
   Chapter 15   
 Evaluation of Performance        

  Background   When we develop or validate a prediction model, we want to quantify 
how good the predictions from the model are (“model performance”). Predictions 
are absolute risks, which go beyond assessments of relative risks, such as regression 
coefficients, odds ratios, or hazard ratios. We can distinguish apparent, internally 
validated, and externally validated model performance (Chap. 5). For all types 
of validation, we need performance criteria in line with the research questions, 
and different perspectives can be chosen. We first take the perspective that we 
want to quantify how close our predictions are to the actual outcome. Next, more 
specific questions can be asked about calibration and discrimination properties of 
the model, which are especially relevant for prediction of binary outcomes in indi-
vidual patients. We will illustrate the use of performance measures in the testicular 
cancer case study, with model development in 544 patients, internal validation with 
bootstrapping, and external validation with 273 patients from another centre.    

  15.1 Overall Performance Measures  

 The distance between the predicted outcome and actual outcome is a central to quantify 
overall model performance from a statistical perspective. 181  The distance is   Y - Ŷ    for continuous 
outcomes. For binary outcomes,   Ŷ    is equal to the predicted probability  p , and for sur-
vival outcomes it is the predicted time to an event. These distances between observed 
and predicted outcomes are related to the concept of “goodness-of-fit” of a model, with 
better models having smaller distances between predicted and observed outcome. 

  15.1.1 Explained Variation: R 2  

 The amount of explained variation ( R  2 ) is an overall measure to quantify the 
amount of information in a model in a given data set.  R  2  is useful to guide various 
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model development steps for all types of predictive regression models, includ-
ing linear and generalized linear models (e.g. logistic, Cox). With  R  2 , we can 
readily compare the impact of different encoding of predictors, different shapes 
of the relationship of continuous predictors to the outcome, different selections 
of predictors, and the impact of including interaction terms (see previous 
chapters). 

  R  2  is the most common performance measure for continuous outcomes. For 
generalized linear models, Nagelkerke’s  R  2  can well be used. 309  As discussed in 
Chap. 4, this is a logarithmic scoring rule: ( Y  − 1) − (log(1 −  p )) +  Y  × log( p ). The 
logarithm of predictions  p  is compared with the actual outcome  Y . For binary 
outcomes, the log likelihood for a patient with the outcome is log( p ), without the 
outcome log(1 −  p ). When a very low prediction is made for a patient who actually 
had the outcome, this prediction has a severe score (Fig.  15.1 ). This may be a 
disadvantage for a prediction model that gives a prediction close to 0 or 1 while the 
outcome is discordant.         

 Fig. 15.1    Logarithmic and quadratic error scores of a subject with ( y  = 1) or without ( y  = 0) the 
outcome in relation to predicted probability ( p ). The logarithmic score was calculated as  y  × log(p) 
+ (1 −  y ) × (1 −  p ), as in Nagelkerke’s  R  2  (solid line). The quadratic score was calculated as 
( y  −  p )∧2, as in the Brier score (dashed line). Lines were scaled such that they crossed at  p  = 50%. 
We note that the logarithmic score severely penalizes false predictions close to 0 or 100%  
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  15.1.2 Brier Score 

 An alternative for binary outcomes is to use a quadratic scoring rule, where the 
squared differences between actual outcomes  y  and predictions  p  are calculated. 
This calculation is done in the Brier score, which is simply defined as ( Y  −  p )2. 
We can also write this similar as the logarithmic score:  Y  × (1 −  p )2 + (1 − Y) × 
 p 2, with  Y  the outcome and  p  the prediction for each subject. For a subject, the 
score can range from 0 (prediction and outcome equal) to 1 (discordant predic-
tion); a prediction of 50% has a score of 0.25 both when the outcome is 0 or 1. 
The Brier score is less severe than Nagelkerke’s  R  2  in penalizing false predic-
tions close to 0% or 100% (Fig.  15.1 ). The Brier score for a model can range 
from 0% for a perfect model to 0.25 for a non-informative model with a 50% 
incidence of the outcome. When the incidence is lower, the maximum score for 
a model is lower, e.g. for 10%, 0.1 × (1 − 0.1)∧2 + (1 − 0.1) × 0.1∧2 = 0.090. A 
disadvantage of the Brier score is hence that the interpretation depends on the 
incidence of the outcome. 

 Similar to Nagelkerke’s approach to the LR statistic, we could scale Brier by its 
maximum score: Brier 

scaled
  = 1 − Brier / Brier 

max
 , where Brier 

max
  = mean( p ) × (1 − 

mean( p ))2 + (1 − mean( p )) × mean( p )2, with mean( p ) indicating the average proba-
bility of the outcome. Brier 

scaled
  ranges between 0% and 100%.  

  *15.1.3 Example: Performance of Testicular Cancer Prediction Model 

 We consider a development sample containing 544 patients contributed by six 
study groups, 417  and a validation sample 273 patients treated at Indiana 
University Medical Centre. 466  We developed a logistic regression model with 
five predictors: teratoma elements in the primary tumor, pre-chemotherapy 
levels of AFP and HCG, post-chemotherapy mass size, and reduction in mass 
size. 

 Internal validation of performance was estimated with bootstrapping (200 
replications). Bootstrap samples were created by drawing random samples with 
replacement from the development sample. The prediction model was fitted in each 
bootstrap sample and tested on the original sample. 

 The essential  R  code is:

    # 5 predictors in data set n544; develop model   
   full <- lrm(NEC ∼ TER+PREAFP+PREHCG+SQPOST+REDUC10, data=n544)   
   val.prob(logit=full$linear.predictor, y=full$y) # apparent   
   validate(full, B=200) # Internal validation with 200 bootstraps   
   # External validation; refit model for matrix x and
# comparison of coefs   
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   ext.full <-  lrm(NEC∼TER+PREAFP+PREHCG+SQPOST+REDUC10,
data=val, x=T, y=T)   

   lp <- ext.full$x %    % full$coef [2:length(full$coef)] + full$coef[1]   
   val.prob(logit=lp, y=ext.full$y, riskdist=“predicted”) # external     

 Nagelkerke’s  R  2  was 38.9% in the development sample, and slightly lower at 
internal validation (Table  15.1 ). At external validation, the  R  2  was estimated con-
siderably lower, as 26.7%. Note that  R  2  is based on the difference between a Null 
model (“intercept only”) and a model with recalibrated predictions (intercept + 
calibration slope×logit of predictions). 174  So, the  R  2  is estimated after recalibration 
of the predictions.      

