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Aims and Scope

Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization is
the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Optimization and lIts Applications publishes undergraduate
and graduate textbooks, monographs and state-of-the-art expository works
that focus on algorithms for solving optimization problems and also study
applications involving such problems. Some of the topics covered include
nonlinear optimization (convex and nonconvex), network flow problems,
stochastic optimization, optimal control, discrete optimization, multi-
objective programming, description of software packages, approximation
techniques and heuristic approaches.
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We always base our preparations against an opponent on the assumption
that his plans are sound; indeed, it is right to rest our hopes not on a belief
in his blunders, but on the soundness of our provisions. Nor ought we to
believe that there is much difference between man and man, but to think
that superiority lies with him who is reared in the severest school.

Speech by the Spartan king Archidamus
according to Thoukidides’ History of the Peloponnesian War.
Translation adapted from www.wikipedia.org



Preface

Humans have always been involved in situations where decisions must be made
that best fit the circumstances. We read, for instance, in Homer’s Iliad,' the
oldest written European composition (eighth century B.C.):

So he taunted. Deiphobus’ mind was torn —

should he pull back and call a friend to his side,
some hardy Trojan, or take the Argive on alone?
As he thought it out, the first way seemed the best.
He went for Aeneas

The decision taken may or may not affect and be affected by other de-
cision makers. The best decision may depend on one or more objectives of
the decision maker. The decision may concern a static situation or a situ-
ation that evolves in time. Thus, mathematical and algorithmic tools have
been developed in order to model, analyze, and resolve such decision-making
processes. Mathematical programming, multiobjective optimization, optimal
control theory, and static and dynamic game theory provide the language and
the tools to achieve such goals. The notions of optimality, Pareto efficiency,
and equilibrium are intimately related in a mathematical sense and tightly
connected through the notions of Karush-Kuhn-Tucker (KKT) optimality,
complementarity, variational inequalities, and fixed points. The problem un-
derlying the search for an optimal point, an efficient point, an equilibrium, or
a fixed point is essentially the same.

It is true that we can recognize in ancient texts the roots for the need
of such mathematical formalism. It is hard to deny that in the words of
the Lacedaemonian king Archidamus, as given by the historian Thoukidides
(fifth century B.C.), we start to recognize seeds of rationality desired by game
theory?:

!Translated by Robert Fagles, Penguin Classics.
2Translation adapted from www.wikipedia.org.



VIII  Preface

We always base our preparations against an opponent on the assump-
tion that his plans are sound; indeed, it is right to rest our hopes not
on a belief in his blunders, but on the soundness of our provisions.
Nor ought we to believe that there is much difference between man
and man, but to think that superiority lies with him who is reared in
the severest school.

Or that the following verses of the Iliad depict a game situation®:

If you really want me to fight to the finish here,

have all Trojans and Argives take their seats

and pit me against Menelaus dear to Ares —

right between the lines —

we’ll fight it out for Helen and all her wealth.

And the one who proves the better man and wins,
he’ll take these treasures fairly, lead the woman home

However, only with the development of optimization, control, and game
theory has it been possible to fully achieve the analysis of such and other far
more complicated situations. The concepts of equilibrium and optimality are
of immense practical importance in decision-making problems of policies and
strategies, in understanding and predicting what will eventually happen in
systems in different application domains, ranging from economics and engi-
neering to military applications.

This book brings together recent developments in all these fields that sup-
port decision making as well as recent applications of these results to a wide
range of modern problems. The book consists of twenty-nine chapters con-
tributed by experts around the world who work with optimization, control,
game theory, and equilibrium programming either at a theoretical level and /or
at the level of using these tools in practice. Each chapter is of expository but
also of scholarly nature. Each includes a state-of-the-art overview relative to
its dedicated topic as well as key references in the field. The chapters can be
divided into six partially overlapping groups.

The first five chapters of the book are concerned with minimax theory,
fixed-points, and noncooperative game theory. The chapter by H. Tuy presents
a unified framework for studying existence and stability conditions for min-
imax of quasiconvex-quasiconcave functions that refines several known re-
sults from game theory, optimization, and nonlinear analysis. The chapter by
B. Ricceri surveys recent advances in minimax theory, including multiplicity
theorems for nonlinear equations and well-posedness results for optimization
problems. The chapter by J.B.G. Frenk and G. Kassay gives an overview
on the theory of noncooperative games, both zero-sum and nonconstant-sum
games. Based on the KKM lemma, they provide proofs of existence of saddle-
point strategies in the former case as well as of Nash equilibrium strategies

3Translated by Robert Fagles, Penguin Classics.
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in the latter case. The chapter by F. Szidarovszky gives an overview of the
existence and computation of equilibrium in nonlinear n-person games. The
chapter by G. Isac develops a new method for the study of existence of fixed
points for nonexpansive mappings defined on unbounded sets.

Cooperative game theory is concerned with situations in which decision
makers agree to cooperate in order to maximize their profits or minimize
their costs. In the chapter by I. Curiel, cooperative combinatorial games are
considered. Such games model situations in which the decision makers who
agree to cooperate encounter a combinatorial optimization problem in order
to maximize their profits or minimize their costs. Eight cooperative combina-~
torial games are surveyed and analyzed. The chapter by X. Deng and Q. Fang
highlights the linear and integer programming approaches to cooperative com-
binatorial games as well as computational complexity issues. The chapter by
J.M. Bilbao et al. introduces the notions of bicooperative games and bisuper-
modular games and describes several solution concepts for them. The chapter
by Y. Marinakis et al. surveys more than thirteen cooperative combinatorial
games and provides insight through numerical examples.

The next five chapters are concerned with dynamic systems, in partic-
ular with differential games and time-dependent equilibria. The chapter by
A. Maugeri and C. Vitanza provides a review of the variational inequality
approach to problems in a variety of fields including traffic networks, mod-
els dynamic equilibrium problems as time-dependent variational inequalities,
presents existence results, and applies infinite dimensional Lagrangian duality
to these inequalities. The chapter by P.M. Pardalos et al. deals with differ-
ential games of multiple agents in a hierarchical structure setting as well as
in a cooperative setting. Controllability, observability, and optimality prob-
lems are studied. Maneuvers are introduced, using fiber bundles. The chapter
by V. Ostapenko is devoted to developing convex analysis concepts in the
context of pursuit-evasion differential games. The notion of matrix-convex
sets and H-convex sets are introduced, and their properties required for the
theory of differential games are studied. The chapter by A.A. Chikrii pro-
vides a general approach to solving game problems when the dynamics of the
conflict-controlled process is described by a system with fractional derivatives.
Solutions to such systems are derived and sufficient conditions for termination
in guaranteed time are obtained. The chapter by M.-G. Cojocaru et al. es-
tablishes the equivalence between the solutions to an evolutionary variational
inequality and the critical points of a projected dynamical system in infinite
dimensional spaces. A convergent algorithm is derived for the solution of evo-
lutionary variational inequalities, and it is illustrated for the case of traffic
networks.

Information is crucial in the process of decision making. The next two
chapters are largely concerned with the role and implications of information
in audit policies and auction design. In the chapter by K. Chatterjee et al., a
simple auditing model is constructed and analyzed in order to address three
principle issues: the information contained in the report, the commitment to
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the audit policy, and the audit effort. The approach is based on the concept
of perfect Bayesian equilibrium. An auction is a game with partial informa-
tion where an agent’s valuation of an object is hidden from other agents. The
chapter by R.L. Zhan provides a thorough survey on the current auctions de-
sign literature and synthesizes the developed theories underlying traditional
auctions with new elements and phenomena from emerging and rapidly grow-
ing areas, such as online auctions.

The next five chapters are concerned with multiobjective optimization,
bilevel optimization, and linear complementarity problems. The chapter by
G. Zhang et al. develops a fuzzy multiobjective linear bilevel model to handle
hierarchical situations where uncertainty is present in the parameters of either
the objective functions or the constraints of the leader and the follower and
where the leader and the follower may have multiple objectives. They derive
theorems characterizing the solutions and develop an approximation Kuhn—
Tucker approach to solve the problem. The chapter by D.T. Luc is devoted to
the theory of Pareto optimality and discusses existence, optimality in product
spaces, scalarization via support functions, duality, and solution methods.
Multiobjective optimization is overviewed in the chapter by M. Pappalardo.
Theorems of solution existence as well as optimality conditions and solution
methods are presented. In the chapter by R. Enkhbat et al., the weighted sum
approach to finding Pareto optimal solutions in multiobjective optimization is
studied in the context of one-parametric optimization techniques. The chapter
by B. De Schutter is devoted to the linear complementarity problem and to
its most general linear extension. A link is established between the extended
problem and max-plus equations that allows the application of the extended
model in the analysis and control of discrete-event systems such as traffic
signals, manufacturing systems, railway networks, etc.

The remaining eight chapters are largely devoted to applications. Five
chapters are devoted to network applications, one to military application, and
two to supply chain management. The chapter by M. Florian and D. W. Hearn
surveys user equilibrium formulations of static traffic assignment models based
on Wardrop’s first principle and presents the main solution algorithms for both
deterministic and stochastic models. M. Bjgrndal and K. Jgrnsten demon-
strate in the subsequent chapter that the famous traffic paradox, which es-
sentially differentiates between Wardropian user equilibrium formulations and
nonequilibrium formulations of congested traffic assignment models, also oc-
curs in congested electricity networks, where flows follow Kirchhoff’s juction
rule and loop rule. Hence, it is demonstrated that grid investments may prove
to be detrimental to social surplus. The chapter by J. Cole Smith and C. Lim
explores models and algorithms applied to a class of Stackelberg (two-stage)
games on networks, called network interdiction games. Two players are in-
volved, an operator who wishes to execute some function on an existing net-
work and an interdictor who acts first to strategically compromise certain
elements of the network. Recent applications of stochastic models, valid in-
equalities, and bilinear programming techniques to network interdiction games
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are discussed and the problem is extended to a three-stage game, where the
operator fortifies the network. The chapter by M. Min reviews game theo-
retical approaches in wireless networks, addressing mainly the issues of power
control, cooperation between terminals, security, and radio channel access con-
trol. The chapter by D. Lozovanu is dedicated to time-discrete systems on net-
works where the dynamics of the system is controlled by several players. Nash
and Pareto optimality principles are applied, existence results are derived, and
dynamic programming techniques are utilized. Efficient polynomial-time algo-
rithms are developed in order to find optimal strategies of players in dynamic
games on networks. G. Isac and A. Gosselin address a military application of
viability in terms of differential Lanchester type models. Set-valued analysis
is utilized to introduce the notion of Lanchester type differential inclusions
and to replace the Lanchester coefficients by intervals in order to overcome
the difficulties associated with these coefficients and to facilitate the appli-
cation of such models. In the chapter by A. Nagurney et al., static and dy-
namic models of global supply chains are developed as networks with three
tiers of decision makers. A discrete-time algorithm is proposed that allows for
the discretization of the continuous time trajectories. The proposed supernet-
work framework formalizes the modeling and analysis of global supply chains.
The final chapter by A. Chinchuluun et al. reviews classic game theoretical
approaches to modeling and solving problems in supply chain management.
Both noncooperative and cooperative single-period and multiperiod models
are discussed.

Gainesville, Chania, Thessaloniki A. Chinchuluun, P.M. Pardalos
April 2007 A. Migdalas, L. Pitsoulis
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Game and Game Theory



Minimax: Existence and Stability

Hoang Tuy

Institute of Mathematics, Hanoi, Vietnam
htuy@math.ac.vn

Abstract A unified framework is presented for studying existence and stability con-
ditions for minimax of quasiconvex quasiconcave functions. These theorems include
as special cases refinements of several known results from game theory, optimization,
and nonlinear analysis. In particular, existence conditions are developed that turn
out to be sufficient also for the continuity of the saddle value and stability of the
saddle point under continuous perturbation. Also, a lopsided minimax theorem is es-
tablished that yields as immediate corollaries both von Neumann’s classic minimax
theorem and Nash’s theorem on noncooperative equilibrium.

Key words: minimax theorems, quasiconvex quasiconcave functions, saddle
value, existence conditions, stability conditions, lopsided minimax, coopera~
tive equilibrium

1 Introduction

Let X, Y be two finite-dimensional Euclidean spaces. Given two closed convex
sets C C X, D CY and a function F(x,y): C x D — R, we define

~:= inf sup F(z,y), n:=sup inf F(z,y). (1)
TecyeD y6D$E

We are interested in conditions under which v =n € R, i.e.,

inf sup F(z,y) = sup mf F(z,y) € R. (2)
zeC yeD yeD z€C

If this occurs, the common value of v and 7 is called a saddle value of the
function F(x,y).

Investigations on the existence of a saddle value for various classes of func-
tions were at the beginning motivated by the theory of games. According to
a classic result of von Neumann [11], later improved by Kneser [9], a saddle
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value exists when C, D are compact convex subsets of X = R" and Y = R"™,
respectively, while the function F(z,y) is continuous convex in x and con-
tinuous concave in y. Subsequently, it was realized that minimax theorems
also constitute a very useful tool in different areas of nonlinear analysis and
optimization. This has stimulated much research activity over the years for
generalizing and refining this result.

In the first period, much effort was spent on relaxing the assumptions on
convexity-concavity and continuity property of F'(x,y) and also compactness
of both C, D. The best known result in this direction was Sion’s theorem [17],
which only required the function F(x,y) to be quasiconvex l.s.c. (lower semi-
continuous) in x, quasiconcave u.s.c. (upper semi-continuous) in y, and one
of the sets C, D (but not necessarily both) to be compact. The second period
began with the work of Wu [25] who established the first minimax theorem in
topological spaces, replacing the convexity-concavity assumption by a more
general topological property. Wu’s theorem required, however, rather restric-
tive assumptions and did not include several minimax results well-known at
the time.

In 1974, by a different approach, Tuy [19,20] (see also [15,21,24]) proved
a topological minimax theorem in the same vein as, but much stronger than,
Wu’s theorem as it did contain most important results currently available
in the field (]9, 12,13]). The proof of this theorem, besides, was very simple,
making use only of elementary set-theoretical arguments.

However, Tuy’s theorem still required compactness of at least one of the
sets C, D. This assumption turned out to be too restrictive for recent de-
velopments of mathematical programming and nonlinear analysis (see, e.g.,
[1,2] also [6,14]). To cover the cases considered in these works, weaker condi-
tions than compactness of C' or D had to be developed, and quasiconvexity-
concavity of F'(z,y) seemed to be a convenient condition for ensuring existence
of a saddle value when working in vector topological spaces. Furthermore, con-
ceptually, all the minimax results so far available for quasiconvex quasiconcave
functions look somewhat disparate, so in [22] an effort has been made to clar-
ify the relationship between different existence conditions formulated in these
theorems and on this basis strengthen and refine several known results.

Aside from existence, another important topic is stability condition for the
saddle point and continuity property of the saddle value. The central result
on this question, Golshtein’s theorem [5] (see also [16]), though proved more
than three decades ago, still remains, to our knowledge, an isolated result in
this area. Although the proof of this theorem is elaborate, its assumptions are
too restrictive if one only needs existence and some weak continuity of the
saddle value rather than these properties for the saddle point.

The purpose of the current paper is to provide a sufficiently simple unified
framework for studying existence and stability conditions for the saddle value
and saddle point of quasiconvex quasiconcave functions, and to establish or
to refine various strong minimax theorems known to date for this class of
functions. As it turns out, most of these existence conditions are also sufficient
to ensure stability, in a sense or another, of the saddle value and saddle point.
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After the Introduction, in the second section we discuss fundamental
minimax theorems for quasiconvex quasiconcave functions under weakest con-
ditions. Starting from a basic lemma, established by purely set-theoretical
arguments, various existence conditions are developed, mostly in more or less
refined form. Section 3 deals with continuity and stability of the saddle value
and saddle point under continuous perturbation. Some new results are pre-
sented that include the above-mentioned theorem of Golshtein as a corollary,
while providing, as a by-product, a simple proof for this sophisticated the-
orem. Finally, Section 4 presents a new lopsided minimax theorem that is
an extension of an ordinary minimax theorem but can also be used to de-
rive, in a simple way, Nash theorem on cooperative equilibrium in n-person
games [10].

Although for the sake of simplicity we restrict ourselves to finite dimen-
sional spaces, the reader should be aware that many of the results to be
presented can be easily extended to work in a much more general setting.

2 Existence Theorems

In this section, we discuss conditions to be imposed on the sets C, D and the
function F(x,y) in order to guarantee the existence of a saddle value. Note
that, according to our definition of a saddle value, we require that v =n € R.
Because always v > n, this excludes the cases v = —oo or n = 400, which
obviously imply that v =7 = —oo or v = 1 = 400, respectively.

Following [1], we say that for a given y € D the function = — F(z,y)
is Ls.c. (lower semi-continuous) in every line segment if for every a,b € C,
the univariate function ¢(N\) = F((1 — A)a + Ab,y) is Ls.c. on the segment
0<A<1.

The following lemma is fundamental for deriving the basic existence the-
orem, which includes virtually all so far known minimax theorems for quasi-
convex quasiconcave functions.

Lemma 1. (Fundamental Lemma) Assume that the function F(x,y) is qua-
siconver l.s.c. in x in every line segment and quasiconcave u.s.c. in y. Then
for every nonempty finite set M C C' and every a < vy we have

Neem{y € D| F(z,y) 2 a} #0. (3)

Proof. Proceeding by induction, we first prove (3) when |M| = 2. For every
z € C let
D(z) :={y € D| F(z,y) > aj}.

Because v > a, clearly sup,cp F(z,y) > a Vo € C, and it follows from the
assumptions on F'(x,y) that every set D(z), x € C, is nonempty and closed.
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Arguing by contradiction, assume there are a,b € C such that
D(a) N D(b) = 0. (4)

Consider a point 2 = (1 — A)a + Ab with 0 < A\ < 1. If y € D(2) then, by
quasiconvexity of F(x,y) in z, we have a < F(2*,y) < max{F(a,y), F(b,y)},
hence

D(z*) € D(a) U D(b). (5)

Because D(z?) is convex, while D(a), D(b) are disjoint by (4), D(x) cannot
simultaneously meet D(a) and D(b). Consequently, for every A € [0, 1], one
and only one of the following alternatives holds:

(a) D(zx) C D(a);  (b) D(zx) C D(b).

Denote by L, (Ly, respectively) the set of all A € [0, 1] satisfying (a) (satisfying
(b), respectively). Clearly 0 € L,,1 € Ly, L, U Ly, = [0,1] and, analogously
to (5):

D(xy) C D(zx,)UD(xy,) whenever [\ <X < Ag]. (6)

Therefore, A\ € L, implies [0,\] C L,, and A\ € L; implies [\, 1] C L. Let
s = sup L, = inf L, and assume for instance that s € L, (the argument is
similar if s € Lp). We show that (4) leads to a contradiction.

We cannot have s = 1, for this would imply D(b) C D(a). Therefore,
0 < s < 1. Because a <y < sup,ep F(zs,9), it follows that F(zs,y) > a for
some g € D. Because F(zy,y) is l.s.c. in A, there is € > 0 such that F(zs4e, )
> and s0 § € D(zs4¢). But g € D(zs) C D(a), hence D(x54.) C D(a), i.e.,
s+ ¢ € L,, contradicting the definition of s. Thus (4) cannot occur, and so
the proposition holds when |M| = 2.

Assuming now that the proposition holds for |M| = k, let us prove it
for (M| = k+ 1. Let M = {z',...,2%F 2"} C C and D' = D(zF1).
From the above, for any o/ € («a,v) and any 2 € C we have {y €
D| F(z**Yy) > o/, F(x,y) > o'} # 0, hence {y € D'| F(x,y) > o'} # 0, i.e.,

VeeC JyeD F(x,y) > o,

which implies that inf,ec sup,e pr F'(7,y) > o’ > a. By the induction hypoth-
esis, the proposition holds for k points, so by applying it, with D replaced by
D', we have /

NI D (') # 0,

hence NEXD(x7) # 0. [ |
Lemma 2. If {E;| i € I} is an arbitrary collection of closed convex sets in X

whose intersection is nonempty and compact, then there is a finite set J C I
such that Nje s E; is nonempty and compact.
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Proof. Let K; be the recession cone of F; and K the recession cone of E =
Nicr E;. As is well-known, K, K; are closed convex cones, and K = N;cr K.
Let A, A; be the intersection of K, K;, resp., with the unit sphere S = {x €
R™| ||z|| = 1}. Clearly A = N;erA; and A;,i € I, are closed subsets of the
compact set S. Therefore, if E is bounded, i.e., A = (), there must exist a finite
set J C I such that NjcyA; = (0. Then the closed set Njc E; is nonempty
and bounded, hence compact. |

An immediate consequence of the above lemmas is the following basic
theorem.

Theorem 1. Assume that the function F(x,y) is quasiconvex l.s.c. in x in
every line segment for fixed vy, quasiconcave u.s.c. in y for fixed x, and, in
addition, that

(M) There exist a nonempty finite set M C C' and a real number o < =y
such that the set D™ = {y € D| mingey F(z,y) > a} is nonempty and
compact.

Then

inf F — inf sup F(z,y). 7
max inf F(z,y) Inf, sup (z,9) (7)

Proof. Because DM = N DM with DM = {y € D| mingen F(z,y) >
a—1/k, and each DM is a closed convex set, by Lemma 2 there exists r such
that DM is nonempty and compact. Therefore, by replacing o with o — 1/r if
necessary we can assume that o < . For a fixed natural h, take a v, € (a,7)
and consider the sets

D"(z) = {y € D| min F(z',y) >y, Flz,y) >}, v € C.

These are all closed subsets of the compact set D™, and by Lemma 1 they
have the finite intersection property. Therefore, there exists y* € DM such
that inf,ec F(z,y") > 4. Noting that DM is compact, while the function
y — infyec F(z,y) is ws.c., it then follows that for 7, — =, the sequence
{y"} € DM has a cluster point § € DM such that inf.cc F(z,9) > 7.
We cannot have inf,cc F(x,y) = +0o because this would imply F(x,y) =
+oo Vo € C. Therefore v < max,cpwm infoeo F(z,y) < +oo, and because
always maxyep infrec F'(v,y) < v = infyecsup,ep F(z,y), the equality (7)
follows. ]

Remark 1. Condition (M) obviously holds if D is compact while v < 400,
because for any a € C and M = {a} C C, the set DM is nonempty. This is
essentially a boundedness condition for D and in fact it is present, in one form
or another, in all particular minimax theorems so far known for quasiconvex
quasiconcave functions.
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Here are various variants of such existence conditions:

(M) There exists a finite set M C C such that for every a € R, the set
{y € D| mingepn F(x,y) > a} is compact;

(1\7[) There exists a finite set M C C' such that mingep F(x,y) — —00 as
y € D, |lyll — +o0;

(H) There exist o € R such that the set D* = {y € D| infyec F(z,y)
> a} is nonempty and compact;

(H') For every a € R, the set D“ := {y € D| infyec F(z,y) > a} is
compact;

(H) infoec F(z,y) — 00 as y € D, [ly]| — +oc.

(H*) The set D* := {y € D| inf,ec F(z,y) = n} is nonempty and com-
pact.

Theorem 2. Any one of the above conditions implies (M), while

M) < (M) (8)
H) < (H) = H <« (H). (9)

Consequently, Theorem 1 still holds with condition (M) replaced by any one
of the above conditions.

Proof. (M) = (M). If (M’) holds, then, because the function min,en F(z,y)
is w.s.c. (as lower envelope of a family of u.s.c. functions in y), while for every
a € R the set {y € D| mingen F(z,y) > a} is compact, it is easily seen that
this function has a maximum on D, i.e., max,ep mingea F(z,y) € R. On the
other hand, from (M’) and the fact inf,cc F(x,y) < mingens F(x,y), it follows
that for any o € R, the set {y € D| inf,ec F(z,y) > o} is compact. Then
the w.s.c. function inf,cc F(x,y) must achieve a maximum on D, so that
17 = maxyep infyec F(x,y). By taking g € D such that mingey F(z,y) =
maxyep mingey F(z,y) > n, we have § € DM := {y € D| mingen F(x,y) >
n}, so the set DM with n < ~, is nonempty and bounded, i.e., condition (M)
holds.

(M) < (M'). Immediate.

(M) = (H).If (M) holds, then for any o € R, theset {y € D| mingeas F(z,y)
> «a} is compact, hence its closed subset {y € D| inf,cc F(z,y) > a}, too,
is compact. On the other hand for a < 7, the latter set is nonempty, by the
definition of 7, so (H) holds.

(H) = (M). If (H) holds, i.e., for some o € R the set D* is nonempty and
compact, then, because D* = Nyec{y € D| F(z,y) > a}, by Lemma 2 there
exists a nonempty finite set M/ C C such that DM is nonempty and compact;
furthermore, D* # () = o < n < ~, so (M) holds.

(H) < (H'). Immediate.
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(H') = (H). If (H') holds, then for every a € R, the set D“={ye€ D|
infcc F(x,y) > a} is compact, and for a < n the set D® is nonempty from
the definition of 7, so (H) holds.

(H) & (H*). Immediate. |

For any given x € C, we say that the function y — F(z,y) is w.s.c.
in every line segment if for any a,b € D the univariate function ¥(\) =
F(z,(1 = Aa+ Ab) is u.s.c. on the segment 0 < A < 1. Using the obvious re-
lation inf,ec sup,ep F(2,y) = —sup,cc infyep(—F(z,y)), we easily deduce
from Theorems 1 and 2 the following propositions:

Theorem 3. Assume that the function F(x,y) is quasiconvex l.s.c. in x for
fized y, quasiconcave u.s.c. in every line segment in y for fived x, and, in
addition: (N) There exist a nonempty finite set N C D and a real number
B such that the set CV = {z € C| maxyen F(z,y) < B} is nonempty and
compact;

Then

min sup F(z,y) = sup inf F(z,y). 10
z€C yeD (@,y) yeD v€C (@,y) (10)

Theorem 4. Theorem 3 still holds with condition (N) replaced by any one of
the conditions listed below:

(N') There exists a finite set N C D such that for every § € R, the set
{z € C| maxyen F(z,y) < B} is compact;

(N) There exists a finite set N C D such that maxyep F(z,y) — +oo as
z e C, x| — 4o0;

(K) There exist 3 € R such that the set C° := {x € C| sup,cp F(z,y)
< B} is nonempty and compact;

(K') For every B € R, the set C° := {y € D| inf,ec F(z,y) < B} is
compact;

(IN{) SUp,ep F(z,y) — 400 as x € C, ||z|| — +o0.
(K*) The set C* := {x € C| sup,ep F(z,y) = n} is nonempty and com-
pact.

Remark 2. Most known minimax theorems for quasiconvex quasiconcave func-
tions, including Sion’s well-known result and some refined versions of it as used
in nonlinear analysis (see, e.g., [1,2]), are special cases of the above proposi-
tions.

Also note that the earliest proofs for minimax theorems used fixed point or
separation arguments in one form or another. The above proof, given originally
in [19,20], was the first one using only elementary set-theoretical arguments
for establishing general topological minimax theorems. The results in the men-
tioned papers with their proofs have been presented, partially or in full, in
some books (see, e.g., [15,24]). Nevertheless, exactly the same results were
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rediscovered in [4], with only a difference of notation. Also, the above simple
proof was many years later rediscovered in Joo [7,8], according to Frenk and
Kassay [3].

In the above propositions, F'(z,y) is always assumed to be ls.c. in z, u.s.c.
in y. We now prove some minimax theorems for functions F(x,y) l.s.c. in
each variable, or w.s.c in each variable.

Lemma 3. Assume that the function F(x,y) is quasiconvez u.s.c in  in every
line segment for fixed y and quasiconcave u.s.c. in y for fized x. If condition
(M) in Theorem 1 is satisfied, then for any o/ € («,7), the family of sets

D(z):={y € DY| F(z,y) 2 '}, w€C,
have the finite intersection property.

Proof. The proof is similar to that of Lemma 1, with the following change in
the argument for showing that (4) cannot occur.

For every y € D(b), because s € L, i.e., D(xs) C D(a), we havey ¢ D(x,),
hence F(z4,y) < o, and by upper semi-continuity of F'(x,y) in A there exists
an open interval I, = (s1, s2) containing s (s1 = $1(y), S2 = s2(y)) such that
F(zx,y) < o for all X € I,. Then F(xs,,y) < o/, ie,y ¢ D(z,), i = 1,2,
and using the closedness of the sets D(xzg,),i = 1,2 we can find for each
i = 1,2 a neighborhood W;(y) of y such that F(xzs,,2) < o Vz € W;(y).
Clearly W, = W1 (y) N Wa(y) is a neighborhood of y such that F(x,, z) < o/
for all z € Wy, ie., 2 ¢ D(zs,), i =1,2, and hence, z ¢ D(z) for all A € I,,.
Thus for every y € D(b), there exist a neighborhood W, and an interval I,
satisfying

F(zx,2) <d' VYA€, Vze W,

Because D(b) is a closed subset of the compact set D | it is itself compact, and
from the family {W,,y € D(b)} one can extract a finite collection {W,,y €
E},|E| < 400, still covering D(b). If X € I := Nyecpl, and y € D(b), then
y € W, for some y' € E, hence F(xy,y) < . Therefore, D(zy) C D(a) for
all A e I,ie., I C L,, contradicting the definition of s. |

Theorem 5. Assume that the function F(x,y) : C x D — R is quasiconvex
u.s.c. in x in every line segment for fived y, quasiconcave u.s.c. iny for fized x.
If condition (M) in Theorem 1 is satisfied, then the equality (7) holds.

Proof. The proof is similar to that of Theorem 1, but using Lemma 3 instead
of Lemma 1. Specifically, for a sequence v; € (o, ), v /" 7 consider the sets

D*(x) ={y € D| min F(a',y) >, F(z,y) >}, v €C.

For k fixed they are all closed subsets of the compact set D™ and by Lemma 3
they have the finite intersection property. Therefore, these sets have a
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nonempty intersection, i.e., there exists y* € DM such that inf,cc F(z, y*) >
vk Because DM is compact, while the function y +— inf,cc F(x,y) is u.s.c.,
it follows that the sequence {y*} € DM has a cluster point 4 € D™ such that
infyec F(z,y) > . Consequently, max,ep infyec F(z,y) > v and because
always maxyep infyec F(7,y) < v = infreosup,ep F(2,9), the equality (7)
follows. |

Theorem 6. Assume that the function F(x,y) : C x D — R is quasiconvex
l.s.c. in x for fixed y, quasiconcave l.s.c. in y in every line segment for fized x.
If condition (N) in Theorem 3 is satisfied, then the equality (10) holds.

Remark 3. Propositions analogous to Theorems 1 and 1b can also be derived
from Theorems 5 and 6, for example:

If F(x,y) is as in Theorem 5 but satisfies either (H) or (H*) (instead of
(M)), then (10) holds.

As a special case of Theorem 6, let us mention the following result of
Golshtein ([5], Theorem 2), which was established (by the way, by a rather
elaborate argument) to provide a tool for the foundation of a general duality
theory of convex programming:

Assume that the function F(x,y) : CxD — R is convex continuous in x for
fized y and concave in y for fived x. If the set C* := {x € C| sup,ep F(z,y) =
v} is nonempty and compact, then the equality (10) holds.

Proof. A concave function on a convex set is always L.s.c. in every line segment,
while the assumption about C* is nothing but condition (K*) in Theorem 4,
which in turn implies condition (N) in Theorem 3. |

A point (Z,7) € C x D is said to be a saddle point of F(x,y) on the set
C x D if it satisfies

F(z,y) < F(z,y) < F(z,y) VexeC, VyeD. (11)

As is well-known (see, e.g., [2], Proposition 1.2, Chapter VI), F(x, y) possesses
a saddle point on C' x D if and only if

in sup F(z,y) = max inf F(x,
mp e Fley) = yax e Py

and then (Z,7) is a saddle point if and only if (Z,7) € C* x D*, where
C*:={zeC| sup F(z,y) =n}, D":={yeD| inf Flz,y) =~}, (12)
yeD zeC

and v = 7 is the saddle value.
Combining Theorems 1 and 3 yields:
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Theorem 7. Let F(x,y) be a function quasiconvez l.s.c in x for fized y, qua-
siconcave u.s.c. iny for fivzed x. Assume that

(MN) There exist two nonempty finite sets M C C, N C D along with
real numbers «, B such that a < v,n < 3, and the following sets are nonempty
and compact:

CN :={z e C| maxF(z,y) <3}, DM :={ye D| min F(z,y) > a}.
yEN zeM
(13)
Then the function F(x,y) possesses a saddle point on C X D.

Proof. By Theorem 1, maxyep infyec F(x,y) = +, and by Theorem 3,
mingep sup,ep F(x,y) =7, hence (11). [ ]

Corollary 1. With F(x,y) as in Theorem 7, if the sets C* and D* are non-
empty and compact, then F(x,y) has a saddle point (Z,3) on C x D.

Proof. Then conditions (H*) and (K*) hold, and this implies (MN), by
Theorems 2 and 4. |

3 Stability Theorems

We now turn to conditions for the existence and continuity of the saddle value
and/or the saddle point of a function depending upon a parameter.

Let C,D,X,Y be as previously specified, let {2 be a metric space and
F(u,z,y) : 2xCx D — R, a function continuous on {2 x C' x D, quasiconvex
in x for fixed (u,y) and quasiconcave in y for fixed (u,x). For every u € 2
define

v(u) = inf sup F(u,z,y), n(u) = sup inf F(u,z,y). (14)
z€C yeD yeD z€C

It is convenient to begin with a simple fact that will be often needed in
this section.

Lemma 4. Let D be a compact set in' Y and g(u,y) be an w.s.c. function
on 2 x D satisfying max, ., g(u*,y) < 0. Then there exists an open ball U
around u* such that

maxg(u,y) <0 YueU.
yeD

Proof. By upper semi-continuity, for fixed y € D there exists an open ball Uy
around u* and an open ball V,, around y such that g(u,y’) < 0 YueU,,Yy' €V,,.
Because D is compact, a finite set J C D exists such that D C UyesVy. Setting
U = Nye U, yields an open ball U around u* such that for every y € DueU
we have y € V,, for some y’ € J, while u € Uy, hence g(u,y) < 0. [ |
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The following theorems have been established in [23], under slightly weaker
continuity conditions for F'(u,z,y). For a given u* € {2, we set

=), 0t =nu").

Theorem 8. Assume condition (M) holds, i.e., there exist a nonempty fi-
nite set M C C' and a real number o < v* such that the set DM (u*) :=
{y € D| mingepn F(u*,x,y) > a} is nonempty and compact. Then v* = n*
and there exist a compact set D° C D and an open ball U around u* such that

0 +#{y e D| /rrelij\r}F(u,x,y)Za}CDo Yu € U, (15)

and the function n(u) = sup,cpinfrec F(u,x,y) is upper semi-continuous
at u*.

Proof. First, by Theorem 1, n* =~*. Now, define ¢(u, y) := mingcnr F(u, z,y).
Clearly DM (u*) = {y € D| ¢(u*,y) > a} = N;23 DM where DM (u*) := {y €
Y| ¥ (u*,y) > a—1/k} are closed convex sets. Hence, by Lemma 2 there exists
ko such that D,]C\g (u*) is compact, and by replacing o with o/ := a—1/ky < «
it can be assumed that a < v* and

max u*,y) > a.
Jemmax W, y)
Because 9 (u,y) is pointwise minimum of finitely many functions continuous
in (u,y) and quasiconcave in y, it is continuous in (u,y) and quasiconcave
in y. Therefore, the function u — max,ecpn (y+) ¥ (u,y) is l.s.c. and because
max,e pa () P (u*,y) > a, there is an open ball U around u* such that

a YY) > Vu € U. 16

yeglM?u*)zb(u y) > o Vu (16)

In particular, DM (u) := {y € D| ¥(u,y) > a} #0 Vu € U. Let us show that
the ball U can be chosen so that all sets D™ (u), u € U, are contained in a

compact set DY C D.
Let D = DM(u*). Tt suffices of course to consider the case when D is

noncompact, so that D\ D # (. For 6 > 0 consider the sets

Ds ={y € D|6<d(y,D) <20}, D°={yeD|d(y D)< 2},
where d(y, D) = min 5 ||y — y'[| is the distance from y to the set D.

Because D is nonempty by Lemma 1 and compact by assumption, Ds and
DV are also nonempty and compact, and we have

Y(u',y) <o Vy € Ds. (17)

But the function ¥ (u,y) is w.s.c. as it is pointwise minimum of a family of
continuous functions, so by Lemma 4 there exists an open ball around u*
(which can be considered to be the same U) such that
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Y(u,y) <a YueU, Yy € Ds. (18)

Furthermore, as D\D° # (), we can consider the value 1 (u,y) at any u € U and
y € D\ D°. From (16), there is a point 3’ € D such that ¢ (u,y’) > a. Then
the line segment [y,y’] joining y with 3’ contains at least a point y” € Ds.
Because ¥(u,y’) > o > ¥(u,y”) by (18), ie., ¥(u,y") > ¥(u,y”), while
y' ' =1y+ (1 -71)y, 0 <7 <1, it follows from the quasiconcavity of the
function y — 1 (u, y) that its minimum over the line segment [y, '] is attained
at y, i.e., ¥(u,y) < . Therefore,

Y(u,y) <a YueU, Yye D\DY, (19)

which implies that {y € D| ¥(u,y) > o} C D° Vu € U, proving (15). It
remains to prove the upper semi-continuity of n(u) at u*.

By Theorem 1, max,cp inf,cc F(u*, x,y) = n* > «a, hence the maximum of
infyec F(u*, z,y) is achieved at a point in D°. So max,¢ po inf,ec F(u*, z,y) =
7n*, and consequently, for any given € > 0,

max inf F(u*, x,y) <n*+e.

yeDO xzeC ( y) "
Because the function (u,y) — infyec F(u,z,y) is u.s.c. (pointwise minimum
of a family of continuous functions), by Lemma 4 there exists an open ball
W C U around u* such that

inf F * 4 wW. 20
max inf, (u,z,y) <n"+e Vue (20)
But from (19)
sup inf Flu,z,y) < sup ¢(u,y) <a YueW. (21)
yeD\ Do 2€C y€D\ DO

Hence, by noting that o < v* = n*,

n(u) := sup inf F(u,z,y) <nu*)+e YuecW.
yeD zeC

This means that n(u) is u.s.c. at u*, thereby completing the proof of the
theorem. m

Theorem 9. Assume condition (N) holds, i.e., there exist a nonempty finite
set N C D and a real number 3 > n* such that the set CN(u*) := {x €
C| maxyen F(u*,z,y) < [} is nonempty and compact. Then n* = ~v*, and
there exist a compact set C° C C and an open ball U around u* such that

0+ {xeC| rnea]sch(u,:c,y)gﬂ}CCo Vu € U, (22)
Y

and the function v(u) = inf,ecsup,ep F(u,r,y) is lower semi-continuous
at u*.
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Proof. Analogous to Theorem 8. |

As was recalled earlier, the function F'(u,x,y) possesses a saddle point on
C x D if and only if

min sup F(u,x,y) = max sup F(u,z,vy), 23
miy sup (u, 2, y) i sup (u, 2, y) (23)

and then a point (Z,7) is a saddle point if and only if (Z,7) € C*(u) x D*(u),
where

C*(u) := argmin,co(sup F'(u,2,y)), D*(u):= argmax,cp(inf F(u,z,y)).
yeD : zeC

Theorem 10. Assume condition (MN), i.e.,

(MN) There exist two nonempty finite sets M C X, N C Y, along with
real numbers o, 3 such that o < v*,n* < 8, and the sets CN (u*) := {z €
X| maxyen F(u*,z,y) < B}, DM(u*):={y € Y| mingen F(u*,z,9)
> a} are nonempty and compact.

Then there exists an open ball U around u* such that for each u € U, the func-
tion (x,y) — F(u,z,y) possesses a saddle point on C x D with the property
that the saddle value is a continuous function of u on U and the set-valued
map u — C*(u) x D*(u) is upper semi-continuous at every u € U.

Proof. As mentioned at the beginning of the proof of Theorem 8, without loss
of generality we can assume that o < v*,n* < 8. By Theorems 8 and 9, there
are two compact sets C° € €, D C D, and an open ball U around u* such
that for each u € U:

) # {z € C| maxyen F(u,x,y) < B} C C°, (24)
0 # {y € D| mingen F(u,x,y) > a} C D°. (25)

We show that U can be selected so that for each v € U:

min sup F(u,z,y) = n(u). (26)
zeC yeD

Because sup, ¢ p infyec F'(u*,z,y) = n* < 3, we have

: *
mmax nf F(u",2,y) <B.
In view of the upper semi-continuity of the function (u,y) — inf.cc F(u, z,y),
by Lemma 4 there exists an open ball around «* (which can be considered to be
the same U) such that max, ¢ po infyec F(u,z,y) < 3 Vu € U. Because D° is
compact, this implies, by Theorem 1, inf, o SUpPy, ¢ po Fu,z,y) < B YueU,
and so the set {x € C| sup,cp F(u,z,y) < B} is nonempty. But this set
is obviously contained in the set {x € X| max,eny F(u,z,y) < 3}. Hence,
according to (24),
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0 #{x € X| sup F(u,z,y) < 8} c C°. (27)
yeD

This means that condition (K) holds, and, consequently, by Theorem 4 we
must have (26). Also, (27) implies that

0 # C*(u) = argmin, . (sup F(u, z,y)) € C°.
yeD

Analogously, we show that the ball U can be chosen so that for each u € U:

inf F = D*(u) = inf F D°.
max inf, (u,z,y) =v(u), O +# D*(u) argmaxyeD(irelc (u,z,y)) C
Hence,

min sup F(u,z,y) = max inf F(u,z, Yu € U,

iy sup (u, z,y) = max inf F(u,z,y)
and so for every u € U, the set C*(u) x D*(u) of saddle points is nonempty.

Furthermore, the saddle value o(u) is continuous at u* by virtue of
Theorems 8 and 9. Let us prove the upper semi-continuity of the mapping
ur— C*(u) x D*(u) at u*. Let (a¥,y") € C*(u”) x D*(u"), =¥ — z*, y*¥ —
y*,u” — u*. Then F(u”,z",y”) = o(u”), hence, by continuity, F'(u*,z*,y*) =
o(u*), ie.,

sup inf F(u*,z,y) = F(u*,2",y") = inf sup F(u",2,y)

yED zeC zeC yED
whence (z*,y*) € C*(u*) x D*(u*). This means that the mapping u —
C*(u) x D*(u) is closed and hence, u.s.c. at u*, because C*(u) x D*(u) C
C°% x DY with C° x D° compact.

Because by Theorems 2 and 4 condition (HK) implies (MN), the state of
affairs at every u € U is exactly the same as that at u*. Therefore the saddle
value is continuous, and the set-valued mapping C*(u) x D*(u) is upper semi-
continuous, at every u € U. This completes the proof of the theorem. |

As immediate consequence of Theorem 10, we obtain the following impor-
tant result of Golshtein established in [5] by a much more elaborate proof.

Corollary 2. The conclusion of Theorem 10 remains valid if the following
condition 1s satisfied:

(CD)  The sets C*(u*) := {x € C| sup,ep F(u*,z,y) =~*} and
D*(u*) := {y € D| infyec F(u*,2,y) = n*} are nonempty and
compact.

Proof. Using the representations
C*(u*) ={z € C| sup F(u",z,y) <"} = Nyep{z € C| F(u",z,y) <n"},
yeD
D*(w) ={y € D| inf F(u",2,y) 27" = Neecly € D| F(u",2,y) 277},

one easily derives from Lemma 2 that assumption (CD) implies (MN) for some
nonempty finite sets M C C; N C D and real numbers a = v*, 8 = n*. |
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Corollary 3. The conclusion of Theorem 10 remains valid if the following
condition is satisfied:

(1\7[N) There exist two nonempty finite sets M C C, N C D satisfying

max F(u*,z,y) = —o0 asy € D, |ly|| — +oo.
xeM

min F(u*, x,y) — 400 as x € C, ||z]| — +o0.
yeN

Proof. This follows from Theorems 10 and 2, 4. ]

4 Lopsided Minimax and Noncooperative Equilibrium

Consider a two-person zero-sum game (C, D, F(z,y)) where C, D are the strat-
egy sets of the players, and F'(x,y) is the “loss” of the first player (the “gain”
of the second player) when the first player chooses x and the second player
chooses y. Following Theorem 7, if C, D are compact convex sets and F'(z,y)
is a function continuous on C' x D, quasiconvex in z and quasiconcave in y,
then the game has an equilibrium expressed by a saddle point of the function
F(z,y).

Suppose now that F'(x,y) is not quasiconvex in x while all other conditions
in the just stated minimax theorem are satisfied. If for each strategy = € C'
the second player always responds by a strategy y maximizing F'(z,y), then
how will things change?

An answer to this question is provided by a proposition that is a direct
extension of the minimax proposition and can be termed a lopsided minimaz
theorem because of the dissymmetry between the two players. As it turns out,
this extension, furthermore, includes as an immediate corollary the famous
theorem of Nash on noncooperative equilibrium in n-person games.

Theorem 11. Let C' be a convex subset of R™, D a convex compact subset
of R™ F(x,y) a continuous function on C' x D, quasiconcave in y for fived
x. If Z : D+ 2C is an upper semi-continuous set-valued map from D to C,
such that for everyy € D, Z(y) is a nonempty convex compact set, then

inf Flz,y) < F(z,y). 28
Inf max (z y)fryneagxglgé) (z,9) (28)

Proof. We first show that the set C' = UyepZ(y) is compact. To this end, let
W, t € T, be a family of open sets covering C. For each fixed y € D, because
Z(y) is compact, there exists a finite set I(y) C T', such that Z(y) C Ujer,)Wi.
In view of the upper semi-continuity of the set-valued map Z, there exists an
open ball V(y) around y such that Z(y') C U;er)Ws Yy € V(y). Then,
using the compactness of D, we can find a finite set £ C D such that D is
entirely covered by UyecgV (y). Clearly the finite family W;, ¢ € I(y),y € E}
is a covering of C. Thus from any open covering of C, one can extract a finite
subcovering. This proves the compactness of C' and hence also the compactness
of its convex hull C".
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Now for every z € C define f(z) := {y € D| F(z,y) = maxycp F(z,y')}.
Clearly, for every x € C, f(z) is a nonempty convex compact subset of D.
We contend that = — f(z) is a closed set-valued map from C' to D. In-
deed, consider a sequence (2% ,y*) € C x D such that y* € f(z%),2% —
20 y* — ¥ (k — +o00). Because y* € f(z¥), we have F(zF y*) >
F(2* y) Yy € D, hence, by continuity, F(2°,y") > F(2%y) Yy € D,
ie., y0 € f(2°), proving the closedness of the map = + f(x). In view of
the compactness of D, this closed set-valued map is upper semi-continuous
(see, e.g., [1], Chapter 3, Corollary 9) and hence, so is the set-valued map
I':C x D :— 2°%P defined by I'(z,y) = Z(y) x f(z). By the Kakutani
fixed point theorem, there exists a point («*,y*) € I'(a*,y*) = Z(y*) x f(z*),
i.e., such that y* € f(2*) and z* € Z(y*). If maxyep sup,cz(,) F(z,y) = o,
ie., F(z,y) < a Yy € D, Vo € Z(y), then, because z* € Z(y*), y* €
f(z*) € D, we have F(z*,y*) < a and F(z*,y*) = maxyep F(z*,y), hence
inf,ec maxyep F(z,y) < a. This proves (28). ]

A special case of this lopsided minimax theorem is the following minimax
proposition mentioned at the beginning of this section:

Corollary 4. (von Neumann [12]) Let C C R™,D C R™ be compact conver
sets, and F(z,y) a function continuous on C x D, quasiconvex in x for fized
y and quasiconcave in y for fixed x. Then

i F = in F(z,y).
min max (z,y) max min (z.y)

Proof. Tt suffices to define Z(y) = argmin, - F(z,y)} and to observe that
maxgez(y) F(z,y) = mingec F(z,y). Then by Theorem 11

i F < in F
mg e ey < paymia Py,

and the reverse inequality is always true. |
The following theorem is simply an analogue of Theorem 11.

Theorem 12. Let C' be a convex subset of R™, D a convex compact subset
of R™, F(x,y) a continuous function on C' X D, quasiconvex in y for fized x.
If Z : D+ 2€ is an upper semi-continuous set-valued map from D to C, such
that for every y € D, Z(y) is a nonempty convex compact set, then

sup min F(z,y) > min min F(z,y). 29
sup min ( y)fyemez(y) (x,y) (29)

Remark 4. A weaker version of the above lopsided minimax theorem (with
both C, D compact) was established many years ago as an extension of Walras’
excess demand theorem in Mathematical Economics [18] and was proven to
be equivalent to the Kakutani fixed point theorem. Because in this case (29)
implies, for every a € R:
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min inf F(z > o = maxmin F(x >«
yeD z€Z(y) (@y) 2 zeC yeD (@) 2 a,

the above theorem has the following transparent heuristic interpretation:

Suppose the utility function F(x,y) of a company depends upon a variable
x € C under its control and a variable y € D outside its control. If for every
y € D there exists for the company a set Z(y) C C every element of which
guarantees a utility level no less than «, then, under suitable conditions, there
exists for the company an x* € C guaranteeing a utility level no less than a,
whatever y € D may be.

No wonder that Theorem 11 (or Theorem 12), which is an extension of an
ordinary minimax theorem, can also be used to directly derive Nash’s nonco-
operative equilibrium theorem for n-person games. A link is thus established
between minimax and noncooperative equilibrium concepts.

Consider an n-person game in which the strategy set C; of the player 4
is a subset of a finite-dimensional Euclidean space X;. When the player i
chooses a strategy x; € C;, the situation of the game is described by the
vector # = (21,...,2,) € [~ C;. In that situation, the player i obtains a
payoff fi(x).

Assume that each player does not know which strategy is taken by the
other players. A vector Z € [[;_, C; is then called a Nash equilibrium if for
every i = 1,...,n we have

fi(fl,ig, e 7%") = Imax fi('zfl7 e 7%7;_1,581',51'_5_1, . 7in)
z;€C;

By x; denote the vector formed by the x; with j # i:

$; = (1}1,...,.’I‘i_l,l‘i+1,...,l‘n),

so that © = (x1,27) = (z2,23) = -+ = (Tn,xs) (after rearranging the com-
ponents if necessary). With this notation, the equilibrium condition can be
written as

fi(z) = ;?eaéi fi(yi, 77).
Theorem 13. (Nash [10]) Assume that for each i = 1,...,n the set C; is
convex compact, the function f; is continuous, and the function y; — fi(y:, x7)
18 concave. Then there exists a Nash equilibrium.

Proof. Let C' =[], C; and consider the function F(z,y) defined on C'x C' by

n

Fz,y) =Y (fi(z) = filys, 27))-

i=1

The set C' is convex, compact as the Cartesian product of n convex compact
sets, and the function F(z,y) is jointly continuous in z,y and convex in y



20 H. Tuy

for fixed z. By setting D = C, Z(y) := {y}, the conditions of Theorem 12
are satisfied. Because mingcz(,) F(x,y) = F(y,y) = 0, it follows from (29)
that sup,cc mingec F(z,y) > 0, and hence, max,cc mingec F(z,y) > 0,
because the function x — minyec F(x,y) is u.s.c. and the set C' is compact.
Consequently, there exists € C such that

F(z,y) = Z(fz’@) — fi(yi, 7)) >0 VyeC.

i=1

Fixing an arbitrary ¢ and letting y := (y;, ¥;) yields

£i@) = filyo @) + > _(£:(3,75) — £ (;,75)) 20 Wy eC.
J#i

But for each ] # i we have h; = x5, so (T;,75) = (y;,¥;). Therefore, for every
1=1,.
[i(@) = fi(yi, @3)  Vy; € Ci,

which implies that = is a Nash equilibrium. |

5 Conclusion

In this paper, we have developed a unified approach to existence and stability
conditions for the saddle value and saddle point of a quasiconvex quasiconcave
function. It turned out that, under usual assumptions, condition (M) ((N),
respectively) ensures not only existence but also upper (lower, respectively)
semi-continuity of the saddle value under continuous perturbation, and con-
dition (MN) ensures both existence and upper semi-continuity of the saddle
point. Also, a lopsided minimax theorem is established that yields as imme-
diate corollaries von Neumann’s minimax theorem for two-person zero-sum
games as well as Nash’s theorem on equilibrium in n-person games.
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Abstract In this chapter, we give an overview of various applications of a recent
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1 Introduction

Let X and Y be two nonempty sets, and let f : X x Y — R be a given
function.

The object of minimax theory, in its classic sense, is to find conditions on
X,Y and f that are sufficient to guarantee the validity of the equality

sup inf f(x,y) = inf s 2 Y)-
;1615 zlgxf(r Y) nf ylelgf(x Y)

In this paper, we do not intend at all to offer a comprehensive survey of the
subject. For such a survey, we refer to the excellent [44].

The current paper should be rather considered, in the spirit, as a con-
tinuation of [33]. This latter was devoted to give an overview of the various
applications ([25,26,30-32,35]) of the following result proved in [29].

Theorem 1. Let X be a topological space, Y a compact real interval, and
f: X xY — R. Assume that, for each p € R, zo € X, yo € Y, the sets

{reX: flz,p) <p}
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and

{yeY: flzo.y) > p}
are connected. In addition, assume that at least one of the following three sets
of conditions is satisfied:

(h1) f(x,-) is upper semicontinuous in'Y for each v € X, and f(-,y) is lower
semicontinuous in X for each y €Y,

(ha) f is upper semicontinuous in X xY;

(h3) X is compact, and f is lower semicontinuous in X x Y.
Then, one has

sup inf f(z,y) = 1nf sup f(z,y).
yey z€X X yey

Recently, in [38], we revisited Theorem 1 extending it in the following way:

Theorem 2. Let X be a topological space, Y C R an interval, and f : X X
Y — R a function such that f(x,-) is continuous for all x € X. Assume
that there exist a number p* > supy infx f, a point § € Y, and two sets
Dy,Dy CY, both dense in'Y, such that for each p €] — oo, p*[, the following
conditions hold:
(o) the set {y €Y : f(x,y) > p} is an interval for all x € X;
(B) the set {x € X : f(x,y) < p} is closed for all y € Dy and compact for
y =17, and the set {x € X : f(z,y) < p} is connected for all y € Ds.
Then, one has

sup inf f(z,y) = mf sup f(x,y).

yey zeX X yey
As it will be remarked later, when Y is compact, Theorem 2 holds without
requiring the existence of the point ¢ with the indicated property. Likewise,
when Dy =Y, it is enough to assume that f(x,-) is upper semicontinuous for
all x € X.

The aim of the current paper is just to survey some applications of
Theorem 2.

Theorems 1 and 2 belong to the class of the so-called topological mini-
max theorems, due to the fact that the assumptions are of purely topological
nature.

From a theoretical point of view, the best topological minimax theorem
is, in our opinion, the following result by H. Kénig [18]:

Theorem 3. Let X,Y be two topological spaces, with X compact. Assume
that, for each x € X, the function f(x,-) is upper semicontinuous in

Y and that, for each y € Y, the function f(-,y) is lower semicontinuous
i X. Further, assume that:

(i1) for each p € R and each nonempty finite set H C'Y, the set
{zeX: flz.y) <p}

yeH
is connected;
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(i2) for each p € R and each nonempty set H C X, the set

N{yeY: fla,y) > p}

xeH
1s connected.

Then, one has

sup inf f(x,y) = inf sup f(z,y).

yeyzexf( Y) zexyeyf( Y)
In [44] is well described the process of successive improvements ([16,17,48])
of the first topological minimax theorem [50], which just culminated with
Konig’s result.

We want to repeat that Theorem 3 is a great theoretical result. However,
if we pass to the natural question of how can assumptions (i;) and (iz) be
satisfied, then we encounter serious difficulties. In fact, the natural general
situation in which (i;) and (i) are satisfied is when X and Y are convex
sets in topological vector spaces and all the sets {x € X : f(z,y) < p} and
{y €Y : f(x,y) > p} are convex. Out of such a setting, checking (i1) and (i2)
becomes extremely difficult, as the intersection of two even “extremely simple”
connected sets fails to be connected. In other words, we can conclude that,
apart from very specific situations, Theorem 3 becomes canonically applicable
when it assumes the fashion of Sion minimax theorem [46] which, in turn,
improved the most classic results of the theory, due to Von Neumann [49], Ky
Fan [13], and Nikaidd [27].

On the other hand, without further assumption on Y, there is no hope to
achieve the optimal version of Theorem 3 coming out from removing intersec-
tion in (41) and (i2) (that is, assuming that they are satisfied simply when H
is a singleton). In this connection, consider the following example. Take:

X ={(t,u) e R*: t?* +u? =1}

Y ={(v,2) e R*:v? + 22 <1}
and, for each (t,u) € X, (v,2) €Y,
fltu,v,2) = tv 4 uz.

So, for fixed (¢,u) € X, we have

sup f(t,u,v,2) = Vt?+u?=1.

(v,2)€Y

Moreover, for fixed (v, z) € Y, we have

inf  f(t,u,v,2) = =02+ 22

(t,u)ex
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Hence, it follows that

0= sup inf f(t,u,v,z)< inf sup f[f(t,u,v,2)=1.
(v,2)ey (Lu)eX ( ) (tw)eX (v,2)ey ( )

Now, come back to Theorems 1 and 2. On the basis of the discussion above,
they can be regarded as optimal versions of Theorem 3 when Y is a real
interval. Of course, this very severe restriction on Y (that, we repeat, is nec-
essary for being able to assume simply the connectedness of the single level
sets {x € X : f(x,y) < p}) prevents the use of Theorems 1 and 2 in many
important instances (as the theory of duality [41], or the theory of monotone
operators [45]). Nevertheless, there are likewise important cases where the sec-
ond variable of the considered function f runs over an interval. In these cases,
the use of Theorems 1 and 2 allows one to get results that are incomparably
better than those that one could get applying Theorem 3.

In this connection, the most enlightening example is the case of an integral
functional on an LP space.

So, let (T, F, u) be a o-finite nonatomic measure space, F a real Banach
space (F # {0}), and p a real number greater than or equal to 1.

As usual, LP(T, E) denotes the space of all (equivalence classes of) strongly
p-measurable functions u : T'— E such that [, || u(t) ||? du < +o0, equipped
with the norm || u || o (r,m)= ([ || u(t) || du)%.

A set D C LP(T, E) is said to be decomposable if, for every u,v € D and
every S € F, the function ¢ — xs(¢)u(t) + (1 — xs(t))v(t) belongs to S, where
X s denotes the characteristic function of S.

A function ¢ : T'x F — R is said to be sup-measurable if for every strongly
p-measurable function v : T — E, the function ¢ — ¢ (¢, u(t)) is p-measurable.

In [42], J. Saint Raymond established the following very interesting result:

Theorem 4. Let ¢ : T'x E — R be a sup-measurable function, and let D C
LP(T, E) be a decomposable set.
Then, if we put

S={ueD:o(u()) e LI(T)}a

for each p € R, the set

{ues: / sa(t,U(t))duﬁp}

s arcwise connected.
Then, applying Theorem 1 via Theorem 4, we get

Theorem 5. Let Y C R be a compact interval, X C LP(T, E) a decomposable
set, p : TXxEXY — R a function that is sup-measurable in T x E and concave
in'Y . Moreover, assume that p(-,u(-),y) € LY(T) for allue X, y €Y.
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Finally, suppose that the functional u — fT o(t,u(t),y)du is lower semi-
continuous in X for each y € Y, and that the function y — [ o(t,u(t),y)du
s upper semicontinuous in 'Y for each u € X.

Then, one has

sup inf [ o(t u(t),y)du = inf Sup/ o(t, u(t), y)dp.
yequX T "EXer T

Note that to get Theorem 5 via Theorem 3, we would be forced, in practice, to
assume two spurious assumptions: X should be convex and weakly compact,
and (¢, -, y) should be convex for each (t,y) € T x Y.

From Theorem 5, in turn, many consequences follow. Let us here recall
some of them.

Theorem 6. Let ¢ : T x E — R be a sup-measurable function. Assume that
P
there exist « € LY(T), ; €]0,1[ and 3; € L¥ % (T) (i =1,...,k) such that

k
—a(t) < (t,z) < a(t) + Zﬁi(t) | 2 |

for almost every t € T and for every x € E.
Then, for every decomposable linear subspace X of LP(T,E) and every
closed hyperplane V of X, one has

inf t,u(t))dp = inf t,u(t))dp.
J?v/ﬁ’( su(t))dp uuelx/TsO( su(t))dp
Let us now observe a consequence of Theorem 6 that extends the classic fact
that, for v €]0, 1], the topological dual of LY(T, E) reduces to zero. Precisely,
we denote by M the set of all metrics d on LP(T, E) of the following type:

k
d(u,0) =Y /T Bi(t) | u(t) — v(t) | dp

where u,v € LP(T,E), v; €]0,1[, B; € L7 (T), ; > 0in T (i = 1,....k).
Note that each d € M is a metric inducing a vector topology that is weaker
than the || - || z» (7, g)-topology.

Theorem 7. For every d € M and every decomposable linear subspace X of
LP(T, E), the topological dual of (X,d) reduces to zero.

When we take X = LP(T, E), the conclusion of Theorem 6 can be extended
to a class of functions ¢ with a more general growth.

Theorem 8. Let ¢ : T x E — [0,4+00| be such that ¢(-,x) is p-measurable
for each x € E and ¢(t,-) is Lipschitzian with Lipschitz constant M(t) for
almost every t € T, where M € Lv-1(T). Assume that ¢(-,0) € L*(T) and
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that there exists a sequence {An} in |0, 400, with lim, 4 Ay = 400, such
that, for almost every t € T and for every x € E, one has

lim 7@“’ An)

n—-+00 >\n

=0.
Then, for every closed hyperplane V' of LP(T, E), one has

inf/Tgo(t,u(t))du: inf /Tgo(t,u(t))d,u.

ueV ueX

Let us recall that a multifunction F : 7" — 2F is said to be measurable if,
for every open set 2 C F, one has {t € T : F(t) N 2 # 0} € F. A function
u:T — E is a selection of the multifunction F : T — 2 if u(t) € F(t) for all
t € T. We denote by Sr the set of all selections of F' belonging to L*(T, E).
An application of Theorem 8 gives

Theorem 9. Let E be separable, and let F : T — 2F be a measurable multi-
function, with nonempty closed values. Assume that dist(0, F(+)) € LY (T) and
that there exists a sequence {An} in |0, 400, with lim, . Ay = 400, such
that, for almost every t € T and for every x € E, one has

lim dist(A\,z, F(t))

n—-+oo )\n

=0.

Then, S intersects each closed hyperplane of L' (T, E).

We stress that each of the above recalled consequences of Theorem 5 is made
possible just because we do not assume the convexity of ¢(t, -, y).

The plan of the current paper is as follows.

In the next section, we prove Theorem 2 and derive some of its conse-
quences among which there are Theorems 12 and 13. In Section 3, we then
apply Theorem 12 to get a general multiplicity theorem for certain non-
linear equations in Hilbert spaces. Section 4 is devoted to an application
of Theorem 13 to a Neumann problem for elliptic equations involving the
p-Laplacian. Finally, in Section 5, using Theorem 2, we prove that the problem
of minimizing locally a C? functional around noncritical points is well-posed.

2 Proof and Corollaries of Theorem 2

Let us start with the proof of Theorem 2.

Proof (Proof of Theorem 2). First, fix a nondecreasing sequence {Y},} of com-
pact subintervals of Y, with ¢ € Y7, such that U,enY, =Y. Now, fix n € N.
We claim that

sup inf f(z,y) = inf sup f(z,y). 2.1
sup i f(z.9) = inf, sup £(z.1) (21)
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Arguing by contradiction, suppose that

sup inf f(z,y) < mf sup f(z,y).
yeY, reX yEY

Fix p satisfying

sup inf f(z,y) <p< min{ *, inf sup f(x, y)}
yeEY, reX reX yeY,

Set
S={(z,y) € X x Yy : fz,y) <p}

as well as, for each y € Yy,
SY={reX:(z,y) €S}

Because supy, infx f < p, one has S¥ # () for all y € Y,,. Let Y}, = [ayn, by,].
Put

A= {(x,y) €S:y<bn,, sup f(z,s) >p}

5€]y,bn]

and

B= {(m,y) €S:y>a,, sup f(z,s) >p}-

s€lan,y(
Observe that A, B are nonempty. Indeed, let 2; € S% and x5 € S**. Because
p < infx supy, f, there are t,s € Y, such that min{f(x1,t), f(z2,s)} > p.
Because max{ f(z1,an), f(z2,b,)} < p, it follows that ¢ > a, and s < b,.
Consequently, (z1,a,) € A and (z2,b,,) € B. Furthermore, observe that A, B
are open in S. Let us see this for A, the other case being analogous. So, let
(z0,y0) € A. Because the function f(zo,-) is lower semicontinuous, the set
{y €lyo,bn] : f(x0,y) > p} is nonempty and open in Y,, and hence it contains
a point y* € Dy, by density. Now, by (), the set

({zr e X: flz,y") > p} X [an,y") NS

is clearly a neighbourhood of (zg,y0) in S that is contained in A. We now
prove that S = AU B. Indeed, let (z,y) € S\ A. We have seen above that
S x {a,} C A, and so y > a,. If y = by, the fact that (z,y) € B has been
likewise proved above. Suppose y < b,. Thus, we have SUD ey, bn] f(xz,s) <p.
From this, it clearly follows that sup,c(,, . f(2,s) > p (note that f(z,y) < p),
and so (z,y) € B. Furthermore, we have ANB = (). Indeed, if (x1,y1) € ANB,
there would be ¢, s € Y,,, with ¢t < y; < s, such that min{ f(x1,¢), f(z1,s)} >
p. By (@), the set {u € Y : f(x1,u) > p} is an interval, and so we would have
f(z1,y1) > p, against the fact that (x1,41) € S. Let pr be the projection from
X xR onto R. Now, consider the sets pr(A) and pr(B). Because pr(S) = Ya,
thanks to the properties of A, B seen above and to the upper semicontinuity
of f(z,-) for all x € X, they are nonempty, open in Y,,, and cover Y,,. So, by



30 B. Ricceri

the connectedness of Yn, we have pr(A) Npr(B) # (). Because D5 is dense in
Y, there exists some ' € Do Npr(A) ﬂpR(B) By (f3), the set S¥ (and hence
5Y" x {y'} too) is connected. But S¥" x {y'} meets both A and B, and this
just contradicts its being connected. So, we have proved (2.1). Flnally, let us
prove the theorem. Again arguing by contradiction, suppose that

sup mf flz,y) < inf sup f(x,y).
yGYz rzeX yey

Choose r satisfying

sup inf f(r,y) <r< mm{ " mf sup f(z, y)}
GYUC6 yGY

For each n € N, put

Cn:{xeX: sup f(x,y)gr}.

YEY,

Note that C,, # 0. Indeed, otherwise, we would have

r < inf sup f(z,y) = sup 1nf f(z,y) < sup 1nf f(z,y).
r€X yey, Y€y, 1€ yey v€X

Furthermore, for each z € X, we have

sup f(z,y) = sup f(z,y)
YEYy yeDNY,

as f(x,-) is lower semicontinuous and Dy is dense in Y. So, we have

Cn = ﬂ {reX: f(z,y) <r}

yeD1NYy,

Consequently, {C},} is a nonincreasing sequence of nonempty closed subsets
of the compact set {x € X : f(x,9) < p*}. Therefore, one has N,enC,, # 0.
Let z* € NpenCy. Then, one has

sup f(z*,y) = sup sup f(z*,y) <r

yel neN yeY,
and so
nf sup flzy) <
a contradiction. The proof is complete. ]

Remark 1.1t is clear from the proof that when Y is compact, Theorem 2
holds without requiring the existence of the point § with the indicated prop-
erty. Likewise, when D; = Y, it is enough to assume that f(z,-) is upper
semicontinuous for all xz € X.

It is important to note the next result, which is a consequence of Theorem 2.
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If (X,7) is a topological space, for any f : X — R, we denote by 7
the smallest topology on X that contains both 7 and the family of sets
{f~1(0 = 00,mD}rer-

Theorem 10. Let (X, 7) be a Hausdorff topological space, Y C R an interval,
and f: X xY — R a function such that f(z,-) is continuous for all x € X.
Assume that there exist a number p* > supy infx f and a set D CY, dense in
Y, such that, for each p €] — o0, p*[ and each y € D, the following conditions
hold:

(i) the set {s € Y : f(x,s) > p} is an interval for all x € X;

() the set {x € X : f(x,y) < p} is compact and sequentially compact;

(i11) there exist a function @, : X — R, bounded below on the set {x € X :
f(x,y) < p*}, and a sequence {p,} in RT converging to 0 such that, for
each A > 0 small enough, the function f(-,y)+AP,(-) is sequentially lower
semicontinuous, and, for each n € N, the function f(-,y) + un®y(-) has
at most one Ty (. ,-local minimum lying in the set {x € X : f(x,y) < p*}.

Then, one has

sup inf f(z,y) = inf su z,Y).
yegzexf( y) zexyegf( y)

Before deriving Theorem 10 from Theorem 2, we establish the following
result [36]:

Theorem 11. Let (X, 7) be a Hausdorff topological space, and @, f : X — R
two functions. Assume that there is p > inf x f such that the set f~1(] — oo, p|)
18 compact and sequentially compact and has at least k connected components.
Moreover, suppose that the function @ is bounded below in f~1(] — oo, p[) and
that the function f + A® is sequentially lower semicontinuous for each A > 0
small enough.

Then, there exists \* > 0 such that, for each X €]0, \*[, the function f+ AP
has at least k T¢-local minima lying in f~(] — oo, p[).

Proof. Denote by C the family of all connected components of f=1(] — oo, p[).
Note that these sets are closed in X because they are closed in f=1(] — o0, p]),
which is, in turn, closed in X. We now observe that there are k pairwise disjoint
closed nonempty sets Cq, ..., Ck such that

k
===

We distinguish two cases. First, assume that C is finite. Let h be its cardinality.
Let By,..., By be the members of C. Then, if we choose C; = B; for i =
1,....k—1and Cy = U?:kBi, we are clearly done. Now, assume that C is
infinite. In this case, we prove our claim by induction. The claim is true, of
course, if k = 1. Assume that it is true if k& = p. So, we are assuming that
there are p pairwise disjoint closed nonempty sets D1, ..., D), such that
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P

Fi0—sr) = D

i=1

Notice that at least one of the sets D; must be disconnected, as, otherwise, we
would have {Ds,...,D,} = C, contrary to the assumption that C is infinite.
Then, if D;« is disconnected, there are two disjoint closed nonempty sets
El, EQ such that Dl* = E1 UEQ. SO, Dl, ey Di*—h Di*+17 [N ,Dp,El, E2 are
p + 1 pairwise disjoint closed nonempty sets whose union is f~1(] — oo, p[).
So, our claim is true for £ = p + 1, and hence, by induction, for any k.

Now, fix ¢ (1 <i < k). By compactness and Hausdorffness, it is clear that
there exists an open set A; C X such that C; C A; and 4; N U;?:l,j#C'j = 0.
Furthermore, it is easily seen that, if we put

G, ={x € A;: f(x) < p},

we have o
G; = C;.
Taken into account that, by assumption, infe, @ is finite, put
(x) —infe, @

f o
i — 111
M= ee I

Let A > 0 be such that f + AP is sequentially lower semicontinuous for each
A €]0, N]. Fix p > max{y;, 3 }. Then, there exists y € G; such that

pp > pf(y) + ¢(y) — inf P.
Moreover, because C; is sequentially compact, there exists = € C; such that

b(x7) + puf (27) < O(x) + pf ()

for all x € C;. We claim that ] € G;. Arguing by contradiction, assume that
f(zF) > p. We then have

D(x;) + pf(xf) = O(x]) + pp > (7)) + D(y) + pf(y) — igféﬁ > D(y) + pf(y)

which is absurd. Now, let ¢ vary. Put p* = max{u1,. .., tx, %} Clearly, each
set G; is Tg-open, and hence each z} is a 7¢-local minimum of @ + uf for
all © > p*. Consequently, the points x7,...,z} satisfy the conclusion, taking
A= /%*’ and the proof is complete. |

Proof (Proof of Theorem 10). We have only to check that f satisfies the hy-
potheses of Theorem 2. So, let y € D, and r < o < p*. By (i), it clearly
follows that the set {z € X : f(x,y) < o} is closed (because X is Hausdorff)
and that the set {x € X : f(x,y) < o} is compact and sequentially compact.
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From (4i7), it follows that the functions f(-,y), ¢, do not satisfy the con-
clusion of Theorem 11 with k = 2, and so, because function ¢, is bounded
below in {z € X : f(z,y) < o} and the function f(-,y) + A®,(-) is sequen-
tially lower semicontinuous for each A > 0 small enough, it necessarily follows
that the set {x € X : f(z,y) < o} is connected. Now, observe that, because
{reX: f(x,y) <o} C{xeX: f(zx,y) <o}, one has

{reX: flz,y) <r}= ﬂ {reX: flz,y) <o}

r<o<p*

Therefore, the closed set {z € X : f(x,y) < r}, as the intersection of a non-
increasing sequence of compact and connected sets, is connected too. Finally,
let p €] — o0, p*[. Because

{veX: fx,y) <pt=JlzeX: fla,y) <r},

r<p

it follows that the set {x € X : f(z,y) < p} is connected. So, all the assump-
tions of Theorem 2 are satisfied, and the conclusion follows. [ ]

Remark 2. We do not know whether, in Theorem 10, condition (i#i) can be
improved replacing 7¢(. .,y with 7. However, this is the case when we are allowed
to take @, = 0. To see this, we first establish the following

Proposition 1. Let X be a Hausdorff topological space and f : X — R a
function. Assume that, for somer > infx f, f has at most one local minimum
lying in f~1(] —oo,7]) and that f~1(] — oo, p|) is compact for all p €] — oo, r].
Then, the set f=(] — oo, r]) is connected.

Proof. Assume that the set f~1(] — 0o, 7]) is disconnected. Then, because it is
closed, there would be two nonempty, closed and disjoint sets A, B such that

4] —o0,7]) = AUB.

Because the restriction of f to f=1(] — co,7]) is lower semicontinuous and
A, B are compact, there are 1 € A and 25 € B such that f(x;) = infyeca f
and f(z2) = inf,ep f. Now, choose two open and disjoint sets 21,2 € X
such that A C 2y and B C (2. It is readily seen that f(x1) < f(x) for all
x € (27 and that f(z2) < f(x) for all x € (25. Therefore, x; and xo would
be two distinct local minima of f lying in f~*(] — 0o, 7]), against one of the
hypotheses. |

Theorem 12. Let X be a Hausdorff topological space, Y C R an interval,
and f: X XY — R a function such that f(x,-) is continuous for all x € X.
Assume that there exist a number p* > supy infx f and a set D CY, dense in
Y, such that, for each p €] — 0o, p*[ and each y € D, the following conditions
hold:
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(i') the set {s € I : f(x,s) > p} is an interval for all z € X;
(i7) the set {xz € X : f(z,y) < p} is compact;
(#i1") the function f(-,y) has at most one local minimum lying in the set {x €
X flz,y) <p'}

Then, one has

sup inf f(z,y) = mf sup f(z,vy).
yey zeX X yey

Proof. The proof is exactly the same as that of Theorem 10, with the only
change of using Proposition 1 instead of Theorem 11. |

The following consequence of Theorem 10 will be applied later to nonlinear
differential equations:

Theorem 13. Let (X, 7) be a Hausdorff topological space, Y C R an interval,
and f : X XY — R a function such that f(x,-) is continuous for allz € X and

sup inf f(z,y) < mf sup f(x,y).
yey z€X X yey

Assume that there exist a number p* > supy infx f and an open set D CY,
dense in'Y, such that, for each p €] — oo, p*[, the set {y € Y : f(z,y) > p} is
an interval for all x € X, and the set {x € X : f(x,y) < p} is compact and
sequentially compact for ally € D.

Then, there exist a nonempty open set A C'Y such that, for every y € A
and for every function & : X — R, bounded below on the set {x € X :
f(z,y) < p*} and such that, for each X > 0 small enough, the function f(-,y)+
AD(+) is sequentially lower semicontinuous, there exists 6 > 0 such that, for
each p €0,0], the function f(-,y)+pP(-) has at least two Ty (. ,-local minima
lying in the set {x € X : f(x,y) < p*}.

Proof. Denote by D’ the set of all y € Y such that there exist a function
¢, : X — R, bounded below on the set {z € X : f(z,y) < p*}, and a
sequence {/,} in RT converging to 0 such that, for each A > 0 small enough,
the function f(-,y)+A®,(-) is sequentially lower semicontinuous, and, for each
n € N, the function f(-,y) + 1, ®,(-) has at most one 7¢(. ;)-local minimum
lying in the set {z € X : f(z,y) < p*}. By Theorem 10, the set D N D’ is not
dense in Y. Consequently, because D is open and dense in Y, the set D’ is
not dense in Y, and so the set A = int(Y \ D’) satisfies the conclusion. W

Analogously, from Theorem 12 we get

Theorem 14. Let X be a Hausdorff topological space, Y C R an interval, and
f: X xY — R a function such that f(z,-) is continuous for all x € X and

sup inf f(z,y) < 1nf sup f(z,y).
yey zeX



Recent Advances in Minimax Theory and Applications 35

Assume that there exist a number p* > supy infx f and an open set D C Y,
dense in'Y', such that, for each p €] — oo, p*[, the set {y € Y : f(x,y) > p} is
an interval for all x € X, and the set {x € X : f(z,y) < p} is compact for
ally € D.

Then, there exist a nonempty open set A C'Y such that, for everyy € A,
the function f(-,y) has at least two local minima lying in the set {x € X :

flx,y) <p*}.

Before ending this section, let us recall the important defintion of a saddle-
point.

A saddle-point of f: X x Y — R is any (z*,y*) € X x Y such that

f(a*,y*) = inf f(z,y") = sup f(z",y).
rzeX yey

The characterization of saddle-points is as follows:
Proposition 2. (x*,y*) is a saddle-point of f if and only if the following
three conditions hold:
nf F — inf
sup iy f=m sup fs

nf f(z,y7) = Sl;plglff fs

sup f(z*,y) = inf sup f.
yey X vy

It is worth noticing that the mere validity of the condition
* * — . f —3 f .
f@*,y") sup iny f= bl;pf

is not enough to ensure that (z*,y*) is a saddle-point of f. For instance, take
X =]0,1], Y =[0,1], and f(z,y) = y. In this case, for each z € X, we have

f(z,0) = Sl;plgl(ff = 1%fs§1/pf =0

but, clearly, f has no saddle-point, as the function sup,cy f(-,y) does not
attain its infimum in X.

3 A General Multiplicity Theorem for Certain Nonlinear
Equations in Hilbert Spaces

In the current section, we apply Theorem 12 to get the following result [37]:

Theorem 15. Let X be a real Hilbert space and let J : X — R be a continu-
ously Gateauz differentiable, nonconstant functional, with compact derivative,
such that
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lim sup J(@) <0. (3.1)

zl|—-+o0 112

Then, for each r €]infx J,supy J[ and each xg € J=1(] — 0o, 7[), at least one
of the following assertions holds:

(a) There exists X > 0 such that the equation
r=MN"(z) + z0

has at least three solutions.
(b) There exists a unique y € J~1([r, +00]) such that

||lzo — y|| = dist(zo, J*I([r, +o0[)) = dist(zo, J*I(r)).

Among the most significant consequences of Theorem 15, there is the general
multiplicity theorem announced in the title of the section. It reads as follows:

Theorem 16. Let X be a real Hilbert space and let J : X — R be a continu-
ously Gateaux differentiable, nonconstant functional, with compact derivative,

such that ;
lim sup ﬁg <0.
Izl —+oo 12
Then, for each r €]infx J,supy J| for which the set J~*([r,+o0[) is not

conver and for each conver set S C X dense in X, there exist xo €
SNJY] —oo,r[) and X\ > 0 such that the equation

z =\ (z) + xo
has at least three solutions.

To derive Theorem 16 from Theorem 15, we use a very recent result by I. G.
Tsar’kov [47]. We state it below in a form that is enough for our purposes.

Theorem 17. Let X be a real Hilbert space and C' C X a sequentially weakly
closed and nonconvex set.

Then, for each convex set S C dense in X, there exists xg € S\ C such
that the set {y € C': ||xo — y|| = dist(zg, C)} has at least two points.

In practice, when dim(X) = oo, Theorem 17 is a more precise version of the
celebrated, classic result of Efimov and Stechkin on Chebyshev sets [12] (see
also [52] for a proof based on convex analysis methods).

Now, the way of drawing Theorem 16 from Theorem 15 is transparent. Let
us formalize it.

Proof (Proof of Theorem 16). Let r €]infx J,supy J[ be such that the set
J7Y([r, +oc[) is not convex and let S C X be a convex set dense in X . Because
J’ is compact, the functional J turns out to be sequentially weakly continuous
[54], Corollary 41.9). Hence, the set J 1 ([r, +o0]) is sequentially weakly closed
(possibly not weakly closed). Consequently, by Theorem 17, there exists z( €
SN J7Y(] — oo,r]) such that (b) of Theorem 15 does not hold. Hence, (a) of
the same theorem holds, which is the conclusion. ]



Recent Advances in Minimax Theory and Applications 37

We are going to prove Theorem 15. We first recall that a Gateaux differen-
tiable functional J on a real Banach space X is said to satisfy the Palais—Smale
condition if each sequence {z,} in X such that sup,cn |J(2n)| < +oo and
limy, 400 ||J/ ()| x+ = 0 admits a strongly converging subsequence.

We also recall the following three critical points theorem [28]:

Theorem 18. Let X be a real Banach space and let J : X — R be a continu-
ously Gateaux differentiable functional satisfying the Palais—Smale condition
and having at least two local minima.

Then J has at least three critical points.

We now are in a position to prove Theorem 15.

Proof (Proof of Theorem 15). Let r €]infx J,supy J[ and z¢ € J~1(]—o0, 7).
Assume that assertion (a) does not hold. So, let us suppose that, for each
A > 0, the equation

Tr = )\J’(I) + X9 (E)\)

has at most two solutions. Now, define the function f : X x [0,4+00]— R by
setting

£l ) = gl = zoll? + Ar = T(x)

for all (x,A) € X x [0, +o00o[. Let us check that f satisfies the hypotheses of
Theorem 12, the space X being endowed with the weak topology. It is clear
that (') is satisfied. So, fix A € [0,4+o00[. As we have already observed, the
functional J is sequentially weakly continuous. Hence, the functional f(-,A)
is sequentially weakly lower semicontinuous. Fix € > 0 so that % —eA > 0. By
(3.1), there is 6 > 0 such that

J
sup (scg
lel>s 1zl

Thus, we have
1 2 1 2
Fla,A) > { 5 —ed ) llzl® = llzollllzll + S llzoll” + Ar

for all x € X, with ||z|| > §. Hence, we get

Hxnhﬂoof(x’ A) = teo.
From this, by the reflexivity of X, by the Eberlein—Smulyan theorem and by
a classic result ([54], Example 38.25) we infer that f(-, A\) has weakly compact
sublevels, has a global minimum, and satisfies the Palais-Smale condition. On
the other hand, the critical points of f(:,\) are exactly the solutions of (E}).
Hence, by assumption, f(-, A) has at most two critical points. Then, thanks
to Theorem 18, f(-,\) has exactly one global minimum and no other local
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minimum in the strong topology, and so, a fortiori, in the weak topology.
Hence, also conditions (4i’) and (iii’) are satisfied. Therefore, Theorem 12
ensures that

sup inf f(x,\) = inf sup f(z, \). 3.2
sup inf () = inf sup f(, ) (32)
Clearly, one has
1
inf sup f(z,\) = = inf e 3.3
reX Azlgf( ) 2 zeJ—1([r,+oo]) || 0” ( )

Furthermore, observe that, because J ! ([r, +-00|) is sequentially weakly closed,
there exists y € J~1([r, +00[) such that

llzo — yl| = dist(zo, J*([r, +00[)).

We claim that y € J=1(r). Indeed, if J(y) > r, because J is continuous and
J(xg) < r, there would exist a point z in the line segment joining z¢ and y
such that J(z) = r. So, we would have |zg — z| <dist(zq, J([r, +0[)), an
absurdity. In particular, this implies that

dist(zo, J([r, +00])) = dist(zg, J ().

Now, observe that the function inf,cx f(z,-) is upper semicontinuous in
[0, +o0] and that limy_ 4« infrex f(z,\) = —00, as r < supy J. Hence, there
is A* > 0 such that

inf *) = sup inf .
nf f(z,A") gl;mngf(m,A)

So, from (3.2) and (3.3), we get

1 1
Ilg( (2||x o A*J(JU)) = xe}r}f;(r) (236 —zo|* - A*J(J;)) .

From this, we infer that A* > 0, as J(z¢) < r, and that each global minimum
of the restriction of the functional z — ||z — zo||? — A*J(z) to J71(r) is a
global minimum of the same functional on X. But, as we have seen above, for
each A > 0, the functional  — %]z — zo||? — AJ(z) has exactly one global
minimum in X. On the other hand, a point y € J~1(r) is a global minimum
for the restriction of the functional 2 — %[z — zo|> = A*J () to J~'(r) if and
only if ||y — zo| =dist(zo, J71(r)), and so (b) follows. [ |

Remark 3. The conclusion of Theorem 15 can be false when (3.1) is not satis-
fied. To see this, take, for instance, X = R, J(z) = 2% — 2, r = 0 and 2y = %
We also believe that some more sophisticated example should show that the
assumption about the compactness of J’' cannot be omitted.

Remark 4. In [14], Theorem 15 has been extended to a broader class of Banach
spaces, and [15] is devoted to a nonsmooth version of it.
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Further, observe that, applying Theorem 15 to both J and —J, we get the
following result

Theorem 19. Let X be a real Hilbert space and J : X — R a continu-
ously Gateaux differentiable, nonconstant functional, with compact derivative,
such that

J(x) _

1im =
]| —+oo [|2]|?

