
   Chapter 12   
 Assumptions in Regression Models: 
Additivity and Linearity        

  Background   In this chapter, we discuss assessment of assumptions in multivariable 
regression models. Specifically, we consider the additivity assumption, which can 
be assessed with interaction terms. We also consider the linearity assumption of 
continuous predictors in a multivariable regression model, where multiple non-lin-
ear terms can be included to allow for non-linear relationships between predictors 
and outcome. Throughout we stress parsimony in strategies to extend a prediction 
model with interactions and non-linear terms, since better fulfillment of assumptions 
in a particular sample does not necessarily imply better predictive performance for 
future subjects. We consider several case studies for illustration of various strategies 
to deal with additivity and linearity.    

  12.1 Additivity and Interaction Terms  

 The generalized linear regression models discussed in this book all have a linear 
predictor at their core: lp =  b 
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 . This formulation implies additivity of effects. For a logistic 

regression model, we can calculate odds ratios as e b ; the odds ratios are multi-
plied to obtain the odds of the outcome. Hence, effects of predictors are assumed 
to be multiplicative on the odds scale. For a Cox regression model, e b  is the hazard 
ratio; the assumption is that these hazard ratios can be multiplied on the hazard 
scale. 

 The scale is essential for consideration of additivity. If a treatment reduces risk from 
20 to 10% in one risk stratum, and from 10 to 5% in another risk stratum, the relative 
risk is 0.5 in both. The odds ratios are also quite similar (0.44 and 0.47, respectively). 
Hence, we could say that there is a consistent halving of the risk. But on an absolute 
scale, the benefit is clearly dependent on the risk (10% vs. 5% reduction). 237  

 The most common regression modelling procedure is to start model specification 
with main effects of predictors only. Some epidemiological text books advice to 
consider interactions early in the modelling process, with main effects included for 
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214 12 Assumptions in Regression Models: Additivity and Linearity

all variables that have a relevant interaction term. 234  Interactions between predictors 
can be considered by multiplicative terms of the form  x 1 ×  x 2 (two-way or first-order 
interactions), and  x 1 ×  x 2 ×  x 3 (three-way, or second-order interactions); higher-
order interactions are uncommon to consider for regression models. The interpretation 
of a two-way interaction is that the effect of one predictor depends on that of 
another predictor. The effect is different, depending on the value of another predictor. 
The effect of a predictor cannot be interpreted alone; we need to know the value of 
another predictor to interpret its effect. 

  12.1.1 Potential Interaction Terms to Consider 

 As for main effects, prior subject knowledge may help to guide us to select interac-
tion terms. For example, interaction terms that were identified in previous studies 
could be assessed. Clinical insights, e.g. on pathophysiology, are difficult to use, 
because using main effects in a model is assuming that predictors act in a multipli-
cative way on the risk scale (e.g. odds ratios and hazard ratios are multiplied). 
Reasoning why a certain combination of predictors would not act in an additive 
way on, e.g. the logodds scale, is quite difficult to imagine. Some researchers are 
motivated to study an interaction term when two predictors are correlated. But cor-
relation does not imply anything on the effects of predictors conditional on each 
other. Two predictors may not have any correlation, but have interacting effects. 
Some types of interactions have been suggested that warrant consideration in pre-
diction models (Table  12.1 ). 174       

  12.1.2 Interactions with Treatment 

 Various interactions with treatment can be considered. The benefit of treatment 
may depend on the severity of disease, with less relative benefit for those with less 
severe disease. The reverse may also be true, especially in oncology, where less 

 Table 12.1    Examples of interactions to consider in clinical prediction models (based on Harrell 174 )  

 Interaction  Effect 

 Severity of disease × treatment  Less benefit with less severe disease 
 Place × treatment  Benefit varies by treament centre 
 Place × predictors  Predictor effects vary by centre/region 
 Calender time × treatment  Learning curves for some treatments 
 Calender time × predictors  Increasing or decreasing impact of predictors 

over the years 
 Age × predictors  Older subjects less affected by risk factors; or 

more affected by certain types of disease 
 Follow-up time × predictors  Non-proportionality of survival effects, often 

a decreasing effect over time 
 Season × predictors  Seasonal effect of predictors 



relative benefit occurs for those with more severe disease. For example, surgery in 
oesophageal cancer can be curative, but only for patients without distant metastases. 
Note that absolute benefit will anyway depend on the severity of disease, even when 
the relative benefit is constant. For example, Califf modelled the absolute benefit of 
tPA treatment for acute myocardial infarction patients in the GUSTO-I trial in rela-
tion to predictors. Benefit depended strongly on the risk profile, while it might be 
assumed that the relative effect of treatment was constant. 63  In addition to severity 
of disease, a treatment effect may depend on the setting, e.g. the centre where a 
patient was treated. This is especially the case when specific skills and facilities are 
required for the treatment. For example, surgical mortality is known to vary widely 
between centres for some procedures, such as resection of oesophageal cancer. 
Similarly, some treatments have a learning curve, which can be modelled by includ-
ing a treatment × calender time interaction term, with calender time reflecting 
cumulative experience. 