 The Brier score was 0.174 and 0.178 at development and internal validation 
respectively. Remarkably, the Brier score was better at external validation (0.161). 
The external Brier score was simply calculated by comparing predictions with 
actual outcome, without recalibration as was done for  R  2 . The interpretation of the 
Brier score is easier with the scaled version, which compensates for the fact that the 
maximum Brier score was lower in the external validation set (necrosis in 76 of 273 
(28%); Brier 

max
 , 0.20) than in the development set (necrosis in 245 of 544 (45%); 

Brier 
max

 , 0.25). The scaled Brier score was clearly lower at external validation than 
at internal validation (20% vs. 28%, Table  15.1 ).       

  *15.1.4 Overall Performance Measures in Survival 

 Nagelkerke’s  R  2  can readily be calculated for survival outcomes, based on the 
difference in −2 log likelihood of a model without and a model with the linear 
predictor. Calculation of the Brier score is not directly possible because of censor-
ing: Not all subjects are followed long enough for the outcome to occur. To 
address the censoring issue, we can define a weight function, which considers the 
conditional probability of being uncensored during time. 146,375,374  The assumption 
is that the censoring mechanism is independent of survival and the subject’s history. 

 Table 15.1    Overall performance of testicular cancer prediction model  

    Development  Internal validation  External validation 

  R  2   38.9%  37.6%  26.7% 
 Brier  0.174  0.178  0.161 
 Brier 

max
   0.248  0.248  0.201 

 Brier 
scaled

   29.8%  28.2%  20.0% 

 Development and internal validation with  n =544 patients, external validation in  n =273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function. Brier 

scaled
  = 1 − 

Brier / Brier 
max

  



We can hence calculate the Brier score at fixed time points. For example, we can 
compare predicted survival vs. observed survival at 1, 2, and 5 years of follow-up. 
Choosing many consecutive time-points leads to a time-dependent graph. This is 
useful to use a benchmark curve, based on the Brier score for the overall Kaplan-
Meier estimator, which does not consider any predictive information. The sur-
vival estimates of the overall Kaplan-Meier curve only depend on time of 
follow-up, and are identical for all subjects alive at a certain point in time. An 
interesting example is provided by a case study on the disappointing contribution 
of microarray data to prediction of survival for patients with diffuse large-B-cell 
lymphoma. 374   

  *15.1.5 Decomposition in Discrimination and Calibration 

 Overall statistical performance measures incorporate both calibration and discrimi-
nation aspects. For example, the Brier score can formally be decomposed into indi-
cators of calibration and discrimination. 303,38  Discrimination relates to how well a 
prediction model can discriminate those with the outcome from those without the 
outcome. Calibration relates to the agreement between observed outcomes and pre-
dictions. Studying discriminative ability and calibration is often more meaningful 
than an overall measure such as  R  2  or Brier score when we want to appreciate the 
quality of model predictions for individuals. We therefore discuss these aspects 
further.  

  15.1.6 Summary Points  

  •   R  2  is a common measure to express the amount of variability in outcomes that is 
explained by the prediction model  

 •  The Brier score is another common performance measure for the distance 
between observed and predicted outcome, which can be decomposed in dis-
crimination and calibration aspects      

 Table 15.2    Classification of subjects according to a cutoff for the probability of an outcome 
(event or no event)  
    Event  No event 

 Predicted probability >= cutoff  TP  FP 
 Predicted probability < cutoff  FN  TN 
     N  

event
    N  

no event
  

 TP and FP: Numbers of true and false-positive classifications; FN and TN: Numbers of false and 
true-negative classifications, respectively.  N  

event
  = TP + FN;  N  

no event
  = FP + TN 

15.1 Overall Performance Measures    259259
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  15.2 Discriminative Ability  

 Model predictions need to discriminate between those with and those without the 
outcome (Event vs. No event). Several measures can be used to indicate how good 
we classify patients in a binary prediction problem. The concordance ( c ) statistic is 
the most commonly used performance measure to indicate the discriminative abil-
ity of generalized linear regression models. For a binary outcome  c  is identical to 
the area under the receiver operating characteristic (ROC) curve. The ROC curve is 
a plot of the sensitivity (true positive rate) against 1 – specificity (false-positive 
rate) for consecutive cutoffs for the probability of an outcome. We therefore 
consider sensitivity and specificity first. 

  15.2.1 Sensitivity and Specificity of Prediction Models 

 Sensitivity is defined as the fraction of true-positive (TP) classifications among the 
total number of patients with the outcome (TP/ N  

event
 ), and the specificity as the frac-

tion of true-negative classifications among the total number of patients without the 
outcome (TN/ N  

no event
 , Table  15.2 ). To classify a patient as positive or negative, we 

need to apply a cutoff to the predicted probability. If the prediction is higher than 
the cutoff, the patient is classified as positive, otherwise as negative. It is common 
to use a cutoff of 50% for classification. This cutoff is often not defendable in a 
medical context, as we will discuss in detail in the next chapter (Chap. 16). We can 
examine sensitivity and specificity over the whole range of cutoffs from 0% to 
100%. The results can be plotted in an ROC curve. 172   

  15.2.2  Example: Sensitivity and Specificity of Testicular Cancer 
Prediction Model 

 If we classify patients as having necrosis when the probability of necrosis is over 
50%, we have a sensitivity of 68% and a specificity of 77% (FP rate, 23%). With a 
higher cut-off, for example 70%, these numbers are 42% and 92%, respectively. 
This illustrates that a higher cutoff leads to better specificity, at the price of a lower 
sensitivity. This trade-off is visualized in an ROC curve (Fig.  15.2 ).         

  15.2.3 ROC Curve 

 A plot of an ROC curve has often been used in diagnostic research to quantify the 
diagnostic value of a test over its whole range of possible cutoffs for classifying 
patients as positive vs. negative. We can also make an ROC curve with consecutive 
cutoffs for the predicted probability of a binary outcome. We start with a cutoff of 



0%, which implies that all subjects are classified as positive. The sensitivity is 100%, 
and the specificity 0% (upper-right point in Fig.  15.2 ). There are no false-negative 
classifications, and 100% false-positive classifications, since all subjects without the 
outcome are classified as positive. We then shift to a slightly higher cutoff, e.g. 1%, 
where sensitivity may still be 100%, but specificity above 0%. We follow all possible 
cutoffs till 100%, where all subjects are classified as negative. This is the lower-left 
point in Fig.  15.2 . The sensitivity is then 0%, and specificity 100%. The curves are 
more to the upper left corner when the distributions of predictions are more separate 
between those with and without the outcome (Fig.  15.3 ).         