Then, for each r €]infx J,supy J| and each xo € X \ J~Y(r), at least one of
the following assertions holds:

(1) There exists A € R such that the equation
x =N (z)+ 0

has at least three solutions.
(ii) There exists a unique y € J~1(r) such that

llxo — y|| = dist(zo, Jﬁl(r)).

Reasoning as in the proof of Theorem 16, we obtain the following consequence
of Theorem 19:

Theorem 20. Let X be a real Hilbert space and J : X — R a continu-
ously Gateauz differentiable, nonconstant functional, with compact derivative,

such that
J(z)

1im
]| —+oo [|2]|?

Then, for each r €]infx J,supy J[ for which the set J=1(r) is not convexr and
for each convex set S C X dense in X, there exist xg € S\ J1(r) and A € R
such that the equation

xTr = )\JI(LU) + Zo
has at least three solutions.

We conclude this section presenting an application of Theorem 16 to a two-
point boundary value problem.

Theorem 21. Let f : R — R be a continuous nonconstant and nondecreasing
function satisfying
3
o St
lim 2>~ —0. 3.4
lelotoo €2 (34)
Then, for each r €]infecr fog f(t)dt, supgcr fOE f(t)dt] and for each convex set
S C C()0,1]) dense in Wy 2(]0,1]), there exist w € SN J;l(] — o0, r[) and
A > 0 such that the problem
—u”" = Af(u) —w"(t) in [0,1],
u(0) =u(l) =0

has at least three (classic) solutions.
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Proof. Consider the Sobolev space H{(0,1) endowed with the inner product

(u, v) = /O W () (1)dt.

Define the functional J¢ : H}(0,1) — R putting
1
Jr(u) = / F(u(t))dt
0
for all u € H}(0,1), where

13
() = / £(s)ds.

The functional J; is continuously Gateaux differentiable on Hg(0,1) with
compact derivative, and one has

1
o) = [ flaotar
for all u,v € H(0,1). Further, from (3.4), it readily follows that
Iy (u)

lull—+oo [lu|?

So, J satisfies the assumption of Theorem 16. Fix r €] infg F,supg F[ (note
that 7 is in the interior of the range of Jy (see the argument below)). Now,
let us show that the set J; L(r) is not convex. First, we note that, for each

a € R, there exists u € Hg(0,1) such that v () = a and fol F(u(t))dt = 7.

Indeed, set
1
A= {ueH&(O,l):u<§) :a}.

Fix ry,ry satisfying infg F' < r1 < r < ry < supgr £, and pick &1, &> so that
F(&) =11, F(&) = ra. Next, choose € > 0 such that

r1(1 —4e) 4+ 4e sup |F| <r <ry(l —4e) — 4e sup |F|,
[—p.0] [=p:r]

where p = max{|{1], &2/, |a|}. Finally, fix two functions uy,us € A so that

maX{Sup|U175up|U2|} < psua(t) =&, ug(t) =&
[0,1] [0,1]

for all t € [e, 5 — €] U[4 +¢,1 — €]. Then, we have

1
/ F(uy(t))dt <ri(1 —4e) +4e sup |F| <r
0 [=p.0]
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as well as

1
/ F(ug(t))dt > ro(1 — 4€) — 4e sup |F| > r.
0 [=p:r]

Because A is connected (being convex) and the functional u — fol F(u(t))dt

is continuous, there is u € A such that fol F(u(t))dt = r, as claimed. Now,
because f is not constant, we can fix a,b € R so that f(a) # f(b). According to
the previoub claim, there are u,v € H{(0,1) such that u (3) = a,v (3) = band

fol F(u fo ))dt = r. Finally, we claim that, for some p €]0, 1],

we have .
/0 Fu(t) + p(o(t) — u(t)))dt # .
Arguing by contradiction, assume the contrary. Hence, the derivative of the

function p — fol F(u(t) + p(v(t) — u(t)))dt is zero in [0, 1]. That is,

1
/O fu(®) + p(o(t) — u(t)))(v(t) — u(t))dt = 0

for all p € [0,1]. From this, it clearly follows that

1
| o) = ) — uvya ~o.
Then, because f is nondecreasing, we infer that

(f((®)) = flu(t)))(v(t) —u(t)) =0
for all ¢ € [0,1]. So, because u( ) #v (%), we get

()= 0)

a contradiction. Now, observe that J; is convex, as f is nondecreasing. Con-
sequently, J~1(] — oo,r]) is convex. Then, because J~'(r) is not convex,
J7Y([r, +oc[) is not convex, too. Now, let S C C§°(]0,1]) be a convex set
dense in H}(0,1). Theorem 16 ensures the existence of w € SN Jf_l(] —00,7()
and A > 0 such that the equation

v=A}(v) +w

has at least three solutions in H}(0,1). Note that v is one of them if and only if

/ t)dt = )\/ flv dt+/01 w'(t)w' (t)dt

- / (AF(0(t)) — w" (6))w(t)dt
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for all w € H}(0,1). This clearly implies that v € C?([0,1]), with

—0"(t) = Af(v(t)) — w(2)

for all ¢ € [0,1]. Consequently, the function v is a classic solution of the
problem

{ —u”" = Af(u) —w"(t) in [0,1],
u(0) = u(1) = 0.

So, this problem has at least three solutions, and the proof is complete. W

Another application of Theorem 16 can be found in [21].

4 An Application of Theorem 13

Let £2 C R™ be a bounded open set, with boundary of class C', and let p be
a real number greater than n. Consider the Sobolev space W1P(§2) with the
usual norm

full = ([ (¥at@l + uto))as
Because p > n, WHP(£2) is compactly embedded in C°(£2). So, we have

- SUP.e |u(z)] -
weWrr (2\{0} ([, [Vu(z)|Pdz + [, [u(z)|pdz)?

c:=

< +00.

Let ¢ : 2 x R — R be a Carathéodory function such that sup¢ <, [o(+,§)| €
LY(2) for all s > 0.

For each u € WP (§2), put

T, () = /Q < /O o cp(a:,t)dt) da.

The functional J,, is (well-defined and) continuously Gateaux differentiable on
W1P(£2), with compact derivative (so, .J,, is sequentially weakly continuous),
and one has

T (u)(v) = /ﬂ o, u(z)o(a)da

for all u,v € WHP(02).

Consider now the following Neumann problem
—div(|Vul[P=2Vu) + |[ulP~2u = ¢(z,u) in 2

%:00118(2,
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where v is the outer unit normal to 0f2. Let us recall that a weak solution of
the problem is any u € W1P(£2) such that

/|Vu(ac)|”_2Vu(x)Vv(x)dm+/ lu(x) [P~ 2u(z)v(z)de
o Q
—/(p(x,u(x))v(x)dxzo
Q

for all v € WhP(£2).

Hence, the weak solutions of the problem are precisely the critical points
in WHP(£2) of the functional u — ];)”qu — Ju(u).

The current section is devoted to get a multiplcity theorem for the above
problem as an application of Theorem 13.

The result is as follows:

Theorem 22. Let f : R — R be a continuous function for which there are
r >0 and & € R, with meas(Q)[&1|[P > pr, such that

/f meas(€) |gl|p/£lf(t)dt~ (4.1)

€1 <e( pr)i
Assume also that

R
1 = <0. 4.2
leletoe 6P -

Then, there exist p > 0 and a nonempty open set B CJ0,+oo[ with the
following property: for each N € B and for each Carathéodory function
g: 2 xR — R, with supg <, [9(-,§)| € LY(82) for all s > 0, there exists
0 > 0 such that, for every u € [0,0], the problem

—div(|Vu[P~2Vu) + |u|P7?u = M f(u) + pg(z,u) in 2
9u =0 on 012
has at least two weak solutions whose norms in WP (£2) are less than p.

In the proof of Theorem 22, we will also use the following

Proposition 3. Let X be a nonempty set and ¥, J two real functions on X.
Assume that there are r > 0, xg,x1 € X such that

V(o) = J(x0) =0,
U(xy) >,

sup J(x)<r .
2e¥—1(]—oco,r]) (=) ¥(xy)
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Then, for each o satisfying

J(x1)
sup Jx)<o<r 4.3
€W —1(]—o0,r]) ( ) lJp('fﬁl) ( )

one has

sup inf (¥(z) + Mo — J(z))) < inf sup(¥(z) + Ao — J(x))).
A>0zeX z€X \>0

Proof. First of all, observe that

inf sup(¥(z) + Ao — J(x))) = inf v(x).
i P (@) Ao~ @) =l

Next, note that, by (4.3), one has

r < inf U(x).
z€J 1 ([o,+00])
Moreover, because ¥(z1) > r, from (4.3), we infer that J(x1) > o. This
implies that the function A — inf,ex (¥ (z) + A(o — J(x)) tends to —oo as
A — +400. But, this function is upper semicontinuous in [0, +o0c[, and hence it
attains its supremum at a point \. We now distinguish two cases. If 0 < X < -
(note that ¢ > 0 because ¥(xg) = J(z¢) = 0), then ¥(xg) + X(p — J(20)) =

Ao < r. If z < A, then, because (by (4.3) again) Z:%]Ef;; < £, we have

W(x1) + Ao — J(z1)) < r, and the proof is complete. [ ]

Remark 5. Let X be a nonempty set and ¥, J two real functions on X having
a common zero. Consider the function 7 :]0, +o0o[— [0, +-00] defined by putting

SUPgew 1 (J—oo,)) J (2)
t

n(t) =

for all ¢ > 0. Then, it is easy to check that the following conditions are
equivalent:

(7) The function 7 is not nonincreasing.
(#4) There exist r > 0 and 21 € X, with ¥(z1) > r, such that

sup J(x)<r )
2eW—1(]—oc0,r]) W(z1)

Proof (Proof of Theorem 22). For each u € WP(£2), put
1

U(u) = ];IIUHP-

Note that if ¥(u) < r, then supg, |u| < c(pr)%, and so, by (4.1), if u; denotes
the constant function in (2 taking the value &1, we have
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¢
sup Jr(u) < meas(f2) sup / ft)de
uel o) el<e(or)? °

&1
pr / Jr(ur)
< f@)ydt=r .
1&11P Jo ¥ (uy)
Hence, by Proposition 3, for a suitable constant o, we have

sup inf  (W(u) + Mo —J < inf sup(¥(u) + Ao — Jp(u))).
igpouevgg,p(m( (1) + Ao — Jy(u))) uevé?p<n>i‘§3( (u) + Ao — J¢(u)))

Observe that, by (4.2), we have for each A > 0

| Hlirr}r (P (u) — AJf(u)) = 400

and so the functional ¥ — AJ; has weakly compact sublevels. Hence, the
functional (u, \) — ¥ (u)+ Ao — J¢(u)) ((u, A) € WHP(£2) x [0, +-00[) satisfies
all the assumptions of Theorem 13, the space W1P(£2) being endowed with the
weak topology. Fix s* > supysqinfucwiro)(¥(u) + Ao — Jy(u))). Let A C
10, +00[ be a nonempty open set with the property declared in Theorem 13. Let
g: 2 xR — R be a Carathéodory function with supj¢<, [g(-,€)| € L' (§2) for
all s > 0. Fix a,b € A, with a < b. Then, for every \ € [a, b], there exists § > 0
such that, for each p € [0, 6], the functional ¥ + A(o — Jy) — pJ,; has at least
two local minima lying in the set {u € W1P(£2) : ¥(u) + Ao — J¢(u)) < s*}.
Such local minima are critical points of the functional and so weak solutions
of problem (P ). Finally, observe that

U {u e WHP(2) : W(u) + No — J4(u)) < s*}
Ae[a,b]
Clue WP(Q) : W (u) + alo — Jf(u)) < s}
U{u € WHP(02) 1 W(u) + b(o — Jp(u)) < s*}.
But the set on the right-hand side is bounded, and hence we can choose as p

the radius of a ball, centered at 0, containing this latter. The proof is complete.
|

Remark 6. Other recent applications of Theorem 13 can be found in [6, 7],
and [8]. We also recall that the minimax result in [34] (which is very close
to Theorem 14) was the starting point for a long series of applications to
nonlinear differential equations (see, for instance, [1-5,9,10,19,20,22-24,43,
51]).

5 An Application of Theorem 2 to Locally Minimizing
Functionals with Locally Lipschitzian Derivative

In the sequel, (X, (-,-)) is a real Hilbert space. For each x € X, r > 0, we set
B(z,r)={ye X :|y—=zf <r}
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and

S(a,r)={yeX:|y—z|=r}
Given a functional J : X — R and a set C' C X, we say that the problem of
minimizing J over C' is well-posed if the following two conditions hold:

e the restriction of J to C' has a unique global minimum, say Z;
e for every sequence {z,} in C such that lim, . J(x,) = J(&), one has
lim, o ||zn — &|| = 0.

The aim of this section is to prove, making use of Theorem 2, the following
general result:

Theorem 23. Let J : X — R be a C' functional with locally Lipschitzian
derivative.

Then, for each xog € X with J' (xg) # 0, there exists 6 > 0 such that, for
every v €]0, 9], one has

inf J= inf J
B(zo,r) S(zo,r)

and the problems of minimizing J over S(xg,r) and over B(xg,r) are well-
posed.

Proof. Fix xy € X with J'(z¢) # 0. Fix also p > 0 so that
J'(z)#0
for all z € B(zo, p) and

b wp  W@-TWI

< 400.
z,y€B(xo,p),x#Y Hx - yH

For each A > 0, z € X, set
A 2
1) = Sl — ol + J(a).
Let A > L. For each x,y € B(xg, p), we have

(I\(z) = I\(y), ® —y) = Mz — z0) + J' () = My — z0) — J'(y),2 — )
> Mz —yll> = 17 (z) = T Wz —yll = A= L)z —yl>.  (5.1)

From (5.1), via a classic result ([53], Proposition 25.10), we then get that
the functional I is striclty convex (resp. convex) in B(zg, p) if A > L (resp.
A = L). Denote by I" the set of all global minima of the restriction of I, to
B(zg, p) and set
0 = inf ||z — x0]|.
xzel

Observe that § > 0. Indeed, if § = 0, then zg would be a local minimum in X
for I, and so
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0= IIL(ZL'()) = J/(fﬂo)
against an assumption. Now, fix r €]0,d[ and consider the the function @ :
B(zg, p) x [L,+00[— R defined by

D(x,\) = In(x) — /\—TQ

for all (z,\) € B(xq, p) X [L, +00[. As we have seen above, &(-, \) is continuous
and convex in B(xg, p) for all A > L, and @(z, -) is continuous and concave for
all z € B(xg, p), with limy_ 1 o, @(xg, \) = —00. So, applying jointly Theorem
2 and Proposition 2 to @, we get the existence of (&, A) € B(xq, p) X [L, 4+00]
such that

J(&) +

2o >
N >

(|1 = zo||* =r*) = inf (J(:):) +

z€B(wo,p)

(Ilz = ol* — T2)>

. A
= J(Z) 4 sup E(HI — x| = r?).
A>L

Of course, we have || — zg]| < 7, because the sup is finite. But, if it were
||& — x0]] < r, we would have A = L. This, in turn, would imply that & € S,
against the fact that r < . Hence, we have ||& — x| = r. Consequently

Ar? A
J@)+ 5= _inf (J(x) + Sl - x0||2> ‘

z€B(xzo,p)

From this, we infer that A > L (because r < 4), that & is a global min-
imum of Jig(z,,r), and that each global minimum of Jjg(,) is a global
minimum of [ N B(zo,p)" Because A > L, this latter functional is strictly
convex, and so Z is its unique global minimum in B(zg,p) toward which
every minimizing sequence weakly converges ([11], p. 3). In particular, note
that if {y,} is a sequence in B(zg, p) such that lim, . J(y,) = J(Z) and
limy, oo ||Yn — xo|| = 7, then

A A
li n “HYn — 2) = inf = - 2
Jim (J(y )+ 51y — ol ) st (J(x)+ 5 llz — ol )

and so {y, } converges weakly to . Because lim,, . ||yn —xo|| = ||Z —x0]| and
X is a Hilbert space, it follows that lim, . ||yn — @|| = 0. This shows that,
for each r €]0, §[, the problem of minimizing J over S(xq,r) is well-posed.

Fix again r €]0,d[. Now, let us show that infp, .y J = infgez, - J. To
this end, for each t € [0, 7], put

t)= inf J
o(t) st
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and denote by x; the unique global minimum of J|g(,,,+). Clearly, we have

inf J = inf ¢.
B(xo,r) [0,7] 14
Note also that, by the mean value theorem, J is Lipschitzian in B(xg, p), with
Lipschitz constant Ly := ||.J'(xo)|| + Lp. Fix t,s € [0,r]. We have

p(s) =) <J ($0 + ;(% - CU(])) — J(zy) < L]t — s

as well as
t
o)~ ) < 7 a0+ Lo =) ) = I(o) < Lale - o

Thus, ¢ is Lipschitzian and so it attains its infimum in [0,7] at a point £. In
other words, we have
inf J=J(x;).

it (=)
Recalling that J'(z) # 0 for all z € B(x,r), we then infer that ¢ = r. So, z,
is also the unique global minimum of J| (4, Finally, let {y,} be a sequence
in B(xg,r) such that lim, . J(yn) = J(z,). By a remark above, to get that
limy, o ||Yyn — zr|]| = 0, we have to show that lim,, . |[yn — zo| = r. Argue
by contradiction. If it was

liminf ||y, — zo|| < 7,
n—oo

then, for some vy €]0, [, we would have ||y, — zo| < v for infinitely many n,
and so

inf J= inf J=J(x
B(xo,r) B(zo0,7) ( ’Y)

against the fact that J'(x.) # 0. Thus, also the problem of minimizing J over
B(zg,r) is well-posed, and the proof is complete. |

Observe that, in Theorem 23, the condition J'(x¢) # 0 is essential. In fact,
consider the case where J is even (and so J'(0) = 0 because J' is odd). Then,
for any r > 0, J|s(o,r) has either none or at least two global minima.

Also, the local Lipschitzianity of J' is essential. In fact, if J’ is not locally
Lipschitzian at xo (and J'(wg) # 0 as well), it may occur either that Jg(z,.r)
has at least two global minima for each r > 0 or that J|g(,,, has no global
minima for each r > 0. In this connection, consider the two following examples.

Example 1. Take X = R? and
J(z,y) =z —|y|*

where 1 < ¢ < 2. Note that J € C1(R?) and VJ(0) # 0. Let r > 0. Because
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lim n? '(n —v/n2—1) =0,
n—oo

for n € N large enough, we have

r2 or r? r\4
_ 2 | = _ 2_ (= N — _
J( r n2’n> r . (n) < —r=J(-r0).

Now, observe that Jjg(o,) attains its infimum at some point (zo,yo) with
2o < 0. The above inequality shows that xg > —r (and so yy # 0). Conse-
quently, also (zg, —yo) is a global minimum of J|gq ).

Example 2. Take X = [ and
P
=T — (Z a,, )

where % < p < 1and{a,} is a strictly increasing sequence of positive numbers
converging to 1. Note that J € C*(1?) and J'(0) # 0. Fix r > 0. Let {e,} be
the canonical basis of 2. Moreover, set

I={zel’:2=0}
and let A : 2 — (2 the operator defined by
A(z) = {anzn}
for all x € [?. Note that ||A(e,)|| = a,, and so sup,,cn ||A(e,)|| = 1. Note also
that ||A(y)|| < 1 for all y € TN S(0,1). Further, it is easy to see that
S(0,7) = {—rv1— X2+ Ary: A€ [0,1),y € INS(0,1)}.

Consequently, we have

inf J=  inf inf —r ( 1— A2+ r2p71||A(y)||2p/\2p) .
S(0,r) yeInsS(0,1) Ae(0,1]

Now, let 7 : [0, 400[— R be the continuous function defined by
t) = sup (V1 —\24t)\?P)
A€(0,1]
for all t > 0. Because p < 1, one readily sees that 7 is strictly increasing.
Hence, we have
inf J=—r sup sup ( 1— A2 —|—7‘2p71\|A(y)H2p)\2p>
S(0,r) y€eINS(0,1) A€[0,1]

=—r s @A) = ).
yeIns(0,1)

But, for every A € [0,1] and y € I N S(0,1), we have

J(=rV1=Nei + hry) = —rn(r? 7Y A(y)|I*F) > —rn(r*? ™)

and hence J|g(, has no global minima.
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Abstract In this chapter, we give an overview on the theory of noncooperative
games. In the first part, we consider in detail zero-sum (constant-sum) games with
two players having arbitrary strategy sets, under which necessary and sufficient
conditions on the payoff function and the different (extended strategy) sets an equi-
librium (saddle-point) strategy (for both players) exists. The existence of such an
equilibrium strategy is equivalent to whether a so-called minimax theorem for the
payoff function holds. The proof of such a result uses either the separation result
for disjoint convex sets in finite dimensional linear spaces or the strong duality the-
orem for linear programming in combination with some elementary properties of
compact sets. Both proof techniques are given together with a discussion of the
most well-known minimax theorems that appeared in the literature. Also for the
most famous minimax result given by Sion, we separately show an elementary proof
avoiding the KKM lemma and using only the definition of connectedness. In the final
part, we also consider n-person nonzero-sum noncooperative games. It is shown by
a simple application of the same KKM lemma that a Nash equilibrium strategy (a
generalization of a (saddle-point) equilibrium strategy for two players) exists under
certain conditions on the payoff functions and the strategy sets. The main goal of
this chapter is to discuss in detail and full generality the most elementary mathe-
matical techniques for proving the existence of equilibrium points in noncooperative
games (with an emphasis on two players).
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1 Introduction to Noncooperative Game Theory

To introduce a static two-player zero-sum (noncooperative) game (for more
details and examples see [4,18,25,40] or [2]) and its relation to a minimax
theorem, we consider two players called 1 and 2 and assume that the set of pure
strategies (also called actions) of player 1 is given by some nonempty set A, and
the set of pure strategies of player 2 is given by a nonempty set B. Without loss
of generality, we may assume that the sets A and B are topological spaces with
Borel o-algebras B(A), respectively B(B). By definition, a Borel o-algebra is
the smallest o-algebra generated by the open sets ([33]). If player 1 chooses
the pure strategy a € A and player 2 chooses the pure strategy b € B, then
player 2 has to pay player 1 an amount f(a,b) with f: A x B — R a given
function. This function is called the payoff function of player 1. Because the
gain of player 1 is the loss of player 2 (this is a so-called zero-sum game), the
payoff function of player 2 is — f. Clearly player 1 likes to gain as much profit
as possible. However, at the moment he does not know how to achieve this
and so he first decides to compute a lower bound on his profit. To compute
this lower bound, player 1 argues as follows: if he decides to choose action
a € A, then it follows that his profit is at least infyep f(a,b), irrespective of
the action of player 2. Therefore, a lower bound on the profit for player 1 is
given by

Ty 1= SUP,e 4 infrep f(a, b). (1)

Similarly, player 2 likes to minimize his losses but as he does not know how
to achieve this, he also decides to compute first an upper bound on his losses.
To do so, player 2 argues as follows. If he decides to choose action b € B, it
follows that he loses at most sup,c 4 f(a,b), and this is independent of the
action of player 1. Therefore, an upper bound on his losses is given by

r* = infyep sup,e 4 f(a,b). (2)

Because the profit of player 1 is at least r, and the loss of player 2 is at most
r* and the losses of player 2 are the profits of player 1, it follows directly that
r. < r*. In general r, < r*, but under some properties on the pure strategy
sets and payoff function, one can show that r, = r*. If this equality holds
and in relations (1) and (2) the suprema and infima are attained, an optimal
strategy for both players is obvious. By the interpretation of r, for player 1
and the interpretation of r* for player 2 and r* = r, := v, both players will
choose an action that achieves the value v and so player 1 will choose that
action ag € A satisfying

infpep f(ao,b) = maxqea infrep f(a,b).
Moreover, player 2 will choose that strategy by € B satisfying

SUPg,c A f(av bO) = mianB SUP,c A f(a7 b)
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In case only r, = r* or equivalently

inbeB SUP,ec A f(av b) = SUPgec A inbeB f((l, b) (3)

both players can approximate their optimal pure strategies by so-called
e-optimal pure strategies. A pure strategy ag € A for player 1 is called an
e-optimal pure strategy if

inf(,eB f(ao, b) > v — €.

A similar definition applies to an e-optimal pure strategy for player 2. By
these observations, it is now important to know for which payoff functions
and pure strategy sets the so-called minimax result 7. = r* holds and under
which conditions the supremum in relation (1) and the infimum in relation (2)
are attained. Before discussing this, we give an example for which the equality
r* = r, does not hold.

Ezample 1. Consider the continuous payoff function f : [0,1] x [0,1] — [0, o)
given by
f(a,b) = (a —b)*.
For this function, it holds for every 0 < a < 1 that infyejo1(a—b)* = 0 and so
Tx 1= SUPg<,<1 info<p<i(a — b)? = 0.
Moreover, it follows that
Supogag1(a - b)2 =(1- b)2

for every 0 < b < % and

Supogagl(a - b)2 =b°

for every % < b < 1. This shows

* . 2 —1
r* = info<p<t SUPg< i (a — b)° =4
and so r, does not equal 7*.

The above example shows a particular case for which it is not clear how the
players should select their strategies. A possible solution to this problem is to
extend the set of pure strategies to the larger set of so-called mixed strategies.
Recall in the next definition that a Borel finite measure on a topological
space D is a finite measure defined on the Borel o-algebra B(D) of D (for
more details on Borel measures see [7,8,34]). Moreover, we also need in this
definition the unit simplex A C R* given by

k
Ak = {QT = (al’_,,’ak) S Rk : Z_il oy = 1,041', 2 0,1 S ) S k} (4)
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Definition 1. Let D be a nonempty topological space and B(D) its Borel
o-algebra. A Borel finite measure ¢4 : B(D) — [0,00) is called a one-point
Borel probability measure concentrated on the set {d} if es(Do) = 1 for
Dy € B(D) containing d and eq(Do) = 0 otherwise. A Borel finite measure
v : B(D) — [0,1] is called a Borel probability measure with finite support if
there exists some finite set {dy,...,dy) C D and some vector s(v)" € Ay with
si(v) > 0,1 <i <k such that

k

v= Z si(V)eq, .
i=1

If we denote by Pr (D) the set of all Borel probability measures on D with
a finite support, then within game theory, any element v belonging to Pr (D)
is called a mixed strategy and it has the following interpretation. If a player
with pure strategy set D selects the mixed strategy

k

v= Z si(v)eq,,
i=1

then with probability s;(v),1 < i < k this player will use the pure strategy
d; € D. By this interpretation, it is clear that the set D of pure strategies
can be identified within the set of mixed strategies by the one-point Borel
probability measures {e; : d € D}. We now assume that player 1, respectively
player 2 are using their sets of mixed strategies. This means that the payoff
function f should be extended to a function f, : Pr(A) X Pr(B) — R. This
extension is defined by

L) = Y0 3 s s ainhy) (5)

with A = Zf:l s5i(Nea, € Pp(A) and p = 377 s;(u)ey;, € Pr(B), and
it represents the expected profit for player 1 or expected loss of player 2
if player 1 selects the mixed strategy A € Pr(A) and player 2 selects the
mixed strategy p € Pr(B). Under some topological /algebraic conditions on
the function f and the sets A and B of pure strategies, it can be shown that
the game represented by f. and the mixed strategy sets Pr(A) and Pr(B)
has a solution. This means that we need to investigate under which necessary

and sufficient conditions the following minimax result holds:

inf . cpp(B) SUPAep, (4) fe(As 1) = SUDyep,(a) Infuepp By fe(A 1), (6)

In case player 2 is only allowed to use his pure strategy set B, we will also
investigate under which necessary and sufficient conditions the game repre-
sented by f. and the sets B and Pp(A) has a solution. Hence for this case,
we need to check under which conditions the minimax result

infpe g SUPrep,(a) fe(As €b) = Suprep, (a) infren fe(A, ) (7)
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holds. Finally, if player 1 and player 2 are only allowed to use their pure
strategy sets, we again pose the same question and investigate under which
necessary and sufficient conditions the game represented by f and the sets
A and B has a solution or equivalently under which condition the classic
minimax result

infye p sup,e 4 f(a,b) = sup,c 4 infpep f(a,b). (8)

holds. A slight extension of a two-player zero-sum game is given by a so-called
two-player constant-sum game. In this case, each player has a payoff function
fi,i=1,2 and for these payoff functions there exists some ¢ € R such that

fi(a,b) + fa(a,b) = ¢

for every a € A and b € B. As in a zero-sum game, the gain for player
1, respectively player 2 is given by fi(a,b), respectively fa(a,b) when both
players select independently the strategies a, respectively b. Introducing for
this game the payoff functions f;,7 = 1,2 given by

fi:fi_ci

with ¢; + co = ¢, it is easy to see that the analysis of the original constant-
sum game reduces to the analysis of a zero-sum game with payoff function
f1 for player 1. The above two-player zero-sum (constant-sum) noncoopera-
tive game can also be extended to a nonconstant-sum noncooperative game
involving n > 2 players. In this model we have n players, n > 2 and player
i, 1 <14 < n has a pure strategy set X; and a payoff function f; : X — R
with X = II" , X; (for a detailed definition of these games, the reader is re-
ferred to [4,40] or [38]). Embedding the two-player zero-sum game into this
more general framework, we observe that in this case player 1 has payoff func-
tion f1 = f, and player 2 has payoff function fo = —f. For the nonconstant-
sum case and n > 2, we use the notation X; to distinguish between the two
different models, and as before the pure strategy sets X;,i = 1,...,n are
topological spaces. For the more general n-player nonzero-sum noncoopera-
tive games, the concept of a minimax or saddle-point approach used within
a two-player zero-sum game is generalized and replaced by a so-called Nash
equilibrium point ([28,29]). In Section 6, these more general games will be
explained in detail. To analyse the minimax relations given in (6) up to (8)
for a two-player zero-sum (noncooperative) game, we start in Section 2 with
a discussion of Wald’s minimax theorem. This theorem plays a key role in
deriving necessary and sufficient conditions and will be proved using two dif-
ferent methods. The first proof uses the separation result of disjoint convex
sets in convex analysis, whereas the second one uses strong linear program-
ming duality and some elementary properties of compact sets. In Section 3,
these conditions together with an overview of important sufficient conditions
that have appeared in the literature are discussed. Also, we show that the
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sufficient conditions discussed in the literature can be easily verified using our
necessary and sufficient conditions. In Section 4, we then give the relations
between the different minimax theorems, and in Section 5 we consider the fa-
mous minimax result of the form (8) derived by Sion ([37]). Unfortunately, it
remains an open question whether this minimax result can be derived directly
from our necessary and sufficient conditions discussed in Section 3. Although
it is not well-known, a primitive version of Sion’s minimax theorem already
appeared in the classic paper by von Neumann ([21,30]). The proof of Sion’s
theorem given here is completely elementary and uses a proof technique origi-
nated by Jo6 ([11,19]), which differs from the original proof using the so-called
KKM (Knaster-Kuratowski-Mazurkiewicz) lemma. Observe the KKM lemma
is equivalent to the Brouwer fixed point theorem ([43]) and is discussed in Sec-
tion 6. Also in Section 6, we introduce the extension of a two-player zero-sum
game to a n-player nonzero-sum (noncooperative) game and introduce the
concept of a Nash equilibrium point. Moreover, we prove that under certain
conditions, a n-player nonzero-sum (noncooperative) game indeed has a Nash
equilibrium point using a simple proof that applies the aforementioned KKM
lemma. Unfortunately, it remains an open question whether it is possible to
prove the existence of a Nash equilibrium point by the elementary techniques
used for the two-player zero-sum model.

2 On Wald’s Minimax Theorem

We assume in this section that the reader is familiar with the basic notions
in set theory, analysis, and some elementary function theory (for more details
see [35]). Besides this basic knowledge, this section will be self-contained. To
show for the different minimax results listed in relation (6) up to (8) necessary
and sufficient conditions on the payoff function f and the sets A and B, we
first need to discuss in detail Wald’s minimax theorem, and this will be the
topic of this section. The derivation of the necessary and sufficient conditions
will be postponed until Section 3. For readers familiar with convex analysis, a
proof of Wald’s minimax theorem will be given using the (finite dimensional)
separating hyperplane result, whereas for readers more familiar with linear
programming, we will show Wald’s minimax result using the strong duality
theorem of linear programming and some elementary properties of compact
sets. We first start with a proof using tools from convex analysis. To do so,
we first need to recall some well-known definitions and introduce the proper
notation.

Definition 2. A subset C' of a linear space is called convex if for every 0 <
G <1 andz,y € C, it follows that Bz + (1 — )y belongs to C.

In set notation, this means that 8C + (1 — 3)C C C for every 0 < 5 < 1.
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Definition 3. A real-valued function k : C' — R is called convex on the (con-
vex) subset C' if

k(B + (1= B)y) < Bk(x) + (1 — B)k(y)

for every 0 < B < 1 and xz,y € C, and it is called concave on C if —k is
convez. The function k : C' — R is called affine on C if it is both convex and
concave on C'.

Introducing the set

R" :={x=(x1,...,2p) € R":2; < 0,1 <i<n}

and ”

zly = Zi:l Tili
the inner product of the vectors 2" = (z1,...,7,) € R" and y' =
(Y1,---,yn) € R™ (by 27 we denote the transpose of the column vector z),

the most elementary minimax result is given by the following.

Theorem 1. If C C R" is a convez set, then it follows that

Ty = maxaea, infzeco alz.

infec maxaea,
Proof. 1t is obvious that

infrec maxpen, alz > maxqca, infyeo alz. (9)

To show that we actually have an equality in relation (9), we assume by
contradiction that

inf,cc maxpen, alz > maxXee A, infzec alr =. (10)
By relation (10), there exists some (3 satisfying
inf,comaxaen, a'z > > 7. (11)
Introduce now the mapping H : C' — R™ given by
H(x):=z—fe

with e’ = (1,1,...,1) € R". If the set H(C)N R™ is nonempty, there exists
some xg € C satisfying xg — fe < 0. This implies max,ea,, a'zy < 3, and
we obtain a contradiction with relation (11). Hence the set H(C) N R™ is
empty, and by the separation result for disjoint convex sets ([32]) one can find
some ag € A, satisfying inf,cc ag # > 8. This implies by the definition of v
that v > inf e a(—)r:v > [ contradicting relation (11), and the desired result
is proved. ]
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Let us introduce the following notation. The set F(Ap) represents the
set of all finite subsets of the set Ag C A, and for every I € F(Ap) the set
P(I) denotes the set of all Borel probability measures concentrated on I. This
means for [ = {a1,...,a7;} € A and |I| < co denoting the cardinality of the
set I that A belongs to P(I) if and only if

11|

A=Y siVeq, (12)

for some s(A\) " € Aj;. By relation (12), it is clear that the set P(I) is convex
and in particular

P(I) = co({€a}acr) (13)

with co(C) denoting the convex hull of a set C. Remember co(C') represents
the set of all finite convex combinations of elements of the set C' ([32]). By
the definition of Pr(Ag) with Ag C A, we also obtain that

Pr(Ao) = co({€ataca,) = Urer(anP() (14)

and this set is also convex. In the next theorem, we will prove Wald’s mini-
max result. This result was proved in 1945 ([41]) using a more complicated
approach.

Theorem 2. For any payoff function f : Ax B — R and every set I belonging
to F(A),

inf,ep, By max xep(n) fe(A, 1) = maxyep(r) inf e p(B) fe(A, 1)

Proof. Let I belong to F(A) and introduce the mapping L : Pr(B) — Rl
given by

L(p) == (fe(€as 1t))aer-
By the definition of the mapping L and the function f., we obtain

infuepe(p) Maxaep(n) fe(A 1) = infrep(pp(m) Max,(ea;, s(A) 'z (15)
and

maxep (1) infuep, () fe(A 1) = maxyyea,, nfoerpes) s(A) 'z (16)
Also by relation (5), it follows for every a € I that the function

p— fe(€q, )

is affine on Pp(B). This shows by the convexity of the set Pr(B) that the
range L(Pr(B)) € Rl is a convex set. Applying now Theorem 1, we obtain

infxeL(pF(B)) maxs()\)eAm S(}\)TCE = maXS(A)€A|1| infxeL(pF(B)) S()\)Tl',

and by relations (15) and (16), the desired result follows. [ ]
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A symmetrical version of Wald’s minimax theorem needed in the proof of
Lemma 4 is given by
SUP e, (4) Milep(g) fe(A 1) = ming,ep(s) SUPAep, (a) fe(A 1) (17)

for any J belonging to F(B). This can be easily derived from Theorem 2
(replace fo(A, 1) by —fe(X, 1) and reverse the sets A and B!). Using the next
lemma, it is also possible to give different equivalent representations of Wald’s
minimax theorem.

Lemma 1. Let f : Ax B — R be a given payoff function. For any u € Pr(B)
and Ag C A

SUPX\cPr(A0) fe(A, W) = SUDPge A, fe(€a, 1),
and for any By C B and X\ € Pr(A)
inf,ep,(By) fe(N 1) = infoep, fe(N ).

Proof. We only give a proof of the first equality because the second one can
be verified in a similar way. Because the set Ay C A can be identified with
the set of one-point Borel probability measures €,,a € Ag, it is obvious for
every u belonging to Pr(B) that

SUPXePr(Ao) fe(A\ 1) > SUDqe 4, fe(€as ).

Consider now an arbitrary A belonging to Pr(Ap). By definition there exists
a finite set {ai,...,ax} C Ag and s(\)" € Ay such that \ = Zle si(N)€q;s
and hence we obtain

k
fe(/\a.u) = Zi:l Si(/\)fe(eaw,u) < SUPge A, fe(eaa.u)-
Because A belonging to Pr(Ap) is arbitrary, this implies

SUP e, (A0) fe(As 1) < SUPgea, fe(€as 1)
and the desired result is verified. [ |

By Lemma 1, it follows with A replaced by I € F(A) and Pr(Ao) by P(I)
that

infyep,.(p) max xep(r) fe(A ) = infep,(p) maxacr fe(€a, ) (18)

By a similar argument, we obtain

maxyep (1) inf epp (B fe(A, 1) = maxyep(r) infrep fo(A, €), (19)

and combining relations (18), (19) and Theorem 2, one can give different
equivalent representations of Wald’s minimax theorem. For its proof using
the strong duality theorem of linear programming, we need some elementary
properties of closed and compact sets.
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Definition 4. A topological space X is called compact if every collection of
open subsets of X that covers X contains a finite subcollection covering X .

It is well-known that X C R™ is compact if and only if it is bounded and
closed. ([35]). Moreover, an easy consequence of the above definition is the so-
called finite intersection property of compact sets given by the following ([33]):
any collection of closed subsets of a compact topological space X, for which
any finite subcollection has a nonempty intersection, must have a nonempty
intersection.

Definition 5. A function k : X — R with X a topological space is called
lower semicontinuous if all its lower level sets {x € X : k(x) <r},r € R are
closed subsets of X. It is called upper semicontinuous if all its upper level sets
{r € X : k(x) >r},r € R are closed subsets of X, and it is called continuous
if it is both upper and lower semicontinuous.

One can now show the following so-called Weierstrass—Lebesgue lemma
([33]). For completeness, a proof is listed.

Lemma 2. If the function k : X — (—o0, 0] is lower semicontinuous and X
s a compact topological space, then the function k is bounded from below and
attains its minimum on X.

Proof. Because k is a lower semicontinuous function with values > —oo, it
follows that the decreasing sequence O,, :== {x € X : k(z) > n},n € Z of open
sets covers X. This implies by the compactness of X that there exist a finite
subcover and as O, 11 C O,, one can find some m € Z satisfying X C O,,
and so the function k is bounded from below. To show that the function k
attains its minimum, introduce § := inf,cx k(z). If 8 = oo we are done.
Hence we assume that § < oo, and by the first part § is finite. Consider now
the collection of nonempty closed sets F,, = {x € X : k() < 3+n"'},n € N.
Because F), 11 C F,, it follows that by the definition of 8, N, ¢ F}, is nonempty
for every finite subset I of N. Hence by the finite intersection property of
compact sets, we obtain that the intersection N, cnxF;, is nonempty, and this
shows that k attains its minimum on X. |

A symmetrical version of the above result is given by the following. If
the function k : X — [—00,00) is upper semicontinuous and X is a compact
topological space, then the function k£ is bounded from above and attains
its maximum on X. As shown by the next observation, the above result is
useful in determining whether an optimal pure strategy for player 2 exists if
the minimax relations (7) or (8) hold. Because for any payoff function f :
A x B — R it follows for r finite that

{b€ B:sup,eq fla,b) <7} =Nacafbe B: fla,b) <7}, (20)

we obtain immediately for b —— f(a,b),a € A lower semicontinuous that the
function b —— sup,c4 f(a,b) is also lower semicontinuous. This implies by
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Lemma 2 for B a compact topological space and using Lemma 1 that there
exists some by € B satisfying

Supgea f(a,bo) = infrep sup,ca f(a,b) = infpep supyep,. (a) fe(A, €).

By a symmetry argument, a similar observation holds for player 1 if A is a
compact topological space and a — f(a, b) is upper semicontinuous for every
be B.

Definition 6. A function k : X — R with X a topological space is called
inf-compact if all its lower level sets {x € X : k(x) < r},r € R are compact.
It is called sup-compact if all its upper level sets {x € X : k(x) > r},r € R
are compact.

If B is a Hausdorff space, it is shown in Chapter 9 of [33] that a compact
subset of B is closed. This proves for B Hausdorff that every inf-compact (sup-
compact) function is actually lower semicontinuous (upper semicontinuous).
Using now Lemma 2 and Definition 6, one can prove the following important
result.

Lemma 3. If the pure strategy set B is a topological space and there exist
some Iy € F(A) such that the function b — maxqey, f(a,b) is inf-compact
and b — f(a,b) is lower semicontinuous for every a € A, then

SUPrer(a) Infoe B SUPger f(a,b) = infoep sup,e 4 f(a,b).

Moreover, the inf in the last expression is attained, and so, it can be replaced
by min.

Proof. Introducing 3 := sup;cz(a) infpep sup,es f(a,b), we first verify that
infpepsup,ca fla,b) < B+e
for every € > 0. Consider for € > 0 the nonempty set
Fo(e) == {b € B:maxuer,u{a} f(a,b) < B+ e}, a € A\l.

Because the function b — f(a,b) is lower semicontinuous for every a € A,
it follows by relation (20) that the nonempty set F,(e) is closed for every
a € A\Iy. Moreover, for every finite set I C A\, we obtain by the definition
of f that NyerF,(€) is nonempty and

Fy(e) C{b € B:maxey, f(a,b) <[+ €} (21)

for any o € A\Iy. By assumption, the last set in relation (21) is compact, and
we have shown that the collection F,(e),a € A\Iy of closed sets satisfies the
finite intersection property. This shows that Nyea\7, Fo(€) is nonempty, and
because
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Naeav Fal€) = {b € B :sup,cy f(a,b) < 5+ e}, (22)

we obtain

inf sup f(a,b) < B +e.

beB aeg f( ) <h
Because € > 0 is arbitrary, this implies infyc g sup,c 4 f(a,b) = 3, and to show
that the infimum is actually attained, we observe the following. Because by
relation (22) we obtain for every e > 0 that

G(€) := Naears, Fale)

is a closed nonempty set of the compact set {b € B : maxqey, f(a,b) <
G+ €}, the finite intersection property also holds for the decreasing collection
G(e), € > 0. This shows that

infye g Supge 4 f(a,b) = minye p supge 4 f(a,b)
and so the infimum can be replaced by min. |

An important special case of Lemma 3 is given by B a compact topological
space, and b — f(a,b) is lower semicontinuous for every a € A. Because
every closed subset of a compact set is compact (see Chapter 9 of [33]), it is
obvious that the conditions of Lemma 3 are satisfied. A symmetrical version
of Lemma 3 needed in the next proof of Wald’s minimax theorem is given by

inf ;e 7(B) SUP,e 4 Minge s f(a,b) = maxqea infyep f(a,b), (23)

and this holds if the function a —— f(a,b) is upper semicontinuous for
every b € B and there exist some Jy € F(B) such that the function
a — mingye g, f(a,b) is sup-compact. A sufficient condition for this is given
by A a compact topological space, and a — f(a,b) is upper semicontinuous
for every b € B. We are now able to give a proof of Wald’s minimax result
using the strong duality theorem for linear programming and relation (23).

Proof. (Alternative proof of Wald’s minimax theorem)

By relation (14) with Ay replaced by B, it follows for I belonging to F(A)
that

infep,(p) Max aer fe(€as 1) = inf je p(p) Min,ep(s) maxaer fe(€a, p).  (24)
For every J € F(B), the optimization problem
min,uGP(J) maXger fe(emlff) = min{z 1z 2> fe(eavﬂ)ﬂl el,pe P(J)}

is a linear programming problem with a finite optimal solution. Hence by the
strong duality theorem for linear programming ([6]), we obtain the minimax
result given by
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min, e p(y) Maxaer fe(€q, ) = maxyep(ry Minpe s fe(A, €). (25)
Applying now relations (24) and (25) yields

inf,ep, (B) Max aer fe(€a, ) = inf jc £(p) Maxycp () minpes fe(A, €).  (26)

Moreover, because the set I is finite and hence A C RII being closed and
bounded and hence compact (in the Euclidean topology) and A — f.(), €)
is continuous on P(I) for every b € B, we may use relation (23) with the set
A replaced by P(I) and the function f(a,b) by fe(A,€). This shows

inf je 7By Maxyep(r) Minpe s fe(A, ) = max ep(r) infoep fe(N, €)

and so we obtain by relation (26) that

inf,ep, (B) MaXaer fe(€as ) = maxyep(r) infrep fe(N, ).
Finally by Lemma 1 (replace By by B), Wald’s minimax result is verified. W

Actually the minimax result

Min,ep () MaXaer fe(€a, ft) = Maxyep ) Minpes fe(A, €) (27)

was first proved by von Neumann in 1928 ([30]). In fact in this paper, a more
general minimax result for a continuous payoff function defined on the Carte-
sian product of compact simplices that is quasiconvex in B and quasiconcave
in A was shown. This result seems to have been forgotten in the literature
(the special case in relation (27) was published in [31]) and was later indepen-
dently generalized by Sion ([37]) in 1958. A useful consequence of Lemma 3
and Wald’s minimax result is given by Kneser’s minimax result ([22]).

Lemma 4. If the set A is a compact convex subset of a linear topological space,
B is a convex subset of a linear space, the payoff function f: Ax B — R is

affine in both variables, and a — f(a,b) is upper semicontinuous for every
b € B, then

SUp,e 4 infyep f(a,b) = infrep sup,eq f(a,b)

and in both expressions the sup can be replaced by max.

Proof. Because A is a compact convex topological space and the function
a — f(a,b) is upper semicontinuous for every b € B, we obtain by relation
(23) that

maxqe 4 infpep f(a,b) = inf jc r(p) max,c 4 minge 5 f(a,b). (28)

Considering now any A belonging to Pr(A) and b € B, it follows that there
exists some finite set {ai,...,ax} C A and s(\)T € Ay, such that

A= Z; si(\)eq, -
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This implies, using a — f(a,b) is affine for every b € B and A is a convex
set, that

k

max,e 4 Minge s f(Ch b) > minye g f(z

- si(AN)ai, b) = minge s fe(A, €).

(29)
Because A € Pr(A) is arbitrary, relation (29) yields

maXge A Minpe f(a,b) > supyep,(a) Minpes fe(A, €)
and by Lemma 1 and relation (14) with A, replaced by A, this implies
maxXge 4 Minpes f(a,b) = supyep,a) Minuep(s) fe(A, 1)- (30)

Applying now the symmetrical version of Wald’s minimax theorem listed in
relation (17) to the last part of relation (30) yields

maXqe A MiNpe f(‘% b) = minue?’(]) SUP\ePr(A) Je(A, M)~ (31)

Hence by relations (28), (31), (14) and Lemma 1, we obtain

maxqe 4 infpep fa,b) =inf,cp, (B)Sup,ca fe(€as 1) (32)

Because the function b — f(a,b) is affine for every a € A and the set B is
convex, we obtain as in the first part of this proof that

inf,cp,(B)SUPea fel€as 1) = infoepsup,e 4 f(a,b) = infye p maxqea f(a,b)

and in combination with relation (32), the desired result follows. u

Actually one can show that the minimax results of Wald, von Neumann,
and Kneser can be easily derived from each other. For more equivalent min-
imax results, the reader is referred to ([15]). An easy consequence of Wald’s
minimax theorem useful in Section 2 is given by the following.

Theorem 3. For any payoff function f: Ax B — R
SUpse () Infuep,(B) MaXaer fe(€as ) = SUPep,. () I uep, (B) fe(As 1)

Proof. By Lemma 1 and Wald’s minimax theorem, we obtain for every [
belonging to F(A) that

infep,(p) MaXaer fe(€as ) = maxyep(r) Infepp(n) fe(A, 1) (33)
Because by relation (14)

SUPre () MaXnep (1) I epp(B) fe(A 1) = sUpPrep,.(a) Infepp(B) fe(A 1)

the desired result follows using relation (33). |
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3 On Necessary and Sufficient Conditions
for Minimax Theorems

In this section, we will derive necessary and sufficient conditions for the
different minimax equalities listed in relations (6) up to (8) by means of the ex-
tension of Wald’s minimax result listed in Theorem 3. Observe these minimax
results are equivalent to the existence of “optimal” strategies for two-player
zero-sum noncooperative games under different conditions on the use of the
strategy sets of the two players. To derive these conditions for relation (6), we
introduce the following class of functions.

Definition 7. The payoff function f: A x B — R belongs to the set Uy if

SUPrer(A) infuePF(B) maxger fe(€q, M) = inquPF(B) SUPge A Je(€a, ).

A game theoretic interpretation of a payoff function f belonging to the set
Uy is given by the observation that for player 2 using the mixed strategy set
Pr(B) and the minimax approach, it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. However, it might be possible that the value for player 2
cannot be achieved if he uses the set Pp(B) of mixed strategies.

Theorem 4. The minimaz result in relation (6), given by

infiepp(B) SUPAep,(a) fe(As 1) = suDrep,. (a) I uepp () fe(A 1),
holds if and only if the function f belongs to the set Uy.

Proof. By Theorem 3 and the definition of U, the result follows immediately.
|

The importance of the above theorem is that the minimax equality in re-
lation (6) is replaced by an easier condition. Notice that U is automatically
satisfied if A is a finite set. In this way, Wald’s minimax theorem is a direct
consequence of Theorem 4. Moreover, we will show at the end of this sec-
tion that a minimax result derived by Ville ([39]) is an easy consequence of
Theorem 4. We do this by showing that the conditions imposed on the payoff
function f and the pure strategy sets A and B imply that the function f
should belong to the set Uy. Actually by a symmetric argument (replace f by
—f and reverse the sets A and B!), one can also introduce the following class
of functions.

Definition 8. The payoff function f: A x B — R belongs to the set Vg if
inf 7 7(B) SUP e, (4) Mipes fe(A, €) = SUP\ep,.(a) infoen fe(A, €).

Using the same symmetry argument, the next corollary is an easy conse-
quence of Theorem 4.
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Corollary 1. The minimaz result in relation (6), given by

infuePF(B) SUP\ePr(A) Je(A p) = SUPNePr(A) infuePF(B) Je(A 1),
holds if and only if the function f belongs to V.

To derive a necessary and sufficient condition for the minimax equality in
relation (7), we introduce the following class of functions.

Definition 9. The function f: A x B — R belongs to the set Uy if

SUPseF(a) Ifuep,(B) Maxaer fe(€a, 1) = infrep supgea f(a,b).

A game theoretic interpretation of the payoff function f belonging to the
set U is given by the observation that for player 2 using the mixed strategy set
Pr(B) and the minimax approach, it does not make any difference whether
his opponent given by player 1 selects a pure strategy from the set A or first
considers all finite subsets of A and then selects from one of these finite subsets
his pure strategy. Moreover, the payoff function for player 2 is such that his
mixed strategy set is always dominated by his pure strategy set. A sufficient
condition for the listed minimax result was discussed in [20].

Theorem 5. The minimaz result in relation (7), given by

infoe B SUPAep,(a) fe(A, €0) = SUDep,.(a) infren fe(A ),
holds if and only if the function f belongs to Uy .

Proof. By Lemma 1, the minimax result listed in relation (7) is the same as

infoe g supge 4 f(a,0) = supyep, (a) Infuepp () fo(A 1)
Hence by Theorem 3 and the definition of U;, the desired result follows. W

Finally we derive a necessary and sufficient condition for the minimax equality
listed in relation (8) involving the pure strategy sets A and B.

Definition 10. The function f : A x B — R belongs to the set Us if

SUPep,.(a) ifren fe(As €) = sup,e 4 infrep f(a,b).

A game theoretic interpretation of the payoff function f belonging to the
set Us is given by the observation that for player 1 using the mixed strategy set
Pr(A) and the minimax approach, his mixed strategy set is always dominated
by his pure strategy set. This means that player 1 can restrict himself to the
set of pure strategies instead of using the set of mixed strategies. One can now
show the most well-known minimax result.
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Theorem 6. The minimaz result in relation (8), given by
infpe g sup,e 4 f(a,b) = sup,c 4 infoecp f(a,b),
holds if and only if the function f belongs to the set Uy NUs.

Proof. 1f the function f belongs to the set Uy NUs, then by Lemma 1 (replace
Ap by A) and Theorem 5 we obtain

infpep sup,ea f(a,b) = supyep,.(a) infoen fe(A, ).

By the definition of the set Us, this implies that relation (8) holds. To show the
reverse implication, consider an arbitrary A belonging to Pr(A). By relation
(14), there exists some Iy € F(A) such that A € P(Iy), and so we obtain

infrep fe(A, ) < Suprep(a) infoep sup,e; f(a,b). (34)

This implies
SUP ep,(a) ifren fe(As €) < suprera) infres sup,er f(a,b).
Also by our minimax result listed in relation (8), we obtain
SuPrer(a) infoe B sup,e; f(a,b) < infyepsup,eq f(a,b)

= Sup,e 4 infoep f(a,b)
and this shows that

SUPep,(a) ifren fe(A, €) < sup,e 4 infrep f(a,b). (35)

Because the reverse inequality trivially holds, we can replace the inequality in
relation (56) by an equality, and so the function f belongs to Us. This implies
using again the minimax equality in relation (8) that

SUP\ep,(a) infren fe(A €) = infpep sup,ea f(a,b)
and by Theorem 5 the function f belongs to U . |

Again using a symmetry argument (replace f by —f and reverse the sets
A and B!) in the definition of the sets U; and Us, one can introduce the
following class of functions.

Definition 11. The payoff function f: A x B — R belongs to the set V, if

inf ye 7(B) SUPAep, (4) Milpes fe(A, €) = Sup,e 4 infrep f(a,b),

whereas f: A x B — R belongs to the set Vs if

infuePF(B) SUP,c A fe(€aa ,U) = infyep SUPgec A f(a7 b)'
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By the same symmetry argument, one can easily derive the following corol-
lary from Theorem 6.

Corollary 2. The minimax result in relation (8), given by

infaca supyep f(a,b) = supyep infaeca f(a,b),
holds if and only if f belongs to the set Vi N V.

Before giving a short overview of some minimax theorems that appeared
in the literature, we list some definitions and results for functions defined on a
metric space. Observe we also include the definition of a continuous function
on a metric space. Another equivalent definition of a continuous function on
a topological space was already given in Definition 5.

Definition 12. Let (X, p) be a metric space with metric p. The function k :
X — R is said to be continuous at the point x € X if for every e > 0 there
exists some & > 0 such that |k(xz) — k(y)| < € for every y € X satisfying
p(z,y) < 0. It is called continuous on X if it is continuous at every point
r € X. A function k : X — R is called uniformly continuous on X if for
every € > 0 there exists some § > 0 such that for any x,y € X satisfying
plx,y) < 0, it holds that |k(x) — k(y)| < €. Finally, a collection of functions
ky : X — R,y € I' is called equicontinuous if for every e > 0 there exists
some 0 > 0 such that for every x,y € X satisfying p(z,y) < ¢, it holds that
|k () — ky(y)| < € for every v € I,

Recall in a metric space (X, p) with metric p, the open ball B(zg, ) with
center xg and radius ¢ > 0 is given by

B(xzg,0) :={x € X : p(x,z0) < }.
We now list the following well-known result ([24, 33]).

Lemma 5. For (X, p) a compact metric space with metric p, a function k :
X — R continuous on X is uniformly continuous on X.

Proof. Let € > 0 and consider an arbitrary « € X. Because k is continuous
at x, there exists some §, > 0 such that |k(x) — k(y)| < 27te for every y
belonging to B(z,d,). Clearly the collection of open balls B(z,2714,),z € X
is a covering of X, and this implies by the compactness of X that there exists
some finite set F' = {x1,...,2,} C X satisfying

X = U B(x;,27'6,,). (36)

Let now § := 47! minj<;<, d,, and consider two points y,z € X satisfying
p(z,y) < 0. By relation (36) there exists some 1 < ¢* < n such that p(y, z;+) <
2716,,. and so |f(wi-) — f(y)] < 27 'e. By the triangle inequality of a metric
we also obtain, using p(z,y) < ¢, that
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p(z,20) < p(z,9) + p(y, xi=) <6+ 2700, < 6o,
and so |f(z) — f(z)
1F(2) = F) < [f(2) = flaa)| + [ () = Fly)l <27 e+ 27 e =€

and we have shown that the function £ is uniformly continuous on X. ]

< 27 1¢. This shows that

We now recall the minimax equality listed in relation (6). In 1938, Ville
([39]) proved a generalization of the well-known von Neumann minimax result
listed in relation (27). This result is shown in Theorem 7 and serves as an
important tool in infinite zero-sum or antagonistic game theory ([40]).

Theorem 7. If A and B are nonempty compact sets in metric spaces and the
payoff function f: A X B — R is continuous, then

SUPep,(a) N uerp () fe(A 1) = infiep, (B) SUP A ep,(a) fe(As 1)

To prove Theorem 7, we show that the conditions imposed on f and the
sets A and B imply that the function f belongs to the set Uy. Applying then
Theorem 4 yields a proof of Ville’s minimax theorem. Actually we show the
following result.

Lemma 6. If the set A is a compact metric space with metric p and the collec-
tion of functions fp : A — R ,b € B given by fy(a) := f(a,b) is equicontinuous
with f the payoff function, then f belongs to Uy. In particular, if f is contin-
uous and the sets A and B are compact metric spaces, then f belongs to Uy.

Proof. For the proof of the first part, it is obvious that

SUPrer(A) inf, ep,(p) Maxaeer fe(€a ) < infep(B) SUPLea fe(€as 1)

To show the result, it is therefore sufficient to verify that for every ¢ > 0 there
exists some set I, € F(A) satisfying

inf,uEPp(B) SUPqea Je(ea,p) < inquPF(B) SUPger, fe(€a, ) + €.

Let € > 0 be given. Because the collection of functions f,b € B is equicon-
tinuous, one can find some § > 0 such that for every a,as € A satisfying
plai,az) < 6, it holds that

‘f(al’b) - f(a27b)‘ <€

for every b € B. Clearly the collection of open balls B(a,d),a € A covers A,
and by the compactness of A one can find a finite set I. € F(A) such that

A = Uger, B(a,0). (37)

Consider now an arbitrary u € Pr(B). By relation (37) and f;,b € B equicon-
tinuous, it follows for any a € A that there exists some ag € I such that
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|f(a,b) — f(ao,b)| <€
for every b € B. Hence by the definition of Pg(B), this implies

fe(eanuf) S fE(eamu) + € S Supaele fe(€a7ﬂ) + €. (38)

Because a € A is arbitrary, it follows by relation (38) that

SUPge A fe(eavﬂ) < SUDger, fe(ean,u) + €

and this implies (using pu is arbitrary) the desired inequality. To verify the
second part, it follows by the continuity of the function f on the compact
metric space A X B and Lemma 5 that the function f is uniformly continuous
on A x B. This shows that the collection fj,b € B is equicontinuous, and by
the first part the desired result follows. |

Actually the conditions imposed by Ville can be improved in the following
way ([14]).

Theorem 8. If the pure strategqy sets A and B are compact Hausdorff spaces,
and b — f(a,b) is lower semicontinuous for every a € A, and a — f(a,b)
s upper semicontinuous for every b € B, and the payoff function f belongs to
the space of Borel measurable functions that are Lebesgue absolutely integrable
with respect to any Borel product probability measure @ X\ on B x A, then

SUPep,(a) N uerp () fe(A 1) = Infiepp (B) SUP AP, (a) fe(As 1)

Again this result (for an alternative proof see [14]) can be verified by
showing that the above conditions imply that the function f belongs to Uy.
Because its proof involves classic results from the set of Borel measures on a
compact Hausdorff space ([7,8]) and these results are beyond the scope of this
chapter, we refer the reader to [14] for more details on the used techniques.
We also like to mention for P(A) (P(B)) denoting the set of Borel probability
measures on A (B) that under the conditions of the next lemma, one can show
by a similar type of proof as in Lemma 1 that

SUPxep(A) fe()‘a W) = SUDge A fe(eaa 1) (39)

for every p € P(B) and

inf,ep(p) fe(A ) = infpep fe(A, €) (40)
for every \ € P(A).

Lemma 7. If the pure strateqy set A and B are compact Hausdorff spaces,
and the function b — f(a,b) is lower semicontinuous for every b € B, and
a — f(a,b) is upper semicontinuous for every a € A, and f belongs to the
space of Borel measurable functions that are Lebesgue absolutely integrable
with respect to any Borel product probability measure p @ A on B, then the
function f belongs to Uy.
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Proof. Because the function b — f(a,b) is Lebesgue absolutely integrable
for any Borel probability measure p on the set B, one can show (see Corollary
2.2 of [13]) that

inquPF(B) maxger fe(€a, pt) = infue’/’(B) SUPger fe(€a, )

for any I € F(A). Hence we obtain

SUPreF(A) infuePF(B) maXger fe(€a, pt) = SUPreF(A) infueP(B) SUDPger fe(€as 1)
(41)
In the remainder of the proof, we will now verify that

Sup[e]—'(A) inf/xGP(B) SUP,ecr fe(6a7 /'L) > infﬂGPF(B) SUPgec A fe(eaa M)- (42)

Assuming for the moment that this holds, it follows by (41) that f belongs
to Up. To prove relation (42), we observe for B a compact Hausdorfl' space
that the set P(B) is compact in the weak* topology ([7,8]) and the function
u— feo(€q, ) is lower semicontinuous with respect to the weak™ topology
(see Lemma 12 of [14]). Hence by Lemma 3 (replace B by P(B) and f(a,b)
by fe(€a,t)) and relation (39), it follows that

SUprer(a) ifuep(B) SUPer fe(€a, p) = inf ep(B) SUPep(a) fe(A 1) (43)

Again by Lemma 12 of [14], the function p —— f.(\, @) is upper semicon-
tinuous, and as P(A) is also weak™ compact, we obtain by Kneser’s minimax
theorem (Lemma 4) (replace A by P(A) and f(a,b) by the biaffine function
fe(A, 1)) and relation (40) that

inf,cp(B) SUPAep(a) fe(A, 1) = suDrep(a) infoen fe(A, ). (44)
Again by the weak*compactness of P(A) and relation (40), it follows that
supep(a) Ifoen fe(A &) = inf je 7(B) SUPep(a) Infuep () fe(A 1) (45)

It is now obvious that

inf je 7(B) SUPxep(a) INfpep () fe (A, 1)
> inf je 7(B) SUP AP, (4) I uep () fe(A 1)

and by Wald’s minimax theorem and Lemma 1
inf]e]—'(B) SUP ePr(A) infueP(J) Je(A p) = infuePF(B) SUPge A fe(€a, ). (46)
This implies by relations (43) up to (46) that
Sup e r(a) infuep(B) SuDses fe(€a, ) = Infcpp(B) SUDLe 4 fel€a, 1)

and so relation (42) is proved. [ ]
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We will now consider the minimax equality listed in relation (7) and in-
troduce the following definition used in ([20]).

Definition 13. The payoff function f : Ax B — R is called weakly convezlike
on B (or belongs to the set WCg) if for every finite set I C A

n
lnfaeAn7biEB,1§i§n,nEN maXger Zi—l aif(a’7 bl) Z lnfbeB maXger f(a’7 b)
An alternative representation of the above definition is given by

inquPF(B) maXgers f€(€a7 ﬂ') 2 inbeB maXger f(a’ b)

for every I belonging to F(A). Because the set B can be identified with the
set (ep)pen, it follows for I € F(A) that

inf,cp, By Maxacr fe(€q, ) < infpecp maxqer f(a,b)

and this shows that in Definition 13, the inequality for a weakly convexlike
function on B can be replaced by an equality. Again a function belonging to
WCp has a clear game theoretical interpretation: for any finite set of pure
strategies of player 1, it follows that player 2 using its mixed strategy set
Pr(B) can restrict himself to its set of pure strategies. The next result is
proved in ([20]).

Theorem 9. If B is a compact topological space, the payoff function f is
weakly convexlike on B, and b — f(a,b) is lower semicontinuous on B, for
every a € A, then

infpe B SUPNep,(a) fe(A, €) = SUDep,.(a) infren fe(A, ).

As before, we check that any function satisfying the assumptions above
belongs to the set U7, and so by Theorem 5 the minimax result in Theorem 9
is proved.

Lemma 8. If B is a compact topological space, and the payoff function f is
weakly convexlike on B, and b — f(a,b) is lower semicontinuous for every
a € A, then f belongs to U;.

Proof. Because the function f is weakly convexlike on B, it follows that

suprer(a) infuep,(B) maxaer fe(€a, 1) = SUPrer(a) infre p maxqer f(a,b).

By the compactness of the set B and b — f(a,b) is lower semicontinuous for
every a € A, we may apply Lemma 3, and this shows by the previous equality
that f belongs to U;. [ |

Actually as shown by the following counterexample, the set of weakly
convexlike functions on B with B a compact set and b — f(a, b) continuous
for every a € A is strictly included in the set U;. Observe the function 1g
denotes the characteristic function of the set S, i.e., 1g(s) =1 for s € S and
1s(s) = 0 otherwise.
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Ezample 2. Let B = [0,1] and A = {1,2,3} and introduce the continuous
functions b — f(a,b),a € A given by

F(1,b) =201 pco-1) + 1ga-1cp<1y, F(2,0) = Tpo-1y + (2 = 20)1p-10p<1)

and f(3,b) = 1yo<p<1}. Because A is a finite set, it follows

SUPje () 0 uep,(B) MaXaer fe(€a, 1) = inf ep,(B) maxeea fe(€a, 1)

Using f(3,b) = 1 for every b, we obtain fe(es,u) = 1 for every p € Pr(B)
and so

inf,uePp(B) maxgeA fe(emﬂ) =1
At the same time, it is easy to see that infyepmaxgea f(a,b) = 1, and

this shows that the function f belongs to U;. Introducing now the set
Iy ={1,2} C A, it follows that

infpe p maxgey, f(a,b) = 1.
Moreover, because g = 2 'ep + 27 e; belongs to Pr (B), we obtain
infMEPF(B) maXger, fe(ezu ,LL) < Eneai)( fe(eav NJO) =27!

and so f is not weakly convexlike on B.

We will now give an overview of the most important different payoff func-
tions f considered in the literature that were used to verify the minimax
equality in relation (8). For a more extensive overview, the reader should con-
sult [15] or [36]. In a paper by Ky Fan in 1953 ([10]), the following definition
is introduced. In the literature, these functions are also called convexlike or
concavelike.

Definition 14. The payoff function f: A x B — R is called Ky Fan convex
on B (or belongs to the set KFCpg) if for every by,ba € B and 0 < a < 1,
there exists some by € B satisfying

f(aa bO) S af(a’a bl) + (1 - Ck)f((l, b2)

for every a € A. It is called Ky Fan concave on A (or belongs to the set
KFCy) if for every aj,as € A and 0 < « < 1, there exists some ag € A
satisfying

flao,b) = af(ar,b) + (1 — @) f(az,b)

for every b € B. The payoff function f : Ax B — R is called Ky Fan concave-
convex on the Cartesian product A X B if f is Ky Fan concave on A and Ky
Fan conver on B.
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To rewrite the definition of a Ky Fan convex (concave) function in our
notation, we introduce for D some topological space the set Po(D) C Pr(D) of
two-point probability measures on D. This means that the probability measure
A belongs to Pa(D) if and only if

A = 5(A\1)eq, + s(A2)eq,

with d;, 1 <4 < 2 different elements of the pure strategy set D and s(\)" =
(s(A1),8(A2)) € Ay with s()\;) > 0,1 <4 < 2. Using this notation, it follows
that the payoff function f: A x B — R is Ky Fan convex on B if for every pu
belonging to P2(B) there exists some by € B satisfying

f(aabO) < fe(eaa,u')

for every a € A. Clearly this property also has a clear game theoretical inter-
pretation. For such a payoff function, every two-point mixed strategy of player
2 is dominated by a pure strategy. Actually by an easy induction argument,
one can also show for f Ky Fan convex on B that for any p € Pp(B) there
exists some by € B satisfying

f(a,bo) < fe(eanu)

for any b € B. This means that every mixed strategy of player 2 is dominated
by a pure strategy. In [10], the following minimax result is shown.

Theorem 10. If B is compact topological space, the payoff function f is Ky
Fan concave-convex on A x B, and b —— f(a,b) is lower semicontinuous for
every a € A, then

infyep sup,ea f(a,b) = sup,e 4 infocp f(a,b)
and inf can be replaced by min in the above expression.

By the well-known symmetry argument (replace f by —f and reverse A and
B), one can easily derive from Theorem 10 that the above minimax result
holds if A is a compact topological space, the function f is Ky-Fan concave-
convex on A X B, and a — f(a,b) is upper semicontinuous for every b € B.
Another more general class of functions was introduced by Koénig in 1968
([23]). Actually Konig only introduced the next class with g = %, but indicates
at the the end of his paper that the same results also holds with 0 < § < 1.

Definition 15. The payoff function f : Ax B — R is called Konig convex on
B (or belongs to the set KCp) if there exists some 0 < 8 < 1 such that for
every bg, b1 € B, there exists some by € B satisfying

f(a‘abO) < ﬁf(a'a bl) + (1 - ﬁ)f(aﬂbO)

for every a € A. It is called Konig concave on A (or belongs to the set KCya)
if there exists some 0 < 3 < 1 such that for every ai,as € A, there ewists
some ag € A satisfying
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f((lo,b) > /Bf(alvb) + (1 - ﬂ)f(a%b)

for every b € B. The payoff function f: A x B — R is called Konig concave-
convex on A x B, if f is Kdonig concave on A and Kénig convex on B.

Although the above definition is rather technical, it has a clear interpre-
tation in game theory. Denoting by Ps 3(D) C Pa(D) the set of two-point
probability measures on the topological space D with probabilities 3 and
1— 3 (B fixed), it means that any mixed strategy of player 2 belonging to
P2,5(B) is dominated by a pure strategy. In [23], the same minimax result
is shown as in Theorem 10 under the weaker conditions that B is a compact
topological space, b — f(a,b) is lower semicontinuous for every a € A, and
f is Konig concave-convex on A x B. Another more general class of functions
is considered in [12] or [17].

Definition 16. The payoff function f : A x B — R is called closely convex
on B (or belongs to the set CCp) if for everye > 0,0 < a < 1 and by, by € B,
there exists some by € B satisfying

f(avb()) S O‘f(a,bl) + (1 - a)f(a,bQ) +€

for every a € A. It is called closely concave on A (or belongs to the set CC4) if
for every e > 0,0 < a <1 and ay,as € A there exists some ag € B satisfying

flao,b) > af(ar,b) + (1 —a)f(az,b) — €

for every b € B. The payoff function f: Ax B — R is called closely concave—
closely convex on A x B if f is closely concave on A and closely convex on B.

Again in our notation, it follows that the payoff function f is closely convex
on B if for every e > 0 and every u € Po(B) there exists some by € B satisfying

fla,bo) < fel€a,pt) +¢

for every a € A. This also has an obvious game theoretical interpretation.
In [12], one also shows the minimax result in relation (8) under the weaker
condition that B is a compact topological space, b — f(a,b) is lower semi-
continuous for every a € A, and f is closely concave closely—convex on A x B.
To show the above results by means of Theorem 6, we need to verify that all
the considered payoff functions actually belong to the set U; N Us. In the next
result, we say that 0 < 8 < 1 is a Konig concave constant on A if for every
A € P2 3(A) there exists some ag € A satisfying f(ao,b) > fe(A, &) for every
be B.

Lemma 9. It holds that KFCy C KCy C CC4 C Us.

Proof. Tt is obvious that the inclusion KFCy C KCy4 holds. To show that
KCy C CCy, it is sufficient to verify that the set S C [0,1] given by
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S:={0<pB<1:5 a a Konig concave constant} satisfies cl(S) = [0,1].
Clearly the numbers 0 and 1 belong to S. Because the function f is Konig
concave on A, we know that there exists some 0 < ( < 1 belonging to
S. Moreover, if the numbers (;,7 = 1,2 belong to S, it follows for every
Ai = Bi€a, +(1—Bi)€a, € P2, (A) with a; € A,i = 1,2 that there exists some
elements a(3;) € A,i = 1,2 satisfying

f(a(Bi),0) > fe(Ni, ep) (47)

for every b € A and ¢ = 1,2. This implies using 3 belongs to S that for
A = Beqpy) + (1= B)eqpy) € P2,5(A), there exists some ag € A satisfying

f(a0,0) = fe(X, €)

for every b € B. Hence by relation (47), we obtain

flao,b) = (Bf1 + (1 = B)B2) f(ar,b) + (1 = 841 — (1 — B)B2) f (a2, b)

for every b € B. This means for any 3; € S,i = 1,2 that also 86; + (1 — 3)32
belongs to S, and in [16] it is shown that such a set is dense in [0, 1]. To verify
the last inclusion, one can show by induction that for f closely concave on A,
it follows for every € > 0 and A € Pr(A) that there exists some ag satisfying

flao,b) = fe(A &) — e

for every b € B. This implies for every € > 0 and A € Pp(A) that

. o B
blgg f(ag,b) > blgg fe(A ep) — € (48)
and hence
sup i > —e
sup inf f(a,b) 2 Inf fe(A e) — e (49)

Because A € Pr(A) and € are arbitrary, we obtain

sup inf f(a,b) > su inf fo(A €), 50
aeg beB fa,5) ,\ePFIZA) beB fe(h ) (50)
and so f belongs to Us. |

Actually one can show that the above inclusions are strict ([12]). Moreover,
one can also show the following result

Lemma 10. If B is a compact topological space and the function b — f(a,b)
is lower semicontinuous for every a € A, then KFCg = KCp = CCp C U;.

Proof. As in Lemma 9, one can show without any additional conditions that
KFCp C KCp C CCp, and to prove equality it is sufficient to verify for B
a compact topological space and b —— f(a, b) lower semicontinuous for every
a € Athat CCp C KFCp. We only give a proof of this result for B a compact



Minimax Theorems, and Equilibrium Problems 79

metric space. (For B a compact topological space, one can apply a similar
proof replacing sequences by nets (see section 4 of [7]). If the function f is
closely convex on the compact metric space B, then for everyn € N,0 < a < 1
and by, by € B, there exists some by, € B satisfying

Fla,bo) < af(abr) + (1~ 0)f(a,b2) + -

for every a € A. Because B is a compact metric space, there exists some
converging subsequence by ,,n € K C N with limit by € N. This implies by
the lower semicontinuity of the function b — f(a,b) for every a € A that

f(a7 bO) S lim infnGK,nToo f(a> bO,n) S O[f(a, bl) + (1 - a)f(a, b2)

and so the function f is Ky Fan convex on B. To show the inclusion CCp C U,
we can verify in a similar way as done in the last part of the proof of Lemma 9
that for f closely convex on B, it follows for every I € F(A) that

inquPp(B) maxXger fe(€a, ) = infpep maxqer f(a,b)
This implies

SUPrer(a) iInfuepyp(B) MaxXaer fe(€as 1) = SUPrer(a) infoe p maxqer f(a,b)

(51)
and applying Lemma 3 to the last expression in relation (51), we obtain that
f belongs to U . |

Using now Lemmas 9 and 10, we obtain for B a compact topological space,
b— f(a,b) is lower semicontinuous for every a € A, and f closely concave—
closely convex on A x B that f belongs to the set U; NUs, and so by Theorem 6
the classic minimax result in relation (8) holds.

4 Relations Between the Different Minimax Theorems

In this section, we investigate in more detail the relations between the different
minimax results discussed in Section 3 and given by relations (6) up to (8).
Introducing the notation L; and R; for the left-hand and right-hand sides of
relation (i) for i = 6, 7,8, we obviously obtain that

Ls=L; > Lg > Rg = R7 > Rs. (52)
This implies that
(8) = (7) = (6). (53)

Below we show by means of some counterexamples that none of the arrows in
relation (53) can be reversed. In the first counterexample, we show an instance
for which (7) holds and (8) does not hold.



80 J.B.G. Frenk, G. Kassay

Ezample 3. Let A = [0,1] € R, B = {b1,bs,b3} C R and introduce the
function f: A x B — R given by

(12 ifb:bl
fla,b) =< (a—1)2if b=1by .
271 ifb=bs

For this bifunction, we have
Lg = minpe g sup,e 4 f(a,b) =1/2,

whereas
Rg := sup,c 4 minpep f(a,b) = 1/4,

and so (8) does not hold. Because Lg = L7 = 27! and it is obvious to check
that R; = 271, we obtain that (7) holds.

In the next counterexample, we show an instance for which (6) holds and
(7) does not hold.

Ezample 4. Take A = [0,1], B = {b1,b2} C R, and introduce the function
f:Ax B — R given by

a®> ifb=b
f(a’b):{(a—l)zifb:b; '

Consider now the mixed strategy \* € Pr(A) given by \* = 271e,, +27te,,
with a; = 0 and as = 1. It is easy to check that

mingep fe(A*,6) =277,

and so it follows that R; > 27!, Moreover, we observe by the definition of the
sets A and B that

Le = info<s, (jy<1 SuPae a {51 (1) f(a; b1) + (1 = s1(w)) f(a, b2)}. (54)

Using now that the last expression in relation (54) equals

info<s, (<1 max{sy(p), 1 —s1(u)} = 2~ (55)

we obtain that Lg = 27!. Because we already know that Ls > R; = Rs and
R7; > 271, we obtain
Lg=R; = Rg =271,

It is now easy to check that L7 = 1, and hence we have found an instance for
which (6) holds and (7) does not hold.

To conclude these investigations, we give an instance showing that (6) can
also fail. Consider the set ¢q of all (real valued) sequences converging to 0. It
is well-known that the space ¢y endowed with the norm

lalle, = supren lax]

is a Banach space.
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Ezample 5. Let A = {a = (a) € ¢p : a1 = 0}, B = [0,1] C R and take the
function f: A x B — R given by

Fa,b) = F((ar).b) = {

1if there exist some k € N such that b= ay,
0 otherwise

(56)
Consider some A € Pr(A). Hence there exists a finite number of sequences a’ =
(a})ren, 1 <i<m, belonging to A and some vector s(\) = (s1(A), ..., sm(N)),
$i(A) >0 and Y ;" s;(A\) = 1 such that

A= Z:il Si ()\)fai .

Because the set [0, 1] contains more than a countable number of elements, one
can now choose a number b € [0,1] such that none of the above sequences
a’,1 < i < m, contain this number. Using this number and the definition of
f, it can be easily seen that

m

infyeio,1) fe(A, &) = infyepo ) Zi si(A)f(a',b) =0,

and so Rg = 0. On the other hand, consider some p € Pgr(B). By de-
finition, one can find some finite set {b1,...,b,} < [0,1] and a vector

s(u) = (s1(p), -, sp(p)), sj(p) > 0 with Z;’:l s;j(n) = 1 such that

p
p= ijl sj(p)ev, -

Taking the element ag := (0,b1,...,,,0,0,...) € co, it is obvious by the
definition of f that

SUPgea feleas ) 2D (1) f(ao,b) = 1. (57)

Because f is bounded by 1, this shows that

=1

p

=1

LG = inf,uG'PF(B) SUP,c A fe(eaa:u) = 17

and so we have verified that (6) does not hold.

5 On Sion’s Minimax Theorem

In this section, we give an alternative and elementary proof of Sion’s minimax
theorem. This famous result is a generalization of von Neumann’s minimax
theorem ([30]). Its original proof made use of the KKM lemma, which is
equivalent to Brouwer’s fixed point theorem ([9,42]). However, as it will turn
out, we do not need such a heavy machinery to verify this result. Actually
we will give a proof of a slightly more general result by using a less known
technique called the level set method originally developed by Joo ([19]). It
remains an open question whether it is possible to verify this minimax result
by means of Theorem 6.
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Definition 17. A real valued function k : C — R is called quasiconvex on
the (convex) set C if all its lower level sets {x € C : k(x) < r},r € R are
convez. It is called quasiconcave on C if —f is quasiconver on C.

It is well-known ([3]) that an equivalent description of a quasiconvex func-
tion is given by
k(B + (1 - B)y) < max{k(x), k(y)}

for every 0 < 3 < 1 and z,y € C. By this representation, it is easy to see
that the class of quasiconvex functions strictly contains the class of convex
functions. We now list the following result due to Sion ([37]).

Theorem 11. If the payoff function f : Ax B — R with B a compact convex
subset of a linear topological space and A a convex subset of a linear topological
space satisfies a — f(a,b) is quasiconcave and upper semicontinuous for
every b € B, and b — f(a,b) is quasiconver and lower semicontinuous for
every a € A, then the minimaz result in relation (8) given by

infyep sup,ea f(a,b) = sup,e 4 infocp f(a,b)
holds, and in the above expressions inf can be replaced by max .

The following result is the starting point of the so-called level set method
and shown in ([19]). Remember the values r* and r, are given in relations
(1) and (2). As observed in Section 1, it is always assumed that r* > —oo.
Also for convenience, we denote the lower level set of level r of a function
k:C — R by

L(k,r):={z e C : k(z)<r}.

Lemma 11. Let f : A X B — R be a given payoff function and introduce the
function f, : B — R given by f,(b) = f(a,b). Then r* = r. if and only if
NacaL(fa,7) is nonempty for every r > r,.

Proof. If r* = r,, then for every r > r, = r* > —oo there exists by the

definition of r* some by € B satisfying sup,c 4 f(a,bg) < r. This shows that
by belongs to the intersection NyeaL(fq,7) and so NgeaL(fq,r) is nonempty.
To verify the reverse implication, it is sufficient to check that r* < r, + € for
every € > (. Take now r = r, + ¢ for some € > 0. By our assumption, we know
that NgeaL(fq,r) is nonempty and so there exists some by € B satisfying
Supgea fla,by) < r. This implies 7* = infyep sup,c 4 f(a,b) <r =7, +¢, and
the proof is completed. |

For relation (8) to hold, it is necessary and sufficient by Lemma 11 to
show that the intersection NyeaL(fo,r) is nonempty for every r > r,. It can
be easily verified that for arbitrary functions f, this result does not hold and
so we must impose some conditions on f. Before defining the proper class of
functions, we recall some well-known notions within topology. For X a subset
of a topological space with topology F, the set S C X is called open in X
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if there exists some set O belonging to F with S = X N O. The open sets
generated in this way are called the relative topology induced by X, and with
this topology the set X is a topological space. Another well-known notion
within topology is given in the next definition ([9,33]).

Definition 18. For any topological space X, a set C C X is called connected
if for any two disjoint sets Cy and Cy, both open (closed) in C' and satisfying
C = C1UCCy, it follows that Cy or Co is empty.

In [26], the following class of functions is introduced.

Definition 19. Let X be a topological space. The function k : X — R is called
connected if for every r € R the lower level set L(k,r) C X is connected.

It is well-known that every convex subset of a linear topological space X
is connected and so any quasiconvex function k : X — R is connected. As for
quasiconvex functions, one can give an equivalent definition of a connected
function.

Lemma 12. The function k : X — R is connected if and only if for every
1,29 € X there exists some connected set Cy, ., C X containing x1, 2 such
that k(z) < max{k(x1), k(x2)} for every x € Cy, 4, .

Proof. To show that a connected function satisfies the above property, con-
sider x1,z2 € X and introduce r := max{k(z1), k(z2)}. Take now the set
Cyy 2, equal to the connected set L(k,r). This set satisfies the desired prop-
erty. To prove the reverse implication that the lower level sets are connected,
consider some nonempty lower level set L(k,r) with 27 belonging to L(k,r)
and let 2o be another arbitrary point belonging to L(k,r). (The empty set
is connected by definition.) By assumption, there exists some connected set
Cyzy2z, € X containing x1, xo such that

k(x) < max{k(x1), k(z2)}

for every x belonging to C,,4,. This shows C,, ., € L(k,r), and as x9 is an
arbitrary element of L(k,r), we obtain

UszL(k,r)lemg = L(k, T’). (58)

By construction, the intersection Ny, cr (k) Cz, 2, contains the vector xy and
because for every zo € L(k,7) the set Cy, , is connected, also Uy, er,(k,r) Cry s
is connected (cf. [9]). Applying now relation (58) shows that the function k
is connected. |

Using the above representation of a connected function, it can be shown
([11]) that the set of connected functions strictly includes the set of quasi-
convex functions. This means that there exists a connected function that is
not quasiconvex. To prove our main theorem, we also introduce the following
class of functions.
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Definition 20. Let X be a topological space. The collection of functions k- :
X — R,y € I' is called equiconnected if for every xy1,xo € X there exists a
connected set Cy, 5, € X containing x1, 2 such that

ko () < max{ky (1), by (22)}
for every x € Cy, 4, and v € I

If X is a convex subset of a linear topological space and for every v € I'
the function k. is quasiconvex, then by taking

lemz = {ﬂml Jr(l *5)$2 :0<p< 1}

it follows immediately that the collection of functions k.,y € I is equicon-
nected.

