
   Chapter 5   
 Overfitting and Optimism in Prediction 
Models       

   Background   If we develop a statistical model with the main aim of outcome 
prediction, we are primarily interested in the validity of the predictions for new 
subjects, outside the sample under study. A key threat to validity is overfitting, i.e. 
that the data under study are well described, but that predictions are not valid for 
new subjects. Overfitting causes optimism about a model’s performance in new 
subjects. After introducing overfitting and optimism, we illustrate overfitting with a 
simple example of comparisons of mortality figures by hospital. After appreciating 
the natural variability of outcomes within a single centre, we turn to comparisons 
across  centres. We find that we would exaggerate any true patterns of differences 
between centres, if we would use the observed average outcomes per centre as 
predictions of mortality. 

 A solution is presented, which is generally named “shrinkage.” Estimates per 
 centre are drawn towards the average to improve the quality of predictions. We then 
turn to overfitting in regression models, and discuss the concepts of selection and 
estimation bias. Again, shrinkage is a solution, which now draws estimated  regression 
 coefficients to less extreme values. Bootstrap resampling is presented as a central 
technique to correct overfitting and quantify optimism in model performance.   

  5.1 Overfitting and Optimism  

 To derive a model, we use empirical data from a sample of subjects, drawn from a 
population (Fig.  5.1 ). The sample is considered to be drawn at random. The data 
from the sample are only of interest in that they represent an underlying popula-
tion. 13,409  We use the empirical data to learn about patterns in the population, and to 
derive a model that can provide predictions for new subjects from this population. 
In learning from our data an important risk is that the data under study are well 
described, but that the predictions do not generalize to new subjects outside the 
sample. We may capitalize on specifics and idiosyncrasies of the sample. This is 
referred to as “overfitting.” In statistics, overfitting is sometimes defined as fitting 
a statistical model that has too many parameters, or as the “curse of  dimensionality.” 181  
For prediction models, we may define overfitting more precisely as fitting a statistical 
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8484 5 Overfitting and Optimism in Prediction Models

model with too many degrees of freedom in the modelling process. Degrees of 
freedom are used by estimation of the coefficients in a regression model, but also 
by searching for the optimal model structure. The latter may include procedures to 
search for important predictors from a larger set of candidate predictors, optimal 
coding of predictors, and consideration of potential non-linear transformations.

   Overfitting leads to a too optimistic impression of model performance that 
may be achieved in new subjects from the underlying population. Optimism is 
defined as true performance minus apparent performance, where true perform-
ance refers to the underlying population, and apparent performance refers to the 
estimated performance in the sample (Fig.  5.2 ). Put simply: “what you see may 
not be what you get.” 23 

    5.1.1 Example: Surgical Mortality in Oesophagectomy 

 Surgical resection of the oesophagus (oesophagectomy) may be performed for sub-
jects with oesophageal cancer. It is among the surgical procedures that carry a sub-
stantial risk of 30-day mortality (see also Fig. 6.2). 125,213  Underlying differences in 
quality between hospitals may affect the 30-day mortality. A question is whether 
we can identify the better hospitals, and whether we can predict the mortality for a 
typical subject in a hospital. 260   

  5.1.2 Variability within One Centre 

 We first illustrate the variability of mortality estimates within a single centre, 
according to different sample sizes. For oesophagectomy, we assume 10% as an 
average estimate of mortality among elderly patients, based on analyses of the 

  Fig. 5.1    Graphical illustration of optimism, which is defined as the difference between true per-
formance and apparent performance. The apparent performance is determined on the sample 
where the model was derived from; true performance refers to the performance in the underlying 
population. The difference between apparent and true performance is defined as the optimism of 
a prediction model       
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SEER-Medicare registry data, where mortality exceeded 10%: 221 of 2,031 sub-
jects had died within 30 days after surgery, or 10.9% [95% CI, 9.6%–12.3%]. 423  

 For illustration, we assume that case-mix is irrelevant, i.e. that all patients have 
the same true mortality risks. The observed mortality rate in a centre may then be 
assumed to follow a binomial distribution (Fig.  5.2 ). When the true mortality is 
10% in samples of  n  = 20, around 30% of these will contain two deaths (estimated 
mortality, 10%). With larger sample sizes, observed mortalities are more likely 
close to 10%; e.g. when  n  = 200, mortality is estimated between 8% and 12% in 
71% of the samples.  

