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Preface

Prediction models are important in various fields, including medicine, physics, 
meteorology, and finance. Prediction models will become more relevant in the 
medical field with the increase in knowledge on potential predictors of outcome, 
e.g. from genetics. Also, the number of applications will increase, e.g. with targeted 
early detection of disease, and individualized approaches to diagnostic testing and 
treatment. The current era of evidence-based medicine asks for an individualized 
approach to medical decision-making. Evidence-based medicine has a central place 
for meta-analysis to summarize results from randomized controlled trials; similarly 
prediction models may summarize the effects of predictors to provide individual-
ized predictions of a diagnostic or prognostic outcome.

Why Read This Book?

My motivation for working on this book stems primarily from the fact that the 
development and applications of prediction models are often suboptimal in medical 
publications. With this book I hope to contribute to better understanding of relevant 
issues and give practical advice on better modelling strategies than are nowadays 
widely used.

Issues include:

(a) Better predictive modelling is sometimes easily possible; e.g. a large data set 
with high quality data is available, but all continuous predictors are dichot-
omized, which is known to have several disadvantages.

(b) Small samples are used:

- Studies are underpowered, with unreliable answers to difficult questions such 
as “Which are the most important predictors in this prediction problem?”

- The problem of small sample size is aggreviated by doing a complete case analysis 
which discards information from nearly complete records. Statistical imputation 
methods are nowadays available to exploit all available information.
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- Predictors are omitted that should reasonably have been included based on 
subject matter knowledge. Modelers rely too much on the limited data that 
they have available in their data set, instead of wisely combining information 
from several sources, such as medical literature and experts in the field.

- Stepwise selection methods are abundant, which are especially risky in small 
data sets.

- Modelling approaches are used that require higher numbers. Data-hungry 
techniques, such as tree modelling and neural network modelling, should not 
be used in small data sets.

- No attempts are made towards validation, or validation is done inefficiently. 
For example, a split-sample approach is followed, leading to a smaller sample 
for model development and a smaller sample for model validation. Better 
methods are nowadays available and should be used far more often.

(c) Claims are exaggerated: 

- Often we see statements such as ‘the predictors were identified’; in many 
instances such findings may not be reproducible and may largely represent 
noise.

- Models are not internally valid, with overoptimistic expectations of model 
performance in new patients.

- One modern method with a fancy name is claimed as being superior to a more 
traditional regression approach, while no convincing evidence exists, and a 
suboptimal model strategy was followed for the regression model.

- Researchers are insufficiently aware of overfitting, implying that their appar-
ent findings are merely coincidental (“the curse of dimensionality”).

(d) Poor generalizability:

- If models are not internally valid, we cannot expect them to generalize.
- Models are developed for each local situation, discarding earlier findings on 

effects of predictors and earlier models; a framework for continuous improve-
ment and updating of prediction models is required.

In this book; I try to suggest many small improvements in modelling strategies. 
Combined, these improvements hopefully lead to better prediction models.

Intended Audience

Readers should have a basic knowledge of biostatistics, especially regression analysis, but 
no strong background in mathematics is required. The number of formulas is deliber-
ately kept small. Usually a bottom-up approach is followed in teaching regression 
analysis techniques, starting with model assumptions, estimation methods, and basic 
interpretation. This book is more top-down: given that we want to predict an outcome, 
how can we best utilize regression techniques?
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Three levels of readers are envisioned:

(a) The core intended audience is formed by epidemiologists and applied biostatisticians 
who want to develop or apply a prediction model. Both students and profes-
sionals should find practical guidance in this book, especially by the proposed 
seven steps to develop a valid model (Part II). 

(b) A second group is formed by clinicians, policy makers, and health care profes-
sionals who want to judge a study that presents a prediction model. This book 
should aid them in a critical appraisal, providing explanations of terms and 
concepts that are common in publications on prediction models. They should 
try to read chapters of particular interest, or read the main text of the chapters. 
They can skip the examples and more technical sections (indicated with*).

(c) A third group includes more theoretical researchers, such as (bio)statisticians and 
computer scientists, who want to improve the methods that we use in prediction 
models. They may find inspiration for further theoretical work and simulation 
studies in this book. Many of the methods in prediction modelling are not fully 
developed yet, and common sense underlies some of the proposed approaches in 
this book.

Other sources

Many excellent text books exist on regression analysis techniques, but these usually 
do not have a focus on modelling strategies for prediction. The main exception is 
Frank Harrell’s book “Regression Modelling Strategies”.174 He brings advanced 
biostatistical concepts to practical application, supported by the Design and Hmisc 
libraries for S+ software (nowadays: packages for R). Harrell’s book may however 
be too advanced for clinical and epidemiological researchers. This also holds for 
the Hastie, Tibshirani, and Friedman’s quite thorough text book “The Elements of 
Statistical Learning”.181 These books are very useful for a more in-depth dis-
cussion of statistical techniques and strategies. Harrell’s book provided the main 
inspiration for the presented work here. Another good companion book is the 
Vittinghoff et al. book on “Regression Methods in Biostatistics”.472

Various sources at the internet can be used that explain terms used in this book. 
Frank Harrell has a glossary at his web site: [http://biostat.mc.vanderbilt.edu/twiki/
pub/Main/ClinStat/glossary.pdf]. Other useful sources include [http://www.aiaccess.
net/e_gm.htm] and Wikipedia.

Structure

It has been found that people learn by example, by checklists, and by own discovery. 
Therefore I provide many examples throughout the text, including the essential 
computer code and output. I also suggest a checklist for prediction modelling (Part II). 
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Own discovery is possible with exercises per chapter, with data sets provided at the 
book’s web site: http://www.clinicalpredictionmodels.org. 

Many statistical techniques and approaches are readily possible with any modern 
software package. Personally, I work with SPSS for simple, straightforward analyses, 
but this package is insufficient for more advanced analyses which are essential in 
prediction modelling. The SAS computer package is more advanced, but may not be 
so practical for some. A package such as Stata is very suitable. It may be similar in 
capabilities to S-plus software, which was my preferred program for advanced predic-
tion modelling since a stay at Duke University in 1996. The R software is very similar 
in nature to S-plus, and has several additional advantages: the software is for free, and 
innovations in biostatistical methods become readily available for R. Therefore, R is 
the natural choice as the software accompanying this book. R software is available at 
http://www.cran.r-project.org, with help files and a tutorial.

Some R commands are provided in this book; full programs can be downloaded 
from a web site (http://www.clinicalpredictionmodels.org). This web site also provides 
a number of data sets that can be downloaded for application of the described tech-
niques. I provide data files in SPSS format that can readily be imported in R and other 
packages. Further, comments on the text can be submitted electronically.
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   Chapter 1   
 Introduction        

  1.1 Prognosis and Prediction in Medicine  

 Prognosis is central to medicine. All diagnostic and therapeutic actions aim to 
improve prognosis:

  •   Screening : If we screen for early signs of disease, we may, for example, find 
cancers early in their course of disease, and treat them better than when they 
were detected later. But whether screening is useful depends on the improve-
ment in prognosis that is achieved compared to a no screening strategy. Some 
cancers may not have caused any impact on life expectancy, while side-effects 
of treatment may be substantial.  

 •   Diagnosis : If we do a diagnostic test, we may detect an underlying disease. But 
some diseases are not treatable, or the natural course might be very similar to 
what is achieved with treatment.  

 •   Therapy : New treatments become available nearly every day, but their impact on 
prognosis is often rather limited, despite high hopes at early stages. “Magic bul-
lets” are rare. Treatment effects are often small relative to the effects of determi-
nants of the natural history of a disease, such as the patient’s age. The individual 
benefits need to exceed any side effects, harms and economic costs.    

  1.1.1 Prediction Models and Decision-Making 

 Physicians and health policy makers need to make predictions on the prognosis of 
a disease, or the likelihood of an underlying disease, in their decision-making on 
screening and treatment of disease in high-risk groups, diagnostic work-up (e.g. 
ordering another, possibly risky or expensive test), and choice of therapy. 
Traditionally, the probabilities of diagnostic and prognostic outcomes were implic-
itly assessed for such decision-making. Medicine was much more subjective than 
in the current era of “evidence-based medicine,” which can be defined as “the con-
scientious, explicit and judicious use of current best evidence in making decisions 
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about the care of individual patients.”317,  362  Evidence-based medicine applies the 
scientific method to medical practice. 160  

 Another development is that we are moving towards “shared decision-making,” 
where physicians and patients both actively participate in deciding on choices for 
diagnostic tests and therapeutic interventions. 84  For shared decision-making, ade-
quate communication about risks and benefits is a pre-requisite. 

 Clinical prediction models may provide the evidence-based input for shared 
decision-making, by providing estimates of the individual probabilities of risks and 
benefits. 249  Clinical prediction models are also referred to as clinical prediction 
rules, prognostic models, or nomograms. 351  Clinical prediction models combine a 
number of characteristics (e.g., related to the patient, the disease, or treatment) to 
predict a diagnostic or prognostic outcome. Typically, a limited number of predic-
tors is considered (say between 2 and 20). Publications with clinical prediction 
models have increased steeply over recent years (Fig.  1.1 ).    

  1.2 Statistical Modelling for Prediction  

 Prediction is primarily an estimation problem. For example: What is the risk of 
dying of this patient within 30 days after an acute myocardial infarction? Or, what 
is the expected 2-year survival rate for this patient with oesophageal cancer? 
Prediction is also about testing of hypotheses. For example, is age a predictor of 
30-day mortality after an acute myocardial infarction? How important is nutritional 
status for survival of a patient with oesophageal cancer? Or more general: what are 
the most important predictors in a certain disease? Are some predictors correlated 
with each other, such that their apparent predictive effects are explained by other 

  Fig. 1.1    Studies in PubMed with the terms “prognostic model” or “prediction model” in the title, 
published between 1970 and 2005, as a fraction of the total number of studies in PubMed (a total 
of 676,000 in 2005)       
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predictor variables? The latter question comes close to aetiologic research, where 
biases such as confounding are among the major concerns of epidemiologists . 

 Statistical models may serve to address both estimation and hypothesis testing 
questions. In the medical literature, much emphasis has traditionally been given to 
the identification of predictors. Over 60,000 papers have been published with the 
terms “predictor” or “prognostic factor” (PubMed, January 2007). It is nowadays 
widely recognized that the prognostic value of a predictor has to be shown in addi-
tion to already known, easily measurable predictors. 386  For example, the prognostic 
value of a new genetic marker would need to be assessed for additional value over 
classical, well-established predictors. 225  Such thorough evaluations are however 
still less common, and require statistical modelling. 

 Statistical models summarize patterns of the data available for analysis. In doing 
so, it is inevitable that assumptions have to be made. Some of these assumptions 
can be tested, for example, whether predictor effects work in an additive way, and 
whether continuous predictors have reasonably linear effects. Testing of underlying 
assumptions is especially important if specific claims are made on the effect of a 
predictor (Chaps. 4, 6, and 12). 

 Statistical models for prediction can be discerned in main classes: regression, clas-
sification, and neural networks. 181  The characteristics of alternative models are dis-
cussed in Chaps. 4 and 6. The main focus in this book is on regression models, which 
are the most widely used in the medical field. We consider situations where the number 
of candidate predictor variables is limited, say below 25. This is in contrast to research 
in areas such as genomics (genetic effects), proteomics (protein effects), or metabo-
lomics (metabolite effects). In these areas more complex data are generated, with 
larger numbers of candidate predictors (often > 10,000). Moreover, we assume that 
subject knowledge is available, from previous empirical studies and from experts on 
the topic (e.g. medical doctors treating patients with the condition under study). 

  1.2.1 Model Uncertainty 

 Statistical modelling to make predictions encounters various challenges, including deal-
ing with model uncertainty and limited sample size. Model uncertainty arises from the 
fact that we usually do not fully pre-specify a model before we fit it to a data set. 69, 101  
An iterative process is often followed with model checking and model modification. 
On the other hand, standard statistical methods assume that a model was pre-specified. 
In that case, parameter estimates such as regression coefficients, their corresponding 
standard errors, 95% confidence intervals, and  p -values are largely unbiased. When the 
structure of a model was at least partly based on findings in the data, bias may occur, 
and we underestimate the uncertainty of conclusions drawn from the model. 

 Fortunately, some statistical tools have become available which help to study 
model uncertainty. Especially, a statistical re-sampling procedure named “boot-
strapping” is helpful for many aspects of model development and validation. 108  The 
bootstrap hence is an important tool in prediction research (Chaps. 5 and 17).  

1.2 Statistical Modelling for Prediction 33
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  1.2.2 Sample Size 

 A sufficient sample size is important to address any scientific question with 
empirical data. First, we have to realize that the effective sample size may often be 
much smaller than indicated by the total number of subjects in a study. 174  For 
example, when we study complications of a procedure that occur with an inci-
dence of 0.1%, a study with 10,000 patients will contain only 10 events. The 
number 10 determines the effective sample size in such a study. In small samples, 
model uncertainty may be large, and we may not be able to derive reliable predic-
tions from a model. 

 Second, a large sample size facilitates many aspects of prediction research. For 
example, large-scale international collaborations are increasingly set up to allow for 
the identification of gene-disease associations. 211  For multivariable prognostic mod-
elling, a large sample size allows for selection of predictors with simple automatic 
procedures such as stepwise methods with  p <0.05 and reliable testing of model 
assumptions. An example is the prediction of 30-day mortality after an acute myo-
cardial infarction, where Lee et al. derived a prediction model with 40,830 patients 
of whom 2,850 died. 255  This example will be used throughout this book, with a 
thorough description in Chap. 22. In practice, we often have relatively small sam-
ples available. For example, a review of 31 prognostic models in traumatic brain 
injury showed that 22 were based on samples with less than 500 patients. 307  The 
main challenges are hence with the development of a good prediction model with 
a relatively small study sample. 

 Third, with small sample size we have to be prepared to make stronger model-
ling assumptions. For example, Altman illustrates the use of a parametric test 
(ANOVA) to compare 3 groups with 8, 9, and 5 patients in his seminal text 
“Practical statistics for medical research”. 8  With larger samples, we would more 
readily switch to a non-parametric test such as a Kruskal–Wallis test. With small 
sample size, we may have to assume linearity of a continuous predictor (Chap. 9) 
and no interaction between predictors (Chap. 13). We will subsequently have lim-
ited power to test deviations from these model assumptions. It hence becomes more 
important what our starting point of the analysis is. From a Bayesian viewpoint, we 
could say that our prior information becomes more important, since the information 
contributed by our study is limited. 

 Fourth, we have to match our ambitions in research questions with the effective 
sample size that is available. When the sample size is very small, we should only 
ask relatively simple questions, while more complex questions can be addressed 
with larger sample sizes. A question such as: “What are the most important predic-
tors in this prediction problem” is actually more complex than a question such as 
“What are the predictions of the outcome given this set of predictors” (Chap. 11). 
Table  1.1  lists questions on predictors (known or determined from the data?), func-
tional form (known or determined from the data?), and regression coefficients 
(known or determined from the data?) and the consequence for the required sample 
size in a study.       



  1.3 Structure of the Book  

 This book consists of four parts. Part I provides background on developing and 
applying prediction models in medicine. Part II is central for model development, 
while Part III focuses on applicability in external settings and advanced issues 
related to model modification and model extension (“updating”). Part IV is practi-
cal in nature with a detailed description of predictive modelling in two case studies, 
some lessons learned for model development, and a description of medical prob-
lems with publicly available data sets. 

  1.3.1 Part I: Prediction Models in Medicine 

 This book starts with an overview of various applications of prediction models in clini-
cal practice and in medical research (Chap. 2). Next, we note that the quality of a sta-
tistical model depends to a large extent on the design and quality of the data used in 
the analysis. A sophisticated analysis cannot salvage a poorly designed study, or poor 
data collection procedures. Several considerations are presented around the design of 
cohort studies for prognostic models, and cross-sectional studies for diagnostic models 
(Chap. 3). Various statistical techniques, each having their strengths and limitations 
can be considered for a prediction model. An overview of more and less flexible mod-
els for different types of outcomes is presented in Chap. 4. Unfortunately, prediction 
models commonly suffer from a methodological problem, which is known as “overfit-
ting.” This means that idiosyncracies in the data are fitted rather than generalizable 
patterns. 174  A model may hence not be applicable to new patients, even when the set-
ting of application is very similar to the development setting. Statistical optimism is 
discussed with possible solutions in Chap. 5. Chapter 6 discusses considerations in 
choosing between alternative models, and presents some empirical comparisons on the 
quality of predictions derived with alternative modelling techniques.  

 Table 1.1    Stages of development of regression models and implications for modelling approach 
and required sample size (see   http://e-collection.ethbib.ethz.ch/ecol-pool/incoll/incoll_102.pdf    )  
 Predictors 
known? 

 Functional 
form known? 

 Coefficients 
known?  Approach 

 Required sample 
size 

 −  −  −  Development from 
scratch 

 Very large 

 +  −  −  Specification of 
transformations 
and/or interactions 

 Large 

 +  +  −  Estimated regression 
coefficients 

 Modest 

 +  +  +  Validation and 
updating 

 Modest 
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  1.3.2 Part II: Developing Valid Prediction Models 

 The core of this book is a proposal for seven steps to consider in developing valid 
prediction models with regression analysis. We present a checklist for model devel-
opment, which is intended to give a structure to model building and validation. 

 In Chaps. 7–18 we discuss seven modelling steps.

   1.    A preliminary step is to carefully consider the prediction problem: what are the 
research questions, what is already known about predictors? Next, we consider 
the data under study: how are the predictors defined, what is the outcome of 
interest? An important issue is that missing values will occur in at least some of 
the predictors under study. We discuss and propose approaches to deal with 
missing values in Chaps. 7 and 8.  

   2.    When we start on building a prediction model, the first issue is the coding of 
predictors for a model; several choices need to be considered on categorical vari-
ables and continous variables (Chaps. 9 and 10).  

   3.    We then move to the most thorny issue in prediction modelling: how to specify 
a model (Chaps. 11 and 12). What predictors should we include, what are the 
pros and cons of stepwise selection methods, and how should we deal with 
assumptions in models such as additivity and linearity?  

   4.    Once a model is specified, we need to estimate model parameters. For regression 
models, we estimate coefficients for each predictor or combination of predictors 
in the model. We consider classical and more modern estimation methods for 
regression models (Chaps. 13 and 14). Several techniques are discussed which 
aim to limit the overfitting of a model to the available data.  

   5.    For a specified and estimated model, we need to determine the quality. Several 
performance measures are commonly used, as discussed in Chap. 15. Most rele-
vant to clinical practice is whether the model is useful; this can be quantified 
with some more novel performance measures (Chap. 16).  

   6.    Since overfitting is a central problem in prediction modelling, we need to con-
sider the validity of our model for new patients. In Chap. 17, we concentrate on 
statistical techniques to evaluate the internal validity of a model, i.e., for the 
underlying population that the sample originated from. Internal validation 
addresses statistical problems in the specification and estimation of a model 
(“reproducibility”). 222   

   7.    A final step to consider is the presentation of a prediction model. Regression 
formulas can be used, but many alternatives are possible for easier applicability 
of a model (Chap. 18).      

  1.3.3 Part III: Generalizability of Prediction Models 

 Generalizability (or external validity) of a model relates to the applicability of a 
model to a different setting. 222  External validity of a model cannot be expected if 
there is no internal validity. Steps 1–7 in Part II support the development of 



internally valid prediction models. The performance may be lower when a model 
is applied in a new setting because of genuine differences between the new setting 
and the development setting. Examples of a different setting include a hospital dif-
ferent from the development hospital, a more recent time period, and a different 
selection of patients. We systematically consider patterns of invalidity that may 
arise when externally validating a model (Chap. 19). 

 To improve predictions for a new setting, we need to consider whether we can 
make modifications and extensions to the model. Various parsimonious techniques 
are available to achieve such updating (Chap. 20). When several settings are con-
sidered, we may use more advanced updating methods, including Empirical Bayes 
methods. Moreover, we may specifically be interested in ranking of providers of 
care (“provider profiling,” Chap. 21).  

  1.3.4 Part IV: Applications 

 A central case study in this book is formed by the GUSTO-I trial. Patients in this 
trial suffered from an acute myocardial infarction. We study 30-day mortality in 
relation to various predictors. 255  Overfitting is not a concern in the full data set 
( n =40,830 patients, 2,850 died within 30 days), but modelling is more challenging 
in small parts of this data set, which are made publicly available for applying the 
concepts and techniques presented in this book. We discuss the logistic regression 
model developed from the GUSTO-I patients in Chap. 22. 

 A further case study concerns a survival problem. We aim to predict secondary 
cardiovascular events among a hospital-based cohort. The seven steps to develop a 
prediction model are systematically considered (Chap. 23). 

 Finally, we try to give some practical advice on the main issues in prediction 
modelling, and describe the medical problems used throughout the text and availa-
ble data sets (Chap. 24). 

 1.3.5 Questions and Exercises

 Each chapter ends with a few questions to test insight in the material presented. 
Furthermore, practical exercises are available from the book’s web site (  http://
www.clinicalpredictionmodels.org    ), involving work with data sets in R software 
(  http://www.cran.r-project.org    ).       
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      Chapter 2   
 Applications of Prediction Models        

  Background    In this chapter, we consider several areas of application of prediction 
models in public health, clinical practice, and medical research. We use several 
small case studies for illustration.  

  2.1 Applications: Medical Practice and Research  

 Broadly speaking, prediction models are valuable for medical practice and for 
research purposes (Table  2.1 ). In public health, prediction models may help to tar-
get preventive interventions to subjects at relatively high risk of having or develop-
ing a disease. In clinical practice, prediction models may inform patients and their 
treating physicians on the probability of a diagnosis or a prognostic outcome. 
Prognostic estimates may for example be useful for planning of remaining life-time 
in terminal disease; or give hope for recovery if a good prognosis is expected after 
an acute event such as a stroke. Classification of a patient according to his/her risk 
may also be useful for communication among physicians. A key condition for this 
type of application of a prediction model is that predictions are reliable. This means 
that when a 10% risk is predicted, on average 10% of patients with these character-
istics should have the outcome (“calibration”, Chap. 4 and 15).     

 In the diagnostic work-up, predictions can be useful to estimate the probability 
that a disease is present. When the probability is relative high, treatment is indi-
cated; if the probability is low, no treatment is indicated and further diagnostic 
testing may be considered necessary. In therapeutic decision-making, treatment 
should only be given to those who benefit from the treatment. Prognostic predic-
tions may support the weighing of harms vs. individual benefits. If risks of a poor 
outcome are relatively low, the maximum benefit will also be relatively low. Any 
harm, such as a side effect of treatment, may then readily outweigh any benefits. 
The claim of prediction models is that better decisions can be made with a model 
than without. 

 In research, prediction models may assist in the design and analysis of rand-
omized trials. Models are also useful to control for confounding variables in observational 
research, either in traditional regression analysis or with modern approaches such 
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as “propensity scores”. Several areas of application are discussed in the next 
sections.  

  2.2 Prediction Models for Public Health  

  2.2.1 Targeting of Preventive Interventions 

 Various models have been developed to predict the future occurrence of disease in 
asymptomatic subjects in the population. Well-known examples include the Framingham 
risk functions for cardiovascular disease. 487  The Framingham risk functions underpin 
several of the current policies for preventive interventions. For example, statin therapy 
is only considered for those with relatively high risk of cardiovascular disease. Similarly, 
prediction models have been developed for breast cancer, where more intensive screen-
ing or chemoprophylaxis can be considered for those at elevated risk. 130,131   

  *2.2.2 Example: Incidence of Breast Cancer 

 In 1989, Gail et al. presented a by now famous risk prediction model for developing 
breast cancer. 131  The model was based on case–control data from the Breast Cancer 
Detection Demonstration Project (BCDDP). The BCDDP recruited 280,000 women 
from 1973 to 1980 who were monitored for 5 years. From this cohort, 2,852 white 
women developed breast cancer and 3,146 controls were selected, all with complete 
risk factor information. The model includes age at menarche, age at first live birth, 

 Table 2.1    Some areas of application of clinical prediction models  

 Application area  Example in this chapter 

  Public health  

 Targeting of preventive interventions 
 Incidence of disease  Models for (hereditary) breast cancer 

  Clinical practice  

 Diagnostic work-up 
 Test ordering  Probability of renal artery stenosis 
 Starting treatment  Probability of deep venous thrombosis 

 Therapeutic decision-making 
 Surgical decision making  Replacement of risky heart valves 
 Intensity of treatment  More intensive chemotherapy in cancer patients 
 Delaying treatment  Spontaneous pregnancy chances 

  Research  
 Inclusion in an RCT  Traumatic brain injury 
 Covariate adjustment in an RCT  Primary analysis of GUSTO-III 
 Confounder adjustment with a propensity 

score 
 Statin effects on mortality 

 Case-mix adjustment  Provider profiling 
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number of previous biopsies, and number of first-degree relatives with breast cancer. 
Individualized breast cancer probabilities were calculated from information on relative 
risks and the baseline hazard rate in the general population. The calculations accounted 
for competing risks (the risk of dying from other causes). 

 The predictions were validated later on other data sets from various populations, 
with generally favorable conclusions. 83,94  Practical application of the original model 
involved cumbersome calculations and interpolations. Hence, more easily applica-
ble graphs were created to estimate the absolute risk of breast cancer for individual 
patients for intervals of 10, 20, and 30 years. 33  The absolute risk estimates have 
been used to design intervention studies, to counsel patients regarding their risks of 
disease, and to inform clinical decisions, such as whether or not to take tamoxifen 
to prevent breast cancer. 132  

 Other models for breast cancer risk include the Claus model, which is useful to 
assess risk for familial breast cancer. 74  This is breast cancer that runs in families but 
is not associated with a known hereditary breast cancer susceptibility gene. Unlike 
the Gail model, the Claus model requires the exact ages at breast cancer diagnosis 
of first or second-degree relatives as an input. 

 Some breast cancers are caused by a mutation in a breast cancer susceptibility 
gene (BRCA), referred to as hereditary breast cancer. A suspicious family history 
for hereditary breast cancer includes many cases of breast and ovarian cancers, or 
family members with breast cancers under age 50. Simple tables have been pub-
lished to determine the risk of a BRCA mutation, based on specific features of per-
sonal and family history. 127  Another model considers the family history in more 
detail (BRCAPRO 323 ). It explicitly uses the genetic relationship in families, and is 
therefore labeled a Mendelian model. Calculations are based on Bayes’ theorem. 
BRCAPRO was shown to perform at least as good as experienced genetic 
counselors. 116  

 Friedenson provides an interesting overview of risk models in breast cancer and 
their clinical implications (Table  2.2 ). 128  Various measures are possible to reduce 
breast cancer risk, including behavior (e.g. exercise, weight control, alcohol intake) 
and medical interventions (e.g. tamoxifen use).       

  2.3 Prediction Models for Clinical Practice  

  2.3.1 Decision Support on Test Ordering 

 Prediction models may be useful to estimate the probability of an underlying dis-
ease, such that we can decide on further testing. When a diagnosis is very unlikely, 
no further testing is indicated, while more tests may be indicated when the diagno-
sis is not yet sufficiently certain for decision-making on therapy. Further testing 
usually involves one or more imperfect tests (sensitivity below 100%, specificity 
below 100%). Ideally, a gold standard test is available (sensitivity=100%, specifi-
city=100%). A gold standard test is the diagnostic test that is regarded as definitive 
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in determining whether a subject has the disease. The gold standard test may not be 
suitable to apply in all subjects suspected of the disease because it is burdensome 
(e.g. invasive), or costly.  

  *2.3.2 Example: Predicting Renal Artery Stenosis 

 Renal artery stenosis is a rare cause of hypertension. The gold standard for diagnos-
ing renal artery stenosis, renal angiography, is invasive and costly. Krijnen et al. 
aimed to develop a prediction rule for renal artery stenosis from clinical character-
istics. The rule might be used to select patients for renal angiography. 243  Logistic 
regression analysis was performed with data from 477 hypertensive patients who 
underwent renal angiography. A simplified prediction rule was derived from the 
regression model for use in clinical practice. Age, sex, atherosclerotic vascular dis-
ease, recent onset of hypertension, smoking history, body mass index, presence of 
an abdominal bruit, serum creatinin concentration, and serum cholesterol level 
were selected as predictors. The diagnostic accuracy of the regression model was 
similar to that of renal scintigraphy, which had a sensitivity of 72% and a specificity 
of 90%. The conclusion was that this clinical prediction rule can help to select 

 Table 2.2    Risk factors in four prediction models for breast cancer: two for breast cancer inci-
dence, two for presence of mutation in BRCA1 or BRCA2 genes  128

 Risk factor  Gailmodel  Clausmodel  Myriad tables  BRCAPRO model 

 Woman’s personal information 
    Age  +  +  +  + 
    Race/ethnicity  + 
    Ashkenazi Jewish  +  + 
    Breast biopsy  + 
    Atypical hyperplasia  + 
 Hormonal factors 
    Age at menarche  + 
    Age at first live birth  + 
    Age at menopause  + 
 Family history 
    1st degree relatives with 

breast cancer 
 +  +  Age <50/≥50  Age for all affected 

    2nd degree relatives with 
breast cancer 

 +  Age <50/≥50  Age for all affected 

    1st or 2nd degree with 
ovarian cancer 

 +  Age for all affected 

    Bilateral breast cancer  + 
    Male breast cancer  + 
 Outcome predicted  Incident breast 

cancer 
 BRCA 1/2 mutation 
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patients for renal angiography in an efficient manner by reducing the number of 
angiographic procedures without the risk for missing many renal artery stenoses. 
The modelling steps summarized here will be described in more detail in Part II. 

 An interactive Excel program is available to calculate diagnostic predictions for 
individual patients. Figure  2.1  shows the example of a 45-year-old male with recent 
onset of hypertension. He smokes, has no signs of atherosclerotic vascular disease, a 
BMI<25, no abdominal bruit is heart, serum creatinin is 112 µmol/L, and serum 
cholesterol is not elevated. According to a score chart (see Chap. 18), the sum score 
was 11, corresponding to a probability of stenosis of 25%. According to exact logistic 
regression calculations, the probability was 28% [95% confidence interval 17–43 %].   

  2.3.3 Starting Treatment: the Treatment Threshold 

 Decision analysis is a method to formally weigh pros and cons of decisions. For 
starting treatment after diagnostic work-up, a key concept is the treatment thresh-
old. This threshold is defined as the probability where the expected benefit of treat-
ment is equal to the expected benefit of avoiding treatment. If the probability of the 
diagnosis is lower than the threshold, no treatment is the preferred decision, and if 
the probability of the diagnosis is above the threshold, treatment is the preferred 
decision. 325  The threshold is determined by the relative weight of false-negative vs. 
false-positive decisions. If a false-positive decision is much less important than a 
false-negative decision, the threshold is low. For example, a 1:100 ratio leads to a 
1% threshold. On the other hand, if false-positive decisions confer serious risks, the 
threshold should be higher. Further details on the threshold concept are beyond the 
scope of this book, but the issue returns when we discuss the performance of pre-
diction models with decision curves 469  (Chap. 16). 

1
2

3   Predictor
4   Smoking   
5   Current age
6   Gender
7   Atherosclerotic vascular disease* 
8   Onset of hypertension within 2 years
9   Body mass index >= 25 kg/m2

10  Presence of abdominal bruit
11  Serum creatinine concentration
12  Serum cholesterol level > 6.5 mmol /L**

17  Sumscore

18
19  Predicted probability of renal artery stenosis
20  Confidence interval

21   *  femoral or carotid bruit, angina pectoris, claudication, myocardial infarction, CVA, or vascular surgery
22   ** or cholesterol lowering therapy

A B C D E F G H

Prediction rule for renal artery stenosis

Value Score
former or current =1 1 -
years 45 4.4
male = 1 1 0
yes = 1 0 0
yes = 1 1 1
yes = 1 0 2
yes = 1 0 0
µmol/L 112 4.1
yes = 1 0 0

11

Formula Score chart
28% 25%

17% - 43% See figure for graphical illustration
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  Fig. 2.1    Prediction rule for renal artery stenosis as implemented in an Excel spreadsheet       
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 Note that a single treatment threshold applies only when all diagnostic work-up 
is completed, including all available tests for the disease. If more tests can still be 
done, a more complex decision analysis needs to be performed to determine the 
optimal choices on tests and treatments. We then have two thresholds: a low thresh-
old between no treatment and further testing; and a higher threshold between fur-
ther testing and treatment. This concept is illustrated with the diagnosis of deep 
venous thrombosis using ultrasound.  

  *2.3.4 Example: Probability of Deep Venous Thrombosis 

 A systematic review of 54 studies indicated that individual clinical features are of 
limited value in diagnosing deep venous thrombosis (DVT). Characteristics such as 
previous DVT, malignant disease, recent immobilization, and recent surgery only 
modestly increased the probability of DVT. 144  A clinical prediction rule developed 
by Wells et al. combines nine signs, symptoms and risk factors to categorize 
patients as having low, moderate or high probability of DVT. 482  This rule stratifies 
a patient’s probability of DVT much better than individual findings. 144  

 Patients who are found to be at low pretest probability (“score ≤ 1”) can have 
DVT safely excluded (1) on the basis of a single negative ultrasound result, or (2) 
a negative plasma D-dimer test. Patients who are at increased pretest probability 
(“score > 1”) require both a negative ultrasound result, and a negative D-dimer test 
to exclude DVT. 481  A possible diagnostic algorithm is shown in Fig.  2.2 . 369    

  2.3.5 Intensity of Treatment 

 Prognostic estimates are also important to guide decision-making once a diagnosis 
is made. Decisions include, for example, more or less intensive treatment approaches. 
The framework for decision-making based on prognosis is very similar to that 
based on diagnostic probabilities as discussed before. 

 A treatment should only be given to a patient if a substantial gain is expected, 
which exceeds any risks and side effects (Fig.  2.3 ). Glasziou and Irwig illustrate 
this approach with a case study in anticoagulants and risk of atrial fibrillation. 138  
Anticoagulants are very effective in reducing the risk of stroke in patients with non-
rheumatic atrial fibrillation. However, using these drugs increases the risk of seri-
ous bleedings. Hence, the risk of stroke has to outweigh the bleeding risk before 
treatment is considered.  

 The specific calculation of the net benefit of a treatment requires various steps: 138 

   (1)     Estimate benefit and harm: randomized controlled trials (RCTs) may often 
provide the most reliable source for relative risk estimates for both benefits and 
harms of treatment.  
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  Fig. 2.2    A possible diagnostic algorithm for patients suspected of DVT with D-dimer testing and 
ultrasound imaging 369        

Determination of pretest
probability of DVT 

DVT unlikely
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  Fig. 2.3    Graphical illustration of weighing benefit and harm of treatment. Benefit of treatment 
(reduction in absolute risk) increases with cancer-specific mortality (relative risk set to 0.7). Harm 
of treatment (excess absolute risk, e.g. due to toxicity of treatment) is assumed to be constant at 
4%. Net benefit occurs only when the cancer-specific mortality given standard treatment is above 
the threshold of 11% 451        
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   (2)      Check assumptions of relative benefit and absolute harm: subgroup effects of 
treatment may exist, both for benefit and harm, which invalidate the simple 
decision-analytic model in Fig.  2.3 .  

   (3)     Weigh up benefit and harm: If the assumptions of relative risk reduction and 
constant harm are fulfilled the predicted benefit needs to be weighed up against 
the potential harm. This results in a graph as Fig.  2.3 , with actual numbers on 
the  Y -axis.  

   (4)     Predict patient’s risk: To identify patients who should expect benefit to be 
greater than harm, we need to predict each patient’s risk. Prognostic models are 
important for this step.      

  *2.3.6 Example: Defining a Poor Prognosis Subgroup in Cancer 

 As an example we consider high-dose chemotherapy (HD-CT) as first line treat-
ment to improve survival of patients with non-seminomatous testicular cancer. 451  
Several non-randomized trials reported a higher survival for patients treated with 
HD-CT as first line treatment (including etoposide, ifosfamide, cisplatin) with 
autologous stem cell support, compared to standard-dose (SD) chemotherapy 
(including bleomycin, etoposide, cisplatin). However, HD-CT is related to a higher 
toxicity, both during treatment (e.g. granulocytopenia, anaemia, nausea/vomiting, 
diarrhoea), shortly after treatment (e.g. pulmonary toxicity), and long after treat-
ment (e.g. leukemia, cardiovascular disease). HD-CT should therefore only be 
given to patients with a relatively poor prognosis. 

 We can specify the threshold for such a poor prognosis group by weighing 
expected benefit against harms. Benefit of HD-CT treatment is the reduction in 
absolute risk of cancer mortality. Benefit increases linearly with risk of cancer 
mortality, if we assume that patients with the highest risk have most to gain. Harm 
is the increase in absolute risk of treatment mortality (e.g. related to toxicity) due 
to treatment. The level of harm is the same for all patients, assuming that the toxic-
ity of treatment is independent of prognosis. Patients are candidates for more 
aggressive treatment when their risk of cancer mortality is above the threshold, i.e. 
when benefit is higher than harm (Fig.  2.3 ).  

  2.3.7 Cost-Effectiveness of Treatment 

 Cost-effectiveness of treatment also directly depends on prognosis. Treatments may 
not be cost-effective if the gain is small (for patients at low risk), and the costs high 
(e.g. for all patients the same drug costs are made). For example, statin therapy should 
only be given to those at increased cardiovascular risk. 157  And more aggressive throm-
bolysis should only be used in those patients with an acute myocardial infarction 
(AMI) who are at increased risk of 30-day mortality. 63  Many other examples can be 
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found, where the relative benefit of treatment is assumed to be constant across various 
risk groups, and the absolute benefit hence increases with higher risk. 

 Another approach is to search for differential treatment effects among subgroups 
of patients. The assumption of a fixed relative benefit is then relaxed. Some patients 
respond well to a certain treatment and others do not. Patient characteristics such 
as age, or the specific type of disease, may interact with treatment response. Effects 
of drugs are affected by the drug metabolism, which is, e.g. mediated by cyto-
chrome P450 enzymes and drug transporters (P-glycoprotein). 103  Research in the 
field of pharmacogenomics aims to further understand the relation between an 
individual patient’s genetic make-up (genotype) and the response to drug treatment, 
such that response can better be predicted. 45  Cost-effectiveness will vary depending 
on the likelihood of response to treatment .  

  2.3.8 Delaying Treatment 

 In medical practice, prediction models may provide information to patients and 
their relatives, such that they have realistic expectations of the course of disease. 
A conservative approach can sometimes be taken, which means that the natural 
history of the disease is followed. For example, many men may opt for a watchful 
waiting strategy if a probably unimportant (“indolent”) prostate cancer is 
detected. 227,424  Or women may be reassured on their pregnancy chances if they have 
relatively favourable characteristics.  

  *2.3.9 Example: Spontaneous Pregnancy Chances 

 Several models have been published for the prediction of spontaneous pregnancy 
among subfertile couples. 76,111,393  A “synthesis model” was developed for predicting 
spontaneous conception leading to live birth within 1 year after start of follow-up 
based on data from three previous studies. 205  This synthesis models hence had a 
broader empirical basis than the original models. The predictors included readily 
available characteristics such as the duration of subfertility, women’s age, primary 
or secondary infertility, percentage of motile sperm, and whether the couple was 
referred by a general practitioner or by a gynaecologist (referral status). The chance 
of spontaneous pregnancy within 1 year can easily be calculated. First a prognostic 
index score is calculated. The score corresponds to a probability, which can be read 
from a graph (Fig.  2.4 ).  

 For example, a couple with a 35-year-old woman (7 points), 2-year duration of 
infertility (3 points), but with one child already (secondary infertility, 0 points), 
normal sperm motility (0 points), and directly coming to the gynecologist (second-
ary care couple, 0 points), has a total score of 10 points. This corresponds to a 
chance of becoming pregnant of 42%. 
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 Most couples who have tried for more than 1 year to become pregnant demand 
immediate treatment. 205  In their judgment, further waiting is senseless because they 
consider themselves as infertile. Moreover, the psychological pressure caused by 
feelings of uncertainty and frustration may increase a desire for immediate action. 
In addition, most couples overestimate the success of assisted reproduction, such as 

 Subfertility  
 Score  

 Woman’s age 
(years) 

 21–25  26–31  32–35  36–37  38–39  40–41 

 Score   0    3    7    10    13    15   …….. 
 Duration of 

subfertility 
(yrs) 

 1  2  3–4  5–6  7–8 

 Score   0    3    7    12    18   …….. 
 Type of 

subfertility 
 Secondary  Primary 

 Score   0    8  
 Motility (%)  ≥60  40–59  20–39  0–19 

 Score   0    2    4    6   …….. 
 Referral 

status 
 Secondary 

care 
 Tertiary care 

 Score   0    4    ……..  
 Prognostic 

index score 
(Sum) 

 …….. 

  Fig. 2.4    Score chart to estimate the chance of spontaneous pregnancy within 1 year after intake 
resulting in live birth.  Upper part : calculating the score;  lower part : predicting 1-year pregnancy 
rate. 205  Procedure: circle the subfertility score for each of the variables, transfer to rightmost col-
umn and add to get the prognostic index score. Insert the score in the figure below to read off the 
chance of spontaneous pregnancy within 1 year resulting in live birth       
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in vitro fertilization, and underestimate the related risks. The estimations of spon-
taneous pregnancy leading to live birth can be a tool in advising these couples in 
the following manner. If the chances are low, e.g. below 20%, there is no point in 
further waiting, and advising the couple to quickly undergo treatment is realistic. In 
contrast, if the chances are favourable, e.g. above 40%, the couple should be 
strongly encouraged to wait for another year, because there is a substantial chance 
of success.     

  2.3.10 Surgical Decision-Making 

 In surgery, it is typical that short-term risks are taken to reduce long-term risks. 
Short-term risks include both morbidity and mortality. The surgery aims to reduced 
long-term risks that would occur in the natural history. Acute situations include sur-
gery for trauma, and for acute conditions such as a ruptured aneurysm (a widened 
artery). Elective surgery is done for many conditions, and even for such planned and 
well-prepared surgery, the short-term risk and burden are never zero. In oncology, 
increased surgical risks typically lead to the choice for less risky treatments, e.g. 
chemotherapy or radiation, or palliative treatments. For example, in many cancers, 
older patients and those with comorbidity do less often undergo surgery. 6,169,207  

 Many prognostic models have been developed to estimate short-term risks of 
surgery, e.g. 30-day mortality. These models vary in complexity and accuracy. 
Also, long-term risks have been modeled explicitly for various diseases, although 
it is often hard to find a suitable group of patients for the natural course of a disease 
without surgical intervention. As an example, we consider a surgical decision prob-
lem on replacement of risky heart valves (Fig.  2.5 ). Prognostic models were used 
to estimate surgical mortality, individualized risk of the specific valve, and individ-
ual survival. 37,415,449    

  *2.3.11 Example: Replacement of Risky Heart Valves 

 Björk–Shiley convexo–concave (BScc) mechanical heart valves were withdrawn 
from the market in 1986 after reports of mechanical failure (outlet strut fracture). 
Worldwide, approximately 86,000 BScc valves had been implanted by then. 
Fracture of the outlet strut occurs suddenly and is often lethal. 448  Therefore, prophy-
lactic replacement by another, safer valve, may be considered to avert the risk of 
fracture. Decision analysis is a useful technique to weigh the long-term loss of life 
expectancy due to fracture against the short-term surgical mortality risk (Fig.  2.5 ). 
The long-term loss of life expectancy due to fracture depends on three aspects:
   1.    The annual risk of fracture, given that a patient is alive  
   2.    The fatality of a fracture  
   3.    The annual risk of death (survival).     
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 This long-term loss of life expectancy has to be weighed against the risk of sur-
gical mortality. If the patient survives surgery, the fracture risk is assumed to be 
reduced to zero. Predictive regression models were developed for each aspect, 
based on the follow-up experience from 2,263 patients with BScc valves implanted 
between 1979 and 1985 in The Netherlands. 223,415  We considered 50 fractures that 
had occurred during follow-up and 883 patients who died (excluding fractures). 

 The risk of fracture is the key consideration in this decision problem. But the low 
number of fractures makes predictive modelling challenging, and various variants 
of models have been proposed. A relatively detailed model included four traditional 
predictors (age, position (aortic/mitral), type (70° opening angle valves had higher 
risks than 60° valves), size (larger valves had higher risks)), and two production 
characteristics. 415  The fatality of a fracture depended on the age of the patient, and 
the position (higher fatality in aortic position). Survival was related to age, gender, 
position of the valve, and also to time since implantation. This meant that patients 
of a given age (e.g. 50 years), had higher risks when the implantation of the valve 
was longer ago (e.g. implantation at age 35 vs 45 years). Finally, surgical risk was 
modelled in relation to age and position of the valve. This was a relatively rough 
approach, since many more predictors are relevant, and a later prediction model 
was much more detailed. 454  

 The results of this decision analysis depended strongly on age: replacement was 
only indicated for younger patients, who have lower surgical risks, and a higher 
long-term impact of fracture because of longer survival (Table  2.3 ). Also, the posi-

Mortality

p(surgical mortality)
Surgery

p(survival)

Patient

No fracture
with BScc
valve

Fatality
No surgery

p(fatality)
Fracture

p(Fracture) Survive

Surgical mortality

Survival with new valve

Survival with old valve

Fracture mortality

Survival with new valve

  Fig. 2.5    Schematic representation of surgical decision-making on short-term vs. long-term risk 
in replacement of a risky BScc heart valve.  Square  indicates a decision,  circle  a chance node. 
Predictions (‘p’) are needed for four probabilities: surgical mortality, long-term survival, fracture, 
and fatality of fracture       
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tion of the valve affects all four aspects (surgical risk, survival, fracture, fatality). 
Before, results were presented as age-thresholds for eight subgroups of valves: by 
position (aortic/mitral), by type (70°/60°), and by size (large/small). 449  The more 
recent analysis was so detailed that individualized calculations were necessary, 
which were performed for all patients who were alive in The Netherlands in 1998. 
The recommendations from this decision analysis were rather well followed in 
clinical practice. 455        

  2.4 Prediction Models for Medical Research  

 In medical research, prediction models may serve several purposes. In experimental 
studies, such as a randomized controlled trial (RCT), predictive baseline character-
istics may assist in the inclusion and stratification of patients, and improve the sta-
tistical analysis. In observational studies, adequate controlling for confounding 
factors is essential. 

  2.4.1 Inclusion and Stratification in an RCT 

 In a RCT, prognostic estimates may be used for selection of subjects for the study. 
Traditionally, a set of inclusion and exclusion criteria is applied to define the subjects 
for the RCT. Some criteria aim to create a more homogeneous group according to 
expected outcome. Traditionally, all inclusion criteria have to be fulfilled, and none 
of the exclusion criteria. Alternatively, some prognostic criteria can be combined in 
a prediction model, with selection based on individualized predictions. This leads 
to a more refined selection. 

 Table 2.3    Patient characteristics used in the decision analysis of replacement of risky heart 
valves 415   

 Characteristic  Surgical risk  Survival  Fracture 
 Fatality
fracture 

 Patient related 
    Age (years)  +  +  +  + 
    Sex (male/female)  + 
    Time since implantation (years)  + 
 Valve related 
    Position (aortic/mitral)  +  +  +  + 
    Opening angle (60°/70°),  + 
    Size (<29 mm or >=29 mm)  + 
    Production characteristics  + 
 Type of prediction model  Logistic 

regression 
 Poisson 

regression 
 Poisson 

regression 
 Logistic 

regression 
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 Stratification is often advised in RCTs for the main prognostic factors. 18,338,496  In 
this way, balance is obtained between arms of a trial with respect to baseline progno-
sis. This may facilitate simple, direct comparisons of treatment results, especially for 
smaller RCTs, where some imbalance may readily occur. Prediction models may 
refine stratification of patients, especially when many prognostic factors are known.  

  *2.4.2 Example: Selection for TBI Trials 

 As an example, we consider the selection of patients for RCTs in traumatic brain 
injury (TBI). Patients above 65 years of age and those with non-reacting pupils are 
often excluded because of a high likelihood of a poor outcome. Indeed we find a 
higher than 50% mortality at 6-month follow-up in patients fulfilling either criterion 
(Table  2.4 ). Hence, we can simply select only those less than 65 years with at least 
one reacting pupil (Table  2.5 , part A). However, we can use a prognostic model for 
more efficient selection that inclusion based on separate criteria. A simple logistic 
regression model with “age” and “pupils” can be used to calculate the probability of 
mortality in a more detailed way. If we aim to exclude those with a predicted risk 
over 50%, this leads to an age limit of 30 years for those without any pupil reaction, 
and an age limit of 76 years for those with any pupil reaction (Table  2.5 , part B). So, 
patients under 30 years of age can always be included, and patients between 65 and 
75 years can be included if they have at least one reacting pupil (Table  2.5 ).          

 Table 2.4    Analysis of outcome in 7,143 patients with severe moderate traumatic brain injury 
according to reactive pupils and age dichotomized at age 65 years 276   

 >= 1 Reactive pupil  Non-reactive pupils 

 <65  >=65 years  <65  >=65 years 
 6-month 

mortality 
 926/5101 (18%)  159/284 (56%)  849/1644 (52%)  97/114 (85%) 

 Table 2.5    Selection of patients with two criteria (age and reactive pupils) in a traditional way (A) 
and according to a prognostic model (probability of 6-month mortality < 50%, B)  

 A: Traditional 
selection 

 B: Prognostic 
selection 

 < 65  > = 65 years  <30  30–75  > = 76 years 
 Pupillary  No reactivity  Exclude  Exclude  Include  Exclude  Exclude 

 reactivity  >=1 pupil  Include  Exclude  Include  Include  Exclude 
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  2.4.3 Covariate Adjustment in an RCT 

 Even more important is the role of prognostic baseline characteristics in the analy-
sis of an RCT. The strength of randomization is that comparability is created 
between treated groups both with respect to observed  and unobserved  baseline 
characteristics (Fig.  2.6 ). No systematic confounding can hence occur in RCTs. But 
some observed baseline characteristics may be strongly predictive of outcome. 
Adjustment for such covariates has several advantages: 133,182,188,190,339,348 

   1.    To reduce any distortion in the estimate of treatment effect that occurred by ran-
dom imbalance between groups  

   2.    To improve the precision of the estimated treatment effect  
   3.    To increase the statistical power for detection of a treatment effect      

 Remarkably, covariate adjustment works differently for linear regression models 
and generalized linear models (e.g. logistic, Cox regression, Table  2.6 ).      

   1.    For randomized clinical trials the randomization guarantees that the bias is zero 
a priori, both for observed and unobserved baseline characteristics. However, 
random imbalances may occur, generating questions such as: What would have 
been the treatment effect had the two groups been perfectly balanced? We may 
think of this distortion as a bias a posteriori, since it affects interpretation simi-
larly as in observational epidemiological studies. 

 Regression analysis is an obvious technique to correct for such random imbal-
ances. When no imbalances have occurred for predictors considered in a regression 
model, the adjusted and unadjusted estimates of the treatment effect would be 
expected to be the same. This is indeed the case in linear regression analysis. 
Remarkably, in generalized linear models such as logistic regression, the adjusted and 
unadjusted estimates of a treatment effect are not the same, even when predictors are 

  Fig. 2.6    Schematic representation of the role of base-
line characteristics in an RCT. By randomization, there 
is no systematic link between baseline characteristics 
and treatment. Baseline characteristics are still impor-
tant, since they are prognostic for the outcome       

Treatment Outcome

Baseline
characteristics 

Randomize

 Table 2.6    Comparison of adjustment for predictors in linear and generalized linear models (e.g. 
logistic regression) in estimation and testing of treatment effects, when predictors are completely 
balanced  

 Method  Effect estimate  Standard error  Power 

 Linear model  Identical  Decreases  Increases 
 Generalized linear model  Further from zero  Increases  Increases 
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completely balanced 133  (see Questions 2.3 and 22.2). Adjusted effects are expected to 
be further from zero (neutral value, OR further from 1). This phenomenon is referred 
to as a “stratification effect”, and does not occur with linear regression. 403   

   2.    With linear regression, adjustment for important predictors leads to an improve-
ment in precision of the estimated treatment effect, since part of the variance in 
the outcome is explained by the predictors. Contrary, in generalized linear mod-
els such as logistic regression, the standard error of the treatment effect always 
increases with adjustment. 348   

   3.    In linear regression, adjusted analyses provide more power to the analysis of 
treatment effect, since the standard error of the treatment effect is smaller. For a 
generalized linear model such as logistic regression, the effect of adjustment on 
power is not so straightforward. It has however been proven that the expected 
value of the treatment effect estimate increases more than the standard error. 
Hence, the power for detection of a treatment effect is larger in an adjusted 
logistic regression analysis compared to an unadjusted analysis. 348       

  2.4.4 Gain in Power by Covariate Adjustment 

 The gain in power by covariate adjustment depends on the correlation between the 
baseline covariates (predictors) and the outcome. For continuous outcomes, this 
correlation can be indicated by Pearson’s correlation coefficient ( r ). Pocock et al. 
showed that in the continuous outcome situation, the sample size can be reduced 
with 1 − r 2 , to achieve the same statistical power with a covariate adjusted analysis 
as an unadjusted analysis. 339  A very strong predictor may have  r =0.7 ( r  2  50%), e.g. 
a baseline covariate of a repeated measure such as blood pressure, or a question-
naire score. The required number of patients is then roughly halved. The saving is 
less than 10% for  r =0.3 ( r  2  9%). 339  

 Similar results have been obtained in empirical evaluations with dichotomous 
outcomes, where Nagelkerke’s  R  2   309  was used to express the correlation between 
predictor and outcome. 188,190,403  The reduction in sample size was slightly less than 

 Table 2.7    Illustration of reduction in sample size with adjustment for baseline covariates with 
dichotomous outcomes  

 Application area  Correlation baseline–outcome  Reduction in sample size 

 Acute MI: 30-day mortality 403  
   Age adjustment  R 2  13%  12% 
   17 predictor adjustment  R 2  25%  19% 
 Traumatic brain injury: 

6-month mortality 189  
   3 predictor model  R 2  30%  25% 
   7 predictor model  R 2  40%  30% 
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1 −  R  2  in simulations for mortality among acute MI patients 403  and among TBI 
patients 189  (Table  2.7 ).      

  *2.4.5 Example: Analysis of the GUSTO-III Trial 

 The GUSTO-III trial considered patients with an acute myocardial infarction. 4  The 
outcome was 30-day mortality. The protocol pre-specified a prognostic model for 
the primary analysis of the treatment effect. This model combined age, systolic 
blood pressure, Killip class, heart rate, infarct location, and age-by-Killip-class inter-
action. These predictors were previously found to comprise 90% of the predictive 
information of a more complex model for 30-day mortality in the GUSTO-I trial. 255  
A review of RCTs published in the major medical journals after the year 2000 shows 
that covariate adjustment is used in approximately 50% of the cases. 339   

  2.4.6 Prediction Models and Observational Studies 

 Confounding is the major concern in epidemiological analyses of observational 
studies. When treatments are compared, groups are often quite different because of 
a lack of randomization. Subjects with specific characteristics are more likely to 
have received a certain treatment than other subjects (“indication bias”, Fig.  2.7 ). If 
these characteristics also affect the outcome, a direct comparison of treatments is 
biased, and may merely reflect the lack of initial comparability (“confounding”). 
Instead of treatment, many other factors can be investigated for their causal effects. 
Often, randomization is not possible, and observational studies are the only possi-
ble design. Dealing with confounding is an essential step in such analyses.  

  Fig. 2.8    Schematic representation of adjustment for 
baseline characteristics in an observational study. By 
adjustment, we aim to correct for the systematic link 
between observed baseline characteristics and outcome, 
hence answering the question what the treatment effect 
would be if observed baseline characteristics were simi-
lar between treatment groups       

  Fig. 2.7    Schematic representation of confounding in an 
observational study. Baseline characteristics act as con-
founders since they are related to the treatment and to 
the outcome       

Treatment Outcome

Baseline
characteristics 

Treatment Outcome

Observed
baseline
characteristics 

Adjust
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 Regression analysis is a commonly used method to control for imbalances 
between treatment groups, e.g. with logistic or Cox regression. 235  Many baseline 
characteristics can be simultaneously adjusted for (Fig.  2.8 ). Similarly, regression 
analysis can be used to control for confounders in aetiologic research.   

  2.4.7 Propensity Scores 

 A problem arises when the outcome is relatively rare. Constructing a regression 
model with many predictors is then problematic. This may lead to biased and inef-
ficient estimates of the difference between groups in the adjusted analysis. 66  An 
alternative in the setting of rare outcomes is to use a propensity score. 55  The pro-
pensity score defines the probability that a subject receives a particular treatment 
(“Tx”) given a set of confounders: p(Tx | confounders). For calculation of the pro-
pensity score, the confounders are usually used in a logistic regression model to 
predict the treatment, without including the outcome. 60,359  The propensity score is 
subsequently used in a second stage as a summary confounder (Fig.  2.9 ). 
Approaches in this second stage are matching on propensity score, stratification of 
propensity score (usually by quantile), and inclusion of the propensity score with 
treatment in a regression model for the outcome. 89   

 Empirical comparisons provided no indication of superiority of propensity score 
methods over conventional regression analysis for confounder adjustment. 381,429  
Simulation studies however suggest a benefit of propensity scores in the situation 
of few outcomes relatively to the number of confounding variables. 66   

  *2.4.8 Example: Statin Treatment Effects 

 Seeger et al. investigated the effect of statins on the occurrence of acute myocardial 
infarction (AMI). 378  They studied members of a Community Health Plan with a 
recorded LDL>130 mg dl −1  at any time between 1994 and 1998. Members who ini-
tiated therapy with a statin were matched using propensity scores to members who 
did not initiate statin therapy. The propensity score predicted the probability of sta-

  Fig. 2.9    Schematic representation of propensity 
score adjustment for baseline characteristics in 
an observational study. The propensity score esti-
mates the probability of receiving treatment. By 
subsequent adjustment for the propensity score, 
we mimic an RCT, since we removed the sys-
tematic link between baseline characteristics and 
treatment. We can however only include 
observed baseline characteristics, and have no 
control over unobserved characteristics       

Treatment Outcome

Observed
baseline
characteristics 

Propensity score adjustment 
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tin initiation. Scores were estimated using a logistic regression model that included 
52 variables and 6 quadratic terms (Table  2.8 ). Statin initiators were matched to a 
noninitiator within a 0.01 caliper of propensity. Initiators for whom no suitable 
noninitiator could be found were excluded, leaving 2,901 matched initiators out of 
4,144 initiators (70%). The 4,144 statin initiators had a higher prevalence of estab-
lished coronary heart disease risk factors than did unmatched noninitiators. The 
follow-up of these unmatched cohorts identified 325 AMIs in the statin initiator 
group and 124 in the noninitiator group (hazard ratio 2.1, 95% confidence interval 
1.5–3.0). The propensity score-matched cohorts (2 ×  n =2,901) were very similar 
with respect to 51 of the 52 baseline characteristics. There were 77 cases of AMI 
in statin initiators compared with 114 in matched non-initiators (hazard ratio 0.69, 
95% confidence interval 0.52–0.93). The authors hence conclude that statin use in 
the members of this Community Health Plan was beneficial on the occurrence of 
AMI, but warn that predictors that are not part of the model may remain unbalanced 
between propensity score matched cohorts, leading to residual confounding.      

  2.4.9 Provider Profiling 

 Another area of application of prediction models is in the comparison of outcomes 
from different hospitals (or other providers of care, “provider profiling”). 47  The 
quality of health care providers is being compared by their outcomes, which are 
considered as performance indicators. Simple comparisons between providers may 
obviously be biased by differences in case-mix; for example, academic centers may 
see more severe patients, which accounts for poorer outcome on average. Prediction 
models are useful for case-mix adjustment in such comparisons.  