Definition 21. The payoff function f: A x B — R belongs to the class Cy if

1. The function a — f(a,b) is upper semicontinuous for every b € B;

2. The function b — f(a,b) is lower semicontinuous for every a € A;

3. For every I € F(A), the function b — maxgcr f(a,b) is connected,

4. The collection of functions —fp,b € B with fy(a) := f(a,b) is equicon-
nected.

For any set of quasiconvex functions k,y € I', it follows that the function
T Sup,ep k(x) is also quasiconvex. Using this observation, it is easy to see
for any payoff function f satisfying a — f(a,b) is quasiconcave and upper
semicontinuous for every b € B and b — f(a,b) is quasiconvex and lower
semicontinuous for every a € A actually belongs to the set Cy. Hence the
payoff function f mentioned in Sion’s minimax theorem belongs to Cy. One
can now show the following important intersection result.

Theorem 12. If the payoff function f belongs to the class Cy, then for every
r>r, and I € F(A) the intersection NagerL(fa,r) is nonempty.

Proof. If I = {ag} C A, then for every r > r, we obtain by the definition of
r. that r > infyep f(ao,b) and so L(f,,,r) is nonempty. Suppose now for all
sets I belonging to F(A) and consisting of at most k elements that

NaerL(fa;r) #0 (59)

for every r > r,. To prove the result for all sets I € F(A) consisting of at
most k 4 1 elements, we assume by contradiction that there exists some set
Iy = {aop,...,ar} C A and some ro > r, satisfying

m?:OL(faMTO) = @ (60)

Because the collection of functions — fp, b € B is equiconnected, one can find
some connected set Cy 4, C A containing ag and a; satisfying
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f(a,b) = min{f(ao,b), f(ar,b)} (61)

for every a € Cy,q, and b € B. We now introduce the set valued mapping
@, : Cupa, — 2P, given by

Qr(a) = m’YG{ag,ag ..... ak,a}L(f'w 7“). (62)

(In case k = 1, put @,.(a) = L(fa,r).) By the definition of L(f,,r), this yields

®,(a) = {b € B:maxX efay,as.,....an,a} f(1,0) <7} (63)

Because the function

br— MaX~efag,az,...,ax,a} f(77 b)

is connected and lower semicontinuous (use b — f(a, b) is lower semicontinu-
ous for every a € A), it follows by relation (63) that the sets @,(a),a € Coya,
are connected and closed for every r > r.. Moreover, by the induction hy-
pothesis in relation (59), the sets @,,(a),a € Cy,q, are nonempty and satisfy
by relation (61)

B1,(a) € Bry(a0) U by, (a1) (64)

for every a € Cy,q, and by relation (60)
D, (ag) NPy (ar) = 0. (65)
Introducing now the nonempty sets
Si:={a € Copay : Pry(a) C Ppy(ay)}, i =0,1, (66)

we obtain by relation (65) that the intersection Sy N S; is empty. To show
that So U S1 = Coyyqe, we first observe that Sy U S1 C Cy,q,. For the reverse
inclusion, consider for a given a € C, 4, the closed sets

Ai(a) := P (a) NPy (a;),i =0, 1.
By relation (64), we obtain that
Ap(a) U Aq(a) = Dry(a) (67)

and because @, (a) is connected, it must follow by relation (67) and A;(a),i =
0,1 closed that Ag(a) or Aj(a) is empty. This means by relation (64) that
either @, (a) C P, (ag) or ®,,(a) C P, (a1) and so the point a belongs to
So U S7. Hence we have verified that the sets S;,7 = 0, 1 satisfy

SoNS; =0, SoUS; =Chuya,- (68)

We will now show that the sets S;,7 = 0,1 are also open in Cy,q,. Let a*
be an arbitrary point belonging to Sy. By our induction hypothesis, we know
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that the sets @,.(a*) are nonempty for every r > r, and this implies by the
definition of @, (a*) in relation (63) that

inbeB max'ye{az,agt.“,ak,a*} f(r)/a b) <r

for every r > r,. This shows by letting r | r, that

inbeB MaX~efas,a3,...,ax,a* } f(77 b) <71 <To

and so one can find some by € @, (a*) C B (by € B for k = 1) satisfying

f((l*,bo) < 7. (69)

By the upper semicontinuity of a — f(a,by) and relation (69), there exists
some open neighborhood U (a*) of a* satisfying f(a,by) < ro for every a €
U(a*) and because by € P, (a*), this yields by € @, (a) for every a € U(a*) N
Capa; OF equivalently

by € Ppy(a*) N Dy, (a)

for every a € U(a*) N Cyya,. This implies by relation (68) and a* € Sy that
D, (a) C Dy (ag) for every a € U(a*) N Cyya, Or equivalently

U(a*) N Cogay < So-
Because a* € Sy is arbitrary, we obtain that
So = Uares, (U(a*) N Caoal) = Caoal N (Ua*esou(a*))

and so Sy is open in Cjq, . Similarly, one can verify that the set S; is open
in Cyya, and by relation (68) and C,,,, connected we obtain that either Sy
or Sy is empty. Because by relation (66) the point a; belongs to S;,i = 0,1,
this yields a contradiction, and the proof is completed. [ ]

Applying Lemma 11 we immediately deduce from Theorem 12 the follow-
ing result.

Theorem 13. Let the payoff function f : A x B — R belong to the class Cy.
If A is a finite set, then

infpe p max,ea f(a,b) = max,ecainfpep f(a,b),
whereas for A an infinite set
SUPyer(a) infre p maxaer f(a,b) = sup,e 4 infres f(a,b).

Proof. The first formula is an immediate consequence of Lemma 11 and
Theorem 12. To verify the second formula, we observe

SUPge 4 infoe f(a,b) = sup e r(a) SUP,e; infrep f(a,b).

Applying now the first part yields the desired result. ]
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By Theorem 13 and Lemma 3, one can show the following result, which
contains as a special case (see observation after Definition 21) Sion’s minimax
theorem listed in Theorem 11.

Theorem 14. If B is a compact topological space and the payoff function f
belongs to the class Cy, then

infpe g sup,e 4 f(a,b) = sup,c 4 infocp f(a,b)

and inf can be replaced by min in the above expressions.

Proof. Because B is a compact topological space and b —— f(a,b) is lower
semicontinuous for every a € A, we obtain by Lemma 3 and the observation
after this lemma that

infpep sup,ea f(a,b) = suprera) infoe p maxger f(a,b).

Applying now the second part of Theorem 13 and Lemma 2 yields the desired
result. |

Actually by Lemma 3, one can slightly weaken the condition that A is a
compact topological space by replacing the compactness assumption by the
condition that there exists some set I € F(A) such that for every r € R, the
set Nger{b € B : f(a,b) < r} is compact. It is possible ([11]) to construct
a payoff function f that satisfies the conditions of Theorem 14 but does not
satisfy the conditions of Sion’s minimax result.

Definition 22. The payoff function f: A x B — R belongs to the class Cy if

1. The function a — f(a,b) is upper semicontinuous for every b € B;
2. The function b — f(a,b) is lower semicontinuous for every a € A;
3. For every J € F(B), the function a — minye s f(a,b) is connected;
4. The collection of functions fq,a € A with f,(b) := f(a,b) is equiconnected.

By the symmetry argument and Theorem 14, it follows easily that the
minimax equality in relation (8) holds if the payoff function f belongs to the
class C; and A is a compact topological space. Finally, we like to mention that
Wald’s minimax result is a special case of Sion’s minimax result. However,
from the proof of Theorem 12, it should be clear that the only properties of
convex sets that are important are the observation that any intersection of
convex sets is again convex and every convex set is connected. This shows that
Sion’s minimax result is actually a topological result based on connectedness.

6 On n-Player Nonzero-Sum Noncooperative Games
In this section, we will extend the two-player zero-sum noncooperative games

discussed in the previous sections to m-player nonzero-sum noncooperative
games, n > 2. In this framework, there are n players, and each player
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i,1 <1 <n has a pure strategy set X; and a payoff function f; : X — R
with X = II]" ; X; denoting the Cartesian product of the sets X;. In case each
player i, = 1,...,n selects independently of each other the strategy x;, the
gain given by player i is given by f;(z1,...,z,) (for a complete description of
such games and examples see [4,40] or [38]). In this section, we assume that
the sets X;,1 < i < n are subsets of (possibly different) linear topological
spaces X; ([34]). We also assume in this section that the players only use their
pure strategy sets and they do not use their mixed strategy sets. For these
n-person noncooperative games, an important concept is given by a Nash
equilibrium point. Observe for n = 2 (taking fo = —f1) this reduces to the
minimax concept used within a two-player zero-sum noncooperative game.

Definition 23. Let the payoff functions f; : X — R of each player be given.

The point x* = (x3,...,x%) is called a Nash equilibrium point if
filay, oo xl, oo an) > falal, oo iy 2

for every x; € X; and 1 <1 <n.

We are now interested in under which conditions a Nash equilibrium point
exists for an n-person noncooperative game. To show this, we need the fol-
lowing definition ([5]).

Definition 24. Let X be a nonempty set and ¢ : X x X — R some function.
The point x* is called an equilibrium point of the function ¢ if p(z*,y) > 0
for every y € X.

Using the above definition of an equilibrium point for the mapping ¢, we
show the following result.

Lemma 13. Let X = II' | X; be the Cartesian product of the sets X;,i =

K3
1,...,n. The point z* is a Nash equilibrium point if and only if =* is an
equilibrium point of the function ¢ : X x X — R | given by

@(I’y) :ZZZlfz(Il’...7xZ7..-7xn)_f(-r17~..,yz’...7-rn) (70)
with x = (x1,...,2y) and y = (Y1, -, Yn)-

Proof. Let x* be a Nash equilibrium and consider an arbitrary y =
(Y1,...,9yn) € X. By definition

filay, oo al, o xl) > flal, o yiye o))

for every 1 < i < n. This shows ¢(x*,y) > 0 and so * is an equilibrium point
of the function . For * an equilibrium point of the function ¢, consider some
1 <4 < n and introduce the vector y = (z7,...,y;,...,2) € X. Clearly for
this vector y, it follows that

0<opz*y) = filey,...;xl,...,an) — filay, o yiy ooy 2

and as 1 <7 < n is arbitrary, we obtain that x* is a Nash equilibrium point.
|
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Hence by the above lemma, we have reduced the proof of existence of a
Nash equilibrium point to the proof of existence of a equilibrium point for
the mapping ¢ listed in relation (70). To show in general the existence of an
equilibrium point of a mapping ¢ : X x X — R, we observe that the point
x* is an equilibrium point of the mapping ¢ if and only if the intersection
Nyex{z € X : p(x,y) > 0} is nonempty. Unfortunately, it seems not to be
possible (in general) to prove the existence of an equilibrium point by means
of LP duality or convex analysis techniques as was done for a two-person
noncooperative game. To show the existence of a Nash equilibrium under
certain conditions on the sets X; and the payoff functions f; we need the so-
called KKM (Knaster-Kuratowski-Mazurkiewicz) lemma ([9]). Observe the

simplex A for any subset J C {1,...,k} is given by
Ay :=co({ej:je J})
with e; the jth unit vector in RF.

Definition 25. The collection of sets E; C RF1<i<k satisfy the KKM
property if Ay C Uie s E; for every set J C {1,...,k}.

The KKM lemma is given by the following result (for its proof see [42]).

Lemma 14. If the sets F; C RF 1 < i <k are closed and satisfy the KKM
property, then ﬂleEi 18 nonempty.

The KKM lemma is an easy consequence of Sperner’s lemma (see Theorem
2.5.6 of [43] or Lemma 3.5.1 of [27]), and Sperner’s lemma can be proved
by combinatorial arguments (cf. [1] or Theorem 3.4.3 of [27]). Because our
function ¢ in a so-called equilibrium problem is defined on the set X x X
with X a convex subset of a linear topological space X', we need to discuss
the extensions of the KKM lemma to these spaces. This can be done in the
following way. Let @ : X — 2% be a set valued mapping with nonempty values,
where X is a convex subset of some (real) linear topological space X and 2%
the power set of X, and consider for a given collection {z1,...,2,} C X and
x € X the (possibly empty) finite dimensional sets

E(z)={\e Ay : Z; Az € B(x)}

with N :={1,...,n}. Denoting by L := lin({z1,...,z,}) the smallest linear
subspace containing the set {x1,za,...,2,}, then clearly

E(z)={\e Ay : Z::l \jz; € B(z) N L} C R™ (71)

If we know that the sets F(z) C Ay are closed for every z € X, and for
a given collection {z1,...,z,} C X, the nonempty sets F; := E(z;),1 <
i < n satisfy the KKM property, then by the KKM lemma we obtain that
N2, E(z;) is nonempty. This shows that there exists some \* € Ay satisfying
i Njry € NP P(x;), and so we have verified that N7, &(z;) # 0. To
introduce a topology on F(x), we recall the following definition.
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Definition 26. The set valued mapping @ : X — 2% with X a convex subset
of a linear topological space X is called finitely closed if for every x € X and
every finite dimensional subspace L C X the set ®(x) N L is closed in the
Euclidean topology on L.

It is obvious that @ finitely closed implies E(z) is closed for every = € X.
In the next lemma, we give a sufficient condition for @ to be finitely closed.

Lemma 15. If the set-valued mapping @ : X — 2% with X a convex subset of
a linear topological space X has closed values &(x),xz € X, then the mapping
@ is finitely closed.

Proof. If L C X is a finite dimensional subspace, there exists some finite set
{#z1,...,2n} C X of linearly independent vectors satisfying

L=1lin({z1,...,2n}).

To show that @(z) N L is closed in the Euclidean topology on L, we need
to verify for any sequence (x4)qen C P(z) N L satisfying z, — xo in the
Euclidean topology on L that z, € ¢(x) N L. Because every element of L can
be uniquely represented as a linear combination of the vectors z;,1 < i < n, it
follows that x, — x in the Euclidean topology on L if and only if limg;o 55 =
ﬂoc with ﬂg = (ﬁq,la s 76q,n) € R", ﬁoTo = (ﬁoo,ly cee aﬂoo,n) € R",

T, = ijl Bq.5%,9 € N, (72)

and

Too = ijl Boo,j2;- (73)

Moreover, because X is a linear topological space, it follows that the mapping
h:R" — X, given by h(a) = Z?zl ajz;, is continuous in this topology. This
shows, using z, = h(8,) € ¢(z) for every g € N, that

Too = h(Bso) = limgjoc h(By) € cl(P(2))

with the closure taken with respect to the topology on &X. Using now that
@(x) is closed, we obtain that xo € P(z) and so ., belongs to P(x)NL. A

We next recall the definition of a KKM mapping for set-valued functions
$: X — 2%,

Definition 27. Let X be a conver subset of a linear topological space
X. The set valued mapping ® : X — 2% is called a KKM mapping if
co({z1,...,x}) C U;?:l@(xj) for every finite subset {x1,..., x5} C X.

Clearly by the above definition, it follows for a KKM mapping @ that x
belongs to @(z) for every « € X. In the next lemma, we extend the KKM
lemma, to set-valued mappings.
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Lemma 16. If the set valued mapping @ : X — 2% is o KKM mapping with
@(z) closed for every x € X, then NE_,P(x;) is nonempty for every finite set
{xh...,xk} - X.

Proof. If & is a KKM mapping, then by definition

co({x1,...,x}) C U?zlé(xj) (74)
for every finite subset {x1,...,z;} C X. To prove the desired result, we verify
by induction that

col{r, .2y }) N (N, B(x)) # 0 (75)

for every finite subset {z1,..., 24} C X. By relation (74) it follows that (75)
holds for ¢ = 1. Suppose now that relation (75) holds for ¢ < k—1 (k > 2) and

consider a subset {z1,...,75} C X. Let Ay :={\€ RF: \; >0, Ele A=1}
and introduce for every 1 < i < k the sets E;, given by

k .
E;, = {)\ €Ay Zj:1 )\jxj S @(SL’Z)} - RF.
For L denoting the linear subspace lin({x1,...,xx}), it is obvious that
k
E;={\e Ay: ZFI \jzj € d(x;) N L},

and as by Lemma 15 the set valued mapping @ is finitely closed, it follows that
the sets F;,1 < i < k are closed in the Euclidean topology on L. Moreover,
to show that the sets F;, 1 < i < k, satisfy the KKM property, we observe for
every J C{1,..,k} and X € co({e; : j € J}) C A, that

A= M)A = 0,5 ¢ N ZO,jEJ,ZjEJ)\j =1

This implies by relation (74) with k replaced by |J| that

k .
ijl Az = ZjGJ Njzj € co{xj:je J}) CUjesP(z;)

and we have verified that A\ belongs to Ujc s E;. Because A € co({e; : j € J})
is arbitrary, this shows that

co({ej : j € J}) CUjesEj

and so the collection F;, 1 < ¢ < k satisfies the KKM property. Hence by the
KKM lemma, it follows that ﬂleEi is nonempty and so there exists some
A* € Ay satisfying Z;ﬂ:l X;z; € NP ®(x;). This proves the induction for k
and the proof is completed. |

We are now able to show that under certain conditions, a Nash equilibrium
point exists. To prove this, we first need the following lemma.
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Lemma 17. Let X be a convex subset of a linear topological space X. If the
function ¢ : X x X — R satisfies p(z,x) > 0 and y — @(x,y) is convex on
X for every x € X, then the set valued mapping @ : X — 2% given by

P(y) = {r € X : p(x,y) > 0}
1s a KKM mapping.

Proof. Because p(x,z) > 0, it follows immediately that y belongs to &(y).
Suppose now by contradiction that there exists some finite set {yj,...,y5} C
X,k > 2 such that y* belonging to co({y,...,y;}) does not belong to
U;?:l@(y;’-‘). By the first part, it follows that y* is not equal to y; for some
1 < 4 < k. This means that one can find some \* € A, with at least two
positive components smaller than 1 satisfying

k
maxi<;<g W(ijl Niyih i) <0.

By the convexity of the function y —— 4P(Z§:1 Ay5,y), this implies

0o N Y N Y0 N i) <0

and we obtain a contradiction. |
Finally, we can give a proof of the following important result.

Theorem 15. If the pure strategy sets X;,1 < i < n are convexr compact
subsets of (maybe different) linear topological spaces X;, the payoff functions
fi: X — R, 1 <i<mn are continuous on X for every 1 <i <n and satisfy

xini(xl,...,mi,...,xn)

are concave for every 1 < 1 < n and every fized (x1,...,Ti—1,Tit1,-.,Tn),
then the n-person noncooperative game has a Nash equilibrium point.

Proof. By Lemma 13, we have to show for X = II' ; X; that the function
p: X x X — R, given by

QO(Q?,y) = Zj:l fi(xlw"axia"wxn) - fi(x17"'uyi7"’7xn) (76)

with = (21,...,2,) and y = (y1,...,y,) has an equilibrium point, and
by the observations after Lemma 13 this means that Nyex®(y) is nonempty
with &(y) := {x € X : ¢(x,y) > 0}. First observe by the continuity of f;
(1 <4 < n) that the function 2 — @(x, y) listed in relation (76) is continuous
on X for every y € X. This shows for every y € X that the set @(y) is closed
and because X is compact, that @(y) is compact as well. Moreover, because
x; — fi(z1, ..., @i, ..., zy,) is concave for every 1 < i < n, we obtain that the
function y — ¢(z, y) is convex, and together with ¢(z, ) = 0 this implies by
Lemma 17 that the set-valued map @ is a KKM map. Applying now Lemma
16, it follows for every finite subset F' C X that Nyerp®(y) is nonempty. This
shows by the finite intersection property for compact sets that Nyex@(y) is
nonempty, and we have shown the desired result. ]
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Abstract This paper gives an overview of the existence and computation of equi-
librium in nonlinear n-person games. After some introductory examples, sufficient
existence results are presented in both cases of single-valued and multiple-valued
best responses. The uniqueness of the equilibrium is also shown under general con-
ditions. A special iterative method is discussed for the computation of the unique
equilibrium based on a variational inequality, and a single-objective optimization
model is introduced to provide the equilibria. An example of repeated oligopolies
completes the paper.
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1 Introduction

An n-person game is defined by specifying the players (k =1,2,...,n), the
set Sy, of feasible strategies (choices) of each player k, and the payoff function
fr =S — R for each player k, where S is a subset of the Cartesian product
S1 X Sy x -+ x S,,. The set S contains all feasible decision alternatives for
player k, and the payoff function fj gives the consequence of the decisions
of all players for player k. If x; € S; is the selected strategy of player | (I =
1,2,...,n), then fy(z1,...,x,) is the payoff (meaning profit, savings, etc.) of
player k.

In most cases, it is assumed that S = 57 x So x -+ - X S, in which case the
players may select their strategies independently of each other. However in
some applications, such as in production modeling, the resources are limited,
which poses an additional condition that the total amount of resources used
by all players is limited. We will use the strategic form representation of
n-person games in this chapter:

G={n;S1,....,5% S f1,.... [}
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For convenience, we will use the simplifying notation x = (x1,22,...,Z,)
and x_p = (1,...,Tk—1,Thkt1,.--,Zn), SO We may write X = (X_g,x). The
best response mapping of player k with given x_; is defined as

9r(x-x) = argmax { fi(x-p, ox) | (X-x, 2x) € 5} (1)

assuming that maximum exists. Note that gx(x_j) is the set of strategies
of player k that maximize its payoff with any given x_;, where x_j; shows the
choices of all other players. For the sake of convenience, we will write the best
response mapping as g (x), where we know that g, does not depend explicitly
on . In many cases gp(x) is single valued, for example, when fj, is strictly
concave in z, however in most applications g (x) is a subset of Sk.

The Nash equilibrium ([9]) of game G is a strategy vector x* =
(z7,...,2%) such that

(i) x* € 5
(ii) x} € gr(x*) for all k.

By using the definition of the best response mapping, condition (ii) can
be rewritten as

So (%5 an) < fo (x5g27) (2)

for all k and (x* ,,x) € S. By introducing mapping

x = g(x) = g1(x) X g2(x) X ... X gn(x), (3)

it is clear that x* is a Nash equilibrium if and only if x* € g(x*), that is, x*
is a fixed point of the point-to-set mapping g. If g is single valued, then x* is
a Nash equilibrium if and only if x* = g(x*).

The concepts of best response mapping and Nash equilibrium are illus-
trated in the following examples.

Ezample 1. Select n = 2,51 = Sy = Ry, assume S = 51 xSy, and f1(x1,22) =
fa(z1,22) = 1 + x2. In this case, neither player has best response, because
if player k increases the value of z; (with unchanged strategy of the other
player), its payoff increases. Therefore no Nash equilibrium exists.

Ezample 2. Select again n = 2 and assume that both players have two feasible
strategies, that is S; = Sy = {1;2}. The payoff functions are given below:

f1(1’1,£132)‘132:1:132:2 f2($1,2132)‘132:1132:2
1 =1 1 2 =1 2 1
Ty =2 2 0 T =2 4 5

These 2 x 2 matrices are called the payoff matrices of players 1 and 2.
The best responses are clearly as follows:
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g1(1,1) = g1(2,1) = 2, g91(1,2) = g1(2,2) =1

and
92(1, ].) = 92(1,2) = 1, 92(2, 1) = 92(2,2) = 2.

By using mapping (3), we have

g(1,1)=(2,1),  g(1,2)=(L,1)
g(2v 1) - (27 2)3 g(27 2) = (1v 2)

so mapping g has no fixed point. Therefore there is no Nash equilibrium.

Ezample 3. By modifying the payoffs of the previous example as

f1($17$2)‘$2:1$2:2 f2(1’1,$2)‘$2:1$2:2
r1 =1 2 0 r1 =1 2 3
T, =2 3 1 T, =2 0 1

we have

91(1,1) =¢1(2,1) =2, 91(1,2) = g1(2,2) =2
and

92(1,1) = g2(1,2) = 2, 92(2,1) = g2(2,2) =2
therefore

g(la 1) = (272)7 g(laQ) = (272)
g(27 1) = (272)7 g(272) = (272)

Hence we have a unique Nash equilibrium, x1 = xo = 2.

Ezample 4. [15] Assume that n firms produce the same product or offer the
same service. Let xj denote the output of firm &, C(x)) the cost function of
firm &, and let p(s) be the price function, where s = 1 + @9 + - - - + @, is the
total output of the industry. If L; denotes the capacity limit of firm k, then
Sk = [0, Ly ] is the set of all feasible strategies of firm k, and

fk(xl,...,xn):w;g-p<z:ci> — Cr(zr) (4)

is its payoff function. If there is sufficient amount of energy, manpower,
etc., for all firms to produce maximum output, then we may assume that
S =51 x5 x---x8S,. This n-person game is called Cournot oligopoly
without product differentiation.

Assume that functions p and Ci(k = 1,2,...,n) are twice continuously
differentiable, furthermore
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(A) p'(s) = CY/(ar) <0
and
(B) p'(s) + xxp”(s) <0 for all 3, € [0, Ly ] and s € [0, 1, L; .

Introduce notation s = Z#k xz;, then the profit of firm k& can be
rewritten as

fre(sk, k) = 2 p(sk + ax) — Cr(xk),

which is strictly concave in xj. Therefore the best response of firm k is unique
and can be obtained as follows. Notice first that

o

3 (x) = p(s) + xxp'(s) — Cp(xk). (5)
T,

It is convenient to consider xj as a function of the total output s, then we

have three possibilities. If p(s) — C},(0) < 0, then the best choice of firm k is
zp(s) = 0. If p(s) + Lixp'(s) — C, (L) > 0, then the best choice of firm k is
2k (s) = Lg. Otherwise the best choice is interior and can be obtained as the
unique solution of equation

p(s) +app'(s) — Ci(ar) =0 (6)

in interval (0, Lj). The left-hand side of this equation is continuously differ-
entiable and strictly decreasing in z; with fixed values of s as a consequence
of assumption (A), furthermore its value at xx = 0 is positive and at z = Ly,
is negative. Therefore there is a unique solution xp = x(s). By implicit dif-
ferentiation of equation (6), we have

P'(s) + 23, (s)p'(s) + 2k (s)p" (s) — CYl (zk(s))2p(s) = 0

implying that
/ i
+ zp”(s)
2 (s) = ~LEOFTTP) 7
H) = e o = g
By combining the above three cases, we conclude that xj(s) is unique for all
s € (0,5, L;] and is nonincreasing in s. The Nash equilibrium therefore is
the unique solution s* of the single variable monotonic equation

ka(s)—s:o (8)

k=1

where s* gives the total equilibrium output of the industry, and the equilib-
rium output of firm k is obtained as z} = x(s*).

Ezxample 5. By dropping the differentiability of the price function in Cournot
oligopolies, we might lose the uniqueness of the Nash equilibrium. As an ex-
ample with multiple equilibrium, consider the special case of duopoly (n = 2)
with S; = S3 =[0,1.5], Ci(zx) = 0.5z (k =1,2), and
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1.75 — 0.5s,if 0 < s < 1.5;
p(s) =1 2.5 —s, if 1.5 < s < 2.5
0, if s> 2.5.

Then it can be shown that the set of all Nash equilibria is given as

X" = {($1,$2)|05 S T S 1,05 § ) S ].,.Zl + Ty = 15}

2 Existence of Nash Equilibrium

As we have seen in the previous examples, there is no general guarantee for the
existence of a Nash equilibrium in n-person games. Our first result gives the
probability of the existence of Nash equilibria in special games with randomly
selected payoff functions.

Theorem 1. Let n =2, S ={1,2,....,m}, So = {1,2,...,n}, all f1(i,5)
values be independent, identically distributed with the same continuous distri-

bution, furthermore fo(i,7) = —f1(i,7) for all i and j. Then the probability

that this two-person zero-sum game has Nash equilibrium is
min!

P re——— 9

(m+n—1)! ©)

Proof. Notice first that:

1. The probability that all values f(7, ) are different is one;
2. The probability that (4, 7) is an equilibrium is the same for all ¢ and j;
3. The probability that there is an equilibrium equals mn times the proba-
bility that (1,1) is an equilibrium;
4. (1,1) is an equilibrium, if f(1, 1) is the largest in its column and smallest
in its row in payoff matrix (f1(i,7)); ;" . That is, if we order the elements
film, 1), fi(m=1,1),..., f1(1,1), f1(1,2),..., f1(1,n) in an increasing or-
der, then
fl(m7 1)af1(m -1, 1)) e '7f(27 1)

have to be before f1(1,1), and all elements

f1(172)7f1(173)7'"7f1(17n)

have to be after fi(1,1). Because there are altogether m +n — 1 elements
in the set, the probability of a such order is
(m—1)!(n—1)!

(m+n-—1)

3

therefore the probability that there is a Nash equilibrium is
—1)! —1)!
o (m—1)l(n—1)!

(m+n—1)!

where we used item 3 given above. This formula equals the assertion of
the theorem. |



100 F. Szidarovszky

We have also seen before that a vector x* € S is a Nash equilibrium if and
only if x* is a fixed point of the point-to-set mapping (3). Therefore any
existence theorem of fixed points can be applied to find conditions for the
existence of Nash equilibria. The most frequently used fixed point theorem
is the Kakutani theorem ([7]), which can be directly applied to prove the
following very powerful existence result.

Theorem 2. ([10]) Assume that for all k,

(i) Sy is a nonempty, convex, compact subset of a finite dimensional Euclid-
ean space;
(ii) fr as an n-variable function of (v1,%2,...,%Ty) s continuous on S =
Sl XSQ Xoee XSn,'
(iii) fi is concave in xy, with any fived x_j, € X;415;.
Then there is at least one Nash equilibrium.

Ezample 6. Consider again the n-person oligopoly game without product
differentiation, which was analyzed earlier in Example 4. All strategy sets
Sk = [0, Ly ] are compact in the real line, all payoff functions are twice con-
tinuously differentiable, so continuous, furthermore conditions (A) and (B)
imply that fj is concave in xj. Therefore there is at least one Nash equilib-
rium. In Example 4, we have also proved the uniqueness of the equilibrium
and presented a simple computer procedure to find the equilibrium by solving
the single variable, monotonic equation (8).

In case when the best response is single valued, we have a much more
simple existence theorem.

Theorem 3. Assume that conditions (i) and (ii) of Theorem 2 hold, further-
more the best response mapping (3) is single valued. Then the game has at
least one Nash equilibrium.

Proof. Because g(x) is single valued and fj is continuous for all k, gp(x) is
also continuous. Hence mapping g is a continuous mapping of S into itself,
therefore the Brouwer fixed point theorem ([3]) implies the existence of at
least one fixed point of g, which is a Nash equilibrium. |

The Nikaido—Isoda theorem can be proved also by using the Brouwer fixed
point theorem (see [4]), and the algorithm introduced in [14] can be used as
a practical method to find the equilibrium. There are many generalizations
of the Nakaido—Isoda theorem known from the literature. Such a result is the
following,

Theorem 4. Assume that for all k,

(i) Sy is a nonempty, convex, compact subset of a finite dimensional Euclid-
ean space;
(i1) fr is upper semicontinuous on S = S1 X -+ X Sp;
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(i11) for any fized xy, € Sk, fi is lower semicontinuous in x_j on S_p = X;215:;
(iv) for any x € S, the best reply g(x) is convez.
Then there is at least one Nash equilibrium.

Note that condition (7v) holds if fi is quasiconcave in x on S.

The existence of equilibrium can be examined without assuming topoly-
gical structure of the strategy sets based on only monotonicity of the best
response. The fixed point theorem of [18] is the theoretical basis for such
approach, which was successfully applied in oligopoly models by [19].

Another family of existence results can be obtained by imposing certain
continuity and concavity conditions on the “aggregator” function H : S xS —
R as

H(x,2) = fu(X_x, 2). (10)
k=1
It is easy to show that x* € S is a Nash equilibrium if and only if for all z € S,

H (x*,z) < H (x*,x"). (11)

By using Fan’s inequality (see, for example, [1]), the following result can
be shown.

Theorem 5. ([17]) Assume that for all k, (i) Sk is a nonempty, convex,
compact subset of a finite dimensional Eudlidean space; (i) > i, f; is up-
per semicontinuous on S = Sy X -+ X Sy; (i) fi is lower semicontinuous on
S_k = Xiz,S; with any fived value of x), € Si; (iv) for any fizred x € S, the
function H(x,z) is quasiconcave in z on S. Then there is at least one Nash

equilibrium.

The existence of a Nash equilibrium can be proved also based on certain
transfer continuity and transfer concavity. Let Z be a subset of a finite dimen-
sional Euclidean space and let A C Z. A function U : A x Z +— R is said to be
diagonally transfer continuous in X if for every (x,y) € Ax Z, U(x,y) >
U(x,x) implies that there exist some point y’ € Z and some neighborhood
N(x) C A of x such that U(y’,z) > U(z,z) for all z € N(x).

Function U : Z X B +— R is said to be diagonally transfer quasicon-
cave in y if, for any finite subset Y™ = {yl, e ,ym} C B, there exists a
corresponding finite subset X™ = { xt .. x™ } C Z such that for any subset
X® = {xkl,...,x’Cs } C X™ (1 <5< m) and any x* from the convex hull
of X* we have

lrgligsU (xk",ykl) <U (xko,xko). (12)
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Theorem 6. ([2]) Assume that for all k, (i) Sk is a nonempty, conver, com-
pact subset of a finite dimensional Euclidean space; (ii) The aggregator func-
tion H(x,y) is diagonally transfer continuous in x. Then the n-person game

has a Nash equilibrium if and only if H is diagonally transfer quasiconcave
my.

Ezample 7. ([2]) Consider a price-setting duopoly in which the firms operate
with zero cost. Assume S} = Sy = [0,p™*" ], where p™?® is the maximum
feasible price to be selected by either firm. Let ¢ > 0 be a given constant and

assume that
_J 1, if p1 < po;
Filpr,p2) = {p1 — ¢, otherwise

and

_ D2, if P2 S P1;
fQ(PhPZ) - {p2 —c, otherwise.

This game can be interpreted as a duopoly, when each firm has committed
to pay brand-loyal customers a fixed amount ¢ if the other firm beats its
price. The payoff functions are neither continuous, nor quasiconcave. However
the aggregator function H assembled from f; and f; is diagonally transfer
continuous and diagonally transfer quasiconcave. Therefore there is at least
one Nash equilibrium.

3 Uniqueness of Nash Equilibrium

Because Nash equilibra are fixed points of the point-to-set mapping g : S — S
defined in (3), any result on the uniqueness of fixed points can be directly
applied to establish the uniqueness of Nash equilibria.

Assume first that g(x) is single valued. Function g is called a contraction
if there is a constant ¢ € [0, 1) such that

le(x) gl <e-[lx—yl (13)

for all x,y € S, where || - || is a vector norm. Under this condition, there is at
most one fixed point of function g. On the contrary, assume that x and y are
both fixed points, then x = g(x) and y = g(y), so

Ix =yl =llgx) —gy)l <e-x—yl (14)
which cannot hold for x # y.

Introduce next function G(x) = x — g(x), then the equilibrium is clearly
unique, if G is one-to-one. In the mathematical literature, there are several
conditions that guarantee that G is one-to-one. Assuming that G is continu-
ously differentiable, the most frequently applied conditions are as follows. Let
J(x) denote the Jacobian of G(x).
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(i) All leading principle minors of J(x) are positive (that is, J(x) is a P-
matrix) (see [5]);
(ii) All leading principle minors of J(x) are negative (that is, J(x) is an N-
matrix) (see [6]);
(iii) Matrix J(x) + J(x)T is negative (or positive) semidefinite, and between
any pair x' # x? of points there is a point x° such that J(x°) + J(x")7
is negative (or positive) definite (see [12]).

Assume next that g(x) is set valued. Mapping G is called strictly
monotone if for all x! # x? and y! € G(x!) and y? € G(x?),

x'=x)T(y' —y%) > 0. (15)

Under condition (15), we cannot have multiple Nash equilibrium. Assume
that x! # x? are both equilibria, then x! € g(x') and x? € g(x?), so we may
select y' = 0 and y? = 0. Then the left-hand side of (15) is zero, which is a
contradiction. Notice that it is sufficient to assume that for x* # x?, x! — x?

must not be perpendicular to y! —y? with any y! € G(x!) and y? € G(x?).

More complex uniqueness conditions can be given if the payoff func-
tions are continuously differentiable and the strategy sets Sy are defined
by a finite set of continuously differentiable inequalities. Consider game
{n;S1,...,5.,5; f1,..., fn} in which S = 51 x Sy x --- x S, and for all k,

(i) Sk = {zr € R™ | qr(xr) > 0} is nonempty, ¢ is continuously differen-
tiable in an open set containing Sy, and all components of g are concave;
(ii) There exists an Ty such that ¢ (Zy) > 0;
(iii) Payoff function fy is twice continuously differentiable in an open set con-
taining S.

Let now x* be a Nash equilibrium, then for all &,

zj = argmax { f (x* 4, 2x) |2k € Sk }
so the Kuhn—Tucker necessary conditions (see, for example, [8]) imply that
there exists a nonnegative vector uj such that

Vife(x*) +up” ik qr(ag) =0 16
« T * _ ( )
g, qr(xy) =0
where vy fi is the gradient (as a row) vector of function f; with respect to

Ty, and V/xqx is the Jacobian matrix of g. If in addition, fj is concave in
with any fixed x_y, then the Kuhn—Tucker conditions (16) are also sufficient.

Introduce with some nonnegative vector r € R"™ the following function
h:S+— RM
r1 V1 f1(%)

T2 V2 f2(X)

h(x,r) = (17)

Tn Vn. I (X)
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where M = my + ms + - -+ + m,,, my being the dimension of strategy vector

xp for Kk =1,2,...,n . The n-person game is said to be diagonally strictly
concave if with some r > 0,
(x' =x%)7 (b (x!,r) —h (x% 1)) < 0. (18)

Notice that condition (18) means that —h is strictly monotone in the sense
of (15).

Theorem 7. ([13]) Assume that conditions (i)-(iii) hold, and the game is
diagonally strictly concave. Then the game has at most one Nash equilibrium.

Proof. Assume that x° = (29,...,2%) and x' = («1,...,2}) are both equi-
libria. Then from (16),
T
Vi fr (x1) J;Ufc Ve ak (zh) =0 (19)
wi ar () =0

for [ = 0, 1. If the dimension of g; (as well as that of u!) is px, then the first
equation can be rewritten as

Pr

Vrfe () + Yl kg () =0 (20)

Jj=1

where ufgj and gp; denote the 4" component of u% and gi. Multiplying (20) by

re(@t — 20T for [ = 0 and by ri(2) — 2})T for [ = 1 and adding the resulted

equations for k =1,2,...,n, we get

0={(x' = x")"h(x"r) + (x* = x)"h (x},r)}

n Pk
3 e [u (k= 0) " Th an (29) + k(22 — o) s ()]
k=1 |\ j=1

The first term is positive as the consequence of assumption (18), therefore the
second (summation) term must be negative. By the concavity of functions gy,
we have

0> ki irk [ (ars (21) — ang (22)) +ub; (any (29) — ars (21))]

Using the second equation of (19), we get an obvious contradiction:

n Pk

0> 38 "y [udyans (wh) +ubjars (28)] p > 0. (21)
k=1 | j=1
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Ezample 8 ([4]). Consider a quadratic game with S ={ xx|x; > 0,17x;, =1}
(k=1,2,...,n) being a simplex in R™* and with payoff functions

fe(x) =Y [ef; + x1 Cry] x; (22)

Jj=1

where cfj is a constraint row vector and Cp; is a constant matrix. It is easy
to see that the Jacobian of h(x,r) has the special form

J(x,r) =DC (23)
with
2011 C12 . Cln
021 2022 . an
C = . . .
C,1 C,o ...2C,,
and
TlIml 0 “ee 0
0 rolp, ... O
D= . . .
0 0 ...rnLn,

where I,,, denotes the my, x my, identity matrix. It is known (see, for example,
[12]) that condition (18) holds if DC + CTD is negative definite.

4 Computation of Nash Equilibria

There are several different concepts in computing Nash equilibria. In this sec-
tion, we will outline the three most frequently used method families: solution
for fixed points, reduction to variational inequalities, and transforming the
equilibrium problem to an optimization problem.

Let g denote the best response mapping (3), then x* is a Nash equilibrium
if and only if x* € g(x*). If g(x) is single valued, then x* is a fixed point if
and only if x* = g(x*). In this case, we have a (usually nonlinear) system of
algebraic equations to solve. The numerical analysis literature offers a large
variety of methods (see, for example, [16]) including the Newton method,
several variants of the gradient method, fixed point iteration, etc. If g(x) is
a set, then it is usually described by a system of x-dependent inequalities,
and we have to find a feasible solution of these inequalities. With surplus and
slack variables, we are able to rewrite the inequalities into equations, so any
method for solving systems of algebraic equations can be useful again.
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Assume next that all conditions of Theorem 7 are satisfied and all payoff
functions fj are concave in x;, with any fixed value of x_j. Introduce the
generalized “aggregator” function

H.(x,y) = Zrkfk(x—myk) (24)
k=1

with r = (r) > 0. It is easy to see that x* € S is an equilibrium if and only if
H, (x*,x") > H, (x",y) (25)

forally € S.

Theorem 8. ([20]) A vector x* satisfies (25) if and only if

r)rcleag({h(x*,r)T (x—x*)} =0 (26)

where h(x,r) is defined by (17).

Proof. Assume first that x* satisfies (25). Because H,.(x*,y) has its maximum
aty =x" forally € §

VyHr (x5 %) (y =x7) <0

which is (26).
Assume next that (26) is satisfied. Then the concavity of fi in zj and (18)
imply that
H,(x",x*) — Hy(x",y) 2 h(y,r)" (x" —y) >
h(y, r)"(x" —y) + h(x*,r)"(y - x*) > 0.
]

Note that (26) is a variational inequality, so by finding its solutions, the
Nash equilibria are obtained.

Theorem 9. ([20]) A vector x* satisfies relation (25) if and only if (x*,x*)
is a Nash equilibrium of the two-person zero-sum game with sets S; = So = S

of strategies, and payoff functions fi = f, fo = —f with f(x,y) = h(y,r)”
(x—y)

Proof. Assume first that x* satisfies (25). Then by Theorem 8, for all x € S,
h(x*,r)" (x — x*) <0, (27)

that is
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We will next prove that f(x*,x) > 0 for all x € S. Assume in contrary
that there exists an y € S such that f(x*,y) < 0.

Then by (18),

0> f(x,y)=h(y,r)’ (x"—y)>h(x" 1) x" ~y),

that is
h(x*r) (y —x*)>0

contradicting (27).

Assume next that (x*,x*) is an equilibrium of the two-person zero-sum
game. Then for all x,y € S,

fxx) < f(x5x7) < f(x"y).
Notice that the first inequality can be rewritten as
* T *
h(x",r)" (x—x") <0

therefore Theorem 8 implies that x* satisfies (25). |

Consider now the following iteration algorithm to solve the variational
inequality (26). Let x() € S be an arbitrary vector and solve the optimization
problem

max f (X7 x(l)) (28)

st. xes.

Let x(®) be a solution and define p; = f(x,xM). If 3 = 0, then x(!)
is an equilibrium, so the procedure terminates. Otherwise p; > 0. The gen-

eral k' step is the following. We already have x(), x(?) ... x(*) and scalars

Uiy p—1 > 0. Then the new x(*+1) and py, are solutions of the problem
max [ (29)
s.t. f (x,x(i)) >u, (1=1,2,...,k)
x € S.

Notice that f (x(k),x(i)) > g1 > 0, (@ = 1,2,...,k — 1) and

f(x®,x®)) = 0, therefore py > 0.

The convergence of the algorithm is guaranteed by the following result.

Theorem 10. (/20]) There is a subsequence of the iteration sequence { x1),
x@ . } that converges to the unique Nash equilibrium.
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Proof. The proof consists of several steps.

1. We first show that up — 0 as k — oco. Because at each step an additional
constraint is added, sequence {py} is monotonic and bounded, therefore
it is convergent. Because S is compact, there is a convergent subsequence
{x(ki)} of the iteration sequence {x(k)}. Clearly

T
Ogukj_lmax{ min h(x(k),r) (xfx(k)) |XES}
' 1<k<k;—1

= min h (x(k) r)T (X(ki) _ X(k))
1<k<k;—1 ’

T
<h (x(k’“l),r> (x(ki) — x(k"'*l)) — 0 as i — 00

implying that ug,—1 — 0, and because sequence {yy} is monotonic, the
entire sequence must converge to zero.
2. Consider function

§(t) = min { (h(x,r) —h(y.0)) (y = x) | [x ~y| > t. x,y € S}  (30)

which exists, because S is compact and ||x —y|| > t is a closed inequality,
furthermore it is positive as the consequence of assumption (18). Let now
x* be an equilibrium. Define indices k; according to

() = s (0 ) 6=
then for £k =1,2,...,7, we have
o (et ) = [ (<) ~mm] (0 —x)

_h( (k) )T< . <k>) b (x*, )" (X*,X(k))
<h (x(k),r>T (x* fx(k))

because h (x* —r)” (x®) —x*) < 0 by Theorem 9. Therefore

(e =x]) < o, b (<) (- =)

T
max min h(x( ) ) (x—x(’“))
xES 1<k<i

= min h (x(k),r)T (X(H'l) — x(k))
1<k<i

=pu; —0 as i — 00.

A

IA

Consequently, § ([|x*) —x*||) -0 asi— oo.
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3. Function ¢ clearly satisfies the following properties:
(i) () is continuous in t;
(ii) &(t) > 0 as t > 0, because the game is diagonally strictly concave.
Therefore 6(¢;) — 0 implies that ¢; — 0 for any convergent sequence {¢;},

which implies that ||x*9) — x*|| — 0 as i — oo, so x*) — x*.

Assume next that all conditions of Theorem 7 are satisfied. If x* is an equi-
librium, then the Kuhn—Tucker conditions show that with some nonnegative
vectors uj (1 < k < n), relations (16) hold. Introduce the notation

(%, uk) = Vi fu(x) + uf Ve ar(zr) (31)

and consider the following optimization problem

min 7wy qr (k)
st up >0
qx(zr) >0
Yr(x,up) =0

kE=1,2,...,n. (32)

Theorem 11. If x* is an equilibrium, then there exist nonnegative vec-
tors uj(k = 1,2,...,n) such that (x*,uj,...,u}) is an optimal solution of
problem (32).

Proof. If x* is an equilibrium, then the Kuhn—Tucker necessary conditions

(16) are satisfied, so (x*,uf,...,u}) is a feasible solution of problem (32) with
zero objective function value. Because at any feasible solution the objective
function is nonnegative, (x*,uj,...,w)) must be optimal. [ ]

Theorem 12. If in addition, fi is concave in xp with any fived X_y, then for
any optimal solution (X,u1,...,uy,) of problem (32), x is an equilibrium.

Proof. Under the additional condition, the Kuhn—Tucker conditions are also
sufficient. ]

The application of problem (32) will be illustrated in the following
examples.

Ezample 9 (Bimatriz games). Assume n = 2, linear strategy sets
Sl = {Xl |X1 = (.Tgl)) S Rm, X1 Z 0727, 1:&7,) =1 (33)
52: {X2|X2: (1’%7)) GRn,Xg ZO,ZZ(Eg) = 1},

and quadratic payoff functions

fi(x1,%x2) = X,{AXQ and  fo(x1,X2) = xlTBxZ (34)
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where A and B are given m x n constant real matrices.

In this case, we may select

Ly
q1 (Xl) = .’Egm)
:Egl) + - +x§m) -1
71,51) o Jjgm) 41
with Jacobian
I
vigi(x1) = | 17
17T

where I is the m x m identity matrix and 1 is the m-element vector, all
components of which are equal to one. Similarly,

(1)

)
(IZ(X2) = xgn')
AR O |
with
I
Vag2(x2) = | 17
_1T

The objective function of problem (32) has now the special form

Zuﬁi)x?) + ungrl) (Z xgz‘) . 1) m+2) < Zm () + 1>
i=1 i

—&-Zuéj)xgj) + uénﬂ) Zxéj) -1 "H) ZQ?(J +1

Jj=1 J
By introducing the notation

o= ugm+2) — ugmH) and (= ug"”) — ugﬂ'l),
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problem (32) can be further simplified as
min ulx; + ul'x, — a (1TX1 - 1) -3 (1Tx2 - 1) (35)
st up>0,uy; >0
x1>20,x2>0
17%,=1,1"x, =1
xa AT +uf + (ugmﬂ) — u§m+2)> 17 = o7
X{B + ug + (ugnﬂ) - u§"+2)) 17 = o7
From the last two constraints
ul' = a1 —xI'AT and ul =p17 —xI'B
so the objective function of (35) is the following:
(—xFAT + a1T)x; + (—xTB + 17)xy — a(17x; — 1) = B(1Txy — 1)
= —X{AXQ — X{BXQ + o+ p.
Hence we have a quadratic optimization problem with linear constraints:
max x; (A +B)xy —a — 3 (36)
st. x1 20, x>0
17x, =1, 1Tx,=1
Ax, <oal, BTx; <pi.

As a numerical example, select
2 -1 1 -1
A:(_ll) and B:<_12>

3 =2
Ao (42).

Therefore, problem (36) is the following

then

max 33351)30%1) — 29051)36%2) — 2x§2)xgl) + 33652)33&2) —a—0
s.t. xgl),xf),x(;),xgz) >0
xgl) + x§2) =1, J:gl) + q:éz) =1
23351) — xéQ) <a
—scél) + x§2) <a
oV — 2P <
—acgl) + 2x§2) <g.
A computer program is applied to find three optimal solutions shown in
Table 1:
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Table 1. Solution of Example 9

xi  (1,0) (0,1) (3/5,2/5)
x; (L0) (0,1) (2/5,3/5)
o 2 1 1/5
B 1 2 1/5

Ezample 10 (Matriz games). Consider a special bimatrix game in which
B = — A, that is, the game is zero sum.

In this case, the optimization problem (36) is linear and it can be broken
up to two linear programming problems:

min « min [
s.t. Axy <al st. ATx > —p1
T T (37)
1 X9 = 1 1 X1 = 1
X2 2 0. X1 2 0.

Ezample 11. Consider now again the single-product oligopoly game without
product differentiation (Example 4 gave the definition and notation). We may
select

Si =A{xk|lry > 0,L; —x > 0}

ar(wr) = (ka_kxk) :

Vi (Tr) = (_11>

T fr(x (2}) + 2y (Zm) Cy (x,) -

By introducing aj = u,(cl) — u,(c) and [ = u,(f), the objective function of
problem (32) becomes

o)
Notice that

and

n

> (ekwr + BrLk),

k=1

and the last constraint can be written as

(zxz> s (Z) CL o) + o =0



Nonlinear Games 113

from which we have

ap = —p (Z a?i) —xpp (Z xz) + Cp. ()

and by substituting this expression into the objective function, we have

i (‘xk l <Z x) + zp (Z@) Ch(xp)

k=1

+ ﬂkLk> :

Notice that u,(cl) = ay, + Ox must be nonnegative, so we have the following
optimization problem to solve

max 3y {ek (P2, 1) + wep' (2 wi) — Cp(ww))) — Bele}  (38)

s.t. 0<zp <L
Bre = max{0;p(3; xi) +xxp’ (32, x:i) — Cp(wr) )
As a numerical example, select n = 3, Ci(zy) = ka3 + xp, Ly = 1(k =
1,2,3), and p(s) = 2 — 2s — s?, where s = Zi:l Tk
In this particular case, problem (38) becomes

3

max zi(2 =25 — s2 — 2x), — 25z, — 3kas — 1) — By 39
PR 2
k=1

s.t. Ogl‘kgl
T4 +x2+2x3 =35

Bk = max{0;2 — 25 — s — 2x(2 + 25) — 3kaj — 1}.

A computer program gives the optimal solution:

zt =0.1077
x5 = 0.0986
% = 0.0919

Theorem 11 and Theorem 12 show how to transform an equilibrium problem
into an optimization problem under certain conditions. We will next illustrate
that for any optimization problem, we can formulate a two-person zero-sum
game such that the equilibria of the game provide optimal solutions. Consider
therefore the very general optimization problem
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max f(x) (40)
s.t. xe X
g(x) >0

where f : X — R, g : X — R™ are arbitrary functions, and X C R" is an
arbitrary (possibly even discrete) set. The Lagrangian of this problem is

L(x,u) = f(x) + u"g(x) (41)
for all nonnegative vectors u € R™. Define now the zero-sum two-person game
with strategy sets 51 = X, So = R, and payoff functions f; = L, fo = —L.
Theorem 13. If (x*,u*) is an equilibrium, then x* is an optimal solution of

problem (40).

Proof. Because (x*,u*) is an equilibrium, for all x and u,
Fx*) +ug(x") > f(x) +uTg(x) (42)

= [f(x") +uTg(x)] = - [f(x) +u'g(x")]. (43)

From (43), we see that u*T'g(x*) < 0 with the choice of u = 0. Next we
show that g(x*) > 0. Assume that for a component, g;(x*) < 0. Then select
sufficiently large value of w;, then (43) is violated. Therefore x* is a feasible
solution of (40).

Because u* > 0 and g(x*) > 0, u*Tg(x*) > 0, and comparing this in-
equality to u*?Tg(x*) < 0 (which was shown above), we see that

u*Tg(X*) =0

Finally we show that x* is optimal. From (42),

Fx) = f(x*) +uTg(x") 2 f(x) +uTg(x) > f(x)

for any feasible solution x, which shows the optimality of x*. |

5 A Dynamic Extension

Repeated games and dynamic extensions of different classes of games were
examined by many authors. In this section, a special dynamic oligopoly game
will be briefly discussed.

Consider a single-product oligopoly without differentiation (such as the
game introduced earlier in Example 4). The marginal profit of firm k is given as
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88;; (Z xl> + app’ <Z 172) Cr. (k). (44)

Assuming continuous timescale, it is realistic to assume that if the marginal
profit is positive, then the firm wants to increase its output. If the marginal
profit is negative, then the firm wants to decrease its output, and if the mar-
ginal profit is zero, then (assuming concavity of f; in x) the output maxi-
mizes the profit, so the firm does not want to change output. This adjustment
concept can be naturally modeled as follows:

For k=1,2,...,n

ik(t [ (Z l'z ) "rfﬂk (Z l'z ) Ck xk(t))] ’ (45)

where K}, is a positive constant for k =1,2,...,n.

Clearly any steady state of this system is an interior equilibrium, however
corner equilibria (when a2 = 0 or x, = Lj) are not always steady states of
this dynamic system. Most research on dynamic games is interested in the
asymptotic behavior of the trajectory as t — oco. Local asymptotic stability is
usually examined by linearization and based on the locations of the eigenvalues
of the Jacobian. The Jacobian of the system has a special structure

J=D+a-1" (46)
where
D = diag(K1(p/ <Z x1> C(z1)),..., K, (p (Z xl> Cll(xn)))
17 =(@1,1,...,1)
and

Ky (p' (32 i) + 21p” (32 i)
Ka(p' (32 1) +962P AOBED)

Ko/ () + fvnp”(Zi ;)

Conditions (A) and (B) (introduced in Example 4) imply that the diagonal
elements of D are negative and all elements of a are nonpositive.

For the sake of simplicity, let d; and a; denote the i*" diagonal element of
D and the i*" element of vector a.

The characteristic polynomial of the Jacobian can be given as follows

©(\) =det(D +a-17 — XI) = det(D — AI) - det(I 4 (D — AXI)"'a - 17).
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Now we will use the fact that for any n-element vectors u and v, det(I +
uv?) = 1+ vTu, which can be proved by using mathematical induction with
respect to size of the vectors. Then

() = T[d-N-
k=1

n ai
1 = 0. 4
+kz_1di—A] 0 (47)

The roots of the first product are all negative, and we will show that
all roots of the bracketed term are also real and negative implying the local
asymptotic stability of the steady state. Introduce function

O (48)

where we may assume that the d; values are different, as terms with identical
denominator can be written as one term by adding their numerators. Clearly

Jim g(d) =0,
Al I = 0o
Aﬂhgfog@) -
and B
TN=2 G 557 <°

The graph of this function is shown in Figure 1. Equation g(\) = —1
has a solution before d; and one solution between each pair (d;,d;y1)

g(i)

\d

Figure 1. Graph of function g(\)
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(i=1,2,...,n—1). Notice that this equation is equivalent to a polyno-
mial equation of degree n, so there are n real (or complex) roots. We found n
real roots, so all roots are real and negative. Hence the steady state is locally
asymptotically stable.
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Abstract Based on the notion of asymptotically contractive mapping due to Penot
[16], we propose in this paper a new method for the study of existence of fixed points
for nonexpansive mappings defined on unbounded sets.

Key words: fixed-point theory, nonexpansive mappings, scalar asymptoti-
cally contractive mapping, scalar asymptotic derivability

1 Introduction

The fixed-point theory is one of the most popular chapters considered in
nonlinear functional analysis.

Nonlinear functional analysis is an area of mathematics that has suddenly
grown up over the past few decades, influenced by nonlinear problems posed
in physics, mechanics, operations research, as well as in economics. In the
fixed-point theory, an important chapter is the study of fixed points for non-
expansive mappings.

Nonexpansive mappings are used in many practical problems. Many au-
thors have studied the existence of fixed points for nonexpansive mappings in
many papers as for example [1,2,4-6,10-13,16-21], among others.

The nonexpansivity is related, in some sense, with the contractivity. For
comparison of various definitions of contractive mapping, the reader is referred
to the classic paper [17].

Generally, in many papers, the existence of fixed points for nonexpansive
mappings have been considered with respect to bounded closed convex sets,
or with respect to compact convex sets.

In 1992, Luc [13] presented a fixed-point theorem for nonexpansive map-
pings with respect to unbounded sets using the notion of recessive compact-
ness.
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Using the notion of asymptotically contractive mapping, Penot [16] gener-
alized to unbounded sets some fixed-point theorems proved some time ago by
Browder [1], Gohde [6], Kirk [10], and Luc [13].

Inspired by Penot’s results, we present in this paper a new method for
the study of existence of fixed points, for nonexpansive mappings, defined on
unbounded sets. This method is based on the notion of “scalar asymptotically
contractive mapping.”

This method, which is somewhat related to the scalar asymptotic deriv-
ability [8,9], seems to be an interesting method and it opens a new research
direction in the study of existence of fixed points for nonexpansive mappings
defined on a closed unbounded convex set.

2 Preliminaries

We denote by (E, || - ||) a Banach space and by (H, (-,-)) a Hilbert space. Let
C C F be a nonempty unbounded closed convex set and h : C — E be a
mapping. We recall some known definitions. We say that h is nonezpansive if
and only if, for any x,y € C we have |h(x) — h(y)| < ||z —yl||. The mapping h
is said to be p-Lipschitzian, if there exists a constant p > 0 such that for any
z,y € C we have [[h(z) — h(y)|| < pllz —yl|. If 0 < p < 1, then in this case we
say that h is a contractive mapping.

We recall that a Banach space (E, || - ||) is uniformly convez, if and only
if for every e € [0,2[ there is a real number §(¢) €]0,1] such that whenever
llzl| <7, |lyll <7, |z —y|| > er, z,y € E, r > 0, then it follows that

r+y

H < (1- 8o

Any Hilbert space is uniformly convex and any L, ({2) space with 1 < p < oo
and {2 a domain in R™ is uniformly convex. For more details and results about
uniformly convex Banach spaces, the reader is referred to [3,21], and [22].

We say that a mapping h : C' — E is demi-closed on C' if for any sequence
{Zn}nen C C weakly convergent to an element z* € E and such that the
sequence {h(x,)}nen is convergent in norm to an element y* we have that
z* € C and h(z*) = y*. The demi-closedness is related to the notion of
strongly continuous mapping [3,22].

It is known that, if h is nonexpansive and E is uniformly convex, then
I — h is demi-closed. (We denoted by I the identity mapping.)

For a proof of this result, see ([2], Theorem 8.4) and ([22], Proposition
10.9). It is remarked in [16] that the boundedness of C' used in [2] and [22] is
not necessary.

We note that in some papers of Russian mathematicians, the demi-closed
operator is called regular operator.
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3 Scalar Asymptotically Contractive Mappings
in Hilbert Spaces

Let (H, (-, -)) be a Hilbert space and C C H be a nonempty unbounded closed
convex set.

Definition 1. We say that a mapping f : C — H is scalar asymptotically
contractive on C if and only if there exists an element oy € C' such that

ey (5= 20).5 =0
zeC, ||z||—oc0 HQZ’ - CE(]”

< 1.

We have the following result.

Theorem 1. Let (H, (-,-)) be a Hilbert space, and let C' C H be an unbounded
closed convex subset. Let f : C — H be a mapping such that the following
assumptions are satisfied:

(i) f is nonexpansive,

(ii) (C) C C

(i1i) f is scalar asymptotically contractive on C. Then f has a fized
point in C.

Proof. Let zg € C be the element defined in assumption (iii) and let {a, }nen
be a sequence in |0, 1] such that hm an, = 0. For any n € N, we consider

the mapping f, : C — H defined by fn( ) = (1 — an)f(z) + apxo. Because
C is a convex set, we have that f,(z) € C for any x € C. (We used also
assumption (ii)). For any n € N, the mapping f,, is a contraction with rate
(1 — ) (because f is nonexpansive). Applying the Banach contractive prin-
ciple, we obtain an element x,, € C such that f,(z,) = z,. The sequence
{z, }nen is bounded. Indeed, if this is not the case, considering a subsequence
(if necessary), we may assume that {2, },ecn IS convergent to oo, as n — oo.

Let 3 €]0,1] and p > 0 such that (f(z) — f(z0),z — z0) < Bz — x0]|?, for
x € C satisfying ||z|| > p. For n € N, large enough, we have

”xn”2 = znllllzoll < (Tnszn — 20) = ((1 — an) f(zn) + ano, Tn — To)
Zo

= (1= an)f(zn) = (1 = an)f(zo) +
= (1 - an)<f(37n) - f(xo)»xn - x()) + (1 — O‘n)<f(330)733n - 330>

+ ay (xo, T, — X0),

(
(

1- an)f(xo) + apxo, Ty — 1’0>

which implies
lznll® = lzalllzoll < (1 = an)Bllzn — zoll* + (1 = an)l| £ (zo) | l2n — ol

+ anllzollllzn — zoll < (1 = an) B(llznll* + 2llzn llzoll + lzoll*)
+ (1= an)[[f(@o)l[([[znll + llzoll) + cnllzol|(lznll + [lzoll)-
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Dividing both sides by ||z, > and taking limits, we obtain 1 < 3, which is a
contradiction. Thus {z,, },cn is bounded and we can show that {f(2,)}nen is
also bounded (using the fact that f is nonexpansive).

Now, because for any n € N we have

Tn = (1 — ) f(x,) + ano,
we deduce that
|20 — f(2n)ll = anllzo — f(20)]| — 0, as n — oo.

The space H being reflexive and {z,, }nen a bounded sequence, we may assume
(eventually considering a subsequence) that {z, },ecn is weakly convergent to
an element z* € C, (we used also Eberlein’s Theorem). Because H is uniformly
convex and f is nonexpansive, we have that I — f is demi-closed. Therefore,
because ||z, — f(zn)|| — 0 as n — oo, we deduce that f(z*) = z* and the
proof is complete. |

Corollary 1. Let (H,(-,-)) be a Hilbert space, K C H a closed convex cone,
and f : K — K a nonexpansive mapping. If f is scalar asymptotically con-
tractive on K, then f has a fixed-point in K.

Remark 1. Corollary 1 is an existence theorem for fixed points on a closed
convex cone. The theory of fixed point on convex cones has many applications.

Corollary 2. Let (H,{-,-)) a Hilbert space, K C H a closed convex cone, and
h: K — K a ko-Lipschitzian mapping (ko > 0) such that h(0) # 0. If there
exists an element xo € K such that

lim sup (h(x) — h(xo),x — w0)

z€K, ||| — oo |z — 0|
xzxeK

<k

with k > kg, then k is an eigenvalue of h associated with an eigenvector in K.
Proof. We apply Theorem 1 taking f = %h |

Remark 2. J.P. Penot introduced in [16] the following notion. Let (E, || -||) be
a Banach space, and let C' C E be an unbounded set. We say that f: C — FE
is asymptotically contractive on C' if there exists xg € C such that

s 1) = o)l

< 1.
zeC,||z||— oo H.’L‘ - 1‘0”

Several examples of asymptotically contractive mappings are given in [16].

We remark that in the case of Hilbert spaces, any asymptotically contractive
mapping is scalar asymptotically contractive but the converse is not true.

The method presented above, on Hilbert spaces, to obtain the existence of
fixed points for nonexpansive mappings on unbounded sets, can be extended
on Banach spaces. In the next section, we present this extension.
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4 G-Scalar Asymptotically Contractive Mappings
in Banach Spaces

Let (E,| - ||) be a reflexive Banach space and C C E be an unbounded closed
convex set. Let B : E X E — R be a bilinear mapping satisfying the following
properties:

(b1) there exists b > 0 such that B(z,y) < b|jz||||y]| for any =,y € E
(b2) there exists a > 0 such that a||z||* < B(z,x), for any x € E.

If we denote by G = 1B and M = £, then we have that G(z,y) < M|z||ly|,

for any x,y € E and ||z||* < G(x,z) for any # € E. The function G used in
this section will be a such function.

Definition 2. We say that a mapping f : C — E is G-scalar asymptotically
contractive on C' if there exists xog € C' such that

lim sup G(f(@) — f(xo), x — x0)

z€C, ||z||—oc0 HSC - ‘TO”2

<1

Remark 3.

1. If E is a Hilbert space and G is the inner product (-, ), defined on E, then
in this case by Definition 2 we obtain the notion of scalar asymptotically
contractive mapping introduced by Definition 1.

2. 1If the mapping G used in Definition 2 satisfies the property

(b1') Glx,y) < |l2lllyll for any z,y € B,
then, in this case any asymptotically contractive mapping f (in Penot’s
sense) is G-scalar asymptotically contractive mapping.

The main result of this section is the following:

Theorem 2. Let (E,|| - ||) be a reflexive Banach space and C C E be an
unbounded closed convex set. Let f : C — E be a mapping such that the
following assumptions are satisfied:

(i) f is nonexpansive,

(ii) 1(C) C C,

(1ii) I — f is demi-closed,

(iv) f is G-scalar asymptotically contractive on C.

Then f has a fized point in C.

Proof. The proof follows the same ideas used in the proof of Theorem 1, but
we have some particular details.
Let {ay tnen be a sequence of ]0, 1] such that lim «, =0 and let 2 € C

n—oo

be the element used in assumption (iv). For every n € N, we consider the
mapping f, : C — E defined by

fa(@) = (1 — ay) f(z) + apzg for any z € C.



124 G. Isac

Obviously, the convexity of C' with (ii) implies that f,,(z) € C, for any « € C.
Because f is nonexpansive, we have that for any n € N, f,, is a contraction.

Applying, for any n € N, the Banach contraction principle, we obtain an
element x,, € C such that f,(x,) = x,.

The sequence {x,}neny C C' is bounded. Indeed, if this is not the case,
considering a subsequence (if necessary) we may assume that {||x,||}neyn is
convergent to +oo. Using assumption (iv), we find 8 €]0,1[ and p > 0 such
that G(f(z) — f(zo),x — x0) < Blz — zo||? for & € C satisfying p < ||x||. We
have,

lll? = Mzl zol|

< G(xm T, — Tg) = G((l - O‘n)f(xn) + an®o, Tn — xO)

= G((1 — o) f(zn) + anzo — (1 — an)f(w0) + (1 — an) f(20), 2n — o)

= (1 = an)G(f(zn) = f(@0), 2n — o) + (1 — o) G(f (20), 2n — T0)

+ anG(20, Tn — 20) < (1 — an)Bllzn — 5'30H2 + (1 — an) M| f(zo) ||z — 2ol

+ anM|zo|l2n — zoll < (1 = an)Bllzall? + 2llzalllzoll + llzo]?]

+ (L= an) M| f(@o)ll[llznll + lloll] + cm M |zo|l[lzn + @oll]-
Dividing both sides by ||z,,||*> and taking limits, we obtain 1 < 3, which is a
contradiction.

Thus {2, }nen is bounded, and because f is nonexpansive, we can show

that {f(z,)}nen is also bounded.
Taking into consideration that

Tp = (1 = an) f(xn) + anxg, for any n € N,
we deduce that
zn — f(@n)ll = anllzo — f(zn)ll — 0 as n — oco.

Because the space E is reflexive and the sequence {2, }nen is bounded, we
may assume (eventually considering a subsequence) that {x,}nen is weakly
convergent to an element x* € C. By the fact that I — f is supposed to be
demi-closed, we obtain that f(xz*) = 2*, and the proof is complete. |

Considering Remark 3 (2) of this section, we deduce from Theorem 2 the
following corollary.

Corollary 3 ([16]). Let (E,|| - ||) be a uniformly convex Banach space and
C C FE be an unbounded closed convez subset. Let G : Ex E — P be a bilinear
mapping satisfying properties (b1) and (b2) witha =b=1. Let f : C' — E be
a mapping such that the following assumptions are satisfied:

(i) f is nonexpansive
(ii) f(C) € C,

(iti) [ is asymptotically contractive in Penot’s sense.

Then f has a fized point in C.
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5 (G, A)-Scalar Asymptotically Contractive Mappings
in Banach Spaces

In this section, we put in evidence some relations between scalar asymptoti-
cally contractive, scalar asymptotically derivable, and asymptotic derivability.

Let (H, (-, -)) be a Hilbert space and C C H be an unbounded closed convex
set. Let g € C' be an element and f : C — H be a mapping. We introduced
in [7] the following notion. If C' is a closed convex cone and T': H — H is a
continuous linear mapping, we say that 7' is a scalar asymptotic derivative of

f along C' if
ey S =T}
zeC, |[z]|—o0 H$||

We recall that T is an asymptotic derivative of f along C' if

e 1@ =T
zeC, ||z||—o0 ||$H

<0.

If T' is an asymptotic derivative of f along C, then T is a scalar asymptotic
derivative. M.A. Krasnoselskii introduced the concept of asymptotic deriva-
tive, which is much used in nonlinear analysis.

We can generalize the concept of scalar asymptotic derivative, considering
T a general mapping, not necessarily linear, eventually being an element of a
particular class of nonlinear mappings.

We consider the following notations: U = C' — xg, u = © — xg, where x € C'
and g(u) = f(u + zg). Obviously, 0 € U, g(0) = f(xo) and for any u € U we
have f(u+ zg) = f(x). If

welU, ||u||—o0 HU”

then we have

lim sup () — f(wo), z — o) = limsup M <0.

2€C, |zl —oo [l — xol|? wel, [luf|—oo [Jul|> -

If we consider ¢g(0) as a scalar asymptotic derivative of g along U, then we
have that f is scalar asymptotically contractive on C.

This fact implies the following generalization of the notion of G-scalar
asymptotically contractivity. To do this, we need to recall some notions and
to introduce some conditions.

Let (E, | - ||) be a Banach space and let C' C E be an unbounded closed
convex set. We recall that a semi-inner-product in Lumer’s sense [Trans. Amer.
Math. Soc. 100, 29-43 (1961)], is a mapping satisfying the following properties:

(s1) [ +y, 2] = [z, 2] + [y, 2], for any x,y,z € E,
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(s2) [Az,y] = Az, y], for any A € R,
(s3) [z,2] > 0 for any x € E, x # 0,
(s4) [[z, y]|* < [, 2][y, y], for any z,y € E.

It is known that, for any Banach space we can define a semi-inner-product.
Also, it is known that the mapping x — [z, a:]l/Z is a norm on E. If this norm
coincides with the norm || - || given on E, we say that the semi-inner-product
is compatible with the norm || - .

We say that a mapping A : C — E is ¢-asymptotically bounded on C if
there exist r,c > 0 such that:

(1) [JA(@)|| < eo(||z||) for all x € C with ||z|| > r,

(az)  lim 20 — .

Now, suppose that a mapping G : Ex E — P satisfies the following properties:

(B1) G(x1 + 32, y) = G(21,y) + G(22,y), for any @1, 22,y € E,
(62) G(Az,y) = AG(z,y), for any A > 0 and any z,y € E,

(Bs) l|z]|* < G(z, ), for any z € E,

(Ba) G(z,y) < M|z||||ly]|, for some M > 0 and any x,y € E.

Obviously, any semi-inner-product compatible with the norm || -|| satisfies the

properties (81), (52), (B3), and (S4).

Definition 3. We say that a mapping f : C — E is a (G, A)-scalar asymp-
totically contractive mapping on C, if there exists a mapping G : E X E — P
satisfying the properties (B1)-(Bs) and a p-contractive mapping A : C — E

such that
sy CU@) = Aw).2)

<1
zeC, ||z||—o0 ||J"H2

We have the following result.

Theorem 3. Let (E, || - ||) be a reflexive Banach space and C C E be an
unbounded closed convez set. Let f : C — E be a nonexpansive mapping. If
the following assumptions are satisfied:

(1) f(C) € C,

(2) I — f is demi-closed,

(3) f is (G, A)-scalar asymptotically contractive on C,

(4) A is p-asymptotically bounded and A(C) C C,
then f has a fixed point in C'.

Proof. First, we observe that f and A are bounded mappings, i.e., f(D) and
A(D) are bounded sets, whenever D C C' is bounded. Let {\,},en be a
sequence in ]0,1[ such that lim A, = 0. For every n € N, we consider the

T—00
mapping f, : C'— FE defined by
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Because C' is convex and considering the assumptions (1) and (4), we have
that f,(C) C C.

Using the properties of f and A, we can show that, for any n € N, f,, is
a contractive mapping with the rate k, = (1 — A\,) + Anp €]p, 1[. Applying
the Banach contraction principle, we obtain an element z,, € C' such that
fn(x) = x,. The sequence {z, },cn is a bounded sequence.

Indeed, if this is not the case considering (if necessary) a subsequence, we
may assume that {z, },cny — 00 as n — oo.

Because f is (G, A)-scalar asymptotically contractive, there exist 3 €]0, 1]
and po > 0 such that

G(f(x) — A(x),z) < B||z|? for x € C satisfying ||z > po.
For n € N, large enough we have

||33TLH2 < G(wp,zn) = G((1 = M) f(@0) + AnA(zn), 20)
=G((1 = A)f(zn) = (1 = An)A(zn) + Azn), Tn)
=1 = X)G(f(2n) — Azn), 70) + G(A(T0), T0)

< (1= Aa)Bllanll? + eM(||znl)|znll-

Dividing both sides by ||z, ||? and taking limits we obtain 1 < 3, which is a
contradiction.

Thus {z,, } nen is bounded and consequently {f(z,)}nen and {A(x,)}nen
are bounded sequences. Because for any n € N we have

Tp = (1= Xp) f(2n) + A A(zn),
and we obtain

The space E being reflexive and {z, },en being a bounded sequence, we may
assume (eventually considering a subsequence and Eberlein’s Theorem) that
{z, }nen is a weakly convergent sequence to an element x* € C'. Because I — f

is demi-closed, we have that f(z*) = «* and the proof is complete. |
Remark 4.
1. If the space (E, || - ) is a uniformly convex Banach space, then in this

case in Theorem 3 it is not necessary to suppose that I — f is demi-closed.
2. If in Theorem 3, C'is a closed convex cone, we have a fixed-point theorem
on closed convex cones. The fixed-points theorem on cones have many
applications.

Corollary 4. Let (E,|| - ||) be a uniformly convex Banach space and C C E
be a closed convexr cone. Let h : C — E be a ko-Lipschitzian mapping. If the
following assumptions are satisfied:
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(1) h(C) C C and h(0) # 0,

(2) the mapping f = 1 =h is (G, A)-scalar asymptotically contractive on C,
(3) A is ¢- asymptotzcally bounded and A(C) C C.

Then kg is a positive eigenvalue of h associated with an eigenvector in C.

Proof. We apply Theorem 3 to the mapping f = k—loh |

Corollary 5. Let (E.| - ||) be a uniformly convex Banach space and C C E
be a closed convexr cone. Let h : C — E be a ko-Lipschitzian mapping and
Y C — FE be a po-Lipschitzian mapping. If the following assumptions are
satisfied:

(1) h(C) C C and h(0) # 0 and ¥(C) C C,
(2) po < kOJ
(8) ¥ is p-asymptotically bounded,

. G(h(z)—(x),x
W, Jmow S < ko

then any k > kg is an eigenvalue of h associated with an eigenvector in C.
Proof. For any k we apply Theorem 3 taking f = +h and A = £1). [ |

Now, we can generalize the notion of scalar asymptotic derivative.

Definition 4. We say that a mapping A : C — E is a G-scalar asymptotic
derivative of the mapping f : C — E along C if

limsup CW @) —A@,2)

zeC, ||z||—o0 ||QZ‘H2 B

Remark 5. If A is a p-contraction and a G-scalar asymptotic derivative for f
along C, then f is a (G, A)-scalar asymptotically contractive mapping,.

From, Theorem 3, we deduce the following result.

Corollary 6. Let (E,|| - ||) be a reflexive Banach space and C C E be an
unbounded closed conver set. Let f : C — E be a nonexpansive mapping. If
the following assumptions are satisfied:

(1) f(€¢)ccC

(2) I — f is demi-closed,

(8) f has a G-scalar asymptotic derivative A : C — E such that A is
p-contractive, ¢-asymptotically bounded and A(C) C C,

then f has a fixed point in C'.
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6 Comments

We presented in this paper some fixed-point theorems for nonexpansive map-
pings on unbounded closed convex sets of a reflexive Banach space. The results
are based on some notions of scalar asymptotic contractivity inspired by the
notion of asymptotic contractivity defined recently in [16]. A relation with a
notion of scalar asymptotic derivability is established. A few existence results
for positive eigenvalues for nonlinear mappings defined on a closed convex
cone are also given. Applications of the results presented in this paper may
be the subject of another paper.
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Abstract This chapter is concerned with cooperative combinatorial games that
model situations in which the decision makers who agree to cooperate encounter
a combinational optimization problem to maximize profit or minimize cost. Eight
cooperative combinatorial games that have received most attention in the literature
are surveyed and analyzed, and the similarities and differences in their analysis are
pointed out.
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1 Introduction

Cooperative game theory is concerned with situations in which at least two
decision makers can increase their profits or decrease their costs by cooperat-
ing. One can think, for example, of a case where one person has the resources
to make a certain product, another one has the know-how to make it, and yet
a third one has the means to transport it to a market where it can be sold.
Alone, none of them can generate a profit. By working together they can.

In case a group of decision makers decide to cooperate to increase profits
or decrease costs, they will also have to decide how to allocate the total profit
or costs. This allocation method should appeal to each member of the group
otherwise he will not consent to cooperate.

Solution concepts from cooperative game theory can be used as allocation
methods in these situations.

In this chapter, we consider cooperative combinatorial games. These games
model situations in which the decision makers who decide to cooperate have to
solve a combinatorial optimization problem to maximize profits or minimize
costs. Although cooperative games that fit this description appeared earlier in
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the literature, the bundling of these games into a class was first done in [10].
Seven types of combinatorial games were discussed there with most attention
being given to the core of the games. This paper was followed by others that
studied other solution concepts from cooperative game theory as well as other
cooperative combinatorial games.

Potentially, every combinatorial optimization problem can give rise to a
cooperative combinatorial game. In this chapter, we will treat the eight co-
operative combinatorial games that have received the most attention in the
literature.

In Section 2, we will provide some background of cooperative game the-
ory. In the subsequent sections, we will study assignment and permutation
games, sequencing games, travelling salesman and routing games, minimum
cost spanning tree games, location games, and delivery games. In the last sec-
tion, we will briefly point out the similarities and differences in the analysis
of these games. We will also mention some work that deals with other coop-
erative combinatorial games than the eight given above and some topics that
are not treated in Sections 2-8.

2 Cooperative Games and Solution Concepts

Formally, a cooperative game in characteristic function form is defined as
follows.

Definition 1. A cooperative game in characteristic function form is an or-
dered pair < N,v > where N is a finite set, the set of players, and the char-
acteristic function v is a function from 2 to R with v(()) = 0.

A subset S of N is called a coalition. The number v(S) gives the worth of
coalition S in the game. When no confusion about the player set N is possible,
the game < N,v > will be identified with the function v. The set N will usually
be taken to equal {1,2,...,n}.

For it to be worthwhile for coalitions to form, the whole should be at least
as profitable as its parts. This property is captured in the following definition
of superadditivity.

Definition 2. A cooperative game v is called superadditive if
v(SUT) > v(S) +u(T) for all S,T € 2N with SNT = ().

If the reverse inequality holds, the game is called subadditive. If equality holds,
the game is called additive.

A stronger property than superadditivity is convexity.
Definition 3. A cooperative game v is called convex if

v(SUT) +v(SNT)>v(S)+v(T) for all S,T € 2.

If the reverse inequality holds, the game is called concave.
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As mentioned in the introduction, the players will have to decide how to
allocate the total profit if they decide to work together. Naturally, a player will
compare the amount that he is to receive if he cooperates with the amount that
he can generate on his own. If the comparison turns out to be unfavourable for
the amount received under cooperation, he will prefer to work alone. Coalitions
can do a similar exercise and reach a similar conclusion. A solution concept
that takes these aspects of the game into consideration is the core. Let x € RN
be an allocation with x; being the amount assigned to player ¢+ € N, and let
> icn Zi be denoted by x(N).

Definition 4. The core C(v) of the game v is defined to be the set
C(v) :={z € R"|z(N) = v(N), (S) > v(S) for all S € 2V}.

If an allocation that is an element of the core is used to divide profits, then
no player or coalition can do better by splitting and working on his/its own.
Unfortunately, the core of a game can be empty. The concept of balancedness
can be used to characterize games with a nonempty core.

Definition 5. A collection B of nonempty subsets of N is called a bal-
anced collection if for all S € B there exist positive numbers \g such that
ZSEB Aslg =1n.

The numbers \g are called the weights of the elements of B.

Definition 6. A cooperative game v is called a balanced game if

S~ Asu(S) < o(N)

seB
for every balanced collection B with weights {\s}sen-

For each coalition S, the subgame < S,vg > of a game v is defined by vg(T) =
v(T) for all T C S. A game v for which each subgame is balanced is called
totally balanced. The following theorem is due to Bondareva [5] and Shapley
[102].

Theorem 1. A cooperative game has a nonempty core if and only if it is
balanced.

This theorem is the cooperative game theoretic version of the well-known
duality theorem of linear programming.

Convex games are balanced, and the core of a convex game v is the convex
hull of the marginal vectors m™(v) of the game v. These are defined as follows.

Definition 7. Let m be a permutation of N. The marginal vector m™(v) of

the game v is defined by
ml(v) :=v(P(m, i) U{i}) —v(P(rm,1)) for alli € N,

2

where P(m,i) := {j € N|m(j) < w(i)} is the set of predecessors of i with
respect to the permutation w.
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Shapley [101] introduced and characterized a solution concept for cooperative
games that can be viewed as the average of the marginal vectors. Let Ily
denote the set of all permutations of N.

Definition 8. The Shapley-value ¢p(v) of a cooperative game v is defined by

odi(v) == % Z m7 (v) for alli € N.
welln
It follows that the Shapley-value of a convex game lies in the barycenter of
the core of the game. The Shapley-value of a nonconvex game need not be an
element of the core of the game.

A solution concept for cooperative games that coincides with the core for
convex games is the bargaining set that was introduced in [1]. The bargaining
set considers the imputations of a game. An imputation of a game v is a vector
x € R" that satisfies (N) = v(N) and x; > v({i}) for all i € N. If x satisfies
only the first of these conditions, then x is called a pre-imputation of v. The
set of imputations of v is denoted by I(v) and the set of pre-imputations of
v is denoted by PI(v). An objection of player i against player j with respect
to an imputation z in the game v is a pair (y; S) where S is any coalition
that contains ¢ but not j, and y = (yx)res is an |S|-tuple of real numbers
satisfying

y(S) =v(9) and y, >z, for all k € S.

A counter objection to the objection (y;S) is a pair (z;7) with T being a
coalition that contains j but not 4, and z = (zx)rer being a |T|-tuple of real
numbers satisfying

2(T) =v(T), zp > yx for k€ SNT and 2z > x for k€ T\ S.

Definition 9. An imputation x € I(v) is said to belong to the bargaining set
M(v) of the game v, if for any objection of one player against another with
respect to x, there exists a counter objection.

The bargaining set is always nonempty and contains the core. The fact that
for convex games the bargaining set and the core coincide was proven in [76].
In [108], a necessary and sufficient condition for the bargaining set to coincide
with the core for superadditive games was given.

To measure the degree of unhappiness of a coalition .S with a payoff vector
z in a game v, we consider the excess e(S,x) of S with respect to x, which is
defined by

e(S,x) :=v(S) — z(9).

Player ¢ can compare the payoff he receives according to x with that of player
j by taking the maximum of all the excesses e(S,z) over the coalitions S
that contain ¢ but not j. Let us denote this maximum by s;;(x) and let T
be a coalition with s;;(x) = e(T, z). By splitting off from the grand coalition,
forming 7', and allocating to the other players in T the payoff given by =z,
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player ¢ remains with s;;(x) and player j will have to see how he will fend for
himself. Therefore, s;;(x) can be regarded as the weight of a possible threat
of i against j. If x is an imputation with z; = v({j}), then j will have no fear
of threats by any player because he can obtain v(j) by working alone. We say
that ¢ outweighs j with respect to = if

zj >v({j}) and s;;(x) > sji(x).

The kernel that was introduced in [20] consists of those imputations for which
no player outweighs another one.

Definition 10. The kernel K(v) of a game v is defined by
K(v) :=={x € I(v)|sij(x) = s;i(x) or x; =v({j}) for alli,j € N}.

The pre-kernel PK(v) of v is defined similarly with I(v) replaced by PI(v)
and the condition z; = v({j}) left out.

The kernel and the pre-kernel are always nonempty. The kernel is a subset
of the bargaining set. For superadditive games, the kernel and the pre-kernel
coincide.

The nucleolus of a game, introduced in [100], minimizes the maximum
excess in a lexicographical sense. Let 6(z) be the vector that arranges the
excesses of the 2™ subsets of IV in decreasing order. If x is lexicographically
smaller than y, we denote that by x <p y, and = <y y indicates that either
r<pyorx=y.

Definition 11. The nucleolus v(v) of a game v is defined by
v(v) :={x € I1(v)|0(x) < 0(y) for ally € I(v)}.