  5.1.3 Variability between Centres: Noise vs. True Heterogeneity 

 We need to appreciate within centres variability when we want to make predictions 
of mortality by centre. For example, consider that 100 centres each reported mortal-
ity in 20 subjects, while the true mortality risk was 10% for every patient. On aver-
age two deaths are hence expected per centre (10% of 20). The expected distribution 
of the estimated mortality is as in Fig.  5.2 : 12% of the centres will have 0% mortal-
ity, and 13% will report a 20% or higher mortality. An actual realization is shown 
in Fig.  5.3 . A  statistical test for differences between centres should be non-signifi-
cant for most of such comparisons (for 95% of the cases when  p  < 0.05 is used as 
criterion for statistical significance).

   Of more interest is the situation that the true mortality varies by centre. This 
can be simulated with a heterogeneity parameter, often refered to as  t  (tau). 
Assuming a normal distribution for the differences across centres, we can write: 
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  Fig. 5.2    Estimated mortality in relation to sample size. When the true mortality is 10% in samples 
of  n  = 20, around 30% of these will contain two deaths (estimated mortality, 10%). With larger 
sample sizes, observed mortalities are more likely close to 10%       
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  Fig. 5.4    Estimated and true mortality for 100 centres that had 200 subjects each, while the average 
was 10% for all (panel a), 10% ± 1% (panel b), 10% ± 2% (panel c), and 10% ± 3% (panel d)       
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  Fig. 5.3    Estimated and true mortality for 100 centres that analyzed 20 subjects each, while the 
average mortality was 10% for all ( upper left panel ), 10% ± 1% ( upper right panel ), 10% ± 2% 
( lower left panel ), 10% ± 3% ( lower right panel )       



true mortality ∼  N (10%, sd=  t ). With  t  = 1%, 95% of the centres have a mortality 
between 8% and 12%, while setting  t  to 2% and 2.5% implies that 95% of the 
centres have a mortality between 6% and 14%, and between 5% and 15%, respec-
tively. This underlying heterogeneity causes the estimated mortality to have more 
variability than expected from the binomial distribution with a single true mortal-
ity of 10%. This is recognized in the distributions of Fig.  5.3 . Differences 
between centres can be tested, and will be identified as significant depending on 
the magnitude of the heterogeneity ( t ), and the sample size (number of centres, 
sample size per centre).  

  5.1.4 Predicting Mortality by Centre: Shrinkage 

 We recognize that the estimated mortalities are too extreme as predictions  compared 
with the distribution of the true mortalities (Fig.  5.3 ). Predictions other than 10% 
are by definition too extreme when there is no heterogeneity. Too extreme predic-
tions also occur when there is underlying variability across centres (e.g. true 
 mortality between 6 and 14%). Per centre, the estimated mortality is an unbiased 
estimator of the true mortality in each centre. But the overall distribution of 
 estimated mortality suffers from the low numbers per centre, which makes that 
chance severely affects our predictions. 

 The phenomenon in Fig.  5.3  is an example of regression to the mean. 301  It is a 
motivation for shrinkage of predictions to the average, a principle that is also 
important in more complex regression models. 81,459  We should shrink the  individual 
centre’s estimates towards the overall mean to make better predictions overall. 

 We can also say that predictions tend to be overfitted: They point at very low and 
very high risk hospitals, while the truth will be more in the middle. The identifica-
tion of extreme hospitals will be unreliable with small sample size. With larger 
sample size, e.g. 200 subjects per centre, the overfitting problem is reduced (Fig. 
 5.4 ). Empirical Bayes and random effects methods have been proposed to make 
better predictions (see Chap. 21). 22,458 

      5.2 Overfitting in Regression Models  

  5.2.1 Model Uncertainty: Testimation 

 Overfitting is a major problem in regression modelling. It arises from two main 
issues: model uncertainty and parameter uncertainty (Table  5.1 ). Model uncer-
tainty is caused by specification of the structure of our model, such as which 
characteristics are included as predictors, on information of the data set under 
study. The model structure is therefore uncertain. This model uncertainty is   

5.2 Overfitting in Regression Models 8787
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 usually ignored in statistical analyses, which falsely assume that the model was 
pre-specified. 69,101,194 

      The result of model uncertainty is selection bias. 26,82,365,407  Note that selection 
bias here refers to the bias caused by selection of predictors from a larger set of 
predictors, in contrast to the selection of subjects from an underlying population in 
standard epidemiological texts. Suppose that we investigate 20 potential predictors 
for inclusion in a prognostic model. If these are all noise variables, the true regres-
sion coefficients are zero. On average one variable will be statistically significant 
at the  p <0.05 level. The estimated effect will be relatively extreme, since otherwise 
the effect would not have been significant. If this one variable is included in the 
model, it will have a quite small or quite large effect (Fig.  5.5 , left panel). On aver-
age the effect of such a noise variable is still zero.

