classic coeffi-
cients by intervals. We will show how viability theory for set-valued mappings can
be applied to determine viability conditions for the winning cone.

In the last section, we will again consider Optimal Control by Viability, but in
the set-valued case represented by differential inclusions.

Key words: viability, nonlinear analysis, optimal control, Lanchester,
differential inclusions, set-valued analysis
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1 Introduction

The Lanchester theory of combat owes its name and origin to F.W. Lanchester.
During the First World War, in 1916, he published his book Aircraft in
Warfare: The Dawn of the Fourth Arm [31] in which he first introduced the
use of differential equations to the mathematical modelling of combat. Since
then, these models have been studied extensively, and the results have been
published in hundreds of papers. We refer our reader to our article Viability
theory and differential Lanchester type models for combat. Differential sys-
tems [27] for further details. There is also a detailed synthesis of the work
done prior to 1980 written by Taylor [41].

Prior to our latest article on the subject, the research work carried out in
this field relied on classic analysis. In our previous work, we used the tools
of viability and optimal control to provide a new insight into the subject.
However, we are left to deal with the difficulty posed by the Lanchester coeffi-
cients. The problem associated with them is illustrated in the many attempts
to apply the models to historical battles [9, 11–13,16–18,20,23].

The complications arise in the evaluation of these ever elusive Lanchester
coefficients. They are the expression of the ability of one force to inflict damage
on its opponent (see The Lanchester Attrition-Rate Coefficient by Bonder [7]
and followed up by Barfoot [6]). The problem is multifold. The nature of
combat being as it is, the collection of data is at best incomplete and imprecise.
Additionally, these coefficients vary through time and conditions in a manner
hard to quantify.

The analysis of combat through Lanchester type models has yielded laws
on the progression of combat such as the Linear Law, the Square Law [31],
and the Logarithmic Law [37] (see Taylor [41] for further details). The validity
of this analysis with respect to the coefficients as well as the laws of combat it
introduced is often criticized [2, 7, 21, 22, 26, 29]. More recently, Hembold [25]
presented a very à propos paper on this issue highlighting what he called the
Constant Fallacy. Validation of the models have repeatedly failed to prove the
correctness of these laws of combat and/or stumbled over the evaluation of
the coefficients.

Lanchester type models have found applications in numerous fields such
as economy [36], biology, and evolution theory [19]. There is some interesting
work carried out utilizing Nash equilibrium strategies [40] in the context of
armament race and control [32, 38] as well as some publications studying
Lanchester models from a dynamical systems angle [14]. There is now an
increased interest in the application of Lanchester type models to economy
and, more generally, to problems dealing with a competitive element.

Consequently in this publication, to overcome the difficulties that arise
from the Lanchester coefficients, we will replace these single-valued coefficients
by intervals in the sense given by Moore [33] as well as Alefeld and Herzberger
[1]. These intervals are easier to estimate and provide a better approximation
of the incertitude inherent in the reality they represent. The effect of the
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substitution is to transform the models made of differential equations into
differential inclusions; see Aubin and Celina [3] for an excellent presentation
on inclusions. In light of this change, we reexamine the Lanchester type models
presented to verify their correct transfer to proper inclusions and study the
existence of solutions.

One of the major reasons for interest in Lanchester type models of combat
resides in the analysis of their evolution in time, giving us the possibility to
attempt a prediction of the outcome. With that in mind, our next step is
to bring into play the tools provided by set-valued analysis [4] and viability
theory to these transformed models where we examine the existence of viable
solutions to differential inclusions.

As a last step, we take the analysis of the Lanchester type differential
inclusions to its natural progression into the domain of optimal control. In
this last section, we will introduce the notion of optimal control by viability
for the set-valued case and explore its application to the Lanchester theory of
combat.

2 Preliminaries

Throughout this work, we will denote by (H, 〈· , ·〉) an arbitrary Hilbert space
and by K a closed convex cone in H. Unless otherwise stated, the Hilbert
space under consideration will be the Euclidean space (Rn, 〈· , ·〉). We recall
that a convex set Ω ⊆ H is a subset of H such that

x, y ∈ Ω =⇒ (1− λ)x+ λy ∈ Ω, for any λ such that 0 < λ < 1.

A closed convex cone K ⊆ H is a closed subset having the following
properties:

1. K +K ⊆ K,
2. λK ⊆ K, λ ∈ R+.

If in addition, K satisfies the property that K ∩ (−K) = 0, then we say that
K is a pointed cone.

The study of viability will require the application of the notion of contin-
gent cone of which we now give a definition.

Definition 1 (Contingent cone). Let X be a Hilbert space, K ⊂ X a non-
empty subset, and B =

{

x ∈ X
∣

∣ ‖x‖ ≤ 1
}

. We say that the subset

TK(x) =
⋂

ε>0

⋂

α>0

⋃

0<h<α

(

1
h

(K − x) + εB
)

is the contingent cone (or the Bouligand’s contingent cone [8]) to K at the
point x ∈ K.
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In the case when K is convex, we call TK(x) the tangent cone to K at x and
its representation is TK(x) =

⋃

h>0
1
h (K − x). Because this article studies the

viability of dynamical systems using convex cones as the viable subset, we
give the following characterization of TK(x).

Theorem 1. Given a convex cone K, a subset of a Hilbert space, x ∈ K, and
TK(x) the contingent cone at x satisfying Definition (1), then

K + Rx = K −R+x ⊂ TK(x)

furthermore
K −R+x = TK(x). (1)

Proof. We refer the interested reader to the proof in our AJMAA article [27].

From Section 7 onward, the right-hand side of the differential equations will
be transformed from single-valued mappings to set-valued mappings. This
transformation has an important effect on the notion of continuity. In the
single-valued setting, continuity of a function f : X → Y is equivalently
characterized by:

1. for any neighbourhood N(f(x)) of f(x), there exists a neighbourhood
N(x) of x such that f(N(x)) ⊆ N(f(X)) (commonly recited as: ∀ε,∃δ. . . );
or

2. for any net convergent to x, the net {f(xi)}i∈I is convergent to f(x).

However, in set-valued settings, these two characterizations of continuity
no longer represent the same property. We refer to the set-valued equivalent of
(1) as upper semi-continuity and to that of (2) as lower semi-continuity and
we give the following definitions. In the following, P (Y ) := {U

∣

∣U ⊆ Y,U 	= ∅}
and τY is the topology defined on Y .

Definition 2 (Set-valued mapping). Given X and Y two nonempty sets,
a mapping that assigns a nonempty subset of Y to the elements of X is a
set-valued mapping:

F : X → P (Y )

Definition 3 (Upper Semi-continuity). Let X, Y be topological spaces
and consider the set-valued mapping F : X → P (Y ). The mapping F is upper
semi-continuous (u.s.c.) at x0 ∈ X if and only if for any G ∈ τY

∣

∣G ⊇ F (x0),
there exists V (x0), a neighbourhood of x0, such that x ∈ V (x0) =⇒ G ⊇ F (x).

Definition 4 (Lower Semi-continuity). Let X, Y be topological spaces
and consider the set-valued mapping F : X → P (Y ). The mapping F
is lower semi-continuous (l.s.c) at x0 ∈ X if and only if for any G ∈
τY
∣

∣G ∩ F (x0) 	= ∅, there exists V (x0), a neighbourhood of x0, such that
x ∈ V (x0) =⇒ F (x) ∩G 	= ∅.



A Military Application of Viability 763

If F is both lower semi-continuous and upper semi-continuous, we say that F
is continuous.

The set-valued mappings considered in this article are those generated
through the application of Interval Analysis. To that effect, we now introduce
some definitions and properties that are related to the subject and have been
introduced by Moore [33] and Alefeld and Herzberger [1].

Definition 5 (Real interval). We call A, a subset of R, a closed real in-
terval (or interval when there is no doubt as to the meaning) if it has the form:

A = [a1, a2] =
{

x ∈ R
∣

∣ a1 ≤ x ≤ a2, where a1, a2 ∈ R
}

.

It is of interest to note that the single value x ∈ R can be expressed as
the interval [x, x] ⊂ R. An n-dimension interval is an n-tuple of intervals:
(A1, A2, . . . , An). We will denote the set of all real intervals by I(R) or, in the
n-dimension case, I(Rn). The four common binary operations on the set of
real numbers have the following definition on I(R).

Definition 6 (Interval binary operations). Consider ∗ to be one of the
common four binary operation on R, i.e. ∗ ∈ {+,−, ·,÷}. For A,B ∈ I(R),
the operations are defined as:

A ∗B ≡
{

x = a ∗ b
∣

∣ a ∈ A, b ∈ B
}

.

Clearly, we must have that 0 /∈ B in the case of the division. As these
operations are continuous functions on compact sets, the result is again a
real interval and, where A = [a1, a2] and B = [b1, b2], can be computed
explicitly as:

A+B = [a1 + a2, b1 + b2]
A−B = [a1 − b2, a2 − b1] = A+ [−1,−1] ·B
A ·B = [min {a1b1, a1b2, a2b1, a2b2} ,max {a1b1, a1b2, a2b1, a2b2}]

A÷B = [a1, a2] ·
[

1
b2
,

1
b1

]

.

The algebraic properties of interval arithmetic include commutativity, as-
sociativity, and the existence of neutral elements. There is no inverse for either
addition or multiplication but we have: 0 ∈ A−A and 1 ∈ A÷A. Unless A is a
singleton or bc ≤ 0, ∀b ∈ B, and c ∈ C, we can only rely on subdistributivity:
A · (B + C) ⊆ AB +AC.

As we will be modifying single-valued mappings through the introduction
of intervals in replacement of the coefficients, we need to define the following:

Definition 7 (United extension). Let M1 and M2 be arbitrary sets and
let f : M1 → M2 be an arbitrary single-valued mapping. Then, the set-valued
mapping defined by:
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f : P (M1)→ P (M2)

X →
{

f(x)
∣

∣x ∈ X
}

,X ∈ P (M1)

is called the united extension of f .

Definition 8 (Inclusion monotonicity). An interval valued function F of
several variables X1,X2, . . . , Xn is inclusion monotonic if

(Yi ⊆ Xi, i = 1, . . . , n)⇒ f (Y1, . . . , Yn) ⊆ f (X1, . . . .Xn)

Once the right-hand side (RHS) of the Lanchester type models have be-
come set-valued mappings, we will have entered the realm of differential in-
clusions where one typically searches for a satisfactory selection.

Definition 9 (Selection). Let F : X → P (Y ) be a set-valued mapping. We
say that the single-valued mapping f : X → Y is a selection for F if and only
if, for any x ∈ X, we have f(x) ∈ F (x).

The problem then becomes to determine the conditions under which there
exists a selection that also satisfies some stated regularity conditions (i.e.,
continuity, Lipschitz, etc.).

3 Differential Lanchester Type Models

Since the publication of Lanchester’s book in 1916, numerous variations based
on the original ideas have been proposed, see for instance the list presented
by Taylor [41]. All these models are based on a modelling that takes roots
in defining the rates of variation in strength of opposing forces. Our recent
article [27] provides more detailed descriptions of the various models under
study. We simply include the list here for quick and easy reference.

3.1 Various Lanchester Type Models

Aimed Fire

This model is the original one introduced in 1914 by Lanchester [30]:
⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1

where a, b > 0.
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Area Fire

This model is also one of the first ones introduced by Lanchester [30] and is
given by:

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax1x2, x(0) = x0

dx2

dt
= −bx1x2

where a, b > 0.

Brackney

In 1959, Brackney [10] introduced a model that is based on a combination
of the Aimed Fire model in 3.1 and the Area Fire model of Section 3.1. His
model is expressed by

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1x2

where a, b > 0.

Peterson

In an attempt to explore the initial stage of battle, Peterson [37] introduced
this model:

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax1, x(0) = x0

dx2

dt
= −bx2

where a, b > 0.

Morse and Kimball

Morse and Kimball [34] put forth the hypothesis that losses from both combat
and related operations contributed to the whole. The model is as follows:

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2 − βx1, x(0) = x0

dx2

dt
= −bx1 − αx2

where a, b, α, β > 0.
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Coleman

The model presented by Coleman [15] added the effect of reinforcements.
⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax1 − bx2 +Rx1 , x(0) = x0

dx2

dt
= −cx1 − dx2 +Rx2

where a, b, c, d > 0 and Rx1 , Rx2 can be either positive or negative and are
generally considered to be step functions.

Hembold

In 1964, Hembold [24], to model the inefficiency of scale, introduced two map-
pings that are a function of the ratio of the opposing forces numbers. The
resulting model is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx1

dt
= −ag(x1

x2
)x2, x(0) = x0

dx2

dt
= −bh(x2

x1
)x1

where a, b > 0 while g(.), h(.) ≥ 0 and g(1) = h(1) = 1.

Weiss

When Weiss [42] introduced his models, he approached the issue of the effect
that scale has on the rates from a vulnerability point of view. His model
became

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx1

dt
= −a(x1

x2
)1−Wx2, x(0) = x0

dx2

dt
= −b(x2

x1
)1−Wx1

where a, b > 0.

Schreiber

Schreiber [39] was interested in a model that looked at command and control.
Thus, he put forth a model where the efficiency of command came to play
through the introduction of command efficiency constants ex1 , ex2 ∈ [0, 1].

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx1

dt
= −a

{

x1x2

x1,0 − ex2(x1,0 − x1)

}

, x(0) = x0

dx2

dt
= −b

{

x1x2

x2,0 − ex1(x2,0 − x2)

}

where a, b > 0, x1,0 and x2,0 represent the initial strengths, and ex1 , ex2 ∈
[0, 1].
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4 Viable Solutions for a Differential System

Let us first provide the tools necessary for a brief overview of viability analysis
of the differential systems. As in [27], we will define a closed subset of state
space, K, of the system to represent the set of acceptable status of our combat
equations. That closed subset will be considered viable under the differential
system if for every initial x0 ∈ K, there exists at least one solution to the sys-
tem starting at that point and remaining in K for some time. More formally,
using the definitions given by Aubin [5]:

Definition 10 (Viable function). Let K be a subset of a finite dimensional
vector space X. We shall say that a function x(·) from [0, T ] to X is viable in
K on [0, T ] if ∀t ∈ [0, T ], x(t) ∈ K.

Consider the following differential equation for f : U → X, U ⊂ X.

d(x(t))/dt = f(x(t)), x(0) = x0 ∈ U. (2)

Definition 11 (Viability and Invariance). Let K be a subset of U . We
shall say that K is locally viable under f if for any initial state x0 of K, there
exist T > 0 and a viable solution on [0, T ] to differential equation (2) starting
at x0. It is said to be (globally) viable under f if we can always take T =∞.

The subset K is said to be invariant under f if for any initial state x0 of
K, all solutions to the differential equation (2) are viable in K.

Because we are concerned with Lanchester type combat models, given
K ∈ Rn and a mapping x(t) : R+ → Rn, we will say that x(t) is viable in K
whenever x(t) ∈ K, ∀t ∈ R+.

To verify the existence of solutions that are viable within a subset U , we
use the Nagumo theorem [35].

Theorem 2 (Nagumo). Let U be a closed subset of a Hilbert space H and f
be a continuous map from U to H, f : U → H, such that

∀x ∈ U, f(x) ∈ TU (x). (3)

Then for all x0 ∈ U , there exists T > 0 such that Equation (2) has a viable
trajectory on [0, T ].

5 Winning Cones

In our previous article, we introduced the concept of winning cone. This cone
provides us with a useful tool as at all points within such a cone, one compo-
nent is superior to the other.

Let E be a real vector space and Kα,Kβ ⊂ E be closed convex cones.
Let “≤” be the ordering defined by the convex cone K≤ ⊂ E, i.e. x ≤ y ⇔
y − x ∈ K≤.
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Definition 12 (Winning cone). Consider the vector space E × E. We say
that the closed convex pointed cone K0 is a winning cone if it has the following
properties:

1. Ko ⊂ Kα ×Kβ; and
2. (x, y) ∈ K0 ⇒ x ≥ y, where “≤” is the ordering defined by K≤.

In our case, the analysis of Lanchester type models of combat, we will have
E = Kβ = R, Kα = K≤ = R+, such that whenever (x1, x2) ∈ K0, we have
that x1 dominates his opponent x2. As a result, if a solution remains in such
a winning cone, victory is assured for one of the opposing forces.

To such a purpose, we defined four winning cones, see Figure 1, where
the first three provide a set in which combat power of one opponent always
dominates the other, and the last cone provides a set within which one force
can but improve its ratio over its opponent. For each of these cones K, we
determine the tangent cone TK(x) associated with every x = (x1, x2) ∈ K
and the conditions it imposes in R2 on the dynamical system

⎧

⎪

⎨

⎪

⎩

dx1

dt
= f1(x), x(0) = x0

dx2

dt
= f2(x)

where f(x) = (f1(x), f2(x)).
The cones selected are

1. K1 :=
{

x ∈ R2 | (x1 ≥ x2) ∧ (x2 ≥ 0)
}

,
2. K2 :=

{

x ∈ R2 | x1 ≥ |x2|
}

,
3. K3 :=

{

x ∈ R2 | x1 ≥ x2 ∧ x1 ≥ 0
}

,

4. K4 :=
{

x ∈ R2 | x1 ≥ x1(0)
x2(0)

x2 and x1 ≥ 0
}

.

After determining the tangent cones at every point for each cone, we have
been able to obtain conditions on the RHS of the differential systems that
guarantee viability of the solution. For easy reference, the results obtained in
[27] are reproduced here in Table 1.

In other words, for a solution to remain viable in a given cone, all the
associated conditions listed in the third column of the table must be met.

6 Winning Cones for Differential Lanchester Type
Models

Using the results provided in Table 1, for each model we can translate these
into a set of conditions on the coefficients to obtain viability for the respective
winning cones. We provide an example of the process, taken from [27], for
the simple case of the Aimed Fire model and display the conclusions for the
remainder in Table 2.
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Cone K1 Cone K2

Cone K3 Cone K4

X0

Figure 1. Viability cones

Table 1. Tangent Cones at x ∈ K

Winning cone (K) Points in K Conditions on f(x)

K1 x ∈ int(K1) f(x) ∈ R2

x = (0, 0) f(x) ∈ K1

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x2 = 0, x1 > 0 f2(x) ≥ 0

K2 x ∈ int(K2) f(x) ∈ R2

x = (0, 0) f(x) ∈ K2

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x1 = −x2, x1 > 0 f1(x) ≥ −f2(x)

K3 x ∈ int(K3) f(x) ∈ R2

x = (0, 0) f(x) ∈ K3

x1 = x2, x1 > 0 f1(x) ≥ f2(x)
x1 = 0, x2 < 0 f1(x) ≥ 0

K4 x ∈ int(K4) f(x) ∈ R2

x = (0, 0) f(x) ∈ K4

x1 = x1(0)
x2(0)

x2, x1 > 0 f1(x) ≥ x1(0)
x2(0)

f2(x)

x1 = 0, x2 < 0 f1(x) ≥ 0
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Table 2. Viability Conditions for Constant Coefficients Models

Model K1 K2

Aimed Fire None a = b

Area Fire a ≤ b a ≤ b

Brackney a ≤ b a ≤ b
(Modified)

Peterson a ≤ b a ≤ b

Morse None |a − b|x1(0)
x2(0)

and Kimball

Coleman Not Practical |b − c| ≤ d − a
|Rx2 | ≤ Rx1

Hembold a ≤ b a = b

Schreiber a
b
≤ x1,0−ex2 (x1,0−x1)

x2,0−ex1 (x2,0−x2)
Same as K1

Model K3 K4

Aimed Fire a ≤ b a
b
≤
(

x1(0)
x2(0)

)2

Area Fire a ≤ b a ≤ x1(0)
x2(0)

b

Brackney a ≤ b a ≤ x1(0)
x2(0)

b

(Modified)

Peterson a ≤ b a ≤ x1(0)
x2(0)

b

Morse a − b ≤ α − β a + β ≤ x1(0)
x2(0)

(b − α)

and Kimball

Coleman a + b ≤ c + d a + b ≤ x1(0)
x2(0)

(c + d)

Rx2 ≤ Rx1

Hembold a ≤ b a ≤ b

Schreiber Same as K1
a
b
≤ x1,0(x1,0−ex2 (x1,0−x1))

x2,0(x2,0−ex1 (x2,0−x2))

6.1 Aimed Fire, Winning Cone K1

As we recall, from Section 3.1, the model introduced in 1914 is expressed
mathematically by
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⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1

where a, b > 0. To link the models with the differential equation given earlier,
the right-hand side of equation (2) is defined by

f(x) =

{

f1(x) = −ax2

f2(x) = −bx1

where x = (x1, x2). From the tangent cones defined in Table 1, it is clear that
for points belonging to the interior of the cone, x ∈ int(K1), any values for a
and b are viable. Similarly, as f(0) = 0 for any a, b > 0 we have f(x) ∈ K1

for any choice of coefficients. It remains to examine the coefficients required
to meet the conditions of the Nagumo theorem at the cone’s boundaries. For
the upper boundary, we must have

f1(x) ≥ f2(x)
−ax2 ≥ −bx1

−ax1 ≥ −bx1, x1 = x2

−a ≥ −b, x1 > 0
a ≤ b. (4)

The restrictions on the coefficients for the lower boundary become

f2(x) ≥ 0
−bx1 ≥ 0
−b(1) ≥ 0, choose x = (1, 0) on boundary
−b ≥ 0
b ≤ 0 (5)

but as the model requires b > 0, it implies that there is no viable solution to
equation (2) that remains viable once it enters cone K1.

6.2 Aimed Fire, Winning Cone K3

It is obvious through the similarities with the previous cone that the only
restrictions additional to those imposed by the model are those generated by
the upper and lower boundaries. In the case of the former, the results are also
identical and given by equation (4), and for the latter, using Table 1 we have

f1(x) ≥ 0
−ax2 ≥ 0
−a ≤ 0, x2 < 0
a ≥ 0. (6)
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The restrictions imposed by equation (6) are more relaxed than that imposed
by the model. As a consequence, only the additional inequality of equation
(4) is required to consider. For a solution to the Aimed Fire model to remain
viable once it enters K3, its coefficients must be such that a ≤ b.

6.3 Aimed Fire, Winning Cone K4

From the inspection of Table 1, the only differences between this cone and K3

are at the “Upper” boundary. From the corresponding entry in the table, we
have

f1(x) ≥
x1(0)
x2(0)

f2(x)

−ax2 ≥
x1(0)
x2(0)

(−b)x1

−ax2 ≥
x1(0)
x2(0)

(−b)x1(0)
x2(0)

x2, x1 =
x1(0)
x2(0)

x2

−a ≥
(

x1(0)
x2(0)

)2

(−b), x2 > 0

a ≤
(

x1(0)
x2(0)

)2

b. (7)

The restrictions on the coefficients imposed by the model are more restrictive
than the boundary conditions with the exception of (7). As such, to make K4

viable, the coefficients must meet a
b ≤

(

x1(0)
x2(0)

)2

and a, b > 0.

6.4 Variable Coefficients

We have seen so far how viability can be used to establish conditions on the
Lanchester coefficients to render possible one side’s victory. In the Lanchester
theory, each of these models has an equivalent one using variable coefficients.
These models are similar to those introduced so far, but each attrition coef-
ficient is replaced by a continuous function of time. For instance, the Aimed
Fire model becomes

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −a(t)x2, x(0) = x0

dx2

dt
= −b(t)x1

.
Clearly these models prove more flexibility and the constant coefficients

versions become a special case where a(t) and b(t) are constant functions.
When we examined the tangent cones at interior points for each of our winning
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Table 3. Viability Conditions for Variable Coefficients Models

Model K1 to K3 Gaining cone K4

Aimed Fire a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Area Fire a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Brackney a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

(Modified)

Peterson a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Morse a(t) + β(t) ≤ b(t) + α(t) a(t) + β(t) ≤ x1(0)
x2(0)

(b(t) + α(t)

and Kimball

Coleman (a(t) + b(t)) − (c(t) + d(t)) (a(t) + b(t)) − (c(t) + d(t))

≤ Rx1 (t)+Rx2 (t)

x1(t)
≤ x1(0)(Rx1 (t)+Rx2 (t))

x2(0)x1(t)

Hembold a(t) ≤ b(t) a(t) ≤ x1(0)
x2(0)

b(t)

Schreiber a(t)
b(t)

≤ (1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)
a(t)
b(t)

≤ x1(0)
x2(0)

(1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)

cones, we established that they were the complete space R2 (see Table 1). As
such, the study of viability for variable coefficients need only be concerned
by the behaviour at the boundaries of the winning cones. Furthermore, as we
are concerned with actual war scenarios, we restrict our study to the “Upper”
boundary and, using a method similar to that above, we get the results shown
in Table 3 replicated from [27].

Viability, thus obtained, clearly depends on the instantaneous abilities of
the forces at play when they reach the critical states that the boundaries
represent. This idea is the basis of what we coined optimal control by viability
and that we will now discuss.