The pre-nucleolus is defined similarly with I(v) replaced by PI(v).

The nucleolus of a game always consists of one point, which lies in the
kernel, and which is an element of the core whenever the core is nonempty. If
v is a convex game, we have PK(v) = K(v) = v(v).

In [26], a class of games is introduced for which the nucleolus has a sim-
ple expression. This is the class of 1-convex games. Driessen and Tijs show
that for these games, the nucleolus coincides with the 7-value, which is easily
computed. The 7T-value was introduced in [117]. It uses the upper vector and
lower vector of a game. The upper vector M" of a game v is given by

M :=v(N)—=V(N\{i}) for all i € N.
The lower vector p¥ of v is given by

uy = énsg;(z(v(S) - Z M3) for all i € N.
jes\{i}

The upper vector gives an upper bound on what a player can expect to receive,
as if he asks for more the others would be better off by working without him.
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The lower vector gives a lower bound on what he will accept, as he can achieve
this by forming a coalition that reaches the maximum and giving to the other
members of the coalition their upper bounds.

Definition 12. A game v is called quasi-balanced if

w) < M?P foralli € N and p*(N) <v(N) < MY(N).
Every balanced game is quasi-balanced. The 7-value of a quasi-balanced game
is defined as a suitable convex combination of the upper and lower vectors.

Definition 13. Let v be a quasi-balanced game. The T-value T(v) of v is de-
fined by
T(v) == A" + (1 = A M®

where X € [0,1] is uniquely determined by ;. Ti(v) = v(N).

The 7-value need not be an element of the core. In [26], necessary and sufficient
conditions for 7(v) to be an element of C'(v) are given.

The 7-value is in general not easily computable but as mentioned above for
the class of 1-convex games, both the 7-value as well as the nucleolus can be
computed without much work. To define this class, we need the gap function
g¥ of the game v. The gap function is given by

g°(8) :== M"(S) — v(S) for all S € 2V,
Definition 14. A game v is called 1-convex if

0<g"(N) <g"(S) for all S C N,S # 0.
If the reverse inequalities hold, then v is called 1-concave.

The following results can be found in [24,25], and [26].

Theorem 2. Let v be a 1-conver game. Then
1
7;(v) = v;(v) = M — —g°(N) for all i € N.
n

Furthermore, the extreme points of the core of a 1-convexr game are the n
vectors MV — gV (N)e* where €' is the vector with 1 in the i-th place and 0
everywhere else.

From Theorem 2, it follows that for a 1-convex game, the 7-value and the
nucleolus lie in the barycenter of the core.

Another class of games given in [26] for which the 7-value has a simple
expression is the class of semiconver games.

Definition 15. A game v is called semiconvex if v is superadditive and
g’(i) < g¥(S) for alli € N and S C N with ¢ € S. If v is subadditive
and the reverse inequalities hold, then v is called semiconcave.
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Every convex game is semiconvex and every semiconvex game is quasi-
balanced.

Theorem 3. The T-value of a semiconver game v is given by 7(v) = v +
(I =AMV where v = (v(1),v(2),...,v(n)) and where A € [0,1] is such that
ZieN 7i(v) = v(N).
This brings us to the end of our short introduction of cooperative games and
their solutions concepts. We have limited ourselves to the topics that will
be most useful in the subsequent sections. For more extensive and detailed
treatments, the reader is referred to [84] and [25].

We have introduced all the game-theoretic concepts from the viewpoint of
profit games. With some adaptation (usually the reversal of an inequality),
they apply to cost games, too.

3 Assignment Games and Permutation Games

The assignment problem is a well-known and well-solved combinatorial opti-
mization problem, cf. [85]. Its mathematical formulation is

max } ;e p 2 jep @ijTij

s.t. ZjEP Tij <1 foralli € B
Yieprij <1 foralljeP
zi; €{0,1} forallie B,j e P.

(1)

Here B and P are two disjoint sets and a;; > 0. This problem is also known
as the bipartite weighted matching problem.

The assignment game was introduced in [104]. It models a situation in
which the player set N can be partitioned into two sets B and P. A player
1 € B and a player j € P can create a profit a;; > 0. Two players from the
same set cannot create a profit. The classic example takes one set to be the set
of buyers and the other the set of sellers. The value v(S) of coalition S in an
assignment game is the sum of the profits that pairs of players in S can create
and is given by (1) with 1 replaced by 1g(i) and 1g(7) in the first and second
inequality, respectively. In [104], it is proven that the assignment game has
a nonempty core by considering the dual problem of the linear programming
relaxation of the 0,1-programming problem that determines v(N). Because
the matrix involved in the assignment problem is totally unimodular, the
relaxation and the original problem have the same optimal solution(s). In
fact, it is shown in [104] that the core of the assignment game corresponds
with the set of optimal solutions of the dual problem of the relaxation of
(1). Below we give an alternative proof of the balancedness of the assignment
game.

A game that is related to the assignment game is the permutation game
introduced in [118]. The value of a coalition S in the permutation game v is
given by
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€S

Here Il is the subset of Iy that contains the permutations that do not
permute nonmembers of S, and k;r(;) is the value of permutation 7 for player
i. Note that this value depends only on 7(i), so on the position of player i
according to the permutation 7.

An alternative formulation to (2) is

max » ..y ZjeN ki
st Y jen @ij = 1s(i) for alli € N
ZieN Tij = 1s(j) for all] eN
x;; €{0,1}  foralli,j € N.

(3)

In [19], it is shown that every assignment game is a permutation game but
that the reverse is not true. Because of this, the proof given below of the
balancedness of permutation games also implies balancedness of assignment
games.

Theorem 4. Let v be an assignment games or a permutation game. Then v
has a nonempty core.

Proof. In view of the result stated above, it is sufficient to show that a permu-
tation game has a nonempty core. From the Birkhoff-von Neumann theorem,
which states that the extreme points of the set of doubly stochastic matrices
are the permutation matrices, it follows that the value of (3) is equal to the
value of its linear relaxation. The dual problem of the linear problem is

min ZieN 1S(i)yi + ZjeN ls(j)Z]
s.t. yi + 25 > kyj for all 7,5 € N.

(4)
Let (g, 2) be an optimal solution for (4) for S = N. Then

D (@i + 2) = v(N)

ieEN

and for all S € 2N

The inequality follows from the fact that (g, 2) is a solution of problem (4) for
all S € 2. So u € R" given by u; = §J; + 2; is an element of the core of v. W

In essence, this proof runs similarly to that in [104]. The linear program-
ming relaxation of the combinatorial optimization problem that determines
v(IN) is shown to be equivalent to the original 0,1-programming problem, The
dual problem of the linear problem provides core elements of the game. This is
a rather efficient way of finding core elements as one does not need to compute
the value of all 2" — 1 nonempty coalitions.
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Several results concerning the core of assignment games can be found in
the literature. In [8], an iterative process is described to arrive at an optimal
assignment and a core allocation in a model of job matching. In [63], a general-
ization of this model is studied. In [2], Balinski and Gale show that the core of

an assignment game has at most (QTT) extreme points where r = min{|B|, | P|}.
They prove that the core has the maximum number of extreme points for
square games (|B| = |P| = r) when there are r supercompatible pairs. A
pair of players (i,7) € B x P is called supercompatible if for all S € BU P
with 4,5 € S, ;5 = 1 in any optimal solution of the problem that determines
v(S). In [91], Rochford introduces symmetrically pairwise bargained alloca-
tions (SPB allocations) for assignment games and proves that the set of SPB
allocations is equal to the intersection of the kernel and the core. Solymosi
shows in [108] that the bargaining set and the core of an assignment game
coincide. Because the kernel is always a subset of the bargaining set, it follows
that the set of SPB allocations is equal to the kernel.

In [110], Solymosi and Raghavan characterize assignment games that are
exact in terms of the assignment matrix entries a;;. A cooperative game v
is called ezact if for all S C N there is an x € C(v) with z(S) = v(S).
Exact games are semiconvex, so for these games the 7-value has the simple
expression given in Theorem 3. Also in [110], assignment games for which the
core is a stable set are characterized in terms of the assignment matrix entries.
A stable set or von Neumann—Morgenstern solution contains imputations that
do not dominate each other. Furthermore, any imputation not in a stable set
is dominated by an imputation in the set.

In [54], it is shown that the extreme points of the core of an assignment
game are marginal vectors.

In [79], Nuniez and Rafels define buyer-seller exact assignment games as
assignment games in which no a;; can be increased without changing the core
of the game. In such a game, each mixed pair coalition attains its value in the
core. It is shown that every assignment game has a unique buyer-seller exact
representation.

Results on one-point solution concepts also exist. In [109], Solymosi and
Raghavan give an algorithm of order O(r3|P|) for computing the nucleolus of
an assignment game. In [80], it is shown that the 7-value of an assignment
game is the midpoint of the buyers-optimal core allocation and the sellers-
optimal core allocation. In [78], it is shown that the nucleolus of an assignment
game coincides with that of its buyer-seller exact representation. In [111], a
O(n*) algorithm for computing the nucleolus of a cyclic permutation game is
discussed. A cyclic permutation game is a permutation game for which the
value v(N) is given by a permutation consisting of a single cycle. In [64],
maximum cardinality matching games are discussed. It is shown that the
nucleolus of such a game can be computed efficiently.

Modifications and generalization of assignment and permutation games
are also found in the literature. In [19], tridimensional assignment games
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and bipermutation games are introduced. These are extended to multias-
signment and multipermutation games in [11]. The linear relaxation of the
0, 1-programming problem that determines these games is not equivalent to
the original problem and no proof of balancedness based on such a result can
be carried over from the assignment and permutation games to these gener-
alizations. In fact, multiassignment and multipermutation games need not be
balanced. Subclasses that contain balanced games are given. In [74], assign-
ment games in which one of the sets B,P is an infinite set are studied. In
[105], multisided matching games are discussed. In [112], Sotomayor looks at
an extension of assignment games in which the players can form more than one
partnership. In [53], a class of assignment games called neighbour games are
introduced and an O(n?) algorithm for computing the nucleolus of a neigh-
bour game is given. In [65], an O(n?) algorithm for computing the leximax
solution of a neighbour game is given.

The assignment and permutation situations modelled in this section as
cooperative games can alternatively be modelled as economies with indivisibi-
lities leading to similar results with respect to existence of core-elements plus
results on price equilibria. These models can be found in [11,19,40,57-59,67,
86,121].

In [103], Shapley and Scarf model a permutation situation as a game with-
out side payments also called a nontransferable utility game. They show that
the core defined by strong domination is always nonempty but the core de-
fined by weak domination can be empty. In [92,120,122], other implications
of the difference between weak and strong domination are explored.

An ordinal approach to bipartite as well as nonbipartite matching situ-
ations is taken in the literature on matchings. In these models, preference
relations are used instead of numbers that describe the value of a certain as-
signment or permutation for a player or coalition. A matching is called stable
if there do not exist two participants that prefer each other to the partner
that the matching assigns to them. In fact, the ordinal approach predates the
cardinal approach as it was introduced in 1962 by Gale and Shapley in [41].
They also proved the existence of stable matchings and provided an algorithm
to arrive at a stable matching. In [27] and [42], the strategy-proofness of this
algorithm is investigated. In [93], the strategy-proofness of matching proce-
dures in general is discussed. Further results on matchings can be found in
[11,66,75,94-98,113].

4 Sequencing Games

Sequencing games resemble permutation games in the sense that in sequencing
games, the value of a coalition S is also derived by maximizing a function
over the set of admissible permutations for S. However, the set of admissible
permutations in a sequencing game has some restrictions. These can be best
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understood by looking at the way sequencing games were introduced in [16]
from sequencing situations.

Definition 16. A sequencing situation consists of a finite set N = {1,2,...,n}
and an ordered triple (o;a;s) where o € Iy, « € R™, and s € R’}

The classic example of a sequencing situation considers customers standing
in a queue in front of a counter waiting to be served. The order in which
they are standing is given by o with ¢ € N having position o (i) in the queue.
The service time of customer 7 is s; > 0. Depending on his completion time,
each customer has costs that are given by a cost function ¢; : Ry — R. The
cost functions are taken to be linear, so ¢;(t) = a;t + ;. By rearranging, the
customers can decrease their total cost. To find an optimal permutation, it is
convenient to consider the urgency index u; = «;/s; of customer i € N. In
[107], it is shown that in order to minimize total cost, the customers should
be arranged in order of decreasing urgency indices. The cost savings that are
achieved in this way have to be divided among the customers. In [16], the
Equal Gain Splitting rule or EGS rule is introduced as a method to do this.
Let ¢ and 7 be two customers who are standing next to each other with ¢ in
front of j. We denote the gain that they can achieve by switching positions
by gi;. Then

gij = (08, — ysj)4 = max{a;s; — a;s;,0}.

Definition 17. The EGS rule assigns to each customeri € N in a sequencing
situation (o3 «; s) the amount

EGSi(a;a;s):% Z gkiJr% Z Gij-

keP(o,i) jii€P(0,5)

In [16], the EGS rule is characterized by the dummy, equivalence, and switch-
properties. In [56], gain splitting rules that divide g;; in some way (not neces-
sarily equally) between ¢ and j are studied. The split core is defined as the set
containing all allocations generated by gain splitting rules. The split core is
shown to be a subset of the core of the sequencing game that was introduced
in [16]. The value of a coalition S in a sequencing game is the total amount of
cost savings that S can achieve by rearranging its members without jumping
over nonmembers. To formalize this the concept of a connected coalition comes
in handy. A coalition is called connected if there are no nonmembers standing
between the members. Let T be a connected coalition. Then the value of T" in
the sequencing game v corresponding with the sequencing situation (o;a;s)

is given by
o(T) == Z Z ki

i€T keP(o,i)NT

For a coalition S that is not connected, we define a component of S as a
maximal connected subset of S. The components of S form a partition of S,
which is denoted by S/o. The value of S in the sequencing game v is given by
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TeS/o

In [16], it is shown that sequencing games are convex and that EGS(o; a; s) €
C'(v) where v is the sequencing game corresponding with (o; «; s).

In [17], o-component additive games were introduced as a generalization
of sequencing games.

Definition 18. Let o € Il . Then a cooperative game v is called o-component
additive if

(a)v({i}) =0 for alli € N,
(b) v is superadditive,

(c) v(S) = Spesp o(T).

These games need not be convex. In [17] and [18], the § rule, an extension of
the EGS rule to o-component additive games, is studied, and it is shown that
the 3 rule applied to a o-component additive game generates an allocation
that is in the core of the game. In [14], o-component additive games with
restricted cooperation are studied. It is shown that the allocation generated
by the 3 rule is equal to the nucleolus of the restricted game. This implies
that for sequencing games the allocation generated by the EG.S rule is equal
to the nucleolus of the restricted game. In [89], I'-component additive games,
a generalization of o-component additive games, are studied. It is shown that
for these games the bargaining set is equal to the core and the kernel is equal
to the nucleolus. In [11], this result is used to derive conditions that guarantee
the equality of the nucleolus and the allocation generated by the EGS rule.

In [16], expressions for the Shapley-value and the 7-value of a sequencing
game are given in terms of the parameters of the corresponding sequencing
situation. So one does not need to compute the v(S)’s to obtain these values.
Both these values divide the gain generated by two players among them and
the players standing between them. The Shapley-value does it equally.

In both sequencing games and permutation games, the value v(N) is ob-
tained by maximizing over the set IIy. But as shown in [11], the proof of
the balancedness of a permutation game cannot be mimicked for a sequenc-
ing game because in general it is not possible to extend the function to be
maximized to a linear function on the set of doubly stochastic matrices.

Two classes of o-component additive games are sequencing games with
ready times and sequencing games with due dates. The first are studied in
[51] and the second in [6]. In [55] and [9], sequencing games with multiple
machines are studied. Several classes of balanced multimachine sequencing
games are identified.

In [37], a new monotonicity property for sequencing situations is studied.
Already in the very first paper on sequencing, [16], a relaxation of the game
was considered in which the members of a coalition were allowed to jump over
nonmembers. It was shown that such a game can have an empty core. In [17],
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four relaxations of sequencing games were discussed that permit rearrange-
ments of a coalition that involve jumping over nonmembers as long as this
does not cause a delay in the starting time of the nonmembers. The question
was posed whether these games were balanced. This question remained open
till recently when it was answered by Slikker in [106]. He showed that the
games generated by all four relaxations are balanced.

In [119], sequencing games are studied in which a particular player receives
a preferential treatment in that he alone in a coalition is allowed to select
another player in the coalition and switch places with this player even though
this involves jumping over nonmembers. It is shown that these games are
balanced.

In [13], a survey of sequencing games is given in which several aspects
mentioned in this chapter are treated in more detail.

5 Travelling Salesman Games and Routing Games

The travelling salesman problem is a very well-known N P-complete combina-
torial optimization problem. It can be stated as follows: Given a directed graph
with weights on the arcs, find a minimum weight cycle that visits each vertex
exactly once. For our purposes, we may assume without loss of generality that
the graph is complete and that the weights satisfy the triangle inequality. The
last property implies that going directly from vertex ¢ to vertex j is not more
expensive than going from i to k£ and from k to j.

The travelling salesman problem together with the fixed route cost allo-
cation problem studied in [38] can be viewed as the parents of the travelling
salesman game introduced in [88]. A travelling salesman game models the fol-
lowing problem. In a given complete directed graph with weights on the arcs,
all vertices but one are associated with players. The vertex that does not cor-
respond with a player is denoted by 0. Each coalition S wants to construct a
tour that starts in 0, visits each vertex of S exactly once, ends in 0, and has
minimum weight. So S wants to find a minimal weight travelling salesman
tour on the complete graph with set of vertices equal to S U {0}. Let e be a
bijection from {1,...,|S|} to S. Such a bijection describes a tour that starts
in 0 then visits e(1), then e(2), etc. The last vertex that the tour visits in S is
e(|S]) after which it returns to 0. Let E(S) denote the set of bijections from
{1,...,]S|} to S and let the weight of the arc going from i to j be denoted
by w;;. Then the travelling salesman game c is defined by

¢(8) := min (woe(1) + We(1)e(2) + -+ + We(is)o) for all S e 2V \ 0.
ecE(S)

In [88], it was shown that a travelling salesman game need not be balanced
but that it will be balanced if it has three or less players. A 4-player travelling
salesman game with empty core was given.
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A travelling salesman game is called symmetric if w;; = wj; for all
i,7 € N U{0}. In [115], it was shown that a 4-player symmetric travel-
ling salesman game is balanced. An example of a 6-player symmetric trav-
elling salesman game with empty core was given. In [69], it was proven that
a b-player symmetric travelling salesman game is balanced. These proofs are
based on a result in [39] implying that for n < 6, the n-vertex symmetric trav-
elling salesman problem can be formulated as a linear programming problem.
So the 0, 1-programming problem that determines the cost of a coalition S is
equivalent to its linear programming relaxation. A similar procedure as that
in Section 3 yields the nonemptiness of cores of these games.

In general, the integer constraints cannot be dropped and the procedure
does not work.

In [11] and [87], classes of (not necessarily symmetric) travelling salesman
games that are balanced are studied. In [87], this is done by showing that the
travelling salesman games under consideration coincide with routing games
that are always balanced. Routing games that were introduced in [88] model
the same type of situations as travelling salesman games. Only now the as-
sumption is that after an optimal tour has been found for the grand coalition
N, any other coalition S does not go through the trouble and expense of com-
puting an optimal tour but simply adopts the tour chosen by N by skipping
the vertices that do not belong to S. Let e € E(N) be such that

Woe() T We(nye(z) + o Welmo = TR, (or () Fwsys) F o sn0)-

In the routing game < N, ¢, >, the cost c¢.(N) of the grand coalition is given
by
Ce(N) = Woe(1) + We(1)e(2) + *+ + We(n)os

and the cost ¢.(S) of coalition S is given by
Ce(S) = Woes(1) + Wes(1)es(2) T+ + Wes(s)ho
where eg € F(S) is defined by
es'(i) <eg'(j) e (i) <e '(j) foralli,jeS.

Theorem 5. Let ¢, be a routing game with e being an optimal tour for N.

Then C(c.) # 0.

The proof of Theorem 5 relies again on the equivalence of a 0, 1-programming
problem and its linear relaxation just as in Section 3.

A routing game defined with respect to a nonoptimal tour for IV can have
an empty core. In [23], it is shown that a routing game ¢, has a nonempty
core if and only if ¢.(N) < ¢.(S) + c.(N \ S) for all S C N. A procedure is
described to construct a nearest neighbour tour for which the corresponding
routing game satisfies this condition.
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Considering the cooperative combinatorial games that we have treated so
far, one may be induced to think that if a combinatorial optimization problem
is polynomially solvable, then the corresponding cooperative combinatorial
game has a nonempty core. However, already in 1988 this conjecture was
negated in [31]. There the wallpaper game, a subclass of travelling salesman
games arising from the wallpaper problem (that) is polynomially solvable,
cf. [73], was introduced. It was shown that a wallpaper game can have an
empty core. Actually, the fact that polynomial solvability does not imply
balancedness was a kind of hidden knowledge for much longer. In 1962 in [41],
it was shown that the roommate problem, which is a nonbipartite version of
the marriage problem, does not need to have a stable matching. Translating
this ordinal case to a transferable utility nonbipartite weighted matching game
with an empty core is straightforward. And since 1965, it was shown in [28§]
that the weighted matching problem can be solved in polynomial time.

More recently, this problem and the related problem of deciding whether
a given travelling salesman game has a nonempty core were discussed in [82].

In [44], graphs that give rise to submodular travelling salesman games are
studied. The nucleolus of vehicle routing games is studied in [43].

6 Minimum Cost Spanning Tree Games

The minimum cost spanning tree problem is another well-known problem in
combinatorial optimization. Contrary to the travelling salesman problem, it
is a well-solved problem. The problem can be stated as follows: Given a con-
nected graph with costs on the edges, find a spanning tree (a connected sub-
graph without cycles with the same set of nodes as the original graph), that
has minimum cost among all spanning trees. If n is the number of nodes of
the graph, then the minimum cost spanning tree problem can be solved in
O(n?) time.

By associating each node of the graph except one with a player and as-
suming that every player wants to be connected with the node that is not a
player, we obtain a minimum cost spanning tree game. The costs of making
the appropriate connections have to be allocated among the players. In [7],
this problem was first treated but without explicit use of cooperative game
theory. In [4], a game-theoretic approach was first proposed. Let G = (N, E)
be the complete graph with set of nodes Ny = N U {0} and set of edges E.
Let k;; = kj; denote the cost of constructing the link {7,j} € E.

Definition 19. The minimum cost spanning tree game (mcst-game) ¢ on G
18 given by
o(S)= > ki forallSe2V.
{i,j}€BTg

Here Er, is the set of edges of a minimum cost spanning tree in the complete
graph Gg = (Sp, Eg).
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In [4], Bird proposed the following cost allocation scheme. Let T' be a minimum
cost spanning tree for the graph (Ny, E). For each I € N, the amount that
7 has to pay is equal to the cost of the edge incident upon ¢ on the unique
path from 0 to 7 in T. Because there can be more than one minimum cost
spanning tree, this cost allocation scheme may generate more than one cost
allocation in a mcst-game. Any cost allocation generated in this way will be
called a Bird tree allocation.

Theorem 6. Let ¢ be a mest-game. Let x be a Bird tree allocation for c. Then
z € C(c).

It follows that mcst-games are balanced. An alternative way to prove this is
just as in Section 3 to consider the linear relaxation of the 0, 1-programming
problem that determines ¢(N). In [29], it is shown that the linear relaxation
is equivalent to the 0, 1-programming problem. Similar to the approach used
in Section 3, this leads to the construction of a core element for c.

In [4], the drreducible core IC(c) of a mest-game ¢ is introduced. The
irreducible core of ¢ is the core of a mcst-game ¢ defined with the aid of a
minimum cost spanning tree of the original mcst-problem. In general, a mcst-
game need not be concave but the game ¢ is a concave game. In [4], it is shown
that the extreme points of the irreducible core of ¢ are precisely the Bird tree
allocations.

In [46], mest-games with efficient coalition structures are defined. The
components of this structure induce other mcst-games, and it is shown that
the core and nucleolus of the original game are the Cartesian products of
the cores and nucleoli of these games. In [47], permutationally concave games
are defined. A definition of concavity that is equivalent to the one given in
Section 2 states that a game c is concave if and only if for all S € S' € N\ R
we have

c(S*UR) —¢(SY) < e(S?UR) —c(S?). (5)

A game is called a permutationally concave game if property (5) holds for
certain coalitions given by a permutation 7.

Definition 20. A game is called permutationally concave if there exists a
permutation w € I, such that for all1 < ps < p; <n and all R C N\ S™(p1)
the following is true

c(S™(p1) U R) — (5™ (p1)) < (ST (p2) UR) — c(S7 (p2))- (6)

Here S™(p) = {m~1(1),771(2),...,7 1 (p)}.

In [47], it is shown that permutationally concave games are balanced and
that mcst-games are permutationally concave. If 7 is a permutation for which
(6) holds, then the marginal vector m™(c) is in the core of c¢. Related to
this is the result derived in [4] that the set of restricted weighted Shapley-
values is a subset of the irreducible core. In the computation of a restricted
weighted Shapley-value, only so-called feasible permutations are considered.
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Inequality (6) is satisfied by every feasible permutation. It follows that any
convex combination of marginal vectors arising from feasible permutations is
in the core. The Shapley-value itself is in general not an element of the core of
an mest-game. In [60], an axiomatization of the Shapley-value of mcst-games
is given. In [33], it is shown that deciding whether a given vector is in the
core of an mcst-game is N'P-complete. In [36], similar results are obtained for
Steiner tree games. In [48], it is shown that the nucleolus of an mcst-game
is the unique point in the intersection of the core and the kernel. In [49],
the nucleolus of a standard tree game is characterized, and an algorithm to
compute it is discussed. In [77], population monotonic allocation schemes for
mcst-games are discussed, and an algorithm to compute such a scheme for an
mest-game is presented. In [35], it is shown that computing the nucleolus of a
minimum cost spanning tree game is in general an N'P-hard problem. In [71],
an O(n3|B|) algorithm that can be used to compute the nucleolus of a mest-
game is discussed. There the set B is a subset of 2V, In [34], an algorithm to
compute the nucleolus for certain classes of mcst-games based on the ellipsoid
method and Maschler’s scheme for approximating the pre-kernel is given. In
[3], a noncooperative game is associated with every mest-problem, and Nash
equilibria and subgame perfect Nash equilibria of the game are studied. In [11],
a short overview of work that discusses models that are related to mcst-games
is given.

7 Location Games

Several location problems have been studied in the literature. In general, these
problems treat situations in which certain facilities have to be placed in the
nodes or along the edges of a given graph. There may be restrictions and/or
demands with respect to the location of the facilities. There may be setup costs
involved in establishing the facilities and costs that depend on the distance
of the facilities from a given set in the graph. The problem is to minimize
the costs that arise. Several location games arising from the various location
problems have been studied. In [116], the following location game was studied.
A connected graph G = (V, E) is given. Each edge has a given length. The
distance d(v1, v2) between two nodes vy, vo of G is defined to be the length of
a shortest path from vy to ve. Two subsets N and @ of V are given. N is the
set of players. Each player is considered to be located in the corresponding
node. @ = {qi,...,q:} is the set of possible locations for the facilities. The
cost of establishing a center at g; is ¢; > 0. Player i € N demands that at
least one center be located at a distance of at most r; from him. The problem
is to find a location of the facilities that satisfies all demands and minimizes
costs. It is assumed that all the demands can be met. In the corresponding
location game ¢, the cost ¢(S) of coalition S is the minimum cost needed to
satisfy the demands of the members of S. Let A be the n x t-matrix defined by
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o Jifd(i g) < i
%j =\ 0 otherwise.

Then for each S € 2V \ (), the cost ¢(S) is given by

e¢(S)=min ¢z
s.t. Az > e° (7)
x € {0,1}

where e is the vector in R™ with 1 in the i-th place if i € S and 0 otherwise.
In general, the location problem described above is NP-hard, and a location
game as defined above can have an empty core. But in [114] and [116], it was
shown that if the graph G is a tree, then the corresponding location problem
is polynomially solvable and the location game will be balanced. The proof
uses the fact established in [114] that the matrix A is balanced if G is a tree.
Therefore, problem (7) is equivalent to its linear programming relaxation. A
similar approach to that used in Section 3 yields the nonemptiness of the core
of the location game.

In [11], the following situation is studied. A connected graph G = (N, E)
is given. The set of nodes N corresponds with the set of players. Every edge
e € E has a positive length [.. The distance d(z,y) between two points x, y
anywhere on an edge is defined as the length of a shortest path from z to y.
The length of a path is the sum of the length of the edges and parts of edges
that belong to the path. For a finite subset A of points anywhere on the edges
of G and a node I € N, we define the distance d(i, A) by

d(i, A) == géig d(i,x).

Facilities can be constructed on any point along an edge of the graph. For
each i € N, a weight w; is given such that the cost c¢({i}) is equal to w;d;
where d; is the distance between 7 and the set of facilities. Each coalition S
is allowed to build pg facilities. We assume that pg < |S|. For each player
1 € N, his cost of not having access to any facility is denoted by L(4). This
cost is taken to be very high. Two types of games arising from this situation
are discussed in [11]. They are the p-center and the p-median game.

Definition 21. The p-center game c, is given by

cp(S) = Ls if ps =0
p ’ minA:|A‘:pS max;ecgs wid(i, A) if ps > 0.

Here Lg = max;es L(1).

Definition 22. The p-median game m,, is given by

(L) if ps =0
myp(S) = {minA:|A:ps 2 ies wid(i, A) if ps > 0.

Here L(S) = ) ;cq L(7).
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The p-center and p-median games arise from the p-center and p-median opti-
mization problems. In [61] and [62], it is shown that for p > 1, these problems
are N'P-hard.

In [11], it is shown that under certain conditions, both games are balanced.
Also conditions are given that guarantee that ¢, and m, are l-concave or
semiconcave.

Another location game studied in [11] is the simple plant location game.
In this game, the players correspond with the nodes of a tree. Facilities can
be located only in the nodes of the tree. With each node, a certain setup cost
is incurred if a facility is built in that node. With each edge of the tree, there
is associated a travel cost. The aim of a coalition is to minimize the sum of
the setup costs and travel costs of its members. Let o; denote the setup cost
if a facility is built in node j € N.

Definition 23. The simple plant location game c is defined by

c(S):= min ZOJJrZwZ )) for all S C N\ 0.

ACN
0#AC €S

Alternatively, ¢(S) can be formulated as the value of a set covering problem.
For each i € N, let 0 = rj; < rio < -+ < 1y, be the ordered sequence of
distances between node i and all the nodes, including i. We define r;,,+1 to be
a number that is much larger than the sum of all setup costs and travel costs
that occur in the problem. The n? x n-matrix H = [h;, ;] is defined by

B o [ 1ifd(i ) <riyforid,j ke N
"3 71 0 otherwise.

Let d;r, = w;(rig+1 — 7). Then ¢(S) is also given by

¢(S) = min Zj 10J$J+Zz€SZk 1 dikZik

s.t. Zj L higjmizy + 2, > 1 forieS, ke N (8)
xz; €{0,1} forje N
zik, € {0,1} forie S, ke N.

In general, the set-covering problem is NP-hard. In [68], it is shown that the
set covering problem (8), which arises from a simple plant location problem,
is equivalent to its linear programming relaxation. With the aid of the dual
problem of the set-covering problem that determines ¢(N), we can construct
an element of the core of the simple plant location game in a similar fashion
as was done in Section 3.

Two types of location games on trees that can have empty cores and that
are discussed in [11] are the median game with budget constraints and the
center game with budget constraints. In both games, the number of facilities
that a coalition is allowed to build is not prescribed but is limited by the
budget of the coalition. Let b; be the budget of player 7 and let the budget of
coalition S be b(S) = > ;g bi.
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Definition 24. The median game with budget constraints m is given by

m(S) == {minacn oay<bs) Dicg wid(i, A) if b(S) > minjey o;
’ L(S) otherwise.

In [11], conditions are given that guarantee the balancedness of a median
game with budget constraints.

Definition 25. The center game with budget constraints c is given by

C(S) o minACN,o(A)gb(S) maX;egs wid(i, A) Zf b(S) Z minjeN 04
' Lg otherwise.

Conditions for the center game with budget constraints to be balanced are
given in [11].

In [90], location games arising from continuous single facility location prob-
lems are studied. Sufficient conditions for the nonemptiness of the core of such
a game are given.

8 Delivery Games

In a delivery game introduced in [52], each edge of a given undirected con-
nected graph corresponds with a player. Each edge j € N has a travel cost
t; associated with it. A coalition S faces the following problem. Construct a
cheapest walk that starts and ends in a specified node vy of the graph and
that visits each edge in S at least once. The cost of a walk is the sum of the
costs of the edges that it traverses. The cost ¢(.S) of coalition S in the delivery
game c is the cost of such a walk minus the sum of the costs of the edges in
S. The example used in [52] to illustrate this game is that of a post office that
has to deliver mail along streets that correspond with edges in the graph and
thus players in the game. Each player is responsible for covering the costs of
traversing his street once. The other travel costs necessary to complete the
walk have to be allocated among the players. Let D(.S) denote the set of walks
that start and end in vy and that visit each edge of S at least once. For each
walk w € D(S), let t(w) be the cost of w.

Definition 26. The cost ¢(S) of coalition S in the delivery game c is given by

c(8) = min (t(w) = t;).

weD(S) Py

The minimization problem above is known as the Chinese postman problem
and was introduced in [72]. In [30], a polynomial algorithm for solving it was
given. In [52], it was shown that delivery games need not be balanced. So
just like the wallpaper game and the nonbipartite weighted matching game
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mentioned in Section 5, this is another example of a class of games that involve
a combinatorial optimization problem that can be solved in polynomial time
but that do not need to be balanced. In [52], bridge-connected Euler graphs
are introduced, and it is shown that the delivery game on a bridge-connected
Euler graph is balanced. A bridge in a graph is an edge that if removed causes
the graph to become disconnected. A graph is called a bridge-connected Euler
graph if each component that remains after all bridges have been removed
contains an Euler cycle. Let b be a bridge in a bridge-connected Euler graph.
The cost allocation that divides ¢(b) among all the players that really need
it to obtain service from vy, i.e., for which b is on every path from vy, is an
element of the core of the delivery game.

In [50], bridge-connected cyclic graphs, a subset of bridge-connected Euler
graphs, are introduced, and it is shown that the delivery game on a bridge-
connected cyclic graph is concave. In [45], graphs that generate balanced,
totally balanced, and submodular delivery games are studied. In [44], this is
extended to the study of locally balanced, locally totally balanced, and locally
submodular delivery games.

9 Conclusion

In this chapter, we have discussed cooperative games arising from combina-
torial optimization problems. We have focused on eight classes of games with
their variations and generalizations. From these classes, the variety of tech-
niques used to analyze these games becomes clear. To establish balancedness
and to find an element of the core, a general approach is possible when the
combinatorial optimization problem that determines the game is equivalent to
its linear optimization relaxation and the right-hand sides of the constraints
satisfy certain conditions discussed in [10] and [12]. The approach used in
these cases is similar to the one from [83] for linear production games. In
other cases, methods that explore the particular structure of the game under
consideration are used to establish balancedness. And in again other cases, the
games are not balanced in general and modifications and/or subclasses that
contain balanced games are studied. Another approach used for the classes of
games that are in general not balanced is the use of least tax cores as in [15]
and e-cores as in [32] and [70]. In all these three articles, other games than
the ones considered in this chapter are also studied.

Algorithmic aspects of the core, conditions that characterize totally bal-
ancedness, and conditions that characterize concavity for classes of combina-
torial games not considered in this chapter are studied in [21,22], and [81],
respectively.

The study of one-point solution concepts reveals a picture that is even
more diverse. Algorithms and/or formulae that compute or describe these
really depend on the game. For the nucleolus and the 7-value, the situation
is simplified in some cases because not all coalitions need to be considered.
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Computational complexity, a consideration that has always been present
in works on cooperative game theory given that most solution concepts involve
computing the value or cost of all coalitions (which makes them exponential
to compute unless there are simplifying circumstances), has been receiving
more attention in the last ten to fifteen years. Examples of this mentioned in
the previous sections are the questions of the core nonemptiness of a given
instance of a combinatorial optimization game and the membership of the
core of a given allocation x. Another example is the consideration of bounded
agents in [99]. These topics may seem to pertain more to computer science
than to game theory, but I believe that it is a sign of the maturity of an area
of study when it starts raising questions in other areas.
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Abstract In this treatise, we survey some progress in cooperative game theory,
in particular those involved with algorithmic and computational complexity issues.
Central to these results is the linear program duality characterization of the core
for some combinatorial optimization games. We highlight the linear and integer
programming techniques and computational complexity approach applied to the
core and the Nucleolus for various kinds of games, such as linear production game,
flow game, minimum cost spanning tree game, packing and covering games, matching
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1 Introduction

Cooperative game theory studies the problem of the revenue allocation for a
set N of participants, called players, in a joint project where a value function
v is defined for each subset of players, representing the revenue achieved by
the players in the subset without assistance of other players. Much of cooper-
ative game theory is built around the question how to distribute the collective
income in fair and rational manners. Different philosophies result in different
solution concepts, e.g., the core, the Shapley value, the Nucleolus, the bar-
gaining set, and the von Neumann—Morgenstern solution set [9,65]. There are
arguments why each such proposal is a reasonable mathematical rendering of
the intuitive concept of “fairness.”

In general, each solution concept defines, for each cooperative game (N, v),
a set F of allocation vectors. Intuitively, an allocation is considered “fair” if
it belongs to this class. Such a set F could be a singleton such as the case
of the Shapley value and the Nucleolus. It could also contain an indefinite
number of vectors such as the core. Deciding whether an allocation is in a tar-
geted solution concept set is in general a nontrivial problem and has always
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been an important issue in the study of cooperative game theory. A partic-
ularly interesting theme to the study of such decision problems is that of
the bounded rationality, which argues that decisions made by real-life agents
may not spend an unbounded amount of resources to evaluate all the pos-
sibilities for optimal outcome [66]. Much effort has been made in the study
of the bounded rationality in computational resource for solution concepts of
cooperative games.

The computational complexity study on cooperative games is especially
interesting as the definition of a game involves an exponential number (in the
number of players) of values, one for each subset of players. Moreover, the
definitions of many solution concepts would involve an exponential number of
constraints. Megiddo [50] observed that, for many games, the game value is
calculated through succinctly defined structures and for such games, he sug-
gested that finding a solution should be done by a good algorithm (following
Edmonds [17]), i.e., within time polynomial in the number of players. Deng
and Papadimitriou [14] suggested computational complexities be taken into
consideration as another measure of fairness for evaluating and comparing
different solution concepts.

An especially fruitful case for the computational complexity approach in
cooperative game theory is the class of combinatorial optimization games (see,
e.g., [12]). In a cooperative game, when the value of a subset of players is
evaluated via a combinatorial optimization problem, subject to constraints of
resources controlled by members in the subset, the input size is usually poly-
nomial in the number of players. Therefore, such combinatorial optimization
games fit well into the framework of algorithm theory. Indeed, such a line of
research has been very active in the past decade. In this treatise, we should
focus on those in the study of the core and the Nucleolus.

The organization of the treatise is as follows. In Section 2, formal def-
initions of cooperative game and solution concepts are given. We also give
a sketch of combinatorial optimization game models and related algorithmic
and complexity results. In Section 3, we introduce Owen’s linear production
game [56] and Granot’s generalized model [31]. In view of the importance of
Owen’s model, we focus on the Linear Programming (LP) duality character-
ization of the core allocation in Owen’s work and exemplify its applications
with flow game and minimum cost spanning tree game. Additionally, com-
plexity results on these models are also discussed. In Section 4, the packing,
covering, and partition games are brought in as a natural extension of Owen’s
model with integrality condition explicit. The common necessary and suffi-
cient condition on the balancedness of these games is that a corresponding
LP relaxation has an integer optimal solution. The sufficiency of this condi-
tion follows immediately from Owen’s work [56]. Here, we use matching game,
vertex covering game, and minimum coloring game to illustrate a variety of
computational complexity results for this class of games. In Section 5, we fur-
ther investigate the linear and integer programming approach and LP duality
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techniques applied to facility location games. Finally in Section 6, we conclude
with some further discussions and remarks.

2 Definitions and Models

A cooperative game with side payments is a pair (N, v), where N={1,2,...,n}
is a finite set and v : 2¥ — R is a function with v(f)) = 0. The elements of
N are called players, and the subsets S of N are called coalitions. For each
coalition S C N, v(S) is the value of S that is interpreted as the profit or
cost achieved by the collective action of players in S without any assistance of
players in N\ S. The function v is called the characteristic function. A game
is called a profit (cost) game if v(S) measures the profit (cost) achieved by the
coalition S. In this section, we present the definitions only for profit games.
Symmetric statement holds for cost games.

The focus of cooperative game theory has always been how to fairly
distribute the collective income. We denote the income distributed to indi-
vidual players by a vector = (z1,2,...,2,) satisfying > i, x; = v(N),
called an allocation. Throughout this treatise, we use the shorthand notation
x(S) = > ;cgxi for S € N. An allocation vector x is called an imputation of
the game (N, v) if it also satisfies the individual rationality condition:

Vie N: xz; > v({i}).

The set of imputations of game (N, v) is denoted by I(v). Additional require-
ments for fairness, stability, and rationality lead to different sets of allocations,
which are generally referred to as solution concepts. As limited by space, we
shall discuss two of the most important ones: the core and the Nucleolus.

2.1 The Core

The concept of the core was first introduced by Gillies [28] based on the
concept of subgroup rationality.

Definition 1. The core of a game (N,v) is defined by
C) ={z e RN 2(N) = v(N) and z(S) > v(S), VS C N}.

The constraints imposed on C(v) ensure that no coalition would have
an incentive to split from the grand coalition N and do better on its own.
Consider the following allocation linear program (AP):

AP - min ZieN T;
st. D ieg®i >v(S) VSCN.

It is quite obvious that C(v) # ( if and only if the optimum value of the
linear program (AP) is equal to v(N), in which case any optimal solution
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to (AP) lies in C(v). Taking the linear program dual to (AP), an equivalent
condition for C(v) # () can be obtained based on the concept of balanced
sets. A collection B of nonempty subsets of N is balanced if there exists a set
of positive numbers v,, S € B, such that for each i € N, 7. ¢cp7s = 1.
A cooperative game (N,v) is balanced if 3 ¢ pv:v(S) > v(N) holds for
every balanced collection B with weights {7, : S € B}. Bondareva [3] and
Shapley [62] proved that a game has a nonempty core if and only if it is
balanced. For a subset S C N, we define the induced subgame (S,v,) on S,
in which vy (T) = v(T) for every subset 7' C S. A cooperative game is totally
balanced if all its subgames are balanced.

For the core of a cooperative game (as for other solution concepts that form
a subset of imputations), we have the following algorithmic and complexity
problems:

Testing nonemptiness: Can it be tested in polynomial time whether a given
instance of the game has a nonempty core?

Checking membership: Can it be checked in polynomial time whether a given
imputation belongs to the core?

Finding a core member: Is it possible to find an imputation in the core in
polynomial time?

The three problems are closely related, however, they may in general pos-
sess different complexities. It is possible that a core member can be found
in polynomial time but it is co-NP-complete for the membership checking
problem [18,24]. For a game of sum of edge weight defined on a graph, Deng
and Papadimitriou [14] proved that both problems of testing nonemptiness
and checking membership of the core are N"P-hard.

Some related solution concepts arise from the core. Shapley and Shubik [64]
recommended the concepts of (strong) e-core and weak e-core for a cooper-
ative game. Their main idea is to relax the requirements of subgroup ratio-
nality by z(S) > v(S) — ¢ and z(S) > v(S) — €|S| for each proper subset
S of N, respectively. Later, Tijs and Driesssen [72] introduced the concept
of multiplicative e-tax core by using x(S) > v(S) — e[v(S) — > ,cqv(i)] in-
stead. Faigle and Kern [22] modified the requirement of Tijs and Driessen’s
as z(S) > (1 — e)v(S) to define another approximate core, called multiplica-
tive e-core. One explanation of these concepts is that cooperation may not be
as hopeless even when the core is empty. Cooperation may be possible with
the subsidies of the central authority. Therein, the computational complex-
ity approach is also very promising in order to properly foster the necessary
cooperation.

2.2 The Nucleolus

One of the dissatisfactions with the core and some other solution concepts
is that there is no definite outcome, though this may allow for flexibility in
applications of these concepts to some areas such as economics and political
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science. The Nucleolus, introduced by Schmeidler [61], trying to capture the
intuition of minimizing dissatisfaction of players, is one of the most well-
known solution concepts among various attempts to obtain a unique solution
and has been made popular especially because of a discovery by Aumann and
Maschler [1] in its association with a Talmudic myth.

Let (N, v) be a cooperative game with n players. Given an allocation x €
R™, we define e(S,z) = x(S5) — v(S) for each S C N. This number is called
the excess of S at x and can be interpreted as a measure of satisfaction of the
coalition S with the allocation z. Thus, we arrive at the core C'(v) as the set of
allocations whose excesses are all non-negative. For an allocation = € R", let
O(x) denote the (2™ — 2)-dimensional vector whose components are the non-
trivial excesses e(S,z), ) # S # N, arranged in a nondecreasing order. That
is, 0;(z) < 0;(z), for 1 <i < j <2"™—2. Denote by >; the “lexicographically
greater than” relationship between vectors of the same dimension.

Definition 2. The Nucleolus n(v) of a game (N,v) is the set of imputations
that lezicographically mazimize 6(z) over the set of all imputations x € I(v).
That 1is,

nw) ={z € Iw):0(x) > 0(y) for ally € I(v)}.

Surprisingly, such a complicatedly defined solution, according to Aumann
and Maschler [1], was the foundation that dictated a particular schema for the
estate division problem set by Rabbi Nathan that baffled Talmudic scholars
for two millennia. The problem is one of three wives married to a man who
promised them 100, 200, and 300 zuz, respectively, upon his death. The hus-
band died leaving an estate worth less than 600 zuz. According to the Talmud
recommendation, the wives would receive an equi-partition of the estate if
it is worth 100; but a proportional partition of the promised amount if it is
worth 300. And even more unexpectedly, if the estate is worth 200, the wives
will received 50, 75, and 75, even though the last two wives’ claims were not
equal. Such an intricacy has been made clear only after the work of Aumann
and Maschler, showing the Tamudic solution’s coincidence with the Nucleo-
lus. The Talmud rule has since been credited as anticipation of the modern
cooperative game theory.

Even though, by definition, the Nucleolus may contain multiple points, it
was proved by Schmeidler [61] that the Nucleolus of a game with the nonempty
imputation set contains exactly one element. Kopelowitz [44], with Maschler,
Peleg, and Shapley [52] proposed to compute the Nucleolus by recursively
solving the following sequential linear programs:

max &
z(S)=v(S)+e ¥VSE€T r=0,1,....k—1
LP. : k—1
oaS) zu(S)+e vSe2N\ J T
r=0

x € I(v)
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Here, we set Jp = {0, N} and ¢ = 0 initially; the number ¢, is the optimum
value of the r-th program (LP,), and J, = {S € 2V : 2(S) = v(S) + &, for
every x € X, }, where X, = {x € I(v) : (x,&,) is an optimal solution to LP,}.
It can be shown that after at most n — 1 iterations, one arrives at a unique
optimal solution (x*,ey). The vector x* is just the Nucleolus of the game.

Because the computation of the Nucleolus requires solutions of sequential
linear programs, each with constraints exponential in the number of players,
it has been a challenge to obtain polynomial time algorithms [38,50]. Though
in some cases the Nucleolus can be calculated in polynomial time, such as
the assignment game [67] and the convex game [21,46], it is in general very
hard [11,19]. There are still some general algorithms for the computation of
the Nucleolus [36,59], however, they do not guarantee a polynomially bounded
running time except for some special classes of models.

2.3 Combinatorial Optimization Game Models

An important application of cooperative games is that they provide a mathe-
matical formulation for collective decision-making and optimization problems.
In such circumstances, very often, the characteristic function value of a coali-
tion can be represented succinctly as the optimum value of a combinatorial
optimization problem. Such cooperative games are called combinatorial opti-
mization games.

Combinatorial optimization has been a rich and fruitful research field. The
usual consideration in an optimization problem is a single objective function of
one agent. Often, however, problems arising from its application involve more
than one participant who may have different objectives and control different
resources. Cooperative game theory has developed important methodologies
to study fairness and rationality in collaborations and deal with conflicting
interests. In an example of the facility location model, customers from a given
set are in need of certain service that can be provided by connecting them
to some facilities. These facilities could be railway stations, libraries, or su-
permarkets. From a certain authority’s point of view, the goal is to minimize
the total cost, which is made up of the costs of building facilities and con-
necting the customers to the open facilities. On the other hand, it is expected
to find a fair allocation of the total cost to all customers such that none of
the coalitions of customers has any incentive to build their own facility or to
ask a competitor to serve them. The cooperative game theoretical approach
becomes the natural choice for such problems.

The combinatorial optimization games lead to the applications of a variety
of combinatorial optimization techniques, especially the linear and integer
programming techniques, which have proved to be powerful in design and
analysis of algorithms, as well as establishing complexity results. Here, one of
the most interesting results is the LP duality characterization of the core.

In this subsection, we give a sketch of several classic combinatorial opti-
mization game models and related algorithmic results.
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An example to formulate a two-sided market as a cooperative game, the
assignment game, was given by Shapley and Shubik [63]. The underlying struc-
ture is a bipartite graph (Vi, Va; E), where V; is the set of sellers and V5 is the
set of buyers. For the simplest case, each seller has an item to sell and each
buyer wants to purchase an item. The i-th seller values his item at ¢; dollars
and the j-th buyer values the item of the i-th seller at h;; dollars. Between
this pair, we may define a value v({,j}) = h;j —¢; if h;j > ¢; and set (7, 7) an
edge in E with weight v({4,j}). Otherwise, there is no edge between i and j
as no deal is possible if the seller values the item more than the buyer does.
Consider a game with side-payment; the value v(S) of a subset S of buyers
and sellers is defined as the weight of a maximum weighted matching in the
bipartite subgraph G[S] induced by S. Shapley and Shubik [63] established
a complete characterization of the core of this model, which says the core is
exactly the set of optimal dual solutions to the linear program formulation of
the assignment problem. A major factor for this result is that the optimal so-
lution to the corresponding linear program can be achieved at integer points.
This approach has been exploited extensively in other game models, such as,
location games defined on trees in Tamir [68], partition games in Faigle and
Kern [23], and packing/covering games in Deng, Ibaraki, and Nagamochi [12].

The model of Shapley and Shubik is a theoretical formulation for a pure
exchange economy. The linear production game in Owen [56] applies their
ideas to a production economy. Therein, each player j (j € N) is in possession
of an individual resource vector b/. For a coalition S of players, the profit
obtained by S is the optimum value of the following linear program:

max {c'y: Ay < ij,y > 0}.
jeSs

Thus, the characteristic function value is what the coalition can achieve in the
linear production model with the resources under their control. Owen showed
that one imputation in the core can also be constructed through an optimal
dual solution to the linear program that determines the value of N. However,
unlike the assignment game, there are in general some imputations in the core
that cannot be obtained in this way. The problem of checking membership of
the core for linear production games has been proved to be N"P-hard [5,24].

Kalai and Zemel studied games of network flows [40,41]. In this game,
the players are associated with arcs of the network. The value of a coalition
is the maximum flow value from the ‘source’ to the ‘sink’ in the subnetwork
consisting of the original vertex set and those arcs corresponding with the
players in the coalition. For a simple network in which arc capacities are all
one, the core of the associated flow game coincides with the convex hull of the
indicator vectors of minimum cuts in the network. We note that although a
flow game can be formulated as a linear production game, the size of the re-
duction may be exponential in space, and consequently, the complexity results
are independent.



166 X. Deng, Q. Fang

Bird [2], and independently, Claus and Granot [6] have formulated a mini-
mum cost spanning tree game for cost allocation problem in a communication
network. In this game model, each player corresponds with a vertex of the net-
work, and there is one more external vertex 0 representing a central supplier.
The cost of a coalition S is defined as the weight of a minimum spanning tree
in the subnetwork induced by the vertex 0 and vertices in S. It was shown that
the core of this game is always nonempty and an imputation in the core can
be calculated easily from a minimum spanning tree of the network [2,7,34].
However, it was proved by Faigle et al. [18] that checking membership of the
core is co-NP-complete in this model.

As extensions to minimum cost spanning tree games, there are some related
game models that were investigated, such as minimum cost forest game [45]
and minimum base game on matroid [53]. In another direction, Megiddo has
formulated a network cost allocation problem differently by defining the cost
of a coalition as the weight of a minimum Steiner tree that contains not only
vertices corresponding with the coalition but also some switches in the net-
work [51]. This model results in a computationally harder problem because
given a subset S of vertices, it is A"P-hard to evaluate the weight of a mini-
mum Steiner tree spanning S. By contrast with the minimum cost spanning
tree games, the core of this game may be empty. Fang et al. [25] further
proved that both problems of testing nonemptiness of the core and testing
total balancedness are N'P-hard for the Steiner tree games.

A facility location game is introduced to formulate the cost allocation
problem in a facility location model. In this model, there is a set of customers
that needs a certain service from some facilities and a set of possible locations
for opening the facilities. For each coalition of customers, its value is defined
as the minimum total cost consisting of the costs of opening facilities and
connecting each customer in this coalition to an open facility. Goemans and
Skutella [29] proved that for this game, it is in general NP-hard to decide
whether the core is nonempty and decide whether a given allocation belongs
to the core. However, given the information that the core is nonempty, both
finding a core member and checking whether a given allocation belongs to
the core can be solved efficiently. In a special case where all the customers
and facilities are located on the vertices of a tree, it was proved by Kolen [43]
that testing nonemptiness and checking membership of the core are both
polynomially solvable.

There are still many game models arising from classic combinatorial op-
timization problems, including dominating set game [73], traveling salesman
(TSP) game [15,58,70], Chinese postman game [39], and so on.

In the following sections, we will highlight the linear and integer program-
ming techniques and computational complexity approach applied to the cores
and the Nucleoli of cooperative games. The focal point of our discussion will
be three typical combinatorial optimization games: linear production games,
packing/covering/partition games, and facility location games.
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3 Linear Production Games

The most interesting connections with combinatorial optimization theory in
the study of cooperative games is the characterization of the core. From
this aspect, LP duality has proven itself a very powerful tool. Shapley and
Shubik [63] proved that for the assignment game associated with a two-sided
market, the core is exactly the set of optimal dual solutions to the linear
program formulation of the assignment problem. This approach was further
exploited in Owen’s linear production game [56], where a core allocation can
be immediately obtained from an optimal solution to a corresponding dual
program. After Owen’s work, the linear production game has been fully uti-
lized as a unified model to explain the nonemptiness of the core for many
combinatorial optimization games.

In Owen’s model, there are n players, and each player possesses a cer-
tain amount of m different resources. The resources vector of player i (i =
1,2, ...,n)is b* = (b4, b5, ..., b%))" with b > 0 being the amount of the k-th
resource possessed by player i. These resources can be used to produce p dif-
ferent products, and each unit of product j (j = 1,2, ...,p) can be sold at a
given market price ¢;j, and we denote ¢ = (¢1,¢2, ...,¢p). Let A = [akj]mxp
be the linear production matrix, where ay; is the amount of the k-th resource
needed to produce one unit of the j-th product. Then the linear production
game [, = (N, v) is defined as follows:

(i) The player set is N = {1,2, ..., n};
(ii) For each coalition S C N, v(S) is the maximum profit that the coalition
S can achieve with the resources under its control, i.e.,

v(S) = max {cx: Ax < ij, x > 0}.
jE€S
Theorem 1. (/56]) The linear production games are totally balanced.

A constructive proof presented by Owen [56] obtains an imputation in
the core from an arbitrary optimal dual solution to the linear program that
determines v(N). Let w be an optimal solution to the linear program:

min {Z wivd s wtA >t w > 0},
JEN
which is dual to the following linear program w.r.t. the grand coalition IV,

v(N) =max {cx: Az < Z bI, x>0}
JEN
Define u = (uq,uz,...,u,) by u; = w'b’, j € N. The LP duality theorem

implies that u(N) = v(N). On the other hand, let 2% be an optimal solution
to the linear program that determines v(.S), then
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u(S) = Zwtbi > w'Azl > cxl = v(9).
€S

Hence, u € C(v).

Note that this proof describes a simple way to arrive at a core allocation,
implying that for linear production games, the problem of finding a core mem-
ber can be done in polynomial time. However, unlike the assignment games,
there are in general some core members that cannot be obtained in this way.
It is natural to ask if we can determine an imputation is in the core or not
with an efficient algorithm. A negative answer has been given by Chvdatal [5]
and Fang et al. [24].

Theorem 2. ([5, 24]) For linear production games, the problem of checking
membership of the core is co-N'P-complete.

In Owen’s linear production game, it is required that for each coalition
S C N, the total amount of the k-th resource controlled by S satisfies ad-
ditivity assumption, i.e., bi(S) = > ,cgbh (k = 1,2, ...,m). A generalized
model investigated by Granot [31] retains the main linear program structure
of Owen’s model but allows right-hand sides of the resource constraints not to
satisfy the additivity assumption. That is, in the generalized linear production
game, the value of a coalition S C N is defined by

v(S) = max{cz : Az <b(S), x> 0},

where b(S) = (b1(S),b2(S), ...,bm(S))" and each bi(S) (k =1,...,m) is a
general function of S.

Theorem 3. ([31]) If the games consisting of player set N with value function
bi(S), S C N, forallk € {1,2,...,m} are balanced (resp., totally balanced),
then the generalized linear production game is also balanced (resp., totally
balanced).

With the same technique as in Owen’s work, a core allocation can also be
constructed from an optimal dual solution to the corresponding linear program
when the generalized linear production game is balanced.

For certain classes of cooperative games, such as flow games and mini-
mum cost spanning tree games, there is a natural way to formulate them
as (generalized) linear production games. Therefore, Owen’s model, including
Granot’s generalized model, has been employed as a unified tool to show the
balancedness of these games.

Note that the linear production games are equivalent to the class of non-
negative totally balanced games [9,16]. However, the reductions in the equiv-
alence proof requires exponential time and space in the number of players.
Consequently, complexities results for different totally balanced games should
be independent.
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3.1 Flow Games

Flow games were first discussed by Kalai and Zemel [40,41]. Consider a di-
rected network D = (V, E;w), where V' is the vertex set, E is the arc set, and
w: E — RT is the arc capacity function. Let s and ¢ be two distinct vertices
by which we denote the ‘source’ and the ‘sink’ of the network, respectively.
We assume that each player controls one arc in the network. Then the flow
game I’y = (E,v) associated with the network D is defined as follows:

(i) The player set is E = {1,2, ...,n};
(ii) For each coalition S C E, v(S) is the value of a maximum flow from s to
t in the subnetwork of D consisting only of arcs belonging to S.

Let P be the set of s-t paths in D and A = [a;;] be the arc-path incidence
matrix, where the rows of A correspond with the arcs in F, and the columns
correspond with s-¢t paths in P, a;; = 1 if arc ¢ is on the jth s-t path, and
a;; = 0 otherwise. Also define a vector h, € R"™ with the j-th component
being w(j) if j € S and 0 otherwise. Thus the flow game I'y = (E,v) can be
formulated as a linear production game as follows:

VSCE, v(S)=max{l'y: Ay <hg, y >0}

It follows directly from Theorem 1 that the flow game I’y is totally balanced
and a core allocation can be obtained from a minimum cut of D, which cor-
responds with an optimal dual solution to the linear program associated with
v(E). However, like linear production games, checking membership of the core
is still NP-hard for flow games [24].

Theorem 4. ([12, 24]) The flow games are totally balanced, and finding a
core member can be done in polynomial time. On the other hand, checking
membership of the core is co-NP-complete.

Because the cardinality of (s, t)-paths is typically huge, the arc-path for-
mulation described above is of little use from an algorithmic point of view.
Hence, an alternative arc-flow formulation was exploited to study the core by
Kalai and Zemel [41]. A network is called simple if the capacity of each arc is
equal to 1. Given a simple network D = (V, E), for W C V, denote by 6% (W)
and 6~ (W) the sets of arcs leaving and entering W, respectively. Define a
function ¢ : E — {0,1} with c(e) =1 if e € §7({s}), and c(e) = 0 otherwise.
Then the maximum flow problem in the network D has the following linear
program formulation:

max Z c(e)y(e)

eclE
LPs) st Z y(e) — Z yle) =0 YoeV\{st}
ecot({v}) e€s~({v})

0<yle)<1 Vee E
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The dual program of (LPy) is

min Z z(e)

(DLPf) ecE
sit. z(e) + o(v) — p(w) > c(e) Ve=(v,w)€EFE
z(e) >0 Vee E

Theorem 5. ([/1]) Let z be a core member of the flow game (E,v) defined
on a simple network D = (V, E). Then there exists ¢ = {¢(v) : v € V'} such
that (z,¢) is an optimal solution to (DLPy).

Followed immediately from Theorem 5 and the fact that the minimum cuts
of D constitute the extreme dual solutions to the maximum flow problem, it
concludes that for a simple network, the core of the corresponding flow game
is exactly the convex hull of the indicator vectors of the minimum cuts. Kalai
and Zemel [41] also conjectured that Theorem 5 may serve as a practical
basis for calculating the Nucleolus. Recently, with an elegant application of
LP duality approach in Kalai and Zemel’s work [41], Deng, Fang, and Sun [11]
proposed an efficient algorithm for computing the Nucleolus of a simple flow
game, settling the conjecture. They also gave an NP-hardness proof on both
computation and recognition of the Nucleolus for general flow games.

Theorem 6. ([11]) Let (E,v) be the flow game defined on a simple network
D = (V,E). Then the Nucleolus n(v) can be computed in polynomial time.

Theorem 7. ([11]) Let D = (V, E;w) be a network with general arc capacities
and (E,v) be the corresponding flow game. Then both problems of computing
the Nucleolus n(v) and checking whether a given core member is the Nucleolus
are N'P-hard.

3.2 Minimum Cost Spanning Tree Games

The power of Granot’s generalized linear production model can be applied to
prove the nonemptiness of the core for several games beyond those of Owen’s
model. In particular, these include some games associated with network opti-
mization problems, such as the minimum cost spanning tree game, the network
synthesis game, and the weighted matching game [31].

The minimum cost spanning tree game, MCST game for short, has
been studied extensively after its introduction by Bird [2]. Denote by N =
{1,2, ...,n} a set of customers who all need to be connected to some cen-
tral supplier denoted by 0. Establishing a direct link between any pair (i, 7)
(i,7 € N U{0}) is assumed to cost a non-negative weight w(i,j) = w(j, ).
The objective is to create a connected graph on the vertex set N U {0} and
to distribute the resulting total cost among all the customers. This brings out
the MCST game ['s; = (V,v) in a natural way:
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(i) The player set is N = {1,2, ...,n};
(ii) For each coalition S C N, v(S5) is the weight of a minimum spanning tree
in the induced subgraph G[S U {0}].

Granot [31] formulated the MCST game as a generalized linear produc-
tion game with exponential number of constraints, and consequently proved
its balancedness. A shortcoming of his proof is that it does not provide an
efficient scheme to compute a core member. Tamir [69] further presented a
linear program formulation with polynomial size, showing that several dis-
crete network synthesis games, including MCST games, satisfy Owen’s linear
production game model.

Let us describe Tamir’s formulation as follows. For an MCST game [y, =
(N, v), the value of a coalition S C N can be represented as the optimum
value of the following mixed integer program (MP):

v(S) = min Z WijYij
Vi,jeNU{0}
DS k,:{l?“:k Yk e S,Vie Nu{o}
ij J 0 if i #k,0 ’
vieNU{0} vjeNU{0}
0< z@gyij VkES,Vi,jENU{O}
yijE{O,l} Vi,jENU{O}

s.t.

For each S C N, let 9(S) denote the optimum value of the LP-relaxation of
(MP). Tamir showed that each core member of the game (N, ?) is also in the
core of the original game I'y; = (N,v). Thereby, the formulation (MP) casts
the MCST game as Owen’s linear production game, implying that the core of
the MCST game is nonempty and a core member can be generated from an
optimal dual solution to the linear program that determines 9(N).

It is very interesting that one of those dual optimal solutions corresponds
with the particular core member given in a “greedy” allocation scheme. This
“greedy” scheme was originally discussed in, e.g., Claus and Kleitman [7]
and Bird [2], and has been rigorously proved to yield a core allocation by
Granot and Huberman [33]: find a minimum spanning tree 7 on N U{0} and
allocate to each player i € N the weight of the first edge that ¢ encounters on
the unique path from i to 0 in T%.

Theorem 8. (/2,7,33,69]) The MCST games are balanced, and finding a core
member can be done in polynomial time.

Even though an imputation in the core can be found easily for an MCST
game, Faigle et al. [18] showed that it is NP-hard to decide whether a given
imputation is a core member. Tamir [69] also pointed out that a result of
Chvatal’s [5] implies N'P-hardness of checking membership of the core for the
class of network synthesis games, which includes MCST games.

Theorem 9. ([18]) For MCST games, the problem of checking membership
of the core is co-N'P-complete.
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In regard to the Nucleolus, a variety of algorithmic results have been es-
tablished for MCST games. Megiddo [50] first described an O(n?) algorithm
for computing the Nucleolus in a special case where the underlying graph
is a tree. Galil [27] subsequently reduced the number of operations in the
algorithm to O(nlogn). Faigle, Kern, and Kuipers [21] proposed an efficient
algorithm of computing the Nucleolus based on ellipsoid method for a class
of more general MCST games. An even more special case is obtained when GG
itself is restricted to a chain. In Littlechild [48], he identified a class of O(n)
coalitions that are the only relevant coalitions for the computation of the Nu-
cleolus, and essentially developed an O(n?) algorithm. Later, this result was
improved to a linear time algorithm by Galil [27] and Granot et al. [35,36].
For general cases, however, a negative answer for computing the Nucleolus
was given by Faigle, Kern, and Kuipers [19].

Theorem 10. (/19]) For MCST games, computing the Nucleolus is N'P-hard.

4 Packing, Covering, and Partition Games

Another way to extend Owen’s model is to explicitly require integer solutions
in the definition of a linear production model, yielding some game models
with combinatorial nature. Specifically, one may define the game value v(S)
as the optimum value of an integer program instead of a linear program:

v(S) = max {cz: Ax < ij, x > 0 and z is integral}.
JES

For the assignment game of Shapley and Shubik [63], the integer program
can be solved by its LP-relaxation, as there is always an integer solution for
the latter. In Shapley and Shubik’s model, &’ is a unit vector and b(N) is
a vector of all ones. It is this particular structure of linear constraints that
makes the core to be identified with the set of optimal dual solutions to a
corresponding linear program. This property is further investigated by Faigle
and Kern for partition games [23], and by Deng, Ibaraki, and Nagamochi for
packing and covering games [12].

Let Abe an mxn {0, 1}-matrix, M = {1,2, ...,m}and N = {1,2, ..., n}
be the corresponding index sets of rows and columns, respectively. Let
¢ = (c1,...,cm)" be an m-dimensional vector and d = (di, ...,d,)" be an
n-dimensional vector. For a subset S C N, let 1, € R™ denote the indicator
vector of S, where 1,(i) =1if ¢ € S, and 1,(i) = 0 otherwise.

The corresponding packing game I, = (N,v) is defined by

(i) The player set is N;
(ii) For each coalition S C N, v(S) is the optimum value of the integer pro-
gram (IP,q):
v(S) = max atc
st. 2'A<1,, xe{0,1}m
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The corresponding covering game I,.,, = (M, v) is defined by

(i) The player set is M;
(ii) For each coalition T" C M, v(T) is the optimum value of the integer
program (IP..,):

v(T) = min d'z
st. A, x>1, ze{0,1}"

where A,  is the submatrix consisting of the rows of A w.r.t. the coalition
T,and 1 € R'™ is the vector with all components being 1.

The corresponding partition game I, = (N, v) is defined by

(i) The player set is N;
(ii) For each coalition S C N, v(S) is the optimum value of the integer pro-
gram (IP,q,):
v(S) = max z'c
st. 2tA=1, z€{0,1}™

In the rest of this section, for all game models discussed, we let ILP* denote
the corresponding integer program that determines the value of the grand
coalition, and LP* and DLP* denote the corresponding LP-relaxation of ILP*
and its dual program, respectively. The next theorem provides a description
on the combinatorial structure for the corresponding packing, covering, and
partition games to be balanced.

Theorem 11. ([12,23]) The core of the packing game I'yqc is nonempty if and
only if the LP-relaxzation LP* has an integer optimal solution. In such case,
the core coincides with the set of optimal solutions to the dual program DLP*.
The same conclusion holds for the covering game I'.., and the partition game

Tpar.

There are many interesting cooperative games defined on graphs, which
can be formulated as packing and covering games [12]. For example,

(1) s-t edge connectivity game, s-t vertex connectivity game, and maximum
r-arborescence game;

(2) matching game and vertex covering game;

(3) independent set game and edge covering game;

(4) minimum coloring game.

These game models offer a variety of complexity results on the computational
problems related to their cores. For the games in the first category, all of them
are always balanced, and both problems of finding a core member and check-
ing membership of the core can be solved in polynomial time. An especially
interesting case is the matching game and the vertex covering game defined
on general graphs in the second category. For this pair of graph optimiza-
tion problems, one integer program is polynomially solvable and the other is
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N'P-hard. The LP-relaxations of this pair are dual to each other, and the
condition for the balancedness is polynomially checkable for both games. This
is not necessarily true for all N’P-hard combinatorial optimization problems.
For the minimum coloring games in the fourth category, both problems of
testing balancedness and checking membership of the core are N'P-hard.

4.1 Matching Games and Assignment Games

The matching game is one of the most important combinatorial optimization
games and has attracted much attention from researchers. Let G = (V, E;w)
be a graph with edge weight function w : £ — R¥*. The matching game
I = (V,v) associated with graph G is defined by

(i) The player set is V;
(ii) For each coalition S C V, v(S) is the weight of a maximum weighted
matching in the induced subgraph G[S].

Let A = [a;;] be the incidence matrix of graph G in which rows correspond
with edges in £, and columns correspond with vertices in V; a;; = 1 if edge
1 and vertex j are incident, and a;; = 0 otherwise. Then for each coalition
SCV,

v(S) = max{zlw: 2'A <1, ze{0,1}/Fl},

where w = (w1,wa,... ,w|E|)t. This formulation casts the matching game in
the scope of packing games.

It is obvious that the assignment game is a special kind of matching games
whose underlying structure is a bipartite graph. Because the LP-relaxation
LP* for the maximum matching problem on a bipartite graph always has an
integer optimal solution (the incidence matrix A is totally unimodular [37]),
the corresponding assignment game is balanced, and the core is precisely the
set of optimal solutions to the dual program DLP*.

Theorem 12. ([63]) The core of an assignment game coincides with the set of
optimal dual solutions to the linear program of the corresponding assignment
problem.

However, the above nice property breaks down for matching games on
general graphs. Deng, Ibaraki, and Nagamochi [12] showed that the core of
a matching game is nonempty only for some special classes of graphs. Their
constructive proof provides us a polynomial time algorithm to decide whether
the game is balanced and to generate a core member when the core is indeed
nonempty. In addition, for the problem of checking membership of the core,
it suffices to check whether the sum of the values on two endpoints of every
edge is at least one.

Later, Deng et al. [13] proved that the matching game is totally balanced
if and only if the underlying graph is bipartite. That is, a matching game is
totally balanced if and only if it can be formulated as an assignment game.
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Theorem 13. ([12,13]) For matching games, all problems of testing balanced-
ness and total balancedness, checking membership of the core, and finding a
core allocation can be solved in polynomaial time.

Now we consider the algorithmic results on the Nucleolus for matching
games. Solymosi and Raghavan [67] constructed an O(n?*) algorithm for com-
puting the Nucleolus in the bipartite case (i.e., assignment games). This was
also obtained in Granot, Granot, and Zhu [36]. Faigle et al. [20] introduced
a new solution concept, the Nucleon, as an alternative of the Nucleolus, and
presented an efficient algorithm for its computation. More recently, Kern and
Paulusma [42] proposed an efficient algorithm for computing the Nucleolus of
a matching game in the unweighted case. However, computing the Nucleolus
for general matching games remains unsolved. We guess it is A'P-hard.

Theorem 14. (/56, 67]) The Nucleolus of an assignment game can be com-
puted in polynomial time.

Theorem 15. ([42]) The Nucleolus of an unweighted matching game can be
computed in polynomial time.

Tamir and Mitchell [71], with Granot [30], discussed a kind of generalized
matching games: b-matching games (also called roommate games). Given an
edge weighted graph G = (V, E;w), let each vertex i € V be associated with a
positive integer b;, and let §(i) denote the set of edges incident to vertex i € V.
A b-matching of graph G is an |E|-dimensional non-negative integer vector x
satisfying the degree constraints: x(d(i)) < b; for each ¢ € V. The b-matching
game on graph G is defined in a similar way as the matching game. It has the
players on the vertices of V, and for each coalition S C V, v(9) is defined as
the weight of a maximum weighted b-matching in the induced subgraph G[S].

This game generalizes the original matching game by substituting 1, with
the integer vector b on the right-hand sides of the constraints in the inte-
ger program that determines v(S). Still, with a similar approach applied to
Owen’s linear production game, Tamir and Mitchell [71] proved that if the
LP-relaxation LP* for the maximum b-matching problem on G has an integer
optimal solution, then the core of this game is nonempty, and a core mem-
ber can be constructed from an optimal solution to the corresponding dual
program DLP*. However, the substitution of b, makes the necessary and suf-
ficient condition on the balancedness for packing games (Theorem 11) fail for
general b-matching games.

4.2 Vertex Covering Game

In this subsection, we consider the vertex covering game to exemplify the
result of Theorem 11 on general covering games. Given a graph G = (V, E),
the associated vertex covering game I, = (F,v) is defined by

(i) The player set is E;
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(ii) For each coalition S C E, v(S) is the cardinality of a minimum vertex
cover in the edge induced subgraph G[S], i.e.,

v(S) = min{1'y : A, y>1, yed{o, 1}|V‘}7

where the matrix A is the incidence matrix of G as described in the
matching game.

For the pair of matching game and vertex covering game defined on a
common unweighted graph, their corresponding LP-relaxations LP* are dual
to each other. However, the maximum matching problem can be solved in
polynomial time, whereas the problem of finding the minimum vertex cover
is in general A'P-hard.

We remark that when we think of a computational task for a cooperative
game (N,v), we have the characteristic function v as an oracle that outputs
the value v(S) for a queried set S C N and consider that one oracle call can
be done in a constant time. In the vertex covering game, we take graph G as
the input, and the running time of algorithms is measured by the encoding
length of G, not by the oracle complexity model. Surprisingly, for this vertex
covering game that is associated with an N“P-hard problem, Deng, Ibaraki,
and Nagamochi [12] showed that all the questions about the core can be
answered in polynomial time.

In detail, the core of a vertex covering game on graph G is nonempty if
and only if the size of a maximum matching is equal to the size of a minimum
vertex cover in the graph G [12]. It is very interesting that testing this condi-
tion can be transformed into an instance of 2-Satisfiability problem, yielding
a polynomial time algorithm. Moreover, when the game is balanced, an impu-
tation is in the core if and only if it is a convex combination of the indicator
vectors of maximum matchings.

Theorem 16. (/12]) For vertex covering games, all problems of testing core
nonemptiness, checking membership of the core, and finding a core member
can be solved in polynomial time.

4.3 Minimum Coloring Game

The minimum coloring games arise in applications if the smallest number of
conflict-free groups are sought in a system where vertices represent members
and edges represent conflicts between members. Such conflict graphs can be
found in many resource sharing problems, for example, the channel assignment
problem for mobil communication. Let x(G) denote the chromatic number of
an undirected graph G, i.e., the minimum number of maximal independent
sets that together cover all vertices of G. The minimum coloring game I, =
(V,v) on a graph G = (V, E) is defined by

(i) The player set is V;
(if) For each coalition S C V, v(S) equals x(G][S]), i.e., the chromatic number
of the induced subgraph G[S].
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This game can be formulated as a covering game as follows: for the con-
straint matrix A in the covering game formulation, the rows of A correspond
with the vertices in V, and the columns correspond with all the maximal
independent sets of G.

It is well-known that the computation of x(G) is generally N"P-hard. Un-
like the vertex covering games discussed above, all the algorithmic problems
related to the core are A'P-hard for this game [12].

Theorem 17. ([12]) For minimum coloring games, all problems of testing
core nonemptiness, checking membership of the core, and finding a core mem-
ber are N'P-hard.

Let w(G) denote the size of a maximum clique in G that satisfies w(G) <
X(@), as widely known in graph coloring theory. A graph G is called perfect
if w(G[S]) = x(G[S]) holds for all subset S C V. The minimum coloring game
defined on a perfect graph possesses nice algorithmic properties on its core.
Given a perfect graph G, it was proved by Deng, Ibaraki, and Nagamochi [12]
that the associated minimum coloring game is balanced, and finding a core
member and checking membership of the core can both be solved in polyno-
mial time [12,55]. Subsequently, it was also proved that a minimum coloring
game is totally balanced if and only if the associated graph is perfect by Deng
et al. [13]. Tt follows that the decision problem on the total balancedness of
a minimum coloring game is as hard as recognizing perfect graphs, which is
recently shown to be done in polynomial time [8].

Theorem 18. ([13]) The minimum coloring game on a graph G = (V, E) is
totally balanced if and only if graph G is perfect.

In Okamoto [55], the algorithmic issues were further investigated for other
solution concepts of minimum coloring games. A characterization of the Nucle-
olus for some special classes of graphs, including complete multipartite graphs
and chordal graphs, leads to an efficient algorithm for its computation.

5 Facility Location Games

In a facility location problem, customers from a given set N are in need of
a certain service from some facilities. For a given set I’ of possible locations
for the facilities, opening facility ¢ € I’ causes a predefined cost f; > 0, and
connecting customer j € NN to this facility requires cost ¢;; > 0. The collective
goal is to minimize the sum of total cost, which is made up of the costs to open
facilities and to connect each customer to an open facility. This is referred to
as the unconstrained facility location problem. For the constrained case, some
further requests have to be taken into consideration, such as some facilities can
only handle a limit number of customers, or customers from different groups
cannot be assigned to the same facility.
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The corresponding facility location game I'y; = (IV,v) is defined as follows:

(i) The player set is N = {1,2,...,n};
(ii) For each coalition S C N, v(S) is the minimum total cost of providing
the service only to the players in S.

A systematic study on the core of the facility location game was carried
out by Goemans and Skutella [29]. Linear and integer programming approach
and LP duality technique are also crucial in their work.

To give the formulation of the facility location problem, let us first define
two kinds of variables. For each ¢ € F', the variable y; is set to 1 if facility 4 is
opened, and 0 otherwise; for each 7 € F' and j € IV, the variable z;; is set to
1 if customer j is connected to facility ¢, and 0 otherwise. In order to model
the constrained case, for each facility ¢ € F', a collection of feasible subsets F;
is introduced to represent all the possibilities of the set of customers that can
be connected to this facility, and accordingly, define P; C {0,1}"*! by

P :={(0,...,0} U{(1,1,)] S € F},

where 1, € {0,1}" is the indicator vector of the subset S. Then the general
facility location problem can be formulated as the following integer linear
program:

min Zfiyi+ Z CijTij

icF i€F,jEN
P* . > my=1 for all j € N
st i€ F
o (yi7l'i1,x1'2, ,1'“1) EPZ' forall 1€ I
zij,yi = 0,1 forall i€ F, jeN

Replacing each discrete vector set P; by its conic hull cone(P;) = {3~ cp Auu
Ay > 0}, rather than the most nature convex hull conv(F;), we obtain the
following LP-relaxation (LP*):

min ZfiyiJF Z CijTij

ieF i€FjEN
LP* : Zazij =1 forall je N
ot i€F
o (Yi, i1, Tiny - -, Tin) € cone(P;) forall i € F
l’z‘pinO for all 1€ F, jeN

By making use of the technique of Lagrange dual, Goemans and Skutella [29]
proved that this LP-relaxation (LP*) is equivalent to the cost allocation prob-
lem (CAP) of the associated facility location game:

CAP: max{ij: Zwigv(S), VS C N}

JEN jes
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Theorem 19. ([29]) For a facility location problem and its corresponding
game model, the cost allocation problem (CAP) is equivalent to the dual of
the LP-relaxzation LP*. In particular, their values are equal and the core of
the facility location game is nonempty if and only if there is no integrality gap
for LP*.

Note that for the unconstrained case,
conv(P;) = cone(P;) = {(yi, i1, Tz, ..., Tin) 1 0 < 25 < y;, Vj € N}

Theorem 19 implies that both checking membership of the core and finding a
core member may reduce to solving the dual program of LP* for a balanced
unconstrained facility location game. However, the problem of testing the
balancedness is A'P-hard.

Theorem 20. (/29]) For the unconstrained facility location games, it is N'P-
complete to decide whether the core is nonempty. If the unconstrained facility
location game is balanced, both problems of finding a core member and checking
membership of the core can be done in polynomial time.

In the rest of this section, we will restrict our attention to a special case
of unconstrained facility location games in which all players and facilities
are located on the vertices of a tree. For each player j € N, the cost for
connecting j to facility ¢ € F is equal to the distance between them in the
underlying tree. This kind of game is referred to as simple facility location
games. Goemans and Skutella [29] proved that in this case, the core is always
nonempty. This result was also obtained by Kolen [43] and Curiel [9]. Let us
consider the integer program formulations given by Kolen [43] to exploit how
the LP duality approach is applied to simple facility location games.

Let T = (N, E) be a tree with |[N| = n, the cost connecting ¢ and j be
equal to the distance between them, denoted by d(i, j) for each pair i,j € N.
Assume that the players correspond with vertices in V. For each vertex i € N,
let rj1 < rjp < -+ <1 be the ordered sequence of distances between vertex
i and all the vertices, including i. Also define 7,11 to be a number that is
larger than the sum of all opening costs and connecting costs involved. Define
an n? x n-matrix H = [h;, ;] by

Lo J1 o ifd(ig) < foridj ke N
"1 710  otherwise.

Then the coalition values can be formulated as follows. For each j € N, set
variable z; = 1 if and only if a facility is built in vertex j; for each i,k € N,
set variable z;; = 1 if and only if there is no facility within distance r;; from
vertex ¢. The number of built facilities that are within distance r;;, from vertex
1 are given by Z;Lzl hi,jz;. For each coalition S C N, the game value v(S5) is
then the optimum value of the following integer program:
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n n
min Z fjl’j -+ Z Z(Tik.l,_l — Tik)zik
j=1

i€S k=1

n
ZhikﬂjJrzikZl forieS, ke N

S.t. Jj=1
zir, € {0,1} forie S, ke N
zj € {0,1} for j € N.

In this formulation, the total balancedness of the constraint matrix implies
the integrality of the LP-relaxation of the integer program (IP*) that deter-
mines v(N) [43]. Accordingly, the nonemptiness of the core can be shown in
a similar way as that for Owen’s linear production game: let y* be an op-
timal dual solution of the LP-relaxation (LP*) that determines v(N), then
uw=(ui,ug, ...,u,) € R™ with u; = >_}_, y% is in the core of the game.

Theorem 21. (/9, 29, /3]) For a simple facility location game, the core is
nonempty, and finding a core member can be done in polynomial time.

Some different game models arising from facility location problems were
discussed in the literature. Tamir [68] considered a facility location model on a
tree where each customer has to be connected to a facility within a given dis-
tance. This can be formulated as a special case of the games discussed above.
Another game model, called fixed cost spanning forest game, was introduced
by Granot et al. [32]. In this model, there are no proximity constraints on
the distances between the customers and the facilities. Each customer must
be connected to some designated central facility, not necessarily the closest
one to the customer. In general, the core of this game may be empty. How-
ever, it was shown in Granot et al. [32] that when the underlying network is a
tree, the game is balanced and a core allocation can be found with a strongly
polynomial time algorithm.

6 Further Discussions and Remarks

In the study of cooperative games, it is suggested to have polynomial time
algorithms for finding and checking solutions to game models [50]. It is fur-
ther suggested that computational complexity be taken as one extra factor in
considering rationality and fairness of a solution concept and comparing dif-
ferent solution concepts [10,14] in a way derived from the concept of bounded
rationality [54,57,66]. In this line of approach, one may be lured to try to clas-
sify solution concepts by their complexities. However, very often, they may
display different orders in the complexity hierarchy from game to game. Some
concepts may be easier to compute in one game but more difficult in others.
But, still, we may ask this question: what is the worst-case complexity of a
solution concept? With all algorithms we know of, the concepts of the core,
the bargaining set, and the von Neumann—Morgenstern solution should be in
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an order of increasing complexity [10,14]. However, it would be nice to have
a definite proof in terms of lower bound.

To make the study of complexity and algorithmic issues for cooperative
games meaningful in the associated application areas, it is vital to have com-
putational complexity as an integrated part of theoretical consideration for
solution concepts. Even in the case in which the solutions of a game model do
not exist or are difficult to compute, it may not be easy to simply dismiss the
problem as hopeless especially when the game arises from important applica-
tions. Various conceptual approaches, in particular the approximation in fair
allocations, are proposed to resolve this problem.

The core, the set of feasible outcomes of a social or economic situation
that cannot be improved upon by any coalition of players, is a fundamental
equilibrium concept. When the core is empty, it motivates conditions ensur-
ing nonemptiness of approximate cores in economies and game models. A
natural way to approximate the core is the least core, which was introduced
by Maschler, Peleg, and Shaplsy [52]. Let (N, v) be a profit cooperative game.
Given a real number ¢, the e-core is defined to contain the allocations such
that x(S) > v(S) — ¢ for each nonempty proper subset S of N. The least
core, denoted by LC(v), is the intersection of all nonempty e-core. Let * be
the minimum value of £ such that the e-core is empty, then the least core is
the same as the e*-core. It is not hard to see that the least core is always
nonempty.