 In randomized controlled trials, subgroup effects for treatment effects are often 
performed, e.g. whether treatment works better for older than younger patients. 
Such subgroup effects should be supported by an interaction test for difference in 
effect; not with one  p -value for older and one  p -value for younger patients. 339  Even 
when subgroup analyses are pre-specified, results should be cautiously interpreted 
because of multiple testing of the treatment effect. Multiple testing inflates the risk 
of false positive conclusions. Subgroup analyses are therefore best interpreted as 
secondary analyses which motivate further study. This is often not the case in 
current practice. 18   

  *12.1.3 Other Potential Interactions 

 Predictor effects may differ by place and time, which would limit their generalizability 
(see Part III). Basic issues to consider are whether predictor definitions were 
consistent across centres and during time. In some individual patient data analyses, 
predictor effects were however surprisingly consistent, even when definitions var-
ied over studies (e.g. studies in traumatic brain injury 271,277 ). As might be expected, 
interactions of predictors by place of treatment were small within the GUSTO-I 
trial, where data were collected in a highly standardized and controlled way. 405  

 Various aspects of “time” can interact with predictor effects: calender time (e.g. 
patients treated during years 1980–2005), age (e.g. 30–90 years), follow-up time 
(e.g. 0–10 years), and season (months January to December). The effects of predic-
tors may change over the years because of improvements in treatment, or changing 
definitions. The effects of risk factors for developing cardiovascular disease are 
known to decrease with aging. Predictors having less effect in the elderly might be 
explained as that older subjects have proven to survive with the risk factors. For 
survival analysis, predictors are usually assumed to have proportional effects dur-
ing follow-up, e.g. in the Cox proportional hazards model, but also in a Weibull 
model. Such proportionality of effects may not be tenable in the follow-up of 
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oncological patients, where relative risks of predictors for early events decrease 
with time, while others may increase. For example, non-proportional effects have 
been noted in breast cancer survival, with no effect of stage of disease after 10 years 
of follow-up. 308  The proportionality assumption is equivalent to assuming no inter-
action effects between predictors and follow-up time. 

 Furthermore, some predictors may have a different impact during the season, 
e.g. for infectious and respiratory diseases (Table  12.1 ). Other interactions may be 
relevant to consider in specific prediction problems. For example, sex-specific 
effects of predictors are commonly modelled in cardiovascular disease.  

  *12.1.4 Example: Time and Survival After Valve Replacement 

 A follow-up study was done spanning over 25 years for survival of patients after 
aortic valve replacement. 195  Various changes had taken place in case-mix between 
the first valve replacement (in 1967) and the latest replacement analysed (in 1994). 
During the 25+ years period, 1,449 mechanical valves were implanted. Overall 
early mortality (<30 days) was 5%, and was analysed with logistic regression. 
Overall survival rates at 5, 10, and 15 years were 80%, 63% and 49%, respectively. 
Poisson regression analysis was used to disentangle the effects of calender time, 
age, and follow-up. All three aspects of time appeared to be important. A substan-
tial drop in both early and late mortality was identified around the introduction of 
cardioplegia (in 1997), but no strong interactions with calender time were found. 
A changing, non-proportional effect was observed for several prognostic factors 
during follow-up. For example, increasing effects during follow-up were found for 
older age ( p <0.05), urgency (urgent operations and acute endocarditis) ( p <0.05), 
and ascending aorta surgery ( p =0.12). Early year of operation, male gender, and 
previous cardiac surgery (all  p <0.05) were more important during early years of 
follow-up. The effects of concomitant coronary bypass surgery and concomitant 
mitral valve surgery were more or less constant during follow-up. This study illus-
trated that a Poisson regression model could be used to disentangle different aspects 
of time in a survival analysis. This model was more easily to work with compared 
to the Cox regression model. 195    

  12.2  Selection, Estimation and Performance 
with Interaction Terms  

 In clinical prediction models with a typical number of predictors, say 5–10, the 
number of potential interactions is substantial. If interactions are considered, it has 
been suggested to first perform an overall interaction test. 174  We can also obtain 
partial overall  p -values, e.g. for all interactions with age. If this  p -value is low, we 
may consider proceeding with studying specific interactions for inclusion in the 



model. This approach limits the multiple testing problem, at the price of lower 
power for including specific interactions. An alternative is to perform interaction 
tests for individual combinations of predictors, but use a rather stringent  p -value, 
such as 0.01 for inclusion. We illustrate the problems with selection of interaction 
terms with a small subsample from the GUSTO-I study. 