 We can draw a line between the 0%, 0% and 100%, 100% points, indicating a 
non-informative model. Note that the sum of TP and TN is 1 at every cutoff for such 
a model. This sum (also known as Youden’s index) is larger than 1 for sensible pre-
diction models. 

 The area under the curve can be interpreted as the probability that a patient with 
the outcome is given a higher probability of the outcome by the model than a ran-
domly chosen patient without the outcome. 172  An uninformative model, such as a coin 
flip, will hence have an area of 0.5. A perfect model has an area of 1. The interpreta-
tion hence is relatively straightforward, but assumes that we have a pair of patients, 
one with and one without the outcome. This is a rather artificial situation. Statistically, 
this conditioning on a pair of patients is attractive, since it makes the area independent 
of the incidence of the outcome, in contrast to  R  2  or the Brier score for example. 

 Fig. 15.2    Receiver operating characteristic (ROC) curve for the testicular cancer model in the 
development data set of 544 patients. Using cutoffs for the predicted probability of necrosis 
(benign tissue) results in specific combinations of true-positive rate (sensitivity) and false-positive 
rate (1 – specificity). The area under the curve is 0.818  
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 A generalization of the area under the ROC curve is provided by the concord-
ance statistic ( c ). 175  The  c  statistic is a rank order statistic for predictions against 
true outcomes, related to Somer’s D statistic. As a rank order statistic, it is insensi-
tive to errors in calibration such as differences in average outcome. For binary out-
comes,  c  is identical to the area under the ROC curve. 

 Confidence intervals for the area under ROC curve (or  c  statistic) can be calculated 
with various methods. Standard asymptotic methods may be problematic, espe-
cially when sensitivity or specificity are close to 0% or 100%. 9  Bootstrap resam-
pling is a good choice for many situations. For example, differences in  c  between 
models fitted on the same data can be tested with standard formulas for the difference. 
But such formulas are only valid if the models were pre-specified. If one or both 
models were estimated on the same data, bootstrapping can be used for comparison 
of optimism-corrected estimates (see Chap. 17).  

  15.2.4 R 2  vs. c 

 We compare the behavior of Nagelkerke’s  R  2  and the  c  statistic in some simulations 
over a range of incidences of the outcome (1%, 10%, 50%, 90%, Fig.  15.4 ). At 50% 
incidence, a high  c  statistic such as 0.98 is associated with an  R  2  value of 87%. With 
lower incidence,  R  2  is somewhat lower.         
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 Fig. 15.3    ROC plot for five hypothetical prediction models. Models were created with distribu-
tions as shown in Fig.  15.4  (see also Fig. 4.6). The  c  statistics were 0.5, 0.6, 0.64, 0.7, 0.83, and 
0.98 at 50% incidence of the outcome  
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 Fig. 15.4    Distribution of observed outcomes (0 or 1), in relation to predicted probabilities from 
hypothetical logistic models relating  Y  to a predictor  X . The  top  six graphs relate to an incidence of 
50%. The next sets of 3 × 6 graphs relate to incidences of 1%, 10%, and 90% respectively. For each 
hypothetical model, Nagelkerke’s  R  2  and  c  statistic are listed. If  c =0.5 (and  R  2 =0%), predictions are 
at the incidence of the outcome for all subjects, with or without the outcome, indicated with a 
single spike. If  c  is close to 1 ( R  2  close to 100%), predictions are close to 0% for those without the 
outcome, and close to 100% for those with the outcome. Note that  R  2  and  c  statistics differ some-
what between 10% and 90% incidence, because of random noise in the simulation procedure  
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 Fig. 15.5    Box plots for predictions from six hypothetical prediction models with different dis-
criminative ability (see Fig  15.4 ). The discrimination slopes are calculated as the difference in 
means of predictions for those with and those without the outcome (mean incidence, 50%)  
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  *15.2.5 Box Plots and Discrimination Slope 

 The discrimination slope has been proposed as a simple measure for how well sub-
jects with and without the outcome are separated. It is easily calculated as the 
absolute difference in average predictions for those with and without the outcome. 

 Visualization is readily possible with a box plot (Figs.  15.5  and  15.7 ). The box 
plot may be a simple and intuitive way to communicate the extent of risk differen-
tiation achieved by the model. The same information can be shown by histograms, 
which will show less overlap between those with and those without the outcome for 
a better discriminating model (Fig.  15.4 ). Similar to Fig.  15.4 , the incidence of the 
outcome determines the visual expression that a box plot makes, and the magnitude 
of the discrimination slope. With low incidence, the slope is somewhat lower, for 
the same  c  statistic.                

  *15.2.6 Lorenz Curve 

 An alternative way to judge discriminative ability is the Lorenz curve (Fig.  15.6 ). 
The Lorenz curve has been used in economics to characterize the distribution of 
wealth in a population. 267  This curve has been used to plot the cumulative distribu-
tion of wealth against the cumulative distribution of the population, ranked on the 
basis of individual wealth.        



 Fig. 15.6    Lorenz curve showing proportion missed with the outcome vs. the cumulative propor-
tion of patients according to rank order of predictions, for an outcome incidence of 50%. We note 
that a near perfect model ( c =0.98) follows a horizontal line and then rises steeply to 100% false-
negative rate from the point of 50% cumulative proportion.  
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 Fig. 15.7    Box plot showing predictions by actual outcome (necrosis) for testicular cancer patients 
( n =544 and 273, respectively)  
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 For prediction models we can plot the cumulative proportion of the population 
on the  x  axis, ranked by predicted probability. On the  y  axis, we plot the cumulative 
proportion of subjects with the outcome. For example, we can show the proportion 
of subjects developing cancer against the cumulative proportion of the population 
ranked by cancer risk. 31  In terms of ROC curves, we plot the cumulative rate of 
false-negative classifications against the total of negative predictions. With inci-
dences of the outcome around 50%, the ROC and Lorenz curves look very similar, 
except that the Lorenz curve is flipped vertically and horizontally. In case of a non-
informative model, a straight line arises, since every rate of the population classi-
fied as negative corresponds to the same rate classified as negative among those 
with the outcome. A good model has a curve under this straight line, with a rela-
tively large proportion of the population classified as negative having only a small 
part of the outcomes (low false-negative rate). On the upper end of the  x  axis, a 
small part of the population should contain many subjects with the outcome. In the 
ideal case, a cutoff is used that classifies the fraction as positive, equal to the preva-
lence, and all these have the outcome. Indeed, we note that a  c  statistic of 0.98 leads 
to a nearly horizontal line till the 50% cumulative proportion point on the  x  axis, 
and increases more or less linearly to 100% after that. 