  *2.4.10 Example: Ranking Cardiac Outcome 

 New York State was among the first to publicly release rankings of outcome of coro-
nary artery bypass surgery by surgeon and hospital. Such cardiac surgery report 
cards have been criticized because of their methodology. 136  Adequate risk adjust-
ment is nowadays better possible with sophisticated prediction models. An example 
is a model published by Krumholz et al., who present a prediction model for 30-day 
mortality rates among patients with AMI. 245  The model used information from 

 Table 2.8    The effect of statins on the occurrence of acute myocardial infarction 378   

 Confounders   N  with AMI  HR [95% CI] 

 Unadjusted  –  325 vs. 124  2.1 [1.5–3.0] 
 Propensity score 

adjusted 
 52 main effects, 6 

quadratic terms 
 77 vs. 114  0.69 [0.52–0.93] 



3030 2 Applications of Prediction Models

administrative claims and aimed to support profiling of hospital performance. They 
analyzed 140,120 cases discharged from 4,664 hospitals in 1998. They compared the 
model from claims data with a model using medical record data and found high 
agreement. They also found adequate stability over time (data from years 1995 to 
2001). The final model included 27 variables and had an area under the receiver 
operating characteristic curve of 0.71. The authors conclude that this administrative 
claims-based model is as adequate for profiling hospitals as a medical record model. 
Chapter 21 provides a more in-depth discussion of this research area.   

  2.5 Concluding Remarks  

 We have discussed several areas of potential application of prediction models, 
including public health (targeting of preventive interventions), clinical practice 
(diagnostic work-up, therapeutic decision making), and research (design and analysis 
of RCTs, confounder adjustment in observational studies). More types of applica-
tion can probably be thought of. Obtaining predictions from a model has to be sepa-
rated from obtaining insights in the disease mechanisms and patho-physiological 
processes. Such insights are related to the estimated effects of predictors in a 
model. Often, prediction models serve the latter purpose too, but the primary aim 
considered in this book is outcome prediction.  



  Questions   

   2.1    Examples of applications of prediction models
   (a)     What is a recent application of a prediction model that you encountered? 

Search PubMed [  http://www.ncbi.nlm.nih.gov/sites/entrez    ] if nothing comes 
to mind.  

   (b)     How could you use a prediction model in your own research or in your clinical 
practice?      

   2.2    Cost-effectiveness 
 How could prediction models contribute to targeting of treatment and to 
increasing cost-effectiveness of medical care?  

   2.3    Covariate adjustment in an RCT 
 What are the purposes of covariate adjustment in an RCT? Explain and distin-
guish between logistic and linear regression.  

   2.4    Propensity score
   (a)    What is the definition of a propensity score?  
   (b)     Explain the difference between adjustment for confounders through regression 

analysis and through a propensity score.  
   (c)     When is propensity score specifically appropriate? See papers by Braiman 

and by Cepeda. 55,66                 

Questions 31



   Chapter 3   
 Study Design for Prediction Models        

  Background   In this chapter, we consider several issues in the design of studies for 
prediction research. These include the selection of subjects or patients for a cohort 
study, strengths and limitations of case series from a single center, from registries, 
or prospective trials. We further discuss issues in choosing predictors and outcome 
variables for prediction models. An important question is often how large a study 
needs to be for sufficient statistical power. Power considerations are given for 
studying effects of specific predictors, and for developing a prediction model that 
can provide reliable predictions. We use several case studies for illustration.    

  3.1 Study Design  

 Prognostic studies are inherently longitudinal in nature. They are most often performed 
in cohorts of patients, who are followed over time for an outcome to occur. The 
cohort is defined by the presence of one or more particular characteristics, e.g. hav-
ing a certain disease, living in a certain place, having a certain age, or simply being 
born alive. For example, we may follow a cohort of patients with an acute myocar-
dial infarction for long-term mortality according to ECG characteristics. 335  

 Diagnostic studies are most often designed as a cross-sectional study, where predic-
tive patient characteristics are related to an underlying diagnosis. The study group is 
defined by the presence of a particular symptom or sign that makes the subject suspected 
of having a particular (target) disease. Typically, the subjects undergo the index test and 
subsequently a reference test to establish the “true” presence or absence of the target 
disease, over a short time span. For example, we may aim to diagnose those with an 
acute myocardial infarction among patients presenting at an emergency department. 142   

  3.2 Cohort Studies for Prognosis  

 Several types of cohort studies can be used for prognostic modelling. The most 
common type may be a single-center retrospective cohort study (Table  3.1 ). In this 
case, patients are identified from hospital records between certain dates, for  example, 

E.W. Steyerberg, Clinical Prediction Models, 3333
DOI:10.1007/978-0-387-77244-8_3, © Springer Science + Business Media, LLC 2009
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those diagnosed between January 1, 1997, and December 31, 2003. These patients 
were followed over time for the outcome, but the investigator looks back in time 
(hence we may use the label “retrospective study” 463 ).     

  3.2.1 Retrospective Designs 

 Strengths of a retrospective study design include its simplicity and feasibility. It 
is a design with relatively low costs, since patient records can often easily be 
searched, especially with modern hospital information systems or electronic 
patient records. A limitation is the correct identification of patients, which has to 
be done in retrospect. If some information is missing, or was incorrectly recorded, 
this may lead to a selection bias. Similarly, the recording of predictors has to have 
been reliable to be useful for prediction modelling. Finally, the outcome has to be 
reliable. This may be relatively straightforward for outcomes such as survival, 
where some deaths will be known from hospital records. But additional confirma-
tion of vital status may often be required from nationwide statistical bureaus for 
a complete assessment of survival status. Other outcomes, e.g. related to func-
tional status, may not be available at the time points that we wish to analyse. 
Finally, single centre studies may be limited by their sample size, which is a key 
problem in prediction research. Multicentre, collaborative studies can address 
this sample size issue. Moreover, the representativeness of the prediction model 
will then be better.  

  *3.2.2  Example: Predicting Early Mortality in Oesophageal 
Cancer 

 As an example, we consider outcome prediction in oesophageal cancer. A retro-
spective chart review was performed of 120 patients treated in a single institution 
between January 1, 1997, and December 31, 2003. 252  The patients had palliative 
treatment, which means therapy that relieves symptoms, but does not alter the 
course of the disease. A stent was placed in the oesophagus because of malignancy-
related dysphagia (difficulty in swallowing). The authors studied 30-day mortality, 
which occurred in an unspecified number of patients (probably around 10%, 
 n =12). 252   

  3.2.3 Prospective Designs 

 In a prospective study, we can better check specific inclusion and exclusion criteria. 
The investigator is said to age with the study population (hence the label “prospec-
tive study”). We can use clear and consistent definitions of predictors, and assess 
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patient outcomes at pre-defined time points. Prospective cohort studies are there-
fore preferable to analyses in retrospective series. 

 Prospective cohort studies are sometimes solely set up for prediction model-
ling, but a more common design is that prediction research is done in data from 
randomized clinical trials (RCTs), or from prospective before–after trials. The 
strengths are in the well-defined selection of patients, the prospective recording 
of predictors, usually with quality checks, and the prospective assessment of 
outcome. Sample size is usually reasonably large. A limitation of data from 
(randomized) trials may be in the selection of patients. Often stringent inclusion 
and exclusion criteria are used, which may limit the generalizability of a model 
developed on such data. On the other hand, RCTs are often performed in multi-
ple centres, sometimes from multiple countries or continents. Benefits of the 
multi-centre design include that consensus has to be reached on definition issues 
for predictors and outcome, and that generalizability of findings will be 
increased. This is in contrast to single centre studies, which only reflect predic-
tive relationships from one specific setting. 

 A topic of debate is whether we should only use patients from an RCT who are 
randomized to a conventional treatment or placebo (the “control group”). If we 
combine randomized groups we assume that no specific subgroup effects are rele-
vant for the prognostic model. This may generally be reasonable. Moreover, the 
prognostic effect of a treatment is usually small compared to prognostic effects of 
other predictors.  

  *3.2.4  Example: Predicting Long-Term Mortality 
in Oesophageal Cancer 

 In another study of outcome in oesophageal cancer, data from an RCT 
(“SIREC”,  n =209 197 ) were combined with other prospectively collected data 
( n =396). 414  Long-term mortality was studied after palliative treatment with a 
stent or radiation (“brachytherapy”).  

  3.2.5 Registry Data 

 Prognostic studies are often performed with registry data, for example cancer 
registries, or insurance databases. Data collection is prospective, but not prima-
rily for prediction research. The level of detail may be a limitation for prognostic 
analyses. For example, the well-known US-based cancer registry (Surveillance, 
Epidemiology and End Results, SEER) contains information on cancer incidence, 
mortality, patient demographics, and tumour stage. It has been linked to the 
Medicare data base for information on comorbidity 233  and treatment (surgery, 80  
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chemotherapy, 478  radiotherapy 471 ). Socio-economic status (SES) is usually based 
on median income as available at an aggregated level. 24  SEER-Medicare does not 
contain detailed information on performance status, which is an important factor 
for medical decision-making and for survival of cancer patients. Also, staging 
may have some measurement bias. 118  

 Another problem may occur when reimbursement depends on the severity that 
is scored for a patient. This may pose an upward bias on the recording of comor-
bidities in claims databases for example. 

 The outcomes for prognostic analyses usually suffer from the same limitations 
as retrospective studies, since usually no pre-defined assessments are made. 
Outcomes are therefore often limited to survival, although other adverse events 
can sometimes also be derived. 105,394  Strengths of prognostic studies with registry 
data include large sample sizes, and representativeness of patients (especially with 
population-based cancer registries). Such large databases may especially be useful 
for studying predictive relationships of a limited number of predictors with 
survival.  

  *3.2.6 Example: Surgical Mortality in Oesophageal Cancer 

 The SEER-Medicare database was used to analyze 30-day mortality in 1,327 
patients undergoing surgery for oesophageal cancer between 1991 and 1996. 
Predictive patient characteristics included age, comorbidity (cardiac, pulmonary, 
renal, hepatic, and diabetes), preoperative therapy, and a relatively low hospital 
volume, which were combined in a simple prognostic score. Validation was done 
in another registry, and in a hospital series. 423   

  3.2.7 Nested Case–Control Studies 

 A prospectively designed, nested case–control study is sometimes an efficient 
option for prediction research. A case–control design is especially attractive 
when the outcome is relatively rare, such as incident breast cancer. 131  For exam-
ple, if 30-day mortality is 1%, it is efficient to determine detailed predictors in 
all patients who died, but for example 4% of the controls (1:4 case–control 
ratio). A random sample of controls is used as comparison for the cases. If the 
outcome is well defined, such as survival, selection bias cannot be a problem. 
Assessment of details of predictors is in retrospect, which is a limitation. If a 
prediction model is developed, the average outcome incidence has to be adjusted 
for final calculation of probabilities, while the regression coefficients can be 
based on the case–control study. 131   
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  *3.2.8  Example: Perioperative Mortality in Major Vascular 
Surgery 

 An interesting example is the analysis of perioperative mortality in patients under-
going major vascular surgery. 340  Predictors were determined in retrospect from a 
detailed chart review in all cases (patients who died), and in selected controls 
(patients who did survive surgery). Controls had surgery just before and just after 
the case. Hence a 1:2 ratio was achieved for cases against controls.   

  3.3 Studies for Diagnosis  

  3.3.1 Cross-Sectional Study Design and Multivariable Modelling 

 Ideally, a diagnostic study considers a well-defined cohort of patients suspected of a 
certain diagnosis, e.g. an acute myocardial infarction. 238  Such a diagnostic study then 
resembles a prognostic cohort study. The cohort is here defined by the suspicion of 
having (rather than actually having) a disease. The outcome is the underlying diagno-
sis. The study may therefore be labelled cross-sectional, since the predictor–outcome 
relationships are studied at a single point in time. Several characteristics may be pre-
dictive of the underlying diagnosis. For a model, we should start with considering 
simple characteristics such as demographics, and symptoms and signs obtained from 
patient history. Next, we may consider simple diagnostic tests, and finally invasive 
and/or costly tests. 295  The diagnosis (presence or absence of the target disease) should 
be established by a reference test or standard. This test used to be called “gold” stand-
ard, but no method is 24 carat gold. The result of the reference test is preferably 
interpreted without knowledge of the predictor and diagnostic test values. Such blind-
ing prevents information bias (or incorporation, or “diagnostic review” bias). 296  

 A common problem in diagnostic evaluations is the incomplete registration of 
all predictive characteristics. Not all patients may have undergone the entire diag-
nostic work-up, especially if they are considered as at low risk of the target disease. 
Similarly, outcome assessment may be incomplete, if a test is used as a gold stand-
ard which is selectively performed. 343  These problems are especially prominent in 
diagnostic analyses on data from routine practice. 313  Prospective studies are hence 
preferable, since these may use a pre-specified protocol for systematic diagnostic 
work-up and reference standard testing.  

  *3.3.2 Example: Diagnosing Renal Artery Stenosis 

 A cardiology database was retrospectively reviewed for patients who underwent 
coincident screening abdominal aorta angiography to detect occult renal artery ste-
nosis. In a development set, stenosis was observed in 128 of 635 patients. This 20% 
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prevalence may be an overestimate if patients underwent angiography because of 
suspicion of stenosis. 347   

  3.3.3 Case–Control Studies 

 Diagnostic studies sometimes select patients on the presence or absence of the 
target disease as determined by the reference test. Hence patients without a refer-
ence standard are not selected. In fact, a case–control study is performed, where 
cases are those with the target disease, and controls those without. This design 
has a number of limitations, especially related to the representativeness of the 
selected patients for all patients who are suspected of the diagnosis of interest. 
Selection bias is the most important limitation. Indeed, empirical evidence is now 
available on the bias that arises in diagnostic studies, especially by including non-
consecutive patients in a case–control design, non-representative patients (severe 
cases compared to healthy controls), and when data are collected 
retrospectively. 259,361   

  *3.3.4 Example: Diagnosing Acute Appendicitis 

 C-reactive protein (CRP) has been used for the diagnosis of acute appendicitis. 
Surgery and pathology results constituted the reference test for patients with a high 
CRP. Patients with a low CRP were not operated on and clinical follow-up deter-
mined whether they were classified as having acute appendicitis. As low-grade 
infections with low CRPs can resolve spontaneously, this verification strategy fails 
to identify all false-negative test results. In this way, the diagnostic performance of 
CRP will be overestimated. 259    

  3.4 Predictors and Outcome  

  3.4.1 Strength of Predictors 

 For a well-performing prediction model, strong predictors have to be present. Strength 
is a function of the association of the predictor with the outcome, and the distribution 
of the predictor. For example, a dichotomous predictor with an odds ratio of 2.0 is 
more relevant for a prediction model than a dichotomous predictor with an odds ratio 
of 2.5, when the first predictor is distributed in a 50:50 ratio (50% prevalence of the 
predictor), and the second 1:99 (1% prevalence of the predictor). Similarly, continu-
ous predictors have to cover a wide range to make them relevant for prediction. 

 When some characteristics are considered as key predictors, these have to be 
registered carefully, with clear definitions and preferably no missing values. This is 



4040 3 Study Design for Prediction Models         

usually best possible in a prospective study, with a protocol and pre-specified data 
collection forms.  

  3.4.2 Categories of Predictors 

 Several categories of predictors have been suggested for prediction models. 174  
These include

  •  Demographics (e.g. age, sex, race, socio-economic status)  
 •  Type and severity of disease (e.g. principal diagnosis, presenting characteristics)  
 •  History characteristics (e.g. previous disease episodes, risk factors)  
 •  Comorbidity (concomitant diseases)  
 •  Physical functional status (e.g. Karnofsky score, WHO performance score)  
 •  Subjective health status and quality of life (psychological, cognitive, psychoso-

cial functioning)    

 The relevance of these categories will depend on the specifics of the application. 
Publications tend to group predictors under general headings, see for example, the 
predictors in the GUSTO-I model (Chap. 22). 255  Of note, definitions of predictors 
may vary from study to study. 492  Socioeconomic status (SES) can be defined in 
many ways, considering a patient’s working status, income, and/or education. Also, 
SES indicators are sometimes not determined at the individual level, but for exam-
ple at census tract level (“ecological SES”, e.g. in analyses of SEER-Medicare 
data 24,404 ). Race/ethnicity can be defined in various ways, and sometimes be self-
reported rather than determined by certain pre-defined rules. Comorbidity defini-
tions and scoring systems are still under development. 91,126,201  Variation in definitions 
is a serious threat to the generalizability of prediction models. 16  

 Another differentiation is to separate the patient’s condition from his/her consti-
tution. Condition may be reflected in type and severity of disease, history charac-
teristics, comorbidity, physical and subjective health status. Constitution may 
especially be related to demographics such as age and gender. For example, the 
same type of trauma (reflected in patient condition) affects patients of different ages 
differently (constitution). 

 In the future, genetic characteristics will be used more widely in a prediction 
context. Inborn variants of the human genome, such as polymorphisms and muta-
tions, may be considered as indicators of the patient’s constitution. Other genetic 
characteristics, for example the genomic profile of a malignant tumour, may better 
be thought of as indicators of subtypes of tumours, reflecting condition.  

  3.4.3 Costs of Predictors 

 Predictors may require different costs, in monetary terms, but also in burden for a 
patient. In a prediction context, it is evident that information that is easy to obtain 
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should be considered before information that is more difficult to obtain. Hence, we 
should first consider characteristics such as demographics and patient history, fol-
lowed by simple diagnostic tests, and finally invasive and/or costly tests. Expensive 
genetic tests should hence be considered for their incremental value over classical 
predictors rather than alone. 225  Such an incremental evaluation is well possible with 
predictive regression models, where a model is first considered without the test, and 
subsequently a model with the test added. 399   

  3.4.4 Determinants of Prognosis 

 Prognosis can also be viewed in a triangle of interacting causes (Fig  3.1 ). Predictors 
may be separated as related to environment (e.g. socio-economic conditions, health 
care access and quality, climate), the host (e.g. demographic, behavioral, psychoso-
cial, premorbid biologic factors), and disease (e.g. imaging, pathophysiologic, 
genomic, proteomic, metabolomic factors). 184    

  3.4.5 Prognosis in Oncology 

 For prognosis in oncology, it has been proposed to separate factors related 
to the patient, the tumour and to treatment (Fig. 3.2 ). 186  Examples of patients 
characteristics include demographics (age, sex, race/ethnicity, SES), comorbid-
ity, functional status. Tumour characteristics include the extent of disease 
(e.g. reflected in TNM stage), pathology, and sometimes values of tumour 
markers in the blood. Treatment may commonly include (combinations of) sur-
gery, chemotherapy, and radiotherapy.    

  Fig. 3.1    Prognosis may be thought of as determined by predictors related to environment, host 
and disease 184        

Prognosis 

Environment Host 

Disease 
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  3.5 Reliability of Predictors  

  3.5.1 Observer Variability 

 We generally prefer predictors that are well defined and reliably measured by any 
observer. In practice, observer variability is a problem for many measurements. 185,246  
Disciplines include, for example pathologists, who may unreliably score tissue 
specimens for histology, cell counts, colouring of cells, and radiologists, who, for 
example, score X-rays, CT scans, MRI scans, and ultrasound measurements. This 
variability can appropriately be measured with kappa statistics. 248  The interobserver 
and intraobserver variability can be substantial, which will be reflected in low 
kappa values.  

   * 3.5.2 Example: Histology in Barrett’s Oesophagus 

 Barrett’s oesophagus is a pre-malignant condition. Surgery is sometimes per-
formed in high-grade dysplasia, whereas other physicians defer treatment until 
adenocarcinoma is diagnosed. The agreement between readings of histology in 
Barrett’s oesophagus for high-grade dysplasia or adenocarcinoma was only fair, 
with kappa values around 0.4. 314  The agreement between no dysplasia and low-
grade dysplasia had been reported as even lower. 389  Because of observer variabil-
ity, sometimes a central review process is organized, where an expert reviews all 
readings. This should be done independently and blinded for previous scores. 
Subsequently a rule has to be determined for the final score, for example that only 
the expert score is used, or that an additional reader is required in case of disa-
greement. Also, consensus procedures can be set up with experts only, for exam-
ple with scoring by two experts, and involvement of a third if these disagree. 230  
Some use the unreliability of classical pathology as an argument for using mod-
ern biomarkers. 247   

Prognosis

Tumor Patient 

Therapy 

  Fig. 3.2    Prognosis of a patient with cancer may be thought of as determined by predictors related 
to the tumour, the patient, and therapy 186        
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  3.5.3 Biological Variability 

 Apart from observer variability, some measurements are prone to biological varia-
bility. A well-known example is blood pressure, where a single measurement is 
quite unreliable. 318  Usually at least two measurements are made, and preferably 
more, with some spread in time. Again, definitions have to be clear (e.g. position 
of patient at the measurement, time of day).  

  3.5.4 Regression Dilution Bias 

 The effect of unreliable scoring by observers, or biological variability, generally is 
a dilution of associations of predictors with the outcome. This has been labelled 
“regression dilution bias”, and methods have been proposed to correct for this 
bias. 257  A solution is to repeat unreliable measurements, either by the same observer 
(e.g. use the mean of three blood pressure measurements), or different observers 
(e.g. double reading of mammograms by radiologists). Practical constraints may 
limit such procedures.  

   * 3.5.5  Example: Simulation Study on Reliability of a Binary 
Predictor 

 Suppose we have a binary predictor that we measure with noise. Suppose two 
observers make independent judgments of the predictor. Their judgments agree 
with the true predictor status with sensitivity of 80% (observer scores 1 if true = 1) 
and specificity of 80% (observer scores 0 if true = 0, Table  3.2 ). If both observers 
score the predictor independently and without correlation, the observers agree with 
each other with a kappa of only 0.36 (Table  3.3 ).         

 The true predictor status predicts outcome well, with an odds ratio of 4. The 
observed predictor status has a diluted predictive effect, with odds ratio 2.25. 
Similarly, the discriminative ability is diluted ( c  statistic decreases from 0.67 to 
0.60, Table  3.4 ).      

 Table 3.2    Sensitivity and specificity for observers in deter-
mining the true predictor status (sensitivity = specificity = 
80%)  

 True predictor status 

 0 
 N (col%) 

 1  
N (col %) 

 Observer  0 
 1 

 750 (80%) 
 187 (20%) 

 187 (20%) 
 750 (80%) 
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  3.5.6 Choice of Predictors 

 In aetiologic research we may often aim for the best assessment of an exposure 
variable. We will be concerned about various information biases that may occur. In 
the context of a prediction model we can be much more pragmatic. If we aim to 
develop a model that is applicable in daily practice, we should use definitions and 
scorings that are in line with daily practice. For example, if medical decisions on 
surgery are made considering local pathology reports, without expert review, the 
local pathology report should be considered for a prediction model applicable to the 
local setting. As illustrated, such less reliable assessments will affect the perform-
ance of a predictive model, since predictive relationships are disturbed. If misclas-
sification is at random, a dilution of the relationship occurs (Table  3.4 ). On the 
other hand, if measurements are more reliable in clinical practice than in a research 
setting, e.g. repeated assessments of blood pressure, we might argue that a correc-
tion has to be made in the prediction model. In practice, prediction models tend to 
include predictors that are quite readily available, not too costly to obtain, and can 
be measured with reasonable precision.   

  3.6 Outcome  

  3.6.1 Types of Outcome 

 The outcome of a prediction model should be relevant, either from an applied medi-
cal perspective or from a research perspective. From a medical perspective, “hard” 
end points are generally preferred. Especially mortality is often used as an end 
point in prognostic research. Mortality risks are relevant for many acute and chronic 

 Table 3.3    Agreement between observer 
1 and observer 2 (kappa = 0.36)  

 Observer 2 

 0  1 

 Observer 1  0  637  300 
 1  300  637 

 Table 3.4    Association with outcome for the true predictor status and observed predictor status 
(by observer 1 or 2, Table  3.3 )  

 Outcome 

 Odds ratio   c  statistic  0  N  (row%)  1  N  (row%) 

 True predictor status  0  625 (67%)  312 (33%)  4.0  0.67 
 1  312 (33%)  625 (67%) 

 Observer  0  562 (60%)  375 (40%)  2.25  0.60 
 1  375 (40%)  562 (60%) 
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conditions, and for many treatments, such as surgery. In some diseases, mortality 
may not be a relevant outcome. Other outcomes include non-fatal events (e.g. dis-
ease recurrence), patient centred outcomes (e.g. scores on quality of life question-
naires), or wider indicators of burden of disease (e.g. absence from work, Table  3.5 , 
based on Hemingway 184 ).      

  3.6.2 Survival End points 

 When cause-specific mortality is considered, a reliable assessment of the cause of 
death is required. If cause of death is not known, relative survival can be calcu-
lated. 166,167  This is especially popular in cancer research. Mortality in the patients 
with a certain cancer is compared with the background mortality from the general 
population. The difference can be thought of as mortality due to the cancer. 

 The pros and cons of relative survival estimates are open to debate. Some have 
proposed to also study conditional survival for patients already surviving for some 
years after diagnosis. These measures may sometimes be more meaningful for 
clinical management and prognosis than 5-year relative survival from time of 
diagnosis. 139,214  Others have proposed that median survival times are better indica-
tors of survival than 5-year relative survival rates, especially when survival times 
are short. 319   

   * 3.6.3 Example: Relative Survival in Cancer Registries 

 Five-year relative survival was studied for patients enrolled in the SEER registry in 
the period 1990–1999. 139  The 5-year relative survival rate for persons diagnosed 
with cancer was 63%, with substantial variation by cancer site and stage at  diagnosis. 

 Table 3.5    Examples of prognostic outcomes 184   
 Prognostic outcome  Example  Characteristics 

 Fatal events  All-cause, or cause-specific  Hard end point, relevant in 
many diseases, but some-
times too infrequent for 
 reliable statistical modeling 

 Non-fatal events  Recurrence of tumor, 
cardiovascular events 
(e.g. myocardial infarction, 
revascularization) 

 Somewhat softer end point, 
reflecting decision-making 
by physicians, increases 
power for analysis 

 Patient centered   Symptoms, functional status, 
health-related quality of life, 
utilities 

 Subjective end point, focused 
on the patients themselves; 
often used as secondary end 
point 

 Wider burden  Absence from work because of 
sickness 

 Especially of interest from an 
economical point of view 
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Five-year relative survival increased with time since diagnosis. For example, for 
patients diagnosed with cancers of the prostate, female breast, corpus uteri, and 
urinary bladder, the relative survival rate at 8 years after diagnosis was over 75%. 

 Similar analyses were performed with registry data from the Eindhoven region, 
where it was found that patients with colorectal, melanoma skin, or stage I breast 
cancer could be considered cured after 5–15 years, whereas for other tumours sur-
vival remained poorer than the general population. 214   

  3.6.4 Composite End Points 

 Sometimes composite end points are defined, which combine mortality with non-
fatal events. Composite end points are especially popular in cardiovascular research 
(see also Chap. 23). For example, the Framingham models have been used to pre-
dict incident cardiovascular disease in the general population. A popular Framingham 
model (the Wilson model) defines cardiovascular events as fatal or non-fatal myo-
cardial infarction, sudden death, or angina pectoris (stable or unstable). 487  Composite 
end points have the advantage of increasing the effective sample size and hence the 
power for statistical analyses.  

   * 3.6.5  Example: Mortality and Composite 
End Points in Cardiology 

 A prediction model was developed in 949 patients with decompensated heart fail-
ure. The outcome was 60-day mortality or the composite end point of death or 
rehospitalization at 60 days. The discriminatory power of the model was substantial 
for mortality ( c  statistic 0.77) but less for the composite end point ( c  statistic 
0.69). 121  These findings are in line with prediction of acute coronary syndromes, 
where predictive performance was better for mortality than for a composite end 
point of mortality or myocardial (re)infarction. 43  The case study in Chap. 23 also 
considers a composite end point.  

  3.6.6 Choice of Prognostic Outcome 

 The choice of a prognostic outcome should be guided by the prediction problem, 
but the outcome should be measured as reliable as possible. Prediction models may 
be developed with pragmatic definitions of predictors, since this may resemble the 
future use of a model. But the outcome should be determined with similar rigour as 
in an aetiologic study or randomized clinical trial. In the future, decisions are to be 
based on the predictions from the model. Predictions hence need to be based on 
robust statistical associations with an accurately determined outcome. 
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 If there is a choice between binary and continuous outcomes, the latter are 
 preferred from a statistical perspective, since they provide more power in the analy-
sis. Also, ordered outcomes provide more power than binary outcomes. In practice, 
binary outcomes are however very popular, making logistic regression and Cox 
regression the most common techniques for prediction models in medicine.  

  3.6.7 Diagnostic End Points 

 The outcome in diagnostic research naturally is the underlying disease, which 
needs to be defined according to a reference standard. 48,49,238,296  The reference stand-
ard can sometimes be anatomical, e.g. findings at surgery. Other definitions may 
include blood or spinal fluid cultures (e.g. in infectious diseases), results of high-
quality diagnostic tests such as angiography (e.g. in coronary diseases), and histo-
logical findings (e.g. in oncology). Methods are still under development on how to 
deal with the absence of an acceptable reference standard. In such situations the 
results of the diagnostic test can, for example, be related to relevant other clinical 
characteristics and future clinical events. 360  

 The relevance of the underlying diagnosis may be high when treatment and prog-
nosis depends directly on the diagnosis. This is for example the case with testing for 
genetic defects such as trisomy 21 (Down syndrome). However, often a diagnosis 
covers a spectrum of more and less severe disease, and longer-term outcome assess-
ment would be desirable. This is especially relevant in the evaluation of newer imag-
ing technology, which may detect disease that remained previously unnoticed. 34,266   

  *3.6.8 Example: PET Scans in Oesophageal Cancer 

 In oesophageal cancer, positron-emission tomography (PET) scans provide addi-
tional information on extent of disease compared to CT scanning alone. 316,495  However, 
the clinical relevance of the additionally detected metastases can only be determined 
in a comparative study, preferably a randomized controlled trial. Diagnosing more 
metastases is not sufficient to make PET/CT clinically useful. 462    

  3.7 Phases of Biomarker Development  

 Pepe has proposed a phased approach to developing predictive biomarkers, in par-
ticular for early detection of cancer 332  (Table  3.6 ). These phases are also relevant to 
the development of future prediction models, which may add novel biomarkers to 
traditional clinical characteristics. The development process begins with small stud-
ies focused on classification performance and ends with large studies of impact on 
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populations. The aim is to select promising markers early while recognizing that 
early studies do not answer the ultimate questions that need to be addressed.     

 As an example, Pepe considers the development of a biomarker for cancer screen-
ing. Phase 1 is exploratory and may consider gene expression arrays or protein mass 
spectrometry that yields high dimensional data for biomarker discovery. Reproducibility 
between laboratories is an aspect to consider before moving on to phase 2, where a 
promising biomarker is compared between population-based cases with cancer and 
population-based controls without cancer. Phase 3 is a more thorough evaluation in a 
case–control study to determine if the marker can detect subclinical disease. In phase 4, 
the marker may be applied prospectively as a screening test in a population. Finally, 
the overall impact of screening is addressed in phase 5 by measuring effects on clini-
cally relevant outcomes such as mortality. 

 The study design implications are also shown in Table  3.6 . In the exploratory 
phase 1 it may be acceptable to use “convenient samples”, which will likely lead to 
spectrum bias in the assessment of the biomarker. In phase 2, population-based 
samples are desired for a simple case–control design. In phase 3, we require sam-
ples taken from cancer patients before their disease became clinically apparent. 
A nested case–control study design can be efficient for data from a cohort study. 
For phase 4, a prospective cohort study is required to determine the characteristics 
and treatability of early detected disease. Finally, an RCT is desired for unbiased 
assessment of the impact of screening.  

  3.8 Statistical Power  

 An important issue is how large a study needs to be for sufficient statistical power 
to address the primary research question. Power considerations are given for study-
ing effects of a specific predictor, and for developing a prediction model that can 
provide reliable predictions. 

 Table 3.6    Phases of development of a biomarker for cancer screening 332   

 Phase  Objective  Study design 

 1. Preclinical exploratory  Promising directions identified  Case–control (convenient 
 samples) 

 2. Clinical assay 
and validation 

 Determine if a clinical assay 
detects established disease 

 Case–control (population 
based) 

 3. Retrospective longitudinal  Determine if the biomarker 
detects disease before it 
becomes clinical. Define a 
“screen positive” rule 

 Nested case–control in a 
 population cohort 

 4. Prospective screening  Extent and characteristics of 
disease detected by the test; 
false referral rate 

 Cross-sectional population 
cohort 

 5. Cancer control  Impact of screening on reducing 
the burden of disease on the 
population 

 Randomized trial 
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  3.8.1 Statistical Power to Identify Predictor Effects 

 We may primarily be interested in the effect of a specific predictor on a diagnostic 
or prognostic outcome. We may then aim to test the effect of this predictor for sta-
tistical significance. This leads to similar sample size considerations as for testing 
of treatment effects, e.g. in the context of an RCT. Sample size calculations are 
straightforward for such univariate testing. The required sample size is determined 
by choices for the acceptable Type I and Type II error. The Type I error is usually 
set at 5% for statistical significance. The Type II error determines the power, and 
may, e.g. be set at 20% for 80% power. Other considerations are the variability of 
the effect estimate. For binary predictors of a binary outcome, the prevalence of the 
predictor and the incidence of the outcome are important. Finally, the magnitude of 
the effect determines the required sample size, with larger sample size required to 
detect smaller effects.  

  *3.8.2 Examples of Statistical Power Calculations 

 Sample size calculations can be performed for most types of regression models 
with standard software. For illustration, we consider the statistical power for a 
binary predictor of a binary outcome (Fig.  3.3 ). We find that the required sample 
size increases steeply with a very low or very high incidence of the outcome. With 

  Fig. 3.3    Power corresponding to sample sizes for incidence of the outcome ranging from 0 to 
100%. A binary predictor was considered with 50% prevalence with odds ratio 1.5       
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an odds ratio of 1.5, 80% power requires approximately 2,000 subjects at a 10% 
incidence, 1,000 subjects at 20% incidence, and 800 subjects at 50% incidence.  

 Next, we illustrate that statistical power is related to the prevalence of a binary 
predictor (Fig.  3.4 ). We consider odds ratios from 1 to 3, as may often be encoun-
tered in medical prediction research. In a sample size of 500 subjects, 250 with and 
250 without the outcome, 80% power is reached with prevalences of 16% and 5.5% 
for odds ratios of 2 and 3, respectively. Odds ratios of 1.2 and 1.5 require sample 
sizes of 3,800 and 800 at 50% prevalence, respectively. With 10% incidence of the 
outcome, power is substantially lower (Fig.  3.4 , right panel). An odds ratio of 3 now 
requires 18% instead of 5.5% prevalence of the predictor for 80% power. Without 
an effect (OR=1), statistical significance is by definition expected in 5%.    

  3.8.3 Statistical Power for Reliable Predictions 

 Instead of focusing on predictors, we can consider the reliability of predictions that 
are provided by a prediction model. Some rules of thumb have been proposed, sup-
ported by simulation studies. The sample size requirements are commonly formulated 
as events per variable (EVP). The minimum EVP for obtaining good predictions 
may be 10. 175,326,327  Clinical prediction models that are constructed with EVP less 
than 10 are overfitted, and may perform poorer than a simpler model which considers 
fewer predictors, such that the EVP is at least 10 (see further illustration in Chap. 
24). EPV values for reliable selection of predictors from a larger set of candidate 
predictors may be as large as 50 (events per candidate predictor, see Chap. 11). For 
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  Fig. 3.4    Power in relation to prevalence of a binary predictor, for odds ratios from 1 to 3 in sam-
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pre-specified models, shrinkage may not be required with EPV of at least 20 (Chap. 
13). 410  Validation studies may need to include at least 100 events (details in Chap. 
19). 465  

 Other EPV values may apply for specific circumstances. Regression analyses 
can technically well be performed with lower EVP values. Adjusted analyses of an 
exposure variable may be performed with EPV less than 10 when we only aim to 
correct for confounding. 473    

  3.9 Concluding Remarks  

 Prognostic studies are ideally designed as prospective cohort studies, where the 
selection of patients and definition of predictors is pre-specified. Data from rand-
omized clinical trials may often be useful, although representativeness of the 
included patients for the target population should be considered as a limitation. 
Data may also be used from retrospective designs, registries, and case–control stud-
ies, each with their strengths and limitations. Diagnostic studies are usually cross-
sectional in design, and should prospectively select all patients who are suspected 
of a disease of interest. In practice, designs are still frequent where patients are 
selected by a reference test which is not performed in all patients. 

 Predictors should be defined pragmatically, and cover the relevant domains for 
prediction of outcome in a disease. The outcome of a prediction model should be 
measured with high accuracy. Hard end points such as mortality are often preferred 
but statistical power considerations may motivate the use of composite and other 
end points.  
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  Questions   

   3.1    Cohort studies 
  One could argue that both diagnostic and prognostic studies are examples of 
cohort studies.

   (a)     What is the difference between diagnostic and prognostic outcomes in such 
cohorts?  

   (b)    What is the implication for the statistical analysis?      

   3.2    Prospective vs. retrospective designs (Sect.  3.2 ) 
  Prospective study designs are generally noted as preferable to retrospective 
designs. What are the pros and cons of prospective vs. retrospective designs?  

   3.3    Accuracy of predictors and outcome (Sect.  3.5  and  3.6 )

   (a)     Why do we need to be more careful with reliable assessment of outcome 
than reliable assessment of predictors?  

   (b)    What is the effect of imprecise measurement of a predictor?      

   3.4    Composite end points (Sect.  3.6.4 ) 
  Composite end points are often motivated by the wish to increase statistical power 
for analysis. What is the price that we pay for this increase in term of assumptions 
on predictive relationships? See a recent JCE paper for a detailed discussion. 140   

   3.5    Statistical power (Figs.  3.3  and  3.4 )

   (a)     What is the required total sample size for 50% power at 10%, 30%, or 50% 
incidence of the outcome in Fig.  3.3 ?  

   (b)     What is the similarity between Fig.  3.3  and  3.4  with respect to the ranges 
of the incidence of the outcome or prevalence and associated statistical 
power?               



   Chapter 4   
 Statistical Models for Prediction        

  Background   In this chapter, we consider statistical models for different types 
of outcomes: binary, unordered categorical, ordered categorical, continuous, and 
survival data. We discuss common statistical models in medical research such as 
the linear, logistic, and Cox regression model, and also simpler approaches and 
more flexible extensions, including regression trees and neural networks. Details 
of the methods are found in many excellent texts. We focus on the most relevant 
aspects of these models in a prediction context. All models are illustrated with 
case  studies. In Chap. 6, we will discuss aspects of choosing between alternative 
statistical models.    

  4.1 Continuous Outcomes  

 Continuous outcomes have traditionally received most attention in texts on 
 regression modelling, with the ordinary least square model (“linear regression”) as 
the reference statistical model. 64,137,232,281,472  Continuous outcome are quite common 
in medical, epidemiological, and economical studies, but not so often considered 
for clinical prediction models. 

 The linear regression model can be written as 

  y = a + b
i
 × x

i
 + error,  

where a    
  
 refers to the intercept, b

i  
to the set of regression coefficients that relate one or 

more predictors  x  
 i 
  to the outcome  y . The error is calculated as observed  y  − predicted  y  

( ŷ ). This difference is also known as the residual for the prediction of  y . We assume that 
the residuals have a normal distribution, and do not depend on  x  

 i 
  (“homoscedasticity”). 

 The outcome  y  is hence related to a  linear combination  of the  x  
 i 
  variables with 

the estimated regression coefficients  b
   i 
 . This is an important property, which is also 

seen in  generalized  linear models, such as the logistic regression model. 

E.W. Steyerberg, Clinical Prediction Models, 5353
DOI:10.1007/978-0-387-77244-8_4, © Springer Science + Business Media, LLC 2009
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  *4.1.1 Examples of Linear Regression 

 An example of a medical outcome is blood pressure. We may want to predict the 
blood pressure after treatment with an anti-hypertensive or other intervention. 241,460  
Also, quality of life scales may be relevant to evaluate. 242  Such scales are strictly 
speaking only ordinal, but can for practical purposes often be treated as continuous 
outcomes. A specific issue is that quality of life scores have ceiling effects, because 
minimum and maximum scores apply.  

  4.1.2 Economic Outcomes 

 Health economics is another important field where continuous outcomes are con-
sidered, such as length of stay in hospital, or length of stay at a specific ward (e.g. 
the intensive care unit), or total costs for patients. 88  

 Cost data are usually not normally distributed. Such economic data have special 
characteristics, such as patients without any costs (zero), and a long tail because 
some patients having considerable costs. We might consider the median as a good 
descriptor of the outcome. Interestingly, we are however always interested in the 
mean costs, since the expectation is what matters most from an economical per-
spective. Sometimes analyses have been performed to identify “high-cost” patients, 
after dichotomizing the outcome at some cost threshold.  

  *4.1.3 Example: Prediction of Costs 

 Many children in moderate climates suffer from an infection by the respiratory syn-
cytial virus (RSV). Some children, especially premature children are at risk of a 
severe infection, leading to hospitalization. The mean RSV hospitalization costs were 
3,110 euros in a cohort of 3,458 infants and young children hospitalized for severe 
RSV disease during the RSV seasons 1996–1997 to 1999–2000 in the Southwest of 
The Netherlands. RSV hospitalization costs were higher for some patient categories, 
e.g. those with lower gestational age or lower birth weight, and younger age. The lin-
ear regression model had an adjusted  R  2  of 8%. 345  This indicates a low explanatory 
ability for predicting hospitalization costs of individual children. However, the model 
could accurately estimate the anticipated mean hospitalization costs of groups of 
children with the same characteristics. These predicted costs were used in decision 
analyses of preventive strategies for severe RSV disease. 46   

  4.1.4 Transforming the Outcome 

 An important issue in linear regression is whether we should transform the outcome vari-
able. The residuals ( y − ŷ ) from a linear regression should have a normal  distribution 
with a constant spread (“homoscedasticity”). This can sometimes be achieved by, 



e.g. a log transformation for cost data, but other transformations are also possible. 
As Harrell points out, transformations of the outcome may reduce the need to 
include transformations of predictor variables. 174  Care should be taken in backtrans-
forming predicted mean outcomes to the original scale. Predicted medians and 
other quantiles are not affected by transformation. The log–normal distribution can 
be used for the mean on the original scale after a log transformation, but a more 
general, non-parametric, approach is to use “smearing” estimators. 341   

  4.1.5 Performance: Explained Variation 

 In linear regression analysis, the total variance in  y  (“total sum of squares”, TSS) is 
the sum of variability explained by one or more predictors (“model sum of squares”, 
MSS) and the error (“residual sum of squares”, RSS): 

  TSS = MSS + RSS
var (regression on x

i
) + var (error) = ∑ (ŷ – mean (y))2 + ∑ (y – ŷ)2   

 The estimates of the variance follow from the statistical fit of the model to the data, 
which is based on the analytical solution of a least squares formula. This fit mini-
mizes the error term in the model, and maximizes the variance explained by  x  

 
i
 
 . Better 

prediction models explain more of the variance in  y .  R  2  is defined as MSS / TSS. 472  
 To appreciate values of  R  2 , we consider six hypothetical situations where we 

predict a continuous outcome  y , which has a standard normal distribution (N(0,1), 
i.e. mean 0 and standard deviation 1) with one predictor  x  (N(0,1)). The regression 
coefficients for  x  are varied in simulations, such that  R  2  is 95%, 50%, 20%, 10%, 
5%, and 0% (Fig.  4.1 ). We note that an  R  2  of 95% implies that observed outcomes 
are always very close to the predicted values, while gradually relatively more error 
occurs with lower  R  2  values. When  R  2  is 0%, no association is present.        

 To appreciate  R  2  further, we plot the distributions of predicted values (ŷ  ). The 
distribution of  ŷ  is wide when  R  2  is 95%, and very small when  R  2  is 5%, and near 
a single line when  R  2  is 0% (Fig.  4.2 ). The distribution of  y  is always normal with 
mean 0 and standard deviation 1.         

  4.1.6 More Flexible Approaches 

 The generalized additive model (GAM) is a more flexible variant of the linear 
regression model. 180, 181, 472  A GAM allows for more flexibility especially for con-
tinuous predictors. It replaces the usual linear combination of continuous predic-
tors with a sum of smooth functions to capture potential non-linear effects:    y  =  b  

0
  

+  f  
 i 
 ( x  

 i 
 ) + error, where  f  

 i 
  refers to functions for each predictor, e.g. loess 

smoothers. 

4.1 Continuous Outcomes   5555
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 Fig. 4.1    Linear regression analysis with true regression models with  y  =  b  ×  x  + error, where sd( y ) 
= sd( x ) = 1. The outcome  y  is shown on the  y -axis,  x  on the  x -axis  
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 Fig. 4.2    Probability density functions for observed and predicted values (“fitted values”,  ŷ ). For 
the first graph ( R  2  = 95%), the distribution of predicted values ( thick line ) is nearly identical to the 
distribution of observed  y  values ( thin line ), while for the last graph all predictions are for the 
average of 0  
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 Loess smoothers are based on locally weighted polynomial regression. 75  At each 
point in the data set a low-degree polynomial is fit to a subset of the data, with data 
values near the point where the outcome  y  is considered. The polynomial is fitted 
using weighted least squares, giving more weight to nearby points and less weight 
to points further away. The degree of the polynomial model and the weights can be 
chosen by the analyst. 

 The estimation of a GAM is more computationally demanding than for linear 
models, but this is no limitation anymore with modern computer power and soft-
ware. A GAM assumes that the outcome is already appropriately transformed, and 
then automatically estimates the transformation of continuous predictors to optimize 
prediction of the outcome. 

 An even more flexible approach is the alternating conditional expectation 
method. 174, 181  Here,  Y  and  X s are simultaneously transformed to maximize the cor-
relation between the transformed  Y  and the transformed  X s. 

  g ( y ) =  a    +  f  
 i 
 ( x  

 i 
 )+ error, where  g  refers to a transformation of the outcome  y , and 

 f  
 i 
  refers to functions for each predictor. For cost data, several other specific 

approaches have been proposed. 27, 341    

  4.2 Binary Outcomes  

 For outcome prediction, we often consider diagnostic (presence of disease) or prognos-
tic outcomes (e.g. mortality, morbidity, complications, see Chap. 2). The logistic regres-
sion model is the most widely used statistical technique nowadays for such binary 
medical outcomes. 174, 472  The model is flexible in that it can incorporate categorical and 
continuous predictors, non-linear transformations, and interaction terms. Many of the 
principles of linear regression also apply for logistic regression, which is an example of 
a  generalized  linear model. As in linear regression, the binary outcome  Y  is linked to a 
linear combination of a set of predictors and regression coefficients  β . We use the logis-
tic link function to restrict predictions to the interval <0,1>. The model is stated in terms 
of the probability that  y  = 1 (“ P ( y =1)”), rather than the outcome  Y  directly. 

 Specifically, we write the model as a linear function in the logistic transforma-
tion (logit), where logit( P ( y =1)) = log(odds( P ( y =1)), or log([ P ( y =1)/( P ( y =1)+1)]): 

 Logit( P ( y =1)) =  µ0  +  b  
 i 
  ×  x  

 i 
  = lp, where logit indicates the logistic transforma-

tion,  a    the intercept,  b  
 
i
 
  the estimated regression coefficients,  x  

 i 
  the predictors, and 

lp linear predictor. 
 The coefficients  b  

 i 
  are usually estimated by maximum likelihood in a standard 

logistic regression approach, but this is not necessarily the case. For example, we will 
discuss penalized maximum likelihood methods to shrink the  b  

 i 
  for predictive  purposes 

(Chap. 13). The interpretation of the coefficients  b  
 i 
  is as for any regression model, that 

the coefficient indicates the effect of a 1-unit increase in  x  
 i 
 , keeping the other predic-

tors in the model constant. When we consider a single predictor in a logistic model,  b  
 i 
  

is an unadjusted, or univariate effect; with multiple predictors, it is an “adjusted” 
effect, conditional on the values of other predictors in the model. The exponent of the 
regression coefficient (e  β  ) indicates the odds ratio. 



5858 4 Statistical Models for Prediction         

 Predicted probabilities can be calculated by backtransforming:    p ( y  = 1) = e lp  / 
(1 + e lp ) = 1 / (1 + e −lp ). The quantity e lp  is the odds of the outcome. The logistic func-
tion has a characteristic sigmoid shape, as is bounded between 0 and 1 (Fig.  4.3 ). 
We note that a lp value of 0 corresponds to a probability of 50%. Low lp values 
correspond to low probabilities (e.g. lp −4,  p  < 2%), and high lp values correspond 
to high probabilities (e.g. lp +4,  p  > 98%).        

  4.2.1 R 2  in Logistic Regression Analysis 

 We learned from the linear regression examples that  R  2  is related to the relative spread 
in predictions. When predictions cover a wider range, the regression model better pre-
dicts the outcome. This concept also applies to dichotomous outcomes, e.g. analyzed 
with a logistic regression model. Better prediction models for dichotomous outcomes 
have a wider spread in predictions, i.e. predictions close to 0% and close to 100%. 

 To illustrate this concept, we use the same simulated data as for the examples of 
linear regression models, but we now dichotomize the outcome  y  (if  y <0, yd = 0, 
else yd = 1). The relationship between a standard normal variable  x  and the six yd 
outcomes is shown in Fig.  4.4.          

  *4.2.2 Calculation of  R  2  on the Log Likelihood Scale 

 Where the linear model is optimized with least squares estimation, the logistic model 
is usually optimized with maximum likelihood techniques. The likelihood refers to 
the probability of the data given the model, and enables estimation of parameters in 
various non-linear models. The natural logarithm of the likelihood (log  likelihood, 
LL) is usually used for convenience in numerical estimation. The LL is calculated 
as the sum over all subjects of the distance between the natural log of the predicted 
probability  p  for the binary outcome to the actually observed outcome  y : 

  LL = ∑ y × log( p) + (1 – y) × log(1 – p),  

 Fig. 4.3    Logistic function. The linear predictor lp is related to the predicted probability  P ( y =1) 
as: Logit( P ( y =1)) = lp, or  P ( y =1) = 1 / (1 + exp (− lp))  
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where  y  refers to the binary outcome and  p  the predicted probability for each 
subject. 

 If  y  = 1, the probability should be high (ideally 100%), such that log( p ) gets 
close to 0. Then the term (1− y ) drops out. If  y =0, the term (1− y ) = 1, and  p  should 
be low (ideally 0%), such that log(1 − p ) gets close to zero. A perfectly fitting model 
would have an LL of zero. In medical problems, perfect predictions cannot be 
made, unless a fully deterministic model is identified. The LL is hence usually 
negative for a fitted logistic regression model. A better model will have an LL 
closer to zero. 

 As reference we consider the LL of a model with average predictions: 

  LL
0
 = ∑ y × log (mean( y/n)) + (1 – y) × log (1 – mean(y/n)),  

where LL 
0
  refers to the log likelihood of the Null model, and mean( y / n ) is the aver-

age probability of the binary outcome  y . The LL 
0
  is negative, unless  y / n  is 0 or 1. 

 We can quantify the performance of a prognostic model by comparison with the 
Null model. We multiply by −2, since the difference on the −2 LL scale is a 
Likelihood Ratio statistic (LR), which follows a χ2 distribution: 

  LR = -2 (LL
0
 - LL

1
),  

where LL 
1
  refers to the model with predictors, LL 

0
  to the Null model, and LR is the 

likelihood ratio. The LR statistic can be used for univariate analysis, but also for testing 
the joint importance of a larger set of predictors in the model (“global LR statistic”). We 
can also easily make comparisons between nested submodels, which contain a subset 
of the predictors in a larger model. For example, we can compare models with and 
without age as a predictor to determine the LR for age, or compare models with and 
without a block of predictors, e.g. with and without a set of patient history characteris-
tics. Statistical testing is straightforward between such nested models. 

 Fig. 4.4    Predicted probabilities of a 0/1 outcome by six logistic models according to a normally 
distributed  x  variable. The predictive strength varied, with Nagelkerke’s  R  2  decreasing from 87% 
(labelled “1”) to 0% (label “6”)  

−4 −2 0 2 4

1
0

1

1

2

2

3

3

4

4

5

5
66



6060 4 Statistical Models for Prediction         

 The absolute value of the LR depends on  n , the number of patients, similar to 
the sum of squares in linear regression analysis. Several attempts have been made 
to define an  R  2  measure for generalized linear models, relating LR to −2 LL 

0
 .  R  2  

values ideally enable direct comparison across predictors, irrespective whether the 
predictor was categorical or continuous, and independent of the sample size. A 
nowadays popular definition of  R  2  uses the LR and −2 LL 

0
  as follows: 

  R 2 = (1 – exp (– LR/n)) / (1 – exp (– – 2 LL
0
 / n)),  

where  n  is the number of patients. 
 This definition of  R  2  was proposed by Nagelkerke, and has the advantage of 

being scaled between 0 and 100%. 309  For a perfect model, LR = +2 LL 
0
 , and  R  2  = 

100%. The relationship between the LR statistic and Nagelkerke’s  R  2  is more or 
less linear (Fig.  4.5 ).        

 We will use the Nagelkerke definition of  R  2  throughout this book. The scaling 
between 0 and 100% makes it a natural measure to indicate how close we are with 
our predictions to the observed 0 and 1 outcomes (Fig.  4.6 ). The calculation is 
based on the LL scale, which is the scale used in the fitting process to optimize the 
model given the data. The calculation includes the LR, which is the theoretically 
preferred quantity for testing of significance in logistic models.         

  4.2.3 Models Related to Logistic Regression 

 Logistic regression can be viewed as an improvement over linear discriminant 
analysis, which is an older technique. 170  Discriminant analysis usually makes more 

 Fig. 4.5    Relationship between Nagelkerke’s  R  2  and the LR statistic for incidence of the outcome 
of 1–50%. The LR is divided by  n  to make the scale independent of sample size. We note a reason-
ably linear relationship, especially for lower incidences. Largest LRs per subject are possible with 
an incidence of 50%  
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assumptions on the underlying data, for example multivariate normality, which is 
not the case in logistic regression. The data need to follow a binomial distribution, 
which is a natural assumption for 0/1 data. However, when correlations between 
outcomes exist, for example because of grouping of patients within hospitals, this 
assumption may be violated. Generalized estimation equations (GEE) are an exten-
sion of logistic regression for correlated data. 322, 472   

  4.2.4 Bayes Rule 

 Bayes rule has often been used in a diagnostic context for the prediction of the 
likelihood of an underlying disease. 331  A prior probability of disease (p( D )) is con-
sidered before information becomes available (e.g. from history taking, or from a 
diagnostic test, denoted as predictor  x ). The information is used to calculate a pos-
terior probability of disease (p( D | x )). 

 Fig. 4.6    Distribution of observed outcomes (0 or 1), in relation to predicted probabilities from 
logistic models relating  y  to a predictor  x . The  y  variable was created from the linear regression 
example in Fig.  4.1  by dichotomization, and had an average incidence of 50%. We note that 
Nagelkerke’s  R  2  values for logistic regression are slightly smaller than the Pearson  R  2  values for 
linear regression in Fig.  4.1 . Discrimination is indicated by the  c  statistic (equivalent to the area 
under the receiver operating characteristic curve, see Chap. 15)  
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 This approach has been followed with some success in the 1970s by De Dombal 
in deriving diagnostic estimates for patients with abdominal pain. 92  Probabilities 
were estimated with a Bayesian approach, where the prior probability of a diagno-
sis was updated with information from a large database. This database contained 
data on the prevalence of signs and symptoms according to the outcome diagnosis. 
This information can efficiently be summarized with diagnostic likelihood ratios 
(“LR”). The diagnostic LR for a specific sign or symptom  x  is 

 LR( x ) = p( x | D ) / p( x |! D ), where  D  indicates presence of the disease (determined 
by a reference standard), and ! D  no disease. 

 The combination of a prior probability of disease and LR is straightforward with 
Bayes’ formula:

    Odds( D | x ) = Odds( D ) × LR( x ), where  
   Odds( D ) is the prior odds of disease, calculated as p( D )/(1 − p( D )).    

  In logit form the formula reads as:
    Logit( D | x ) = Logit( D ) + log(LR( x ))    

 This looks very similar to the logistic model shown before. The intercept  α  is 
replaced by Logit( D ), the prior probability of disease, and  b  

1
  ×  x  

1
  is replaced by 

log(LR( x )). The term “log(LR( x ))” has been referred to as “weight of evidence”, 
since it indicates how much the prior probability changes by evidence from a 
test. 397  

 For a test with a positive or negative result, there is a simple relationship between 
LR and OR:

   OR = LR(+)/LR(−), and  
  log(OR) = coefficient = log(LR(+)/LR(−)) = log(LR(+)) − log(LR(−)), where  
  LR(+) and LR(−) are the LRs for positive and negative test results, respectively.    
 In a logistic model with one predictor representing the test (+ or − result), the 

intercept  α  reflects the logit(y) when the test is negative. When the test is positive, the 
change in logodds is given by the coefficient, and logit( y ) = intercept + coefficient.  

  *4.2.5 Example: Calculations with Likelihood Ratios 

 Suppose we have a test with 80% sensitivity and 90% specificity, and a prevalence 
of disease of 10%. For 1,000 patients, the cross-table may look like Table  4.1 .     

 The LR(+) = p(Test +| D )/p(Test +|! D ) = 0.8 / 0.1 = 8.
The LR(−) = p(Test −| D )/p(Test −|! D ) = 0.2 / 0.9 = 0.22. We can calculate the 
posterior probabilities of disease with the formula Odds( D | x ) = Odds( D ) × LR( x ). 
For a positive test, Odds ( D | x ) = 100/900 × 8 = 8/9. The probability is calculated as 
odds/(odds+1) = (8/9)/(8/9 + 1) = 47%.
For a negative test results, Odds( D ) × LR(−) = 100/900 × 0.2/0.9 = 2/81, or a prob-
ability of 2.4% ((2/81) / (2/81 + 1)). 

 These numbers can also be calculated directly from the table: prior = 100/1,000 
= 10%; posterior 80/180=47% and 20/920=2.4%. On logodds scale the change = 



4.2 Binary Outcomes    6363

log(8) = +2.1 for a positive test and log(0.22) = −1.5 for a negative test result. The 
odds ratio is 8/0.22 = 36, and the log(OR) = 2.1 − 1.5 = 3.6. 

 From a logistic regression analysis, we obtain: intercept = −3.7, coefficient for test 
is 3.6; OR=36 (Table  4.2 ). So, the linear predictor is −3.7 for a negative test and −0.1 
for a positive test, which corresponds to probabilities of 2.4% and 47%; as expected 
this is identical to the calculations with LRs, or as directly observed from Table  4.1 .     

 Graphically, we can well illustrate how Bayes’ formula works for a positive 
or negative test result to obtain a posterior probability from a prior probability 
(Fig.  4.7 ).         

  4.2.6 Prediction with Naïve Bayes 

 Bayes rule is a general scientific approach to handle conditional probabilities, e.g. 
to obtain p( D | x ) from p( x | D ). The p( x | D ) can sometimes easier be estimated than 
p( D | x ). For example, sensitivity and specificity of a dichotomous test are estimated 
conditional on disease status. For prediction, we are however interested in p( D | x ). 

 De Dombal and others have used a simple method to estimate posterior proba-
bilities for combinations of signs and symptoms. 92  The posterior probability after 
considering  x  

1
  is used as the prior when considering  x  

2
 , etc. This approach is reason-

able if the  x  
1
 ,  x  

2
 , etc. are conditionally independent. Usually positive correlations 

are however present which makes that the effect of  x  
2
  is smaller once  x  

1
  has already 

been considered, compared to considering  x  
2
  unconditionally. Such violation of 

conditional independence makes that   LR x
2
 |x

1
(x) < LR x

2
(x)  . 217  

 This sequential application of Bayes’ rule is equivalent to using the univariate 
logistic regression coefficients in a linear predictor. Because of its simplicity and 
mathematical incorrectness, Naïve Bayes is sometimes referred to as “Idiot’s 
Bayes”. 

 Table 4.1    Cross-tabulation of a test with + or 
− results with presence of disease ( D  or ! D )  

  D   ! D   Total 

 Test +  80  90  180 
 Test −  20  810  920 
 Total  100  900  1,000 

 Table 4.2    Logistic regression analysis for example in Table  4.1   

 Variable   b   SE  OR [95% CI] 

 Intercept  −3.701  0.226 
 Test  3.583  0.274  36 [21–62] 
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 The linear predictor reads like 

  Lp
u
 = b

1,u
 × x

1
 + b

2,u
 × x

2
 + … + b

p,u
 × x

p
,  

where the subscript u indicates univariate estimates for the logistic regression 
coefficients.  
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 Fig. 4.7    Graphical illustration of Bayes’s formula for a prior probability of disease of 10%. 
Diagnostic LRs of 0.22 and 8 change the posterior probability of disease to 2.4% and 47%, respec-
tively. The second graph shows the probabilities on the logodds scale  
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  *4.2.7 Examples of Naïve Bayes 

 A naïve Bayes modeling approach has been studied by Spiegelhalter, who found 
remarkably good performance for discrimination. 395  Also, the method has been 
applied in modelling the effects of genetic markers, where robustness in modelling 
is required at the expense of accepting bias in coefficients. 387   

  *4.2.8 Calibration and Naïve Bayes 

 The problem with Naïve Bayes estimation is that correlations between the predic-
tors are ignored. In the case of positive correlations, predictions will be too extreme, 
since the effects of predictors are overestimated. Both too low and too high predic-
tions arise. This is reflected in a regression coefficient for the linear predictor 
(“calibration slope”,  b  

cal
 ) below 1 in the model:  y  ∼ lp 

u
 . A simple approach hence is 

to correct this calibration problem with a single coefficient for the linear predictor: 
Logit ( y ) =  a  +  b  

cal
  × lp 

u
 . 