6.5 Optimal Control by Viability, Differential Systems

Life, and in particular military operations, is such that our control over its
evolution is often effected in a discrete manner. In the models introduced, it
takes shape in the selection of weapons used, the commitment of reserve, or
the resting of some forces to bring their effectiveness back up, for example.

In such cases, optimal control is not about the optimization of a function
but about taking actions to maintain our progress toward an objective. With
the use of our winning cones, this is expressed by the idea of maintaining
viability and brings to play the idea of optimal control by viability, introduced
in [27].

In the case of Lanchester type models discussed so far, the idea is to
use the conditions for viability that have been obtained to determine the
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moments when they will be breached. This process generates a set of states
where control must be applied to maintain viability. Of course, the constant
coefficients case does not provide the modelling of the commander’s ability
to affect efficiency and, as such, we will concern ourselves with the variable
coefficients models.

Let us examine the Aimed Fire model as an example. We are interested
in time

inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

.

which represent the next moment when a new control scheme must be em-
ployed. Table 4 expresses this for all models presented.

We can see how the study of the models through optimal control by viability
produces excellent tools to assist in the decision-making process and provides
means by which to study the various impacts of command decisions.

Considering a battle is a dynamical process, the coefficients in a Lanchester
type model may change and, consequently, the condition f(x) ∈ TU (x) may
not be satisfied for any x ∈ U (see Theorem 2). In this case, the solution of
the system

⎧

⎨

⎩

dx(t)
dt

= f(x(t))

x(0) = x0 ∈ U,
may not be viable with respect to U . However, by adding to f(x) a continuous
function ϕ(x), we can obtain from the given system a differential system

Table 4. Change of Control Scheme

Model Decision time

Aimed Fire inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Area Fire inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Brackney inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

(Modified)

Peterson inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Morse inf
{{

t ∈ R+

∣

∣ a(t) + β(t) > b(t) + α(t)
}

and Kimball ∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Coleman inf
{{

t ∈ R+

∣

∣ (a(t) + b(t)) − (c(t) + d(t)) >
Rx1 (t)+Rx2 (t)

x1(t)

}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Hembold inf
{{

t ∈ R+

∣

∣ a(t) > b(t)
}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}

Schreiber inf
{{

t ∈ R+

∣

∣

a(t)
b(t)

>
(1−ex2 )x1(0)+ex2x1(t)

(1−ex1 )x2(0)+ex1x1(t)

}

∩
{

t ∈ R+

∣

∣x1(t) = x2(t)
}}
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satisfying the assumption of Nagumo’s theorem. It is well to find a military
interpretation of the term ϕ(x).

Theorem 3. Let U be a closed convex subset of a Hilbert space H and f :
U → H a continuous map. There exists at least a continuous map ϕ : U → H
such that f(x) + ϕ(x) ∈ TU (x), for any x ∈ U . Moreover, for any x0 ∈ U ,
there exists T > 0 and a viable solution (with respect to U) x : [0, T ]→ H for
the systems dx

dt = f(x(t)) + ϕ(x(t)).

Proof. Let h : U → H be an arbitrary continuous mapping. We define ϕ :
U → H by ϕ(x) = PU [x+h(x)]−x−f(x), where PU [·] is the metric projection
onto U . We then have

f(x) + ϕ(x) = PU [x+ h(x)]− x.
Because U is a closed convex set, we know that, in this case

TU (x) =
⋃

λ>0

1
λ

(U − x).

Consequently, for any x ∈ U we have PU [x + h(x)] − x ∈ TU (x) and the
conclusion of the theorem follows from Nagumo’s theorem (Theorem 2).

Remark 1. If we consider a battle as a sequential process and the map f is
defined with the Lanchester type coefficients estimated at a moment tn, we
can take as a map h the map f defined with the Lanchester type coefficients
estimated as a moment tm with m < n. Another possible selection for the
map h is h(x) = −αf(x), with α a small real positive number. In this case, we
have that f(x)+ϕ(x) = PU [x−αf(x)]−x, and applying theorem 16 of [28] we
obtain that the solution of the differential system, defined with f(x) + ϕ(x),
will be viable (with respect to U) for any t in its maximal interval of definition.

In the above theorem, we can replace the projection PU by an arbitrary
retraction R : H → U . This fact is important because in practical problems
we can select an appropriate retraction.

Applying Theorem 3, we can obtain an interesting optimal control by
viability for Lanchester type models, considering as the set U any winning
cone defined in our paper [27].

In the cases studied so far, the system was defined through the use of single-
valued mappings and dx

dt = f(x(t)). As expressed throughout this article and in
the literature on the subject in general, one of the major problems of the above
models relates to the imprecision and the lack of information on the Lanchester
coefficients. In the next section and for the remainder of this publication, we
will replace these coefficients by intervals, as introduced by Moore [33] and
further studied by Alefeld and Herzberger [1]. This replacement of coefficients
in f(x(t)) will change it to a set-valued mapping F (x(t)) (for a detailed study,
see Aubin and Frankowska [4]), thus transforming the differential equation in
an inclusion in the form

dx

dt
∈ F (x(t)). (8)
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7 Differential Inclusions of Lanchester Type Models

When we replace the Lanchester coefficients by intervals, the right-hand sides
of our models become set-valued mappings. We will show in the following
(Section 8) that for such extensions of continuous functions, the set-valued
mappings generated are upper semi-continuous. This property coupled with
the fact that their images are compact and convex will allow us to apply some
viability tests to the associated differential inclusion in a fashion similar to
that employed on differential systems above.

However, as a first step, we must verify that the replacement of the coeffi-
cients with intervals yield proper differential inclusions (i.e., that the models
can be written in the form of equation (8)) and we now proceed to do so.

7.1 Introduction

Before considering the interval extensions of the Lanchester models, there is
a requirement to set some building blocks. The notation presented here is not
intended to be comprehensive.

The space of all real coefficients matrices with m lines and n columns
is noted Mm,n(R). The extension of these matrices to the realm of Interval
Analysis replaces the coefficients with intervals in the form [a, b], a, b ∈ R;
the set of all such intervals on the real axis is I(R). In a fashion similar to
matrices with real coefficients, the space of all interval coefficients matrices
with m lines and n columns is noted Mm,n(I(R)).

The transformation of coefficients into intervals has the effect of trans-
forming single-valued functions into set-valued mappings with the result that
differential equations become differential inclusions. Through this process, it
will be useful to view elements of Mm,n(I(R)) as sets in Mm,n(R). To see
how this is possible, consider the matrix A ∈Mm,n(I(R)) where, as discussed
above, each coefficient is an interval, ai,j ∈ I(R). Define the set U as

U = {B ∈Mm,n(R)|bi,j ∈ ai,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} ,

clearly U ⊂ Mm,n(R). We will write B ∈ A whenever bi,j ∈ ai,j , 1 ≤ i ≤ m,
1 ≤ j ≤ n. It is easy to see that

B ∈ A ⇐⇒ B ∈ U

and therefore, elements of Mm,n(I(R)) can be considered as closed sets in
finite dimensional space Mm,n(R). Another way of looking at this is that
elements of Mm,n(I(R)) represent hypercubes in I(R)m+n.

Remark 2. It is important to note that although some matrix notation is used,
the set-valued mappings defining the differential inclusions are not linear. This
comes from the manner by which some of these matrices are defined. See for
example equation (9).
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We will now proceed to show that the replacement of fixed coefficients by
intervals in the various Lanchester type models does indeed yield a proper
differential inclusion.

7.2 Aimed Fire

The single-valued differential equation is given by:
⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1

Let

A =
[

0 a
b 0

]

, X =
[

x1

x2

]

and X(0) =
[

x1(0)
x2(0)

]

= X0,

the system of equations can then be rewritten as:

dX

dt
= −AX, X(0) = X0.

Interval Case

Consider A to be a matrix of interval, i.e., A ∈M2,2(I(R)) and X ∈M2,1(R),
thus

AX : R2 →M2,1(I(R))

and from the relationship between M2,1(I(R)) and M2,1(R), given A ∈
M2,1(I(R)), then A ⊂ M2,1(R) (see Section 7.1), we come to the conclusion
that AX ⊂M2,1(R). We can therefore write the differential inclusion

dX

dt
∈ −AX, X(0) = X0.

7.3 Area Fire

The model, as before, is
⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax1x2, x(0) = x0

dx2

dt
= −bx1x2

Consider the following function
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f : R2 → R

(x, y)→ x

and let

F (X) : M2,1(R)→M2,2(R)
[

x1

x2

]

→
[

f(x2, x1) 0
0 f(x1, x2)

]

(9)

with

A =
[

0 a
b 0

]

, X =
[

x1

x2

]

, X(0) =
[

x1(0)
x2(0)

]

= X0.

As a result

AF (X) =
[

0 af(x1, x2)
bf(x2, x1) 0

]

AF (X)X =
[

af(x1, x2)x2

bf(x2, x1)x1

]

=
[

ax1x2

bx1x2

]

and

dX

dt
= −AF (X)X.

Interval Case

Let us consider the case where A ∈M2,2(I(R)). As a consequence

AF (X) ∈M2,2(I(R))
−AF (X)X ∈M2,1(I(R))
−AF (X)X ⊂M2,1(R)

The above yields the differential inclusion

dX

dt
∈ −AF (X)X, X(0) = X0.

7.4 Brackney

This model, introduced by Brackney [10, 41], is a combination of Aimed Fire
in Section 7.2 and Area Fire in Section 7.3.

⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax2, x(0) = x0

dx2

dt
= −bx1x2
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Consider the following two functions

g(x, y) : R2 → R

(x, y)→ 1

h(x, y) : R2 → R

(x, y)→ y

let

F (X) : M2,1(R)→M2,2(R)
[

x1

x2

]

→
[

h(x1, x2) 0
0 g(x1, x2)

]

and define the matrix

A =
[

0 a
b 0

]

.

As a result,

AF (X) =
[

0 ag(x1, x2)
bh(x1, x2) 0

]

AF (X)X =
[

ag(x1, x2)x2

bh(x1, x2)x1

]

=
[

ax2

bx1x2

]

and

dX

dt
= −AF (X)X.

Interval Case

To effect the transition toward Interval Analysis, the constants are once again
replaced by intervals, i.e., matrix A ∈ M2,2(I(R)). As such, we come to the
realization that

AF (X) ∈M2,2(I(R))
−AF (X)X ∈M2,1(I(R))
−AF (X)X ⊂M2,1(R)

and, therefore

dX

dt
∈ −AF (X)X, as X ∈M2,1(R),

transforming the problem into a differential inclusion.
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7.5 Peterson

The mathematical representation suggested by R. Peterson is
⎧

⎪

⎨

⎪

⎩

dx1

dt
= −ax1, x(0) = x0

dx2

dt
= −bx2

Let

A =
[

a 0
0 b

]

, X =
[

x1

x2

]

The system can then be written as

dX

dt
= −AX, X(0) = X0.

Interval Case

This is identical to Section 7.2 where the matrix of real coefficients A is re-
placed by one of interval coefficients

A ∈M2,2(I(R))

thus

AX ∈M2,1(I(R))
⇒ AX ⊂M2,1(R)

and the system is transformed to the inclusion

dX

dt
∈ −AX, X(0) = X0.

7.6 Hembold and Weiss

The generic case proposed by Hembold is given by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx1

dt
= −a g

(

x1

x2

)

x2, x(0) = x0

dx2

dt
= −b h

(

x2

x1

)

x1

however, the following special case was considered:
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dx1

dt
= −a

(

x1

x2

)c

x2, x(0) = x0

dx2

dt
= −b

(

x2

x1

)c

x1

It is interesting to note that a value of c = 0 yields the Aimed Fire model of
Section 7.2 and that c = 1 gives the model presented by Peterson (Section
7.5). To obtain a linear model as in Section 7.3 where dx

dy = constant, the
value of c can be set to 1

2 . As a result, Hembold’s model is a generalization
that encompasses some of the earlier models.

The combat model presented by Weiss [42] is a variation on the above.
When the forces meeting in battle are of substantially different size, the larger
one suffers from inefficiencies caused by its numbers. To take this phenomenon
into account, Weiss suggested

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dx1

dt
= −a

(

x1

x2

)1−W

x2, x(0) = x0

dx2

dt
= −b

(

x2

x1

)1−W

x1

where W ∈ [0, 1] is a constant.
Lets refocus on the general Hembold type model. Let

A =
[

0 a
b 0

]

, X =
[

x1

x2

]

and

f1(x1, x2) : R2 → R

(x1, x2)→ h

(

x2

x1

)

f2(x1, x2) : R2 → R

(x1, x2)→ g

(

x1

x2

)

Using these functions, consider

F (X) : M2,1(R)→M2,2(R)
[

x1

x2

]

→
[

f1(x1, x2) 0
0 f2(x1, x2)

]

which yields the results
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AF (X) =
[

0 af2(x1, x2)
bf1(x1, x2) 0

]

AF (X)X =
[

af2(x1, x2)x2

bf1(x1, x2)x1

]

=

⎡

⎢

⎣

a g
(

x1
x2

)

x2

b h
(

x2
x1

)

x1

⎤

⎥

⎦
∈M2,1(R).

The Hembold model can therefore be written as

dX

dt
= −AF (X)X, X(0) = X0.

Interval Case

For the interval case, we substitute a real interval coefficient matrix for the
real matrix:

A ∈M2,2(I(R))

and, as before

F (X) ∈M2,2(I(R))
⇒AF (X) ∈M2,2(I(R))
⇒AF (X)X : M2,2(I(R))×M2,1(R)
⇒AF (X)X ∈M2,1(I(R))
⇒AF (X)X ⊂M2,1(R).

We can therefore write

dX

dt
∈ −AF (X)X, X(0) = X0, where A ∈M2,2(I(R))

a proper differential inclusion.

Note 1. Clearly, this is also valid for Weiss’ model.

7.7 Schreiber

This model, as seen in Section 3.1, is given by:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dx1

dt
= −a

{

x1x2

x1,0 − ex2(x1,0 − x1)

}

, x(0) = x0

dx2

dt
= −b

{

x1x2

x2,0 − ex1(x2,0 − x2)

}

where a, b > 0 and ex1 , ex2 ∈ [0, 1]. Let

A =
[

0 a
b 0

]

, X =
[

x1

x2

]
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and consider

g(x1, x2) : R2 → R

(x1, x2)→
x1

x1,0 − ex2(x1,0 − x1)

h(x1, x2) : R2 → R

(x1, x2)→
x2

x2,0 − ex1(x2,0 − x2).

We now define F (X) as:

F (X) : M2,1(R)→M2,2(R)
[

x1

x2

]

→
[

h(x1, x2) 0
0 g(x1, x2

]

which results in

AF (X) =
[

0 ag(x1, x2)
bh(x1, x2) 0

]

and

AF (X)X =
[

ag(x1, x2)x2

bh(x1, x2)x1

]

.

Schreiber’s model can then be written as:

dX

dt
= AF (X)X, X(0) = X0.

Interval Case

Just as before, replacing the real coefficients with elements of I(R), we obtain:

A ∈M2,2(I(R))
⇒AF (X) ∈M2,2(I(R))
⇒AF (X)X ∈M2,1(I(R))
⇒AF (X)X ⊂M2,1(R),

which yields the differential inclusion:

dX

dt
∈ AF (X)X, X(0) = X0.

We have now established that all our models transform properly into dif-
ferential inclusions of the form of (8) and now proceed to examine these new
models from a Viability perspective.
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8 Viable Solutions for Differential Inclusions

In Sections 4, 5, and 6, we studied differential systems to determine the neces-
sary conditions to ensure their viability with respect to our winning cones. We
will again analyze our models to determine such conditions and, as we will be
dealing with differential inclusions, we will therefore look for conditions that
guarantee the existence of a selection that remains viable.

Probably the most famous selection theorem is Michael’s selection
theorem; it links lower semi-continuity to the existence of a continuous
selection.

Theorem 4 (Michael’s selection theorem). Let (X, d) be a metric
space, Y a Banach space, and F a set-valued mapping from X into the
closed convex subsets of Y . If F is lower semi-continuous, then there exists
f : X → Y a continuous selection for F .

Of course, this theorem does not provide all the necessary tools to verify
the viability of the Lanchester differential inclusions. To that end, we will use a
set-valued equivalent of Nagumo’s theorem (Theorem 2). Prior to introducing
this theorem, we will first consider the continuity of our interval extensions in
the sense applicable to set-valued mappings.

8.1 Continuity of Interval Extensions

To further study the differential inclusions generated by the Interval exten-
sions of the Lanchester type models, we need to consider the continuity of
these set-valued mappings in the sense presented in Section 2.

Theorem 5 (United extensions continuity). Consider the function f :
X → Y , using the real coefficients ω1, ω2, . . . , ωn, n ∈ NNN and noted by f(x;ω)
or fω(x) where ω = (ω1, ω2, . . . , ωn) ∈ Rn. Let f be its united interval exten-
sion:

f : X ×Ω → P (Y )

where Ω ⊆ Rn is closed and bounded. Equivalently f(x) =
{

f(x;ω)
∣

∣ω ∈ Ω
}

.
If f(x;ω) is continuous for any given ω ∈ Ω, then f is lower semi-

continuous. Furthermore, if f is continuous when considered from X×Ω → Y ,
then f is also upper semi-continuous.

Proof. Let us first prove the lower semi-continuity of f . Consider an element
x0 ∈ X, any open set G such that f(x0) ∩ G 	= ∅, and the element y ∈
f(x0) ∩G. Then, y = f(x0;ωy) for some ωy ∈ Ω and, from the continuity of
f , V (x0) = f−1

ωy
(G) is an open neighbourhood of x0. Because ∀x ∈ V (x0),

we have f(x;ωy) ∈ G and that, from the definition of the united extension,
f(x;ωy) ∈ f(x), the set f(x0)∩G contains f(x;ωy) and is nonempty proving
that f is lower semi-continuous at x0. Because this is so for any arbitrary
x0 ∈ X, f is lower semi-continuous.
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To prove the upper semi-continuity of f within the setting of the theorem,
consider an element x0 ∈ X and any open set G such that f(x0) ⊆ G. For any
ω ∈ Ω, f(x0;ω) ∈ f(x0) ⊆ G and the continuity of f : X × Ω → Y implies
that there exist Vω(x0) ⊆ X and W (ω) ⊆ Ω open neighbourhoods of x0 and
ω, respectively, such that x ∈ Vω, µ ∈W (ω)⇒ f(x;µ) ∈ G. Clearly,

Ω ⊆
⋃

ω∈Ω
W (ω).

Additionally, Ω is a closed and bounded subset of Rn and therefore com-
pact. The compacity of Ω implies that there exists a finite subcover of
{W (ωi)}i=i,...,n such that

Ω ⊆
n
⋃

i=i

W (ωi).

Consider V (x0) =
⋂n

i=i Vωi
(x0). As it is a finite intersection of open sets,

it is open. Furthermore, as x0 ∈ Vωi
(x0) ⇒ x0 ∈ V (x0), V (x0) is an open

neighbourhood of x0 and, as {W (ωi)}i=i,...,n is cover for Ω, x ∈ V (x0) ⇒
f(x;ω) ∈ G,∀ω ∈ Ω. This last result is equivalent to f(x) ⊆ G and proves the
upper semi-continuity of f at x0. As this is true for any x0 ∈ X, f is upper
semi-continuous.

And the following corollary is then a natural conclusion.

Corollary 1. The right-hand side of the Lanchester type differential inclu-
sions are both lower and upper semi-continuous.

With these continuous properties of the Lanchester differential inclusions,
we are now equipped to consider their viability.

8.2 Viability

Based on the work presented by Aubin and Cellina [3,5], a natural extension
of the Nagumo Theorem to differential inclusions on which we will base our
viability analysis is given by:

Theorem 6 (Viability for differential inclusions).Consider a non-

trivial upper semi-continuous set-valued map F with compact convex im-
ages from X to X and a closed subset K ⊂ Dom(F ). If

∀x ∈ K, F (x) ∩ TK(x) 	= ∅

then for any initial state x0 ∈ K, there exist a positive T and a solution on
[0, T ] to differential inclusion (8) starting from x0, viable in K, and satisfying

⎧

⎪

⎨

⎪

⎩

either T =∞
or T <∞ and lim sup

t→T
t<T

‖x(t)‖ =∞
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Table 5. Tangent Cones to Winning Cones

Winning cone (K) Points in K Tangent cone TK(x)

K1 x ∈ int(K1) R2

x = (0, 0) K1

x1 = x2, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ x2

}

x2 = 0, x1 > 0
{

(x1, x2) ∈ R2|x2 ≥ 0
}

K2 x ∈ int(K2) R2

x = (0, 0) K2

x1 = x2, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ x2

}

x2 = 0, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ −x2

}

K3 x ∈ int(K3) R2

x = (0, 0) K3

x1 = x2, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ x2

}

x2 = 0, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ 0
}

K4 x ∈ int(K4) R2

x = (0, 0) K4

x1 = x2, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ x1(0)
x2(0)

x2

}

x2 = 0, x1 > 0
{

(x1, x2) ∈ R2|x1 ≥ 0
}

As in the case of Lanchester type models presented, we have that
‖x(t)‖ < ∞, t ∈ (0,+∞), we avoid the case where T <∞.

The winning cones that we now consider are those previously introduced
in Section 5. For these, Table 5 shows the tangent cones for each x ∈ K (the
results are extracted from [27]).

The problem therefore consists of establishing conditions on the intervals
that will guarantee the existence of a viable selection, i.e., a “winnable so-
lution.” From the Viability Theorem 6, because the right-hand side of the
Lanchester inclusions are upper semi-continuous and have compact convex
images, we are left with establishing conditions that yield F (x)∩ Tk(x) to be
nonempty. For this to happen, the information from Table 5 translates into
the conditions in Table 6 for the right-hand side of the Lanchester inclusions.

With that information, let us have a look at what that means for our mod-
els. As before, the first model under consideration is the Aimed Fire model.

Aimed Fire

From Table 6 with A,B ∈ I(R) and using the notation A = [A,A] for the
upper and lower bounds, for K1 to be viable, we need to have
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Table 6. Set-Valued Conditions Based on Tangent Cones at x ∈ K

Winning cone (K) Points in K Conditions on F (x)

K1 x ∈ int(K1) F (X) ⊂ I(R2), F (X) �= ∅

x = (0, 0) F (X) ∩ K1 �= ∅

x1 = x2, x1 > 0 F1(X) ≥ F2(X)

x2 = 0, x1 > 0 F2(X) ≥ 0

K2 x ∈ int(K2) F (X) ⊂ I(R2), F (X) �= ∅

x = (0, 0) F (X) ∩ K2 �= ∅

x1 = x2, x1 > 0 F1(X) ≥ F2(X)

x1 = −x2, x1 > 0 F1(X) ≥ −F2(X)

K3 x ∈ int(K3) F (X) ⊂ I(R2), F (X) �= ∅

x = (0, 0) F (X) ∩ K3 �= ∅

x1 = x2, x1 > 0 F1(X) ≥ F2(X)

x1 = 0, x2 < 0 F1(X) ≥ 0

K4 x ∈ int(K4) F (X) ⊂ I(R2), F (X) �= ∅

x = (0, 0) F (X) ∩ K4 �= ∅

x1 = x1(0)
x2(0)

x2, x1 > 0 F1(X) ≥ x1(0)
x2(0)

F2(X)

x1 = 0, x2 < 0 F1(X) ≥ 0

−Ax2 ≥ −Bx1

Ax2 ≤ Bx1

Ax2 ≤ Bx1, x1, x2 point intervals

A ≤ B, x1 = x2 > 0.

In addition, at X = (0, 0) we get F (X) = (0, 0) ∈ K1, and therefore we obtain
F (0, 0) ∩ TK(0, 0) 	= ∅. As for the lower boundary,

−Bx1 ≥ 0
Bx1 ≤ 0
B ≤ 0, x1 > 0

which is impossible as we have, from the model, B > 0. There are therefore
no conditions that will allow a viable selection for this inclusion in K1.

In the case of the viability in K2, the only variation from the previous is
at the lower boundary where we have
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−Ax2 ≥ −(−Bx1)

−Ax2 ≥ Bx1

Ax1 ≥ Bx1, x1 = −x2

A ≥ B, x1 > 0

When we combine together all the conditions, forK2 to be viable it is required
that A ∩B 	= ∅.

The next winning cone under consideration is K3 where, at the upper
boundary, we have the same conditions as K1 and, at the lower boundary, we
require

−Ax2 ≥ 0
Ax2 ≤ 0

A ≥ 0, x2 < 0

A ≥ B, x1 > 0

which does not add any additional constraints on the interval coefficients.
Overall, for viability in K3 it is required that A ≤ B.

Finally, for this model, we need to analyze the requirements at the upper
boundary of K4 where

−Ax2 ≥
x1(0)
x2(0)

−Bx1

Ax2 ≤
x1(0)
x2(0)

Bx1

Ax2 ≤
(

x1(0)
x2(0)

)2

Bx2, x1 =
x1(0)
x2(0)

x2

A ≤
(

x1(0)
x2(0)

)2

B, x2 > 0

As no other restrictions are required by the other boundaries, for viability in

K4 it is required that A ≤
(

x1(0)
x2(0)

)2

B.