 The Gini index is often calculated as a summary measure for the Lorenz curve. 
The Gini index is the ratio between the area ( A ) between the Lorenz curve of the 
prediction model and the line for a non-informative model and the area under the 
line for an non-informative model (0.5). Hence,  G  = 2 A .     

 Other summaries are related to quantiles of the cumulative distribution. For exam-
ple, we can consider the number of missed outcomes when 25% of the population 
is classified as negative. If we want to be sure not to miss the outcome, usually only 

 Measure  Calculation  Visualization  Pros  Cons 

 Concordance 
statistic 

 Rank order 
statistic 

 ROC curve  Insensitive to outcome 
incidence; interpret-
able for pairs of 
patients with and 
without the outcome 

 Interpretation 
artificial 

 Discrimination 
slope 

 Difference in 
mean of 
predictions 
between 
outcomes 

 Box plot  Easy interpretation, nice 
visualization 

 Depends on the 
incidence of 
the outcome 

 Lorenz curve  Shows concentra-
tion of out-
comes missed 
by cumulative 
proportion of 
negative 
classifications 

 Concentration 
curve

 

 Shows balance between 
finding true positive 
subjects vs. total 
classified as positive

 

 Depends on the 
incidence of 
the outcome

 

 Table 15.3    Summary of some measures for discriminative ability of a prediction model for 
binary outcomes   



few can be classified as negative, unless a model is used with very good discrimina-
tive ability. At the upper end of the range, we can consider how many outcomes are 
concentrated in the upper quartile (above 75 percentile). We will illustrate these per-
centiles for the testicular cancer prediction case study (Fig.  15.8 ).        

 An advantage of the Lorenz concentration curve is that the trade-off is clearly 
visualized between how many subjects can be classified as negative without miss-
ing many with the outcome. A disadvantage is that the appearance of the Lorenz 
curve depends strongly on the incidence of the outcome; with low incidence, the 
graph looks impressive, and with high incidence, the graph looks rather poor. As an 
example, consider a screening setting with 1% of subjects having the disease of 
interest. Only few cases with disease are missed at 25% classified negative when 
we use a model with a  c  statistic of 0.83. The top 25% then easily contains most 
cases. With a more frequent outcome, more cases are missed at the point of 25% 
classified negative, and fewer of the cases are in the top 75 percentile.  

  15.2.7 Discrimination in Survival Data 

 For survival data, Harrell’s overall  c  statistic indicates the proportion of all pairs of 
subjects who can be ordered such that the subject with the higher predicted survival 
is the one who survived longer. 175  Ordering is possible if both subjects have an 
observed survival time, or when one has the outcome and a shorter survival time 
than the censored survival time of the other subject. Ordering is not possible if both 

 Fig. 15.8    Lorenz curves for prediction of necrosis vs. residual tumor. Patients classified as 
necrosis would not undergo surgical resection ( x  axis). With increasing fractions not undergoing 
resection, the fraction with unresected tumor increases (“missed tumor”). With 75% undergoing 
resection, 56% of the tumors are resected, leaving 44% unresected  
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subjects are censored, or if one has the outcome with a survival time longer than 
the censored survival time of the other subject. Some alternative definitions of  c  
have been proposed, which lead to time-dependent performance curves. 183  

 In oncology, prognostic groups are often created after constructing a prognostic 
model. A common procedure is to base these groups on quartiles of predicted sur-
vival; the lower 25% should have the worst survival and the highest 25% the best 
survival. This approach can well illustrate the discriminative ability of a model. 
An example is shown in Chap. 23 (Fig. 23.8).  

  15.2.8  Example: Discrimination of Testicular Cancer 
Prediction Model 

 We continue the example of predicting a benign histology in testicular cancer 
patients after chemotherapy. The  c  statistic was 0.818 at model development, with 
small optimism according to bootstrap validation (decrease by 0.006 to 0.812). At 
external validation, the  c  statistic was 0.785, with a relatively wide 95% confidence 
interval of 0.73 to 0.84 (Table  15.4 ).      

 The discrimination slope was 0.30 at model development, with small optimism 
according to bootstrap validation (decrease to 0.29). At external validation, the 
slope was much smaller (0.24). Part of this decrease is attributable to the lower 
average prevalence of necrosis (76 of 273, 28%, vs. 245 of 544, 45%). This lower 
prevalence is also evident from the box plots (Fig.  15.7 ). 

 The Lorenz curves were created with  x  axis as the cumulative fraction classi-
fied as necrosis, i.e. not having tumor, and hence classified as not undergoing 
surgical resection (Fig.  15.8 ). The  y  axis was the fraction of missed tumors, i.e. 
tumor masses left unresected. The point of 25% classified as necrosis corre-
sponds to using a cutoff of 68% for the probability of necrosis; only patients with 

 Table 15.4    Discriminative ability of testicular cancer prediction model  
    Development 

( n  = 544, 245 necrosis)  Internal validation 
 External validation 
( n  = 273, 76 necrosis) 

 c statistic  0.818  0.812  0.785 
 [95% CI]  [0.783–0.852]  [0.777–0.847] a   [0.726–0.844] 

 Discrimination slope  0.301  0.294  0.237 
 [95% CI]  [0.235–0.367] b   [0.228–0.360] a   [0.178–0.296] b  

 Lorenz curve p25, 
tumors missed 

 9%  –  13% 

 Lorenz curve p75, 
tumors missed 

 58%  –  65% 

 Development and internal validation with  n  = 544 patients, external validation in  n  = 273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function
   a Assuming the same SE applies as estimated for model development
   b Based on bootstrap resampling 



a probability over 68% are not resected. We miss 9% of the tumors with that cut-
off. Hence, sparing surgery in 25% leads to missing 9% of the tumors. The point 
of 75% classified as necrosis corresponds to using a low cutoff (21%), and miss-
ing 58% of the tumors. Hence 42% of the tumors are concentrated in the upper 
quartile of the distribution. 

 At external validation, the curve looks worse, which is related to a lower dis-
criminative ability and to a lower average prevalence of necrosis (28% vs. 45%). 
The 25% and 75% cumulative fractions correspond to cutoffs of 40% and 8% for 
the probability of necrosis, and lead to 13% and 65% missed tumors, respectively. 

 As a reference, we consider the current widely used policy of resection if the 
residual mass size exceeds 10 mm. 418  This policy uses only one of the five predic-
tors in the model (post-chemotherapy mass size), and hence has less discriminative 
ability (the point is closer to the 45° line in Fig.  15.8 ). In the development sample, 
107 of the 544 patients (20%) had residual masses <= 10 mm, but among them 30 
with tumor (fraction tumor missed, 30 of 299, 10%). In the validation sample, only 9 
of the 273 patients (3.3%) had residual masses <= 10 mm, but among them, 6 with 
tumor (fraction tumor missed, 6 of 197, 3%). Hence, the reference policy did not 
perform well in the validation sample.  