  12.2.1 Example: Age Interactions in GUSTO-I 

 We study interaction with age in the relatively large subsample from GUSTO-I 
(sample5,  n =785, 52 deaths). We first fit all interactions, and then perform and 
overall test based on the Wald statistics. The overall test has a  p -value of 0.14; but 
the interaction AGE×HRT is statistically significant ( p =0.03, not adjusted for 
multiple testing). Some might be tempted to include this interaction in the model. 
It appears that tachycardia (HRT) has a stronger effect at higher age (a positive 
interaction). Equivalently, we can state that age has more effect in strength in 
those with tachycardia (Fig.  12.1 ).   

  12.2.2 Estimation of Interaction Terms 

 A first distinction that epidemiologists like to make is between “qualitative” and 
“quantitative” interactions. A qualitative interaction means that a predictor has an 
opposite effect in one group vs. another group of patients. Quantitative interaction 
means that the effect of a predictor is in the same direction, but different in strength 

  Fig. 12.1    Age by tachycardia interactions in a subsample of GUSTO-I ( n =785, 52 deaths), reveal-
ing a positive interaction       
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in one group than another group of patients (see e.g. Fig.  12.1 ). This distinction is 
especially important when we aim to interpret the effects of predictors; we will 
more be tempted to include a qualitative interaction than a quantitative interaction. 
For predictive performance, the distinction between qualitative and quantitative 
interaction is less relevant. 

 Another issue is that we can have somewhat counterintuitive effects of interactions. 
For example, Fig.  12.1  suggests that the presence of tachycardia is protective for 
30-day mortality at ages younger than 55. If we consider this implausible, we can 
code the interaction such that no effect of tachycardia is present below age 55 
(Fig.  12.2 ). Admittedly, the age cut-point of 55 years is data-driven. But the general 
idea is that we incorporate subject-specific knowledge to prevent incorporation of 
random noise in the model.  

 More generally, we should use a smart coding for interaction terms once we 
decide to include an interaction term in a model. This is especially useful when we 
want to readily obtain standard errors and confidence intervals for predictors in 
interaction with other predictors. 122  The approach is to test for interactions in mod-
els with standard multiplicative terms of the form  x 1 ×  x 2. But we can estimate 
effects with a smarter coding of the form  x 1 + (1 −  x 1) ×  x 2 +  x 1 ×  x 2 instead of  
x 1 +  x 2 +  x 1 ×  x 2. More details are on the book’s web page.  

  Fig. 12.2    Age by tachycardia relationships to 30-day mortality in a large subsample of GUSTO-I 
( n =785, 52 deaths). Panel ( a ) main effects only; panel ( b ) simple positive interaction; panel 
( c ) separate effects for (no) tachycardia over age 55; panel ( d ) one age effect and an additional 
effect of tachycardia over age 55 years. The difference between panel  c  and  d  is barely notable, 
but in panel  c , three age effects are estimated, while in panel  d  two age effects are estimated       
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  12.2.3 Better Prediction with Interaction Terms? 

 We may wonder we predict better with the AGE×HRT interaction (Table  12.2 ). We 
hereto test the models as shown in Fig.  12.2  in a large, independent part of GUSTO-I 
( n =20,318). Surprisingly, we find that a model with the AGE×HRT interaction 
(Fig.  12.2 b), performs worse than a model without this interaction term. The mod-
els without the counterintuitive effect of tachycardia below age 55 perform similar, 
both at apparent validation and at external validation in  n =20,318. The explanation 
for this remarkable finding is in Fig.  12.3 : the interaction between tachycardia and 
age was positive in the subsample, but negative in the independent validation part 
of GUSTO-I (less effect of tachycardia at older ages). This example illustrates that 
considering interaction in an unstructured way can damage predictive ability of a 
model.       

 Table 12.2    Performance of models developed in a subsample of GUSTO-I ( n =785) in an independent 
part of GUSTO-I ( n =20,318). The model with main effects contained eight dichotomized predictors  

 Model  df  Apparent ( n  = 785)  Validation ( n =20,318) 

 Main effects  8  0.828  0.805 
 Main effects+AGE×HRT interaction  9  0.831  0.796 
 One age effect <55, 2 age effects ≥ 55  9  0.832  0.798 
 HRT effect only for age >55 years  8  0.832  0.798 

  Fig. 12.3    AGE×HRT interactions in GUSTO-I.  Left panel : positive interaction in a subsample 
( n =785, 52 deaths,  p -value for interaction 0.10), negative interaction in an independent validation 
part of the GUSTO-I data set ( n =20,318, 1,428 deaths,  p -value for interaction 0.002). 95% confi-
dence intervals are given around each line       
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  12.2.4 Summary Points  