Area Fire

The next model is the Area Fire model. Again, from the table data we require
for K1 at the upper boundary

−Ax1x2 ≥ −Bx1x2

Ax1x2 ≤ Bx1x2

Ax1x2 ≤ Bx1x2

A ≤ B, x1 = x2 > 0
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and, considering the lower boundary

−Bx1x2 ≥ 0
0 ≥ 0, x2 = 0

and the overall conditions are then A ≤ B for K1. In the case of K2, the
conditions, at the lower boundary, are

−Ax1x2 ≥ −(−Bx1x2)

Ax1x1 ≥ −Bx1x1, x1 = −x2

A ≥ −B, x1 > 0

which, given the initial conditions on the interval coefficients, is always true
and the overall conditions for K2 are the same as for K1. Similarly for K3, at
the lower boundary we need

−Ax1x2 ≥ 0
0 ≥ 0, x2 = 0

and the conditions are again identical to that for K1. The last cone is K4

where the upper boundary requires

−Ax1x2 ≥
x1(0)
x2(0)

−Bx1x2

Ax1x2 ≤
x1(0)
x2(0)

Bx1x2

A ≤ x1(0)
x2(0)

B, x1, x2 > 0

and as the other boundaries do not add any other conditions, viability in K4

hinges on A ≤ x1(0)
x2(0)

B.

Brackney

Beginning with the upper boundary of K1

−Ax2 ≥ −Bx1x2

Ax2 ≤ Bx1x2

A ≤ Bx1, x2 > 0

A ≤ B, modified Brackney

while at its lower boundary

−Bx1x2 ≥ 0
0 ≥ 0, x2 = 0
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which means that the only condition on the interval coefficients for K1 is
A ≤ B. Investigating the lower boundary of K2 as it is the only difference
with the above,

−Ax2 ≥ −(−Bx1x2)

Ax2 ≤ −Bx1x2

Ax1 ≤ Bx1x1, x1 = −x2

−A ≤ B, x1 > 0

−A ≤ B, modified Brackney

which is always true as A,B > 0. As a result, the cumulative conditions for
K2 are A ≤ B. At the lower boundary of K3

−Ax2 ≥ 0
Ax2 ≤ 0
Ax2 ≤ 0

A ≥ 0, x2 < 0

which does not further restrict the interval coefficients so, forK3, it is required
that A ≤ B. Considering the fourth winning cone’s upper boundary

−Ax2 ≥
x1(0)
x2(0)

−Bx1x2

Ax2 ≤
x1(0)
x2(0)

Bx1x2

A ≤ x1(0)
x2(0)

Bx1, x2 > 0

A ≤ x1(0)
x2(0)

B, modified Brackney

and as the other boundaries do not impose further restrictions (see K3 above),
we need to have A ≤ x1(0)

x2(0)
B for viability with K4.

Peterson

We now examine the Peterson differential inclusion model, and, as with all
other models, we begin with the upper boundary of K1:

−Ax1 ≥ −Bx2

Ax1 ≤ Bx2

A ≤ B, x1 = x2 > 0
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and continue with the lower boundary

−Bx2 ≥ 0
0 ≥ 0, x2 = 0

giving the overall condition for K1 to be A ≤ B. The condition for K2 is also
the same as the lower boundary generates no additional restrictions:

−Ax1 ≥ −(−Bx2)

−Ax1 ≤ −Bx1, x1 = −x2

Ax1 ≤ Bx1

A ≤ B, x1 > 0.

The following winning cone, K3, requires also the same conditions as the
previous two as can be seen by the examination of the requirements at its
lower boundary:

−Ax1 ≥ 0
0 ≥ 0, x1 = 0.

Finally, at the upper boundary of K4 we need

−Ax1 ≥
x1(0)
x2(0)

−Bx2

Ax1 ≤ Bx1, x1 =
x1(0)
x2(0)

x2

A ≤ B, x1 > 0

which, once again, provides us with A ≤ B as the only condition on the
interval coefficients for this winning cone.

Hembold

The second to last model under consideration is based on Hembold’s model.
In the case where the winning cone is K1 and analyzing the requirements at
the upper boundary, we get

−Ag(x1

x2
)x2 ≥ −Bh(

x2

x1
)x1

Ag(1)x1 ≤ Bh(1)x1, x1 = x2

A ≤ B, x1 > 0, g(1) = h(1) = 1

and at the lower boundary
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−Bh(x2

x1
)x1 ≥ 0

0 ≥ 0, h(0) = 0

and the overall conditions for this cone are A ≤ B. Turning our attention to
K2 at the lower boundary

−Ag(x1

x2
)x2 ≥ −(−Bh(x2

x1
)x1)

Ag(
x1

x2
)x1 ≥ Bh(

x2

x1
)x1, x1 = −x2

Ag(−1)x1 ≥ Bh(−1)x1

A ≥ B, g(−1) = h(−1) > 0, x1 > 0

which means that for viability with K2 for the Hembold model, it is required
that A ∩B 	= ∅. The lower boundary of K3 does not impose restrictions as

−Ag(x1

x2
)x1 ≥ 0

0 ≥ 0, g(
x1

x2
) = 0

Finally for this model, the upper boundary of K4 dictates that

−Ag(x1

x2
)x2 ≥

x1(0)
x2(0)

−Bh(x2

x1
)x1

Ag(
x1(0)
x2(0)

)x1 ≤
x1(0)
x2(0)

Bh(
x2(0)
x1(0)

)x1, x1 =
x1(0)
x2(0)

x2

Ag(
x1(0)
x2(0)

) ≤
(

x1(0)
x2(0)

)2

h(
x2(0)
x1(0)

)B, x1 > 0, g(1) = h(1) = 1

and are the only conditions on the coefficients using K4 as the winning cone.

Schreiber

The last but not the least of our models. At the upper boundary of the winning
cone K1, we observe that we must have

−A
{

x1x2

x1,0 − ex2(x1,0 − x1)

}

≥ −B
{

x1x2

x2,0 − ex1(x2,0 − x2)

}

A

{

1
x1,0 − ex2(x1,0 − x1)

}

≤ B
{

1
x2,0 − ex1(x2,0 − x2)

}

, x1 = x2 > 0

A ≤ x1,0 − ex2(x1,0 − x1)
x2,0 − ex1(x2,0 − x2)

B
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At the lower boundary, perform a quick inspection while considering the fact
that x2 = 0 yields no additional conditions. Proceeding to the case where the
winning cone is K2, we examine the lower boundary to obtain

−A
{

x1x2

x1,0 − ex2(x1,0 − x1)

}

≥ B
{

x1x2

x2,0 − ex1(x2,0 − x2)

}

A

{

x1x1

x1,0 − ex2(x1,0 − x1)

}

≥ −B
{

x1x1

x2,0 − ex1(x2,0 − x2)

}

, x1 = −x2

A

{

1
x1,0 − ex2(x1,0 − x1)

}

≥ −B
{

1
x2,0 − ex1(x2,0 − x2)

}

, x1 = x2 > 0

and, as the right-hand side is negative, it is always true. Putting it all together
for K2, the interval coefficients must be such that A ≤ x1,0−ex2 (x1,0−x1)

x2,0−ex1 (x2,0−x2)
B.

Once more, a quick inspection of the lower boundary of K3 while noting that
x1 = 0 shows that viability for this third cone has the same condition as the
other two. It is also readily obvious that the condition for our final winning
cone K4 becomes A ≤ x1(0)

x2(0)

x1,0−ex2 (x1,0−x1)

x2,0−ex1 (x2,0−x2)
B.

Compilation of Data

For each model, we have determined the conditions on the interval coefficients
that make the respective winning cones viable. This type of analysis provides
interesting information that can not only be valuable to the commander in
the field but also can provide support in weapons design decision or means
by which to study history, among other things. For easy reference, Table 7
presents all the results in a single location.

Table 7. Compilation of Conditions on Interval Coefficients

Model K1 K2 K3 K4

Aimed Fire None A ∩ B �= ∅ A ≤ B A ≤
(

x1(0)
x2(0)

)2

B

Area Fire A ≤ B A ≤ B A ≤ B A ≤ x1(0)
x2(0)

B

Brackney A ≤ B A ≤ B A ≤ B A ≤ x1(0)
x2(0)

B

(Modified)
Peterson A ≤ B A ≤ B A ≤ B A ≤ B

Hembold A ≤ B A ∩ B �= ∅ A ≤ B Ag(x1(0)
x2(0)

) ≤
(

x1(0)
x2(0)

)2

h(x2(0)
x1(0)

)B

Schreiber A ≤ x1,0−ex2 (x1,0−x1)

x2,0−ex1 (x2,0−x2)
B see K1 see K1 A ≤ x1(0)

x2(0)
·

x1,0−ex2 (x1,0−x1)

x2,0−ex1 (x2,0−x2)
B
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9 Optimal Control by Viability of Lanchester
Type Inclusions

In the work carried out so far, we have first analyzed the differential systems
with the use of viability to give us a more reasonable approach given the
uncertain nature of the Lanchester coefficients that come in play. At that
point, we considered a form of optimal control by viability, Section 6.5, and
saw how this idea can be used to provide analysis and decision-making tools.
In the latter part, we have replaced the Lanchester coefficients with interval
coefficients to express both the difficulty of giving them an accurate value as
well as their natural sporadic variability. Analysis of these new models gave a
new set of conditions on intervals to guarantee viability.

Although the replacement of these coefficients with intervals allows us
to model the intrinsic variability of the Lanchester coefficients, we can still
use different Lanchester intervals to reflect the current state of the troops
involved. For instance, the relative combat effectiveness of rested troops over
fatigued ones can be represented by different interval values. Furthermore,
the different effectiveness of various weapons or types of forces can also be
modelled through the various interval values. If there was only one battle to
be fought, this last issue wouldn’t be a consideration, however, having to fight
on multiple fronts does not allow a commander to commit all forces at all
areas at all times.

Given the above, this means that the interval coefficients that model such
characteristics can be made to vary. This ability to impact on these coefficients
represents a form of control and, as before, we can consider optimal control by
viability. Once again, using the information generated in the previous section,
we can establish the first time t when the conditions required for viability will
first cease to be met and decide on the application of the tactical tools avail-
able that impact on the Lanchester intervals. These tactical options include
such things as the commitment of fresh troops to the engagement or different
weapons/forces on a particular front.

For example, let us consider the Aimed Fire model where the condition
on viability is that A ≤ B. This condition is one that needs to be met when
the system reaches the boundary of the winning cone. As such, knowing that
the current forces involved are such that the condition is not met, the com-
mander can then select a tactical plan that will rectify this situation and, by
monitoring the evolution of the system, apply this change in controls before
“winnability” is lost.

By its discrete nature, this process of optimal control by viability is an
excellent tool to assist in the decision-making process and can provide a means
of assessing the various impacts of command decisions both on exercises and
in history.
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10 Conclusion

In this publication, we have seen how nonclassic analysis in the form of viabil-
ity, interval analysis, set-valued analysis, differential inclusions, and optimal
control can shed new light on an existing model. In the case of Lanchester
type models, this transformation to Lanchester type differential inclusions al-
lows them to overcome the difficulties inherent to the coefficients be it by
their nature or from the “fog of war.” These new models allow for variations
that closer model reality and provide useful tools for the analysis and decision
making processes in the form of optimal control by viability.
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Abstract In this paper, we develop static and dynamic models of global supply
chains as networks with three tiers of decision-makers: manufacturers, retailers, and
consumers associated with the demand markets who compete within a tier but co-
operate between tiers. The decision-makers may be based in the same or in different
countries, may transact in different currencies, and are faced with different degrees
of environmental concern. Moreover, we allow for electronic transactions in the form
of electronic commerce between the decision-makers. The proposed supernetwork
framework formalizes the modeling and theoretical analysis of such global supply
chains and also enables the dynamic tracking of the evolution of the associated prices
and product transactions (as well as the emissions) to the equilibrium state. More-
over, it measures the impacts on the environment associated with the behaviors of
the decision-makers. Finally, we propose a discrete-time algorithm that allows for
the discretization of the continuous time trajectories and that results in closed form
expressions at each iteration.

Key words: global supply chains, networks, supernetworks, game theory,
variational inequalities, projected dynamical systems, environmental manage-
ment, multicriteria decision-making

1 Introduction

Growing competition and emphasis on efficiency and cost reduction, as well
as the satisfaction of consumer demands, have brought new challenges for
businesses in the global marketplace. At the same time that businesses and,
in particular, supply chains have become increasingly globalized, criticism of
globalization has increased, notably, from environmentalists on the basis that
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free trade may result in the growth of global pollution. In particular, some
argue that free trade increases the scale of economic activity and, therefore,
of accompanying pollution, and also that it may shift the production of the
pollution-intensive goods from countries with strict environmental regulations
toward those with lax ones. Others argue that environmental, health, and
safety regulations are a form of protectionism. For example, countries may use
a laborious and time-consuming regulatory process that is unevenly applied to
international investors as a means of controlling access to domestic markets.

Indeed, the increase in environmental concerns is significantly influencing
supply chains. Legal requirements and changing consumer preferences increas-
ingly make suppliers, manufacturers, and distributors responsible for their
products beyond their sales and delivery locations (cf. [7]). For example, re-
cent legislation in the United States as well as abroad and, in particular, in
Europe and in Japan, has refocused attention on recycling for the manage-
ment of wastes and, specifically, that of electronic wastes (see, e.g., [2] and
[32]). Massachusetts in 2000 banned cathode-ray tubes (CRTs) from landfills
whereas Japan in 2001 enacted a law that requires retailers and manufactur-
ers to bear some electronic waste collection and recycling cost of appliances
(cf. [3, 4] and [33]). In addition, environmental pressure from consumers has,
in part, affected the behavior of certain manufacturers so that they attempt
to minimize their emissions, produce more environmentally friendly products,
and/or establish sound recycling network systems (see, e.g., [7,18], and [20]).

Moreover, according to [15], companies are being held accountable not only
for their own performance but also for that of their suppliers, subcontractors,
joint venture partners, distribution outlets, and even, ultimately, for the dis-
posal of their products. Indeed, poor environmental performance at any stage
of the supply chain process may damage a company’s most important asset –
its reputation.

On the other hand, innovations in technology and especially the availability
of electronic commerce via the Internet in which the physical ordering of goods
(and supplies) (and, in some cases, even delivery) is replaced by electronic
orders, offers the potential for reducing risks associated with physical trans-
portation due to potential threats and disruptions in supply chains as well
as the possible reduction of pollution. Indeed, the introduction of electronic
commerce (e-commerce) has unveiled new opportunities for the management
of supply chain networks (cf. [28] and the references therein) and has had an
immense effect on the manner in which businesses order goods and have them
transported. According to [25], gains from electronic commerce could reach
$450 billion a year by 2005, with consumer e-commerce in the United States
alone expected to come close to the $108 billion predicted, despite a recession,
terrorism, and war.

Many researchers have recently dealt with environmental risks in response
to growing environmental concerns (see [5, 8, 39], and [38]). Furthermore, the
importance of global issues in supply chain management and analysis has
been emphasized in several papers (cf. [11, 24, 27]). Moreover, earlier surveys
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on global supply chain analysis indicate that the research interest is growing
rapidly (see [10, 14], and [15]). The need to incorporate risk in supply chain
decision-making and analysis is well-documented in the literature (see, e.g.,
[1, 15, 21, 40], and [43]). Nevertheless, the topic of supply chain modeling and
analysis combined with environmental decision-making is fairly new and novel
and, hence, methodological approaches that capture the operational as well
as the financial aspects of such decision-making are sorely needed.

Frameworks for risk management in a global supply chain context with a
focus on centralized decision-making and optimization have been proposed by
[11, 19] (see also the references therein) and [15]. In this paper, in contrast,
we build upon the recent work of [27] in the modeling of global supply chain
networks with electronic commerce and that of [32] who introduced environ-
mental criteria into a decentralized supply chain network.

In particular, in this paper, we develop both static and dynamic global
supply chain network models with environmental decision-making handled
as a multicriteria decision-making problem. In addition, we build upon our
tradition of a network perspective to environmental management as described
in the book on environmental networks by [12].

The paper is organized as follows. In Section 2, we present the static global
supply chain network model with environmental decision-making, derive the
optimality conditions for each set of network agents or decision-makers, and
provide the finite-dimensional variational inequality formulation of the govern-
ing equilibrium conditions. In Section 3, we propose the projected dynamical
system that describes the dynamic adjustment processes associated with the
various decision-makers and demonstrate that the set of stationary points of
this nonclassic dynamical system coincides with the set of solutions of the
variational inequality problem (cf. [34] and [26]).

In Section 4, we provide qualitative properties of the equilibrium pattern
and also provide, under suitable assumptions, existence and uniqueness results
for the dynamic price and product transaction trajectories, from which the
total emissions generated can also be obtained. In Section 5, we outline the
computational procedure, which provides a time-discretization of the dynamic
trajectories. We conclude the paper with a summary and suggestions for future
research in Section 6.

2 The Global Supply Chain Network Equilibrium Model
with Environmental Decision-Making

In this section, we develop the global supply chain network model and focus
on the statics surrounding the equilibrium state. The model assumes that the
manufacturers are involved in the production of a homogeneous product and
considers L countries, with I manufacturers in each country, and J retailers,
which are not country-specific but, rather, can be either physical or virtual,
as in the case of electronic commerce. There are K demand markets for the
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homogeneous product in each country andH currencies in the global economy.
We denote a typical country by l or l̂, a typical manufacturer by i, and a typical
retailer by j. A typical demand market, on the other hand, is denoted by k
and a typical currency by h. We assume, for the sake of generality, that each
manufacturer can transact directly in an electronic manner via the Internet
with the consumers at the demand markets and can also conduct transactions
with the retailers either physically or electronically in different currencies.
Similarly, we assume that the demand for the product in a country can be
associated with a particular currency. We let m refer to a mode of transaction
with m = 1 denoting a physical transaction and m = 2 denoting an electronic
transaction via the Internet. In addition, for the sake of flexibility, we assume
that the consumers associated with the demand markets can transact with
the retailers either physically or electronically. Of course, if either such a
transaction is not feasible, then one may simply remove that possibility (or,
analogously, assign a high associated transaction cost as described below)
within the specific application.

The global supply chain supernetwork is now described and depicted
graphically in Figure 1 (for other supernetwork structures that capture
decision-making trade-offs regarding transportation versus telecommunication
networks, see the book by [28]). The top tier of nodes consists of the man-
ufacturers in the different countries, with manufacturer i in country l being
referred to as manufacturer il and associated with node il. There are, hence,
IL top-tiered nodes in the network. The middle tier of nodes consists of the
retailers (which need not be country-specific) and who act as intermediaries
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Figure 1. The structure of the global supply chain supernetwork
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between the manufacturers and the demand markets, with a typical retailer
j associated with node j in this (second) tier of nodes in the network. The
bottom tier of nodes consists of the demand markets, with a typical demand
market k in currency h and country l̂ being associated with node khl̂ in the
bottom tier of nodes. There are, as depicted in Figure 1, J middle (or second)
tiered nodes corresponding with the retailers and KHL bottom (or third)
tiered nodes in the global supply chain network.

We have identified the nodes in the global supply chain supernetwork
and now we turn to the identification of the links joining the nodes in a
given tier with those in the subsequent tier. We also associate the product
transactions with the appropriate links that correspond with the flows on the
links. We assume that each manufacturer i in country l can transact with
a given retailer in either of the two modes and in any of the H available
currencies, as represented, respectively, by the 2H links joining each top tier
node with each middle tier node j; j = 1, . . . , J . The flow on the link joining
node il with node j and corresponding with transacting via modem is denoted
by qiljhm and represents the nonnegative amount of the product transacted by
manufacturer i in country l in currency h through retailer j via mode m. We
further group all such transactions for all manufacturers in all countries into
the column vector Q1 ∈ R2ILJH

+ .
A manufacturer may also transact directly with the demand markets via

the Internet. The flow on the link joining node il with node khl̂ is denoted by
qil
khl̂

and represents the amount of the product transacted in this manner be-
tween the manufacturer and demand market in a given country and currency.
We group all such (electronic) transactions for all the manufacturers in all the
countries into the column vector Q3 ∈ RILKHL

+ . For flexibility, we also group
the product transactions associated with manufacturer i in country l into the
column vector qil ∈ R2JH+KHL

+ , and group these vectors for all manufacturers
and countries into the vector q ∈ RIL(2JH+KHL)

+ .
From each retailer node j; j = 1, . . . , J , we then construct two links to

each node khl, with the first such link denoting a physical transaction and
the second such link an electronic transaction and with the respective flow on
the link being denoted by qjkhlm and corresponding with the amount of the
product transacted between retailer j and demand market k in currency h
and country l via mode m. The product transactions for all the retailers are
then grouped into the column vector Q2 ∈ R2JKHL

+ . Note that if a retailer is
virtual, then we expect the transaction to take place electronically, although
of course, the product itself may be delivered physically. Nevertheless, for
the sake of generality, we allow for two modes of transaction between each
manufacturer and retailer pair and each retailer demand market pair.

The notation for the prices is now given. Note that there will be prices
associated with each of the tiers of nodes in the global supply chain supernet-
work. Let ρil1jhm denote the price associated with the product in currency h
transacted between manufacturer il and retailer j via modem and group these
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top tier prices into the column vector ρ1 ∈ R2ILJH
+ . Let ρil

1khl̂
, in turn, denote

the price associated with manufacturer il and demand market k in currency h
and country l̂ and group all such prices into the column vector ρ12 ∈ RILKHL

+ .
Further, let ρj2khlm, in turn, denote the price associated with retailer j and
demand market k in currency h, country l, and mode m, and group all such
prices into the column vector ρ2 ∈ R2JKHL

+ . Also, let ρ3khl̂ denote the price
of the product at demand market k in currency h, and country l̂, and group
all such prices into the column vector ρ3 ∈ RKHL

+ . Finally, we introduce the
currency exchange rates: eh; h = 1, . . . , H, which are the exchange rates of
respective currency h relative to the base currency. The exchange rates are
exogenous and fixed in the model, whereas all the prices are endogenous.

We now turn to describing the behavior of the various global supply chain
network decision-makers represented by the three tiers of nodes in Figure 1.
The model is presented, for ease of exposition, for the case of a single homo-
geneous product. It can also handle multiple products through a replication
of the links and added notation. We first focus on the manufacturers. We then
turn to the retailers, and, finally, to the consumers at the demand markets.

2.1 The Behavior of the Manufacturers

We denote the transaction cost associated with manufacturer il transacting
with retailer j for the product in currency h via mode m by ciljhm and assume
that:

ciljhm = ciljhm(qiljhm), ∀i, l, j, h,m, (1)

that is, this cost can depend upon the volume of this transaction. In addition,
we denote the transaction cost associated with manufacturer il transacting
with demand market k in country l̂ for the product in currency h (via the
Internet) by cil

khl̂
and assume that:

cil
khl̂

(qil
khl̂

), ∀i, l, k, h, l̂, (2)

that is, this transaction cost also depends upon the volume of the transaction.
These transaction cost functions are assumed to be convex and continuously
differentiable. The transaction costs are assumed to be measured in the base
currency. We note that in practice, transaction costs are not convex func-
tions of the amount traded. Indeed, the costs for either buying or selling are
likely to be concave. For example, a fixed charge for any nonzero trade is
common, and there may be one or more breakpoints above which the transac-
tion costs per share decrease. We consider a simple model that includes linear
costs functions. By assuming that the cost functions are convex, it is crucial
for determining the existence of equilibrium solution, which is presented in
Section 5.

The total transaction costs incurred by manufacturer il are equal to the
sum of all of his transaction costs associated with dealing with the distinct
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retailers and demand markets in the different currencies and countries. His
revenue, in turn, is equal to the sum of the price (rate of return plus the
rate of appreciation) that the manufacturer can obtain for the product times
the total quantity sold of that product. Let now ρil∗1jhm denote the actual price
charged by manufacturer il for the product transacted via modem in currency
h to retailer j (and that the retailer is willing to pay) and let ρil∗

1khl̂
, in turn,

denote the price associated with manufacturer il transacting electronically
with demand market khl̂. We later discuss how such prices are recovered.

We assume that each manufacturer seeks to maximize his profits. Also,
we assume that the amount of the product produced by manufacturer il and
denoted by qil must be equal to the amount transacted with the subsequent
tiers of nodes, that is,

J
∑

j=1

H
∑

h=1

2
∑

m=1

qiljhm +
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

qil
khl̂

= qil, ∀i, l. (3)

In addition, we assume, as given, a production cost function for manufac-
turer il and denoted by f il, which depends not only on the manufacturer’s
output (and transactions) but also on those of the other manufacturers. Hence,
we may write (utilizing also (3)) that

f il = f il(q) = f il(Q1, Q3), ∀i, l. (4)

Recall that the vector Q1 represents all the product transactions between
the top tier nodes and the middle tier nodes, and the vector Q3 represents
all the product transactions between the top tier nodes and the bottom tier
nodes. The function f il is assumed to be strictly convex and continuously
differentiable.

