
   Chapter 3   
 Study Design for Prediction Models        

  Background   In this chapter, we consider several issues in the design of studies for 
prediction research. These include the selection of subjects or patients for a cohort 
study, strengths and limitations of case series from a single center, from registries, 
or prospective trials. We further discuss issues in choosing predictors and outcome 
variables for prediction models. An important question is often how large a study 
needs to be for sufficient statistical power. Power considerations are given for 
studying effects of specific predictors, and for developing a prediction model that 
can provide reliable predictions. We use several case studies for illustration.    

  3.1 Study Design  

 Prognostic studies are inherently longitudinal in nature. They are most often performed 
in cohorts of patients, who are followed over time for an outcome to occur. The 
cohort is defined by the presence of one or more particular characteristics, e.g. hav-
ing a certain disease, living in a certain place, having a certain age, or simply being 
born alive. For example, we may follow a cohort of patients with an acute myocar-
dial infarction for long-term mortality according to ECG characteristics. 335  

 Diagnostic studies are most often designed as a cross-sectional study, where predic-
tive patient characteristics are related to an underlying diagnosis. The study group is 
defined by the presence of a particular symptom or sign that makes the subject suspected 
of having a particular (target) disease. Typically, the subjects undergo the index test and 
subsequently a reference test to establish the “true” presence or absence of the target 
disease, over a short time span. For example, we may aim to diagnose those with an 
acute myocardial infarction among patients presenting at an emergency department. 142   

  3.2 Cohort Studies for Prognosis  

 Several types of cohort studies can be used for prognostic modelling. The most 
common type may be a single-center retrospective cohort study (Table  3.1 ). In this 
case, patients are identified from hospital records between certain dates, for  example, 
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those diagnosed between January 1, 1997, and December 31, 2003. These patients 
were followed over time for the outcome, but the investigator looks back in time 
(hence we may use the label “retrospective study” 463 ).     

  3.2.1 Retrospective Designs 

 Strengths of a retrospective study design include its simplicity and feasibility. It 
is a design with relatively low costs, since patient records can often easily be 
searched, especially with modern hospital information systems or electronic 
patient records. A limitation is the correct identification of patients, which has to 
be done in retrospect. If some information is missing, or was incorrectly recorded, 
this may lead to a selection bias. Similarly, the recording of predictors has to have 
been reliable to be useful for prediction modelling. Finally, the outcome has to be 
reliable. This may be relatively straightforward for outcomes such as survival, 
where some deaths will be known from hospital records. But additional confirma-
tion of vital status may often be required from nationwide statistical bureaus for 
a complete assessment of survival status. Other outcomes, e.g. related to func-
tional status, may not be available at the time points that we wish to analyse. 
Finally, single centre studies may be limited by their sample size, which is a key 
problem in prediction research. Multicentre, collaborative studies can address 
this sample size issue. Moreover, the representativeness of the prediction model 
will then be better.  

  *3.2.2  Example: Predicting Early Mortality in Oesophageal 
Cancer 

 As an example, we consider outcome prediction in oesophageal cancer. A retro-
spective chart review was performed of 120 patients treated in a single institution 
between January 1, 1997, and December 31, 2003. 252  The patients had palliative 
treatment, which means therapy that relieves symptoms, but does not alter the 
course of the disease. A stent was placed in the oesophagus because of malignancy-
related dysphagia (difficulty in swallowing). The authors studied 30-day mortality, 
which occurred in an unspecified number of patients (probably around 10%, 
 n =12). 252   

  3.2.3 Prospective Designs 

 In a prospective study, we can better check specific inclusion and exclusion criteria. 
The investigator is said to age with the study population (hence the label “prospec-
tive study”). We can use clear and consistent definitions of predictors, and assess 
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patient outcomes at pre-defined time points. Prospective cohort studies are there-
fore preferable to analyses in retrospective series. 

 Prospective cohort studies are sometimes solely set up for prediction model-
ling, but a more common design is that prediction research is done in data from 
randomized clinical trials (RCTs), or from prospective before–after trials. The 
strengths are in the well-defined selection of patients, the prospective recording 
of predictors, usually with quality checks, and the prospective assessment of 
outcome. Sample size is usually reasonably large. A limitation of data from 
(randomized) trials may be in the selection of patients. Often stringent inclusion 
and exclusion criteria are used, which may limit the generalizability of a model 
developed on such data. On the other hand, RCTs are often performed in multi-
ple centres, sometimes from multiple countries or continents. Benefits of the 
multi-centre design include that consensus has to be reached on definition issues 
for predictors and outcome, and that generalizability of findings will be 
increased. This is in contrast to single centre studies, which only reflect predic-
tive relationships from one specific setting. 