  •  An interaction term indicates that the effect of a predictor depends on values of 
another predictor  

 •  Interaction terms to consider in a prediction model depend on the context, but 
some types of interactions may warrant specific consideration  

 •  For better interpretation, we may use a smart coding of interactions, and elimi-
nate counterintuitive effects, e.g. that a predictor becomes protective for some 
patients  

 •  The performance of a prediction model does not necessarily increase by includ-
ing an interaction term  

 •  Pre-specification of some interaction terms for a model may be preferable to 
exploratory determination of which terms to include      

  12.3 Non-linearity in Multivariable Analysis  

 We discussed the assessment of continuous predictor variables in Chap. 9 for the 
univariate case, where each predictor is considered separately. Harrell advocates 
to use restricted cubic spline functions to define transformations of continuous 
variables. 174,177  An RCS function consists of pieced-together cubic splines (con-
taining  x 3 terms) that are restricted to be linear in the tails. These functions have 
many favourable properties, such as appropriate flexibility combined with stabil-
ity at the tails of the function. We can also consider multivariable modelling with 
fractional polynomials, 367  and with smoothing spline transformations (in multi-
variable generalized additive models (“GAM”), Table   12.3 ). The flexibility of a 
smoothing spline transformation in a GAM is determined by penalty terms, 
which relate to the effective degrees of freedom (df). There are presently two 
variants of GAM available with respect to choosing the effective df in a multi-
variable context. One variant is that the effective df are set by the analyst. 180  
Alternatively, a generalized cross-validation (GCV) procedure can be used to 
define statistically optimal transformations for multiple continuous predictors in 
a GAM. 490  We discuss these approaches in more detail below.     

  12.3.1 Multivariable Restricted Cubic Splines (RCS) 

 An RCS requires the specification of knots, which can well be based on the distri-
bution of the predictor variable. 174  The key issue is the choice of the number of 
knots: 5 knots implies a function with 4 df, 4 knots 3 df, and 3 knots 2 df. Although 
5 knots are sufficient to capture many non-linear patterns, it may not be wise to 
include 5 knots for each continuous predictor in a multivariable model. Too much 



flexibility would lead to overfitting. One strategy is to define a priori how much 
flexibility will be allowed for each predictor, i.e. how many df will be spent. In 
smaller data sets, we may for example choose to use only linear terms or splines 
with 3 knots (2 df), especially if no strong prior information suggests that a non-
linear function is necessary. 174  Alternatively, we might examine different RCS 
transformations (5, 4, 3 knots) in univariate and/or multivariable analysis, and 
choose an appropriate number of knots for each predictor based on the findings in 
the data. It might be reasonable to choose the complexity of non-linear functions 
based on the c2 statistic of each predictor, with more flexibility for stronger 
predictors.  

  12.3.2 Multivariable Fractional Polynomials (FP) 

 As discussed in Chap. 9, fractional polynomials are formulated as a power transfor-
mation of a predictor  x :  x   p  , where  p  is chosen from the set −2, −1, −0.5, 0, 0.5, 1, 
2, 3. This defines 8 transformations, including inverse ( x  −1 ), log ( x  0 ), square root 
( x  0.5 ), linear ( x  1 ), squared ( x  2 ) and cubic transformations ( x  3 ). In addition to these 8 
FP1 functions, 28 FP2 functions can be considered of the form  x    p   1  +  x    p   2 ; when 
 p 1= p 2 one defines another 8 FP2 functions as  x   p   +  x   p   log  x , for a total of 36 FP2 
functions. 367  FP1 and FP2 have 2 and 4 df, respectively. 

 Estimation algorithms have been developed for various software packages, 
including R. 366  The mfp algorithm applies a special type of backward stepwise 
selection procedure for the determination of reasonable functional forms for each 
continuous predictor. The algorithm starts with a full model including all predic-
tors, with all continuous predictors in linear form. The predictors are considered in 
order of decreasing statistical significance, such that relatively important predictors 
are considered before unimportant ones. 

 Table 12.3    Approaches to non-linearity in multivariable clinical prediction models  

 Approach  Characteristic  Multivariable strategy  R implementation 

 Restricted cubic 
splines 

 Cubic splines, with 
restriction in shape 
at the ends of the 
predictor 
distribution 

 Keep complexity as defined 
a priori or based on 
findings in univariate/
multivariable analysis 

 rcs in Design 
package 

 Fractional 
polynomials 

 Combine one or two 
polynomials 

 Search iteratively for 
optimal transformations 

 fp and mfp in 
mfp package 

 Splines in GAM  Spline functions with 
smoothing depending 
on effective degrees 
of freedom 