We note that in economics, the cost function is concave when the pro-
duction level is low and due to economy of scale. However, as the production
level increases and exceeds the regular capacity, the cost function becomes
convex. Here, we can assume that all the fixed costs have been paid, and so,
can be treated as sunk cost. The cost function at low production level can be
assumed linear. Thus, if the cost function is assumed linear at low production
level, it is reasonable to assume that the production cost function is strictly
convex.

We now construct the profit maximization problem facing manufacturer il.
In particular, we can express the profit maximization problem facing manu-
facturer il as:

max
J
∑

j=1

H
∑

h=1

2
∑

m=1

(ρil∗1jhm × eh)qiljhm +
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

(ρil∗
1khl̂
× eh)qil

khl̂

−
J
∑

j=1

H
∑

h=1

2
∑

m=1

ciljhm(qiljhm)−
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

cil
khl̂

(qil
khl̂

)− f il(Q1, Q3), (5)

s.t qiljhm ≥ 0, qil
khl̂
≥ 0, ∀j, h, k, l̂,m. (6)
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The first two terms in (5) represent the revenues whereas the subsequent three
terms represent the costs faced by the manufacturer.

In addition to the criterion of profit maximization, we assume that each
manufacturer is also concerned with environmental decision-making with such
decision-making broadly defined as including the risks associated with his
transactions. First, we consider the situation that a given manufacturer seeks
to minimize the total amount of emissions associated with his production
of the product as well as the total amount of emissions generated not only
in the ultimate delivery of the product to the next tier of decision-makers
(whether retailers or consumers at the demand markets). We assume that the
emissions generated by manufacturer il in producing the product are given by
the function εil, where

εil = εil(qil), ∀i, l, (7)

whereas the emissions generated in transacting with retailer j for the product
via mode m (which are currency independent) are given by a function εiljm,
such that

εiljm = εiljm(
H
∑

h=1

qiljhm), ∀i, l, j,m, (8)

and, finally, the emissions generated and associated with the transaction with
demand market k in country l̂ is represented by a function εil

kl̂
, where

εil
kl̂

= εil
kl̂

(
H
∑

h=1

qil
khl̂

), ∀i, l, k, h, l̂. (9)

Note that (9) also does not depend on the currency used for the transac-
tion. Indeed, emissions should not be currency-dependent but, rather, mode-
dependent as well as dependent upon the nodes involved in the transaction.

Hence, the second criterion of each manufacturer il and reflecting the
minimization of total emissions generated can be expressed mathematically as:

min εil(qil) +
J
∑

j=1

2
∑

m=1

εiljm(
H
∑

h=1

qiljhm) +
K
∑

k=1

L
∑

l̂=1

εil
kl̂

(
H
∑

h=1

qil
khl̂

) (10)

s.t. qiljhm ≥ 0, qil
khl̂
≥ 0, ∀j, h,m, k, l̂. (11)

From this point on, we consider emission functions of specific form (cf. (7),
(8), and (9)) given by

εil(qil) = ηilqil = ηil(
J
∑

j=1

K
∑

k=1

2
∑

m=1

qiljhm +
K
∑

k=1

J
∑

h=1

L
∑

l̂=1

qil
khl̂

), ∀i, l, (12)

εiljm(
H
∑

h=1

qiljhm) = ηiljm

H
∑

h=1

qiljhm, ∀i, l, j,m, (13)
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εil
kl̂

(
H
∑

h=1

qil
khl̂

) = ηil
kl̂

H
∑

h=1

qil
khl̂
, ∀i, l, k, l̂, (14)

where the ηil, ηiljm, and ηil
kl̂

terms are nonnegative and represent the amount
of emissions generated per unit of product produced and transacted, respec-
tively. Hence, here we explicitly allow the emissions generated to be distinct
according to whether the transaction was conducted electronically or not.
Thus, the manufacturer’s decision-making problem concerning the emissions
generated, in view of (3), (10), and (12)–(14), can be expressed as:

min
J
∑

j=1

H
∑

h=1

2
∑

m=1

(ηil + ηiljm)qiljhm +
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

(ηil + ηil
kl̂

)qil
khl̂
, (15)

s.t. (11).

We also assume that each manufacturer is concerned with risk minimization
and, as noted earlier, here we assume that the risk can also capture environ-
mental risk, with such risk being interpreted broadly. Hence, for the sake of
generality, we assume, as given, a risk function ril, for manufacturer il, which
is assumed to be continuous and convex, and a function of not only the prod-
uct transactions associated with the particular manufacturer but also of those
of the other manufacturers. Thus, we assume that

ril = ril(Q1, Q3), ∀i, l. (16)

The third criterion of manufacturer il can be expressed as:

min ril(Q1, Q3), (17)
s.t. qiljhm ≥ 0, ∀j, h,m

qil
khl̂
≥ 0, ∀k, h, l̂.

The risk function may be distinct for each manufacturer/country combina-
tion and can assume whatever form is necessary, provided the above stated
assumptions are satisfied.

2.1.1 A Manufacturer’s Multicriteria Decision-Making Problem

We now discuss how to construct a value function associated with the criteria.
In particular, we assume that manufacturer il assigns nonnegative weights as
follows: the weight αil is associated with the emission criterion (15), the weight
ωil is associated with the risk criterion (17), with the weight associated with
profit maximization (cf. (5)) serving as the numeraire and being set equal to 1.
Thus, we can construct a value function for each manufacturer (cf. [9,16,41],
and [22]) using a constant additive weight value function. Consequently, the
multicriteria decision-making problem for manufacturer il is transformed into:
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max
J
∑

j=1

H
∑

h=1

2
∑

m=1

(ρil∗1jhm × eh)qiljhm +
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

(ρil∗
1khl̂
× eh)qil

khl̂

−
J
∑

j=1

H
∑

h=1

2
∑

m=1

ciljhm(qiljhm)−
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

cil
khl̂

(qil
khl̂

)− f il(Q1, Q3)

− αil(
J
∑

j=1

H
∑

h=1

2
∑

m=1

(ηil + ηiljm)qiljhm +
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

(ηil + ηil
kl̂

)qil
khl̂

)

− ωilril(Q1, Q3), (18)
s.t. the nonnegativity assumption on all the variables.

2.1.2 The Optimality Conditions of the Manufacturers

We assume that the manufacturers compete in a noncooperative fashion fol-
lowing [36, 37]. Hence, each manufacturer seeks to determine his optimal
strategies, that is, the product transactions, given those of the other man-
ufacturers. The optimality conditions of all manufacturers i; i = 1, . . . , I; in
all countries: l; l = 1, . . . , L, simultaneously, under the above assumptions
(see also [6,17,26,29]), can be compactly expressed as a variational inequality
problem given by: determine (Q1∗, Q3∗) ∈ K1, satisfying

I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

2
∑

m=1

[

∂f il(Q1∗, Q3∗)
∂qiljhm

+
∂ciljhm(qil∗jhm)

∂qiljhm
+ ωil

∂ril(Q1∗, Q3∗)
∂qiljhm

+ αil(ηil + ηiljm)− ρil∗1jhm × eh

]

× [qiljhm − qil∗jhm]

+
I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

L
∑

l̂=1

[

∂f il(Q1∗, Q3∗)
∂qil

khl̂

+
∂cil

khl̂
(qil∗

khl̂
)

∂qil
khl̂

+ ωil
∂ril(Q1∗, Q3∗)

∂qil
khl̂

+ αil(ηil + ηil
kl̂

)− ρil∗
1khl̂
× eh

]

× [qil
khl̂
− qil∗

khl̂
] ≥ 0, ∀(Q1, Q3) ∈ K1, (19)

where the feasible set K1 ≡ {(Q1, Q3)|(Q1, Q3) ∈ RIL(2JH+KHL)
+ }.

The inequality (19), which is a variational inequality (cf. [26]), has a nice
economic interpretation. In particular, from the first term we can infer that,
if there is a positive shipment of the product transacted either in a classic
manner or via the Internet from a manufacturer to a retailer, then the sum of
the marginal cost of production, the marginal cost of transacting, the weighted
marginal risk, and what can be interpreted as the marginal cost of emissions,
αil(ηil + ηiljm), must be equal to the price that the retailer is willing to pay
for the product. If that sum, in turn, exceeds the price, then there will be
zero volume of flow of the product thus transacted. The second term in (19)
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has a similar interpretation; in particular, there will be a positive volume of
flow of the product from a manufacturer to a demand market if the sum of
the marginal cost of production of the manufacturer, the marginal cost of
transacting via the Internet for the manufacturer with the consumers, the
weighted marginal risk, and the marginal cost of emissions, αil(ηil + ηil

kl̂
), is

equal to the price the consumers are willing to pay for the product at the
demand market.

2.2 The Behavior of the Retailers

The retailers (cf. Figure 1), in turn, are involved in transactions both with
the manufacturers in the different countries, as well as with the ultimate con-
sumers associated with the demand markets and represented by the bottom
tier of nodes in the network.

A retailer j is faced with what we term a handling/conversion cost, which
may include, for example, the cost of handling and storing the product plus
the cost associated with transacting in the different currencies. We denote
such a cost faced by retailer j by cj and, in the simplest case, we would have

that cj is a function of
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1
qiljhm, that is, the handling/conversion

cost of a retailer is a function of how much he has obtained of the product
from the various manufacturers in the different countries and what currency
the transactions took place in and in what transaction mode. For the sake
of generality, however, we allow the function to depend also on the amounts
of the product held and transacted by other retailers and, therefore, we may
write:

cj = cj(Q1), ∀j. (20)

The handling cost is measured in the base currency.
The retailers, which can be either physical or virtual, also have associated

transaction costs in regards to transacting with the manufacturers, which we
assume can be dependent on the type of currency as well as on the manufac-
turer and country. We denote the transaction cost associated with retailer j
transacting with manufacturer il associated with currency h and mode m by
ĉiljhm and we assume that it is of the form

ĉiljhm = ĉiljhm(qiljhm), ∀i, l, j, h,m, (21)

that is, such a transaction cost depends on the volume of the transaction.
In addition, we assume that a retailer j also incurs a transaction cost cj

khl̂m
associated with transacting with demand market khl via mode m, where

cj
khl̂m

= cj
khl̂m

(qj
khl̂m

), ∀j, k, h, l̂,m. (22)

Hence, the transaction costs given in (22) can vary according to the
retailer/currency/country combination and are a function of the volume
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of the product transacted. We assume that the cost functions (20)–(22) are
convex and continuously differentiable and are measured in the base currency.

The actual price charged for the product by retailer j is denoted by ρj∗
2khl̂m

and is associated with transacting with consumers at demand market k in
currency h and country l via mode m. Subsequently, we discuss how such
prices are arrived at. We assume that the retailers are also profit-maximizers,
with the criterion of profit maximization for retailer j given by:

max
k
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

(ρj∗
2khl̂m

× eh)qj
khl̂m

− cj(Q1)

−
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

ĉiljhm(qiljhm)−
K
∑

k=1

H
∑

h=1

2
∑

m=1

L
∑

l̂=1

cj
khl̂m

(qj
khl̂m

)

−
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

(ρil∗1jhm × eh)qiljhm (23)

s.t. qiljhm ≥ 0, qj
khl̂m

≥ 0, ∀i, l̂, h,m, (24)

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

qj
khl̂m

≤
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qiljhm. (25)

Objective function (23) expresses that the difference between the revenues
(given by the first term) minus the handling cost, the two sets of transaction
costs, and the payout to the manufacturers (given by the fifth term) should
be maximized. The objective function in (23) is concave in its variables under
the above posed assumptions. Constraint (25) guarantees that a retailer does
not transact more of the product with the demand markets than he has in his
possession.

We now turn to describing the criteria associated with a retailer’s envi-
ronmental decision-making similar to that developed above for a given manu-
facturer. Hence, we allow the retailers to also be faced with multiple criteria.

In particular, we assume that retailer j seeks to minimize the emissions
associated with his transactions with the manufacturers, that is, he also is
faced with the following problem:

min
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

(ηil + ηiljm)qiljhm (26)

s.t. qiljhm ≥ 0, ∀i, l, h,m.

Note that we do not consider a retailer’s decision-making concerning emissions
generated to involve the demand markets (as, in a sense, this may be viewed
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as discriminatory). Below we describe how environmental decision-making is
captured at the demand market level.

Moreover, each retailer seeks to also minimize the risk associated with ob-
taining the product from the manufacturers and transacting with the various
demand markets, which we assume to also include a general form of environ-
mental risk.

Hence, each retailer j is faced with his own individual risk denoted by rj

with the function being assumed to be continuous and convex and dependent
on the transactions to and from all the retailers, that is,

rj = rj(Q1, Q2), ∀j. (27)

The third criterion or retailer j can be expressed as:

min rj(Q1, Q2) (28)
s.t. qiljhm ≥ 0, ∀i, l, h,m

qj
khl̂
≥ 0, ∀k, h, l̂.

2.2.1 A Retailer’s Multicriteria Decision-Making Problem

We now demonstrate (akin to the above construction for a given manufac-
turer) how the multiple criteria faced by a retailer can be transformed into a
single optimization problem using, again, the concept of a value function.

In particular, we assume that retailer j associates a nonnegative weight βj
with the emission generation criterion (26), a weight ϑj with the risk criterion
(28), and a weight equal to 1 with profit maximization (cf. (23)) (see also
the discussion concerning the manufacturers above), yielding the following
multicriteria decision-making problem:

max
k
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

(ρj∗
2khl̂m

× eh)qj
khl̂m

− cj(Q1)

−
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

ĉiljhm(qiljhm)−
K
∑

k=1

H
∑

h=1

2
∑

m=1

L
∑

l̂=1

cj
khl̂m

(qj
khl̂m

)

−
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

(ρil∗1jhm × eh)qiljhm

− βj(
I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

(ηil + ηiljm)qiljhm)− ϑjrj(Q1, Q2) (29)

s.t. nonnegativity assumption on the variables and (25). (30)

2.2.2 Optimality Conditions of the Retailers

Here we assume that the retailers can also compete in a noncooperative man-
ner with the governing optimality/equilibrium concept being that of Nash.
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The optimality conditions for all retailers, simultaneously, under the above
stated assumptions, can, hence, be expressed as the variational inequality
problem: determine (Q1∗, Q2∗, γ∗) ∈ K2, such that

J
∑

j=1

I
∑

i=1

L
∑

l=

H
∑

h=1

2
∑

m=1

[

∂cj(Q1∗)
∂qiljhm

+ ϑj
∂rj(Q1∗, Q2∗)

∂qiljhm
+ βj(ηil + ηiljm)

+ ρil∗1jhm × eh +
∂ĉiljhm(qil∗jhm)

∂qiljhm
− γ∗j

]

×
[

qiljhm − qil∗jhm
]

+
J
∑

j=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

[

∂cj
khl̂m

(qj∗
khl̂m

)

∂qj
khl̂m

+ ϑj
∂rj(Q1∗, Q2∗)

∂qj
khl̂m

− ρj∗
2khl̂m

× eh

+γ∗j

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
J
∑

j=1

⎡

⎣

I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qil∗jhm −
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

qj∗
khl̂m

⎤

⎦×
[

γj − γ∗j
]

≥ 0,

∀(Q1, Q2, γ) ∈ K2, (31)

where the feasible set K2 ≡ {(Q1, Q2, γ) ∈ R2ILJH+2JKHL+J
+ }.

Here γj denotes the Lagrange multiplier associated with constraint (25)
(see [6]), and γ is the J-dimensional column vector of Lagrange multipliers
of all the retailers with γ∗ denoting the vector of optimal multipliers. Note
that γ∗j serves as the market clearing price for the product at retailer j (as
can be seen from the last term in (31)). In particular, its value is positive
if the product transactions from the retailer to all the demand markets in
the countries and in the various currencies is precisely equal to the product
transactions to the retailer from all the manufacturers in all the countries
transacted in the different currencies (and modes).

We now highlight the economic interpretation of the retailers’ optimality
conditions. The first term in (31) states that if there is a positive amount
of product transacted between a manufacturer/retailer pair via mode m and
currency h, that is, qil∗jhm > 0, then the shadow price at the retailer, γ∗j , is
equal to the price charged for the product plus the various marginal costs and
the associated weighted marginal risk emission. In addition, the second term
in (31) shows that, if consumers at demand market khl̂ purchase the product
from a particular retailer j transacted through mode m, which means that,
if the qj∗

khl̂m
is positive, then the price charged by retailer j, ρj∗

2khl̂m
, is equal

to γ∗j plus the marginal transaction costs in dealing with the demand market
and the weighted marginal costs for the risk that he has to bear.

2.3 The Equilibrium Conditions at the Demand Markets

We now describe the consumers located at the demand markets. The con-
sumers take into account in making their consumption decisions not only the
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price charged for product by the manufacturer and by the retailers but also
their transaction costs associated with obtaining the product. We also describe
how their environmental decision-making is captured.

We let ĉj
khl̂m

denote the transaction cost associated with consumers ob-

taining the product at demand market k in currency h and in country l̂ via
mode m from retailer j and recall that qj

khl̂m
is the amount of the product

transacted thus. We assume that the transaction cost function is continuous
and of the general form:

ĉj
khl̂m

= ĉj
khl̂m

(Q2), ∀j, k, h, l̂,m. (32)

Furthermore, let ĉil
khl̂

denote the transaction cost associated with consumers
obtaining the product at demand market k in currency h and in country
l̂ transacted electronically from manufacturer il, where we assume that the
transaction cost is continuous and of the general form:

ĉil
khl̂

= ĉil
khl̂

(Q3), ∀i, l, k, h, l̂. (33)

Hence, the transaction cost associated with transacting directly with man-
ufacturers is of a form of the same level of generality as the transaction costs
associated with transacting with the retailers. Note that the above functional
forms can capture congestion on the networks. Indeed, we allow for the trans-
action cost (from the perspective of consumers) to depend not only on the
flow of the product from a manufacturer or from the retailer in the currency
to the country (and mode) but also on the other product transactions in
the other currencies and between other manufacturers and/or retailers and
demand markets. The transaction cost functions above are assumed to be
measured in the base currency.

Denote now the demand for the product at demand market k in currency
h in country l̂ by dkhl̂ and assume, as given, the continuous demand functions:

dkhl̂ = dkhl̂(ρ3), ∀k, h, l̂. (34)

Thus, according to (34), the demand for the product at a demand market
in a currency and country depends, in general, not only on the price of the
product at that demand market (and currency and country) but also on the
prices of the product at the other demand markets (and in other countries
and currencies). Consequently, consumers at a demand market, in a sense,
also compete with consumers at other demand markets.

The consumers take the price charged by the retailer, which was denoted by
ρj∗
2khl̂m

for retailer j, demand market k, currency h, and country l̂ transacted
via mode m, the price charged by manufacturer il, which was denoted by
ρil∗
1khl̂

, and the rate of appreciation in the currency, plus the transaction costs,
in making their consumption decisions. In addition, we assume that the con-
sumers are also multicriteria decision-makers and weight the emissions asso-
ciated with their transactions accordingly.
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2.3.1 The Multicriteria Equilibrium Conditions
for the Demand Markets

Let ηj
kl̂m

denote the amount of emissions generated per unit of product trans-

acted between retailer j and demand market k in country l̂ via mode m and
assume that this term is nonnegative for each k, l̂,m, j. We assume that con-
sumers at a demand market perceive the emissions generated through their
transactions (and purchases) in an individual fashion with the nonnegative
weight δkhl̂ associated with the total emissions generated through consumer
transactions at demand market khl̂. This term may also be viewed as a mon-
etary conversion factor associated with the per unit emissions generated. See
also [32].

The equilibrium conditions for the consumers at demand market khl̂, thus,
take the form: for all retailers: j = 1, . . . , J and all modes m; m = 1, 2:

ρj∗
2khl̂m

× eh + ĉj
khl̂m

(Q2∗) + δkhl̂η
j

kl̂m

{

= ρ∗
3khl̂

, if qj∗
khl̂m

> 0
≥ ρ∗

3khl̂
, if qj∗

khl̂m
= 0,

(35)

and for all manufacturers il; i = 1, . . . , I and l = 1, . . . , L:

ρil∗
1khl̂
× eh + ĉil

khl̂
(Q3∗) + δkhl̂(η

il + ηil
kl̂

)
{

= ρ∗
3khl̂

, if qil∗
khl̂

> 0
≥ ρ∗

3khl̂
, if qil∗

khl̂
= 0. (36)

In addition, we must have that

dkhl̂(ρ
∗
3)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

=
J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
, if ρ∗

3khl̂
> 0

≤
J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
, if ρ∗

3khl̂
= 0.

(37)

Condition (35) states that consumers at demand market khl̂ will purchase
the product from retailer j transacted via mode m, if the price charged by the
retailer for the product and the appreciation rate for the currency plus the
transaction cost (from the perspective of the consumer) and the weighted emis-
sion generation term does not exceed the price that the consumers are willing
to pay for the product in that currency and country, i.e., ρ∗

3khl̂
. Note that, ac-

cording to (35), if the transaction costs are identically equal to zero, as is the
weighted emission generation term, then the price faced by the consumers at
a demand market is the price charged by the retailer for the particular prod-
uct and currency and mode in the country plus the rate of appreciation in
the currency. Condition (36) state the analogue, but for the case of electronic
transactions with the manufacturers.

Condition (37), on the other hand, states that, if the price the consumers
are willing to pay for the product at a demand market/currency/country is
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positive, then the quantity of the product transacted at the demand mar-
ket/currency/country is precisely equal to the demand.

In equilibrium, conditions (35), (36), and (37) will have to hold for all de-
mand markets in all countries, currencies, and modes. Hence, these equilibrium
conditions can be expressed also as a variational inequality analogous to those
in (19) and (31) and given by: determine (Q2∗, Q3∗, ρ∗3) ∈ R

(IL+2J+1)KHL
+ ,

such that

J
∑

j=1

K
∑

k=1

H
∑

h=1

L̂
∑

l̂=1

2
∑

m=1

[

ρj∗
2khl̂m

× eh + ĉj
khl̂m

(Q2∗) + δkhl̂η
j

kl̂m
− ρ∗

3khl̂

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
I
∑

i=1

L
∑

l=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

[

ρil∗
1khl̂
× eh + ĉil

khl̂
(Q3∗) + δkhl̂(η

il + ηil
kl̂

)− ρ∗
3khl̂

]

×
[

qil
khl̂
− qil∗

khl̂

]

+
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

⎡

⎣

J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
− dkhl̂(ρ

∗
3)

⎤

⎦

×
[

ρ3khl̂ − ρ
∗
3khl̂

]

≥ 0, ∀(Q2, Q3, ρ3) ∈ R(IL+2J+1)KHL
+ . (38)

2.4 The Equilibrium Conditions for the Global Supply
Chain Network

In equilibrium, the product transactions between the manufacturers in the
different countries with the retailers must coincide with those that the retail-
ers actually accept. In addition, the amounts of the product that are obtained
by the consumers in the different countries and currencies must be equal to
the amounts that the retailers and the manufacturers actually provide. Hence,
although there may be competition between decision-makers at the same tier
of nodes of the supply chain supernetwork, there must be, in a sense, coopera-
tion between decision-makers associated with distinct tiers of nodes. Thus, in
equilibrium, the prices and product transactions must satisfy the sum of the
optimality conditions (19) and (31) and (38). We make these relationships rig-
orous through the subsequent definition and variational inequality derivation
below.

Definition 1 (Global Supply Chain Network Equilibrium). The equi-
librium state of the supply chain supernetwork is one where the product trans-
actions between the tiers of the network coincide and the product transactions
and prices satisfy the sum of conditions (19), (31), and (38).

The equilibrium state is equivalent to the following:



816 A. Nagurney et al.

Theorem 1 (Variational Inequality Formulation). The equilibrium con-
ditions governing the global supply chain supernetwork according to Definition
1 are equivalent to the solution of the variational inequality given by: deter-
mine (Q1∗, Q2∗, Q3∗, γ∗, ρ∗3)∈K, satisfying:

I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

2
∑

m=1

[

∂f il(Q1∗, Q3∗)
∂qiljhm

+
∂ciljhm(qil∗jhm)

∂qiljhm
+
∂cj(Q1∗)
∂qiljhm

+
∂ĉiljhm(qil∗jhm)

∂qiljhm
+ ωil

∂ril(Q1∗, Q3∗)
∂qiljhm

+ ϑj
∂rj(Q1∗, Q2∗)

∂qiljhm

+ (αil + βj)(ηil + ηiljm)− γ∗j

]

×
[

qiljhm − qil∗jhm
]

+
I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

L
∑

l̂=1

[

∂f il(Q1∗, Q3∗)
∂qil

khl̂

+
∂cil

khl̂
(qil∗

khl̂
)

∂qil
khl̂

+ ĉil
khl̂

(Q3∗)

+ ωil
∂ril(Q1∗, Q3∗)

∂qil
khl̂

+ (αil + δkhl̂)(η
il + ηil

kl̂
)− ρ∗

3khl̂

]

×
[

qil
khl̂
− qil∗

khl̂

]

+
J
∑

j=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

[

∂cjkhl(q
j∗
khl̂m

)

∂qkhl̂m
j

+ ĉj
khl̂m

(Q2∗) + ϑj
∂rj(Q1∗, Q2∗)

∂qj
khl̂m

+δkhl̂η
j

kl̂m
+ γ∗j − ρ∗3khl̂

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
J
∑

j=1

⎡

⎣

I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qil∗jhm −
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

qj∗
khl̂m

⎤

⎦×
[

γj − γ∗j
]

+
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

⎡

⎣

J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
− dkhl̂(ρ

∗
3)

⎤

⎦

×
[

ρ3khl̂ − ρ
∗
3khl̂

]

≥ 0, ∀(Q1, Q2, Q3, γ, ρ3) ∈ K, (39)

where K ≡ {K1 ×K2 ×K3}, where K3 ≡ {ρ3|ρ3 ∈ RKHL
+ }.