 In terms of multivariable    OR (OR
m
)    or multivariable   LR (LR

m
)  , the exponent 

can be used for easy of notation:   OR
m
 = OR

u
bcal or LR

m
 = LR

u
bcal  . The idea of re-

calibrating of the linear predictor comes back in Chap. 15 and 20.  

  *4.2.9 Logistic Regression and Bayes 

 The diagnostic LR can be used mathematically correct in a multivariable context. 
The key trick is to rescale test results. Instead of a “1” for positive and a “0” for 
negative, the univariate log(LR) values can be filled in for the test results. 395  In a 
multivariable model, the joined effects for the test results are subsequently esti-
mated. Coefficients for the rescaled test results reflect to degree of correlation 
between test results from different tests. If there are no correlations, the coefficients 
of each test would be close to 1. 

 Multivariable diagnostic LRs can also be calculated by comparing models with 
and without the test of interest. The model without the test is the prior, and the 
model with the test included provides the posterior probabilities. 217  Subtracting 
these two equations provides the LRs.  

  *4.2.10 More Flexible Approaches to Binary Outcomes 

 Naïve Bayes estimation is an example of a more simplistic and robust method than 
logistic regression. A more flexible alternative model is a generalized additive 
model (GAM), as was already discussed for linear regression models. 180,181,472  
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 Another alternative is to consider generalized non-linear models. Here, the out-
come is no more related to a mathematically simple linear combination of estimated 
regression coefficients and predictor values. Instead, non-linear combinations of 
predictors are possible. Generalized non-linear models are currently implemented 
as neural networks. Neural networks are often presented as fancy tools, “that repre-
sent the way our brain works,” but it may be more useful to consider them as non-
linear extensions of linear logistic models. 436,438  

 The most common neural network model is the multilayer perceptron (Fig.  4.8 ). 
In such a network, the neurons are arranged in a layered configuration containing 
an input layer, usually one “hidden” layer, and an output layer. The values of input 
variables (patient characteristics) are imported into the network via the input layer 
and multiplied with the weights of the connections. These multiplied values consti-
tute the input of the next (hidden) layer, from where the process is continued to 
produce the output variables (e.g. risk of mortality) in the output layer.

   A neural network does not use any preliminary information about the links 
between the input and output variables; the relationships between input and output 
variables are determined by the data. It is hence not easily possible to explicitly 
force external knowledge into a model, e.g. that an age effect should be monotonically 
increasing. Neural networks learn by example; the errors from the initial prediction 
for the patients are fed back into the network and the weights for connections are 
adjusted to minimize the error; for the second time predictions are made and com-
pared to the actual outcome. The process from input to output layer is repeated 
many times. However, to prevent “overtraining” the repetitions are usually stopped 
before the network is fully trained to the data. 410,436  

 The hidden layer makes the network more flexible to recognize patterns in the 
data compared to a standard logistic regression model. The number of hidden layers 
and number of nodes are chosen by the analyst. A neural network without a hidden 
layer is equivalent to a logistic regression model. 436,438   

  Fig. 4.8    A simple neural network with four input variables (predictors  x  
1
  −  x  

4
 ), one hidden layer 

with three nodes, and one output layer (outcome  y )       
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  4.2.11 Classification and Regression Trees 

 Recursive partitioning or Classification And Regression Tree (“CART”) methods have 
been promoted by some as strong tools for predictive modeling. Recursive partitioning is 
a statistical method to construct binary trees. 57  The method is based on statistically optimal 
splitting (“partitioning”) of the patients into pairs of smaller subgroups. Splits are based 
on cut-off levels of the predictors, which produce maximum separation among two sub-
groups and a minimum variability within these subgroups with respect to the outcome. 
The predictor causing the largest separation is situated at the top of the tree, followed by 
the predictor causing the next largest separation, and so on. Splitting continues until the 
subgroups reach a minimum size or until no improvement can be obtained. Several vari-
ants of recursive partitioning algorithms are available which use different criteria to con-
struct a tree. Details of the statistical procedures can be found elsewhere. 57   

  *4.2.12 Example: Mortality in Acute MI Patients 

 We illustrate the creation of a tree in patients with an acute myocardial infarction 
(MI). We use a data set from the GUSTO-I trial (see Chap. 22) which is labeled 
“sample5”. It contains 429 patients, of whom 24 died by 30 days. We consider the 
predictors age (continuous) and Killip (4 categories, Fig.  4.9 ). An initial tree was 
quite complex, with many splits, especially at many age cut-offs. Some counter-
intuitive patterns arose, such as a zero mortality among older patients within sub-
branches. A technique to construct better prediction trees is to prune a tree back to 
an “optimal” size. This can be achieved by using a cross-validation procedure (see 
also Chap. 17). Performance is determined in randomly drawn independent parts of 
the data for different tree sizes (Fig.  4.10 ). A pruned tree of size 3 was subsequently 
created (Fig.  4.11 ). So an enormous reduction in size was necessary to construct a 
more stable tree. Prediction of outcome for a new patient is accomplished by sim-
ply running that patient down the tree, according to the values of the predictors. 57 

       4.2.13 Advantages and Disadvantages of Tree Models 

 An advantage of a tree is its simple presentation. Some claim that a tree represents how 
physicians think: starting with the most important characteristic, followed by another 
characteristic depending on the answer on the first, etc. Indeed, humans are remarkably 
quick in pattern recognition based on a few clues. However, humans have typically 
been outperformed by systematic prediction methods in experiments where a balanced, 
quantitative judgement was required, such as estimation of a probability based on a set 
of characteristics. 265  So, the fact that a tree may represent human thinking for classifica-
tion does not argue in favour of the method for prediction. A true advantage may be that inter-
action effects are naturally incorporated in a tree, while a standard logistic regression 
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  Fig. 4.9    Initial tree fitted in a small subsample of GUSTO-I (“sample5”) with age and Killip class 
as predictors. Splits in the tree are labelled with the criterion for the split, e.g. Killip <2.5 indicates 
that patients with Killip class 1 or 2 go to the left in the tree and patients with Killip class 3 or 4 
go to the right. The nodes are labeled with 30-day mortality as a fraction, e.g. 0.60 indicates a 60% 
mortality among those with Killip class 3 or 4. Vertical distances in the tree are based on the 
statistical improvement between parent and children nodes       
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  Fig. 4.10    Cross-validated deviance in relation to tree size; optimal size is around 3       

model usually starts with main effects, that is one coefficient b
i
 per predictor. When 

multiple, high-order interactions are expected in a huge data set, and only categorical 
predictors are considered, a tree might be a good choice. Such situations may be rare in 
medical data, but may possibly be encountered in other areas of research. 

 Disadvantages of trees can be noted by considering a tree as a special case of 
linear logistic regression. First, all continuous variables have to be categorized, 
which implies a loss of information. As illustrated in Figs.  4.9  and  4.11 , age is con-
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sidered with different splits at different places in the tree, while the age effect could 
well be approximated with a single linear term in a logistic model (see Chap. 6). 
Moreover, these cut-points are determined from a search over all possible cut-
points, which is well known to be very dangerous in a prediction context. 12  

 Further, the tree assumes interactions between all predictors. After the first split, 
this interaction is of the first order, i.e. x 

1
  × x 

2
 . At the third level, second-order interac-

tions are assumed (x1 × x2 × x3). In regression analysis, it is common practice to 
include main effects of predictors when interactions are considered; this principle is 
not followed in tree modelling. A higher-order interaction term is included to model 
the effect of a predictor in a specific branch, and simply omitted from the other 
branches. A predictor is typically selected in one branch of the tree and not in another. 
This poses a clear risk of testimation bias (Chap. 5): predictors are selectively consid-
ered when their effects are relatively large, and not if their effects are small.  

  *4.2.14 Trees as Special Cases of Logistic Regression Modelling 

 From a model selection viewpoint, trees have three distinctive characteristics com-
pared to a logistic regression model when we consider a set of potential predictors.

    1.     In a logistic model, a default strategy is to include all predictors as main effects. 
This model can be extended with interaction terms if the power to examine 
these is sufficient. It is rare to study interactions that are more complex than 
considering three variables (second order). In contrast, trees by default assume 
that higher-order interaction are present, and cannot model main effects.  

|
killip<2.5

age<67.5

killip<1.50.02

0.07 0.30

0.60

  Fig. 4.11    Pruned tree with size 3 for terminal nodes       
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    2.     Continuous variables should not be categorized in regression models. 355  Trees 
do so by necessity, which causes a loss of information.  

    3.     One might use a stepwise selection method in a logistic model, especially in 
larger data sets with sufficient power to select all relevant predictors. Generally 
a high  p -value is advisable to prevent various problems (Chap. 11). 174  A tree 
however always needs to be selective in the inclusion of predictors, and quickly 
runs out of cases within branches. Limited power is a major problem in the 
development of trees.     

 As an example we write the linear predictor for the tree in Fig.  4.11  as: 
  Lp =  b

1
 × Killip > 2 + b

2
 × Killip ≤ 2 × age ≤ 67.5 + 

b
3
 Killip = 1 × age > 67.5 + b

4
 × Killip = 2 age >67.5.   

 We estimate four parameters which identify the four terminal nodes. If we want 
a more standard formulation with an intercept we could write: 
  Lp = a + b

1
 × Killip>2 + b

2
 × Killip = 1 × age > 67.5 + b

3
 × Killip = 2× age > 67.5,  

where the intercept term refers to patients with Killip 1 or 2, and age = 67.5. 
 In this formulation, it is clear that age is ignored among those with Killip class 
> 2, and that a dichotomized age variable is used in interaction with patients in 
Killip class 1 or 2. 
  In a logistic regression model, we could combine Killip class 3 and 4 (represent-
ing “shock”), and omit the interaction of Killip with age: 
  Lp = a + b

1
 × age + b

2
 × Killip=1 + b

3
 × Killip=2 + b

4 
× Killip>2.   

    Even simpler, we could include Killip as a linear rather than as a categorized 
predictor:
Lp = a + b

1
 × age + b

2
 × Killip.

We could extend this model to allow for age × Killip interaction:
Lp = a + b

1
 × age + b

2
 × Killip + b

3
 × age × Killip.

*4.2.15 Other Methods for Binary Outcomes

Various other methods are available or under development. Such methods include 
multivariate additive regression splines (MARS) models. These form a kind of 
hybrid between generalized additive models and classication trees.129 MARS 
models aim to find low-order additive structure as well as interactions between 
risk factors.

A support vector machine (SVM) performs classification tasks by constructing 
hyperplanes in a multidimensional space that separates cases of different class 
labels. SVM supports both regression and classification tasks and can handle mul-
tiple continuous and categorical variables.464 Specialized texts are available that 
discuss these and other statistical models for binary data.181



4.2.16 Summary on Binary Outcomes

In sum, logistic regression provides a quite flexible model to derive predictions 
from empirical data. Interactions and nonlinearity can be incorporated. Some other 
models, such as GAM, neural nets (GNLM), MARS, can be seen as extensions, 
with the default linear logistic model as a special case. Naïve Bayes is a simplified 
version of logistic regression, ignoring correlations between predictors. Trees can 
be seen as special cases of logistic regression, requiring categorizations of continuous 
variables and assuming higher order interactions.

4.3 Categorical Outcomes

Categorical outcomes without a clear ordering are common in diagnostic medical 
problems. The diagnostic process starts with considering presenting signs and 
symptoms of a patient. This leads the physician towards a set of differential diag-
noses. Each diagnosis has a probability given the patient’s clinical and nonclinical 
profile. Usually, one of these differential diagnoses is defined as the working diag-
nosis or target disease, to which the diagnostic work-up is primarily directed. 
Consequently, diagnostic studies commonly focus on the ability of tests to include 
or exclude the presence of this target disease. The alternative diagnoses (which 
may all direct different treatment decisions) are thus included in the outcome category 
“target disease absent.” After dichotomization of the diagnostic outcome, we may 
develop diagnostic prediction rules with logistic regression analysis. However, 
considering only the target disease is a simplification of clinical practice.

Table 4.4 Characteristics of some statistical models for binary outcomes

Categories Interactions Linearity Selection Estimation

Linear logistic 
regression

Possible Flexible Flexible Standard ML or 
penalization

Idiot’s Bayes No Often categories 
for diagnostic 
outcome

Flexible Univariate effects (+ 
calibration slope)

GAM Possible Highly flexible Flexible Nonparametric, close 
to penalized ML

GLNM, neural net Assumed Highly flexible Flexible Backpropagation, 
early stopping to 
prevent overfitting

Trees Assumed Categorization Assumed Various splitting 
methods

4.3 Categorical Outcomes 71



7272 4 Statistical Models for Prediction         

4.3.1 Polytomous Logistic Regression

Several studies discussed the use of polytomous logistic regression to accommodate 
simultaneous prediction of three or more unordered outcome categories.29,484 The model 
for j outcome categories can be written as:

Logodds(y=j vs. y=reference) = a
j
 + b

i,j 
× x

i,j
 = lp

j

where j − 1 models are fitted each with separate sets of intercept a
j
 and regression 

coefficients b
i
. We illustrate the polytomous model for prediction of three diagnostic 

outcome categories in a detailed case study.

*4.3.2 Example: Histology of Residual Masses

After chemotherapy, patients with nonseminomatous testicular germ cell tumor may 
have residual masses of metastases.425 These residual masses may contain benign tissue, 
mature teratoma, or cancer cells. Surgery is not necessary for benign tissue. Mature 
teratoma can grow and hence cause problems during follow-up. The most serious 
diagnosis is residual cancer, where a direct benefit from surgery is plausible.

We consider three outcome categories with varying therapeutic benefit: no benefit 
for benign tissue, some for teratoma, and most benefit for surgical removal of 
residual cancer.35 We have proposed to weigh the benefit as 1:3:8 based on expert 
estimates of the prognosis of unresected vs. resected masses.422 This ordering in 
severity of the outcome was not used in the modeling, since biological knowledge 
was available that implied that prognostic relationships would be very different for 
the different histologies. For example, some histologies are known to produce certain 
tumor markers while others do not. Masses with teratoma masses are not expected to 
decrease substantially in size by chemotherapy, while cancer is usually responsive. 
Hence, a substantial decrease would make residual cancer unlikely.

Polytomous logistic regression analysis requires that one of the outcome categories 
is chosen as reference category. For the other outcome categories the polytomous 
logistic regression analysis fits simultaneously submodels that compare the outcome 
categories with the chosen reference. Thus, for each outcome category, different 
regression coefficients are estimated for each predictor. These submodels together 
comprise the polytomous model and can be used to estimate the probability of 
presence of each diagnostic outcome. In our example study, the reference diagnosis 
was viable cancer. Hence, we fitted a polytomous regression model, consisting of 
two submodels, one for benign tissue compared to viable cancer, and one for mature 
teratoma compared to viable cancer. These models take a similar form as the binary 
logistic model:

Logit(benign vs. cancer) = a
b
 + b

1,b
 × x

1
 + b

2,b
 × x

2
 + … + b

p,b
 × x

p
 = b

i,b
 × X = lp

b
;

Logit(teratoma vs. cancer) = a
t
 + b

1,t
 × x

1
 + b

2,t
 × x

2
 + … + b

p,t
 × x

p
 = b

i,t
 × X = lp

t
.



The subscript b indicates that we predict the odds of benign tissue, and subscript t 
for teratoma with p predictors.

The interpretation of the regression coefficients is similar as for dichotomous 
logistic regression, i.e., the logodds of the outcome (benign tissue or mature teratoma) 
relative to cancer per unit change in the predictor values. The probabilities of benign 
and teratoma tissue can be calculated by:

 P(benign tissue) = exp(lp
b
) / [1 + exp(lp

b
) + exp(lp

t
)]

P(mature teratoma) = exp(lp
t
) / [1 + exp(lp

b
) + exp(lp

t
)].

As probabilities need to sum to 1, the probability of cancer can then be calculated by:
P(cancer) = 1 – P(benign tissue) – P(mature teratoma).
We fitted a multivariable polytomous logistic regression model with six pre-

dictors to enable estimation of the probabilities of benign tissue, mature teratoma, 
and viable cancer. Variable selection was not applied; we simply included all six 
of the available predictors.

*4.3.3 Alternative Models

For comparison reasons, we may fit consecutive multivariable dichotomous logistic 
models. In our example, we make one model to predict benign tissue (vs. mature 
teratoma or viable cancer). The second, consecutive, model aimed to predict the odds 
of mature teratoma vs. viable cancer in patients who did not have benign tissue.

Logit(benign vs. teratoma/cancer) = a
b
 + b

1
 × x

1
 + b

2
 × x

2
 + … + b

p
 × x

p
 = b

i
 × X = lp;

Logit(teratoma vs. cancer) = a
t
 + b

1,t
 × x

1
 + b

2,t
 × x

2
 + … + b

p,t
 × x

p
 = b

i,t
 × X = lp

t
.

The latter formula is identical to a previous formula for the polytomous model, but 
the coefficients are estimated differently. In the polytomous model, all coefficients 
are estimated jointly. In the consecutive logistic model, a selection of patients is 
made to estimate the coefficients.
With these two binary logistic models the diagnostic probabilities are calculated by:

P(benign tissue) = exp (lp) / (1 + exp(lp) )
P(mature teratoma) = (1 – P(benign tissue) ) × exp(lp

t
) / [1 + exp(lp

t
)]

P(cancer) = 1 – P(benign tissue) – P(mature teratoma)

In our example, we use the same six predictors, but in principle we could select 
different predictors for lp and lp

t
. Also, we could have considered different trans-

formations of the continuous predictors related to LDH and mass size.
In both approaches, 14 parameters were estimated: 2 intercepts (a) and 2 sets of 
6 regression coefficients (b

1:6
). The performance of the two approaches was very 

similar according to discrimination (area under ROC curve) and R2 measures. See 
Biesheuvel et al. for a more detailed decription of this case study.35 Further dis-
cussion of approaches to unordered outcomes is provided in other reports.352, 425

4.3 Categorical Outcomes 7373



7474 4 Statistical Models for Prediction         

*4.3.4 Comparison of Modelling Approaches

We considered a total of 1,094 patients, where 425 (39%) had benign tissue, 535 
(49%) mature teratoma, and 134 (12%) viable cancer. Table 4.5 shows the distribu-
tions of the six predictors across the three diagnostic outcome categories and in the 
total study population.

The odds ratios for the predictors are shown in Table 4.6, considering a polytomous 
regression model, and a consecutive logistic model. We note that the odds ratios for 
teratoma vs. cancer differ slightly between these modeling approaches. The odds 
ratios for necrosis vs. cancer are larger for most predictors than for necrosis vs. 
other histology.

4.4 Ordinal Outcomes

Ordinal outcomes are quite common in medical and epidemiological studies. Often, 
such scales are either simplified to binary outcomes, or treated as continous out-
comes. As an example, we consider the Glasgow Outcome Scale (GOS).430 This 
scale has five levels (Table 4.7).

This scale has often been dichotomized as mortality vs. survival, or a unfavorable 
(GOS 1, 2 or 3) vs. favorable (GOS 4 or 5) outcome. However, we can also explore 
the use of the full GOS. A practical consideration is that the GOS 2 category is very 
small, and that some may debate whether vegetative state is better than death. 
Therefore we combine the GOS categories 1 and 2, such that an outcome with four 
ordered levels is formed.

Table 4.5 Distribution of predictors across outcome categories in the total study population 
(n = 1,094)

 Benign Mature teratoma Viable cancer Total

 N (%) N (%) N (%) N (%)

Predictors    
No teratoma in primary  279 (55) 170 (34) 54 (11) 503 (46)

tumor
Normal AFP level 200 (59) 112 (33) 27 (8) 339 (31)
Normal HCG level 184 (49) 154 (41) 40 (10) 378 (35)
Standardized value of  1.5 (0.39–70) 1.2 (0.12–21) 1.8 (0.34–64) 1.4 (0.12–70)

LDH*    

Postchemotherapy  18 (2–300) 30 (2–300) 40 (2–300) 28 (2–300)
size (mm)*

Reduction in size  60 (−150–100) 20 (−150–100) 43 (−250–100) 43 (−250–100)
(%)*     

Outcome    
Histology at resection 425 (39) 535 (49) 134 (12) 1,094 (100)
* Median (range)
AFP Alpha-fetoprotein, HCG Human chorionic gonadotropin, LDH Lactate dehydrogenase



4.4.1 Proportional Odds Logistic Regression

A standard logistic regression model can be used for each of the three possible 
dichotomous categorizations of the GOS: 12 (dead/vegetative) vs. 345, 123 vs. 45 
(favorable), 1234 vs. 5 (good recovery). A straightforward extension of the logistic 
model is the proportional odds logistic model. Here, a common set of regression 
coefficients is assumed across all levels of the outcome, and intercepts are estimated 
for each level. So, in our example we have three intercepts a, but only one set of b, 
instead of three sets of b coefficients when fitting a polytomous logistic model. The 
common set of b coefficients can be thought of as an average over the three separate 
sets of bs estimated at each possible dichotomization. As an example we consider a 
simple model with age, motor score, and pupillary reactivity in a model to predict 6-
month outcome in data from two RTCs in traumatic brain injury.203

An advantage of the proportional odds model is its parsomony in dealing with 
an ordered outcome. The price we pay is the assumption of proportionality of the 

Table 4.6 Results of the multivariable polytomous and consecutive dichotomous logistic regres-
sion analysis. Values represent odds ratios with 95% confidence intervals

Predictor

Polytomous regression
Consecutative dichotomous 
regression

Benign vs.
 cancer

Teratoma vs. 
cancer

Benign vs. other Teratoma vs. 
cancer

No teratoma in 
primary 
tumour

2.2 (1.4–3.3) 0.66 (0.44–0.99) 3.0 (2.2–4.0) 0.61 (0.40–0.92)

Normal AFP 
serum level

2.8 (1.7–4.6) 0.94 (0.57–1.5) 2.9 (2.1–4.0) 0.90 (0.54–1.5)

Normal HCG 
serum level

1.4 (0.89–2.3) 0.72 (0.46–1.1) 1.9 (1.3–2.6) 0.70 (0.44–1.1)

Log of standardized 
value of LDH

1.2 (0.84–1.6) 0.58 (0.42–0.78) 1.7 (1.4–2.2) 0.60 (0.44–0.81)

Square root of 
postchemotherapy 
mass size

0.79 (0.71–0.88) 0.91 (0.84–0.99) 0.85 (0.77–0.92) 0.89 (0.82–0.98)

Reduction in mass 
size (per 10%)

1.14 (1.06–1.22) 0.97 (0.92–1.02) 1.18 (1.12–1.24) 0.96 (0.92–1.0)

Table 4.7 Definition of the Glasgow Outcome Scale

Category Label Definition

1 Dead –
2 Vegetative Unable to interact with environment; 
  unresponsive
3 Severe disability Conscious but dependent
4 Moderate disability Independent, but disabled
5 Good recovery Return to normal occupational and social activities; 
  may have minor residual deficits

4.4 Ordinal Outcomes 7575



7676 4 Statistical Models for Prediction         

odds. This assumption is equivalent to saying that any cut-point on the outcome 
scale would lead to the same logistic regression coefficient. The model further has 
very similar assumptions as the usual logistic model. We can graphically check the 
proportionality assumption in univariate analyses for each predictor (Fig. 4.12). 
Distances between points should be identical on the logit scale within each category 
of a predictor (looking horizontally), or equivalently, the effects of predictors 
should be the same for every point (looking vertically). The assumption of propor-
tional odds can formally be assessed with a score test. One could also develop usual 
logistic models by each categorization, and check for systematic trends in the esti-
mated odds ratios (Table 4.8). There is considerable overlap in patients in such 
evaluations, but clear deviations from proportional odds should become visible. In 

Table 4.8 Logistic and proportional odds models for GOS at 6 months after traumatic brain 
injury in 2,159 patients from the Tirilazad trials203

Categorization 12 vs. 345 123 vs. 45 1234 vs. 5 Proportional

Age (per decade) 1.36 1.47 1.45 1.43
Motor 1/2 5.88 6.50 6.18 5.86

3 2.98 3.82 3.00 3.15
4 1.95 1.95 1.62 1.82
5/6 1 1 1 1

Pupils 2 reactive 1 1 1 1
1 reactive 1.73 1.81 2.51 2.01
Nonreactive 3.26 3.53 4.23 3.55

Fig. 4.12 Assessment of the proportional odds assumption for each of three predictors (univariate 
analysis) to predict for GOS at 6 months after traumatic brain injury. Data from the Tirilazad tri-
als (n = 2,159). The circle, triangle, and plus sign correspond to the GOS categorizations 12 vs. 
345, 123 vs. 45, and 1234 vs. 5. For example, the overall logit of the last categorization is −1, or 
a probability of 27% (589/2,159 patients). The proportional odds assumption is well satisfied, 
since the horizontal distance between the points is constant within each category
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our example, the ORs per categorization are reasonably constant, and the propor-
tional odds ratio provides a nice summary measure over the three categorizations.

*4.4.2 Alternative: Continuation Ratio Model

An alternative to the proportional odds model is the continuation ratio model. This 
model is related to the Cox proportional hazards model and allows predictors to have 
different effects on different levels of the ordinal outcome. An extensive illustration 
is provided by Harrell et al.174,178

4.5 Survival Outcomes

Survival analysis is appropriate for outcomes that occur during follow-up of 
patients. The outcome may for example be death or another event, such as recur-
rence of disease in cancer, or a complication after implantation after a heart valve. 
A key characteristic of survival data is that the follow-up of patients is typically 
incomplete. For example, some patients may have been followed for 1 year, others 
for 3 years, etc., while we may be interested in estimates of 5-year survival. Patients 
with such incomplete data are called censored observations. Because of censoring, 
logistic regression for the outcome (a binary variable) is inappropriate. One could 
think of linear regression on the survival time (a continuous outcome), but again 
censoring makes such an analysis usually meaningless.

4.5.1 Cox Proportional Hazards Regression

In medical and epidemiological studies, the Cox proportional hazard model is the 
most often used method for survival outcomes.85 It is the natural extension of the 
logistic model to the survival setting. Indeed, the Cox model is equivalent to conditional 
logistic regression, with conditioning at times where events occur.251 In the logistic 
model, we use an intercept in the linear predictor, while in the Cox model a baseline 
hazard function is used. The hazard function indicates the risk of the outcome during 
follow-up. The baseline hazard is nonparametric in the Cox model. As for the logis-
tic model, simpler and more extensive methods exist, which can be seen as special 
cases or extensions of the Cox model.

The Cox regression model is often stated as a function of the hazard function472:

l(t|X) = l(t) ebX,

Where l(t) is the hazard at time t, and is usually estimated at the mean values of 
the predictors and b X is the linear predictor, b

1
 ´ x

1
 + b

2
 ´ x

2
 + … + b

p
 ´ x

p
.

4.5 Survival Outcomes 77
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The linear predictor is usually centered at the mean values of the predictors, and ebX 
then indicates the hazard ratio compared to the average risk profile. Note that the 
linear predictor relates to the log of the hazard:

log(l(t|X) ) = log(l(t) ) + b
1
 ´ x

1
 + b

2
 ´ x

2
 + … + b

p
 ´ x

p
.

The Cox regression model is semiparametric. It makes a parametric assumption on the 
effect of predictors, i.e., proportionality of effect during follow-up. The baseline hazard 
function l(t) is nonparametric. This is an advantage of the model, especially when we 
focus on the effect of predictors. Regression coefficients b

i
 can readily be estimated. 

The quantity ebi is the hazard ratio, similar to the odds ratio in logistic regression.

4.5.2 Predicting with Cox

When we want to make predictions, we need to consider the risk over time, for example 
by using the cumulative hazard, or survival function. The standard formulation of the 
predicted survival at time t, given a set of predictors X, is as

S(t|X) = S(t)e(b X),

Where S(t|X) denotes the predicted survival at time t, given a set of predictors X, 
S(t) is the baseline survival, usually estimated at the mean values of the predictors, 
and bX is the linear predictor.

The baseline survival is estimated from the nonparametric baseline hazard function as

S(t) = e−L (t)

where L (t) is the cumulative hazard at time t.
Note that log(L (t) ) can range between [−inf, +inf]; L (t) [0, inf]; S(t) [1, 0]. This 

is very similar to the behavior of quantities in logistic regression: logit, odds, and 
probability. The baseline survival in the development data determines the precise 
time points where we can make predictions for, which is not very natural for application 
of the model in new subjects.

4.5.3 Proportionality Assumption

The effect of predictors is assumed to be constant in time or more precisely stated: 
the hazards are assumed to be proportional. The proportionality assumption can be 
assessed in a number of ways, including graphical and analytical methods. A general 
approach is to calculate interval specific hazard ratios. With proportional hazards, 
the hazard ratio should be similar across any interval considered. Follow-up time 
can also be considered as a continuous variable, where assessing interaction with 
log(time) may be a useful approach.174



If we find that the effect of a predictor is nonproportional, we can stratify for cate-
gorical variables in the baseline hazard. For example, we could estimate baseline haz-
ards for males and females seperately. For continuous predictors, e.g., age, we could 
specify interactions with log(age) as the time variable. Nonproportionality can also be 
visualized in a more nonparametric approach, i.e., with Kaplan–Meier curves.

4.5.4 Kaplan–Meier Analysis

Kaplan–Meier analysis is a nonparametric approach to survival outcomes.224 It ade-
quately deals with censored data, and provides attractive graphs on the relationship 
between predictor values and the outcome over time. The method can be seen as an 
extension of a cross-table for survival data. More technically, it can be interpreted 
as a Cox model with stratification of the baseline hazard to all predictor levels. For 
example, we could make a Cox model with sex as a stratification variable for the 
baseline hazard, without any other variables, which is equivalent to a Kaplan–Meier 
analysis with sex as a predictor. Also, testing in a Kaplan–Meier analysis is usually 
done with a log-rank test, which is equivalent to the Score test in the Cox model.

Kaplan–Meier analysis often has a role in prognostic modeling at the start of the 
analysis, i.e., to show univariate relationships graphically or to compute survival 
fractions at a certain time of follow-up. Also at the end of a modeling process, 
Kaplan–Meier curves are often used to present the predictions from the model. It 
is then necessary to group patients by their predictions, since Kaplan–Meier analysis 
cannot handle continuous predictors. Kaplan–Meier curves are for survival analysis 
what cross-tables are for binary or categorical outcomes.

*4.5.5 Example: NFI After Treatment of Leprosy

Nerve-function impairment (NFI) commonly occurs during or after chemotherapy 
in leprosy. It is the key pathological process leading to disability and handicap. A 
simple clinical prediction rule was developed with 2,510 patients who were 
followed-up for 2 years in Bangladesh.87 In total, 166 patients developed NFI 
(Kaplan–Meier 2-year estimate: 7.0% [95%CI 6.0–8.0%]. A Cox regression model 
included two strong predictors (Table 4.10). Patients with no, one, or two unfavora-

Table 4.10 Multivariable hazard ratios from Cox proportional 
hazard analysis.87 Three risk groups could be formed based on 
presence of no, one, or two unfavorable predictive characteristics, 
since the hazard ratios were very similar

Predictor Hazard ratio [95% CI]

Leprosy group (MB vs. PB) 7.5 (5.3–11.0)
Nerve-function loss at registration 8.1 (5.7–12.0)

4.5 Survival Outcomes 7979
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ble predictive characteristics had 1.3% (95% CI 0.8–1.8%), 16.0% (12–20%), and 
65% (56–73%) risks of developing NFI within 2 years of registration, 
respectively.

4.5.6 Parametric Survival

Whereas Kaplan–Meier analysis represents a more nonparametric approach, para-
metric survival models are less flexible than Cox regression in their dealing with 
the baseline hazard function. Parametric models typically assume proportionality 
of the predictor effects, but a more smoothed hazard in time. Examples of paramet-
ric models include the exponential model (or Poisson model, using a constant haz-
ard) and the Weibull model (two parameters to let the hazard increase or decrease 
monotonically over time). The exponential and Weibull model can also be seen as 
examples of accelerated failure time (AFT) models. Here, the effects of predictors 
are not viewed as multiplicative on the hazards scale, but as multiplicative on the 
time axis (or additive at the log-time axis). Other examples of AFT models are the 
log-normal and log-logistic model.174 472

Regression coefficients in exponential or Weibull models are hazard ratios after 
exponentiating. In AFT models, they represent a change in the log-time. The 
advantage of parametric survival models is their concise, parsimonious formula-
tion, and smoothing of the underlying hazard. This makes these models especially 
to be considered for prediction purposes. Extrapolation is readily possible with 
parametric models, but not with Cox or Kaplan–Meier analysis because of their 
nonparametric nature. Predictions at the end of the follow-up are quite unstable 
with Cox or Kaplan–Meier analysis, and more robust with parametric methods. For 
estimation of the effect of predictors, the Cox model is often more suitable, since 
this model is less restrictive than an exponential or Weibull model. However, log-
logistic models have been useful in situations where predictors worked especially 
during an early, acute phase of the hazard, which would show as non–proportional 
hazards in a Cox model.174 Note finally that some of the more flexible methods for 
binary data have also been extended to survival models, but are not commonly used 
yet (e.g., neural networks).181

*4.5.7 Example: Replacement of Risky Heart Valves

In Chap. 2, we presented an overview of the decision dilemma on Björk-Shiley 
convexo-concave (BScc) mechanical heart valves.448 Poisson regression models 
were constructed to estimated survival and the risk of strut fracture.415 Poisson 
regression was especially useful to disentangle the effects of increasing age of the 
patient during follow-up from the increasing time since implantation of the valve 
during follow-up. The follow-up time was divided in yearly intervals, each with an 
age and time since implantation. Time since implantation started at zero, and increased 



in steps of 1 year during follow-up. Age started at the age at implantation, and also 
increased in steps of 1 year during follow-up. The Poisson model could easily esti-
mate the effects of both predictors, which would have been more complicated in a 
Cox regression analysis. Moreover, extrapolation to longer time since implantation 
was readily possible with the Poisson model.

4.5.8 Summary on Survival Outcomes

In sum, the Cox regression model provides a default framework for prediction of 
long-term prognostic outcomes. Kaplan–Meier analysis provides a nonparametric 
method, but requires categorization of all predictors. It is the equivalent of cross-tables 
for categorical outcomes for a survival context. Parametric survival models may be 
useful for predictive purposes because of their parsimony and robustness, for example 
at the end of follow-up, or even beyond the observed follow-up.

4.6 Concluding Remarks

Regression models are available for several types of outcome that we may want to 
predict, such as continuous, binary, unordered categorical, ordered categorical, and 
survival outcomes. The corresponding default regression models are the linear, 
logistic, polytomous, proportional odds, and Cox regression models, respectively. 
Both more and less flexible methods are available. Flexible methods may fit par-
ticular patterns in the data better, but may on the other hand lead to overfitting 
(Chap. 5). It is therefore not immediately clear what kind of model is to be pre-
ferred in a specific prediction problem (Chap. 6).

Special types of data can be encountered that required specific types of analyses. 
Correlated outcome data may occur by the design of a study, for example by clustering 
per hospital. In survival analysis, repeated and correlated events may occur, asking 
for extensions of the Cox model. Also, we may want to consider competing risks 
in estimation of actual risk instead of actuarial risks.124,158,159

Table 4.11 Common statistical models for survival outcomes

Categories Proportionality Baseline hazard

Cox proportional hazards Assumed Nonparametric
Kaplan–Meier No Nonparametric
Exponential and Weibull Assumed Parametric
Log-normal, log-logistic No, but multiplicative in time Parametric

4.6 Concluding Remarks 81
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Questions

4.1 Explained variation
(a)  What is the difference between explained variation in linear and logistic 

regression models?
(b)  Is the choice of scale for explained variation natural in linear and logistic 

regression models?
(c)  Why are larger likelihood ratios seen with an incidence of 50% compared 

to 1% in Fig. 4.5?

4.2 Categorical and ordinal outcomes
(a) What is the proportionality assumption in the proportional odds model?
(b)  Mention at least two ways how the proportionality assumption can be 

checked
(c)  Would the proportionality assumption hold in the testicular cancer case 

study (Table 4.6)?
(d)  We could also make two logistic regression models for the testicular cancer 

case study, with one model for benign vs. other and another for cancer vs. 
other. What would be the problem with predictions from these models?

4.3 Parametric survival models
(a) Why may we label the Cox regression model “semiparametric”?
(b) Do you agree that Kaplan–Meier analysis is a fully nonparametric model?
(c)  Why is the Weibull model attractive for making long-term predictions? At 

what price?        



   Chapter 5   
 Overfitting and Optimism in Prediction 
Models       

   Background   If we develop a statistical model with the main aim of outcome 
prediction, we are primarily interested in the validity of the predictions for new 
subjects, outside the sample under study. A key threat to validity is overfitting, i.e. 
that the data under study are well described, but that predictions are not valid for 
new subjects. Overfitting causes optimism about a model’s performance in new 
subjects. After introducing overfitting and optimism, we illustrate overfitting with a 
simple example of comparisons of mortality figures by hospital. After appreciating 
the natural variability of outcomes within a single centre, we turn to comparisons 
across  centres. We find that we would exaggerate any true patterns of differences 
between centres, if we would use the observed average outcomes per centre as 
predictions of mortality. 

 A solution is presented, which is generally named “shrinkage.” Estimates per 
 centre are drawn towards the average to improve the quality of predictions. We then 
turn to overfitting in regression models, and discuss the concepts of selection and 
estimation bias. Again, shrinkage is a solution, which now draws estimated  regression 
 coefficients to less extreme values. Bootstrap resampling is presented as a central 
technique to correct overfitting and quantify optimism in model performance.   

  5.1 Overfitting and Optimism  

 To derive a model, we use empirical data from a sample of subjects, drawn from a 
population (Fig.  5.1 ). The sample is considered to be drawn at random. The data 
from the sample are only of interest in that they represent an underlying popula-
tion. 13,409  We use the empirical data to learn about patterns in the population, and to 
derive a model that can provide predictions for new subjects from this population. 
In learning from our data an important risk is that the data under study are well 
described, but that the predictions do not generalize to new subjects outside the 
sample. We may capitalize on specifics and idiosyncrasies of the sample. This is 
referred to as “overfitting.” In statistics, overfitting is sometimes defined as fitting 
a statistical model that has too many parameters, or as the “curse of  dimensionality.” 181  
For prediction models, we may define overfitting more precisely as fitting a statistical 

E.W. Steyerberg, Clinical Prediction Models, 8383
DOI:10.1007/978-0-387-77244-8_5, © Springer Science + Business Media, LLC 2009
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model with too many degrees of freedom in the modelling process. Degrees of 
freedom are used by estimation of the coefficients in a regression model, but also 
by searching for the optimal model structure. The latter may include procedures to 
search for important predictors from a larger set of candidate predictors, optimal 
coding of predictors, and consideration of potential non-linear transformations.

   Overfitting leads to a too optimistic impression of model performance that 
may be achieved in new subjects from the underlying population. Optimism is 
defined as true performance minus apparent performance, where true perform-
ance refers to the underlying population, and apparent performance refers to the 
estimated performance in the sample (Fig.  5.2 ). Put simply: “what you see may 
not be what you get.” 23 

    5.1.1 Example: Surgical Mortality in Oesophagectomy 

 Surgical resection of the oesophagus (oesophagectomy) may be performed for sub-
jects with oesophageal cancer. It is among the surgical procedures that carry a sub-
stantial risk of 30-day mortality (see also Fig. 6.2). 125,213  Underlying differences in 
quality between hospitals may affect the 30-day mortality. A question is whether 
we can identify the better hospitals, and whether we can predict the mortality for a 
typical subject in a hospital. 260   

  5.1.2 Variability within One Centre 

 We first illustrate the variability of mortality estimates within a single centre, 
according to different sample sizes. For oesophagectomy, we assume 10% as an 
average estimate of mortality among elderly patients, based on analyses of the 

  Fig. 5.1    Graphical illustration of optimism, which is defined as the difference between true per-
formance and apparent performance. The apparent performance is determined on the sample 
where the model was derived from; true performance refers to the performance in the underlying 
population. The difference between apparent and true performance is defined as the optimism of 
a prediction model       

Population

Sample

Model
Apparent
performance

True
performance 



SEER-Medicare registry data, where mortality exceeded 10%: 221 of 2,031 sub-
jects had died within 30 days after surgery, or 10.9% [95% CI, 9.6%–12.3%]. 423  

 For illustration, we assume that case-mix is irrelevant, i.e. that all patients have 
the same true mortality risks. The observed mortality rate in a centre may then be 
assumed to follow a binomial distribution (Fig.  5.2 ). When the true mortality is 
10% in samples of  n  = 20, around 30% of these will contain two deaths (estimated 
mortality, 10%). With larger sample sizes, observed mortalities are more likely 
close to 10%; e.g. when  n  = 200, mortality is estimated between 8% and 12% in 
71% of the samples.  

  5.1.3 Variability between Centres: Noise vs. True Heterogeneity 

 We need to appreciate within centres variability when we want to make predictions 
of mortality by centre. For example, consider that 100 centres each reported mortal-
ity in 20 subjects, while the true mortality risk was 10% for every patient. On aver-
age two deaths are hence expected per centre (10% of 20). The expected distribution 
of the estimated mortality is as in Fig.  5.2 : 12% of the centres will have 0% mortal-
ity, and 13% will report a 20% or higher mortality. An actual realization is shown 
in Fig.  5.3 . A  statistical test for differences between centres should be non-signifi-
cant for most of such comparisons (for 95% of the cases when  p  < 0.05 is used as 
criterion for statistical significance).

   Of more interest is the situation that the true mortality varies by centre. This 
can be simulated with a heterogeneity parameter, often refered to as  t  (tau). 
Assuming a normal distribution for the differences across centres, we can write: 

5.1 Overfitting and Optimism 8585

  Fig. 5.2    Estimated mortality in relation to sample size. When the true mortality is 10% in samples 
of  n  = 20, around 30% of these will contain two deaths (estimated mortality, 10%). With larger 
sample sizes, observed mortalities are more likely close to 10%       
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  Fig. 5.4    Estimated and true mortality for 100 centres that had 200 subjects each, while the average 
was 10% for all (panel a), 10% ± 1% (panel b), 10% ± 2% (panel c), and 10% ± 3% (panel d)       
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  Fig. 5.3    Estimated and true mortality for 100 centres that analyzed 20 subjects each, while the 
average mortality was 10% for all ( upper left panel ), 10% ± 1% ( upper right panel ), 10% ± 2% 
( lower left panel ), 10% ± 3% ( lower right panel )       



true mortality ∼  N (10%, sd=  t ). With  t  = 1%, 95% of the centres have a mortality 
between 8% and 12%, while setting  t  to 2% and 2.5% implies that 95% of the 
centres have a mortality between 6% and 14%, and between 5% and 15%, respec-
tively. This underlying heterogeneity causes the estimated mortality to have more 
variability than expected from the binomial distribution with a single true mortal-
ity of 10%. This is recognized in the distributions of Fig.  5.3 . Differences 
between centres can be tested, and will be identified as significant depending on 
the magnitude of the heterogeneity ( t ), and the sample size (number of centres, 
sample size per centre).  

  5.1.4 Predicting Mortality by Centre: Shrinkage 

 We recognize that the estimated mortalities are too extreme as predictions  compared 
with the distribution of the true mortalities (Fig.  5.3 ). Predictions other than 10% 
are by definition too extreme when there is no heterogeneity. Too extreme predic-
tions also occur when there is underlying variability across centres (e.g. true 
 mortality between 6 and 14%). Per centre, the estimated mortality is an unbiased 
estimator of the true mortality in each centre. But the overall distribution of 
 estimated mortality suffers from the low numbers per centre, which makes that 
chance severely affects our predictions. 

 The phenomenon in Fig.  5.3  is an example of regression to the mean. 301  It is a 
motivation for shrinkage of predictions to the average, a principle that is also 
important in more complex regression models. 81,459  We should shrink the  individual 
centre’s estimates towards the overall mean to make better predictions overall. 

 We can also say that predictions tend to be overfitted: They point at very low and 
very high risk hospitals, while the truth will be more in the middle. The identifica-
tion of extreme hospitals will be unreliable with small sample size. With larger 
sample size, e.g. 200 subjects per centre, the overfitting problem is reduced (Fig. 
 5.4 ). Empirical Bayes and random effects methods have been proposed to make 
better predictions (see Chap. 21). 22,458 

      5.2 Overfitting in Regression Models  

  5.2.1 Model Uncertainty: Testimation 

 Overfitting is a major problem in regression modelling. It arises from two main 
issues: model uncertainty and parameter uncertainty (Table  5.1 ). Model uncer-
tainty is caused by specification of the structure of our model, such as which 
characteristics are included as predictors, on information of the data set under 
study. The model structure is therefore uncertain. This model uncertainty is   

5.2 Overfitting in Regression Models 8787
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 usually ignored in statistical analyses, which falsely assume that the model was 
pre-specified. 69,101,194 

      The result of model uncertainty is selection bias. 26,82,365,407  Note that selection 
bias here refers to the bias caused by selection of predictors from a larger set of 
predictors, in contrast to the selection of subjects from an underlying population in 
standard epidemiological texts. Suppose that we investigate 20 potential predictors 
for inclusion in a prognostic model. If these are all noise variables, the true regres-
sion coefficients are zero. On average one variable will be statistically significant 
at the  p <0.05 level. The estimated effect will be relatively extreme, since otherwise 
the effect would not have been significant. If this one variable is included in the 
model, it will have a quite small or quite large effect (Fig.  5.5 , left panel). On aver-
age the effect of such a noise variable is still zero.

   If some of the 20 variables are true predictors, they will sometimes have a rela-
tively small and sometimes a relatively large effect. If we only include a predictor 
when it has a relatively large effect in our model, we are overestimating the effect 
of such a predictor. This phenomenon is referred to as  testimation bias : Because we 
test first, the effect estimate is biased. 26,69  

 In the example of a predictor with true regression coefficient 1 and Standard 
Error (SE) 0.5, the effect will be statistically significant if estimated as lower than 
−1.96 × SE = −0.98, or exceeding +1.96 × SE = +0.98 (52% of the estimated coef-
ficients, Fig.  5.5 , right panel). The average of the estimated coefficients in these 
52% cases is 1.39 rather than 1. Hence, a bias of +39% occurs. In formal terms, we 
can state: if  b  is significant, then  b = b , else  b =0. Instead of considering the whole 
distribution of predictor effects, we only consider a selected part. 

 Testimation bias is a pervasive problem in medical statistics and predictive mod-
elling. 174  The bias is large for relatively weak effects, as is common in medical 
research. Selection bias is not relevant if we have a huge sample size, or consider 

 Issue  Characteristics 

  Causes of overfitting  
    Model uncertainty  The structure of a model is not pre-defined, 

but determined by the data under study. 
Model uncertainty is an important cause of 
overfitting 

    Parameter uncertainty  The predictions from a model are too extreme 
because of uncertainty is the effects of 
each predictor (model parameters) 

  Consequences of overfitting  
    Testimation bias  Overestimation of effects of predictors 

because of selection of effects that with-
stood a statistical test 

    Optimism  Decrease in model performance in new 
subjects compared with performance in the 
sample under study 

 Table 5.1    Causes and consequences of overfitting in prediction models   



predictors with underlying large effects, since these predictors will anyway be 
selected for a prediction model. Neither does selection bias occur if we pre-specify 
the prediction model (“full model”). 174   

  5.2.2 Other Biases 

 A well-known problem in prediction is bias by selection of an “optimal” cut-point 
for a continuous predictor. 12,117,355  A similar problem occurs if we examine different 
transformations for predictor variables as a check for linearity. For example, we 
may add a square term to a linear term, and omit the square term if not statistically 
significant. 148  More subtle variants occur when we less formally assess alternative 
model specifications. For example, we may consider different transformations of 
the outcome variable in a linear model, and visually judge the best transformation 
for use in further modelling. Or we examine different coding variants of a categori-
cal predictor, with merging of groups with what we consider to have “similar out-
comes.” These issues are discussed in more detail in Chap. 9 and 10 on coding of 
predictors, and Chap. 11 and 12 on selection of predictors.  
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  Fig. 5.5    Illustration of testimation bias. In case of a noise variable, the average of estimated 
regression coefficients is zero, and 2.5% of the coefficients is below − 0.98 (1.96 × SE of 0.5), and 
2.5% of the coefficients is larger than +0.98 (1.96 × SE of 0.5). In case of a true coefficient of 1, 
the estimated coefficients are statistically significant in 52%. For these cases, the average of 
 estimated coefficients is 1.39 instead of 1       
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  5.2.3 Overfitting by Parameter Uncertainty 

 It appears that even when the structure of our model is fully pre-specified, predictions are 
too extreme when multiple predictors are considered. This is because parameters, such as 
regression coefficients, are estimated in the model with uncertainty. This surprising find-
ing has been the topic of much theoretical research. 81,459  An intuitive explanation is related 
to how we create a linear predictor in regression models. Hereto, the regression coeffi-
cients of multiple predictors are multiplied with the predictor values. With default estima-
tion methods (e.g. least squares for linear regression and maximum likelihood for logistic 
or Cox regression), each of the coefficients is estimated in a (nearly) unbiased way. But 
each coefficient is associated with uncertainty, as reflected in the estimated standard error 
and 95% confidence interval (CI). This uncertainty tends us to overestimate predictions at 
the extremes of a linear predictor, i.e. low predictions will on average be too low, and high 
predictions will on average be too large. This is an example of regression to the mean. We 
can shrink coefficients towards zero to prevent this overfitting problem. 81,174,459  

 This phenomenon is related to “Stein’s paradox”: biased estimates rather than 
unbiased estimates are preferable in multivariable situations to make better predic-
tions. 107,398  Shrinkage introduces bias in the multivariable regression coefficients, 
but if we shrink properly the gain in precision of our predictions more than offsets 
the bias. The issue of bias–variance trade-off is central in prediction modelling, 181  
and will be referred to throughout this book. Estimation with shrinkage methods is 
discussed in more detail in Chap. 13.  

  5.2.4 Optimism in Model Performance 

 Overfitting can visually be appreciated from the distributions of estimated mortality 
as in Figs.  5.3  and  5.4 , but also from model performance measures. For example we 
may calculate Nagelkerke’s  R  2  for a logistic model that includes 20 centres (coded as 
a factor variable, with 19 dummy variables indicating the effect of 19 centres against 
a reference hospital). If the true mortality in all hospitals was 10%, the estimated  R  2  
was 9.4% when each hospital contained 20 subjects (Table  5.2 ). In fact,  R  2  was 0%, 
since no true differences between centres were present. The estimated 9.4% is based 
on pure noise. We refer to the difference between 9.4% and 0% as the optimism in 
the apparent performance (Fig.  5.1 ). With larger sample sizes, the optimism decreases, 
e.g. to 0.1% for 20 centres with 2,000 subjects each (total 40,000 subjects, 4,000 
deaths on average). Statistical testing of the between centre differences was by defini-
tion not significant in 95% of the simulations. We might require statistical signifi-
cance of this overall test before trying to interpret between centre differences.

   When true differences between centres were present (e.g. a range of 6–14% mor-
tality,  τ  = 2%), the true  R  2  was close to 1% ( n  = 2,000). With small sizes per centre, 
the estimated  R  2  was 10.1%, which is again severely optimistic (Table  5.2 ). 

 A well-known presentation of optimism is to visualize the trade-off between 
model complexity and model performance. 181  We illustrate this trade-off in Fig.  5.6 , 
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  Fig. 5.6    Mean squared error of predictions from models with increasing complexity (1,000 
simulated samples with  n  = 50). Apparent performance improves with more predictors, but inter-
nal and external performances worsen with more than five predictors       

Table 5.2 R2 for a logistic model predicting mortality in 20 centres. True mortality was 10% in 
the first series of simulations, and R2 reflects pure noise. True mortality varied between 6% and 
14% (τ = 2%) in the second series of simulations

True mortality Sample size R2
app

R2
adj

 R2
bootstrap

10% 20 × n = 20  9.4 −0.1 NA
20 × n = 200  1.0   0 −0.5
20 × n = 2,000  0.1   0   0

10% ± 2% 20 × n = 20 10.1  0.3 NA
20 × n = 200  1.9  0.9  0.3
20 × n = 2,000  1.0  0.9  0.8

      Nagelkerke’s  R  2  calculated in logistic regression models, 309  averaged over 500 repetitions.   R2
app

, 
R2

adj
, R2

bootstrap
   refer to the apparent, adjusted and bootstrap- corrected estimates of  R  2 . The   R2

adj
   

included “LR − df ” instead of “LR” in the formula. Note that not all coefficients could directly be 
estimated, since some   hospitals had 0% estimated mortality with  n  = 20; for these we used 1% as 
the estimated mortality (adding one subject as dead, with a weight of 1% × 20 = 0.2). Bootstrapping 
with these weighted samples was not readily possible.  

where we considered a simple linear regression model with 1 to 10 predictors. The 
model performance is evaluated by the mean squared error (mean   (y-ŷ )2  ) for the 
underlying population (internal validation), and for a population where the true regression 
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coefficients were slightly different (external validation). With 50 subjects per sample 
for estimation of the model (1,000 simulations), we note that the apparent error 
decreases with more predictors considered. But the internal and external per formances do 
not improve after approximately five predictors are included. Overfitting occurs after 
approximately five predictors, and optimism increases from modest for one predictor 
to substantial for models with ten predictors.

     *5.2.5 Optimism-Corrected Performance 

 In linear regression analysis, an adjusted version of  R  2  is available, which compen-
sates for the degrees of freedom used in estimation of a model. Such an adjusted 
version can also be considered for Nagelkerke’s  R  2 , which we consider e.g. for 
logistic and Cox models. We could subtract the degrees of freedom used to estimate 
the LR of the model in the calculation:

  R2 
adjusted

 = (1 − e(−(LR−df  ) /n)) / (1 − e(−(−2LL0)/n)),  

where LR refers to the difference in −2 log likelihood (−2LL) of the model with and 
without the predictor, df are the degrees of freedom of the predictors in the model,  N  is 
the sample size, and LL0 is the log likelihood of the Null model (without predictors). 

 This adjusted version is not standard in most current software however. When 
we apply this formula for the simulated centre outcome as shown in Figs.  5.3  and 
 5.4 , the average adjusted  R  2  for noise differences is 0, with approximately half of 
the adjusted  R  2  values being negative (Table  5.2 ). The adjustment made the  R  2  esti-
mates a bit conservative for small samples. For example, when true differences 
existed, the adjusted  R  2  was 0.3% rather than 0.9% (Table  5.2 ). 

 A more general optimism correction is possible with bootstrapping, which is 
explained in the next section. In Table  5.2 , bootstrap-corrected performance was 
more conservative than the adjusted  R  2  formula, which may be caused by a not fully 
normal distribution of the optimism in  R  2.401    

  5.3 Bootstrap Resampling   

 Bootstrapping alludes to a German legend about Baron Münchhausen, who was 
able to lift himself out of a swamp by pulling himself up by his own hair. In later 
versions of the legend he was using his own bootstraps to pull himself out of the 
sea, which gave rise to the term  bootstrapping . A bootstrap was a loop of leather 
sewn onto the back of each boot to hold onto when pulling boots onto one’s feet. 
In statistics, bootstrapping is a method for estimating the sampling distribution of 
an estimator by resampling with replacement from the original sample. 486  

 Bootstrapping mimics the process of sampling from the underlying population. 
Since we only have a sample from the population, this sampling is not truly 



 possible, similar to the legend about Baron Münchhausen. Bootstrap samples are 
drawn with replacement from the original sample to introduce a random element. 
The bootstrap samples are of the same size as the original sample, which is impor-
tant for the precision of estimates in each bootstrap sample. 

 For example, the GUSTO-I subsample 5 includes 429 subjects (Chap. 24). When 
we draw bootstrap samples, these each contain 429 subjects, but some subjects may 
not be included, others once, others twice, others three times, etc. On average, a sub-
ject has 63.2% chance of being at least once selected for a bootstrap sample. 108  For 
illustration we consider the simple case of the age of five subjects who are 20-, 25-, 
30-, 32-, and 35-years old. Bootstrap samples might look like these in Table  5.3 .    

5.3.1 Applications of the Bootstrap 

 Bootstrapping is a widely applicable, non-parametric method. It can provide valua-
ble insight in the empirical distribution of a summary measure from a sample. 
Bootstrap samples are repeatedly drawn from the data set under study, and each 
analyzed as if they were an original sample. 108  

 For some measures, such as the mean of a population, we can use a statistical for-
mula for the standard deviation (SD = sqrt[var] = sqrt([ x  

i
  − mean( x )) 2  /( n  − 1)]). We can 

use the SD to calculate 95% CI as ± 1.96 × SE or ± 1.96 × SD/sqrt( n ). The bootstrap 
can be used to calculate the SE for any measure. For the mean, the bootstrap will usually 
result in a similar SE and 95% CI estimates as obtained from the standard formula. For 
other quantities, such as the median, no SE or 95% CI can be calculated with standard 
formulas, but the bootstrap can. See Harrell for an extensive illustration. 174   

  5.3.2 Bootstrapping for Regression Coefficients 

 The bootstrap can assist in estimating distributions of regression coefficients, 
such as standard errors and CIs. The bootstrap can be useful in estimating 
 distributions of related measures such as the difference between an adjusted and 
an unadjusted regression coefficient. 472  In the latter case, two regression coeffi-
cients would be estimated in each bootstrap sample. The difference would be 

  Table 5.3    Illustration of five bootstrap samples drawn 
with replacement from five ages

 Original sample  Bootstrap samples 

 20, 25, 30, 32, 35  20, 20, 30, 32, 35 
 20, 25, 25, 30, 35 
 20, 25, 30, 30, 32 
 25, 32, 35, 35, 35 
 30, 30, 32, 35, 35 
 … 

   For easier interpretation, values were sorted per sample  
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calculated in each sample, and the distribution over bootstrap samples would be 
interpreted as the sampling distribution. CIs can subsequently be calculated with 
three methods: 

    1.    Normal approximation: The mean and SE are estimated from the distribution 
(note: the SD over bootstraps is the SE of the mean).  

   2.    Percentile method: Quantiles are simply read from the empirical distribution. 
For example, 95% CIs are based on the 2.5% and 97.5% percentile, e.g. the 
50th and 1,950th bootstrap estimate out of 2,000 replications.  

   3.    Bias-corrected percentile method: Bias in estimation of the distribution is 
accounted for, based on the difference between the median of the bootstrap 
 estimates and the sample estimate (“BCa”). 108      

 For reliable estimation of distributions, large numbers of replications are  advisable, 
e.g. at least 2,000 for method 2 and 3. Empirical  p  values can similarly be based on 
bootstrap distributions, e.g. by counting the number of estimates smaller than zero for 
a sample estimate larger than zero (giving a one-sided  empirical  p  value). 108   

  5.3.3 Bootstrapping for Optimism Correction 

 A very important application of bootstrapping is in quantifying the optimism of a pre-
diction model. 69,108,174, 459  With a simple bootstrap variant, one repeatedly fits a model in 
bootstrap samples, and evaluates the performance in the original sample (Fig.  5.7  ).