 Degrees of freedom set by 
analyst or from a 
generalized cross-
validation (GCV) 
procedure 

 gam and mgcv 
package 
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 For a particular continuous predictor, we may search within the 44 FP2 trans-
formations for a best fitting function. The best transformation is compared to 
deleting the predictor. This procedure uses 4 df to test for inclusion of the 
continuous predictor, as having “any effect.” If this test is significant, we may 
continue with a test for non-linearity: FP2 vs. linear, using 3 df. Finally, we tests 
an FP2 vs. FP1 transformation as a test of a more complex function against 
simpler one (2 df test for “simplification”). The functional form for this predictor 
is kept, and the process is repeated for each other predictor. The first iteration 
concludes when all the variables have been processed. The next cycle is similar, 
except that the functional forms from the initial cycle are retained for all variables 
excepting the one currently being processed. Updating of FP functions and 
selection of variables continues until the functions and variables included in the 
model do not change. 367  

 This test procedure aims to preserve the overall type I error. The price is that we 
are slightly conservative if the true predictor–outcome relationship is linear, i.e. a 
straight line. This is because in step 1, we test for overall effect with 4 df, leading 
to lower statistical significance in case of a true linear relationship.  

  12.3.3 Multivariable Splines in GAM 

 In a GAM, flexible, smooth functions are defined for continuous predictors. The 
smooth functions can be defined by splines or other “basis functions.” 490  To avoid 
overfitting we statistically penalize lack of smoothness (“wiggliness”) using a 
smoothing parameter. The penalization reduces the effective degrees of freedom 
used by each continuous predictor. The optimal smoothness can be determined with 
prediction error criteria, e.g. in a Generalized cross-validation (GCV) procedure. 
Further details are provided by Wood 490  and Hastie. 181  

 In multivariable modelling, splines in a GAM may well serve as a reference 
standard for comparison of simpler, parametric transformations, such as FP (or 
RCS) functions. 353  We compare several approaches in a case study below. In prac-
tice, one would not have to perform all of these transformations but choose one 
approach that one is familiar with.   

  *12.4 Example: Non-Linearity in Testicular Cancer Case Study  

 We aim to predict the presence of benign tissue only (“necrosis”) in patients treated 
with chemotherapy for testicular cancer. We consider six predictors, of which three 
are binary (Teratoma, pre-chemotherapy elevated AFP, pre-chemotherapy elevated 
HCG), and three continuous (pre-chemotherapy LDH, reduction in mass size dur-
ing chemotherapy, post-chemotherapy size). The LDH values were standardized by 
dividing by the upper limit of the local upper normal value (“LDHst” variable). 



 In initial univariate analyses, we used RCS functions to study non-linearity in 
the effects of the continuous predictors. Subsequently, we used simple parametric 
transformations, mainly based on visual assessment of the univariate RCS func-
tions. 425  The chosen transformations were logarithmic for LDHst; linear for reduction 
in size; and square root for post-chemotherapy size (Fig.  12.4 ). We now explore the 
transformations chosen with other modelling strategies, including fractional poly-
nomials and smoothing splines in generalized additive models.  

 We compare RCS, FP, and GAM functions with two bendings: FP2 transforma-
tions, RCS with 4 knots (3 df), and GAM splines with 3 effective df. For LDH, the 
transformations vary to quite some extent. The relationship of LDH to necrosis is 
rather different for a logarithmic transformation compared to other transformations. 
A simple linear term might also have been reasonable. This is supported by the FP 
procedure (Table   12.4 ). LDH has an effect ( p -value for “any effect” = 0.02), but 
non-linearity was non-significant ( p =0.48). For postchemotherapy size, the RCS, 
FP2, and GAM transformations agree much better visually (Fig.  12.4 ), and the 
square root transformation looks reasonable. The FP procedure indicates significant 
non-linearity ( p =0.0002), and non-significant improvement by an FP2 function 
over an FP1 function ( p =0.46). The chosen FP1 function is logarithmic rather than 
the square root. Finally, reduction in mass size seems to be fit adequately with a 
linear term. The RCS, FP2, and GAM transformations fluctuate around this straight 
line, with the most wiggly pattern for the GAM. The FP procedure confirms that 
there is no reason to include non-linear terms ( p =0.64). The R code for these analy-
ses is available at the book’s web site.     

 Fractional polynomials were considered in univariate logistic regression analysis, 
and subsequently in three multivariable logistic regression models. A full model 
included three binary predictors (teratoma (yes/no, 1 df), elevated AFP (yes/no, 
1 df), elevated HCG (yes/no, 1 df)), and three continuous predictors with FP2 
functions (LDH standardized, reduction in size, post-chemotherapy size). 