   If some of the 20 variables are true predictors, they will sometimes have a rela-
tively small and sometimes a relatively large effect. If we only include a predictor 
when it has a relatively large effect in our model, we are overestimating the effect 
of such a predictor. This phenomenon is referred to as  testimation bias : Because we 
test first, the effect estimate is biased. 26,69  

 In the example of a predictor with true regression coefficient 1 and Standard 
Error (SE) 0.5, the effect will be statistically significant if estimated as lower than 
−1.96 × SE = −0.98, or exceeding +1.96 × SE = +0.98 (52% of the estimated coef-
ficients, Fig.  5.5 , right panel). The average of the estimated coefficients in these 
52% cases is 1.39 rather than 1. Hence, a bias of +39% occurs. In formal terms, we 
can state: if  b  is significant, then  b = b , else  b =0. Instead of considering the whole 
distribution of predictor effects, we only consider a selected part. 

 Testimation bias is a pervasive problem in medical statistics and predictive mod-
elling. 174  The bias is large for relatively weak effects, as is common in medical 
research. Selection bias is not relevant if we have a huge sample size, or consider 

 Issue  Characteristics 

  Causes of overfitting  
    Model uncertainty  The structure of a model is not pre-defined, 

but determined by the data under study. 
Model uncertainty is an important cause of 
overfitting 

    Parameter uncertainty  The predictions from a model are too extreme 
because of uncertainty is the effects of 
each predictor (model parameters) 

  Consequences of overfitting  
    Testimation bias  Overestimation of effects of predictors 

because of selection of effects that with-
stood a statistical test 

    Optimism  Decrease in model performance in new 
subjects compared with performance in the 
sample under study 

 Table 5.1    Causes and consequences of overfitting in prediction models   



predictors with underlying large effects, since these predictors will anyway be 
selected for a prediction model. Neither does selection bias occur if we pre-specify 
the prediction model (“full model”). 174   

  5.2.2 Other Biases 

 A well-known problem in prediction is bias by selection of an “optimal” cut-point 
for a continuous predictor. 12,117,355  A similar problem occurs if we examine different 
transformations for predictor variables as a check for linearity. For example, we 
may add a square term to a linear term, and omit the square term if not statistically 
significant. 148  More subtle variants occur when we less formally assess alternative 
model specifications. For example, we may consider different transformations of 
the outcome variable in a linear model, and visually judge the best transformation 
for use in further modelling. Or we examine different coding variants of a categori-
cal predictor, with merging of groups with what we consider to have “similar out-
comes.” These issues are discussed in more detail in Chap. 9 and 10 on coding of 
predictors, and Chap. 11 and 12 on selection of predictors.  
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  Fig. 5.5    Illustration of testimation bias. In case of a noise variable, the average of estimated 
regression coefficients is zero, and 2.5% of the coefficients is below − 0.98 (1.96 × SE of 0.5), and 
2.5% of the coefficients is larger than +0.98 (1.96 × SE of 0.5). In case of a true coefficient of 1, 
the estimated coefficients are statistically significant in 52%. For these cases, the average of 
 estimated coefficients is 1.39 instead of 1       
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  5.2.3 Overfitting by Parameter Uncertainty 

 It appears that even when the structure of our model is fully pre-specified, predictions are 
too extreme when multiple predictors are considered. This is because parameters, such as 
regression coefficients, are estimated in the model with uncertainty. This surprising find-
ing has been the topic of much theoretical research. 81,459  An intuitive explanation is related 
to how we create a linear predictor in regression models. Hereto, the regression coeffi-
cients of multiple predictors are multiplied with the predictor values. With default estima-
tion methods (e.g. least squares for linear regression and maximum likelihood for logistic 
or Cox regression), each of the coefficients is estimated in a (nearly) unbiased way. But 
each coefficient is associated with uncertainty, as reflected in the estimated standard error 
and 95% confidence interval (CI). This uncertainty tends us to overestimate predictions at 
the extremes of a linear predictor, i.e. low predictions will on average be too low, and high 
predictions will on average be too large. This is an example of regression to the mean. We 
can shrink coefficients towards zero to prevent this overfitting problem. 81,174,459  

 This phenomenon is related to “Stein’s paradox”: biased estimates rather than 
unbiased estimates are preferable in multivariable situations to make better predic-
tions. 107,398  Shrinkage introduces bias in the multivariable regression coefficients, 
but if we shrink properly the gain in precision of our predictions more than offsets 
the bias. The issue of bias–variance trade-off is central in prediction modelling, 181  
and will be referred to throughout this book. Estimation with shrinkage methods is 
discussed in more detail in Chap. 13.  