 A topic of debate is whether we should only use patients from an RCT who are 
randomized to a conventional treatment or placebo (the “control group”). If we 
combine randomized groups we assume that no specific subgroup effects are rele-
vant for the prognostic model. This may generally be reasonable. Moreover, the 
prognostic effect of a treatment is usually small compared to prognostic effects of 
other predictors.  

  *3.2.4  Example: Predicting Long-Term Mortality 
in Oesophageal Cancer 

 In another study of outcome in oesophageal cancer, data from an RCT 
(“SIREC”,  n =209 197 ) were combined with other prospectively collected data 
( n =396). 414  Long-term mortality was studied after palliative treatment with a 
stent or radiation (“brachytherapy”).  

  3.2.5 Registry Data 

 Prognostic studies are often performed with registry data, for example cancer 
registries, or insurance databases. Data collection is prospective, but not prima-
rily for prediction research. The level of detail may be a limitation for prognostic 
analyses. For example, the well-known US-based cancer registry (Surveillance, 
Epidemiology and End Results, SEER) contains information on cancer incidence, 
mortality, patient demographics, and tumour stage. It has been linked to the 
Medicare data base for information on comorbidity 233  and treatment (surgery, 80  



3.2 Cohort Studies for Prognosis 3737

chemotherapy, 478  radiotherapy 471 ). Socio-economic status (SES) is usually based 
on median income as available at an aggregated level. 24  SEER-Medicare does not 
contain detailed information on performance status, which is an important factor 
for medical decision-making and for survival of cancer patients. Also, staging 
may have some measurement bias. 118  

 Another problem may occur when reimbursement depends on the severity that 
is scored for a patient. This may pose an upward bias on the recording of comor-
bidities in claims databases for example. 

 The outcomes for prognostic analyses usually suffer from the same limitations 
as retrospective studies, since usually no pre-defined assessments are made. 
Outcomes are therefore often limited to survival, although other adverse events 
can sometimes also be derived. 105,394  Strengths of prognostic studies with registry 
data include large sample sizes, and representativeness of patients (especially with 
population-based cancer registries). Such large databases may especially be useful 
for studying predictive relationships of a limited number of predictors with 
survival.  

  *3.2.6 Example: Surgical Mortality in Oesophageal Cancer 

 The SEER-Medicare database was used to analyze 30-day mortality in 1,327 
patients undergoing surgery for oesophageal cancer between 1991 and 1996. 
Predictive patient characteristics included age, comorbidity (cardiac, pulmonary, 
renal, hepatic, and diabetes), preoperative therapy, and a relatively low hospital 
volume, which were combined in a simple prognostic score. Validation was done 
in another registry, and in a hospital series. 423   

  3.2.7 Nested Case–Control Studies 

 A prospectively designed, nested case–control study is sometimes an efficient 
option for prediction research. A case–control design is especially attractive 
when the outcome is relatively rare, such as incident breast cancer. 131  For exam-
ple, if 30-day mortality is 1%, it is efficient to determine detailed predictors in 
all patients who died, but for example 4% of the controls (1:4 case–control 
ratio). A random sample of controls is used as comparison for the cases. If the 
outcome is well defined, such as survival, selection bias cannot be a problem. 
Assessment of details of predictors is in retrospect, which is a limitation. If a 
prediction model is developed, the average outcome incidence has to be adjusted 
for final calculation of probabilities, while the regression coefficients can be 
based on the case–control study. 131   
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  *3.2.8  Example: Perioperative Mortality in Major Vascular 
Surgery 

 An interesting example is the analysis of perioperative mortality in patients under-
going major vascular surgery. 340  Predictors were determined in retrospect from a 
detailed chart review in all cases (patients who died), and in selected controls 
(patients who did survive surgery). Controls had surgery just before and just after 
the case. Hence a 1:2 ratio was achieved for cases against controls.   

  3.3 Studies for Diagnosis  

  3.3.1 Cross-Sectional Study Design and Multivariable Modelling 

 Ideally, a diagnostic study considers a well-defined cohort of patients suspected of a 
certain diagnosis, e.g. an acute myocardial infarction. 238  Such a diagnostic study then 
resembles a prognostic cohort study. The cohort is here defined by the suspicion of 
having (rather than actually having) a disease. The outcome is the underlying diagno-
sis. The study may therefore be labelled cross-sectional, since the predictor–outcome 
relationships are studied at a single point in time. Several characteristics may be pre-
dictive of the underlying diagnosis. For a model, we should start with considering 
simple characteristics such as demographics, and symptoms and signs obtained from 
patient history. Next, we may consider simple diagnostic tests, and finally invasive 
and/or costly tests. 295  The diagnosis (presence or absence of the target disease) should 
be established by a reference test or standard. This test used to be called “gold” stand-
ard, but no method is 24 carat gold. The result of the reference test is preferably 
interpreted without knowledge of the predictor and diagnostic test values. Such blind-
ing prevents information bias (or incorporation, or “diagnostic review” bias). 296  