  *15.2.9 Verification Bias and Discriminative Ability 

 In the testicular cancer validation sample, only nine patients had very small residual 
masses. This reflects the policy for resection in the specific centre, where patients 
with such very small masses were not considered candidates for resection. 466  This 
leads to verification bias; we do not know the histology of these masses, since they 
were not resected, and cannot evaluate predictions for these patients. We know that 
the estimation of regression coefficients is not biased by this selection, if we 
include the selection criterion (residual mass size) in the prediction model. Hence 
model predictions are valid even with verification bias. 497  But performance meas-
ures such as sensitivity and specificity suffer from this verification bias. 30  The  c  
statistic may not be affected too much because verification bias makes that we 
merely shift on the ROC curve to a different combination of sensitivity and 
specificity.  

  *15.2.10 R Code 

 The boxplot is created simply with the boxplot command, based on a “full 
model,” including five predictors in the development data: 

    lp <- full$linear.predictors   
   boxplot(plogis(lp ∼ full$y) # Fig 15.7     
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 The discrimination slope is the difference between the mean predicted probabilities 
by outcome:
    mean(plogis(lp[full$y==1])) − mean(plogis(lp[full$y==0]))     

 Lorenz curves are created with the ROCR package:

    library(ROCR)   
   # Make ROC object with predicted probability for outcome   
   pred.full <- prediction(plogis(lp), full$y)   
   # Lorenz curve data and plot   
   perf1 <- performance(pred.full, “fpr”, “rpp”)   
   plot(perf1,  xlab=“NOT undergoing resection”, 

ylab=“with unresected tumor”)   
   abline(a=0, b=1) # Fig 15.8       

  15.3 Calibration  

 Another important property of a prediction model is calibration, i.e. the agreement 
between observed outcomes and predictions. For example, if we predict 70% prob-
ability of benign tissue for a testicular cancer patient, the observed frequency of 
benign tissue should be 70 out of 100 such patients. 

  15.3.1 Calibration Plot 

 A calibration plot has predictions on the  x  axis, and the outcome on the  y  axis. 
A line of identity helps for orientation: Perfect predictions should be on the 45° 
line. For linear regression, the calibration plot results in a simple scatter plot. For 
binary outcomes, the plot contains only 0 and 1 values for the  y  axis. Probabilities 
are not observed directly. However, smoothing techniques can be used to esti-
mate the observed probabilities of the outcome ( p ( y  = 1)) in relation to the pre-
dicted probabilities. The observed 0/1 outcomes are replaced by values between 
0 and 1 by combining outcome values of subjects with similar predicted proba-
bilities, e.g. using the loess algorithm. 174  We can also plot results for subjects 
grouped by similar probabilities (quantiles), and thus compare the mean pre-
dicted probability to the mean observed outcome. For example, we can plot 
observed outcome by decile of predictions (Fig.  15.9 ). This makes the plot a 
graphical illustration of the Hosmer-Lemeshow goodness-of-fit test (see Sect. 
15.3.8 and 15.3.10). A better discriminating model has more spread between 
such deciles than a poorly discriminating model. The choice of quantiles is 
important for the visual impression of calibration; if small groups are plotted, 
the variability will be large .         



  15.3.2 Calibration in Survival 

 In a survival context, the calibration of a model is usually studied at fixed time 
points. For these time points, we can consider grouped patients, with sufficient 
numbers per group to allow for calculation of survival rates with the Kaplan-Meier 
method. This observed survival is compared with the mean predicted survival from 
the prognostic model. Harrell suggests to use at least 50 subjects per group, depend-
ing on the hazard of the outcome. 174  It would be interesting to plot a smoothed curve 
as for binary outcomes, but this is not easy.  

  15.3.3 Calibration-in-the-Large 

 A calibration plot can easily be made for the data set used to develop a model. This 
indicates the apparent calibration. In model development, the average of predictions 
is the average of the outcomes: mean ( Y ) = mean(Ŷ). For example, mean(observed 
BP) = mean(predicted BP) in linear regression, and mean(observed 30-day mortality) 
is mean(predicted 30-day mortality). This correspondence is guaranteed by the 
intercept in a (generalized) linear model. This correspondence of average outcomes 
remains at internal validation with bootstrapping. When we apply the model to 
external data, this correspondence may be less. The difference between mean(Ŷ) 
and mean( Y  

new
 ) is referred to as “calibration-in-the-large.”  

15.3 Calibration 271

 Fig. 15.9    Calibration plot of actual outcome vs. predictions for a hypothetical model with  c  
statistic 0.7,  n =500. The distributions of actual 0 and 1 values are shown at the  bottom  and at the 
 top  of the graph; the loess smoother is close to the ideal 45° line; actual outcomes by deciles of 
risk are shown by triangles (each triangle,  n  = 50)  

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ideal
Nonparametric
Grouped observations

Predicted probability

F
ra

ct
io

n 
w

ith
 a

ct
ua

l o
ut

co
m

e



272 15 Evaluation of Performance         

  15.3.4 Calibration Slope 

 Another important calibration measure is related to the average strength of the 
predictor effects. For linear regression, we can write   Y

new
 = a + b

overall
 Ŷ  , and for 

generalized linear models  f ( Y  
new

 ) =  a  +  b  
overall

  linear predictor, where the linear pre-
dictor is the combination of regression coefficients from the model and the predic-
tor values in the new data. A link function  f  is used for  Y  

new
 , e.g. logodds (or logit) 

in logistic regression. The  b  
overall

  is named the calibration slope. 86  Ideally, the 
calibration slope  b  

overall
  = 1. With apparent validation,  b  

overall
  = 1 because this yields 

the best fit on the data under study with either least squares or maximum likeli-
hood methods. At internal validation, the calibration slope reflects the amount of 
shrinkage that is required for a model ( b  

overall
  < 1). 81  It indicates how much we need 

to reduce the effects of predictors on average to make the model well calibrated for 
new patients from the underlying population. The calibration slope can hence be 
used as a shrinkage factor to adjust a model for future use (Chap. 14). At external 
validation, the calibration slope reflects the combined effect of two issues: overfit-
ting on the development data and true differences in effects of predictors.  