  5.2.4 Optimism in Model Performance 

 Overfitting can visually be appreciated from the distributions of estimated mortality 
as in Figs.  5.3  and  5.4 , but also from model performance measures. For example we 
may calculate Nagelkerke’s  R  2  for a logistic model that includes 20 centres (coded as 
a factor variable, with 19 dummy variables indicating the effect of 19 centres against 
a reference hospital). If the true mortality in all hospitals was 10%, the estimated  R  2  
was 9.4% when each hospital contained 20 subjects (Table  5.2 ). In fact,  R  2  was 0%, 
since no true differences between centres were present. The estimated 9.4% is based 
on pure noise. We refer to the difference between 9.4% and 0% as the optimism in 
the apparent performance (Fig.  5.1 ). With larger sample sizes, the optimism decreases, 
e.g. to 0.1% for 20 centres with 2,000 subjects each (total 40,000 subjects, 4,000 
deaths on average). Statistical testing of the between centre differences was by defini-
tion not significant in 95% of the simulations. We might require statistical signifi-
cance of this overall test before trying to interpret between centre differences.

   When true differences between centres were present (e.g. a range of 6–14% mor-
tality,  τ  = 2%), the true  R  2  was close to 1% ( n  = 2,000). With small sizes per centre, 
the estimated  R  2  was 10.1%, which is again severely optimistic (Table  5.2 ). 

 A well-known presentation of optimism is to visualize the trade-off between 
model complexity and model performance. 181  We illustrate this trade-off in Fig.  5.6 , 
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  Fig. 5.6    Mean squared error of predictions from models with increasing complexity (1,000 
simulated samples with  n  = 50). Apparent performance improves with more predictors, but inter-
nal and external performances worsen with more than five predictors       

Table 5.2 R2 for a logistic model predicting mortality in 20 centres. True mortality was 10% in 
the first series of simulations, and R2 reflects pure noise. True mortality varied between 6% and 
14% (τ = 2%) in the second series of simulations

True mortality Sample size R2
app

R2
adj

 R2
bootstrap

10% 20 × n = 20  9.4 −0.1 NA
20 × n = 200  1.0   0 −0.5
20 × n = 2,000  0.1   0   0

10% ± 2% 20 × n = 20 10.1  0.3 NA
20 × n = 200  1.9  0.9  0.3
20 × n = 2,000  1.0  0.9  0.8

      Nagelkerke’s  R  2  calculated in logistic regression models, 309  averaged over 500 repetitions.   R2
app

, 
R2

adj
, R2

bootstrap
   refer to the apparent, adjusted and bootstrap- corrected estimates of  R  2 . The   R2

adj
   

included “LR − df ” instead of “LR” in the formula. Note that not all coefficients could directly be 
estimated, since some   hospitals had 0% estimated mortality with  n  = 20; for these we used 1% as 
the estimated mortality (adding one subject as dead, with a weight of 1% × 20 = 0.2). Bootstrapping 
with these weighted samples was not readily possible.  

where we considered a simple linear regression model with 1 to 10 predictors. The 
model performance is evaluated by the mean squared error (mean   (y-ŷ )2  ) for the 
underlying population (internal validation), and for a population where the true regression 
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coefficients were slightly different (external validation). With 50 subjects per sample 
for estimation of the model (1,000 simulations), we note that the apparent error 
decreases with more predictors considered. But the internal and external per formances do 
not improve after approximately five predictors are included. Overfitting occurs after 
approximately five predictors, and optimism increases from modest for one predictor 
to substantial for models with ten predictors.

     *5.2.5 Optimism-Corrected Performance 

 In linear regression analysis, an adjusted version of  R  2  is available, which compen-
sates for the degrees of freedom used in estimation of a model. Such an adjusted 
version can also be considered for Nagelkerke’s  R  2 , which we consider e.g. for 
logistic and Cox models. We could subtract the degrees of freedom used to estimate 
the LR of the model in the calculation:

  R2 
adjusted

 = (1 − e(−(LR−df  ) /n)) / (1 − e(−(−2LL0)/n)),  

where LR refers to the difference in −2 log likelihood (−2LL) of the model with and 
without the predictor, df are the degrees of freedom of the predictors in the model,  N  is 
the sample size, and LL0 is the log likelihood of the Null model (without predictors). 

