
   Chapter 14   
 Estimation with External Information       

   Background   In this chapter we discuss methods that estimate regression coeffi-
cients based on the combination of findings from the sample under study with 
external information. We start with a simple “adaptation” method for univariate 
regression coefficients, which may be obtained from meta-analysis. This method 
was applied in a case study of operative mortality of abdominal aneurysm surgery. 
Next, we discuss some alternative approaches to estimate regression coefficients, 
including Bayesian estimation with explicit prior information.    

  14.1 Combining Literature and Individual Patient Data 

 We consider the common situation that several studies have already have been pub-
lished for a particular clinical prediction problem, in which the relation between patient 
characteristics and the outcome of interest is described. If the published papers describe 
comparable patient series, we may try to combine the available evidence quantitatively 
in a meta-analysis. The information in these papers is  usually only sufficient to calculate 
a univariate regression coefficient for each of the patient characteristics. 

 Multivariable coefficients can directly be estimated if individual patient data are 
available from the published series, or if we know the correlation structure between 
predictors. This information is usually not available. Individual patient data may be 
especially hard to retrieve for papers published several years ago, and anyway 
requires a substantial research effort. Thus, typically the researcher may have 
access to individual patient data from one study (“own data set”) and univariate 
information from the literature (“publicly available”). 

 An “adaptation method” has been proposed to take advantage of the univariate 
 literature data in the estimation of the multivariable regression coefficients in a 
 prediction model. 411  The aim is better prediction of the outcome in individual patients. 
This adaptation method is closely related to an earlier proposal by Greenland for 
meta-analysis. 151  For example, when studying the relation between coffee consump-
tion and acute myocardial infarction, one study may have corrected the regression 
coefficient for a confounder (for example alcohol consumption), while other studies 
have not. Greenland proposed to use the change from  unadjusted to adjusted regres-
sion coefficient to adapt the unadjusted coefficients in the latter studies. 
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244 14 Estimation with External Information 

  14.1.1 Adaptation Method 1 

 In our case of regression analysis on literature and individual patient data, the for-
mula reads like

  b
m | I+L

=b
u | L

+(b
m | I

–b
u | I

),  

where  b  
m | I+L

  refers to the multivariable coefficient based on the combination of 
individual patient data and literature data (the “adapted coefficient”),  b  

u
 

|L
  is the 

univariate coefficient from a meta-analysis of the literature, and  b  
m|I

  −  b  
u | I

  is the 
difference between multivariable and univariate coefficient in the individual patient 
data (the “adaptation factor”). Hence, we simply use the change from univariate to 
multivariable coefficient in our own data to adapt the meta-analysis coefficient. 

 For the variance of the adapted coefficient (var( b  
m | I+L

 )), we may add the differ-
ence between variances of the multivariable and univariate coefficient to the vari-
ance of the univariate coefficient from the literature, ignoring all covariances:

  var(b
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) = var(b
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) + var(b
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).    

  14.1.2 Adaptation Method 2 

 A more general way to formulate the adaptation formula is as

  b
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),   

where  c  is a factor between 0 and 1. If  c  = 1, the same formula as proposed by 
Greenland arises. If  c  equals 0, the literature data is effectively discarded. The esti-
mate of  b  

m |I + L
  is unbiased for any choice of  c , if the expectation of  b  

u | L
  −  b  

u | I
  = 0, 

that is, the individual patient data form a random part from the studies included in 
the meta-analysis. It was found that we can derive a formula for  c  so as to minimize 
the variance of  b  

m | I + L
 :
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where  r ( b  
m | I

  −  b  
u | I

 ) refers to the correlation between multivariable and univariate 
coefficients in the individual patient data. 

 This variant of the adaptation method indicates that adaptation will be especially 
advantageous if the literature data set is larger (resulting in a smaller var( b  

u | L
 )), or 

when the correlation  r ( b  
m | I

  −  b  
u | I

 ) is larger. The latter correlation is expected to be 
large if the collinearity between covariables is small. The adaptation factor will 
then be close to 1, and method 1 may yield good results.  