   The average performance of the bootstrap models in the original sample can be 
used as the estimate of future performance in new subjects. A more accurate esti-
mate is however obtained in a slightly more complicated way. 108  The bootstrap is 
used to estimate the optimism: The decrease between performance in the bootstrap 
sample (Sample* Fig.  5.7 ) and performance in the original sample. This optimism 
is subsequently subtracted from the original estimate to obtain an “optimism-cor-
rected” performance estimate. 174   

  Fig. 5.7    Schematic representation of bootstrap validation for optimism correction of a prediction 
model. Sample* refers to the bootstrap sample that is drawn with replacement from the Sample 
(the original sample from an underlying population). Model* refers to the model constructed in 
Sample*       

Sample

Model*

Bootstrap
validationSample*



  *5.3.4 Calculation of Optimism-Corrected Performance 

 Optimism-corrected performance is calculated as 
 Optimism-corrected performance = Apparent performance in sample − Optimism, 

where 

 Optimism = Bootstrap performance − Test performance. 
 The exact steps are as follows:  

   1.    Construct a model in the original sample; determine the apparent performance 
on the data from the sample used to construct the model;  

   2.    Draw a bootstrap sample (Sample*) with replacement from the original sample 
(Sample, Fig.  5.7 );  

   3.    Construct a model (Model*) in Sample*, replaying every step that was done in 
the original Sample, especially model specification steps such as selection of 
predictors from a larger set of candidate predictors. Determine the bootstrap 
performance as the apparent performance of Model* on Sample*;  

   4.    Apply Model* to the original Sample without any modification to determine the 
test performance;  

   5.    Calculate the optimism as the difference between bootstrap performance and 
test performance;  

   6.    Repeat steps 1–4 many times, at least 100, to obtain a stable estimate of the 
optimism;  

   7.    Subtract the optimism estimate (step 5) from the apparent performance (step 1) 
to obtain the optimism-corrected performance estimate.     

 Note that the original sample is used for testing of Model*, while it contains largely 
the same subjects as the bootstrap sample (Sample*). Although this may seem 
invalid, both theoretical and empirical research supports this process. Alternative 
bootstrap validation procedures have been proposed.  1     Appealing variants are the 
.632 and .632+ methods, where the testing of the models from the bootstrap sample 
is on subjects from the original sample who were not included in the bootstrap 
sample. 109  On average, 63.2% of the subjects are selected in a bootstrap sample, giv-
ing the method its name. On average 36.8% of the subjects are left for testing of the 
model. These .632 and .632+ variants did however not have clear advantages over the 
bootstrap procedure described earlier in some empirical studies. 413,479  

 We can apply the bootstrap approach to any performance measure, including the 
 R  2 ,  c  statistic, and calibration measures such as calibration slope. A strong aspect 
of the bootstrap is that we can incorporate various complex steps from a modelling 
strategy. This is important since exact distributional results are virtually impossible 

  1  The “simple bootstrap” compares the performance of the model from the original sample in 
bootstrap samples. This was less efficient than the procedure described here, where models from 
the bootstrap samples are tested in the original sample (see Efron). 
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to obtain, even for simple common selection algorithms. 336  The bootstrap can hence 
give insight in the relevance of model uncertainty, including both testimation bias 
and parameter uncertainty. In practice, however, it may be hard to fully validate a 
prediction model, including all steps made in the development of the model. For 
example, automated stepwise selection methods can be replayed in every bootstrap 
sample, leading to reasonably correct optimism-corrected performance estimates. 401  
But more subtle modelling steps usually cannot fully be incorporated, such as 
choices on coding and categorization of predictors. The optimism-corrected esti-
mate may then be an upper bound of what can be expected in future subjects. Only 
a fully specified modelling strategy can be replayed in every bootstrap sample. 

 It is often useful to calculate the optimism of a “full model,” i.e. a prediction 
model, including all predictors without any fine-tuning such as deleting less-important 
predictors. The optimism estimate of such a full model may be a guide for further 
modelling decisions. 174  If the optimism is substantial, it is a warning that we should 
not base our model only on the data set at hand. Using external information may 
improve the future performance of the model. 164   

  *5.3.5 Example: Stepwise Selection in 429 Patients 

 As an example, we consider a sample of 429 patients from the GUSTO-I study, 
which studied 30-day mortality in patients with acute myocardial infarction (details 
in Chap. 24). We first fitted a model with eight predictors, as specified in the TIMI-
II study (“full model”). 302  This model had a Nagelkerke  R  2  of 23% as apparent per-
formance estimate. In 200 bootstrap samples, the mean apparent performance was 
25% (Table  5.4 ). When the models from each bootstrap sample were tested in the 
original sample, the  R  2  decreased substantially (to 17%). The optimism hence was 
25% − 17%=8%, and the optimism-corrected  R  2 , 23% − 8%=15%.

      We can follow a backward stepwise selection procedure with  p <0.05 for factors 
remaining in the model (Chap. 11). This leads to inclusion of only three predictors 
(age, hypotension, and shock). The apparent performance drops from 23% to 15% 
by excluding six of the eight predictors. The stepwise selection was repeated in 
every bootstrap sample, leading to an average apparent performance of 18%, which 
dropped to 12% when models were tested in the original sample (optimism, 6%; 
optimism-corrected  R  2 , 9%). When we falsely assume that the 3 predictor model 
was pre-specified, we would estimate the optimism as 3% rather than 6%. This dis-
crepancy illustrates that optimism by selection bias was as important as the opti-
mism due to parameter uncertainty in this example. 

 We note that the apparent performance in the bootstrap samples was higher than 
the apparent performance in the original sample (Table  5.4 ). This pattern is often 
noted in bootstrap model validation. It may be explained by the fact that some 
patients appear multiple times in the bootstrap sample. Hence, it is easier to predict 
the outcome, reflected in higher apparent performance. Further, we note that the 



optimism is smaller after model specification by stepwise selection (6% instead of 
8%). However, the optimism-corrected performance of the stepwise model R2 12% 
is clearly lower than the performance of the full 8 predictor model (R2 15%). This 
pattern is often noted. A full model will especially perform better than a stepwise 
model when the stepwise selection eliminates several variables that are almost sig-
nificant while they have some true predictive value. When a small set of dominant 
predictors is present, including only these would logically be sufficient. The boot-
strap would show that these predictors are nearly always selected, and that other 
variables are most often excluded; the optimism would be relatively small and 
optimism-corrected performance similar to that of a full model. The leprosy case 
study is such an example (see Chap. 2). In the case that many noise variables are 
present in the full model, a selected submodel performs better than a full model. 
Careful pre-selection of candidate predictors is hence advisable, based on subject 
knowledge (literature, expert opinion), to prevent that pure noise variable are con-
sidered in the modelling process.   

  5.4 Cost of Data Analysis  

 The development of a prediction model for outcome prediction is a constant strug-
gle in weighing better fit to the data against generalizability outside the sample.    
The more we incorporate from a specific data set in a model, the less the model 
may generalize. 101  This has aptly been labelled the “cost of data analysis.” On the 
other hand, we do not want to miss important properties of the data, such as a 
clearly non-linear relationship of a predictor to the outcome. A prediction model 
where underlying model assumptions are fulfilled will provide better predictions 
than a model where assumptions are violated. Therefore, it is natural to assess 
such assumptions as linearity of continuous predictor effects and additivity of 
effects (Chap. 12). However, if we test all assumptions of a model and iteratively 
adapt the model to capture even small violations, the model will be very specific 
for the data analyzed. 

 Table 5.4    Example of bootstrap validation of model performance, as indicated by Nagelkerke’s 
 R  2  in a subsample of the GUSTO-I data base (sample5,  n =429)  

 
Method 

 Apparent 
(%) 

 Bootstrap 
(%) 

 Test (%)  Optimism 
(%) 

 Optimism-
corrected (%) 

 Full 8 predictor model  22.7  24.7  17.2  7.6  15.1 
 Stepwise, 3 predictors, p<0.05  17.6  18.7  12.7  5.9  11.7 
 Stepwise model falsely 

assumed to be pre-specified 
 17.6 
 

18.2 15.4 2.9 14.7
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  *5.4.1 Example: Cost of Data Analysis in a Tree Model 

 An interesting concept was proposed by Ye, who determined the “generalized 
degrees of freedom” (GDF) of a model selection and estimation procedure. 494  The 
GDF indicate the overfitting that was associated with a modelling strategy. For 
example, Ye showed that a stepwise selection strategy that selected a model with 
five predictors (apparent df = 5) had a GDF of 14.1. A regression tree had 19 nodes 
(apparent df = 19), but GDF of 76. 494  

 An essential part of Ye’s method is to determine the apparent performance of a 
model when developed with pure noise. In Table  5.2 , we note that the optimism in 
 R  2  in the pure noise simulations was indeed very similar to the optimism as deter-
mined with an adjusted  R  2  or with bootstrapping when some true effects were 
present. For example, for  n  = 200, the optimism was 1% with pure noise or with 
true effects.  

  5.4.2 Practical Implications 

 In the development of prediction models, we have to be aware of the cost of all data 
analysis steps. The appropriateness of a modelling strategy is indicated by the gen-
eralizability of results to outcome prediction for new patients. Some practical issues 
are relevant in this respect. 

   •  Sample size: With a small sample size we have to be prepared to make more 
assumptions about our data; the power to detect deviations from assumptions 
will anyway be small. If deviations from assumptions are detected, and the 
model is adapted, testimation bias will occur and the validity of predictions for 
new patients may not necessarily be improved (Chap. 13);  

 •  Robust strategies: Some modelling strategies are more “data hungry” than other 
strategies. For example, fitting a pre-specified logistic regression model with age 
and sex uses only two degrees of freedom. If we test for linearity of the age 
effect, and interactions between age and sex, we spend more degrees of freedom. 
If we use a method such as regression tree analysis, we search for cut-points of 
age, and model interactions by default, making the method more data-hungry 
than logistic regression (Chap. 4). Similarly, stepwise selection asks more of the 
data than fitting a pre-specified model. Not only do we want to obtain estimates 
of coefficients, we also want to determine which variables to include as predic-
tors (Chap. 11);  

 •  Bootstrap validation: The bootstrap can assist in determining an appropriate 
level of fine-tuning of a model to the data under study. However, when many 
alternative modelling strategies are considered, the bootstrap results may 
become less reliable in determining the optimal strategy, since the optimum may 
again be very specific for the data under study. The bootstrap works best to 
determine optimism for a single, pre-defined strategy.      



  5.5 Concluding Remarks  

 In science in general, and in prediction modelling specifically, we need to seek a 
balance between curiosity and skepticism. On the one hand, we want to make dis-
coveries and advance our knowledge, but on the other hand we must subject any 
discovery to stringent tests, such as validation, to make sure that chance has not 
fooled us. 23  It has been demonstrated that our scientific discoveries are often false, 
especially if we search hard and explore a priori unlikely hypotheses. 210  Overfitting 
and the resulting optimism are important concerns in prediction models.  
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 Questions 

   5.1    Overfitting and optimism
    (a)    What is overfitting and why is it a problem?  
    (b)     What are the two main causes of overfitting? What is the difference and 

give some examples?      
    5.2    Shrinkage for prediction (Figs.  5.3  and  5.4 ) 

 A solution against the consequence of overfitting is shrinkage. For example, 
estimates per centre can be drawn towards the average to improve the qual-
ity of predictions in Figs.  5.3  and  5.4 .

    (a)     Is the required shrinkage more, or less, in Fig.  5.4  compared with Fig.  5.3 ?  
    (b)     Is the underlying true heterogeneity more, or less, in Fig.  5.4  compared 

with Fig.  5.3 ?      
   5.3  Bootstrapping (Sect.  5.3 )

   (a)     How can a bootstrap sample be created? How is this done with the sample 
command in R?  

    (b)    How can the test sample for the .632 bootstrap variant by selected in  R ?  
   (c)   How can bootstrapping be used to derive optimism-corrected estimates of 

model performance, addressing the two main causes of overfitting?



   Chapter 6   
 Choosing Between Alternative 
Statistical Models       

   Background   Any scientific model will have to make simplifying assumptions 
about reality. Nevertheless, statistical models are important tools to summarize 
patterns from underlying data. Statistical models can well be used to make predic-
tions for future subjects. We consider some general issues in choosing a type of 
statistical model in a prediction context, with illustration in a case study on model-
ling age–outcome relationships in medicine. We also summarize results from some 
empirical comparisons of alternative statistical models.    

  6.1 Prediction with Statistical Models 

 In a prediction context, statistical models are merely seen as practical tools than as 
theories about how the world works. As long as the model predicts well, we are 
satisfied. This relates to the famous quote “All models are wrong, but some are 
useful.” 51  Although regression models are formulated as models of cause and effect 
(“ y  depends on  x ”), there need not be any causal relation at all, for example because 
some intermediate causal factor was not recorded. We hence simply use the terms 
“predictor” and “outcome.” 

 On the other hand, a statistical model can provide important insights in how a 
combination of predictors is related to an outcome. For inference and hypothesis 
testing, fulfillment of assumptions becomes more important than for prediction. 
Prediction is primarily an estimation problem, while insight in effects of predictors 
is related to hypothesis testing (Chap. 1). With a model, we can make predictions 
for future subjects, test hypotheses, and estimate the magnitude of effects of predic-
tors. It is a philosophical question whether a true, underlying model exists. Many 
have argued that the notion of a “true model” is false. 69  Indeed, would it be 
 imaginable that natural processes can fully be captured in a model containing 
relatively few variables, which are related in a mathematically simple way? Many 
subtle   non-linear and interactive effects probably play a role. Predictors may be 
unobservable or not yet discovered, or predictive effects may be too small to detect 
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empirically. Therefore, a statistical model can only be an approximation to underly-
ing patterns, based on the limited number of predictors that is known to us. 

  6.1.1 Testing of Model Assumptions and Prediction 

 If our primary aim is to make good predictions, we should not place too much 
emphasis on unobservable, underlying assumptions. It is a standard procedure 
nowadays to test model assumptions such as non-linearity and additivity, or propor-
tionality of hazards (see also Chap. 13). Such testing may be valuable but only to 
the extent that adaptations to the model lead to better predictions. When assump-
tions are met, the model will provide a better approximation to reality and hence 
predict better. 174, 176  Statistically significant violations of underlying assumptions do 
not mean that a prognostic model predicts poorly. 171  

 In a prediction context, we are lucky that we can directly measure the observed 
outcomes and compare these to what is predicted. This allows for direct statistical 
assessment of model quality with performance measures such as calibration and 
discrimination. Whether the underlying assumptions of the prediction model are 
true can never be known, since these assumptions are unobservable.  

  6.1.2 Choosing a Type of Model 

 Some general suggestions have been made on the type of model to be used in 
prognostic research. 174  

●  The mathematical form should be reasonable for the underlying data. For exam-
ple, models should not give predictions that are below 0% or above 100% for 
binary outcomes or survival probabilities. 

●  The model should use the data efficiently. Regression models need to make 
assumptions, but they pick up general patterns in the data better than a simple 
cross-tabulation approach. Cross-tables quickly run out of numbers, and hence 
would provide unstable predictive estimates. Similarly, survival outcomes 
should be  analyzed with methods that use all available information. 

 ● Robustness is preferred over flexibility in capturing idiosyncracies. For prediction, 
we aim to model patterns that generalize to future subjects. Very flexible approaches 
will require large data sets, while medical prediction problems are often addressed 
with relatively small data sets. The results of the model should be transparent and 
presentable to the intended audience. In some fields, fully computerized models 
may be acceptable (e.g. neural networks), but in other fields insight in the underly-
ing model is an advantage (e.g. effects of predictors in regression models). 

 ● Alternative model formulations can sometimes be assessed empirically, and sub-
ject matter knowledge can assist in guiding the choice for a model. Also,  practical 
issues play a role, such as familiarity of analysts and their readers with a method. 



A major requirement of any model is of course that it adequately answers the research 
question, since we know that all models will miss some aspects of the underlying natu-
ral process by their relative simplicity. 

 We will first look at some empirical support for relatively simple regression 
models as tools to capture the prognostic effect of age. This is followed by a brief 
discussion of some head-to-head comparisons that have been made between model-
ling techniques.   

  6.2 Modelling Age–Outcome Relationships 

 The effect of age on outcome is important in many medical prediction problems. 
Together with gender, age is an obvious demographic characteristic to consider in the 
prediction of an outcome. On the one hand, age represents the biological phenomenon 
of aging, with a decrease in performance of biological systems. Observed age effects do 
however not necessarily represent pure biological relationships, since many comorbid 
conditions may be present. Moreover, selection may have occurred, e.g. making that 
very old patients only undergo surgery when in relatively good condition. Nevertheless 
it is of interest to see how increasing age is related to outcome. Specifically we consider 
the modelling of age-related mortality with logistic regression. 

  *6.2.1 Age and Mortality After Acute MI 

 Within the GUSTO-I data set (details in Chap. 24), Lee et al. found that the relationship 
between age and 30-day mortality after an acute myocardial infarction was reasonable 
linear. 255  When we examine the relationship in detail, we see that the Likelihood Ratio 
(LR, χ2) statistic of the linear fit is 2,099. Adding age 2   increases the fit by 13 to 2,112, 
and a restricted cubic spline with 5 knots (4 df, including the linear term, see Chap. 
9) adds 23 (model χ2 2,122). So, there is no major gain by adding non-linear trans-
formations. The age–mortality relationships with alternative transformations are shown 
in Fig.  6.1 . The differences between the transformations are at the lower ages (below 
age 50), where limited data are available. It may be that the age–mortality relationship 
is somewhat stronger above age 50 than below age 50. A linear spline with change 
point at age 50 has a χ2 of 2,119. In sum, assuming a linear effect was quite reasonable 
for modelling the effect of age for mortality after acute MI.

     *6.2.2 Age and Operative Mortality 

 Finlayson and Birkmeyer examined operative mortality in relation to age for 1.2 
million elderly patients in the Medicare system. 125  They selected patients who were 
between 65 and 99 years old, and who were hospitalized between 1994 and 1999 
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for major elective surgery (six cardiovascular procedures and eight major cancer 
resections). Operative mortality was defined as death within 30 days of the opera-
tion or death before discharge, and occurred in over 38,000 patients. 

 The mortality risk in this huge, nationwide, representative series varied widely 
between procedures. Not surprisingly, it was higher than that reported in many 
published series from specialized centres. Operative mortality clearly increased 
with age. Operative mortality for patients 80 years of age and older was more than 
twice that for patients 65–69 years of age (Fig.  6.2 ).

   These data can well be used to illustrate the fit of a logistic transformation for 
the relationship between age and mortality. The data were reported in categories. 
To study age as a continuous variable requires an estimate of the average age per 
category, which we assume to be at midpoints for the first two categories (67.5 and 
72.5 years) and at 77.2, 82.0, and 90.0 years for the other three categories. 

 The simplist logistic regression model assumes a single age effect across categories: 
mort ∼ procedure + age10, where mort indicates operative mortality (0/1), which is 
a function (~) of procedure (a categorical variable for the 14 levels of procedures) 
and age10 (age coded per 10 years). 

  Fig. 6.1    The relationship between age and 30-day mortality among 40,830 patients in GUSTO-I. 
The line marked with “1” is a linear logistic regression fit (1 df), the line marked with “2” is a 
polynomial fit (age + age 2 , 2 df), and the line marked with “4” is a restricted cubic spline fit (5 knots, 
4 df). The distribution of the ages is shown at the bottom of the graph. Note the enourmous range in 
mortality, since a logit of −6 means a probability of 0.2% and a logit of 0 means 50%       
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 We can test whether the age effect differs by procedure by adding the interaction 
term “procedure × age10”: 

  mort ~ procedure + age10 + procedure × age10  

The smallest age effect was found for endarterectomy (OR 1.44 per decade), 
followed by gastrectomy (OR 1.53 per decade). The strongest age effects were 
found for nephrectomy and cystectomy (OR 2.11 and 2.23 per decade, Fig.  6.3 ).

   The improvement in model fit obtained by this model extension was relatively 
small (Table  6.1 ). The model −2 log likelihood decreased by 95, which was only 
0.6% of the total model χ2 including this interaction. The explained variation ( R  2 ) 
increased by 0.04%, and the area under the ROC curve (or  c  statistic) remained the 
same. See Chap. 15 for a detailed discussion of these performance measures. We 
can also assess non-linearity in the age effect by adding a square term (age10 2 ) to 
the simplest model: 

  mort~ procedure + age10 + age102

  Remarkably, adding such a square term made no contribution to the model fit (χ2 
increased by 2).

  Fig. 6.2    Operative mortality by surgical procedure according to age in 1.2 million elderly patients 
in the Medicare system 125        
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      In conclusion, the age–outcome relationships were linear for these surgical proce-
dures. Moreover, we may assume that the effect is in the order of an odds ratio of 1.75 
per decade, or a doubling in odds per 12.5 year. Both results may be useful as prior 
knowledge when we model the effect of age, especially when we are dealing with a 
small data set. As a starting point we may assume linearity on the logistic scale, and 
an age effect between 1.5 and 2.2 per decade, the latter depending on the procedure.  

  *6.2.3 Age–Outcome Relationships in Other Diseases 

 Many studies described the relationship between age and outcome in other diseases. 
We performed a meta-analysis in traumatic brain injury, where again a linear 
transformation was adequate, although adding the square term of age provided a 
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  Fig. 6.3    Logistic regression models for operative mortality by surgical procedure according to 
age, based on analysis of 1.2 million elderly patients in the Medicare system 125        

 Table 6.1    Age and operative mortality in 1.2 million elderly patients in the Medicare system 12  5   

 Model   Age10  Model χ2  R 2  (%)  AUC 

 Procedure + age10  1.75  16,841  5.62  0.683 
 … + Procedure × age10  1.44 –2.23  16,936  5.66  0.683 
 … + age10 2   1.74  16,843  5.62  0.683 



somewhat better fit. 204  Among seriously ill hospitalized adults, age had a linear 
effect that differed slightly by diagnosis, similar to the evaluation of operative 
operative. 236  Other studies also support a more or less linear association between 
age and outcome. 

 Remarkably, some studies, especially smaller ones, conclude from a statistically 
non-significant age effect that age was not related to outcome. This is a clear illus-
tration of interpreting absence of evidence as evidence of absence. 11    

  6.3 Head-to-Head Comparisons 

 Several studies have described head-to-head comparisons of alternative methods. 
Especially, attention has been given to alternative methods to predict binary out-
comes. Main classes of statistical methods include regression modelling, trees, and 
neural networks. 181  Some comparisons were in favour of regression-based tech-
niques, and some in favour of more modern approaches such as neural networks. 

 A problem in many comparisons is that one of the comparators is not developed 
with state-of-the-art methods, while the other is. For example, computer scientists 
often have been working on variants of neural networks, which were shown to do 
better than logistic models which were derived with simplistic, suboptimal 
 techniques. 377  Methodological problems are even more severe for comparisons of 
methods to predict survival outcomes. 376  Kaplan–Meier and Cox regression ade-
quately deal with survival data, but ad hoc approaches have usually been followed 
for other techniques. Moreover, there are no agreed objective statistical criteria by 
which to judge modelling methods. Other criteria, such as how easy a model is to 
develop and apply, are also very important when researchers make their choice 
from the currently available modelling methods. 

 We note that the quality of predictions obtained with a statistical method may 
depend on three factors: 288 

    1.    The essential quality and appropriateness of the method  
    2.    The actual implementation of the method as a computer program  
    3.    The skill of the user     

  6.3.1 StatLog Results 

 An important example of a systematic comparison of statistical modelling approaches 
is the StatLog project. 288  Different approaches to classification were studied. Table 
 6.2  summarizes some results for data sets with a binary outcome, both from medi-
cal and non-medical applications. 288  It appears that logistic regression performs 
quite well across all examples according to error rates. More flexible techniques 
such as trees and neural networks only have advantages in larger data sets. In the 
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medical  context, data sets are often relatively small, especially with respect to 
number of events, and the predictive information is relatively limited, leading to an 
unfavourable noise to signal ratio. 171,181 

         *6.3.2 GUSTO-I Modelling Comparisons 

 Several simulation studies have been performed with the GUSTO-I database. Ennis 
et al. compared a variety of modern learning methods, including logistic regression, 
Tree, GAM, and MARS methods. 115  Logistic regression can be considered as a 
classic prediction method. The other methods have more flexibility in capturing 
interaction terms or non-linear terms, and may be referred to as adaptive non-linear 
methods. These methods require data sets of substantial size, which is the case in 
GUSTO-I ( n =40,830). Because of the huge size, a large independent test set could 
be kept separate from the development set. 

   •  Four different logistic regression models were considered, 115  containing

     1.    Age and Killip class;  
     2.    Age, Killip class, and interactions between age and Killip class;  
     3.     All covariates as in Lee et al.’s model, 255  but no interactions and no non-linear 

(spline) terms;  
     4.    Lee et al.’s model, including the interactions and non-linear (spline) terms.      

 •  Classification trees stratify the population in a binary tree form, and are espe-
cially good at finding interactions between risk factors. 57  A classification tree 
was constructed using state-of-the-art methods considering all 17 predictors.  

 Table 6.2    Error rates for problems with binary outcomes in the StatLog project 28  8   

 Data set   N  dev  Predictors  Logistic 
 Naïve 
Bayes 

 Tree 
(CART) 

 Neural 
network a  

  Non-medical  
 Credit management  15,000   7  0.030  0.043  NA  0.023 
 Australian credit      690  14  0.141  0.151  0.145  0.154 
 German credit     1000  24  0.538  0.703  0.613  0.772 
 Cut (letters in text)  11,220  20  0.046  0.077  NA  0.043 

 11,220  50  0.037  0.112  NA  0.041 
 Belgian Power     1250  28  0.007  0.062  0.034  0.017 
 Instability     2000  57  0.028  0.089  0.022  0.022 
  Medical  
 Heart disease      270  13  0.396  0.374  0.452  0.574 
 Diabetes      768   8  0.223  0.262  0.255  0.248 
 Tsetse     3500  14  0.117  0.120  0.041  0.065 

 NA: Not available  
 a Backpropagation algorithm 



 •  A generalized additive logistic regression model (“GAM”) is a non-linear 
generalization of the usual linear logistic model. It used smooth spline functions 
in place of linear risk terms. 180  The model contained smoothing splines with 4 
degrees of freedom for the variables age, height, weight, pulse rate, systolic 
blood pressure, and time to treatment. No interaction terms were included.  

 •  MARS stands for “multivariate additive regression splines,” and is a kind of hybrid 
between generalized additive models and classication tree. 129  It is designed to find 
low-order additive structure as well as interactions between risk factors. MARS 
models of degree 1 (additive) and 17 (all interactions allowed) were considered.     

  *6.3.3 GUSTO-I Results 

 The performance in the test set of 13,610 patients was remarkable (Fig.  6.4 ). The 
most basic logistic model had an AUC, or ( c  statistic), of 0.787, which improved 
substantially when more predictors were considered (Lee et al.’s logistic model vari-
ant 3 and 4,  c  around 0.82). The performance of Lee et al.’s traditional logistic 
model 255  could not be improved by any other method. A similar performance was 
found for the GAM and additive MARS model. The more flexible variant of the 
MARS model (with all interactions allowed) had a  c  statistic of 0.81 (0.01 lower). 
The tree performed worst, with a  c  statistic of 0.75. Results were similar when the 
log-likelihood was used as a measure for predictive performance (Fig.  6.4 ). 

  Fig. 6.4    Performance of alternative prediction models in a test part of the GUSTO-I data set 
(13,610 patients with acute MI). 115  Results are shown for four logistic regression models, two 
variants of MARS models, a classification tree, and a GAM. In the  left panel , the log-likelihood 
is compared to the Lee full model; in the  right panel  the area under the ROC curve (or  c  statistic) 
is shown. Age+Killip: main effects; Age × Killip: main and interaction effects; Lee simplified: a 
simplified version of Lee model; Lee full: Lee et al. model. 255  We note that the Lee full model 
performed best according to both performance criteria       
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 The authors also examined various variants of multi-layer neural networks using 
advanced backpropagation algorithms and various approaches to prevent overfitting 
(weight decay, early stopping, bagging). 115  None of these methods led to a better 
predictive performance than Lee et al.’s traditional logistic regression model.

      6.4 Concluding Remarks 

 We recognize that true models do not exist, and that any model only approximates 
relationships between predictors and outcome. A model will only reflect underlying 
patterns, and hence should not be confused with reality. This is also shown in René 
Margritte’s famous painting “La trahison des images” (The Treachery Of Images, 
[  http://en.wikipedia.org/wiki/The_Treachery_of_Images    ]). This painting shows a 
pipe, with the words “Ceci n’est pas une pipe” (This is not a pipe) painted below 
the pipe. Indeed, the painting is not a pipe, it is an image of a pipe. 

 Nevertheless, statistical models that approximate reality closer are better for 
predictive purposes, as well as for inference on predictive effects of predictors. 
If we derive models from empirical data, the sample size needs to be sufficient for 
the complexity of the model that is fitted. For flexible models, the GUSTO-I results 
illustrate that non-linear effects and interactions may need to be quite strong before 
an advantage is obtained over relatively simple regression models. In medical 
 prediction problems, the signal to noise ratio may often be relatively low. This 
makes regression analysis an appropriate default approach in clinical prediction 
models.  



  Questions 

    6.1    Reasonable modeling approaches 
   In traumatic brain injury, the Glasgow Outcome Scale is a 5 point, ordered 

scale. It is common to determine the GOS at 6 months post injury. A researcher 
proposes to use linear regression analysis to analyse relationships for predic-
tors with this scale. What are pros and cons of this approach for estimation of 
predictive effects, and for making predictions?  

   6.2    Predictions from cross-tabulations (Fig.  6.2 ) 
   A researcher might argue that the observed mortality as shown in Fig.  6.2  can 

directly be used for predictive purposes, similar to the cross-tabulation pro-
vided in an analysis of genetic mutation risks among 10,000 women. 127  What 
are pros and cons of this approach?  

   6.3    GUSTO-I results (Sect.  6.3 ) 
   More flexible methods performed worse than a logistic regression model in the 

GUSTO-I case study. What results would you expect for the comparison in 
Fig.  6.4  with (a) smaller and (b) larger sample sizes for model development 
(e.g. 1,000 and 1,000,000 patients)?          

Questions 111111



  Part II 
 Developing Valid Prediction Models 

 In part I, we presented a number of issues that are relevant to the context of 
prediction model development and application. We summarize these issues as 
preliminaries for model development in a proposed checklist. In part II, we 
focus on the development of prediction models that are valid for the population 
from which the sample originates. Generalizability to other, plausibly related, 
populations is discussed in Part III. We will discuss seven steps of model devel-
opment in the following chapters (Chaps. 7–18).    
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    Checklist for Developing Valid Prediction Models

 Step  Specific issues  Chapter 

  General considerations  
 Research question  Aim: predictors/prediction?  1 
 Intended application?  Clinical practice/research?  2 
 Outcome  Clinically relevant?  3 
 Predictors  Reliable measurement?  3 

 Comprehensiveness 
 Study design  Retrospective/prospective?  3 

 Cohort; case–control 
 Statistical model  Appropriate for research question and type of 

outcome? 
 4 and 6 

 Sample size  Sufficient for aim?  2–6 

  Seven modelling steps  
 Data inspection  Missing values  7 and 8 
 Coding of predictors  Continuous predictors  9 and 10 

 Combining categorical predictors 
 Restrictions on candidate predictors 

 Model specification  Appropriate selection of main effects?  11 and 12 
 Assessment of assumptions (distributional, 

linearity, and additivity)? 
 Model estimation  Shrinkage included?  13 and 14 

 External information used? 
 Model performance  Appropriate statistical measures used?  15 

 Clinical usefulness considered?  16 
 Model validation  Internal validation, including model specification 

and estimation? 
 17 

 External validation? 
 Model presentation  Format appropriate for audience?  18 

  Validity  

 Internal: Overfitting  Sufficient attempts to limit and correct for 
overfitting? 

 4–18 

 External: Generalizability  Predictions valid for plausibly related populations?  19–21 



   Chapter 7   
 Dealing with Missing Values        

  Background   Missing data are a common problem in prediction research. We 
concentrate on missing values of predictor values ( X ), in the context of a prediction 
model for a single outcome ( Y ). Traditional complete case analysis suffers from 
inefficiency, selection bias of subjects, and other limitations. We briefly review 
the theoretical background on mechanisms of missingness of predictor values and 
how these may affect prognostic modelling. We further concentrate on imputation 
methods as a solution, where a completed data set is created by filling in missing 
values for the statistical analysis. Special attention is given to the specification of an 
imputation model, which is the essential step in imputation. A sophisticated method 
is to generate completed data sets multiple times (“multiple imputation”), but single 
imputation is more straightforward and may sometimes be sufficient. Several exam-
ples are provided. Chapter 8 presents a case study of dealing with missing values 
in a meta-analysis of individual patient data on prognosis in traumatic brain injury. 
Tentative guidelines are provided on how to deal with missing data in relation to 
the research question.    

  7.1 Missing Values in Predictors  

 Missing data are a common, but as yet underappreciated problem in medical scien-
tific research. In this chapter, we concentrate on missing values of predictors, 
assuming that true predictor values are hidden by the missing values. 263  Standard 
statistical software for regression analysis deletes subjects with any missing predic-
tor value from the analysis. With such a complete case analysis, all subjects with a 
missing value for any potential predictor are excluded. 155,263  An “available case 
analysis” will consider subjects with complete data for a specific predictor, but who 
may have missing values for other covariates that are not considered in the specific 
model. With such an analysis, numbers may therefore vary per analysis. Both com-
plete case and available case analysis discard information from subjects who have 
information on some (but not all) predictors. They are hence statistically inefficient, 
as further illustrated below. For simplicity, we use the term complete case (CC) 
analysis further onwards. 

E.W. Steyerberg, Clinical Prediction Models, 115115
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  7.1.1 Inefficiency of Complete Case Analysis 

 As a hypothetical example, we consider a data set with 500 subjects. Among these, 
100 suffer the event that we want to predict (e.g. 30-day mortality). We aim to esti-
mate regression coefficients for a prognostic model consisting of five predictors. In 
case of complete data, we have 20 events per variable. Such a situation is com-
monly thought to be sufficient for reliable estimation of the regression coefficients 
in a model. Suppose, however, that each predictor has 10% missing data and that 
each patient has at most 1 missing value. Hence, each patient has at least four val-
ues of the predictors recorded (Table  7.1 ). A CC analysis will ignore 5×10%=50% 
of the subjects, and will leave only 250 subjects for estimation of the regression 
model. The number of events per variable drops to 10:1, which is commonly 
thought of as a minimum for reliable modelling.     

 The information available is 250 complete cases (250 × 5=1,250 predictor val-
ues) + 250 incomplete cases (250 × 4=1,000 predictor values). Of the required 
500 × 5=2,500 predictor values, 2,250 or 90% are available. The approach of using 
only 50% of the information instead of 90% hence is quite inefficient: 10% of the 
required values are missing, but 50% of the subjects are discarded. The inefficiency 
occurs to a lesser extent if multiple missing values may occur within the same 
patient, which is a more realistic situation.  

 Table 7.1    Hypothetical missing data pattern: 250 subjects have partially complete 
data (missing data indicated with . ), and 250 have fully complete data (indicated 
with X)  

 ID   X 1   X 2   X 3   X 4   X 5   Y  

 1  .  X  X  X  X  X 
 …  .  X  X  X  X  X 
 50  .  X  X  X  X  X 
 51  X  .  X  X  X  X 
 …  X  .  X  X  X  X 
 100  X  .  X  X  X  X 
 101  X  X  .  X  X  X 
 …  X  X  .  X  X  X 
 150  X  X  .  X  X  X 
 151  X  X  X  .  X  X 
 …  X  X  X  .  X  X 
 200  X  X  X  .  X  X 
 201  X  X  X  X  .  X 
 …  X  X  X  X  .  X 
 250  X  X  X  X  .  X 
 251  X  X  X  X  X  X 
 …  X  X  X  X  X  X 
 …  X  X  X  X  X  X 
 500  X  X  X  X  X  X 
 Total  450  450  450  450  450  500 



  7.1.2 Interpretation of Analyses with Missing Data 

 Further concerns with missing data include problems in interpretation of results 
from analyses. When different models are compared, it is difficult to interpret 
results when the numbers of subjects vary across the analyses. For example, when 
a univariate odds ratio is based on 450 subjects for each  X  variable in Table  7.1 , we 
cannot interpret the change in odds ratio of an adjusted analysis performed on 250 
subjects, due to missing values for in total 250 subjects. It is then impossible to 
infer whether differences arose between univariate and adjusted analysis because of 
correlation between the predictors or because of a selection of subjects due to miss-
ing values. Other problems include cumbersome comparison of  p -values and of the 
performance of two models, when they are based on different numbers of subjects. 
This problem would not occur if we would analyse 250 patients in both univariate 
and adjusted analysis in a true complete case analysis. 

 Another concern is that bias may arise due to systematic differences between 
subjects with complete data and subjects with missing data. It appears that bias will 
especially occur in the estimated regression coefficient for a predictor when miss-
ingness is associated in some way with the outcome. 445  This issue will be discussed 
in more detail later.  

  7.1.3 Missing Data Mechanisms 

 Different mechanisms may lead to missing data (Table  7.2 ). 263,357  It is important to 
consider these, since approaches to handle missing data in the statistical analysis 
rely on assumptions on the mechanism. The nomenclature of the mechanisms is 
puzzling to many applied researchers, but has been adopted uniformally in the 
scientific literature.     

 Missing values can occur completely at random (MCAR). Examples of MCAR 
mechanisms include administrative errors that occur at random, such as accidents 
in laboratories (e.g. spilling of material, handling errors, breakdown of equipment), 
or postal mail that is lost. MCAR is a strict assumption, and can be tested. With an 
MCAR mechanism, the subjects with missings are representative of the population 
with complete data. The incomplete population is a random sample from the com-
plete population. 

 Table 7.2    Three types of missing data mechanisms  

 Label  Missing mechanism  Description 

 MCAR  Missing completely at random  Administrative errors, accidents 
 MAR  Missing at random  Missingness related to known patient characteris-

tics, time or place (“MAR on  x ”), or to the 
outcome (“MAR on  y ”) 

 MNAR  Missing not at random  Missingness related to the value of the predictor, or 
to characteristics not available in the analysis 
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 In medical data, missing values often occur specifically in certain types of 
subjects. If we can observe the variables that are associated with missingness, we 
have an MAR situation (missing at random). This means that the probability of a 
missing value on a predictor (“missingness”) is independent of the values of the 
predictor itself, but depends on the observed values of other variables. The MAR 
assumption is fulfilled if missingness is only related to measured values in the data 
set but not to unmeasured values. MAR examples include more missing values in 
older subjects, subjects from a certain region, or from an earlier calender time. Also, 
the design of a study may intentionally leave values missing for some type of subjects, 
which is by definition an MAR mechanism. For example, we may choose not to 
measure a lab value in younger patients. 

 With an MAR mechanism, the subjects with complete predictor and outcome 
values are not representative anymore for the population where we want to generalize 
to. We will use various examples to illustrate how a CC analysis affects estimates 
of the regression coefficients and the estimated performance. 

 A problematic situation arises when data are MNAR (missing not at random). An 
MNAR mechanism arises when the missingness depends on the values that are missing, 
or on other predictors that are not observed. Examples include selective non-
response on certain questions (e.g. sexual orientation, income), or clinical condition 
(e.g. missing if a severe condition is present, which is not measured accurately).  

  7.1.4 Summary Points 

 Missing data lead to

  ●  Inefficient analyses of research questions  
 ●  Difficulties in interpretation when analyses differ in numbers of subjects  
 ●  Possible bias in regression coefficients    

 Missing data mechanisms can be described as MCAR, MAR, and MNAR 
(Table  7.2 ).   

  7.2 Regression Coefficients Under MCAR, MAR, and MNAR  

 For illustration we consider a simple linear regression model where an outcome  Y  
depends on  X 1 and  X 2:

  Y = b1 × X1 + b2 × X2 + error, with  

    X 1 and  X 2 independent standard normal variables (distributed  N (0,1));  
  regression coefficients  b 1 and  b 2 both 1,  
  and the error distributed  N (0,1 ).    



 When we fit a linear regression model, the estimated regression coefficients  b 1 and  b 2 
are on average 1 for both  X 1 and  X 2. When we create missing values in  X 1 fully at 
random, we simulate an MCAR situation, and the estimated regression coefficients are 
on average 1 again for both  X 1 and  X 2 in the subjects with complete data (Fig.  7.1 ).  

 Of more interest is the situation of “MAR on  x .” First, we consider the situation 
that missingness of  X 1 depends on  X 2, with  X 1 only known with higher values of 
 X 2 (variable “ x 1MAR x ”). When we estimate the regression model  Y  ∼  x 1MAR x  + 
 X 2 in the subjects with complete data, the estimated  b 1 and  b 2 remain unaffected 
(both 1, Fig.  7.1 ). 

 Second, we consider the MAR situation that missingness of  X 1 depends on  Y  
(“MAR on  y ”), with  X 1 only known with lower values of  Y  (variable “ x 1MAR y ”). 
When we estimate the regression model  Y  ∼  x 1MAR y  +  X 2 in the subjects with 
complete data, the estimated  b 1 and  b 2 are both biased (Fig.  7.1 ). We selectively 
generated missings in  X 1 for the upper range of  Y  values. This makes that both  b 1 
and  b 2 now have an expected value of 0.82 instead of 1. So, MAR of  X 1 on  Y  not 
only leads to bias in  b 1, but also in  b 2. 

 A correlation between missingness of a predictor and the outcome hence poses 
a serious problem in predictive modelling. Note, however, that if we measure 
all predictors prospectively, before the outcome is known, such a dependency 
cannot occur in a direct way. We register the predictors before the outcome. 445  

  Fig. 7.1    Effect of missing values on estimated regression coefficients  b 1 and  b 2 in the model 
 y  ∼  X 1+ X 2. Original data are marked as “dot” and “dash” for  X 1 and  X 2, respectively. Complete 
data under MCAR, MAR, and MNAR are marked with a  circle . Plots show results for  n  = 500; 
expected values for  b 1 and  b 2 are shown under the graphs (based on  n  = 100,000)       
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This holds both for diagnostic and prognostic problems. If an association between 
missingness of predictors  X  and outcome  Y  is noted in a prospective study, the 
explanation must be through other predictors, including predictors that are further 
down the causal pathway. If these predictors are not measured, we have an MNAR 
rather than an MAR situation. 

 Finally, we consider MNAR. Missingness of  X 1 depends on the values of  X 1, 
with  X 1 only known with higher values of  X 1 (variable “ x 1MNAR”). When we 
estimate the regression model  Y  ∼  x 1MNAR +  X 2 in the subjects with complete 
data, the estimated  b 1 and  b 2 remain unaffected (both 1). This may be somewhat 
surprising at first sight, but is in line with the principle of conditioning in regression 
modelling: estimates of  b 1 and  b 2 are conditional on  X 1, and hence selection on  X 1 
does not affect these regression coefficients. 

 In sum, regression coefficients in this simple example remained unbiased 
under various missing data generating mechanisms. Bias only arose in the situa-
tion of an MAR on  y , in this example this was that  X 1 was only known for lower 
values of  Y . 

  *7.2.1 R Code 

 In R, the command for MAR on  x  was: 

  x1MARx <– ifelse (rnorm(n=n, sd=.8) < x2, x1, NA)  

 Here  rnorm  generates random numbers from the normal distribution with 
SD=0.8. If the random value is smaller than  x 2,  x 1MAR x  gets the value of  X 1, oth-
erwise  x 1MAR x  is set to missing (“NA”). For low values of  X 2,  X 1 will more often 
be set to missing, reflecting an MAR on  x  situation. This simulation makes that 
missingness of  X 1 has a smooth relationship with values of  X 2. Further, missing-
ness of  X 1 has an  R  2  of approximately 50% with values  X 2. When we estimate the 
regression model  Y  ∼  x 1MAR x  +  X 2 in the subjects with complete data, the esti-
mated  b 1 and  b 2 remain unaffected (both 1, Fig.  7.1 ). 

 MAR on  y  is simulated as: 

  x1MARy <– ifelse (rnorm(n=n, sd=1.5) >y, x1, NA)  

 Here  rnorm  generates random numbers from the normal distribution with 
SD=1.5, which makes that missingness of  X 1 has an  R  2  of approximately 50% with 
 Y  (more missings for higher  Y  values). 

 An MNAR mechanism is simulated as: 

  x1MNAR <– ifelse (rnorm(n=n, sd=.8) < x1, x1, NA)  

 Again,  rnorm  generates random numbers from the normal distribution with 
SD=.8, which makes that missingness of  X 1 has an  R  2  of approximately 50% 
with  X 1.   



  7.3 Missing Values in Regression Analysis  

 Most statisticians nowadays agree that we may opt for two sophisticated statistical 
approaches to deal with missing values in predictive regression models. The first 
is a maximum likelihood (ML) approach and the second is multiple imputation 
(MI). MI is a specific imputation method, where missing values are filled in 
(“imputed”) multiple times. MI methods make efficient use of all available data 
and take into account information implied by the available data. Hence, these 
methods are generally preferred over a CC analysis. ML methods have not yet 
become that popular in medical applications, but discussions on their use and 
merits are available. Both methods have theoretical and empirical support. 263,357,370  
Further focus here is on imputation methods as a practical approach to missing 
values in prediction research (Fig.  7.2  ).  

  7.3.1 Imputation Principle 

 Imputation methods substitute the missing values with plausible values so that the 
completed data can then be analysed with standard statistical techniques. In some 
data sets, we may find a characteristic or combination of characteristics that closely 
defines the predictor with missing values, for example when variables are strongly 
related to same underlying phenomenon. For example haematocrit (“ht”) and 
haemoglobin (“Hb”) are both red blood cell indices. If we aim to include Hb in a 
prognostic model, it is useful to estimate Hb from ht for patients that have both 

  Fig. 7.2    Studies in PubMed with the term “multiple imputation,” published between 1970 and 
2005. We note a remarkable increase since 1990, with, for example, 41 publications in 2005, on 
a total of 676,000 PubMed publications. Many earlier publications on multiple imputation can be 
found in the methodological literature       
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measurements (Fig.  7.3 ). The predicted Hb can subsequently be filled in for those 
patients with ht available but Hb missing. This is an example of a regression impu-
tation approach (Table  7.3 ). In this example, it appears that the correlation between 
Hb and ht is very strong.       

  7.3.2 Simple and More Advanced Single Imputation Methods 

 Simple imputation methods include substitution of a missing value of a continuous 
predictor with the mean, or the most frequent category for a categorical predictor. 
Such simple methods ignore potential correlation of the values of predictors among 

  Fig. 7.3    Correlation between haematocrit (ht) and haemoglobin (Hb) in 566 patients with trau-
matic brain injury. The final imputation model included ht (   p  < 0.001) and gender (   p  = 0.01), with 
 R  2  of 0.97       

ht (%)

H
b 

(g
/d

l)

Adj R2 = 0.97

8
10
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20 30 40 50

 Label  X/Y used?  Approach 

 CC  –  Complete case analysis; subjects with missing values are excluded from 
the analysis 

 CM   X   Single imputation with the conditional mean. The conditional mean can, 
e.g. be estimated with a regression model 

 SI   X + Y   Single imputation with a random draw from the predictive distribution 
from an imputation model (“stochastic regression imputation”) 

 MI   X + Y   Multiple imputation with a random draw from the predictive distribution 
from an imputation model, repeated, e.g. 5 times 

 Table 7.3    Approaches to dealing with missing values, including imputation methods  



each other, and are hence suboptimal. Further they lead to an underestimation of 
variability in the predictor values among subjects. 

 Regression imputation, 114  or “conditional mean imputation,” 263  does consider the 
correlation among predictors. An imputation model is made to predict the missing 
values (see for example, Fig.  7.3 ). Expected values can then be imputed reflecting 
the correlations in the data. An alternative is to take a random draw from the distri-
bution of predicted values (“stochastic regression imputation” 114 ). The random ele-
ment reflects that the imputed values are not certain, which is especially important 
in the case of relatively uncertain predicted values. 

 Simple, conditional mean, and stochastic regression imputation methods are 
examples of  single  imputation methods. In contrast, Rubin proposed a  multiple  
imputation method for handling of missing data. 357   

  7.3.3 Multiple Imputation 

 With multiple imputation,  m  completed data sets are created instead of a single 
completed data set. Missing values are imputed  m  times using  m  independent draws 
from an imputation model. As with (stochastic) regression imputation, the imputa-
tion model aims to reasonably approximate the true distributional relationship 
between the missing data and the available information. This means that for each 
variable with missing data, a conditional distribution for the missing data can be 
specified given other data. 100  

 A problem with imputation models is that we may want to predict missing values 
for one predictor, using other predictors which also have missing values. Fortunately, 
this may well be solved with data augmentation methods, which follow an iterative 
process of an imputation step, which imputes values for the missing data, and a 
posterior step, which draws new estimates for the model parameters based on the 
previously imputed values. 370  This process continues until convergence. The final 
imputed values are used as the first imputed data set. The whole process is repeated 
with different starting values to obtain the  m  imputed data sets. The variation 
among the  m  imputations reflects the uncertainty with which the missing values can 
be predicted from the observed data. Further details of this procedure are, e.g. 
provided by Schafer. 370  

 After creating  m  completed data sets,  m  analyses are performed by treating each 
completed data set as a real complete data set. Standard procedures and software 
can be used, as we would for a data set without any missings. 

 Finally, the results from the  m  complete-data analyses are combined, for exam-
ple to obtain the estimates of regression coefficients and performance estimates, 
while properly taking into account the uncertainty in the imputed values. Point 
estimates are simply the average over the  m  imputed data sets (and could in prin-
ciple also have been obtained in a large stacked data set instead of  m  separate data 
sets). The variance of the estimates (e.g. regression coefficients, performance 
measures) is the average of the variance as estimated within the  m  imputed data 
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sets plus the variance between these  m  data sets. The latter element is the essen-
tial difference between single or stochastic regression imputation, and multiple 
imputation. MI takes the uncertainty into account that is caused by having to 
estimate an imputation model. The formula for MI results is relatively straight-
forward. For an estimated regression coefficient  b , the variance over  M  imputed 
data sets is 

  Var(b) = var(b) within m + (1 + 1/M) var(b) between m 
 = mean (var(b

m
)) + (1 + 1/M)(1/(M–1)) Σ (b

m
 – mean (b))2,  

 where  m  = 1 . . .  M  imputed data sets 

 This formula (or closely related variants) are implemented in many software 
packages that can perform MI. The number  M  for the imputed data sets is usually 
set to 5 or 10. If  M  = 10, the mean variance estimates within the  m  imputed data 
sets are the dominant factors in the formula, since the term (1+1/ M ) becomes 1.1 
and the “between imputation” variance is usually much smaller than the “within 
imputation” variance. Rubin found that when 50% of the data are missing for a 
predictor, an estimate based on five imputations has a standard deviation (SD, √var) 
that is only 5% wider than a variance estimate based on an infinite number of impu-
tations. 358  Other simulation studies have shown that  M  can be as low as 3 for data 
with 20% missingness. 447  Setting  M  to 1 makes MI a single stochastic regression 
imputation procedure (SI). 

 The most important step in any imputation procedure is the definition of the 
imputation model. We therefore discuss this step in more detail, largely following 
guidelines provided by Van Buuren et al. 447    

  7.4 Defining the Imputation Model  

 The imputation model aims to approximate the true distributional relationship 
between the unobserved data and the available information. The imputation model 
is an explicit attempt to model the MAR process. Imputation models can be 
specified for each potential predictor with missing data, irrespective of the quantity 
of missing data. Two modelling choices usually have to be made: the form of the 
model (e.g. linear, logistic, polytomous) and the set of variables that enter the model, 
including potential transformations of predictors. 

 For binary predictor variables (e.g. the presence or absence of a patient charac-
teristic) it is convenient to use a logistic model, for categorical variables with three 
or more levels a polytomous logistic model, and for continuous variables a linear 
regression model. A problem may arise when imputations are constructed that are 
outside the observed range of values. In such cases, it may be reasonable to truncate 
imputed values, so that they remain within a plausible range. 

 The variables in the imputation model can be differentiated in various catego-
ries. All predictors that appear in the prediction model should be included in the 



imputation models. Failure to do so may bias the analysis. Next, some variables that 
do not appear in the prediction model may serve as auxiliary variables. For example, 
calender time or geographic site may be associated with missingness and should be 
considered for the imputation model. Finally, we need to include the outcome that 
we consider in the prediction model. This may appear a bit circular, since the aim 
of a prediction model is to predict the outcome. However, not including the outcome 
in the imputation model may cause substantial bias in the MI analysis of prognostic 
effects, even in the MCAR situation. Simulation studies have shown that a severe 
dilution of the predictive effects may occur if the outcome is not included in the MI 
procedure. If 50% of the data is MCAR, omitting the outcome approximately 
halves the estimated regression coefficient. We can even consider to include other 
types of outcomes if these are available. 

 It has been observed that including many variables in the imputation model 
tends to make the MAR assumptions more plausible. Putting in noise variables does 
not harm the imputation process, 77  unless computational problems arise because of 
multicollinearity and inclusion of many predictors with missing data. 73  It is there-
fore generally convenient to include all predictors, some auxiliary variables, and the 
outcome in the imputation model for an MI procedure. 

  *7.4.1 Transformations of Variables 

 A difficult topic is how transformations among  X  variables and between  X  and  Y  
should be handled. Current software for MI deals with this issue in different ways. 
The mice function assumes linearity of associations among  X  variables and 
between  X  and  Y  in the default setting. Specific forms of imputation models can be 
specified by the user, using for example  x  +  x  2  for some  X  variables. In contrast, the 
advanced aregImpute function may search for transformations among variables 
such that the correlations are maximized. If non-linear associations are present, this 
may be of advantage. However, it is inefficient in the case of linear associations. 
The default settings can be changed such that aregImpute resembles mice. 
Indeed, very similar results in simulations between mice and aregImpute have 
been found when linearity was enforced (using the identity function (“I”) in 
aregImpute).  

  7.4.2 Imputation Models for SI 

 For single imputation with the conditional mean (e.g. from a regression model), 
only the X variables should be used in the imputation model. 174,445  If the outcome 
 Y  is also used in the imputation model, we exaggerate the strength of relation-
ships between predictors and outcome in the prediction model. In contrast, sto-
chastic regression imputation should be performed with the outcome. This is 
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because a random element is added to the predicted values from the imputation 
model, similar to an MI procedure (see Table  7.3 ).  

  7.4.3 Summary Points 

 Imputation models for a multiple imputation (MI) procedure need to include

  ●  All predictors considered in the prediction model  
 ●  Auxiliary variables, related to the predictors, but not included in the prediction 

model  
 ●  The outcome considered in the prediction model    

 For single conditional mean imputation, the outcome  Y  should not be included in 
the imputation model (Table  7.3 ).   

  *7.5  Simulations of Imputation Under MCAR, MAR, 
and MNAR  

 Some simulations are presented at the book’s website to illustrate benefits and 
limitations of imputation for predictive regression models. We consider esti-
mates of regression coefficients (bias and precision) and estimates of predictive 
performance. 

 A first simple situation considered predictors  X 1 and  X 2 for a continuous 
outcome  Y , with missing value mechanisms (MCAR, MAR, and MNAR as in Fig. 
 7.1 ).  X 1 and  X 2 were generated as uncorrelated and correlated predictors. 
Simulations confirm that a CC analysis gives quite reasonable estimates of the two 
regression coefficients under most missing value mechanisms (MCAR, MAR on  x , 
MNAR). The problematic situation was MAR on  y , where stochastic SI or MI had 
clear advantages. Both use  X  +  Y  for imputation of missing values. In the MNAR 
situation, CC analysis led to unbiased regression coefficients, in contrast to all other 
approaches. 445  CC analysis did however not give a good impression of the predic-
tive performance of the regression model in the original population. This occurs 
since the performance of the model with CC analysis is assessed on a selection of 
subjects in the MAR on  x , MAR on  y , and MNAR situations. The limited spectrum 
of subjects in the CC analysis led to lower estimates of the predictive performance 
as quantified by an adjusted  R  2  statistic. 

 Overall, MI gave good results in this simple simulation study: regression coeffi-
cients were at least as well estimated as a CC analysis, and the estimated SEs were 
quite correct. As a next best, stochastic SI was reasonable, with slightly poorer 
estimation of regression coefficients, but good estimation of predictive performance. 
Both SI and MI rely on MCAR, MAR on  x , or MAR on  y . Under MNAR, CC 
analysis is unbiased for the regression coefficients, but underestimates predictive 
performance for the original, complete data. 



  *7.5.1 Multiple Predictors 

 In prognostic analyses, we usually study more than two predictors. We re-consider 
the situation of Table  7.1 , where 250 subjects have 1 missing value, and 250 have 
fully complete data for 5 predictors. Regression coefficients were set to 1 for all 5 
predictors. 

 A CC analysis uses only 250 subjects. Regression coefficients are unbiased, 
but have considerably more variability than the estimates from an MI procedure 
(Table  7.4 ). The conditional mean (CM) and stochastic SI procedures perform quite 
similar to MI. All approaches correctly estimate the predictive performance as an 
adjusted  R  2  around 35%.      

 Table  7.1  b  ± SE; 
sqrt(MSE)  Adj  R  2  

 Mix of mechanisms  b  ± 
SE; sqrt(MSE)  Adj  R  2  

  X1–X5 correlated    10% missing 
(total 50%)  

  20% missing 
(total 75%)  

 Original data, no missings  35%  35% 

  b 1  1.00±0.18; 0.18  1.00±0.18; 0.18 

  b 2  1.01±0.19; 0.19  1.00±0.19; 0.19 

  b 3  1.00±0.19; 0.20  1.00±0.19; 0.19 

  b 4  0.99±0.19; 0.20  1.00±0.19; 0.20 

  b 5  1.00±0.20; 0.20  1.00±0.20; 0.20 

 Complete case analysis  35%  19% 

 b  1  1.00±0.26; 0.26  0.66±0.36; 0.49 

  b 2  1.03±0.27; 0.27  0.66±0.38; 0.51 

  b 3  0.98±0.27; 0.27  0.69±0.33; 0.45 

  b 4  1.00±0.28; 0.28  0.68±0.33; 0.47 

  b 5  1.00±0.28; 0.28  0.67±0.39; 0.52 

 Conditional mean with  X   33%  27% 

    b 1  0.99±0.19;  0.19   1.08±0.21; 0.23 

  b 2  1.01±0.20;  0.21   0.75±0.23; 0.32 

  b 3  0.99±0.21;  0.21   1.05±0.23; 0.24 

  b 4  0.98±0.21;  0.21   1.07±0.24; 0.25 

  b 5  0.99±0.21;  0.22   1.03±0.28; 0.29 

 Table 7.4    Regression under different missing value mechanisms, and the effect of imputation 
procedures. Results are means over 1,000 repetitions of samples with 500 subjects. The square 
root of the mean squared error is highlighted in bold for the strategy with the best result in dealing 
with missing values  

(continued)
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 Model:  Y  =  X 1 +  X 2 +  X 3 +  X 4 +  X 5+error   For the 10% missing example, all  X  variables were inde-
pendent standard normal, and error    N (0,4). 10% MCAR per variable were created as in Table 
 7.1.    For the second example,  X  variables were correlated:   X 1 ∼  N (0,1);  X 2 ∼ 0.2 ×  X 1 +  N (0, 0.98); 
 X 3 ∼ 0.2 ×  X 1 + 0.16 ×  X 2 +  N (0, 0.97);    X 4 ∼ 0.2 ×  X 1 + 0.16 ×  X 2 + 0.14 ×  X 3 +  N (0, 0.96);    X 5 ∼ 
0.2 ×  X 1 + 0.16 ×  X 2 + 0.14 ×  X 3 + 0.12 ×  X 4 +  N (0, 0.95); error ∼  N (0,4). For each  x  variable, 20% 
missings were created, with MCAR for  X 1; MAR on  y  for  X 2; MAR on  X 1 for  X 3; MAR on  X 2 
for  X 4; and MNAR for  X 5. Covariances of missingness were set at 50% 

 Table  7.1  b  ± SE; 
sqrt(MSE)  Adj  R  2  

 Mix of mechanisms  b  ± 
SE; sqrt(MSE)  Adj  R  2  

 SI with  X + Y   36%  35% 

    b 1  1.00±0.18; 0.22  1.03±0.18; 0.25 

  b 2  1.01±0.19;  0.21   1.02±0.19; 0.30 

  b 3  1.00±0.19; 0.23  1.03±0.19; 0.27 

  b 4  1.01±0.19; 0.22  1.03±0.20; 0.27 

  b 5  1.00±0.20; 0.23  1.02±0.23; 0.34 

 Mice with  X + Y   35%  35% 

    b 1  1.00±0.19;  0.19   1.03±0.22;  0.22  

  b 2  1.02±0.20;  0.21   1.02±0.26;  0.26  

  b 3  1.00±0.21;  0.21   1.02±0.23;  0.24  

  b 4  0.99±0.21;  0.21   1.03±0.23;  0.24  

  b 5  0.99±0.21;  0.22   1.02±0.28;  0.29  

Table 7.4 (continued)

 A more complex situation was also simulated. More missing values were created 
(20% vs. 10%), with more complex missing value mechanisms for correlated  X 1– X 5 
(covariance 0.2 for all). MCAR was used for  X 1, MAR on  y  for  X 2, MAR on  x  for 
 X 3 and  X 4, and MNAR for X5. A CC analysis led to biased estimates for all regres-
sion coefficients, which can be attributed to the MAR on  Y  mechanism for  X 2. 
Hence, MAR on  y  for only one of the five predictors was sufficient to bias all 
coefficients. Also, the variability was considerable, since only 25% of the subjects 
were included in the CC analysis. MI did quite well overall. SI was a next best, with 
slightly poorer estimation of the regression coefficients. In the conditional mean 
(CM) analysis, the effect of  b 2 was underestimated, but less so than with a CC analysis. 
Coefficients  b 3 to  b 5 were well estimated. Both the CC and CM analyses underesti-
mate the predictive performance (adjusted  R  2  19% and 27% instead of 35%).   