  Fig. 12.4    Non-linearity in univariate analysis of LDH, post-chemotherapy size, and reduction in 
mass size. Curves are shown for a parametric approximation (log, sqrt, linear), restricted cubic 
spline functions with 4 knots (3 df), a fractional polynomial (4 df), and a generalized additive 
model with spline smoother (3 df). The distributions of values are shown at the top of the graphs       
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  *12.4.1 Details of Multivariable FP and GAM Analyses 

 Multivariable fractional polynomials were fitted without selection (“full model,” 
3 df for dichotomous + 3×4 = 12 df for continuous predictors, in total 15 df), and 
with a variant of a backward stepwise selection algorithm (Table  12.4 ). The 
FP2 transformations were log(LDHst)+LDHst 3 ; 1/reduction+1/sqrt(reduction); and 
sqrt(postsize) + sqrt(postsize)×log(postsize). A multivariable FP procedure with 
 p <0.05 for selection led to a model with linear terms for the three continuous pre-
dictors and three binary predictors (each of the six predictors  p <0.01). All tests for 
non-linearity were non-significant (Table  12.4 ). Selection with  p <0.20 led to a lin-
ear term for LDHst, 1/reduction, and log(postsize) in FP1 transformations. Post-
chemotherapy size and reduction in size had  p -values for non-linearity of 0.03 and 
0.08, but FP2 transformations were not much better than FP1 transformations 
( p -values 0.46 and 0.27 respectively, Table  12.4 ).  

  *12.4.2 GAM in Univariate and Multivariable Analysis 

 For comparison, we examine the smooth functions selected as optimal with a 
GCV procedure (Fig  12.5 ). In univariate analysis, a (near) linear term is optimal 
for LDH and reduction in size (1.1 and 1 effective df). Post-chemotherapy size 

 Table 12.4    Fractional polynomial analysis of three continuous predictors in the testicular cancer 
data set ( n =544)  

 Predictor 

  P -value “any 
effect” (FP2 
vs. no effect, 
4 df) 

  P -value 
“non-linear-
ity” (FP2 vs. 
linear, 3 df) 

  P -value 
“FP2” 
(FP2 vs. 
FP1, 2 df)  FP1  FP2 

 Univariate  LDH (stand-
ardized) 

 0.021  0.48  0.59  2  −2, 3 
 Full model  <0.0001  0.18  0.73  0 (=log)   0 (=log), 3  
 Stepwise 

 p <0.05 
 0.0003  0.46  0.62  0.5  0 (=log), 3 

 Stepwise 
 p <0.20 

 <0.0001  0.28  0.66  0 (=log)  0 (=log), 3 

 Univariate  Post-chemo-
therapy 
size (mm) 

 <0.0001  0.0002  0.46  0 (=log)  0.5, 1 
 Full model  0.0004  0.004  0.45  0 (=log)   0.5, 0.5  
 Stepwise 

 p <0.05 
 0.012  0.086  0.30  0 (=log)  −0.5, −0.5 

 Stepwise 
 p <0.20 

 0.0005  0.034  0.46   0 (=log)   −0.5, −0.5 

 Univariate 
 Full model 
 Stepwise 

 p <0.05 

 Reduction in 
size (%) 

 <0.0001  0.64  0.63  0 (=log)  −1, 3 
 0.0005  0.06  0.16  −1   −1, −0.5  
 0.0002  0.64  0.78  −1  −1, 3 

 Stepwise 
 p <0.20 

 0.0009  0.08  0.27   −1   −1. −0.5 



  Fig. 12.5    Generalized additive models with optimal smoothing spline transformations according to a 
generalized cross-validation procedure in the testicular cancer example ( n =544).  Top row : optimal 
transformation in univariate logistic regression analysis;  bottom row : multivariable logistic regression 
analysis with six predictors. The degrees of freedom of the optimal smoothing spline transformation 
are shown in each  y -axis label. The distribution of values if shown at the bottom of the graphs       
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is modelled with a non-linear function using 3.35 effective df. In multivariable 
analyses, non-linear functions are used for all three continuous predictors, using 
2.85, 3.85, and 4.63 effective df for LDHst, post-chemotherapy size and reduc-
tion, respectively (Fig.  12.5 ). Hence, more complex transformations were chosen 
in multivariable than in univariate analyses. The multivariable function for LDH 
looks much like a log transformation, as chosen previously. For post-chemo-
therapy size, we note an implausible increase in logodds of necrosis with very 
large mass sizes, and for reduction in size we note a wiggly shape between 20% 
and 100%. Hence, the smooth functions might not be smooth enough from a 
pathophysiological perspective. Further external validation might indicate 
whether the chosen “optimal” transformations are merely examples of 
overfitting.   