  14.1.3 Estimation 

 Meta-analysis techniques may be used to estimate the univariate coefficients from 
the literature data. The literature data may include the individual patient data for 
maximal efficiency. The meta-analysis may assume fixed effects (for example, 
Mantel-Haenszel method, or conditional logistic regression), or random effects (for 
example, DerSimonian Laird method, or likelihood-based methods 97 ). The calcula-
tions for method 1 use estimates that are readily available. For example, logistic 
regression analysis with standard maximum likelihood (ML) provides estimates of 
the univariate and multivariable coefficients in the individual patient data. 

 For the second method, the estimation of the optimal adaptation factor requires 
estimates of the variances of the regression coefficients, and an estimate of the cor-
relation between univariate and multivariable coefficients. The latter correlation 
cannot easily be estimated with logistic regression methods. We therefore used 
bootstrap re-sampling to calculate the coefficients  b  

m | I
  and  b  

u | I
  repeatedly, and their 

correlation r.  

  14.1.4 Simulation Results 

 The adaptation method was tested in the GUSTO-I data. 411  First, we assessed the 
correlation between multivariable and univariate coefficients across 121 small sub-
samples. We observed a strong correlation for the combination of age and sex in a 
2 predictor model (Fig.  14.1 ). Results were somewhat less favorable for predictors 
with stronger collinearity. For example, weight and height had a Pearson correlation 
coefficient of 0.54, and the correlation between their univariate and multivariable 
coefficients was 0.80 and 0.83 in a bivariate model respectively. Overall, the strong 
 r ( b  

m | I
  −  b  

u | I
 ) supports the use of the adaptation method in medical data.

  Fig. 14.1    Correlations between univariate and multivariable regression coefficients in a 2 predictor 
model consisting of age and sex estimated in 121 small subsamples of the GUSTO-I data set 411        
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246 14 Estimation with External Information 

   Next, we estimated the values of  c  
opt

 . Values were quite close to 1 (0.98 ± 0.015 
and 0.99 ± 0.020 for age and sex (mean ± SD) in the 121 small subsamples). Hence, 
Greenland’s method ( c  = 1) and our method ( c  estimated with bootstrapping) 
resulted in very similar estimates of the adapted coefficients (Fig.  14.2 ). Both 
 methods lead to much better estimates of the multivariable regression coefficients 
in the small subsamples. Specifically, a substantial reduction is noted in the variability 
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  Fig. 14.2    Regression coefficients in the 2 predictor model consisting of age and sex. Box plots 
show the standard ML, and adapted estimates (methods 1 and 2) for 121 small subsamples; the line 
--- indicates the coefficient observed in the total GUSTO-I data set ( n  = 40,830) 411        



compared with the standard multivariable regression coefficients, i.e. var( b  
m | I+L

 ) 
<< var( b  

m | I
 ). These very favorable results were obtained by using univariate results 

from approximately half of the GUSTO-I data ( n  = 20,000). We also examined the 
influence of the size of the literature data. We applied the adaptation methods in the 
small subsamples, where univariate literature estimates were obtained from a 
neighboring, small subsample. This resulted effectively in a  doubling of the sample 
size. This pattern was also reflected in the values of the adaptation factor from 
method 2; close to 1 with  n  = 20,000 as literature data, around 0.50 with a neigh-
bour subsample as literature data.

     14.1.5 Performance of Adapted Model 

 Finally, we compared the predictive performance of the adaptation method to the 
performance obtained with uniform shrinkage, penalized ML, or the Lasso in 23 
large subsamples from GUSTO-I (Table  14.1 ). The discriminative ability improved 
slightly, but some problems were noted in calibration. Miscalibration was less than 
for the standard ML estimates, but some form of shrinkage should actually have 
been built into the adaptation method.

         *14.1.6 Improving Calibration 

 To improve the calibration of the predictions resulting from applying the adaptation 
method, we considered two approaches. First, we shrunk the multivariable regression 
coefficients as estimated in the individual patient data. This approach was  discarded 

  c  statistic  Calibration slope 

 8 predictors  17 predictors  8 predictors  17 predictors 

 Total training (n=20,512, 
1,423 deaths) 

 Standard ML  0.789  0.802  0.944  0.959 
 23 large subsamples 

(n=892, 52 deaths on 
average) 