The concept of least core poses new challenges on algorithmic issues. The
most natural problem is how to efficiently compute the value €* for a given
cooperative game. The catch is that the computation of €* requires one to
solve a linear program with exponential number of constrains. Though there
are cases the value €* can be computed in polynomial time, it is in general
very hard. If we consider the value of €* as some subsidies given by the central
authority to ensure the existence of the cooperation, then it is significant to
give the approximate value of it even when the computation problem is NP-
hard. This needs new techniques in design and analysis of algorithms.

Another possible approach we are interested in is to interpret approxima-
tion as bounded rationality. For example, it would be interesting to know if
there are some of those games with the property that, for any € > 0, checking
membership in the e-core can be done in polynomial time but it is A/P-hard
to tell if an imputation is in the core or not. In such cases, the restoration
of cooperation would be a result of bounded rationality. That is to say, the
players would not care an extra gain or loss of £ at the expense of another
order of degree of computational resources.

As an important solution concept in economics and game theory, the Nu-
cleolus and related solution concepts have been applied to study insurance
policies by Lemaire [47], to real estate by Raghavan and Solymosi [60], to
study peer group by Branzei, Solymosi, and Tijs [4], and to bankruptcy by
Aumann and Maschler [1] as well as Malkevitch [49]. However, it has been a
challenge to obtain polynomial time algorithms for computing the Nucleolus.
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For some special game models, the Nucleolus can be computed in polyno-
mial time, such as, assignment games, simple flow games, and unweighted
matching games. On the other hand, it is AP-hard for more general game
models including minimum cost spanning tree games [18], flow games, and
linear production games [11].

There are still many unsolved complexity questions concerning the Nucle-
olus. Kern and Paulusma [42] conjectured that for general matching games,
computation of the Nucleolus is N'P-hard. In addition, it is very interesting
for us to know the complexity of computing the Nucleolus for other games in
the class of packing and covering games, such as vertex covering games and
minimum coloring games. In Deng, Fang, and Sun [11], an elegant application
of LP duality approach yields a polynomial time algorithm for computing the
Nucleolus of a simple flow game. Because flow games fall into the scope of
packing games, we believe that LP duality technique will be useful in design
of algorithms for this class of games.

For cooperative games arising from NP-hard combinatorial optimization
problems, computation of the Nucleolus may in general be a hard task. But
till now, no such N’P-hardness result is known. For example, facility loca-
tion problem is a classic A"P-hard combinatorial optimization problem. We
guess that for facility location games, the Nucleolus is difficult to compute in
general, though there may be efficient algorithms for some special cases. More-
over, when computation of the Nucleolus is difficult, we are also interested in
seeking meaningful approximation concepts of the Nucleolus especially from
the political and economic background.
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Abstract The aim of the current chapter is to study several solution concepts
for bicooperative games. For these games introduced by Bilbao [1], we define a
one-point solution called the Shapley value, as this value can be interpreted in a
similar way to the classic Shapley value for cooperative games. The first result is an
axiomatic characterization of this value. Next, we define the core and the Weber set
of a bicooperative game and prove that the core of a bicooperative game is always
contained in the Weber set. Finally, we introduce a special class of bicooperative
games, the so-called bisupermodular games, and show that these games are the only
ones in which the core and the Weber set coincide.

Key words: bicooperative game, bisupermodular game, Bore, Shapley value,
Weber set

1 Introduction

The theory of cooperative games studies situations where a group of peo-
ple/players are associated to obtain a profit as a result of their cooperation.
Thus, a cooperative game is defined as a pair (N, v), where N is a finite set
of players and v : 2V — R is a function satisfying that v (§) = 0. For each
S € 2V the worth v (S) can be interpreted as the maximal gain or minimal
cost that the players forming coalition S can achieve by themselves against the
best offensive threat by the complementary coalition N\ S. Hence, we can say
that a cooperative game has orthogonal coalitions (see Myerson [12]). Classic
market games for economies with private goods are examples of cooperative
games.

Games with nonorthogonal coalitions are games in which the worth of
coalition S depends on the actions of coalition N \ S. For instance, the joint
owners of a building are considering hiring a gardener to work in the common
areas of their residence. The garden is a public good. Each owner can decide to
support the proposal or to veto it. However, some of them may decide not to
take part in the decision making and would thus not necessarily be defenders
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or detractors of the project. This is the case with multicriteria decision making
when underlying scales are bipolar, i.e., a central value exists on each scale and
it is considered a neutral value. Thus, social situations involving externalities
and public goods are such cases.

These situations may be modeled in the following manner. We consider
pairs (S, T), with S, 7 C N and SNT = (. Thus, (S,T) is a partition of N
in three groups. Players in S are defenders of modifying the status quo and
they want to accept a proposal; players in 7' do not agree with modifying the
situation and they will take action against any change. Finally, the members
of N\ (SUT) are not convinced of the profits derived from the proposal and
they vote abstention.

Thus, in our model we consider the set of all ordered pairs of disjoint
coalitions 3V = {(S,T) : S,T C N, SNT = 0}, and define a worth function
b: 3N — R. For each (S,T) € 3V, the worth b (S, T) can be interpreted as the
maximal gain (whenever b (S,T) > 0) or minimal loss (whenever b (S,T) < 0)
that the players of the coalition S can achieve when they decide to play
together against the players of T and the players of N\ (SUT) not taking
part. This leads us in a natural way into the concept of bicooperative game
introduced by Bilbao [1].

Definition 1. A bicooperative game is a pair (N,b) with N a finite set and b
is a function b : 3N — R with b (,0) = 0.

Similar to the cooperative case in which each coalition S € 2V can be
identified with a {0, 1}-vector 1g, each pair (S,T) € 3" can be identified with
the {—1,0, 1}-vector 1(g 1) defined, for all i € N, by

1 ifies,
1(S,T) (Z) =¢ -1ifieT,
0 otherwise.

A special kind of bicooperative games has been studied by Felsenthal and
Machover [5] who consider ternary voting games. This concept is a generalization
of voting games that recognizes abstention as an option alongside yes and
no votes. These games are given by mappings u : 3V — {—1,1} satisfying
the following three conditions: u (N,0) = 1, u (0, N) = —1, and 1(g 1) (i) <
1¢s/ 1y (i) for all i € N, implies u (S, T) < u (S",T") . A negative outcome, —1,
is interpreted as defeat and a positive outcome, 1, as passage of a bill.

In Chua and Huang [3], the Shapley—Shubik index for ternary voting games
is considered. More recently, several works by Freixas [6,7] and Freixas and
Zwicker [8] have been devoted to the study of voting systems with several
ordered levels of approval in the input and in the output. In their model,
the abstention is a level of input approval intermediate between yes and no
votes. A new approach to bicooperative games is presented by Grabisch and
Lange [11] by using the product of finite distributive lattices. They consider
a set of players N = {1,...,n} and the product Ly x --- x L, of the lattices
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L, = ({-1,0,1},<), i € N, equipped with the pointwise order. Here, 1
means voting or playing in favor, —1 means voting or playing against, and 0
means abstention.

A one-point solution concept for cooperative games is a function that as-
signs to every cooperative game a n-dimensional real vector that represents
a payoff distribution over the players. The study of solution concepts is cen-
tral in cooperative game theory. The most important solution concept is the
Shapley value as proposed by Shapley [14]. The Shapley value assumes that
every player is equally likely to join to any coalition of the same size, and
all coalitions with the same size, are equally likely. Each component of the
Shapley value @ (v) € R" is a weighted average of the marginal contributions
v(SU{i}) —v(9) of player i € N, and it is given by

sw)= Y OO U - (s

n!
SCN\{i}

where s = |S| and n = |N|.

Another way to introduce the Shapley value is based on the marginal worth
vectors and corresponds with the following interpretation. Each permutation
m = (i1,42,...,10n) of the elements of N can be interpreted as a sequential
process of formation of the grand coalition N. Beginning from the empty set,
first the player i; is included, next the player 75 and so until the inclusion
of the player i, gives rise to the coalition N. In each one of these processes,
the corresponding marginal worth vector a™ (v) € R™ evaluates the marginal
contribution of every player to the coalition formed by his predecessors, that is,
af (v) =v (7" U{i}) —v(r") foralli€ N,

3

where 7 is the set of the predecessors of player i in the order 7. The Shapley
value @ (v) assigns the expected amount received by each player i € N, that is,

1 . .
b, (v) = — Z [v (7 U{i}) —v (7")].
well,
where IT,, is the set of all permutations of N and 7 is the set of the prede-
cessors of player i in the order 7.

A solution concept for cooperative games is a function that assigns a subset
of n-dimensional real vectors to every cooperative game (N, v). These vectors
represent the payoff distribution over the players.

The core [9] is one of the most studied solution concepts. The core of a
cooperative game (N, v) consists of all payoff vectors that distribute the total
savings v (N) among players and secure every coalition S € 2V at least the
amount it can obtain by operating on its own, that is,

C(N,v)={zeR":2(N)=0v(N) and 2 (S) > v (S) for all S € 2"},

where z (S) = >, o x; and z (0) = 0.

€S
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Although the core of a cooperative game is considered as a very natural
solution concept, most of the time it is empty. The core is nonempty for the
class of convex games [15]. This leads us to consider other solution concepts.
In 1978, Weber [17] proposed as a solution concept for a cooperative game:
a set that contains the core, which is always nonempty and easy to compute.
Its definition is based on the marginal worth vectors. The Weber set of game
v is the convex hull of all marginal worth vectors, that is,

W (N,v) = conv{a™ (v):m € I,}.

Let us outline the contents of our work. In the next section, we study
some properties and characteristics of the distributive lattice 3%. The aim of
the third section is to introduce the Shapley value for a bicooperative game.
We obtain an axiomatization of the Shapley value in this context as well as
a nice formula to compute it. This value is the only one that satisfies our
five axioms. Four of them are extensions of the classic axioms for the Shapley
value: linearity, symmetry, dummy, and efficiency. The fifth axiom is refereed
to the structure of the family of coalitions in 3V. In the fourth section, we
define the above solutions concepts for bicooperative games and prove that the
core is always contained in the Weber set. The bisupermodular games, which
are introduced in the fifth section, play an important role in the relationship
between the Weber set and the core. We see that the bisupermodular games
are the only ones for which their Weber set and the core coincide, establishing
a characterization of these games. Throughout this chapter, we will write SU4
and S\ 7 instead of SU {i} and S\ {i}, respectively.

2 The Lattice 3N

Let N = {1,...,n} be a set and let 3 = {(A,B): A,BC N, ANB = (}.
Grabisch and Labreuche [10] proposed a relation in 3V given by

(A,B)C (C,D)«<= ACC, BDOD.

The set (3N , Q) is a partially ordered set (or poset) with the following prop-
erties:

1. (P, N) is the first element: (), N) C (A, B) for all (A, B) € 3V.
2. (N,0) is the last element: (A, B) C (N, () for all (4, B) € 3V.
3. Each pair {(4, B),(C, D)} of elements of 3V has a join

(A,B)V(C,D)=(AUC,BND),

and a meet
(A,B)AN(C,D)=(ANC,BUD).

Moreover, (3, C) is a finite distributive lattice. Two pairs (A, B) and (C, D)
are comparable if (A,B) C (C,D) or (C,D) C (A, B); otherwise, (A, B)
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and (C, D) are noncomparable. A chain of 3V is an induced subposet of 3V
in which any two elements are comparable. In (3N , ;) , all maximal chains
have the same number of elements, and this number is 2n + 1. Thus, we can
consider the rank function p : 3% — {0,1,...,2n} such that p[(#, N)] = 0 and
p[(S,T)] =pl(A,B)]+1if (S,T) covers (A, B), that is, if (A, B) C (5,T) and
there exists no (H,J) € 3" such that (A, B) = (H,J) C (S,T). An element
of a lattice is V-irreducible if it covers only one element.

For the distributive lattice 3V, let P denote the set of all nonzero
V-irreducible elements. Then P is the disjoint union C; + Cy + - - -+ C,, of the
chains

An order ideal of P is a subset I of P such that if x € I and y < z, then
y € I. The set of all order ideals of P, ordered by inclusion, is the distributive
lattice J(P), where the lattice operations V and A are just ordinary union
and intersection. The fundamental theorem for finite distributive lattices (see
[16, Theorem 3.4.1]) states that the map ¢ : 3% — J(P) given by (4, B) —
{(X,Y)e P:(X,Y)LC (A,B)} is an isomorphism (see Figure 1).

Example. Let N = {1,2}. Then P = {(0, {1}), (0, {2}), ({2}, {1}), ({1}, {2})}
is the disjoint union of the chains (0,{1}) T ({2},{1}) and (0,{2}) C
({1},{2}). We will denote a = (0,{1}), b = ({2},{1}), ¢ = (0,{2}), and
d = ({1},{2})}. Thus we obtain the lattice

J(P)={0,{a},{c},{a,c},{a,b},{c,d},{a,b,c},{a,c,d},{a,b,c,d}}.

In the following, we will denote by ¢ (SN ) the number of maximal chains in
3N and by ¢ ([(A, B), (C, D)]) the number of maximal chains in the sublattice
[(4,B),(C, D)].

Proposition 1. Thenumber of mazimal chains of 3V is(2n)!/2", wheren=|N|.

Proof. The number of maximal chains of 3%V is equal to the number of maximal
chains of J(P), and this number is the number of extensions e(P) of P to a
total order (see Stanley [16, Section 3.5]). Because P = Cy + - - - 4+ C,, where

Figure 1. J(P) and 3" for two players
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the chain C; satisfies |C;| = 2 for 1 < i < n, we can apply the enumeration of
lattice paths method from Stanley [16, Example 3.5.4], and obtain

() =en = (2,.2.7,2) - %

Proposition 2. For all (A, B) € 3N, the number of mazimal chains of the
sublattice [(0,N), (A, B)] is (n+a —b)!/2%, where a = |A| and b= |B).

Proof. Given the sublattice [(0, N), (A, B)], we take N\ B = {i1,...,in—p}
and hence there are n — b elements (), N \ 7) with i ¢ B (see Figure 2).

Because A C N \ B, then a < n — b, and thus the set of the irreducible
elements of the sublattice can be written as

Pony,a,8)=Ci+- 4+ Ca+Coy1 4+ Cot(n-b—a)
where for alli; € A, 1 <j<aand iy, ¢ AUB, 1<k <n—b—a, we obtain
Cy ={(0,N\4;), (i, N\ )},
Ca+k? = {(q)aN\iaJrk)} .

That is, there are a chains such that |C;| = 2 and there are n—b—a chains
such that |Cy | = 1. Because

C1| 4+ +[Cal + [Catr| + -+ [Caynb-a)| =20+ (n —b—a),

we can apply the enumeration of lattice paths method from Stanley
[16, Section 3.5] and we obtain

co.mam) = (3700 et

2,...,2,1,...,1 20

(i1,N\’i1), 11 € A

0, N\i)  (0,N\i2) (0, N \in—s)

@, N)

Figure 2. Irreducible elements of the sublattice
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Proposition 3. Let it be (A, B),(C,D) € 3N with (A,B) C (C,D). The
number of maximal chains of the sublattice [(A, B),(C,D)] is equal to the
number of maximal chains of the sublattice [(D,C), (B, A)].

Proof. First of all, note that if (A,B) C (C,D), then A C C, B O D and
hence (D, C) C (B, A). Therefore, [(D,C), (B, A)] is a sublattice of 3V.
Let ¢ : (3V,C) — (3", C) be the map defined by ¢ (A, B) = (B, A). This

map is one to one as
0(A,B)=¢(C,D) < (B,A) = (D,C) <= (A,B) = (C, D).
Clearly, (A,B) C (A1,B1) C -+ C (Ag, Br) C (C, D) is a maximal chain in
the sublattice [(4, B), (C, D)] if and only if
(D,C)C (Bg,Ag) T ---C (B1,41) C (B, A)
is a maximal chain in the sublattice [(D,C), (B, A)]. Finally, it follows that

(X,Y) €[(A,B),(C,D)] = (¥, X) € [(D,C), (B, A)].

3 The Shapley Value for Bicooperative Games

We denote by BGY the real vector space of all bicooperative games on N,
that is

BGN ={b:3Y - R, b(0,0) =0} .
We consider the identity games {6(s 1) : (S,T) € 3N, (S,T) # (0,0)}, the
superior unanimity games {Usr): (S, T) €3N, (S,T)# (0,0)}, and the
inferior unanimity games {Q(&T) (S, T) € 3N, (5,T) # ((Z),@)}, which are
defined, for any (S,T) € 3% such that (S,T) # (0,0) as follows.

The identity game §(g 7 : 3% — R is defined by

1if (A,B) =(5,1),
0 otherwise.

5(S,T) (A7B) = {

The superior unanimity game u(g ) : 3N — R is given by

1 if (S,T)C (A,B), (A B)#(0,0),
0 otherwise.

Us.r) (A, B) = {

The inferior unanimity game us ) : 3NV — R is defined by

1 if (A,B)C (S,T), (A,B)#(0,0),

Y(s,T) (4,B) = {0 otherwise.
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It is easy to prove (see [2]) that all the above collections are bases of BGY .

A walue on BGY is a function @ : BGY — R"™, which associates to each
bicooperative game b a vector (P1 (b),..., P, (b)) representing the value that
every player has in the game b. In order to define a reasonable value for a
bicooperative game, we use the following interpretation of the Shapley value in
the bicooperative case. We consider that a player ¢ estimates his participation
in game b, evaluating his marginal contributions b(S U, T) —b(S,T') in those
coalitions (S U4, T) that are formed from others (S, T) when 7 joins S and his
marginal contributions b(S,T) — b(S,T U4) in those (S,T) that are formed
when ¢ leaves T'U 4.

Thus, a value for player ¢ can be written as

2= Y |Plsr) B(SULT) —b(S,T))
(S, T)e3N\:

+BES,T) (b(S’ T) - b(SaT U Z)) )

where for every (S,T), the coefficient ﬁf s, can be interpreted as the subjec-
tive probability that the player ¢ has of joining the coalition S and Bz sy 2
the subjective probability that the player i has of leaving the coalition T U i.
Thus, @; (b) is the value that the player ¢ can expect in the game b.

Figure 3 shows the different sequential orders corresponding with the dif-
ferent chains from (), N) to (INV,0) that contain (S,7) and (S U4,T) and all
chains that contain the coalitions (5,7 U ) and (S,T).

(N, 0)

Pisr)

(0, N)

Figure 3. Chains that contain coalitions
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If we assume that all sequential orders or chains have the same probability,
we can deduce formulas for these probabilities }“92 S.7) and Qé s.7) in terms of
the number of chains that contain these coalitions.

Applying Propositions 2 and 3, we obtain

pi _ C([(@vN)7(S7T)]) C([(SUZ',T%(N,(Z))])
(8,1) c(3V)
n+s—t)! (n+t—s—1)

_ 28 ’ 2t
(2n)!
2n

(nts—t)(n+t—s— 1)!2n757t

N (2n)! ’

([0, N), (S, Tud)]) e(((S,T)NN,0)])

Pisry = c(3V)
(n+t—s)! (n+s—t—1)
ot 95
(2n)!
2’77,
_ (n+tfs)!(n+sft71)!2n787t
(2n)! '

Taking into account that ]‘)f ST and }_)’(' sy are independent of player 7, and
only depend of s = |S| and ¢ = |T'|, we can establish the following definition.

Definition 2. The Shapley value for the bicooperative game b € BGY is given,
for each i € N, by

0= Y [ps,t (b(S Ui, T) = b(S,T)) +p, , (b(S,T) = b(S,TU i))] ,
(8,T)e3N\i

where, for all (S,T) € 3N\,

B, = (n—i—s—t)!(n—i—t—s—1)!271757757
' (2n)!

and
» :(n—l—t—s)!(n—l—s—t—1)!2n_3_t.
=st (2n)!

With the aim to characterize the Shapley value for bicooperative games,
we consider a set of reasonable axioms and we prove that the Shapley value
is the unique value on BQN that satisfies these axioms.
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Linearity axiom. For all a, 8 € R, and b, w € BG",
D, (ab + pw) = aP;(b) + fP;(w).

We now introduce the dummy axiom, understanding that a player is a
dummy player when his contributions to coalitions (S U4, T') formed with his
incorporation to S and his contributions to coalitions (S, T") formed with his
desertion of T'U ¢ coincide exactly with his individual contributions. Thus, a
player i € N is a dummy in b € BGY if, for every (S,T) € 3N\ it holds

b(S U, T) — b(S,T)) = b({i},0),
b(S,T) — b(S,TU7) = —b (0, {i}).

Note that if i € N is a dummy in b € BGY, then for all (S,T) € 3V\7,
b(SU,T)—b(S, TUi)=>b{i},0) —0b(0,{i}).

Because a dummy player i in a game b has no meaningful strategic role in
the game, the value that this player should expect in the game b must exactly
be the sum up of his contributions.

Dummy axiom. If player i € N is dummy in b € BG", then

Pi(b) = b({i},0) — b (0, {i}).

In a similar way as in the cooperative case, for the comparison of roles in a
game to be meaningful, the evaluation of a particular position should depend
on the structure of the game but not on the labels of the players.

Symmetry axiom. For all b € BG" and for any permutation = over N, it
holds that @,;(wb) = &;(b) for all i € N, where b (7S, 7T) = b(S,T) and
wS ={mi:ieS}.

In a cooperative game, it is assumed that all players decide to cooperate
among them and form the grand coalition N. This leads to the problem of
distributing the amount v (N) among them. Taking into account different
situations that can be modeled by a bicooperative game b, we suppose that the
amount b(N, () is the maximal gain and b (), N) is the minimal loss obtained
by the players when they decide full cooperation. Then the maximal global
gain is given by b(N, () — b (0, N). From this perspective, the value & must
satisfy the following axiom.

Efficiency axiom. For every b € BGY, it holds
> ®i(b) = b(N,0) — b(D,N).
ieN

It is easy to check that our Shapley value for bicooperative games verifies
the above axioms. But this value is not the unique value that satisfies these
four axioms. For instance, the value @(b) defined, for b € BGY and i € N, by
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sy = 3 5Dl Uy N (S UD) —b(S, N\ 9]

n!
SCN\i

also verifies these axioms. However, note that, for any bicooperative game b €
BGY | this value is the Shapley value corresponding with the cooperative game
(N,v), where v : 2V — R is defined by v (A) = b(A, N\ A) if A # (), and
v (@) = 0. This value is not satisfactory for any bicooperative game because
it considers the contributions to pairs of coalitions, in which all players take
part. Moreover, there is an infinite number of bicooperative games that give
rise to the same cooperative game.

For these reasons, if we want to obtain an axiomatic characterization of
our Shapley value for bicooperative games, we need to introduce an additional
axiom. Previously, we showed that a value on BG"Y that satisfies the above
four axioms is given by the expression

o) = [ps,t (b(S U, T) = b(S,T)) +p, , (b(S,T) = b(S,TU i))] ,
(S,T)e3N\i

where Py, and p_, satisfy some conditions. We prove this result in several
steps. First of all, we show that a value for player i satisfying the linearity and
dummy axioms can be expressed as a linear combination of his contributions.

Theorem 1. Let @; be a value for player i € N that satisfies linearity and
dummy azioms. Then, for every b € BGY,

Q)= > [Plsr) (B(SULT) —b(S,T))
(S,T)e3N\i

+p{g gy (0(S,T) =b(S,TUD)|,

where Y. P =1, and Y P — 1
(shesmi ) (5,73 5D

Proof. The set of identity games is a basis of BG", and each game b € BGY
can be written as

b= > b(S, T)d(s,7)-
{(S,T)e3N:(S,T)#(0,0)}

By the linearity axiom,

Di(b) = Z Di(6(5,1))b(S, T).
[(5,T)e3N (S, T)#£(0,0)}

We denote by a%s ) = Pi (6¢s,1)) for all (S,T) # (,0) and thus, the value
®;(b) is given by
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Z alsmb(S,T)

(S, T)e3N
= > algpb(ST+ Y algpnb(S.T)
(S, T)e3N\i {(S,T)e3N:ieS}

+ > atspb(S.T)
{(S,T)e3N:ieT}

= > alsmb(S,T)+ > aleuimb(SUL,T)
{(s,1)e3M\i:(5,1)(0,0) } (S,T)e3N\s

+ a(s,runb(S, T U1)
(S, T)e3N\i
= > (afsyT)b(S, T) + a{s; myb(S Ui, T) + a{s pub(S, T U i))
(0,0)#(S,T)€3N\i
+a{y.00({i},0) + afy (3)0(0, {i}).

Let us consider the games wEA B! 3N — R where, for each (A4, B) € 3V\?,
the game wéA’B) is defined by

Wiy p (S\i.T) ifi €S,
© (S, T\d) ifieT
1) = J Wam (S )
Clam (ST)=19 ifi ¢ SUT,(0,0)# (5,T)C (4,B),
0 otherwise.

Clearly, player 7 is a dummy in wa B) for each (A, B) € 3V¥\' and hence
@Z(wz Al B)) = 0 by the dummy axiom. If we apply the above equality to the
game wEA,B)’ we get

Z (aés,T) + afsuim + afs,Tui)) =0.
{(8,1)€3N\I:(0,0)#(S,T)C(A,B) }

We show, by induction on p[(S,T)], the rank of the coalitions, that for all
(S,T) € 3N\, (S,T) # (0,0), it holds that al(‘&T) + a%SUi’T) + aésvTUi) = 0.
Note that the first element in (3V\!,C) is (0, N\ 4), and so p[(0, N \ i)] = 0.
Thus, we obtain

Z (afs,T) + azsui,T) + aéS,TUi))
{(8,T)e3N\i:(S,T)E(0,N\i) }
= a(p.n\i) T 9 Tt a.n) = 0-
Now assume the property for (H,.J) € 3N\ with p [(H, J)] < k—1 and suppose
that (S,T) € 3V\* has p[(S,T)] = k. Then
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dji(wéS,T)) = Z (afH,J) + aéHUi,J) + aéH,JUi))
{(H.)e3N\:(0,0)#(H,N)E(S,T) }
= afs,T) + afSUi,T) + aéS,TUi)
+ > (aliH,J) + i) + aé'H,Juo)
{(2,7) €3N\ 1:(0,0)#(H, /) (ST) }
= a(s )+ a(sui) T 4s,TU) =0
where the last but one equality follows from the induction hypothesis, and the
last one follows from the dummy axiom. Now for each (S,T) € 3N\, define
Plo.o) = 41,0 Ppgy = ~%0.6h> Plsr) = Asuir)y Py = ~A(sTui)
and we compute

;(b)
= Y [(Bar —Fisn)0S.T)

(S,T)e3N\i

+D(smb(SUI,T) — gésm

= > [Pl G ULT) = b(S,T) + plg ) (S, T) b (S, T U]
(S,T)e3N\i

b(s,Tu@')}

Finally, it is easy to check that player i is a dummy in the games wu({;y,n\ i)
and u(n\s,{:}), and hence

Y. Psm= D suin = > a(sm)

(S, T)e3N\: (S, T)e3N\i {(S,T)e3N:ieS}
= Y. Pi(dsm) = d(s.1)
{(S,T)e3N:ieS} {(5S, T)e3N i€S}

= @; (Tegiy, i) = Ty, (L34 0) = Tegay, v (0,{i}) =

Z Bés,mz Z —a(sTun) = Z —a(s 1)

(S, T)e3N\i (S, T)e3N\i {(S,T)e3N %eT}
= Z ~®; (6(s.1)) = P Z —0(s,1)
{(S,T)e3NeT} {(S,T)e3N %eT}
=& (2(N\i,{i})) = unvi i) (115 0) = wenva gy (0,{i})
=1.
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Now, we show that if we add the symmetry axiom to the linearity and
dummy axioms, the coeflicients ﬁ% S.T) and p7 only depend on the cardi-

(8,7)
nality of S and T.

Theorem 2. Let @; be a walue for player i € N defined, for every game
be BGY, by

2.0)= Y |Bls G(SUILT) = b(S,T))

(S,T)e3N\i
+ Py (B(S,T) = b(S, T U i))].
If ®; satisfies the symmetry axiom, then ﬁl('sj) =P, and QéS,T) =P, for all

(S,T) € 3N\* with s = |S| and t = |T|.

Proof. Let ®@; be a value for player i given by

a0 = Y [Fls G(SULT) —b(S,T)
(5,1)e3N\i
+ QES,T) (b(S,T) —b(S,TUi))|.

Let (S1,T1) and (S, T») be coalitions in 3V\? such that (Sy,T1) # (0, 0) #
(S2, T») satisfying that [S1]| = |S2] < n—1and |T1]| = |T2| < n—1. Consider a
permutation m of N that takes wS; = Sy and 7T} = T while leaving ¢ fixed.
Then 7T5(51’T1) = 5(52,T2) and

Pls, m) = Pil8(s,0im) = Pi(8(5,0i,15)) = Dis, 135

7 %

p(S1,T1) = _¢1(5(51,T1Ui)) = _¢i(5(SQ,T2Ui)) :B(SQ,T2)7

where the second equality follows from the symmetry axiom.

Now, let i,j € N,i # j and let (S,T) € 3N\#i}, Let us consider the
permutation m of N that interchanges ¢ and j while leaving the remaining
players fixed. Then 7d(s, ) = d(s,7) and

sy = Pi(0(suim) = 25(0(sujm)) = Dis,r)

sy = ~Pildsru) = =Pi(d(s,705)) = Plg 1y

Moreover,

i) = Li0v) = 5 (6v.0) = Plan ;00

s = ~Pi00.m) = =i (0.3) =Dl -

Hence, for every (S,T) € 3N\ there exist Ps,¢ and Py such that péS’T) = Do
and 27(;57T) =p,, forallich. -



A Survey of Bicooperative Games 201

The following theorem characterizes the values ® = (@1, ...,®,,) that sat-
isfy the above axioms and are efficient.

Theorem 3. Let & = (P4,...,D,) be a value on BGYN defined, for every game
b and for alli € N, by

Q)= D [P S ULT) = b(S,T) +p, , (S, T) = b(S, T V)]
(5, T)e3N\i
Then, the value @ satisfies the efficiency axiom if and only if it is satisfied

_ 1 1
Pn—10= 75 Po,1 =

and
(ni Sit)ps,t +t£s,t—1 = (ni 8 7t)£s,t +Sﬁs—l,t
forall0<s,t<n—1and0<s+t<n-—1.

Proof. For every b € BG", we have that 3, @:(b) is equal to
S [l GSULT) =68, 1)+, (B(S,T) ~ b(S, T U))]
iEN (S,T)e3N\i

-3y ¥ [ﬁs’tb(S Ui, T) ~p, b(S.T L)+ (—ps’t + ]gs,t) b (S, T)}

i€N (S5,T)e3N\i

= > ST [ —tp,, F =50 (B,

(S,T)e3N
=0b(N,0)np,,_10—0(0,N) gy
Y b [P, 050 (Bt

(0,0)#(S,T)e3N
(8, T)¢{(0,N),(N,0)}
If the coefficients satisfy the relations for the coefficients, then @ satisfies
the efficiency axiom.
Conversely, fix (S,T7) € 3V, (S,T) # (0,0), and applying the preceding
equality to the identity game (g 1, we have that »,_ @i(d(s,7)) is equal to

nPy_1,0 if (S’T) = (Nv(b)’
if (SvT) = ((DaN),
SPs—1t — WP, , ; t (n—s—t) (stt — ﬁs’t) otherwise.

Thus, if @ satisfies the efficiency axiom, the relations for the coefficients are
true. |
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As we have already indicated, these four axioms are not sufficient to char-
acterize the Shapley value for bicooperative games. Now, we introduce an
additional axiom and prove that our Shapley value is the unique value on
BGY that verifies the five axioms. This new axiom will take into account the
structure of the set of the coalitions in 3V.

First of all, note that the coalitions (S'\ j,T) and (S,7 U i) where j € S
and ¢ ¢ SUT have the same rank

PIS\AT)] = p[(S.TUD =n+s—t—L

However, the number of maximal chains in the sublattice [(0, ) (S \7,T)]
is not the same as the number of maximal chains in [((), N), (S, T U)| as, by
Proposition 2,

([0, N),(S\4,T)]) = w
c([(B,N), (S, T UW)) = w

Hence, beginning from the coalition (), N), the probability of formation of
the coalition (S,T) with the incorporation of one player j to (S'\ j,T) must
be distinct from the probability of formation (S,T") with the desertion of one
player ¢ in (S, T U1).

In analogous form, if we consider (S,7\ k) with k¥ € T and (S U1, T),
which have the same rank, the number of maximal chains in [(S, T\ k), (V, 0)]
is not equal to the number of maximal chains in [(SU4,T), (N, 0)]. There-
fore the probability of formation of (N,(@) beginning from (5,7 \ k) when
one player k leaves the coalition 7" must be distinct from the probability of
formation of (N, ) when one player i forms the coalition (S U1, 7).

Taking into account these considerations, the values that one player must
obtain in the identity games must be proportional to the number of maximal
chains in the corresponding sublattices. It must be also considered that one
value verifying the above four axioms assigns a non-negative real number to
one player i in the identity game (g 1) if this player belongs to S and a non-
positive real number if the player 7 belongs to T From this point of view, our
value must be satisfied by the following axiom (see Figure 4).

Structural axiom. For every (S,7) € 3¥\!, j € S and k € T, it holds

c([(@0,N),(S\4,T)]) _  2i(6s.1m))
c([((0,N), (S, TUw)]) & (6¢s,ruiy)’
c([(S,T\k),(N.O)]) _ Pu(ds1))
c(((SULT),(N,0)]) & (6suim)

Theorem 4. Let & be a value on BGY . The value & is the Shapley value if and
only if @ satisfies the efficiency axiom and each component satisfies linearity,
dummy, symmetry, and structural axioms.
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(N, 0)

(S, T\k), keT (SUi,T)

(S\4T),jes (5, TU%), i¢ SUT

®,N)

Figure 4. Structural axiom

Proof. If & is a value that satisfies linearity, dummy, symmetry, and efficiency,
then

Gib)= Y [P BSULT) = b(S,T)) +p, , (B(S,T)  b(S, T U)

(S,T)e3N\i

and the coefficients p, , and p_ satisfy

_ 1 1
Prn-10= 70 Pop1 ™
and
(TL i t) ps,t + tBs,t—l = (TL — S5 t) Bs,t + Spsfl,t' (1)
Taking into account that the value @ verifies the structural axiom, then
ﬁs—l,t = 295,15’ (2)
Pyyq = 2Dss- (3)

We prove that these coefficients, verifying all above conditions, are determined
in unique form. Indeed, consider a coalition (S, T') with |S| = n—1 and |T'| = 0.
If we apply equation (1) to this coalition, we obtain
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Pn10=P, 10T (n—1)Pp_20

and by (2), Pp_29 = 2p, ,,- Taking into account that p,_,, = 1 and
combining the above equalities, we have that

1
—= (I+2(n— 1))Bn—1,0
and hence
1 1120 —2)! 2 1U(@2n-2).,

2",

B0 T @n—1) " 201 (2n) Pr20= n(2n—1)  2n—2(2n)!
In similar way, if we apply (1) and (2) to a coalition (S, T") with |S| = n—2
and |T| =0, we get
2]_7n—2,0 = 2271—2 0 + (TL - 2) ﬁn—S,Ov

)

Dn—30 = 227172’07

and hence
S 2@n-3), _ 220 -3)_,
P20 = n2 ()1 © 0 P30T gn=s o)1
If we assume that
n—s—Dln+s)!_, _ n—s—Dl(n+s)!_,
1_710:( s+1)( )2’ p370=( s)( )2
s+1, 2511 (2n)! 25 (2n)!

then, for |S| = s and |T| = 0, applying (1) and (2),

(TL - S) 2_95,0 = (’ﬂ - S) 2570 + sﬁsfl,()v
Ps—1,0 = 2P,

and combining both expressions, we obtain, for 1 < s <n — 1,

(n=s!(n+s-1)_, (n—s)!(n—i—s—l)!Zn

B0 = 25 (2n)!  Pa10 T T (o)1
If we apply the same reasoning with the equalities (1) and (3) beginning
with a coalition (S,T) with |S| = 0 and |T| = n — 1, we obtain, for 1 <t <
n—1,

(n—t) (n+t—1)"_, (n—1t)! (n+1t— 1)

Do = 2t (2n)! v Poyq T 20=1 (2n)! 2"

If we now consider (S,7T) with |S| = s and |T| = 1, we apply (1) and (3),

(n—s=D)Pastp,y= (=5~ 1)p, +5Pu 1
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_ 1 _ 1
ps,l = §£8707 ps—l,l = 525_1707

and substitute the values already obtained, then

_ n—s+Dn+s—-2)!_, (n=s+1)(n+s-2)!_,
Ps—11 = s 2", p 1 s+1 2%
25 (2n)! 55 25+1L (2n)!

If we assume that

(n—s+t—1D(n+s—1t)!

psfl,tfl = 9s+t—2 (QTL)' 277,7
B (n—s+t—1)!(n+s—t)!2n
Poy1 ™ 251 (27)] ,

then applying p_, | = 2p,, (3) we obtain, for all 0 < s, ¢t < n —1 and
s+t<n—1,

_ n+s—t)Nn+t—s—-1"1_,

ps,t = s+t | 2",
25Ft (2n)!

Finally, applying (1) and (2),

(n -5 t) 155,:5 + tﬂs_’t_l = (?’L -5 t) Bs,t + 82_93717“
ﬁs—l,t = 2287t7
it holds that
B (n—l—t—s)!(n—!—s—t—l)!Zn
Dot = 25+t (2n)]
forall0<s, t<n—1lands+t<n-—1. [ ]

4 The Core and the Weber Set

Now, some solution concepts for bicooperative games are introduced, where
a solution concept is a rule that assigns to every bicooperative game a set
of payoff vectors that distribute the total saving among the players. Taking
into account different situations that can be modeled by a bicooperative game
(N,b), the amount b (N, () is the maximal gain and b ((), N) is the minimal
loss obtained by the players when they decide full cooperation and so, the
maximal global gain is given by b(N,() — b(@, N). A vector z € R" that
satisfies Y,y 2 = b(N,0) — b (0, N) is an efficient vector, and the set of all
efficient vectors is called preimputation set, which is defined by

I*(N,b) = {:CER" : in:b(N,@)—b((Z),N)}.

iEN

The imputations for game b are the preimputations that satisfy the indi-
vidual rationality principle for all players, that is, each player gets at least the
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difference between the amount that he can attain by himself taking the rest
of players against and the value of the coalition ((, N),

I(N,b) = {z € I*(N,b) : 2 > b(i, N \ i) — b (), N) forallic N}.

A satisfactory distribution criterion could be that every coalition (S,T) €
receives at least the amount it can contribute to the coalition ((, N), that
is, the amount b(S,7") — b (@, N). This leads us to the following definition of
the core of a bicooperative game.

3N

Definition 3. Let b € BGY. The core of b is the set

C(N,b) = x € I*(N,b) : there exist y,z € R"™ such that x =y + 2z, and
Ty (S)+ 2 (N\T) >b(S,T) —b(B,N), for all (S,T) € 3N

Let x € I*(N,b) be such that x = y + 2. Then
y(S)+z(N\T) > b(S,T)=b(0,N) <=y (N \ S)+z(T) < b(N,0)—b(S,T).

Therefore, C(N,b) is also the set of vectors x € I*(N,b) such that there
exist y,z € R" withx = y+zand y (N \ S)+2(T) <b(N,0)—b(S,T) for all
(S,T) € 3N. Thus, for each (S,T) € 3V, the payoff y (N \ S) plus the payoff
2 (T') must not exceed b(N, ) —b (S, T), which is the amount that is foregone
by forming the coalition (S,T") instead of the coalition (N, ).

Notice also that € C'(N,b) if and only if there exist y, z € R™ such that
r=1y-+ 2z, and

y(S)+2(N\T)
y(N\S)+2(T)

> b(S,T)=b(0,N),
< b(N,@) _b(SaT)7
for all (S,T) € 3. These inequalities are similar in the bicooperative context
to the inequalities characterizing the core in a cooperative game v : 2V — R,

Clo) = {w € R :2(8) 2 v(8) ~v(B), = (N\S) <v(N)~v(5), ¥5 € 2},

In order to extend the idea of the Weber set to a bicooperative game (N, b) ,
it is assumed that all players estimate that (N, () is formed as a sequential
process where at each step a player joins the defender coalition or a player
leaves the detractor coalition. These sequential processes are obtained for
each chain from (), N) to (IV,0). For each chain, a player can evaluate his
contribution when he joins the defenders or when he leaves the detractors.
This can be reflected in the vectors of R™ called superior marginal worth
vectors and inferior marginal worth vectors. Thus, we introduce the following
notation. o

For N = {1,...,n},let N = {-n,...,—1,1,...,n}. Let A : 3V — 2~
be the isomorphism defined by A(S,T) = SU{—i:ie€ N\T} € 2V, for
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each (S,7) € 3. For instance, A (), N) = @ and A(N,0) = N. Because
SNT =0« S C N\T,weseethat i € A(S,T) and ¢ > 0imply —i € A(S,T).

In the lattice (3N , E), we consider the set of all maximal chains going from
(0,N) to (N,0) and denote this set by © (3V). If € © (3V) is the maximal
chain

(@,N) C (Sl,Tl) C---C (SJ’E) C---C (Sanl,Tanl) [ (]\7,@)7
then we can write the following associated chain of sets in QN,
0c {Zl} c---C {il,...7ij} [@GEERNE {il,...,ign_l} CN,

where {i1,...,i;} = A(S;,Tj) for j =1,...,2n. We define the vector 6 (i;) =
(1,...,1;), where the last component i, € N satisfies the following property:
if i; > 0, then the player i; € S; and i; ¢ S;_1, that is, i; is the last player
who joins S;, and if i; < 0, then the player —i; ¢ T, and —i; € Tj_q,
that is, —i; is the last player who leaves T;_;. Equivalently, the elements in
6 (i;) = (i1,...,1;) are written following the order of incorporation in the
defenders coalitions or desertion from the detractors coalition (depending on
the sign of each i) in the coalitions in chain 6 . Moreover, we write

0 (i) \ij = (i1,d2,...,35-1) = 0 (ij-1)

and iy, € 0 (i;) when 7, is one component of the vector 0 (i;) , thatis 1 < k < j.
Note that an equivalence between maximal chains and vectors 6 = (i1, . . ., ia,
is obtained. Fix an order § = (i1,...,1%2,), we also define a [0 (i;)] = (S;, T}
such that A(S;,T;) = {i1,...,i;}. Moreover, a [0 (i;) \ i;] = a [0 (ij-1)]
(Sj=1,Tj-1) . In particular, a [0 (i2,)] = (N,0) and « [0 (i1) \ i1] = (0, N).
For example, let it be N = {1,2,3} and let § € © (3N) be given by
)

0, N) = (0,{1,3}) = ({2}, {1,3}) = ({2}, {1}) © ({2},0) £ ({2,3},0) © (N, 0).

~—_— —

Its associated chain of sets in 2% is given by
pc{-2} c{-22} c{-2,2,-3} C{-2,2,-3,—1} C {-2,2,-3,—1,3} C N.

and the maximal chain can be represented by the order 6 =(—2,2, -3, -1, 3, 1).
A coalition, for instance ({2},0), can be also represented by « [0 (—1)] and
by A_l ({_27 27 _37 _1}) :

Definition 4. Let 0 € © (3N) and b € BGY . The inferior and superior mar-
ginal worth vectors with respect to 6 are m? (b), M? (b) € R™ given by

f(b)Zb( [0 (=)]) = b (a0 (=) \ =i]),
b (a0 (@)]) = b ([0 (i) \4]),
(

for alli € N. The vector a® (b) = m? (b) + MY (b) is called the marginal worth
vector with respect to 0.
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We show that the marginal worth vectors are preimputations.

Proposition 4. For any b € BGY and 6 € © (3N), we have

> al (b) =b(N,0) = b(0,N).

iEN
Proof. Let b € BGYN and 6 € © (SN). It holds that
Sl ) =Y [mf () + Mf ()]

= Z [b ([0 (=0)]) = b ([0 (=) \ —i]) + b ([0 (D)]) = b ([0 () \ 4])]
= Z [b(e[6(i5)]) = b ([0 (35) \ i5])]
=b(aff(i)]) —b(a[0 (i) \ia]) +Z[b(a [0 (5)]) = b (e [0 (35-1)))]

=b(N,0)—b(0,N).

Proposition 5. Let b € BGYN and 6 € © (SN). Then,
DM+ > mi) =b(ST) b0, N),
Jjes JEN\T
for every (S,T) in the chain 6.
Proof. Let 6 € © (3V) and (S, T) in the chain 6 with |S| = s, [T| = t,s+t <n

and such that A (S,T) = {i1,42,...,%n+s—¢} Where the i; are written following
the order of incorporation in 6, that is, 0 (i;) = (i1,42,...,4;) forall 1 < j <
n+ s —t. Then,
SMIw)+ > mib) = > MY (b) + > m?, (b)
JjES JEN\T {i;€A(S,T):i;>0} {i;€A(S,T):i;<0}
= > B ) —balf (i) \ i)
i;€A(S,T)
n+s—t
= Y bald@)) —b(alf () \ij])]
j=1

=b(S,T)—b(D,N).
Note that for (S,T) = (N, ), we have

> [mf (b)) + M ()] =b(N,0) = b(0,N).

JEN
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Definition 5. Let b € BGY. The Weber set of b is the convex hull of the
marginal worth vectors, that is, W (N,b) = conv{a’ (b) : 6 € © (3V)}.

As the preimputation set is a convex set, W (N,b) C I* (N,b). However,
in general, the vectors of the Weber set are not imputations. For example, let
(N,b) with N = {1,2} and b : 3 — R defined as b (0, N) = —5, b (0,i) = —4,
b(i,j) = =1, b(i,0) = 1, b(N,0) = 2, for all i,5 € N. If we consider § =
(—2,2,—1,1), then af (b) = mf (b) + MY (b) = 3. As b(1,2) —b(0,N) = 4,
then af (b)) <b(1,N\1)—b(D, N) and a’ (b) & I (N,b).

Because I (N,b) is a convex set, then W (N,b) C I (N,bd) if all marginal
worth vectors are imputations. For this, a sufficient condition is the zero-
monotonicity of the game b.

Definition 6. A bicooperative game b € BGY is monotonic when for all coali-
tions (Sl,Tl),(SQ,TQ) with (Sl,Tl) E (SQ,TQ), it holds that b(Sl,Tl) S
b(Sa,T5).

Definition 7. The zero-normalization of a bicooperative game b € BGY is the
game by € BGY defined by

bo (S, T) =b(S,T) = > [b(,N\j)=b(®,N)], forall (5,T) € 3".
jeS

Definition 8. A bicooperative game b € BGY is called zero-monotonic if its
zero-normalization is monotonic.

Proposition 6. Let b € BGYN be a zero-monotonic bicooperative game. Then,
for every 6 € © (SN), the marginal worth vector associated to 6 is an impu-
tation for the game b.

Proof. Let 6 € © (3V). Because the vector a’ (b) is efficient, we prove that

aj (b) = b(a [0 (D)]) = b(al0 () \ i) +b ([0 (=i)]) = b(a [0 (i) \ —i])
=bo(al0@ON+ D, (N \ig) —b(0,N)]

{ij E@(i):ij >0}

—bo ([0 (2) \i]) — > [b(ij, N \ij) = b(D,N)]

{i;€0(i)\izi; >0}
too(alo(-)+ S [ N\ij) —b(O,N)
{i;€0(—i):i; >0}
b (@ ()N -~ S BN\ i)~ b(0,N)]
{i;€0(—i)\—izi; >0}
— b (@ [0 (D)]) — bo (@ [0 (i) \ 1]) + bo (a6 (—i))
—bo (a0 (=) \ —i]) + b, N\i)—b(@,N)>b(i, N\i)—b(D,N),

where the inequality follows the zero-monotonicity of b. ]
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Now we prove that the core of a bicooperative game is always included in
its Weber set. The proof is closely related to the proof given by Derks [4] of
the parallel result for cooperative games.

Theorem 5. If b € BGY, then C' (N,b) C W (N,b).
Proof. Assume that there exists © € C' (N, b) such that = ¢ W (N, b). Because
r € C(N,b), then Y7,y x; = b(N,0) —b(),N), and there exist y,z € R"
such that r=y+z and y (S)+2 (N \ T)>b(S,T) — b (0, N) for all (S,T)e3N.
Because W (N,b) is convex and closed, by the Separation Theorem (see
Rockafellar [13]), there exists u € R™ such that

w-u>x-u forallwe W (N,b). (4)

In particular, the above inequality holds for all marginal worth vectors
w = a? (b) with § € © (3N) . If the components of vector u are ordered in
nonincreasing order u;, > w;, > -0 > u;,_, > u; , let 0 € O (3N) be the
maximal chain given by 0 = (—i1,41, —i2,%2,...,—%n,%,). Note that 0 (i;) \
ij =60(—i;) forall 1 < j <mn, 0(—i;)\ —i; =0(i;—1) for all 2 < j < n and
alf(—i1) \ —i1] = (0, N). Then

O (b)-u= ia?j (b) us; = i [Mg. (b) +m?, (b)] ui,

j=1

wi; | )]) = b([0(i5) \ i5]) + b (a0 (=i5)]) — b (a0 (=i5) \ —i5])]

NE ||M:

uiy [b(ec[0(45)]) = b ([0 (45-1)])]

1

= u;, b(N,0) +Zu1] a6 (i5)]) —ui b Zu,] a0 (ij—1)])

n

= i, b(N,0) = uiyb (0, N) + (ws; —wiyp0) b(a [0 (i)])

.
Il

|
-

3 .
—_

Suinb N7®)_uilb(®?N)+ ul; 7+1 |:Zylk +Zzlk+b [Z) N

j=1

=1

Ui; — Uiy, ) {Zyzk + Zzzk +b(®,N)]
k=1 k=1

(
=, [ ylk—i—Zzlk—i—b } —u;, b(0,N)

n—1

n
(yi; +2;,) = E Wiy Ti; =T U

g

which is in contradiction with the inequality (4). We conclude that C' (N, b)
W (N,b).

HnN
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5 Bisupermodular Games

We now introduce a special class of bicooperative games.

Definition 9. A bicooperative game b € BGY is called bisupermodular if, for
all (S1,T1) and (S2,T5), it holds

b((S1,T1) V (S2,T2)) + b ((S1,T1) A (S2,T2)) > b(S1,T1) + b (52, 13),
or equivalently
b(Sl U .Sy, Ty OTQ) + b(Sl NSy, Ty U TQ) > b(Sl,Tl) + b(SQ,TQ) .

The next proposition characterizes the bisupermodular games as those
bicooperative games for which the marginal contributions of a player to one
coalition in 3V is never less than the marginal contribution of this player to
any coalition contained in it. This characterization will be used in the proofs
of the following results.

Proposition 7. Let b € BGYN. The bicooperative game b is bisupermodular if
and only if for all i € N and (S1,T), (S2,T) € 3N\ such that (S1,Ty) C
(SQ7T2), it holds b(S2 Ui,Tg) - b(SQ,TQ) Z b(Sl Ui,Tl) - b(Sl,Tl), and
b(SQ,Tg) — b(SQ7T2 @] ’L) > b(Sl,Tl) - b(Sl,Tl Ui) .

Proof. Necessary condition. Let (S1,Th), (S2,T2) € 3NV\! with (S;,Ty) C
(S9,T5). If S} = S; Ui and we apply the definition of bisupermodularity
to (S1,T1) and (S3,Tz), it follows

b(SiUSQ,Tl ﬂTg)—l—b(SiﬂSQ,TlUTg) 2()(81 Ui7T1)+b(SQ,T2),

and hence b (SQ @] i,TQ) + b (Sl,Tl) Z b(Sl U i,Tl) + b (SQ,TQ) .
In an analogous form, taking 7j = T U7 and applying the definition of
supermodularity to (S1,771) and (S2,73), it follows

b(S1, Ty Ui)+b(S2,T2) > b(S1,T1) +b(S2,To Ui).

Sufficient condition. Let (S1,T1), (So,Ty) € 3N. If (S1,T1) C (S2,T3)
or (S9,T%) C (S1,711), the equality trivially holds. So, we consider the case
(81, T1) A (S2, Tz) # (S1,T1) and (S1,T1) A (S2,T2) # (S2, T2).

Let 0 € © (3Y) be a maximal chain that contains the coalitions (Sa,7%)
and (S1,71) V (So,To). As A(S1,Th) \ A(S2,Te) # 0, we assume that
|/1 (Sl,Tl) \ A (527T2)‘ =kand A (Sl,Tl)\A (SQ,TQ) = {il,ig, NN 7Z'k} , where
the i; are in the same order as they appear in the order 0, i.c.,

alf ()] Calf(iz))C - alf (i)
Then, the chain 6 is given by

0 C--CA(S2,T2) C A(S2, To) U {i1} C -+ C A(S2,T2) U {i1,...,ix} C--- C N
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or equivalently
((ZLN) C---C (SQ,TQ) C---C (Sth)\/ (SQ,TQ) C---C (N,(Z))

If we denote A; = {iq,i2,...,4;}, forall1 <j <k, Ag =0 and (P,Q) =
(Sth) A\ (SQ,TQ), it holds that A" [/1 (P, Q) U AJ} C A! [A (SQ,TQ) @] AJ]
for all 1 < j < k. We can apply the hypothesis to 47! [A(P,Q) U A;] and
A7 [A(Ss,T2) U Aj], and we obtain

b(ATH(A(P,Q)UA)) —b (A (A(P,Q)UA;_1))

<b(ATH(A(S2, To) U A))) = b (AT (A(S2, T2) U Aj-1))
for all 1 < j < k. Hence,

b((S1,T1)) = b((S1,T1) A (S2,T2)) =b (A7 (A(P,Q)U Ap)) — b(P, Q)
k

b (A (AP.Q)UA)) b (A (AP.Q)UA; )]

1

[b(A™ (A (S5, To) UA;)) = b (A~ (A (S0, To) U A, 1))]

INA
= &M”

b((S1,T1) V (S2,Ts)) — b(S2,Ts).
|

The following result allows the identification of the games for which the
marginal worth vectors are in the core.

Theorem 6. A necessary and sufficient condition so that all marginal worth
vectors of a bicooperative game b € BGN are vectors of the core is that the
game b is bisupermodular

Proof. Sufficient condition. Let 6 € © (BN). We know that the marginal worth
vectors are efficient, and we prove that the marginal worth vector af (b) =
mf (b) + M? (b) satisfies

ZMJQ(bH Z mf (b) > b(S,T) = b(0,N), forall (S,T) € 3".

jes JEN\T

By Proposition 5, for every (S,T) in the chain 6, it holds

S M)+ > mi(b)=0b(S,T)—b(0,N).

JES JEN\T

We prove that, for every coalition (S,T), not in the chain 6,

S MIb)+ > mi(b)=b(S,T)-b(0,N).

jes JEN\T
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Indeed, let (S,T) be a coalition that does not belong to the chain 6, such
that A(S,T) = {i1,i2,...,ix}, k =n+ s —t, where the elements are written
following the order of 6; that is, a [0 (i1)] T [0 (i2)] T -+ T [0 (ix)] -

If we denote A; = {iy,i2, ...,7;}, for all 1 < j < k, and Ay = 0, note
that, for all 1 < j < k, we have that A; = A(S,T) N A(af(i;)]), that is,
A7 (A)) = (S, T) Aa6(ij)]. As b is a bisupermodular game, Proposition 7
implies that, for all 1 < j <k,

b(a[0(i)]) = b(alf (i) \ i]) = b (A7 (A7) = b (A7 (4;-1))

and we obtain

SMiw)+ S ml) = 3 MY (b) + > m§ (b)

JjES JEN\T {i;€A(S,T):1;>0} {3, €A(8,T):1; <0}

= > b(af0(iy)]) —blalf )\ i)
i, €A(S,T)
n+s—t

- Z [b ([0 (i5)]) — b ([0 (i5) \ 45])]
n+s—t

> 3 AT (A) —b(AT (4m)]
j=1

=b(S,T)—b(0,N).

Necessary condition. For all (S1,T1),(S2,Ts) € 3", consider a maximal
chain 0 € © (SN) that contains (S1,T1) A (S2,Ts) = (S1 N S2, T3 UT,) and
(S1,T1) V (S2,T) = (S1USy, Th NTy). As the marginal worth vectors are
elements of C'(N,b), we have that

SoMI®b)+ D> mi(b) = b(S1,Th) —b(D,N),

JEST JEN\T
SoMI®)+ > mf(b) = b(S2,Ta) —b(0,N),
JES2 JEN\T>

By the election of the maximal chain 6 and Proposition 5, it is also satisfied

Z Mj (b) + Z m§ (b) = b((S1,T1) A (S2,T2)) = b (0, N).

JES1NS2 JEN\(T1UTy)

dYooMi®)+ D mi(b) =b((S1,Th) V(S2,T)) = b (0, N).

JESIUS jEN\(TlﬁTQ)
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Therefore,

b(Sl7T1)+b(SQ,T2)—Qb(Q,N)
<> M)+ Y mie)+ > M)+ Y mlb)

JjEST JEN\Ty jESa JEN\T,
= > MO+ > MO+ Y mio)+ Y mi®)
JESIUS, FESINS, FEN\(T1UTS) FJEN\(T1NT%)

= b((Sl,T1) A (SQ7T2)) + b((Sl,Tl) V (SQ,TQ)) —2b (@7N) .
Hence
b(S1,T1) +b(S2,T2) < b((S1,T1) A (S2,T2)) +b((S1,T1) V (S2,T2)) -

As the core of a bicooperative game b € BGY is a convex set, an immediate
consequence of this theorem is the following result.

Corollary 1. Let b € BGY. A necessary and sufficient condition so that
W (N,b) = C(N,b) is that the bicooperative game b is bisupermodular.

Let b € BGYN. A special element of W (N,b) = conv {a® (b): 0 € © (3N)}
is the value that assigns the same probability to all maximal chains. In the
next theorem, we prove that this value is the Shapley value of b.

Theorem 7. The Shapley value for b € BGY is given, for each i € N, by

()= > (;N)ag’ (b).

c
0eOe(3N)

Proof. Let us consider b € BGY and compute

v = 3 (;N) af (b)

c
0cO(3N)

= Y [l (5) + MP ()

c
0cO(3N)

= 2

c
0cO(3N)

+ 2w b@lbO) - bab @)\,

c
0ee(3N)

If 6 runs over all orders in © (3Y) , the sets [ (¢) \ 7] determine all coalitions
(S,T) € 3N\ in which i is incorporated in the order, and the sets a [0 (—i)]
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determine all coalitions (S,7T) € 3V \" in which player i has just left the pre-
ceding coalition in the order. Thus, the above expression can be written as

A > g [ BepO)-bep) )
(8,T)e3N\t 6o (3N):
alf(i)\i]=(S,T)

+ Z ﬁ [b(a]0(—=i)]) —b(a[f(—i)\ —1])]

00 (3N):
al0(=1)]=(S5.T)

Now for each (S,T) € 3V\', we define

B 1 _— 1
Ps,ry = Z c(3NY Pisry = Z c(3V)
96@(3N): QEQ(BN):
alf(i)\i]=(S,T) alf(—i)]=(S,T)

The number }_92 s,1) Tepresents the quotient between the number of chains from
(0, N) to (N,0) that contain (S,7) and (S U4,7T) and the total number of

maximal chains, and the number 92 o represents the quotient between the
chains that contain the coalitions (S,7 U4) and (S,T') and the total number
of maximal chains (see Figure 3). Applying Propositions 2 and 3, we obtain

_ c(@,N),(5T)) c(((SUi,T), (N, D)

=1

P(sr) = c(3N)
n+s—t)! (n+t—s—1)!
_ 28 ’ ot
(2n)!
27’L
_(nts—=t)(n+t—s5— 1)!27#54
(2n)! ’
i _ c(O,N), (S, Tud]) c(((ST)WN,0)])
Pisy = c(3V)
(n+t—s)! (n+s—t—1)!
_ ot ' 9s
(2n)!
2n
B (n—l—t—s)!(n—i—s—t—l)!Qn_s_t
B (2n)! '
Therefore, ¥;(b) = @; (b) for all i € N and b € BGY. |

As a consequence of Theorem 7, the Shapley value of a bisupermodular game
b is in C' (N, b) and hence, the core of b is nonempty.
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Abstract Cooperative game theory is concerned primarily with groups of players
who coordinate their actions and pool their winnings. One of the main concerns
is how to divide the extra earnings (or cost savings) among the members of the
coalitions. Thus a number of solution concepts for cooperative games have been
proposed. In this chapter, a selection of basic notions and solution concepts for
cooperative games are presented and analyzed in detail. The paper is particularly
concerned with cost allocation methods in problems that arise from the field of
combinatorial (discrete) optimization.

Key words: cost allocation, combinatorial optimization games

1 Introduction

Game theory deals with decisions in which two or more players, possibly
with conflicting interests, interact. Each of these players tries to optimize his
own objective function. A game can be classified as a cooperative or a non-
cooperative game. The difference between the two is that in a cooperative
game, the players can make agreements in order to minimize their common
cost or to maximize their common payoff, while this is not possible in a non-
cooperative game. Even if all players in a cooperative game agree that it is
beneficial to minimize their total common cost (or to maximize their common
total payoff), each player might want to minimize his individual cost (or to
maximize his individual payoff). In this type of a situation, one may need a
cost allocation method (payoff allocation method) that reflects the common
objectives as well as each player’s objectives.

The main purpose of this paper is to demonstrate how cooperative game
theory can be applied to combinatorial optimization and supply chain man-
agement problems. It deals with cost allocation methods in problems that
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arise from the field of combinatorial (discrete) optimization. In the next sec-
tion, the solution concepts of the cooperative game theory, like the core of
the game, the Shapley value, the Bargaining set, the Nucleolus of the game,
and the Kernel of the game, are given and analyzed. In Section 3, the corre-
sponding combinatorial optimization game for the most important problems
of combinatorial optimization and of supply chain management, like Schedul-
ing problems, Assignment problems, and Routing problems, is presented. For
these games, the core, the nucleolus, and the other solution concepts were
calculated. Finally, the concluding remarks are given in the last section.

2 Cooperative Game Theory and Cost Allocation

2.1 Basic Concepts in Cooperative Game Theory

A cooperative n-person game [24] is defined by a pair (N;u) where N =
{1,2,...,n} is the set of players and w is a real valued function, called the
characteristic function, defined on S C N, with u()) = 0. Each subset S C N
is a coalition, and N is called the grand coalition. In cooperative cost games,
the characteristic function is often denoted by ¢(S) instead of u(S). The car-
dinality or the size of a coalition, |S], is equal to the number of players in
S. The empty subset of N is called empty coalition. When the game involves
monetary or physical units that can be transferred between the players, then
the game is called Transferable Utility Game. The characteristic function in a
cost game refers to the cost that arises when a coalition chooses to cooperate.
The set of all cooperative games with player set N will be denoted GV .

A pre-imputation y is a vector in R™ such that the cost y; is allocated to
player i and such that ),y y; = ¢(N). An imputation is a pre-imputation
that satisfies the requirement y; < ¢({i}) for ¢ € N. For simplicity we write
y(S) for > ;g yi and c(i) for c({i}).

The ezcess of a nonempty coalition S with respect to a (cost allocation)
vector y is e(S,y) = ¢(S) — y(5).

The marginal cost of a player, m; is the marginal cost of that player in the
grand coalition, i.e., m; = ¢(N) — ¢(N{i}). Note that for a monotone game
m; > 0 for all 4.

A game can satisfy a number of properties:

o A game (N;c) is monotone, if the characteristic function ¢ is monotone,
ie, c(S)<e(T) for SCT CN.

e A game (N;c¢) is proper if the characteristic function is subadditive, i.e.,
c(S)+¢e(T) > ¢(SUT) for all S, T ¢ N,ST = (. In a proper game
it is always profitable to form large coalitions, which is an incentive to
cooperate.

e The weakest form of subadditivity occurs if the characteristic function is
additive, i.e., ¢(S)+¢(T) =c¢(SUT) for all S, c N,ST = 0.
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e A game with an additive characteristic function is called an inessential
game. All others games are called essential.

e A cost game is convez if its characteristic function is concave (or submod-
ular).

2.2 Solution Concepts

For the characterization of a solution concept, there is a number of properties
or axioms that a solution concept must satisfy. A solution may satisfy some
of the properties. The most important of them are:

e Group rationality or Pareto optimality or Pareto efficiency:) ,cnyi =
¢(N). The total cost allocated to the players must be equal to the total
cost of the game.

o Individual rationality: y; > c({i}),¥i € N. The cost allocated in each
player should not be higher than the cost the player would have to pay if
he acted without the others.

e Kick-back: y; > 0. The cost allocated to a player must always be non-
negative.

e Dummy player: If player ¢ contributes nothing to any coalition, ¢(S) =
c(S\ {i}) + c(i) for all S C N,i € S, then the cost allocated to i, y;, is
equal to (7).

o Anonymity (or neutrality or symmetry): The order in which the players are
numbered should not affect the cost allocated to the players of the game.

o Monotonicity: If the overall cost increases, the allocation to a player should
not be lower than before the cost increase.

o Additivity: If the cost matrix C' = {c¢;;} is divided into two independent
cost matrices, C' = {c};} and C? = {c};}, where ¢;; = ¢}; + ¢}, for all i,
then y; = y} + y2 for all i.

The Core of a Game

If all players in a game decide to work together, then a question arises of
how to divide the total profit. If one or more players believe that a proposed
allocation is disadvantageous to them, they can decide to leave. The core is
the most significant solution concept of a cooperative game that easily can be
perceived as fair. In a game (N;c), the core is defined as those imputations,
y, that satisfy:

y(S) <¢(S), SC N (1)
y(N) = ¢(N) (2)
Constraint (1) means that the total cost allocated to the players in a

coalition should not exceed the cost of a system dedicated to that coalition.
This constraint expresses the group and individual rationality constraints.
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Constraint (2) means that the total cost of the game is to be divided among
the players. This is the efficiency constraint. Because in a core solution there
is no incentive for any coalition to leave the grand coalition, the core solutions
are in some sense stable. Constraints (1) and (2) do not necessarily define a
unique point. Further, it is possible that the core is empty. Therefore, the core
can be seen as a description of candidate allocations, rather than a concept
that can be used to find a particular cost allocation. A solution belonging
to the core is a cost allocation in which the total cost is allocated to the
players in the game in such a way that no subset of players pays more than it
would have to do if it acted alone. Empty core means that there was always
a coalition that could do better by separating from the grand coalition.

It is often interesting to investigate whether a game can be guaranteed
to have a nonempty core. A sufficient condition for nonemptiness is that the
game is convex. However, the core may be nonempty even if the game is not
convex.

The fact that the core may be empty has led to the introduction of e-cores.

The strong e-core are those solutions y that satisfy the following:

Y yi<elS) +e, SCN (3)
€S
i1EN

The weak e-core are those solutions y that satisfy the following:

Y yi<e(S)+1Sle, ST N (5)
€S
Z yi = c(N). (6)

iEN

If € is large enough, the strong and the weak e-cores are always non-empty.
The minimal e-value that produces a nonempty e-core in a game with an empty
core could, for example, be seen as a measure of the distance from a nonempty
core. The minimal e-value that makes the strong e-core nonempty is computed
in the procedure for computing the nucleolus.

A Transferable Utility game (N, ¢) is called balanced [6] if it has a non-
empty core and totally balanced if the core of every subgame is nonempty,
where the subgame corresponding with some coalition T C N, T # () is the
game (T, c") with ¢?'(S) = ¢(S) for all S C T.

Shapley Value

The rationale behind the Shapley value [24,61] is that the marginal cost of each
player, when successively forming the grand coalition, is reflected. Each way
of forming the grand coalition is considered to be equally probable. Suppose
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that the grand coalition N, of a game (N, ¢) is formed by succesively adding
players in the order pi,pa,...,pn|. There are |S| — 1)!(|N] — [S])! ways of
adding players, such that player ¢ = ps. Furthermore, let a particular coalition
S be the coalition defined by {p1,pa,...,ps}. The marginal cost of player i in
coalition S is (¢(S) — ¢(S '\ {i}). The Shapley value for player i is computed
as the sum over all the coalitions S, of the marginal cost of player i in the
coalition S, multiplied by the probability that the grand coalition is formed
that way, and is given by

o= 3 BEBEEE s —asvw). 0

SCNlies

The Shapley value is a unique solution to a game. It is the only value
that satisfies the three properties of additivity, symmetry, and the dummy
player property. Furthermore, the Shapley value is efficient and satisfies the
anonymity property. But even if the core is nonempty, the Shapley value may
not be included in the core.

Bargaining Set

The concept of an objection of a player is formalized and used in the definition
of the bargaining set in [2,13,20]. Let

Ij={Se2"iesS j¢S} (8)

An objection of player ¢ against player 7 with respect to an imputation y in
the game ¢ € GV is a pair (z,S) where S € I';; and = (1) res is a |S|-tuple
of real numbers satisfying

x(S) = ¢(S) and xp, > 2, Vk € S. 9)

A counter objection to the objection (z,.5) is a pair (z,T') where T' € I'j; and
z = (zg)ker is a |T|-tuple of real numbers such that

2(T)=c(T),zx >z for k€ SNT and 2z, >y, for k€ T\ S.  (10)

An imputation y is said to belong to the bargaining set M(c) of the game
¢, if for any objection of one player against another with respect to y, there
exists a counter objection.

The Nucleolus of a Game

The nucleolus of a game minimizes maximal discontent for the coalitions. In
a game (N;c), it is defined for each imputation y an excess vector 0(y) of
dimension 2!Vl — 2. Let the excess vector contain the excesses e(S,y) of each
nonempty subset of the grand coalition, with respect to y, in a nondecreasing
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order. This implies that if i < j, 0;(y) < 0;(y) forall 1 <i < j < 2INI=2 1f
there exists a positive integer ¢, such that 6;(y) = 6;(y) whenever i < ¢ and
0;(y) > 0;(y) for i = q, we say that 0(y) is lexicographically greater than 6(g),
and denote this by 6(y) > 0(y). With 0(y) >1 6(y) we mean that either
O(y) >1 0(y) or O(y) = 6(7). The nucleolus is defined as those imputations y
that have the lexicographically greatest associated vector. Schmeidler showed
[60] that for those games where the nucleolus, } . ¢(i) > ¢(N), is nonempty,
the nucleolus is a unique point. He showed that if the core is nonempty, the
nucleolus is included in the core, and also that the nucleolus is a continuous
function of the characteristic function.

The nucleolus is efficient, individual rational, anonymous, and possesses
the dummy player property. The nucleolus is neither additive nor monotonic.
All coalitions are equal in the computation of the nucleolus. If all constraints
in an explicit formulation of the core are known, the nucleolus of a game (N ¢)
can be found by solving successive linear programs [24]. The nucleolus is the
cost allocation in which the total cost is allocated among the players in such
a way that the least satisfied subset of players is as satisfied as possible, and
the second least satisfied subset of players is as satisfied as possible, etc.

The prenucleolus n(c) [26] is defined to be the (unique) allocation y € R™
that lexicographically maximizes 6 over the set of all allocations. The nucleolus
is obtained when it is computed the lexicographically maximum over the set of
all imputations. The prenucleolus and the nucleolus coincide whenever core(c)
is nonempty.

The (pre)nucleolus can be computed [26] by solving a sequence of linear
programs as follows. Let Sy = {f), N} and first solve:

(LPy)maxe (11)
s.t.
> i =c(N) (12)
iEN
3 i < e(S) — e VS ¢ So. (13)

€S

If € is the optimal value of (LP;), let S; be the collection of all coalitions
that become tight at € = ¢; and solve

(LPy) maxe (14)
s.t.
Z yi = c(N) (15)
ieN
dyi<elS)—a YSeS (16)
€S
Zyi < ¢(S) — e otherwise (17)

i€S
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Continuing this way, a sequence €; < €5 < -+ < €, is calculated until, finally,
the optimal solution of (LPy), namely the prenucleolus n(c) of the game,
is unique. This procedure requires the solution of at most |N| linear pro-
gramming problems, and for that reason usually the nucleolus is calculated
indirectly.

The Kernel of a Game

If a cost vector y has been proposed in the game ¢, player i can compare his
position with that of player j by considering the minimum cost ¢;;(y) of 4
against j with respect to y, defined by

Cij = géa}i e(S,y). (18)

The minimum cost of ¢ against 7 with respect to y can be regarded as
the lowest cost that player ¢ can pay without the cooperation of j. Player
can do this by forming a coalition without j but with other players who are
satisfied with their cost according to y. Therefore, ¢;;(y) can be regarded as
the weight of a possible threat of ¢ against j. If y is an imputation, then player
Jj cannot be threatened by ¢ or any other player when y; = ¢(j) because j can
be obtained by operating alone. We say that ¢ outweighs j if

yj < c(j) and ¢i;(y) < cji(y)- (19)

The kernel consists of those imputations for which no player outweighs
another one.

3 Combinatorial Optimization Games

3.1 Sequencing/Scheduling Games

The main characteristic of a sequencing situation is that a number of jobs
have to be processed in some order on a number of machines in such a way
that some cost criterion is minimized. Sequencing situations can be classified
on the number of machines, on the specific properties of machines (parallel,
serial), on restrictions on the jobs, and on the order in which the jobs have to
be processed on the machines (job-shop, flow-shop). A review of scheduling
theory is given in [51].

Example 1. Consider a sequencing situation where there is one single machine
and 6 different players have a job that must be processed on this machine.
The initial order of the jobs is 1,2,3,4,5,6, where the duration of each
job is 1,4,5,2,3, 4, respectively, and the corresponding cost for each job is
1,7,16,3,4,16. The total cost of the initial order is 1 * 1 + 5 % 7 + 10 *
16 +12%x 3+ 15 x4 4+ 19 % 16 = 596. After some analysis, it is calculated
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that the optimal order of the jobs is 6,3,2,4,5,1 with total cost equal to
4%164+9%x16+ 13«7+ 15%3 4+ 18 x4 + 19 % 1 = 435, namely, we have
a cost saving equal to 161. This cost saving can be allocated to the play-
ers as follows: If players 1 and 2 switch the order of performing their jobs
on the machine, then a cost saving of 3 units is generated, which is divided
equally among them. So, if we have the initial order 1,2,3,4,5,6 with cost
1«1 4+5+«7+10%x16+12%x3 4+ 154+ 19 % 16 = 596, after the exchange
of job 1 with 2 the solution is 2,1,3,4,5,6 with cost 4% 74+ 5% 1+ 10% 16 +
123+ 15 %4+ 19 % 16 = 593. The cost saving is divided equally among the
two players and the initial cost allocation is (1.5,1.5,0,0,0,0). The follow-
ing table presents all the exchanges and the corresponding cost allocation.

Exchange| Job order Total cost Cost allocation
123456 1%1+5%7+10x%16+

1234+ 154+ 19 %16 = 596
(1,2) 1213456 4%x74+5+1410=* 16+

I 12434 15%4 4+ 19% 16 = 593 (1.5,1.5,0,0,0,0)
(1,3) 1231456 4%7+9%16+ 10 1+
o 1234 15%4 4+ 19 % 16 = 582 (7,1.5,5.5,0,0,0)
(1,4) |234156 4%74+9%16+ 11 % 3+
o 121+ 15%x4+19%16 =581 | (7.5,1.5,5.5,0.5,0,0)
(1,5) 234516 4%x74+9%16+ 11 % 3+
| 14%44+15%1+19%16 =580 | (8,1.5,5.5,0.5,0.5,0)
(1,6) 234561 4%7T+9%16+ 11 %3+
T 414%4+18% 164+ 19 %1 = 568| (14,1.5,5.5,0.5,0.5, 6)
(2,3) 324561 5% 16+ 97+ 11 %3+
T 14%4+18%16+19%1 =539 | (14,16,20,0.5,0.5,6)
(5,6) 324651 5% 16+ 97+ 11 %3+
| 15%16+18 %4+ 19% 1 =507 | (14, 16,20,0.5,16.5,22)
(46) 326451 5%16+9 %7+ 13 %16+
o 153+ 18x44+ 19«1 =487 |(14,16,20,10.5,16.5, 32)
(2,6) 362451 5% 16+ 916+ 13 % 7+
7 15%3+ 18 %4+ 191 =451 |(14,34,20,10.5,16.5, 50)
(36) 632451 4%x16+9*16 4 13 % 7+
I 15%3+18%x44+19x1 =451 |(14, 34,28,10.5,16.5,58)

In a one-machine sequencing situation [12], there is a queue of players, each
with one job, in front of a machine. Each player must have his job processed
on this machine. The finite set of players is denoted by N = {1,...,n}. The
positions of the players in the queue are described by the bijection o € Ily.
We assume that there is an initial order og € IIx on the jobs before the
processing of the machine starts. The processing time p; of the job of player
1 is the time the machine takes to handle this job. For each player ¢ € N, the
cost of spending time in the system can be described by a linear cost function
¢; : Ry — R defined by ¢;(t) = a;t with a; > 0. A sequencing situation as
described above is denoted by (N, o9, p, @) with p,a € Rf+.

The completion time C(o, 1) of the job of player i if the jobs are processed
according to the order o € Il is given by
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C(o1) = > pj- (20)

{ieNlo(i)<a(i)}

By rearranging from the initial order to an optimal order, an allocation
problem arises: how should the maximal total cost savings of the players
that can obtained be divided among the players? By defining the value of a
coalition S as the maximum cost savings, the coalition S can be achieved by
rearrangement and, so, we obtain the corresponding sequencing game (N, u),
which is defined by

u(S) = Urenju()g {Z a;[C(09,1) — C(0,1)]},VS C N (21)

where A(S) is the set of admissible orders for a coalition S. If the players
decide to save money by rearranging their position, they will need to divide
the cost savings that they generate. A division rule is the equal division rule
[13], which divides the cost savings equal to the players, but this method does
not distinguish between players who actually contribute to the savings and
those who do not. Curiel [13] proposed a rule, called Equal Gain Splitting
Rule (EGS), which does not have this disadvantage. In this rule, first the
gain g;; that players ¢ and j, who are standing next to each other with
in front of j, can be achieved by switching positions. This gain is equal to
the difference of the sums of the costs of i and j before and after they change
places. If u; > uj, then both players cannot gain anything by switching places.
On the other hand, if u; > wu;, then the players can gain ajs; — a;s;. So,
gij = mazx{a;s; — a;s;,0}. Finally the rule that Curiel proposed is

EGS = - Z Ghi + = > giforeachieN. (22)
kEP (o,1) j i€P(0,7)

Curiel, also, proved that a sequencing game is convex, and as a result that
is totally balanced. Hammers et al. [42] give a generalization of the EGS rule,
which they call split core. The split core contains all allocations generated
by gain splitting rules. They also gave a monotonicity property for solutions
concepts, which may contain more than one element, and use it together
with efficiency and the dummy property to characterize the split core. They
showed that all solution concepts that satisfy efficiency, the dummy property,
and monotonicity are contained in the split core. The split core is a subset of
the core.

In the literature [6], many other classes of sequencing game are studied.
Hamers [38] extends the class of one-machine sequencing situations by impos-
ing ready times on the jobs. Borm et al. [5] consider some classes of sequencing
situations in which due dates are imposed on the jobs and different cost crite-
ria are used. Hamers et al. [40] consider sequencing situations with m parallel
and identical machines in which no restrictions on the jobs are imposed. Van
den Nouweland et al. [56] consider multiple machine flow-shop sequencing
situation with a dominant machine.
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3.2 Permutation and Assignment Games

Permutation games [67] arise from situations in which every player has one
job and one machine. Every job has to be processed on a machine and each
machine can process every job, but no machine is allowed to process more than
one job. If player ¢ processes his job on the machine of player j, the processing
costs are «;;. Let N = {1,...,n} be the set of players. The corresponding
permutation game (N, u) is the cooperative game defined by

u(S) = Zaij - Helgl Zaiﬂ(i),vs C N,S #0,u(®) = 0. (23)
ies =5 es

where the number u(S) denotes the maximal cost savings a coalition S can
obtain by processing their jobs according to an optimal schedule compared
with the situation in which every player processes his job on his own machine.

Ezample 2. Let N = {1,...,4} be the player set with cost matrix

The permutation game based on the equation (23) is

S u(.S) S u(.S) S u(.S)

1 0 1319-10=9] 1,23 26— 13 =13
2 0 1,420 —11=9] 1.24 27— 13 =14
3 0 2316—15=1| 1,34 29— 11 =18
4 0 2417—15=2| 23,4 26— 15=11

1,217—2=15[3,419 — 4 =15/1,2,3,4 36 — 6 = 30

So, the optimal schedule for this game is to process player 1 to job 2,
player 2 to job 1, player 3 to job 4, and player 4 to job 3 with cost saving
10+7+9410-1-1-2-2=236—6=30.

An alternative way to calculate u(S) is as the value of the following integer
programming problem [13].

u(S) = max Z Z 0T (24)

iEN jEN
s.t.
D @iy <1,(), ieN (25)
JEN
inj < 15(])v j eN (26)
ieEN

z;; €{0,1}, Vie N,j € N (27)
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A subclass of permutation games is the class of assignment games. A game
associated with markets is the assignment game introduced by Shapley and
Shubik [62]. They modeled a two-side market with buyers and sellers and
showed that the core is exactly the set of optimal solutions to a linear pro-
gram dual to the optimal assignment problem [15]. In the assignment game,
a bipartite graph is used to represent M customers and N merchants in a
market. An edge (4, 7) with weight «;; represents the joint profit if customer
7 buys from merchant j. Every customer buys from one merchant and every
merchant sells to one customer. Define z;; to be one if customer ¢ buys from
merchant j, and zero otherwise. A formulation of an assignment game is the
following [13]:

u(S) = max Z Z QT (28)

i€M jEN
S.t.
> i < 1), ie M (29)
JEN
€M
Tij 6{0,1}, Vie M,j e N (31)

Shapley and Shubik [62] showed that the core of an assignment game cor-
responds with the set of optimal solutions of the dual problem of the previous
formulation. Balinski and Gale [3] showed that the core of an assignment game
can have at most (27:1”) extreme points where m is the minimum of |M| and
|N|. They also proved that in each extreme core point of an assignment game,
there is a player who receives a zero payoff. Nunez and Rafels [57] provided a
characterization of extreme points of the core, which is also valid for the class
of nonconvex games.

Solymosi and Raghanvan [63] gave an algorithm of order O(|M|?|N|) to
find the nucleolus of an assignment game, where | M| is assumed to be the
minimum of |M| and |N|. Hamers et al. [43] proposed an algorithm of order
p?, where p is the number of players for calculating the nucleolus of neighbor
games, where neighbor games are games that are the intersection of assign-
ment games and the class of component additive games. The core of neighbor
games is nonempty and coincides with the bargaining set, and the nucleolus
coincides with the kernel.

3.3 Matching Game

In the matching game [28,45], let the complete graph K,,, be where the players
N correspond with the nodes of the graph. A matching is a set M of edges
such that no two edges in M have a node in common. Each edge e in K, is
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assigned a weight w(e), and the value u(.S) of a coalition is equal to the weight
of a maximal matching in the subgraph induced by S. Here each individual
player i € N has value u(i) = 0 while value u(N) > 0 may be possible.
The characteristic function of the game is equal with the value of a maximal
weighted matching in K,,. The matching game on K3 with unit edge weights
has an empty core. Solymosi and Raghavan [63] showed that the nucleolus
of a matching game can be computed in polynomial time in the bipartite
case, in the case where the edges of positive weight in the underlying graph
do not contain a circuit of odd length. Because the matching games deal
with allocating savings instead of costs, the inequalities of the basic solution
concepts (like core, nucleolus, etc.) are reversed.

Faigle et al. [28] introduced the nucleon as the multiplicative analogue of
the nucleolus and calculated the nucleon for the matching game. The nucleon
of the non-negative game (N, u) is the set of all allocation vectors = € Rf
that lexicographically maximize the satisfaction vector a(x), where for every
coalition S ¢ S the satisfaction vector is

z(8)
a(m, S) — J u@)y Tf u(S) >0 (32)
oo, ifu(S)=0.

They proved that the nucleon of a non-negative additive game equals the
nucleolus.

3.4 Network Flows and Multicommodity Flow Games

Kalai and Zemel studied games of flows [15,46]. In this game, the players are
associated with arcs of the networks. The value of a subgroup is the maximum
flow from s to t (source and sink, respectively) for the subgraph consisting
of the original node set and those edges corresponding with the subgroup of
players. On each of the arcs, there is a capacity restriction and an associated
simple control game that describes which coalitions of players are allowed to
use the arc. For a simple network game for which arc capacities are all one,
they also showed that the core is exactly the same as the set of solutions to
a linear program dual to a linear program formulation of the network flow
problem.

In the mulicommodity flow game [52], there is a graph with a multicom-
modity flow between each pair of nodes, satisfying node capacity and demand
constraints, and the payoff of a node is the total flow originated or terminated
at each node. A payoff allocation is in the core if and only if there is no subset
of nodes that can increase their payoff by deleting from the graph. Markakis
et al. proved that the core is nonempty in both the transrable utility case and
the nontransferable utility case.
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3.5 Minimum Cost Spanning Tree

A spanning tree is a tree (i.e., a connected acyclic graph) that spans all the
nodes of an undirected network. The cost of the spanning tree is the sum of the
costs (lengths) of its arcs. The minimum spanning tree problem is concerned
with the identification of a spanning tree of minimum cost. In the simple case,
no topological or capacity restrictions are imposed on the tree. The minimum
spanning tree problem in terms of graph theory can be presented as follows:
Given a graph G = (V, &), in which ¥V = 1,...,n is the set of nodes and & is
the set of arcs, (7,7) € £, which connects those nodes. The cost of connecting
node i to node j is Cjj, where C;; = Cj;,V(i, j). It is assumed that the cost
of the connection matrix satisfies the triangle inequality.