Proof. We first establish that the equilibrium conditions imply variational
inequality (39). Indeed, summation of inequalities (19), (31), and (38), after
algebraic simplifications, yields variational inequality (39).

We now establish the converse, that is, that a solution to variational in-
equality (39) satisfies the sum of conditions (19), (31), and (38), and is, hence,
an equilibrium.

To inequality (39), add the term −ρil∗1jhm × eh + ρil∗1jhm × eh to the term
in the first set of brackets (preceding the first multiplication sign). Similarly,
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add the terms −ρil∗
1khl̂
× eh + ρil∗

1khl̂
× eh to the term in brackets preceding the

second multiplication sign and −ρj∗
2khl̂m

× eh + ρj∗
2khl̂m

× eh to the term in
brackets preceding the third multiplication sign in (39). The addition of such
terms does not change (39) as the value of these terms is zero and yields:

I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

2
∑

m=1

[

∂f il(Q1∗, Q3∗)
∂qiljhm

+
∂ciljhm(qil∗jhm)

∂qiljhm
+
∂cj(Q1∗)
∂qiljhm

+
∂ĉiljhm(qil∗jhm)

∂qiljhm
+ (αil + βj)(ηil + ηiljm)

+ ωil
∂ril(Q1∗, Q3∗)

∂qiljhm
+ ϑj

∂rj(Q1∗, Q2∗)
∂qiljhm

− γ∗j

− ρil∗1jhm × eh + ρil∗1jhm × eh

]

×
[

qiljhm − qil∗jhm
]

+
I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

L
∑

l̂=1

[

∂f il(Q1∗, Q3∗)
∂qil

khl̂

+
∂cil

khl̂
(qil∗

khl̂
)

∂qil
khl̂

+ ĉil
khl̂

(Q3∗)

+ (αil + δkhl̂)(η
il + ηil

kl̂
) + ωil

∂ril(Q1∗, Q3∗)
∂qil

khl̂

− ρ∗
3khl̂

− ρil∗
1khl̂
× eh + ρil∗

1khl̂
× eh

]

×
[

qil
khl̂
− qil∗

khl̂

]

+
J
∑

j=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

[

∂cjkhl(q
j∗
khl̂m

)

∂qj
khl̂m

+ γ∗j + ĉj
khl̂m

(Q2∗) + ϑj
∂rj(Q1∗, Q2∗)

∂qj
khl̂m

+ δkhl̂η
j

kl̂m
− ρ∗

3khl̂
− ρj∗

2khl̂m
× eh + ρj∗

2khl̂m
+ e∗h

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
J
∑

j=1

⎡

⎣

I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qil∗jhm −
K
∑

k=1

H
∑

h=1

L̂
∑

l̂=1

2
∑

m=1

qj∗
khl̂m

⎤

⎦×
[

γj − γ∗j
]

+
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

⎡

⎣

J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
− dkhl̂(ρ

∗
3)

⎤

⎦

×
[

ρ3khl̂ − ρ
∗
3khl̂

]

≥ 0, ∀(Q1, Q2, Q3, γ, ρ3) ∈ K, (40)
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which, in turn, can be rewritten as:
I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

2
∑

m=1

[

∂f il(Q1∗, Q3∗)
∂qiljhm

+
∂ciljhm(qil∗jhm)

∂qiljhm
+ ωil

∂ril(Q1∗, Q3∗)
∂qiljhm

+ αil(ηil + ηiljm)− ρil∗1jhm × eh

]

×
[

qiljhm − qil∗jhm
]

+
J
∑

j=1

I
∑

i=1

L
∑

l=

H
∑

h=1

2
∑

m=1

[

∂cj(Q1∗)
∂qiljhm

+ ρil∗1jhm × eh +
∂ĉiljhm(qil∗jhm)

∂qiljhm

+ ϑj
∂rj(Q1∗, Q2∗)

∂qiljhm
+ βj(ηil + ηiljm)− γ∗j

]

×
[

qiljhm − qil∗jhm
]

+
I
∑

i=1

L
∑

l=1

J
∑

j=1

H
∑

h=1

L
∑

l̂=1

[

∂f il(Q1∗, Q3∗)
∂qil

khl̂

+
∂cil

khl̂
(qil∗

khl̂
)

∂qil
khl̂

+ ωil
∂ril(Q1∗, Q3∗)

∂qil
khl̂

+ αil(ηil + ηil
kl̂

)− ρil∗
1khl̂
× eh

]

×
[

qil
khl̂
− qil∗

khl̂

]

+
I
∑

i=1

L
∑

l=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

[

ρil∗
1khl̂
× eh + ĉil

khl̂
(Q3∗) + δkhl̂(η

il + ηil
kl̂

)− ρ∗
3khl̂

]

×
[

qil
khl̂
− qil∗

khl̂

]

+
J
∑

j=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

[

∂cjkhl(q
j∗
khl̂m

)

∂qj
khl̂m

+ ϑj
∂rj(Q1∗, Q2∗)

∂qj
khl̂m

− ρj∗
2khl̂m

× eh + γ∗j

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
J
∑

j=1

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

[

ρj∗
2khl̂m

× eh + ĉj
khl̂m

(Q2∗) + δkhl̂η
j

kl̂m
− ρ∗

3khl̂

]

×
[

qj
khl̂m

− qj∗
khl̂m

]

+
J
∑

j=1

⎡

⎣

I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qil∗jhm −
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

qj∗
khl̂m

⎤

⎦×
[

γj − γ∗j
]

+
K
∑

k=1

H
∑

h=1

L
∑

l̂=1

⎡

⎣

J
∑

j=1

2
∑

m=1

qj∗
khl̂m

+
I
∑

i=1

L
∑

l=1

qil∗
khl̂
− dkhl̂(ρ

∗
3)

⎤

⎦

×
[

ρ3khl̂ − ρ
∗
3khl̂

]

≥ 0. (41)
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But inequality (41) is equivalent to the sum of conditions (19), (31), and
(38), and, hence, the product and price pattern is an equilibrium according
to Definition 1.

We now put variational inequality (39) into standard form that will be
utilized in the subsequent sections. For additional background on variational
inequalities and their applications, see the book by [26]. For other applications
of supernetworks along with the variational inequality formulations of the
governing equilibrium conditions, see the book by [28].

In particular, we have that variational inequality (39) can be expressed as:

〈F (X∗)T ,X −X∗〉 ≥ 0, ∀X ∈ K, (42)

where X ≡ (Q1, Q2, Q3, γ, ρ3) and F (X) ≡ (Filjhm, Filkhl̂, Fjkhl̂m, Fj , Fkhl̂)
(i = 1, . . . , I; l̂ = l = 1, . . . , L; j = 1, . . . , J ; h = 1, . . . , H; m = 1, 2), and
the specific components of F are given by the functional terms preceding the
multiplication signs in (39), respectively. The term 〈·, ·〉 denotes the inner
product in N -dimensional Euclidean space.

We now describe how to recover the prices associated with the first two
tiers of nodes in the global supply chain network. Clearly, the components of
the vector ρ∗3 are obtained directly from the solution of variational inequality
(39). In order to recover the second tier prices associated with the retailers and
the appreciation rates, one can (after solving variational inequality (39) for
the particular numerical problem) either (cf. (35)) set ρj∗

2khl̂m
× eh = ρ∗

3khl̂
−

ĉj
khl̂m

(Q2∗) − δkhl̂η
j

kl̂m
, for any j, k, h, l̂,m such that qj∗

khl̂m
> 0, or (cf. (28))

for any qj∗
khl̂m

> 0, set ρj∗
2khl̂m

× eh =
∂cj

khl̂m
(qj∗

khl̂m
)

∂qj

khl̂m

+ ϑj
∂rj(Q1∗,Q2∗)

∂qj

khl̂m

+ γ∗j .

Similarly, from (31) we can infer that the top tier prices comprising the
vector ρ∗1 can be recovered (once the variational inequality (39) is solved with
particular data) thus: for any i, l, j, h,m, such that qil∗jhm > 0, set (cf. (19))

ρil∗1jhm × eh = ∂fil(Q1∗,Q3∗)

∂qil
jhm

+ ∂cil
jhm(qil∗

jhm)

∂qil
jhm

+ ωil ∂r
il(Q1∗,Q3∗)

∂qil
jhm

+ αil(ηil + ηiljm).

Similarly (cf. (36)), set ρil∗
1khl̂
× eh = ρ∗

3khl̂
− ĉil

khl̂
(Q3∗) − δkhl̂(ηil + ηil

kl̂
),

for any i, l, k, h, l̂ such that qil∗
khl̂

> 0, or (cf. (18)) for any qil∗
khl̂

> 0, set

ρil∗
1khl̂
× eh = ∂fil(Q1∗,Q3∗)

∂qil
khl̂

+
∂cil

khl̂
(qil∗

khl̂
)

∂qil
khl̂

+ ωil ∂r
il(Q1∗,Q3∗)

∂qil
khl̂

+ αil(ηil + ηil
kl̂

).

With the pricing mechanism described above, it is straightforward to ver-
ify that a solution of variational inequality (39) also satisfies the optimality
conditions (19) and (31) as well as the equilibrium conditions (35)–(37) (see
also (38)).

3 The Dynamic Global Supply Chain Network Model

In this section, we turn to the development of a dynamic global supply chain
network model whose set of stationary points coincides with the set of so-
lutions of the variational inequality problem (39) governing the static global
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supply chain network equilibrium model developed in Section 2. In particular,
we propose a dynamical system, which is nonclassic, and termed a projected
dynamical system (cf. [34]) that governs the behavior of the global supply
chain supernetwork presented in Section 2. The proposed dynamic adjust-
ment processes describe the disequilibrium dynamics as the various global
supply chain decision-makers adjust their product transactions between the
tiers and the prices associated with the different tiers adjust as well.

3.1 Demand Market Price Dynamics

The rate of change of the price ρ3khl̂, denoted by ρ̇3khl̂, is assumed to be equal
to the difference between the demand for the product at the demand market
and currency and country and the amount of the product actually available
there. Moreover, if the demand for the product at the demand market (and
currency and country) at an instant in time exceeds the amount available
from the various retailers and manufacturers, then the price will increase; if
the amount available exceeds the demand at the price, then the price will
decrease. We also have to make sure that the prices do not become negative.
Therefore, the dynamics of the prices ρ3khl̂, ∀k, h, l̂, can be expressed in the
following way:

ρ̇3khl̂ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dkhl̂(ρ3)−
J
∑

j=1

2
∑

m=1
qj
khl̂m

−
I
∑

i=1

L
∑

l=1

qil
khl̂
,

if ρ3khl̂ > 0

max{0, dkhl̂(ρ3)−
J
∑

j=1

∑2
m=1 q

j

khl̂m
−

I
∑

i=1

L
∑

l=1

qil
khl̂
},

if ρ3khl̂ = 0.

(43)

3.2 The Dynamics of the Product Transactions Between
the Retailers and the Demand Markets

We assume that the rate of change of the product transaction between retailer
j and demand market k, country l̂, and transacting in currency h via mode m
and denoted by q̇j

khl̂m
is equal to the difference between the price consumers

at this particular demand market/country/currency combination are willing
to pay for the product minus the price charged by the retailer and the various
transaction costs and weighted marginal risk and weighted emissions gener-
ated. Here we also have to guarantee that the product transactions will not
become negative. Thus, the rate of change of the product transactions be-
tween a retailer and a demand market in a country and currency via a mode
can be written as: ∀j, k, h, l̂,m:
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q̇j
khl̂m

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ3khl̂ −
∂cj

khl̂m
(qj

khl̂m
)

∂qj

khl̂m

− ϑj ∂r
j(Q1,Q2)

∂qj

khl̂m

− ĉj
khl̂m

(Q2)

−δkhl̂η
j

kl̂m
− γj , if qj

khl̂m
> 0

max{0, ρ3khl̂ −
∂cj

khl̂m
(qj

khl̂m
)

∂qj

khl̂m

− ϑj ∂r
j(Q1,Q2)

∂qj

khl̂m

− ĉj
khl̂m

(Q2)

−δkhl̂η
j

kl̂m
− γj}, if qj

khl̂m
= 0.

(44)

3.3 The Dynamics of the Prices at the Retailers

The prices at the retailers, whether they are physical or virtual, must reflect
supply and demand conditions as well. In particular, we let γ̇j denote the
rate of change in the market clearing price associated with retailer j, and we
propose the following dynamic adjustment for retailer j:

γ̇j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑K
k=1

∑H
h=1

∑L
l̂=1

∑2
m=1 q

j

khl̂m

−
∑I

i=1

∑L
l=1

∑H
h=1

∑2
m=1 q

il
jhm, if γj > 0

max{0,
∑K

k=1

∑H
h=1

∑L
l̂=1

∑2
m=1 q

j

khl̂m
∑I

i=1

∑L
l=1

∑H
h=1

∑2
m=1 q

il
jhm}, if γj = 0.

(45)

Hence, if there is excess supply of the product at a retailer, then the price
will decrease at that retailer; if there is excess demand, then the price will
increase. Here we also guarantee that these prices do not become negative.

3.4 Dynamics of the Product Transactions Between
Manufacturers and Retailers

The dynamics of the product transactions between manufacturers in the coun-
tries and the retailers in the different currencies and modes are now described.
Note that in order for a transaction between nodes in these two tiers to take
place, there must be agreement between the pair of decision-makers. Toward
that end, we let q̇iljhm denote the rate of change of the product transaction
between manufacturer il and retailer j transacted via modem and in currency
h and we have that for every i, l, j, h,m:

q̇iljhm =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γj − ∂fil(Q1,Q3)

∂qil
jhm

− ∂cil
jhm(qil

jhm)

∂qil
jhm

− ∂cj(Q
1)

∂qil
jhm

− ∂ĉil
jhm(qil

jhm)

∂qil
jhm

−ωil ∂r
il(Q1,Q3)

∂qil
jhm

− ϑj ∂r
j(Q1,Q2)

∂qil
jhm

− (αil + βj)(ηil + ηiljm),

if qiljhm > 0

max{0, γj − ∂fil(Q1,Q3)

∂qil
jhm

− ∂cil
jhm(qil

jhm)

∂qil
jhm

− ∂cj(Q
1)

∂qil
jhm

−∂ĉil
jhm(qil

jhm)

∂qil
jhm

− ωil ∂r
il(Q1,Q3)

∂qil
jhm

− ϑj ∂r
j(Q1,Q2)

∂qil
jhm

−(αil + βj)(ηil + ηiljm)},
if qiljhm = 0.

(46)
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Hence, the transaction between a manufacturer in a country and a retailer via
a mode and in a currency will increase if the price that the retailer is willing
to pay the manufacturer exceeds the various marginal costs plus the weighted
marginal risks and emissions generated. Moreover, we guarantee that such a
transaction never becomes negative.

3.5 The Dynamics of the Product Transactions Between
Manufacturers and Demand Markets

The rate of change of the product transactions between a manufacturer in a
country and demand market/currency/country pair is assumed to be equal to
the price the consumers are willing to pay minus the various costs, including
marginal ones, that the manufacturer incurs when transacting with the de-
mand market in a country and currency and the weighted emissions generated
and the weighted marginal risk. We denote this rate of change by q̇il

khl̂
, and,

mathematically, express it in the following way, ∀i, l, k, h, l̂:

q̇il
khl̂

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ3khl̂ −
∂fil(Q1,Q3)

∂qil
khl̂

− ∂cil
khl̂

(qil
khl̂

)

∂qil
khl̂

− ĉil
khl̂

(Q3)

− ωil ∂r
il(Q1,Q3)

∂qil
khl̂

− (αil + δkhl̂)(η
il + ηil

kl̂
),

if qil
khl̂

> 0

max{0, ρ3khl̂ −
∂fil(Q1,Q3)

∂qil
khl̂

− ∂cil
khl̂

(qil
khl̂

)

∂qil
khl̂

− ĉil
khl̂

(Q3)

− ωil ∂r
il(Q1,Q3)

∂qil
khl̂

− (αil + δkhl̂)(η
il + ηil

kl̂
)},

if qil
khl̂

= 0.

(47)

Note that (47) guarantees that the volume of product transacted will not take
on a negative value.

3.6 The Projected Dynamical System

Consider now a dynamical system in which the product transactions between
manufacturers in the countries and the retailers evolve according to (46);
the product transactions between manufacturers and demand markets in the
various countries and associated with different currencies evolve according
to (47); the product transactions between retailers and the demand mar-
ket/country/currency combinations evolve according to (44); the prices at
the retailers evolve according to (45); and the prices at the demand markets
evolve according to (43). Let X and F (X) be as defined following (39) and re-
call also the feasible set K as defined following (39). Then the dynamic model
described by (43)–(47) can be rewritten as a projected dynamical system (see
[13] and [34]) defined by the following initial value problem:
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Ẋ = ΠK(X,−F (X)), X(0) = X0, (48)

where ΠK is the projection operator of −F (X) onto K at X and X0 =
(Q10, Q20, Q30, γ0, ρ03) is the initial point corresponding with the initial prod-
uct flow and price pattern. Note that as the feasible set K is simply the
nonnegative orthant, the projection operation takes on a very simple form as
revealed through (43)–(47).

The trajectory of (48) describes the dynamic evolution of and the dynamic
interactions among the product transactions and prices. The dynamical sys-
tem (48) is nonclassic as it has a discontinuous right-hand side due to the
projection operation. Such dynamical systems were introduced by [13].

Importantly, we have the following result, which is immediate from [13]:

Theorem 2. The set of stationary points of the projected dynamical system
(48) coincides with the set of solutions of the variational inequality problem
(39) and is, thus, according to Definition 1, a global supply chain network
equilibrium. Hence, a vector X∗ satisfying 0 = ΠK(X∗,−F (X∗)) also satisfies
variational inequality (39).

4 Qualitative Properties

In this section, we provide some qualitative properties of the solution to vari-
ational inequality (39). In particular, we derive existence and uniqueness re-
sults. We also investigate properties of the function F (cf. (42)) that enters the
variational inequality of interest here. Finally, we establish that the trajecto-
ries of the projected dynamical system (48) are well-defined under reasonable
assumptions.

Because the feasible set is not compact, we cannot derive existence sim-
ply from the assumption of continuity of the functions. Nevertheless, we can
impose a rather weak condition to guarantee existence of a solution pattern.
Let

Kb = {(Q1, Q2, Q3, γ, ρ3)|0 ≤ Q1 ≤ b1; 0 ≤ Q2 ≤ b2; 0 ≤ Q3 ≤ b3;
0 ≤ γ ≤ b4; 0 ≤ ρ3 ≤ b5}, (49)

where b = (b1, b2, b3, b4, b5) ≥ 0 and Q1 ≤ b1;Q2 ≤ b2;Q3 ≤ b3; γ ≤
b4; ρ3 ≤ b5 means that qiljhm ≤ b1; q

j

khl̂m
≤ b2; qilkhl̂m ≤ b3; γj ≤ b4; and

ρ3khl ≤ b5 for all i, l, j, k, h, l̂,m. Then Kb is a bounded closed convex subset
of R2ILJH+2JKHL+ILKHL+J+KHL. Thus, the following variational inequality

〈F (Xb)T ,X −Xb〉 ≥ 0, ∀Xb ∈ Kb, (50)

admits at least one solution Xb ∈ Kb, from the standard theory of variational
inequalities, as Kb is compact and F is continuous. Following [23] (see also
Theorem 1.5 in [26]), we then have:
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Theorem 3. Variational inequality (39) admits a solution if and only if there
exists a b > 0, such that variational inequality (50) admits a solution in Kb
with

Q1b < b1, Q2b < b2, Q3b < b3, γb < b4, ρb3 < b5. (51)

Theorem 4 (Existence). Suppose that there exist positive constants M , N ,
R, with R > 0, such that:

∂f il(Q1, Q3)
∂qiljhm

+
∂ciljhm(qiljhm)

∂qiljhm
+
∂cj(Q1)
∂qiljhm

+
∂ĉiljhm(qiljhm)

∂qiljhm
+ ωil

∂ril(Q1, Q3)
∂qiljhm

+ ϑj
∂rj(Q1∗, Q2∗)

∂qiljhm
+ (αil + βj)(ηil + ηiljm) ≥M,

∀Q1 with qiljhm ≥ N, ∀i, l, j, h,m, (52)

∂f il(Q1, Q3)
∂qil

khl̂

+
∂cil

khl̂
(qil

khl̂
)

∂qil
khl̂

+ ĉil
khl̂

(Q3) + ωil
∂ril(Q1, Q3)

∂qil
khl̂

+ (αil + δkhl̂)(η
il + ηil

kl̂
) ≥M, ∀Q3 with qil

khl̂
≥ N, ∀i, l, k, h, l̂, (53)

∂cjkhl(q
j

khl̂m
)

∂qj
khl̂m

+ ĉj
khl̂m

(Q2) + ϑj
∂rj(Q1, Q2)
∂qj

khl̂m

+ δkhl̂η
j

kl̂m
≥M,

∀Q2 with qj
khl̂m

≥ N, ∀j, k, h, l̂,m, (54)

dkhl̂(ρ3) ≤ N, ∀ρ3 with ρ3khl̂ > R, ∀k, h, l̂. (55)

Then variational inequality (39); equivalently, variational inequality (42),
admits at least one solution.

Proof. Follows using analogous arguments as the proof of existence for Propo-
sition 1 in [35].

Assumptions (52), (53), and (54) are reasonable from an economics per-
spective, as when the product transaction between a manufacturer in a coun-
try and a retailer or a manufacturer and a demand market in a country (and
currency) or a retailer and demand market is large, we can expect the cor-
responding sum of the associated marginal costs of production, transaction,
handling, and the weighted marginal risks and emissions generated to exceed
a positive lower bound. Moreover, in the case where the demand price of the
product in a currency and country at a demand market is high (cf. (55)), we
can expect that the demand for the product at the demand market will not
exceed a positive bound.

We now establish additional qualitative properties both of the function F
that enters the variational inequality problem (cf. (39) and (42)), as well as
uniqueness of the equilibrium pattern. Because the proofs of Theorems 5 and
6 below are similar to the analogous proofs in [30], they are omitted here.
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Additional background on the properties established below can be found in
the books by [26] and [28].

We first recall the concept of additive production cost, which was intro-
duced by [42] in the stability analysis of dynamic spatial oligopolies, and has
also been utilized in the qualitative analysis of supply chain networks by [29].

Definition 2 (Additive Production Cost). We term a production cost an
additive production cost if for manufacturer il, the production cost f il is of
the following form:

f il(q) = f il1(qil) + f il2(q̄il), (56)

where f il1 is the internal production cost that depends solely on the man-
ufacturer’s own output level, and f il2(q̄il) is the interdependent part of the
production cost that is a function of all the other manufacturer’s output levels
q̄il = (q11, . . . , qil−1, qil+1, . . . , qil) and reflects the impact of the other manu-
facturers’ production patterns on manufacturer il’s cost.

Using the assumption of additive production costs, as well as several ad-
ditional assumptions, we now state the following:

Theorem 5 (Monotonicity). Suppose that the production cost functions
f il; i = 1, . . . , I, the risk functions ril; i = 1, . . . , I; l = 1, . . . , L, and rj;
j = 1, . . . , J , are convex and that the ciljhm, cil

khl̂
, cj, ĉiljhm, and cj

khl̂m
func-

tions are convex; the ĉj
khl̂m

and ĉil
khl̂

functions are monotone increasing, and

the dkhl̂ functions are monotone decreasing functions, for all i, l, j, h, k, l̂,m.
Assume also that the production cost functions are additive for all manufac-
turers il according to Definition 2. Then the vector function F that enters the
variational inequality (42) is monotone, that is,

〈(F (X ′)− F (X ′′))T ,X ′ −X ′′〉 ≥ 0, ∀X ′,X ′′ ∈ K. (57)

Monotonicity plays a role in the qualitative analysis of variational inequal-
ity problems similar to that played by convexity in the context of optimization
problems. Under slightly stronger conditions, we obtain the following sharper
result.

