
   Chapter 4   
 Statistical Models for Prediction        

  Background   In this chapter, we consider statistical models for different types 
of outcomes: binary, unordered categorical, ordered categorical, continuous, and 
survival data. We discuss common statistical models in medical research such as 
the linear, logistic, and Cox regression model, and also simpler approaches and 
more flexible extensions, including regression trees and neural networks. Details 
of the methods are found in many excellent texts. We focus on the most relevant 
aspects of these models in a prediction context. All models are illustrated with 
case  studies. In Chap. 6, we will discuss aspects of choosing between alternative 
statistical models.    

  4.1 Continuous Outcomes  

 Continuous outcomes have traditionally received most attention in texts on 
 regression modelling, with the ordinary least square model (“linear regression”) as 
the reference statistical model. 64,137,232,281,472  Continuous outcome are quite common 
in medical, epidemiological, and economical studies, but not so often considered 
for clinical prediction models. 

 The linear regression model can be written as 

  y = a + b
i
 × x

i
 + error,  

where a    
  
 refers to the intercept, b

i  
to the set of regression coefficients that relate one or 

more predictors  x  
 i 
  to the outcome  y . The error is calculated as observed  y  − predicted  y  

( ŷ ). This difference is also known as the residual for the prediction of  y . We assume that 
the residuals have a normal distribution, and do not depend on  x  

 i 
  (“homoscedasticity”). 

 The outcome  y  is hence related to a  linear combination  of the  x  
 i 
  variables with 

the estimated regression coefficients  b
   i 
 . This is an important property, which is also 

seen in  generalized  linear models, such as the logistic regression model. 
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  *4.1.1 Examples of Linear Regression 

 An example of a medical outcome is blood pressure. We may want to predict the 
blood pressure after treatment with an anti-hypertensive or other intervention. 241,460  
Also, quality of life scales may be relevant to evaluate. 242  Such scales are strictly 
speaking only ordinal, but can for practical purposes often be treated as continuous 
outcomes. A specific issue is that quality of life scores have ceiling effects, because 
minimum and maximum scores apply.  

  4.1.2 Economic Outcomes 

 Health economics is another important field where continuous outcomes are con-
sidered, such as length of stay in hospital, or length of stay at a specific ward (e.g. 
the intensive care unit), or total costs for patients. 88  

 Cost data are usually not normally distributed. Such economic data have special 
characteristics, such as patients without any costs (zero), and a long tail because 
some patients having considerable costs. We might consider the median as a good 
descriptor of the outcome. Interestingly, we are however always interested in the 
mean costs, since the expectation is what matters most from an economical per-
spective. Sometimes analyses have been performed to identify “high-cost” patients, 
after dichotomizing the outcome at some cost threshold.  

  *4.1.3 Example: Prediction of Costs 

 Many children in moderate climates suffer from an infection by the respiratory syn-
cytial virus (RSV). Some children, especially premature children are at risk of a 
severe infection, leading to hospitalization. The mean RSV hospitalization costs were 
3,110 euros in a cohort of 3,458 infants and young children hospitalized for severe 
RSV disease during the RSV seasons 1996–1997 to 1999–2000 in the Southwest of 
The Netherlands. RSV hospitalization costs were higher for some patient categories, 
e.g. those with lower gestational age or lower birth weight, and younger age. The lin-
ear regression model had an adjusted  R  2  of 8%. 345  This indicates a low explanatory 
ability for predicting hospitalization costs of individual children. However, the model 
could accurately estimate the anticipated mean hospitalization costs of groups of 
children with the same characteristics. These predicted costs were used in decision 
analyses of preventive strategies for severe RSV disease. 46   

  4.1.4 Transforming the Outcome 

 An important issue in linear regression is whether we should transform the outcome vari-
able. The residuals ( y − ŷ ) from a linear regression should have a normal  distribution 
with a constant spread (“homoscedasticity”). This can sometimes be achieved by, 



e.g. a log transformation for cost data, but other transformations are also possible. 
As Harrell points out, transformations of the outcome may reduce the need to 
include transformations of predictor variables. 174  Care should be taken in backtrans-
forming predicted mean outcomes to the original scale. Predicted medians and 
other quantiles are not affected by transformation. The log–normal distribution can 
be used for the mean on the original scale after a log transformation, but a more 
general, non-parametric, approach is to use “smearing” estimators. 341   

  4.1.5 Performance: Explained Variation 

 In linear regression analysis, the total variance in  y  (“total sum of squares”, TSS) is 
the sum of variability explained by one or more predictors (“model sum of squares”, 
MSS) and the error (“residual sum of squares”, RSS): 

  TSS = MSS + RSS
var (regression on x

i
) + var (error) = ∑ (ŷ – mean (y))2 + ∑ (y – ŷ)2   

 The estimates of the variance follow from the statistical fit of the model to the data, 
which is based on the analytical solution of a least squares formula. This fit mini-
mizes the error term in the model, and maximizes the variance explained by  x  

 
i
 
 . Better 

prediction models explain more of the variance in  y .  R  2  is defined as MSS / TSS. 472  
 To appreciate values of  R  2 , we consider six hypothetical situations where we 

predict a continuous outcome  y , which has a standard normal distribution (N(0,1), 
i.e. mean 0 and standard deviation 1) with one predictor  x  (N(0,1)). The regression 
coefficients for  x  are varied in simulations, such that  R  2  is 95%, 50%, 20%, 10%, 
5%, and 0% (Fig.  4.1 ). We note that an  R  2  of 95% implies that observed outcomes 
are always very close to the predicted values, while gradually relatively more error 
occurs with lower  R  2  values. When  R  2  is 0%, no association is present.        

 To appreciate  R  2  further, we plot the distributions of predicted values (ŷ  ). The 
distribution of  ŷ  is wide when  R  2  is 95%, and very small when  R  2  is 5%, and near 
a single line when  R  2  is 0% (Fig.  4.2 ). The distribution of  y  is always normal with 
mean 0 and standard deviation 1.         

  4.1.6 More Flexible Approaches 

 The generalized additive model (GAM) is a more flexible variant of the linear 
regression model. 180, 181, 472  A GAM allows for more flexibility especially for con-
tinuous predictors. It replaces the usual linear combination of continuous predic-
tors with a sum of smooth functions to capture potential non-linear effects:    y  =  b  

0
  

+  f  
 i 
 ( x  

 i 
 ) + error, where  f  

 i 
  refers to functions for each predictor, e.g. loess 

smoothers. 

4.1 Continuous Outcomes   5555
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 Fig. 4.1    Linear regression analysis with true regression models with  y  =  b  ×  x  + error, where sd( y ) 
= sd( x ) = 1. The outcome  y  is shown on the  y -axis,  x  on the  x -axis  
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 Fig. 4.2    Probability density functions for observed and predicted values (“fitted values”,  ŷ ). For 
the first graph ( R  2  = 95%), the distribution of predicted values ( thick line ) is nearly identical to the 
distribution of observed  y  values ( thin line ), while for the last graph all predictions are for the 
average of 0  
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 Loess smoothers are based on locally weighted polynomial regression. 75  At each 
point in the data set a low-degree polynomial is fit to a subset of the data, with data 
values near the point where the outcome  y  is considered. The polynomial is fitted 
using weighted least squares, giving more weight to nearby points and less weight 
to points further away. The degree of the polynomial model and the weights can be 
chosen by the analyst. 

 The estimation of a GAM is more computationally demanding than for linear 
models, but this is no limitation anymore with modern computer power and soft-
ware. A GAM assumes that the outcome is already appropriately transformed, and 
then automatically estimates the transformation of continuous predictors to optimize 
prediction of the outcome. 