 A common problem in diagnostic evaluations is the incomplete registration of 
all predictive characteristics. Not all patients may have undergone the entire diag-
nostic work-up, especially if they are considered as at low risk of the target disease. 
Similarly, outcome assessment may be incomplete, if a test is used as a gold stand-
ard which is selectively performed. 343  These problems are especially prominent in 
diagnostic analyses on data from routine practice. 313  Prospective studies are hence 
preferable, since these may use a pre-specified protocol for systematic diagnostic 
work-up and reference standard testing.  

  *3.3.2 Example: Diagnosing Renal Artery Stenosis 

 A cardiology database was retrospectively reviewed for patients who underwent 
coincident screening abdominal aorta angiography to detect occult renal artery ste-
nosis. In a development set, stenosis was observed in 128 of 635 patients. This 20% 
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prevalence may be an overestimate if patients underwent angiography because of 
suspicion of stenosis. 347   

  3.3.3 Case–Control Studies 

 Diagnostic studies sometimes select patients on the presence or absence of the 
target disease as determined by the reference test. Hence patients without a refer-
ence standard are not selected. In fact, a case–control study is performed, where 
cases are those with the target disease, and controls those without. This design 
has a number of limitations, especially related to the representativeness of the 
selected patients for all patients who are suspected of the diagnosis of interest. 
Selection bias is the most important limitation. Indeed, empirical evidence is now 
available on the bias that arises in diagnostic studies, especially by including non-
consecutive patients in a case–control design, non-representative patients (severe 
cases compared to healthy controls), and when data are collected 
retrospectively. 259,361   

  *3.3.4 Example: Diagnosing Acute Appendicitis 

 C-reactive protein (CRP) has been used for the diagnosis of acute appendicitis. 
Surgery and pathology results constituted the reference test for patients with a high 
CRP. Patients with a low CRP were not operated on and clinical follow-up deter-
mined whether they were classified as having acute appendicitis. As low-grade 
infections with low CRPs can resolve spontaneously, this verification strategy fails 
to identify all false-negative test results. In this way, the diagnostic performance of 
CRP will be overestimated. 259    

  3.4 Predictors and Outcome  

  3.4.1 Strength of Predictors 

 For a well-performing prediction model, strong predictors have to be present. Strength 
is a function of the association of the predictor with the outcome, and the distribution 
of the predictor. For example, a dichotomous predictor with an odds ratio of 2.0 is 
more relevant for a prediction model than a dichotomous predictor with an odds ratio 
of 2.5, when the first predictor is distributed in a 50:50 ratio (50% prevalence of the 
predictor), and the second 1:99 (1% prevalence of the predictor). Similarly, continu-
ous predictors have to cover a wide range to make them relevant for prediction. 

 When some characteristics are considered as key predictors, these have to be 
registered carefully, with clear definitions and preferably no missing values. This is 
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usually best possible in a prospective study, with a protocol and pre-specified data 
collection forms.  

  3.4.2 Categories of Predictors 

 Several categories of predictors have been suggested for prediction models. 174  
These include

  •  Demographics (e.g. age, sex, race, socio-economic status)  
 •  Type and severity of disease (e.g. principal diagnosis, presenting characteristics)  
 •  History characteristics (e.g. previous disease episodes, risk factors)  
 •  Comorbidity (concomitant diseases)  
 •  Physical functional status (e.g. Karnofsky score, WHO performance score)  
 •  Subjective health status and quality of life (psychological, cognitive, psychoso-

cial functioning)    

 The relevance of these categories will depend on the specifics of the application. 
Publications tend to group predictors under general headings, see for example, the 
predictors in the GUSTO-I model (Chap. 22). 255  Of note, definitions of predictors 
may vary from study to study. 492  Socioeconomic status (SES) can be defined in 
many ways, considering a patient’s working status, income, and/or education. Also, 
SES indicators are sometimes not determined at the individual level, but for exam-
ple at census tract level (“ecological SES”, e.g. in analyses of SEER-Medicare 
data 24,404 ). Race/ethnicity can be defined in various ways, and sometimes be self-
reported rather than determined by certain pre-defined rules. Comorbidity defini-
tions and scoring systems are still under development. 91,126,201  Variation in definitions 
is a serious threat to the generalizability of prediction models. 16  

 Another differentiation is to separate the patient’s condition from his/her consti-
tution. Condition may be reflected in type and severity of disease, history charac-
teristics, comorbidity, physical and subjective health status. Constitution may 
especially be related to demographics such as age and gender. For example, the 
same type of trauma (reflected in patient condition) affects patients of different ages 
differently (constitution). 