Theorem 6 (Strict Monotonicity). Assumeall the conditions ofTheorem5.
In addition, suppose that one of the families of convex functions ciljhm; i =
1, . . . , I; l = 1, . . . , L; j = 1, . . . , J ; h = 1, . . . , H; m = 1, 2; cil

khl̂
; i = 1, . . . , I;

l = 1, . . . , L; k = 1, . . . ,K; h = 1, . . . , H; l̂ = 1, . . . , L, cj; j = 1, . . . , J ;
ĉiljhm; i = 1, . . . , I; l = 1, . . . , L; j = 1, . . . , J ; h = 1, . . . , H; m = 1, 2, and
cj
khl̂m

; j = 1, . . . , J ; k = 1, . . . ,K; h = 1, . . . , H, l̂ = 1, . . . , L; m = 1, 2, is a

family of strictly convex functions. Suppose also that ĉj
khl̂m

; j = 1, . . . , J ; k =

1, . . . ,K; h = 1, . . . , H; l̂ = 1, . . . , L; m = 1, 2; ĉil
khl̂

; i = 1, . . . , I; l = 1, . . . , L;
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k = 1, . . . ,K; h = 1, . . . , H; l̂ = 1, . . . , L and -dkhl̂, k = 1, . . . ,K,h = 1, . . . , H;
l̂ = 1, . . . , L̂, are strictly monotone. Then, the vector function F that enters the
variational inequality(42)isstrictlymonotone,withrespectto(Q1, Q2, Q3, γ, ρ3),
that is, for any twoX ′,X ′′ with (Q1′

, Q2′
, Q3′

, γ
′
, ρ′3) 	= (Q1′′

, Q2′′
, Q3′′

, γ
′′
, ρ3

′′)

〈(F (X ′)− F (X ′′))T ,X ′ −X ′′〉 > 0. (58)

Theorem 7 (Uniqueness). Assuming the conditions of Theorem 6, there
must be a unique equilibrium product pattern (Q1∗, Q2∗, Q3∗) and a unique
demand price vector ρ∗3 satisfying the equilibrium conditions of the global sup-
ply chain network. In other words, if the variational inequality (39) admits a
solution, then that is the only solution in (Q1, Q2, Q3, ρ3).

Proof. Under the strict monotonicity result of Theorem 6, uniqueness follows
from the standard variational inequality theory (cf. [23]).

Theorem 8 (Lipschitz Continuity). The function that enters the varia-
tional inequality problem (41) is Lipschitz continuous, that is,

‖F (X ′)− F (X ′′)‖ ≤ L‖X ′ −X ′′‖, ∀X ′,X ′′ ∈ K, where L > 0, (59)

under the following conditions:
(i). f il, ril, rj, ciljhm, cil

khl̂
, cj, ĉiljhm, cj

khl̂m
have bounded second-order deriv-

atives, for all i, l, l̂, j, h, k,m;
(ii). ĉj

khl̂m
, ĉil

khl̂
and dkhl̂ have bounded first-order derivatives for all

j, k, h, l, l̂,m.

Proof. The result is direct by applying a mid-value theorem from calculus to
the vector function F that enters the variational inequality problem (39).

Theorem 9 (Existence and Uniqueness). Assume the conditions of
Theorem 8. Then, for any X0 ∈ K, there exists a unique solution X0(t) to
the initial value problem (48).

Note that Theorem 9, unlike Theorems 4 and 7, is concerned with the ex-
istence of a unique trajectory. Theorems 4 and 7, on the other hand, are con-
cerned with the existence and uniqueness of an equilibrium pattern. Hence,
according to Theorem 9, the disequilibrium dynamics of the global supply
chain network are well-defined. Also, for completeness, we now provide a sta-
bility result (see [42]). First we recall the following:

Definition 3 (Stability of the System). The system defined by (48) is
stable if, for every X0 and every equilibrium point X∗, the Euclidean distance
‖X∗ −X0(t)‖ is a monotone nonincreasing function of time t.

We now provide a stability result.
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Theorem 10 (Stability of the Global Supply Chain Network). Assume
the conditions of Theorem 5. Then the dynamical system (48) underlying the
global supply chain network is stable.

Proof. Under the assumptions of Theorem 5, F (X) is monotone and, hence,
the conclusion follows directly from Theorem 4.1 of [42].

In the next section, we propose a discrete-time algorithm, the Euler
method, which will track the dynamic trajectories until a stationary state
is reached; equivalently, until an equilibrium point is reached satisfying
Definition 1.

5 The Euler Method

In this section, we consider the computation of a stationary of (48). The
algorithm that we propose is the Euler-type method, which is induced by the
general iterative scheme of [13]. It has been applied to-date to solve a plethora
of dynamic network models (see, e.g., [34] and [28]). The algorithm not only
provides a discretization of the continuous time trajectory defined by (48) but
also yields a stationary, that is, an equilibrium point that satisfies variational
inequality (39).

The Euler Method

Step 0: Initialization
Set X0 = (Q10, Q20, Q30, γ0, ρ03) ∈ K. Let T denote an iteration counter and
set T = 1. Set the sequence {aT } so that

∑∞
T =1 aT , aT > 0, aT → 0, as

T → ∞ (which is a requirement for convergence).

Step 1: Computation
Compute XT = (Q1T , Q2T , Q3T , γT , ρT3 ) ∈ K by solving the variational in-
equality subproblem:

〈XT + aT F (XT −1)−XT −1,X −XT 〉 ≥ 0, ∀X ∈ K. (60)

Step 2: Convergence Verification
If |XT −XT −1| ≤ ε, with ε > 0, a prespecified tolerance, then stop; otherwise,
set T := T + 1, and go to Step 1.

Convergence results for the Euler method can be found in [13]. See the book
by [28] for applications of this algorithm to other supernetwork problems in the
context of dynamic supply chains and financial networks with intermediation.

Variational inequality subproblem (60) can be solved explicitly and in
closed form. This is due to the simplicity of the feasible set K as formulated
above. For completeness, and also to illustrate the simplicity of the proposed
computational procedure in the context of the global supply chain network
model, we provide the explicit formulae for the computation of the Q1T , the
Q2T , the Q3T , the γT , and the ρT3 below.
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5.1 Computation of the Product Transactions

In particular, compute, at iteration T , the qilTjhms according to:

qilTjhm = max

{

0, qilT −1
jhm − aT (

∂f il(Q1T −1, Q3T −1)
∂qiljhm

+
∂ciljhm(qilT −1

jhm )

∂qiljhm

+
∂cj(Q1T −1)
∂qiljhm

+
∂ĉiljhm(qilT −1

jhm )

∂qiljhm
+ ωil

∂ril(Q1T −1, Q3T −1)
∂qiljhm

+ ϑj
∂rj(Q1T −1, Q2T −1)

∂qiljhm
+ (αil + βj)(ηil + ηiljm)− γT −1

j )

}

∀i, l, j, h,m; (61)

the qilT
khl̂

s according to:

qilT
khl̂

= max

{

0, qilT −1

khl̂
− aT (

∂f il(Q1T −1, Q3T −1)
∂qil

khl̂

+
∂cil

khl̂
(qilT −1

khl̂
)

∂qil
khl̂

+ĉil
khl̂

(Q3T −1) + ωil
∂ril(Q1T −1, Q3T −1)

∂qil
khl̂

−(αil + δkhl̂)(η
il + ηil

kl̂
)− ρT −1

3khl̂
)

}

, ∀i, l, k, h, l̂, (62)

and the qjT
khl̂m

s, according to:

qjT
khl̂m

= max

{

0, qjT −1

khl̂m
− aT (

∂cj
khl̂m

(qjT −1

khl̂m
)

∂qj
khl̂m

+ ϑj
∂rj(Q1T −1, Q2T −1)

∂qj
khl̂m

+ĉj
khl̂m

(Q2T −1) + δkhl̂η
j

kl̂m
+ γT −1

j − ρT −1

3khl̂
)

}

,

∀j, k, h, l̂,m. (63)

5.2 Computation of the Prices

At iteration T , compute the γTj s according to:

γTj = max

⎧

⎨

⎩

0, γT −1
j − aT (

I
∑

i=1

L
∑

l=1

H
∑

h=1

2
∑

m=1

qilT −1
jhm −

K
∑

k=1

H
∑

h=1

L
∑

l̂=1

2
∑

m=1

qjT −1

khl̂m
)

⎫

⎬

⎭

,

∀j, (64)
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whereas the ρT
3khl̂

s are computed explicitly and in closed form according to:

ρT
3khl̂

= max

⎧

⎨

⎩

0, ρT −1

3khl̂
− aT (

J
∑

j=1

2
∑

m=1

qjT −1

khl̂m
+

I
∑

i=1

L
∑

l=1

qil
khl̂
− dkhl̂(ρ

T −1
3 ))

⎫

⎬

⎭

,

∀k, h, l̂. (65)

Hence, at a given iteration, all the product transactions and prices can be
solved explicitly and in closed form using the above simple formulae. Note
that these computations can be done simultaneously, that is, in parallel. The
algorithm also can be interpreted as a discrete-time adjustment process in
which the product transactions between tiers adjust as well as the prices at
the tiers until the equilibrium state is reached. Convergence conditions for the
algorithm can be found in [13] and [34].

Note that one may recover the total emissions generated by a particular
manufacturer in a country by simply computing the expression (15), with
the product transactions at their equilibrium values, and with the summation
over all manufacturers in all countries yielding the total number of emissions
generated by all the manufacturers. The total amount of emissions generated
by the consumers, in turn, in their transactions (cf. (35)) can be obtained by

computing the expression:
J
∑

j=1

K
∑

k=1

L
∑

l̂=1

2
∑

m=1
ηj
kl̂m

H
∑

h=1

qj∗
khl̂m

.

6 Conclusions and Directions for Future Research

In this paper, we have proposed a framework for the formulation, analysis,
and computation of solutions to global supply chain network problems with
multicriteria decision-makers and environmental concerns in the presence of
electronic commerce. In particular, we have proposed a global supply chain
supernetwork consisting of three tiers of decision-makers: the manufacturers
who are located in different countries and can trade in different currencies,
the retailers, who can be either physical or virtual and need not be country
specific, and the consumers associated with the demand markets in different
countries who can transact in different currencies. We allowed for both phys-
ical and electronic transactions in the form of electronic commerce between
manufacturers and retailers and between retailers and the consumers at the
demand markets. Moreover, consumers can also obtain the products directly
from the manufacturers through e-commerce. We presented both static and
dynamic versions of the global supply chain network model with environmen-
tal decision-making and linked the equilibrium points of the former with the
stationary points of the latter.

This framework generalizes the recent work of [32] in supply chain super-
networks and environmental criteria to the global dimension and to include
also explicit risk minimization, which is of a form sufficiently general to also
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capture environmental risks associated with the various transactions. Theo-
retical results were obtained along with a proposed discrete-time algorithm for
the discretization of the continuous time product transaction and price trajec-
tories. Finally, we demonstrated how the total amount of emissions generated
can also be recovered from the equilibrium solution.

Future research may include the incorporation of a variety of policy in-
struments as well as applying the algorithm to concrete numerical examples.
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Abstract Analysis of supply chain politics can benefit from applying game-theory
concepts extensively. Game theory tries to enlighten the interactions between indi-
viduals or groups of people whose goals are opposed conflicting, or at least partially
competing. In this chapter, we review classic game theoretical approaches to mod-
eling and solving certain problems in supply chain management. Both noncooper-
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1 Introduction

Inventory management of physical goods and other products or elements is
an integral part of logistic systems common to all sectors of the economy in-
cluding industry, agriculture, and defense. In a perfectly predictable economy,
inventory may be needed in order to take advantage of the economic feature
of a particular technology, to synchronize human tasks, or to regulate pro-
duction process to meet the changing demands. When uncertainty is present,
inventories are used as a protection against risk of stock being out.

The existence of inventory in a system generally implies the existence of
an organized complex system involving inflow, accumulation, and outflow of
some commodities, goods, items, or products. In business, for example, the
inflow of goods is generated through procurement, purchase, or production.



834 A. Chinchuluun et al.

The outflow is generated through demand for the goods. Finally, the difference
between the rate of outflow and the rate of inflow generates inventory of goods.

The regulation and control of inventory must proceed within the context
of this organized system. Rather than being interpreted as idle resources, in-
ventories should be regarded an essential element, the study of which may
provide insight in the aggregate operation of the system. The scientific analy-
sis of inventory systems defines the degree of interrelationship between inflow,
accumulation, and outflow, and identifies economic control methods for oper-
ating such systems.

Traditionally, inventory problems are concerned with a single decision
maker, who makes the decisions on the ordered or produced quantity un-
der certain assumptions on the demand, the planning horizon, etc., which
the decision maker faces. Although such models capture important aspects of
inventory problems, they totally ignore the decisions made by other competi-
tors. In particular, most of such models assume that, if there are two or more
products, they cannot be substituted for each other. However, in many real
situations this is not true. A customer who cannot find a specific product at
one retailer might decide to switch to another retailer who sells the same or
a similar product.

It is a fact that, in many production-inventory-transportation problems,
one can observe the existence of several decision makers with competi-
tive objectives. In order to have an inventory model, which is able to
adequately describe such situations, game theory method should be used.
Single-period news-vendor models have typically been used for analyzing such
situations [90].

In the current chapter, we are concerned with game theoretic approaches
to modeling and solving certain problems in supply chain analysis. The re-
mainder of the paper is organized as follows: Sections 2, 3, and 4 present basic
concepts we use throughout the paper. Section 5 presents the application of
noncooperative games in inventory management, and in Section 6 their ap-
plication to supply chain coordination is presented. Section 7 is devoted to
cooperative inventory games. Finally, new developments in Game Theory such
as bargaining game and biform games, with applications to supply chain, are
introduced in Section 8.

2 Basic Concepts in Game Theory

Game theory is a mathematical theory of decision making by participants in
conflicting or cooperating situations. Its goal is to explain, or to provide a nor-
mative guide for, rational behavior of individuals confronted with strategic de-
cisions or involved in social interaction. The theory is concerned with optimal
strategic behavior, equilibrium situations, stable outcomes, bargaining, coali-
tion formation, equitable allocations, and similar concepts related to resolving
group differences. Game theory has a profound influence on methodologies of
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many different branches of sciences, especially those of economics, operations
research, and management sciences.

Traditionally, game theory can be divided into two branches: noncoopera-
tive and cooperative game theory. Noncooperative game theory uses the notion
of a strategic equilibrium or simply equilibrium to determine rational outcomes
of a game. Numerous equilibrium concepts have been proposed in the liter-
ature (see [85] for an overview). Some widely used concepts are dominant
strategy, Nash equilibrium, and subgame perfect equilibrium.

Nash Equilibrium: Strategies chosen by all players are said to be in Nash equi-
librium if no player can benefit by unilaterally changing her strategy. Nash
[54,56] proved that every finite game has at least one Nash equilibrium.

Dominant strategy is one that achieves the highest payoff no matter what
the strategies of other players are. In other words, one that is optimal in
all circumstances. If strategies are dominant, they also constitute a Nash
equilibrium, however, the opposite is not necessarily true.

Subgame perfect equilibrium: Strategies in extensive form are in subgame
perfect equilibrium if the strategies constitute a Nash equilibrium at every
desicion point.

In cooperative game theory, groups of players are taken as primitives and
binding agreements can be made between players, which can form coalitions.
In such a game, a utility is created when two or more players cooperate and
form a coalition. Cooperative game theory can then determine a solution
concept that must satisfy a set of assumptions (called axioms). The most
important of them are

Pareto optimality: The total utility allocated to the players must be equal to
the total utility of the game.

Individual rationality: The utility allocated in each player should be higher
than the utility she gains by acting without the coalition.

Kick-back: The utility allocated to a player must always be non-negative.
Monotonicity: If the overall utility increases, the allocation to a player should

be higher.

There are several excellent books [5, 42, 51, 62, 71] on the subject, and the
reader should turn to them for further details.

3 The Classic Newsboy Problem

The classic newsboy problem is a one-period model in which a firm must
choose an inventory level x at a cost c per unit for the perishable product it
sells prior to knowing the true level of demand for it. When the demand is
realized, the goods are sold at a price r per unit, which is usually assumed
to be fixed. Demand is denoted by the random variable w with cumulative
distribution F (W ) = P (W ≤ w), which is assumed to have a continuous
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density f(w) = ∂F (W )/∂w. Moreover if it is assumed that f is strictly positive
on some interval, then F is strictly increasing and therefore it has an inverse
function F−1

w . As there is no initial inventory, the quantity ordered by the firm
is the total amount available for sale; the firm’s sale is the smallest amount
between the demand and the inventory level. Excess demand given by (w−x)+
is costly because it results in lost sales. It is therefore penalized by a shortage
cost per unit p. Excess inventory, given by (x−w)+, is costly as well because
the salvage value s is lower than the cost of procuring inventory. The firm’s
profit is therefore:

π =
{

(r − c)x− (w − x)p if x ≤ w,
(r − c)w + (s− c)x if x > w. (1)

The firm wants to choose an inventory level x to maximize the expected profit.

E(π) = rEmin{w, x}+ sE(x− w)+ − cx− pE(w − x)+. (2)

Equating marginal revenues with marginal costs yields the optimal inven-
tory x∗ as the implicit solution of the equation

F (x∗) =
r − c+ s
r + p− s ⇒ x∗ = F−1

w

(

r − c+ s
r + p− s

)

. (3)

The assumption that F is strictly increasing implies that x∗ is unique. If there
are no shortage costs and the salvage value is zero, then

F (x∗) =
r − c
r
⇒ x∗ = F−1

w

(

r − c
r

)

. (4)

For a survey on the news-vendor problem and several of its extensions,
see [40].

4 The Competitive Newsboy Model

In the competitive newsboy model, substitution often takes place between
different products sold by different retailers when the products have stochastic
demands. In such a situation, each retailer’s profit depends not only on her own
order quantity but also on her competitors’ order. In other words, if a customer
finds the shelves empty at the first firm she visits, she does not necessarily give
up but may travel to another firm in order to satisfy her demand. The actual
substitution between any two retailers takes place according to a substitution
rate that depends on their products and other factors such as location.

The simplest competitive model has two retailers i and j; each one of
them faces a demand wi and wj , respectively. Therefore w = wi + wj is the
industry demand. This allocation of the initial demand to each firm follows
some specific splitting rules. If there exists excess demand (wi−xi)+ at firm i,
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then the same proportion of the excess demand should be met by the inventory
of firm j. That is, a reallocation of the initial demand at firm i occurs. Hence,
the actual demand the firm j faces is

Rj = wj + βi(wi − xi)+, (5)

where βi ∈ [0, 1] is the substitution rate at which i’s excess demand is allocated
to firm j.

If xi and xj denote the firms’s inventory levels respectively, then the ex-
pected profit for the firm j is

E[πj(xi, xj)] = rEmin{xj , Rj}+ sE(xj −Rj)+ − pE(Rj − xj)+ − cxj . (6)

Parlar [63] is perhaps the first author to treat an inventory problem using
game theory. She examines an extension of the classic newsboy problems in
which two retailers (players) sell substitutable products. She modeled the
two-product single-period problem as a two-person nonzero-sum game and
showed that there exists a unique Nash equilibrium. In her two-player model,
substitution occurs with a certain probability.

5 Noncooperative Solution

Noncooperative solution deals with how rational individuals interact with
one another in an effort to achieve their own goals. The emphasis is on the
strategies of players and the consequences of interaction on payoffs. The pur-
pose is to make predictions on the outcome. The solution concepts that are
commonly used are the Nash equilibrium introduced by J.F Nash [54] and the
Stackelberg equilibrium introduced by the economist von Stackelberg [89].

5.1 Nash Equilibrium

Single-Period Model Formulation

A Nash equilibrium recommends a strategy to each player that the player can-
not improve upon unilaterally, that is, given that the other players follow the
recommendation. Because the other players are also rational, it is reasonable
for each player to expect opponents to follow the recommendation as well.
A vector x∗ = (x∗i )i∈N ∈ X is a Nash equilibrium if and only if for all i ∈ N

πi(x∗i , x
∗
−i) ≥ πi(xi, x∗−i) ∀xi ∈ X. (7)

In a Nash equilibrium, each player is doing the best she can do given the
strategies of the other players, x−i, i.e., player i has no incentive to deviate
from x∗i when all other players play x∗−i.

Player’s i best response (function) is the strategy x∗i that maximizes the
player’s i payoff. That is
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x∗i (x−i) = arg max
xi

πi(xi, x−i). (8)

The best response function is uniquely defined by the first-order condition if
πi is quasi-concave in xi. The Nash equilibrium assumes no one of the players
has the power to dominate the decision process.

When there is no cooperation between the firms and if both firms are
“rational,” one of the possible strategies they may adopt is the Nash strategy.
A pair of inventory levels (xi, xj) (i, j = 1, 2) is a Nash equilibrium if neither
firm can improve its expected profit by altering its inventory, that is

E[πi(x∗i , x
∗
j )] ≥ E[πi(xi, x∗j )] ∀ xi ≥ 0 (i, j = 1, 2)

(9)
E[πi(x∗i , x

∗
j )] ≥ E[πi(x∗i , xj)] ∀ xj ≥ 0 (i, j = 1, 2).

Equation (9) implies that, given the player’s j Nash solution x∗j , player i
will not do better if she does not play her Nash solution x∗i . That is, given
the x∗j , x∗i maximizes player’s objective function, and vice versa. Therefore,
the best response for each player will be

x∗i (xj) = F−1
Ri

(

ri − ci + si
ri + pi − si

)

(i, j = 1, 2). (10)

The best response function can be found by optimizing each player’s ex-
pected profit function w.r.t the player’s own order quantity, provided that
E[πi] is continuously differentiable in xi and it is concave for every xj . Tak-
ing together the best response function of each player, we obtain a best re-
sponse mapping R2 → R2 (see Figure 1). Obviously if x∗i is a best response
to x∗j ,∀ (i, j = 1, 2), then the outcome (x∗i , x

∗
j ) is a Nash equilibrium. Parlar

[63, Lemma 1-2, pp. 403–04] has proved that the slope of the best response

Figure 1. Best response functions in an inventory game
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functions is negative, which implies that each player response is monotoni-
cally decreasing in the other player’s strategy. Indeed, according to [63], the
player’s Nash solution is a unique point (x∗i , x

∗
j ) obtained by solving a system

of best responses:

x∗1(x
∗
2) = F−1

R∗
1

(

r1 − c1 + s1
r1 + p1 − s1

)

(11)

x∗2(x
∗
1) = F−1

R∗
2

(

r2 − c2 + s2
r2 + p2 − s2

)

(12)

where R∗
i = wi + βi(wj − x∗j )+, i, j = 1, 2.

Historically, most researchers establish the existence of an equilibrium
based on the study of the concavity or quasi-concavity of profit function.
Dasgupta and Maskin [27], Parlar [63], Mahajan and van Ryzin [48], Netessine
et al. [59], among others establish the existence of a Nash equilibrium based
on the two above-mentioned properties of the profit function.

However, the existence of a Nash equilibrium for a general case can be
established by employing the result of the supermodular game. A function
f(x1, x2) is supermodular if f(x1, x2) + f(y1, y2) ≥ f(x1, y2) + f(y1, x2), for
all (x1, x2) ≥ (y1, y2). Notice that supermodularity is a weaker condition than
concavity, see [95] for a detailed discussion. If the profits are supermodular,
then the best response mapping is increased in the other player’s strategy.
When the best response function has such a monotonicity property, the exis-
tence of a Nash equilibrium could be established. The theory of supermodular
games is a relatively recent development introduced and advanced by Topkis
[84]. See [12, 16, 46, 58, 60] for its application to the competitive news-vendor
problem.

As an extension of the model in [63], Wang and Parlar [92] studied the
three-product single-period problem. Lippman and McCardle [46] also study
an extension of the classic news-vendor problem in which the salvage value
of excess inventory and penalty for unmet demand are assumed to be zero.
Under this assumption, they examine the equilibrium inventory levels and
the rules to reallocate excess demand. They provide conditions under which
a Nash equilibrium exists for the case with two or more news-vendors. They
examine both the two-firm game and a game with an arbitrary number of
players. In their models, initial industry demand is allocated among the players
according to a prespecified “splitting rule.” This initial allocation may be
either deterministic or stochastic. For the two-firm game, they establish the
existence of a pure-strategy Nash equilibrium and show that the equilibrium
is unique when the initial allocation is deterministic and strictly increasing in
the total industry demand for each player. They have proved that competition
can lead to higher inventories.

Mahajan and van Ryzin [48] study a model with n retailers that provides
substitutable goods, assuming that the demand process is a stochastic
sequence of heterogeneous consumers who choose dynamically from the
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available goods (or choose not to purchase) based on a utility maximization
criterion. They demonstrate that an equilibrium exists and show that it is
unique for a symmetric game. Their results are similar to [46].

Recent extensions of these models include the work by Rudi and Netessine
[75]. They analyze a problem similar to [63] but for an arbitrary number of
products. Given mild parametric assumptions, they establish the existence of,
and characterize, a unique, globally stable Nash equilibrium. On the other
hand, with the substitution structure of their model, they conclude that, un-
der competition, some firms may stock less than under centralization. Under
the long-run average payoff criterion, the nonlinear programming formulation
developed by Filar et al. [33] can be used to compute Nash strategies. If the
discounted payoff criterion is considered, then Nonlinear Program (NLP) due
to Raghavan and Filar [72] is available. Chand et al. [21] and Drezner et al.
consider the case where the substitution between products take place in a
EOQ model.