 An even more flexible approach is the alternating conditional expectation 
method. 174, 181  Here,  Y  and  X s are simultaneously transformed to maximize the cor-
relation between the transformed  Y  and the transformed  X s. 

  g ( y ) =  a    +  f  
 i 
 ( x  

 i 
 )+ error, where  g  refers to a transformation of the outcome  y , and 

 f  
 i 
  refers to functions for each predictor. For cost data, several other specific 

approaches have been proposed. 27, 341    

  4.2 Binary Outcomes  

 For outcome prediction, we often consider diagnostic (presence of disease) or prognos-
tic outcomes (e.g. mortality, morbidity, complications, see Chap. 2). The logistic regres-
sion model is the most widely used statistical technique nowadays for such binary 
medical outcomes. 174, 472  The model is flexible in that it can incorporate categorical and 
continuous predictors, non-linear transformations, and interaction terms. Many of the 
principles of linear regression also apply for logistic regression, which is an example of 
a  generalized  linear model. As in linear regression, the binary outcome  Y  is linked to a 
linear combination of a set of predictors and regression coefficients  β . We use the logis-
tic link function to restrict predictions to the interval <0,1>. The model is stated in terms 
of the probability that  y  = 1 (“ P ( y =1)”), rather than the outcome  Y  directly. 

 Specifically, we write the model as a linear function in the logistic transforma-
tion (logit), where logit( P ( y =1)) = log(odds( P ( y =1)), or log([ P ( y =1)/( P ( y =1)+1)]): 

 Logit( P ( y =1)) =  µ0  +  b  
 i 
  ×  x  

 i 
  = lp, where logit indicates the logistic transforma-

tion,  a    the intercept,  b  
 
i
 
  the estimated regression coefficients,  x  

 i 
  the predictors, and 

lp linear predictor. 
 The coefficients  b  

 i 
  are usually estimated by maximum likelihood in a standard 

logistic regression approach, but this is not necessarily the case. For example, we will 
discuss penalized maximum likelihood methods to shrink the  b  

 i 
  for predictive  purposes 

(Chap. 13). The interpretation of the coefficients  b  
 i 
  is as for any regression model, that 

the coefficient indicates the effect of a 1-unit increase in  x  
 i 
 , keeping the other predic-

tors in the model constant. When we consider a single predictor in a logistic model,  b  
 i 
  

is an unadjusted, or univariate effect; with multiple predictors, it is an “adjusted” 
effect, conditional on the values of other predictors in the model. The exponent of the 
regression coefficient (e  β  ) indicates the odds ratio. 



5858 4 Statistical Models for Prediction         

 Predicted probabilities can be calculated by backtransforming:    p ( y  = 1) = e lp  / 
(1 + e lp ) = 1 / (1 + e −lp ). The quantity e lp  is the odds of the outcome. The logistic func-
tion has a characteristic sigmoid shape, as is bounded between 0 and 1 (Fig.  4.3 ). 
We note that a lp value of 0 corresponds to a probability of 50%. Low lp values 
correspond to low probabilities (e.g. lp −4,  p  < 2%), and high lp values correspond 
to high probabilities (e.g. lp +4,  p  > 98%).        

  4.2.1 R 2  in Logistic Regression Analysis 

 We learned from the linear regression examples that  R  2  is related to the relative spread 
in predictions. When predictions cover a wider range, the regression model better pre-
dicts the outcome. This concept also applies to dichotomous outcomes, e.g. analyzed 
with a logistic regression model. Better prediction models for dichotomous outcomes 
have a wider spread in predictions, i.e. predictions close to 0% and close to 100%. 

 To illustrate this concept, we use the same simulated data as for the examples of 
linear regression models, but we now dichotomize the outcome  y  (if  y <0, yd = 0, 
else yd = 1). The relationship between a standard normal variable  x  and the six yd 
outcomes is shown in Fig.  4.4.          

  *4.2.2 Calculation of  R  2  on the Log Likelihood Scale 

 Where the linear model is optimized with least squares estimation, the logistic model 
is usually optimized with maximum likelihood techniques. The likelihood refers to 
the probability of the data given the model, and enables estimation of parameters in 
various non-linear models. The natural logarithm of the likelihood (log  likelihood, 
LL) is usually used for convenience in numerical estimation. The LL is calculated 
as the sum over all subjects of the distance between the natural log of the predicted 
probability  p  for the binary outcome to the actually observed outcome  y : 

  LL = ∑ y × log( p) + (1 – y) × log(1 – p),  

 Fig. 4.3    Logistic function. The linear predictor lp is related to the predicted probability  P ( y =1) 
as: Logit( P ( y =1)) = lp, or  P ( y =1) = 1 / (1 + exp (− lp))  
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where  y  refers to the binary outcome and  p  the predicted probability for each 
subject. 

 If  y  = 1, the probability should be high (ideally 100%), such that log( p ) gets 
close to 0. Then the term (1− y ) drops out. If  y =0, the term (1− y ) = 1, and  p  should 
be low (ideally 0%), such that log(1 − p ) gets close to zero. A perfectly fitting model 
would have an LL of zero. In medical problems, perfect predictions cannot be 
made, unless a fully deterministic model is identified. The LL is hence usually 
negative for a fitted logistic regression model. A better model will have an LL 
closer to zero. 

 As reference we consider the LL of a model with average predictions: 

  LL
0
 = ∑ y × log (mean( y/n)) + (1 – y) × log (1 – mean(y/n)),  

where LL 
0
  refers to the log likelihood of the Null model, and mean( y / n ) is the aver-

age probability of the binary outcome  y . The LL 
0
  is negative, unless  y / n  is 0 or 1. 

 We can quantify the performance of a prognostic model by comparison with the 
Null model. We multiply by −2, since the difference on the −2 LL scale is a 
Likelihood Ratio statistic (LR), which follows a χ2 distribution: 

  LR = -2 (LL
0
 - LL

1
),  

where LL 
1
  refers to the model with predictors, LL 

0
  to the Null model, and LR is the 

likelihood ratio. The LR statistic can be used for univariate analysis, but also for testing 
the joint importance of a larger set of predictors in the model (“global LR statistic”). We 
can also easily make comparisons between nested submodels, which contain a subset 
of the predictors in a larger model. For example, we can compare models with and 
without age as a predictor to determine the LR for age, or compare models with and 
without a block of predictors, e.g. with and without a set of patient history characteris-
tics. Statistical testing is straightforward between such nested models. 

 Fig. 4.4    Predicted probabilities of a 0/1 outcome by six logistic models according to a normally 
distributed  x  variable. The predictive strength varied, with Nagelkerke’s  R  2  decreasing from 87% 
(labelled “1”) to 0% (label “6”)  
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 The absolute value of the LR depends on  n , the number of patients, similar to 
the sum of squares in linear regression analysis. Several attempts have been made 
to define an  R  2  measure for generalized linear models, relating LR to −2 LL 

0
 .  R  2  

values ideally enable direct comparison across predictors, irrespective whether the 
predictor was categorical or continuous, and independent of the sample size. A 
nowadays popular definition of  R  2  uses the LR and −2 LL 

0
  as follows: 

  R 2 = (1 – exp (– LR/n)) / (1 – exp (– – 2 LL
0
 / n)),  

where  n  is the number of patients. 
 This definition of  R  2  was proposed by Nagelkerke, and has the advantage of 

being scaled between 0 and 100%. 309  For a perfect model, LR = +2 LL 
0
 , and  R  2  = 

100%. The relationship between the LR statistic and Nagelkerke’s  R  2  is more or 
less linear (Fig.  4.5 ).        