 In the future, genetic characteristics will be used more widely in a prediction 
context. Inborn variants of the human genome, such as polymorphisms and muta-
tions, may be considered as indicators of the patient’s constitution. Other genetic 
characteristics, for example the genomic profile of a malignant tumour, may better 
be thought of as indicators of subtypes of tumours, reflecting condition.  

  3.4.3 Costs of Predictors 

 Predictors may require different costs, in monetary terms, but also in burden for a 
patient. In a prediction context, it is evident that information that is easy to obtain 
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should be considered before information that is more difficult to obtain. Hence, we 
should first consider characteristics such as demographics and patient history, fol-
lowed by simple diagnostic tests, and finally invasive and/or costly tests. Expensive 
genetic tests should hence be considered for their incremental value over classical 
predictors rather than alone. 225  Such an incremental evaluation is well possible with 
predictive regression models, where a model is first considered without the test, and 
subsequently a model with the test added. 399   

  3.4.4 Determinants of Prognosis 

 Prognosis can also be viewed in a triangle of interacting causes (Fig  3.1 ). Predictors 
may be separated as related to environment (e.g. socio-economic conditions, health 
care access and quality, climate), the host (e.g. demographic, behavioral, psychoso-
cial, premorbid biologic factors), and disease (e.g. imaging, pathophysiologic, 
genomic, proteomic, metabolomic factors). 184    

  3.4.5 Prognosis in Oncology 

 For prognosis in oncology, it has been proposed to separate factors related 
to the patient, the tumour and to treatment (Fig. 3.2 ). 186  Examples of patients 
characteristics include demographics (age, sex, race/ethnicity, SES), comorbid-
ity, functional status. Tumour characteristics include the extent of disease 
(e.g. reflected in TNM stage), pathology, and sometimes values of tumour 
markers in the blood. Treatment may commonly include (combinations of) sur-
gery, chemotherapy, and radiotherapy.    

  Fig. 3.1    Prognosis may be thought of as determined by predictors related to environment, host 
and disease 184        

Prognosis 

Environment Host 

Disease 
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  3.5 Reliability of Predictors  

  3.5.1 Observer Variability 

 We generally prefer predictors that are well defined and reliably measured by any 
observer. In practice, observer variability is a problem for many measurements. 185,246  
Disciplines include, for example pathologists, who may unreliably score tissue 
specimens for histology, cell counts, colouring of cells, and radiologists, who, for 
example, score X-rays, CT scans, MRI scans, and ultrasound measurements. This 
variability can appropriately be measured with kappa statistics. 248  The interobserver 
and intraobserver variability can be substantial, which will be reflected in low 
kappa values.  

   * 3.5.2 Example: Histology in Barrett’s Oesophagus 

 Barrett’s oesophagus is a pre-malignant condition. Surgery is sometimes per-
formed in high-grade dysplasia, whereas other physicians defer treatment until 
adenocarcinoma is diagnosed. The agreement between readings of histology in 
Barrett’s oesophagus for high-grade dysplasia or adenocarcinoma was only fair, 
with kappa values around 0.4. 314  The agreement between no dysplasia and low-
grade dysplasia had been reported as even lower. 389  Because of observer variabil-
ity, sometimes a central review process is organized, where an expert reviews all 
readings. This should be done independently and blinded for previous scores. 
Subsequently a rule has to be determined for the final score, for example that only 
the expert score is used, or that an additional reader is required in case of disa-
greement. Also, consensus procedures can be set up with experts only, for exam-
ple with scoring by two experts, and involvement of a third if these disagree. 230  
Some use the unreliability of classical pathology as an argument for using mod-
ern biomarkers. 247   

Prognosis

Tumor Patient 

Therapy 

  Fig. 3.2    Prognosis of a patient with cancer may be thought of as determined by predictors related 
to the tumour, the patient, and therapy 186        
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  3.5.3 Biological Variability 

 Apart from observer variability, some measurements are prone to biological varia-
bility. A well-known example is blood pressure, where a single measurement is 
quite unreliable. 318  Usually at least two measurements are made, and preferably 
more, with some spread in time. Again, definitions have to be clear (e.g. position 
of patient at the measurement, time of day).  