 This adjusted version is not standard in most current software however. When 
we apply this formula for the simulated centre outcome as shown in Figs.  5.3  and 
 5.4 , the average adjusted  R  2  for noise differences is 0, with approximately half of 
the adjusted  R  2  values being negative (Table  5.2 ). The adjustment made the  R  2  esti-
mates a bit conservative for small samples. For example, when true differences 
existed, the adjusted  R  2  was 0.3% rather than 0.9% (Table  5.2 ). 

 A more general optimism correction is possible with bootstrapping, which is 
explained in the next section. In Table  5.2 , bootstrap-corrected performance was 
more conservative than the adjusted  R  2  formula, which may be caused by a not fully 
normal distribution of the optimism in  R  2.401    

  5.3 Bootstrap Resampling   

 Bootstrapping alludes to a German legend about Baron Münchhausen, who was 
able to lift himself out of a swamp by pulling himself up by his own hair. In later 
versions of the legend he was using his own bootstraps to pull himself out of the 
sea, which gave rise to the term  bootstrapping . A bootstrap was a loop of leather 
sewn onto the back of each boot to hold onto when pulling boots onto one’s feet. 
In statistics, bootstrapping is a method for estimating the sampling distribution of 
an estimator by resampling with replacement from the original sample. 486  

 Bootstrapping mimics the process of sampling from the underlying population. 
Since we only have a sample from the population, this sampling is not truly 



 possible, similar to the legend about Baron Münchhausen. Bootstrap samples are 
drawn with replacement from the original sample to introduce a random element. 
The bootstrap samples are of the same size as the original sample, which is impor-
tant for the precision of estimates in each bootstrap sample. 

 For example, the GUSTO-I subsample 5 includes 429 subjects (Chap. 24). When 
we draw bootstrap samples, these each contain 429 subjects, but some subjects may 
not be included, others once, others twice, others three times, etc. On average, a sub-
ject has 63.2% chance of being at least once selected for a bootstrap sample. 108  For 
illustration we consider the simple case of the age of five subjects who are 20-, 25-, 
30-, 32-, and 35-years old. Bootstrap samples might look like these in Table  5.3 .    

5.3.1 Applications of the Bootstrap 

 Bootstrapping is a widely applicable, non-parametric method. It can provide valua-
ble insight in the empirical distribution of a summary measure from a sample. 
Bootstrap samples are repeatedly drawn from the data set under study, and each 
analyzed as if they were an original sample. 108  

 For some measures, such as the mean of a population, we can use a statistical for-
mula for the standard deviation (SD = sqrt[var] = sqrt([ x  

i
  − mean( x )) 2  /( n  − 1)]). We can 

use the SD to calculate 95% CI as ± 1.96 × SE or ± 1.96 × SD/sqrt( n ). The bootstrap 
can be used to calculate the SE for any measure. For the mean, the bootstrap will usually 
result in a similar SE and 95% CI estimates as obtained from the standard formula. For 
other quantities, such as the median, no SE or 95% CI can be calculated with standard 
formulas, but the bootstrap can. See Harrell for an extensive illustration. 174   

  5.3.2 Bootstrapping for Regression Coefficients 

 The bootstrap can assist in estimating distributions of regression coefficients, 
such as standard errors and CIs. The bootstrap can be useful in estimating 
 distributions of related measures such as the difference between an adjusted and 
an unadjusted regression coefficient. 472  In the latter case, two regression coeffi-
cients would be estimated in each bootstrap sample. The difference would be 

  Table 5.3    Illustration of five bootstrap samples drawn 
with replacement from five ages

 Original sample  Bootstrap samples 

 20, 25, 30, 32, 35  20, 20, 30, 32, 35 
 20, 25, 25, 30, 35 
 20, 25, 30, 30, 32 
 25, 32, 35, 35, 35 
 30, 30, 32, 35, 35 
 … 

   For easier interpretation, values were sorted per sample  
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calculated in each sample, and the distribution over bootstrap samples would be 
interpreted as the sampling distribution. CIs can subsequently be calculated with 
three methods: 

    1.    Normal approximation: The mean and SE are estimated from the distribution 
(note: the SD over bootstraps is the SE of the mean).  