 We will use the Nagelkerke definition of  R  2  throughout this book. The scaling 
between 0 and 100% makes it a natural measure to indicate how close we are with 
our predictions to the observed 0 and 1 outcomes (Fig.  4.6 ). The calculation is 
based on the LL scale, which is the scale used in the fitting process to optimize the 
model given the data. The calculation includes the LR, which is the theoretically 
preferred quantity for testing of significance in logistic models.         

  4.2.3 Models Related to Logistic Regression 

 Logistic regression can be viewed as an improvement over linear discriminant 
analysis, which is an older technique. 170  Discriminant analysis usually makes more 

 Fig. 4.5    Relationship between Nagelkerke’s  R  2  and the LR statistic for incidence of the outcome 
of 1–50%. The LR is divided by  n  to make the scale independent of sample size. We note a reason-
ably linear relationship, especially for lower incidences. Largest LRs per subject are possible with 
an incidence of 50%  
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assumptions on the underlying data, for example multivariate normality, which is 
not the case in logistic regression. The data need to follow a binomial distribution, 
which is a natural assumption for 0/1 data. However, when correlations between 
outcomes exist, for example because of grouping of patients within hospitals, this 
assumption may be violated. Generalized estimation equations (GEE) are an exten-
sion of logistic regression for correlated data. 322, 472   

  4.2.4 Bayes Rule 

 Bayes rule has often been used in a diagnostic context for the prediction of the 
likelihood of an underlying disease. 331  A prior probability of disease (p( D )) is con-
sidered before information becomes available (e.g. from history taking, or from a 
diagnostic test, denoted as predictor  x ). The information is used to calculate a pos-
terior probability of disease (p( D | x )). 

 Fig. 4.6    Distribution of observed outcomes (0 or 1), in relation to predicted probabilities from 
logistic models relating  y  to a predictor  x . The  y  variable was created from the linear regression 
example in Fig.  4.1  by dichotomization, and had an average incidence of 50%. We note that 
Nagelkerke’s  R  2  values for logistic regression are slightly smaller than the Pearson  R  2  values for 
linear regression in Fig.  4.1 . Discrimination is indicated by the  c  statistic (equivalent to the area 
under the receiver operating characteristic curve, see Chap. 15)  
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 This approach has been followed with some success in the 1970s by De Dombal 
in deriving diagnostic estimates for patients with abdominal pain. 92  Probabilities 
were estimated with a Bayesian approach, where the prior probability of a diagno-
sis was updated with information from a large database. This database contained 
data on the prevalence of signs and symptoms according to the outcome diagnosis. 
This information can efficiently be summarized with diagnostic likelihood ratios 
(“LR”). The diagnostic LR for a specific sign or symptom  x  is 

 LR( x ) = p( x | D ) / p( x |! D ), where  D  indicates presence of the disease (determined 
by a reference standard), and ! D  no disease. 

 The combination of a prior probability of disease and LR is straightforward with 
Bayes’ formula:

    Odds( D | x ) = Odds( D ) × LR( x ), where  
   Odds( D ) is the prior odds of disease, calculated as p( D )/(1 − p( D )).    

  In logit form the formula reads as:
    Logit( D | x ) = Logit( D ) + log(LR( x ))    

 This looks very similar to the logistic model shown before. The intercept  α  is 
replaced by Logit( D ), the prior probability of disease, and  b  

1
  ×  x  

1
  is replaced by 

log(LR( x )). The term “log(LR( x ))” has been referred to as “weight of evidence”, 
since it indicates how much the prior probability changes by evidence from a 
test. 397  

 For a test with a positive or negative result, there is a simple relationship between 
LR and OR:

   OR = LR(+)/LR(−), and  
  log(OR) = coefficient = log(LR(+)/LR(−)) = log(LR(+)) − log(LR(−)), where  
  LR(+) and LR(−) are the LRs for positive and negative test results, respectively.    
 In a logistic model with one predictor representing the test (+ or − result), the 

intercept  α  reflects the logit(y) when the test is negative. When the test is positive, the 
change in logodds is given by the coefficient, and logit( y ) = intercept + coefficient.  

  *4.2.5 Example: Calculations with Likelihood Ratios 

 Suppose we have a test with 80% sensitivity and 90% specificity, and a prevalence 
of disease of 10%. For 1,000 patients, the cross-table may look like Table  4.1 .     

 The LR(+) = p(Test +| D )/p(Test +|! D ) = 0.8 / 0.1 = 8.
The LR(−) = p(Test −| D )/p(Test −|! D ) = 0.2 / 0.9 = 0.22. We can calculate the 
posterior probabilities of disease with the formula Odds( D | x ) = Odds( D ) × LR( x ). 
For a positive test, Odds ( D | x ) = 100/900 × 8 = 8/9. The probability is calculated as 
odds/(odds+1) = (8/9)/(8/9 + 1) = 47%.
For a negative test results, Odds( D ) × LR(−) = 100/900 × 0.2/0.9 = 2/81, or a prob-
ability of 2.4% ((2/81) / (2/81 + 1)). 

 These numbers can also be calculated directly from the table: prior = 100/1,000 
= 10%; posterior 80/180=47% and 20/920=2.4%. On logodds scale the change = 
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log(8) = +2.1 for a positive test and log(0.22) = −1.5 for a negative test result. The 
odds ratio is 8/0.22 = 36, and the log(OR) = 2.1 − 1.5 = 3.6. 

 From a logistic regression analysis, we obtain: intercept = −3.7, coefficient for test 
is 3.6; OR=36 (Table  4.2 ). So, the linear predictor is −3.7 for a negative test and −0.1 
for a positive test, which corresponds to probabilities of 2.4% and 47%; as expected 
this is identical to the calculations with LRs, or as directly observed from Table  4.1 .     

 Graphically, we can well illustrate how Bayes’ formula works for a positive 
or negative test result to obtain a posterior probability from a prior probability 
(Fig.  4.7 ).         

  4.2.6 Prediction with Naïve Bayes 

 Bayes rule is a general scientific approach to handle conditional probabilities, e.g. 
to obtain p( D | x ) from p( x | D ). The p( x | D ) can sometimes easier be estimated than 
p( D | x ). For example, sensitivity and specificity of a dichotomous test are estimated 
conditional on disease status. For prediction, we are however interested in p( D | x ). 

 De Dombal and others have used a simple method to estimate posterior proba-
bilities for combinations of signs and symptoms. 92  The posterior probability after 
considering  x  

1
  is used as the prior when considering  x  

2
 , etc. This approach is reason-

able if the  x  
1
 ,  x  

2
 , etc. are conditionally independent. Usually positive correlations 

are however present which makes that the effect of  x  
2
  is smaller once  x  

1
  has already 

been considered, compared to considering  x  
2
  unconditionally. Such violation of 

conditional independence makes that   LR x
2
 |x

1
(x) < LR x

2
(x)  . 217  

 This sequential application of Bayes’ rule is equivalent to using the univariate 
logistic regression coefficients in a linear predictor. Because of its simplicity and 
mathematical incorrectness, Naïve Bayes is sometimes referred to as “Idiot’s 
Bayes”. 