Bird [4] and Claus and Kleitman [11] have formulated a minimum cost
spanning tree game, MCST game, for cost allocation of communication net-
works to its users and introduced several cost allocation criteria. In this game,
one player corresponds with a node of the graph. There is one more external
node 0. The cost for a subset of players is the weight of minimum spanning
tree of the subgraph induced by their corresponding nodes and node 0. The
characteristic function of this game, the weight of the minimum spanning tree
in a graph, can be calculated in polynomial time. More precisely, a minimum
cost spanning tree game is a cooperative game (N, ¢) where the characteristic
function ¢(S) is defined as the optimal objective function value to minimum
cost spanning tree problem over the vertices in SUQ where 0 is the root vertex.
Bird, also, proposed a cost allocation rule [4,6,13]. Let ¢ be a MCST game and
let E; C FE be the set of arcs of a minimum cost spanning tree T for the graph
(No, E). For each i € N, let the amount that ¢ has to pay be equal to the cost
of the edge incident upon ¢ on the unique path from 0 to ¢ in T'. Let ¢;; = cj;
the cost of constructing the link (4, 7). It is easy to see that in this way, the to-
tal costs are distibuted among the players. So, the cost of a coalition S C N in
MCST game is Z(i,j)eETS ¢;j. Because there can be more than one minimum
cost spanning tree for a graph, this way of dividing the costs need not lead
to a unique cost allocation in a MCST game. A pseudocode of Bird’s rule is
presented in [6]. Curiel [13] proved that Bird tree allocation rule is an extreme
point of the core. Bird [4] proposed the irreducible core of a MCST game as a
means of generating more core allocations over those given in the set of Bird
tree allocations. He proved that the irreducible core is a subset of the core for
all MCST games that have a minimum cost spanning tree with fixed costs on
the common edges. MCST games are the types of games that have received
the most attention in cooperative theory as the determination of a minimum
spanning tree in graph is the “easy” problem whereas the determination of a
traveling salesman tour in a graph, which will be studied in Section 3.7, is the
“hard” problem.

Ezample 3. In a complete graph, let the player set be denoted by {2,...,6}
and the root node denoted by 1. The cost of the arcs is presented in the
following table,
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Figure 1. Optimal solution

123456
1032567
21305487
3)250544
4545077
5684706
6]774760

By applying the Bird rule in this problem we take the optimal solution,
presented in Figure 1, with cost 17. This gives a cost allocation (3,2,4,4,4)
that is an element of the core. It is, in fact, an extreme point of the core of
this game.

An overview of MCST problem is given in Aarts [1] and the core, nucleolus,
and the Shapley value are studied in Granot and Huberman [36]. The core of
the MCST game consists of all vectors y that are fair in the sense that the
vector y should be considered fair if the amount y(S) of any coalition S has to
pay cumulatively never exceeds the cost ¢(.S) of a minimum spanning tree on
S U {0}, which is what S would have to invest in order to connect itself to 0
without any outside considerations [27]. Faigle et al. [27] proved that it is an
NP-hard problem to decide whether a given member is not a member of the
core. The core of a MCST game is a polyhedron in RY. Granot and Huberman
[36] showed that a solution in the core of a MCST game can be read from
an associated MCST graph. Thus, the core of a MCST game is never empty.
They also discussed and calculated the core, the nucleolus, and the Shapley
value for a minimum spanning tree game with more than one node incident to
the root. They proved that the intersection of core and prekernel of a MCST
game consists of precisely the nucleolus. Megiddo [55] presented a polynomial
algorithm to find the nucleolus and the Shapley value of the game. Tamir [66]
presented network synthesis games that include MCST games. Granot and
Granot [35] study fixed cost spanning forest problems in which the players
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form a subset of the set of nodes of an undirected graph, and Aarts [1] studies
chain games that are games that have a minimum spanning tree that is a
chain.

Fernandez et al. [32] introduced the multicriteria version of MCST game.
The characteristic function associates to each coalition S a set V(S) that
represents the Pareto minimum cost of constructing a distribution system
among the users in S from the source 0. A Pareto minimum cost spanning
tree for a given connected graph, with costs on the edges, is a spanning tree
that has Pareto-minimum costs among all spanning trees. They proved that
an extension of Bird’s rule provides dominance core elements in this game, but
also gave a family of core solutions that are different from the previous ones,
which are based on proportional allocations obtained using scalar solutions of
the multicriteria spanning tree problem. They also proved that the preference
core of this game is not empty.

Suijs [64] analyzed spanning network problems that feature random con-
nection cost. It is assumed that the agents who need to be connected to the
supplier are constant absolute risk averse expected utility maximizers. Be-
cause preferences may differ between agents, minimum cost spanning trees
have no meaning in this context. To tackle this problem of network formation
and cost allocation, the author applied stochastic cooperative game theory.
Stochastic cooperative games were designed to explicitely take into account
random payoffs and the individuals preferences over these random payoffs. For
stochastic spanning tree games, Suijs focused on core allocations and proved
that the core is nonempty and which graphs may give rise to core allocations.
Furthermore, he pointed toward a specific core allocation called the two-stage
Bird allocation. The first stage works just like the standard Bird allocation,
but in the second stage, agents are allowed to mutually insure (part of) their
random cost.

3.6 Steiner Tree Problem

In this problem, there are costs associated with connecting the nodes of a net-
work to a tree. In addition, there is a potential revenue to collect at each node
if it is connected. The problem is to decide which node to connect, and how,
so as to maximize the revenue collected minus the connecting costs. Megiddo
[54] has formulated this problem defining the cost of a minimum Steiner tree
game that contains all corresponding nodes in the original graph. In a cost
allocation setting, the Steiner Tree Problem could be solved in order to iden-
tify a coalition that is most unsatisfied with a proposed cost allocation in a
minimum spanning tree game. Kuipers et al. [48] proposed a cost allocation
rule for a variant of Steiner Tree Game, called Vertex Weighted Steiner Tree
Game. The Vertex Weighted Steiner Tree Game is similar to the Steiner Tree
Game except that each vertex of the game has a reward if and only if all
are connected in the tree. They proved that every 5-persons Vertex Weighted
Steiner Tree Game has a nonempty core.
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3.7 Traveling Salesman Problem Games

Consider a salesman who has to visit n cities. The Traveling Salesman Prob-
lem (TSP) asks for the shortest tour through all the cities such that no city
is visited twice and the salesman returns at the end of the tour back to the
starting city. We speak of a symmetric TSP, if for all pairs 7, j the distance c;;
is equal to the distance c;;. Otherwise, we speak of the assymetric traveling
salesman problem. If the cities can be represented as points in the plain such
that ¢;; is the Euclidean distance between point ¢ and point j, then the corre-
sponding TSP is called the Euclidean TSP. Euclidean TSP obeys in particular
the triangle inequality c;; < ¢ + cp; for all 4, j, k. The Traveling Salesman
Problem (TSP) is one of the most famous hard combinatorial optimization
problems. For a review on the traveling salesman problem, we refer to Lawer
et al. [50] and to Gutin et al. [37].

The Traveling Salesman Game (TSG) deals with the question of how to
allocate the total cost of a tour to the customers served on that tour. In the
traveling salesman cost allocation game (N, c), the players correspond with
the nodes of the graph. Further, the characteristic function in a TSG is defined
as the total cost of the minimum Hamiltonian cycle, meaning the minimum
tour of visiting all the nodes in SU{0}. In a TSG with a home city, the home
city (which is not a player and corresponds with the depot) must be included
in the minimum cost cycle of each S C N. The value of a subgroup S of players
that have been visited is minimum Hamiltonian tour in the subgraph induced
by SUO0 [59]. Let K be the set of the available truck types, Vi the capacity
of truck type K, D; the demand of customer 1, cfj the cost of transportation
between customers ¢ and j, using truck type k, and x;; equal to 1 if customer j
is visited immediately after customer 4 in the tour and is equal to 0 otherwise.
A formulation of the Traveling Salesman Game is the following [24]:

(S k) =min Y > K (33)

€50 jESa,j#i

s.t.

day=1,jes° (34)

€S0

> wij=1,i€8° (35)

jESO

c SO

)ID BIFTEI CIEEI AN (36)
1€EQ JEQ,j#I -

z;; €{0,1}, 4,5 € S° (37)

Conditions (34) and (35) state that exactly one edge should be used enter-
ing node j and leaving node i, respectively. Conditions (36) are the subtour
elimination inequalities.
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Engenval [24] presents two different TSG, the Standard Traveling Sales-
man Game in which the truck type, k, is given in advance, such that the
requirement Vj > ZDi, holds. Then, the characteristic function for this

ics
game is C(®)S = ¢TSP(S k), for a given truck type k. The second game is
the Variable Cost Traveling Salesman Game in which the truck type is not
given in advance. Instead it is defined as the lowest capacity truck type that
can be used to serve a given coalition S. The characteristic function, now, is
CO S =TSP (S k), where k = argmingex{Vi|Vi > Z D;}.
ieN

The Core of Traveling Salesman Problem Games

Example 4. A salesman is invited to travel among 3 different cities to present
the products of his company and return back to his company. One way to
do this is to go to each city and, then, to return to his city, but this is very
expensive for the companies, because they have to pay for a two-way ticket
from his city to their city and back. They decide to find an order for him to
visit the companies that minimizes the total costs. The costs of the travels in
Euro are presented in the following table

|1 2 3 4
1] 0 300 450 350
2(300 0 150 200
3|450 150 0 100
4/350 200 100 0

The optimal tour of this problem is 1,2,3,4,1 with cost 900 Euro.

The problem is how to divide the cost among the companies. They decide
to perform a game theoretic analysis of this problem. A core element is, for
example, (366.6,316.6,216.6). This cost allocation is obtained by divided the
travel costs from the company equally among the three companies, and making
company ¢ pay all of the travel costs from company ¢ to company j. This is
a core allocation element because if player 4 acts alone, he will have to pay
700 Euro, if player 3 acts alone, he will have to pay 900 Euro, and, finally,
if player 2 acts alone, he will have to pay 600 Euro. Also, if players 2 and 3
make a coalition, they will have to pay together 900 Euro, if players 2 and
4 make a coalition, they will have to pay together 850 Furo, and, finally, if
players 4 and 3 make a coalition, they will have to pay together 900 Euro.

An example with empty core is the following

Ezample 5. Consider the Traveling Salesman Game with player set N =
{2,...,7} and the home depot denoted by 1. The cost of the edges are pre-
sented in the following table
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1234567
1{0 1010 10 20 20 20
2|10 0 20 20 20 10 20
3|10 20 0 20 10 20 20
41102020 0 20 20 10
5
6
7

20201020 0 1010
2010202010 0 10
202020101010 0O

The optimal tour is 1,3,5,7,6,2,4,1 with cost equal to 80. If all players
form coalitions of size 4 (passing through the depot), we take that the possible
coalitions are 1,3,5,6,2,1 with cost y3 + y5 + ys + y2 < 50, 1,3,5,7,4,1 with
cost y3+ys +yr+ys < 50and 1,4,7,6,2,1 with cost ys +y7 +ys +y2 < 50. A
linear combination of these three inequalities is 2ys + 2y3 + 2y4 + 2y5 + 2y +
2y7 < 150, meaning that yo + y3 + y4 + y5 + ys + y7 < 75, but we know that
Yo +ys + ya + ys + ys + yr > 80, so, the core of the problem is empty.

Dror [21] showed that the core of a TSG without a home city is empty.
Potters et al. [59] showed that three-person TS games have a nonempty core,
and, simultaneously, gave an example of an asymmetric traveling salesman
with four players that has an empty core, and provided some conditions for
an asymmetric traveling salesman game to have a nonempty core. Tamir [65]
showed that each four-person symmetric Traveling Salesman game has a non-
empty core and a five-person TS game can have an empty core. Kuipers [47]
proved that five-person TS games are balanced. Also Kuipers extended the
result of Tamir in a six-person game.

Faigle et al. [29] and Fekete [30] proposed a method for allocating the cost
in a TSP tour based on the concept of moat packing. A moat, in a given
graph in a plane, is a simple closed strip of constant width that separates
two nonempty complementary subsets of the nodes. The inside of the moat
is the region containing the depot, the other region is called the outside. A
moat packing is a collection of moats with pairwise disjoint interior. The cost
of a moat packing is twice the sum of all widths. They proved that if the
cost of any moat is distributed twice among the nodes on the outside, the
resulting distribution is such that no coalition pays more than its TSP cost.
Faigle et al. [29] proved that the core of TSP games may be empty, even
for the case of Euclidean distances and, simultaneously, provided an instance
of a traveling salesman game in the two-dimensional Euclidean space with
six players such that the core is empty. They proved that TSP games whose
weights satisfy the triangle inequality always have e-approximately fair (core)
allocations for € = % e-approximation means that a coalition S should be
charged with an allocation that does not exceed the cost ¢(S) by more than a
fraction e. With use of the above observations, Faigle developed an LP-based
allocation rule guaranteeing that no coalitions pay more than « times their
own cost, where « is the ratio between the optimal TSP-tour and the optimal
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value of its Held—Karp relaxation, which is also known as the solution over
the subtour polytope.

One of the problems of the computation of the core and the nucleolus
to a TSG is that the number of characteristic function evaluations may be
very large when the number of customers is large. Engevall proposed [23,24] a
constraint generation approach in order to compute a solution in the core or to
conclude that the core is empty, and to compute the nucleolus. Note that in a
constraint generation approach, the subproblem that must be solved in order
to identify a constraint that is needed but not yet included is a traveling
salesman subtour problem. Engevall proved that in the special case of the
TSG, called standard Euclidean TSG, in which the cost matrix is proportional
to the Euclidean distance of the customers, the core might be empty.

Okamoto [58] showed that in general to test the core nonemptiness of
a given traveling salesman game is NP-hard. He proved that the core of a
traveling salesman game is always nonempty if the distance matrix is a sym-
metric Monge matrix. The Monge property is known as a polynomially solv-
able case of TSP. An Ny x Ny matrix D is a Monge matrix if D satisfies
dir, +dji < dy +djp, for all i < j and k < (. If a matrix D is a Monge matrix,
then it is also said to have the Monge property. Note that a Monge matrix
does not need to satisfy the triangle inequality. The testing of non-emptiness of
the core is an NP-hard problem, and only for some special classes of traveling
salesman is there a possibility not to be an NP-hard problem. Okamoto proved
that the core of the traveling salesman with a Monge matrix is nonempty and
can be found in O(N?).

The Nucleolus of Traveling Salesman Problem Games

For the computation of the nucleolus of a TSG, Gothe-Lundgren et al. [34]
proposed a constraint generation approach. Engevall [24] proposed the de-
mand nucleolus, which is the solution that has a lexicographically greatest
modified excess vector. To define the demand nucleolus, the elements of the
excess vector are modified in such a way that the excess e(S,y) are multiplied
with the total demand of the coalition. The effect that the demand nucleolus
has on the cost allocation is that the importance of coalitions with a large
number is reduced, compared with the nucleolus.

Fixed Routing Games

Potters et al. [59] also introduced the class of fixed routing games. The idea
of a fixed routing game is that the salesman decides about the Hamiltonian
circuit he will use to visit, meaning that the order in which the players are
served is defined beforehand, and remains the same for all coalitions. Then
the value of a coalition S in a fixed routing game is defined as the costs of
the restricted tour that the salesman visits the players in S in the same order
as described by the original Hamiltonian circuit and skips all other players.
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They showed that fixed routing games have a nonempty core if the chosen
Hamiltonian circuit is an optimal route for the related TS problem and the
cost matrix satisfies the triangle inequality. Derks and Kuipers [19] gave a
number of procedures to construct tours that guarantee the nonemptiness of
the core of the game.

The Traveling Preacher Problem

This game [30,31] can be considered as a variant of the Traveling Salesman
Game, with the difference that there is not a specified central root node for the
salesman. They proved that this problem can be solved in polynomial time,
showing that the difficulty of finding a core allocation for a combinatorial
optimization problem may be caused by the existence of the special node called
depot, rather than being a consequence of the hardness of the optimization
problem itself.

3.8 Chinese Postman Games

In the Chinese Postman Problem [6,22], one considers a situation in which a
postman has to deliver mail to each street of a certain city. He has to start
and finish at the post office. For each street, costs are involved each time
the postman visits the street. The postman should choose a route to visit all
streets in such a way that costs are minimized. The main differences between
several classes of Chinese Postman Problems can be found in the underlying
graph that describes the street plan of the city.

A cost allocation problem arises if in the underlying graph each edge cor-
responds with a different player. Because all the players need the mail delivery
service and the nature of this service requires the server to travel from the
post office and visit all edges (players) before returning to the post office, the
cost allocation problem is concerned with a fair allocation of the cost of a
cheapest Chinese Postman Problem tour in the graph. That is, the cost of a
cheapest tour, which starts at the post office, visits each edge at least once
and returns to the post office.

A Chinese Postman Problem is a tuple I" = (N, G, ug, g,t) where N =
{1,...,n} is the set of players, G = (V, E) is a connected undirected graph
with vertex set V' and edge set F, ug € V represents the post office, g : E — N
is a bijection relating the players to the edges, and ¢t : E — Ry is a non-
negative cost function assigning costs to the edges. An S-tour [41] with respect
to ug associated with coalition S C N is a closed walk (ug, e, ..., ek, uo) that
starts at the post office ug, visits each player in S at least once, and returns
to up. The set of all S-tours is denoted by D(S).

Suppose a coalition S is served according to the S-tour (ug,eq, ..., ek, ug)
€ D(S5), then the total costs of this tour are Z?Zl t(e;). We will assume that
each player i € S pays the costs t(¢g~!(i)) himself. In this way the separable
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costs are already allocated ) ;o t(g; 1) of an S-tour. The remaining nonsep-

arable costs for coalition S, Z?:l t(e;) — Y;est(gi ), have to be allocated
to its members in some way. This gives rise to the Chinese Postman Game
(N, ¢) defined by

e(S) =

(uo,e1,- ,ek, uo)ED(S)

M»

t(e;) — > tgi )] (38)

7j=1 €S

for all S C N.

Hamers et al. [41] introduced and characterized a specific cost allocation
rule v that divides the nonseparable costs of a minimal N-tour among all
players. They proved that in delivery games, the core may be empty and also
proved that for bridge-connected Euler graphs, the outcome of v is always
a core element. Hamers [39] focused on the concavity property of delivery
games, that is for games arising from a delivery model corresponding with a
bridge-connected Euler graph.

3.9 Vehicle Routing Problem Games

The distribution or vehicle routing problem (VRP) is often described as the
problem in which vehicles based on a central depot are required to visit geo-
graphically dispersed customers in order to fulfill known customer demands.
The problem is to construct a low cost, feasible set of routes — one for each
vehicle. A route is a sequence of locations that a vehicle must visit along with
the indication of the service it provides [7]. The vehicle must start and finish
its tour at the depot.

Ezample 6. Consider a Vehicle Routing Problem, let the depot be denoted
with 1 and the set of customers denoted with (2,...,8). The demand of each
customer is 10 units and the fleet of the vehicle is homogeneous with capacity
equal to 20 units. The problem is Euclidean and the distances of the customers
are according the following table (the meaning of value cost will be explained
in the following example):

1 2 3 4 5 6 7 8
0 10 10 10 10 10 100 100
10 0 cost cost cost cost 400 400
10 cost 0 cost cost cost 400 400
10 cost cost 0 cost cost 400 400
10 cost cost cost 0 cost 400 400
10 cost cost cost cost 0 400 400
100 400 400 400 400 400 0 5
100 400 400 400 400 400 5 O

QO ~J O U = W N —
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The Vehicle Routing Game (VRG) is a game (N, ¢”) where the total cost
of a VRP is to be divided among the players [24]. The players N of the game
are the customers, and the characteristic function ¢¥(5), S C N is the optimal
cost of a VRP over the customers in S. It is assumed that the cost matrix for
each vehicle satisfies the triangular inequality and that it is always at least as
expensive to use a higher capacity truck as it is to use a lower capacity one.
Furthermore, it is assumed a sufficient supply of each truck type, so that the
least costly truck type for a route is always chosen. Gothe-Lundgren et al. [34]
presented models for the VRG; they discussed the case that the characteristic
function is defined as the optimal objective function to a basic VRP. Let D;
be the demand of customer ¢ € N, K the set of truck types in the fleet, V), the
capacity of truck type k € K, and ¢ the highest capacity truck type that is
equal to arg maxge { Vi }. The characteristic function value ¢”(S) of the VRG
can be obtained by solving a Set Partitioning Problem (SPP) formulation as
follows [24]:

Assume that for each feasible coalition S € R, a minimal cost route is
known. The cost of such a route is denoted by ¢’ (S), and is given by a
solution of a Traveling Salesman Problem (TSP) over the customers in S:

1, if customer ¢ belongs to
Q= (feasible) coalition S, (39)
0, otherwise

1, if the minimum cost route covering the customers
Ty = in coalition S, € R is used (40)
0, otherwise

(VRP — SPP)c*(S) =min »_ "(S,)a, (41)
r|SrER
s.t.
Z apyx, =1, 1€ 8 (42)
r|Sr€ER
. >0, 7S, € R (43)

x, integer r|S, € R

The Core of Vehicle Routing Problem Games

Ezample 7. This example is a continuation of the previous example. If
cost = 15, then an optimal solution of the problem has a total cost 295,
and the routesare 1 - 2—-3—-1,1—-4—-5—-1,1—-6—1,and 1 —7—-8 — 1.
Because one of the core constraints expresses that customers 7 and 8 will
not pay more than 100 4+ 5 4 100 = 205, customers 2, 3,4, 5,6 would have to
pay at least 90 together. The customers 2,3,4,5,6 form coalitions of size 2,
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for example yo + y3 < 10+ 15+ 10 = 35. For all ¢ and j {(4,j € 2,...,8)},
yi+y; < 10+15410 = 35. A linear combination of these ten inequalities yields
4ys +4ys + 4y +4ys + 4y < 350, meaning that yo +ys +ys +ys + ye < 87.5,
which means that the core of the problem is empty.

On the other hand, if cost = 25, then we take the same optimal routes
but with cost 315. By making the same analysis as previously, the customers
2,3,4,5,6 would have to pay at least 110 together. The customers 2, 3,4, 5,6
form coalitions of size 2, for example yo + y3 < 10 + 25 + 10 = 45. For all ¢
and j {(4,7 € 2,...,8)}, yi +y; <10+ 25+ 10 = 45. A linear combination
of these ten inequalities yields 4ys + 4ys + 4ys + 4ys + 4ys < 450, meaning
that yo + ys + y4 + y5 + y¢ < 112.5, which means that, now, the core of the
problem is not empty.

The core is defined by all solutions that fulfill:

y(S) < ¢"(S), S € Ra, (44)
y(N) =c"(N) (45)

where Ry = {S|S C N, S # 0}.

If all constraints in the core formulation of a VRG are explicitly formu-
lated, it is necessary to solve 2/¥I — 2 VRPs in order to evaluate ¢¥(S). This
is computationally complicated for any nontrivial size of N. However, for the
VRG, it is possible to reduce the number of inequalities significantly by only
considering the feasible coalitions [24]:

y(S) <c’(9), S €R, (46)
y(N) = c"(N). (47)

Engevall [23] and Goéthe-Lundgren et al. [34] observed that in any core
solution to the VRG, the customers that are covered by a route in any optimal
solution to the VRP over the grand coalition have to carry the full cost of
that route.

Gothe-Lundgren et al. [34] proved that the number of inequalities that
defines the core in the basic VRG can be reduced significantly by only con-
sidering coalitions that can be served by a single vehicle. They also proved
that the core of the basic VRG is empty if, and only if, there is an integrality
gap between the optimal solution to the Set Partitioning Problem formula-
tion and the optimal solution to the linear relaxation of the SPP formulation.
They gave an example of a basic VRG with an empty core. Engevall [24] pro-
posed a solution procedure in order to either find a solution in the core or to
conclude that the core is empty based on constraint generation (46). He also
proved that the core of the VRG is nonempty if and only if ¢”(N) is equal to
the optimal value of the linear relaxation of the SPP formulation of a VRP
over N.
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The Nucleolus of Vehicle Routing Problem Games

The computation of nucleolus in a VRG requires considerable computational
effort, because it leads to the need for solving complex combinatorial opti-
mization problems. A method that uses a constraint generation approach and
can be applied to compute the nucleolus in a basic VRPG with a nonempty
core is presented in [34]. Engevall [24] proposed that if the core of the game is
found to be empty, and a branch and price procedure were used to investigate
the existence of alternative optimal dual solutions to the relaxed VRP, the
branch and price procedure can be continued until an optimal solution to the
VRP and thus ¢”(N) is found.

3.10 Packing and Covering Games

A packing game (¢, A, max) is associated with an integer program [16]. The
row of A is indexed by M, and the column of A is indexed by N. N is the set
of players. V.S C N, u(S) is the value of the following integer program:

max zle (48)
s.t. .'I,'tAM’S S 1fsl, .T/'tA]\/LS' S Of’L*IS" (49)
e {0,1}m (50)

where Ay s is the submatrix of A with row set M and column set S, and
u(0) is defined to be 0.

Deng et al. [17] gave a necessary and sufficient condition for maximum
packing games to have nonempty cores. They proved that the linear pro-
gramming relaxation of a maximum packing problem has an integral optimal
solution if and only if the associated game has a nonempty core, and if so the
core is characterized by the set of optimal solutions of the dual of the linear
programming relaxation.

The bin packing game can be stated as follows [53]: given n items of
sizes aq, ..., a, and m bins each of size U, we denote the bin packing game
by G = [m,U;aq,...,a,]. Let us assume that ay,...,q, and U are non-
negative integers satisfying a; < U for all ¢ € {1,2,...,n}. The set of items
{1,2,...,n} is denoted by I, the set of bins by B, and the vector ay,...,a,
by a. For any subset of items I’ C I, the value ), a; is calculated. The
set IV of players consists of all items and all bins, and so |[N| = n + m. The
characteristic function of the game, denoted by ug : 2 — R, is defined as
follows. When S is a coalition containing m’ = |S N B| bins and items S NI,
the value ug(S) is equal to the weight of optimal bin packing with respect to

u(S) =maz{d |30,..., 3w CSOLILN L =00 # §),
j=1

Y <UG=1,....,m}.  (51)

=
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Faigle and Kern [25] proved that every bin packing game has a nonempty
1

e-core with € = 5 and constructed a class of bin packing games with empty
e-core and € = % Furthermore, Woeginger [70] proved that every bin packing
game has a nonempty e-core with € = % Matsui [53] proposed an algorithm
for finding an allocation x in the e-core with minimum tax rate e.

Let N be the set of players. For each coalition S C N, the cost of providing
a service to the players in S is C(S). The set covering problem can be stated
as follows [14]: given a universal set U, and a collection of subsets of U,
T = {S1,52,...,S5}, and a cost function ¢ : T'— Q7 find a minimum cost
subcollection of T" that covers all the elements of U. Given an instance of the
set cover problem over the set N, the cost of providing the service to a coalition
S is the cost of the optimal subcollection of T' that covers all the elements in
S. Denavur et al. [14] proposed a greedy algorithm for the computation of the
set of players that will be served. In the vertex covering game, the players are
edges in the graph and the game value is the minimum set covering all the
edges.

3.11 Facility Location Games

The location of facilities in order to provide service for customers is a well
known problem in operation research. In the basic model, there is a number
of places that the facilities can be opened, a cost for opening each facility, and
a number of customers assigned to each facility with a predefined cost. The
goal of the problem is the minimization of the total cost. Let G = (N, E) be
a graph, where N is the set of nodes, which is the same as the set of players
in the game. Every edge e € E has a positive length [.. The distance d(z,y)
between two points x,y anywhere on the edges of the graph is defined as the
length of a shortest path from x to y. The length of a path is the sum of the
lengths of the edges and parts of edges that belong to the path. Let A be a
finite subset of points anywhere on the edges of G and let ¢ € N. The distance
d(i, A) between ¢ and A is defined by [13]

d(i, A) = 2121141 d(i, x). (52)

The players can construct service facilities at any point on the graph, that
is, at any point along an edge of the graph and not only at the nodes of the
graph. The cost of a player ¢ € N is a linear function of the distance between
i and a facility that is closest to i. For each i € N, a weight w; is given such
that if this distance is d;, the cost for 7 is w;d;.

Tamir [65] has considered a cost allocation game for a location problem
for which he was able to reduce the exponential number of constraints for core
(z(S) < ¢(9)) to a linear number. Curiel [13] denoted the number of facilities
that coalition S is allowed to build by ps and assumed that ps < |S|. Each
player has a cost L(i) associated with not having access to any facility. Curiel
studied two classes of games arising from such a situation. In the first, each
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coalition wants to minimize the maximum cost of its member and is called
p-center game, and in the second each coalition wants to minimize the sum
of the costs of its members and is called p-median game. The formulation of
these games is given in the following [13]:

For the p-center game:

max L (i), if ps =0

o 1€

ep(S) = min  maxw;d(i, A), if pg >0 (53)
A:|Al=ps i€S

For the p-median game:

Z L(i), ifps =0

cp(S) = { €5 54
»(5) min w;d(i, A), if ps >0 (54)
A:|Al=ps ics

In a p-center game, each coalition S with pg > 0 has to solve a p-center
problem, whereas in a p-median game each coalition S with pg > 0 has to
solve a p-median problem. P-center and p-median games have a nonempty
core under certain conditions and are balanced [13].

Curiel [13] also presented a simple plant location game that can be for-
mulated as follows. Let IV be a set of players. The players correspond with
nodes of a tree and need to build facilities that can be located in the nodes of
the tree only. These are setup costs depending on the node where the facility
is located. There are also travel costs associated with edges of the tree. Each
coalition wants to minimize the sum of the setup costs and the weighted travel
costs of its members.

Denavur et al. [14] proposed a greedy algorithm for the computation of
the set of facilities that will be open, the set of cities to be connected to each
facility, and the amount to be charged to each city that has been connected in
an uncapacitated facility game. In this game, the opening of a facility causes
a fixed cost f; > 0 and the cost of assigning customer j € N to facility
i is denoted by ¢;; > 0. Goemans and Skutella [33] derived for any kind
of constrained facility location an equivalent relaxation in the natural space
of variables that contains a variable y; denoting whether facility ¢ is open
and a variable x;; denoting whether customer j is assigned to facility 7. For
the unconstrained facility location problem, this canonical relaxation turns
out to simply be a classic LP relaxation of the problem. Kolen [49] proved
that the core is nonempty if and only if this canonical LP relaxation has
no integrality gap for the objective function being considered. Chardaire [10]
generalized Kolen’s result to some sorts of capacitated facility location games.
Geomans and Skutella [33] showed that testing the core nonemptiness is NP-
complete. Finally, Goemans and Skutella [33] proved that the cost allocation
problem is equivalent to the dual of the LP relaxation of the facility location
problem.
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Chardaire in his PhD thesis [9] calculated the core and the nucleolus of two
location games, the uncapacitated facility location game and the capacitated
facility location game. He proved that for the first game, a necessary and
sufficient condition for the nonemptiness of the core is for the integer problem
associated with the grand coalition and the straightforward LP relaxation of
that integer problem to have the same optimal values. Moreover, when the
core is not empty, he gave a compact reformulation of the core, polynomial
in the number of players, based on the dual of the LP relaxation associated
with the grand coalition. For the second problem, namely the Capacitated
case, the results that were obtained from Chardaire were not so strong as in
the first problem, but in the case that the distances are Euclidean the results
are similar as in the first case. Chardaire, also, studied the nucleolus of this
two games and he proved that when the core of the uncapacitated game is
non-empty, the nucleolus of the game is equal with the nucleolus of the relaxed
game. He proposed a constraint generation method to compute the nucleolus
of the uncapacitated game. He extended his approach in the capacitated case
and proved that if the distances of the problem are Euclidean and the core
is nonempty, then the constrained generation method for the computation of
the nucleolus can also be applied.

3.12 Supply Chain Management and Cooperative Games

The design and management of supply chain are nowadays one of the most
active research fields in the area of optimization. In the literature, few papers
have been published that use Cooperative Game Theory to study applications
of Supply Chain Management. Most of the works published until now con-
cern theoretical results and solution concepts in some combinatorial problems
(routing problems, location problem) as it was presented in the previous sec-
tions, and not practical applications. In Wang and Parlar [69], a newsvendor
game with three players is analyzed, first in noncooperative setting and then
under cooperation with and without Transferable Utility. Hartman et al. [44]
considered the newsvendor centralization game, a game in which multiple re-
tailers decide to centralize their inventory and split profits resulting from the
benefits of risk pooling and showed that this game has a nonempty core under
certain restrictions on the demand distribution.

Engevall [24] studied in his PhD thesis a distribution problem in Norsk
Hydro Olje AB that markets and sells gas-oil in Sweden. Norsk Hydro is re-
sponsible for the transportation of different qualities of gas and gas-oil to the
customers of Norsk Hydro. After the transportation of the goods to the cus-
tomers has taken place, he considered how to allocate the total transportation
cost for a tour, or for a set of tours, to the customers served.

Vidal and Goetschalckx [68] presented a model for the optimization of a
global supply chain that maximizes the after-tax profits of a multinational cor-
poration and that includes transfer prices and the allocation of transportation
costs as explicit decision variables. They formed the problem as a nonconvex
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optimization problem with a linear objective function, and both linear con-
straints and bilinear constraints. They also proposed a heuristic algorithm for
the solution of the problem.

4 Conclusion

In this paper, the most important cost allocation methods in problems that
arise from the field of combinatorial (discrete) optimization were presented.
Initially, the solution concepts of the cooperative game theory, like the core of
the game, the Shapley value, the Bargaining set, the Nucleolus of the game,
and the Kernel of the game, were given and analyzed. Then, for the most
important problems of combinatorial optimization and of supply chain man-
agement, the corresponding combinatorial optimization game was presented.
For these games, the core, the nucleolus, and the other solution concepts were
calculated.
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Abstract The paper presents variational models for dynamic traffic, dynamic mar-
ket, and evolutionary financial equilibrium problems taking into account that the
equilibria are not fixed and move with time. The authors provide a review of the his-
tory of the variational inequality approach to problems in physics, traffic networks,
and others, then they model the dynamic equilibrium problems as time-dependent
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1 Introduction

The scientific life of the theory of Variational Inequalities has revealed itself
full of events and surprises. This theory arose in the 1970s as an innovative
and effective method to solve a group of equilibrium problems originated from
mathematical physics as the Signorini problem, the obstacle problem, and the
elastic-plastic torsion problem, and it is still an open question to decide who
must be considered the founder between G. Fichera and G. Stampacchia, who
first dealt with Variational Inequalities (see [10] and [15]).

The critical point for which the other theories, available in the literature,
have revealed themselves unable to solve the above-mentioned problems is that
these problems request a condition of complementarity type on the boundary
or on a part of the set where the problems are defined, and, in general, it is
not possible to express them as an optimization problem.

After an intense period of successes and of fundamental results obtained
by means of the Variational Inequality theory, which someone defines as the
Italian way of mathematics, maybe in consequence of the untimely death of
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G. Stampacchia in 1979, the interest for Variational Inequalities declined and
it seemed that the theory had no more to say.

On the contrary, in the beginning of the 1980s, it was proved by M.J.
Smith (see [22]) and S. Dafermos (see [2]) that the traffic network equilibrium
problem can be formulated in terms of a finite-dimensional Variational In-
equality and, hence, it is possible to study in this way existence, uniqueness,
stability of traffic equilibria, and to compute the solutions. In consequence of
this fact, the past decades have witnessed an exceptional interest for Varia-
tional Inequalities, and an enormous amount of papers and books have been
devoted to this topic. As a relentless river, more and more problems aris-
ing from the economic world, as the spatial price equilibrium problem, the
oligopolistic market equilibrium problem, the migration problem, and many
others (see [19]), are formulated in terms of a finite dimensional Variational
Inequality and, by means of this theory, solved.

The last event goes back to the end of the 1990s: the traffic network equi-
librium problem with feasible path flows that have to satisfy time-dependent
capacity constraints and demands has been formulated in [3] and [4] (see also
[11]) as an evolutionary Variational Inequality, for which existence theorems
and computational procedures are given. Starting from this first result, many
other problems with time-dependent data have been formulated in the same
terms. In [5] and [6], the authors consider the spatial price equilibrium prob-
lem when the prices and the commodity shipment bounds vary over the time.
[8] addresses the time-dependent spatial price equilibrium problem in which
the variables are commodity shipments. In [7] and [9], the authors consider a
time-depending financial network model consisting of multiple sectors, each of
which seeks to determine its optimal portfolio given time-dependent supplies
of the financial holdings.

Although in the theory of Variational Inequalities an important chapter
is constituted by parabolic or hyperbolic Variational Inequalities, the models
that formulate the above problem are different from the previous ones and
then they request an appropriate study and an improvement of some aspects
of Variational Analysis. All these problems have a common element: their
equilibrium conditions can be handled as generalized complementarity prob-
lems and moreover the evolutionary Variational Inequality formulation can be
expressed in a unified way (see [1]).

The aim of this paper is to present the essential aspects of the problems
considered and to focus on the new questions that the evolutionary framework
provides.

2 Time-Dependent Equilibrium Conditions
and Evolutionary Variational Inequalities

The driving forces of the problems that we examine are considered time-
dependent on a fixed time interval [0,7T]. Consequently, the response of the
system is time-dependent, too. Here the system is assumed to respond to
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changes of the driving forces so gradually in the considered timescale that, at
each instant, equilibrium conditions prevail. However, we can consider models
with presence of delay effects on the response (see [21]), but in this paper we
will just mention this subject.

We start considering a model of a traffic network on a finite directed graph
(see [3] and [4]). There is given a set W of origin-destination pairs and a set
R of routes. Each route r € R links some origin-destination pair w € R. This
leads to the set R(w) of all w € W. The topology of the network is described
by the pair-route incidence matrix ¢ = {®,, -} with w € W, r € R, where

b 1 if the route r connects the pair w
1 0 otherwise.

Because the feasible flows have to satisfy time-dependent capacity constraints
and demand requirements, the flow vectors are time-dependent flow vectors
f(t) € RR, where t varies in the fixed time interval 7 = [0,77], while the
topology remains fixed. Each component f,.(t) of f(¢) gives the flow trajectory
f T — RR, which have to satisfy almost everywhere on 7 the capacity
constraints

At) < f(t) < u(t)
and the so-called “traffic conservation law”:

P f(1) = p(1),
where the bounds A < p and the demand p = (pw),,cyy > 0 are given. Con-
sidering a LP setting with p € (1,00), we assume that A and pu € LP(7,R”)
and that p lies in LP(7,R"). Assuming in addition that
DA(t) < p(t) < Pu(t) ae. on T,

we obtain that the set of feasible flows

K={f€E:\t) < () < ult), BF() = p(t) ae.on T} (1)

is nonempty (see [13]). Clearly K is convex and weakly compact.
The cost trajectory C, which assigns to each flow trajectory f € K the
1

cost trajectory C(f), is a mapping C : K — E* = LY(7,RR) (; + p = 1)
and it results
<c(f.g»= [ Cuwngma= [ 3 Cfaa:

The equilibrium condition is given by a generalized version of Wardrop’s con-
dition, namely:

Definition 1. h € K is an equilibrium flow if and only if, for all w € W and
r, s € R(w) and a.e. on T there holds:

Cr(h)(t) < Cs(h)(t) = hr(t) = pr(t) or hs(t) = As(2). (2)
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We remark that the kind of equilibrium defined by condition (2) is different
from the one obtained considering a minimization of an objective, like total
cost set by society or some authority.

The equilibrium approach defined by (2) is called user-oriented traffic equi-
librium and has the meaning that every agent in traffic strives for his indi-
vidual cost and it, when abandoning artificial assumptions of symmetry and
thus abandoning the existence of a potential, cannot be formulated as simple
optimization problems. The overall flow pattern obtained according to condi-
tion (2) fits very well in the framework of the theory of Variational Inequality.
In fact in [3] and [4], the following result is shown:

Theorem 1. h € K is an equilibrium solution according to Definition 1 if and
only if h is a solution to the following Variational Inequality

“Find h € K :
< C(h), f— h = / (CO®), f(E) —hE)dt >0 VfeK”  (3)
T

The next equilibrium conditions that we present are those of the spatial price
equilibrium problem in the case of the price formulation. In this case, we have
n supply markets P, P», ..., P, and m demand markets Q1, Q2, ..., Qm
of a commodity m, whose geometry remains fixed during the interval of time
T =1[0,T). For each t € T we have:

the supply price vector p(t) € R™;
the total supply vector g(t) € R™;
the demand price vector ¢(t) € R™;
the total demand vector f(t) € R™;
the flow vector x(t) € R™™;

the unit cost vector ¢(t) € R™™.

The feasible vectors u(t) = (p(t), ¢(t), z(t)) have to satisfy the time-dependent
constraints on prices and transportation flows, namely

B e ] [p,®.5:0] < IT |g,0.3,0)] x TTTT [z, 7:50)]
i=1 j=1 i=15=1
where p (t), P;(t), 4; (t), @;(t), z;;(t), Tiz(t) are given.
The functional setting for the trajectories u(t) is the Hilbert space
L= L*T,R") x L*(T,R™) x L*(T,R™™)
and, hence, the set of feasible vectors u(t) is given by

K= Kl X K2 X Kg
={peL*(T,R"):0<p
x {ge L*(T,R™):0<q(t) <q(t) <7
x {x € L*(T,R"):0 < z(t) < z2(t) <Z(t) ae. onT},
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where p(t), p(t) € LIT,R"), q(t), g(t) € LIT,R™), z(t), T(t) € LIT,R"™).
K is a convex, closed, weakly compact set. Furthermore, we are giving the
mappings:

g=g(t,pt): T x Ky — L*(T,R")

f=ftq®): T xK; — L*(T,R™)
c=c(t,z(t)) : T x Ky — L*(T,R"™)

which, at time ¢, assign to each price trajectory p € K; and ¢ € Ky the supply
g € L*(T,R") and the demand f € L?(7,R™), respectively, and to the flow
trajectory z € Ks the cost ¢ € L*(7,R™). Now, we allow that, during
the activities of the market in the time interval [0,7], supply and demand
excesses can occur, namely that there exists n non-negative functions s;(t)
i=1,2...,n and m non-negative functions t;(t) j = 1,...,m such that

Zzu +si(t) i=1,2,....n (4)

:Zzij(t)thj(t) ji=12...,m. (5)

The equilibrium conditions of this evolutionary market take the following
form:

Definition 2. u(t) = (p (t)7q(t) x(t)) € L is a dynamic market equilibrium if
and only if for each i = 1,2,...,n and j = 1,2,....,m and a.e. in T there
hold:
si(t) >0 = pi(t) = p,(t)
/I: - 17 2, 9 n; (6)
p,(t) <pi(t) <p;(t) = si(t) =0
t;(t) >0 = ¢;(t) = g;(1)
j - 17 27 , M3 (7)

gj(t> < Qj(t) < qj(t) - tj(t) =0
> q;(t) if wii(t) =z,5(t)
pi(t) +cij(t,x(t) § = q;(t) if x;;(t) < wii(t) < Tis(t) (8)

< qi(t) if wi(t) =T45(t).

Conditions (6) and (7), in a reasonable way, are satisfied when the excesses
vanish in dependence of the prices; conditions (8) control the amounts of
commodity shipments between the supply and the demand markets according
to the equilibrium condition that the supply price plus the transportation cost
is greater, equal, or less than the demand price.
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Denoting by v : 7 x K — L the operator defined setting

v =v(t,u(t))
= gi(t,p(t)) — inj(t) (f] (t,q(t qu > )
j=1 i=1,...n j=1,...,m
(pi(t) + e (8, 2(1)) = 45(1)) =1 > 9)

also here the following characterization in terms of Variational Inequalities
holds (see [5] and [6]):

Theorem 2. u(t) = (p(t),q(t),z(t)) € K is a dynamic market equilibrium if
and only if u(t) is a solution to

< o(u), s —u>= /0 (wt,u(t)), a(t) — u(t)) dt

T
:/0 Z g:(t,p(t) wa (pi(t) — pi(t))

_Z<fjtq wa ) t) —q;(1))

j=1

HY D (alt) + e, 2(0) — g5(8)) (F55(8) — w5 (8)) } dt >0
i=1 j=1

Va = (p,q,7) € K. (10)

For what concerns the quantity formulation of the spatial price equilibrium
problem, in this case the only change is that the supply prices p; and the
demand prices g; are considered as functions of the supply g and the de-
mand f and the equilibrium conditions are related to a vector w(t) =
(g(t), f(t),z(t),s(t),t(t)), which represents the variables of the model. More
precisely, we are giving two mappings p = p(t,g(t)) : 7 x L*([0,T],R%}) —
L*([0,T),R7%) and q = q(t, f(t)) : T x L*([0,T],RT) — L*([0,T],R7"), which
assign to each supply g(t) the supply price p(t, g(t)) and to each demand f(t)
the demand price q(t, f(t)). We assume that capacity constraints on p, ¢ and
the transportation cost c(t, z(t)) are fixed in such a way that:

p(t) <p(t,g(t)) <p(t), qt) <qlt, f(t) <q(),

c(t) < c(t,z(t)) <e(t).

The set of feasible vectors w(t) is given by
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K= {w(t) = (g(t), f(£),x(t), (1), £(t)) €

L2([0,T),R") x L*([0, T],R™) x L*([0, T}, R"™) x L*([0, T], R™):
w(t) > 0 a.e. in [0,T7];

Zx” )+ si(t 1=1,...,n;

:inj(t)+tj(t), j=1,...,mae. in [O,T}} (11)
j=1

and the dynamic market equilibrium conditions in the case of the quantity

formulation take the following form:

Definition 3. w*(t) € K is a dynamic market equilibrium if and only if for
eachi=1,....,n and j=1,...,m and a.e. in [0,T] there hold:

if si(t) >0, then pi(t,g*(t)) = p,(t);
(12)
if p,(t) <pi(t,g"(t), then si(t)=0;
if (t) >0, then q;(t, f*(t)) = q;(t);
(13)
if a3t (0) <T,(0), then £1(t) = 0;
if xi5(t) >0, then pi(t, g*(t)) + cij (&, 2" (1)) = q; (L, [~ (1));
(14)

if pi(t, g™ (1) + ci(t, 27 (t) > ¢; (¢, f* (1)), then x7;(t) = 0.
Then in [8], [16], [17] the following result is shown:

Theorem 3. w* € K is a dynamic market equilibrium if and only if w* is a
solution to the Variational Inequality

Find w* € K such that

< v(w),w—w* >= /0 (o(t,w* (1)), w(t) — w*(t)) dt

/ {p(t, g7 (1)), g(t) — g7 (1)) — {alt, F*(8)), F(t) — 17(1))

+(e™(t, 27 (1)), 2(t) — 27 (1)) — (p(t), s(t) — s7(1))
+(q(t),t(t) —t*(t))}dt >0 Vw e K. (15)

Here v denotes the operator v(t,w) = (p(t,g(t)), —qlt, f(t)), c(t, z(t)),
—p(t), a(t))-
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Now we pass to present the evolutionary financial equilibrium conditions
and the equivalent variational inequality formulation. We consider a multi-
sector, multiinstrument financial equilibrium problem with a general utility
function and including policy interventions in form of taxes and price controls.

Then we have m sectors, with a typical sector denoted by i, and n instru-
ments, with a typical financial instrument denoted by j, in the period [0, T].
Let s;(t) be the total financial volume held by sector ¢ at the time t. 2;; de-
notes the amount of instrument j held as an asset in sector ¢’s portfolio, y;; the
amount of instrument j held as liability in sector ¢’s portfolio. The assets x;;
in sector ¢’s portfolio are grouped into the column vector x;(t) and the sector
asset vectors into the matrix x(t); similarly, y;(¢) denotes the column vector
of the liabilities in sector i’s portfolio and y(t) the matrix of the sector liabil-
ity vectors. The instrument prices r;(t) are variables of the problem but are
fixed instrument floor prices r,(¢) and instrument ceiling prices 7;(t), which
represent the form of policy interventions; r(t), r(t), 7(t) denote the column
vectors of the prices, of the floor prices, and of the ceiling prices, respectively.
Moreover, the policy interventions act by imposing a tax rate 7;;(¢) on sector
i’s net yield on financial instrument j. We assume that the tax rates in this
model have the flexibility of adjusting the tax rate following the evolution
of the system. Then, assuming as the functional setting the Lebesgue space
L?([0,T],RP), the set of feasible assets and liabilities for the sector i becomes

P, = { [yi(t)] € L*([0, T],R?"):

n
Zx” = s;(t Zyw = s;(t) a.e. in [0, T,
j=1

x;i(t) > 0,y;5(t) > 0 a.e. in [O,T]}
and the set of feasible instrument prices is
R={r(t) € L*([0,T],R");
ri(t) <ri(t) <75(t),5 =1,...,nae in [0,T]},
where r(t) and 7(t) are assumed to belong to L?([0, T],R™). We introduce for

each sector i a utility function U;(t, z;(t), yi(t),r(t)), which is constituted by
two terms (see [9] and [19]):

Uit i(t), yi(t),7(t))
= u;(t, zi(t), yi(t)) + Z (rj(t) = ;(8)) (1 = 735(1)) (w5 (1) — i5(t)) (16)
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The first term is connected with the opposite of the risk-aversion and an
example of this type of function is the well-known one used in the quadratic
model (see [19] and [7]):

ui(t, xi(t), yi(t) = — [zj((g]TQi(t) BZ((B]

where Q%(t) is a 2n x 2n matrix, which, following the concept that assess-
ment of risk is based on a variance-covariance matrix denoting the sector’s
assessment of the standard deviation of prices for each instrument, represents
a measure of this aversion.

In the general case, we require a lot of qualitative assumptions on
w;(t, z;(t), yi(t)). Precisely, we require that wu;(t,z;(t),y;(t)) is defined and
concave on [0, T] x R™ x R™, is measurable in ¢, and continuous with respect

ou; U
to x; and y;. Moreover, we assume that * and L exist and they are
Lij Yij
measurable in ¢ and continuous with respect to x; and y;. Further, we require
that the following growth conditions hold:

ui(t, z,y)| < ci(®) [l lyll,  Va,y € RY,

(17)
a.e. in[0,7], i=1,...,m;
du;(t, x, du;(t, x,
22| < g, [ 2220 < o,
i=1,....m; j=1,...,n,

where «;, 3, vi; are non-negative functions of L>°([0,77). The second term
expresses the request to maximize the value of the asset holding and to min-
imize the value of the liabilities. Moreover, the second term incorporates the
tax rate through the presence of the (1 —7;;(¢)) term premultiplying the
(rj () = ;1)) (i3 (t) — i (2)) -

We can provide the following definition of an evolutionary financial equi-
librium.

Definition 4. A wvector of sector assets, liabilities, and instrument prices

m

(z"(t),y*(t),r*(t)) € H P; xR is an equilibrium of the evolutionary financial
i=1

model if and only if it satisfies the system of inequalities:

_Ouilt, @ (1), y; (1)
83;‘ij

_Quilt, @i (), i (1)
3%‘;‘

(1= 73;() (r} (1) = ;1)) — " (8) > 0

(1 —75(0) () —1,;()) — i (t) = 0,
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and equalities:

t 83:1-]-

Ou; (ta ‘T: (t)v y;k (t))

v (1) [— S ) (3) — 1y (1)) — u§2><t>} o,

8y¢j
(20)
where ugl)(t) (2)( t) € L?([0,T)) are Lagrangean functions, for all sectors i :
i=1,...,m and for all instruments j : 7 = 1, ..., n and verifies the condition:

S (1 - 7)) (50 — 5 (0) 4 =0 i 1) < i) <T@ @)
i=1 >0 if ri(t)=r;

The meaning of Definition 4 is that to each financial volume s;(t) held by the
sector 7, we associate the functions u( )( t), ,ul(z) (t), related, respectively, to the
assets and to the liabilities and that represent the “equilibrium disutilities”
for unit of the sector 7. The financial volume invested in the instrument j as
assets x7;(t) is greater or equal to zero if the j-th component

_ Ouit, 75 (1), 55 (1)

8Iij

= (1 =7i(1)) (5 (8) — 5(1))

of the disutility is equal to ugl)(t), whereas if

_ Ou; (t’ l‘f (t)7 y: (t))

&rij

— (L= 75(8)) (r3 (1) — (1)) > i (8),

then x};(t) = 0. The same occurs for the liabilities.

The functions u( )( t) and u?

1
spectively, with the constraints

D (@i(t) = si(t) =0 and Y (yi(t) — si(t) = 0.
j=1 j=1

They are not known a priori, but this has not influence, as Definition 4 is

(t) are Lagrangean functions associated, re-

equivalent to a Variationsl Inequality in which ugl)(t) and ’ugz) (t) do not ap-
pear, as the following theorem shows:

Theorem 4. A vector (z*(t),y*(t),r*(t)) € HB X R is an evolutionary

i=1
financial equilibrium if and only if it satisfies the following Variational In-
equality:



Time-Dependent Equilibrium Problems 259

Find (z*(t),y*(t),7*(t)) € H P; x R such that
i=1

f: /OT { z": {_ aui(t,xa;f;fj,yf(t)) — (1= 7iy(8) (7 () — fj(t))}
X [wi(t) — a3;(t)]
. z”: [ Oui(t, xa;tj) YO ) (30 -, (t))}
x i (8) — 5 (t)]
+§n: (25(t) = yi; (1) x [r(t) =} (2)] } dt >0

=1

Y(z,y,r GHP X R. (22)

Now, if we give a look to the variational inequalities and to the underlying
constraint sets that express the above equilibrium problems, we are led to
conclude that all these problems can be formulated in a unified way. In fact,
let us consider the nonempty, convex, closed, bounded subset of L2([0, 7], R?)
given by:

K= {u € L*([0,T],R9) : \(t) < u(t) < p(t) ae. in [0, T];

Z@uz ) = p(t) a.e. in [0,T], §i€{—1,0,1},ie{l,...,q}}. (23)

For chosen values of the scalars &;, of the dimension ¢, and of the boundaries
A, i, we obtain each of the previous above cited constraint sets (see [1] for
details). Therefore, we obtain the following standard form for the above cited
problems:

Find v € K such that
T
< F(u),v —u>= / (F(t,u(t),v(t) —u(t)dt >0 YvekK, (24)
0
where K is given by (23) and F is a mapping from [0, T]x K onto L?([0, T],R9).

Further, it directly derives from the proofs of Theroems 1-4 that problem
(24) is also equivalent to the following one:

Find v € K such that
(F(t,u(t),v(t) —u(t)) Yvek, ae. in [0,T], (25)

which can be useful for computational purpose.
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3 Qualitative Results

As observed in [3] and [4], there are two standard approaches to the existence
of equilibria, namely, with and without a monotonicity requirement. We shall
employ the following definitions. F' : [0,T] x K — L2([0,T],R?) is said to be

o pseudomonotone if and only if for all u,v € K
< Fu),v—u>>0=< F(v),v —u>>0;

e hemicontinuous if and only if for all v € K, the function u —< F(u),v —
u > is upper semicontinuous on K;

e hemicontinuous along line segments if and only if for all u,v € K, the
function w —< F(w),v—u > is upper semicontinuous on the line segment
[2,y].

The following general result holds:

Theorem 5. Let F': [0, T]xK — L*([0,T],R?) and K C L*([0,T],R?) convex
and nonempty. Assume that

(a) there exists A C K nonempty, compact and B C K compact, convex such
that, for every u € K\ A, there exists v € B with

< F(u),v —u><0;

and that either (b) or (c) below holds:

(b) F is hemicontinuous;
(¢) F is pseudomonotone and hemicontinuous along line segments.

Then there exists u € K such that < F(u),v —u >>0, Vv € K.

We may apply this result with K given by (23). Then K is convex, closed, and
bounded, hence weakly compact. So, if we endow L?([0,T],RY) with the weak
topology, then K is compact and condition (a) in Theorem 5 is automatically
satisfied by choosing A = K and B = 0.

If we endow the space L2([0,T],R?) with the strong topology, condition
(a) must be used (we can avoid the request of convexity of K, as observed in
[4]) as well as (b). Finally, because weak and strong topology coincide on line
segments, condition (c) is enough to ensure the existence of a solution.

Now let us suppose that F' is a Carathéodory function, namely that F'(¢, )
is measurable in ¢ and continuous with respect to u and that the following
condition holds:

£, u)llre < f(t) + () ullre (26)

with () € L2([0,7]), a(t) € L=(0,T)),
Then it is possible to show (see [6], Theorem 3) that F'is hemicontinuous.
In consequence of this fact, we get the following existence result.
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Theorem 6. Assume that condition (26) holds. Then each of the following
conditions is sufficient for the existence of a solution to the Variational In-

equality (24):

1. There exist A C K nonempty, compact and B C K compact such that, for
every u € K\ A, there exists v € B with < F(u),v —u >< 0;

2. F is pseudomonotone;

3. F is hemicontinuous with respect to the weak topology.

Interesting problems concerning the qualitative study of solutions to the Varia-
tional Inequality (24) are the stability and sensitivity analysis and the so-called
regularization theory of solutions. The sensitivity analysis tries to clarify the
behavior of solutions when some changes in the data occur, and the aim of
the stability analysis is to check if a small change in the mapping F' produces
a small change in the solution. Some results in these fields can be found in
[8,17,21].

The regularization theory deals with the problem to see if, imposing that
the data fulfill some regularity assumptions, as Holder-continuity, differentia-
bility, and so on, the solutions to (24) verify in turn these major properties.
For example, in [13], Section 2.1, the author asks whether the solution to (24)
(or (25)) can be in C([0,T],RY). Even if some partial results are available, the
question is still open.

4 Lagrangean and Duality Theory

It is worth remarking that the Lagrangean theory provides interesting con-
tributions, absolutely necessary for the better understanding and handling
of the equilibrium problems considered. In fact, not only do the Lagrangean
variables have a meaning intrinsic to the nature of the problems considered,
but also the Lagrangean theory is essential in order to obtain the equivalence
between the equilibrium conditions and a Variational Inequality. However, in
our infinite dimensional setting, new problems arise with respect to the fi-
nite dimensional Lagrangean theory. The crucial difference with respect to
the finite dimensional setting is that the interior of the cone

C ={veL*[0,T],R%) : v(t) >0 a.e. in [0,7]} (27)

is empty and, as a consequence, the separation theorems as well as the so-
called Slater regularity assumption do not hold. Then one can try to overcome
this difficulty either introducing the new concept of quasi-relative interior and
proving separation theorems by means of this new concept (see [13] for details
and applications) or using a more general regularity assumption that does not
require any condition on the interior of C. We will follow this second way and,
to this end, let us consider the Variational Inequality (24) and let us introduce
the following function:
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0,1y, 1y, m) = W(v) - /Q (1 (1), o(t) — A1) dt
+ /Q (Ia(t), o(t) — p(t)) dt + /Q (m(t), o(t) — p(t)) dt

Vo € L2([0,T],RY), Vi, 1y € C, Ym € L*([0,T],R") (28)
which is called Lagrangean functional. In (28) we denote by
v L*([0,T],RY) — R

the mapping
¥(v) = (F(u),v —u)
with u solution to the Variaional Inequality (24). It results

min U(v) ="¥(u)=0.

q
By the term @ v(t) — p(t), we denote the term Zfﬂzi = p(t), which appears
i=1
in the convex set K given by (23); here p € L?([0,T],R!) and ¢ is a | x ¢
matrix whose entries are —1, 0, 1.
Our aim is to prove the following characterization:

Theorem 7. u € K is a solution to Variational Inequality (_24) if and only if
there exist 11, lo € C and m € L*([0,T],RY) such that (u,ly,ls, M) is a saddle
point of the Lagrange functional (28), namely

‘C(uvllalem) é E(u7217227m) S 5(07213227m)
(29)
Vo € L2([0,T],RY), Vi, ly € C and Ym € L*([0,T],R")

and in addition

[ @ - xwyde=o. [ Gale.u0) - uo)de=0. @0
0 0

Proof. Let (u, 11,15, m) be a saddle point of the Lagrange functional £. Taking
into account that L(u,lq,l2,m) = 0, from the right-hand part of (29) we get:

L(v,11,ls,m) >0, Yoe L0, T],R7). (31)

Considering (31) for each v € K, namely for A(t) < v(t) < m(t) and Puv(t) =
p(t), we obtain:

O(v) = (F(u),v —u) > L(v,11,la,m) > 0,Yv € K (32)

and therefore u is a solution to (29).
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Vice versa, let u be a solution to (24) and, first, let us prove that there
exist Iy, I € C and m € L([0,T],R!) such that

L' (u,ly,15,m) (v —u) >0, Yo L*([0,T],R?) (33)

and

where £'(u,l1,l2,m) denotes the Fréchet derivative of L(u,ly,l2,) at w.
We derive the estimate (33) using Theorem 5.3 of [14], provided that the
Kurcyusz—Robinson-Zowe condition (5.2) of [14] (see also [23] and [20]):

g'(u)
W) cone (LQ([O,T],R‘?)—{u})
c+{g(uw)} L2([0,T],R9) (34)
-+ cone =
0 L3([0,T],RY)

is fulfilled (see also the remark at the end of page 120 of [14]). In order to
verify this condition, let us set g(v) = (A — v,v —m) and h(v) = Pv —p. It
results ¢'(v)(w) = (—w,w), I/ (v)(w) = ¢ w, and the condition (34) is fulfilled
because it results:

— cone (L*([0,T],R9) — {u}) + cone (C+ {\—u})
= —L*([0,T],RY) + cone {u}+ C + cone {\—u} = L*([0,T],R?), (35)
cone (L2([() T],R?) — {u}) + cone (C + {u—m}) = L*([0,T),RY), (36)
and
® cone (L*([0,T],RY) — {u}) = & (L*([0,T],R?) — cone {u})
:QjLz([O’T],Rq) :Lz([OaT]aRl)' (37)

Then, the other assumption of Theorem 5.3 of [14] being fulfilled, (33) holds,
and, in virtue of the linearity of £(v, 11, l2, M) with respect to v, it follows that
u is a minimal point for £, namely

0= ﬁ(u,zl,ig,m) < ﬁ(v,il,ig,m), Yo € L2([O,T])

So the right-hand part of (29) is proved. Now, taking into account that
L(u,lq,l2,m) is reduced to

L(u,ly,ly,m) = —/O (ll(t),/\(t)—u(t»dt—i—/o (Io(t), u(t)—p(t)) dt <0 (38)

for each Iy, I € C, Ym € L%([0,T],R"), our result is achieved. |
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Some interesting consequences can be derived from Theorem 7 and from
the estimate (29). The first consequence concerns the meaning of the La-
grangean variables. Taking into account that

T_ T_
/<memﬁ:/<umMmﬁ:&
0 0

T_ T_
/<ummmﬁ:/<mmmmﬁ:a
0 0

and that @ u(t) = p(t) form the right-hand part of (29), we get:

A<qum»ww—umwu—A (0 (1), o(t) — u(t)) dt

—|—/O (Io(t),v(t) — u(t)) dt —|—/0 (m, (v —wu))dt >0,

Yv € L*([0,T],RY)

and hence
F(t,u(t)) —1(t) + lo(t) + @7 m(t) = 0. (39)

It is possible to derive from (30) and (39) interesting information about the
meaning of the Lagrangean variables [1, o, and 7. In fact, taking into account
that (30) can be rewritten as

=4

B(1) (us(t) = Xi(0) = 0, Ty(t) (us(t) = mi()) = 0 ae. in 0,7,

it follows that when I;(t) > 0, then u;(t) = X;(£), namely the variables I;(t)
give information about the point for which the vector attains the minimal
value; a similar remark holds also for T(t).

Moreover, from (39) we deduce that T gives information about the equilib-
rium value of the functional F —1; + 5, which represents a generalized “cost”
functional. Many other consequences about the meaning of the Lagrangean
variables could be derived (we refer for this to [3-5,7,9,16]).

Another group of consequences concerns the duality theory. In fact, from
estimate (29), we immediately deduce that the so-called duality gap cannot
arise, namely that it results

max inf L(v,li,la,m
11,126C  yeL2([0,T],R9) (.l 12, m)
meL?([0,T],R)

i L(v,1q,1 = L(u,ly,lz,m). 40
U€L2I(I[%)121],Rq) lfgre)c (’07 b 27m) (U7 b 2,m) ( )
meL2([0,T],Rl)

Moreover, taking into account (38) and (30), we can introduce a Dual Varia-
tional Inequality in the following way:
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find (u,zl,ig,m) € Lz([O,T],Rq) X K :

T B T B
/ (A@) = u(t), 11 (t) — (1)) dt +/ (u(t) — p(t), l2(t) — 12(t)) dt = 0
0 0 i

v(ualhl%m) € Ka (41)

where
K = {(u,ll,lg,m) € (LQ([O,T],R‘?))B x L*([0,T],RY):
I1(t), I2(t) > 0, a.e. in [0,T]; Pu(t) — p(t) =0, a.e.in [0,T;

F(t,u(t)) — 1 (t) + la(t) + ST m(t) = 0, ae. in [O,T]}. (42)

So the Dual Variational Inequality associated with our problem is a Quasi-
Variational Inequality.

5 Conclusion

We conclude the current paper remarking that the time-dependent theory
of equilibrium problems have received from the related Variational Inequality
formulation a very fruitful setting and that Variational Inequalities seem to be
the key to solve some of the principal challenges of our time. In fact, they allow
us to manage the market and financial equilibria, following their evolution in
time and achieving a light on the next future.

New future research directions deal with the study of evolutionary equilibria
by means of projected dynamic systems theory, the introduction to the elastic
model for which the data depend also on the expected equilibrium solutions.
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Abstract This chapter deals with problems of differential games of multiple agents
moving in a region. We describe such a game by a hierarchical structure, which can
be simplified using a fiber bundle. Then, using geometric techniques, we study con-
trollability, observability, and optimality problems. In addition, we also consider a
cooperative problem when the agent’s motions must satisfy a separation constraint
throughout the encounter to be conflict-free. A classification of maneuvers based on
different commutative diagrams is introduced using their fiber bundles representa-
tion. In the case of two agents, these optimality conditions allow us to construct the
optimal maneuvers geometrically.

Key words: cooperative game, differential games, multiple agents, hierar-
chical structure, Yang—Mills field, controllability, observability

1 Introduction

The modern game theory basically deals with dynamical systems on smooth
manifolds. However, many practical systems like multiple agents do not have
such structures. The axiomatic control theories should adequately reflect in
terms of their internal language of notions and control problems (Cressman,
2003 [5]). In terms of these theories, the control structures can make up var-
ious hierarchies. According to Kalman, for example, the most general struc-
ture is represented by a controllability-reachability structure over which the
optimal control structure is built. This approach regarding the structure of
optimal control and Yang—Mills Fields was discussed in (Yatsenko, 1985 [27];
Butkovskiy, 1990 [4]).

In this chapter, the geometric description problem of multiple agents is
studied. We discuss mathematical aspects of the “Unified game (UGT)” and
“Theory of the control structures (TCS).” We consider a game as a hierarchi-
cal structure. It is assumed that each agent can be described by a fiber bundle.
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A joint maneuver has to be chosen to guide each agent from its starting posi-
tion to its target position while avoiding conflicts. Among all the conflict-free
joint maneuvers, we aim to determine the one with the least overall cost. The
cost of an agent’s maneuver is its energy, and the overall cost is a weighted sum
of the maneuver energies of all individual agents, where the weights represent
priorities of the agents.

As an example, we consider the hierarchical structure of such multiagent
system on Figure 1. Each agent of the system can be described by stochastic
or deterministic differential equation with a control. In the paper, we first re-
duce the model to a hierarchical geometric representation using fiber bundles.
Then we consider an integrated geometric model where the separated model
of agents is integrated into single model. For example, the interaction between
six robots on Figure 2 can be described by a hierarchical structure. The in-
tegrated model allows solving controllability, observability, and cooperative
control problems.

In Section 2, we consider geometric aspects of the nonlinear control
systems. The section constructs a formal model, where the optimal control
structure appears independently from the controllability-reachability struc-
ture and that of the space of local system states. The efficiency of this

Decision and Control Hierarchical Geometrical
Agents Models
Inter-Team
Agent
Intra-Team Intra-Team
Agents Agents

A

Planning Planning
Agents Agents

¥

Regualtion Regualtion
Agents Agents

Integrated Geometrical
Models

Figure 1. Hierarchical structure of multiple agents



Differential Games of Multiple Agents and Geometric Structures 269

Figure 2. Hierarchical structure of multiple robot

axiomatic approach is illustrated using structural analysis of a general prob-
lem of the optimal control. In Section 3, we analyze in detail the relationship
between gauge fields, identification problems, and control systems. The result
of the analysis is an estimation algebra of a nonlinear estimation problem.
The estimation algebra turns out to be a useful concept to explore finite-
dimensional nonlinear filters. In Section 4, we consider a Lie group related to
Yang-Mills gauge groups. We show that the estimation algebra of the iden-
tification problem is a subalgebra of the current algebra. Section 5 focuses
on nonlinear control systems and Yang-Mills fields. Section 6 is devoted to
geometric models of multiagent systems as controlled dynamical-information
objects. It is shown that these systems can be described by commutative
diagrams, which allow one to analyze a symmetry.

2 Geometric Structures

We briefly describe the role of topological, metric, and orderness structures.
Note that each standard ordinary differential control system or inclusion z’ €
I(z), v € X, generates two independent topological structures on X. One
of them is generated by a family of inclusions of x € X, i.e., the family of
reachability sets O(zo,€) from xq for time ¢ > 0, and another one by a family
of a controllability area O(z, ) to xg for time £ > 0 (observability topology).

Let (X, 7) be a topological space, where X is an abstract nonempty set
and 7 is a topology on X.

Definition 1. Control (or admissible control) y(a,b) in (X, T) is an image of
the continuous (in sense of topology ) map ¢: [0,1] — X,

r=pt), 0<t<T, xz€lX, (1)
a=¢(0), b=eT). (2)

a € X is an initial point and b € X is a final point of the control vy(a,b).

Thus, the control ~(a,b) is pathwise connected and linearly ordered subset
(sequence) of X where a € v(a,b) and b € v(a,b) are the smallest and the
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largest of its elements, respectively. As results, maps (1) and (2) are admissible
parameterizations of the control ~y(a, b).

The verification of Definition 1 consists of a validation of the controlla-
bility and finding optimal control of systems without using any differential
or difference structure. Furthermore, we shall consider that there is a metric
in topological spaces, which allows one to analyze control problems at vari-
ous levels of generality. We shall be looking for the “minimal” but not trivial
structures, which can be responsible for controls.

2.1 Metric Spaces

The concepts of a metric and a metric space are introduced by the following
definitions.

Definition 2. Metric space (X, p) is a pair (X, p) where X is an arbitrary
nonempty set and p is a metric structure of X, i.e., p is a real valued function
p=p(x,y), (z,y) € X* = X x X, or map

p:X? =R (3)
with the metric axioms:
pla,b) >0 for V¥ (a,b) € X, (4)
pla,a) =0 for Yae X, (5)
pla,b) < p(a,c) + p(e,b) (6)

foranya e X,be X, ce X, and (6) is called “triangle inequality.” Some-
times p is also called a global metric on X or distance in X.

The metric introduced by Definition 2 differs from the usual concept of
metric: there is neither the symmetry axiom (p(a,b) = p(b,a) for V a € X,
Vb € X) nor the requirement: p(a,b) > 0 if a # b. So, the given concept of
metric is more adequate to the situation in typical control problems. As is
known, the metric space (X, p) can also be considered as a topological space
(X, 1), where topology T is induced by metric p.

But the metric can measure control y(a,b) introduced by Definition 1.
This can be done by the following definition.

Definition 3. The length l[y(a,b)] of the control v(a,b) is a real valued
function

[[y(a,b)] = lim Ly [1(a,b)], (7)

— 00

where

In [v(a,b)] = Z (i, Tit1), (8)
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where a = xg < 11 < -+ < xy < &N41 = b is the N-th partition Tn of vy(a,b),
and the partition Ty becomes finer with N — oco. Of course, it is necessary
to prove or admit the existence and uniqueness of (7). If so, v(a,b) is called
measurable (in metric p). The set y(a,b) of all measurable v(a,b) is denoted
by I'(a,b):

I(a,b) = {x(a,b)}. (9)

So, in the metric space (X, p) the admissible control v(a,b) is just a mea-
surable (in sense of metric p) sequence and vice versa.
If we have several sequences in X:

Y1 (20, 1), 72(T1,22),5 - s Yo (Tns Trg1) (10)

then we can define their sum
V@0, Tng1) = Y _Yil@io1,37), (11)
i=1

which is also a sequence.
Inversely, if vy(a, b) is a sequence and z; € y(a,b), i=1,...,n, x1 < -+ <
Zp, then y(a,b) can be represented as the sum of sequences:

v(a,b) = v1(a, 1) + v2(x1,22) + -+ + Y (@0, b). (12)

Definition 4. The sequence ~;(x;—1,x;) in (11) is called a piece of the se-
quence vy(a,b). We accept that functional (7) is additive one:

p(a,b) >0 for V(a,b) € X2, (13)

pla,a) =0 for YaeX. (14)

2.2 Optimal Control

Consider the following problem of optimal control in (X, p).

1. Determine

I(a,b) = {infl[y(a,b)] : v(a,b) € I'(a,b)}. (15)
2. Determine 4 = 7(a, b), if exists, such that

l[:}/(a’ b)] = l(a7 b) (16)

This admissible 7(a,b) will be called the minimal of the optimal control
problem.
3. Describe all set {7(a,b)} for fixed (a,b) € X? and for all (a,b) € X2.

A simple but an important property of the minimal 7(a, b) is given by the
following theorem.
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Theorem 1. If the admissible y(c,d) is the minimal of the optimal control
problem, then the sequence (a,b) is also minimal.

This is a consequence of the additivity property of (12). If any admissible
sequence (a, b) is minimal, it does not mean that v(a,b) is also minimal.
It is easy to prove the inequality

pla,b) <l(a,b). (17)

Definition 5. The metric space (X, p) is an obstacleness metric space if there
exists at least one point (a,b) € X? such that

pla,b) <l(a,b).
The metric space (X, p) is a generalized metric space iff
pla,b) =1(a,b) for V (a,b) € X2
An example of a generalized space is the Euclidean space R™.
The following theorem is valid:
Theorem 2. [ = [(a,b) is also metric on X, and (X,1) is also a metric space.
Definition 6. Metric [ = I(a,b) is called a secondary metric.

Generally, [(a,b) is distinguished from the initial metric p(a,b) on X.

Definition 7. If the secondary metric | coincides with the metric p, then p is
called a self-secondary metric.

The following theorems are valid:
Theorem 3. The secondary metric is a self-secondary metric.
This is similar to the property of projection operator P : P? = P.

Theorem 4. The metric space (X, p) is a generalized space if the metric p is
the self-secondary metric.

We illustrate the application of the above introduced concepts by the
following:

Theorem 5. (Sufficient condition for minimal). The sequence ~(a,b) in
(X, p) is minimal if for any of its admissible v(c,d), the next relation is true:

le,d) =1(c,z) + U(z,d) for ¥z evy(cd), (18)
where | is a secondary metric of p.

It might seem that for v(a, b) to be minimal, just one identity is sufficient:

l(a,b) = l(a,z) + I(z,b) for ¥z € (a,b). (19)

But it is not true, there exists a contrary example. -
From topology standpoint, the secondary metric [ generally is weaker
(rougher) than the “initial” or “first” metric p. In other words, topology (X, p)

is stronger (thinner) than secondary topology (X,1).
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3 Identification of Agents and Yang—Mills Fields

In this section, we consider the models where each agent of the hierarchical
system is described by a stochastic differential equation.

3.1 Stochastic Agents

Consider the stochastic differential system:

do =0, (20)
d'yt = <(0), $t>dt + d’Ut. (22)

Here {w;} and {v;} are independent, scalar, and standard Wiener processes,
and {z,} is an R"-valued process. Assume that 6 takes values in a smooth
manifold © — RY, and the map 0 — X(0) := (A(#),b(0),c()) in a smooth
map taking values in minimal triples. By the identification problem we shall
mean the nonlinear filtering problem associated with equation (21); i.e.,
the problem of recursively computing conditional expectations of the form
7 (0) A E[p(xy,0)|Y:], where Y; is the o-algebra generated by the observa-
tions {ys : 0 < s < t} and ¢ belongs to a suitable class of functions on
R™ x 6.

For given y;, the joint unnormalized conditional density p A p(t, z, 0) of x;
and 6 satisfy the stochastic partial differential Stratonovitch equation

dp = Aopdt + Bopdy, (23)

where the operators Ay and By are given by

0= 2000, 27N (2 a0}~ (e0). 2 2 (24)
0= 2 ) O axa Y c y & )
By = (c(0), x). (25)
From the Bayes formula, it follows that

mi(¢) = au(p) /o (1), (26)

where

7o) = [ [ ow0)olt.z.0)ldsljdo]. (27)

where |dz| and |df| are fixed volume elements on R"™ and O, respectively.
Further, if Q(t,0) denotes the unnormalized posterior density of 6 given ¢,
then it satisfies the equation:

dQ = E[(c(0), x:|0), Y]Q(t, 0)dy. (28)
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The paper on nonlinear filtering theory (Hazewinkel, 1982 [10]) shows that
it is natural to look at equation (23) formally as a deterministic partial dif-
ferential equation,

% = Aop + yBop- (29)

By the Lie algebra of the identification problem, we shall mean the op-
erator Lie algebra G generated by Ay and By. For more general nonlinear
filtering problems, estimation algebras analogous to G have been emphasized
by Brockett (Mitter, 1990 [19]) and others as being objects of central interest.
In the papers (Krishnaprasad and Marcus, 1981 [14]), the Lie algebra G is
used to classify identification problems and to understand the role of certain
sufficient statistics.

3.2 The Estimation Algebra of Nonlinear Filtering Systems

To understand the structure of the estimation algebra, it is well-worth con-
sidering an example.

Example 1. Let dxy = Odw; df = 0; dy; = xdt + dvg. Then Ay = %g—; —
and By = z, and G = {Ag, Bo}s..4 is spanned by the set of operators

z?
2
2

¢ — ”“7) (6> )n o (07" & 9 )n , and {6°"1}9° ;. We then notice that,

. A )
C 2 A.
GR[G]@{O%Q, 9 B 2’ xl}LA

is a subalgebra of the Lie algebra obtained by tensoring the polynomial ring
R [92] with a 6-dimensional Lie algebra. Here, L.A. stands for the Lie algebra
generated by the elements in the brackets.

The general situation is very much as in this example. Consider the vector
space (over the reals) of operators spanned by the set,

0? o 9
= 19 7]‘ b)
S {8@6% "9z, oz V0T }
1=1,2,...,n, 7=1,2,...,n. (30)

This space of operators has the structure of a Lie algebra henceforth denoted
as Go (of dimension 3n + 2n + 1) under operator commutation (the com-
mutation rules being 5-Z5— (% , Tk = 0jkg - o 4 5@]6% etc., where §jk denotes
the Kronecker symbol). For each choice 9 Ay and By take values in Gg. It
follows that in general Ay and By are smooth maps from © into Gg. Thus, let
us consider the space of smooth maps C'*°(6; Go). This space can be given by
the structure of a Lie algebra (over the reals) in the following way:

given ') ¢€Cm(8a GO);
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define the Lie bracket [-,-]¢ on C=(6;Gy) by

[0, ¥lc(P) = [¢(P), ¢¥(P)] for every P €06. (31)

Here the bracket on the right-hand side of equation (31) is in Go. We denote
as Go the Lie algebra (C>°(6;Go);[.,.]c). Whenever the dimension of © is
greater than zero, Gy is infinite dimensional and is an example of a current
algebra. Current algebras play a fundamental role in the physics of Yang—Mills
fields where they occur as Lie algebras of gauge transformations. Elsewhere
in mathematics they are studied under the guise of local Lie algebras. The
following is immediate.

Proposition 1. The Lie algebra G of operators generated by
1 a\> /o )
A= 5 (800 5 ) = (e AO)) ~ 002 (3
and By := (c(0), x), is a subalgebra of the current algebra C°(O;Gy).

3.3 Estimation Algebra and Identification Problem

It is known (Marcus, 1984 [17]) that G admits a faithful representation as
a Lie algebra of vector fields on a finite dimensional manifold. Specifically,
consider the system of equations,

g =0,
dz = [A(0) — Pc(0)c (0)] zdt + Pe(0)dy,
U~ A@P + PAT(0) + WO (6) ~ Pe()c" (6)P
ds = %(c(é’)7 2)2dt — (c(0), 2)dy;. (33)

The system of equations (33) evolves on the product manifold © x
R™(n+3)/2+1 Associated with equations (33) there are the pair of vector fields
(first-order differential operators),

ay = ((A(0) — Pc(0)cT(0))z,0/02)
+tr ((A(0)P + PAT(0) + b(0)bT (0) — Pc(0)cT (0)P),0/0P)
+1/2(c(0), 2)%0/0s
and
by = (P(0),0/0z) — (c(0),2)0/0z.

Here 9/0P = [0/0P;;] = (0/0P)" = n x n symmetric matrix of differential
operators. Consider the Lie algebra of vector fields generated by ag and b;.
Because aj and bj are vertical vector fields with respect to the fibering © x
R™M7+3)/2+1 _, @, then every vector field is in this Lie algebra. One of the
main results is the following (Lee and Marcus, 1980 [15]):
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Theorem 6. The map
@y, Go — U@ x R(n+3)/2+1
defined by
by = (P(0),0/02)1/2(c(0), 2)0/0s

is a faithful representation of the Lie algebra of the identification problem as a
Lie algebra of (vertical) vector fields on a finite dimensional manifold fibered
over ©.

Ezample 2. To illustrate Theorem 5, consider the Lie algebra of Example 1.
The embedding equations (33) take the form
dg =0,
dp = (92 — p2) dt,
dz = —pzdt + pdy;,
ds = 2% /2dt — zdy;.

Then

+ (fz)2

0
i (Bo) = Pr(z) = by = po- s

0z

The induced maps on Lie brackets are given by

D.(6%%0/02) = 6°%0/0z, k=0,1,2,...,
D (0%%2) = 0% (p0 )0z — 20/0s), k=1,2,...,
D, (0%%1) = 0*%0/0s, k=1,2,....

The embedding equations have the following statistical interpretation. As-
sume that the initial condition for (12) is of the form

pol(z,0) = (277 det Z(Q))inﬂ
—1
x exp (— <x — (6), S (O)(a - u(9))>> Q.

where 6 — (u(6), X(0), Qo(6)) is a smooth map, > (6) > 0,60 € © and @y > 0
for 6 € ©. Suppose equation (11) is initialized at,

(60,20, Po,0) = (00, 1(00), > (60), ~ 10(Qo(0)) ) (34)
Append to the system (11) an output equation,

Qi=e""" (35)
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Now if (33) is solved with initial condition (34), one can show by dif-
ferentiating Q; that @, satisfies the equation (7). In other words, the system
(31)—(35) with initial condition (14) is a finite dimensional recursive estimation
for the posterior density Q(t,6p). We have thus verified the homomorphism
principle of Brockett (Brockett, 1979 [3]): that finite dimensional recursive
estimators must involve Lie algebras of vector fields that are homomorphic
images of the Lie algebra of operators associated with the unnormalized con-
ditional density equation.

4 Sobolev Lie Group and Yang—Mills Fields

It has been remarked elsewhere that the Cauchy problem associated with
(29) may be viewed as a problem of integrating a Lie algebra representation.
In this connection, one should be interested whether there is an appropriate
topological group associated with G. We have the following general procedure.

Let M be a compact Riemannian manifold of dimension d. Let L be a Lie
algebra of dimension n < co. We can always view L as a subalgebra of the
general linear Lie algebra gf(m;R), m > n (Ado’s theorem).

Assumption 1 Let G = {exp(L)}c C gl(m;R) be the smallest Lie group
containing the exponentials of elements of L. We assume that G is a closed
subset of gl(m;R).

Define,

R = C*(M; gf(m; R)),
£ =C®(M;L),
D = C®(M;G).

Clearly R is an algebra under pointwise multiplication and
LCR, DCR.

Let (U, ¢,) be a C* atlas for M. Then for a f1, fo € R, define

1/2

k
12

| fi=f2l= [/ dvol Y | D*(f1 = f2)¢s | ; (36)

a(UQ) /=0

where

|2 =t (£ 1) (37)
(Here k = d/2 + s, s > 0). Let Ry, be the completion of R and D, the
completion of D in the norm | --- ||z (D is closed in Ry). By the Sobolev

theorem, Ry is a Banach algebra and the group operation
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Dk X Dk — Dk,
(f1.f2) = fife (38)

when (f1f2)(m) = f1(m)f2(m) is continuous. Thus Dy, is a topological group.

By proceeding as before, one can give a Sobolev completion of £ to obtain
Ly, an infinite dimensional Lie algebra, where once again by the Sobolev
theorem the bracket operation

[., .]ﬁk X Ck — ﬁk,
(f1, f2) = [f1, f2]

with [f1, f2](m) = [fi(m), f2(m)] is continuous. Now, for a small enough
neighborhood V' (0) of 0 € £, one can define

exp : V(0) — Dy,
§ — exp(§)

by pointwise exponentiation. This permits us to provide a Lie group structure
on Dy with £y canonically identified as the Lie algebra of Dy.
The procedure outlined above appears to play a significant role in several
contexts (the index theorem Yang-Mills fields (Milter, 1980, 1981 [19,20])).
For our purposes, £ will be identified with a faithful matrix representation
of Gy. Thus we associate with the identification problem a Sobolev Lie group,
which is a subgroup of Dy corresponding with Gy

Remark 1. One of the important differences between the problem of filtering
and the problems of Yang—Mills theories is that in the latter case there are
natural norms for Sobolev completion. This follows from the fact that in Yang—
Mills theories, the algebra £ is compact (semisimple) and one has the Killing
form to work with. In filtering problems, Gy is never compact.

We use a representation of the form
p(t,x,0) = exp(g1(t,0)Al) ... exp(gn(t, 0)A™)po (39)

for the solution to the equation (8). In the case of Example 1, this takes
the form

0292 22 , 0
p(t,z0) = exp (gl(ta 0) (2995 - 2)) exp <92(t7 0)6 83:)

x exp (g3(t, 0)z) exp (ga(t, 0)I) po.