  3.5.4 Regression Dilution Bias 

 The effect of unreliable scoring by observers, or biological variability, generally is 
a dilution of associations of predictors with the outcome. This has been labelled 
“regression dilution bias”, and methods have been proposed to correct for this 
bias. 257  A solution is to repeat unreliable measurements, either by the same observer 
(e.g. use the mean of three blood pressure measurements), or different observers 
(e.g. double reading of mammograms by radiologists). Practical constraints may 
limit such procedures.  

   * 3.5.5  Example: Simulation Study on Reliability of a Binary 
Predictor 

 Suppose we have a binary predictor that we measure with noise. Suppose two 
observers make independent judgments of the predictor. Their judgments agree 
with the true predictor status with sensitivity of 80% (observer scores 1 if true = 1) 
and specificity of 80% (observer scores 0 if true = 0, Table  3.2 ). If both observers 
score the predictor independently and without correlation, the observers agree with 
each other with a kappa of only 0.36 (Table  3.3 ).         

 The true predictor status predicts outcome well, with an odds ratio of 4. The 
observed predictor status has a diluted predictive effect, with odds ratio 2.25. 
Similarly, the discriminative ability is diluted ( c  statistic decreases from 0.67 to 
0.60, Table  3.4 ).      

 Table 3.2    Sensitivity and specificity for observers in deter-
mining the true predictor status (sensitivity = specificity = 
80%)  

 True predictor status 

 0 
 N (col%) 

 1  
N (col %) 

 Observer  0 
 1 

 750 (80%) 
 187 (20%) 

 187 (20%) 
 750 (80%) 
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  3.5.6 Choice of Predictors 

 In aetiologic research we may often aim for the best assessment of an exposure 
variable. We will be concerned about various information biases that may occur. In 
the context of a prediction model we can be much more pragmatic. If we aim to 
develop a model that is applicable in daily practice, we should use definitions and 
scorings that are in line with daily practice. For example, if medical decisions on 
surgery are made considering local pathology reports, without expert review, the 
local pathology report should be considered for a prediction model applicable to the 
local setting. As illustrated, such less reliable assessments will affect the perform-
ance of a predictive model, since predictive relationships are disturbed. If misclas-
sification is at random, a dilution of the relationship occurs (Table  3.4 ). On the 
other hand, if measurements are more reliable in clinical practice than in a research 
setting, e.g. repeated assessments of blood pressure, we might argue that a correc-
tion has to be made in the prediction model. In practice, prediction models tend to 
include predictors that are quite readily available, not too costly to obtain, and can 
be measured with reasonable precision.   

  3.6 Outcome  

  3.6.1 Types of Outcome 

 The outcome of a prediction model should be relevant, either from an applied medi-
cal perspective or from a research perspective. From a medical perspective, “hard” 
end points are generally preferred. Especially mortality is often used as an end 
point in prognostic research. Mortality risks are relevant for many acute and chronic 

 Table 3.3    Agreement between observer 
1 and observer 2 (kappa = 0.36)  

 Observer 2 

 0  1 

 Observer 1  0  637  300 
 1  300  637 

 Table 3.4    Association with outcome for the true predictor status and observed predictor status 
(by observer 1 or 2, Table  3.3 )  

 Outcome 

 Odds ratio   c  statistic  0  N  (row%)  1  N  (row%) 

 True predictor status  0  625 (67%)  312 (33%)  4.0  0.67 
 1  312 (33%)  625 (67%) 

 Observer  0  562 (60%)  375 (40%)  2.25  0.60 
 1  375 (40%)  562 (60%) 
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conditions, and for many treatments, such as surgery. In some diseases, mortality 
may not be a relevant outcome. Other outcomes include non-fatal events (e.g. dis-
ease recurrence), patient centred outcomes (e.g. scores on quality of life question-
naires), or wider indicators of burden of disease (e.g. absence from work, Table  3.5 , 
based on Hemingway 184 ).      

  3.6.2 Survival End points 

 When cause-specific mortality is considered, a reliable assessment of the cause of 
death is required. If cause of death is not known, relative survival can be calcu-
lated. 166,167  This is especially popular in cancer research. Mortality in the patients 
with a certain cancer is compared with the background mortality from the general 
population. The difference can be thought of as mortality due to the cancer. 

 The pros and cons of relative survival estimates are open to debate. Some have 
proposed to also study conditional survival for patients already surviving for some 
years after diagnosis. These measures may sometimes be more meaningful for 
clinical management and prognosis than 5-year relative survival from time of 
diagnosis. 139,214  Others have proposed that median survival times are better indica-
tors of survival than 5-year relative survival rates, especially when survival times 
are short. 319   

   * 3.6.3 Example: Relative Survival in Cancer Registries 

 Five-year relative survival was studied for patients enrolled in the SEER registry in 
the period 1990–1999. 139  The 5-year relative survival rate for persons diagnosed 
with cancer was 63%, with substantial variation by cancer site and stage at  diagnosis. 