 Table 4.1    Cross-tabulation of a test with + or 
− results with presence of disease ( D  or ! D )  

  D   ! D   Total 

 Test +  80  90  180 
 Test −  20  810  920 
 Total  100  900  1,000 

 Table 4.2    Logistic regression analysis for example in Table  4.1   

 Variable   b   SE  OR [95% CI] 

 Intercept  −3.701  0.226 
 Test  3.583  0.274  36 [21–62] 
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 The linear predictor reads like 

  Lp
u
 = b

1,u
 × x

1
 + b

2,u
 × x

2
 + … + b

p,u
 × x

p
,  

where the subscript u indicates univariate estimates for the logistic regression 
coefficients.  
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 Fig. 4.7    Graphical illustration of Bayes’s formula for a prior probability of disease of 10%. 
Diagnostic LRs of 0.22 and 8 change the posterior probability of disease to 2.4% and 47%, respec-
tively. The second graph shows the probabilities on the logodds scale  
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  *4.2.7 Examples of Naïve Bayes 

 A naïve Bayes modeling approach has been studied by Spiegelhalter, who found 
remarkably good performance for discrimination. 395  Also, the method has been 
applied in modelling the effects of genetic markers, where robustness in modelling 
is required at the expense of accepting bias in coefficients. 387   

  *4.2.8 Calibration and Naïve Bayes 

 The problem with Naïve Bayes estimation is that correlations between the predic-
tors are ignored. In the case of positive correlations, predictions will be too extreme, 
since the effects of predictors are overestimated. Both too low and too high predic-
tions arise. This is reflected in a regression coefficient for the linear predictor 
(“calibration slope”,  b  

cal
 ) below 1 in the model:  y  ∼ lp 

u
 . A simple approach hence is 

to correct this calibration problem with a single coefficient for the linear predictor: 
Logit ( y ) =  a  +  b  

cal
  × lp 

u
 . 

 In terms of multivariable    OR (OR
m
)    or multivariable   LR (LR

m
)  , the exponent 

can be used for easy of notation:   OR
m
 = OR

u
bcal or LR

m
 = LR

u
bcal  . The idea of re-

calibrating of the linear predictor comes back in Chap. 15 and 20.  

  *4.2.9 Logistic Regression and Bayes 

 The diagnostic LR can be used mathematically correct in a multivariable context. 
The key trick is to rescale test results. Instead of a “1” for positive and a “0” for 
negative, the univariate log(LR) values can be filled in for the test results. 395  In a 
multivariable model, the joined effects for the test results are subsequently esti-
mated. Coefficients for the rescaled test results reflect to degree of correlation 
between test results from different tests. If there are no correlations, the coefficients 
of each test would be close to 1. 

 Multivariable diagnostic LRs can also be calculated by comparing models with 
and without the test of interest. The model without the test is the prior, and the 
model with the test included provides the posterior probabilities. 217  Subtracting 
these two equations provides the LRs.  

  *4.2.10 More Flexible Approaches to Binary Outcomes 

 Naïve Bayes estimation is an example of a more simplistic and robust method than 
logistic regression. A more flexible alternative model is a generalized additive 
model (GAM), as was already discussed for linear regression models. 180,181,472  
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 Another alternative is to consider generalized non-linear models. Here, the out-
come is no more related to a mathematically simple linear combination of estimated 
regression coefficients and predictor values. Instead, non-linear combinations of 
predictors are possible. Generalized non-linear models are currently implemented 
as neural networks. Neural networks are often presented as fancy tools, “that repre-
sent the way our brain works,” but it may be more useful to consider them as non-
linear extensions of linear logistic models. 436,438  

 The most common neural network model is the multilayer perceptron (Fig.  4.8 ). 
In such a network, the neurons are arranged in a layered configuration containing 
an input layer, usually one “hidden” layer, and an output layer. The values of input 
variables (patient characteristics) are imported into the network via the input layer 
and multiplied with the weights of the connections. These multiplied values consti-
tute the input of the next (hidden) layer, from where the process is continued to 
produce the output variables (e.g. risk of mortality) in the output layer.

   A neural network does not use any preliminary information about the links 
between the input and output variables; the relationships between input and output 
variables are determined by the data. It is hence not easily possible to explicitly 
force external knowledge into a model, e.g. that an age effect should be monotonically 
increasing. Neural networks learn by example; the errors from the initial prediction 
for the patients are fed back into the network and the weights for connections are 
adjusted to minimize the error; for the second time predictions are made and com-
pared to the actual outcome. The process from input to output layer is repeated 
many times. However, to prevent “overtraining” the repetitions are usually stopped 
before the network is fully trained to the data. 410,436  

 The hidden layer makes the network more flexible to recognize patterns in the 
data compared to a standard logistic regression model. The number of hidden layers 
and number of nodes are chosen by the analyst. A neural network without a hidden 
layer is equivalent to a logistic regression model. 436,438   

  Fig. 4.8    A simple neural network with four input variables (predictors  x  
1
  −  x  

4
 ), one hidden layer 

with three nodes, and one output layer (outcome  y )       

input     hidden   output 
layer      layer      layer 

x1

x2

x3

x4

y 
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  4.2.11 Classification and Regression Trees 

 Recursive partitioning or Classification And Regression Tree (“CART”) methods have 
been promoted by some as strong tools for predictive modeling. Recursive partitioning is 
a statistical method to construct binary trees. 57  The method is based on statistically optimal 
splitting (“partitioning”) of the patients into pairs of smaller subgroups. Splits are based 
on cut-off levels of the predictors, which produce maximum separation among two sub-
groups and a minimum variability within these subgroups with respect to the outcome. 
The predictor causing the largest separation is situated at the top of the tree, followed by 
the predictor causing the next largest separation, and so on. Splitting continues until the 
subgroups reach a minimum size or until no improvement can be obtained. Several vari-
ants of recursive partitioning algorithms are available which use different criteria to con-
struct a tree. Details of the statistical procedures can be found elsewhere. 57   

  *4.2.12 Example: Mortality in Acute MI Patients 

 We illustrate the creation of a tree in patients with an acute myocardial infarction 
(MI). We use a data set from the GUSTO-I trial (see Chap. 22) which is labeled 
“sample5”. It contains 429 patients, of whom 24 died by 30 days. We consider the 
predictors age (continuous) and Killip (4 categories, Fig.  4.9 ). An initial tree was 
quite complex, with many splits, especially at many age cut-offs. Some counter-
intuitive patterns arose, such as a zero mortality among older patients within sub-
branches. A technique to construct better prediction trees is to prune a tree back to 
an “optimal” size. This can be achieved by using a cross-validation procedure (see 
also Chap. 17). Performance is determined in randomly drawn independent parts of 
the data for different tree sizes (Fig.  4.10 ). A pruned tree of size 3 was subsequently 
created (Fig.  4.11 ). So an enormous reduction in size was necessary to construct a 
more stable tree. Prediction of outcome for a new patient is accomplished by sim-
ply running that patient down the tree, according to the values of the predictors. 57 

       4.2.13 Advantages and Disadvantages of Tree Models 

 An advantage of a tree is its simple presentation. Some claim that a tree represents how 
physicians think: starting with the most important characteristic, followed by another 
characteristic depending on the answer on the first, etc. Indeed, humans are remarkably 
quick in pattern recognition based on a few clues. However, humans have typically 
been outperformed by systematic prediction methods in experiments where a balanced, 
quantitative judgement was required, such as estimation of a probability based on a set 
of characteristics. 265  So, the fact that a tree may represent human thinking for classifica-
tion does not argue in favour of the method for prediction. A true advantage may be that inter-
action effects are naturally incorporated in a tree, while a standard logistic regression 
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  Fig. 4.9    Initial tree fitted in a small subsample of GUSTO-I (“sample5”) with age and Killip class 
as predictors. Splits in the tree are labelled with the criterion for the split, e.g. Killip <2.5 indicates 
that patients with Killip class 1 or 2 go to the left in the tree and patients with Killip class 3 or 4 
go to the right. The nodes are labeled with 30-day mortality as a fraction, e.g. 0.60 indicates a 60% 
mortality among those with Killip class 3 or 4. Vertical distances in the tree are based on the 
statistical improvement between parent and children nodes       
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  Fig. 4.10    Cross-validated deviance in relation to tree size; optimal size is around 3       

model usually starts with main effects, that is one coefficient b
i
 per predictor. When 

multiple, high-order interactions are expected in a huge data set, and only categorical 
predictors are considered, a tree might be a good choice. Such situations may be rare in 
medical data, but may possibly be encountered in other areas of research. 