  *12.4.3 Predictive Performance 

 Finally, we study the predictive performance of the alternative non-linear transfor-
mations (Table  12.5 ). With linear terms only, we use 6 df, and achieve a model c2 
of 205 (apparent  R  2  41.9%, internally validated  R  2  40.3%). We find the same 
model by applying a multivariable FP procedure with  p <0.05 for selection; in fact 
we used more than 6 degrees of freedom in this approach, since we allowed for 
non-linear terms to be included in the model. If we fit a full FP2 model without 
selection, we use 15 df, and achieve a model c2 of 222. The increase by 17 (from 
205 to 222) with 9 df is of borderline statistical significance (overall c2 test, 
 p =0.049). If we apply a more liberal  p -value for non-linearity, we use two FP1 
transformations (1/reduction and log(postsize)) for a model c2 of 213. Using RCS 
functions with each 4 knots leads to a better fit than the FP2 functions (231 vs. 
222). The increase in model LR (from 205 to 231, +26) is statistically significant 
(overall c2 test, 6 df,  p <0.001). Our previous visual approximation of non-linearity 

 Table 12.5    Logistic Regression models with alternative codings of three continuous predictors  

 Strategy  Model  df  Model c 2 

 Assume linearity (same as 
FP2, bw p<0.05 selection) 

 All linear  3+3  205 

 FP2, no selection  Full FP2  3+12  222 
 FP2, bw p<0.20 selection  LDHst, 1/reduction, 

log(postsize) 
 3+>3  213 

 RCS, no selection  3 RCS functions, each 4 knots  3+9  231 
 Visual approximation  log(LDHst) + reduction + 

sqrt(postsize) 
 3+>3  212 

 GAM, pre-specify df  3 smooth functions, each 3 df  3+9  232 
 GAM, GCV  3 optimally smoothed 

functions 
 3+(2.8+4.6+3.9)  240 



in LDH and postsize led to a similar fit as the FP1 functions (model c2 212 vs. 
213). Smoothing splines were similar in performance as the RCS model when 9 df 
were spent on the continuous predictors (model c2 232 vs. 231). With “optimal” 
transformations (GAM, GCV), more effective degrees of freedom were spent, and 
the highest model c2 or model LR was achieved (240). All model LRs indicate 
apparent performance. Rigorous internal validation, including all model selection 
steps, would be desired to indicate any true increase in performance, after correc-
tion for optimism. If inclusion of all modelling decisions is impossible, validation 
in a fully independent validation set may be required (split-sample, or external 
validation, see Chap. 17).      

  *12.4.4  R code for Non-Linear Modelling  

    # RCS: multivariable logistic regression with 3 rcs functions,
# each 4 knots   
   library(Hmisc)   
   library(Design)   
   lrm(NEC  ~  Teratoma  +  Pre.AFP  +  Pre.HCG  +  rcs(LDHst, 4)+       

rcs(Post.size, 4) + rcs(Reduction, 4), data=n544)   
   # FP: multivariable fractional polynomial   
   library(mfp)   
   mfp(NEC  ~  Teratoma  +  Pre.AFP+Pre.HCG  +  fp(LDHst)  +  

fp(Post.size)  +  fp(Reduction), alpha=1, data=n544)   
   # GAM: multivariable gam, 3 effective df for each continuous predictor   
   library(gam)   
   gam(NEC  ~   Teratoma+Pre.AFP  +  Pre.HCG  +  s(LDHst, 3)  +  s(Post.size, 3)  +  

s(Reduction, 3), data=n544, family=binomial)   
   # multivariable gam, optimal effective df for each continuous predictor   
   # based on generalized cross-validation (GCV)   
   library(mgcv)   
   gam (NEC  ~   Teratoma  +  Pre.AFP+Pre.HCG  +  s(LDHst)  +  s(Post.size)  +  

s(Reduction), data=n544, family=binomial)       

  12.5 Concluding Remarks  

 On the one hand, one may see the additivity and linearity assumptions as essential 
aspects of a regression model. Hence one might argue that we should assess these 
assumptions thoroughly. When we are interested in the effect of a specific predic-
tor, this may make sense. On the other hand, a thorough assessment of assumptions 
increases the risk of overfitting if we are primarily interested in obtaining predic-
tions from a model. We will be tempted to adapt the model specification based on 
findings in the data, i.e. extend the model with interaction terms and/or non-linear 
terms. The price of striving for such perfection is that we may end up with a model 
that performs worse for future patients than a parsimonious model without interac-
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tion terms or non-linear terms. Instead, we might strive for a “wrong, but useful” 
model. 51  Such a model should provide well-calibrated and discriminating predic-
tions, despite possibly violating some underlying model assumptions. 

 In the examples in this chapter, model performance did not increase impressively. 
Of course, results may be different in other situations, but strong qualitative inter-
action or U-shaped non-linearity may be relatively rare. In general, it may be 
sobering to assess the increase in predictive performance by inclusion of interaction 
terms and non-linear terms; this is often quite modest in medical examples. 