 Table 3.5    Examples of prognostic outcomes 184   
 Prognostic outcome  Example  Characteristics 

 Fatal events  All-cause, or cause-specific  Hard end point, relevant in 
many diseases, but some-
times too infrequent for 
 reliable statistical modeling 

 Non-fatal events  Recurrence of tumor, 
cardiovascular events 
(e.g. myocardial infarction, 
revascularization) 

 Somewhat softer end point, 
reflecting decision-making 
by physicians, increases 
power for analysis 

 Patient centered   Symptoms, functional status, 
health-related quality of life, 
utilities 

 Subjective end point, focused 
on the patients themselves; 
often used as secondary end 
point 

 Wider burden  Absence from work because of 
sickness 

 Especially of interest from an 
economical point of view 
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Five-year relative survival increased with time since diagnosis. For example, for 
patients diagnosed with cancers of the prostate, female breast, corpus uteri, and 
urinary bladder, the relative survival rate at 8 years after diagnosis was over 75%. 

 Similar analyses were performed with registry data from the Eindhoven region, 
where it was found that patients with colorectal, melanoma skin, or stage I breast 
cancer could be considered cured after 5–15 years, whereas for other tumours sur-
vival remained poorer than the general population. 214   

  3.6.4 Composite End Points 

 Sometimes composite end points are defined, which combine mortality with non-
fatal events. Composite end points are especially popular in cardiovascular research 
(see also Chap. 23). For example, the Framingham models have been used to pre-
dict incident cardiovascular disease in the general population. A popular Framingham 
model (the Wilson model) defines cardiovascular events as fatal or non-fatal myo-
cardial infarction, sudden death, or angina pectoris (stable or unstable). 487  Composite 
end points have the advantage of increasing the effective sample size and hence the 
power for statistical analyses.  

   * 3.6.5  Example: Mortality and Composite 
End Points in Cardiology 

 A prediction model was developed in 949 patients with decompensated heart fail-
ure. The outcome was 60-day mortality or the composite end point of death or 
rehospitalization at 60 days. The discriminatory power of the model was substantial 
for mortality ( c  statistic 0.77) but less for the composite end point ( c  statistic 
0.69). 121  These findings are in line with prediction of acute coronary syndromes, 
where predictive performance was better for mortality than for a composite end 
point of mortality or myocardial (re)infarction. 43  The case study in Chap. 23 also 
considers a composite end point.  

  3.6.6 Choice of Prognostic Outcome 

 The choice of a prognostic outcome should be guided by the prediction problem, 
but the outcome should be measured as reliable as possible. Prediction models may 
be developed with pragmatic definitions of predictors, since this may resemble the 
future use of a model. But the outcome should be determined with similar rigour as 
in an aetiologic study or randomized clinical trial. In the future, decisions are to be 
based on the predictions from the model. Predictions hence need to be based on 
robust statistical associations with an accurately determined outcome. 
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 If there is a choice between binary and continuous outcomes, the latter are 
 preferred from a statistical perspective, since they provide more power in the analy-
sis. Also, ordered outcomes provide more power than binary outcomes. In practice, 
binary outcomes are however very popular, making logistic regression and Cox 
regression the most common techniques for prediction models in medicine.  

  3.6.7 Diagnostic End Points 

 The outcome in diagnostic research naturally is the underlying disease, which 
needs to be defined according to a reference standard. 48,49,238,296  The reference stand-
ard can sometimes be anatomical, e.g. findings at surgery. Other definitions may 
include blood or spinal fluid cultures (e.g. in infectious diseases), results of high-
quality diagnostic tests such as angiography (e.g. in coronary diseases), and histo-
logical findings (e.g. in oncology). Methods are still under development on how to 
deal with the absence of an acceptable reference standard. In such situations the 
results of the diagnostic test can, for example, be related to relevant other clinical 
characteristics and future clinical events. 360  

 The relevance of the underlying diagnosis may be high when treatment and prog-
nosis depends directly on the diagnosis. This is for example the case with testing for 
genetic defects such as trisomy 21 (Down syndrome). However, often a diagnosis 
covers a spectrum of more and less severe disease, and longer-term outcome assess-
ment would be desirable. This is especially relevant in the evaluation of newer imag-
ing technology, which may detect disease that remained previously unnoticed. 34,266   