 Disadvantages of trees can be noted by considering a tree as a special case of 
linear logistic regression. First, all continuous variables have to be categorized, 
which implies a loss of information. As illustrated in Figs.  4.9  and  4.11 , age is con-
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sidered with different splits at different places in the tree, while the age effect could 
well be approximated with a single linear term in a logistic model (see Chap. 6). 
Moreover, these cut-points are determined from a search over all possible cut-
points, which is well known to be very dangerous in a prediction context. 12  

 Further, the tree assumes interactions between all predictors. After the first split, 
this interaction is of the first order, i.e. x 

1
  × x 

2
 . At the third level, second-order interac-

tions are assumed (x1 × x2 × x3). In regression analysis, it is common practice to 
include main effects of predictors when interactions are considered; this principle is 
not followed in tree modelling. A higher-order interaction term is included to model 
the effect of a predictor in a specific branch, and simply omitted from the other 
branches. A predictor is typically selected in one branch of the tree and not in another. 
This poses a clear risk of testimation bias (Chap. 5): predictors are selectively consid-
ered when their effects are relatively large, and not if their effects are small.  

  *4.2.14 Trees as Special Cases of Logistic Regression Modelling 

 From a model selection viewpoint, trees have three distinctive characteristics com-
pared to a logistic regression model when we consider a set of potential predictors.

    1.     In a logistic model, a default strategy is to include all predictors as main effects. 
This model can be extended with interaction terms if the power to examine 
these is sufficient. It is rare to study interactions that are more complex than 
considering three variables (second order). In contrast, trees by default assume 
that higher-order interaction are present, and cannot model main effects.  

|
killip<2.5

age<67.5

killip<1.50.02

0.07 0.30

0.60

  Fig. 4.11    Pruned tree with size 3 for terminal nodes       
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    2.     Continuous variables should not be categorized in regression models. 355  Trees 
do so by necessity, which causes a loss of information.  

    3.     One might use a stepwise selection method in a logistic model, especially in 
larger data sets with sufficient power to select all relevant predictors. Generally 
a high  p -value is advisable to prevent various problems (Chap. 11). 174  A tree 
however always needs to be selective in the inclusion of predictors, and quickly 
runs out of cases within branches. Limited power is a major problem in the 
development of trees.     

 As an example we write the linear predictor for the tree in Fig.  4.11  as: 
  Lp =  b

1
 × Killip > 2 + b

2
 × Killip ≤ 2 × age ≤ 67.5 + 

b
3
 Killip = 1 × age > 67.5 + b

4
 × Killip = 2 age >67.5.   

 We estimate four parameters which identify the four terminal nodes. If we want 
a more standard formulation with an intercept we could write: 
  Lp = a + b

1
 × Killip>2 + b

2
 × Killip = 1 × age > 67.5 + b

3
 × Killip = 2× age > 67.5,  

where the intercept term refers to patients with Killip 1 or 2, and age = 67.5. 
 In this formulation, it is clear that age is ignored among those with Killip class 
> 2, and that a dichotomized age variable is used in interaction with patients in 
Killip class 1 or 2. 
  In a logistic regression model, we could combine Killip class 3 and 4 (represent-
ing “shock”), and omit the interaction of Killip with age: 
  Lp = a + b

1
 × age + b

2
 × Killip=1 + b

3
 × Killip=2 + b

4 
× Killip>2.   

    Even simpler, we could include Killip as a linear rather than as a categorized 
predictor:
Lp = a + b

1
 × age + b

2
 × Killip.

We could extend this model to allow for age × Killip interaction:
Lp = a + b

1
 × age + b

2
 × Killip + b

3
 × age × Killip.

*4.2.15 Other Methods for Binary Outcomes

Various other methods are available or under development. Such methods include 
multivariate additive regression splines (MARS) models. These form a kind of 
hybrid between generalized additive models and classication trees.129 MARS 
models aim to find low-order additive structure as well as interactions between 
risk factors.

A support vector machine (SVM) performs classification tasks by constructing 
hyperplanes in a multidimensional space that separates cases of different class 
labels. SVM supports both regression and classification tasks and can handle mul-
tiple continuous and categorical variables.464 Specialized texts are available that 
discuss these and other statistical models for binary data.181



4.2.16 Summary on Binary Outcomes

In sum, logistic regression provides a quite flexible model to derive predictions 
from empirical data. Interactions and nonlinearity can be incorporated. Some other 
models, such as GAM, neural nets (GNLM), MARS, can be seen as extensions, 
with the default linear logistic model as a special case. Naïve Bayes is a simplified 
version of logistic regression, ignoring correlations between predictors. Trees can 
be seen as special cases of logistic regression, requiring categorizations of continuous 
variables and assuming higher order interactions.

4.3 Categorical Outcomes

Categorical outcomes without a clear ordering are common in diagnostic medical 
problems. The diagnostic process starts with considering presenting signs and 
symptoms of a patient. This leads the physician towards a set of differential diag-
noses. Each diagnosis has a probability given the patient’s clinical and nonclinical 
profile. Usually, one of these differential diagnoses is defined as the working diag-
nosis or target disease, to which the diagnostic work-up is primarily directed. 
Consequently, diagnostic studies commonly focus on the ability of tests to include 
or exclude the presence of this target disease. The alternative diagnoses (which 
may all direct different treatment decisions) are thus included in the outcome category 
“target disease absent.” After dichotomization of the diagnostic outcome, we may 
develop diagnostic prediction rules with logistic regression analysis. However, 
considering only the target disease is a simplification of clinical practice.

Table 4.4 Characteristics of some statistical models for binary outcomes

Categories Interactions Linearity Selection Estimation

Linear logistic 
regression

Possible Flexible Flexible Standard ML or 
penalization

Idiot’s Bayes No Often categories 
for diagnostic 
outcome

Flexible Univariate effects (+ 
calibration slope)

GAM Possible Highly flexible Flexible Nonparametric, close 
to penalized ML

GLNM, neural net Assumed Highly flexible Flexible Backpropagation, 
early stopping to 
prevent overfitting

Trees Assumed Categorization Assumed Various splitting 
methods

4.3 Categorical Outcomes 71
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4.3.1 Polytomous Logistic Regression

Several studies discussed the use of polytomous logistic regression to accommodate 
simultaneous prediction of three or more unordered outcome categories.29,484 The model 
for j outcome categories can be written as:

Logodds(y=j vs. y=reference) = a
j
 + b

i,j 
× x

i,j
 = lp

j

where j − 1 models are fitted each with separate sets of intercept a
j
 and regression 

coefficients b
i
. We illustrate the polytomous model for prediction of three diagnostic 

outcome categories in a detailed case study.

*4.3.2 Example: Histology of Residual Masses

After chemotherapy, patients with nonseminomatous testicular germ cell tumor may 
have residual masses of metastases.425 These residual masses may contain benign tissue, 
mature teratoma, or cancer cells. Surgery is not necessary for benign tissue. Mature 
teratoma can grow and hence cause problems during follow-up. The most serious 
diagnosis is residual cancer, where a direct benefit from surgery is plausible.

We consider three outcome categories with varying therapeutic benefit: no benefit 
for benign tissue, some for teratoma, and most benefit for surgical removal of 
residual cancer.35 We have proposed to weigh the benefit as 1:3:8 based on expert 
estimates of the prognosis of unresected vs. resected masses.422 This ordering in 
severity of the outcome was not used in the modeling, since biological knowledge 
was available that implied that prognostic relationships would be very different for 
the different histologies. For example, some histologies are known to produce certain 
tumor markers while others do not. Masses with teratoma masses are not expected to 
decrease substantially in size by chemotherapy, while cancer is usually responsive. 
Hence, a substantial decrease would make residual cancer unlikely.