Differentiating and substituting in (29), we can obtain
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99

a0 =
%(t,&) = cosh(g1,0)y,
% _ —%sinh(gl,a)ya
369: - %qf (t,0)ga(1,0) “0)

and ¢;(0,0) =0 for i = 1,2,3,4, 6 € . The above first-order partial differen-
tial equations may be easily solved by quadrature and one has the represen-

tation
/ 2 [ ||
p(t,z,0) / sl |0|t exp < coth <|9 + z) t|0|>

o <|msmh(|mt)> xp (g4 (1,6) 6%)
X exp (gz(t,G)\/W) Po (93(t 0)6%\/10z, 0) iz, )

where pg(,0) € La(R) for every € © and is smooth in 6. Further, OR is a
bounded set and 0 closure 6.

In equation (39), g1 should be viewed as canonical coordinates of the sec-
ond kind on the corresponding Sobolev Lie group. Now expand g, and g3 to
obtain

k
292/ 'ygda k=1,2,...,
0
ok t 0.2k+1
=—) 90 — g,do, k=1,2,.... 42
kg /0(2k+1)!y g (42)

It follows that all the “information” contained by the observations {y, : 0 <
o < t} about the joint unnormalized conditional density is contained in the

sequence
k
TA{/‘;'yada; k:O,l,Z,...}. (43)

Thus T is nothing but a joint sufficient statistic for the identification problem.

5 Control Agents and Yang—Mills Fields

Consider an object, the motion equation for which can be represented as

& =r(zx,u), (44)
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where = (71,22,73) € Q C R? a function r(z,u) is derived when an
equation for dynamics of a particle in a field is reduced to Cauchy form,
and the field is characterized by a variable u. The equations similar to (44)
are widely used in physics and its applications. The equations of the concrete
particle dynamics are considered in (Daniel and Viallet, 1980 [6]) and in many
other papers. At present, control dynamics equation construction problems
deserve a great attention. For instance, these problems include controllable
models of dynamics of particles in scalar, vector, and spinor fields.

This section builds up a controllable model for dynamics of a particle in
electromagnetic and charged fields. The model is based on the gauge field
concept (Daniel, 1980 [6]), which allows us to formulate different principles
for an automatic control of the dynamics of the particles.

Constructing a controllable model means creating a transformation from a
field u to Yang—Mills field. The essence of this transition is as follows (Mitter,
1979 [18]). Instead of u, consider an n-component vector field f(z), 7 € T"
in a 4-dimensional space-time T". Let M (Z) be local gauge transformations
such that

f@ =M@)J @) (45)

and, for a fixed z, M(z) form a group G; € GL(n). Introduce an operator
Va,ie.,

~

va]/c\: aa+Ka(§)f(‘%) ) (46)

which satisfies the conditions

o~

M@)VL'@) = Vaf @), Vi=0.+K), (47)

where K, = —Q,C%; {Qy} is a basis of Lie algebra g for a group Gy, [G4, Qp] =
95, Qc; G, are structural constants of the Lie algebra g. The equations for
the values C? are derived from the Lagrangian Y;BYaaﬂ , where

ocy  ocr 1
a _ 2B 9% 1 a (mbrc _ obeoc
o8 = Fma ~ gad 3% (CaC’g CﬁCa), (48)

and the Lagrangian has the following form:
05V = V7 g1 C5.
Relation (47) yields the law of transformation for a field of matrices K,:

_10M(Z)

oz

K. (z) = MY (2)K,(2)M (%) + M(z)

Such transformation satisfies the group law g. A set of these transformations
forms a gauge group, formally denoted as
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It is shown in (Yatsenko, 1985 [27]) that the values C? are Yang-Mills
fields. The Yang-Mills field describes a parallel transfer in a charge field and
states its curvature. Such field can be brought in correspondence with the
notion of connectedness in some main fiber bundle (P,7',g), 7: P — T*,
where T is a base and § is a structure group.

A control in (P, Tt,g), m: P — T" is understood as a connectedness C”.
Notice that one can consider a projection 7 as a control. Thus, it is possible
to deal with a “controllable” fiber bundle (P,T!,g), 7: P — T* and a vector
field r(Z,u(C%)) on P instead of the initial object described by equation (44).

To solve control problems, it is necessary to construct equivalent and ag-
gregated models. We construct an equivalent model of a controllable object
(P, T',g), 7: P — T as follows. Let 7: P — T be a main g-fiber-bundle and
let I: Z — T' be some m-dimensional g-vector fiber bundle with a trivial ac-
tion, exerted by g onto Z. Assume also that a structure of a k > 1-dimensional
cellular set can be introduced on T"'. An equivariant embedding of 7 into 1
is understood as an embedding h: P — Z, commutating with projections. If
K > m, i.e., an action, exerted by h onto Z is free outside a zero section for 1,
then the main g-fiber-bundle 7: P — T can be equivariantly embedded into
l: Z — T'. An equivalent model of a controlled process is understood as a
ternary (Z,T*,g). In its turn, an equivalent model admits an exact aggrega-
tion, performed by means of a factorization of an induced vector fiber bundle.
In this case, it is possible to assume that a vector fiber bundle is specified by
an interrelation system w on some set X!. Introduce an equivalence relation
S on X'. This relation generates an object of the same nature, as the ini-
tial object X!, and a factor-object (F-object) is obtained, which possesses a
factorizing equivalence relation S. If (X1, w) generates an object of the same
nature, possessed by an initial object, and this generation is carried out on a
subset X7 of X1, then a subobject X; (@) (P-object) is derived. By using the
language of mathematical structure theory, it is possible to create a general
theory of aggregation of invariant models for nonlinear systems.

Consider the main automatic particle dynamics control principles, with
electromechanical systems with distributed parameters as an example. It is
shown in (Samoilenko, 1970 [21]) that a closed distributed automatic control
system can be represented by two subsystems S; and S, interrelated by the
electromagnetic field

S =51USs.

Represent B of fields of a whole control system state by a field of internal
states of each subsystem B; and Bs, of an interaction field By, and a by-
side field Bj3. In addition, represent By by two components X and U, i.e.,
By = X 4+ U, where X is an information carrier and U is a control field.
Consider U as the result of an influence exerted by X onto the control medium
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and simulated by an operator dependence U = B (X, E), where B is a control
operator and F is the control medium power supply field. An external field
B is also divided into two components, viz. into V and N, where V is a
field of control that is carried out according to a fixed space-time program,
and N is a field of disturbing effects. The control object is described by a
fiber bundle (P, T*,§) with a control C%(X,Y,U,V,N), where Y is a field of
an internal field state. It is clear that a section is only one in (P,T,9), if U,
V, and N are physically implementable and uniquely specified. The general
problem, concerning calculation of an electromagnetic field of control system,
consists of finding such physically implementable operator B and programmed
controlling influence V', under which the particle dynamics would meet certain
previously formulated requirements.

6 Multiagent Systems and Fiber Bundes

There is active research of controlled multiagent objects as information-
transforming systems during the last several years. Despite the achievements
that have been made in this area, effective mathematical methods for inves-
tigating such systems have not yet been developed. One possible approach is
based on the differential geometry methods of system theory (Van der Shaft,
is 1982, 1987 [24,25]). This section is devoted to one of the problems of this
area of research, that of developing a method for analyzing a class of mathe-
matical models of symmetric controlled processes. Assuming that the process
is described by a commutative diagram (Van der Shaft, 1982, 1987 [24, 25]),
which is based on the lamination concept, we propose a geometric method for
“identifying” its hidden structure.

Investigation of the information-transformation laws in various systems is
one of the most essential stages in the creation of new agents. The goal of
the experimental and theoretical research is the implementation of optimal
strategy using complex structure nonequilibrium processes in such systems.
To investigate these processes, it is required to develop the corresponding
mathematical methods. In this context, we propose an approach, which is
based on the assumption that one can use models from the mathematical
system theory to adequately describe informational processes. The essence of
this approach is in the following.

Some dynamic system, .S, which implements a transformation, F', or an
input informational action, U, into an output one, X, is considered. It is
assumed that one can affect the information-transforming process by a re-
configuring action that changes the dynamic behavior, structure, symmetry,
etc., of the process. We refer to the objects described in the preceding S as
dynamic information-transforming agents (DITA).

The connection between the input and output actions is necessary for
obtaining answers to questions about the method of programming the entire
system, optimizing the flow of informational signals, and the interconnections
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among the global system properties (stability, controllability, etc.) and the
corresponding local properties of the various subsystems. One has to answer
those questions also when solving pattern-recognition problems, constructing
an associative memory. A generalized description of DITA that contains a
large number of subsystems (for example, a neural network) is postulated in
this section: the controlled process in the DITA is described adequately by a
commutative diagram that generalizes the concept of a nonlinear controlled
dynamic system on a manifold. Taking into account the symmetry concept,
which is characteristic of classic mechanics (Arnold, 1983 [1]), one has to
transfer it to the DITA, “identify” the hidden structure of the informational
process, and demonstrate that the proposed model admits local and/or global
decompositions into smaller-dimensionality feedback subsystems.

We note that the decomposition idea was first applied to discretely sym-
metric automatic control systems by Yu. Samoylenko (the elementary cell
method) (Samoilenko, 1970 [22]). Continuous symmetry group dynamic sys-
tems were considered by Van der Shaft (Van der Shaft, 1987 [25]). Substantive
results on the decomposability of systems with symmetries have been obtained
by A.Y. Krener (Krener, 1973 [13]) and others. However, this question remains
open for DITAs.

Necessary concepts and definitions. Some definitions and concepts
that are necessary for describing the DITA structure and the conditions for
its decomposability are presented in this section. The necessary notions about
manifolds, connectivities, and distributions are given in (Griffiths, 1983 [8]).
We introduce the definition of a nonlinear DITA.

Definition 8. Consider a triple, F(B, M, ), where B is a smooth fiber over
M with the projection m : B — M mwas is the natural projection of TM on
M; and i is a smooth mapping such that the diagram presented in Figure 3
is commutative, by a “geometrical model of the agent.”

We interpret the manifold M as the DITA state space and the 7=*(z) € B
layer as the space of input action values that depends in the general case on the
current system state. If one chooses the coordinates (x,u), which correspond
with the B, layer, then this definition of the DITA, F, corresponds locally
with the nonlinear transformation v : (z,u) — (z,v¢(x,u)) and the dynamic
system

z(t) = w(x(t),u(t)), wu(t)el. (49)
4
T T™M
M

Figure 3. Diagram of a nonlinear controlled DITA
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where x is the DITA state vector, u = (u',u?) are the control actions, u!(-, )
is the vector of the coded input informational action that depends in general
on time and on the current state, and u?(-,-) is the action used to reconfigure
the dynamic properties of the DITA and to train it.

The control algorithm, 2, inputs to the system the capability of trans-
forming the set of input actions into a set of output signals that allows one to
identify the input images uniquely. In essence, it realizes the decoding process,
which identifies the input images. In the simplest case, it can be realized on
the basis of the successive input action segmentation method. Such a method
facilitates a unique separation of the input images by the use of the simplest
binary decoding rule.

Definition 9. Let M be a smooth manifold. We say that the smooth mapping
Q : G x M such that:

1. Q(e,x) =x for allz € M, and
2. Q(g,Q(h,x)) = Q(gh,x) for any g and h € G, and all x € M, is the left
action (or G-action) of the G Lie group on M.

We fix one of the variables for various time instants and examine the Q
action as a function of the remaining variables. Let @, : M — M denote the
function x — Q(g,z) and Q, : G — M the function g| — Q(g,x). We note
that as (Qy) " = Q, ', Qg is a diffemorphism.

We introduce the definition of group action on a manifold.

Definition 10. Let QQ be the action of G on M. We say that the set G- x =
{Qqy(x)|g € G} is the orbit (Q-orbit) of the point x € M. The action is free
at x if g|— Qq(x) is one-to-one. It is free on M if and only if it is free at all
e M.

We now introduce the concept of global symmetry of a controlled DITA.

Definition 11. Let F'(B, M, ) be a nonlinear controlled DITA, and 6 and Q
be actions of G on B and M, respectively. Then, F' has symmetry (G,0,Q) if
the diagram presented in Figure 4 is cummutative for all g € G.

We consider, within the framework of the presented definition, the special
case in which the symmetry lies “entirely within the state space.”

B, .
M‘ AV
T T M T TM T
M o M
g

Figure 4. A commutative diagram of DITA with symmetries
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Definition 12. Let B = M x U, where U is some manifold. Then, (G,Q) is
a symmetry of the state space of system F'(B, M,v) if (G,0,Q) is a symmetry
of F for 0y = (Qg, Idy) : (z,u) — (Qq(x),u).

Global state space symmetry can be defined only for a DITA B, of which
is a trivial lamination as otherwise the input spaces would depend on the state
and the problem is made substantially more complicated.

We introduce now the definition of local symmetry.

Definition 13. We assume that Q : G x M — M is an action and that € €
T.G. Then, Q*(Rx M — M) : (t,z)| — Q(expté, z), where exp : T.G — G is
the usual exponential mapping, is the R-action on M, and QS is the complete
flow on M. We say that the corresponding vector field on M, which is defined
by the expression

d
Em(x) = %Q(exptg,x) o’ (50)

18 the infinitesimal action generator, which corresponds with &.

Let X; denote the flow of the vector field X, that is, X; = F;(Xo). It is
obvious from the definition of the infinitesimal generator that if (G, 6, Q) is a
symmetry of the F'(B, M, 1)) system, then the diagram presented in Figure 5
is commutative for all t € R and ¢ € T.G.

On the basis of the local commutativity property, we present the following
definition of infinitesimal DITA symmetry.

Definition 14. Let F(B,Mmb) be a nonlinear DITA. Then, (G,0,Q) is an
infinitesimal symmetry of F if, for each xo € M, there exists an open neigh-
borhood O of the point xo and £ > 0 such that

(Ear)e (&) = P ((€): (D)), (51)

forallbe n=Y(O), |t| < &, and || € ||< 1, € € TG, where || - || is an arbitrary
fized norm on T.G.

One can define an infinitely small state space symmetry for nontrivial
laminations of the input actions manifold when one can introduce integratable
connectivity. For this, we introduce Definition 15.

Ept _
M AV
T TM T(,fM)t TM T
,W/M %x
M M
(En)t

Figure 5. Diagram of a symmetric DITA
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Definition 15. Let H(:) be an integratable connectivity on B and (G,0,Q)
be a symmetry of F'. Then, (G,0,Q) is an infinitesimal state space symmetry
if €g(b) € H(b) for all & € TG, that is, the infinitesimal generators 6 are
horizontal.

We introduce a definition of feedback equivalence of two DITAs in analogy
with (Van der Shaft, 1982 [24]).

Definition 16. A system, F(B,M,v), is feedback equivalent to a system,
F'(B,M,), if there exists an isomorphism, v : B — B, such that the di-
agram presented in Figure 6 is commutative.

Isomorphism means that, for x € M, 7, is a mapping from the layer
over x’ into the layer over z’, and it is a diffeomorphism. Consequently, this
corresponds with a “control feedback.”

The local structure of DITAs with symmetries. Because we are
interested in the local structure of a DITA, we have to assume that the system
has an infinitesimal symmetry, which satisfies some nonsingularity condition.
For this, we set the dimensionality of M to n and that of G to k, where
k < n. We note that the action @ : G x M — M is free at the point m € M
if @y : G — M is one-to-one. This is equivalent to saying that the tangent
mapping @ is of full rank, that is, rank Q = dim G. Hence, @ is free on M if
and only if it is free in some neighborhood of m. We say that an action that
satisfies this condition is nonsingular at the point m.

The basic result of this section is that the existence of an infinitesimal
symmetry in a neighborhood of a singular point in a DITA makes it possible
to decompose the system into a cascade union of simpler subsystems. The
structure of these subsystems depends, in general, on the symmetry group G.
If, for example, G has a nontrivial center, then one of the subsystems is in
fact a quadrature subsystem.

Let, in addition, C = h € G|jg = gh for all g € G be the center of
the G group to which the kernel, C'y, of the Lie semialgebra T.G, which has
the same dimensionality as C, corresponds. Hence, if G has an [-dimensional
center, there exist linearly independent vectors &', ...,&% € T,G such that
(€, =0forall 1 <i<land 1<j<k.

Y
¥
B ~TM = v B
™
m m
M

Figure 6. Diagram of feedback-equivalent DITAs
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Using the results of Van der Shaft, Markus, and Grizzle’s investigations
(Van der Shaft, 1982, 1987 [24,25]; Marcus, 1973, 1984 [16,17]; Grizzle, 1983
[9]) that deal with the properties of systems with symmetries as applied to
DITAs, one can formulate the following theorems.

Theorem 7. Let us assume that F(B,M7 &) is a controlled DITA with an
infinitesimal state space symmetry, (G,0,Q), that G has an l-dimensional
center, and that @Q is nonsingular at the point m € M. Then, the B coordinates
(x1,...,Tn,u) in a neighborhood of m exist such that F s given in these
coordinates by the expression.

Using the obtained results for systems for infinitesimal state space sym-
metries, one can propose the structure of the decomposed system. It suffices
to demonstrate for this that the decomposed system with infinitesimal sym-
metry is locally feedback-equivalent to the original system with infinitesimal
state space symmetry.

Definition 17. Let F'(B, M, 1) be a controlled DITA AandAOA be an open subset
of M. Then, we say that a system of the form F(x~'(0),0, )|x~'(0) is F|O
(F' bounded on O).

Theorem 8. Let F(B, M, ) have an infinitesimal symmetry (G,0,Q) and Q
be nonsingular at the point m. There exist a neighborhood of m and a system
F with infinitesimal symmetry (G,0,Q) such that F’\O is feedback equivalent
to the I system.

Let F(B, M) be a controlled DITA with symmetry (G,0,Q) and @ be
nonsingular at the point m. Then, in a neighborhood of m, F is feedback-
equivalent to F' with infinitesimal symmetry and has the structure shown in
Figure 7, where 7 is the feedback function, the L* are nonlinear subsystems of
dimensions n—k and k—I, respectively, and () is an [-dimensional “quadrature”
system

J.Ci:fi(ﬁlil,...,l’n_k,u), i:l,...,?’l—k,
x]:f](x]_,,Z‘n_]_,U), Z:n_k+1?’k (52)

The global structure of DITA. The decomposability of a DITA with
global symmetries is the result of factoring the DITA state space, which follows
from the properties of a symmetry.

We introduce the definition of proper action.

Definition 18. Let Q be a G-action on M. We say that Q acts properly if
(g,m) — m is a proper mapping, that is, if the pre-images of compact sets are
compact.

This definition is equivalent to the following assertion: whenever z,
converges on M and @y, (x,) converges on M, g, includes a subsequence,
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\J

\J

I
’7

b 2
f
0 -

\

Figure 7. Local structure of DITA with infinitesimal symmetries

which converges in G. Hence, if G is compact, this condition is satisfied auto-
matically. Membership in the same @-orbit is an equivalence relation on M.
Let M /G be the set of equivalence classes and p : M — M /G be specified by
the relation p(m) = Gm. We introduce on M /G a relations topology, that is,
V C M/G is open if and only if p~1(V) is open on M. In general, M /G can
be a rather poor space.

If G acts freely and properly on M, then M/G is a smooth manifold and
p: M — M/G is the principal lamination with Lie group G.

We introduce the following constraints on the principal lamination:

(1) p is a smooth full-rank function;

(2) p: M — M/G has a cross section (that is, a smooth mapping o : M/G —
M such that p - o a is the identity mapping on M /G if and only if M is
equivalent to M/G x G;

(3) the topological conditions that guarantee the existence of a section, that
is, if M/G or G is a contraction mapping, a cross section must exist, are
specified.

We formulate a theorem, which is necessary for obtaining a global factor-
ization of the DITA state space.

Let Q. : G — G - m be specified by g — Q(G, m). The following result
about the global structure of a DITA with symmetries holds.

Theorem 9. We assume that F(M x U, M,1) is a controlled DITA with a
state space symmetry (C, Q). Then, if Q is free and proper, andp : M — M /G
has a cross section o, then I is isomorphic to the system
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y= W(y’ u)v
g = (TeLg)(TeQa(y))_l [W(U(y)vu) - (TyO')!p(y, u)] ) (53)

defined on M/G x G.

We formulate an assertion on feedback equivalence of DITAs with
symmetries.

Assertion 1 Let the DITA F(M x U, M,v) have a symmetry (G,0,Q) such
that Q is free and proper. Then, there exists a system F with symmetry (G, Q)
to which F is feedback equivalent under the condition that p: M — M/G has
a cross section o.

Combining Theorem 9 and Assertion 1, we obtain the following corollary

Corollary 1. Let DITA F(M x U, M, ) have a symmetry (G,0,Q), Q be
free and proper, and p : M — M/G have a cross section. Then, there exists
a model of DITA F with state space symmetry (G, Q) to which F' is feedback-
equivalent. Consequently, F' has a global structure.

The feasibility of applying the results to the investigation of
agents. It is of interest to investigate the decomposability of DITAs com-
posed of neural-like agents that are described by the system of equations

(t) = ¢ ((t), ult)). (54)

One can define for (54) a decomposed system L as a nontrivial cascade
of subsystem L' and L2. If the Lie algebra Ji(L) is the semidirect sum of
finite-dimensional subalgebra L' and the ideal of L2, it has a nontrivial cas-
cade decomposition into subsystems L' and L? such that ﬁ(Ll) = L', and
L(L?) = L?. Using this fact and Levy’s theorem, one can demonstrate that if
L(L) is finite-dimensional, the DITA admits a nontrivial decomposition into a
parallel cascade of L’ systems with simple Lie algebras followed by a cascade
of one-dimensional systems, L7. As a result, the basic informational transfor-
mation is done in subsystems with simple Lie algebras. The state space, M,
of the original system, L, is adopted here as the state space of these systems.
Therefore, despite the fact that the system has been partitioned into simpler
parts, the overall dimensionality of these parts is, in general, larger than that
of the original system. (One can reduce at the local level this dimensionality
by replacing the L? system by matrix equivalents defined on the exponential
functions of the Lie algebras that correspond with them.) These results can
be compared with the conditions for decomposability obtained by analyzing
the DITA symmetries described in this section for which the subsystem di-
mensionality equals that of the original system. No assumptions about the
finite dimensionality of the Lie algebra are required here. We consider a class
of neural nets described by the linear-analytic equations
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k
o(t) = f(z) + Zuigi($)~ (55)

One can formulate for it the necessary and sufficient conditions for parallel-
cascade decomposability by Lie algebras. In doing so, one can pose the con-
dition that each component of the input action be applied to only one of
the subsystems, that is, the decomposition procedure partitions the inputs
into disjoint subsets. However, such an approach cannot be applied to the
decomposition of a DITA with scalar input.

If DITA F(B, M, ) has an infinitesimal symmetry (G, 6, Q), local com-
mutativity of the diagram means that ¢ xep = €, and 7w xeg = &,. Let
Ap = span{¢|lep € T.G} and the same hold for A,,. Then, ¢ x AB C A,
and mx* Ag = A, and A4,,, is a controlled invariant distribution. Models of
neural networks, including affine ones, have invariant distributions that induce
decompositions of the system into simpler subsystems. However, because the
symmetry conditions are constraints, the decompositions are obtained as more
detailed and structured.

A class of dynamic information-transforming systems that are described
by a commutative diagram is examined in this section. Constraints on systems
with symmetry under which one can expose, explicitly the hidden structure of
the controlled process are formulated. We show that the effect of the DITA
on the information-transforming process depends substantially on the type of
system symmetry. The informational process is subject here to the action of
cascade group, transformations, or the action of a dynamic-transformation
operator with feedback. The obtained results can be expanded to adaptive
learning systems by introducing the corresponding optimization models. When
doing so, one can expect that a DITA of which the quality functional is invari-
ant in symmetry-conserving transformations will be described adequately by a
nonlinear system with optimal feedback and will have a differential-geometric
structure, which is of interest from the point of view of applications. We plan
to use the results of the investigations presented here in the study of a syn-
ergetic model of a neural network on the basis of potential-dependent ion
channels in biomembranes.

7 Fiber Bundles and Observability

In the past decade, an important work has been done on a differential geo-
metric approach to nonlinear input state-output systems, which in local co-
ordinates have the form

:'c:g(a:,u), y:h(x)v (56)

where x is the state of the system, w is the input, and y is the output.
Most of the attention has been directed to the formulation in this context
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of fundamental system theoretic concepts like controllability, observability,
minimality, and realization theory.

In spite of some very natural formulations and elegant results, which have

been achieved, there are certain disadvantages in the whole approach, from
which we summarize the following points,

(a)

Normally the equations
&= g(z,u) (57)

are interpreted as a family of vector fields on a manifold parameterized
by u; i.e., for every fixed @, g(-,u) is a globally defined vector field. We
propose another framework by looking at (57) as a coordinatization of

g -

TX

X

where B is a fiber bundle above the state space manifold X, and the fibers
of B are the state-dependent input spaces, and T'X is as usual the tangent
bundle of X (the possible velocities at every point of X).

The “usual” definition of observability has some drawbacks. In fact, ob-
servability is defined as distinguishability; i.e., for every z; and x5 (ele-
ments of X)) there exists a certain input function (in principle dependent
on z7 and x9) such that the output function of the system starting from
21 under the influence of this input function is different from the output
function of the system starting from x5 under the influence of the same
input function. Of course, from a practical point of view this notion of
observability is not very useful, and also is not in accord with the usual
definition of observability or reconstructibility for general systems.
Hence, despite the work of Sussmann (Sussmann, 1983 [23]) on universal
inputs, i.e., input functions, which distinguish between every two states
1 and xo, this approach remains unsatisfactory.

In the class of nonlinear systems (56), memoryless systems

y = h(u) (58)
are not included. Of course, one could extend the system (56) to the form
i=g(z,u), y=h(zu), (59)

but this gives, if one wants to regard observability as distinguishability,
the following rather complicated notion of observability. As can be seen,
distinguishability of (59) with y € RP, v € R™ and = € R™ is equivalent
to distinguishability of

;ic:g(x,u), y:ﬁ(m), (60)
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I —

Figure 8. Input State-Output System for Ideal Diode

where h : R" — (RP)R" is defined by h(z)(u) = h(z,u).

Checking the Lie algebra conditions for distinguishability for the system
(60) is not very easy.

It is often not clear how to distinguish a priori between inputs and outputs.
Especially in the case of a nonlinear system, it could be possible that a
separation of what we shall call external variables in input variables and
output variables should be interpreted only locally. An example is the
(nearly) ideal diode given by the I — V' characteristic in Figure 8. For
I < 0, it is natural to regard I as the input and V' as the output, while
for V' > 0 it is natural to see V as the input and I as the output. Around
an input-output description should be given in the scattering variables
(I —V,I+ V). Moreover, in the case of nonlinear systems, it can happen
that a global separation of the external variables in inputs and outputs
is simply not possible! This results in a definition of a system, which
is a generalization of the usual input-output framework. It appears that
various notions like the definitions of autonomous (i.e., without inputs),
memoryless, time-reversible, Hamiltonian, and gradient systems are very
natural in this framework.

7.1 Nonlinear Model of Agents

The (say C*°) agents can be represented in the commutative diagram

b

T TX xW
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where (all spaces are smooth manifolds) B is a fiber bundle above X with
projection 7, T'X is the tangent bundle of X, m, the natural projection of
TX on X, and f is a smooth map. W is the space of external variables (think
of the inputs and the outputs). X is the state space, and the fiber 7_1(x) in
B above € X represents the space of inputs (to be seen initially as dummy
variables), which is state dependent (think of forces acting at different points
of a curved surface).

This definition formalizes the idea that at every point z € X we have a
set of possible velocities (elements of T'X') and possible values of the external
variables (elements of W), namely the space

f(r () Cc T, X x W.

We denote the system (61) by X(X, W, B, f). It is easily seen that in local
coordinates x for X, v for the fibers of B, w for W, and with f factored in
f = (g,h), the system is given by

z=g(x,v), w=h(z,v). (62)

Of course one should ask oneself how this kind of system formulation is con-
nected with the usual input-output setting. In fact, by adding more and more
assumptions successively to the very general formulation (61), we shall dis-
tinguish among three important situations, of which the last is equivalent to
the “usual” interpretation of system (56).

(i) Suppose the map h restricted to the fibers of B is an immersive map into
W (this is equivalent to assuming that the matrix Oh/dv is injective).
Then:

Lemma 1. Let h restricted to the fibers of 4 be an immersion into W. Let
(Z,w) and W be points in B and W, respectively, such that h(Z,v) =w. Then
locally around (T,v) and @ there are coordinates (x,v) for B (such that v are
coordinates for the fibers of), coordinates (wy,ws) for W, and a map h such
that h has the form

(:ZZ,U) > h> (wl,wZ) = (E(.I,U),’U). (63)

Proof. The lemma follows from the implicit function theorem.

Hence locally we can interpret a part of the external variables, i.e., wy, as
the outputs, and a complementary part, i.e., wo, as the inputs! If we denote
wy by y and we by u, then system (62) has the form (of course only locally)

& =vylx,u), y=h(z,u). (64)
]

(ii) Now we not only assume that 0h/Jv is injective, which results in a local
input-output parameterization (64), but we also assume that the output
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set denoted by Y is globally defined. Moreover, we assume that W is a
fiber bundle above Y, which we call p : W — Y, and that h is a bundle
morphism (i.e., maps fibers of B into fibers of W). Then:

Lemma 2. Let h : B — W be a bundle morphism, which is a diffeomorphism
restricted to the fibers. LetT € X andy € Y be such that h(r=1(Z)) = p~ (7).
Take coordinates x around T for X and coordinates y aroundy forY . Let (T,7)
be a point in the fiber above T and let (g,w) be a point in the fiber above y
such that h(Z,v) = (g,u). Then there are local coordinates v around v for the
fibers of B, coordinates u around @ for the fibers of W, and a map h: X — Y
such that h has the form

(z,v) > h > (y,u) = (h(z),v). (65)

Proof. Choose a locally trivializing chart (0,¢) of W around y. Then ¢ :
p~1(0) — 0 x U, with U the standard fiber of W. Take local coordinates u
around @ € U. Then (y,u) forms a coordinate system for W around (7, ).
Because h is a bundle morphism, it has the form

(xvﬁ) > h>(y,u) = (E(l‘),h/(l‘,ﬁ)),

where (2,7) is a coordinate system for B around (Z,7). Now adapt this last
coordinate system by defining

v=(h)""(x,u) with 2 fixed.

Because h restricted to the fibers is a diffeomorphism, v is well defined
and (x,v) forms a coordinate system for B in which h has the form

(z,0) > h > (y,u) = (h(z),u).

Hence under the conditions of Lemma 2, our system is locally (around T € X
and y € Y') described by

& =g(x,u), y=nh) (66)
n

This input-output formulation is essentially the same as the one proposed by
Brockett and Takens, who take the input spaces as the fibers of a bundle above
a globally defined output space Y. In fact, this situation should be regarded
as the normal setting for nonlinear control systems.

(iii) Take the same assumptions as in (ii) and assume moreover that W is
a trivial bundle, i.e., W =Y x U, and that B is a trivial bundle, i.e.,
B = X x V. Because h is a diffeomorphism on the fibers, we can identify
U and V. In this case, the output set Y and the input set U are globally
defined, and the system is described by

T = g(m,u), Y= h(CL'), (67)
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where for each fixed @, g(-, %) is a globally defined vector field on X. This
is the “usual” interpretation of (56).

Remark 2.

1. When h restricted to the fibers of B is mot an immersion, we have a
situation where we could speak of “hidden inputs.” In fact, in this case
there are variables in the fibers of B that can affect the internal state
behavior via the equation & = g(x, v) but that cannot be directly identified
with some of the external variables.

2. The splitting of the external variables into inputs and outputs as described
in Lemma 1 is of course by no means unique! This fact has interesting
implications, even in the linear case, which we shall not pursue further
here.

3. From Lemma 2, it is clear that the coordinatization of the fibers of the
bundle W uniquely determines, via h, the coordinatization of the fibers
of B. It should be remarked that a coordinatization of the fibers of W
is locally equivalent to the existence of an (integrable) connection on the
bundle W, and that one coordinatization is linked with another by what is
essentially an output feedback transformation, i.e., a bundle isomorphism
from W into itself. Again we do not comment further on this point.

4. A beautiful example of this kind of system is the Lagrangian system. Here
the output space is equal to the configuration space @ of a mechanical
system. The state space X is the configuration space with the velocity
space, so X = TQ. The space W is equal to T*@Q (the cotangent bundle
of @), with the fibers of T*(@Q representing the external forces. When we
denote the natural projection of T'QQ on @ by p, then B is just p*T*Q
(the pullback bundle via p). Now given a function L : TQ — R (called
the Lagrangian), we can construct a symplectic form d(0L/9¢) A dq (with
(¢,q) coordinates for T'Q) on T'Q), which uniquely determines a map g :
B — TTQ. Finally, in coordinates the system is given by

ij:F(q,d)+ZUy‘Zy(q,é), y=q, (68)

with the vector fields F(q,q) and Z;(q,q) satisfying certain conditions.
Moreover the vector fields Z; commute, i.e., [Z;, Z;] = 0 for all 4, j, a fact
that has a very interesting interpretation.

5. Most cases where B can be taken as trivial are generated by a space X
such that T'X is a trivial bundle. For instance, when X is a Lie group,
TX is automatically trivial.

7.2 Minimality and Observability

Minimality. We want to give a definition of minimality for a general nonlinear
agent.
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Definition 19. Let X (X, W, B, f) and X' (X', W, B’, ') be two smooth sys-
tems. Then we say X' < X if there exist surjective submersions ¢ : X —
X', ®: B — B’ such that the diagram

f -
B TX xW

(69)
commutes.

XY is called equivalent to X' (denoted X ~ X’) if ¢ and & are diffeomor-
phisms.
We call X minimal if X/ < X = X/ ~ X,

P
B > B’
f /
id
w W
T X X 7’
TX TX'
b
X U'd
Y Y
X . ¢
¢

Remark 3. This definition formalizes the idea that we call X’ less compli-
cated than X(X' < X)) if X’ consists of a set of trajectories in the state
space, smaller than the set of trajectories of X', but which generates the
same external behavior. (The external behavior X, of X' (X, W, B, f) consists
of the possible functions w : R — W generated by X (X, W, B, f). Hence,
when we define X := {(z,w) : R — X x W], absolutely continuous and
(#(t),w(t)) inf(7~1(x(t)))a.e.}, then X, is just the projection of £ on W),

Remark /4. Notice that we only formalize the regular case by asking that @ and
¢ be surjective as well as submersive. In fact we could, for instance, allow that
at isolated points ¢ or @ are not submersive. However, we do not discuss this
problem here, and treat only the regular case as described in Definition 19.
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Remark 5. Notice that X7 < Yy and Xy < X5 need not imply Xy ~ X. This
fact leads to very interesting problems, which we do not pursue further at this
time.

Of course, Definition 19 is an elegant but rather abstract definition of
minimality. From a differential geometric point of view, it is very natural to
see what these conditions of commutativity mean locally. In fact, we will see
in Theorem 11 that locally these conditions of commutativity do have a very
direct interpretation. But first we have to state some preparatory lemmas and
theorems.

Let us look at (69). Because @ is a submersion, it induces an involutive
distribution D on B given by

D:={Z e TB|$.Z =0}

(the foliation generated by D is of the form &~ !(c) with ¢ constant). In the
same way, ¢ induces an involutive distribution E on X. Now the information
in the diagram (69) is contained in three subdiagrams (we assume f = (g, h)

and f' = (¢',h)):

B v - B
h % I
W~ - W
1d
B = - B
T ! 11
X - X/
¢
B @ - B
g g 111
TX ~T X!

P
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Lemma 3. Locally the diagrams I, II, III are equivalent, respectively, to

I': D Ckerdh,
II': n.D=FE,
III': g.DCTE =Tm.(D). (70)

Proof. I' and II' are trivial. For I1I' observe that, when ¢ induces a distri-
bution F on X, then ¢, induces the distribution TE on T X. |

Now we want to relate conditions I’, I, ITI' with the theory of nonlinear
disturbance decoupling. Consider in local coordinates the system

&= f(z)+ Z u;g;(x) on a manifold X.
i=1

We can interpret this as an affine distribution on manifold.

Theorem 10. Let D € A(Ao). Then the condition
[A,D] C D+ A (71)

(we call such a D € A(Ag)A(mod Ag) invariant) is equivalent to the two
conditions (a) there exists a vector field F' € A such that [F, D] C D; (b) there
exist vector fields B; € A such that span {B;} = A¢ and [B;, D] C D.

With the aid of this theorem, the disturbance decoupling problem is readily
solved. The key to connecting our situation with this theory is given by the
concept of the extended system, which is of interest in itself.

Definition 20. (Extended system). Let
I

"TX xW

X

Then we define the extended system of X (X, W, B, f) as follows: We define
Ag as the vertical tangent space of B, i.e.,

Ay :={Z € TB|n.Z = 0}.

Note that Aq is automatically involutive.
Now take a point (Z,7) € B. Then ¢(7,v) is an element of TzX. Now
define
A(@,0) :=1{Z € Tz Z = g(7,70)}.
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So A(%,v) consists of the possible lifts of ¢(Z,7) in (Z,v). Then it is easy
to see that A is an affine distribution on B, and that A — A = Ay. We call the
affine system (A, Ag) on B constructed in this way, together with the output
function h : B — W, the extended system Y¢(X, W, B, f).

We have the following:

Lemma 4.

(a) Let D be an involutive distribution on B such that D N Aqy has constant
dimension. Then m,D is a well-defined and involutive distribution on X
if and only if D 4+ Aq is an involutive distribution.

(b) Let D be an involutive distribution on B and let D N Ay have constant
dimension. Then the following two conditions are equivalent: (i) m.D is
a well-defined and involutive distribution on X, and g.D C Tm.D. (ii)
[A, D] C D+ Ay.

Proof.

(a) Let D+ Ap be involutive. Because D and Ag are involutive, this is equiv-
alent to [D, Ag] C D+ Ay. Applying Theorem 10 to this case gives a basis
{Z1,...,Zy} of D such that [Z;, Ag] C= Ay. In coordinates (z,u) for B,
the last expression is equivalent to Z;(z,u) = (Ziz, Ziu(2,u)), where Z;,
and Z;, are the components of Z; in the x- and u-directions, respectively.
Hence 7, D = span{Zi,, ..., Zr,} and is easily seen to be involutive. The
converse statement is trivial.

(b) Assume (i); then there exist coordinates (z,u) for B such that D =
{0/0x1,...,0/0x,} (the integral manifolds of D are contained in the sec-
tions u = const ). Then g.D C T, D is equivalent to

(),
Li jecomp

withi=1,...,kand j = k+I,...,n (nis the dimension of X). From these
expressions, [A, D] C D + Ay readily follows. The converse statement is
based on the same argument.

Now we are prepared to state the main theorem of this section. First we
have to give another definition.

Definition 21. (Local minimality). Let X(X, W, B, f) be a smooth system.
Let T € X. Then X(X,W, B, f) is called locally minimal (around T) if when
D and E are distributions (around T) that satisfy conditions I', II', ITI" of
Lemma 3, then D and E must be the zero distributions.

It is readily seen from Definition 19 that minimality of X(X, W, B, f) lo-
cally implies local minimality (locally every involutive distribution can be
factored out).

Combining Lemma 3, Definition 20, and Lemma 4 we can state:
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Theorem 11. X(X, W, B, f = (g,h)) is locally minimal if and only if the
extended system X¢(X, W, B, f = (g, h)) satisfies the condition that there exist
no nonzero involutive distribution D on B such that

(i) [A,D)C D+ Ay,
(14) D C ker dh. (72)

Remark 6. 1t is very surprising that the condition of minimality locally comes
down to a condition on the extended system, which is in some sense an infin-
itesimal version of the original system.

Remark 7. Actually there is a conceptual algorithm to check local minimality.
Define

A7 Ag + D) := {vector fields Z on B |[A, Z] C Ag + D}.
Then we can define the sequence {D™"}, 1 =0,1,2,... as follows:

D° = ker dh,
D' =DFInATY Ay + DY, p=1,2,....

Then {D*}, n = 0,1,2,..., is a decreasing sequence of involutive distribu-
tions, and for some k > dim(ker dh)D* = D* for all ;1 = k. Then D* is the
mazximal involutive distribution that satisfies

(4) [A, DF] € DF + A,
(i) D* C ker dh.

From Theorem 11, it follows that X(X, W, B, f) is locally minimal if and
only if D* = O.

Observability. It is natural to suppose that our definition of minimality
has something to do with controllability and observability. However, because
the definition of a nonlinear system (61) also includes autonomous systerms,
(i.e., no inputs), minimality cannot be expected to imply, in general, some
kind of controllability. In fact, an autonomous linear system

i=Ax, y=Cz

is easily seen to be minimal if and only if (A, C) is observable. Moreover, it
seems natural to define a notion of observability only in the case that the
system (61) has at least a local input-output representation; i.e., we make
the standing assumption that (0h/0v) is injective (see Lemma 1). Therefore,
locally we have as our system

it =g(z,u), y=h(z,u) (73)

for every possible input-output coordinatization (y,u) of W. For such an
input-output system local minimality implies the following notion of observ-
ability, which we call local distinguishability.
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Proposition 2. Choose a local input-output parameterization as in (73).
Then local minimality implies that the only involutive distribution E on X
that satisfies

(i) [9(-;u), E] C E for all u (E is invariant under g(-,u)),
(i) E C ker dyh(-,u) for all w (dyh means differentiation with respect to x)
15 the zero distribution.

Proof. Let E be a distribution on X that satisfies (i) and (ii). Then we can
lift F in a trivial way to a distribution D on B by requiring that the integral
manifolds of D be contained in the sections u = const . Then one can see that
D satisfies [A, D] C D+ Ay and D C ker dh. Hence D =0 and FE = 0. [ ]

Remark 8. Tt is easily seen that, under the condition (0h/0v) injective local
minimality. We can state the following Corollary 2.

Corollary 2. Suppose there exists an input-output coordinatization

& =g(z,u), y=h(z). (74)
Then heal minimality implies local weak observability.

Proof. As can be seen from Proposition 2, local minimality in this more re-
stricted case implies that the only involutive distribution F on X that satisfies

(i) [g9(,u),E]C E forall u,
(ii) E C ker dh

is the zero distribution. It can be seen that the biggest distribution that sat-
isfies (i) and (ii) is given by the null space of the codistribution P generated
by elements of the form

Ly utyLg(u2)- "Lg(.’uk)dﬁ, with u’ arbitrary.

Because this distribution has to be zero, the codistribution P equals T; X,
in every € X. This is, apart from singularities (which we don’t want to con-
sider), equivalent to local weak observability. |

Moreover, let (74) be locally weakly observable. Then all feedback transfor-
mations u — v = «(xz,u) that leave the form (74) invariant (i.e., y is only the
function z) are exactly the output feedback transformations u — v = a(y, ).
It can be easily seen in local coordinates that after such output feedback is
applied, the modified system is still locally weakly observable.

In Proposition 2 and its corollary, we have shown that local minimality
implies a notion of observability, which generalizes the usual notion of local
weak observability. Now we will define a much stronger notion. Let us denote
the (defined only locally) vector field & = g(z,u) for fixed u by g% and the
function h(x,u) by h™ (with g and h as in (73)).
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Definition 22. Let X(X,W, B, ) = (g, h) be a smooth nonlinear system. It
18 called strongly observable if for every possible input-output coordinatization
(73) the autonomous system

& =g"(x), y=h"(=) (75)
with W constant is locally weakly observable, for all u.

Remark 9. Let X (X, W, B, f = (g, h)) be strongly observable. Take one input-
output coordinatization (y, ). The system has the form (in these coordinates)

& =g(z,u), y=h(z,u).

Because the system is strongly observable, every constant input-function
(constant in this coordinatization) distinguishes between two nearby states.
However, in every other input-output coordinatization, every constant (i.e.,
in this coordinatization) input function also distinguishes. This implies that
in the first coordinatization, every C'*° input function distinguishes. Because
the C'°° input functions are dense in a reasonable set of input functions, every
input function in this coordinatization distinguishes.

Proposition 3. Consider the Pfaffian system constructed as follows:
u u w n—1 u
P =dh" + Lgwdh® + Lgw(Lgwdh®) + - - + Lz dh",

with n the dimension of X and Lg= the Lie deriwative with respect to g*.
As is well-known, the condition that the Pfaffian system P as defined above
satisfies the condition P, = T X for all x € X (the so-called observability
rank condition) implies that the system

i=g"(x), y=h"=)

18 locally weakly observable. Hence, when the observability rank condition is
satisfied for all u, the system is strongly observable.

We will call the Pfaffian system P the observability codistribution.

Remark 10. As is known, local weak observability of the system
& =g"(z), y=h"(z)

implies that the observability rank condition (i.e., dim P, = T X) is satisfied
almost everywhere (in fact, in the analytic case everywhere). Because we don’t
want to go into singularity problems, for us local weak observability and the
observability rank condition are the same.

Remark 11. Tt is easily seen that when for one input-output coordinatization
the observability rank condition for all u is satisfied, then for every input-
output coordinatization the observability rank condition for all u is satisfied.
This follows from the fact that the observability rank condition is an open
condition.
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Controllability. The aim of this section is to define a kind of controllabil-
ity that is “dual” to the definition of local distinguishability (Proposition 2)
and that we shall use in the following section. The notion of controllability
we shall use is the so-called “strong accessibility.”

Definition 23. Let & = g(x,u) be a nonlinear system in local coordinates.
Define R(T,xo) as the set of points reachable from xqy in exactly time T; in
other words,

R(T, xzp) := {x1 € X | 3 state trajectory x(t) generated by g
such that z(0) =xzo and z(T) = z1}.

We call the system strongly accessible if for all zg € X and for all T > 0
the set R(T, zp) has a nonempty interior.
For systems of the form (in local coordinates)

b= f(a)+ > uiglo) (76)

(i.e., affine systems) we can define A as the smallest Lie algebra that contains
{91,-..,9m} and that is invariant under f (i.e., [f, A] C A). It is known that
A, =T, X for every x € X implies that the system (76) is strongly accessible.
In fact, when the system is analytic, strong accessibility and the rank condition
A, = T, X for every z € X, are equivalent. We call A the controllability
distribution and the rank condition the controllability rank condition. Now it
is clear that for affine systems (76) this kind of controllability is an elegant
“dual” of local weak observability.

It is well-known that the extended system (see Definition 20) is an affine
system. Hence for this system we can apply the rank condition described
above. This makes sense because the strong accessibility of X(X, W, B, f) is
very much related to the strong accessibility of X¢(X, W, B, f), which can be
seen from the following two propositions.

Proposition 4. If Y¢(X, W, B,f = (g,h)) is strongly accessible, then
X(X,W, B, f =(g,h)) is strongly accessible as well.

Proof. In local coordinates, the dynamics of ¢ and X' are given by

I i =g(x,u) (X),
11 &=g(z,v) (X9,
U= u.
It is easy to show that if for X’ one can steer to a point z1, then the same

is possible for X' (even with an input that is smoother). [ ]

The converse is harder:
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Proposition 5. Let (X, W, B, f = (g, h)) be strongly accessible. In addition,
if the fibers of B are connected, then X¢(X,W,B, f = (g,h)) is strongly
accessible.

Proof. Consider the same representation of X and X° as in the proof of
Proposition 4. Let 2o € X and z; be in the (nonempty) interior of Rx(xg,T)
(the reachable set of system X'). Then it is possible to reach x; from xq by
an input function v(¢) that cannot be generated by the differential equation
v = u. However, we know that the set of the v generated in this way is dense
in L?. (For this we certainly need that the fibers of B are connected.) Because
we only have to prove that the interior of a set is nonempty, this makes no
difference. Now it is obvious from the equations

z=g(z,v), O=u

that if we can reach an open set in the z-part of the (extended) state, then it
is surely possible in the hole (x, v)-state. [ ]

8 Conclusion

In this chapter, the problem of geometric description of multiple agents
is studied. The connection of the optimal game and Yang—Mills fields
has been established. A geometric model of a controlled agent as dy-
namic information-transforming system is examined. A description of the
information-transforming system within the framework of the geometric for-
malism is also proposed. After a classification of the fiber bundle types of
conflict and conflict-free maneuvers, a weighted energy can be proposed as the
cost function to select the optimal one. Various local and global controllability
and observability conditions are derived. For the general multiagent case, a
convex optimization algorithm is proposed to find the optimal multilegged
maneuvers. To completely characterize the optimal conflict-free maneuvers,
many issues remain to be addressed. Possible directions of future research
include the analysis of the proposed mathematical models in terms of its
performance and its robustness with respect to uncertainty of the agents’
positions and velocities, and a more realistic study for the agent dynamics.
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Abstract The current chapter is devoted to the development of convex analysis
concepts in the context of solving pursuit-evasion problems in differential games.
Classic convex analysis is generalized; new concepts such as matrix-convex sets and
H-convex sets are introduced and studied. With the help of these, it is shown possible
to describe a rather wide class of differential games where players’ strategies are
produced in a comparatively constructive manner. The main attention is on studying
those properties of matrix convexity that are required for the theory of differential
games.

Operational constructions for the initial positions sets, favorable to each player,
for the derivation of the players’ strategies are also described.

Key words: differential games, matrix-convexity, H-convexity, operational
constructions

1 Introduction

Many important results in differential games have been derived during the past
40 years. The book “Differential Games” by R. Isaacs [1] initiated the research
on this subject. The book introduced a wide range of applied plan problems
with inherent game characteristics, which, however, were not entirely con-
tained within the borders of the formed theory of optimum control. The ideas
described in [1] received precise mathematical formalization in subsequent
works by other authors [3,7-9,11,13,14]. The theory of differential games has
since matured and developed into an independent scientific discipline that has
its own field of problems and methods.

The large number of approaches, methods, and algorithms for decisions
in various classes of problems have been developed within the borders of
the differential games theory. These are problems of pursuit, pursuit-evasion,
keeping, escaping problem, and game problems of dynamic search. Firstly,
the general approaches for decisions in differential games of pursuit-evasion
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were founded. In these approaches, the structure of the game is described by
stable bridges [8,9], one-parametrical semigroups (operational constructions)
[13,14], or alternative integral of L.S. Pontryagin [11]. The theorems of alter-
native break the phase space of the game into sets of initial positions that are
favorable for this or that player. Thus, the theorems of existence of optimum
strategies for the players are proved.

The next group of methods is also devoted to decisions in general differen-
tial games, but these are more constructive approaches, including approximate
methods [14] to them. However, numerical realization of these methods meets
difficulties due to the extensive calculations and the necessity for the deriva-
tion of special theories that would effectively describe the sets and operations
needed. Comprehensive numerical results have only been obtained for two-
and three-dimensional spaces.

A third group of methods are not applied to all differential games as a
whole, rather they are directed toward decisions in certain classes of games.
Such methods are the first method by L.S. Pontryagin [11], the method of
resolving functions [5], and a method based on H-convex sets [10,14]. As a
rule, these methods are solving certain classes of linear differential games.
Thus, the convexity of the terminal set or of the areas of players’ controls
plays the important role. At a more detailed level of studying linear differential
games, generalized concepts of convexity are used in order to expand the field
of application of the methods of pursuit. Such concepts are the H-convexity
[4] and the matrix convexity, which constitutes a further development of the
H-convexity.

Issues of the application of elements from convex analysis and generalized
convex analysis to decisions in linear games of pursuit-evasion are addressed
in the current chapter.

2 Auxiliary Results

2.1 Notation

We use the following notations throughout the chapter.

E™ - n-dimensional Euclidean space with the scalar product (x,y) =

n
z'y", where z,y € E™;
i=1

1=

n
Euclidean norm ||z = ,/ 3 (%)%

i=1
E' - one-dimensional space that coincides with the set of real numbers;
FE - identity operator in space E™ or the identity matrix of dimensions
n xn;

A . .
|A]| = sup ”H;\:I” - norm of linear operator in E";
z#0
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A* - adjoint operator to the operator A that operates in E™, or the trans-
posed matrix of matrix A.

cl A - closure of the set A;

int A - interior of the set A;

0A - boundary of the set A;

p (A, B) = max {sup inf ||z —y|,sup inf ||z — yII} - Hausdorff distance
reA YEB yeB TEA

between the sets A and B;

A+B=U{z+y:ax€ Ay € B} -sum of two sets A, B C E"™;

A = { Az : x € A} - multiplication of the scalar X with the set A C E™;
A*B = {2z € E": B+ 2z C A} - geometric remainder of the two sets A
and B.

co A - convex hull of the set A (smallest convex set containing A);

oA - closed convex hull of the set A;

con A - conical hull of the set A (smallest cone containing A);
S(z,r)={y€ E™:|ly — x| <r} - sphere with the center at z and
radius r;

S=5(0,1), 08 ={zx € E": ||z|]| = 1}.

Wa (x*) = sup (x,x*) - support function of the set A C E™.
€A

2.2 Multivalued Mappings and Philippov’s Lemma

Let us introduce the notation:

2Y _ set of all subsets of the set Y;

F: X — 2Y - multivalued mapping that assigns a subset F (z) of Y to the
point z € X

b
J F (t)dt - integral of the multivalued mapping F : [a,b] — 2E" that is,

b
the set of all integrals [ f(t)dt, where f(¢): [a,b] — E™ is a measurable,

bounded, single-valued mapping such that f (¢) € F ().

If f(t,u), f: E' x E" — E", is a continuous function and U [a, b] is a set
of measurable functions u (t) with values in the compact set U C E", then, by
definition,

b

b
/f(t,U)dt:U /f(t,u(t))dt:u(~)eU[a,b}

a

b
Theorem 1. [2] Under the made assumptions, [ f (t,U)dt is a convex set.
a

Let us consider the linear multivalued mapping F' (t) = A (t) M, t € [a, ],
where A () is a linear operator in the space E™ for each t € [a,b], and M C E™
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is a closed subset. We assume that the family of operators A( ), t € a,b],

is bounded and measurable. We shall understand the integral f A(t) Mdt as
the set of all integrals of the form f A (t)m (t) dt, where m (t) € M t € [a, ],

is a measurable bounded function. We do not impose any condition of bound-
edness on the set M. However, from Theorem 1, it is not difficult to obtain
the following result:

b
Corollary 1. The set [ A(t) Mdt is convex.

Let us recall the concept of the lexicographic order for vectors in E™. Let
v=(z',...,a") € E" y=(y',...,y") € Em. Wesaythatxlslessthanym
lexicographic sense if for some k = 1,...,n, o' =%, i < k, 2% < y. It is easy
to see that if K C E™ is a compact set7 then there exists the unique point
z, € K, which is maximal in lexicographic sense for all x € K.

Let f (u,v,t) be a continuous function with values in E™, wu e U, v € V,
UCE", VCE?® U and V compact sets. Let £ (t) € E™ be a measurable
function on [a,b] and let the equation f (u,v,t) =& (t) be solvable for any
v eV, t e la,b]. Denote by wu., (v,t) its lexicographic maximal solution.

Theorem 2. [6] Ifv (t) € V is a measurable function on [a,b], then u. (v (t),t)
is also a measurable function of t on [a,b).

This statement can be made more exact if we note that the constructed
function wu, (v, t) is Borel measurable w.r.t. v.

Theorem 3. If z (t) € E™ is a fully continuous function on the segment [a, b]
that fulfills almost everywhere the inclusion

‘:b G f(x7t3 U)?

where f : E"TY x U — E" is a continuous mapping, and U C E" is a compact
set, then there exists a function u (-) € U [a,b] such that nearly everywhere

@ (t) =f (.23 (t) yhu (t))

3 Matrix Convexity

The concept of convex sets is generalized in the current section. The sums of
products of numbers by vectors are used in the definition of common convexity.
In the given generalization, the role of numbers is played by matrices leading,
thus, to the term “matrix convexity.” By analogy, common convexity can be
named “scalar.”
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Necessity for studying matrix convexity has emerged in control theory and
differential games theory. With the help of matrix convexity, it was possible
to describe a rather wide class of differential games where players’ strategies
are produced comparatively constructively. However, the main attention has
been given to the study of those properties of matrix convexity that were
important for the theory of differential games.

Matrix-convex sets are not necessarily convex in common scalar sense gen-
erally. However, a class of matrix-convex sets is a subclass of scalar-convex
sets under certain assumptions. Moreover, it has been shown that matrix-
convex sets are H-convex in a general enough case. It is necessary to note
that H-convex sets are well studied and described comparatively construc-
tively in a number of concrete examples. Thus, the subclass of convex sets is
constructed for each set of the matrices determining convexity.

3.1 Scalar-Convex Sets

Let us consider certain properties of common convex sets. The following is
the traditional definition of convexity.

Definition 1. A set M C E™ is called a convex set, if for any x,y € M and
any numbers \; > 0 such that Ay + Ao = 1, the inclusion

AT+ Ay € M (1)
18 fulfilled.

We can write the inclusion (1) in a slightly different manner using the
concept of the sum of two sets.

Definition 2. A set M C E™ is called a convex set, if for any x,y € M and
any numbers \; > 0, Ay + Ao = 1, the equality

MM + MM = M (2)
18 fulfilled.

In order to show that a set M is a convex set, it is enough to show that
(2) is fulfilled for any A1, A2. On the other hand, what is possible to say about
the set M if A; and Aq are fixed? It turns out that equality (2) gives convexity
in case M is a closed set. Let us formulate this statement as a lemma.

Lemma 1. Let A\jand Ay be fized positive numbers such that \y + Ao = 1. A
closed set M is a convex set if and only if equality (2) is fulfilled.

If M is not a closed set, then Lemma 1 is not correct. One can consider,
as an example, the set of rational points from the segment [0, 1] that have
the degrees of two in the denominator. Then the equality (2) is fulfilled for
AL =X = %
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3.2 Matrix Convexity for Two Operators

Henceforth we shall assume that M is a convex set.
Let A, B be linear operators that operate in E™ and such that A + B = E.
We shall denote the family of these operators by R, R = {4, B}.

Definition 3. A set M C E™ is called an R- convez set if

AM + BM = M. (3)

Definition 3 differs from Definition 2 with respect to the linear opera-
tors that are represented by matrices in concrete bases and have replaced
the scalars A1 and Aq. It is natural to call this type convexity “matrix con-
vexity” and the common convexity “scalar convexity.” If A = M E, B = A\ F,
where A1, Ay € (0, 1), then Definition 3 is the definition of the common, scalar
convexity by virtue of (1).

Let us note that (3) is satisfied not only by scalar-convex sets but by other
sets as well.

Example 1. Consider the two-dimensional space
E? = {z = (a:l,:v2) = El}.

Let the linear operators A and B be defined by the following matrices

(9. o= ()

Let M ={(0,0);(1,0);(0,1);(1,1)}.

The given set consists of four points, which are the vertices of a square.

Matrix A transfers the points (0,1) and (1,1) to the points (0,0) and
(1,0), respectively, while leaving the other two points in place. From this,
AM = {(0,0); (1,0)}. Similarly, BM = {(0,0);(0,1)}. It is not difficult to see
that AM + BM = {(0,0);(1,0); (0,1); (1,1)} = M. Thus, an example of a
nonconvex set that satisfies (3) for certain A and B has been constructed.

Because Definition 3 is a generalization of the common convexity, the
question under what conditions equation (3) guarantees scalar convexity arises
naturally.

Theorem 4. Let |A — B|| < 1. Then scalar convexity of the set M follows
from (3).

Remark 1. Note that in case A =M\ EB = \yEA;, )\ € [0,1], the condition
|A— BJ| <1 turns into the condition |A; — Az] < 1, which implies A\; > 0,
Ao > 0. The last condition coordinates to that of Lemma 1.
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Proof. Let us show that for any points z,y € M, the midpoint Z = % (z+y)
of the segment [z,y] belongs to the set M. The convexity of M will follow
from this by virtue of Lemma 1 for Ay = Ay = % .

Let 1 = Ax + By, y1 = Ay + Bx. It follows from (3) that x1,y; € M. We
note that

1 1 1 1
) = Aty + B 4y) = L (A+B) @ ty) =5 (e 4y) =7,
that is, a midpoint of the segment [1,y1] is a midpoint of the segment [z, y].
Let us estimate the distance between z; and y;:

le1 =yl = |A(z —y) + By — o) =[[(A = B)(z = y)I| < [A = B||- ][z = y]|

This distance is already less than the distance between z and y by virtue
of the hypothesis of the theorem.
Construct next the sequences

xr = Axp_ 1+ Byr—1, yp = Ayr—1 + Bag_1; k=1,2,..., xo =, Yo = Y.
Using induction on k, one can show, as above, that

1 _
5 (Zﬂk +yk) =z,

k
ek =yl <A = B)| - lze—1 — yr—all = [[(A = B)|" - [z — 9]
Because ||[A — BJ| < 1, the sequences {z }, {yx} converge to Z. From equal-

ity (3) it follows that %, yr € M for all k =0,1,2,.... This relation and the
fact that M is closed imply Z € M. The theorem has been proved. [ ]

Let us study a class of R-convex sets. We will cite necessary and sufficient
conditions for R-convexity. Set
M@x*)={ze M: {(z,z") =Wy (z%)}.
By definition, Wy (z*) = sup (x, 2*). Therefore either the set M (z*) is

zeM
empty, or the supremum is attained on its points. Let us note that it is natural

to assume that M (0) = M in the case * = 0.
Theorem 5. For the realization of equality (3) it is necessary that, for all
x* # 0, the following inclusions are fulfilled:
M (x*) C M (A*2™), M (x*) C M (B*z"). (4)
Proof. Let us consider the support function of the left part in (3)
Wanr+pm () = sup{(z,2"*) : . € AM + BM}
=sup {(Az + By,z") : x,y € M}
= sup {(z, A"z") + (y, B*z") : 2,y € M}

= sup (x, A*z*) + sup (z, B*z™)
zeM xeM

=Wy (A%2") + Wy (B*z").
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It follows from (3) that Wy (A*z*) + Was (B*x*) = Wiy (2*). From this
relation and from the obvious equality «* = (A* + B*)z* it follows that, for
all z € M (z*),

sup (y, A*z*) + sup (y, B*z*) — (x, (A" + B*)z*) =0
yeM yeM

or

sup (. 4%) — (o 4% | + | sup (1 8%) ~ (o 5%) | = 0. (9
yeEM yeM

Each of the expressions in the square brackets is non-negative. Therefore,
it follows from (3) that

sup (y, A"z") = (z,A*z"), sup (y, B"z") = (z, B"z")
yeM yeM

and, hence, © € M (A*z*), and x € M (B*z*), which proves the theorem. M

The set {x € E™ : (x,2*) < ¢} is understood as a half-space. The half-space
is determined by the vector x* and the number c.
It is known that every convex set can be represented as the intersection of
half-spaces:
M = ﬂ {r e E": (x,2") < c(z")}, (6)
z*€H (M)

where H (M) is a some set of nonzero vectors from E", ¢(z*) is a number,
probably equal to +oc.

Lemma 2. Let a set M be represented in the form

M= ({z€E": fo(z) <0},

aca

where {fo} is a set of convex functions, a is an arbitrary set of indices; and
there exists some number ag such that the inequality fo, (x) < 0 is correct for
any x € M. Let ag = a{ap} and My = () {z: fo(x) <0}. Then M = Mj.
acao
Proof. Let us assume the opposite. Then, there exists zg € My such that
xo & M. Because f, (x9) <0 is fulfilled for any « € ag, then the relation
xo ¢ M implies fo, (x0) > 0. Because the function f, is continuous by virtue
of convexity, the set M is closed. Therefore, there exists x1 € M, which is the
point nearest to zo. Let us consider the point 2y = Ax; + (1 — \) zo. Because
21 is the point nearest to xg, then x) ¢ M for all A € [0,1). From the convex-
ity of My it follows that x) € My for A € [0,1]. The function g (A) = fo, ()
is continuous on the segment [0, 1]. Moreover, g (0) > 0, but g (1) < 0 from the
hypothesis of the lemma. This implies the existence of a A\g € (0, 1) such that
g (Xo) =0, that is, f,, (z,) = 0. Comparing the given equality to the inclu-
sion xy, € My we obtain that, for any « € a, f, (z),) <0, that is, z), € M.
But as A, < 1, we obtain a contradiction. The lemma has been proved. ]
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Theorem 6. Let a set M be represented in the form (6). Then for the ful-
fillment of the equality (3) it is enough to show that, for all «* € H (M),
inclusions (4) are fulfilled.

Proof. Let z* € H (M). From Lemma 2, it follows that it is enough to consider
the case M (z*) # ). Then there exists x € M (z*) such that

sup (y, A*z*) = (x, A*z*), sup (y, B*z*) = (x, B*z™).
yeM yeM

It follows from this that equality (5) holds, and, consequently,

sup {(y,z*) :y € AM + BM}

(x, (A" 4+ B*) ") < sup (z,z") < c(a¥).
reM

Wam+sm (xF)

The last inequality means that the left part of (3) is included in the right
part. The reverse inclusion is obvious. The theorem has been proved. |

Theorems 5 and 6 give a description of the class of R-convex sets. However,
this description is obviously not sufficient. The results deduced below give a
more constructive description of R-convexity in terms of H-convexity. Let us
give the definition of H-convexity.

Definition 4. Let H be a subset of the wunit sphere in E™, that is,
H C {«* € E" : ||x*|| = 1}. The set M s called H-convex if it can be written
in the form
M = ﬂ {z € E" : (x,a™) < c(z")}, (7)
z*€H

where the scalar ¢ (x*) can accept any value (even +00).

The representation (7) means that the H-convex set M is defined by an
intersection of half-spaces that are described only by vectors x* € H. Other
half-spaces do not participate in the construction of M.

Note that a set of the form (6) is a H (M )-convex set. In case H coincides
with the entire unit sphere, H-convexity becomes common convexity.

Let us consider another example of H-convex sets.

Ezample 2. Let H = {+e;,i =1,...,n}, where e; = (0,...,0,1,0,...0) is the
i-th unit vector. Then, the parallelepipeds with edges parallel to the axes of
the coordinates are H-convex sets. The set M is an H-convex set if and only
if it is represented in form

M:{x:(xl,...,x”):aigxigbi, i:l,...,n},

where the numbers a; can accept the value —oo, and b; can accept the
value +o00.
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Let us connect the set H to the operators A and B. We shall denote by
H a set of unit vectors x* € E™ that satisfy the conditions:

a) A*x* = X\g (%) x*, B*z* = A\g (™) 2™;
b) the numbers A4 (z*) and Ap (z*) are non-negative.

Thus, vectors x* € H are eigenvectors of the operators A* and B* with
non-negative eigenvalues.
We shall assume subsequently that H is the set determined as above.

Theorem 7. Let the set M be an R-convexr and scalar-convex set, let
int M # 0. Then M is an H-convez set.

Proof. Tt is known [15] that, for a convex set M, if xg € OM then, in any
neighborhood of xg, there exists a point 1 € M such that the cone of normal
directions at it is spanned by one vector. Let us denote this vector by n (z1)
and assume that ||n (z1)] = 1.

Let us suppose that M is not a H-convex set and consider the set

My, = ﬂ {x € E": (x,x™) < Wy (z")}.
r*eH

The set M is the H-convex hull of M. Because M # Mj, there exists a
point xg € OM such that xy € int M;. Indeed, if such a point does not exist,
then int M = int M; and these sets would coincide by virtue of the closure of
M and Ml.

The existence of a point ¢1 € 9M () int M; for which the cone of normals is
spanned by one vector has been noticed above. It means that if 1 € M (z*),
then z* = Aon (x1) for some Ao > 0. It is clear that n(z1) ¢ H. From the
definition of H it follows that n (x1) cannot be eigenvector of the operators
A* and B* with non-negative eigenvalues. Let A*n (z1) # An (x1) for A > 0.
But this means that A*n (x1) does not belong to the cone of normals at the
point 2 and, therefore, 1 ¢ M (A*n (x1)). Thus, the necessary conditions of
Theorem 5 are violated. The obtained contradiction proves the theorem. M

Theorem 8. Let M be an H-convex set. Then M is an R-convex set.

Proof. The proof follows from Theorem 6 for H (M) = H. |

Let us discuss the hypothesis of Theorem 7. The necessity for requiring
the scalar convexity of M has been verified by Example 1 in which M is not
only an H-convex set but also a scalar-convex set. Moreover, the set M is an
R-convex set. The requirement int M = () is also essential.

Ezample 3. Let M = {m}. In other words, M consists of one point. Then the
equality (3) is obviously fulfilled. However, it is not difficult to select A and
B for which a point is not a H-convex set. Thus, the operators A* and B*
may have only one-dimensional subspace of eigenvectors. In this case, some
half-spaces and hyperplanes of dimension n — 1 will be H-convex sets.
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Let us consider various H-convex sets, where H is connected to A, B.
Ezample 4. Let
A =diag{aq,...,a,}t, B=diag{f1,...,0n}, @i, B > 0.

Then the set H will be the set from Example 2 and the H-convex sets will
be the corresponding ones.

Example 5. Let A, B be represented by diagonal matrices in the same way as
in Example 4 but such that

1 2 k

QL = = Qy, =Q Q1 = = Qy = Qo Q1 ==y = Q7
o _ 1 o _ 32 . _np _ pk
ﬂli‘..iﬂmliﬂ7ﬂm1+17...7/8m27ﬂ7""/8mk71+17...7/3n7ﬁ'
Set n; =m; —m;_1,i=1,...,k, mg =0. In this case, the H-convex sets

have the form _
M:{a:: (a:l,...,xk) :xlEMi},

where 2% is a vector from the space E™, and M; is a convex subset in E™.

Ezample 6. Let us consider the case

_ (> _ (8 =
=(60)2-007)
where «, 3 > 0, and v are arbitrary numbers. In this case, the vectors + (0, 1)
are eigenvectors of A* and B*.

The sets of the form M = {x = (xl,acz) ra<a?< b} are H-convex sets,
where a may take the value —oo, and b the value +oc.

3.3 Matrix Convexity for Various Families of Operators

We generalize the results of the previous sections to the case of several oper-
ators. Let Ry = {A1,..., Ar} be a family of linear operators operating in E™
such that A1 +---+ A, = E.

Definition 5. A set M C E™ is called Ry-convex if
AM + AsM + -+ Ay M = M. (8)

Let A;y, ..., Ai,, (1 <m <k) be operators from Ry, and define A = A;, + -+
+A;, and B=FE — A.

Lemma 3. Let M be an Ry-conver set. Then M is an R-convex set,
R = {A, B}.
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Proof. Let A;, ..., A; be operators from Ry.
Then B = A;,, ., +---+ A;,. Consider arbitrary x,y € M. Because M is
an Ry-convex set, then

Az +By=Ajx+---+ A, o+ A y+Aye M
which proves the R-convexity of M. |

Theorem 9. Suppose that, for some set of operators A;,,...,A;, from Ry,
the inequality |E —2(A;, +---+ A;,,)|| <1 is fulfilled. Then an Ry-convex
set is also scalar-conver.

Proof. Let usset A=A;, +---+ A4, , B=FE — A. It follows from Lemma 3
that if M is an Ry-convex set, then M is an R-convex set. From the hy-
pothesis of the theorem, it follows that ||A — B|| = ||E — 24| < 1. Applying
Theorem 4, we obtain the scalar convexity of M. |

We shall denote by Hjy a set of unit vectors x* € E™ that satisfy the
following conditions:

(a) Afz* =N (z*)a*, i=1,...k;
(b) the numbers \; (z*) >0, i =1,...,k.

Theorem 10. Let M be an Ry -convex and scalar-convex set with int M # ().
Then M is an Hj-conver set.

Proof. Denote by H7 the set of unit eigenvectors of A3 with corresponding
non-negative eigenvalues, that is, ©* € H7 if Ajx* = Az*, where A > 0.
From the definitions of Hj, and HY, it follows that

k
Hy=()H. (9)
j=1

Set A= A;, B=FE — A. By Lemma 3, the set M is an R-convex set. By
Theorem 7, it is an H7-convex set. This implies that M may be represented
as the intersection of half-spaces of the form {z € E™: (z,2*) < c(x*)},

x* € HI.
Because this holds for any j, then it follows from (9) that z* € Hj, and,
therefore, M is a an Hj-convex set. |

Theorem 11. Let M be an Hy-convex set. Then M is an Ry-convex set.

Proof. We shall validate this statement using mathematical induction on k.
For k = 2, the conclusion of the theorem follows from Theorem 8.

Assume that the inductive hypothesis is correct for £ — 1 and prove it
for k.

Set A=Ay +---+ Ap_1, B = Ay, and consider the case detA = 0. Denote
by g the minimum modulus from all nonzero eigenvalues of operator A (real
and complex values). Then, for all € € (0,2¢), the operator A+ ¢FE has an
inverse operator.
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Set

A§:Ai+%E,AE:A+aE.

Then E A = A°.
Set As = (A°)~ Af,
Hi_ ={a"€dS: Afz" = X; (z%)a*, X (2") >0,i=1,....,k—1}.

Because, for any z* € Hy, the relation

c k—1
_J/(Zm(f)w) > 0;

is fulfilled, then Hj, C Hj_,. From this, it follows that M is an H}_,-convex
k=1 _

set. By the inductive hypothesis Y A5M = M. Multiplying both sides of the
i=1

XS (2%) = (/\i (%) +

k—1
equality by A° we obtain Y, ASM = A°M. From this, we have
i=1
k—1
> ASM + AxM = A°M + AcM.
i=1
Because the operator A° + Ay = A+ ecFE + A, = (1 +¢) E has an inverse

operator, we obtain, by analogous reasoning, A*M + AyM = (1+4+¢)EM
from which

k—1
(14¢)” (ZAEM+AkM> M.
=1

Let x; € M be arbitrary points and set

k k—1
Z i, xe = (14+¢€)" (ZA a:l—i—Akxk).

i=1

Because hr% A = A;, then lin% z. = . Whereas for any ¢ € (0,¢9) the

inclusion x. € M is fulfilled and M is a closed set, then & € M. It follows that
M is an Rg-convex set.

The case detA # 0 is more simple and it is easy to reduce it to the previous
reasoning with € = 0. The theorem has been proved. |

Next, we generalize the results to the case of infinite number of operators.
Set Roo = {A(t),t € [0, 1]}, where A (t) is a linear operator that operates
in E™. We assume that R, is a bounded and measurable family of operators

1
and that [A(t)dt = E.
0
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Definition 6. A set M is called R -convez if

1
/A(t)Mdt:M. (10)
0
Let £2;,i=1,...,k, be a collection of measurable subsets of the segment
k
[0,1] such that £2; () 2; =0 for i # j and J £2; = [0,1].
i=1

Define A; as
A; = /A(t)dt,Rk ={Ay,..., A}
£2;
Lemma 4. Let M be an Ry -convex set. Then M is an Ry-convex set.

Proof. Let x; € M be arbitrary points, i = 1,...,k. Let us set z (t) =y,
t € £2;. From the R.-convexity it follows that

i=1

k 1
> A :/A(t)x(t)dteM,
0

which implies the Rg-convexity of M. The lemma is proved. |

We shall denote by H,, the set of all unit vectors z* € E™ such that, for
nearly all ¢ € [0, 1], the following conditions are fulfilled:

(a) A (t) = A(tz") ",
(b) the numbers A (¢t|z*) > 0.

Lemma 5. Let M be an Ry -convex set. Then it is a scalar-convex set.

1
Proof. From Corollary 1, it follows that [ A (¢) Mdt is a convex set. From this

0
and from (10), the convexity of M is implied. |

Theorem 12. Let M be an Roo-convex set and int M # (). Then M is an
H-convex set.

Proof. Let us set
to
Apy ity = /A (t)dt, By, 1, = E — Ay 1y, Ryt = { Aty 10, Biy o}
t1
where t1,t5 € [0,1], t1 < ta.

From Lemma 4, it follows that M is an Ry, +,-convex set.
Let
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Htl to — {x S 0S : At1 th‘ = )‘tl,tQ (x*)x*7>\t17t2 (l'*) Z O}

Because for * € Hoo, then Ay, 4, ( f A(tlz*)dt > 0, and Hoo C Hy, 4.

Whereas M is Ry, +,-convex set then, from Theorem 7, it follows that M
is an Hy, ;,-convex set. Let us show that H N Hiy o, It will imply
t1,t2€[0,1]
the H,,-convexity of M.
Let t € [0,1) be an arbitrary number, and At > 0 such that ¢t + At € [0, 1].
Assume that, for any At > 0, * € H; 44 A+ and, hence, the following equality

is fulfilled:
. t+ AL
A / A* (T)dra” = Ay (2%) 2",

t

where )\t,t—i-At (.ﬁ*) Z 0.
The limit, as At — 0, of the left side of the equality exists for nearly all
t € [0,1]. Therefore, passing to the limit, we obtain that, for nearly all ¢,

A* (t) ™ = N(t|z™) 2™, A (t|z™) > 0.
From this, it follows that z* € H,. The theorem has been proved. |
Theorem 13. Let M be an H,,-convex set. Then M is an R, -convex set.

Proof. Set C' =sup{||A(t)||,t € [0,1]}. Let = (¢) be an arbitrary bounded
measurable function such that x (¢) € M for all ¢t € [0, 1]. For any € > 0 there
exists a collection of measurable subsets (2;, i = 1,..., k, of the segment [0, 1]

k
such that (2,2, =0, i #j and |J £, =[0,1], and a collection of points

i=1
x; € M such that for the function z. (t) = x;, t € £2;, the following inequality

is fulfilled: )
[l - w@ylae < 2
0

It follows from this that

1

1
/ / A(t)z (t)dt

0 0

/||A e (t) - 2o ()] dt <.

Let Hj be the same set as previously. Because, for any =* € H.,
A (%) = /)\ (t|z*)dt > 0,
£2;

then H., C Hj. Therefore, M is an Hj-convex set. Theorem 11 implies that
M is an Rj-convex set. From this it follows that
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k

/A(t) ve (t)dt = A € M.
0

=1

From the arbitrariness of € > 0 and the closure of M we receive
1
/A(t)x(t)dt eM,
0
which implies the Ro.-convexity of M. |
3.4 H-convex Sets and Integration of Linear Multivalued

Mappings

We state and prove some lemmas that are needed later on.
Let H be an arbitrary subset of unit vectors from E™, and let A : E™ — E"
be a linear operator.

Lemma 6. Let the operator A have an inverse operator, and assume that
A*x* € con H is fulfilled for any x* € H. If M is H-convex, then A~*M is
also H-conver.

Proof. The set M has the form

M = ﬂ {x € E" : {x,a™) < c(z")}, (11)

where ¢ (*) may take the value +oo.

From this
ATIM = ﬂ {r e E": (Az,z") < c(z")}
r*eH
= () {z€E": (2, A%%) < c(2")}.
z*cH
. A*x*
From the hypothesis of the lemma W € H. Therefore,
x
_ A*z* c(x*)
A M = {xGE":<x, >§ }
LDH [A=z*]| /-~ || Axz||
Thus, A~'M is an H-convex set and the lemma, is proved. |

Lemma 7. Let the operator A have an inverse operator, and assume that
A*x* = X(a*) x* is fulfilled for oll x* € H, where X (x*) is a number. More-
over, if * € H, then (—x*) € H. Then, if M is an H-convez, the set AM is
also an H-convex set.
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Proof. Let M have the form (11), and assume that A (z*) > 0. Then

AM = () {z € E": (A 'z,2") <c(a")}

= m {er”:<x,(A_1)*$*>§C($*)}

z*e€H
_ ﬂH{ € B s () < (o)

= m {x € E" : (x,2") < A (a¥)c(z)}

z*cH

that is, AM is an H-convex set.
If A(z*) <0, then

AM = ﬂ {r € E" : (x,—2") < =X (a¥)c(z")}.
z*eH

The lemma has been proved. ]

Remark 2. The hypothesis of Lemma 6 follows from the hypothesis of
Lemma 7.

Let us consider a family of bounded and measurable on ¢ operators
{A(t),t €[0,0]} that operate in the space E™, where 0 is a fixed number.

In Subsection 3.3, a family of operators is determined on the interval [0, 1]
(0 = 1) that satisfies the condition

/ A(t)dt = E. (12)

The first condition (# = 1) is not essential, and it may be removed by a
change of the variable ¢t = 07, 7 € [0, 1]. The condition (12), or a more general
condition that is expressed in terms of existence of the inverse operator to

1
J A(t) dt is more essential. In the current section, the case when this condition
0

is not fulfilled will be studied.
In the current subsection, we shall understand as H a set of unit vectors
z* € E™ that satisfy the conditions:

(a) A*(t)xz* = X (t|a*) z* for any t € [0, 0], where A (t|z*) is a number;
(b) the numerical function A (- | *) does not change sign on the interval [0, 6]
for fixed x*.

0
Let A= [A(t)dt.
0
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Note that, for any x*,
0
A*x™ = /)\(t|;v*)dtx*.
0

Theorem 14. Let M be an H-convez set, and let = (s), s € |0,6], be a mea-
surable and bounded function with values in E™. If, for each s € [0,0], the

mclusion
Ax (s)e M (13)

18 fulfilled, then

0
/ Alt)z(t)dt € M. (14)

Proof. Without loss of the generality, it is possible to assume that § = 1. Let
us consider the case when there exists an inverse operator A~!. From (13), it
follows that for all, s € [0, 6],

x(s) e A”IM.

From Lemma 7 and from Remark 2, it follows that the set A~'M is an
H-convex set. From the definition of operator A

1
/A—lA (t)dt = E. (15)
0
Let us take advantage of Theorem 13. Then, from (15), it follows that
1
/A—lA () (£)dt € A= M.
0

From this the inclusion (14) is implied.
Consider the case when A may not have an inverse operator. Let

1
A (t) = A(t) + B, AE:/Ag(t)dt:A—H-:E.
0

For small enough positive €, the operator A, has an inverse operator. Whereas
Ax (s) € M, then A.x(s) = Ax(s)+ex(s) € M +¢eDS, where D is a con-
stant such that ||z (s)|| < D for s € [0,1]. Let us assume that M has the form
(11). Then A.x (s) € M +eDS C M., where

M, = ﬂ {x € E": (x,2") < c(z") +eD}.
z*€H
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It follows from the first part of proof that

/AE () () dt € M..
0

1
From this, whereas H Jx(t)dt H < D, then
0

1 1
/A(t)x(t)dtGME—s/m(t)dtCME—I—EDSCMgg.
0 0

By virtue of the arbitrariness of € > 0 we obtain the inclusion (14) and
the theorem is proved. [ ]

Theorem 15. Let the hypothesis of Theorem 14 be fulfilled; let T € [0,0] be
an arbitrary fized number, and assume that 0 € M. Then

T

/A(t)x(t)dteM.
0

Proof. Let us introduce the function
z(s), se€l0,7],

o) {76 se T

0, s € (r,0].

Because 0 € M, then Az (s) € M for s € [0,0]. From this and from
Theorem 14 it follows that

T 0
/A(t)x(t)dt:/A(t)xl(t)dteM.
0 0
The theorem has been proved. |

Corollaries 2 and 3 are implied from Theorems 14 and 15.

Corollary 2. Let M be an H-conver set and assume that, for the set
W C E™, the inclusion AW C M is fulfilled. Then

6
/A(t)WdtCM.
0

Corollary 3. Let the hypothesis of Corollary 2 be fulfilled; and assume that
0 € M. Then, for any T € [0,0],

T

/A(t)Wdth.
0
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From Lemma 7 and Corollary 2, we have the following:

Corollary 4. If M is an H-convex set and the operator A has an inverse
operator, then

0
/ A(t) Mdt = AM. (16)

Theorem 16. Let M be an H-convex and compact set. Then (16) is fulfilled.

Proof. Set B. =cA+&?E. The vectors z* € H are the eigenvectors of the

operator A*, and, therefore, of the operator B?. For small enough € > 0, the

corresponding eigenvalues of the operator B have the same sign with

the eigenvalues of the operator A*, and, therefore, of the operators A* (¢).

(We assume that zero has a sign identical to the sign of any number.)
Let m € M. Then, as 0 € M — m,

0
A(t)Mdt:/A(t)(M—m)dt—i—Am
0

c [ A@t)(M —m)dt+ B. (M —m) + Am.

Ot~ < o\%

For small enough € > 0, the operator A + B has an inverse operator. From
this and from Corollary 4

0
/A(t)(M—m)dt—kBg(M—m) — (A4 B.) (M —m).
0
By virtue of the arbitrariness of € and the compactness of M we obtain

A{t)Mdt C A(M —m)+ Am = AM.

o\%

The reverse inclusion is obvious. The theorem has been proved. ]

4 Operational Constructions in Differential Games

4.1 Dynamics of Game Problems

Consider a dynamic system described by the differential equation

zZ= f (Za u,v) ’ (17)
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where z € E™", uc U,v €V, U and V are compact in Euclidean spaces.

The players P (pursuer) and E (evader) dispose the parameters u and
v respectively. By admissible controls for players P and E we shall under-
stand the functions u (t) and v (t) with values in U and V respectively. The
sets of all admissible controls of players P and E determined on a segment
[a,b] (half-interval [a, b)) will be denoted by U [a,b], V [a,b] (U [a,b), V [a,b))
respectively.

We shall assume further that the function f and the sets U and V satisfy
the following assumptions:

Assumption 1 The function f(z,u,v) is continuous and locally Lipschitz
w.r.t. z (i.e., the function satisfies a Lipschitz condition w.r.t. z on every
compact set K C E™ with the Lipschitz constant Ly depending on K ).

Assumption 2 There ezists a constant C >0 such that, for all z € E™,
ueU, andv eV,

(2 f (2w o)) < € (14 ]12)1).

Assumption 3 The set f (z,U,v) is a convex set for all z € E™, and v € V.

Assumptions 1 and 2 guarantee the existence, uniqueness, and continuity of
the solution z () to equation (17) on all semi-axis [0, +o00) for arbitrary initial
condition z (0) = zp and any admissible controls « (t) and v (t) for players P
and F in place of the parameters u and v in (17).

Denote by z (t|u (-) ,v (+), z0) the solution z (t) to equation (17) correspond-
ing with u (t), v (t), and the initial condition z (0) = zp.