  7.6 Imputation of Missing Outcomes  

 The outcome for a patient can be missing in several situations. A common situation is 
that follow-up time is insufficient to observe the outcome for all subjects. Survival 
analysis techniques deal with this situation by considering these incomplete 



observations as “censored.” Also, sometimes an outcome is measured multiple 
times (repeated measures) at different time points. For example, in TBI studies 
measurements may be done at 1, 3, 6, and 12 months, while 6-month outcome may 
be our primary outcome measure (see Chap. 8). In this case, missing 6-month 
outcomes can possibly be imputed based on measurements at other time points, 
exploiting the correlations between outcome measurements. 203  Sometimes imputa-
tion is based on extrapolation (“last observation carried forward”). 489  This is a simple 
method to impute missing outcome values when repeated measurements are avail-
able, but the method has many problems. It leads to biased regression coefficients 
and underestimated variability. Multiple imputation or other methods are preferred 
that make use of the correlation between predictors and outcomes. 440  

 A specific situation is that we are interested in a single outcome at a specific 
point in time, and this outcome is missing in some subjects, e.g. a diagnosis. 
Missingness makes that we cannot analyse the relationship between predictors and 
this outcome, while this relationship is of primary interest. In principle it is possible 
to impute the outcome, similar to imputation of predictors. An imputation model 
does not “know” what is  X  and what is  Y . The distribution of the outcome will 
reflect the relationships of the predictors with the outcome. Imputation will hence 
not provide new information on these relationships, and is therefore generally not 
useful for the purpose of better estimation of regression coefficients. 

 On the other hand, we can imagine that certain parameters are of interest that ben-
efit from imputation of the outcome. For example, we may be interested in the mean 
prevalence of a diagnosis, while the diagnosis is not available for all subjects. The 
reference standard may selectively be not determined, which leads to verification 
bias. If the diagnosis was missing especially for low risk subjects, a better prevalence 
estimate is obtained after imputation of the missing diagnoses. Finally, perform-
ance measures such as  R  2  or ROC area may better be estimated after completing the 
outcome for the whole spectrum of subjects. In prediction research, subjects with 
missing outcome data are generally discarded. We have therefore focused on deal-
ing with missing values in predictors.  

  7.7 Guidance to Missing Values in Prediction Research  

 We provide some guidance for dealing with missing values and imputation in 
prediction research, based on previous research, findings in simulations (Table  7.4 ) 
and practical considerations. 

  7.7.1 Patterns of Missingness 

 As a preliminary step, it is recommended to investigate the missing data 
patterns. 174,444 
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   1.    We need to examine how many missings occur for each potential predictor; this 
examination is part of the basic approach to any data analysis. Missing values 
are easily noted when examining frequency distributions of the predictors.  

   2.    We want to know whether predictor values are correlated with missingness of 
other predictors; this determines how well we may be able to impute a missing 
value, and how useful the remaining information on subjects without missing values 
is. We may also study associations with auxiliary variables, such as calender 
time and site. Patterns of missing data can be visualized with cluster analysis 
methods, e.g. the naclus function. 174   

   3.    Regression tree and logistic regression analysis can be used to assess associa-
tions between predictors and missingness of the predictor as the outcome. When 
associations are identified, the MCAR assumption is violated.  

   4.    As an extension of point 3, it is especially important to assess whether missing-
ness was associated with the outcome. This can easily be assessed by examining 
outcome, e.g. mortality, by missingness of the predictor (value available/miss-
ing). Often we may note a poorer outcome in those with missing values. The 
first question is whether this association can be explained by observed predic-
tors. Hereto, logistic regression analysis can be helpful, with missingness as the 
dependent variable, and the outcome  Y  and other predictors as covariables. If the 
study was truly prospective, a missing  X  −  Y  association can only occur through 
other characteristics; it is logically impossible to have selective missingness on the 
outcome when the data were collected before the outcome was known. The 
other characteristics that mediate the observed missingness–outcome associa-
tion may be known; this is an MAR on  x  situation. If some of the mediating pre-
dictors are not known, or measured imprecisely, some kind of residual 
confounding occurs, leading to an MNAR situation. Imputation with  Y  may at 
least partly resolve this situation.  

   5.    Subject matter knowledge should be used to judge plausible mechanisms for 
the missing values, for example whether MNAR is plausible. The MCAR 
assumption can be tested, and may often be rejected in medical research. But 
the MAR assumption cannot be tested, and MNAR hence always remains a 
possibility.      

  7.7.2 Simple Approaches 

 A historically popular method in epidemiological research was to create a category 
“missing” for missing values in the regression analysis. Such a “missing indicator 
method” is especially straightforward for categorical predictors. For example, we 
can recode a predictor that was incompletely recorded as “absent,” “present,” and 
“missing.” However, such a procedure ignores correlation of the values of predic-
tors among each other. Simulations have shown that the procedure may lead to 
severe bias in estimated regression coefficients. 155,294  The missing indicator should 
hence generally not be used. An alternative in such a situation might be to change 



the definition of the predictor, i.e. by assuming that if no value is available from a 
patient chart, the characteristic is absent rather than missing. 

 If the missing values are among many predictors, or if we aim to include a predic-
tor with many missing values anyway, MI may be considered as generally preferable 
to a simple CC analysis. When using an imputation model, we have to assume an 
MAR mechanism. The MAR mechanism becomes more reasonable when more 
detailed characteristics are included in the imputation model. Also, the form of asso-
ciations (e.g. linearity for continuous predictors) in the imputation model has to be 
adequate.  

  7.7.3  Maximum Fraction of Missing Values Before Omitting 
a Predictor 

 When we are interested in the specific effect of a predictor, the “face validity” of 
an analysis is higher with fewer missing values. If a substantial number of missing 
values occur specifically in one predictor, it may be convenient to omit this predictor 
from the analysis. Especially when the predictor is of primary interest, it would not 
be natural to impute the missing values. For example, when we had missing treat-
ment allocation for some patients in a randomized controlled trial (RCT), we would 
never impute these missing values. 

 It is difficult to provide a guide to what is still an acceptable number of missing 
values. Evidence for selective missingness (e.g. MAR on  y ) may already make a CC 
analysis of a predictor with 10% missings suspect; in other cases 20% missingness 
may be quite acceptable (e.g. MCAR assumed). 

 Theoretically, MI solves any missing data problem, as long as we correctly 
model the missing data mechanism, and do not have an MNAR situation. So, the 
effect of a predictor with 90% missing values could still be estimated, but with rela-
tively large uncertainty. 

 In practice, we can only approximate the missing data mechanism. Effects of 
predictors with more than 50% missings in a specific data set will generally be 
distrusted. Such predictors might hence be discarded. Other considerations may 
include the reasons for missingness. If missings occur because of the study design, 
we may be less worried in interpreting findings based on a relatively limited set of 
known values. For example, in the TBI case study (Chap. 8), missing values occurred 
especially because some studies included in the meta-analysis did simply not 
record the predictor.  

  7.7.4 Single or Multiple Imputation for Predictor Effects? 

 In prediction research, we may generally think of studying effects of predictors of 
specific interest (univariate and adjusted analyses) and of studying predictions 
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(deriving prognostic equations, evaluating model performance). We usually start with 
a univariate analysis of predictive effects, e.g. a cross-tabulation of a predictor with 
a binary outcome or with time-to-event in a Kaplan–Meier survival analysis. 
Equivalently, we can calculate the regression coefficients in a univariate logistic 
or Cox regression to obtain estimates of predictor effects. A complete case analysis 
is the most obvious approach. In Table  7.5  this is indicated as ignoring incomplete 
records for variable  X 1. An example may be that we are interested in the prognostic 
effect of the motor score from the Glasgow outcome scale in traumatic brain injury 
(see Chap. 8).     

 Next, we are often interested in adjusted effects, i.e. the effect of  X 1 corrected 
for correlation with other variables ( X 2 to  X  

 
i
 
 ). The variables  X 2 to  X  

 
i
 
  are consid-

ered as confounders, since they may be associated with the outcome and with  X 1. 
Such an adjusted analysis may well be done with imputation of missing data for 
the confounders ( X 2 to  X  

 
i
 
 ), but without imputation of  X 1. This ensures compara-

bility with the univariate analysis, because numbers will be the same in univariate 
and adjusted analyses. SI will underestimate the variability in the adjusted regres-
sion coefficient. An MI procedure for the confounding variables results in better 
estimates of the variability in the adjusted regression coefficient. This issue will 
be illustrated in Chap 8. 

 An alternative is to perform univariate and adjusted analyses with imputed data, 
both for the predictor of interest  X 1 and the confounders  X 2 to  X  

 
i
 
 . Many medical 

researchers will however appreciate univariate analyses that stay closer to the 
observed data, at least as an initial analysis. In general we should be careful in 
interpreting a univariate effect. Confounding may cause the effect of a predictor to 
appear too extreme (because of positive associations with other predictors) or too 
small (because of negative associations with other predictors).  

  7.7.5 Single or Multiple Imputation for Predictions? 

 To derive predictions, MI may be the best approach. However, given that not all 
analysts are familiar with these methods, some next best strategies can be envisioned. 
Especially, single imputation may be a good alternative, if a good imputation model 
is used. A stochastic SI data set can easily be created as the first of a series of MI 
data sets. Every investigator can easily work with such a SI data set, and does not 
have to bother with the combination of results over different MI data sets. More 
experienced data analysts may consider this advantage trivial. The conditional 

 Table 7.5    Dealing with missing values to estimate predictor effects  

 Analysis 
 Predictor of interest  X 1 
(e.g. motor score) 

 Confounders  X 2– X  
 
i
 
  (other 

predictors) 

 Univariate analysis  Ignore  – 
 Adjusted analysis  Ignore  SI/MI 



mean approach could also be followed, but has some problems in an MAR on  y  
situation. The GUSTO-I data set, which is used as an example throughout this book, 
is a CM data set, with at most 8% imputed values for some of the predictors. 255  

 The primary disadvantage of stochastic SI is the underestimation of the uncer-
tainty associated with imputed values. A second disadvantage is less stability in 
the point estimates, because of the random element in stochastic SI. These 
disadvantages are less relevant with relatively few missing values, and in large 
data sets. MI may be preferable with relatively small data sets (for example with 
less than 100 events), since imputations will vary considerably from imputation 
to imputation. 

 To derive predictions for individual subjects in a data set, it is often advisable to 
impute missing data for all predictors. An exception is the situation that we know 
that we cannot obtain complete data in future applications. It may then be reasona-
ble to develop the prediction model in a selection of subjects where the data will be 
available in the future. SI may often be sufficient to provide reasonable point esti-
mates of predictor effects in a multivariable analysis, and hence SI is also sufficient 
to obtain reasonable predictions. The estimated predictions are of primary interest, 
and the underestimation of uncertainty by SI is less relevant. Performance measures 
such as discrimination and calibration can readily be calculated after SI. 

 Finally, we may want to present the prognostic model in a simple form for prac-
tical application (Chap. 18). A score chart based on rounded coefficients is well 
obtainable with SI. MI will provide better estimates of variability of the scores, but 
variability is only of secondary interest, if presented at all. MI may therefore have 
only a minor advantage over SI for model presentation. In summary, multivariable 
analysis, performance estimation, and model presentation can all be done with SI 
or MI approaches.  

  7.7.6 Reporting of Missing Values in Prediction Research 

 A review was performed by Burton and Altman of 100 prognostic studies in cancer 
that were published in 2002. 61  Missing values were present in 81 studies, and led to 
the exclusion of >10% of the patients available for multivariable analyses in about 
50% of the studies. The most common technique was complete or available case 
analysis. Some studies omitted a predictor because of many missing data, or 
included a separate category for missingness. Three papers applied some form of 
single imputation, and only one applied multiple imputation. Hence, dealing with 
missing data was suboptimal in many studies, and (multiple) imputation was only 
infrequently used yet. 

 Suggested reporting guidelines include three major issues 61 :

   1.    Quantification of the completeness of predictor data  
   2.    Approaches to dealing with missing predictor data (including imputation methods)  
   3.    Exploration of the missing data (including results for complete case and com-

pleted case analysis, Table  7.6  )         
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 We list some examples on dealing with missing values in Table  7.7 . Methods 
include single imputation (simple, conditional mean, stochastic regression), or 
multiple imputation. More details of these studies are provided at the book’s 
website.       

  7.8 Concluding Remarks  

 Missing values pose important challenges in prediction research. Straightforward 
methods such as complete case analysis are often oversimplistic from a methodo-
logical point of view. Simulations support the view that imputation methods are 
superior to complete case analysis, which is currently still the dominant approach 
in the medical literature. Some case studies also illustrate benefits of imputa-
tion. 73,453  Possibly, many clinicians are unaware of the problems with CC analyses, 
and of modern developments in this area, especially on (multiple) imputation meth-
ods. The inclusion of the outcome in a multiple imputation process may be met 
with skepticism, while it is clearly necessary. 

 Issue  Aspect 

 Quantification of completeness  If completeness of data is an inclusion criterion, 
specify numbers excluded 

 Provide total  n  and  n  with complete data 
 Report frequency of missingness for every predictor 

 Approaches to dealing with missing data  Provide sufficient details on the methods used, 
including references if imputation was done 

 Specify the  n  of patients and number of events for 
all analyses 

 Exploration of missing data  Discuss reasons for missingness 
 Present comparisons of characteristics between 

cases with and without missing data 

 Table 7.6    Guidelines for reporting of prognostic studies with missing predictor data 61   

 Table 7.7    Imputation methods as applied in some examples  

 Method  Characteristics  Example 

 Simple imputation  Mean or most frequent category  Guillain-Barré: few missings 461  
 Conditional mean 

imputation 
 Estimate predicted value based on 

correlations between predictors 
 Historical examples: GUSTO-I, 255  

ReHiT study 417  
 Stochastic regression 

imputation 
 Draw imputed value from distribu-

tion of predicted values 
 Adjusted analysis in IMPACT 

study 305  
 Multiple imputation  Develop imputation model and draw 

imputed value from distribution 
of predicted values; combine esti-
mates over  m  imputed data sets 

 Ovarian cancer, 73  testicular 
cancer 453  



 The best solution for missing values is of course to ensure that no data are miss-
ing. It may sometimes be possible to retrieve missing data by going back to medi-
cal charts. In some settings, it may be reasonable to define missing as “No.” If 
characteristics are measured multiple times, we may sometimes use a measure-
ment from another time point. If missing values do occur, they have to be dealt 
with in a reasonable way, i.e. such that the research questions are addressed 
efficiently. 

 The research question is not to estimate the missing values but to estimate model 
parameters (univariate effects, adjusted effects, multivariable effects, prognostic 
equations, performance). These parameters should be valid for the population 
where the model will be applied in the future. The sample serves to learn for this 
future application, and we should try to use all available information. Imputation of 
some missing values prevents that we throw away useful information recorded for 
other predictors. The primary benefit of imputation is hence an increase in power 
to detect prognostic effects, and in deriving better predictions. A second benefit of 
imputation is comparability of results over analyses. The price we pay for these 
benefits is making the assumption of MAR; we need to include all variables (pre-
dictors, outcome, and auxiliary variables) that are potentially correlated with the 
missingness of the predictor. 

 As in any statistical analysis, the sensible judgment of the analyst is important, 
based on subject knowledge and the research question. Comparing results of com-
plete case and completed case analyses may be informative, and together with a 
judgment about the plausibility of assumptions in a particular situation we can 
decide on which is the primary analysis. 

  7.8.1 Summary Statements  

  ●  Missing values in predictors are common, and lead to inefficiency, difficulties in 
comparing results between analyses with different numbers, and potentially 
biased regression coefficients and predictions.  

 ●  Theoretical analyses and simulations conclude that imputation methods, espe-
cially multiple imputation, are superior to complete case analyses.  

 ●  Advanced stochastic single imputation methods, based on the first data set of a 
multiple imputation sequence, are also reasonable to address prediction 
questions.  

 ●  Imputation methods make the assumption of MAR; more specifically, MAR 
given the information used in the imputation process.  

 ●  The MAR assumption is not testable, but becomes more reasonable with imputa-
tion models that include a wide range of characteristics, including predictors, the 
outcome, and auxiliary variables.     
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  *7.8.2 Currently Available Software and Challenges 

 Multiple imputation software is widely available nowadays, and further improve-
ments may be expected during the coming years. For R and S+, the mice library 
is freely available (developed by Van Buuren et al.). It includes state of the art 
functions, has flexible settings, but the computation time can be substantial. An 
interesting alternative is the aregImpute function developed by Harrell, which 
performed well in a number of assessments. Stata has the sophisticated ice and 
ice2 functions, which were developed by Royston. Some packages, such as the 
MVA module in SPSS v11 and proc MI in SAS v8 have limitations, since they 
make stronger parametric assumptions about the multivariate distribution of the data. 
With any imputations, we should as a minimum check distributions of the observed 
and imputed values, e.g. by histograms. 

 Several methodological challenges may require further study:

  ●  If some sort of selection process is done, e.g. stepwise selection, how can this be 
combined with imputation? (Chap. 11) 488   

 ●  How should we perform internal validation, e.g. bootstrapping, when missing 
values are imputed? We propose to validate the modelling process within each 
imputed data sets (Chap. 17).  

 ●  How should we perform external validation, when some predictors are missing? 
Impute based on an imputation model from the development setting, impute 
based on the validation data? (Chap. 19)  

 ●  How large are the advantages of MI over SI in prognostic research?  
 ●  How tenable is the MAR assumption in practical examples? What is the influ-

ence of non-linear relationships between predictors and/or outcome?      



  Questions   

   7.1    Missing values vs. incomplete cases

   (a)    How many values are missing from the required values for a model with 3 
predictors, estimated in 1000 subjects, where predictor 1 has 100, predictor 
2 has 200, and predictor 3 has 400 missing values?  

   (b)    If the missing values occur completely at random, how many subjects 
would approximately be discarded in a complete case (CC) analysis?      

   7.2    MCAR, MAR, or MNAR? 
 Consider a prognostic study among patients undergoing heart valve surgery 
aiming to quantify the predictive value of intra-operative characteristics (e.g. 
intra-operative blood pressure and complications) for mortality after 30 days 
(outcome). What type of missingness pattern do we have in the following two 
situations:
   (a)    Among patients who actually developed an intra-operative complication, 

the intra-operative data are often missing?  
   (b)    Among patients with a less severe indication for surgery based on presurgi-

cal data, the intra-operative data are missing?     
 Suppose that clinicians do not perform a diagnostic test if their impression 
is that the patient does not have the diagnosis of interest. This impression 
may partly be captured by clinical variables that are observed, but also 
depend on some predictors that are not registered in the data.

   (c)    Is this an MAR or MNAR situation?      

   7.3    MAR on  y  in Fig.  7.1  
 Why does a missing value mechanism of MAR on  y  in  x 1 result in bias both 
for  b 1 and  b 2 in Fig.  7.1 ?  

   7.4    Problems of overall mean imputation 
 What is the effect of performing overall mean imputation (i.e. imputing the 
mean of the observed values for the missing values) on estimated regression 
coefficients and standard errors?  

   7.5    Imputation with outcome (“ Y ”, Table  7.3 ) 
 Consider 50% missingness for a predictor  X 1 which is not related to other 
predictors. We recommend to perform SI or MI with the outcome as one of the 
variables in the imputation model (Table  7.3 ). What would happen to the uni-
variate regression coefficient of  X 1 if a completed data set was analysed, 
where values were imputed without using  Y ?  

   7.6    Complete case analysis or imputation?
   (a)    For what missingness patterns is complete case analysis a reasonable 

solution?  
   (b)    In what respect is multiple imputation preferable above single imputation?                
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   Chapter 8   
 Case Study on Dealing with Missing Values        

  Background   A case study is presented on prognostic modelling in patients with 
moderate and severe traumatic brain injury (TBI). Individual patient data from sev-
eral studies were available to quantify predictor effects and to develop and validate 
prognostic models. Missing values were a key issue, since few studies recorded all 
predictors of interest. The use of single and multiple imputation methods is illus-
trated with a detailed description of the analyses in R software.    

  8.1 Introduction  

  8.1.1 Aim 

 Randomized controlled trials (RCTs) in TBI are complex due to the heterogeneity 
of the population. None of the multicentre RCTs conducted in this field over the 
past decades have convincingly shown benefit of new therapies in the overall popu-
lation. 273,310  The overall aim of the study was to optimize the methodology of rand-
omized clinical trials in the field of TBI, such that chances of demonstrating benefit 
with an effective new therapy or therapeutic agent would be maximized. This NIH 
sponsored project was labelled IMPACT: International Mission on Prognosis and 
Analysis of Clinical Trials in TBI. 271  Individual patient data from recent trials and 
observational studies were available.    

 Prognosis was central to the aims of the project. For example, prognostic models 
can be used for the efficient selection of patients (excluding those with an extreme 
prognosis, either very poor or very good) and for covariate adjustment of the treat-
ment effect (with several advantages as described in Chap. 2). 189  In TBI, outcome 
is commonly assessed with the Glasgow outcome scale (GOS), which is an ordinal 
scale (Table  8.1 ). 218  The scale ranges from dead, through vegetative state, severe 
disability to moderate disability, and good recovery. In conventional analyses, the 
GOS is often dichotomized as mortality vs. survival (category 1 vs. 2–5), or as 
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unfavourable vs. favourable (category 1, 2, 3 vs. category 4, 5), although it is pref-
erable to exploit the ordinal nature of this scale. One approach is the “sliding 
dichotomy” analysis, in which the split for dichotomization of the GOS is differen-
tiated according to the baseline prognosis established prior to randomization. 304  
Another approach is to use a proportional odds model for the GOS as an ordered 
outcome (see Chap. 4).     

 We aimed to predict the dichotomized 6-month GOS. Missing data were a key 
problem in the prognostic analysis. 283  We focus on approaches for dealing with 
missing data.  

  8.1.2 Patient Selection 

 Our focus was on patients with severe TBI (Glasgow coma score, GCS 3–8), but 
cohorts that included patients with moderate TBI (GCS 9–12) were also considered. 
The GCS is a measure for the level of consciousness. An individual patient data 
meta-analysis of 11 studies was performed, including 8 randomized controlled tri-
als (RCTs), and 3 relatively unselected prospective surveys, with the potential for 
analysing data on 9,205 patients. Complete outcome data were available for 8,719 
of the 9,205 patients (95%). We further excluded children, leaving 8,530 patients 
for analysis. The studies are arbitrarily designated as A to K in Table  8.2 . The meta-
analysis was a continuation of analyses of two related RCTs (Tirilazad, Table  8.2 : 
study ID A and B). 203       

  8.1.3 Selection of Potential Predictors 

 Extensive univariate analyses were performed within the IMPACT study of potential 
predictors. In combination with a review of the literature we identified predictors 
for further multivariable analyses. 305  These predictors included demographic char-
acteristics (age). 306  injury details (cause of injury), 62  secondary insults (hypoxia and 
hypotension), 284  clinical measures of injury severity (Glasgow coma scale and 
pupillary reactivity), 276  characteristics of the admission CT scan, 272  and laboratory 
values. 446  For prognostic modelling, a core set of three strong predictors emerges 
from the literature since the 1970s, consisting of age, motor score, and pupillary 

 Table 8.1    Definition of the Glasgow outcome scale 218,49  1   

 Category  Label  Definition 

 1  Dead  Mortality from any cause 
 2  Vegetative  Unable to interact with environment; unresponsive 
 3  Severe disability  Conscious but dependent 
 4  Moderate disability  Independent, but disabled 
 5  Good recovery  Return to normal occupational and social 

activities; may have minor residual deficits 



reactivity. We subsequently expanded this core model to a 7-predictor model by 
including secondary insults and CT characteristics (CT classification, traumatic 
subarachnoid haemorrhage). 203  Further modelling studies were performed with 
inclusion of more predictors, but are omitted here.  

  *8.1.4 Coding and Time Dependency of Predictors 

 An important issue was the definition of predictors across the 11 studies. Definitions 
varied between data sets. The data extraction was guided by a data dictionary and 
original study documentation, which standardized the format of variables entered 
into the pooled data set. A consistent set of categories for coding was sought for 
each variable by collapsing more extensive codings into a simpler format. For 
example, the presence of hypoxia on admission was collapsed into a binary coding 
present/absent, although some data sets contained a more detailed coding as No/
Suspect/Definite. “Cause of injury” raised this same issue but in a more complex 
form, since many and different categories were considered per study. 276  

 A further issue was related to the time of measurement of a predictor. We aimed 
to consider predictors that would be available when patients were to be enrolled in 
an RCT, in line with the overall aim of the project. An interesting example is the 

 Study  A  B  C  D  E  F  G  H  I  J  K  Total 

  N   1,118  1,041  409  919  1,510  350  812  604  126  822  819  8,530 

  Core predictors  
    Age (%)  100  100  100  100  100  100  100  100  100  100  100  100 
    Motor score (%)  100  100  100  100  100  100  100  100  100  100  100  100 
    Pupils (%)  93  95  97  0  98  100  92  100  0  96  99  85 

  Secondary insults  
    Hypoxia (%)  88  89  100  93  0  0  98  100  67  99  0  64 
    Hypotension (%)  97  97  0  93  0  98  99  100  83  99  100  75 

  CT  
    CT class (%)  99  99  100  99  0  0  0  0  100  98  99  61 
    tSAH (%)  97  95  99  99  100  73  0  87  100  95  100  87 
    EDH (%)  98  99  0  99  100  100  95  0  100  100  100  87 
    Cisterns (%)  89  87  99  99  0  0  0  86  100  0  0  45 
    Shift (%)  89  88  99  99  100  0  0  89  100  0  100  73 

  Laboratory values  
    Glucose (%)  96  99  0  95  96  85  0  0  98  0  0  57 
    Sodium (%)  98  96  0  96  96  95  0  64  98  0  0  62 
    Hb (%)  99  98  0  90  30  97  0  0  93  0  0  45 
    Platelets (%)  0  0  0  90  29  0  0  40  93  0  0  19 
    Prothrombin 
  ti me (%) 

 0  0  0  0  29  0  0  48  91
 

 0  0  10 

 Table 8.2    Availability of predictor values by study (A–K), as included in the IMPACT study 
( n =8,530) 27  1   

8.1 Introduction 141141
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motor score, which is the prognostically most important element of the GCS. Four 
time points for assessment were defined: pre-hospital, first hospital (in case of sec-
ondary referral), admission, and post stabilization. Most data sets had data for at 
least two of these time points. For prognostic analysis we aimed to select the latest 
reliable assessment on admission to correspond with a baseline assessment prior to 
randomization, i.e. the post-stabilization score. If this was missing we used the next 
reliable value going back in time (admission, first in-hospital, pre-hospital). However, 
sometimes the motor score is not clinically obtainable because of early sedation or 
paralysis, required for artificial ventilation. The motor score was then coded as a 
separate category (“9,” untestable), rather than considered as a missing value. This 
approach made the motor score available for all patients. 

 It can be debated whether a more formal analysis should have been used for 
defining the baseline motor score; e.g. a multiple imputation procedure might 
have considered all four time points of the motor score, providing a formally 
imputed post-stabilization motor score. MI might also have provided estimates 
for the untestable patients (“category 9”). However, the necessity for sedation and 
paralysis is related to the severity of injuries. In this specific case, missingness in 
the sense of “untestable” may possibly be of prognostic relevance, and imputation 
of a virtual motor score for “untestable” patients was hence not considered 
appropriate.   

  8.2 Missing Values in the IMPACT Study  

 Missing values were present in the outcome and in predictors. We discuss dealing 
with both below. 

  8.2.1 Missing Values in Outcome 

 Data on 6-month outcome were available for 10 of the 11 studies. For one however, 
only the 3-month GOS was measured (study E). Since the GOS is assumed to be 
relatively stable between 3 and 6 months, we imputed missing 6-month GOS with 
the 3-month GOS. This approach is consistent with the way in which missing out-
come had been imputed in a small number of patients in the individual studies (Last 
Value Carried Forward approach). We chose not to further attempt imputation of 
the 6-month GOS in the 5% of patients in whom outcome remained missing, as not 
to compromise the interpretation of our outcome measure. 

 A more formal MI procedure could have been followed, incorporating the GOS 
patterns over time as available in some of the studies (e.g. 1, 3, 6, 12 months), and 
correlations with predictors.  



  8.2.2 Quantification of Missingness of Predictors 

 Table  8.2  summarizes the availability of predictors within the 11 studies of the 
IMPACT database. The main reason for missingness was absence of a predictor 
within a given dataset. If the dataset included a predictor, availability was generally 
high. Data for age and motor score (including the untestable category) were com-
plete, but some studies had no data for pupils (studies D and I, Table  8.2 ). If pupils 
were recorded, data were complete in >90% in most studies. Secondary insults 
(hypoxia and hypotension) had not been recorded in some studies, but if recorded, 
data were quite complete.

CT scans are usually performed within hours after admission, after stabilization 
of the patient. CT scans provide important diagnostic information, and are often 
classified according to the Marshall classification. 280  This classification was availa-
ble in 7 of the 11 studies, for 61% of the 8,530 patients. Other important CT charac-
teristics, such as traumatic subarachnoid haemorhage (tSAH) and the presence of an 
epidural haemaotoma (EDH) were available in slightly higher numbers of patients. 
The presence of EDH is illustrated in Fig.  8.1 .        

 Laboratory values were available for only few studies (Table  8.2 ). Glucose, pH, 
sodium, and Hb levels were available for around 50% of the patients, but platelets 
and prothrombin time (which are related to blood clotting), were available for less 

 Fig. 8.1    Example of an epidural haematoma (EDH). An EDH is located directly under the skull and 
mainly causes brain damage due to compression. Consequently, prognosis is more favourable if it 
can be evacuated rapidly. A developing EDH is one of the greatest emergencies in neurosurgery  
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than 20% (Table  8.2 ). The latter percentages were so low that we did not consider 
these predictors for a prediction model; admittedly this judgment is arbitrary. A 
series of models was developed, with different selections of studies, based on avail-
ability of predictors per study.  

  8.2.3 Patterns of Missingness 

 We further examined patterns of missingness, following the steps discussed in 
Chap. 7. 

  a. How many missings occur for each potential predictor? 

 We used the  naclus  and  naplot  function to visualize missing value patterns. As 
was also noted in Table  8.2 , missing values were most frequent for laboratory 
parameters and some CT characteristics (Fig.  8.2 , left panel). Many patients had 
multiple missing values, e.g. 3,170 patients had 7 missing values, and 4 patients even 
had 12 missing values among the 15 predictors considered (Fig.  8.2 , right panel).         

  b. Missing value mechanisms 

 For analysis of the mechanism of missingness we examined combinations of miss-
ing predictors, associations between predictors and missingness, and associations 
between outcome and missingness. As proposed by Harrell, we used the naclus 
function to visualize missing value patterns (Fig.  8.3 ). 174  We note that platelets and 
prothrombine time are often jointly missing, as also noted in Table  8.2 . Characteristics 
of CT scans, such as shift and cisterns are often missing in combination, while also 
laboratory values are missing in such patients (hb, glucose, sodium, platelet, ptt).         

 Fig. 8.2    Fraction of missing values per potential predictor ( left panel ), and number of missing 
values per subject ( right panel )  
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  c. Associations between predictors and missingness 

 Table  8.2  demonstrates that missingness of most predictors strongly depends on 
study. We explored in detail whether there were other determinants of missingness 
for pupils, hypoxia, hypotension, CT class, tSAH, or EDH but no clear patterns 
were found (Fig.  8.4 ). Hence, no MAR on  x  patterns were evident.         

  d. Associations between outcome and missingness 

 Fig.  8.4  further demonstrates no clear associations between missingness and an 
unfavourable 6-month GOS outcome. To explore the relation between missingness 
and outcome in more detail, logistic regression models were constructed, but again 
no clear patterns were noted. Hence, there were no indications of an MAR on  y  
mechanism.  

  e. Plausible mechanisms for missingness 

 The most plausible mechanism for missingness was that a predictor was simply not 
recorded for some studies. Within studies, a mechanism close to MCAR had 
occurred. We conclude that missingness was essentially MCAR, conditional on the 
study. Hence, we would like to stratify on study when making imputations. This is 
however logically impossible in situations that predictor values are 100% missing 
in a study, as study specific estimates cannot be derived. 

 We hence imputed values conditional on values of the other predictors, but not 
conditional on study. On the other hand, we excluded some studies from analyses 
if we judged that too many predictors were 100% missing in a study.    

 Fig. 8.3    Combinations of missing values in predictors (“NAs”), based on a hierarchical cluster 
analysis of missingness combinations  
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 Fig. 8.4    Missingness in relation to study (numbered 1–11), other predictors (age to EDH), and 
outcome (GOS6). Study was the main determinant of missingness. Only weak associations were 
observed with other predictors, and no relationship with the 6-month outcome (GOS6)  



  8.3 Imputation of Missing Predictor Values  

  8.3.1 Correlations Between Predictors 

 In Chap. 7, we noted that multiple imputation became more relevant when predic-
tors were correlated. Table  8.3  shows that the correlations between variables were 
generally modest, implying that both single and multiple imputation procedures 
may be considered. Some more substantial correlations ( r >0.4) were noted among 
CT scan characteristics and between some laboratory values. The associations 
between cisterns/shift and the CT classification are to be expected, as these charac-
teristics are used in the definition of the CT classification. Hb and platelets are 
correlated, as both will decrease following blood loss.       

  *8.3.2 Imputation Model 

 An imputation model was considered that included all relevant potential predictors 
and the outcome (6-month GOS, in five categories). No auxiliary variables were 
used. The imputation model was fitted using the  mice  library and  aregImpute  from 
the  Hmisc  library in R. We show the commands below for illustration, with more 
details on the web site.

    # mice imputation model for pmat as predictor matrix, with default 
settings 

gm <− mice (TBIallR2, m = 10,   
   imputationMethod =c (“polyreg”, “polyreg”, “pmm”, “polyreg”, 
“polyreg”,  “polyreg”, “logreg”, “logreg”, “logreg”, “pmm”, 
“logreg”, “logreg”, “logreg”, “logreg”, “pmm”, “pmm”, “pmm”, 
“pmm”), predictorMatrix = pmat, seed=1)   

   # aregImpute for data set TBIallR2, with default settings
g <− aregImpute (formula = ~d.gos+as.factor(trial) + age +

as.factor(motorr) + as.factor(pupil) + as.factor(CTclass) +
tsah + cisterns + shift + size + sdh + edh +
hypoxia + hypotens + d.sysbpt + hbt + glucoset + sodiumt,
n.impute = 10, data=TBIallR2)     

 Here,  d.gos  is the derived 6-month GOS;  trial  is the study;  age  is age in 
years;  motorr  is the Motor score;  pupil  is pupillary reactivity;  CTclass  is CT 
classification;  tsah  is presence of tSAH;  cisterns  is presence of compressed 
cisterns on CT;  shift  is shift ≥5 mm on CT;  size  is shift in mm;  sdh  and  edh  
refer to subdural and epidural haematomas;  hypoxia  and  hypotens  refer to 
secondary insults;  d.sysbpt  is derived systolic blood pressure;  hbt  is truncated 
Hb;  glucoset  is truncated glucose;  sodiumt  is truncated sodium. 
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 The  gm  and  g  objects each consist of ten imputed data sets of the IMPACT data-
base. In total 18 variables were considered in the imputation model. Data were com-
plete for the outcome ( d.gos ),  trial ,  age , and motor score. With  aregImpute , 
 R  2  values are given to indicate how well each variable can be predicted from the other 
variables.  R  2  values were very high for  shift  coded as a binary variable and  size  of 
shift in millimetres, which are by definition strongly correlated (shift defined as size 
³ 5 mm). Similarly, details of the imputations by  mice  can be inspected.  

  8.3.3 Distributions of Imputed Values 

 The distributions of imputed values in object g were checked for the plausibility 
of imputations (e.g. within a plausible range, no strange peaks, Fig.  8.5 ). The 
frequencies of categorical variables are shown as dot charts. For example, the 
first graph shows the imputations over ten sets for “pupil” (values 1, 2, 3), and 
the second for CTclass (values 1–6). For predictors that are treated as linear vari-
ables, the cumulative distribution is shown. For example, the third graph shows 
that imputed tSAH values were 0 in 60%, and 1 in 40%. Although size was con-
sidered as a linear variable, this does not imply that normality was assumed for 
the distribution; many values for “Imputed size” were zero. The before last 
graph shows imputations for glucose, which are truncated at 2 and 20, as in the 
original predictor definition.          

  8.4 Estimating Adjusted Effects  

 After imputation, we estimated the adjusted effects of each predictor of interest 
in turn, using imputed versions of other predictors. These other predictors are 
hence considered as potential confounders. We present all results for  aregImpute  for 
adjusted analyses; results with  mice  are only presented for the multivariable 
models. As confounders we considered seven predictors that had also shown 
convincing effects in previous TBI studies. These include the three core predic-
tors (age, motor score, pupils), two secondary insults (hypoxia, hypotension), and 
two CT characteristics (CT classification and tSAH). The outcome was GOS at 6 
months, dichotomized as unfavourable vs. favourable in logistic regression models. 
For illustration, we show the adjusted logistic regression coefficients of each of 
these predictors in turn (Table  8.4 ). We estimate adjusted effects in the complete 
cases (CC), as well as in completed data sets with single (SI) or multiple imputa-
tion (MI). Odds ratios can be calculated as e coefficient .     

 Numbers of patients differ dramatically between the univariate and CC analyses, 
since only 2,428 patients had complete values for all 7 predictors considered. 
Per predictor, values were complete for some (age, motor score). Values were 
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most incomplete for CT class ( n  = 5,192). The coefficients of most of the predic-
tors were largest in univariate analyses, and smaller in adjusted analyses. This 
reflects the positive correlations between predictors (see Table  8.3 ). The esti-
mates in adjusted analyses were largely similar for SI or MI, but were sometimes 
quite different from the CC analyses, e.g. smaller for motor score. The SEs in 
the CC analyses are higher than in the imputed analyses, reflecting smaller num-
bers. The MI analyses showed larger SEs than SI analyses, but differences were 
minor (3rd decimal). 

 Technical details of the model fitting are further discussed with detailed code for R 
programs. We first describe the modelling for complete predictors (age, motor), fol-
lowed by the approach for predictors with missing values, such as pupils. 

  *8.4.1  Adjusted Analysis for Complete Predictors: 
Age and Motor Score 

 Age and motor score were completely available ( n =8,530). Univariate effects can 
easily be estimated with logistic models: 
  lrm(d.unfav~as.factor(trial)+age, data=TBIall)  
   lrm(d.unfav~as.factor(trial)+as.factor(motorr), 
data=TBIall)  

 Table 8.4    Logistic regression coefficients of predictors in univariate and adjusted analyses. 
Numbers are coefficients (SE)  

  N   Univar  Adjusted 

  N    N  = 5,192−8,530  CC,  n  = 2,428 
 SI,  n =5,192−

8,530 
 MI,  n  = 5,192−

8,530 

 Age (per 
decade) 

 8,530  0.32 (0.015)  0.36 (0.033)  0.33 (0.018)  0.33 (0.018) 

 Motor score  8,530 
    1 or 2  1.87 (0.065)  1.65 (0.160)  1.48 (0.074)  1.46 (0.075) 
    3  1.38 (0.077)  1.36 (0.157)  1.14 (0.086)  1.16 (0.087) 
    4  0.69 (0.065)  0.71 (0.128)  0.57 (0.071)  0.57 (0.072) 
    5 or 6  Zero (ref)  Zero (ref)  Zero (ref)  Zero (ref) 
    9  0.91 (0.112)  1.06 (0.259)  0.82 (0.127)  0.82 (0.128) 

 Pupillary reactivity  7,143 
    Both pupil 

reactive 
 Zero (ref)  Zero (ref)  Zero (ref)  Zero (ref) 

    One non-reactive  0.97 (0.076)  0.51 (0.149)  0.56 (0.085)  0.57 (0.086) 
    Both non-

reactive 
 1.77 (0.067)  0.94 (0.144)  1.18 (0.076)  1.18 (0.077) 

 Hypoxia  5,473  0.80 (0.072)  0.49 (0.125)  0.38 (0.085)  0.40 (0.087) 
 Hypotension  6,440  0.99 (0.070)  0.68 (0.133)  0.68 (0.084)  0.66 (0.085) 

 CT class  5,192 
    1 or 2  Zero (ref)  Zero (ref)  Zero (ref)  Zero (ref) 
    3 or 4  1.08 (0.079)  0.77 (0.134)  0.78 (0.089)  0.77 (0.090) 
    5 or 6  0.96 (0.066)  0.67 (0.115)  0.55 (0.075)  0.54 (0.076) 
 Traumatic SAH  7,393  0.99 (0.050)  0.84 (0.101)  0.74 (0.057)  0.73 (0.058) 
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 The estimated regression coefficients are shown in Table  8.4 . 
 Here,  d.unfav  refers to unfavourable GOS at 6 months,  trial  is the study 

 indicator, such that analyses are stratified by study. 
 A CC model with adjustment for confounders included only 2,428 patients, due to 

exclusion of patients with any missing value for the other predictors (pupil, hypoxia, 
hypotens, CTclass, tSAH). Only patients from studies A, B, and J are included: 

  CC model: 

    lrm(formula = d.unfav ~ as.factor(trial) + age + as.factor(motorr) + as.factor(pupil) 
+ hypoxia + hypotens + CTclass34 + CTclass56 + tsah, data = TBIall)   

   Frequencies of Missing Values Due to Each Variable 
      d.unfav       trial       age       motorr       pupil       hypoxia       hypotens       CTclass34       CTclass56       tsah       
   0       0       0       0       1387       3057       2090       3338       3338       1137       

   Obs       Max       Deriv Model       L.R.       d.f.       P       C       Dxy       Gamma       Tau-a       R2       Brier   
   2428          6e-010       840       14       0       0.823       0.645       0.646       0.315       0.393        0168        

  Coef    S.E.    Wald Z    P  
  Intercept    −3.59911    0.186332    −19.32    0.0000  
  trial=A    −0.14818    0.121132    −1.22    0.2212  
  trial=J    0.07172    0.137206    0.52    0.6012  

  age    0.03571    0.003348    10.67    0.0000  
  motorr=1/2    1.64538    0.159743    10.30    0.0000  
  motorr=3    1.35782    0.156498    8.68    0.0000  
  motorr=4    0.71459    0.128421    5.56    0.0000  
  motorr=9    1.06208    0.258924    4.10    0.0000  
  pupil=2    0.51432    0.148866    3.45    0.0006  
  pupil=3    0.94368    0.143710    6.57    0.0000  
  hypoxia    0.49115    0.124781    3.94    0.0001  

  hypotens    0.67864    0.133171    5.10    0.0000  
  CTclass34    0.76777    0.134252    5.72    0.0000  
  CTclass56    0.67493    0.114807    5.88    0.0000  

  tsah    0.84091    0.101395    8.29    0.0000  

 In this specific case with complete data on age and motor score, fitting age and 
motor score with imputed data (SI or MI) is identical to fitting a model in the fully 
imputed data set ( n =8,530). For SI, we create imputed data from the first MI data 
set in the  g  object, for example:

    TBIall$pupil.i <− TBIall$pupil   
   TBIall$pupil.i[is.na(TBIall$pupil)] <− g$imputed$pupil[,1]     

 This is done for all predictors with missing values, with the extension “.i” 
added to indicate that we consider imputed data for a predictor. 

  SI model:  

  lrm (formula = d.unfav ∼ as.factor(trial) + age + as.factor(motorr) + as.factor(pupil.i) 
+ hypoxia.i + hypotens.i + CTclass34.i + CTclass56.i + tsah.i, data = TBIall)   



  Obs    Max Deriv Model    L.R.    d.f.    P    C    Dxy    Gamma    Tau-a    R2    Brier  
  8530    2e-009    2678    22    0    0.805    0.609    0.61    0.304    0.36    0.18  

  Coef    S.E.    Wald Z    P  
  Intercept    −3.193738    0.111591    −28.62    0.0000  

  …  
  age    0.032630    0.001774    18.39    0.0000  

  motorr=1/2    1.475716    0.074192    19.89    0.0000  
  motorr=3    1.169648    0.085977    13.60    0.0000  
  motorr=4    0.574532    0.071067    8.08    0.0000  
  motorr=9    0.820593    0.126781    6.47    0.0000  

  pupil.i=2    0.588143    0.076883    7.65    0.0000  
  pupil.i=3    1.103948    0.068252    16.17    0.0000  
  hypoxia.i    0.264818    0.068488    3.87    0.0001  

  hypotens.i    0.670742    0.073482    9.13    0.0000  
  CTclass34.i    0.570787    0.069579    8.20    0.0000  
  CTclass56.i    0.491745    0.059293    8.29    0.0000  

  tsah.i    0.723821    0.053876    13.43    0.0000  

 The MI model for age and motor score is fitted using the  fit.mult.impute  
function, which automatically combines results over imputed data sets. 

  MI model:  
  fit.mult.impute(d.unfav ~ as.factor(trial) + age + as.factor(motorr) + as.factor(pupil) 

+hypoxia + hypotens + as.factor(CTclass == 3 | CTclass == 4) + as.factor (CTclass 
==5 | CTclass == 6) + tsah, lrm, xtrans = g, data = TBIall)  

  Variance Inflation Facto rs Due to Imputation: 

  Intercept    trial=B    trial=C    trial=D    trial=E    trial=F    trial=G    trial=H    trial=I  
  1.07    1.01    1.01    1.06    1.03    1.04    1.07    1.02    1.05  

  trial=J    trial=K    age    motorr=1/2    motorr=3    motorr=4    motorr=9    pupil=2    pupil=3    hypoxia  
  1.01    1.05    1.02    1.03    1.02    1.03    1.02    1.53    1.56    1.76  

  hypotens    CTclass=3/4    CTclass=5/6    tsah=TRUE  
  1.15    1.59    1.23  1.1

  Obs    Max Deriv    Model    L.R.    d.f.    P    C    Dxy    Gamma    Tau-a    R2    Brier   1   
  8530    2e-009    2688    22    0    0.805    0.61    0.611    0.305    0.361    0.179  

  Coef    S.E.    Wald Z    P  
  Intercept    −3.22374    0.116132    −27.76    0.0000  

  …  
  age    0.03321    0.001799    18.46    0.0000  

  motorr=1/2    1.46459    0.075307    19.45    0.0000  
  motorr=3    1.15620    0.086893    13.31    0.0000  
  motorr=4    0.57085    0.072146    7.91    0.0000  
  motorr=9    0.82014    0.128497    6.38    0.0000  
  pupil=2    0.57979    0.095312    6.08    0.0000  
  pupil=3    1.15770    0.085706    13.51    0.0000  
  hypoxia    0.35117    0.090620    3.88    0.0001  

  hypotens    0.63300    0.079237    7.99    0.0000  
  CTclass=3/4    0.55875    0.088365    6.32    0.0000  
  CTclass=5/6    0.47454    0.066028    7.19    0.0000  

  tsah    0.73805    0.056594    13.04    0.0000  

  1 These statistics are from the last fit with imputed data, in this case the tenth imputed data set    

 In conclusion, single and multiple imputation yielded very comparable results in 
this example: model statistics were similar (LR statistic,  c  statistic,  R  2  estimate), as 
well as regression coefficients and standard errors.  
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  *8.4.2 Adjusted Analysis for Incomplete Predictors: Pupils 

 Pupillary reactivity was recorded for 7,143 patients. This selection of patients was 
used in univariate and adjusted analyses. 

  Univariate analysis: 

    lrm(d.unfav ∼ as.factor(trial) + as.factor(pupil), data = TBIall)   
   Frequencies of Missing Values Due to Each Variable   
   d.unfav trial pupil   
   0  0 1387   
   Obs Max Deriv Model L.R. d.f. P C Dxy Gamma Tau-a R2 Brier   
   7143 le-008  1097 10 0 0.708 0.417 0.441 0.208 0.19 0.213 

  Coef    S.E.    Wald Z    P  
  Intercept    −0.73594    0.06787    −10.84    0.0000  

  …  
  pupil=2    0.96801    0.07590    12.75    0.0000  
  pupil=3    1.77194    0.06670    26.56    0.0000  

  Adjusted analysis following single imputation: 

    lrm(d. unfav ~ as.factor(trial) + age + as.factor(motorr) + as.factor(pupil) + 
hypoxia.i + hypotens.i + CTclass34.i + CTclass56.i + tsah.i, data = TBIall)   

   Obs Max Deriv Model L.R. d.f. P C     Dxy      Gamma Tau-a R2      Brier   
   7143 le-008    2403 20  0 0.814 0.628 0.629 0.314 0.381 0.175 

  Coef    S.E.    Wald Z    P  
  Intercept −3.25518   0.120631    −26.98    0.0000  
  …  
  pupil=2    0.55594    0.085164    6.53    0.0000  
  pupil=3    1.17557    0.076062    15.46    0.0000  
  …  

 For adjusted analyses, we can also use multiple imputations, e.g. from aregIm-
pute. We first rename the predictor of interest (e.g. “.o” for “original”) such that 
this predictor is not imputed:

    TBIall$pupil.o <- TBIall$pupil   
   fit.mult.impute(d.unfav ~ as.factor(trial) + age + as.factor(motorr) + as.factor(pupil.o) + 
hypoxia + hypotens + as.factor(CTclass==3|CTclass==4) + as.factor(CTclass==5|Ctclass
==6) + tsah, lrm, xtrans = g2, data = TBIall)     

 This original version of the pupil variable remains missing in 1,387 patients:

    Frequencies of Missing Values Due to Each Variable   
   d.unfav trial age motorr pupil.o hypoxia hypotens CTclass tsah   
    0  0  0  0  1387  0  0  0  0   
   Obs Max Deriv Model L.R. d.f. P C     Dxy   Gamma Tau-a R2    Brier   
   7143 9e-009        2386 20   0 0.813 0.626 0.627 0.313 0.379 0.176 

  Coef    S.E.    Wald Z    P  
  Intercept    −3.28470    0.12572    −26.13    0.0000  

  …  
  pupil.o=2    0.56648    0.08624    6.57    0.0000  
  pupil.o=3    1.17570    0.07670    15.33    0.0000  

  …  



  Again, the results obtained with single or multiple imputation procedures were 
very similar. Analyses for the other predictors with missing values were performed 
in a similar way. A series of papers presents further results for the other predictors 
with missing values. 62,272,276,284,306,446    

  8.5 Multivariable Analyses  

 After studying adjusted effects per predictor, we are further interested in the multi-
variable effects of all predictors combined. We start with a core model, consisting of 
three predictors age, motor score, and pupils. All studies could reasonably be consid-
ered for this model, since they had age and motor score completely available 
( n =8,530). A CC analysis included 7,143 patients, because of 1,387 missing values 
for pupils. These 1,387 values led to exclusion of 1,387/8,530=16% of the patients, 
while they represented 5.4% of the required values for the three predictors. 

 Next, we considered a more extended model, including the seven predictors that 
were also used as confounders before: three core predictors plus secondary insults 
plus CT characteristics. It was not considered reasonable to include study #E in this 
analysis, since secondary insults and CT classification was not recorded in the 
database for this study. We hence considered 10 studies, with a total of 7,020 
patients. These were included in SI and MI procedures. A CC analysis was possible 
with only 2,428 patients, representing a loss of 4,592 patients (65%), while only 
13% of the required values were missing (6,426 of 7×7,020=49,140). 

 The multivariable coefficients are shown in Table  8.5 , together with rounded prog-
nostic scores. Scores were based on multiplying coefficients by 10, and rounding to 
whole numbers (“ round(10*fit$coef) ”). We note that the SI and MI coefficients 
and prognostic scores were largely similar. Scores never differed by more than 2 points. 
The CC analysis gave quite different estimates compared to SI or MI, demonstrating the 
substantial limitations of CC analyses. Prognostic scores with MI were lower for motor 
scores, larger for pupils. lower for hypoxia, and similar for CT characteristics.     

  8.6 Concluding Remarks  

 This case study illustrates how we may deal with missing values in assessing predic-
tor effects (univariate and adjusted effects), and in multivariable modelling to derive 
prediction models. The difference in numbers of patients was dramatic between com-
plete case and single or multiple imputed data. Since a reasonable imputation model 
could be constructed, we should have more confidence in the results after imputation 
(either SI or MI) than the CC results. The presented R code is available at the book’s 
web site, and may be useful in implementing MI in other case studies.  
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  Questions   

    8.1    Missingness mechanisms 
 We state that most predictors were missing complete at random (MCAR), con-
ditional on study (Sect.  8.2.3 e ).  
   (a)    Does Table  8.2  support an MCAR mechanism?  
   (b)    What do we learn from Fig.  8.4  with respect to MAR on  x , or MAR on  y  

mechanisms?  
   (c)    Can we exclude a MNAR mechanism from the presented tables and 

figures?  
   (d)     The imputation models did not include “study” as a variable. Why was this 

desirable, but not possible?      

    8.2    Imputation results (Sect.  8.4.1 )  
   (a)    For the MI model, the  aregImpute  imputation procedure lists “ Variance 

Inflation Factors Due to Imputation .” What do these factors refer 
to? When are they larger than 1? Which predictor has the largest VIF?  

   (b)    Compare the predictor effects of age between the CC, SI, and MI models. 
When is the standard error estimated as the smallest?      

    8.3    Numbers in adjusted vs.multivariable analyses (Sect. 8.4.2 and  8.5 ) 
 The adjusted analysis for the predictor pupillary reactivity (“pupil”) was 
performed with 7,143 patients (Sect.  8.4.2 ), while the multivariable analysis 
included 7,020 patients (Table  8.5 ).  
   (a)    How did this difference arise?  
   (b)    Do you agree with this approach? Or explain alternatives.             



   Chapter 9   
 Coding of Categorical and Continuous 
Predictors       

   Background   When developing a prediction model, an important consideration 
is how we code the predictors. Raw data from a study are often not in a form 
appropriate for entering in regression models and must first be manipulated. This 
is known as “coding.” As in any data analysis, we will usually start with obtaining 
an impression of the data under study, such as occurrence of missing values and the 
distribution of predictors. Descriptive analyses, such as frequency tables are useful 
to this aim. We will consider various issues in coding of unordered and ordered 
categorical predictors. For continuous predictors, we specifically discuss how we 
can limit the influence of outliers and interpret regression coefficients.    

  9.1 Categorical Predictors  

 Categorical predictors can be unordered, for example a diagnostic category, or site of 
treatment. Categorical predictors are usually coded as “factor” variables, with coding 
as dummy variables. For example, smoking was coded originally as 1 for never, 2 for 
past, and 3 for current smoker in GUSTO-I. For analysis as a factor, we might create 
two dummy variables for category 2 vs. 1 and 3 vs. 1. Logistic regression coefficients 
for these dummies refer to the comparison of past vs. never smokers and current vs. 
never smokers. Dummy coding may often be convenient in prediction research. 
Specific attention should be paid to the choice of reference category (here: never 
smokers). By default, the lowest or highest numbered category is used as refer-
ence in many statistical packages. If this category is relatively small, comparisons 
with this reference category may show statistically non-significant and unstable 
results, while the factor has an important predictive effect overall. The predictions 
from a model are not affected by the choice of reference category. 

 It may be convenient to combine categories if these are relatively small. For 
example, a cancer study might list a very large number of stages (e.g. T1a, T1b, 
T1c, T2a, T2x, etc.) that might be converted into a smaller number of groups (e.g. 
T1, T2, T3, and T4). In other situations, some categories might be combined in an 
“other” category. If small categories are kept, some sort of penalized estimation or 
shrinkage is required to obtain reliable estimates. 391,468  When a combination of cate-
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160 9 Coding of Categorical and Continuous Predictors

gories is based on the similarity of the relationship with the outcome, overfitting 
may occur and the apparent model performance will be optimistic. In practice, a 
balance has to be sought between combining categories blinded to the outcome 
(e.g. based on frequency distributions) and adequately capturing patterns of out-
come by category. Using the coding from previous studies may often be helpful in 
smaller sized data sets. 

 Ordered predictors are also common in prediction research. Often, a small 
number of categories is made, for example by dichotomization. Table  9.1  illustrates 
that ignoring ordering in predictors may cause a substantial loss of predictive 
information. Simply assuming linearity of predictor effects may sometimes work 
well. Some advanced estimation techniques might also be considered that force 
monotonicity of the effect but are more flexible than a linear coding. 468        

  *9.1.1 Examples of Categorical Coding 

 In patients with an acute MI, location of infarction is an important predictor of 
30-day mortality. In GUSTO-I, the categorization was as anterior vs. inferior vs. other. 
The other location category contained only 3% of the patients. 255  Such a refined 
coding is only possible in large studies; in smaller-sized studies we might combine 
the inferior and other categories. 

 The refined coding with three categories led to a slightly better predictive per-
formance than the combined coding with two categories. The c2 statistics were cal-
culated as the differences between a model with and without location of infarction 
on the −2 log likelihood scale and were 361 vs. 343 (Table  9.1 ), at the expense of 
1 df extra. 

 An example of an ordered predictor is Killip class, a measure for left ventricular 
function ranging from I to IV. It can be recoded as shock (Killip 3/4 vs. 1/2). 302  

 Table 9.1    Impact of various codings of categorical predictors in GUSTO-I ( n =40,830)  

 Predictor  Coding  df  Model χ2 a  

 Unordered 
 Location of infarct  Anterior vs. other  1  343 

 Ant/Inf/Other  2  361 
 Ordered 

 Killip class  Shock (3/4 vs. 1/2)  1  861 
 Linear (1–4)  1  1388 
 Linear + square  2  1388 
 Factor  3  1389 

 Smoking  Never/past/current  2  483 
 Linear (1–3)  1  482 

  a  Model χ2 was calculated as the difference between a model with and without the predictor on the 
−2 log likelihood scale 



Alternatively, we can analyse ordered predictors as continuous variables, possibly 
with a check for non-linearity by adding a square term. Ignoring the ordinal nature of 
a variable such as Killip class causes a major loss in predictive ability. A simple linear 
coding captures much more of the predictive information (c2 861 vs. 1,388). For a 
less clearly ordered variable such as smoking (never/past/current), linear coding had 
the same performance as a factor variable, using 1 instead of 2 df (Table  9.1 ).   

  9.2 Continuous Predictors  

 Continuous variables formally should be measured on a interval or ratio scale, and 
should be able to take any value in a range. We however noted in Table  9.1  that 
treating ordered variables as linear was sometimes reasonable for prediction, at 
least for some variables considered in GUSTO-I. 

  9.2.1 Examples of Continuous Predictors 

 Age is a good example of a continuous predictor variable. We already found that 
the age effect could often quite well be captured with a linear term (Chap. 6). 
Remarkably, age has often been considered as a categorical variable in prognostic 
studies, for example in traumatic brain injury (TBI). 204  In GUSTO-I, a dichotomy 
at 65 years leads to a c2 of 1,463 instead of 2,099 (Table  9.2 ). Considering three 
categories limits the loss in information somewhat (c2 1,775, 85% of the informa-
tion of age as a linear variable).        