  15.3.5 Estimation of Calibration-in-the-Large and Calibration Slope 

 For continuous outcomes, calibration-in-the-large can be assessed easily by 
comparing the mean   (Ŷ)   and mean( Y  

new
 ), and testing the differences   Y

new
 - Ŷ  , e.g. 

with a one-sample  t -test. This test indicates the statistical significance of the mean 
under- or overestimation of the observed outcome:   mean(Y

new
 -Ŷ)  . In a linear regres-

sion model, we can estimate an intercept  a  in the model with as outcome the resid-
ual   Y

new
-Ŷ : Y

new
 - Ŷ =  a  . The recalibration model is simply   Y

new
 = a + b

overall  
Ŷ  . The 

deviation of the calibration slope from 1 can be tested in linear regression by a 
model that studies the residuals:   Y

new 
- Ŷ = a + b

overall
 Ŷ  . The significance of  b  

overall
  is 

then determined as usual in regression, and indicates on average stronger or weaker 
effects of the predictors in a model. 

 For binary outcomes, calibration-in-the-large again refers to the difference 
between   mean Ŷ   and mean( Y  

new
 ). A simple comparison can directly be made, with 

an odds ratio indicating the average under- or overestimation of the outcome:

  OR = odds(mean(Ŷ)) / odds(mean(Y
new

)) = 
[mean(Ŷ) / (1–mean(Ŷ)] / [mean(Y

new
) / (1–mean(Y

new
)].   

 For statistical testing of the difference we need to be more careful. In logistic 
regression, the relationship between the outcome  y  and the linear predictor is 
non-linear (i.e. logistic). We have to compare   logit(Y

new
 = 1) to logit(Ŷ)  , where   

mean (logit(Y
new

 = 1) – logit (Ŷ))   is not equal to   mean(logit(Y
new

 = 1)) – mean 
(logit (Ŷ))  . 

 In a model, we could write
  logit(Y

new
 = 1) - logit (Ŷ) = a;
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or logit(Y
new

 = 1) = a + logit (Ŷ) = a + offset (linear predictor).   

 The intercept  a  then reflects the difference in logodds between predictions and 
observed outcome, adjusted for the linear predictor. The offset makes that predic-
tions are taken literally, as in linear regression. Values of the offset variable are 
subtracted from the actual outcomes  Y  

new
  (as in Poisson regression). Equivalently 

we can think of a regression coefficient for the offset variable that is fixed at unity. 
The statistical significance of intercept  a  can be tested with standard regression 
tests, such as the Wald test or the likelihood ratio (LR) test. 

 The calibration slope can be estimated from the recalibration model 

  logit(Y
new

 = 1) = a + b
overall

 × logit (Ŷ) = a + b
overall

 × linear predictor.   

 The deviation of the calibration slope from 1 (“miscalibration”) can be tested by 
a model that includes an offset variable: 

  logit(Y
new

 = 1) = a + b
miscalibration

 × linear predictor + offset (linear  predictor).   

 The slope coefficient  b  
miscalibration

  reflects the deviations from the ideal slope of 1, 
and can be tested with Wald or LR statistics. 

 Calibration-in-the-large cannot be detected with a refitted Cox regression model, 
since the baseline hazard h

0
 is usually left free in fitting such a model. For a survival 

outcome, the calibration slope can be assessed as: 

  log(hazard(y
new

 = 1)) = h
0
 + b

overall
 × linear predictor.   

 The model for deviation from a slope of 1 is: 

  log(hazard (y
new

 = 1)) = h
0
 + b

miscalibration
 × linear predictor + offset (linear predictor).   

 Testing of coefficient  b  
miscalibration

  is as usual, i.e. with a Wald test or LR test. 
 With a parametric survival model, we can specify parameters that reflect 

differences in average survival, after adjustment for predictor effects. Van 
Houwelingen hereto transformed the baseline hazard from a Cox model to a 
Weibull model. 456  The Weibull model has two parameters to describe the baseline 
hazard parametrically (Chap. 4). These two parameters can be refitted for external 
validation data, together with the linear predictor, to estimate a recalibrated model.  

  *15.3.6 Other Calibration Measures 

 Various other measures are available for calibration. An intuitively appealing meas-
ure of calibration is the absolute difference between smoothed observed outcomes 
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and predicted probabilities (Harrell’s  E  statistic). 174  This measure is related to the 
calibration plot, and depends on the way the 0/1 outcomes are smoothed. The dif-
ference between smoothed observed outcomes and predicted probabilities can also 
be judged visually in a calibration plot such as Fig.  15.9 .  

  15.3.7 Calibration Tests 

 Statistical tests can be performed with various null hypotheses for calibration, 
phrased in the formulation of the recalibration model   y ~ a + b

overall
 Ŷ   (Table  15.5 ). 

Tests for calibration-in-the-large and calibration slope have one df; the calibration 
test has two df. The test for calibration-in-the-large requires that the predictions are 
taken literally ( b  

overall
  = 1). In generalized linear models, this can be achieved with 

an offset variable. The calibration slope can easily be estimated in the recalibration 
model. The recalibration test has several advantages (Table  15.6 ). It can pick-up 
common patterns of miscalibration, i.e. systematic differences between the new 
data and the model development data, and overfitting of the effects of predictors. 
Moreover the test parameters  a  and  b  

overall
  are well interpretable, provided that 

 a  |  b  
overall

  = 1 is reported (rather than a with  b  
overall

  left free). The slope  b  
overall

  can 
directly be taken from the re-calibration model (where  a  is left free).          

 Statistical testing for calibration has a number of drawbacks. First, the null 
hypothesis is of good calibration. Hence, if we test calibration in a small study, we 
have low power and will not reject the null hypothesis unless miscalibration is very 
severe. On the other hand, even a model with very good, but not perfect, calibration 
will fail if the sample size is sufficiently large.  

  15.3.8 Goodness-of-Fit Tests 

 Calibration is related to goodness-of-fit, which relates to the ability of a model to fit 
a given set of data. Typically, there is no single goodness-of-fit test that has good 
power against all kinds of lack of fit of a prediction model. Examples of lack of fit 
are missed non-linearities, interactions, or an inappropriate link function between the 
linear predictor and the outcome. Goodness-of-fit can be tested with a χ 2  statistic. 