Consider an arbitrary interval [0, 6], § < +oco. Assumption 3 guarantees,
in the topology of uniform convergence on segment [0, §], compactness of the
solutions set corresponding with various admissible controls u (-) for player P
and the initial position zy. This fact remains valid even if the initial position
zo is not fixed and runs instead over some compact set K C E™.

From the described property, it follows that if ug (-) € U[0,0], z € K,
k=1,2,..., are some sequences, and

2 (1) = 2 (tuk (-) ;0 (), )

is the sequence of corresponding solutions to equation (17), then there exists
a subsequence { z_ (-)} of the sequence { zj ()} that converges uniformly on
[0,0] to the function z (-). Moreover, there exist u (-) € U[0,0] and = € K
such that
2 (t) =z(@lu(),v() )

The same statement is valid if we consider directedness instead of se-
quences. This question will be addressed below.

The aims of the players are described with the help of a terminal set
M C E™ and a set of phase constraints N C E™. The sets M and N are
assumed to be closed, moreover, M C N.
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Let us fix a moment 6 > 0. The aim of player P is to achieve the inclusions
z(0) € M, z(t) € N, for all t € [0,0], i.e., to draw a trajectory z (t) on M at
moment 6, while keeping it in the set V. The aim of player F is opposite and
is to achieve either z (0) ¢ M or, for some t < 0, z (t) ¢ N.

Various strategies for player P may be used. There are e-strategies in which
the greatest informational discrimination of the opponent is assumed: player
E informs player P of his control for some time € > 0 in advance. Moreover,
player P uses the information about the current position. Because player FE
disposes the parameter €, e-strategies are equivalent to the strategies in which
player P chooses his current control knowing the initial position and the entire
prehistory of the opponent’s actions. These strategies are constructed on the
basis of some Volterra mappings. Strategies in which player P chooses his
current control knowing the initial position and the current control of the
opponent are particular cases of the latter strategies. Such a strategy will be
called counter-strategy.

4.2 Convergence in the Set of Closed Subsets

In order to describe the initial positions sets that are favorable for any player
under the construction of strategies for the players, it is necessary to use
various operations on sets, namely addition, union, and intersection. It is also
necessary to consider sequences and directedness of sets and to study questions
of their convergence.

In a space of closed subsets, it is possible to introduce the concept of con-
vergence in various ways. The S-convergence [12], which describes convergence
of unbounded sets, is used here. In the case of bounded sets, S-convergence
coincides with convergence in Hausdorff metric

Let us recall the following definition.

Definition 7. Let X be an arbitrary set, and I an ordered set, i.e., such
that for any a1,a0 € I we can find o« € I such that a > oy and o > as.
A mapping o — xo of the set I into X is said to be a directedness and is
denoted by {xy}, a € 1.

Definition 8. A directedness { ysg}, [ € J, is said to be a subdirectedness of
a directedness {xo}, a € I, if, for any o € I, there exists an index (o) € J
such that, for any B’ € J with 3 > B (), we can find o/ € I, o/ > a, such
that xor = yg .

The notions of directedness and subdirectedness are natural generaliza-
tions of the notions of sequence and subsequence. If I is a set of natural num-
bers then {z,}, o € I, is the usual sequence, and its subsequences satisfy the
conditions of Definition 8.

Next, we introduce with an example, where the set I has its elements
arranged in increasing order, the notion of sets directed to increase.
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Ezample 7. Let [0,0] be some interval. A partition w is a finite sequence
of numbers {7y, 71,...,7%}, where k is an arbitrary number, such that
70=0<71 <--- <7 = 0. Assume that |w| = 6, and note that w is a partition
of the interval [0, 6]. On the set I = {w : |w| = 0} of all partitions of the inter-
val [0, 8] we introduce a partial order. Let w; = Tg =0< Tf <. 0 <L ng = 9}.

We write wy > wy if all numbers 77 coincide with some numbers 7}, i.e., the
partition wq includes the partition ws, and perhaps some other points, too.
For two arbitrary partitions w; and wsy, we shall understand w = w; Uws as

the partition formed by all numbers 7} and 72 in increasing order.

We say that the constructed set I is directed to increase as wy [Jwa > wq
and the relation wy |Jws > wo holds true for any wy, we. We shall also say that
t belongs to the partition w={79 <7 <--- <7 =0} (t ew)ift =7 for
some 1.

Definition 9. The directedness {x.}, a € I, of elements of the topological
space X, is converging to an element x € X if, for any neighborhood W of
point x, there exists ayy € I such that xo, € W for all a > ayy .

Let us note that a topological space X is a compact space if, and only if,
each directedness in X contains a subdirectedness converging to some point
of X.

Let X be a topological space, and let R (X) be the family of all its closed
subsets.

Definition 10. We shall say that the directedness { F}, «a € I, of closed sub-
sets from X, is S-convergent to the closed set F' C X if:

1. for any x € F and any neighborhood W, of the element x we can find a
B €I such that Fo, Wy # 0 for all a > f3;

2. for any y ¢ F we can find a neighborhood W, of the element y € X and
a € I such that F,, YW, =0 for all o > ~.

Ezample 8. Let X be a two-dimensional space of vectors (z,y). Assume that
Fy={(z,y): v —yt=0}. The set Fy ={(x,y): =0} is the coordinate
axis o'Wl and the set Fy, ¢ # 0, is the straight line y = (1/¢) x. It is not
difficult to see that, for ¢t — 0, {F;} S-converges to the set Fy. The set F} is
not included in an e-neighborhood of the set Fy for any € > 0 and ¢ # 0.
The set F; is a simple and a characteristic example of sets motion ac-
cording to some differential equations. Indeed, let us consider the system
t=—y, y=0.Ifx (t) = 2 (0) — y (0) ¢, then the set F} is a set of initial values
(2(0),y(0)) from which the trajectory reaches the set Fy precisely at moment ¢.

The following results describe the basic properties of S-convergence.

Theorem 17. It is possible to choose a converging subdirectedness from any
directedness { Fo.}, a €I, F, € R(X).
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Definition 11. The directedness { F,}, a € I, F, € R(X), is called nonde-
creasing if Fo, O F3 for oo > 3, and it is called nonincreasing if F, C Fg for
a > f.

Theorem 18. The nondecreasing directedness {Fn}, a € I, S-converges

to cl U Fo. The nonincreasing directedness {Fo}, a € I, S-converges to
aecl

N F..

acl

Definition 12. The subset M of a set R(X) is called S-closed if the
S-convergence of some directedness of elements from M to the closed subset
F C X implies F € M.

Theorem 19. The family of all S-closed sets from R (X) is the set of the
closed sets of some topology from R (X).

From this, the correctness of the next definition follows.

Definition 13. We call S-topology on R (X) a topology in which only
S-closed sets are closed.

Furthermore, if X is a Euclidean space or its closed subset (i.e., locally
compact Hausdorff space), then the following statement is of interest.

Theorem 20. Let X be a locally compact Hausdorff space. Then a con-
vergence of directednesses from R(X) in S-topology is equivalent to
S-convergence.

For a space X with metric d(-,-) it is possible to introduce the Hausdorff
distance between two compact sets A, B C X if we assume that

A, B) = ind ind .

p (A, B) max{ max min (z,9), max min (z,y) }
Theorem 21. Let X be a compact metric space. Then the S-topology coin-
cides with the topology induced by the Hausdorff metric p(-, -).

4.3 Operators over Sets

We consider the dynamic system that is described by equation (17) and sat-
isfies the Assumptions 1-3.

Definition 14. Let P., ¢ > 0, be an operator that to each closed set M C E™
corresponds a set P-M of all points zg € E™ that satisfy the condition: For
any admissible controlv (t), t € [0, ], of player E there exists an admissible
control u (t), t € [0, ], of player P such that for the appropriate solution
z(t)=2z(t|u (), v (), 20) to equation (17) with start at zo the inclusion
z(e) € M is fulfilled, i.e., the trajectory z (t) reaches M at the moment €.
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Using the operations of union and intersection, we can describe the oper-
ators P, as follows:

P.M = ﬂ U {zo€ E":z(e Ju(),v(),20) € M}. (18)

v(-) €V[0,e] wu(-) €U[0,]

Remark 3. In Definition 14, one can consider controls u (-) and v (t) deter-
mined only on the half-open interval [0, € ) as a change of the control values
u(t) and v (t) at one point does not change the trajectory. Here, it is always
possible to uniquely and continuously prolong on [0, € ) the solution z (¢) de-
termined on [0, € ), assuming z (¢) = 711_1)1& z (t). This fact will be used later on.

Remark 4. We can interpret the set P.M as a set of initial positions zy from
which player P may hit the trajectory z (t) on M at moment ¢ if he knows the
control v (t) of player E over the entire interval [0, ] in advance. If zg ¢ P-M
then there exists a control for player E such that, for all admissible controls
of player P, the relation z (¢) ¢ M holds. In this case, the players’ strategies
are preassigned, i.e., they choose their controls over the entire interval [0, e].
Moreover, player E knows zg, and player P uses the information about zg and
the chosen control v (t), ¢t € [0, €].

Lemma 8. The set P. M is closed.

Proof. Let {z} be a sequence from P-M converging to the point zy. For the
proof of the closure of P.M it should be shown that zg € P-M.

Because {z;} converges, one can assume that z; € K, where K is a
compact subset from E". As zp € P.M then, for any admissible control
v (-) € V[0, ¢, there exists an admissible control uy (-) € U [0, ] and a mo-
ment §;, € [0,¢] such that zy (¢) € M, where 2z (t) = z (¢ |ug (-), v (+), 2k ).

By virtue of Assumption 3, a set of trajectories corresponding with various
admissible controls of player P and initial positions from K is a compact set
in topology of uniform convergence. Therefore, there exists a subsequence of
the sequence {zj; ()} converging to a solution z (¢) of equation (17) that corre-
sponds with some admissible control u (-) € U [0, €] and control v (-). Without
loss of generality, one can assume that the sequence { z, (-) } converges to z (-).
Note that zg is initial point of the solution z (¢). By virtue of the closure of
M, we get z(g) = klingo z () € M. This implies zg € T. M. The lemma has
been proved. ]

Assume Py .M = (P.M)NN. It is clear that Py .M is a closed set if

M and N are closed sets. Thus, Lemma 8 allows us to apply the operators
P.M and Py, . M repeatedly.

Lemma 9. The following properties hold:
(1) PN’OM = M;
(2) Pn My C Py Mo, if My C Ms;

(8) for any family of closed sets {My},a € I, (| PnyeMo D Pne () Ma.
a€cl a€cl
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Proofs of properties 1 and 2 follow directly from the definitions. Property
3 follows from property 2.

Lemma 10. The inclusion Py o, Py, ;M C Py, ¢ 4e,M holds.

Proof. Tt follows from Lemma 9 (property 2) that

Py, Py, oyM = (P., (P,M)NN)NN C (P.,P.,M)NN.

Therefore, it is sufficient to prove the lemma for the operator P.. It is not
difficult to do so by applying the representation (18). Informally, player P out-
puts from points zg € P., ., M the trajectory z (t) on M at moment &1 + &2
as he knows a preassigned control v (¢) on the entire interval [0, e; 4 e3]. If
20 € P, P.,M, then player P outputs at first the trajectory on P., M at mo-
ment &1 as he knows a control v (t), ¢ € [0,1), and subsequently he finds out a
control v (t) on [e1,€1 + €3] and outputs the trajectory z () on M at moment
€1 + €2. Thus, in the second case, player P is less informed in advance about
the opponent’s actions than in the first case. |

The inclusion considered in Lemma 9 (property 3) is in general strict, i.e.,
the inverse inclusion may not be fulfilled. We next consider a case where this
inclusion becomes equality.

Lemma 11. Let {M,},a € I,M, C N, be a nonincreasing directedness of
closed sets. Then

ﬂ PN,EMa = PN,E ﬂ M,.

ael ael

Proof. By virtue of Lemma 9 (property 3), it is sufficient to show inclusion

ﬂ Py .M, C Py. ﬂ M,.

acl acl

Let zp € Py M, for any o € I. It means that zp € N and, for any control
v(:) € V[0,¢e), there exists a control u, (-) € U [0, ¢) such that for an appropri-
ate solution z, (t) = z (t],ua (+),v (+), 20 ) the relation z, () € M is fulfilled.
By virtue of Assumption 3, a set of solutions to equations (17), appropriate
to various admissible controls of player P, represents a compact set in topol-
ogy of uniform convergence. Therefore, there exists a subdirectedness of the
directedness {z, (-)} converging to some solution z (-) that corresponds with
some control u (-) and to control v (+), i.e., z(t) =z (tu(-),v(:),20). With-
out loss of generality, it is possible to assume that the directedness {z, ()}
converges to z (+). As Mg C M, and as § > a, then zg (¢) € M, forall 8 > a.
From this z (g) = lién zp (¢) € M,. By virtue of the arbitrariness of o we have

z(e) € (| M, implying zo € Py, (| M. The lemma has been proved. B
acl acl
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The next lemma follows from Theorem 18 and Lemma 11.

Lemma 12. Let {M,}, a € I, M, C N, be a nonincreasing directedness of
closed sets. Then the directednesses {Pn My}, o € I, S-converges to the set

Pn. N M,.
acl

Let w={r0=0<7 <--- <7, =t} be a finite partition of the interval
[0, t] (see Example 7), and assume that

PYM = Py, Pnys, .- Pn.s, M,
where §; =7, — 1,1, i=1,...,k.

Remark 5. If N = E™ we write P*M = Pj5, Ps, ... Ps, M. Let 2y € P*M and
assume that at the initial moment of time, player P knows in advance the
control of player E at time ¢;. Then, P may aim and hit on Ps, ... Ps, M at
moment §; = 7. If he has a hit on Ps, ... Ps5, M, then he will know the control
of player E at time 02, and therefore player P may aim and hit on Ps, ... Ps, M
at time moment 7 = §; + 2. Continuing the process further, player P attains
an inclusion z (t) € M. In addition, player P chooses his control at the points
Ti—1, ©=1,...,k, on an interval [r;,_1,7;) knowing z(r;_1) and the future
control of player E on interval [r;_1, 7;). Analogously, if zg ¢ P“ M, then player
E at moment 7y = 0 can choose a control such that, for any control of player
P, a corresponding trajectory does not hit on the set Pj, ... Ps, M at moment
91 = 71. Continuing the process further, we get z (t) ¢ M. In addition, having
z(1i—1), player E chooses his control at the point 7;,_; on the next interval
[7’ i—1, T z)

The next proposition follows from Lemma 11.
Lemma 13. Let |wi| = |wa| =t and w1 > wo. Then Py' M C Py?M.

Definition 15. Py, M = (| PYM, PBM = () P“M.

|w|=t |w|=t

Because of Lemma 13, the families of sets {PyM},|w| =t, is a nonin-
creasing directedness of closed sets. Consequently, from Theorem 18 we get
the following results:

Lemma 14. The directedness { P M}, |w| = t, S-converges to the set Py M.
Theorem 22. The following equality holds:
Py, 1,40, M = Py, o, Py, i, M.

Proof. Let w(|lw| =t +1t2) be an arbitrary partition formed by numbers
Ti,t =0,...,k, where 7; <t1,i=1,...,k,and 7, > t1,i =k +1,...,k. Let
us denote by wy an interval partition [0, ¢1] formed by numbers 7;,7i = 0,. .., k1,
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and t1, and by an interval partition wo of [0, t2], formed by the zero and the
numbers 7, —t1, i =k1 +1,... k.

Because of Lemma 13 and the definition of Py , it follows that Py' Py?> M C
P¢M. From this, Py ¢, Pns, M C Py Py, M C Py P> M C P M, because
of Lemma 9 (property 2), and by the arbitrariness of w, we get

Py, PN, M C P g0, M.

To prove the inverse inclusion, let wy, |w1| =t and we, |wa| = t2, be ar-
bitrary partitions formed by numbers 7, i =0,..., k1, and 72, i = 0,. .., k2,
respectively. Let us form a new partition w from the numbers 7' and 77 + #;. It
is clear that |w| =11 +t2 and Py' Py*M = P¢M D Py 4, M. From this,
because of Lemma 11, we get

PyuiuMc () () P¥PEPM

lwil=t1 |wa|=t2

= N () PeM) =Py Pra M.

|wil=t1 |wa|=t2

The theorem has been proved. |

Remark 6. The family {PN,t} ,t >0, is a family of operators acting on spaces

of closed subsets in N C E™. Because of Theorem 22, this family is a one-
parameter semigroup (the parameter is t). Let us compare Theorem 22 with
a known result from differential equations theory. Consider the equation
&= f(x), x € E". Tt is known that there exists a one-parameter group of
operators G; acting in E™ such that a solution z (¢) to the considered differ-
ential equation may be represented in the form z (t) = Gz, where z is an
initial position. In case x varies in a Banach space, it is possible to guarantee
only a semigroup property for G;. Thus, the semigroup PN’t describes the
dynamic of the set M motion.

4.4 e-Strategies Description and Game Move

The characteristic feature of an e-strategy is that player P uses the informa-
tion about the future control of player P on some time interval with length
determined by player E.

It is possible to introduce different definitions of e-strategies, however,
they are all equivalent. We will below turn our attention to one of them.
Assume that the game will take place on a finite interval [0,6]. Player E
chooses at the initial moment of time a finite partition of the interval [0, 0], say
w={1=0<71 < - <7 =0}. At moment 7;,_1, let the dynamic system
be at the point z (7;,-1), i = 1,2,.... Using this information, player E chooses
his control v; (t), t € [1;_1,7;). We assume that player P knows 7;_1, 2z (7;—1)
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and v; (t) ,t € [1,-1,7;), and that he chooses his control u; (t),¢ € [r—1, 7). If
we substitute v;(t) and w; (t) in (17), we can find a solution z (t) to equation
(17) with the beginning at z (7;_1). Because z (t) is Lipschitz, this solution
can be prolonged on the interval [r;_1,7;]. Thus, at moment 7;, the dynamic
system is at the point z (7;) and we can repeat the process further. Because
the number of points is 7; or finite, we construct a solution to equation (17)
on the entire interval [0, ] using the described process.
Consider the game from Subsection 4.3.

Theorem 23.

1. Let zo ¢ PyM . Then there exists an e-strategy for player E such that, for
any e-strateqy of player P for the corresponding trajectory z (t) with the
beginning at zo, the inclusion z (0) € M is fulfilled.

2. Let zo ¢ PyM . Then there exists an e-strategy for player E such that, for
any e-strategy of player P for the corresponding trajectory z (t) with the
beginning at zo, the inclusion z (0) ¢ M is fulfilled.

Proof.

1. Let zg € PyM and assume that player E chooses a partition

At the moment 79 =0, player E constructs a control v(-) € V[0, 7).
Player P knows this control. From Theorem 22, it follows that

20 € p@M = ]57—1 p@,TlM - P‘rl p@,n M.
The definition P. implies the existence of a w (-) € U [0, 71) such that
z(m)=z(m |u(-),v (), z) € Py_r, M.

We take the position z (71) as the initial position and repeat a process.
As a result, at the i-th step, a control u (-) € U [0, 7;) will be constructed
such that, for the corresponding trajectory, the inclusion z (7;) € Py_,, M
is fulfilled. We have z (§) € M at k-th step.

2. Let 2o ¢ PyM. The definition of PyM implies the existence of a partition
w=A{1=0<n< - <7,=0}, § =7 — 71, such that zo ¢P“ M.
Player E chooses a partition w at the initial moment. Because
20 ¢ Ps,...Ps, M, there exists a v (-) € V[0, §;) such that, for any control
u(-) € V[0, §), the relation

z(m)=2(01) =200 |u(-), v(-), 20) ¢ Ps,...Ps, M

is fulfilled.

Let us take the point z (71) as the initial point and repeat the described
process. Then, at the i-th step, a control v (-) € V[0, ;) will be con-
structed such that, for the corresponding trajectory, the relation
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2(r) =201+ -+ +06;) ¢ Ps,, ... Ps, M.
is fulfilled. We get z (0) ¢ M at the k-th step. m

Theorem 23 is a theorem of alternatives. Because of this theorem, the
entire game space E" is divided in two subsets PyM and E" / PyM. The first
subset describes all initial positions favorable to player P, and the second
subset describes all initial positions favorable to player E.

Theorem 23 describes the game structure without phase constraints, i.e.,
N = E™. Let us consider the case when N is subset of the space E™.

Lemma 15. Let 29 € Py .M. Then for any v(-) €V [0,e) there exists a
u(-)e U0,¢) such that z (e |u(-),v(:),e) € M and z(t|u(-),v(-),20) € N for
allt € ]0,¢).

Proof. Let w = {T‘“ =0< < < T;:(w) = 5} be a partition of the interval
[0,¢]. Fix v(-) € V[0,¢). The construction of PyM and the definition
of PysM imply that if zp € PYM then, for v(-) € V[0,e), there exists
a u’(-) €U[0,e) such that, for the corresponding trajectory z* (t), the
inclusions z¥ (¢) € M and z* (1) € N are fulfilled for all i = 1,..., k (w).
Assumption 3 implies that one can chose a converging subdirectedness
from the directednesses of the trajectories {z* (-)}. Without loss of gener-
ality, it is possible to assume that {z¥ (-)} converges, and that z(t) is its
limit. The function z (+) is a solution to (17) corresponding with some control
u(-) € U0, ) and the fixed control v (-). A solution z (-) has the properties
z(g) € M and z(t) € N for all ¢ € [0,¢]. The first property is obvious. We
shall prove the validity of the second property. We fix an arbitrary moment
t € [0,e]. For this ¢ there exists a partition w; such that ¢ € w;. For all w > wy,
the relation ¢ € w will also be fulfilled. Therefore, 2 (t) € N for all w > wy.
This implies z (t) € N. The lemma has been proved. [ ]

Using Lemma 15 we can prove the next theorem.
Theorem 24.

1. Let zy € pN’QM. Then there exists an e-strategy for player P such that,
for any e-strategy of player E for the corresponding trajectory z(t) with
the beginning at zq, the inclusions z(0) € M and z(t) € N are fulfilled for
all t € ]0,0].

2. Let 2o ¢ PNﬂM. Then there exists an e-strategy for player E such that,
for any e-strategqy of player P for the corresponding trajectory with the
beginning at zo, either z(0) ¢ M is fulfilled or there exists t € [0,0] such
that z(t) ¢ N.

5 Complex Analysis in Linear Differential Games

5.1 Linear Games with Scalar Matrix

Let us consider the game dynamics described by the equation
2= Az + B(u,v), (19)
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where A : E™ — E™ is a linear operator and B : U x V — E™ is a continuous
mapping. Let us study the cases A = 0 and A = aF, where a is a number and
F is a unit identity matrix. For such games we can describe, under certain
convexity condition, the operators P,, illustrate further and exemplify the
essence of the methods used for the solution of wider game classes. The special
cases of Volterra mappings (disstrategies) will be considered.

The case A =0 is called a simple moving. The equation (19) takes the
simple form

z = B (u, v).

According to Assumption 3, the set B (U, v) is convex for all v € V. Assume
that M and N are convex sets. Let us set

PPM= () |J{=€E": xn+tB(uv)e M}, Py,M=N(\PM
veEV uelU
(20)
We the set Py 4 M represents. Analogous arguments can be considered for
any t € [0, 6].
Let zop € Py M. Then for any v € V there exists u,, (v) € U such that

20+ 0B (uy, (v),v) € M. (21)

It follows from (21) that the mapping wu,, : V' — U depends on the ini-
tial position zp. The value u.(v) can be found by solving the inclusion
20+ 0B(u,v) € M with respect to u € U. There can be many such solutions.
Let us assume that u,, (v) is the least of the solutions in lexicographic sense. In
this case, it follows from Philipov’s lemma (Theorem 2) that if v (-) € V [0, 6]
then the function u (t) = u,, (v (¢)) is a measurable function and therefore
u(-)eU]lo, 0]

If player E has selected the control v (-) € V[0, 6], then it follows from
(21) that for any ¢ € [0, 0]

20 + 0B (u., (v(t)),v(t)) € M. (22)

If we divide both parts of inclusion (22) by € and integrate w.r.t. ¢ from 0
to 6, we get

0 0
1
z2(0) =z0+ | B(uz (v(t)),v(t))dt € - | Mdt= M.

Thus z(6) € M. It means that zy € PyM. This implies that Py M C PyM.
Let zp € Py g M and u, be constructed by the above mapping. Because
M C N, it follows from (22) that

0B (uz, (v(t)),v(t)) € N — 2 (23)
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Because 0 € N — zy, then, for any 7 € [0, 6],

T 6

/(N—zo)dtc/(N—zO) dt.

0 0
From this and from (23)

T T

%
/B(uzU(v(t)),v(t))dte%/(N—zo) dtCé/(N—zo) dt = N — 2,
0 0

0

In result, we get z (7) € N. This implies that
Pf.gM C Py oM.

Remark 7. The mapping u,, was originally constructed in order to output
the trajectory on the set M at the moment 6. However, the same mapping
allows a trajectory on the set IV to contact with M. Why does this occur?
Let m,, (v) = z9 + 0B (u,, (v),v) € M and consider the convex hulls

M, =c {m,(v),veV}, N,=7206{z, M.}.

It follows from the construction that the end of the trajectory is z(6) € M,.
Thus, the entire trajectory lays in the set N,. Therefore, if it “targets” on the
set M, as in inclusion (21), the trajectory will not automatically abandon the
set N, C N.

Let us now consider the case zo ¢ Py oM. Then either 20 ¢ N or there
exists v,, € V, depending on zp, such that for any v € U

20+ 0B (u,v,,) ¢ M. (24)

Because B (U, v,,) is convex, then, for any u(-) € U [0, 6], there exists a

u € U such that
0

/B (u(t),vy)dt = 0B (u,vy,).
0
It follows from this and from (24) that, for any u (-) € U [0, 6],

0
z () :z0+/B(u(t),vZO)dt:zo—i—GB(u,sz) ¢ M.
0

It is possible to consider the described process of the control construction
v(t) = v,, as a special case of an e-strategy for player F in which the triv-
ial partition w = {0,60} is selected at the initial moment and the constant
control zg on the interval [0, 0] is constructed. Therefore zo ¢ Py , Mand so

Py oM C Py 4 M.
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Thus the following theorem has been proved.
Theorem 25.

1. Let zg € Py ¢ M. Then there exists a mapping us, : V — U such that for
any v () € V|0, 0]:

(a) u, (v(t)) is an admissible control of player P,

(b) for the trajectory z(t) with the beginning at zo, corresponding with the
controls u, (v(t)) and v(t), the inclusions z(0) € M and z(t) € N are
Julfilled for all t € [0, 0].

2. Let zo ¢ Py oM. Then either zo ¢ N or there exists vs, €V such that,
for the trajectory z(t) with the beginning at zy, corresponding with the
arbitrary control u(-) € U [0,0] and to the control v(t) = v,,, the relation
2(0) ¢ M is fulfilled.

3. Pn,gM = P 4 M.

Let us consider the case of scalar matrix. The previous arguments, with-
out any additional constructions, are transferred to the case of games with
dynamics 2 = az + B (u,v), where a is a number.

Let us generalize the formula (20). Assume that

¢
PyM = ﬂ U {ZO € E": ey Jr/eaw*t)dtB(u,v) € M}, (25)

veV uelU 0
Py oM =N(\P;M.
Theorem 26. The statements of Theorem 25 hold if the operators Py, , are
replaced by the operators defined in (25).

Let zg € P; M. Then we construct a mapping u, : V' — U using, instead
of the inclusion (24), the inclusion

0
ez + /ea(a_s)ds B (uy, (v),v) € M. (26)
0

Let us assume that player E realizes the control v (-) € V[0, @]. Then it
follows from (26) that, for any ¢ € [0, 0],

0
ez + /e“(g_s)ds B (u,, (v(t)), v(t)) € M. (27)
0

0
Let us divide (27) by [ e™?=9)ds and then multiply by e*(?~*) and integrate
0
w.r.t. t from 0 to 6. We get

0
2(0) = ez + / 0= B (us (v (), v (1)) dt
0
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0 6
S /e“(e_t) /e“(e_s)ds “LMdt = M.
0 0
This implies that 2o € PyM and P; M C Py M.
Let now zy € Py M. Using the fact that e®()zg — 29 = jqe“(g_s)dsazo, we

0
get from (27):

0
[ €0 ds [B sy (06))0(0) + az0] € N = 20 (28)
0

0
for any t € [0, 0]. Fix 7 € [0, 0]. If we divide (28) by [e?®~*)ds and then
0

multiply by e®("=") and integrate w.r.t. ¢ from 0 to 7 we get

T

/ ™ B (us, (v (1)) ,v () + azo] dt

0
T 0
€ /e“(T*t) ( /e“(es)ds> (N — %) dt
0 0
T 0
= /e“t</easds> “H(N — z)dt C N — 2.
0 0

The last inclusion follows from the fact 0 € N — 2y and e® > 0. From this

z (1) Ze“Tzo—l—/e“(T_t)B(uzO (v (t)),v(t)) dt €N.
0

Thus, zo € PN7 oM and P;\}’GM - PN7‘9M.
Let now 29 ¢ Py oM. Then either 2o ¢ N or there exists v,, € V' such
that, for any u € U,

0
e“ozo—&-/ea(e_s)dsB(u,sz) dt ¢ M.
0

As B (U,v,) is convex then, for any u(-) € U [0, 0], there exists v € U such
that

0 0
/e“(eft)B (u(t),vy) dt = /eaw*s)ds B (u,v,,).
0 0
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This implies that for any u (-) € U [0, 6]
0
Am:&%+/wW%mmL%Jﬁ¢M.
0

Thus, 2o ¢ Py,g M and Py gM C Py 4M.

Let us construct two examples showing that the convexity conditions on
the sets M and N are essential. We show that if M is not convex or a is a
matrix (not a scalar matrix), then there are cases for which P;*M # P, M.

Ezample 9. We consider the game with dynamics 2 = v, where n = 1, z € E',
V={-1,+1}, M ={-1,+1},60 = 1. It is not difficult to see that zo =0 €
P M as for zo =0 z (1) = £1 € M is fulfilled. We show that 0 ¢ P, M. Sup-
pose that player E has chosen the control

-1 teo,1/2)
v@){+l;teLU2;H.

It is not difficult to see that z (1) = 0 ¢ M and therefore Py M # P; M.

Example 10. We consider the game with dynamics Z = Az + v, where n = 2,

zeEaA:(8%,vz{um%(m@—lrﬁ}szanumy(Qny

and 0 = 1. It is not difficult to see that zo = (0, 0) € P M. We show that
z0 ¢ PiM. Suppose, that player E has chosen the control

(1,0); teo,1/2)
v(®) ::{ (O,(e——l)_1>; tell/2; 1.

(1) 2) , it is not difficult to see that

zﬂ%:(Uz /?Wﬂe—n_ﬁ.
1

1
The set M has the form M = {(A1,A2), A\; >0, Ay + Ao =1}. As 3 +
1/2

Because et = <

6_61 # 1 then z (1) ¢ M. This implies that zp ¢ M and therefore
e _

Py M # P, M.
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5.2 H-convexity in Linear Games

Games with scalar matrices were considered in the previous subsection and
sufficiently effective methods for their solution were produced. It was shown
that the convexity conditions for the sets M and N are essential. Example
10 showed that the ordinary convexity of M and N is not sufficient for an
arbitrary matrix A. However, for each matrix, it is possible to choose an
appropriate class of convexity such that if M and N belong to this class, then
it is again possible to construct effective solution methods.

Let us consider in addition to the space E™, in which z changes, the
space L. Assume that dim L <n. Let ¢ : L — E™ be a linear inclusion op-
erator, m: E” — L a linear mapping; A : E" x E™ a linear operator; and
B :U xV — L a continuous mapping, where U and V are as previously com-
pact sets in Euclidean spaces.

The dynamics of the games to be studied are described by the equation

z=Az+ ¢ B(u,v). (29)
The terminal set M and the set of the phase constraints N are in the form
M={z€eE": mzeMp}y, N={z€E": mze€ N},

where M, C Np, are closed sets in the space L.
Set C(t) = 70Ny, t € [0, 0], and assume that

0
Py oM = ﬂ U {zEN: 7T6A02+/C(t) dt B (u, ’U)EML}.
0

veV uwelU

Denote by H the set of the unit vectors z* € L such that

(a) C*(t)x* = A(t|x*)a* for all t € [0, 6], where A (t|z*) is a number;
(b) for fixed z* the numerical function A (- |x2*) does not change sign on the
interval [0, 6].

Note that the given definition of the set M coincides with the definition
in Subsection 3.4 for the operator family {A (¢), ¢t € [0,0]} acting in E™.

Theorem 27. Let My, be a H-convex set. If zo € Py oM then there exists a
mapping us : V. — U such that for any v (-) € V[0, 6]:

(a) uy, (v (1)) is an admissible control of player P;

(b) for the solution z(t) to equation (29) with the beginning at zo and cor-
responding controls u,, (v (t)) and v (t), the inclusion 7z (0) € M, is ful-
filled.

(¢c) if, furthermore, Ny, is an H-convexr set and Azy € ¢L then wz(7) € N,
for all T €0, 6].
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Proof. Let zo € Py g M. Then for any v € V' there exists u,, (v) € U such
that

0
med? 2 + / C (t) dt B (u, v) € My, (30)
0

By Philipov’s lemma (Theorem 2), a mapping u., (v) can be chosen such
that the function u., (v (¢)) is measurable if v (¢ ) is an admissible control of
player E.

Let us assume that player E realizes some control v (¢), t € [0, 6]. Then,
for any s € [0, 6],

6
/C dt B (u., (v), v (s)) € My, — ez (31)
0

The set M — me??z is H-convex. Therefore, applying Theorem 14, we get
from (31)

0
7wz (0) = me ZO—|—/C B (uz, (v (), v(t))dt € My.
0
Thus, claims “a” and “b” of the theorem are proved. We shall now show

that the disstrategy constructed in (30) keeps the trajectory in Ny, under the
made assumptions. It follows from (30) and from M C Ny that

0
ned? 2z + /7T6A(07t)<p dt B (uy, (v), v) € N,
0

or ,
me? 2o + /weAtap dt B (uz, (v), v) € Np, (32)
0
As
¢
/ e A ds =t — E, (33)
0

it follows from (32) and (33) that

)
/WeAtgo dt [B (uz, (v), v) 4+ x0] € Np—720, (34)
0

where ¢ is an element from L such that Az = pxg. Fix 7 € [0, 6]. Then, it
follows from (34) that for any s € [0, 7]:
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9
/ﬂeAtcp dt [B(uz, (v(T—8)), v(T —5))+x0] € NL—7z0 (35)
0

Because 0 € N, — 7wz, applying Theorem 15 we get from (35):

T

/Tl'eAt(p [B(tz (v(T=1)), v (T —1t)) +x0] dt € Np—7z0
0
Taking into account (34) and replacing variables ¢ by 7 — ¢, we have

T

w2 (1) = meAz0 + / 770 B (uz, (v(1)), v (1)) dt € Ny.
0

This finishes the proof of the theorem. |

Theorem 28. Let B (U,v) be a H-convex set for all v € V. If 20 & Py oM
then either mzg ¢ Ny or there exists v,, € V such that, for the trajectory z (t)
corresponding with the arbitrary control u (-) € U [0, 0] and control v (t) = v,,
with the beginning at zo the relation z (0) ¢ My, is fulfilled.

Proof. Let zy ¢ P]"\‘,ﬁM and mzg € Np. Then there exists v,, € V such that
for any u € U:

0
meA? 2 + /C’(t) dt B (u, vy,) ¢ M. (36)
0

Because B (U, v,,) is a H-convex set, it follows from Theorem 16 that

0 0
/C B (U, v,,) /C ) dt B (U, v,).
0 0

It follows from this and from (36) that for any w (-) € U [0, 6]:

0
72 (0) = me zo+/C ), V) dt & My,
0

The theorem is proved. |

It follows from Theorem 27 that under certain constraints on the sets
M and N, the inclusion Py oM C Py oM is fulfilled, ie., Py ,M is an esti-
mation from below for the set ]5N79M . Under the conditions of Theorem 25
Py oM C Py oM, that is, in this case Py oM is an estimation from above for
]5N,9M . Thus, the following results:
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Corollary 5. Let My, Ny, and B (U, v) for anyv € V, be H-convez sets and
either N = L or AE™ C @wL. Then

Py, oM = P} oM.

Let us make a few remarks and give some examples. At first we turn our
attention to the fulfillment conditions of item (a) in the definition of the set
H. We will find that the following statement is useful later on.

Theorem 29. Let
(mettp) a* = A (t) 2%,
for any t €10, 0], 0 >0, where X (t) is a numerical function. Then x* is an
eigenvector of the operators (ﬂAkap)* k=0,1,2,...
Proof. The analyticity of mapping (me?'p)” implies the analyticity of the
function A (t). Let A(¢) = > )\k%. Then it follows from the condition of the
k=0
theorem that
= . tk
Z [(WA"(p) Tt — )\kx*] = 0.
k=0
From this, because of the arbitrariness of t € [0, 6], we get (ﬂAkgo) ot = A\t
and this proves the theorem. [ ]

Corollary 6. Let the conditions of Theorem 26 be fulfilled, E™ = L, and 7, ¢
be identity operators. Then, \(t) = e, where \ is an eigenvalue of A* asso-
ciated with an eigenvector xx.

The opportunity for the application of the method of H-convex sets is
illustrated by the examples below. The set H for concrete classes of games
will be described there as well as the introduction of the operator 7 and .

Ezxample 11. Let E™ = L, and let m and ¢ be the identity operators. Then
equation (29) has the form

z2=Az+ B (u,v).

Let us denote by H 4 the set of the unit length eigenvectors of the operator
A*, including a value associated with zero.

We will show that, in this case, one can take H4 as H. Indeed, if * is an
eigenvector of A* and A (z*) is an appropriate eigenvalue of A*, then

eA*(S—t)x* — ek(z*)(e—t)x*

whence A (t |2*) = @)= > (. Thus, the conditions “a” and “b” in the
definition of H are fulfilled. It follows from Theorem 26 that if 2* is an eigen-
vector of the operator e?’t, then z* is an eigenvector of the operator A*
implying, thus that H 4 is the maximal set satisfying the conditions “a” and
“b” in the definition of H.

Because E™ = L, the conditions Azy € ¢ L are fulfilled automatically.
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Ezxample 12. We shall consider a game with dynamics
&= Di+ B (u,v), (37)

where z € L, and D is a linear operator acting in the space L. Equation (37)
describes a control moving according to the Newton’s law accounting friction
force. Rewrite the last equation in the form

=y
y=Dy+ B (u,v).

In this case, the space E™ = L x L and the operators A, 7, and ¢ may be
represented by the matrices

A:[g%y 7[E 0], and qS:[E(,)L],

where E7, is the unit operator acting in space L. Using the Cauchy formula,
it is not difficult to find that

t
At Er feDSds
et = o

b

and
ety = /eDSds.
0

This implies that, if  (0) = 2o, and @ (0) = yo, the solution to equation (37)
is of the form:

x(t):wz(t):xo+/teDSdsyo+/t/SeDTdTB(u(s),v(s)) ds.
0 00

Let Hp be, as above, the set of the unit eigenvectors of D*. We show that it
is possible to take Hp as the set H. Indeed, if * is an eigenvector of D* and
A (z*) the corresponding eigenvalue, then

(A1) 37— (2000 1)
Therefore, A (t |2*)=[A (¢*)] " (X0 1) >0 for t€ [0, 6]. If \(z*) =0,

then A (¢ |z*) = 60 —t > 0. Thus, the conditions “a” and “b” in the definition
of H are fulfilled.
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Let us show that Hp is the maximal set satisfying the conditions “a” and
“b” in the definition of H. For this purpose, by virtue of Theorem 29, it is
sufficient to show that (7r A? Lp) = D. Because

t

ety = /eDsds,

0

d2
we have el (metty) =1 A%eMp = DePt.

The required equality follows from this for ¢t = 0.
In the given example, the condition Azy € pL means

Zo Yo 0
A = c ol = ;
(o) = (B) 7= (1)
whence x (0) = yo = 0.

Ezample 13. In the previous examples, the set H did not depend on 6. We
consider here an example where such a dependence takes place. Let the game
dynamics be described by the equation

&= —Dz + B (u,v), (38)

where = € L. Rewrite (38) in the form

T=y
y=—Dx + B (u,v).

In this case E" = L x L,

0 F 0
A[—D OL}’ W[El()], and @{EL].

It is not difficult to show that
medt = [cos(\/ﬁt), (\/5)71 sin(\/ﬁt)}7 retty = (\/5)71 sin(\/ﬁt),

where the notations cos(\/ﬁ t) and (\/5 )71 sin(\/ﬁ t) are introduced for
the series:

1 1
cos(\/Bt) =FEr — 5Dt2 + ED%‘Lf e

(VD)™ sin(vVDt) = Ept — %th + éDQtf’ -

From this, if 2 (0) = 29 and 4 (0) = yo, the solution to equation (38) has the
form

a(t) = w2(t) = cos(VDt) wo + (\/5)71 sin(vVD t) yo
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+ (\/5)_1 /sin(\/ﬁ (t —s)) B(u(s),v(s)) ds.

Let z* € L be a unit eigenvector of D* with a corresponding eigenvalue
A (x*). Tt is possible to take as H those unit eigenvectors of D* for which the

function (/A (z*) )71 sin(y/A (z*) t ) does not change sign on [0, 6]. Thus,
(m eA(‘g_t)Lp)* Tt = (\/l?)_1 sin(\/ﬁ 0 —1))
= (VA (@) " sin(VA @) (0—1)) .

As in Example 12, the condition Azy € 9L has also the form z (0) = 0.
The constructed set H depends essentially on 6 and may be empty.
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with Fractional Derivatives

Arkadii A. Chikrii

Glushkov Cybernetics Institute NAS Ukraine, Kiev Ukraine
chik@insyg.kiev.ua

Abstract A general approach to solving game approach problems for systems with
Volterra evolution is outlined. It is based on the method of resolving functions [11]
(the latter is also referred to as the method of Minkowski inverse functionals [12])
and employs the apparatus of the theory of set-valued mappings. Suggested scheme
encompasses a wide range of functional-differential systems, in particular integral,
integro-differential, and difference-differential systems of equations that specify dy-
namics of the conflict-controlled process.

In this chapter, we examine in great detail the case when dynamics of the conflict-
controlled process is described by a system with fractional derivatives. Note that we
deal with both the Riemann—Liouville and Dzhrbashyan—Nersesyan—Caputo frac-
tional derivatives.

Here solutions to such systems are given in the form of Cauchy formula analog.
Sufficient conditions for terminating the game of approach in some guaranteed time
are obtained. These conditions are based on the Pontryagin condition analog [48],
expressed in terms of the Mittag—Leffler matrix functions [13,14]. Using the asymp-
totic expansions of these functions allows one to develop conditions for solvability
of the game problems.

Key words: fractional derivative, set-valued mapping, Minkowski functional,
Mittag—Leffler function, Pontryagin’s condition

1 Introduction

This investigation is concerned with the processes with fractional derivatives.
It should be emphasized that systems of fractional order go back to the Abel
integral equation, to be specific, to representation of its solution [18,53]. The
key to understanding the operation of fractional integration lies also with
the Cauchy formula for multiple integration of a function. Extensive litera-
ture is devoted to investigating the operators of fractional integration and
differentiation. Monographs [24,32,38,40,46,53] are worthy of notice as they
give the reader a comprehensive idea of the subject. The studies [3,33,47]
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are devoted to the physical and geometrical interpretations of the fractional
integration and differentiation. In the past 20 years, fractional calculus has
found applications in physics [7], hydrology [4], finance [51], seismic analysis
[26], viscous damping [31], electrochemical problems involving diffusion [40],
fractional-order sinusoidal oscillators [41], robotics, as well as in the theory
of control of finite-dimensional [2,22, 34, 35, 42-44] and infinite-dimensional
systems [36,37] and in solving the Cauchy problem for systems of fractional
order [17,25].

It should be noted that to solve a system of differential equations with
Riemann—Liouville fractional derivative, a fractional integral of appropriate
order should be given, instead of a conventional Cauchy data at the initial
time ¢ = 0. This is explained by the fact that the solution to such equation
has singularity at ¢ = 0 and only generalized initial conditions are mean-
ingful in such case. Yet, from the physical standpoint, it is desirable to deal
with conventional Cauchy problem for a system of equations with fractional
derivatives.

M. M. Dzhrbashyan and A. B. Nersesyan in their joint paper [17] sug-
gested to consider an equation with fractional derivatives, in which instead
of Riemann—Liouville derivative, its regularized value is used and conven-
tional Cauchy data stands for the initial condition. Simultaneously, M. Caputo
performed the same expedient in his study [6]. That is why in the sequel
the regularized fractional derivative will be referred to as the Dzhrbashyan—
Nersesyan—Caputo fractional derivative.

In this paper, to study conflict-controlled processes described by fractional-
order systems, we use the method of resolving functions [11]. This method
was initiated by the paper of Pshenichnyi [49], devoted to the group pur-
suit problem in the case of “simple motions.” Later on, B. N. Pshenichnyi,
A. A. Chikrii, and J. S. Rappoport developed a general method for solv-
ing the linear problems of group pursuit, in their number those under the
state constraints. Important results for the group pursuit problems were ob-
tained by N. L. Grigorenko [20], with the help of analogous techniques, and by
N. N. Petrov [45], who examined such problems under the state constraints.
The gist of the method of resolving functions consists in constructing, on the
basis of known process parameters, certain numerical functions. These func-
tion integrally characterize the course of a conflict-controlled process, namely
the trajectory proximity to the terminal set, and play a key role in solving spe-
cific problems. On the one hand, this method appears as a general approach
to investigation of conflict-controlled processes, closely related with the Pon-
tryagin first direct method [48]. On the other hand, it substantiates the rule
of parallel pursuit, well-known to engineers engaged in design of rocket and
space technology.

After publication of the monograph [11], the method of resolving functions
has been extended to systems of variable structure [29] and to the integral and
integro-differential games for linear systems possessing polar singularity [19].
Game problems with a terminal functional were a subject of research in [15],
where some ideas of Fenchel-Moreau and Minkowski were used.
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Some of the results concerning systems with fractional derivatives, pro-
vided below, were obtained jointly with S. D. Eidelman.

2 Formulation of the Problem. Auxiliary Results.
Scheme of the Method

Let us denote by R™ the real n-dimensional FEuclidean space and by Ry =
{t : t > 0} the positive semi-axis. Consider the process evolving according to
the equation

2(t) = g(¥) +/.Q(t,7')<p (u(7),v(r)) d, t>0. (1)
0

Function g(t), g : R+ — R", is Lebesgue measurable and bounded for ¢ >0,
matrix function (¢, 7), t > 7 > 0, is measurable in 7 and also summable in
7 for any ¢t € Ry. The control block is given by function ¢ (u,v), ¢ : U XV —
R™, which is assumed to be jointly continuous in its variables on the direct
product of nonempty compacts U and V, i.e., U,V € K(R™). Control actions
of the players, u (1), u : Ry — U, and v(7), v : Ry — V, are measurable
functions.

In addition to the process (1), a terminal set is given having a cylindrical
form

M* = My + M, (2)

where My is a linear subspace from R™ and M € K (L), where L is an orthog-
onal complement to My in R"™.

The goals of the first (u) and the second (v) player are opposite. The first
one strives in the shortest time to drive a trajectory of the process (1) to the
set (2), the second one strives to maximally postpone the instant of time when
the process trajectory hits the set M™*.

Let us take the side of the first player and assume that his opponent
chooses as controls arbitrary measurable functions with values from V. We
also assume that the game (1), (2) takes place on the interval [0, 7] and that
the first player chooses as controls measurable functions of the form:

u(t) =u(g(T), v (), tel0,T], u(t)eU, 3)

where vy () = {v (s) : 0 < s <t}isa pre-history of the second player’s control
up to the instant ¢. If, for example, g(t) = A(t)zp, where A(t) is a matrix
function such that A(0) = E (E is a unit matrix) and z(0) = zp, then we may
consider that w(t) = u(zo,v: (+)), i.e., control of the first player appears as a
special type quasistrategy [11,28].

The goal of the paper is, under the information condition (3), to develop
sufficient conditions for solvability of the problem in favor to the first player in
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some guaranteed time, as well as to estimate this time and to find the control
of first player that allows for the realization of this result.

Now let us describe the method of solving this problem. Original assump-
tions about functions g(t), £2 (¢, 7), ¢ (u,v) and sets U, V., M* allow us to re-
alize constructions already known from the theory of differential games [9-12].
Let us briefly outline them.

Define by 7 the orthoprojector acting from R™ onto L.

Setting

¢ (Uv) ={p(uv): uelU}

let us consider the following set-valued mappings
W(t,r,v) = (t,7)p (U,v),

W(t,t)= ﬂ W(t,T,v),
veV

defined on sets A x V' and A respectively, where
A={(t,7): 0<7<t<oo}.

Condition 1 (Pontryagin’s condition). Set-valued mapping W (¢, 7) takes
nonempty values on set A.

By virtue of continuity of the function ¢ (u,v) and the condition U €
K (R™), the mapping ¢ (U,v) is continuous in v in Hausdorff metric.

Taking into account the assumptions concerning matrix function 2 (¢, 7),
one can infer that the set-valued mappings W (t, 7,v) and W (¢, 7) are measur-
able in 7 [23]. Recall that a set-valued mapping F(t), F : [0, T] — 25" is called
measurable if for any open set Y, Y C R", theset {t € [0,T]: F(t)NY # 0}
is measurable.

Let us denote by P (R™) a set of all nonempty closed sets from space R™.
Then, obviously,

W(t,7,v): AxV — P(R"),
W(t,7): A— P(R").

In this case, the set-valued mappings W (¢, 7,v) and W (t,7) are usually re-
ferred to as normal in 7 [23].

It follows from Pontryagin’s condition and some results of the papers [1,
16, 23] that for any ¢ > 0 there exists at least one 7-measurable selection
v (t,7) € W (t,7). By assumptions concerning the parameters of process (1)
such selection 7 (¢, 7) is a function that is summable in 7 for any fixed ¢ > 0,
7 € [0,¢]. Denote

E(t,g(t),y(t,:) =mg (t)—|—/7(t,7) dr.
0
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Now let us define a function
aft,7,v) =sup{a > 0: [W(t,7,v) — (¢, 7)]

Na[M —&(t, g(t),v(t, )] # 0}

and call it the resolving function. This function will play a key role in the
sequel.

By virtue of assumptions concerning the parameters of process (1) and
some known results from [11], one can infer that function (4) is measurable
in 7 and upper semicontinuous in v.

In what follows, our prime concern will be with the joint dependence of
function « (¢, 7,v) in variables 7 and v. Let us fix some ¢ and set « (7,v) =
a (t,7,v). We will say that function « (7,v), a: [0,T] x V — R4, is superpo-
sitionally measurable if for any measurable function v(7), v : [0,7] — V, the
superposition a (7,v (7)), a : [0,T] — Ry, is a T-measurable function. Suffi-
ciently general assumption ensuring function « (7,v) to be superpositionally
measurable is that of its L x B measurability [1,16], i.e., of measurability with
respect to o-algebra being a product of o-algebras L ([0,7]) and B (R™). This
o-algebra consists of subsets of the set [0, 7] x R™ generated by sets of the
form X x Y, where X is Lebesgue measurable subset of the interval [0, 7] and
Y is a Borel measurable subset of R™.

Denote W (t, 7,v) =y (T,7) = H (1,v), M —&(T,g(T),~v(T,-)) = My and
introduce a set-valued mapping

(4)

Z(r,v)={ae Ry : H(r,v)NaMi #0}. (5)

Then
a(r,v) =sup{a € Ry : a€ = (r,v)}.

Let us study properties of the set-valued mapping (5). The following general
result is true, which generalizes the known statement from [23] and follows,
in particular, from the work [30].

Lemma 1. Let X € P(R") and F(w), F : X — P (R*), and H (w), H :

X — P(R"), be normal set-valued mappings and let M (w,z), M : X x R¥ —

P (R"™), be a Caratheodory mapping (measurable in w and continuous in x).
Then the mapping

Ew)={xeF(w): Hw)NM (w,z)#0}
s normal.

Setting in the statement of Lemma 1 w = (7,v), © = « and respectively
F(w) =Ry and M (w,z) = aMy, we infer that the mapping = (7,v) is Lx B
measurable, as the mapping H (7,v) is L x B measurable by virtue of its
Lebesgue measurability in 7 and continuity in v [16].
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Now let us show that the function « (r,v) is L x B measurable. Indeed,
because the formula is true:

a(r,v)= sup a=C(5(rv);1),

ac=(T,v)

where C (X, p) is a support function of set X in direction p [52], its L x B
measurability follows from the L x B measurability of the set-valued mapping
= (1,v) [23].

Thus, the function « (7,v) is L x B measurable, bounded below by zero
and semicontinuous in v [11].

Let us show that the function in‘f/ a (7,v) is measurable. To do this we will
veE

treat V as a constant set-valued mapping. It is a measurable mapping [23].
The approximation set in V' can be formed, for instance, by functions v, (7) =
Um, where Vi, = {v1,vg,...} is a countable dense subset of set V. Then, by
virtue of L x B measurability of the considered function, it is superpositionally
measurable whence follows that functions « (7, v,,) are measurable in 7. Let
us now show that

inf = inf .
Ulgva(T,U) inf o (7, vy

Um
For this purpose, we set a (1) = in‘f/a (r,v) and fix 7. By definition of the
veE

greatest lower bound, for any ¢ > 0 there exists an element v. € V' such that
a(rv) <a(r)+e.

On the other hand, from the upper semicontinuity in v of the function
a (1,v), it follows that a neighborhood O (v.) of element v, exists such that
for any v € O (v.)
a(r,v) <a(rve) +e.

In its turn, from here and from the definition of set Vi, it follows that an
element v, € Vi, N O (v.) exists such that

a(T,0m) < a(rve) +e <a(r)+2e.

Then
inf a (7, 0,) < al(r).

Um
What is more, because the inverse inequality is always true in view of the
inclusion V,, C V, then
a(r) = inf a(r,v) =inf a (7, v,)
veV VUm

and therefore function « (7) is measurable as the greatest lower bound of
countable set of measurable functions [23].

The following statement is a consequence of formula (4). If for some ¢ the
inclusion & (¢, g (t),7v(t,-)) € M is satisfied, then function « (¢, 7, v) turns into
infinity for all 7 € [0,¢t], v € V.
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Let us introduce a mapping

If for some ¢ the integral in expression (6) turns into infinity, then the inequal-
ity in braces is readily satisfied. If, on the other hand, the inequality in (6)
fails for any ¢, then we set T (g (-),~v (-,-)) = 0.

We can now formulate the main result of the paper.

Theorem 1. Let in the game (1), (2) Pontryagin’s condition hold, M = coM
and let for some bounded function g (t), t > 0, and some measurable in T
selection v (t,7), t > 7 > 0, of the set-valued mapping W (t,7) the following
relations be true:

TG,y ) #Dand T €T (g(:),v (), T < +oo.

Then a trajectory of process (1) can be brought from the initial state g(T) to
the terminal set in time T, using control of the form (3).

Proof. Consider the case £ (T,g(T),v(T,-)) €M. Let vy (-) be an arbitrary
measurable function with values in V. Analogously to [10,11], we introduce a
test function

h(t)zl—/a(T7T7U(T))dT, tel0,1].
0

Because the function « (T, 7,v) is L x B measurable, it is superpositionally
measurable as well, i.e., function « (T, 7,v (7)) is measurable. On the other
hand, by assumptions concerning the parameters of process (1), (2) the latter
is bounded for almost all 7 < T" and therefore integrable on any finite interval
of time. From this it follows that the function & (¢) is continuous, nonincreas-
ing, and & (0) = 1. Therefore, there exists an instant ¢, = ¢ (v (+)), t. € (0,7,
such that h (t.) = 0.

In the sequel the segments [0,7.) and [t.,T] will be referred to as “active”
and “passive” respectively. Let us describe how the first player chooses his
control on each of them. For this purpose consider a set-valued mapping

U(r,o)={ueU: aQ2(T,7)¢(u,v) —~v(T,7)
€ Oé(T,T,U) [M—f(T,g(T),’)/(T,-))]}.

Because the function « (T, 7,v) is L x B measurable, M € K (R"), and
the vector & (T, g (T),~(T,-)) is bounded, then the mapping

« (Tv T, U) [M - 5 (Tv g (T) )Y (Tv ))]

(7)
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is L x B measurable. In addition, it is obvious that the left side of inclusion in
(7) is jointly L x B measurable function in 7 and v and continuous in u. From
here, in view of the known statement from [23], it follows that the mapping
U (1,v) is L x B measurable. Therefore its selection

u(r,v) =lexminU (7,v) (8)

is L x B measurable function. Let us set control of the first player on the
active segment [0, ¢,) equal to

u(r) =u(rv(r)). (9)

By virtue of the function u (7,v) L x B measurability, it is superpositionally
measurable, which implies the measurability of function w (7).

Let us analyze the “passive” segment [t.,T]. We set in expression (7)
a(T,7,v) =0 for 7 € [t.,T], v € V, and choose control of the first player in
accordance with the above-outlined scheme using expressions (7)—(9).

In the case {(T,g(T),v(T,-)) € M, control of the first player on the
interval [0,T] is chosen from the same relations as on the passive segment,
i.e., by the scheme (7)—(9) with o (T, 7,v) =0, 7€ [0,T], v e V.

Let us show that if the control of the first player is chosen in the form (9),
then in both cases, in view of relations (7), (8), a trajectory of process (1) will
be brought to set M at instant T for any control of the second player.

From expression (1) we have

T
mz(T)=7ng(T) + /71’9 (T, 7)o (u(r),v(r))dr. (10)
0

Let us first analyze the case £ (T, g (T),~v (T,-)) EM. To do this, we add and
T
subtract from the right side of equality (10) the term [~ (T, 7)dr. Using the
0
above-outlined rule for control choice of the first player, we obtain from (10)
the inclusion
L. L.
w2 (1) €€(Tg (1)1 (1) [1- [a(Tr (@) dr | + [ a(Tro () b
0 0

Because M is a convex compact, a (T, 7,v (7)) is a nonnegative function
for 7 € [0,t.), and
t
/a (T,r,v(7))dr =1,
0
t,

then [« (T,7,v(7))Mdr = M and, consequently, nz(T) € M and
0
z(T)e M*.
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Suppose that & (T,g(T),v(T,-)) € M. Then, taking into account the
control law of the first player, from equality (10) one can immediately de-
duce the inclusion 7z (T') € M. ]

3 Some General Properties of the Resolving Function.
Explicit Formulas

As seen from the method scheme, in order to evaluate the instant of the
game termination and to construct the control law of the first player in the
form (3), we need an explicit form of the resolving function. The following
statements provide solution to this problem under some specific assumptions,
namely when some parameters of the process (1), (2) appear as convex sets
(for example, polyhedral, elliptic, or spherical).

Lemma 2. Let in the game problem (1), (2) Pontryagin’s condition be satis-
fied, M = coM, and let the mapping W (t,7,v) be convex-valued. Then

a(t,Tv) = peirlgf(t) {CW(t,m,v);p) = (p,y (t, 7))}, (11)
where
P(t)={peL: C(M;p)+(p,&(t,g(t),v(t,-)) =—1}. (12)

Proof. The nonemptiness of the intersection in definition of function « (¢, 7, v),
in view of both sets’ closureness and convexity, in the terms of support func-
tions [52], is equivalent to the inequality

C(W(t,7,0);p) = (p,7(t,7) + a[C(M;—p) + (p, € (t,g (1), v (t,°)))] >0

for all p € L, or put it otherwise, to the inequality

—a[C(M;—p) + (p,&(t, g (1), 7 (t,-)))]
S C (W (t,T,v);p) — (0,7 (L, 7))

The right-hand side of the last inequality is non-negative for all p, in view
of Pontryagin’s condition and the choice of selection v (¢,7). Therefore, if
C(M;—p)+ (p,&(t,g(t),v(t,+))) > 0, then for any a > 0, inequality (13) is
readily satisfied.

Normalizing p with the help of expression (12), one can infer formula (11)
from inequality (13). |

(13)

Lemma 3. Let the process (1), (2) be linear (¢ (u,v) = u—v), for this process
Pontryagin’s condition holds, and let, in addition,

7,7V U={xeL: (p,x)<a;(t,7), i=1,...,k},
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where a; : A — R is a function that is summable in T for all t >0, p; € L.
Then, Zfé- (t7 g (t) Y (tv ))EM then

a(t,7,v) = max min {ai (t:7) — (pi, 12 (%, 7) v 7 (¢, 7)) } 5 (14)
meM iel(m) (pism —&(t,g (1), 7 (1))
where
I(m)={ie{l,....;k}: (pim—&(t,g(t),v(t-)) >0}.
Proof. Tt follows from formula (4) for the resolving function [11] that
a(t,T,v) = max o (t,7,0,m),
where
a(t,m,v,m) =sup{a = 0:a(m—¢(tg(t),v())) (15)

eW(t,7,v) —v(t,7)},

and that function « (¢, 7,v,m) is upper semicontinuous in m.
From the inclusion in relation (15), with account of assumptions of
Lemma 3, we have

am—=~E(t,g@t),v(t) ent, 1)U —-n2(t,7)v—"y(tT1)
or, to take it differently,

a(Pum—ﬁ(t,g(t)a’Y(tv))) < (t’T) (16)
—(pi, 72 (t,T)v+~y (7)), i=1,... k.

It follows from Pontryagin’s condition that the right-hand side of inequality
(16) is non-negative for all (¢,7) € A,v € V,i=1,...,k, and therefore for all
i such that (p;,m —&(t,9(t),v(t,-))) <0, inequality (16) is readily satisfied
for all o > 0. Therefore,

(t,7) — (pi, 702
S O3 g T PRETRTN
i€I(m) (pi,m —&(t,g(t),v(t,-)))
and, thus, function « (¢, 7,v) is given by expression (14). [ |

Corollary 1. If in the conditions of Lemma 3
U={u:(piu) <a;, i=1,....k}

and 72 (t,7)U =r (t,7) U, where r (t,7) is a function that is summable in T
for any t, then a; (t,7) = a;r (¢, 7).
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Corollary 2. Let the assumptions of Lemma 3 be satisfied, let set U be a
symmetric polyhedron about the origin:

UZ*U:{U:(phu)Saia i:17"'7k}7

and w2 (t,7)U = r(t,7)U, where v (t,7) is a function, summable in T for
any t, and let set M be homothetic to U (M =AU, A > 0).
Then if € (t, g (t),v (t,-)) EM, the following formula is true

{aﬂ’ (t, 1) — (pi, 72 (t,T) v+~ (t, 7)) }
Aa; — (pi,f(tg (t) Y (t7 ))) 7

a(t,T,v) = ?GIIID

where
Lo={ie{l,....k}: Aa; — (pi, E(t, g (t) , v (¢,-))) > 0}.

Lemma 4. Let in the game problem (1), (2) Pontryagin’s condition be satis-
fied, ¢ (u,v) =u— v, and let

72, 7)U={x€L:(x—xo,F({t,71)(xr—1x)) <1},

where F (t,7) is a matriz function, which is summable in T for any t and
appears as a positively defined, symmetric square matriz for all (t,7) € A.

Then Zf{ (tag (t) Y (t7 ))EM

a(t,T,v) = max o (t,7,0,m),

where o (t,7,v,m) is the greatest positive root of the quadratic equation for a:

(a(m—=&(tg @), 7)) +72E,T)v+7 (L 7T) =20, F (t7)
x(a(m—=&(tg @), v () +72E7)v+7(t7) = 20)) = 0.

Proof of Lemma 4 is analogous to that of Lemma 3.

Lemma 5. Let for the process (1), (2) Pontryagin’s condition hold, ¢ (u,v) =
u — v, and let set U be an ellipsoid of the form

U={u:(u—ugF(u—uy)) <1}, (17)

and w2 (t,7)U =r (t,7) U, where F is a symmetric square matriz, v (t,7) is
a function, summable in T for any t, and set M is homothetic to ellipsoid U,
M=XU, \>0.

Then, if € (t,g(t),v(t,-)) EM, then the resolving function «(t,T,v) ap-
pears as the greatest positive root of the quadratic equation for a:

(,’T“Q (t77—) v+ (th) - O‘g (tvg (t) )Y (tv )) — Uo,

F(rQt,n)v+~vyt71)—al(t,g(t),v(t,-)) —ug)) =r(t,7)+ A\ (18)
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The statement of Lemma 5 follows from the equality (4), by virtue of the
symmetry property of ellipsoid U (17).

Remark 1. If in the conditions of Lemma 5 F' is a unit matrix, then in the
case of spherical U and M, quadratic equation (18) determines the resolving
function.

This result can be found in monograph [11].
In view of formula (6), the following statement is important.

Lemma 6. Let the process (1), (2) be linear (¢ (u,v) = u —v), Pontryagin’s
condition be satisfied, and let U and M be convex sets.

IfE(t,g (), v (t,-)) EM, then function o (t,7,v) is concave in v and attains
its minimum in v.

Proof. Let us make use of the representation of resolving function in the form
(11), (12). In our case

a(t,T,v) = eu;f(t Q(t,7,v,p),

where function

Qt,7,v,p) =C(n2(t,7)Usp) — (72 (t,7)v,p) — (p, v (t,7))

is linear in v. Note that the lower bound in p of a set of linear functions is a
concave function. The corresponding inequality can be easily obtained. Then,
because of the compactness of set U, the concave function attains on this set
its minimum [20]. |

Various types of sufficient conditions for the continuity in v of function
a (t,7,v) can be found in the book [11]. They ensure the attainability of the
lower bound in v in the definition of the game termination time.

4 Finiteness of the Game Termination Time
When solving specific problems, there is a need to have explicit formulas for

the functions under study that would allow one to draw a conclusion whether
(or not) the time of game termination is finite.

Denote .
/ inf «(t,,v)dr.
0

Then the shortest time for the game termination (in the framework of ad-
vanced scheme) is defined by the formula

T(g().y () = inf{t > 0: B (1) > 1}.
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Now we find an explicit form of function @ (¢) for some specific values of the
parameters of process (1), (2).
Let us consider the ellipsoids

Q={reR":(z,Fz) <1}, Qr={rel:(z,Frz)<1},
where F' and Fj, are positive symmetric matrices.

Lemma 7. Let for conflict-controlled process (1), (2) ¢ (u,v) = u—v, U = aQ
(a>1), V=0, M*={0} and let an inverse matriz to {2 (t, ) exist for all
t>712>0.

Then, if v (t,7) =0, then

where ¢ = 27 (t,7) g (t).

Proof. From formula (4) with account of assumptions of the lemma, it follows
that
a(t,m,v) =sup{a>0: 2, 7)v—ag(t) €af2(t,7)Q}. (19)

Here selection v (¢t,7) may be chosen identically equal to zero because the
mapping W (¢,7) always contains zero. Note that as M* = {0}, then M =
My = {0}, L = R™, and therefore 7 is an operator of identity transformation,
defined by a unit matrix F.

The inclusion in (19) can be rewritten in the form v — ag € a@), where
q= 271 (t,7) g (t). Because the vector v — aq linearly depends on «, then the
least upper bound in « in expression (19) is furnished by number «, such that
vector v — aq lies on the boundary of ellipsoid a@). The last statement means
that

(v—aq,F (v —aq)) =

and therefore the resolving function appears as the greatest root of the
quadratic equation for a:

o? (¢, Fq) — 2a (v, Fq) + (v, Fv) —a? = 0.

Then
wy = BTV @ 0"+ (0. Fo) o — (0. Fo)
o (4. Fq)
and
a—1

mina (¢, 7,0) = ——,
veQ V(a, Fq)

where minimum is furnished by the element v = ——2

(¢.Fq)’
The last equality implies the required result. ]
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Lemma 8. Let the parameters of process (1), (2) satisfy conditions: ¢ (u,v) =
u—uv, 72 (t,7) =w(t,7) E, where w (t,7) is a numerical function, U = aQr,

(CL>1),V:QL,MZZQL (ZZO)

Then if v (t,7) = 0 then
/ fwtnlla=1), (20)
g,Fg ) —1

Proof. 1t is easily seen that in this case, Pontryagin’s condition is satisfied
and the set-valued mapping W (¢, 7) contains zero. Set « (t,7) = 0. According
to representation (4), the resolving function is the greatest number, satisfying
the inclusion

where g =g (t).

w(t,T)v—ang(t) € (a|lw(t,T)+al) QL.
Setting w (¢, 7) = w, wg (t) = g, we rewrite the above inclusion, taking into
account the symmetry of the ellipsoid (Qr = —Qr):
wv —ag € (a|lw] +al) QL. (21)

The value of « in (21) is maximal in the case, when vector from the left part
of inclusion lies on the boundary of the ellipsoid (a|w|+ al) Q. To put it
otherwise,

(wo — ag, FiL (wv — ag)) = (a|w| + al)?.

As a result, we obtain the quadratic equation for a:
(lgl” = 2) 02 = 20 [w (g, Frv) - wlal] + w? [(v, Frv) - a] = 0.
Setting W = w (g, Frv) — |w|al, we have

a()=2* V©? + (g, Frg) — PJu?[a? — (v, Fv)]

(9. Frg) — 12
whence follows that ol ( 0
w|(a —

min a (1) = —(———. 22

Y PN B 22
Here the minimum is furnished by the element v = —sign w\/ﬁ.

Now, taking into account the notations, made above, one can deduce from

(22) formula (20). |

In the case of spherical parameters of the conflict-controlled process, the
following statements are true.

Corollary 3. Under the conditions of Lemma 7, if F = E and~ (t,7) = 0, then

a—1
/Hﬂl P YIG]
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Corollary 4. Under the conditions of Lemma 8, if Qy, is a spherein L (F,=FE)

and 7y (t,7) = 0, then
-1
/ o (¢ (a )dT.
\ﬂg I*l

5 Comparison with the First Direct Method
of L. S. Pontryagin

The suggested method gives sufficient conditions for termination of the ap-
proach game (1), (2) in finite time T (g(-),v(+,-)), where v (¢,7), t > 7> 0 is
some fixed selection. Under the same assumptions, the first direct method of
L. S. Pontryagin [11, 39, 48] ensures that the game can be terminated at the
instant of time

Hﬂﬁ:mnty%m@eM—/Wwﬂm . (23)

In so doing, the first player applies the counter-control

u(t) =u(g(),v (). (24)

Let us compare the times T (g (-),v(+,-)) and P (g (+)). It is easy to see that
I T(9()v ()= Pll). (25)
The last inequality follows from the following statement.

Proposition 1. Let Pontryagin’s condition be satisfied for the conflict-con-
trolled process (1), (2). Then in order that the inclusion

w@eM—/W@ﬂw (26)

holds, it is necessary and sufficient that there exists a selection «y (t, ) of set-
valued mapping W (t, 1), which is summable in 7, 0 < 7 < t, and such that

Etg@), v () € M. (27)
Proof of this statement immediately follows from the definitions of function
E(t,g(t),v(t,-)) and the integral of set-valued mapping.

Thus, inclusion (26) implies the inclusion (27) whence follows that the
function « (¢, 7,v) turns into +o0o. This clearly demonstrates the fact that the
case when the resolving function turns into infinity corresponds with the first
direct method of L. S. Pontryagin.

On the other hand, of interest is the case of equality in (25), i.e., when the
time of the game termination is unaffected by information on the prehistory
of second player’s control.

Using methods presented in [10,11], one may obtain the following result.
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Proposition 2. Let for the conflict-controlled process (1), (2) Pontryagin’s
condition be satisfied, the mapping W (t,7;v) be convex-valued, and the ter-
minal set be an affine manifold (M = {m} is a point). Then for any g (-)

minT (g (),7 () =Pla()).
Examples of game problems, demonstrating that each of the two conditions
of Proposition 2 is essential in the case of differential games, are given in [11].
In these examples, if one of mentioned conditions fails, relation (25) may turn
into a strict inequality. Also, local conditions for the equality and the strict
inequality in (25) in terms of cones are contained in [11].

6 Game Problems for Fractional Systems

In this section, we introduce in a standard way the classic notions of Riemann—
Liouville fractional integral and fractional derivative. To them corresponds
the equation with fractional derivative in which instead of standard Cauchy
condition at the initial instant ¢ = 0, the fractional integral of appropriate
fractional order is given. The reason is that, generally speaking, the solution
of such equation has singularity at ¢t = 0 and therefore only generalized initial
conditions have sense here. However, from the physical point of view, it is
desirable to have a standard Cauchy problem for equations with fractional
derivatives.

In [17], Dzhrbashyan and Nersesyan introduced an equation with fractional
derivative, in which instead of Riemann-Liouville derivative its regularized
value is used and a standard Cauchy condition stands for the initial condition.
Later on the new notion of fractional derivative was called the Dzhrbashyan—
Nersesyan—Caputo regularized derivative.

Let us define the fractional Riemann—Liouville integral of order 3, 8 €
(0,1), of a function z (t), t > 0, by the formula [53]

(1) 0= 75 / = S)l-ﬁ s

0

where I'(0) is the Euler ~-function. Then, the fractional Riemann-Liouville
derivative of order 3 has the form

d

B _ 1-p

(D0+2) (t) = dat (Io+ ) (t),

and the regularized Dzhrbashyan—Nersesyan—Caputo fractional derivative of

order § [17,25] has the form

(Dgi)z) (t) = (D§+z) (t) — F(tlfﬁ)z (+0) .
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We will associate each of the fractional derivatives with appropriate game
problem.

Thus, let in the first problem the evolution of a conflict-controlled process
be described by the system of differential equations

DPs=A:4+¢(u,v), 2€R", uel, wvev, (28)
under the initial condition
I'" P20 = %o, (29)
and in the second problem by the system
DWWy =Az+¢(u,v), z€R", wuel, wveV, (30)

under the initial condition
2|t=0 = 20 (31)

In the notations of fractional derivatives in (28), (30), some symbols are
omitted for the simplicity of exposition.

In addition to the dynamics of processes (28), (30), the terminal set of the
form (2) is given. The goals of the players in each of the cases are the same as
in the general problem statement. Note that in the problems (28), (29) and
(30), (31), the first player (u) chooses his control in the form of measurable
functions u (t) = u (2o, v¢ (+)) and u (t) = u (20, vt (+)), respectively, with values
in the domain U.

Let us proceed to the deduction of integral representations for functions
2(t) and z(t). For this purpose, for any arbitrary positive number p and
complex number pu, we define a generalized matrix function of Mittag—Leffler

i Bk
EP (87 /J’) = —1 9
ST (kp~' + 1)

where B is an arbitrary square matrix of order n with complex-valued ele-
ments. Matrix function E, (B;p) is an integer function of argument B.

Theorem 2. Under the players’ controls chosen, the solution z (t) to the sys-
tem (28), (29) is defined by the formula

2(t) =t By 5 (AP 8) 4

¢
32
—I—/(t—r)ﬁ_lEl/,@(A(t—r)ﬂ;6>ga(u(r),v(r))dT, (32)
0
and the solution z (t) to the system (30), (31) by the formula
z(t) = Eyp (At’B; 1) 2o
(33)

+ / (t=7)" " By (At =1)758) @ (u(r) 0 () dr.
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Proof. Let us first note that the function F (1) = ¢ (u(7),v (7)), 7 > 0, is
measurable and essentially bounded. This implies that the integrals in for-
mulas (32), (33) converge absolutely. The proof consists of two parts. In the
first one, we will prove that the first terms in formulas (32), (33) are solutions
of the homogeneous equations, satisfying the initial conditions (29), (31), re-
spectively. In the second part we will show that the second term in formulas
(32), (33)

t

2 (1) = / (t— )" By (At —7)":8) F (r)dr (34)

0

is a solution to nonhomogeneous equations (32), (33).
The fact that zo (¢) satisfies the zero initial condition immediately follows

from the boundedness of the functions E /g (A (t—7)° ;ﬂ) and F (1) and

that g > 0.
Denoting

21 (1) =177 By (A7) 20

we proceed to calculations:

(DP%) (t) = DP [t 1B, )5 (Atﬁ- B) %]

TTO-p)dt /(t ™) ZF G
t

AkZO d -5
_ t— 'B(k+1)71d
Z T (Bk+ ) di /( noT ’

k()
B AzOBl—ﬁﬁk+5)
S r(1-p kzo I (Bk + B) dt

BltPF=1z,

1 iA’“F(l—ﬁ)F(ﬁk+B)

I'(1=p) &= I'(Bk+6) I'(Bk+1)

B ﬁkAktﬁk 1 B o Aktﬁk_lA

_Z T(Bk+1)° Z T (5k) °
- A’“'tﬁ’“'

k=k+1 48— 12 ﬁk’—i—ﬁ = Az (t).

fl‘z 1 w ldx: I'(z)'(w) .

T (e 0) is Euler S-function.

Here B (z,w)

Let us now show that function Z; (t) satisfies the initial condition (29).
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- TR AP
(1 ﬁzl)(t)zf(l_m/(t_T)ﬁdT
0

L &K AR D (Bk+1) T (1-B),
mz

(- I (Bk+3) I (Bk+1)
- Aktﬁk t—0 .
:kzzof(ﬁk:—l—l)zo oo

Consider the function
Z1 (t) = El/ﬁ (Atﬁ; 1) zZ0 = El/ﬁ (Atﬁ) 20,

where /g (Atﬁ) is the matrix function of Mittag—Leffler.
Then

367

1 d / . AkpBE _
(D(ﬁ)zl)@m[a (/ DY T E 7)”] g

0 =0

__ 1 =AY d 5 Bk -5
7F(1—ﬁ) [;F(ﬁk—l—l)%o/(t’r) TPPdr —t 20

0

o0

- 1-B+Bk _ 4—B
kzoff”’““ B(1—-3,0k+1)t t ]ZO

I(Bk+1)I'(2+ Bk - B)
e Akt,@k 1)

Zr (1+3(k ))tﬁ]'z0

k 1tﬁ(k 1)

Z I ))zozAzl(t).

k=1

TR

Moreover, z (t) satisfies the initial condition (31) as

. S AN
tlgr(l]zl (t) = tlgl’(l)kgo mZO = Z0-

ZAkﬁkﬂ ra-p)rpk+1) (1—ﬁ+ﬁk)—t_6]zo
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Let us analyze function zs (¢), defined by formula (34), and show that it
satisfies equations (28), (30), under the zero initial conditions.
We have

(D22) (1) = (D(ﬁ)ZZ) (t) = ﬁ
t T (35)
dt/t—T /(T—S)ﬁ_lEl/ﬁ(A(T—S)B;ﬂ)F(S)dS dr.
0
Separately we will study the function
/ r Ak T—8 ’Bk
w(t):/(t—7)75 /T )= 12Fk;6+ﬁ F(s)ds | dr
. 0 k t 0 ) (36)
= F(ké ) /(t -7’ /(T — )R (s) ds | dr.
k=0 0 0

For this purpose, we consider the following integrals

:/t/T(t—T)_ﬁ (T—s)ﬁ(kﬂ)_lF(s) dsdr
0 0
= // (t—T)_’E (T—s)ﬂ(kﬂ)_lF(s) drds,

(A)

Ay ={(s,7): 0<s <7<t}

The latter integral converges absolutely, which allows, by virtue of Fubini
theorem, to change the order of integration using Dirichlet formula.
Then

t t

i = / / (t— )P (r = 5)P5 D ar | F(s)ds

0 s
t

:B(l—ﬁﬁk—s—ﬁ)/(t—s)ﬁkF(s)ds (37)
I'(1-pB)I'(kB+P) /
k6+1 O/ 8) ds.

From equalities (36), (37) it follows that
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00 t
Y (t)=1(1-7) (t — )’ F(s)ds.
> rirem (0

Because the function F (t) is measurable and bounded, then 4 (t) has the
derivative almost everywhere:

dy = A [ e
Z=r-p +le(ﬁk+ O/(t sV (s)ds
Ak kﬁl
=I(1- —|—/ > ) ———F(s)ds (38)

_ (-8 F(t)+A/(t—s)5*1E1/ﬁ (At —5)7:8) F (s)ds

0

Substituting (38) into (35), we obtain the equalities

DﬁZQZD(5)222A22+Lp(u,v). [ ]

7 Fractional Conflict-Controlled Processes with Integral
Block of Control

Alongside the conflict-controlled processes (28), (29) and (30), (31), we will
analyze the processes differing from them by the block of controls appearing in
the integral form. To be specific, in the case of Riemann—Liouville derivative,
we will study the process

t

D= Aj+ /t—T o (u(r) v (r)) dr,

0<vy<l, 0<p@<1,

under the initial condition
I'Pgli—o =G0 (40)
and in the case of regularized Dzhrbashyan—Nersesyan—Caputo derivative the

process
t

DOy = Ay + / (t— )" (u(r),v(r)dr (41)
0

under the initial condition
Ylt=0 = yo- (42)
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Theorem 3. Under controls of the players chosen, the solution §(t) to the
problem (39), (40) is given by the formula

g(t) =t""1Ey 5 (A% 8) 9o

¢
43
+/F(v) (t =) By (A(t—T)B;%Lﬁ) ¢ (u(r),v(r))dr o
0
and the solution y (t) to the problem (41), (42) by the formula
y(t) = Ei5 (At°51) yo
(44)

4 [ L) =7 By (A€ =137+ 8) o (u(r) o () dr.

Proof. Taking into account the reasoning, presented in the proof of Theorem
2, it suffices to show that the function

t

ya(t) = /F(’Y)(t —7)"PEy 5 (At = 7)%5 7 + B) ¢ (u(r), 0(7)) dr
0

is a solution of equations (43), (44) under the zero initial condition.
After application of formulas (32), (33) to systems (39), (41), under the
zero initial conditions we have

T

(t—7)"! Eyp (A (t— T)’B;ﬁ> /(T — )" F(s)dsdr

0

/(t — 7Pt Ey/p (A (t—71)° ;6) (1 — )" " drF (s) ds.

'
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In view of the matrix analog to formula (1.16) ([18], p. 120), we eventually
obtain

L(t=s) =T () (=" B (At —9)"57+8),

whence follows that
t
B0 =y®=T0) [ By (A= i7+5) F)ds. m
0

Remark 2.1t v + 8 > 1, then the solutions (43), (44) appear as absolutely
continuous functions [53], having bounded derivatives almost everywhere.

Remark 3. Integrals in equations (39), (41) may have arbitrary 7-summable
kernels.

Thus, for the game problems with the fractional derivatives of Riemann—
Liouville and Dzhrbashyan—Nersesyan—-Caputo of the types (28)—(29),
(30)—(31), (39)—(40), (41)-(42), the solutions can be presented by formu-
las (32), (33), (43), (44), which are specific cases of representation (1).

The above-outlined general method can be applied for solution to each of
the mentioned game problems.

8 Specific Case of Simple Matrix, the Origin
as a Terminal Set and Spherical Control Domains

For illustration of the method, we now analyze various specific cases in which
solution can be obtained in analytic form.

In a sequel, for the brevity of exposition and the unification of notions,
we will distinguish the four above-outlined problems by assigning to their
parameters the values of indices i, j: ¢« = 1,2, 7 = 1,2. Then a trajectory
z11 (t) corresponds with the process with Riemann-Liouville derivative and
conventional block of control (28) and z15 () to that with the integral block
of control (39). In the turn, a trajectory z2; (¢) corresponds with the process
with the regularized Dzhrbashyan—Nersesyan—Caputo derivative and the block
of control in conventional form, and 292 (¢) to that with the integral block of
control (41).

Thus, we have the four processes

t

zij (1) = gij (t) +/9ij t, )¢ (u(r),v(r))dr, i=1,2, j=1.2, (45)
0
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where
911 (t) = G11 (t) 20, G11 (t) = t°7 By 5 (ALP;B)
2 (t7) = (t=7)" " Byyp (At -7)"38),
g12 (t) = Gz (t) o, Gra (t) =" By 5 (A 8)
20 (L) =T () (t =7V Byyg (At = 1) 57+ ).
921 (t) = Ga1 (t) 20, G2 (t) = By 5 (At7;1),
O (t7) = (t =) By (A= 7)"38)
922 (t) = G2 () yo, Gz () = By (At731)

O (t.7) = T () (t =) By (At =) 17+ 8)

(46)

Let
A=ME, p(u,v)=u—v, M*={0}, U=aS, a>1, V=25, (47)

where A is a number and S is the unit ball centered at the origin. Then L = R"
and the orthoprojector 7w appears as the operator of identical transformation,
defined by the unit matrix. All the matrix functions G;; (t) and 2;; (¢, 7) have
the forms

Gij (t) Zgij (t)E, .Qij (t,T) = Wjy (t,T) E, i=1,2, j:1,2,

where g;; (t) and w;; (¢t,7) are scalar functions. In addition, note that for
matrix B = \FE, the following equality is true

E, (B;p) = Ep (\ip) E,

where E, (\; 1) is the generalized scalar function of Mittag-LefHler [18,53].
Then

Wij (t,7,v) = wyj (t,7) (@S —v),
Wij (t,7) = |wsj (t,7)] (a — 1) S.

Consequently, Pontryagin condition holds if a > 1.
Set 7,5 (t,7) = 0. Then

ij (t,9i5 (1), vi5 (6,7)) = giz (1) = 945 (1) Zszv Z?j # 0,

and
a;; (t, 7,v) = sup {a >0: ag;(t) z?j € w;j (t,7) (aS — 11)}
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is the greatest root of the square equation for a:

(|wij (&, 7) v — agij (t) 255|| = [wij (t,7)] a

Therefore

(00.0) + (00, 0)" + lal” (a3 — o)

4l W

aij (t,’T, U) =

where vo = wij (t,7) v, ¢ = §ij (t) 25, a0 = |wij (t,7)| a.

It should be noted that g;;(t) # 0 up to the instant of the game ter-
mination. The game can be terminated at the moments when this function
vanishes, with the help of the first direct method.

It is evident that

t -1
min «;; (¢, 7,v) = [wis (£, 7)| (% )
lvli<1 925 () 25 |

)

where the minimum is furnished by the element

0
Zij

<

vij(t, ) = —sign {gi; (t