   2.    Percentile method: Quantiles are simply read from the empirical distribution. 
For example, 95% CIs are based on the 2.5% and 97.5% percentile, e.g. the 
50th and 1,950th bootstrap estimate out of 2,000 replications.  

   3.    Bias-corrected percentile method: Bias in estimation of the distribution is 
accounted for, based on the difference between the median of the bootstrap 
 estimates and the sample estimate (“BCa”). 108      

 For reliable estimation of distributions, large numbers of replications are  advisable, 
e.g. at least 2,000 for method 2 and 3. Empirical  p  values can similarly be based on 
bootstrap distributions, e.g. by counting the number of estimates smaller than zero for 
a sample estimate larger than zero (giving a one-sided  empirical  p  value). 108   

  5.3.3 Bootstrapping for Optimism Correction 

 A very important application of bootstrapping is in quantifying the optimism of a pre-
diction model. 69,108,174, 459  With a simple bootstrap variant, one repeatedly fits a model in 
bootstrap samples, and evaluates the performance in the original sample (Fig.  5.7  ).

   The average performance of the bootstrap models in the original sample can be 
used as the estimate of future performance in new subjects. A more accurate esti-
mate is however obtained in a slightly more complicated way. 108  The bootstrap is 
used to estimate the optimism: The decrease between performance in the bootstrap 
sample (Sample* Fig.  5.7 ) and performance in the original sample. This optimism 
is subsequently subtracted from the original estimate to obtain an “optimism-cor-
rected” performance estimate. 174   

  Fig. 5.7    Schematic representation of bootstrap validation for optimism correction of a prediction 
model. Sample* refers to the bootstrap sample that is drawn with replacement from the Sample 
(the original sample from an underlying population). Model* refers to the model constructed in 
Sample*       

Sample

Model*

Bootstrap
validationSample*



  *5.3.4 Calculation of Optimism-Corrected Performance 

 Optimism-corrected performance is calculated as 
 Optimism-corrected performance = Apparent performance in sample − Optimism, 

where 

 Optimism = Bootstrap performance − Test performance. 
 The exact steps are as follows:  

   1.    Construct a model in the original sample; determine the apparent performance 
on the data from the sample used to construct the model;  

   2.    Draw a bootstrap sample (Sample*) with replacement from the original sample 
(Sample, Fig.  5.7 );  

   3.    Construct a model (Model*) in Sample*, replaying every step that was done in 
the original Sample, especially model specification steps such as selection of 
predictors from a larger set of candidate predictors. Determine the bootstrap 
performance as the apparent performance of Model* on Sample*;  

   4.    Apply Model* to the original Sample without any modification to determine the 
test performance;  

   5.    Calculate the optimism as the difference between bootstrap performance and 
test performance;  

   6.    Repeat steps 1–4 many times, at least 100, to obtain a stable estimate of the 
optimism;  

   7.    Subtract the optimism estimate (step 5) from the apparent performance (step 1) 
to obtain the optimism-corrected performance estimate.     

 Note that the original sample is used for testing of Model*, while it contains largely 
the same subjects as the bootstrap sample (Sample*). Although this may seem 
invalid, both theoretical and empirical research supports this process. Alternative 
bootstrap validation procedures have been proposed.  1     Appealing variants are the 
.632 and .632+ methods, where the testing of the models from the bootstrap sample 
is on subjects from the original sample who were not included in the bootstrap 
sample. 109  On average, 63.2% of the subjects are selected in a bootstrap sample, giv-
ing the method its name. On average 36.8% of the subjects are left for testing of the 
model. These .632 and .632+ variants did however not have clear advantages over the 
bootstrap procedure described earlier in some empirical studies. 413,479  

 We can apply the bootstrap approach to any performance measure, including the 
 R  2 ,  c  statistic, and calibration measures such as calibration slope. A strong aspect 
of the bootstrap is that we can incorporate various complex steps from a modelling 
strategy. This is important since exact distributional results are virtually impossible 

  1  The “simple bootstrap” compares the performance of the model from the original sample in 
bootstrap samples. This was less efficient than the procedure described here, where models from 
the bootstrap samples are tested in the original sample (see Efron). 
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to obtain, even for simple common selection algorithms. 336  The bootstrap can hence 
give insight in the relevance of model uncertainty, including both testimation bias 
and parameter uncertainty. In practice, however, it may be hard to fully validate a 
prediction model, including all steps made in the development of the model. For 
example, automated stepwise selection methods can be replayed in every bootstrap 
sample, leading to reasonably correct optimism-corrected performance estimates. 401  
But more subtle modelling steps usually cannot fully be incorporated, such as 
choices on coding and categorization of predictors. The optimism-corrected esti-
mate may then be an upper bound of what can be expected in future subjects. Only 
a fully specified modelling strategy can be replayed in every bootstrap sample. 