 The predictor “number of leads with ST elevation” ranges from 0 to 11 in the 
GUSTO-I data (Chap. 22). The number of categories is large for consideration as a 

 Table 9.2    Impact of various codings of continuous predictors in GUSTO-I ( n =40,830)   

 Predictor  Coding  df  Model c2 

 Age  <=65 vs. >65 years  1  1,463 
 <=60, 61–70, >=71  2  1,775 
 Linear  1  2,099 
 Linear + square  2  2,112 
 RCS, 5 knots a   4  2,122 

 ST elevation  >4 vs. <=4  1   259 
 Linear (0–11)  1   281 
 Linear + square  2   306 
 Linear + square + cubic  3   339 
 RCS, 5 knots a   4   350 
 Factor  11   367 

  a  RCS denotes restricted cubic spline function; 5 knots lead to 4 df for the transformation 
of the predictor (see Sect. 9.3) 177  

9.2 Continuous Predictors 161



162 9 Coding of Categorical and Continuous Predictors

factor variable, but this can technically still be done. Simple linear coding leads to 
a better performance than a dichotomy at 4 or more leads (c2 281 vs. 259). Adding 
a square term led to further improvement in fit, but a restricted cubic spline function 
with 4 df made an even better approximation (c2 350). 174,177   

  9.2.2 Categorization of Continuous Predictors 

 Dichotomization of a continuous predictor has many disadvantages. 355  The first 
unnatural aspect is the step in predictions, as illustrated for age <=65 vs. >65 years 
in Fig.  9.1 . Would risks be really very different for patients who had their 65th 
birthday yesterday compared to patients who had their 65th birthday today? 
Similarly, the assumption of a constant risk below or above a threshold is unnatural. 
A patient of age 40 has lower risks of mortality than a patient of age 64; and a 
patient of age 90 is different from a patient of age 66. There are only two points 
where the dichotomized version of age is adequate, that is around the intersections 
of predicted risks with the predicted risks according to the continuous variable 
(either linear or transformed). However, if there had been a different distribution of 
ages, e.g. no patients older than 70 years old, the step function in Fig.  9.1  would 
have been much different. The continuous model, which conditions on all values of 
age, would remain relatively unchanged.  

  Fig. 9.1    Relationship between age and 30-day mortality in GUSTO-I ( n =40,830). Age is modelled 
as a linear variable and dichotomized at age 65 (see Table  9.2 ). The distribution of ages is shown 
at the bottom of the graph.       
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 A similar problem arises with treating ST elevations as a dichotomous variable. 
A reasonable fit is achieved with a linear + square coding (Table  9.2 , Fig.  9.2 ). The 
risk associated with a low number of elevated leads (0–4) could well be captured 
with a category “<=4 leads.” But the risk rises steeply with increasing numbers of 
elevated leads, and this risk is poorly estimated with a constant risk for all patients 
with >4 leads elevated (Table  9.3 ). The relationship of ST elevations with mortality 
is complex, as further illustrated in Fig.  9.2 , but dichotomization does poorest of all 
transformations considered.       

 In epidemiological research, continuous variables are often divided in four or 
five categories. This may be attractive as an exploratory step for predictor–outcome 
relationships, but should not be used in a final prediction model. 298  Jumps in predic-
tions are unnatural, and smooth relationships are biologically far more plausible.   

  9.3 Non-Linear Functions for Continuous Predictors  

 When we consider a continuous predictor as a linear term in a prediction model, we 
assume that the effect is the same at each part of range of the predictor. For example, 
in Fig.  9.1  we assume that the effect of being 10 years older is the same at age 30 

  Fig. 9.2    Relationship between number of leads with ST elevation and 30-day mortality in 
GUSTO-I ( n =40,830). ST elevation is modelled as a linear variable (“1”), and with extension with 
a square term (“2”), and square + cubic terms (“3”). A restricted cubic spline with 4 df (“4”) is 
shown as well as a dichotomized version of ST elevation (>4 leads, see Table  9.2 ). The observed 
risk for each number of leads with ST elevation is shown with  circles  (Table  9.3 )       
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(40 vs. 30 years) and 70 years (80 vs. 70 years) for patients with an acute MI. If a 
non-linear function is expected, various options can readily be considered in regres-
sion models. Below we discuss non-linear modelling of continuous predictors with 
polynomials, fractional polynomials, and spline functions. 

  9.3.1 Polynomials 

 A general approach to continuous predictors in regression analysis is to add polynomial 
terms as extensions to a model with a linear term. Commonly, square and cubic terms 
are considered. 148  For example, we can examine models with  X ,  X + X  2  and  X  +  X  2  +  X  3 , 
where  X  is a continuous predictor. This results in nested models, and we can statisti-
cally test each extension. From a pragmatic point of view, there is no objection to 
considering a model such as  X  +  X  3 , but it is more common to consider sequential 
extensions with terms of increasingly higher order. Other common transformations to 
consider are the inverse ( X  −1 ) and square root ( X  0.5 ), and logarithmic (log( X ), exp( X )). 
We may use these terms as replacement of the linear term  X , or as extension to a 
model with  X  as a linear term included. Polynomials are limited in the shapes they 
can take. We therefore consider wider families of models.  

  9.3.2 Fractional Polynomials 

 Fractional polynomials (FPs) have been advocated recently to model continuous pre-
dictors. FPs are an extension of earlier proposals on transformation of predictors. 52,354  
FPs allow for smooth and flexible transformation of continuous predictors by 
combining polynomials. FPs extend ordinary polynomials by including non-positive 
and fractional powers from the set −2, −1, −0.5, 0, 0.5, 1, 2, 3. This defines eight 
transformations, including inverse ( X  −1 ), log ( X  0 ), square root ( X  0.5 ), linear ( X  1 ), 

 Table 9.3    Number of leads with ST elevation and 30-day mortality: univariate 
analysis in GUSTO-I ( n =40,830)  

 Predictor 
 Number of leads 
elevated   N   30-day mortality (%) 

 ST elevation  0  607  43  (7.1) 
 1  1,702  118  (6.9) 
 2  4,594  233  (5.1) 
 3  12,744  601  (4.7) 
 4  5,774  374  (6.5) 
 5  5,162  383  (7.4) 
 6  4,573  424  (9.3) 
 7  3,848  454  (12) 
 8  1,456  169  (12) 
 9  333  41  (12) 
 10  33  11  (33) 
 11  4  0  (0) 



squared ( X  2 ), and cubic transformations ( X  3 ). In addition to these 8 “FP1” functions, 28 
“FP2” functions can be considered of the form  X   p 1  +  X   p 2 ; when p1 = p2 one defines 
another 8 FP2 functions as  X   p   +  X   p   log  X , for a total of 36 FP2 functions. 367  The df 
used by these functions are 2 and 4, respectively. This includes 1 or 2 degrees of free-
dom for searching the power transformation. The width of confidence intervals may 
however be too small if we ignore such model uncertainty. 

 For medical problems, two terms (FP2 transformations) have been suggested as 
sufficient to describe non-linear relationships, e.g. age 2  and age 0.5  Such parametric 
combinations can be written down easily. Procedures have been proposed to select 
FP transformations in multivariable models. 15,354  

 A disadvantage of FPs is distortion caused by values at the tails of the predictor 
distribution. The influence of extreme values can be prevented by a type of truncation, 
but the global shape of fractional polynomials remains influenced by the values at the 
tails. Furthermore, fractional polynomial functions are not invariant to a change of 
origin of the covariate, and negative values cannot be handled. A pragmatic approach 
to these issues has been proposed to improve the robustness of FP models. 356   

  9.3.3 Splines 

 Very flexible transformations are provided by spline functions. Various types of 
spline functions can be considered, such as natural splines. These can well be fitted 
with generalized additive models (GAM). 180,   1    The extreme flexibility leads some-
times to wiggly patterns of predictions, which are unlikely to be reproduced in new 
data. Smoothness can be enforced by parameters in the model fitting process, e.g. 
penalty terms in the likelihood function (see Chap. 13). 181  Without such penalty, 
splines may easily overfit patterns in the data. 

 Restricted cubic spline (RCS) functions have been proposed for a more stable 
approach for prediction models. 174,177  RCSs are cubic splines (containing  X  3  terms) 
that are restricted to be linear in the tails. These splines are still very flexible, and 
can take more forms than a parametric transformation with the same df in the 
model. For example, adding  X  2  restricts the relationship to be parabolic, while an 
RCS with 2 df (3 knots) incorporates a wider family of functions. See Harrell for 
many illustrations of the form that an RCS can take. 174  

 A spline function requires the specification of knots. The spline will bend around 
these knots. Fortunately, the exact position of the knots is usually not critical to the 
shape that the spline will take. It is common to specify the location from the distri-
bution of the predictor variable. 174  More difficult is the choice of the number of 
knots. Empirical illustrations have shown that 5 knots is sufficient to capture many 
non-linear patterns. In smaller data sets, it may often be reasonable to use linear 
terms or splines with 3 knots (2 df), especially if no strong prior information sug-
gests that a non-linear function is necessary. 174  If a large data set is available, 4 or 
5 knots are reasonable, especially if we anticipate a non-linear function. 

  1  GAMs are also often used for nonparametric regression functions, such as lowess. 
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 RCS of increasing complexity are not nested functions, so testing of higher-
order transformations to simplify a complex non-linear model in a stepwise manner 
is not formally correct. It is, however, possible to study the increase in model 
likelihood ratio (LR) while taking the extra degrees of freedom into account, e.g. 
as c2 – 2 × df (Akaike’s Information Criterion, AIC).         

  *9.3.4 Example: Functional Forms with RCS or FP 

 We examine the transformations for continuous predictors in the GUSTO-I study; 
both in a large subsample ( n =785) and the full data set ( n =40,830, Fig.  9.3 ). In 
the subsample, we first fit a second-order fractional polynomial (FP2); the chosen 
model is AGE−2+AGE3. We compare the shape to an RCS function. An FP2 func-
tion uses 4 df, but the shape can not have more than 2 bendings, which corresponds 
to an RCS with 4 knots (3 df). For age, weight, and height, FP2 functions were 
explored in univariate and multivariable logistic regression analysis; no statisti-
cally significant non-linearity was identified in the subsample. In the full GUSTO-I 
data set, AGE2 was chosen as the optimal transformation. For weight and height 
non-linearity was not statistically significant.   

  9.3.5 Extrapolation and Robustness 

 Extrapolation beyond the range of observed data is always dangerous, but this 
is possible with RCS functions. Essentially linear extrapolation will take place. 
In Fig.  9.2 , the RCS with 4 df (5 knots) draws a straight line for STE 9–11, while 
the cubic transformation with 3 df curves downwards at STE 10. 

  Fig. 9.3    FP, RCS (4 knots, 3 df), and GAM (3 df) functions for age in a subsample of GUSTO-I 
( n =795) and in the full GUSTO-I study ( n =40,830)       
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 An interesting intermediate is to aim for a parametric transformation that 
captures most of the non-linearity. Adequacy of the fit can be tested by adding 
RCS functions based on the transformed variable. 177  For example, in a prostate 
cancer prediction problem, PSA values were linearly related to outcome after a 
log transformation, 424  while the original model in this prediction problem was 
constructed with RCS functions with 5 knots. 227  The log transformation often 
performs well for laboratory measurements, such as hormone concentrations. 
Restricting a continuous predictor to a parametric transformation may seem to 
harm the apparent performance somewhat. But it will limit optimism in performance, 
and increase a model’s robustness. Care should always be given to predictions at 
the tails of a distribution. 353  

 Empirical comparisons between FPs and RCSs have not yet been made. The 
main differences will occur at the tails of the distribution, exactly where the RCS 
was restricted to have better behaviour for prediction (see Fig.  9.3 ). If we have a 
predictor where a true curvature does occur at the tails, this will be captured by the 
FP and less by the RCS. If such curvatures are spurious, RCS will do better. In 
practice, both approaches may perform similarly in fitting a non-linear relationship 
given the same number of df. A number of options for dealing with continuous predic-
tors in prediction models is summarized in Table  9.4 .   

  9.4 Outliers and Truncation  

 Outliers are an important concern in statistical analyses. 315  Outliers are values that 
are outside the typical range for a variable. In box plots, a box is usually shown with 
the median and the interquartile range (IQR, 25–75 percentile). Outliers are defined 
by Tukey as values at least 3 times the IQR above the third quartile or at least 3 

 Table 9.4    Options for dealing with continuous predictors in prediction models  

 Procedure  Characteristics  Recommendation 

 Dichotomization  Simple, easy interpretation  Bad idea 
 More categories  Categories capture prognostic information, 

better but are not smooth, sensitive to 
choice of cut-points and hence instable 

 Primarily for illustration 

 Linear  Simple  Often reasonable as a start 
 Polynomials  Square, cubic terms added; 

tails may behave unstable 
 Reasonable as checks for 

non-linearity 
 Transformations  Log, square root, inverse, 

exponent, etc. 
 May provide robust summa-

ries of non-linearity 
 Fractional 

polynomials 
 Flexible combinations of polynomials; tails 

may behave unstable 
 Flexible descriptions 

of non-linearity 
 Restricted cubic 

splines 
 Flexible functions with robust behaviour at 

the tails of predictor distributions 
 Flexible descriptions 

of non-linearity 
 Splines in GAM  Highly flexible functions with smoothness 

set by penalty terms 
 Highly flexible descriptions 

of non-linearity 
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times the IQR below the first quartile. 193  We consider outliers as any values that 
potentially have a large influence in a regression model (Table  9.5  ).      

 The first question to address for an outlier is whether the value is realistic. For 
example, does the value reflect a data entry error? The records of a patient could be 
checked for that, e.g. the hospital chart or the case report form (CRF) when the 
patient participated in a trial. 

 Another check is on biological plausibility. This judgment requires expert opinion, 
and depends on the setting. For example, a systolic blood pressure of 250 mmHg is 
biologically plausible in the acute care situation for traumatic brain injury patients, 
but may not be plausible in an ambulatory care situation. Implausible values may 
best be considered as errors and hence set to missing. 315  

 For biologically possible values, various statistical approaches are subsequently 
possible. To reduce the influence on the regression coefficients (“leverage”), we 
may consider to transform the variable by “truncation.” Very high and very low 
values are shifted to truncation points:

  If X > X
max

 then X = X
max

;
If X < X

min
 then X = X

min
;

else X = X   

 Here,  x  
max

  and  x  
min

  are the upper and lower truncation points. These may be defined 
from examining distributions, e.g. with box plots and histograms, and the predictor–
outcome relationship. 

  *9.4.1 Example: Glucose Values and Outcome of TBI 

 We consider glucose values measured at admission to predict 6-month outcome of 
patients with TBI. Outcome is measured with the Glasgow outcome scale (GOS), 
which has 5 levels (dead to good recovery, Chap. 8). 

 First, we consider an upper threshold for biologically possible glucose values at 
100 mmol l −1 . Among 4,831 values, 3 were above this threshold and set to missing. 
For further illustration, we consider 2,096 patients from the Tirilazad trials, who 
had glucose values and outcome available. 

 Second, we truncate glucose values to the interval 3–20 mmol l −1  to limit the 
influence of extreme values (Fig.  9.4 ). The glucose – outcome relationship becomes 
slightly more linear after truncation (Fig.  9.5  ).     

 Table 9.5    Dealing with outliers and extreme values of continuous predictors in prognostic research   

 Procedure  Method  Recommendation 

 Outlier detection  Box plot  Verify correctness (data entry error?) and 
biological plausibility (missing if 
implausible value) 

 Truncation  Shift low and high values 
to the middle 

 Shift approximately 0.5–1% of values to 
lower and upper ends of range 
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  Fig. 9.4    Distribution of glucose values for 2,096 TBI patients before and after truncation       
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  Fig. 9.5    Relationship of glucose to outcome at 6 months after TBI before and after truncation to 
the interval [3–20 mmol l] −1 . The lowest line ( solid ) indicates the probability of mortality (GOS 1), 
the second the combination of mortality and vegetative (GOS 1 or 2), the third unfavourable 
outcome (GOS 1, 2, or 3), and the fourth line the probability of less than good outcome (GOS < 5). 
Relationships were analysed with restricted cubic spline functions in logistic regression models. 
The glucose–outcome relationship becomes slightly more linear after truncation. The distribution 
of glucose values is indicated at the bottom of each graph       
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  9.5 Interpretation of Effects of Continuous Predictors  

 Effects of predictors can be interpreted through various presentations. A general 
way is to examine the predictions by predictor values, for example as the predicted 
probabilities from a logistic model. A graph is often very useful, especially for non-
linear effects of predictors. 

 We can interpret the coefficients from a regression model by converting them to 
odds ratios (logistic regression) or hazard ratios (survival models, e.g. Cox). For 
binary variables such as gender, scaling is not a problem: the OR will refer to the 
comparison of males females if vs. males are coded one unit higher than females 
(e.g. 0/1). The OR will refer to females vs. males if the coding is reversed. 

 For linear, continuous variables, the scaling is very important for interpretability 
and comparability of effects. For example, the predictive effect is usually small for 
age coded in years. In GUSTO-I, the univariate logistic regression coefficient is 
0.084, or an OR of 1.088 per year older, in the analysis of 30-day mortality. A sim-
ple improvement is to divide the age variable by 10 before estimating the model, 
such that the age effect is interpreted by decade. We can also multiply the coeffi-
cient that was estimated by year. In GUSTO-I, the univariate logistic regression 
coefficient becomes 10 × 0.084, and the OR 1.088 ̂  10 = 2.32. Also for other varia-
bles with a wide range in units, e.g. laboratory measurements, division by 10, 100, 
or 1000 may help. Comparability of effects of different continuous variables is still 
difficult then. 

 Another approach is to standardize linear, continuous predictors by dividing 
them by their standard deviation.  2    A variant on this approach was proposed by 
Harrell, i.e. to compare effects of predictors at the 75 vs. 25 percentiles. 174  For 
linear, continuous variables, this can be achieved by dividing the values by the 
interquartile range. Note that such rescaling does not affect  p -values or predictions 
in any way. 

 For non-linear codings of continuous variables we can compare the predicted 
outcomes at the 75 vs. 25 percentile, but interpretability is difficult for parabolic 
relationships (e.g. a quadratic form); an OR near 1 may be found when comparing 
the 75 vs. 25 percentile predictions. A somewhat related, simple alternative is to 
code a non-linear variable with two dummy variables: one indicating values below 
the 25 percentile and one indicating values above the 75 percentile. The middle 
category is defined by the 25–75 percentile and serves as a reference category for 
both dummy variables. Such categorized coding implies a loss of information. 
Moreover, the effects in the dummy coding depend on the distribution of the predic-
tor, similar to the dichotomized coding of age in Fig  9.1 . 355  Dummy coding is 
therefore more useful for illustration of a predictor effect than for making 
predictions. 

  2  Note that standardization does not work for categorical variables or non-linear transformations 
such as polynomials 



  *9.5.1 Example: Predictor Effects in TBI 

 Various continuous predictors were measured at admission to predict 6-month 
outcome of patients with TBI. The relationships of age and glucose to outcome 
were reasonably linear. Effects were presented for the interquartile range (IQR, 
Table  9.6 ).      

 The relationship of systolic blood pressure with outcome was non-linear: low 
blood pressure was especially associated with a poor GOS, and GOS was also 
poorer at higher blood pressure values. This relation was modelled with an RCS 
with 3 knots (2 df, Fig.  9.6 ).  

 The 75 percentile is a pressure of 141; the 25 percentile 121 mmHg. The OR for 
the comparison of predictions at these points is 1.39 [1.25–1.54]. For illustration, 
we categorize blood pressure at 120 and 150 mmHg (chosen because of clinical 

 Table 9.6    Examples of coding of continuous predictors in predicting outcome of TBI   

 Predictor  Procedure  Interpretation 

 Age (linear)  Compare predictions at age 40–30 years  Age by decade 
 Coding: Divide by 10  Age by decade 
 Compare predictions at age 45–21 years  Age by IQR 
 Coding: Divide by 24 (24 is IQR)  Age by IQR 

 Systolic blood pressure 
(quadratic relationship) 

 Illustrate non-linear effect by making 
three categories, with dummy variables 
for <120 mmHg, > 150 mmHg 

 Effects for relatively 
low and high 
blood pressure 

  Fig. 9.6    Relationship of systolic blood pressure to outcome at 6-months after TBI before and 
after categorization as <120, 120–150, and >150 mmHg. The lowest line ( solid ) indicates the 
probability of mortality (GOS 1), the second the combination of mortality and vegetative (GOS 1 
or 2), the third unfavourable outcome (GOS 1, 2, or 3), and the fourth line the probability of less 
than good outcome (GOS<5).       
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relevance). This leads to ORs of 0.50 and 0.76 for blood pressure < 120 and > 150 
vs. 120–150 mmHg, respectively. So, the 6-month outcome is twice as likely to be 
poor with a relatively low blood pressure, and 1.3 times with a relatively high pres-
sure. This categorized coding has an  R  2  of only 2.4%. compared to 4.8% for the 
continuous coding, arguing against use of dummy coding for predictive purposes. The 
categorized coding is only intended to illustrate effects rather than to replace the 
non-linear continuous variable in a predictive model.   

  9.6 Concluding Remarks  

 We have seen that some decisions on coding can be made while we are still blinded 
to the relationship of the predictor to the outcome in our sample. Such blinding 
limits overfitting. Another general strategy is to use codings of predictors as used 
in other studies. 

 Special attention is required for continuous predictors. Most natural processes 
have a more or less smooth association with an outcome. Simple extensions of 
linear terms, such as the square and square root, can be useful, as well as more 
flexible functions such as resticted cubic splines and fractional polynomials. 

 Here, we focused on the effects of single predictors, which are usually first con-
sidered in a univariate analysis. The effects may also be studied with adjustment for 
other predictors (“confounders”). The aim may also be to derive a prediction 
model, with less interest in the specific forms of the relationships of each predictor 
with the outcome. A detailed modelling strategy has been proposed for the simul-
taneous selection of predictors for a prediction model and their FP transformations 
(“multivariable fractional polynomial (MFP) modeling” 367 ). Harrell has suggested 
to determine the number of degrees of freedom with RCSs in univariate analyses, 
and use the chosen level of complexity in further multivariable analyses, irrespective 
of statistical significance of higher-order terms. 174  But another reasonable strategy 
might be to fit a model with all continuous predictors in flexible forms, e.g. with 5 
df, and then decide on reducing df per predictor based on their contribution to the 
model, e.g. according to partial  R  2 . Stronger and weaker predictors are then given 
more or less flexibility, respectively, without considering the degree of non-linearity. 
Further discussion of non-linearity in multivariable analysis is provided Chap. 12. 

  9.6.1 Software 

 RCS and FP functions can be used with any statistical program, but may require 
some programming. RCS functions are very easy to use with modern software such 
as R (Courier function) and Stata. Algorithms for fractional polynomials are avail-
able for R, Stata, and SAS.   



  Questions  

    9.1    Dichotomization: a bad idea 355 
   (a)     What are the problems of dichotomization when studying the effect of one 

specific predictor, such as age?  
   (b)     What are the problems of dichotomization when studying the effect of 

gender (male vs. female) and potential confounders, such as age, are 
dichotomized in an adjusted analysis?  

   (c)     What are the problems of dichotomization of predictors, such as age, when 
we aim to make individualized predictions?      

   9.2    Categorization of continuous predictors 268  
 In an analysis of BNP, the authors of a paper state: “To produce odds ratios, 
cut points were used for age (65 years) and BNP (62 pg/mL) to reduce them 
to nominal variables.” 268 
   (a)    Why should continuous predictors not be categorized?  
   (b)    For what purpose they could?  
    (c)     What suggestion would you have for the authors if they want to calculate 

interpretable odds ratios for continuous predictors?      

   9.3    Truncation of extreme values
   (a)    Why are extreme values a problem in regression analysis?  
   (b)     How could you define truncation in one simple statement in R software for 

a continuous predictor “ x ”?      

   9.4    Flexible continuous functions 
  What are advantages and disadvantages of flexible modelling of continuous 

predictors, e.g. using spline functions?           
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   Chapter 10   
 Restrictions on Candidate Predictors        

  Background   A major problem in predictive modelling is that we often have many 
candidate predictors available for the analysis, while the data set available for anal-
ysis is relatively small. A small sample size leads to problems as discussed in Chap. 5, 
such as limited power to test main effects of potential predictors, and too extreme 
predictions when predictions are based on the standard regression coefficients 
(overfitting). We discuss some procedures to increase the robustness and validity 
of a prediction model, including restriction of the number of candidate predictors, 
considering distributions of predictors, combining similar variables, and averaging 
the effects of similar variables. We provide a detailed description of a case study of 
modelling similar effects of aspects of family history for robust prediction of the 
presence of a genetic mutation.    

  10.1  Selection Before Studying the Predictor–Outcome 
Relationship  

 Ideally, candidate predictors are selected without studying the predictor–outcome 
relationship in the data under study. Two approaches are to use subject knowledge, 
and to study the distribution of predictors in the data under study. 

  10.1.1 Selection Based on Subject Knowledge 

 The list of candidate predictors can often be reduced based on a review of the literature 
on the specific topic, combined with consulting experts in the field. The develop-
ment of a prognostic model in situations without such subject knowledge on at least 
some predictors is nearly impossible, unless huge sample sizes are available. In 
many cases, a list in the order of 5–20 candidate predictors is reasonable to develop 
an adequate predictive model. Even in genetic research, it has been suggested that at 
most 20 genes should be included in a prediction model (although many more are 
usually considered, necessitating large sample sizes). 258  On the other hand, simula-
tions show that many genes are needed if effects per gene are small. 216   
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  *10.1.2 Example: Too Many Candidate Predictors 

 In predicting the underlying diagnosis in children presenting with fever without 
 obvious cause, models were developed that considered 57 candidate predictors. 41  The 
sample size was relatively small, with 231 patients and 58 having the diagnosis of 
interest (severe bacterial infection). The model was developed with stepwise methods 
after a univariate screening for statistically significant predictors. The model seemed 
to perform reasonably but external validation showed poor results. 39  On further 
analysis, bootstrapping of the full modelling process indicated a substantial decrease 
in model performance. A large part of the poor performance in new patients could be 
attributed to the modelling strategy with too many candidate predictors. 401   

  10.1.3 Meta-Analysis for Candidate Predictors 

 We may consider to perform a systematic literature review or even a formal meta-
analysis to identify candidate predictors. Some objections can be made against 
meta-analysis of univariate effects of predictors. Correlations between variables 
make that their effects are different in multivariable analyses. In the case of negative 
correlations, the univariate effects are suppressed. This results in no relation 
between the predictor and outcome in univariate analysis, while multivariable analysis 
does show a relationship. This situation may be relatively rare, but if this is suspected, 
the univariate effect of the predictor from previous studies should not be used as 
guidance to whether the candidate predictor is considered. In medical applications, 
most correlations between variables are however positive, making univariate effects 
larger than multivariable effects. 

 Another question is whether we should only count the number of times that a 
predictor was identified as “important,” or perform a formal meta-analysis. Counting 
may be sufficient for identification of the key predictors in a prediction problem. 
Meta-analysis is desired if we want to use the univariate effects of previous studies 
as a kind of prior estimate in our model (see Chap. 15). Publication bias is an 
important objection to meta-analysis of prognostic factors. Many studies will not 
report the effect of a predictor if not statistically significant; this biases the reported 
effects to more extreme values. One approach is to consider only studies that report 
the results for all predictors considered, but this may severely limit the numbers of 
studies in the meta-analysis.  

  *10.1.4 Example: Predictors in Testicular Cancer 

 We reviewed the prognostic value of a core set of prognostic factors for the histology 
of residual masses in testicular cancer. 420  The predictors that emerged as most rele-
vant in the review were subsequently used in the prediction model. Some further 



fine-tuning was done. 425  This fine-tuning included searching for good transformations 
of continuous variables, and choosing between three variables related to mass size: 
pre-chemotherapy mass size, post-chemotherapy mass size, and reduction in mass 
size (calculated as [presize−postsize]/presize).  

  10.1.5 Selection Based on Distributions 

 After restricting of the list of potential predictors, we should consider the distributions 
of predictors for missing values and width of the distribution. We may choose to 
eliminate variables that have a large number of missing values, especially if

  •   The predictor is relatively important in the problem, such that imputation of 
missing values will be suspect to many readers  

 •  The predictor will be missing in applications of the model    

 We may choose to eliminate variables that have a narrow distribution especially if 
the variable is not expected to be important, this may be reasonable. For this reason, 
6 of 49 potential predictors were eliminated in a study that aimed to predict the 
outcome of stroke. 480  

 The situation is more difficult when a predictor has a very skewed distribution, 
but is known to be highly predictive. For example, in GUSTO-I, shock occurred in 
2% of the patients but had a large effect (univariate odds ratio 10.9). Several options 
are available to deal with such a variable, such as

   1.    Include the variable as a predictor, since the effect is substantial.  
   2.    Omit the variable from the model, since the effect cannot be estimated reliably; 

the model might be presented with a warning that specific conditions, such as 
shock are not included in the model.  

   3.    Omit patients with shock, making the model applicable only to patients without 
shock.   

 As a default strategy we might prefer option 1, i.e. to include important variables, 
even though they are infrequent. The second option in fact holds for all variables that 
are not included in a model: predictions only consider information on variables 
that were included. The third option may only be defendable when we postulate that 
patients with shock are different with respect to  prognostic relationships of other 
variables, i.e. we assume interaction between shock and other predictors.      

  10.2 Combining Similar Variables  

 Sometimes variables can be grouped based on subject knowledge, or based on sta-
tistical clustering techniques. 174  For example, atherosclerosis is a systemic disease 
which is reflected in many symptoms. These symptoms can hence be considered as 
one group reflecting the underlying concept of “presence of atherosclerotic disease” 
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(Table  10.1 ). 243  We could code “presence of atherosclerotic disease” as 0 or 1, depend-
ing on the presence of any symptom. We could also make a simple unweighted 
sum, by counting the number of symptoms. For 6 symptoms, the sum ranges from 
0 to 6. In coding, we could truncate such an unweighted sum as 0, 1, 2, 3+, depend-
ing on the distribution, and start modelling with this sum as a linear, continuous 
predictor.     

  *10.2.1 Example: Coding of Comorbidity 

 Concomitant diseases are important in many prediction problems. These are com-
monly referred to as “comorbidity.” Various systems have been proposed to meas-
ure comorbidity. Weighted sumscores can be used such as proposed by Charlson 68  
or ACE-27. 337  Note that these scores were derived from specific populations. 
Subject matter knowledge hence needs to support that it is reasonable to apply such 
as a pre-defined weighted score in another setting. 

 Alternative codings may be considered, depending on sample size. In very large 
data sets, e.g. using >100,000 records, a detailed coding can be imagined, which 
considers study-specific regression coefficients for each comorbidity. Also, a sim-
ple score can be attractive, for example the sum of a number of comorbidities. 120  
Such an unweighted sum may be rather robust and generalize well to new patients. 
Such a simple sum was applied in a prediction model for surgical mortality after 
oesophagectomy (Table  10.1 ). 423   

  *10.2.2 Assessing the Equal Weights Assumption 

 Simple sums of predictors make the assumption of equal weights for each predic-
tor. This assumption can be assessed by adding the conditions one by one in a 
regression model that already contains the sumscore. The coefficient of the 

 Table  10.1    Illustrations of simple summary variables based on combinations of different predictors  

 Concept  Variables  Range 

 Atherosclerotic disease in predicting 
renal artery stenosis 243  

 Any femoral or carotid bruit, angina pectoris, 
claudication, myocardial infarction, CVA, or 
had vascular surgery 

 0–1 

 Comorbidity in predicting surgical 
mortality in oesophageal cancer 423  

 Count of chronic pulmonary disease, 
cardiovascular disease, diabetes, liver 
disease, renal disease 

 0–5 

 Family history in predicting a genetic 
 mutation 25  

 Sum of # affected first-degree family members 
 plus 0.5 * # affected second-degree family 
 members 

 0–3 



condition added in a model indicates the deviation from the common effect based 
on the other conditions. We can use an overall test for the decision whether a 
simple sum is reasonable, or that a more refined coding is required. In the exam-
ple of comorbidity, we may consider the sum of five comorbidity conditions 
(Table 10.2 ). We may assess the effect of each of the five conditions by fitting five 
logistic regression models, with a separate coefficient for the deviation from the 
common effect for each of the five conditions in turn. We note that the deviations 
from the common effect are relatively small, except for liver disease and renal 
disease. Renal disease even seemed to have a protective effect. Both effects were 
based on small numbers. The standard errors were large, and the effects were 
statistically non-significant. The overall test for deviations from the simple sum 
had a c2 statistic of 3.6, 4 df, and a  p -value of 0.46, in a model with the simple 
sum and four comorbidities added (chronic pulmonary disease, cardiovascular 
disease, dabetes, renal disease). We hence stick to our assumption of a similar 
effect for all comorbidities.      

  *10.2.3 Logical Weighting 

 Instead of equal weights we can sometimes base weights on a logical relationship. 
For example, when we model family history, we know that the genetic distance 
between family members is 0.5 between second and first-degree relatives, and 0.25 
between third and first-degree relatives. This relationship can be used to define a 
variable for family history (Table  10.1 ). 

 Such a coding was used in a model to predict the likelihood of a genetic muta-
tion in patients suspected of Lynch syndrome. 25  A proband with one affected first-
degree family member gets a similar score for family history (1) as a proband with 
two affected second-degree family members. An implicit assumption here is that 
the numbers at risk are similar for 1st and second-degree family members, e.g. with 
similar numbers and similar age distributions.  

 Table 10.2    Illustration of testing deviations for each condition in a sum score. Data from 
oesophageal cancer patients who underwent surgery (2,041 patients from SEER-Medicare data, 
221 died by 30- days 423 )  

 Model  Logistic regression coefficient   P -value 

 Comorbidity sumscore  0.44 (±0.13)  <0.001 
 + chronic pulmonary disease  −0.22 (± 0.31)  0.48 
 + cardiovascular disease  −0.13 (±0.33)  0.69 
 + diabetes  +0.32 (±0.29)  0.27 
 + liver disease  +1.31 (±1.03)  0.20 
 + renal disease  −1.09 (±1.11)  0.33 
       0.46 (overall, 4 df) 

10.2 Combining Similar Variables 179



180 10 Restrictions on Candidate Predictors

  *10.2.4 Statistical Combination 

 Harrell proposed to use principal component analysis to summarize the information 
from all candidate predictors. 175  This clustering does not use information on the predictor–
outcome relationship, and has shown promising results in empirical evaluations. 
However, some theoretical and practical objections can be made. For example, the inter-
pretability of regression coefficients is lost, and all predictor values have to be filled in 
to calculate predictions. Few modelling studies used principal components analysis of 
the predictor variables, but the concept should be kept in mind. There is some similarity 
with the clustering analysis applied in some studies of genetic markers. 387    

  10.3 Averaging Effects  

 In regression modelling, we usually start with modelling main effects of variables. 
We may subsequently assess interaction effects as tests for additivity of effects. 
Conceptually, main effects average over underlying subgroup effects. This averaging 
may be reasonable as long as no strong interactions exist, and adds to the robustness 
of the model. This issue has a parallel with how we study treatment effects in RCTs. 
The main question is on the average treatment effect, and subgroup effects are 
commonly considered as secondary analyses. 18,339,477  

  10.3.1 Example: Chlamydia Trachomatis Infection Risks 

 The starting point for modelling determines how our final model may look. For 
example, prediction of  Chlamydia trachomatis  infections has traditionally focused 
on infection prevalences in women. However, when we have a data set which con-
tains infection status for both men and women, we may debate how to view model 
development. On the one hand, we may develop a male model fully independent of 
the female model. This is equivalent to assuming interactions between all predictors 
and sex. The models for males and females may adequately fit risk patterns for both 
sexes separately, but the predictions will be less reliable because of the reduced 
sample size. The obvious alternative is to start with a model of the combined data, 
which assumes similar effects in males and females. This assumption can specifi-
cally be tested by interaction terms of sex × predictor. In this example, only the 
effect of urogenital symptoms clearly differed between the sexes. 145   

  *10.3.2  Example: Acute Surgery Risk Relevant 
for Elective Patients? 

 In the  Chlamydia trachomatis  example, we were interested in prediction for both 
males and females. In another case, we were specifically interested in patients 
undergoing elective replacement of a heart valve. 454  In our data set, we also had 



information on patients undergoing acute valve replacement. Should these patients 
be excluded? We decided to include these patients in the modelling, of course with 
a main effect for acute vs. elective surgery. We tested whether predictive effects 
were different between these types of patients, and found no such indication for any 
predictor separately nor in an overall test for interaction. Hence, it might be reason-
able to assume that increasing the sample size by adding these high-risk acute 
surgery patients helped to improve our predictions for elective patients. More 
precisely stated, we assume that the relevance of any bias is smaller than the 
increase in precision by increasing sample size. This assumption seems reasonable 
from the data, but paradoxically sample size limits the power to detect differential 
effects. So, subject matter knowledge is the main guidance whether effects would 
be too different to model in the total group.   

  *10.4  Case study: Family History for Prediction 
of a Genetic Mutation  

 We consider the case study of diagnosing mutations in patients suspected of Lynch 
syndrome, or “hereditary nonpolyposis colorectal cancer” (HNPCC). 25  Mutations 
can be diagnosed with a genetic test, which is costly. Therefore, some selection of 
patients for definite testing is required. Family history has traditionally been used 
for such selection. Age at diagnosis is an important predictor, with higher likeli-
hood of a mutation with younger age. Also, the number of affected first- and second-
degree relatives is important, with more affected family members making a mutation 
as cause of the cancer more likely. 

  10.4.1 Clinical Background and Patient Data 

 Lynch syndrome is the most common hereditary colorectal cancer syndrome in 
western countries, accounting for 2–5% of all colorectal cancers (CRC). 270  Lynch 
syndrome is associated with underlying mutations in the mismatch repair system, 
most commonly in the  MLH1  and  MSH2  genes. Several guidelines have been 
developed to identify Lynch syndrome families, including the Amsterdam Criteria 32  
and Bethesda Guidelines. 349,442  Such guidelines intend to support health care providers 
to select subjects for mutation testing. More recently, empirically derived predic-
tion models have been developed for the likelihood of mutations in individual 
patients or families, enabling a more refined selection of subjects. Some models use 
logistic regression, 25,28,262,485  while others use Bayesian methods. 71  Several aspects of 
family history are considered in these models, related to the presence and age at 
diagnosis of cancer in the proband (the index person who is first being tested in a 
family), and the presence and age at diagnosis of cancer in his/her relatives. 
Modelling family history is complex, since the spectrum of cancers associated with 
 MLH1  and  MSH2  mutations is diverse. Mutation carriers are mainly at risk of 
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developing colorectal and endometrial cancer. 270  Young age at diagnosis is a risk 
factor of being a mutation carrier, and family members with various degrees of 
genetic relationship to the proband need to be considered. 

 We consider a development sample of 898 patients who were tested for presence 
of mutations (130 with mutation). Patients usually had one or more of various cancer 
diagnoses, including CRC ( n =536), women with endometrial cancer ( n =91), and 
other HNPCC-related cancer ( n =100). Of the 898 patients, 118 had multiple cancers. 
Details on predictor and outcome definitions are described elsewhere. 25   

  10.4.2 Similarity of Effects 

 Colorectal cancer (CRC) at a young age is a well-known predictor of a mutation. 
Especially if multiple CRCs occur in the same patient, this is very suspect for 
underlying genetic cause. Further, CRC in the family history points at HNPCC. We 
illustrate the modelling of CRC effects for the prediction of the presence of a 
mutation.  

  10.4.2.1 CRC in a Proband Before Age 50 

 We study the effect of CRC below 50. We make 2 dummy variables: 1 for having 
1 CRC below age 50 years (CRC1<50) and another for having 2 CRC diagnoses 
with the first diagnosis made below age 50 years (CRC2<50). The model is: 
Mutation ∼ CRC1<50 + CRC2<50, where Mutation indicates the presence of a 
mutation (0/1), and ∼ indicates the logistic regression link. 

 We can also use 2 terms for each, reflecting probabilities of mutation below and 
over 50 years: Mutation ∼ CRC1<50 + CRC1³50 + CRC2<50 + CRC2≥50. 

 In the first formula, 2 coefficients are estimated for those with CRC at age <50 
years (“CRC<50”). All other patients form the reference category. Estimated coef-
ficients were 0.58 and 1.86. In the second formula, 4 coefficients are estimated for 
those with CRC, and patients without CRC are the reference (Fig.  10.1 ). Coefficients 
for CRC1 were 0.54 and −0.50, and for CRC2 2.09 and 1.82 (age<50 and age ≥50 
years, respectively). So patients with 1 CRC, diagnosed after age 50, had a lower 
estimated probability of mutation compared to patients without a CRC.  

  10.4.2.2 CRC in a Proband and Age Continuous 

 To analyse age of diagnosis as a continuous predictor, we need to insert an age for 
those without CRC. A simple strategy would be to impute “0” for patients without 
CRC. An indicator variable would then be used for “CRC,” referring to the differ-
ence in probability of mutation at age zero between those with and without CRC. 
To obtain a more interpretable effect of the indicator variable for CRC, we set age 



at 45 years, since 45 years is around the average age of patients with CRC diag-
noses. Further, we scaled age per decade (CRCage10 = CRCage/10). The interpre-
tation of the indicator variables CRC1 and CRC2 is then as the presence of one or 
two CRCs vs. no CRC at the age of 45 years. For calculation of the linear predictor 
and graphical display (Fig.  10.2 ), the specific coding is irrelevant.  

 We may analyse the effect of the age at diagnosis of CRC with separate coeffi-
cients for CRC1 and CRC2 patients:

  Mutation ~ CRC1 + CRC2 + CRC1age + CRC2age,  

where CRC1age and CRC2age indicate the age of CRC diagnosis; in those without 
CRC the age is arbitrarily set close to the mean age of diagnosis (45 years). The 
main effects CRC1 and CRC2 are interpretable as the effect at age 45 of having a 
CRC diagnosis (one or multiple CRCs). 

 We may also assume a single CRCage effect for both CRC1 and CRC2 patients:

  Fig. 10.1    Mutation prevalence in relation to presence of a single or multiple CRCs diagnosed 
before age 50 in the proband ( left ), or before or after age 50 ( right )       
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  Fig. 10.2    Mutation prevalence in relation to presence of a single or multiple CRCs, with age at 
diagnosis as a linear term ( left , assuming separate age effects;  right , assuming identical age effects)       
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184 10 Restrictions on Candidate Predictors

  Mutation ~ CRC1 + CRC2 + CRCage   

 A test of whether the more complex model is better than the simpler one is provided 
by a likelihood ratio test (comparison of the c2 statistics, 1 df). 

 The age effects were very similar in both groups (CRC1age coefficient −0.40, 
CRC2age coefficient −0.32), and the difference in effects was far from significant 
( p =0.80). Hence, it is reasonable to assume a single age effect for patients with 
one or two CRCs; performance remained identical (Table  10.3 ).     

 We may subsequently test for non-linearity in the age effect. A linear coding was 
reasonable, since we found no improvement in fit by adding a square term ( p  = 0.50) 
or considering restricted cubic splines (3 knots, non-linearity  p =0.76; 4 knots, non-
linearity  p =0.94).   

  10.4.3 CRC and Adenoma in a Proband 

 Adenoma polyps can be considered as precursors of CRC. They hence occur on 
average before the age of diagnosis of CRC. But the predictive effect for, e.g. a 
10 years younger diagnosis of adenoma is a priori expected to be similar to the 
age–outcome relationship for CRC. Let us first consider the CRC and adenoma 
effects plus their age effects:

  Logit(Mutation) = CRC1 + CRC2 + CRCage + Adenoma + AdenomaAge   

 The coefficients for the age effects are −0.38 for CRC and −0.36 for adenoma. 
It is tempting to estimate only 1 coefficient for these two effects. However, among 
a total of 141 patients with adenomas, only 100 had  only  adenomas as their diag-
nosis. CRC and adenoma are hence not mutually exclusive. How can we force the 
CRCage and AdenomaAge effects to be identical? In other words, we want to esti-
mate one β 

CRCAdenoma
  instead of β 

CRC
  and β 

Adenoma
  in a regression equation as

  Logit (Mutation) = β
CRC

×CRCage + β
Adenoma

×AdenomaAge + .... 

 The requirement is that β 
CRC

  = β 
Adenoma

 . This is achieved quite simply:

  Logit(Mutation) = β
CRCAdenoma

×(CRCage + AdenomaAge) + ....   

 Table 10.3    Performance of alternative modes for the predictive effect of CRC and its 
age of diagnosis in patients tested for mutations in HNPCC (898 patients, 130 mutations). 
The third coding is preferred (3 df), with a single, linear term for the continuous variable 
“CRCage”   

 Model  df   R  2    C  

 CRC1<50+CRC2<50  2  4.6%  0.602 
 CRC1<50+CRC2<50+CRC1>=50+CRC2>=50  4  6.9%  0.634 
 CRC1+CRC2+CRCage  3  7.6%  0.651 
 CRC1+CRC2+CRC1age+CRC2age  4  7.6%  0.649 



 Again we include the indicator variables CRC1, CRC2, and adenoma in such a 
model. CRCage and AdenomaAge are set to 45 years for those with missing diag-
noses, and recoded per decade for better interpretability of effects. The value of 
β 

CRCAdenoma
  was −0.37 per decade: in between the effects for the two separate coeffi-

cients β 
CRC

  and β 
Adenoma

  (Fig. 10.3 ).   

  10.4.4 Age of CRC in Family History 

 A further extension is to consider the effects of age at CRC diagnosis in first and 
second-degree relatives (Fig. 10.4 ). A CRC diagnosis at young age in a relative is 
more suspect for HNPCC than a CRC diagnosis at a more advanced age. We can 
again assume that the age effects should be similar, and add indicator variables for 
the presence of first or second-degree relatives. Four separate age effects are fitted 
with the formula:

  Mutation ~ CRC1 + CRC2 +  CRCage + Adenoma + AdenomaAge + CRC1st 
+ CRCage1st  + CRC2nd + CRCage2nd,  

where CRCage and AdenomaAge indicate age at diagnosis of CRC and ade-
noma in the proband, respectively, and CRCage1st and CRCage2nd indicate age at 
diagnosis of CRC in first and second-degree relatives, respectively. CRC1 and 
CRC2 refer to 1 or 2 CRCs in the proband, Adenoma to adenoma in the proband, 
CRC1st and CRC2nd to the number of CRC affected first and second-degree 
relatives.  

  Fig. 10.3    Mutation prevalence in relation to age at diagnosis of CRC and age at diagnosis of 
adenoma as a linear term ( left , assuming separate age effects;  right , assuming identical age effects)       
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186 10 Restrictions on Candidate Predictors

 A single effect for the four age variables is estimated by calculating the sum of 
all four ages, to force the four age coefficients to be the same: 

 CRC.Adenoma.age = CRCage + AdenomaAge + CRCage1st + CRCage2nd. 
 We reduce a model with four age effects to a model with a single common age 

effect for CRC and adenoma. 
 Moreover, we can combine the family history of first and second degree relatives 

as CRCfam = CRC1st + 0.5 × CRC2nd, instead of considering indicator variables 
for having 1 or 2 first degree relatives, and 1 or 2 second degree relatives with CRC. 
So, we reduce a concept with 4 to 1 df. 

 The chosen coding for CRC and adenoma effects hence is as

  Mutation ~ CRC1 + CRC2 + adenoma + CRCfam + CRC.Adenoma.age   

 In total, we reduce a model with 11 df to 5 df. We find that the performance of both 
model variants is similar (Table  10.4 ). Importantly, more stability is expected, and 
better generalizability to future patients.      

  10.4.5 Full Prediction Model for Mutations 

 A final predictive model was constructed where other diagnoses were treated in a 
similar way. For endometrial cancer, we create an indicator variable with as reference 
category females without endometrial cancer and all males (“endo”). Age at diagnosis 
in the proband was combined with age at diagnosis in first and second degree 
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  Fig. 10.4    Mutation prevalence in relation to age at diagnosis of CRC in the proband, first, or 
second-degree relatives, and age at diagnosis of adenoma. Separate logistic regression coefficients 
were estimated for the four age effects in model 5a ( left ). In the  right panel , one single age effect 
is estimated by considering the sum of all four ages, and family history is summarized in a single 
weighted score instead of four separate family history effects (1 or 2 first-degree relatives with 
CRC, 1 or 2 second-degree relatives with CRC, model 5c). The predictive performance of model 
5c was similar to that of model 5a while using 5 instead of 11 degrees of freedom (Table  10.4 )       



relatives, and family history was coded as for CRC: # affected first degree relatives 
+ 0.5 # affected second-degree relatives. 

 For other HNPCC related cancers, indicator variables were created for the 
proband (“other”) and relatives (“rother” , scored as for CRC and endo). No age 
effect was identified. The final model hence was:

  Mutation ~ CRC1 + CRC2 + Adenoma + CRCfam + CRC.Adenoma.age + Endo 
+ EndoFam + EndoAge + Other + OtherFam   

 This model incorporates information on CRC, adenoma, endometrial cancer, 
and other cancer diagnoses from the proband and from first and second-degree 
relatives with only 10 df. The  R  2  was 24.9%, and c 0.81. External validation was 
performed with 1,016 new patients from the same setting. 25  The  R  2  was 24.0% 
and c 0.80. 

 This case study illustrates how predictors related to the same underlying phe-
nomenon can be combined for parsimonious and robust modelling. Such a strategy 
may especially be useful in relatively small data sets, where specification of com-
plex models would not be reasonable, and lead to unstable estimation of regression 
coefficients. Further statistical detail is provided elsewhere. 400    

  10.5 Concluding Remarks  

 Model specification is the most difficult step in prediction modelling. We consid-
ered several steps to develop more robust models for prediction purposes by reduc-
ing the degrees of freedom considered in the modelling process.

   1    The first step obviously is to match the number of candidate predictors with the 
available effective sample size. If we have only a small sample for modelling, a 
more restricted set of candidate predictors is necessary compared to the situation 

 Table 10.4    Performance of alternative modes for the predictive effect of 
age of diagnosis for CRC and adenoma in the proband, and CRC in first and 
second-degree relatives. Models created with data from patients tested for 
mutations in HNPCC (898 patients, 130 mutations). The fourth coding is 
preferred, with a single, linear term for a continuous age effect.  

 Model  df   R  2    C  

 CRCage + AdenomaAge; adenoma; 
CRC1+CRC2; 

 5  8.4%  0.662 

 CRC.Adenoma.Age; adenoma; CRC1 + CRC2  4  8.4%  0.662 
 CRCage + AdenomaAge + CRC1stAge + 

CRC2ndAge + adenoma; CRC1 + CRC2; 
CRC 1st (0,1,2), CRC2nd (0,1,2) 

 11  19.4%  0.767 

 1 age effect; adenoma; CRC1+CRC2; CRCfam  5  18.3%  0.757 

10.5 Concluding Remarks 187



188 10 Restrictions on Candidate Predictors

of a large sample for modelling. Subject matter knowledge may assist in limiting 
the selection, such as literature review and consultation of experts.  

   2    Second, we may consider distributions of predictors. We may exclude candidate 
predictors based on number of missing values and skewness of distributions.  

   3    Related predictors can sometimes be combined in summary scores, such as 
illustrated for comorbidity.  

   4    Finally, we may want to average effects of predictors across subgroups for more 
stability, exploit logical relationships, and estimate single effects for combina-
tions of predictors. As illustrated for the case study on mutation prevalence, this 
may lead to a parsimonious, robust model, which still captures most of the pre-
dictive information.     

 The risk of such restrictions is that we may exclude certain predictors and specific 
predictor effects from a model; the specific circumstances should guide us in what 
strategy is most reasonable.  



  Questions   

   10.1    Data reduction
   (a)     What is meant with candidate predictors, in contrast to included predictors 

in a model?  
   (b)    What problems can occur when considering many candidate predictors for 

inclusion in a prediction model?  
   (c)    What kind of strategies do not use the predictor–outcome relationship in 

reducing the number and degrees of freedom of the candidate predictors?  
   (d)    What kind of strategies do use the predictor–outcome relationship while 

attempting to reduce the number and degrees of freedom of the candidate 
predictors?      

   10.2    Combining similar variables 
 What objections can be made against the combination of similar variables in 
summary predictors (e.g. comorbidity scores), or the combination of effects 
of similar predictors (e.g. age effects in the family)?  

   10.3    Interpretation of case study (Sect.  10.4 ) 
 The case study illustrates robust coding of family history for prediction of an 
underlying mutation.

   (a)    CRCage may be coded as (45 – years)/10. How can we then interpret the 
coefficients for CRCage, CRC1 and CRC2 in the regression formula 
Mutation ∼ CRC1 + CRC2 + CRCage?  

   (b)    The model for aspects of CRC in the family was Mutation ∼ CRC1 + CRC2 
+ adenoma + CRCfam + CRC.Adenoma.age What would the values of the 
predictors be for someone with no CRC or adenoma, and no CRC in the 
family?  

   (c)    How can we test for deviations of the age effects in first and second degree 
relatives in the variable CRC.Adenoma.age (2 age effects vs. 1 age effect 
for relatives)?  

   (d)    Endometrial cancer can only occur in females. How do we code the pre-
dictors Endo and EndoFam to obtain interpretable coefficients?      

   10.4    Splitting analyses 
 A researcher considers to analyse males and females separately, and proposes 
to split the files for such analyses. A colleague says there is no need to do so. 
How can effects for males and females be analysed in one dataset?          

Questions 189



   Chapter 11   
 Selection of Main Effects        

  Background    Model specification is the most difficult part of prediction model-
ling. 472  Especially in smaller data sets it is virtually impossible to obtain a reliable 
answer to the question: which predictors are important and which are not? In this 
chapter, we focus on the advantages and problems that are associated with model 
reduction techniques such as stepwise selection, including overfitting and the quality 
of predictions from a model. Specific issues include instability of selection, biased 
estimation of coefficients, and exaggeration of  p -values. We explore the influence 
of including noise variables as predictors in a model, and find that their influence is 
not so detrimental to legitimize widespread use of stepwise methods. Alternative 
approaches include making a list of a limited number of candidate predictors to 
consider for the prediction model, e.g. based on a meta-analysis of available litera-
ture, and some more modern selection methods.  

  11.1 Predictor Selection  

  11.1.1 Reduction Before Modelling 

 In the previous chapters, we have discussed several approaches to limit the degrees 
of freedom that are considered in the modelling process. Use of subject matter 
knowledge is essential to preselect candidate predictors, e.g. from a systematic 
review of the literature, and from discussions with experts in the field. We should 
also consider strategies for robust coding of predictors (Chap. 10). These steps may 
reduce the chance that there are noise variables among the candidate predictors. 
Predictive modelling then turns into an estimation problem rather than a testing 
problem. Ideally, we end up with a limited list of candidate predictors, which can 
all be entered in a “full model,” which contains the main effects of all candidate 
predictors. 174  Model specification is then restricted to consideration of model 
assumptions such as additivity (with interaction terms) and non-linearity (with non-
linear terms, see Chap. 12). 14   
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192 11 Selection of Main Effects

  11.1.2 Reduction While Modelling 

 We may consider to reduce the set of candidates predictors for various reasons. One 
reason is that it is not practical to use a large set of predictors in medical practice. 
Formally, this is only an argument if variables are not all available in future patients, 
or have a cost associated with their collection. Also, some predictors may have very 
small or implausible effects, which makes it questionable why they are included in a 
model. In some circumstances, we may also have a list of new predictors, where some 
are expected to have no true relationship to the outcome at all. For example, when 
predicting valve fracture with production characteristics, it was unclear which spe-
cific aspects would be important. 42  Also in genetic and proteomic research, identifica-
tion of which characteristics are predictive from a very large set of candidate 
predictors is the main goal. This makes such analyses quite exploratory in nature, 
more aimed at biological knowledge discovery than prediction.  

  *11.1.3 Collinearity 

 Another argument in favour of model reduction includes collinearity, which refers 
to the issue that predictors may be strongly correlated with each other. Collinearity 
is reflected in “variance inflation factors” (VIF), which measure the degree to 
which collinearity among the predictors degrades the precision of estimate coeffi-
cients. Collinearity hampers reliable estimation of regression coefficients of the 
correlated variables, especially if correlations are very strong (say correlation 
coefficient  r >0.8, or VIF>10). 472  

 Is collinearity relevant for clinical prediction models?

  •  Correlations do of course exist between predictors. We perform multivariable 
analysis to consider the joint effects of predictors which cannot be inferred from 
a univariate analysis.  

 •  In many practical examples, correlations are less than 0.5. For example, the 
strongest correlation in the GUSTO-I study is between height and weight with 
 r =0.5. All other correlations are weaker, typically with  r  around 0.1–0.2.  

 •  Sometimes we create highly correlated variables, e.g. age and age2 ( r >0.9), but 
we can estimate their coefficients quite reliably.    

 If predictors are relatively strongly correlated, it may be wiser to combine them in 
a single combined variable. For example, a strong correlation generally exists 
between diastolic blood pressure (DBP) and systolic blood pressure (SBP), with  r  
of 0.62 in one study. 14  When choosing between DBP and SBP, “mean blood 
pressure” may be a better choice (2×DBP+1×SBP) than choosing either one of them. 
But again, subject matter knowledge is important. For example, systolic pressure is 
known to be the more relevant predictor for cardiovascular risk. 428   



  11.1.4 Parsimony 

 Another argument in favour of smaller models is made by referring to the prin-
ciple of parsimony (“Occam’s razor”). This principle states that simpler expla-
nations are preferred over more complex explanations. Better predictive abilities 
can be expected from a simpler model. This is an appealing philosophical 
principle when judging two alternative theories. It is, however, not obvious how 
this principle translates to prediction models. The traditional reasoning is that a 
model where some less significant variables are eliminated is more parsimonious 
than a full model with more predictors, and is hence to be preferred. When we 
consider how predictive regression models are created we however come to the 
opposite conclusion:

  •  A full model does not ask more from the data than estimating regression 
coefficients  

 •  A reduced model asks two questions:

   (a)    which variables can be eliminated?  
   (b)     what are the coefficients of the remaining predictors, given that the other 

variables are eliminated?        

 So, a reduced model reflects the answer to two questions rather than the answer to 
one, which is arguable more complex. 

 A practical issue may be that smaller models are easier to interpret and use 
in practice. For example, prediction rules with a few, simple predictors may be 
easy to remember for clinicians. This “parsimony” comes at a price: such smaller 
models are conditional on selecting the right predictors from the candidate 
predictors.  

  11.1.5 Should Non-Significant Variables Be Removed? 

 Finally, some may argue that statistically non-significant variables should not be 
included as predictors in a model, since their effects are not proven. This belief may 
result from mixing the fundamental statistical concepts of hypothesis testing and 
estimation. Prediction is about estimation; hence it is quite reasonable to include a 
predictor with a  p -value higher than the magical value of 5%. Especially, this is 
reasonable if the data set is relatively small, the predictor uncommon (a rare but 
strong predictor such as “shock” in GUSTO-I), or when the predictor is well known 
from previous research to be predictive. Non-significance does not mean that there 
is evidence for a zero effect of a predictor; as always absence of evidence is not 
evidence of absence. 11  Finally, simulation studies with true noise variables in a 
model do show only a limited decrease in predictive ability 410 .  
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  11.1.6 Summary Points 

 In sum, some arguments can be put forward in favour of predictor selection based 
on findings in our data:

  •  Larger models are less practical to work with  
 •  Some predictors may have very small or implausible effects    

 False arguments include

  •  “Statistically non-significant variables should be excluded”; for estimation, 
significance testing is not relevant, especially if estimated effects are supported 
by subject knowledge  

 •  “Collinearity precludes obtaining reliable predictions”; although collinearity 
makes estimates of individual coefficients unstable, reliable predictions can still 
be obtained  

 •  “Referring to the parsimony principle”; this may hold when pre-specified models 
are compared, not when models are selected by studying patterns in the data.      

  11.2 Stepwise Selection  

 We will first consider traditional approaches such as stepwise selection of predictors 
in a model, followed by some promising alternative approaches to model selection. 

  11.2.1 Stepwise Selection Variants 

 Currently, stepwise selection methods are probably the most widely used in medical 
applications. These automated methods aim to include only the most significant 
predictors in a model. Significance is determined with a selection criterion: the 
 F  test in linear regression; a likelihood ratio (LR), Wald, or Score statistic in logistic 
or Cox regression models. Forward selection starts with inclusion of the most 
significant candidate predictor to a model that does not contain any predictor. 
Backward selection starts with elimination of the least significant candidate predictor 
from a full model including all candidate predictors. Forward and backward selec-
tion may also be combined, such that an iterative procedure is followed. 