 For binary outcomes, the Hosmer-Lemeshow (H-L) goodness-of-fit test is often 
used. 199  Usually, patients are grouped by decile of predicted probability. The sum 

 Table 15.5    Calibration tests for prediction model   y ~  a + b
overall

 ŷ    
     H  

0
    H  

1
   df 

 Calibration-in-the-large   a =0 |  b  
overall

  = 1   a <>0 |  b  
overall

  = 1  1 
 Calibration slope   b  

overall
  = 1   b  

overall
  <> 1  1 

 Recalibration   a  = 0 and  b  
overall

  = 1   a  <> 0 or  b  
overall

  <> 1  2 

  H  
0
  and  H  

1
  indicate the Null and alternative hypothesis respectively 



of predicted probabilities is the number of expected outcomes; this expected 
number is compared with the observed number in the ten groups with a χ 2  test. In 
model development, this χ 2  test has eight degrees of freedom; at external validation 
the degrees of freedom is 9. There are many drawbacks to the H-L test. 198,174  First, 
there are some technical issues: Should we always use deciles of predictions, or 
make the quantiles dependent on the sample size? Can we group by risk-interval, 
e.g. 0–10%, 11–20%, etc (“interval grouping”)? Second, the test has poor power to 
detect miscalibration in the common form of systematic differences between out-
comes in the new data and the model development data, or to detect overfitting of 
the effects of predictors. Some proposed that the H-L test should only be used in 
model development, in addition to more specific tests on model assumptions, such 
as tests for linearity (adding non-linear transformations) and additivity (adding 
interaction terms). Reported H-L tests are usually non-significant if they reflect 
apparent validation on the data that were also used to construct the model. Such 
non-significant results may contribute to the face validity of a model as perceived 
by some readers, but have no scientific meaning. 

 Table 15.6    Summary of some measures for calibration of a prediction model for binary 
outcomes  

 Performance 
aspect 

 
Calculation 

 
Visualization  Pros  Cons 

 Calibration-
in-the-large 

 Compare mean( y ) 
vs. mean( ŷ ) 

 Calibration 
graph 

 Key issue in valida-
tion; statistical 
testing possible 

 By definition 
OK in model 
development 
setting 

 Calibration 
slope 

 Regression slope of 
linear predictor 

 Calibration 
graph 

 Key issue in valida-
tion; statistical 
testing possible 

 By definition 
OK in model 
development 
setting 

 Calibration test  Joint test of 
calibration-in-
the-large and 
calibration 
slope 

 Calibration 
graph 

 Efficient test of two 
key issues in 
calibration 

 Insensitive to 
more subtle 
miscalibration 

 Harrell’s E 
Statistic 

 Absolute differ-
ence between 
smoothed  y  vs. 
line of identity   

 Calibration 
graph 

 Conceptually easy, 
summarizes mis-
calibration over 
whole curve 

 Depends on 
smoothing 
algorithm 

 Hosmer-
Lemeshow 
test 

 Compare observed 
vs. predicted 
in grouped 
patients 

 Calibration 
graph or 
table 

 Conceptually easy  Interpretation 
difficult; low 
power in 
small samples 

 Goeman–Le 
Cessie test 

 Consider correla-
tion between 
residuals 

 -  Overall statistical 
test; supplemen-
tary to calibra-
tion graph 

 Very general 

 Subgroup cali-
bration 

 Compare observed 
vs. predicted in 
subgroups 

 Table

 

 Conceptually easy

 

 Not sensitive to 
various mis-
calibration 
patterns 
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 Alternative goodness-of-fit tests have been proposed with better statistical prop-
erties, such as the Goeman-Le Cessie goodness-of-fit test. 250,141  It assesses the alter-
native hypothesis that any nonlinearities or interaction effects have been missed in 
a logistic regression model. Such neglected effects can be detected by looking for 
patterns in the residuals: Observations close to each other in covariate space, which 
deviate from the model in the same direction. The approach is to smooth the regres-
sion residuals and to test whether these smoothed residuals have more variance than 
expected under the null hypothesis, which occurs when residuals that are close 
together in the covariate space are correlated. The test statistic is a sum of squared 
smoothed residuals. 

 Another approach to goodness-of-fit is to study observed vs. expected out-
comes in subgroups of patients. For example, we can assess the difference 
between observed vs. expected outcomes in males and females, or other sub-
groups of patients. If the effect of the subgroup is not well modelled, e.g. an 
interaction was missed, this might be reflected in this assessment. There are how-
ever more direct ways of assessing the influence of subgroup characteristics, as 
was discussed in Chap. 13 on model specification. So, this check for calibration 
is also more for face validity of the model and for convincing potential users than 
a serious check of calibration. Measures for assessment of calibration are com-
pared in Table  15.6 .  

  15.3.9 Calibration of Survival Predictions 

 For survival outcomes, formal tests similar to the H-L test are possible by com-
parison of observed K-M percentages with average predictions across groups of 
patients. Furthermore, we can study the distribution of Cox-Snell residuals, in a 
plot of the cumulative hazard vs. the residuals, which should form a straight 
line. 174   

  *15.3.10  Example: Calibration in Testicular Cancer 
Prediction Model 

 For the prediction model of residual mass histology, we plot the actual outcome vs. 
predicted for the development sample and the validation sample (Fig.  15.10 ). We 
include the distribution of predicted risks, such that discrimination can also be 
judged. The results by decile of predicted risk are shown in Table  15.7 , to clarify 
the calculation of the Hosmer-Lemeshow statistic. Other tests for miscalibration 
included the overall test for calibration-in-the-large and calibration slope, and the 
Goeman–Le Cessie test, which were non-significant for model development and 
external validation (Table  15.8 ).                   



 Fig. 15.10    Validity of predictions of necrosis in the development sample ( n =544) and in the 
validation sample ( n =273). The distribution of predicted probabilities is shown at the bottom of 
the graphs, separately for those with necrosis and those with residual tumor. The triangles indicate 
the observed frequencies by deciles of predicted probability  
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 Table 15.8    Calibration of testicular cancer prediction model  

    Development  Internal validation  External validation 

 Calibration-in-the-large  0  0  −0.03 
 Calibration slope  1  0.97 a   0.74 
 Calibration tests          
 Overall miscalibration   p  = 1  –   p  = 0.13 
  Hosmer-Lemeshow   p  = 0.66  –   p  = 0.42 
  Goeman – Le Cessie b    p  = 0.63  –   p  = 0.94 

 Development and internal validation with  n =544 patients, external validation in  n =273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function 
  a Equivalent to the uniform shrinkage factor as discussed in Chap. 14 
  b Test statistics of squared smoothed residuals calculated with R program from Jelle Goeman, 
available from website 

 Table 15.7    Hosmer-Lemeshow test for calibration of the testicular cancer prediction model  