 Standard ML  0.78  0.78  0.86  0.76 
 Uniform shrinkage  0.78  0.78  0.97  0.95 
 Penalized ML  0.78  0.79  0.96  0.98 
 Lasso  0.78  0.78  1.01  0.93 
 Adapted 1  0.79  0.79  0.92  0.86 
 Adapted 2  0.79  0.79  0.92  0.86 

 Table 14.1    Discrimination ( c  statistic) and calibration (calibration slope) of the 8 and 17 predic-
tor models based on large subsamples (average  n =892, respectively), and based on the total 
 training part ( n =20,512), as evaluated in the independent test part of GUSTO-I ( n =20,318)  

 Means are shown for two variants of the adaptation method and several other modern estimation 
methods (see Chap. 13) 
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248 14 Estimation with External Information 

because it led to better calibration (slope closer to 1), but a decrease in discriminative 
ability. The second approach was motivated by the observation that the miscalibration 
of the adapted estimates was approximately halfway that of shrunk estimates and the 
standard ML estimates. The proposed formula is

    
b b b bm|I m|I u|L u|Ishrinkage factor) /= + + −( [ ( )]1 2 c

    

where the shrinkage factor is the uniform shrinkage factor, either estimated with a 
heuristic formula, or by bootstrapping (see Chap. 13). 

 Evaluations of this correction with method 1 ( c  set to 1) or 2 ( c  estimated by boot-
strapping) showed an improvement in calibration. Discriminative ability was identical to 
that without shrinkage, since the shrinkage did not affect the ordering of predictions.   

  14.2 Example: Mortality of Aneurysm Surgery 

 In our examples with GUSTO-I, no relevant differences were noted between adap-
tation methods 1 and 2. We applied adaptation methods 1 and 2 in the prediction of 
peri-operative mortality (in-hospital or within 30 days) after elective abdominal 
aortic aneurysm (AAA) surgery. 421  Individual patient data were available on a rela-
tively small sample (246 patients, 18 deaths). Patients were operated on at the 
University Hospital Leiden between 1977 and 1988. Univariate literature data were 
available from 15 published series with 15,821 patients (1,153 deaths) in total. 
Predictors considered included age and sex, cardiac comorbidity (history of myo-
cardial infarction (MI), congestive heart failure (CHF), and ischemia on the ECG), 
pulmonary comorbidity (COPD, emphysema or dyspnea), and renal comorbidity 
(elevated pre-operative creatinin level). These predictors were chosen since they 
were reported in at least two studies in the literature, and were also available in the 
Leiden data set. 

  14.2.1 Meta-Analysis 

 Univariate logistic regression coefficients were estimated both with fixed and ran-
dom effects methods from the literature data. As expected, the estimates of the 
coefficients were very similar, but the SEs were somewhat larger with the random 
effect method (Table  14.2 ).

      A number of practical issues merit discussion with respect to the meta-analysis 
of the literature data. First, definitions of predictors varied, especially for pulmo-
nary and renal comorbidity. Despite these differences, it was considered reasonable 
to assume one single effect for each predictor across the studies (non-significant 
tests for heterogeneity of odds ratios, non-significant interaction terms between 
study and effect estimates in logistic regression). 



 Second, the number of studies that described a predictor varied. The effect of 
age was reported in 15 studies, sex and renal function in 6, pulmonary function in 
5, MI in 3, and CHF and ECG findings in only 2 studies. This somewhat limits the 
value of the adaptation method in this case study. 

 Third, the analysis of age as a continuous variable was hampered by the fact that 
mortalities were described in relatively large age intervals, for example, younger or 
older than 70 years. For logistic regression analysis, we estimated the mean ages in 
these age intervals using study-specific descriptions as far as available (mean and 
SE). We checked in a small simulation study that using the mean was better than 
using the median for age categories. The effect of age would have been estimated 
more accurately if smaller age intervals had been reported or more study character-
istics had been published.  