 Note that prediction modelling techniques deal with interactions differently. 
A procedure such as Naïve Bayes estimation uses univariate effects of predictors in 
a multivariable prediction context; additivity is assumed and interactions are not 
studied. In contrast, tree models assume high-order interaction by default. Similarly, 
neural networks assume high-order interactions, allowing for their flexibility to fit 
specific patterns in a data set. To explore interactions we might hence also use a tree 
model, since it assumes interaction by default. Interactions that stand out could 
subsequently be considered in a regression model, and assessed for their signifi-
cance. Shrinkage or penalized estimation may be particularly valuable to reduce 
interaction effects that were identified among a large set of potential interactions. 
Penalized ML is discussed in more detail in the next chapter. 

  12.5.1 Recommendations 

 Several measures can be taken to prevent the overfitting that may occur by consid-
ering additivity and linearity assumptions. First we should balance the number of 
interaction and non-linear terms to be considered with the effective sample size in 
the analysis (Table  12.6 ). We might only consider interactions in studies with rela-
tively large sample sizes, i.e. many events compared to the number of terms con-
sidered. In smaller data sets, we may simply have to rely on the additivity 
assumption to be reasonable. We can also say that we estimate average (or “mar-
ginal”) effects of predictors across subgroups; we know that we will never be able 
to exclude that we missed a relevant high-order interaction. For the linearity 
assumption, we might consider non-linear terms only for predictors with a pre-
sumed strong, and likely non-linear, effect. If previous studies have used a non-lin-
ear transformation for a predictor, we could also consider this transformation. 
Subject knowledge should also support the choice for a transformation; plotting the 
effect of a transformed predictor is essential (e.g. Figs.  12.1 – 12.5 ).     

 The second measure to prevent overfitting is to use overall tests, rather than 
focus on separate tests for interaction and non-linear terms. Note that based on an 
overall test, we would not have continued estimation of interaction of age and tach-
yacardia in the GUSTO-I subsample (Sect.  12.2 ). We should also note that interac-
tion terms make life a bit more difficult for model presentation, arguing against 
their inclusion in a model unless their relevance is substantial for the specific pre-
diction problem. 



 Third, an extension of this overall testing approach is to compare the perform-
ance of a flexible model to a simple model without interaction and non-linear 
effects (e.g. Table  12.5 ). The flexible model may for example be a neural network, 
or a GAM. Both the simple model and the flexible model should be validated, e.g. 
with bootstrapping, to see the validated rather than apparent improvement that 
might be achieved with inclusion of interaction and non-linear terms. 

 Finally, we may use shrinkage techniques to reduce the regression coefficients 
of selected interaction or non-linear terms. Some extra shrinkage may try to com-
pensate for the “testimation bias” (see Chaps. 5 and 11), which is expected when 
terms were included in a model because they were relatively large. 174  The search for 
interactions and non-linear terms makes the effective degrees of freedom of a flex-
ible model larger than the final degrees of freedom of a fitted model. This is recog-
nized by FP transformations, where FP1 is tested with 2 df, and FP2 with 4 df. It is 
not included in  p -values for optimal GAM transformations (according to GCV).  P -
values are then only approximate as a result of ignoring uncertainty in the model 
specification (e.g. searching for a smoothing parameter in GAM).   

 Table 12.6    Approaches to limit overfitting by assessing additivity and linearity assumptions  

 Approach  Description 

 Limited number of interaction/non-linear 
terms 

 Consider interaction term that are a priori 
plausible (Table  12.1 ); Consider non-linear 
terms only for predictors with a presumed 
strong, and likely non-linear, effect 

 Overall testing  Perform overall tests per interacting predictor 
(e.g. all age interactions) 

 Compare flexible vs. simple model  Compare the validated performance of a flex-
ible model (e.g. including interactions and 
non-linearities) with a simple model with-
out interaction and assuming linearity 

 Extra shrinkage of interaction/non-linear terms  Use a stronger shrinkage factor (<1) or more 
penalty in a penalized maximum likeli-
hood procedure for interaction and non-
linear terms 
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  Questions   

   12.1    Additivity and interaction
   (a)    Explain the additivity assumption in your own words, and the relevance of 

the scale for assessing additivity?  
   (b)    Explain interaction terms in your own words?  
   (c)    How many interaction terms can be assessed in a model with ten binary 

predictors?  
   (d)    How many of these would be expected to be statistically significant at the 

 p <0.05 level?      

   12.2    Assumptions and model performance
   (a)    Why would you consider testing of the additivity assumption with interac-

tion terms?  
   (b)    What key problem can occur when interactions and non-linearities are 

included in the model? How can this be prevented?  
   (c)    Model performance increases with more flexible non-linear functions. 

In Table  12.5 , the maximum Model LR is 240. Is this model hence prefered 
for predicting outcome, or do you think other considerations are also 
relevant?             
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