Polytomous logistic regression analysis requires that one of the outcome categories 
is chosen as reference category. For the other outcome categories the polytomous 
logistic regression analysis fits simultaneously submodels that compare the outcome 
categories with the chosen reference. Thus, for each outcome category, different 
regression coefficients are estimated for each predictor. These submodels together 
comprise the polytomous model and can be used to estimate the probability of 
presence of each diagnostic outcome. In our example study, the reference diagnosis 
was viable cancer. Hence, we fitted a polytomous regression model, consisting of 
two submodels, one for benign tissue compared to viable cancer, and one for mature 
teratoma compared to viable cancer. These models take a similar form as the binary 
logistic model:

Logit(benign vs. cancer) = a
b
 + b

1,b
 × x

1
 + b

2,b
 × x

2
 + … + b

p,b
 × x

p
 = b

i,b
 × X = lp

b
;

Logit(teratoma vs. cancer) = a
t
 + b

1,t
 × x

1
 + b

2,t
 × x

2
 + … + b

p,t
 × x

p
 = b

i,t
 × X = lp

t
.



The subscript b indicates that we predict the odds of benign tissue, and subscript t 
for teratoma with p predictors.

The interpretation of the regression coefficients is similar as for dichotomous 
logistic regression, i.e., the logodds of the outcome (benign tissue or mature teratoma) 
relative to cancer per unit change in the predictor values. The probabilities of benign 
and teratoma tissue can be calculated by:

 P(benign tissue) = exp(lp
b
) / [1 + exp(lp

b
) + exp(lp

t
)]

P(mature teratoma) = exp(lp
t
) / [1 + exp(lp

b
) + exp(lp

t
)].

As probabilities need to sum to 1, the probability of cancer can then be calculated by:
P(cancer) = 1 – P(benign tissue) – P(mature teratoma).
We fitted a multivariable polytomous logistic regression model with six pre-

dictors to enable estimation of the probabilities of benign tissue, mature teratoma, 
and viable cancer. Variable selection was not applied; we simply included all six 
of the available predictors.

*4.3.3 Alternative Models

For comparison reasons, we may fit consecutive multivariable dichotomous logistic 
models. In our example, we make one model to predict benign tissue (vs. mature 
teratoma or viable cancer). The second, consecutive, model aimed to predict the odds 
of mature teratoma vs. viable cancer in patients who did not have benign tissue.

Logit(benign vs. teratoma/cancer) = a
b
 + b

1
 × x

1
 + b

2
 × x

2
 + … + b

p
 × x

p
 = b

i
 × X = lp;

Logit(teratoma vs. cancer) = a
t
 + b

1,t
 × x

1
 + b

2,t
 × x

2
 + … + b

p,t
 × x

p
 = b

i,t
 × X = lp

t
.

The latter formula is identical to a previous formula for the polytomous model, but 
the coefficients are estimated differently. In the polytomous model, all coefficients 
are estimated jointly. In the consecutive logistic model, a selection of patients is 
made to estimate the coefficients.
With these two binary logistic models the diagnostic probabilities are calculated by:

P(benign tissue) = exp (lp) / (1 + exp(lp) )
P(mature teratoma) = (1 – P(benign tissue) ) × exp(lp

t
) / [1 + exp(lp

t
)]

P(cancer) = 1 – P(benign tissue) – P(mature teratoma)

In our example, we use the same six predictors, but in principle we could select 
different predictors for lp and lp

t
. Also, we could have considered different trans-

formations of the continuous predictors related to LDH and mass size.
In both approaches, 14 parameters were estimated: 2 intercepts (a) and 2 sets of 
6 regression coefficients (b

1:6
). The performance of the two approaches was very 

similar according to discrimination (area under ROC curve) and R2 measures. See 
Biesheuvel et al. for a more detailed decription of this case study.35 Further dis-
cussion of approaches to unordered outcomes is provided in other reports.352, 425

4.3 Categorical Outcomes 7373
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*4.3.4 Comparison of Modelling Approaches

We considered a total of 1,094 patients, where 425 (39%) had benign tissue, 535 
(49%) mature teratoma, and 134 (12%) viable cancer. Table 4.5 shows the distribu-
tions of the six predictors across the three diagnostic outcome categories and in the 
total study population.

The odds ratios for the predictors are shown in Table 4.6, considering a polytomous 
regression model, and a consecutive logistic model. We note that the odds ratios for 
teratoma vs. cancer differ slightly between these modeling approaches. The odds 
ratios for necrosis vs. cancer are larger for most predictors than for necrosis vs. 
other histology.

4.4 Ordinal Outcomes

Ordinal outcomes are quite common in medical and epidemiological studies. Often, 
such scales are either simplified to binary outcomes, or treated as continous out-
comes. As an example, we consider the Glasgow Outcome Scale (GOS).430 This 
scale has five levels (Table 4.7).

This scale has often been dichotomized as mortality vs. survival, or a unfavorable 
(GOS 1, 2 or 3) vs. favorable (GOS 4 or 5) outcome. However, we can also explore 
the use of the full GOS. A practical consideration is that the GOS 2 category is very 
small, and that some may debate whether vegetative state is better than death. 
Therefore we combine the GOS categories 1 and 2, such that an outcome with four 
ordered levels is formed.

Table 4.5 Distribution of predictors across outcome categories in the total study population 
(n = 1,094)

 Benign Mature teratoma Viable cancer Total

 N (%) N (%) N (%) N (%)

Predictors    
No teratoma in primary  279 (55) 170 (34) 54 (11) 503 (46)

tumor
Normal AFP level 200 (59) 112 (33) 27 (8) 339 (31)
Normal HCG level 184 (49) 154 (41) 40 (10) 378 (35)
Standardized value of  1.5 (0.39–70) 1.2 (0.12–21) 1.8 (0.34–64) 1.4 (0.12–70)

LDH*    

Postchemotherapy  18 (2–300) 30 (2–300) 40 (2–300) 28 (2–300)
size (mm)*

Reduction in size  60 (−150–100) 20 (−150–100) 43 (−250–100) 43 (−250–100)
(%)*     

Outcome    
Histology at resection 425 (39) 535 (49) 134 (12) 1,094 (100)
* Median (range)
AFP Alpha-fetoprotein, HCG Human chorionic gonadotropin, LDH Lactate dehydrogenase



4.4.1 Proportional Odds Logistic Regression

A standard logistic regression model can be used for each of the three possible 
dichotomous categorizations of the GOS: 12 (dead/vegetative) vs. 345, 123 vs. 45 
(favorable), 1234 vs. 5 (good recovery). A straightforward extension of the logistic 
model is the proportional odds logistic model. Here, a common set of regression 
coefficients is assumed across all levels of the outcome, and intercepts are estimated 
for each level. So, in our example we have three intercepts a, but only one set of b, 
instead of three sets of b coefficients when fitting a polytomous logistic model. The 
common set of b coefficients can be thought of as an average over the three separate 
sets of bs estimated at each possible dichotomization. As an example we consider a 
simple model with age, motor score, and pupillary reactivity in a model to predict 6-
month outcome in data from two RTCs in traumatic brain injury.203

An advantage of the proportional odds model is its parsomony in dealing with 
an ordered outcome. The price we pay is the assumption of proportionality of the 

Table 4.6 Results of the multivariable polytomous and consecutive dichotomous logistic regres-
sion analysis. Values represent odds ratios with 95% confidence intervals