Multiperiod Model Formulation

Because inventory models used in the literature often involve inventory replen-
ishment decisions that are made over an infinite period of time, multiperiod
games should be a logical extension of these inventory models. In the analy-
sis of substitutable product inventory problem over infinite horizon, concepts
of sequential games, introduced by [38], are used. Two retailers of different
products who compete for the substitutable demand of these products are the
players of the game. Each player’s decision sequence influences the evolution
of the process and affects the streams of rewards to all players. A sequential
game is said to have a myopic solution if its data can be used easily to specify
a one-period game such that infinite repetition of a Nash equilibrium of the
one-period game comprises an equilibrium for the sequential game.

The mathematical formulation considered is a nonzero-sum game because
what is earned (or lost) by one retailer may not be the loss (or earning) of the
other retailer although what is earned or lost by each retailer depends on both
strategies, not the strategy taken by just that retailer. Demand distributions
of the products and the substitution rates are known by both players. So,
being aware of all of the parameters and the strategies that can be employed
by the opponent, each retailer tries to find out the best strategy as a reply
to the opponent. Because the retailers somehow agree (although they do take
their actions independently in a strictly competitive environment, they know
all the parameters that would affect their decisions) on a pair of strategies,
called Nash strategies in the context of nonzero-sum games, this pair is said
to be an equilibrium point. Unilateral deviations of either of the players from
her Nash strategy do not improve her expected payoff.

Specifically, in a multiple-period setting, we consider two retailers that si-
multaneously make inventory replenishment decisions at the beginning of each
period using a periodic review base-stock policy. If one retailer experiences a
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stock-out, a portion of the customers who are not satisfied will switch to the
other retailer. Leftover inventory at the end of the period is carried over to
the next period, incurring inventory holding cost.

At the beginning of each period t, (t = 1, 2, . . . , n), two retailers review
their inventories and simultaneously make replenishment decisions. Let wt

i

denote the exogenously given (random) demand for the product of retailer i
in period t. Product i is sold for ri per unit, (i = 1, 2). Ordering cost is a linear
function of the order quantity xti for product i in period t. ci, which satisfies
0 < ci < ri, is the ordering cost per unit of product i. Let Iti be the inventory
levels of the retailer’s i, at the beginning of period t. Orders are delivered
instantaneously so that zti = Iti + xti are the inventory levels just after the
orders are replenished. pi is the unit lost sale cost, and hi is the inventory
holding cost per unit of product i per period. Substitution rates are given as
the probabilities that a customer switches from one type of product to the
other when the product demanded is sold out. βi is the substitution rate at
which i’s excess demand is allocate to firm j. Further, the actual demand for
retailer i depends on the beginning inventory of retailer j in period t Itj as
well as on her own beginning inventory level at period t, Iti . That is,

Rt
i = wt

i + βj(wt
j − ztj)+ i, j = 1, 2 t = 1, 2, . . . , n (13)

The inventory balance equations are

It+1
i = [zti − wt

i − βj(wt
j − ztj)+]+ i, j = 1, 2, t = 1, 2, . . . , n (14)

Note that if retailer j cannot satisfy demand wt
j fully, then the remaining

demand [wt
j − ztj ]+ switches to retailer i or vice versa. By suppressing sub-

script t, i.e., considering the order-up-to-levels as zi = Ii + xi, i = 1, 2, when
the order-up-to-levels (z1, z2) are chosen by the two retailers in a singe period

E[πi(z1, z2)] = riEmin{Ri, zi}− hiE(zi −Ri)+ − piE(Ri − zi)+ − cixi (15)

is the one-period expected profit for retailer i.
Because future payoffs are in general worth less today, it is reasonable

to look at discounted payoffs. Suppose that each retailer starts with initial
inventories (I11 , I

2
2 ) respectively, the expected discounted profit of retailer i

for the remaining period until the end of the planning horizon is given by:

E[πi] = E

∞
∑

t=1

δt−1
i

[

ri min{zti , Rt
i} − hi(zti −Rt

i)
+ − pi(Rt

i − zti)+ − cixti
]

.

(16)
The discount factor is assumed stationary and will be denoted by δ, 0 < δ < 1.
By using manipulations proposed by Heyman and Sobel in [38], the objective
function can be converted to:

E[πi] = cix
1
i +

∞
∑

t=1

δt−1
i Gt

i(z
t
i), i = 1, 2 (17)
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where Gt
i(z

t
i) is the single-period objective function. If we assume that demand

is stationary and independently distributed among periods, i.e., wi = wt
i , we

obtain that Gt
i(z

t
i) = Gi(zi), furthermore if we assume that the inventory

policy is stationary as well, i.e., zti + zi, t = 1, . . . , n, then each retailer could
solve the problem under consideration as a sequence of the solution to a single-
period game, which is

z∗i = F−1
R∗

i
=
(

ri − ci
ri + hi + pi − ciδi

)

i = 1, 2. (18)

For a complete analysis, see Netessine et al.[59].
Avsarand and Baykal-Gürsoy [4] analyzed the substitutable product in-

ventory problem using the concepts of stochastic game theory. It is assumed
that there are two substitutable products that are sold by different retailers
and the demand for each product is random. Game theoretic nature of this
problem is the result of substitution between products. Because retailers com-
pete for the substitutable demand, ordering decision of each retailer depends
on the ordering decision of the other retailer. Under the discounted payoff
criterion, this problem is formulated as a two-person nonzero-sum stochastic
game. In the case of linear ordering cost, it is shown that there exists a Nash
equilibrium characterized by a pair of stationary base-stock strategies for the
infinite horizon problem. This is the unique Nash equilibrium within the class
of stationary base-stock strategies.

In addition, more elaborate models capture some effects that are not
present in static games. Netessine et al. [59] consider the case where when
a product is out of stock, the customer often faces a choice of either placing a
backorder or turning to a competitor selling a similar product. They consider
the four alternative backordering scenarios and formulate each problem as a
stochastic dynamic game. They proved that a stationary base-stock inven-
tory policy is a Nash equilibrium of the game and hence it can be found by
considering an appropriate static game.

van Mieghem and Dada [86] study a two-period game with capacity choice
in the first period and production decision under the capacity constraint in
the second period.

5.2 Stackelberg Equilibrium

Stackelberg equilibrium assumes that there is a player who has powerful posi-
tion and dominates in the desicion process, the leader, and the other players,
the followers, given that they are rational, are free to choose their optimal
strategies given their knowledge of the leader’s decision. If player i is the
leader, she will choose her optimal strategy x∗i , and the followers’s best re-
sponse x∗−i will be

x∗−i(x
∗
i ) = {x∗−i|π−i(xi, x∗−i) ≥ π−i(xi, x−i} (19)
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To find an equilibrium of a Stackelberg game, which is often called the Stack-
elberg equilibrium, we need to solve a dynamic multiperiod problem via back-
wards induction.

In a Stackelberg game, one firm, called leader, makes an order first, then
the other firm, called follower, makes her order. Because the follower makes
her decision after the leader announces hers, the Stackelberg solution will be
located on the reaction curve of the follower’s defined by equation:

x∗2(x1) = F−1
R2

(

r2 − c2 + s2
r2 + p2 − q2

)

(20)

which means that the follower will always choose her order quantity x2 to max-
imize her expected profit for each value of x1. Intuitively, the leader chooses
the best possible point on the follower’s best response function; i.e., she tries
to solve the following bilevel programming model [63]:

max E[π1(x1, x2)] (21)
where x2 solves

∂E[π2(x1, x2)]
∂x2

= 0. (22)

Whereas the existence of a Stackelberg equilibrium is easy to demonstrate
given the continues payoff function, uniqueness may be considerably harder
to demonstrate [18].

Raju and Zhang [69] analyze the Stackelberg game in which one of the
retailers is dominant and capable of unilaterally setting a retail price that will
be adopted by all other retailers.

Lariviere and Porteus [43] consider a simple supply-chain contract in which
a manufacturer sells to a retailer facing a news-vendor problem. The Stackel-
berg game they set up assumes that first the supplier establishes the wholesale
price and then the news-vendor chooses an order quantity, the long contract
parameter is the wholesale price. They show that the manufacturer’s profit
and sales quantity increase with market size, but the resulting wholesale price
depends on how the market grows. Anand et al. [1] extend the Stackelberg
equilibrium concept into multiple periods.

See Netessine and Rudi [57] for a Stackelberg game.

6 Supply Chain Coordination

In another line of research, there exists a large body of research that addresses
echelon inventory system with the stationary stochastic demand and fixed
lead time. Many of them use the following two-echelon gaming structure:
a “manufacturer” wholesales a product to a n ≥ 1 “retailers,” who in turn
retail it to the consumer. The literature on competitive supply chain inventory
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management recognizes that supply chain is usually operated by independent
agents with individual preferences and possibly conflicting objectives.

Total expected supply chain profit will be maximized if all decisions are
made by a single decision maker with access to all available information. This
is referred as the optimal case or first-best case and is often associated with
centralized control. Under centralized control, a system manager needs to know
how to design a mechanism to optimize the performance of the whole supply
chain.

However, in reality, no single agent has control over the entire supply chain,
and hence no agent has the power to optimize the supply chain, and each
player has his own incentives and state of information. This is referred as a
decentralized control structure. Under decentralized control, each player needs
to know how to behave in order to maximize his profit. In order to increase
the total profit of a decentralized supply chain and improve the performance
of the players, one strategy is to form contracts among players by modifying
their payoffs. The main purpose of a supply chain contract is to overcome
an inefficiency known as double marginalization [79]. This is because without
coordination, the supplier and the retailer only have the incentive to optimize
their own profit margin, and their collective decision is always less efficient
than what could have been achieved by the system-optimal. Thus, the aim
of a coordination contract is to provide the incentive for both players to im-
plement the system-optimal solution, which results in higher total profits for
the collective whole. Some contracts provide a means to bring the total profit
resulting from decentralized control to the centralized optimal profit. This is
referred to as channel coordination. Generally speaking, channel coordination
may be achieved by three steps: First, determine the optimal solution under
centralized control. Next, under decentralized control, apply game theory to
determine how the players will behave when they each seek to maximize their
own profits, and whether a Nash equilibrium exists. Finally, if the decentral-
ized and centralized solutions differ, investigate how to modify the players’
profit so that the new decentralized solution matches the centralized solution.

Consider the case of a supply chain that consists of two echelons: the
first echelon is the supplier, usually the manufacturer, and the second echelon
consists of two retailers. At the beginning of the period, the retailers place
orders xi and sell them to the customer at a unit price ri. Supplier produces
the product with unit production cost k and supplies xi units to retailers at
a price ci. It is also assumed that supplier has infinite production capacity.
The demand wi during the period at each retailer is random but distributions
are known. Customers encountering a stock-out at retailer i visit retailer j,
(i, j = 1, 2) with probability βij before leaving the system.

Thus, the total demand faced by retailer i is

Ri = wi + βij(wj − xj)+. (23)

At the end of the season, the holding cost hi or shortage cost pi is incurred
depending on whether there is unsold stock or a stock-out.
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Assuming the whole supply chain is in centralized control, in order to
maximize the total profit, what are optimal orders for both retailers?

In centralized control, a stock-out penalty incurred only when customers
leave the system unsatisfied. This includes customers who visit only one re-
tailer and leave unsatisfied and customers who visit both retailers and leave
unsatisfied. In the latter case, the amount of the penalty incurred is assumed
to be the stock-out penalty cost of the retailer visited first by the customer.
The total profit is maximized if supplier should only provide what is needed
by the two retailers, i.e., supplier does not face any shortage or holding cost.
The expected total profit of the system E[π(xi, xj)] is

E[π(x1, x2)] = E

[

2
∑

i=1

ri min{yi, Ri} −
2
∑

i=1

hi(xi −Ri)+

−
2
∑

i=1

piE(Ri − xi)+ − k
2
∑

i=1

xi

]

, (24)

which only depends on the retailers’s sales quantity. We consider the whole
supply chain as an entity, and the money flow within the system is not in-
volved. Therefore, the optimal solution (x∗1, x

∗
2) does not depend on the whole-

sale prices, c1 and c2. Actually, supplier’s price decision creates only a transfer
payment among firms so it does not influence supply chain’s profit.

Because equation (24) is concave, the optimal order quantity of both re-
tailers can be found by solving the system of equations:

∂E[π(x1, x2)]
∂x1

= 0

(25)
∂E[π(x1, x2)]

∂x2
= 0

If the supply chain is under decentralized control, each retailer tries to maxi-
mize his own profit. Therefore retailer i (i = 1, 2) profit will be

E[πi(x1, x2)] = riEmin{xi, Rj}−hiE(xi−Ri)+−piE(Ri−xi)+−cixi. (26)

Because the decision of one retailer affects the total demand at the other re-
tailer, a game arises as the two retailers make their ordering decisions. Based
on the previously presented we know that the Nash equilibrium can be ob-
tained by solving of best responses:

x∗1(x
∗
2) = F−1

R∗
1

(

r1 − c1
r1 + p1 + h1

)

(27)

x∗2(x
∗
1) = F−1

R∗
2

(

r2 − c2
r2 + p2 + h2

)

(28)

where R∗
i = wi + βij(wj − x∗j )+, i, j = 1, 2
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and depends on the wholesale prices ci. If the chain is not coordinated, each
retailer selfishly optimizes its own profit. Hence decentralized decision making
may introduce inefficiency in the supply chain as a Nash equilibrium may not
be Pareto optimal, see [14] for a use of Pareto optimality in the supply chain
analysis.

The supply chain coordination can be obtained by determining the whole-
sale price ci so as to make the optimal solution (x∗1, x

∗
2) obtained by (25) a

Nash equilibrium, that is (x∗1, x
∗
2) must satisfy:

∂E[π(x1, x2)]
∂x1

|x1=x∗
1 ,x2=x∗

2
= 0

(29)
∂E[π(x1, x2)]

∂x2
|x1=x∗

1 ,x2=x∗
2

= 0.

The coordination mechanism modifies each decision maker’s objective so
that these modified objectives and the total objective of the supply chain yield
to the same optimal solution. The mechanism that is mainly used for coordi-
nation in the supply chain is a contract. A contract is an argument between
two parties. Most supply chain contracts include only two parties usually a
supplier and a retailer, but these simplifications allow for studying optimal
contracts. Different models of Supply Chain contracts have been developed
in the literature. They include the quantity discounts [93], the backup agree-
ments [31], the buy back or return policies [30], the quantity flexibility (QF)
contracts [82], the incentive mechanisms [44], and the revenue sharing (RS)
contracts [15].

Anupindi and Bassok [2] studied a model with one manufacture and two
retailers. They consider two systems: one competitive, where they make in-
dependent decisions and stock inventories separately, and one where they co-
operate to centralize stocks at a single location. They show that there exits
a threshold level for the “market search” above which manufacturer loses,
and that for high level of market search, even total supply chain’s profit may
decrease upon centralization. Market search is measured as the fraction of
customers who due to a stock-out at their retailer search for the good at
the other. In addition, they show that manufacturer could benefit, in either
system, by offering a contract with a holding cost subsidy.

Cachon and Zipkin [19] investigate a two-stage (supplier and retailers) ser-
ial supply chain with stationary stochastic demand, fixed transportation time
over an infinite horizon, and complete backordering. Both firms incur holding
costs and a backorder penalty per unit of time for each unit that is back-
ordered at the retailer; the supplier is not charged for its own backorders, it is
only charged when units are backordered at the retailer. That fee reflects the
supplier’s desire to maintain an adequate stock of its product at the retailer.
They compare the base-stock policies chosen under the competitive regime to
those selected so to minimize total supply chain costs. Furthermore, they use
a linear contract between the supplier and the retailer to modify the payoff of
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the players and make the total profit close to the global optimum. The model
proposed by Cachon [11] is also a two-echelon serial supply chain with sto-
chastic consumer demand. But when a customer arrives at the retailer and the
retailer has no stock, a lost sale occurs. As in [19], both firms are concerned
about the availability of inventory at the retailer, but in this model stock-outs
create opportunity costs rather than backorder penalties.

Wang et al. [91] extend Cachon and Zipkin’s model to a one-supplier and n-
retailers situation. If there exist multiple retailers, the supply from a supplier
might not satisfy the demand of multiple retailers. The problem is how to
design the distributing scheme of the supplier, and this makes models of supply
chain systems more complex. In order to guarantee optimal cooperation in the
system, several Nash equilibrium contracts are designed in echelon inventory
games and local inventory games.

Coordination technique proposed by Lee and Wang [44] assumes a two
stage supply chain with stationary demand, with holding and backorder costs
and fixed lead time. Furthermore, assume that supplier cares only about his
inventory. The nonlinear transfer payments proposed by Lee and Wang uses
the nonlinear transfer payment proposed by Clark and Scarf [24] but this type
of payment leads to a Nash equilibrium for the decentralized supply chain.
Using similar assumptions, Chen [22] studied a four-stages supply chain where
players try to minimize total supply chain costs. The coordination scheme
he proposed is linear transfer payments based on accounting inventory and
backorders level, where stage is accounting inventory is the actual inventory
that could fill its orders at stage i + 1 immediately. Porteus [68] proposed a
incentive scheme that is a combination of the above two, called responsibility
token.

In contrast, Klastorin et al. [41], to coordinate a two-echelon distribution
system, use price discounts contract. The supplier, in order to influence the
buyer’s behavior, offers a price discount to any retailer who places an order
that coincides with the beginning of retailer’s cycle. They show that under
specific conditions, this policy can lead to more efficient supply chain manage-
ment, and present a method for determining the optimal price discount in the
decentralized supply chain. For excellent reviews on supply chain coordination
and contracts, see Tsay et al. [83] and Cachon [13].

6.1 Capacity Allocation in Supply Chain

In many situations, a single supplier provides products to several retailers. If
retailers orders are uncertain and capacity is costly, the supplier may not be
willing to have capacity that is high enough to cover all orders at any point
in time. When the total order from retailers exceeds the supplier’s capacity,
then he must allocate it among retailers based on some sort of rules. In such
a case, the two retailers compete for both supply and demand, and a game
called allocation game or shortage game as is refereed by Lee et al. [45] arises.
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Three allocation rules are commonly used: proportional, where the retailer
receives a proportion of the avaliable capacity as a percentages of his order
to the total orders; linear, where the retailer receives his order minus the
difference between total order and capacity divided by the number of retail-
ers; and uniform, where the supplier equally divides the avaliable capacity
among retailers [17]. However, when the supplier’s capacity is finite, the Nash
equilibrium exists only under certain conditions.

Assuming that the avaliable capacity of the supplier is κ, suppose that
retailer i makes an order xi < κ, (i = 1, 2), then retailer j, (j = 1, 2) can
react by making an order either xj ≤ κ − xi, where because total orders do
not exceed κ, each retailer gets exactly what she orders, or by making an
order xj > κ − xi, then the capacity is apportioned by any allocation rule
such that x̄1 + x̄2 = κ. Note that what the retailer i gets, x̄i(i = 1, 2), differs
from what he orders. Further assume that a pair of (x∗1, x

∗
2) is the unique

Nash equilibrium that solves the news-vendor problem faced by retailers; if
x∗1 +x∗2 ≤ κ, then there exists a unique Nash equilibrium allocation as neither
retailer has a profitable unileteral deviation.

Now, consider the case where x∗1 + x∗2 > κ, let x̂1 ∈ x∗2(x2) for which
it holds that x̂1 + x̄2 = κ and x̂2 ∈ x∗2(x1) such that x̄1 + x̂2 = κ, then
there exists a Nash equilibrium if and only if there exist a pair of allocations
(x̄1, x̄2) ∈ (x̂1, x̂2) such that x̄1 is the optimal solution to the problem:

max E[π1(x̄, κ− x̄)]
(30)

s.t max{κ− x̄2, 0} ≤ x̄ ≤ κ

and x̄2 solves the problem:

max E[π2(x̄, κ− x̄)]
(31)

s.t max{κ− x̄1, 0} ≤ x̄ ≤ κ.

See Dai [26] for a detailed analysis and proofs, and [16, 45] for application of
shortages game in the supply chain.

7 Cooperative Games

The subject of cooperative games was first introduced by von Newmann and
Mörgestern [88]. Cooperative game theory assumes that binding agreements
can be made between players on the advantage of the whole system. One of the
main questions is whether the cooperation is stable, i.e., there is an allocation
of the total benefit of the system among the players such that no group of play-
ers would like to leave the system. Cooperative game theory offers the concept
of core as a direct answer to that question. For a long time, cooperative game
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theory did not enjoy as much attention in inventory management literature
as noncooperative game theory. Papers employing cooperative game theory
to study inventory problems had been scarce but are becoming more popu-
lar. The vast majority of them model the system in a news-vendor setting.
In a news-vendor environment, retailers can increase their total profit if they
decide to cooperate. The basic cooperation rules that could appear are (1)
cooperative players might switch their excess inventory, if any, to anyone who
has excess demand so that the latter can save in lost sales penalty cost, and
(2) retailers might give a joint order and use this quantity to satisfy the total
demand they are faced with. The allocation rules for this cooperation should
be based on three criteria, namely nonemptiness of the core, computational
ease, and justifiability [36].

If there are n > 2 players in the game, then there might be coopera-
tion between some, but not necessarily all, of the players. We can ask which
coalitions of players are likely to form and what are the relative bargain-
ing strengths of the coalitions that do form. Label the players 1, 2, . . . , n. A
coalition of players, S, is then a subset of N = (1, 2, . . . , n). Let v(S) denote
the maximum value v(S) that coalition S can guarantee itself by coordinating
the strategies of its members, no matter what the other players do. This is the
called the characteristic function. By convention, we take v(∅) = 0. The worst
eventuality is that the rest of the players unite and form a single opposing
coalition T = N − S. This is then a 2-person noncooperative game and we
can calculate the maximum payoff that S can ensure for itself. In such a case,
the cooperation is worthwhile, that is, any two groups, which act together,
will get no less than that when they act independently. In other words, the
property of superadditivity holds, i.e.,

v(S ∪ T ) ≥ v(S) + v(T ). (32)

The distribution of individual rewards will affect whether any coalition is
likely to form. Each individual will tend to join the coalition that offers her
the greatest reward. Therefore, the game in such a form should provide an
indication of how the joint maximum payoff v(N) should be shared among the
N players. An imputation for an n-person game, with characteristic function v,
is defined as a distribution vector x = (x1, x2, . . . , xn) satisfying:

n
∑

i

xi = v(N) & xi ≥ v(i) ∀ i ∈ N (33)

with xi being the payoff to player i.
In other words, if x is an indication of how the joint payoff v(N) is dis-

tributed among the players and if a player i is rational, then she is willing
to join a coalition if and only if she gets no less than the amount she can
get by acting independently. The first condition is often referred to as group
rationality and the second condition as individual rationality.
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Let E(v) be the set of imputations, and x,y ∈ E(v). We say that y
dominates x over S if

yi > xi ∀ i ∈ S &
∑

i∈S
yi ≤ v(S). (34)

In other words, an imputation is dominated if it is dominated via some coali-
tion S ⊆ N . Members of the dominating coalition S benefit from forming S
and leaving the grand coalition.

The core of a game with characteristic function v is the set, C(v), of all im-
putations that are not dominated for any coalition. Therefore, an imputation
x is in a core if and only if:

n
∑

i

xi = v(N) &
∑

i∈S
xi ≥ v(S) ∀ S ⊆ N. (35)

The core collects undominated imputations. The core is a set-valued solution
concept for cooperative games, as it can select multiple payoff vectors. Non-
emptiness of the core means that there exists at least one allocation of the
joint profits among the players such that no group of players has an incentive
to leave. A game is balanced if it has a nonempty core (see Bondareva [9],
Shapley [77]), and it is called totally balanced if each subgame (S, v|S) is
balanced, where v|s(T ) = v(T ) for all T ⊆ S. A subgame is any part of a
game that remains to be played after a series of moves and it starts at a
point where both players know all the moves that have been made up to that
point [25].

Perhaps the first paper employing cooperative games in inventory manage-
ment is Wang and Parlar [92]. In a model of inventory competition with fixed
prices, they use cooperative game theory in one of its original uses: they start
with a noncooperative game, then suppose that the players can cooperate on
strategy choices with and without Transferable Utility.