 Development a   Validation b  

 Decile   P (%)   N   Predicted  Observed   P (%)   N   Predicted  Observed 

 1  <7.3  56  2.4  1  <1.8  31  0.2  1 
 2  7.3–16.5  53  6.3  4  1.8–7.3  25  1.1  1 
 3  16.6–26.5  55  11.6  13  7.4–11.1  31  2.6  4 
 4  26.6–34.7  54  16.4  15  11.2–17.5  30  4.4  5 
 5  34.8–43.6  54  21.0  25  17.6–24.3  27  5.6  7 
 6  43.7–54.0  58  28.5  33  24.4–31.0  30  8.1  6 
 7  54.1–63.5  52  31.0  31  31.1–37.2  20  6.7  9 
 8  63.6–73.8  54  36.9  36  37.3–54.6  38  17.2  18 
 9  73.9–85.0  54  42.8  40  54.7–64.7  15  8.8  8 
 10  >85.0  54  48.0  47  >64.7  26  20.3  17 
       544  245  245     273  74.9  76 

  a χ 2 =5.9, df=8,  p =0.66    b χ 2 =9.2, df=9,  p =0.42 
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  15.3.11 Calibration and Discrimination 

 The calibration plot can be extended into a “validation plot” as a central tool to vis-
ualize model performance. Calibration is shown by observed outcomes being close 
to prediction, while discrimination aspects can be indicated with the distribution of 
the predicted probabilities. The distribution can be shown by a histogram or density 
distribution. We can also make separate histograms for those with and without the 
outcome for further insights (see e.g. Fig.  15.10 ). It also helps to see the separation 
according to quantiles of predicted probabilities. For example, when deciles are 
used, these will be relatively far apart for a good discriminating model. 

 Calibration-in-the-large is a phenomenon that is fully independent of discrimi-
nation. For example, we can change the incidence of the outcome in a case-control 
study, but the discrimination will be unaffected. The calibration slope however has 
a direct relationship with discrimination. If the calibration slope is below unity, the 
discrimination is lower. Hence, overfitted models will show both poor calibration 
and poor discrimination when validated in new patients (Chap. 19). 

 Perfect calibration is possible with poor discrimination, for example when the 
range of predicted probabilities is small, such as between 9 and 11% for an average 
incidence of the outcome of 10%. At external validation, such a small range in pre-
dictions may arise from a narrow selection of patients (homogeneous case-mix). 
A drop in discriminative ability compared with the development setting can hence 
be explained by overfitting (calibration also poor), or a more homogeneous in 
case-mix (independent of calibration, see Chap. 19). On the other hand, a well dis-
criminating model can have poor calibration, which can be corrected with various 
updating methods (Chap. 20).   

  *15.3.12 R Code 

 The Hosmer-Lemeshow test is implemented in a simple function hl.ext at the 
book’s website. The user can specify the number of groups (ten by default) and degrees 
of freedom (groups – 2 for model development, groups – 1 for model validation). 

 Calibration plots are made by an extension of Harrell’s val.prob function, called 
val.prob.ci. This function also provides assessment of calibration-in-the-large, cali-
bration slope, and the calibration test  p -value. Goeman provided R code for the functions 
mlogit (for binary of multinomial logistic regression), smoothU (for calculation of 
smoothed residuals), and testfit (for the Goeman-Le Cessie goodness-of-fit test).  

  15.4 Concluding Remarks  

 In this chapter we have discussed a number of performance measures for prediction 
models; many more can be used, as systematically discussed in work by Hilden, 
Bjerregaard, and Habbema in the 1970s. 161,162,163,191,192  Many performance measures 
are related to each other; e.g. the  c  statistic is related to the Mann-Whitney U statistic, 



which is calculated as a rank order test for the difference between predictions by out-
come. The  c  statistic is also linearly related to Somer’s  D  statistic ( c  =  D /2 + 0.5). 

 From a simple statistical perspective we want a small distance between observed 
outcome  Y  and predicted outcome  Ŷ . Explained variation ( R  2 ) can then be used to 
indicate performance, and indicates the predictability of the outcome: How much 
do we know already about the phenomena that lead to the outcome. 372  Diagnostic 
prediction models would hence be expected to have higher  R  2  than prognostic 
models with long-term outcome. Indeed, prognostic models usually have  R  2  around 
0.20. This indicates that substantial uncertainty remains at the individual level; we 
can only provide probabilities, and no certainty on the individual outcome. 13,112  

 We have focused on measures that are in wide use in medical journals nowadays, 
including the concordance statistic (‘ c ’, or area under the ROC curve) for discrimi-
nation, and various tests for calibration and goodness-of-fit. The  c  statistic has been 
criticized by some, and should not be the only criterion in assessment of model 
performance. Especially,  c  may be rather insensitive to inclusion of additional pre-
dictors in prediction models, such as novel biomarkers. 79,330  But our theoretical 
examples and case study show that the  c  statistic is a key measure; it is closely 
related to other performance measures such as  R  2  and Brier score. 

 In principle we might focus our modelling strategy on optimizing performance 
measures such as the  c  statistic. Indeed, estimation algorithms have been described 
that maximize the  c  statistic rather than the log likelihood. 332  

 Compared with current practice, calibration should receive more attention when 
evaluating prediction models. The recalibration test and its components (calibra-
tion-in-the-large and calibration slope) should be used routinely in performance 
assessment in external validation of prediction models. 

  15.4.1 Bibliographic Notes 

 The framework of a recalibration model was already proposed by Cox, 86  and has 
been supported by many other researchers for evaluation of model perform-
ance. 81,174,290,291,458  Nice illustrations of diagnostic test evaluation with ROC curves 
are available at:
     http://www.anaesthetist.com/mnm/stats/roc/      
  Nice illustrations of Lorenz curves and the Gini index are at:  
    http://en.wikipedia.org/wiki/Gini_coefficient          
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280 15 Evaluation of Performance         

  Questions   

    15.1    Overall performance measures  
      Overall performance measures for logistic regression models include Brier 
score and  R  2  type of measures, such as Nagelkerke’s  R  2 .

    (a)    What values can Brier scores and  R  2  take?  
    (b)    What types of scoring rules are Brier and  R  2 ?  
    (c)    What are disadvantages of Brier and  R  2 ?      

    15.2    Lorenz curve and incidence (Fig.  15.6 )  
      In a Lorenz curve, the visual impression of a model with a  c  statistic of 
0.80 depends on the incidence of the outcome.

    (a)     What happens when a Lorenz curve is made for situation with 1% 
incidence?  

    (b)    And what for 99% incidence?      
    15.3    Interpretation of validation graph (Fig.  15.10 )  

      Validity of predictions can well be judged graphically. How do you judge
    (a)    calibration-in-the-large?  
    (b)    calibration slope?  
    (c)    discrimination?      

    15.4    Relationship between calibration, discrimination, and overall performance.  
      Explain the differences and the relation between calibration, discrimination, 
and overall performance measures.            
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