  *3.6.8 Example: PET Scans in Oesophageal Cancer 

 In oesophageal cancer, positron-emission tomography (PET) scans provide addi-
tional information on extent of disease compared to CT scanning alone. 316,495  However, 
the clinical relevance of the additionally detected metastases can only be determined 
in a comparative study, preferably a randomized controlled trial. Diagnosing more 
metastases is not sufficient to make PET/CT clinically useful. 462    

  3.7 Phases of Biomarker Development  

 Pepe has proposed a phased approach to developing predictive biomarkers, in par-
ticular for early detection of cancer 332  (Table  3.6 ). These phases are also relevant to 
the development of future prediction models, which may add novel biomarkers to 
traditional clinical characteristics. The development process begins with small stud-
ies focused on classification performance and ends with large studies of impact on 
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populations. The aim is to select promising markers early while recognizing that 
early studies do not answer the ultimate questions that need to be addressed.     

 As an example, Pepe considers the development of a biomarker for cancer screen-
ing. Phase 1 is exploratory and may consider gene expression arrays or protein mass 
spectrometry that yields high dimensional data for biomarker discovery. Reproducibility 
between laboratories is an aspect to consider before moving on to phase 2, where a 
promising biomarker is compared between population-based cases with cancer and 
population-based controls without cancer. Phase 3 is a more thorough evaluation in a 
case–control study to determine if the marker can detect subclinical disease. In phase 4, 
the marker may be applied prospectively as a screening test in a population. Finally, 
the overall impact of screening is addressed in phase 5 by measuring effects on clini-
cally relevant outcomes such as mortality. 

 The study design implications are also shown in Table  3.6 . In the exploratory 
phase 1 it may be acceptable to use “convenient samples”, which will likely lead to 
spectrum bias in the assessment of the biomarker. In phase 2, population-based 
samples are desired for a simple case–control design. In phase 3, we require sam-
ples taken from cancer patients before their disease became clinically apparent. 
A nested case–control study design can be efficient for data from a cohort study. 
For phase 4, a prospective cohort study is required to determine the characteristics 
and treatability of early detected disease. Finally, an RCT is desired for unbiased 
assessment of the impact of screening.  

  3.8 Statistical Power  

 An important issue is how large a study needs to be for sufficient statistical power 
to address the primary research question. Power considerations are given for study-
ing effects of a specific predictor, and for developing a prediction model that can 
provide reliable predictions. 

 Table 3.6    Phases of development of a biomarker for cancer screening 332   

 Phase  Objective  Study design 

 1. Preclinical exploratory  Promising directions identified  Case–control (convenient 
 samples) 

 2. Clinical assay 
and validation 

 Determine if a clinical assay 
detects established disease 

 Case–control (population 
based) 

 3. Retrospective longitudinal  Determine if the biomarker 
detects disease before it 
becomes clinical. Define a 
“screen positive” rule 

 Nested case–control in a 
 population cohort 

 4. Prospective screening  Extent and characteristics of 
disease detected by the test; 
false referral rate 

 Cross-sectional population 
cohort 

 5. Cancer control  Impact of screening on reducing 
the burden of disease on the 
population 

 Randomized trial 
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  3.8.1 Statistical Power to Identify Predictor Effects 

 We may primarily be interested in the effect of a specific predictor on a diagnostic 
or prognostic outcome. We may then aim to test the effect of this predictor for sta-
tistical significance. This leads to similar sample size considerations as for testing 
of treatment effects, e.g. in the context of an RCT. Sample size calculations are 
straightforward for such univariate testing. The required sample size is determined 
by choices for the acceptable Type I and Type II error. The Type I error is usually 
set at 5% for statistical significance. The Type II error determines the power, and 
may, e.g. be set at 20% for 80% power. Other considerations are the variability of 
the effect estimate. For binary predictors of a binary outcome, the prevalence of the 
predictor and the incidence of the outcome are important. Finally, the magnitude of 
the effect determines the required sample size, with larger sample size required to 
detect smaller effects.  

  *3.8.2 Examples of Statistical Power Calculations 

 Sample size calculations can be performed for most types of regression models 
with standard software. For illustration, we consider the statistical power for a 
binary predictor of a binary outcome (Fig.  3.3 ). We find that the required sample 
size increases steeply with a very low or very high incidence of the outcome. With 

  Fig. 3.3    Power corresponding to sample sizes for incidence of the outcome ranging from 0 to 
100%. A binary predictor was considered with 50% prevalence with odds ratio 1.5       
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an odds ratio of 1.5, 80% power requires approximately 2,000 subjects at a 10% 
incidence, 1,000 subjects at 20% incidence, and 800 subjects at 50% incidence.  