 It is often useful to calculate the optimism of a “full model,” i.e. a prediction 
model, including all predictors without any fine-tuning such as deleting less-important 
predictors. The optimism estimate of such a full model may be a guide for further 
modelling decisions. 174  If the optimism is substantial, it is a warning that we should 
not base our model only on the data set at hand. Using external information may 
improve the future performance of the model. 164   

  *5.3.5 Example: Stepwise Selection in 429 Patients 

 As an example, we consider a sample of 429 patients from the GUSTO-I study, 
which studied 30-day mortality in patients with acute myocardial infarction (details 
in Chap. 24). We first fitted a model with eight predictors, as specified in the TIMI-
II study (“full model”). 302  This model had a Nagelkerke  R  2  of 23% as apparent per-
formance estimate. In 200 bootstrap samples, the mean apparent performance was 
25% (Table  5.4 ). When the models from each bootstrap sample were tested in the 
original sample, the  R  2  decreased substantially (to 17%). The optimism hence was 
25% − 17%=8%, and the optimism-corrected  R  2 , 23% − 8%=15%.

      We can follow a backward stepwise selection procedure with  p <0.05 for factors 
remaining in the model (Chap. 11). This leads to inclusion of only three predictors 
(age, hypotension, and shock). The apparent performance drops from 23% to 15% 
by excluding six of the eight predictors. The stepwise selection was repeated in 
every bootstrap sample, leading to an average apparent performance of 18%, which 
dropped to 12% when models were tested in the original sample (optimism, 6%; 
optimism-corrected  R  2 , 9%). When we falsely assume that the 3 predictor model 
was pre-specified, we would estimate the optimism as 3% rather than 6%. This dis-
crepancy illustrates that optimism by selection bias was as important as the opti-
mism due to parameter uncertainty in this example. 

 We note that the apparent performance in the bootstrap samples was higher than 
the apparent performance in the original sample (Table  5.4 ). This pattern is often 
noted in bootstrap model validation. It may be explained by the fact that some 
patients appear multiple times in the bootstrap sample. Hence, it is easier to predict 
the outcome, reflected in higher apparent performance. Further, we note that the 



optimism is smaller after model specification by stepwise selection (6% instead of 
8%). However, the optimism-corrected performance of the stepwise model R2 12% 
is clearly lower than the performance of the full 8 predictor model (R2 15%). This 
pattern is often noted. A full model will especially perform better than a stepwise 
model when the stepwise selection eliminates several variables that are almost sig-
nificant while they have some true predictive value. When a small set of dominant 
predictors is present, including only these would logically be sufficient. The boot-
strap would show that these predictors are nearly always selected, and that other 
variables are most often excluded; the optimism would be relatively small and 
optimism-corrected performance similar to that of a full model. The leprosy case 
study is such an example (see Chap. 2). In the case that many noise variables are 
present in the full model, a selected submodel performs better than a full model. 
Careful pre-selection of candidate predictors is hence advisable, based on subject 
knowledge (literature, expert opinion), to prevent that pure noise variable are con-
sidered in the modelling process.   

  5.4 Cost of Data Analysis  

 The development of a prediction model for outcome prediction is a constant strug-
gle in weighing better fit to the data against generalizability outside the sample.    
The more we incorporate from a specific data set in a model, the less the model 
may generalize. 101  This has aptly been labelled the “cost of data analysis.” On the 
other hand, we do not want to miss important properties of the data, such as a 
clearly non-linear relationship of a predictor to the outcome. A prediction model 
where underlying model assumptions are fulfilled will provide better predictions 
than a model where assumptions are violated. Therefore, it is natural to assess 
such assumptions as linearity of continuous predictor effects and additivity of 
effects (Chap. 12). However, if we test all assumptions of a model and iteratively 
adapt the model to capture even small violations, the model will be very specific 
for the data analyzed. 