 A backward selection approach is generally preferred if stepwise selection is 
attempted. First, the modeller is forced to consider the full model with a backward 
approach, and can judge the effects of all candidate predictors simultaneously. 174  
Second, correlated variables may remain in the model, while none of them might 
enter the model with a forward approach. 96  

 An extension of stepwise selection strategies is “all possible subsets regres-
sion.” Here, every possible combination of predictors is examined to find a best 



fitting model. 289  All possible subsets regression can identify combinations of 
predictors not found by the more standard forward or backward procedures. 
This comes at a price: we examine many models, with multiple testing, easily 
resulting in overfitted models. 96   

  *11.2.2 Stopping Rules in Stepwise Selection 

 The stopping rule for inclusion or exclusion of predictors is a central issue in stepwise 
selection methods. It is far more important than the specific variant of the stepwise 
selection method (e.g. forward, backward, combined, all possible subsets). Usually, 
one applies the standard significance level for testing of hypotheses (α=0.05), but the 
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) are also 
often used. In all possible subset selection, the stopping criterion often is to maximize 
Mallow’s  C  

p
 , which is similar to optimizing AIC. Stopping rules are usually applied 

for testing contributions of individual predictors, but may also be applied to the 
pooled degrees of freedom of unselected predictors. 174  

 AIC and BIC compare models based on their fit to the data, but penalize for 
the complexity of the model. With AIC, we require that the increase in model c2 
has to be larger than two times the degrees of freedom: c2 > 2 df. When consider-
ing a predictor with 1 df, such as gender, this implies that c2 has to exceed 2, 
equivalent to  p <0.157. With 2 df, c2 > 4, or  p <0.135; and with 4 df,  p <0.092 
(Table  11.1 ).  

 With BIC, we penalize the model fit such that c2 has to exceed log( n ). The effec-
tive sample size should be used for  n , e.g. the number of events in Cox regression 
for survival data. 474  With small sample size, e.g. n=20, BIC is equivalent to  p <0.083 
for selection. With larger sample sizes, the  p -values are much lower (Table  11.2 ). 
Hence, selection with BIC will generally lead to smaller models than selection with 
AIC. 1  The theory behind AIC and BIC criteria can be found elsewhere in detail 181 ; 
for the applied researcher, the  p -value that is effectively used as a stopping criterion 
is most relevant.  

 Table  11.1     P -value associated with Akaike’s Information 
Criterion (AIC) for selection of candidate predictors with 
different degrees of freedom (df)  

 Df 
 c2 has to 
exceed 2 times df   P -value 

 1  2  0.157 
 2  4  0.135 
 3  6  0.112 
 4  8  0.092 
 5  10  0.075 

 1  Selection with BIC may lead to “underfitting,” since many predictors are excluded

11.2 Stepwise Selection 195



196 11 Selection of Main Effects

 There is no specific reason to stick to a  p -value of 0.05, or low  p -values as 
implied by applying BIC. Using AIC has been recommended. 14  Using even higher 
 p -values ( p <0.20 or  p <0.50) have been found to provide more power for the selection 
of predictors with relatively weak effects, 253  and to provide better predictions in 
small data sets with a set of established candidate predictors. 409        

  11.3 Advantages of Stepwise Methods  

 Stepwise selection methods have a number of advantages. They are usually relatively 
straightforward to apply in modern statistical packages. Some care should be taken 
with missing values; if we start with a full model, the number of available cases is 
restricted by the combination of missing values in any of the candidate predictors. 
It is therefore important to use imputed data set to deal with missing values. Multiple 
imputation (MI) poses some complexities if we would select predictors per imputed 
data set, where predictors may be selected in some replicates of the data set and not 
in other replicates. The preferable approach is to perform selection based on the 
results from the combined data sets. For example, with a backward procedure, we 
first obtain p-values for each predictor in a full model, fitted on MI data sets. We then 
eliminate the least significant predictor, provided that the  p -value is higher than our 
stopping criterion. We refit the model in the MI data, and eliminate the next predictor. 
We stop when all predictors have  p -values less than the stopping criterion. 

 Stepwise methods are also relatively objective. When another analyst is provided 
with the same data set and the same list of candidate predictors, the resulting selection 
should be very similar. The objectivity of stepwise selection makes it possible to 
replay this model reduction strategy in validation procedures such as the bootstrap 
(Chap. 16). Optimism can hence be estimated including model uncertainty. 69,401  

 Stepwise methods usually reach their goal of making a model smaller. 
In larger data sets, such as GUSTO-I, all variables that are important for prediction 
will have small  p -values. Sometimes  p <0.01 is therefore chosen in large samples. 
In small data sets, only few variables may have such small  p -values, resulting in 
small models (sometimes referred to as “underfitting”). This argues for the use of 
AIC or an even higher effective  p -value.  

  Table 11.2  P -value associated with Bayesian Information Criterion 
(BIC) for selection of candidate predictors  

 N  c2 has to exceed log( n )   P -value 

  20  3.0  0.083 
  50  3.9  0.048 
  100  4.6  0.032 
  200  5.3  0.021 
  500  6.2  0.013 
 1000  6.9  0.009 
 2000  7.6  0.006 



  11.4 Disadvantages of Stepwise Methods  

 Stepwise methods have various disadvantages, including

   1.    Instability of the selection  
   2.    Biased estimation of coefficients  
   3.    Misspecification of variability and exaggeration of  p -values  
   4.    Provision of predictions of worse quality than from a full model     

 These issues are explained and illustrated below. 

  11.4.1 Instability of selection 

 Stepwise selection considers a high number of combinations of predictors. Some of 
these combinations may actually be rather similar in how they fit the data. This 
instability may be illustrated by the observation that the selection of predictors may 
change when we consider a slightly different selection of patients for a model. 20  

 The instability of selection can well be illustrated with subsamples of the 
GUSTO-I case study; very different selections arise (Table  11.3 ). For example, 
the selected predictors were age (A65), hypotension (HYP), and shock (SHO) 
in sample5 (n=429 patients). We also considered the selection in the other 110 
small subsamples where a logistic regression model could technically be fitted. 
The predictors A65, HYP, and SHO were among the predictors most often selected, 
with A65 in 80% of the 111 subsamples, HYP in 47%, and SHO in 53%. The candidate 
predictors TTR and DIA were selected in only 11% and 13%, respectively. The 
specific selection of these 3 predictors was however replicated in only 7 of the 110 
other small subsamples. 

 The conclusion from this case study is similar to what was found in other studies: 
the specific selection of predictors is unstable and should be interpreted with much 
caution. Statements such as “the only independent predictors in this prediction 
problem were age, hypotension, and shock” are overinterpretations unless the sample 
size was huge, and the effects of the other predictors were much smaller compared 
to the predictors selected. Even worse overinterpretations are related to the order of 
entry of a predictor in a forward stepwise procedure, or rank order of the  p -value in 
the selected model. 96  

 The instability of selection depends on a number of factors. One crucial aspect 
is the sample size. In a large sample, more stability is to be expected, since we have 
more power to detect truly important effects. Table  11.4   illustrates that more pre-
dictors were selected in larger subsamples than in smaller subsamples. When consider-
ing 16 large regions in GUSTO-I of at least 2,000 patients (178 events on average), 
around 6–7 predictors had statistically significant effects, eliminating predictors 
such as TTR and DIA which had minor predictive effects. 

 Although a larger sample size helps in many ways, we are usually tempted to 
study more candidate predictors in such situations. This introduces instability 
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  Table 11.4 Summary of number of predictors selected with different selection strategies 
in subsamples from the GUSTO-I data set. Numbers are mean ±SD  

 Samples    Ful  P<0.05  AIC   P <0.5 

 Small subsamples  8  2.8 ± 1.1  4.2 ± 1.1  6.3 ± 1.2    
 Large subsamples  8  4.8 ± 1.1  6.0 ± 1.0  7.0 ± 0.9    
 Regions  8  6.6 ± 1.0  7.1 ± 0.8  7.8 ± 0.4    

 #  A65  Sex  DIA  HYP  HRT  HIG  SHO  TTR 

  1  *              *  *    
  3  *  *           *  *    
  4  *        *        *    
  5  *        *        *    
  6  *  *                   
  7              *  *  *    
  8  *  *        *          
  9     *           *  *    
 11  *        *        *    
 13  *           *          
 14  *                 *    
 15  *           *     *    
 16  *              *  *    
 17  *                 *    
 18  *              *       
 19  *        *             
 20     *  *  *  *  *       
 22  *  *              *    
 23  *        *        *  * 
 24  *                      
 26  *              *  *    
 27  *        *     *  *    
 28  *        *        *    
 . . .                         
 121  *  *     *        *    
 Selected  80%  22%  13%  47%  23%  29%  53%  11% 

  Table 11.3 Illustration of variability in selection with backward selection with  p <0.05. The first 
25 small subsamples are shown from GUSTO-I. The 8 predictor model could technically be fitted 
in 111 of the 121 subsamples  

again: more candidate predictors implies more potential combinations of predictors. 
So, a crucial aspect is the ratio between number of candidate predictors and the 
effective sample size. Sometimes, a ratio of 10 events per variable (EPV) is advo-
cated; this is however only a reasonable lower bound for prespecified models. For 
reliable selection among candidate predictors, an EPV of 50 may be better. 410  So, if 
we consider 8 candidate predictors, at least 400 events should preferably be analysed 
in a logistic regression model when we want to make firm statements on which pre-
dictors are important and which are not. The total GUSTO-I model easily fulfills the 
1 in 50 criterion with 2,851 events in 40,830 patients, but this is exceptional. 



 The instability of selection procedures can well be studied for one specific 
data set with bootstrapping procedures (Chaps. 5 and 16). For larger data sets, 
the instability will not show up as extreme as with the small subsamples in 
Table  11.3 . Also, when a few predictors have strong effects, and others have 
weak effects, this should be apparent from the selection pattern over bootstrap 
samples.          

  11.4.2 Biased Estimation of Coefficients 

 The problem of estimation after testing (“testimation”) was already discussed in 
Chap. 5. It clearly shows up in stepwise selected coefficients. The distributions of 
coefficients is biased away from zero, as illustrated in Fig  11.1  for the small sub-
samples in GUSTO-I. We note that many coefficients are set at zero; the predictor 
was not selected for the model. Between zero and 1 there is a gap; small estimated 
coefficients were not statistically significant and were set to zero. This gap is 
smaller when we select with a higher  p -value (AIC or  p  <0.50), and fewer coefficients 
were set to zero. This is explained by the fact that smaller estimates of coefficients 
are included with a more relaxed stopping rule. The testimation problem is smaller 
in larger samples (see www.clinicalpredictionmodels.org for graphs).   

  11.4.3 Bias of Stepwise Selection and Events Per Variable 

 We simulated small subsamples fully at random from GUSTO-I in a study on bias 
of estimated logistic regression coefficients in stepwise selected models. 407  
Testimation bias was substantial when we studied coefficients of  p <0.05 selected 
variables (Fig.  11.2 ). When we use a higher p-value, such as p<0.50, the bias was 
much smaller (Fig.  11.3 ). For example, with Events per Variable (EPV) 10, the bias 
exceeds 50% for 3 predictors when selected with  p <0.05, but such a bias is not seen 
with  p <0.50 selection. With a full model, the bias is small, especially for reasonable 
sample sizes (EPV≥10, Fig.  11.4  ). With an extreme as EPV 3, the absolute bias is 
<20% for all predictors. 

 There is a direct relationship between the bias in an estimated effect and the fre-
quency of selection. A strong predictor such as age is selected in many models and 
has limited bias. A weak predictor such as diabetes is selected in only a few models, 
and if selected, the coefficient is biased upwards by more than 100% with low EPV. 
There is also a relation with the underlying strength of a predictor. The mathemati-
cal relationship between strength of predictive effect and bias is shown in Fig.  11.5  
The strength of effect is expressed as the ratio of the true coefficient value to the 
true standard error. Sample size influences the standard error, which decreases with 
increasing sample size. The bias appears to be at a maximum when the true coefficient 
to standard error ratio is around 0.6.       
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   Fig. 11.1 Distribution of logistic regression coefficients in 111 small subsamples within GUSTO-I. 
 First row :  p <0.05 selection;  second row : AIC selection;  third row :  p <0.5 selection;  fourth row : full 
model with all 8 predictors included. a65: age>65; dia: diabetes; hyp: hypotension; hrt; heart rate > 80; 
hig: high risk (anterior infarction or previous MI); sho: shock; ttr: time to relief >1 h. Note that the 
coefficients in the stepwise selected models should be interpreted with caution: they are based on dif-
ferent sets of selected predictors. The general pattern is however that the coefficients in the stepwise 
selected models are zero or a value clearly above zero, since predictors with accidentally small effects 
are not selected. The coefficients follow an approximately normal distribution in the full models       



   Fig. 11.2 Average percent conditional relative bias in relation to the number of events per variable 
after backward stepwise selection with  p <0.05 from the 8 predictor model in random subsamples 
from GUSTO-I       
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   Fig. 11.3 Average percent conditional relative bias in relation to the number of events per vari-
able after backward stepwise selection with  p <0.50 from the 8 predictor model in random subsam-
ples from GUSTO-I       
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  11.4.4 Misspecifcation of Variability 

 As noted in Fig.  11.1 , the distribution of coefficients from stepwise selected models 
has a strange shape. From an unconditional perspective, coefficients are set to zero 
when the predictor was not selected. From a conditional perspective, only the values 
of coefficients of selected predictors are considered (Fig.  11.6 ). 
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   Fig. 11.4 Average percent relative bias in relation to the number of events per variable in the 8 
predictor model, without any selection, in random subsamples from GUSTO-I       
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   Fig. 11.5 Mathematical relationship between bias and strength of predictive effect, expressed as 
coefficient/SE       

 The asymptotic standard error (SE) of the selected coefficient is estimated as if 
the model was pre-specified. The means of these asymptotic SEs were somewhat 
larger than the empirical SEs of the conditional coefficients for each of the 8 pre-
dictors, but smaller than the unconditional SEs (Table  11.5 ). The latter SEs reflect 



   Fig. 11.6 Distribution of logistic regression coefficients in small subsamples within GUSTO-I, 
with  p <0.05 for selection. Panel(a) unconditional perspective (if a predictor was not selected the 
coefficient is assumed to be set to zero). Panel(b) conditional perspective (only studying the dis-
tributions of selected predictors)       
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  Table 11.5 Standard errors of estimated coefficients in  p <0.05 selected models, calculated from 
an unconditional or conditional perspective (standard deviation in Fig.  11.6 ), and as asymptoti-
cally estimated in the models (average SE)  

 Perspective  A65  Sex  DIA  HYP  HRT  HIG  SHO  TTR 

 Empirical SE                         
  Unconditional  0.87  0.55  0.53  0.98  0.55  0.77  1.51  0.46 
  Conditional  0.52  0.27  0.36  0.47  0.29  0.62  0.75  0.27 
 Asymptotic SE                         
  Conditional  0.57  0.48  0.55  0.61  0.48  0.59  0.88  0.62 
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that the coefficient might have been set to zero, but the interpretation of this SE is 
difficult, if not impossible. In sum, the distribution of coefficients is less straight-
forward to interpret or quantify when a stepwise selection procedure has been followed. 
Some may hence consider reporting of 95% confidence intervals for coefficients in 
a stepwise model rather meaningless. 

 Another consideration is the variability of predictions (rather than predictor 
effects), given covariate patterns. This has been studied with bootstrapping tech-
niques. Predictions were far more variable than expected from estimates which 
were made as if the model was pre-specified. 10,19        

  11.4.5 Exaggeration of P-Values 

 The testimation bias in coefficients and misspecification of variability leads to 
an exaggeration of  p -values. The  p -value of predictors in a stepwise model 
should generally not be trusted; the  p -value is calculated as if the model was 
pre-specified.  

  11.4.6 Predictions of Worse Quality Than from a Full Model 

 For the studied sample, stepwise selection does not decrease model performance 
that much by omitting some variables. The eliminated variables have by definition 
relatively weak effects, otherwise they would not have been omitted. 

 Of more interest is the validity of the predictions outside the studied sample. We 
can assess the validity with internal validation techniques such as bootstrapping, 
and with external validation, i.e. evaluation in completely new patients. Both types 
of validation have shown that the performance of stepwise selected models is usu-
ally worse than that of a full model, without selection. 175  Table  11.6  provides an 
illustration of bootstrap validation of sample5 from the GUSTO-I study. This same 
pattern was found in a large simulation study considering all small subsamples 
within the training part of GUSTO-I, and evaluating them on an independent vali-
dation part of GUSTO-I. 409        

  Table 11.6 Illustration of bootstrap validation of model performance, as indicated by  R  2  in sub-
sample #5 of the GUSTO-I data base ( n  = 429, see also Table  5.4 )  

 Method  Apparent  Bootstrap  Test  Optimism 
 Optimism-
corrected 

 Full 8 predictor model  22.7  24.7  17.2  7.6  15.1 
 Stepwise, 3 predictors  p <0.05  17.6  18.7  12.7  5.9  11.7 



  11.5 Influence of Noise Variables  

 An argument for stepwise methods is that it helps to eliminate variables that have 
no true relationship to the outcome (noise variables, with true regression coefficient 
of zero). As discussed before, the likelihood of having such noise variables in our 
model can be reduced by considering only predictors with external knowledge on 
their relevance (from literature, expert opinion). Various simulation studies have 
considered the behaviour of stepwise selection in the presence of noise variables. 

 Derksen and Keselman found that stepwise selection produced models in which 
30–70% of the selected predictors were not related to the outcome, i.e. were pure noise, 
when candidate predictors consisted of a mix of noise and true predictors. 96  The fre-
quency of inclusion of noise and true predictors depended on the number of noise vari-
ables among the candidate predictors and on the correlations between candidate 
predictors. Stepwise methods are hence no guarantee for exclusion of noise variables. 

 Ambler et al. performed simulations in two data sets, where a mix of true and 
noise predictors was considered. They focused on the predictive performance of the 
models. Stepwise selection with AIC was optimal in their study. 14  

 We added 9 noise variables to the 8 predictors considered thus far in GUSTO-I 
simulations. 409,410  Performance was evaluated in an independent test part with 20,318 
patients (see Chap. 22). As expected, we note that discriminative ability ( c  statistics) 
for the full model was worse by adding noise variables, compared to a model includ-
ing 17 true predictors (Table  11.7 ). The  c  statistic decreased from 0.784 with true 
predictors to 0.753 with 8 true and 9 noise predictors. The stepwise models succeeded 
in removing noise variables: with  p <0.05 selection only 1 in 20 was retained in the 
model, which is approximately 1 in every 2 models (9 per model considered). The 
exclusion of noise variables comes at the price of, at the same time, excluding true 
predictors. For example, the  p <0.05 selected models contained on average 0.5 of the 
9 noise predictors and 4.8 of the 8 true predictors (Table  11.7 ). 

Hence, the performance of stepwise models was worse when only true predic-
tors were considered, but also when more than half of the candidate predictors were 
in fact noise (Table  11.7 ). Apparently, the  p <0.05 stopping rule led to a suboptimal 
balance between elimination of noise variables and the inclusion of a sufficient 
number of true predictors in this case study. This case study suggests that the omis-
sion of a true predictor may be far worse than the inclusion of a noise variable. 410       

  Table 11.7 Selected predictors and performance of models with 17 true predictors or 9 noise 
variables and 8 true predictors in 23 large subsamples from GUSTO-I. 410  Models were evaluated 
in an independent test part of GUSTO-I (part B,  n =20,318)  

   
 True predictors 17 
predictor model   P <0.05 

 Noise variables 
added 8+9 model   P <0.05 

 # Predictors             
 Noise  –  –  9  0.5 
 True  17  5.9  8  4.8 
  c  statistic  0.784  0.762  0.753  0.746 
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  11.6 Univariate Analyses and Model Specification  

 A common way to select predictor variables for a regression model is to first study 
the univariate relation between each variable and the outcome. When a variable 
meets a univariate criterion, e.g.  p <0.05,  p <0.1,  p <0.2, or  p <0.5, the variable is 
considered further for multivariable modelling (Table  11.8 ). This strategy may seem 
advantageous, and seems to reduce problems of overfitting and stepwise selection. 
However, univariate pre-selection is just a variant of stepwise selection. All candi-
date predictors are considered in the first step, but only those meeting the univariate 
criterion are considered in the following steps (minus the one predictor that entered 
the model in the first step). This is in contrast to standard forward (or backward) 
selection, where all candidate predictors are considered in each step as long as they 
have not entered the model (or are not removed from the model). The difference 
between univariate pre-screening and standard backward selection is shown in 
Tables  11.8 and 11.9  for a hypothetical example. 

  Table 11.9 Hypothetical example of backward stepwise selec-
tion of candidate predictors #1–#8. We note that the final model 
includes 1 of the 3 candidate predictors which were insignificant 
in univariate analysis (#6)   

    1  2  3  4  5  6  7  8 

 Multivariable modeling                         

 Omit #8                         

 Omit #7                         

 Omit #5                         

 Omit #4                         

 Selected model                         

  Table 11.8 Hypothetical example of univariate screening of candidate 
predictors, followed by stepwise backward selection. We note that 3 can-
didate predictors are omitted from further consideration based on univari-
ate insignificance (#6, #7, #8), and 2 because of multivariable insignificance 
(#4, #5). The final model includes 3 predictors (#1, #2, #3)  

    1  2  3  4  5  6  7  8 

 Univariate screening                         

 Multivariable modelling                         

 Omit #5                         

 Omit #4                         

 Selected model                         



  *11.6.1 Pros and Cons of Univariate Pre-Selection 

 Univariate pre-selection has some practical advantages:

  •  Predictors are eliminated at an early stage if no regression coefficient can be 
estimated with standard fitting algorithms, e.g. for “shock” in the small GUSTO-
I subsamples. A model can be developed with the remaining predictors;  

 •  In a large data set, with many predictors, the computational burden is lower 
when starting with a smaller set of predictors in a “reduced full model.”    

 On the other hand, univariate screening of candidate predictors does not reduce the 
problems as noted for stepwise methods (Sect. 11.4). Other variants of univariate 
pre-selection are eye-balling relationships between continuous predictors and out-
come, and inspection of exploratory cross-tables. In these informal inspections, the 
relationship between a predictor and the outcome is used. Such informal data 
inspections may hence contribute to overfitting.          

  *11.6.2 Testing of Predictors within Domains 

 A variant of univariate screening is to test the relevance of predictors within a clus-
ter of related variables, representing a disease domain. For example, we may con-
sider pre-selection of 1 or more predictors from variables related to hypertension: 
diastolic blood pressure, systolic blood pressure and treatment for high blood pres-
sure. Such an approach has some attractiveness, but problems of stepwise selection 
apply here too. Some increase in power can be obtained by requiring that all 
domains have to be included in the final model, even when not statistically signifi-
cant after the pre-selection. Alternative approaches are to combine variables within 
such a cluster, e.g. as mean blood pressure, or pre-selection based on prior informa-
tion, e.g. evidence from other studies.   

  11.7 Modern Selection Methods  

 A number of more modern selection methods have emerged over the past decades. 
Generally these methods are quite computer intensive, and are still infrequently 
encountered in medical applications. Some methods use resampling methods such 
as the bootstrap to identify important variables. Others use principles of Bayesian 
analysis, such as Bayesian model averaging (BMA). Some methods use shrinkage 
of regression coefficients to zero as a method of selection. Finally, many methods 
are under consideration by computer scientists and statisticians that may prove 
valuable in the future, but are not discussed here. 181  
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 *11.7.1 Bootstrapping for Selection 

 Several authors have proposed to define prediction models based on selection in 
bootstrap samples. 21,70,368  For example, one may apply backward stepwise selection 
in bootstrap samples drawn from the original sample. Candidate predictors are 
ranked according to their frequency of selection in the bootstrap samples. A cut-off 
is then applied for selection of predictors in the model that is fitted in the original 
sample, e.g. all predictors selected in >50% of bootstrap samples. Evidence for the 
advantages of this method is still unconvincing. Models constructed with this 
procedure will generally be very similar to the stepwise model in the original sample, 
provided that the stopping rule is similar (e.g. selection in over 50% of bootstrap 
samples). Predictors with low  p -values in the original sample tend to be selected 
with high frequency in bootstrap samples. 

  *11.7.2 Bagging and Boosting 

 Bagging (for “bootstrap aggregating”) was proposed by Breiman. 59  Bagging is a 
method for generating multiple versions of a linear predictor and using these to get 
an aggregated linear predictor. The multiple versions are formed by making boot-
strap replicates of the sample and using these as new model development sets. The 
aggregation averages over multiple versions of a predictor to make predictions. If 
perturbing the development set can cause substantial changes in the predictor con-
structed, bagging can improve accuracy. 59  

 Bagging is somewhat related to “boosting,” which is a general method for 
improving the performance of any learning algorithm. 371  Bagging works by taking 
a bootstrap sample from the training set. Boosting works by changing the weights 
on the training set. Greater weights are given to observations that were difficult to 
classify, and lower weights to those that were easy to classify.  

  *11.7.3 Bayesian Model Averaging (BMA) 

 Researchers usually ignore the uncertainty associated with modelling procedures 
such as stepwise selection. BMA aims to appropriately consider this uncertainty. This 
method selects a subset of all possible models (up to  K  = 2  p  , where  p  is the number 
of predictors, ignoring interactions) and uses the posterior probabilities of the models 
to perform hypothesis testing and prediction. Equations relating to the problem of 
optimal model selection have been developed. 194  Here  M  = { M  

1
 ,  M  

2
 ,…, M  

 k 
 } is used to 

denote the set of all possible models to be considered and ∆ is used to identify the 
quantity of interest. For example, D can indicate the regression coefficient in a logistic 
regression model. Then the posterior distribution of D, given the data  D  is  
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…,  K ) given the data. 
 Hereto, we need to estimate how likely each coefficient is given a particular model and 

how likely each model is. This estimation requires two prior probabilities: one for the 
coefficient values and one for the likelihood of each model  M  

 k 
 . For the coefficients, a 

multivariate normal prior with mean at the maximum likelihood estimate and variance 
equal to the expected information matrix for one observation has been suggested. This 
can be thought of a prior distribution that contains the same amount of information as a 
single, typical observation. Essentially, this prior distribution is non-informative. When 
there is little information about the relative plausibility of the models considered, taking 
them all to be equally likely a priori is believed by many to be a reasonable choice. 

 For an analysis with  p  potential predictors, the number of models,  K , can be 
enormous. To get around this problem, we may exclude models that are far less 
probable than the best model. This strategy is also known as “Occam’s window” 
approach. 342  For example, we may choose to discard models that are 20 times less 
likely as posterior models based on the data than the most likely model. This 
approach makes the BMA procedure computationally better feasible. 

 Alternatively, a two-step bootstrap model averaging approach can be applied, 
which consists of a screening step to eliminate covariates thought to have no influ-
ence on the response, and a model averaging step. This procedure increases practi-
cal usefulness by eliminating unimportant factors in the screening step. 196  

 Software is increasingly available that calculates a posterior model probability, 
parameter estimates, and standard errors of those estimates (for example for R). 
This enables the testing of hypotheses, such as that the effect of a predictor is zero. 
Also the regression coefficient can be estimated (as the posterior mean) with a 
standard error (based on the posterior standard deviation). Essentially, each esti-
mated regression coefficient b

i
 from a potential model is weighted with the poste-

rior likelihood that this model is the final model given the data D:  
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 Similarly, we can make predictions for future patients with all models with a poste-
rior likelihood larger than zero, and then weight each prediction with the posterior 
likelihood that this model is the final model.  

  11.7.4 Practical Advantages of BMA 

 Simulation studies have shown that the BMA procedure may especially guard 
against false positive findings. When 25 noise variables were considered and no 
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true predictors, standard stepwise selection methods sometimes included two or 
more of these variables as predictors, while BMA always indicated that no predic-
tors were identified in the data. With 2 relatively strong true predictors and 23 noise 
predictors, BMA again outperformed standard stepwise methods, with the latter 
including up to 5 noise variables in addition to the 2 true predictors. 342  

 BMA was also applied to the Framingham data to predict coronary events. 
Within the data set, 12 exploratory variables were available. Using Occam’s win-
dow, 6 out of 8,192 (2 13 ) models were selected, reflecting model uncertainty. The 
6 models from the BMA procedure contained 5 or 6 predictors, with posterior prob-
ability between 3% and 65%. The model selected by the backward stepwise proce-
dure with  p <0.05 contained eight variables. Overall, the posterior regression 
coefficients from the BMA method were similar to the maximum likelihood esti-
mates for a model selected using the backward stepwise procedure with a signifi-
cance level of 1%. The predictive performance of BMA was however somewhat 
better than that of the stepwise model. 475   

  11.7.5 Shrinkage of Regression Coefficients to Zero 

 Shrinkage is the principle of reducing the regression coefficients to improve the 
quality of predictions. Several variants of shrinkage will be discussed in Chap. 13. 
Some variants of shrinkage methods lead to regression coefficients which are set to 
zero. Hence, model reduction is achieved, since variables with zero coefficients can 
be dropped. Examples of these methods include the “Garotte” 58  and the “least abso-
lute shrinkage and selection operator” (Lasso). 434  This approach minimizes the log 
likelihood subject to the sum of the absolute values of the parameters being 
bounded by a constant. This constraint shrinks some coefficients to zero. The Lasso 
showed promising results in simulation studies and in predicting 30-day mortality 
in subsamples from GUSTO-I (see Chap. 13).   

  11.8 Concluding Remarks  

 The problem of overfitting already starts with considering too many candidate pre-
dictors in a data set. This problem is difficult to solve with standard statistical tech-
niques which are used by default in medical research nowadays, such as stepwise 
selection. Faraway has labelled the issues discussed here as “the cost of data analy-
sis.” 119  Ye has proposed methods to estimate the “effective degrees of freedom” of 
a multi-step modelling procedure. 494  

 Improvements in model selection can be sought in various directions. This first 
is to limit the necessity for selection by using subject matter knowledge, especially 
in relatively small data sets. Another strategy is to use better algorithms to discover 
patterns in the data, including better fitting algorithms (such as the “Lasso”), or by 



bootstrapping and following Bayesian estimation methods. 154  The uncertainty of 
model selection is an important source of overfitting, which needs to be prevented 
if possible, e.g. by analysing larger data sets, and a limited use of stepwise methods. 
The Lasso and variants of such a method are promising techniques when prediction 
and parsimony are goals of predictive modelling. 179,434   

  Questions  

    11.1    Stepwise selection methods 
 Stepwise methods are abundant in the medical literature, both in the context 
of addressing epidemiological questions on predictive effects and in the 
context of deriving prediction models.
   (a)     What decisions need to be made when one wants to use stepwise selection 

methods?  
   (b)    What are the major advantages and disadvantages of stepwise selection?      

    11.2    Models considered in all subset regression 
 Suppose we consider ten candidate predictors, and use a variant of stepwise 
selection that considers all combinations of predictors in selecting a model 
(“all possible subset regression,” Sect. 11.2.1).
   (a)    How many models do we consider?  
   (b)    And how many if we pre-specify that four predictors have to be included?      

    11.3    Bias by stepwise methods (Fig.  11.5 ) 
 We found that the bias was at a maximum when the true coefficient to stand-
ard error ratio was around 0.6 (Fig.  11.5 ). Logistic regression coefficients for 
a binary outcome have an SE of 0.5 if the prevalence of a binary predictor 
such as gender has a prevalence of 50% and the incidence of the outcome is 
also 50%, in a total of 64 patients (32 with the outcome).

   (a)     What does this imply for the bias in regression coefficients, where the SE 
is around 0.5?  

   (b)     And for predictors with a true regression coefficient around 0.5 (odds 
ratio 1.6), or a true coefficient around 2 (odds ratio 7.4)?      

    11.4    Application of stepwise methods 363  
 Consider the paper by Sanada et al. published in 2007.

   (a)    How many subjects were studied?  
   (b)    How many predictors were considered?  
   (c)    How many were selected by stepwise selection?  
   (d)    What alternatives might have been used for model specification?  
   (e)      Consider the Letter to the editor from Malek et al., who is very critical with 

respect to stepwise selection. 275  They propose an alternative selection strat-
egy, called “hierachical analysis.” What is your opinion of this strategy?             
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   Chapter 12   
 Assumptions in Regression Models: 
Additivity and Linearity        

  Background   In this chapter, we discuss assessment of assumptions in multivariable 
regression models. Specifically, we consider the additivity assumption, which can 
be assessed with interaction terms. We also consider the linearity assumption of 
continuous predictors in a multivariable regression model, where multiple non-lin-
ear terms can be included to allow for non-linear relationships between predictors 
and outcome. Throughout we stress parsimony in strategies to extend a prediction 
model with interactions and non-linear terms, since better fulfillment of assumptions 
in a particular sample does not necessarily imply better predictive performance for 
future subjects. We consider several case studies for illustration of various strategies 
to deal with additivity and linearity.    

  12.1 Additivity and Interaction Terms  

 The generalized linear regression models discussed in this book all have a linear 
predictor at their core: lp =  b 

1
 ×  x 

1
 +  b 

2
 ×  x 

2
 + … +  b  

 i 
  ×  x  

 i 
 , for models with  i  

predictors. 
 The  b 

1
 to  b  

 i 
  are the regression coefficients, referring to the main effects of 

predictors  x 
1
 to  x  

 i 
 . This formulation implies additivity of effects. For a logistic 

regression model, we can calculate odds ratios as e b ; the odds ratios are multi-
plied to obtain the odds of the outcome. Hence, effects of predictors are assumed 
to be multiplicative on the odds scale. For a Cox regression model, e b  is the hazard 
ratio; the assumption is that these hazard ratios can be multiplied on the hazard 
scale. 

 The scale is essential for consideration of additivity. If a treatment reduces risk from 
20 to 10% in one risk stratum, and from 10 to 5% in another risk stratum, the relative 
risk is 0.5 in both. The odds ratios are also quite similar (0.44 and 0.47, respectively). 
Hence, we could say that there is a consistent halving of the risk. But on an absolute 
scale, the benefit is clearly dependent on the risk (10% vs. 5% reduction). 237  

 The most common regression modelling procedure is to start model specification 
with main effects of predictors only. Some epidemiological text books advice to 
consider interactions early in the modelling process, with main effects included for 
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all variables that have a relevant interaction term. 234  Interactions between predictors 
can be considered by multiplicative terms of the form  x 1 ×  x 2 (two-way or first-order 
interactions), and  x 1 ×  x 2 ×  x 3 (three-way, or second-order interactions); higher-
order interactions are uncommon to consider for regression models. The interpretation 
of a two-way interaction is that the effect of one predictor depends on that of 
another predictor. The effect is different, depending on the value of another predictor. 
The effect of a predictor cannot be interpreted alone; we need to know the value of 
another predictor to interpret its effect. 

  12.1.1 Potential Interaction Terms to Consider 

 As for main effects, prior subject knowledge may help to guide us to select interac-
tion terms. For example, interaction terms that were identified in previous studies 
could be assessed. Clinical insights, e.g. on pathophysiology, are difficult to use, 
because using main effects in a model is assuming that predictors act in a multipli-
cative way on the risk scale (e.g. odds ratios and hazard ratios are multiplied). 
Reasoning why a certain combination of predictors would not act in an additive 
way on, e.g. the logodds scale, is quite difficult to imagine. Some researchers are 
motivated to study an interaction term when two predictors are correlated. But cor-
relation does not imply anything on the effects of predictors conditional on each 
other. Two predictors may not have any correlation, but have interacting effects. 
Some types of interactions have been suggested that warrant consideration in pre-
diction models (Table  12.1 ). 174       

  12.1.2 Interactions with Treatment 

 Various interactions with treatment can be considered. The benefit of treatment 
may depend on the severity of disease, with less relative benefit for those with less 
severe disease. The reverse may also be true, especially in oncology, where less 

 Table 12.1    Examples of interactions to consider in clinical prediction models (based on Harrell 174 )  

 Interaction  Effect 

 Severity of disease × treatment  Less benefit with less severe disease 
 Place × treatment  Benefit varies by treament centre 
 Place × predictors  Predictor effects vary by centre/region 
 Calender time × treatment  Learning curves for some treatments 
 Calender time × predictors  Increasing or decreasing impact of predictors 

over the years 
 Age × predictors  Older subjects less affected by risk factors; or 

more affected by certain types of disease 
 Follow-up time × predictors  Non-proportionality of survival effects, often 

a decreasing effect over time 
 Season × predictors  Seasonal effect of predictors 



relative benefit occurs for those with more severe disease. For example, surgery in 
oesophageal cancer can be curative, but only for patients without distant metastases. 
Note that absolute benefit will anyway depend on the severity of disease, even when 
the relative benefit is constant. For example, Califf modelled the absolute benefit of 
tPA treatment for acute myocardial infarction patients in the GUSTO-I trial in rela-
tion to predictors. Benefit depended strongly on the risk profile, while it might be 
assumed that the relative effect of treatment was constant. 63  In addition to severity 
of disease, a treatment effect may depend on the setting, e.g. the centre where a 
patient was treated. This is especially the case when specific skills and facilities are 
required for the treatment. For example, surgical mortality is known to vary widely 
between centres for some procedures, such as resection of oesophageal cancer. 
Similarly, some treatments have a learning curve, which can be modelled by includ-
ing a treatment × calender time interaction term, with calender time reflecting 
cumulative experience. 

 In randomized controlled trials, subgroup effects for treatment effects are often 
performed, e.g. whether treatment works better for older than younger patients. 
Such subgroup effects should be supported by an interaction test for difference in 
effect; not with one  p -value for older and one  p -value for younger patients. 339  Even 
when subgroup analyses are pre-specified, results should be cautiously interpreted 
because of multiple testing of the treatment effect. Multiple testing inflates the risk 
of false positive conclusions. Subgroup analyses are therefore best interpreted as 
secondary analyses which motivate further study. This is often not the case in 
current practice. 18   

  *12.1.3 Other Potential Interactions 

 Predictor effects may differ by place and time, which would limit their generalizability 
(see Part III). Basic issues to consider are whether predictor definitions were 
consistent across centres and during time. In some individual patient data analyses, 
predictor effects were however surprisingly consistent, even when definitions var-
ied over studies (e.g. studies in traumatic brain injury 271,277 ). As might be expected, 
interactions of predictors by place of treatment were small within the GUSTO-I 
trial, where data were collected in a highly standardized and controlled way. 405  

 Various aspects of “time” can interact with predictor effects: calender time (e.g. 
patients treated during years 1980–2005), age (e.g. 30–90 years), follow-up time 
(e.g. 0–10 years), and season (months January to December). The effects of predic-
tors may change over the years because of improvements in treatment, or changing 
definitions. The effects of risk factors for developing cardiovascular disease are 
known to decrease with aging. Predictors having less effect in the elderly might be 
explained as that older subjects have proven to survive with the risk factors. For 
survival analysis, predictors are usually assumed to have proportional effects dur-
ing follow-up, e.g. in the Cox proportional hazards model, but also in a Weibull 
model. Such proportionality of effects may not be tenable in the follow-up of 
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oncological patients, where relative risks of predictors for early events decrease 
with time, while others may increase. For example, non-proportional effects have 
been noted in breast cancer survival, with no effect of stage of disease after 10 years 
of follow-up. 308  The proportionality assumption is equivalent to assuming no inter-
action effects between predictors and follow-up time. 

 Furthermore, some predictors may have a different impact during the season, 
e.g. for infectious and respiratory diseases (Table  12.1 ). Other interactions may be 
relevant to consider in specific prediction problems. For example, sex-specific 
effects of predictors are commonly modelled in cardiovascular disease.  

  *12.1.4 Example: Time and Survival After Valve Replacement 

 A follow-up study was done spanning over 25 years for survival of patients after 
aortic valve replacement. 195  Various changes had taken place in case-mix between 
the first valve replacement (in 1967) and the latest replacement analysed (in 1994). 
During the 25+ years period, 1,449 mechanical valves were implanted. Overall 
early mortality (<30 days) was 5%, and was analysed with logistic regression. 
Overall survival rates at 5, 10, and 15 years were 80%, 63% and 49%, respectively. 
Poisson regression analysis was used to disentangle the effects of calender time, 
age, and follow-up. All three aspects of time appeared to be important. A substan-
tial drop in both early and late mortality was identified around the introduction of 
cardioplegia (in 1997), but no strong interactions with calender time were found. 
A changing, non-proportional effect was observed for several prognostic factors 
during follow-up. For example, increasing effects during follow-up were found for 
older age ( p <0.05), urgency (urgent operations and acute endocarditis) ( p <0.05), 
and ascending aorta surgery ( p =0.12). Early year of operation, male gender, and 
previous cardiac surgery (all  p <0.05) were more important during early years of 
follow-up. The effects of concomitant coronary bypass surgery and concomitant 
mitral valve surgery were more or less constant during follow-up. This study illus-
trated that a Poisson regression model could be used to disentangle different aspects 
of time in a survival analysis. This model was more easily to work with compared 
to the Cox regression model. 195    

  12.2  Selection, Estimation and Performance 
with Interaction Terms  

 In clinical prediction models with a typical number of predictors, say 5–10, the 
number of potential interactions is substantial. If interactions are considered, it has 
been suggested to first perform an overall interaction test. 174  We can also obtain 
partial overall  p -values, e.g. for all interactions with age. If this  p -value is low, we 
may consider proceeding with studying specific interactions for inclusion in the 



model. This approach limits the multiple testing problem, at the price of lower 
power for including specific interactions. An alternative is to perform interaction 
tests for individual combinations of predictors, but use a rather stringent  p -value, 
such as 0.01 for inclusion. We illustrate the problems with selection of interaction 
terms with a small subsample from the GUSTO-I study. 

  12.2.1 Example: Age Interactions in GUSTO-I 

 We study interaction with age in the relatively large subsample from GUSTO-I 
(sample5,  n =785, 52 deaths). We first fit all interactions, and then perform and 
overall test based on the Wald statistics. The overall test has a  p -value of 0.14; but 
the interaction AGE×HRT is statistically significant ( p =0.03, not adjusted for 
multiple testing). Some might be tempted to include this interaction in the model. 
It appears that tachycardia (HRT) has a stronger effect at higher age (a positive 
interaction). Equivalently, we can state that age has more effect in strength in 
those with tachycardia (Fig.  12.1 ).   

  12.2.2 Estimation of Interaction Terms 

 A first distinction that epidemiologists like to make is between “qualitative” and 
“quantitative” interactions. A qualitative interaction means that a predictor has an 
opposite effect in one group vs. another group of patients. Quantitative interaction 
means that the effect of a predictor is in the same direction, but different in strength 

  Fig. 12.1    Age by tachycardia interactions in a subsample of GUSTO-I ( n =785, 52 deaths), reveal-
ing a positive interaction       
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in one group than another group of patients (see e.g. Fig.  12.1 ). This distinction is 
especially important when we aim to interpret the effects of predictors; we will 
more be tempted to include a qualitative interaction than a quantitative interaction. 
For predictive performance, the distinction between qualitative and quantitative 
interaction is less relevant. 

 Another issue is that we can have somewhat counterintuitive effects of interactions. 
For example, Fig.  12.1  suggests that the presence of tachycardia is protective for 
30-day mortality at ages younger than 55. If we consider this implausible, we can 
code the interaction such that no effect of tachycardia is present below age 55 
(Fig.  12.2 ). Admittedly, the age cut-point of 55 years is data-driven. But the general 
idea is that we incorporate subject-specific knowledge to prevent incorporation of 
random noise in the model.  

 More generally, we should use a smart coding for interaction terms once we 
decide to include an interaction term in a model. This is especially useful when we 
want to readily obtain standard errors and confidence intervals for predictors in 
interaction with other predictors. 122  The approach is to test for interactions in mod-
els with standard multiplicative terms of the form  x 1 ×  x 2. But we can estimate 
effects with a smarter coding of the form  x 1 + (1 −  x 1) ×  x 2 +  x 1 ×  x 2 instead of  
x 1 +  x 2 +  x 1 ×  x 2. More details are on the book’s web page.  

  Fig. 12.2    Age by tachycardia relationships to 30-day mortality in a large subsample of GUSTO-I 
( n =785, 52 deaths). Panel ( a ) main effects only; panel ( b ) simple positive interaction; panel 
( c ) separate effects for (no) tachycardia over age 55; panel ( d ) one age effect and an additional 
effect of tachycardia over age 55 years. The difference between panel  c  and  d  is barely notable, 
but in panel  c , three age effects are estimated, while in panel  d  two age effects are estimated       
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  12.2.3 Better Prediction with Interaction Terms? 

 We may wonder we predict better with the AGE×HRT interaction (Table  12.2 ). We 
hereto test the models as shown in Fig.  12.2  in a large, independent part of GUSTO-I 
( n =20,318). Surprisingly, we find that a model with the AGE×HRT interaction 
(Fig.  12.2 b), performs worse than a model without this interaction term. The mod-
els without the counterintuitive effect of tachycardia below age 55 perform similar, 
both at apparent validation and at external validation in  n =20,318. The explanation 
for this remarkable finding is in Fig.  12.3 : the interaction between tachycardia and 
age was positive in the subsample, but negative in the independent validation part 
of GUSTO-I (less effect of tachycardia at older ages). This example illustrates that 
considering interaction in an unstructured way can damage predictive ability of a 
model.       

 Table 12.2    Performance of models developed in a subsample of GUSTO-I ( n =785) in an independent 
part of GUSTO-I ( n =20,318). The model with main effects contained eight dichotomized predictors  

 Model  df  Apparent ( n  = 785)  Validation ( n =20,318) 

 Main effects  8  0.828  0.805 
 Main effects+AGE×HRT interaction  9  0.831  0.796 
 One age effect <55, 2 age effects ≥ 55  9  0.832  0.798 
 HRT effect only for age >55 years  8  0.832  0.798 

  Fig. 12.3    AGE×HRT interactions in GUSTO-I.  Left panel : positive interaction in a subsample 
( n =785, 52 deaths,  p -value for interaction 0.10), negative interaction in an independent validation 
part of the GUSTO-I data set ( n =20,318, 1,428 deaths,  p -value for interaction 0.002). 95% confi-
dence intervals are given around each line       
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  12.2.4 Summary Points  

  •  An interaction term indicates that the effect of a predictor depends on values of 
another predictor  

 •  Interaction terms to consider in a prediction model depend on the context, but 
some types of interactions may warrant specific consideration  

 •  For better interpretation, we may use a smart coding of interactions, and elimi-
nate counterintuitive effects, e.g. that a predictor becomes protective for some 
patients  

 •  The performance of a prediction model does not necessarily increase by includ-
ing an interaction term  

 •  Pre-specification of some interaction terms for a model may be preferable to 
exploratory determination of which terms to include      

  12.3 Non-linearity in Multivariable Analysis  

 We discussed the assessment of continuous predictor variables in Chap. 9 for the 
univariate case, where each predictor is considered separately. Harrell advocates 
to use restricted cubic spline functions to define transformations of continuous 
variables. 174,177  An RCS function consists of pieced-together cubic splines (con-
taining  x 3 terms) that are restricted to be linear in the tails. These functions have 
many favourable properties, such as appropriate flexibility combined with stabil-
ity at the tails of the function. We can also consider multivariable modelling with 
fractional polynomials, 367  and with smoothing spline transformations (in multi-
variable generalized additive models (“GAM”), Table   12.3 ). The flexibility of a 
smoothing spline transformation in a GAM is determined by penalty terms, 
which relate to the effective degrees of freedom (df). There are presently two 
variants of GAM available with respect to choosing the effective df in a multi-
variable context. One variant is that the effective df are set by the analyst. 180  
Alternatively, a generalized cross-validation (GCV) procedure can be used to 
define statistically optimal transformations for multiple continuous predictors in 
a GAM. 490  We discuss these approaches in more detail below.     

  12.3.1 Multivariable Restricted Cubic Splines (RCS) 

 An RCS requires the specification of knots, which can well be based on the distri-
bution of the predictor variable. 174  The key issue is the choice of the number of 
knots: 5 knots implies a function with 4 df, 4 knots 3 df, and 3 knots 2 df. Although 
5 knots are sufficient to capture many non-linear patterns, it may not be wise to 
include 5 knots for each continuous predictor in a multivariable model. Too much 



flexibility would lead to overfitting. One strategy is to define a priori how much 
flexibility will be allowed for each predictor, i.e. how many df will be spent. In 
smaller data sets, we may for example choose to use only linear terms or splines 
with 3 knots (2 df), especially if no strong prior information suggests that a non-
linear function is necessary. 174  Alternatively, we might examine different RCS 
transformations (5, 4, 3 knots) in univariate and/or multivariable analysis, and 
choose an appropriate number of knots for each predictor based on the findings in 
the data. It might be reasonable to choose the complexity of non-linear functions 
based on the c2 statistic of each predictor, with more flexibility for stronger 
predictors.  

  12.3.2 Multivariable Fractional Polynomials (FP) 

 As discussed in Chap. 9, fractional polynomials are formulated as a power transfor-
mation of a predictor  x :  x   p  , where  p  is chosen from the set −2, −1, −0.5, 0, 0.5, 1, 
2, 3. This defines 8 transformations, including inverse ( x  −1 ), log ( x  0 ), square root 
( x  0.5 ), linear ( x  1 ), squared ( x  2 ) and cubic transformations ( x  3 ). In addition to these 8 
FP1 functions, 28 FP2 functions can be considered of the form  x    p   1  +  x    p   2 ; when 
 p 1= p 2 one defines another 8 FP2 functions as  x   p   +  x   p   log  x , for a total of 36 FP2 
functions. 367  FP1 and FP2 have 2 and 4 df, respectively. 

 Estimation algorithms have been developed for various software packages, 
including R. 366  The mfp algorithm applies a special type of backward stepwise 
selection procedure for the determination of reasonable functional forms for each 
continuous predictor. The algorithm starts with a full model including all predic-
tors, with all continuous predictors in linear form. The predictors are considered in 
order of decreasing statistical significance, such that relatively important predictors 
are considered before unimportant ones. 

 Table 12.3    Approaches to non-linearity in multivariable clinical prediction models  

 Approach  Characteristic  Multivariable strategy  R implementation 

 Restricted cubic 
splines 

 Cubic splines, with 
restriction in shape 
at the ends of the 
predictor 
distribution 

 Keep complexity as defined 
a priori or based on 
findings in univariate/
multivariable analysis 

 rcs in Design 
package 

 Fractional 
polynomials 

 Combine one or two 
polynomials 

 Search iteratively for 
optimal transformations 

 fp and mfp in 
mfp package 

 Splines in GAM  Spline functions with 
smoothing depending 
on effective degrees 
of freedom 

 Degrees of freedom set by 
analyst or from a 
generalized cross-
validation (GCV) 
procedure 

 gam and mgcv 
package 
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 For a particular continuous predictor, we may search within the 44 FP2 trans-
formations for a best fitting function. The best transformation is compared to 
deleting the predictor. This procedure uses 4 df to test for inclusion of the 
continuous predictor, as having “any effect.” If this test is significant, we may 
continue with a test for non-linearity: FP2 vs. linear, using 3 df. Finally, we tests 
an FP2 vs. FP1 transformation as a test of a more complex function against 
simpler one (2 df test for “simplification”). The functional form for this predictor 
is kept, and the process is repeated for each other predictor. The first iteration 
concludes when all the variables have been processed. The next cycle is similar, 
except that the functional forms from the initial cycle are retained for all variables 
excepting the one currently being processed. Updating of FP functions and 
selection of variables continues until the functions and variables included in the 
model do not change. 367  

 This test procedure aims to preserve the overall type I error. The price is that we 
are slightly conservative if the true predictor–outcome relationship is linear, i.e. a 
straight line. This is because in step 1, we test for overall effect with 4 df, leading 
to lower statistical significance in case of a true linear relationship.  

  12.3.3 Multivariable Splines in GAM 

 In a GAM, flexible, smooth functions are defined for continuous predictors. The 
smooth functions can be defined by splines or other “basis functions.” 490  To avoid 
overfitting we statistically penalize lack of smoothness (“wiggliness”) using a 
smoothing parameter. The penalization reduces the effective degrees of freedom 
used by each continuous predictor. The optimal smoothness can be determined with 
prediction error criteria, e.g. in a Generalized cross-validation (GCV) procedure. 
Further details are provided by Wood 490  and Hastie. 181  

 In multivariable modelling, splines in a GAM may well serve as a reference 
standard for comparison of simpler, parametric transformations, such as FP (or 
RCS) functions. 353  We compare several approaches in a case study below. In prac-
tice, one would not have to perform all of these transformations but choose one 
approach that one is familiar with.   

  *12.4 Example: Non-Linearity in Testicular Cancer Case Study  

 We aim to predict the presence of benign tissue only (“necrosis”) in patients treated 
with chemotherapy for testicular cancer. We consider six predictors, of which three 
are binary (Teratoma, pre-chemotherapy elevated AFP, pre-chemotherapy elevated 
HCG), and three continuous (pre-chemotherapy LDH, reduction in mass size dur-
ing chemotherapy, post-chemotherapy size). The LDH values were standardized by 
dividing by the upper limit of the local upper normal value (“LDHst” variable). 



 In initial univariate analyses, we used RCS functions to study non-linearity in 
the effects of the continuous predictors. Subsequently, we used simple parametric 
transformations, mainly based on visual assessment of the univariate RCS func-
tions. 425  The chosen transformations were logarithmic for LDHst; linear for reduction 
in size; and square root for post-chemotherapy size (Fig.  12.4 ). We now explore the 
transformations chosen with other modelling strategies, including fractional poly-
nomials and smoothing splines in generalized additive models.  

 We compare RCS, FP, and GAM functions with two bendings: FP2 transforma-
tions, RCS with 4 knots (3 df), and GAM splines with 3 effective df. For LDH, the 
transformations vary to quite some extent. The relationship of LDH to necrosis is 
rather different for a logarithmic transformation compared to other transformations. 
A simple linear term might also have been reasonable. This is supported by the FP 
procedure (Table   12.4 ). LDH has an effect ( p -value for “any effect” = 0.02), but 
non-linearity was non-significant ( p =0.48). For postchemotherapy size, the RCS, 
FP2, and GAM transformations agree much better visually (Fig.  12.4 ), and the 
square root transformation looks reasonable. The FP procedure indicates significant 
non-linearity ( p =0.0002), and non-significant improvement by an FP2 function 
over an FP1 function ( p =0.46). The chosen FP1 function is logarithmic rather than 
the square root. Finally, reduction in mass size seems to be fit adequately with a 
linear term. The RCS, FP2, and GAM transformations fluctuate around this straight 
line, with the most wiggly pattern for the GAM. The FP procedure confirms that 
there is no reason to include non-linear terms ( p =0.64). The R code for these analy-
ses is available at the book’s web site.     

 Fractional polynomials were considered in univariate logistic regression analysis, 
and subsequently in three multivariable logistic regression models. A full model 
included three binary predictors (teratoma (yes/no, 1 df), elevated AFP (yes/no, 
1 df), elevated HCG (yes/no, 1 df)), and three continuous predictors with FP2 
functions (LDH standardized, reduction in size, post-chemotherapy size). 

  Fig. 12.4    Non-linearity in univariate analysis of LDH, post-chemotherapy size, and reduction in 
mass size. Curves are shown for a parametric approximation (log, sqrt, linear), restricted cubic 
spline functions with 4 knots (3 df), a fractional polynomial (4 df), and a generalized additive 
model with spline smoother (3 df). The distributions of values are shown at the top of the graphs       
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  *12.4.1 Details of Multivariable FP and GAM Analyses 

 Multivariable fractional polynomials were fitted without selection (“full model,” 
3 df for dichotomous + 3×4 = 12 df for continuous predictors, in total 15 df), and 
with a variant of a backward stepwise selection algorithm (Table  12.4 ). The 
FP2 transformations were log(LDHst)+LDHst 3 ; 1/reduction+1/sqrt(reduction); and 
sqrt(postsize) + sqrt(postsize)×log(postsize). A multivariable FP procedure with 
 p <0.05 for selection led to a model with linear terms for the three continuous pre-
dictors and three binary predictors (each of the six predictors  p <0.01). All tests for 
non-linearity were non-significant (Table  12.4 ). Selection with  p <0.20 led to a lin-
ear term for LDHst, 1/reduction, and log(postsize) in FP1 transformations. Post-
chemotherapy size and reduction in size had  p -values for non-linearity of 0.03 and 
0.08, but FP2 transformations were not much better than FP1 transformations 
( p -values 0.46 and 0.27 respectively, Table  12.4 ).  

  *12.4.2 GAM in Univariate and Multivariable Analysis 

 For comparison, we examine the smooth functions selected as optimal with a 
GCV procedure (Fig  12.5 ). In univariate analysis, a (near) linear term is optimal 
for LDH and reduction in size (1.1 and 1 effective df). Post-chemotherapy size 

 Table 12.4    Fractional polynomial analysis of three continuous predictors in the testicular cancer 
data set ( n =544)  

 Predictor 

  P -value “any 
effect” (FP2 
vs. no effect, 
4 df) 

  P -value 
“non-linear-
ity” (FP2 vs. 
linear, 3 df) 

  P -value 
“FP2” 
(FP2 vs. 
FP1, 2 df)  FP1  FP2 

 Univariate  LDH (stand-
ardized) 

 0.021  0.48  0.59  2  −2, 3 
 Full model  <0.0001  0.18  0.73  0 (=log)   0 (=log), 3  
 Stepwise 

 p <0.05 
 0.0003  0.46  0.62  0.5  0 (=log), 3 

 Stepwise 
 p <0.20 

 <0.0001  0.28  0.66  0 (=log)  0 (=log), 3 

 Univariate  Post-chemo-
therapy 
size (mm) 

 <0.0001  0.0002  0.46  0 (=log)  0.5, 1 
 Full model  0.0004  0.004  0.45  0 (=log)   0.5, 0.5  
 Stepwise 

 p <0.05 
 0.012  0.086  0.30  0 (=log)  −0.5, −0.5 

 Stepwise 
 p <0.20 

 0.0005  0.034  0.46   0 (=log)   −0.5, −0.5 

 Univariate 
 Full model 
 Stepwise 

 p <0.05 

 Reduction in 
size (%) 

 <0.0001  0.64  0.63  0 (=log)  −1, 3 
 0.0005  0.06  0.16  −1   −1, −0.5  
 0.0002  0.64  0.78  −1  −1, 3 

 Stepwise 
 p <0.20 

 0.0009  0.08  0.27   −1   −1. −0.5 



  Fig. 12.5    Generalized additive models with optimal smoothing spline transformations according to a 
generalized cross-validation procedure in the testicular cancer example ( n =544).  Top row : optimal 
transformation in univariate logistic regression analysis;  bottom row : multivariable logistic regression 
analysis with six predictors. The degrees of freedom of the optimal smoothing spline transformation 
are shown in each  y -axis label. The distribution of values if shown at the bottom of the graphs       
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is modelled with a non-linear function using 3.35 effective df. In multivariable 
analyses, non-linear functions are used for all three continuous predictors, using 
2.85, 3.85, and 4.63 effective df for LDHst, post-chemotherapy size and reduc-
tion, respectively (Fig.  12.5 ). Hence, more complex transformations were chosen 
in multivariable than in univariate analyses. The multivariable function for LDH 
looks much like a log transformation, as chosen previously. For post-chemo-
therapy size, we note an implausible increase in logodds of necrosis with very 
large mass sizes, and for reduction in size we note a wiggly shape between 20% 
and 100%. Hence, the smooth functions might not be smooth enough from a 
pathophysiological perspective. Further external validation might indicate 
whether the chosen “optimal” transformations are merely examples of 
overfitting.   