Predictor

Polytomous regression
Consecutative dichotomous 
regression

Benign vs.
 cancer

Teratoma vs. 
cancer

Benign vs. other Teratoma vs. 
cancer

No teratoma in 
primary 
tumour

2.2 (1.4–3.3) 0.66 (0.44–0.99) 3.0 (2.2–4.0) 0.61 (0.40–0.92)

Normal AFP 
serum level

2.8 (1.7–4.6) 0.94 (0.57–1.5) 2.9 (2.1–4.0) 0.90 (0.54–1.5)

Normal HCG 
serum level

1.4 (0.89–2.3) 0.72 (0.46–1.1) 1.9 (1.3–2.6) 0.70 (0.44–1.1)

Log of standardized 
value of LDH

1.2 (0.84–1.6) 0.58 (0.42–0.78) 1.7 (1.4–2.2) 0.60 (0.44–0.81)

Square root of 
postchemotherapy 
mass size

0.79 (0.71–0.88) 0.91 (0.84–0.99) 0.85 (0.77–0.92) 0.89 (0.82–0.98)

Reduction in mass 
size (per 10%)

1.14 (1.06–1.22) 0.97 (0.92–1.02) 1.18 (1.12–1.24) 0.96 (0.92–1.0)

Table 4.7 Definition of the Glasgow Outcome Scale

Category Label Definition

1 Dead –
2 Vegetative Unable to interact with environment; 
  unresponsive
3 Severe disability Conscious but dependent
4 Moderate disability Independent, but disabled
5 Good recovery Return to normal occupational and social activities; 
  may have minor residual deficits

4.4 Ordinal Outcomes 7575
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odds. This assumption is equivalent to saying that any cut-point on the outcome 
scale would lead to the same logistic regression coefficient. The model further has 
very similar assumptions as the usual logistic model. We can graphically check the 
proportionality assumption in univariate analyses for each predictor (Fig. 4.12). 
Distances between points should be identical on the logit scale within each category 
of a predictor (looking horizontally), or equivalently, the effects of predictors 
should be the same for every point (looking vertically). The assumption of propor-
tional odds can formally be assessed with a score test. One could also develop usual 
logistic models by each categorization, and check for systematic trends in the esti-
mated odds ratios (Table 4.8). There is considerable overlap in patients in such 
evaluations, but clear deviations from proportional odds should become visible. In 

Table 4.8 Logistic and proportional odds models for GOS at 6 months after traumatic brain 
injury in 2,159 patients from the Tirilazad trials203

Categorization 12 vs. 345 123 vs. 45 1234 vs. 5 Proportional

Age (per decade) 1.36 1.47 1.45 1.43
Motor 1/2 5.88 6.50 6.18 5.86

3 2.98 3.82 3.00 3.15
4 1.95 1.95 1.62 1.82
5/6 1 1 1 1

Pupils 2 reactive 1 1 1 1
1 reactive 1.73 1.81 2.51 2.01
Nonreactive 3.26 3.53 4.23 3.55

Fig. 4.12 Assessment of the proportional odds assumption for each of three predictors (univariate 
analysis) to predict for GOS at 6 months after traumatic brain injury. Data from the Tirilazad tri-
als (n = 2,159). The circle, triangle, and plus sign correspond to the GOS categorizations 12 vs. 
345, 123 vs. 45, and 1234 vs. 5. For example, the overall logit of the last categorization is −1, or 
a probability of 27% (589/2,159 patients). The proportional odds assumption is well satisfied, 
since the horizontal distance between the points is constant within each category
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our example, the ORs per categorization are reasonably constant, and the propor-
tional odds ratio provides a nice summary measure over the three categorizations.

*4.4.2 Alternative: Continuation Ratio Model

An alternative to the proportional odds model is the continuation ratio model. This 
model is related to the Cox proportional hazards model and allows predictors to have 
different effects on different levels of the ordinal outcome. An extensive illustration 
is provided by Harrell et al.174,178

4.5 Survival Outcomes

Survival analysis is appropriate for outcomes that occur during follow-up of 
patients. The outcome may for example be death or another event, such as recur-
rence of disease in cancer, or a complication after implantation after a heart valve. 
A key characteristic of survival data is that the follow-up of patients is typically 
incomplete. For example, some patients may have been followed for 1 year, others 
for 3 years, etc., while we may be interested in estimates of 5-year survival. Patients 
with such incomplete data are called censored observations. Because of censoring, 
logistic regression for the outcome (a binary variable) is inappropriate. One could 
think of linear regression on the survival time (a continuous outcome), but again 
censoring makes such an analysis usually meaningless.

4.5.1 Cox Proportional Hazards Regression

In medical and epidemiological studies, the Cox proportional hazard model is the 
most often used method for survival outcomes.85 It is the natural extension of the 
logistic model to the survival setting. Indeed, the Cox model is equivalent to conditional 
logistic regression, with conditioning at times where events occur.251 In the logistic 
model, we use an intercept in the linear predictor, while in the Cox model a baseline 
hazard function is used. The hazard function indicates the risk of the outcome during 
follow-up. The baseline hazard is nonparametric in the Cox model. As for the logis-
tic model, simpler and more extensive methods exist, which can be seen as special 
cases or extensions of the Cox model.

The Cox regression model is often stated as a function of the hazard function472:

l(t|X) = l(t) ebX,

Where l(t) is the hazard at time t, and is usually estimated at the mean values of 
the predictors and b X is the linear predictor, b

1
 ´ x

1
 + b

2
 ´ x

2
 + … + b

p
 ´ x

p
.

4.5 Survival Outcomes 77
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The linear predictor is usually centered at the mean values of the predictors, and ebX 
then indicates the hazard ratio compared to the average risk profile. Note that the 
linear predictor relates to the log of the hazard:

log(l(t|X) ) = log(l(t) ) + b
1
 ´ x

1
 + b

2
 ´ x

2
 + … + b

p
 ´ x

p
.

The Cox regression model is semiparametric. It makes a parametric assumption on the 
effect of predictors, i.e., proportionality of effect during follow-up. The baseline hazard 
function l(t) is nonparametric. This is an advantage of the model, especially when we 
focus on the effect of predictors. Regression coefficients b

i
 can readily be estimated. 

The quantity ebi is the hazard ratio, similar to the odds ratio in logistic regression.

4.5.2 Predicting with Cox

When we want to make predictions, we need to consider the risk over time, for example 
by using the cumulative hazard, or survival function. The standard formulation of the 
predicted survival at time t, given a set of predictors X, is as

S(t|X) = S(t)e(b X),

Where S(t|X) denotes the predicted survival at time t, given a set of predictors X, 
S(t) is the baseline survival, usually estimated at the mean values of the predictors, 
and bX is the linear predictor.

The baseline survival is estimated from the nonparametric baseline hazard function as

S(t) = e−L (t)

where L (t) is the cumulative hazard at time t.
Note that log(L (t) ) can range between [−inf, +inf]; L (t) [0, inf]; S(t) [1, 0]. This 

is very similar to the behavior of quantities in logistic regression: logit, odds, and 
probability. The baseline survival in the development data determines the precise 
time points where we can make predictions for, which is not very natural for application 
of the model in new subjects.

4.5.3 Proportionality Assumption

The effect of predictors is assumed to be constant in time or more precisely stated: 
the hazards are assumed to be proportional. The proportionality assumption can be 
assessed in a number of ways, including graphical and analytical methods. A general 
approach is to calculate interval specific hazard ratios. With proportional hazards, 
the hazard ratio should be similar across any interval considered. Follow-up time 
can also be considered as a continuous variable, where assessing interaction with 
log(time) may be a useful approach.174



If we find that the effect of a predictor is nonproportional, we can stratify for cate-
gorical variables in the baseline hazard. For example, we could estimate baseline haz-
ards for males and females seperately. For continuous predictors, e.g., age, we could 
specify interactions with log(age) as the time variable. Nonproportionality can also be 
visualized in a more nonparametric approach, i.e., with Kaplan–Meier curves.