 Table 5.4    Example of bootstrap validation of model performance, as indicated by Nagelkerke’s 
 R  2  in a subsample of the GUSTO-I data base (sample5,  n =429)  

 
Method 

 Apparent 
(%) 

 Bootstrap 
(%) 

 Test (%)  Optimism 
(%) 

 Optimism-
corrected (%) 

 Full 8 predictor model  22.7  24.7  17.2  7.6  15.1 
 Stepwise, 3 predictors, p<0.05  17.6  18.7  12.7  5.9  11.7 
 Stepwise model falsely 

assumed to be pre-specified 
 17.6 
 

18.2 15.4 2.9 14.7
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  *5.4.1 Example: Cost of Data Analysis in a Tree Model 

 An interesting concept was proposed by Ye, who determined the “generalized 
degrees of freedom” (GDF) of a model selection and estimation procedure. 494  The 
GDF indicate the overfitting that was associated with a modelling strategy. For 
example, Ye showed that a stepwise selection strategy that selected a model with 
five predictors (apparent df = 5) had a GDF of 14.1. A regression tree had 19 nodes 
(apparent df = 19), but GDF of 76. 494  

 An essential part of Ye’s method is to determine the apparent performance of a 
model when developed with pure noise. In Table  5.2 , we note that the optimism in 
 R  2  in the pure noise simulations was indeed very similar to the optimism as deter-
mined with an adjusted  R  2  or with bootstrapping when some true effects were 
present. For example, for  n  = 200, the optimism was 1% with pure noise or with 
true effects.  

  5.4.2 Practical Implications 

 In the development of prediction models, we have to be aware of the cost of all data 
analysis steps. The appropriateness of a modelling strategy is indicated by the gen-
eralizability of results to outcome prediction for new patients. Some practical issues 
are relevant in this respect. 

   •  Sample size: With a small sample size we have to be prepared to make more 
assumptions about our data; the power to detect deviations from assumptions 
will anyway be small. If deviations from assumptions are detected, and the 
model is adapted, testimation bias will occur and the validity of predictions for 
new patients may not necessarily be improved (Chap. 13);  

 •  Robust strategies: Some modelling strategies are more “data hungry” than other 
strategies. For example, fitting a pre-specified logistic regression model with age 
and sex uses only two degrees of freedom. If we test for linearity of the age 
effect, and interactions between age and sex, we spend more degrees of freedom. 
If we use a method such as regression tree analysis, we search for cut-points of 
age, and model interactions by default, making the method more data-hungry 
than logistic regression (Chap. 4). Similarly, stepwise selection asks more of the 
data than fitting a pre-specified model. Not only do we want to obtain estimates 
of coefficients, we also want to determine which variables to include as predic-
tors (Chap. 11);  

 •  Bootstrap validation: The bootstrap can assist in determining an appropriate 
level of fine-tuning of a model to the data under study. However, when many 
alternative modelling strategies are considered, the bootstrap results may 
become less reliable in determining the optimal strategy, since the optimum may 
again be very specific for the data under study. The bootstrap works best to 
determine optimism for a single, pre-defined strategy.      



  5.5 Concluding Remarks  

 In science in general, and in prediction modelling specifically, we need to seek a 
balance between curiosity and skepticism. On the one hand, we want to make dis-
coveries and advance our knowledge, but on the other hand we must subject any 
discovery to stringent tests, such as validation, to make sure that chance has not 
fooled us. 23  It has been demonstrated that our scientific discoveries are often false, 
especially if we search hard and explore a priori unlikely hypotheses. 210  Overfitting 
and the resulting optimism are important concerns in prediction models.  
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 Questions 

   5.1    Overfitting and optimism
    (a)    What is overfitting and why is it a problem?  
    (b)     What are the two main causes of overfitting? What is the difference and 

give some examples?      
    5.2    Shrinkage for prediction (Figs.  5.3  and  5.4 ) 

 A solution against the consequence of overfitting is shrinkage. For example, 
estimates per centre can be drawn towards the average to improve the qual-
ity of predictions in Figs.  5.3  and  5.4 .

    (a)     Is the required shrinkage more, or less, in Fig.  5.4  compared with Fig.  5.3 ?  
    (b)     Is the underlying true heterogeneity more, or less, in Fig.  5.4  compared 

with Fig.  5.3 ?      
   5.3  Bootstrapping (Sect.  5.3 )

   (a)     How can a bootstrap sample be created? How is this done with the sample 
command in R?  

    (b)    How can the test sample for the .632 bootstrap variant by selected in  R ?  
   (c)   How can bootstrapping be used to derive optimism-corrected estimates of 

model performance, addressing the two main causes of overfitting?
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