  14.2.2 Individual Patient Data Analysis 

 In the individual patient data, multivariable logistic regression coefficients were 
usually smaller than the univariate coefficients, reflecting a predominantly positive 
correlation between predictors (Table  14.3 ). Correlations were strongest between 
the three cardiac comorbidity factors ( r , 0.26, 0.32, and 0.45) and between these 
three factors and age ( r >0.20). We note that the number of predictors (7) was large 

 Table 14.2    Meta-analysis results for operative mortality of elective aortic aneurysm surgery 
(coefficient (SE))  
 Predictor  Fixed effect  Random effect 

 Age (per decade)  0.79 (0.06)  0.79 (0.11) 
 Female sex  0.36 (0.08)  0.36 (0.18) 
 History of MI  1.03 (0.27)  1.03 (0.32) 
 Congestive heart failure  1.59 (0.33)  1.59 (0.41) 
 ECG: Ischaemia  1.52 (0.31)  1.51 (0.38) 
 Impaired renal function  1.32 (0.25)  1.30 (0.26) 
 Impaired pulmonary function  0.89 (0.23)  0.85 (0.24) 

 Table 14.3    Individual patient data results ( n =246) for operative mortality of elective aortic aneu-
rysm surgery (coefficient (SE))  

 Predictor  Univariate  Standard ML  Shrunk  Penalized  r( b 
m|I

,  b 
u|I

) 

 Age (per decade)  0.98 (0.38)  0.58 (0.39)  0.48  0.34  0.91 
 Female sex  0.28 (0.79)  0.30 (0.86)  0.25  0.17  0.81 
 History of MI  1.50 (0.50)  0.74 (0.57)  0.61  0.57  0.88 
 Congestive heart 

failure 
 1.78 (0.55)  1.04 (0.59)  0.86  0.67  0.92 

 ECG: Ischaemia  1.72 (0.55)  0.99 (0.62)  0.83  0.63  0.87 
 Impaired renal 

 function 
 1.24 (0.70)  1.12 (0.77)  0.93  0.74  0.85 

 Impaired pulmonary 
function 

 0.84 (0.53)  0.61 (0.59)  0.51  0.39  0.90 
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relative to the number of events (18 deaths). Bootstrapping estimated a shrinkage 
factor of 0.83 (200 replications, convergence in only 119), and penalized ML was 
performed with 14 as the penalty factor. The correlation r between univariate and 
multivariate coefficients was estimated between 0.81 and 0.91.

        14.2.3 Adaptation Results 

 The literature and individual patient data were combined with the adaptation 
method, using the random effect estimates from the literature data. For adaptation 
method 1,  c  

opt
  was always set to 1 (Table  14.4 ; for method 2,  c  

opt
  was estimated 

between 0.63 and 0.86, results not shown). Compared with shrunk or penalized 
coefficients, the adapted estimates for sex and renal and pulmonary function were 
somewhat higher and lower for a history of MI.

       For application in clinical practice, scores were created by rounding each 
adapted coefficient after multiplication by 10 and shrinkage of 90% ((1+bootstrap 
shrinkage factor)/2≈0.90). The intercept was calculated with an offset variable in a 
logistic regression model. The offset was the linear combination of the scores 
(divided by ten) and the values of the covariables in the individual patient data. The 
intercept was estimated as −3.48. 

 The intercept was further adjusted for a presumably lower mortality in current surgi-
cal practice (5%) than that observed in the individual patient data (7.6%). This adjust-
ment can be considered as a form of recalibration to contemporary circumstances. It was 
achieved by subtracting ln(odds(5%)/odds(7.6%)=−0.44 from the previous intercept 
estimate:   −3.48 − 0.44 = −3.92. This results in the following formula to estimate the risk 
of peri-operative mortality in current elective abdominal aortic aneurysm surgery:

   

p operativemortality( )
[ exp( ( / ) . )]

.=
+ − −∑

1

1 10 3 92score
    

 The area under the ROC curve was 0.83 in the individual patient data with stand-
ard, shrunk or penalized estimation. But the optimism-corrected estimates were 

 Table 14.4    Individual patient data results ( n =246) for operative mortality of elective aortic 
 aneurysm surgery (coefficient (SE))  

 Predictor   b 
m|I

 −  b
 u|I

  c method 1  Adapted 1  Score 

 Age (per decade)  −0.40  1  0.38 (0.14)  3 
 Female sex  +0.02  1  0.38 (0.40)  3 
 History of MI  −0.76  1  0.27 (0.41)  2 
 Congestive heart failure  −0.74  1  0.85 (0.47)  8 
 ECG: Ischaemia  −0.73  1  0.79 (0.48)  7 
 Impaired renal function  −0.12  1  1.18 (0.41)  11 
 Impaired pulmonary function  −0.23  1  0.62 (0.34)  6 

 Score: Rounded value of 9 × “Adapted 1”  



0.80 for standard or shrunk, estimation, and 0.81 for penalized estimation (boot-
strapping with 200 replications). For the final model with adapted coefficients, we 
expect a performance at least as good as these methods, but this needs to be 
 confirmed in further validation studies.    