4.5.4 Kaplan–Meier Analysis

Kaplan–Meier analysis is a nonparametric approach to survival outcomes.224 It ade-
quately deals with censored data, and provides attractive graphs on the relationship 
between predictor values and the outcome over time. The method can be seen as an 
extension of a cross-table for survival data. More technically, it can be interpreted 
as a Cox model with stratification of the baseline hazard to all predictor levels. For 
example, we could make a Cox model with sex as a stratification variable for the 
baseline hazard, without any other variables, which is equivalent to a Kaplan–Meier 
analysis with sex as a predictor. Also, testing in a Kaplan–Meier analysis is usually 
done with a log-rank test, which is equivalent to the Score test in the Cox model.

Kaplan–Meier analysis often has a role in prognostic modeling at the start of the 
analysis, i.e., to show univariate relationships graphically or to compute survival 
fractions at a certain time of follow-up. Also at the end of a modeling process, 
Kaplan–Meier curves are often used to present the predictions from the model. It 
is then necessary to group patients by their predictions, since Kaplan–Meier analysis 
cannot handle continuous predictors. Kaplan–Meier curves are for survival analysis 
what cross-tables are for binary or categorical outcomes.

*4.5.5 Example: NFI After Treatment of Leprosy

Nerve-function impairment (NFI) commonly occurs during or after chemotherapy 
in leprosy. It is the key pathological process leading to disability and handicap. A 
simple clinical prediction rule was developed with 2,510 patients who were 
followed-up for 2 years in Bangladesh.87 In total, 166 patients developed NFI 
(Kaplan–Meier 2-year estimate: 7.0% [95%CI 6.0–8.0%]. A Cox regression model 
included two strong predictors (Table 4.10). Patients with no, one, or two unfavora-

Table 4.10 Multivariable hazard ratios from Cox proportional 
hazard analysis.87 Three risk groups could be formed based on 
presence of no, one, or two unfavorable predictive characteristics, 
since the hazard ratios were very similar

Predictor Hazard ratio [95% CI]

Leprosy group (MB vs. PB) 7.5 (5.3–11.0)
Nerve-function loss at registration 8.1 (5.7–12.0)
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ble predictive characteristics had 1.3% (95% CI 0.8–1.8%), 16.0% (12–20%), and 
65% (56–73%) risks of developing NFI within 2 years of registration, 
respectively.

4.5.6 Parametric Survival

Whereas Kaplan–Meier analysis represents a more nonparametric approach, para-
metric survival models are less flexible than Cox regression in their dealing with 
the baseline hazard function. Parametric models typically assume proportionality 
of the predictor effects, but a more smoothed hazard in time. Examples of paramet-
ric models include the exponential model (or Poisson model, using a constant haz-
ard) and the Weibull model (two parameters to let the hazard increase or decrease 
monotonically over time). The exponential and Weibull model can also be seen as 
examples of accelerated failure time (AFT) models. Here, the effects of predictors 
are not viewed as multiplicative on the hazards scale, but as multiplicative on the 
time axis (or additive at the log-time axis). Other examples of AFT models are the 
log-normal and log-logistic model.174 472

Regression coefficients in exponential or Weibull models are hazard ratios after 
exponentiating. In AFT models, they represent a change in the log-time. The 
advantage of parametric survival models is their concise, parsimonious formula-
tion, and smoothing of the underlying hazard. This makes these models especially 
to be considered for prediction purposes. Extrapolation is readily possible with 
parametric models, but not with Cox or Kaplan–Meier analysis because of their 
nonparametric nature. Predictions at the end of the follow-up are quite unstable 
with Cox or Kaplan–Meier analysis, and more robust with parametric methods. For 
estimation of the effect of predictors, the Cox model is often more suitable, since 
this model is less restrictive than an exponential or Weibull model. However, log-
logistic models have been useful in situations where predictors worked especially 
during an early, acute phase of the hazard, which would show as non–proportional 
hazards in a Cox model.174 Note finally that some of the more flexible methods for 
binary data have also been extended to survival models, but are not commonly used 
yet (e.g., neural networks).181

*4.5.7 Example: Replacement of Risky Heart Valves

In Chap. 2, we presented an overview of the decision dilemma on Björk-Shiley 
convexo-concave (BScc) mechanical heart valves.448 Poisson regression models 
were constructed to estimated survival and the risk of strut fracture.415 Poisson 
regression was especially useful to disentangle the effects of increasing age of the 
patient during follow-up from the increasing time since implantation of the valve 
during follow-up. The follow-up time was divided in yearly intervals, each with an 
age and time since implantation. Time since implantation started at zero, and increased 



in steps of 1 year during follow-up. Age started at the age at implantation, and also 
increased in steps of 1 year during follow-up. The Poisson model could easily esti-
mate the effects of both predictors, which would have been more complicated in a 
Cox regression analysis. Moreover, extrapolation to longer time since implantation 
was readily possible with the Poisson model.

4.5.8 Summary on Survival Outcomes

In sum, the Cox regression model provides a default framework for prediction of 
long-term prognostic outcomes. Kaplan–Meier analysis provides a nonparametric 
method, but requires categorization of all predictors. It is the equivalent of cross-tables 
for categorical outcomes for a survival context. Parametric survival models may be 
useful for predictive purposes because of their parsimony and robustness, for example 
at the end of follow-up, or even beyond the observed follow-up.

4.6 Concluding Remarks

Regression models are available for several types of outcome that we may want to 
predict, such as continuous, binary, unordered categorical, ordered categorical, and 
survival outcomes. The corresponding default regression models are the linear, 
logistic, polytomous, proportional odds, and Cox regression models, respectively. 
Both more and less flexible methods are available. Flexible methods may fit par-
ticular patterns in the data better, but may on the other hand lead to overfitting 
(Chap. 5). It is therefore not immediately clear what kind of model is to be pre-
ferred in a specific prediction problem (Chap. 6).

Special types of data can be encountered that required specific types of analyses. 
Correlated outcome data may occur by the design of a study, for example by clustering 
per hospital. In survival analysis, repeated and correlated events may occur, asking 
for extensions of the Cox model. Also, we may want to consider competing risks 
in estimation of actual risk instead of actuarial risks.124,158,159

Table 4.11 Common statistical models for survival outcomes

Categories Proportionality Baseline hazard

Cox proportional hazards Assumed Nonparametric
Kaplan–Meier No Nonparametric
Exponential and Weibull Assumed Parametric
Log-normal, log-logistic No, but multiplicative in time Parametric
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Questions

4.1 Explained variation
(a)  What is the difference between explained variation in linear and logistic 

regression models?
(b)  Is the choice of scale for explained variation natural in linear and logistic 

regression models?
(c)  Why are larger likelihood ratios seen with an incidence of 50% compared 

to 1% in Fig. 4.5?

4.2 Categorical and ordinal outcomes
(a) What is the proportionality assumption in the proportional odds model?
(b)  Mention at least two ways how the proportionality assumption can be 

checked
(c)  Would the proportionality assumption hold in the testicular cancer case 

study (Table 4.6)?
(d)  We could also make two logistic regression models for the testicular cancer 

case study, with one model for benign vs. other and another for cancer vs. 
other. What would be the problem with predictions from these models?

4.3 Parametric survival models
(a) Why may we label the Cox regression model “semiparametric”?
(b) Do you agree that Kaplan–Meier analysis is a fully nonparametric model?
(c)  Why is the Weibull model attractive for making long-term predictions? At 

what price?        
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