What follows is based mainly on Slikker et al. [78]. A general cooperative
news-vendor situation is characterized by a set of retailers N , the stochastic
demand Wi for the good at retailer i ∈ N , furthermore ci and ri denote the
prices that retailers pay to producer and the customers pay to the retailers,
respectively. If several companies cooperate they can, after the realization of
demand is known, transship goods. tij represents the cost of transshipping
one unit from i to j, i, j ∈ N and tij ≥ 0. Let XS be a collection of possible
order vector of coalition S retailers defined by:

XS =
{

x ∈ R
N |xSi = 0 ∀ i ∈ N \ S and xSi ≥ 0 ∀ i ∈ S

}

(36)

and suppose that coalition S has order vector xS ∈ XS and they face demand
vector wS ∈ R

N with wS = 0 for all i ∈ N \ S. If after the realization of
demand, AS

ij is the amount of products that are transshipped from retailer i
to retailer j, the amount that is not transshipped is represented by AS

ij for
i = j. A reallocation matrix of xS is then
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AS =
{

AS ∈ R
N×N
+ |AS

ij = 0 if i /∈ S or j /∈ S
∑

j∈S
AS
ij = xSi ∀ i ∈ S} (37)

The profit of the coalition S is

πS(xs, ws) =
∑

j∈S
rj min

{

∑

i∈S
AS
ij , x

S
j

}

−
∑

i∈S

∑

j∈S
AS
ijtij −

∑

i∈S
cix

S
i (38)

The expected profit of coalition S depends on their order quantity vector xS

and the stochastic demand faced by each retailer, WS , that is

π̄S(xS ,WS) = E
[

πS(xS ,WS)
]

(39)

and the associated game is defined by

v(S) = max
x∈XS

π̄S(x,WS) ∀ S ⊆ N. (40)

Slikker et al. [78] proved that there exist coalitions and there exist a realloca-
tion matrix A∗S and an order quantity x∗S that maximizes the expected profit
of coalition formation, as well as that the above cooperative news-vendor game
has a nonempty core. Hartman et al. [37] and Müller et al. [49] consider the
game in the above-mentioned setting, except that retailers identically single
price c and r and in which the value of the group of retailers is their opti-
mal profit if they jointly determine an order size without taking into account
the transshipment cost. Both of the above-mentioned papers use the core to
show that there is always a cost allocation scheme such that news-vendors
will prefer to pool their inventory. The cost game they consider is

c(S) = (r − c)E[WS ]− v(S) ∀ S ⊆ N. (41)

Hartman et al. [37] prove that this game has a nonempty core under certain
assumptions about the demand distribution, and Mülleret al. [49] come up
with a more powerful result, namely that the core of the news-vendor games
are nonempty regardless of the distribution of the random demands.

7.1 Shapley Value

A solution concept that selects precisely one payoff vector for every cooper-
ative game is the Shapley value. Used on the marginal contributions of all
players in the game (N, v), the Shapley value [76], Φ(v) = (Φi(v))i∈N is de-
fined by:

Φi(v) =
∑

S⊆N\{i}

|S|!(|N | − 1− |S|)!
|N |! (v(S ∪ {i})− v(S)) (42)
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So far, applications of Shapley value in inventory management are rather
scarce, an exception is the paper of Robinson [73], who reexamines the al-
location rules proposed by [34] in continuous review single-period inventory
model and in terms of Shapley value, and the discussion presented in Granot
and Sosic [35].

The Shapley value means that each player should be paid according to
how valuable her cooperation is for the other players. In general, the Shapley
value need not generate a core element. Hence, it may not be a reasonable
prediction of the outcome of a game; because it is not in the core, there exists
some subset of players that can deviate and improve their payoffs.

8 Bargaining Theory

In recent years, there is a trend in supply chain literature that considers
the use of bargaining theoretic models to expand the view of negotiation
and coordination in the supply chain. In this chapter, we present modeling
paradigm for supply chain coordination using the notion of bargaining.

Bargaining theory helps to explore the relationship between the expected
outcome from direct negotiation. Nash defines a bargaining problem as the
situation in which two individuals have the opportunity to collaborate for
mutual benefits in more than one way [55]. In other words, the bargaining
problem arises in situations where there are gains Π from collaboration and
is defined as the corresponding attempt to resolve a bargaining situation,
i.e., to determine the particular form of cooperation and the corresponding
division (π1, π2) of the bargaining surplus Π.

In a bargaining game, two or more players, who have competitive pref-
erences, negotiate to follow a common mixed strategy in order to conclude
with an outcome that is fair and satisfactory for all of them, that is how
to divide bargaining surplus (gains) created from collaboration. It is assumed
that both players are rational, self-interested, and risk neutral (expected value
maximizers) with complete information. The possible outcome of the agree-
ment depends on the negotiation power of each player.

A bargaining set B is a set of outcomes that can be jointly achieved by the
players, B = {(π1, π2) ∈ R

2 : π1 + π2 ≤ Π and πi ≥ 0}. The players either
reach an agreement (π1, π2) ∈ B, or fail to reach agreement, in which case the
disagreement event D = (d1, d2) occurs and each gets nothing. An outcome is
Pareto-efficient if it dominated over all possible outcomes, i.e., if no outcome
exists that is strictly preferred by one player and not less preferred by any
other player.

Given the bargaining set, a solution to the bargaining problem is concerned
with the question of which outcome will eventually prevail, i.e., a solution is a
rule that picks out one element of the bargaining set. Apparently, two different
approaches of solutions to the bargaining problem exist in bargaining theory:
(1) axiomatic (cooperative game) approach, which requires that the resulting
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solution should possess a list of axioms, and (2) strategic (noncooperative
game) approach, in which the outcome is predicted by the notion of subgame
perfect equilibrium.

8.1 Axiomatic Solution

The cooperative bargaining process was initiated by J. Nash [55]. In case of co-
operative bargaining, the outcomes of negotiation are often described in terms
of utilities; the notion of utility that satisfies the assumptions von Neumann–
Morgenstern is used to quantify individual preferences. Consequently, for each
player there is a function, called utility function u, which represents and scales
her preference over the bargaining set. If π̄i, π̂i ∈ B, and if for a player
i(i = 1, 2), ui(π̄i) ≥ ui(π̂i), then we can conclude that the outcome π̄i is
preferred to outcome π̂i for the player i. Such a utility function is not unique,
that is if ui is a utility function, then the function vi = aui+β is also a utility
function for real numbers a, β and a > 0.

He started with a class of problems for which the bargaining set is convex
and compact, and for which free disposal is allowed. A bargaining problem,
as stated by Nash is concerned with the set of utility pairs, P ∈ R

2, that
can be derived from the bargaining set B, P = {(p1, p2) ∈ R

2 : (p1, p2) =
[u1(π1), u2(π2)] (π1, π2) ∈ B}, where P is convex, compact, nonempty set,
and a pair of utilities D = (δ1, δ2) = (u1(d1), u2(d2)) ∈ P a vector on R

2,
which is assigned to be the disagreement point. Only if these requirements
are satisfied the bargaining problem 〈P,D〉 can properly be called a Nash
bargaining problem.

Nash did not build his solution around what the bargainer is doing. He
tried to answer the question,“What would a good solution look like?” He came
up with a short list of sensible-sounding conditions that a bargaining solution
should satisfy. The nice thing about having a set of conditions to start with
is that they will limit the set of solutions that you might consider.

“Rather than solve the two-person bargaining game by analyzing the bar-

gaining process, one can attack the problem axiomatically by stating gen-

eral properties that ‘any reasonable solution’ should possess. By specifying

enough such properties one excludes all but one solution” [55].

Nash proved that a solution to the bargaining problem 〈P,D〉 is a func-
tion φ(·), also known as arbitration function that assigns a single outcome
(p1, p2) ∈ P to every bargaining problem 〈P,D〉. Nash proposes that a bar-
gaining solution should satisfy four conditions.

Pareto efficiency. Suppose (p1, p2) = φ(P,D) is the solution to the bargaining
problem 〈P,D〉, and a pair (p̂1, p̂2) ∈ P then should hold that (p1, p2) >
(p̂1, p̂2). This condition basically says that there is no feasible point (p̂1, p̂2)
that is Pareto superior to the solution.
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Independence of linear transformation. If vi = riui+ci, for i = 1, 2 and r1 > 0
is a linear transformation of the utility function ui that generates P, then
vi generates P ′ = {(r1p1 + c1, r2p2 + c2) ∈ R

2 : (p1, p2) ∈ P}. Because
vi represents the same preference as ui if both are applied to the same
bargaining set B, the bargaining problem 〈P ′,D′〉 represents the same
bargaining problem with 〈P,D〉 if D′ = (r1δ1+c1, r2δ2+c2), which is easy
to check. Thus a solution to φ(P ′,D′) = rφ(P,D)+ c. This condition says
that if you transform all the elements in 〈P,D〉, you will also transform
the solution.

Symmetry. If the bargaining problem 〈P,D〉 is symmetric, and if δ1 = δ2,
then (p1, p2) = φ(S,D)⇒ p1 = p2. In symmetric situations, both players
get the same.

Independence of irrelevant alternatives. If 〈P,D〉 and 〈P ′,D′〉 are bargaining
problems with P ⊂ P ′ and φ(P ′,D′) ∈ P, then φ(P,D) = φ(P ′,D′). This
axiom states that the bargain solution does not depend on other available
outcomes that the player had the opportunity to choose but did not. See
[61] for details and proofs.

The solution that satisfies these four properties is unique and is characterized
by the payoff pair (p,p2), which maximizes the product of the player’s benefits
from cooperation, the so-called Nash product.

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

(p1 − δ1)(p2 − δ2). (43)

If the symmetric axiom is ignored, the bargaining solution comes to depend on
the bargaining powers of the two players, this is the generalized or asymmetric
Nash bargaining solution,

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

(p1 − δ1)α(p2 − δ2)β (44)

where α, β, α+β = 1 represents the negotiation power of each player. Among
the factors that affect negotiation power are their utility, their risk preference,
and their position on the market.

The Nash bargaining solution can be extended to apply in the case with n
players, and it can be shown that the unique bargaining solution that satisfies
the axioms is the function that satisfies:

φ(P,D) = arg max
(p1,p2)≥(δ1,δ2)∈P

n
∏

i=1

(pi − δi). (45)

Kalai and Smorodinsky [39] replace the rather controversial axiom of Inde-
pendence of irrelevant alternatives with alternative, which they refer to as the
axiom of monotonicity. Let pmi (P) = max{pi : pi ∈ P} be the maximum that
player i could attain (for i = 1, 2) in a bargaining situation 〈P,D〉 given that
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the players are individually rational. The payoff combination defined in this
way is called ideal point. The Kalai–Smorodinsky solution requires then that
if the ideal point belongs to bargaining games 〈P,D〉 and 〈P ′,D′〉 ∈ B and if
P ′ ⊂ P, then player i will receive at least as much as in 〈P,D〉 as in 〈P ′,D′〉.
The Kalai–Smorodinsky solution is then a unique function that selects the
maximum element in P on the line that joins the disagreement point (δ1, δ2)
with the ideal point. For details and proofs, see [53].

To apply the Nash bargaining problem to the supply chain analysis, con-
sider a supply chain with one supplier and one retailer. At the beginning of
the period, the retailer places orders x and sells them to the customer at a
unit price r. Supplier produces the product with unit production cost k and
supplies x units to retailers at a price c. It is also assumed that supplier has
infinite production capacity. The demand w faced by the retailer during the
period is random but distribution is known. She also faces a unit holding,
and shortage costs, denoted by h and p, respectively. Let π̃s and π̃r be the
supplier’s and retailer’s profit, respectively, πs = E[π̃s] and πr = E[π̃r] their
expected profits with:

πs = cx− kx = (c− k)x (46)

and
πr = rEmin{w, x} − cx− L(x) (47)

where L(x) = hE(x− w)+ + pE(w − x)+.

In addition, assume that the supply chain makes a positive expected profit
ΠC that is greater than the disagreement points and therefore the rational
players will always prefer to participate in the game. Furthermore, we assume
that disagreement point for supplier is ds = kx and the retailer’s disagreement
point is dr = L(x).

The solution refers to the resulting payoff allocation that each of the play-
ers agrees upon. Given that both players are risk neutral, the necessary Pareto
efficiency condition ensures the negotiated quantity is always the one that
coordinates the whole chain, i.e., x = xC (where xC is the coordinating quan-
tity). In other words, this bargaining formulation gives us channel coordination
for free [52]. Because the negotiated quantity is always xC , then ds = kxC

and the retailers disagreement point is dr = L(xC), similar assumptions have
been employed in [52]. Suppose that the supplier and retailer negotiate to
split the total expected profits of the system. Consequently, the bargaining
set can be written as B = {(πs, πr) ∈ R

2 : πs + πr ≤ ΠC , and πs, πr ≥ 0},
which is assumed to be a convex and compact set, in addition the for-
mulation of disagreement points guarantees that it is nonempty. The cor-
responding Nash bargaining problem is P = {(ps, pr) ∈ R

2 : (ps, pr) =
[E(us(πs), E(ur(πr)] (πsπr) ∈ B}, where P is a convex, compact, nonempty
set, and D = (δs, δr) = (us(ds), ur(dr)) ∈ P. Applying the Nash solution
concept results in the two players maximizing the following expression

max
(ps,pr)≥(δs,δr)∈P

(ps − δs)(ΠC − ps − δr). (48)
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Taking the derivative with respect to ps and pr and equating to zero, we get
respectively:

ps =
ΠC − δr + δs

2
(49)

pr =
ΠC − δs + δr

2
. (50)

Nagarajan and Bassok [52] consider a cooperative, multilateral bargaining
game similar to that where n suppliers are selling complementary components
to an assembler. They propose a three-stage game: First (stage 3) the suppli-
ers form coalitions, second (stage 2) the coalitions compete for a position in
the bargaining sequence, third (stage 1) the coalitions negotiate with the as-
sembler on the wholesale price and the supply quantity. They show that each
player’s payoff is a function of the player s negotiation power, the negotiation
sequence, and the coalitional structure.

Chae and Heidhues [20] study the effects of integration among downstream
local distributors on the entry of upstream producers in a bargaining theoretic
framework. They modeled both price formation and the entry of upstream
producers in an input market. Using a bargaining solution that generalizes
the Nash solution, they showed that a higher degree of concentration among
downstream distributors reduces incentives to enter the upstream production
industry. The reason is that higher concentration among downstream distrib-
utors reduces the bargaining power of upstream producers.

8.2 Strategic Approach

Whereas the cooperative approach is static, in the sense that only the out-
come is analyzed without taking into account the bargaining procedure, the
strategic approach to bargaining theory, initiated by St̊ahl [80] and Rubin-
stein [74], is more concerned with these situations and analyzes exactly the
bargaining procedures, in the attempt to find theoretical predictions of what
agreement, if any, will be reached by the bargainers.

To this end, we now present the model developed by Rubinstein [74], in
which the procedure is modeled explicitly as a game in real time. Here we think
of bargaining as a sequential game. That is, there is a well-defined sequence of
moves, and players have preferences over the time of agreement as well as the
terms of agreement. There are two players i, i = 1, 2, whose task is to divide a
single surplus of size 1. Each player is concerned only about the share of the
surplus that she receives and prefers to receive more rather than less. Time
proceeds without end as t = 0, 1, 2, . . . .

The procedure is as follows. At t = 0, one player, say player 1, makes an
offer, (π1, π2), where π1 is player 1’s share and p2 is player 2’s share where



Game Theory Models in Inventory 857

π1 + π2 ≤ 1, which is either accepted or rejected. If player 2 accepts the offer,
the game ends and the surplus is divided accordingly. If player 2 rejects, she
makes a counter offer at period t+1, which is either accepted or rejected with
counter offer from 1 and so on. If no offer is ever accepted, the payoffs are 0.
To simplify matters, we assume that both players have linear utility functions
u1 = π1 and u2 = π2. Player i’s utility for getting a share πi of the surplus at
time t is equal to ui = πiθ

t
i , where θ ∈ [0, 1] is a fixed discount factor, and it is

used to translate expected utility in any given future into present value terms.
Rubinstein [74] proved that there is a unique subgame-perfect equilibrium in
this game, based on playing the following strategies in every period:

1. Player 1 proposes an offer:
(

π1 = 1−θ2
1−θ1θ2

, π2 = θ2(1−θ1)
1−θ1θ2

)

and accepts player

2’s offer if and only if π1 ≥ θ1(1−θ2)
1−θ1θ2

.

2. Player 2 proposes an offer:
(

π1 = θ1(1−θ2)
1−θ1θ2

, π2 = 1−θ1
1−θ1θ2

)

and accepts player

1’s offer if and only if π2 ≥ θ2(1−θ1)
1−θ1θ2

.

Extentions of the Rubistein’s model include the case where there is possibility
for the negotiation to break down [7] and the influnce of a outside option in
the negotiation proposed and implemented in different settings by [8, 50, 67].
The main assumption of these models is that a player can choose to decide to
leave a negotiation if there is an outside deal that can optimize her objective.

To apply the noncooperative bargaining game, Ertogal and Wu [32] con-
sider a bargaining situation between a supplier and a retailer (buyer) who ne-
gotiate to split certain system surplus, say π . The supplier and the retailer are
to make several offers and counter offers before settling on a final agreement.
Before entering negotiation, the supplier and retailer each have recallable out-
side options Ws and Wb, respectively. It is assumed that π ≥ Ws + Wr,
otherwise at least one of the players would have no incentive to enter the
negotiation.

The sequence of events in our bargaining game is as follows:

1. With equal probability
p

2
, one of the two players proposes an offer that

splits the system surplus π into certain amounts.

2. The other player may either:

(a) accept the offer (the negotiation ends), or

(b) reject the offer and wait for the next round.

3. With a certain probability (1 − p), the negotiation breaks down and the
players take their corresponding outside options.

4. If the negotiation continues, the game restarts from step 1.
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They assume that in subgame perfect equilibrium there is an infinite number
of solutions leading to gains ranging from mb to Mb for the buyer, and mr to
Mr for the supplier, where:

Ms(Mr): The maximum share the supplier (the retailer) could receive in a
subgame perfect equilibrium for any subgame initiated with the supplier’s
(the retailer’s) offer.

ms(mr): The minimum share the supplier (the retailer) could receive in a
subgame perfect equilibrium for any subgame initiated with the supplier’s
(the retailer’s) offer.

They formulate and solve the negotiation-sequencing problem as a network
flow problem. They proved that the following system of equations defines the
subgame perfect equilibrium for the bargaining between the two players:

Ms = π −
[p

2

[

(1− p)Wr +
p

2
(π −Ms +mr) + π −Ms

]

+ (1− p)Wr

]

(51)

ms = π −
[p

2

[

(1− p)Wr +
p

2
(π −ms +Mr) + π −ms

]

+ (1− p)Wr

]

(52)

Mr = π −
[p

2

[

(1− p)Ws +
p

2
(π −Mr +ms) + π −Mr

]

+ (1− p)Ws

]

(53)

mr = π −
[p

2

[

(1− p)Ws +
p

2
(π −mr +Ms) + π −mr

]

+ (1− p)Ws

]

(54)

and the unique subgame perfect equilibrium strategies of the players are given
as follows:

1. If the supplier is the offering party, she will ask for Xs = π − Wr −
p2

2(2− p) (π − Ws − Wr) share of the surplus and leave π − Xs to the

retailer.

2. If the retailer is the offering party, she will ask for Xr = π − Ws −
p2

2(2− p) (π − Ws − Wr) share of the surplus and leave π − Xr to the

supplier.

This result has important implications in that the bargaining game will end
in one iteration when one of the two players initiates the negotiation with
the perfect equilibrium offer. They further show that there is a first-mover
advantage in this game, but the advantage diminishes as the probability of
breakdown approaches zero. Wu [94] expands the model to analyze the trade-
off between direct and intermediated exchanges.

Bernstein and Marx [6] address the problem of supply chain performance
when one supplier sells to multiple competing retailers and who have bar-
gaining power. They model a retailer’s bargaining power through its ability
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to set a reservation profit level below which it will not participate in the sup-
ply chain. They also allow endogenously chosen reservation profit levels for
the buyers that may depend on the retailer’s opportunities within the supply
chain, rather than taking those reservation profit levels as fixed and depen-
dent only on outside opportunities. The retailers may compete in terms of
the prices they charge or in terms of the amount of inventory they carry.
Their results indicate that supply chain performance is not maximized, or it
is maximized conditional on the number of retailers that offer the supplier’s
product, but some retailers are excluded from trade. They conclude that in
equilibrium, retailer’s choices of reservation profit levels may induce the sup-
plier to trade only with a strict subset of the retailers, even when all retailers
must be included in order for channel profit to be maximized.

de Fontenay and Gans [28] analyze vertical integration in the case of up-
stream competition in which they demonstrate that vertical integration can
alter the joint payoff of integrating parties in ex post bargaining.

Van Mieghem [87] and Chod and Rudi [23] consider settings in which two
firms trade capacity after receiving demand information. In [23], the authors
consider two independent firms that invest in resources such as capacity or
inventory based on imperfect market forecasts. After investment decisions are
made, the firms update their forecasts of the market conditions and have the
option to trade. Although the negotiation of this trade is formulated in a
cooperative fashion, the firms do not cooperate in the investment stage. The
problem is formulated as a noncooperative bargaining game, and the existence
and uniqueness of an embedded Nash bargaining solution is proved. In Van
Mieghem’s work [87], after demand revelation, the manufacturer may purchase
some of the excess capacity of the subcontractor. She formulates this problem
as a noncooperative stochastic investment game. Her results indicate that all
decentralization costs are eliminated only when the bargaining parameters
depend on demand realization.

8.3 Biform Games

A biform game is a hybrid noncooperative/cooperative game model designed
for modeling business interactions. It can be thought of as a noncooperative
game with cooperative games as outcomes, and those cooperative games lead
to specific payoff. The biform game was first formalized by Brandenburger and
Stuart [10]. Hence the noncooperative solution concept of Nash equilibrium
extends naturally to the biform game.

To define a biform game, consider a set of players N , indexed by i =
1, . . . , n, and for each player i ∈ N , a finite set Xi of strategies. At the non-
cooperative stage (first stage), players make decision among their strategies,
this game can be analyzed just like any other noncooperative game. Com-
petition is then modeled by a cooperative game (second stage) in which the
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characteristic value function depends on the chosen actions. The core of this
cooperative game is employed to determine the outcome of the game. Even
though the core of such game is nonempty, it may yield to a range of out-
comes, rather than a unique outcome; as a result, it is not immediately clear
what value each player can expect. In such cases, it is necessary to describe
each player’s preferences over intervals. In a biform game, these preferences
are represented by the numbers αi for each player i. Each player then expects
to earn in each possible cooperative game a weighted average of the minimum
and maximum values in the core, with αi being the weight. The parameter αi
can also be interpreted as an index player’s i in her bargaining power.

Brandenburger and Stuart [10] proposed the biform game in which play-
ers make strategic investments, and then they play a cooperative game de-
termined by their investments. The biform game formulation is employed
in Plambeck and Taylor [66] where two independent, price-setting original
equipment manufacturers (OEMs) are investing in innovations. They allow
OEMs to outsource their productions to an independent contract manufac-
turer (CM); a bargaining game is employed to model the negotiations among
(OEMs) and (CM). They show that the bargaining outcome induces the CM
to invest in the system-optimal capacity level and to allocate capacity op-
timally among the OEMs. A subsequent paper [65] considers the situation
where a manufacturer writes quantity flexibility contracts with two buyers.
Then, the buyers invest in innovation, and the manufacturer builds capacity.
Without renegotiation, quantity flexibility is necessary for the client capacity
allocation, but reduces incentives for investment. Typically, allowing renego-
tiation reduces the flexibility in an optimal contract and increases the total
expected profit.

He models the problem as a multivariate, multidimensional, competitive
news-vendor problem. He argues that ex ante contracts may be too expen-
sive or impossible to enforce, while the supplier’s investments (in quality, IT
infrastructure, and technology innovation) may be noncontractible.

In the application of the biform game to the news-vendor problem, order-
ing decisions of different retailers are made competitively whereas allocation
decisions take place cooperatively.

In a recent article, Rudi et al. [70] consider a two-retailer model with trans-
shipment of stock. They aim to find prices for which the joint decentralization
profit achieves the centralized system profit.

Anupindi et al. [3] use a hybrid noncooperative/cooperative model to for-
mulate a game where multiple retailers stock at their own locations as well as
at several centralized warehouses. In the noncooperative stage, retailers make
stocking decisions, for this stage they develop conditions for the existence of
a pure Nash equilibrium. In the cooperative stage, retailers use cooperative
game theory to characterize possible opportunities for cooperation, similar to
Müller et al. [49].
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Granot and Sosic [35] analyze a similar problem, they consider a network
of retailers with stochastic demands: Each chooses its inventory level but in
this models retailers are able to hold any inventory left from one period to the
other, then demand is realized; and the retailers bargain cooperatively over
the transshipment of excess inventory to meet excess demand. Their model
has three stages: decision about the order quantity, decision about how much
inventory to share with others, and finally the transshipment stage.

Stuart [81] provides a model of the competitive news-vendor problem in
which there is price competition following the inventory decisions. The price
competition is modeled by considering the core of the induced cooperative
game. She shows that with no uncertainty, the inventory decision is equiva-
lent to the capacity decision in Cournot competition. With uncertainty, the
analysis again reduces to Cournot competition if the demand uncertainty is
characterized by an appropriately constructed, expected demand curve.

Unpublished manuscripts and papers in the bibliography are available through

CiteSeer, the Autonomous Citation Indexing and Scientific Literature Digital Li-

brary, at http://citeseer.ist.psu.edu and science-specific search engine Scirus

at http://www.scirus.com/srsapp/.
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