  14.3 Alternative Approaches 

 Several alternative approaches are possible to adjust univariate results for use in a 
multivariable model. We discuss two approaches below: Using an overall calibra-
tion factor for the univariate literature coefficients and Bayesian methods. 

  14.3.1 Overall Calibration 

 One variant of naïve Bayes was already suggested in Chap. 4, i.e. use of a uniform, 
overall calibration factor for all univariate coefficients. In the case study of aortic 
aneurysm mortality, the calibration factor is 0.69 for a linear predictor based on 
the univariate coefficients from the literature multiplied with the predictor values 
in the individual patient data. The recalibrated coefficients are reasonably close to 
those estimated with our adaptation method. The overall calibration led to higher 
values for cardiac comorbidity factors (scores 7, 11, and 10 for MI, CHF, and 
Ischaemia vs. 2, 8, and 7 with the adaptation method, respectively). This is 
explained by the relatively strong correlations among these factors, while the over-
all calibration reflects an average correlation between all the seven predictors.  

  14.3.2  Bayesian Methods: Using Data Priors to Regression 
Modelling 

 Greenland has argued that a Bayesian perspective needs to be incorporated into 
basic biostatistical and epidemiological training. 152  In particular in small data sets 
with many predictors, Bayesian approaches may offer advantages over conven-
tional frequentist methods. Estimation of regression coefficients is difficult for data 
sets with few or no subjects at crucial combinations of predictor values. 

 Bayesian estimation consists of setting prior values for the regression coeffi-
cients, which are combined with the estimates in the data to produce posterior esti-
mates of the coefficients. When the prior values are all zero, the coefficients are 
pulled towards zero. This is similar to shrinkage, as discussed in Chap. 13. Setting 
a prior to zero may be reasonable for a variable with very doubtful value as a pre-
dictor. A negative or positive effect is then equally likely, making zero the best prior 
guess. We allow for the possibility that the effect is non-zero, but may consider 
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large values unlikely. The degree of shrinkage is then determined by the width of 
the prior distribution. The narrower the prior distribution, the more the prior shrinks the 
coefficient towards zero. The other factor determining shrinkage is how strongly the 
predictor is related to the outcome in the data under study; in an informative data 
set (many events, not a rare predictor), there will be limited shrinkage. The final 
estimate is an average of the prior expectation and the conventional estimate. 

 A more interesting role for Bayesian approaches in regression is in using informa-
tive priors. For example, we may hypothesize a priori that a predictor has an odds 
ratio of 2, with values smaller than 0.5 and larger than 8 being highly unlikely. Setting 
a reasonable informative prior is the most difficult task for Bayesian analysis. Expert 
judgment or literature review can be used. When using informative priors, the source 
of these priors should be well documented, and sufficient variability allowed in the 
prior distribution. Presentation of prior information can be presented as “information-
ally equivalent,” e.g. assuming knowledge of 100 patients with a certain outcome. 
This may be acceptable to some in the medical field, but will be met with scepticism 
by others, including traditional biostatisticians and applied clinical researchers.  

  *14.3.3 Example: Predicting Neonatal Death 

 Greenland describes a case study of predicting neonatal-death risk in a cohort of 
2,992 births with 17 deaths. 152  He estimates logistic regression models with 14 pre-
dictors, assuming small to large effects for most predictors. He finds that the predic-
tive ability of the Bayesian model is better than a model based on standard ML. He 
also illustrates how Bayesian estimation can be achieved relatively easily with data 
augmentation: Records are added to a data set, reflecting predictive effects of pre-
dictors. 153  In the case of a multivariable model, the prior distributions refer to the 
multivariable effects of predictors, which may be more complicated to elicit from 
experts or from literature than univariate effects.  