 Next, we illustrate that statistical power is related to the prevalence of a binary 
predictor (Fig.  3.4 ). We consider odds ratios from 1 to 3, as may often be encoun-
tered in medical prediction research. In a sample size of 500 subjects, 250 with and 
250 without the outcome, 80% power is reached with prevalences of 16% and 5.5% 
for odds ratios of 2 and 3, respectively. Odds ratios of 1.2 and 1.5 require sample 
sizes of 3,800 and 800 at 50% prevalence, respectively. With 10% incidence of the 
outcome, power is substantially lower (Fig.  3.4 , right panel). An odds ratio of 3 now 
requires 18% instead of 5.5% prevalence of the predictor for 80% power. Without 
an effect (OR=1), statistical significance is by definition expected in 5%.    

  3.8.3 Statistical Power for Reliable Predictions 

 Instead of focusing on predictors, we can consider the reliability of predictions that 
are provided by a prediction model. Some rules of thumb have been proposed, sup-
ported by simulation studies. The sample size requirements are commonly formulated 
as events per variable (EVP). The minimum EVP for obtaining good predictions 
may be 10. 175,326,327  Clinical prediction models that are constructed with EVP less 
than 10 are overfitted, and may perform poorer than a simpler model which considers 
fewer predictors, such that the EVP is at least 10 (see further illustration in Chap. 
24). EPV values for reliable selection of predictors from a larger set of candidate 
predictors may be as large as 50 (events per candidate predictor, see Chap. 11). For 

0 10 20 30 40 50 0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prevalence of predictor (%)

P
ow

er
N=500, incidence of outcome 50%

OR=1

OR=1.2

OR=1.5

OR=2

OR=3

Prevalence of predictor (%)
P

ow
er

N=500, incidence of outcome 10%

OR=1

OR=1.2

OR=1.5

OR=2

OR=3

  Fig. 3.4    Power in relation to prevalence of a binary predictor, for odds ratios from 1 to 3 in sam-
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pre-specified models, shrinkage may not be required with EPV of at least 20 (Chap. 
13). 410  Validation studies may need to include at least 100 events (details in Chap. 
19). 465  

 Other EPV values may apply for specific circumstances. Regression analyses 
can technically well be performed with lower EVP values. Adjusted analyses of an 
exposure variable may be performed with EPV less than 10 when we only aim to 
correct for confounding. 473    

  3.9 Concluding Remarks  

 Prognostic studies are ideally designed as prospective cohort studies, where the 
selection of patients and definition of predictors is pre-specified. Data from rand-
omized clinical trials may often be useful, although representativeness of the 
included patients for the target population should be considered as a limitation. 
Data may also be used from retrospective designs, registries, and case–control stud-
ies, each with their strengths and limitations. Diagnostic studies are usually cross-
sectional in design, and should prospectively select all patients who are suspected 
of a disease of interest. In practice, designs are still frequent where patients are 
selected by a reference test which is not performed in all patients. 

 Predictors should be defined pragmatically, and cover the relevant domains for 
prediction of outcome in a disease. The outcome of a prediction model should be 
measured with high accuracy. Hard end points such as mortality are often preferred 
but statistical power considerations may motivate the use of composite and other 
end points.  
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  Questions   

   3.1    Cohort studies 
  One could argue that both diagnostic and prognostic studies are examples of 
cohort studies.

   (a)     What is the difference between diagnostic and prognostic outcomes in such 
cohorts?  

   (b)    What is the implication for the statistical analysis?      

   3.2    Prospective vs. retrospective designs (Sect.  3.2 ) 
  Prospective study designs are generally noted as preferable to retrospective 
designs. What are the pros and cons of prospective vs. retrospective designs?  

   3.3    Accuracy of predictors and outcome (Sect.  3.5  and  3.6 )

   (a)     Why do we need to be more careful with reliable assessment of outcome 
than reliable assessment of predictors?  

   (b)    What is the effect of imprecise measurement of a predictor?      

   3.4    Composite end points (Sect.  3.6.4 ) 
  Composite end points are often motivated by the wish to increase statistical power 
for analysis. What is the price that we pay for this increase in term of assumptions 
on predictive relationships? See a recent JCE paper for a detailed discussion. 140   

   3.5    Statistical power (Figs.  3.3  and  3.4 )

   (a)     What is the required total sample size for 50% power at 10%, 30%, or 50% 
incidence of the outcome in Fig.  3.3 ?  

   (b)     What is the similarity between Fig.  3.3  and  3.4  with respect to the ranges 
of the incidence of the outcome or prevalence and associated statistical 
power?               
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