  *14.3.4 Example: Mortality of Aneurysm Surgery 

 In the prediction of peri-operative mortality of aortic aneurysms, we might try to 
use informative priors based on the literature. The meta-analysis however provides 
univariate effects, and we need to translate these to priors for multivariable effects. 
The difference between univariate and multivariable coefficients is directly related 
to the correlation between predictors. If we have some guesses for these correla-
tions, this may give some hints on how the multivariable coefficients compare with 
the univariate coefficients. For example, with substantial correlations, we might 
halve all univariate coefficients; with no correlation, we keep the multivariate effect 
at the univariate estimate. Being on the conservative side with informative priors 
may be sensible to make Bayesian analysis more acceptable.   



  14.4 Concluding Remarks 

 The proposed adaptation methods emphasize the central role of subject knowledge 
in developing prediction models in small data sets. Literature data may guide the 
selection of predictors (Chap. 11), as well as improve the estimates of the regres-
sion coefficients (this chapter). Especially when the data set is relatively small, this 
strategy will result in more reliable regression models than using a strategy that 
considers a data set with individual patient data as the sole source of information. 

 A potential problem of meta-analyses is that publication bias may have led to 
overestimation of the regression coefficients. Also, performing a meta-analysis may 
not be realistic if definitions of risk factors vary substantially in the literature. 
Finally, the central assumption in the adaptation method is that the data set under 
study and the literature data are random subsamples from a common population, 
which implies that the correlations between predictors are similar in the individual 
patient data and in the literature data. 

 Bayesian methods provide another perspective on estimation of regression coeffi-
cients. If no effect is expected for a predictor, shrinkage of coefficients towards zero 
is achieved, quite similar to using uniform shrinkage or penalized ML. If other effects 
are assumed, coefficients will be pulled towards this prior value. As with any 
Bayesian method, the main criticism will be on the choice of prior distribution. 

 Many papers have been written about Bayesian approaches, but Bayesian meth-
ods have not yet made it to mainstream predictive modelling. A variant is empirical 
Bayes estimation, which will be discussed in Chaps. 20 and 21. Empirical Bayes 
methods have an important role in for example estimating centre effects, and pro-
vider profiling. With this variant, the prior distribution of centre effects is deter-
mined empirically from the data. 

 In some Bayesian applications, uninformative priors are used by default; these 
variants only use Bayesian calculations to achieve results that are difficult to calcu-
late with frequentist methods, such as ML. These methods are becoming quite 
popular in medicine, e.g. using WinBUGS (  www.mrc-bsu.cam.ac.uk/bugs/    ) with 
the Gibbs sampler as the core Bayesian method. 134   
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  Questions  

    14.1    Key factors in adaptation method (Sect.  14.1  and  14.2 ) 
   We examine the key factors for the adaptation method, as illustrated in the 

aneurysm case study.
     (a)     What would happen to the adapted coefficients when larger univariate 

coefficients were found in the literature?  
     (b)     What would happen to the adapted coefficients when the univariate coef-

ficients were identical in the literature and in the individual patient data?  
     (c)     What would happen to the adapted coefficients when there was virtually 

no correlation between predictors?      

   14.2    Variance of adapted coefficients (Sect.  14.1.1 ) 
    In the simple variant, the variance of the adaption method is estimated as:
    var(b

m|I+L
)=var(b

u|L
)+var(b

m|I
) - var(b

u|I
)   

   When we have a literature data base (“L”) of the same size as the individual 
patient data base (“I”), the variance decreased by a factor of 2 (SE decreases 
by   1/√2  , Sect.  14.1.4 ). What may be expected for the variance and SE of an 
adapted coefficient when we have a literature data base of 3 times the size of 
the individual patient data?  

   14.3    Adaptation method in aneurysm case study (Sect.  14.2 ) 
   For the aneurysm case study, the age effect is based on a very large sample 

size in the meta-analysis. The regression coefficient is 0.79 per 10 years; SE 
in random effect model, 0.14.

     (a)    Verify that the adaptation factor  b  
m | I

  −  b  
u | I

  is −0.40.  
     (b)     Verify that the SE of the adapted coefficient becomes 0.14, while it was 

0.39 in the original multivariable analysis (Table  14.3 ).              
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