  *12.4.3 Predictive Performance 

 Finally, we study the predictive performance of the alternative non-linear transfor-
mations (Table  12.5 ). With linear terms only, we use 6 df, and achieve a model c2 
of 205 (apparent  R  2  41.9%, internally validated  R  2  40.3%). We find the same 
model by applying a multivariable FP procedure with  p <0.05 for selection; in fact 
we used more than 6 degrees of freedom in this approach, since we allowed for 
non-linear terms to be included in the model. If we fit a full FP2 model without 
selection, we use 15 df, and achieve a model c2 of 222. The increase by 17 (from 
205 to 222) with 9 df is of borderline statistical significance (overall c2 test, 
 p =0.049). If we apply a more liberal  p -value for non-linearity, we use two FP1 
transformations (1/reduction and log(postsize)) for a model c2 of 213. Using RCS 
functions with each 4 knots leads to a better fit than the FP2 functions (231 vs. 
222). The increase in model LR (from 205 to 231, +26) is statistically significant 
(overall c2 test, 6 df,  p <0.001). Our previous visual approximation of non-linearity 

 Table 12.5    Logistic Regression models with alternative codings of three continuous predictors  

 Strategy  Model  df  Model c 2 

 Assume linearity (same as 
FP2, bw p<0.05 selection) 

 All linear  3+3  205 

 FP2, no selection  Full FP2  3+12  222 
 FP2, bw p<0.20 selection  LDHst, 1/reduction, 

log(postsize) 
 3+>3  213 

 RCS, no selection  3 RCS functions, each 4 knots  3+9  231 
 Visual approximation  log(LDHst) + reduction + 

sqrt(postsize) 
 3+>3  212 

 GAM, pre-specify df  3 smooth functions, each 3 df  3+9  232 
 GAM, GCV  3 optimally smoothed 

functions 
 3+(2.8+4.6+3.9)  240 



in LDH and postsize led to a similar fit as the FP1 functions (model c2 212 vs. 
213). Smoothing splines were similar in performance as the RCS model when 9 df 
were spent on the continuous predictors (model c2 232 vs. 231). With “optimal” 
transformations (GAM, GCV), more effective degrees of freedom were spent, and 
the highest model c2 or model LR was achieved (240). All model LRs indicate 
apparent performance. Rigorous internal validation, including all model selection 
steps, would be desired to indicate any true increase in performance, after correc-
tion for optimism. If inclusion of all modelling decisions is impossible, validation 
in a fully independent validation set may be required (split-sample, or external 
validation, see Chap. 17).      

  *12.4.4  R code for Non-Linear Modelling  

    # RCS: multivariable logistic regression with 3 rcs functions,
# each 4 knots   
   library(Hmisc)   
   library(Design)   
   lrm(NEC  ~  Teratoma  +  Pre.AFP  +  Pre.HCG  +  rcs(LDHst, 4)+       

rcs(Post.size, 4) + rcs(Reduction, 4), data=n544)   
   # FP: multivariable fractional polynomial   
   library(mfp)   
   mfp(NEC  ~  Teratoma  +  Pre.AFP+Pre.HCG  +  fp(LDHst)  +  

fp(Post.size)  +  fp(Reduction), alpha=1, data=n544)   
   # GAM: multivariable gam, 3 effective df for each continuous predictor   
   library(gam)   
   gam(NEC  ~   Teratoma+Pre.AFP  +  Pre.HCG  +  s(LDHst, 3)  +  s(Post.size, 3)  +  

s(Reduction, 3), data=n544, family=binomial)   
   # multivariable gam, optimal effective df for each continuous predictor   
   # based on generalized cross-validation (GCV)   
   library(mgcv)   
   gam (NEC  ~   Teratoma  +  Pre.AFP+Pre.HCG  +  s(LDHst)  +  s(Post.size)  +  

s(Reduction), data=n544, family=binomial)       

  12.5 Concluding Remarks  

 On the one hand, one may see the additivity and linearity assumptions as essential 
aspects of a regression model. Hence one might argue that we should assess these 
assumptions thoroughly. When we are interested in the effect of a specific predic-
tor, this may make sense. On the other hand, a thorough assessment of assumptions 
increases the risk of overfitting if we are primarily interested in obtaining predic-
tions from a model. We will be tempted to adapt the model specification based on 
findings in the data, i.e. extend the model with interaction terms and/or non-linear 
terms. The price of striving for such perfection is that we may end up with a model 
that performs worse for future patients than a parsimonious model without interac-
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tion terms or non-linear terms. Instead, we might strive for a “wrong, but useful” 
model. 51  Such a model should provide well-calibrated and discriminating predic-
tions, despite possibly violating some underlying model assumptions. 

 In the examples in this chapter, model performance did not increase impressively. 
Of course, results may be different in other situations, but strong qualitative inter-
action or U-shaped non-linearity may be relatively rare. In general, it may be 
sobering to assess the increase in predictive performance by inclusion of interaction 
terms and non-linear terms; this is often quite modest in medical examples. 

 Note that prediction modelling techniques deal with interactions differently. 
A procedure such as Naïve Bayes estimation uses univariate effects of predictors in 
a multivariable prediction context; additivity is assumed and interactions are not 
studied. In contrast, tree models assume high-order interaction by default. Similarly, 
neural networks assume high-order interactions, allowing for their flexibility to fit 
specific patterns in a data set. To explore interactions we might hence also use a tree 
model, since it assumes interaction by default. Interactions that stand out could 
subsequently be considered in a regression model, and assessed for their signifi-
cance. Shrinkage or penalized estimation may be particularly valuable to reduce 
interaction effects that were identified among a large set of potential interactions. 
Penalized ML is discussed in more detail in the next chapter. 

  12.5.1 Recommendations 

 Several measures can be taken to prevent the overfitting that may occur by consid-
ering additivity and linearity assumptions. First we should balance the number of 
interaction and non-linear terms to be considered with the effective sample size in 
the analysis (Table  12.6 ). We might only consider interactions in studies with rela-
tively large sample sizes, i.e. many events compared to the number of terms con-
sidered. In smaller data sets, we may simply have to rely on the additivity 
assumption to be reasonable. We can also say that we estimate average (or “mar-
ginal”) effects of predictors across subgroups; we know that we will never be able 
to exclude that we missed a relevant high-order interaction. For the linearity 
assumption, we might consider non-linear terms only for predictors with a pre-
sumed strong, and likely non-linear, effect. If previous studies have used a non-lin-
ear transformation for a predictor, we could also consider this transformation. 
Subject knowledge should also support the choice for a transformation; plotting the 
effect of a transformed predictor is essential (e.g. Figs.  12.1 – 12.5 ).     

 The second measure to prevent overfitting is to use overall tests, rather than 
focus on separate tests for interaction and non-linear terms. Note that based on an 
overall test, we would not have continued estimation of interaction of age and tach-
yacardia in the GUSTO-I subsample (Sect.  12.2 ). We should also note that interac-
tion terms make life a bit more difficult for model presentation, arguing against 
their inclusion in a model unless their relevance is substantial for the specific pre-
diction problem. 



 Third, an extension of this overall testing approach is to compare the perform-
ance of a flexible model to a simple model without interaction and non-linear 
effects (e.g. Table  12.5 ). The flexible model may for example be a neural network, 
or a GAM. Both the simple model and the flexible model should be validated, e.g. 
with bootstrapping, to see the validated rather than apparent improvement that 
might be achieved with inclusion of interaction and non-linear terms. 

 Finally, we may use shrinkage techniques to reduce the regression coefficients 
of selected interaction or non-linear terms. Some extra shrinkage may try to com-
pensate for the “testimation bias” (see Chaps. 5 and 11), which is expected when 
terms were included in a model because they were relatively large. 174  The search for 
interactions and non-linear terms makes the effective degrees of freedom of a flex-
ible model larger than the final degrees of freedom of a fitted model. This is recog-
nized by FP transformations, where FP1 is tested with 2 df, and FP2 with 4 df. It is 
not included in  p -values for optimal GAM transformations (according to GCV).  P -
values are then only approximate as a result of ignoring uncertainty in the model 
specification (e.g. searching for a smoothing parameter in GAM).   

 Table 12.6    Approaches to limit overfitting by assessing additivity and linearity assumptions  

 Approach  Description 

 Limited number of interaction/non-linear 
terms 

 Consider interaction term that are a priori 
plausible (Table  12.1 ); Consider non-linear 
terms only for predictors with a presumed 
strong, and likely non-linear, effect 

 Overall testing  Perform overall tests per interacting predictor 
(e.g. all age interactions) 

 Compare flexible vs. simple model  Compare the validated performance of a flex-
ible model (e.g. including interactions and 
non-linearities) with a simple model with-
out interaction and assuming linearity 

 Extra shrinkage of interaction/non-linear terms  Use a stronger shrinkage factor (<1) or more 
penalty in a penalized maximum likeli-
hood procedure for interaction and non-
linear terms 
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  Questions   

   12.1    Additivity and interaction
   (a)    Explain the additivity assumption in your own words, and the relevance of 

the scale for assessing additivity?  
   (b)    Explain interaction terms in your own words?  
   (c)    How many interaction terms can be assessed in a model with ten binary 

predictors?  
   (d)    How many of these would be expected to be statistically significant at the 

 p <0.05 level?      

   12.2    Assumptions and model performance
   (a)    Why would you consider testing of the additivity assumption with interac-

tion terms?  
   (b)    What key problem can occur when interactions and non-linearities are 

included in the model? How can this be prevented?  
   (c)    Model performance increases with more flexible non-linear functions. 

In Table  12.5 , the maximum Model LR is 240. Is this model hence prefered 
for predicting outcome, or do you think other considerations are also 
relevant?             



   Chapter 13   
 Modern Estimation Methods        

  Background   In this chapter we discuss methods to estimate biased regression 
coefficients, which lead to better predictions than those obtained with traditional 
methods. These modern estimation methods include uniform shrinkage methods 
(heuristic or bootstrap based) and penalized maximum likelihood methods (with 
various forms of penalty, including the “Lasso”). We illustrate the application of 
these methods with a data set of 785 patients from the GUSTO-I trial. It appears 
that rather advanced procedures can now readily be performed with modern 
software.    

  13.1 Predictions from Regression and Other Models  

 In linear regression, we aim to minimize the mean squared error, which is calcu-
lated as the square distance between observed outcome  Y  and prediction   Ŷ  . The 
prediction    Ŷ   can be based on a single predictor, e.g. age predicts blood pressure, or 
a multivariable combination of predictors, e.g. age, sex, smoking, and salt intake 
are used to predict blood pressure. As discussed in previous chapters, we can 
improve predictions from multivariable models for future subjects if the predictions 
are shrunk towards the average. Statistically speaking, we can reduce the mean 
squared error for future subjects by using slightly biased regression coefficients. 81,459  
This is because predictions will be slightly biased, but have lower variance. The 
challenge is to find the optimal balance between increasing bias and decreasing 
variance. This “bias–variance” trade-off underlies the problem of overfitting, and is 
essential in all predictive modelling (Chap. 5). 

 In generalized linear regression models, such as logistic or Cox models, maxi-
mum likelihood methods are the classical methods for estimation of regression 
coefficients. Similar to linear regression, the estimated coefficients can be consid-
ered as optimal for the sample under study. But again, introducing some bias in the 
coefficients may lead to better predictions for future subjects. 

 Neural networks are examples of generalized non-linear models. Their estima-
tion can be done with various techniques. One popular estimation technique is 
minimizing the Kullback–Leibler divergence, which can be considered as a 
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distance between two probability densities. One density is provided by the observed 
outcomes, another by the estimates from the model. Minimizing the Kullback–
Leibler divergence is similar to maximizing the likelihood in a generalized linear 
regression model. Neural networks are quite flexible, and will hence be severely 
overfitted when they are fully optimized to fit the data. Therefore a common proce-
dure is “early stopping”: the model is not fully trained for maximum fit to the data, 
but training is stopped at the point where predictive ability is expected to be best. 
Commonly, the optimal number of iterations to train the model is determined from 
a cross-validation procedure, where the model is trained on part of the data and 
tested on an independent part. The optimal number of iterations is then used in the 
full training part to develop the neural network.  

  13.2 Shrinkage  

 Shrinkage of regression coefficients towards zero is one way to improve predictions 
from a regression model. 81,459  We label this method  shrinkage after estimation,  since 
the shrinkage is applied to regression coefficients after the model has been fitted 
initially with traditional methods. 

 Penalized estimation is an alternative method, which uses a penalty factor in the 
estimation of the regression coefficients: Larger values of regression coefficients 
are penalized in the fitting procedure, leading to smaller values being preferred. We 
refer to this method as  shrinkage during estimation.  Although one single penalty 
factor is used, the degree of shrinkage varies by predictor. A variant of penalized 
estimation is the Lasso (“least absolute shrinkage and selection operator”). 434  This 
approach penalizes the sum of the absolute values of the regression coefficients. 
This leads to some coefficients becoming zero. A predictor with a coefficient of 
zero can be excluded from the model, which means that the Lasso implies  shrink-
age for selection  (Table  13.1 ).     

 Table 13.1    Characteristics of three shrinkage methods  

 Name  Label  Characteristics 

 Uniform shrinkage  Shrinkage after 
estimation 

 Application of a shrinkage factor to the regression 
coefficients. The shrinkage factor is determined 
with a heuristic formula, or by bootstrapping 

 Penalized maximum 
likelihood 

 Shrinkage during 
estimation 

 Regression coefficients are estimated with penalized 
maximum likelihood. The optimal penalty factor 
can be determined by AIC 

 Lasso  Shrinkage for 
selection 

 Regression coefficients are estimated with penalized 
maximum likelihood with a restriction on the 
sum of the coefficients (“Lasso”). The optimal 
penalty factor can be determined by a cross-
validation procedure, or AIC 



  13.2.1 Uniform Shrinkage 

 A simple and straightforward approach is to apply a uniform (or  linear ) shrinkage 
factor for the regression coefficients. Shrunk regression coefficients are calculated 
as  s  ×  b  

i
 , where  s  is a uniform shrinkage factor, and  b  

i
  are the estimated regression 

coefficients. The shrinkage factor  s  may be based on a heuristic formula 81,459 :

  s = (model χ2 – df)/model χ2,   

 where model χ 2  is the likelihood ratio χ 2  of the fitted model (i.e., the difference in -
2log likelihood between the model with and without predictors), and df indicates 
the degrees of freedom of the number of candidate predictors considered for the 
model. The required shrinkage increases when larger numbers of predictors are 
considered (more df), or when the sample size is smaller (smaller model χ 2 ). 

 We can also calculate the uniform shrinkage factor  s  with bootstrapping. 459,174  

    1.    Take a random bootstrap sample of the same size as the original sample, drawn 
with replacement.  

   2.    Select the predictors according to the selection procedure and estimate the logis-
tic regression coefficients in the bootstrap sample.  

   3.    Calculate the value of the linear predictor for each patient in the original sample. 
The linear predictor is the linear combination of the regression coefficients as 
estimated in the bootstrap sample with the values of the predictors in the original 
sample.  

   4.    Estimate the slope of the linear predictor, using the outcomes of the patients in 
the original sample.     

 Steps 1–4 need to be repeated many times to obtain a stable estimate of the shrinkage 
factor as the mean of the slopes in step 4. For example, we may use 200 bootstrap 
samples, although a fully stable estimate may require 500 bootstrap repetitions. 401  
The shrinkage factor may take values between 0 and 1.  

  *13.2.2 Uniform Shrinkage in GUSTO-1 

 As an example, we consider sample4 from the GUSTO-I study of patients with an 
acute myocardial infarction (see Chap. 22). The data set consists of 785 patients, 
of whom 52 had died by 30 days. We consider 2 models for prediction of 30-
day mortality after an acute MI: an 8 predictor model, and a 17 predictor model. 
For estimation of the heuristic shrinkage factor, we need the model χ 2  of each 
model. These were 62.6 and 73.5. The heuristic shrinkage estimate  s  was hence 
(62.6 − 8) / 62.6 = 0.87. The larger model required more shrinkage, with
  s  = (73.5 − 17)/73.5 = 0.77. 

 Next, a bootstrap procedure was performance with 200 replications. This 
resulted in identical estimates of the slope of the linear predictor (0.87 and 0.77, 
respectively). The regression coefficients are shown in Table  13.2 .       
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  13.3 Penalized Estimation 

 Penalized maximum likelihood estimation is a generalization of the ridge regres-
sion method, which can be used to obtain more stable parameters for linear regression 
models. 102  Instead of maximizing the log likelihood in generalized linear models, 
a penalized version of the log likelihood is maximized, in which a penalty factor 
l is used:

  PML = log L - 0.5 l Σ (s
i
 b

i
)2,   

 where PML is penalized maximum likelihood,  L  is the maximum likelihood of the 
fitted model, l a penalty factor, b the estimated regression coefficient for each predic-
tor  i  in the model, and  s  

i
  is a scaling factor for each b 

i
  to make  s  

i
  b 

i
  unitless. 174,468  It is 

convenient to use the standard deviation of each predictor for the scaling factor  s  
i
 . 174  

  13.3.1 Penalized Maximum Likelihood Estimation 

 The PML can also be formulated as PML = log  L  − 0.5 l b¢  P  b, where l is a penalty 
factor, b¢ denotes the transpose of the vector of estimated regression coefficients 
(excluding the intercept), and  P  is a non-negative, symmetric penalty matrix. 
For penalized estimation, the diagonal of  P  consists of the variances of the predictors 
and all other values of  P  are set to 0. 174  If  P  is defined as cov(b) −1  (i.e., the inverse 
of the covariance matrix of the regression coefficients b), shrinkage of the regression 
coefficients is achieved, which is identical to the use of a uniform shrinkage factor 
as determined by leave-one out cross-validation. 468  If  P  is equal to the matrix of 
second derivatives of the likelihood function, PML is similar to applying a uniform 
shrinkage factor  s  = 1/(1 + l). 

 The main problem in penalized estimation is how to choose the optimal penalty 
factor l 

opt
 . Maximizing a modified Akaike’s Information Criterion (AIC) is an 

 Table 13.2    Logistic regression coefficients estimated with standard maximum likelihood 
(“original”), uniform shrinkage, penalized maximum likelihood, and the Lasso, for sample4 (795 
patients with acute MI, 52 deaths by 30 days)  

 Predictor  Original  Shrunk  Penalized  Lasso 

 SHO  1.12  0.97  1.17  1.09 
 A65  1.49  1.30  1.21  1.36 
 HIG  0.84  0.74  0.72  0.73 
 DIA  0.43  0.38  0.36  0.35 
 HYP  0.99  0.86  0.83  0.87 
 HRT  0.96  0.84  0.84  0.87 
 TTR  0.59  0.51  0.49  0.46 
 SEX  0.07  0.06  0.11  0.00 
 Shrinkage parameter  NA   s =0.87  penalty=8   s =0.88 
 Effective shrinkage  1  0.87  0.81–1.49  0–0.97 



efficient method. 149  Traditionally, the AIC is defined as −2 log  L  + 2 p , where  L  is 
the maximum likelihood of the fitted model and  p  is the degrees of freedom equal 
to the number of fitted predictors. A more convenient formulation is as

  AIC
model

 = model c2 - 2p,   

 where model c 2  is the likelihood ratio c 2  of the fitted model (i.e., the difference in 
−2 log likelihood between the model with and without predictors). For penalized 
maximum likelihood estimation we use a modified AIC, defined as

  AIC
penalized

 = model c2
penalized

 - 2 df
effective

,   

 where model   c2
penalized

   refers to likelihood ratio c 2  of the penalized model, and df 
effec-

tive
  is the degrees of freedom after penalizing the fitted predictors. In standard logis-

tic regression, the degrees of freedom are equal to the number of predictors in the 
model; the higher the number of predictors, the higher the degrees of freedom and 
the more likely the model is overfitted. Because of the penalization, the degrees of 
freedom effectively used in penalized estimation are lower than the actual number 
of predictors. More technically, df 

effective
  is derived from the reduction in variance of 

penalized parameter estimates in comparison to the variance of ordinary parameter 
estimates 149 :

  df
effective

 = trace [I(b) cov(b)],   

 where  I (b) is the information matrix as computed without the penalty function, and 
cov(b) is the covariance matrix as computed by inverting the information matrix 
calculated with the penalty function. If both the  I (b) and cov(b) are estimated without 
penalty,  I (b) cov(b) is the identity matrix and trace [ I (b)cov(b)] is equal to the 
number of estimated parameters in the model (excluding the intercept). With a 
positive penalty function, the cov(b) becomes smaller and the effective degrees of 
freedom decrease. With higher penalty values, the model   χ2

penalized
   decreases (poorer 

fit to the data), but so does the df 
effective

 . The maximum of AIC 
penalized

  (model    χ2
penalized

 – 2 
df

effective
  ) is sought by varying the values of l in a trial and error process. For exam-

ple, we may vary l over a grid such as 0, 1, 2, 4, 6, 8, 12, 16, 24, 32, 48. Larger 
values of l are required for more complex models and larger data sets. The optimal 
penalty factor l 

opt
  is the value of l that maximizes AIC 

penalized
 . With this optimal l, 

the final model is estimated. An alternative is to use cross-validation or bootstrap-
ping to find the optimal l, which is more computer intensive compared with finding 
the maximum of AIC 

penalized
 .  

  *13.3.2 Penalized ML in Sample4 

 We searched for a penalty factor l over a grid using the  pentrace  function. The 
fitting for the 8 predictor model is as follows:
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    # logistic regression model with 8 predictors   
   full8 <- lrm (DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, data=gustos)   
   # determine performance over range of penalties   
   p8 <- pentrace(full8, 0:20)   
   # fit penalized model   
   full8.pen <- update(full8, penalty=p8$penalty)     

 The AIC 
penalized

  is calculated with the effective degrees of freedom, and is plotted in 
Fig.  13.1 . The optimum penalty factors were 8 for the 8 predictor model, and 24 for 
the 17 predictor model. The effective degrees of freedom were 6.9 (instead of 8) 
and 10.8. (instead of 17). Note that the AIC 

penalized
  was worse for the 17 predictor 

model compared with the 8 predictor model, over all penalties considered. The 17 
predictor model was hence actually overfitted with only 52 events in the data set.  

 For comparison we also performed a bootstrap procedure to find the optimal 
penalty factor λ. We created logistic regression models with a range of penalty 
factors in bootstrap samples drawn with replacement. The models were tested in 
the original sample. A linear predictor was calculated with the penalized coef-
ficients from the bootstrap sample and the predictor values in the original sample: 
lp =  X  

original
  %×% coef 

penalized, bootstrap
 . Various performance measures can be calculated 

for this linear predictor. We focus on the slope of the linear predictor, since the 
primary objective of shrinkage methods is to improve calibration. As expected, 
the slope is below 1 when no shrinkage is applied (Fig.  13.2 ). It appears that the 
slope is 1 if we apply a penalty factor of 7 for the 8 predictor model, and 12 for 
the 17 predictor model. These values are slightly lower than those obtained from 

  Fig. 13.1    AIC 
penalized

  in relation to the penalty factor. Optimum values are 8 and 24 for the 8 and 
17 predictor models, respectively       
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maximizing the AIC 
penalized

 . This is explained by the fact that AIC considers the 
model χ 2  as criterion rather than the slope of the linear predictor. The model χ 2  also 
reflects the discriminative ability, which was higher with larger penalty values 
(Fig.  13.3 ).    

  Fig. 13.2    Slope of the linear predictor in relation to the penalty factor according to a bootstrap 
procedure. Optimum values are 7 and 12 for the 8 and 17 predictor models, respectively       
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  Fig. 13.3     c  statistic in relation to the penalty factor according to a bootstrap procedure. Optimum 
values are 8 and 30 for the 8 and 17 predictor models, respectively       
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  13.3.3 Shrinkage, Penalization, and Model Selection 

 Uniform shrinkage and penalized estimation methods are defined for pre-specified 
models. If we apply a selection strategy such as stepwise selection, fewer predictors 
are included in the selected model, and we might expect less need for shrinkage of 
coefficients. However, we know that a “testimation” problem arises, i.e. coefficients 
of selected predictors are overestimated. This selection bias should be taken into 
account when calculating a shrinkage factor. This may be achieved by considering 
the number of candidate predictors in the heuristic formula (instead of the number 
of selected predictors). 459  In a bootstrap procedure, we can include the selection 
process in step 2. 174  Empirical research suggests that the required shrinkage is more 
or less similar in pre-specified or selected models. 409  For penalized estimates of the 
regression coefficients after selection, we can apply the penalty factor that was 
identified as optimal for the full model, before selection took place. 

 A specific situation is when a substantial number of interaction terms is tested, 
and one or more are included in the final model. For shrinkage, we could still 
use the original df of the model with main effects and all interactions considered. 
A more elegant solution was suggested by Harrell for penalized ML estimation, i.e. 
to penalize the interaction terms more than the main effects, for example with twice 
the penalty of the main effects. Similarly, non-linear and nonlinear interaction 
terms might be penalized by twice and 4 times the penalty of the main effects. 174    

  13.4 Lasso  

 A formal method to achieve model selection through shrinkage is the Lasso (least 
absolute shrinkage and selection operator). 434  The Lasso can efficiently be applied 
to linear regression models using “least angle regression.” 106  The Lasso can also be 
used for generalized linear models such as the logistic or Cox model. 435  The Lasso 
preferentially shrinks some predictors to zero. 

  13.4.1 Estimation of Lasso Model 

 The Lasso estimates the regression coefficients of standardized predictors by mini-
mizing the log-likelihood subject to Σ |b| < = t, where  t  determines the shrinkage in 
the model. We may vary  s  =  t  / |Σb 

0
 | over a grid between 0 and 1, where b 

0
  indicates 

the standard ML regression coefficients and  s  may be interpreted as a standardized 
shrinkage factor. We may estimate the final b with the value of  t  that gives the lowest 
mean-squared error in a generalized cross-validation procedure. 435  We may also aim 
to optimize AIC or use bootstrapping to find the optimal value for  t . 320   



  *13.4.2 Lasso in GUSTO-I 

 We used the glmpath package for  R  to perform lasso analyses, but other packages are 
nowadays available. This is a path-following algorithm for L1 regularized generalized 
linear models and Cox proportional hazards model. 320  The logistic regression coeffi-
cients were estimated given a bound (“ L 1”) to the sum of absolute b, |b|. The predictors 
are standardized such that sum |b| does not depend on coding of predictors.

    # make list of predictors in matrix x, outcome in y   
   gustosd <- list(x=full8$x, y=full8$y)   
   # fit logistic models over a range of L1   
   gustopath <- glmpath(data=gustosd)   
   # plot results: Fig    13.4    
   plot.glmpath(gustopath, type=“coefficients”)   
   plot.glmpath(gustopath, type=“aic”)      

 With a low  L 1 bound, small coefficients were estimated for the predictors A65 
(age>65 years), SHO (Shock), and HRT (Tachycardia). This occurred both in the 8 
and 17 predictor models (Fig.  13.4 ). The other predictors had coefficients set to 
zero. With larger bounds, non-zero coefficients were estimated for these predictors 
as well. With a bound over 0.6 (8 predictor model) or over 0.9 (17 predictor model), 
the original, unshrunk logistic model was estimated. 

 The optimum penalty can be estimated by studying the AIC (Fig.  13.4 ). This 
suggests an optimal selection of seven predictors in the 8 predictor model ( L 1 = 
2.1), and a selection of 14 predictors for the 17 predictor model ( L 1 = 3.0). We can 
validate the selection and estimated coefficients through a bootstrap analysis (see 
the book’s website). The coefficients for the final model are chosen at the lowest 
AIC value. The effect of SEX was set to zero, and the coefficient of DIA was small 
(standardized coefficient, 0.10).

   # coefficients at lowest AIC: Table  13.2   
  gustopath$b.predictor[gustopath$aic==min(gustopath$aic),]        

  Intercept    SHO    A65    HIG    DIA    HYP    HRT    TTR    SEX  

  −4.55    1.09    1.36    0.73    0.35    0.87    0.87    0.46    0.00  

  # linear predictor with Lasso model, step 12 has lowest AIC  
  predict.glmpath(gustopath, newx=full8$x, newy=full8$y, s=12)     

  13.4.3 Predictions after Shrinkage 

 Shrinkage leads to a less-extreme distribution of predictions in the GUSTO-I example. 
The linear predictor is shrunk towards the average compared with standard maximum 
likelihood, either with uniform shrinkage, penalized maximum likelihood estimation 
(PMLE), or the Lasso (Fig.  13.5 ).   
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  13.4.4 Model Performance after Shrinkage 

 We compared the performance of models constructed in small samples of the 
GUSTO-I data set in an independent test part (see Chap. 22 for design). Table  13.3  
shows the discrimination and calibration with and without shrinkage. As expected, 
discrimination is not much affected by shrinkage. In contrast, the calibration slope 
is closer to 1 when shrinkage is applied. Shrinkage hence prevents that too extreme 
predictions are derived from the development data set.        

  13.5 Concluding Remarks  

 Shrinkage of regression coefficients is an important way to battle overfitting; too 
extreme predictions are prevented. Shrinkage is especially beneficial in small data 
sets, and/or situations with large numbers of candidate predictors. Using advanced 
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  Fig. 13.4    Coefficients and AIC for 8 and 17 predictor models according to the sum of the abso-
lute values of the regression coefficients (|β|) in sample4 from GUSTO-I ( n =785, 52 deaths)       



  Fig. 13.5    Distribution of the linear predictor in sample4 from GUSTO-I with standard and penal-
ized maximum likelihood, uniform shrinkage, and the Lasso       
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 Table 13.3    Discrimination ( c  statistic) and calibration (calibration slope) of the 8 and 17 predictor 
models based on small and large subsamples (average,  n =336 and  n =892, respectively), and based on 
the total training part ( n =20,512), as evaluated in the independent test part of GUSTO-I ( n =20,318)  

 Training data 
 8 predictors 

 C statistic   Slope 
 17 predictors 

 C statistic   Slope 

 Total training  Standard ML  0.789  0.944  0.802  0.959 
 ( n =20,512, 1,423 deaths) 
 61 small subsamples  Standard ML  0.75  0.66 
 ( n =336, 23 deaths on 

average) 
 Uniform shrinkage  0.75  1.01 

 Penalized ML  0.76  0.93 
 Lasso  0.75  0.83 

 23 large subsamples  Standard ML  0.78  0.86  0.78  0.76 
 (n=892, 62 deaths on 

average) 
 Uniform shrinkage  0.78  0.97  0.78  0.95 

 Penalized ML  0.78  0.96  0.79  0.98 
 Lasso  0.78  1.01  0.78  0.93 

 Mean values are shown for several estimation methods with a fixed selection of predictors 

shrinkage procedures is readily possible with modern sofware, implemented in for 
example  R  (pentrace function in Design library for penalized estimation, 
glmpath for Lasso). Penalty factors are a general concept in smooth estimation 
of model parameters; they are also important in curve fitting (e.g. with splines) and 
generalized additive models. 181  The Lasso currently receives interest for analysis of 
genomic data. 321  
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 Shrinkage methods have been applied in a number of case studies. Moons et al. 
describe penalized maximum likelihood and illustrates the method with a nice case 
study. 293  Vach et al. compared the empirical behaviour of various shrinkage tech-
niques. 443  The results from simulations in GUSTO-I were presented in more detail 
in other papers. 408,409,410   

  Questions   

   13.1    Shrinkage and model performance 
 Explain how shrinkage can influence (a) the predictions from a model, (b) 
calibration, and (c) discrimination.  

   13.2    Penalized maximum likelihood
   (a)    Why might we label PML “shrinkage during estimation” (Table  13.1 )  
   (b)    How is it possible that one penalty term leads to differential shrinkage in 

Table  13.2 ?  
   (c)    In a recent paper (Smits et al. 2007), 391  we can study the effect of PML on 

the various coefficients. Which coefficients are penalized most?      

   13.3    Shrinkage methods and stepwise selection (Sect.  13.3.3 ) 
 How can shrinkage and penalization be used when the model is developed 
with stepwise selection:
   (a)    Uniform shrinkage with Van Houwelingen’s formula or bootstrapping?  
   (b)    Penalized maximum likelihood?             



   Chapter 14   
 Estimation with External Information       

   Background   In this chapter we discuss methods that estimate regression coeffi-
cients based on the combination of findings from the sample under study with 
external information. We start with a simple “adaptation” method for univariate 
regression coefficients, which may be obtained from meta-analysis. This method 
was applied in a case study of operative mortality of abdominal aneurysm surgery. 
Next, we discuss some alternative approaches to estimate regression coefficients, 
including Bayesian estimation with explicit prior information.    

  14.1 Combining Literature and Individual Patient Data 

 We consider the common situation that several studies have already have been pub-
lished for a particular clinical prediction problem, in which the relation between patient 
characteristics and the outcome of interest is described. If the published papers describe 
comparable patient series, we may try to combine the available evidence quantitatively 
in a meta-analysis. The information in these papers is  usually only sufficient to calculate 
a univariate regression coefficient for each of the patient characteristics. 

 Multivariable coefficients can directly be estimated if individual patient data are 
available from the published series, or if we know the correlation structure between 
predictors. This information is usually not available. Individual patient data may be 
especially hard to retrieve for papers published several years ago, and anyway 
requires a substantial research effort. Thus, typically the researcher may have 
access to individual patient data from one study (“own data set”) and univariate 
information from the literature (“publicly available”). 

 An “adaptation method” has been proposed to take advantage of the univariate 
 literature data in the estimation of the multivariable regression coefficients in a 
 prediction model. 411  The aim is better prediction of the outcome in individual patients. 
This adaptation method is closely related to an earlier proposal by Greenland for 
meta-analysis. 151  For example, when studying the relation between coffee consump-
tion and acute myocardial infarction, one study may have corrected the regression 
coefficient for a confounder (for example alcohol consumption), while other studies 
have not. Greenland proposed to use the change from  unadjusted to adjusted regres-
sion coefficient to adapt the unadjusted coefficients in the latter studies. 

E.W. Steyerberg, Clinical Prediction Models, 243
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  14.1.1 Adaptation Method 1 

 In our case of regression analysis on literature and individual patient data, the for-
mula reads like

  b
m | I+L

=b
u | L

+(b
m | I

–b
u | I

),  

where  b  
m | I+L

  refers to the multivariable coefficient based on the combination of 
individual patient data and literature data (the “adapted coefficient”),  b  

u
 

|L
  is the 

univariate coefficient from a meta-analysis of the literature, and  b  
m|I

  −  b  
u | I

  is the 
difference between multivariable and univariate coefficient in the individual patient 
data (the “adaptation factor”). Hence, we simply use the change from univariate to 
multivariable coefficient in our own data to adapt the meta-analysis coefficient. 

 For the variance of the adapted coefficient (var( b  
m | I+L

 )), we may add the differ-
ence between variances of the multivariable and univariate coefficient to the vari-
ance of the univariate coefficient from the literature, ignoring all covariances:

  var(b
m | I+L

) = var(b
u | L

) + var(b
m | I

) - var(b
u | I

).    

  14.1.2 Adaptation Method 2 

 A more general way to formulate the adaptation formula is as

  b
m | l+L

=b
m | I

+ c (b
u | L

–b
u | I

),   

where  c  is a factor between 0 and 1. If  c  = 1, the same formula as proposed by 
Greenland arises. If  c  equals 0, the literature data is effectively discarded. The esti-
mate of  b  

m |I + L
  is unbiased for any choice of  c , if the expectation of  b  

u | L
  −  b  

u | I
  = 0, 

that is, the individual patient data form a random part from the studies included in 
the meta-analysis. It was found that we can derive a formula for  c  so as to minimize 
the variance of  b  

m | I + L
 :

   

Copt m I u I

m I u I

u L u I

SE SE
=

×
r b b

b b
b b

( , )
( ) ( )

var( var( )
,| |

| |

| |) +
    

where  r ( b  
m | I

  −  b  
u | I

 ) refers to the correlation between multivariable and univariate 
coefficients in the individual patient data. 

 This variant of the adaptation method indicates that adaptation will be especially 
advantageous if the literature data set is larger (resulting in a smaller var( b  

u | L
 )), or 

when the correlation  r ( b  
m | I

  −  b  
u | I

 ) is larger. The latter correlation is expected to be 
large if the collinearity between covariables is small. The adaptation factor will 
then be close to 1, and method 1 may yield good results.  



  14.1.3 Estimation 

 Meta-analysis techniques may be used to estimate the univariate coefficients from 
the literature data. The literature data may include the individual patient data for 
maximal efficiency. The meta-analysis may assume fixed effects (for example, 
Mantel-Haenszel method, or conditional logistic regression), or random effects (for 
example, DerSimonian Laird method, or likelihood-based methods 97 ). The calcula-
tions for method 1 use estimates that are readily available. For example, logistic 
regression analysis with standard maximum likelihood (ML) provides estimates of 
the univariate and multivariable coefficients in the individual patient data. 

 For the second method, the estimation of the optimal adaptation factor requires 
estimates of the variances of the regression coefficients, and an estimate of the cor-
relation between univariate and multivariable coefficients. The latter correlation 
cannot easily be estimated with logistic regression methods. We therefore used 
bootstrap re-sampling to calculate the coefficients  b  

m | I
  and  b  

u | I
  repeatedly, and their 

correlation r.  

  14.1.4 Simulation Results 

 The adaptation method was tested in the GUSTO-I data. 411  First, we assessed the 
correlation between multivariable and univariate coefficients across 121 small sub-
samples. We observed a strong correlation for the combination of age and sex in a 
2 predictor model (Fig.  14.1 ). Results were somewhat less favorable for predictors 
with stronger collinearity. For example, weight and height had a Pearson correlation 
coefficient of 0.54, and the correlation between their univariate and multivariable 
coefficients was 0.80 and 0.83 in a bivariate model respectively. Overall, the strong 
 r ( b  

m | I
  −  b  

u | I
 ) supports the use of the adaptation method in medical data.

  Fig. 14.1    Correlations between univariate and multivariable regression coefficients in a 2 predictor 
model consisting of age and sex estimated in 121 small subsamples of the GUSTO-I data set 411        
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   Next, we estimated the values of  c  
opt

 . Values were quite close to 1 (0.98 ± 0.015 
and 0.99 ± 0.020 for age and sex (mean ± SD) in the 121 small subsamples). Hence, 
Greenland’s method ( c  = 1) and our method ( c  estimated with bootstrapping) 
resulted in very similar estimates of the adapted coefficients (Fig.  14.2 ). Both 
 methods lead to much better estimates of the multivariable regression coefficients 
in the small subsamples. Specifically, a substantial reduction is noted in the variability 
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  Fig. 14.2    Regression coefficients in the 2 predictor model consisting of age and sex. Box plots 
show the standard ML, and adapted estimates (methods 1 and 2) for 121 small subsamples; the line 
--- indicates the coefficient observed in the total GUSTO-I data set ( n  = 40,830) 411        



compared with the standard multivariable regression coefficients, i.e. var( b  
m | I+L

 ) 
<< var( b  

m | I
 ). These very favorable results were obtained by using univariate results 

from approximately half of the GUSTO-I data ( n  = 20,000). We also examined the 
influence of the size of the literature data. We applied the adaptation methods in the 
small subsamples, where univariate literature estimates were obtained from a 
neighboring, small subsample. This resulted effectively in a  doubling of the sample 
size. This pattern was also reflected in the values of the adaptation factor from 
method 2; close to 1 with  n  = 20,000 as literature data, around 0.50 with a neigh-
bour subsample as literature data.

     14.1.5 Performance of Adapted Model 

 Finally, we compared the predictive performance of the adaptation method to the 
performance obtained with uniform shrinkage, penalized ML, or the Lasso in 23 
large subsamples from GUSTO-I (Table  14.1 ). The discriminative ability improved 
slightly, but some problems were noted in calibration. Miscalibration was less than 
for the standard ML estimates, but some form of shrinkage should actually have 
been built into the adaptation method.

         *14.1.6 Improving Calibration 

 To improve the calibration of the predictions resulting from applying the adaptation 
method, we considered two approaches. First, we shrunk the multivariable regression 
coefficients as estimated in the individual patient data. This approach was  discarded 

  c  statistic  Calibration slope 

 8 predictors  17 predictors  8 predictors  17 predictors 

 Total training (n=20,512, 
1,423 deaths) 

 Standard ML  0.789  0.802  0.944  0.959 
 23 large subsamples 

(n=892, 52 deaths on 
average) 

 Standard ML  0.78  0.78  0.86  0.76 
 Uniform shrinkage  0.78  0.78  0.97  0.95 
 Penalized ML  0.78  0.79  0.96  0.98 
 Lasso  0.78  0.78  1.01  0.93 
 Adapted 1  0.79  0.79  0.92  0.86 
 Adapted 2  0.79  0.79  0.92  0.86 

 Table 14.1    Discrimination ( c  statistic) and calibration (calibration slope) of the 8 and 17 predic-
tor models based on large subsamples (average  n =892, respectively), and based on the total 
 training part ( n =20,512), as evaluated in the independent test part of GUSTO-I ( n =20,318)  

 Means are shown for two variants of the adaptation method and several other modern estimation 
methods (see Chap. 13) 
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because it led to better calibration (slope closer to 1), but a decrease in discriminative 
ability. The second approach was motivated by the observation that the miscalibration 
of the adapted estimates was approximately halfway that of shrunk estimates and the 
standard ML estimates. The proposed formula is

    
b b b bm|I m|I u|L u|Ishrinkage factor) /= + + −( [ ( )]1 2 c

    

where the shrinkage factor is the uniform shrinkage factor, either estimated with a 
heuristic formula, or by bootstrapping (see Chap. 13). 

 Evaluations of this correction with method 1 ( c  set to 1) or 2 ( c  estimated by boot-
strapping) showed an improvement in calibration. Discriminative ability was identical to 
that without shrinkage, since the shrinkage did not affect the ordering of predictions.   

  14.2 Example: Mortality of Aneurysm Surgery 

 In our examples with GUSTO-I, no relevant differences were noted between adap-
tation methods 1 and 2. We applied adaptation methods 1 and 2 in the prediction of 
peri-operative mortality (in-hospital or within 30 days) after elective abdominal 
aortic aneurysm (AAA) surgery. 421  Individual patient data were available on a rela-
tively small sample (246 patients, 18 deaths). Patients were operated on at the 
University Hospital Leiden between 1977 and 1988. Univariate literature data were 
available from 15 published series with 15,821 patients (1,153 deaths) in total. 
Predictors considered included age and sex, cardiac comorbidity (history of myo-
cardial infarction (MI), congestive heart failure (CHF), and ischemia on the ECG), 
pulmonary comorbidity (COPD, emphysema or dyspnea), and renal comorbidity 
(elevated pre-operative creatinin level). These predictors were chosen since they 
were reported in at least two studies in the literature, and were also available in the 
Leiden data set. 

  14.2.1 Meta-Analysis 

 Univariate logistic regression coefficients were estimated both with fixed and ran-
dom effects methods from the literature data. As expected, the estimates of the 
coefficients were very similar, but the SEs were somewhat larger with the random 
effect method (Table  14.2 ).

      A number of practical issues merit discussion with respect to the meta-analysis 
of the literature data. First, definitions of predictors varied, especially for pulmo-
nary and renal comorbidity. Despite these differences, it was considered reasonable 
to assume one single effect for each predictor across the studies (non-significant 
tests for heterogeneity of odds ratios, non-significant interaction terms between 
study and effect estimates in logistic regression). 



 Second, the number of studies that described a predictor varied. The effect of 
age was reported in 15 studies, sex and renal function in 6, pulmonary function in 
5, MI in 3, and CHF and ECG findings in only 2 studies. This somewhat limits the 
value of the adaptation method in this case study. 

 Third, the analysis of age as a continuous variable was hampered by the fact that 
mortalities were described in relatively large age intervals, for example, younger or 
older than 70 years. For logistic regression analysis, we estimated the mean ages in 
these age intervals using study-specific descriptions as far as available (mean and 
SE). We checked in a small simulation study that using the mean was better than 
using the median for age categories. The effect of age would have been estimated 
more accurately if smaller age intervals had been reported or more study character-
istics had been published.  

  14.2.2 Individual Patient Data Analysis 

 In the individual patient data, multivariable logistic regression coefficients were 
usually smaller than the univariate coefficients, reflecting a predominantly positive 
correlation between predictors (Table  14.3 ). Correlations were strongest between 
the three cardiac comorbidity factors ( r , 0.26, 0.32, and 0.45) and between these 
three factors and age ( r >0.20). We note that the number of predictors (7) was large 

 Table 14.2    Meta-analysis results for operative mortality of elective aortic aneurysm surgery 
(coefficient (SE))  
 Predictor  Fixed effect  Random effect 

 Age (per decade)  0.79 (0.06)  0.79 (0.11) 
 Female sex  0.36 (0.08)  0.36 (0.18) 
 History of MI  1.03 (0.27)  1.03 (0.32) 
 Congestive heart failure  1.59 (0.33)  1.59 (0.41) 
 ECG: Ischaemia  1.52 (0.31)  1.51 (0.38) 
 Impaired renal function  1.32 (0.25)  1.30 (0.26) 
 Impaired pulmonary function  0.89 (0.23)  0.85 (0.24) 

 Table 14.3    Individual patient data results ( n =246) for operative mortality of elective aortic aneu-
rysm surgery (coefficient (SE))  

 Predictor  Univariate  Standard ML  Shrunk  Penalized  r( b 
m|I

,  b 
u|I

) 

 Age (per decade)  0.98 (0.38)  0.58 (0.39)  0.48  0.34  0.91 
 Female sex  0.28 (0.79)  0.30 (0.86)  0.25  0.17  0.81 
 History of MI  1.50 (0.50)  0.74 (0.57)  0.61  0.57  0.88 
 Congestive heart 

failure 
 1.78 (0.55)  1.04 (0.59)  0.86  0.67  0.92 

 ECG: Ischaemia  1.72 (0.55)  0.99 (0.62)  0.83  0.63  0.87 
 Impaired renal 

 function 
 1.24 (0.70)  1.12 (0.77)  0.93  0.74  0.85 

 Impaired pulmonary 
function 

 0.84 (0.53)  0.61 (0.59)  0.51  0.39  0.90 
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relative to the number of events (18 deaths). Bootstrapping estimated a shrinkage 
factor of 0.83 (200 replications, convergence in only 119), and penalized ML was 
performed with 14 as the penalty factor. The correlation r between univariate and 
multivariate coefficients was estimated between 0.81 and 0.91.

        14.2.3 Adaptation Results 

 The literature and individual patient data were combined with the adaptation 
method, using the random effect estimates from the literature data. For adaptation 
method 1,  c  

opt
  was always set to 1 (Table  14.4 ; for method 2,  c  

opt
  was estimated 

between 0.63 and 0.86, results not shown). Compared with shrunk or penalized 
coefficients, the adapted estimates for sex and renal and pulmonary function were 
somewhat higher and lower for a history of MI.

       For application in clinical practice, scores were created by rounding each 
adapted coefficient after multiplication by 10 and shrinkage of 90% ((1+bootstrap 
shrinkage factor)/2≈0.90). The intercept was calculated with an offset variable in a 
logistic regression model. The offset was the linear combination of the scores 
(divided by ten) and the values of the covariables in the individual patient data. The 
intercept was estimated as −3.48. 

 The intercept was further adjusted for a presumably lower mortality in current surgi-
cal practice (5%) than that observed in the individual patient data (7.6%). This adjust-
ment can be considered as a form of recalibration to contemporary circumstances. It was 
achieved by subtracting ln(odds(5%)/odds(7.6%)=−0.44 from the previous intercept 
estimate:   −3.48 − 0.44 = −3.92. This results in the following formula to estimate the risk 
of peri-operative mortality in current elective abdominal aortic aneurysm surgery:

   

p operativemortality( )
[ exp( ( / ) . )]

.=
+ − −∑

1

1 10 3 92score
    

 The area under the ROC curve was 0.83 in the individual patient data with stand-
ard, shrunk or penalized estimation. But the optimism-corrected estimates were 

 Table 14.4    Individual patient data results ( n =246) for operative mortality of elective aortic 
 aneurysm surgery (coefficient (SE))  

 Predictor   b 
m|I

 −  b
 u|I

  c method 1  Adapted 1  Score 

 Age (per decade)  −0.40  1  0.38 (0.14)  3 
 Female sex  +0.02  1  0.38 (0.40)  3 
 History of MI  −0.76  1  0.27 (0.41)  2 
 Congestive heart failure  −0.74  1  0.85 (0.47)  8 
 ECG: Ischaemia  −0.73  1  0.79 (0.48)  7 
 Impaired renal function  −0.12  1  1.18 (0.41)  11 
 Impaired pulmonary function  −0.23  1  0.62 (0.34)  6 

 Score: Rounded value of 9 × “Adapted 1”  



0.80 for standard or shrunk, estimation, and 0.81 for penalized estimation (boot-
strapping with 200 replications). For the final model with adapted coefficients, we 
expect a performance at least as good as these methods, but this needs to be 
 confirmed in further validation studies.    

  14.3 Alternative Approaches 

 Several alternative approaches are possible to adjust univariate results for use in a 
multivariable model. We discuss two approaches below: Using an overall calibra-
tion factor for the univariate literature coefficients and Bayesian methods. 

  14.3.1 Overall Calibration 

 One variant of naïve Bayes was already suggested in Chap. 4, i.e. use of a uniform, 
overall calibration factor for all univariate coefficients. In the case study of aortic 
aneurysm mortality, the calibration factor is 0.69 for a linear predictor based on 
the univariate coefficients from the literature multiplied with the predictor values 
in the individual patient data. The recalibrated coefficients are reasonably close to 
those estimated with our adaptation method. The overall calibration led to higher 
values for cardiac comorbidity factors (scores 7, 11, and 10 for MI, CHF, and 
Ischaemia vs. 2, 8, and 7 with the adaptation method, respectively). This is 
explained by the relatively strong correlations among these factors, while the over-
all calibration reflects an average correlation between all the seven predictors.  

  14.3.2  Bayesian Methods: Using Data Priors to Regression 
Modelling 

 Greenland has argued that a Bayesian perspective needs to be incorporated into 
basic biostatistical and epidemiological training. 152  In particular in small data sets 
with many predictors, Bayesian approaches may offer advantages over conven-
tional frequentist methods. Estimation of regression coefficients is difficult for data 
sets with few or no subjects at crucial combinations of predictor values. 

 Bayesian estimation consists of setting prior values for the regression coeffi-
cients, which are combined with the estimates in the data to produce posterior esti-
mates of the coefficients. When the prior values are all zero, the coefficients are 
pulled towards zero. This is similar to shrinkage, as discussed in Chap. 13. Setting 
a prior to zero may be reasonable for a variable with very doubtful value as a pre-
dictor. A negative or positive effect is then equally likely, making zero the best prior 
guess. We allow for the possibility that the effect is non-zero, but may consider 
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large values unlikely. The degree of shrinkage is then determined by the width of 
the prior distribution. The narrower the prior distribution, the more the prior shrinks the 
coefficient towards zero. The other factor determining shrinkage is how strongly the 
predictor is related to the outcome in the data under study; in an informative data 
set (many events, not a rare predictor), there will be limited shrinkage. The final 
estimate is an average of the prior expectation and the conventional estimate. 

 A more interesting role for Bayesian approaches in regression is in using informa-
tive priors. For example, we may hypothesize a priori that a predictor has an odds 
ratio of 2, with values smaller than 0.5 and larger than 8 being highly unlikely. Setting 
a reasonable informative prior is the most difficult task for Bayesian analysis. Expert 
judgment or literature review can be used. When using informative priors, the source 
of these priors should be well documented, and sufficient variability allowed in the 
prior distribution. Presentation of prior information can be presented as “information-
ally equivalent,” e.g. assuming knowledge of 100 patients with a certain outcome. 
This may be acceptable to some in the medical field, but will be met with scepticism 
by others, including traditional biostatisticians and applied clinical researchers.  

  *14.3.3 Example: Predicting Neonatal Death 

 Greenland describes a case study of predicting neonatal-death risk in a cohort of 
2,992 births with 17 deaths. 152  He estimates logistic regression models with 14 pre-
dictors, assuming small to large effects for most predictors. He finds that the predic-
tive ability of the Bayesian model is better than a model based on standard ML. He 
also illustrates how Bayesian estimation can be achieved relatively easily with data 
augmentation: Records are added to a data set, reflecting predictive effects of pre-
dictors. 153  In the case of a multivariable model, the prior distributions refer to the 
multivariable effects of predictors, which may be more complicated to elicit from 
experts or from literature than univariate effects.  

  *14.3.4 Example: Mortality of Aneurysm Surgery 

 In the prediction of peri-operative mortality of aortic aneurysms, we might try to 
use informative priors based on the literature. The meta-analysis however provides 
univariate effects, and we need to translate these to priors for multivariable effects. 
The difference between univariate and multivariable coefficients is directly related 
to the correlation between predictors. If we have some guesses for these correla-
tions, this may give some hints on how the multivariable coefficients compare with 
the univariate coefficients. For example, with substantial correlations, we might 
halve all univariate coefficients; with no correlation, we keep the multivariate effect 
at the univariate estimate. Being on the conservative side with informative priors 
may be sensible to make Bayesian analysis more acceptable.   



  14.4 Concluding Remarks 

 The proposed adaptation methods emphasize the central role of subject knowledge 
in developing prediction models in small data sets. Literature data may guide the 
selection of predictors (Chap. 11), as well as improve the estimates of the regres-
sion coefficients (this chapter). Especially when the data set is relatively small, this 
strategy will result in more reliable regression models than using a strategy that 
considers a data set with individual patient data as the sole source of information. 

 A potential problem of meta-analyses is that publication bias may have led to 
overestimation of the regression coefficients. Also, performing a meta-analysis may 
not be realistic if definitions of risk factors vary substantially in the literature. 
Finally, the central assumption in the adaptation method is that the data set under 
study and the literature data are random subsamples from a common population, 
which implies that the correlations between predictors are similar in the individual 
patient data and in the literature data. 

 Bayesian methods provide another perspective on estimation of regression coeffi-
cients. If no effect is expected for a predictor, shrinkage of coefficients towards zero 
is achieved, quite similar to using uniform shrinkage or penalized ML. If other effects 
are assumed, coefficients will be pulled towards this prior value. As with any 
Bayesian method, the main criticism will be on the choice of prior distribution. 

 Many papers have been written about Bayesian approaches, but Bayesian meth-
ods have not yet made it to mainstream predictive modelling. A variant is empirical 
Bayes estimation, which will be discussed in Chaps. 20 and 21. Empirical Bayes 
methods have an important role in for example estimating centre effects, and pro-
vider profiling. With this variant, the prior distribution of centre effects is deter-
mined empirically from the data. 

 In some Bayesian applications, uninformative priors are used by default; these 
variants only use Bayesian calculations to achieve results that are difficult to calcu-
late with frequentist methods, such as ML. These methods are becoming quite 
popular in medicine, e.g. using WinBUGS (  www.mrc-bsu.cam.ac.uk/bugs/    ) with 
the Gibbs sampler as the core Bayesian method. 134   
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  Questions  

    14.1    Key factors in adaptation method (Sect.  14.1  and  14.2 ) 
   We examine the key factors for the adaptation method, as illustrated in the 

aneurysm case study.
     (a)     What would happen to the adapted coefficients when larger univariate 

coefficients were found in the literature?  
     (b)     What would happen to the adapted coefficients when the univariate coef-

ficients were identical in the literature and in the individual patient data?  
     (c)     What would happen to the adapted coefficients when there was virtually 

no correlation between predictors?      

   14.2    Variance of adapted coefficients (Sect.  14.1.1 ) 
    In the simple variant, the variance of the adaption method is estimated as:
    var(b

m|I+L
)=var(b

u|L
)+var(b

m|I
) - var(b

u|I
)   

   When we have a literature data base (“L”) of the same size as the individual 
patient data base (“I”), the variance decreased by a factor of 2 (SE decreases 
by   1/√2  , Sect.  14.1.4 ). What may be expected for the variance and SE of an 
adapted coefficient when we have a literature data base of 3 times the size of 
the individual patient data?  

   14.3    Adaptation method in aneurysm case study (Sect.  14.2 ) 
   For the aneurysm case study, the age effect is based on a very large sample 

size in the meta-analysis. The regression coefficient is 0.79 per 10 years; SE 
in random effect model, 0.14.

     (a)    Verify that the adaptation factor  b  
m | I

  −  b  
u | I

  is −0.40.  
     (b)     Verify that the SE of the adapted coefficient becomes 0.14, while it was 

0.39 in the original multivariable analysis (Table  14.3 ).              



   Chapter 15   
 Evaluation of Performance        

  Background   When we develop or validate a prediction model, we want to quantify 
how good the predictions from the model are (“model performance”). Predictions 
are absolute risks, which go beyond assessments of relative risks, such as regression 
coefficients, odds ratios, or hazard ratios. We can distinguish apparent, internally 
validated, and externally validated model performance (Chap. 5). For all types 
of validation, we need performance criteria in line with the research questions, 
and different perspectives can be chosen. We first take the perspective that we 
want to quantify how close our predictions are to the actual outcome. Next, more 
specific questions can be asked about calibration and discrimination properties of 
the model, which are especially relevant for prediction of binary outcomes in indi-
vidual patients. We will illustrate the use of performance measures in the testicular 
cancer case study, with model development in 544 patients, internal validation with 
bootstrapping, and external validation with 273 patients from another centre.    

  15.1 Overall Performance Measures  

 The distance between the predicted outcome and actual outcome is a central to quantify 
overall model performance from a statistical perspective. 181  The distance is   Y - Ŷ    for continuous 
outcomes. For binary outcomes,   Ŷ    is equal to the predicted probability  p , and for sur-
vival outcomes it is the predicted time to an event. These distances between observed 
and predicted outcomes are related to the concept of “goodness-of-fit” of a model, with 
better models having smaller distances between predicted and observed outcome. 

  15.1.1 Explained Variation: R 2  

 The amount of explained variation ( R  2 ) is an overall measure to quantify the 
amount of information in a model in a given data set.  R  2  is useful to guide various 
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model development steps for all types of predictive regression models, includ-
ing linear and generalized linear models (e.g. logistic, Cox). With  R  2 , we can 
readily compare the impact of different encoding of predictors, different shapes 
of the relationship of continuous predictors to the outcome, different selections 
of predictors, and the impact of including interaction terms (see previous 
chapters). 

  R  2  is the most common performance measure for continuous outcomes. For 
generalized linear models, Nagelkerke’s  R  2  can well be used. 309  As discussed in 
Chap. 4, this is a logarithmic scoring rule: ( Y  − 1) − (log(1 −  p )) +  Y  × log( p ). The 
logarithm of predictions  p  is compared with the actual outcome  Y . For binary 
outcomes, the log likelihood for a patient with the outcome is log( p ), without the 
outcome log(1 −  p ). When a very low prediction is made for a patient who actually 
had the outcome, this prediction has a severe score (Fig.  15.1 ). This may be a 
disadvantage for a prediction model that gives a prediction close to 0 or 1 while the 
outcome is discordant.         

 Fig. 15.1    Logarithmic and quadratic error scores of a subject with ( y  = 1) or without ( y  = 0) the 
outcome in relation to predicted probability ( p ). The logarithmic score was calculated as  y  × log(p) 
+ (1 −  y ) × (1 −  p ), as in Nagelkerke’s  R  2  (solid line). The quadratic score was calculated as 
( y  −  p )∧2, as in the Brier score (dashed line). Lines were scaled such that they crossed at  p  = 50%. 
We note that the logarithmic score severely penalizes false predictions close to 0 or 100%  
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  15.1.2 Brier Score 

 An alternative for binary outcomes is to use a quadratic scoring rule, where the 
squared differences between actual outcomes  y  and predictions  p  are calculated. 
This calculation is done in the Brier score, which is simply defined as ( Y  −  p )2. 
We can also write this similar as the logarithmic score:  Y  × (1 −  p )2 + (1 − Y) × 
 p 2, with  Y  the outcome and  p  the prediction for each subject. For a subject, the 
score can range from 0 (prediction and outcome equal) to 1 (discordant predic-
tion); a prediction of 50% has a score of 0.25 both when the outcome is 0 or 1. 
The Brier score is less severe than Nagelkerke’s  R  2  in penalizing false predic-
tions close to 0% or 100% (Fig.  15.1 ). The Brier score for a model can range 
from 0% for a perfect model to 0.25 for a non-informative model with a 50% 
incidence of the outcome. When the incidence is lower, the maximum score for 
a model is lower, e.g. for 10%, 0.1 × (1 − 0.1)∧2 + (1 − 0.1) × 0.1∧2 = 0.090. A 
disadvantage of the Brier score is hence that the interpretation depends on the 
incidence of the outcome. 

 Similar to Nagelkerke’s approach to the LR statistic, we could scale Brier by its 
maximum score: Brier 

scaled
  = 1 − Brier / Brier 

max
 , where Brier 

max
  = mean( p ) × (1 − 

mean( p ))2 + (1 − mean( p )) × mean( p )2, with mean( p ) indicating the average proba-
bility of the outcome. Brier 

scaled
  ranges between 0% and 100%.  

  *15.1.3 Example: Performance of Testicular Cancer Prediction Model 

 We consider a development sample containing 544 patients contributed by six 
study groups, 417  and a validation sample 273 patients treated at Indiana 
University Medical Centre. 466  We developed a logistic regression model with 
five predictors: teratoma elements in the primary tumor, pre-chemotherapy 
levels of AFP and HCG, post-chemotherapy mass size, and reduction in mass 
size. 

 Internal validation of performance was estimated with bootstrapping (200 
replications). Bootstrap samples were created by drawing random samples with 
replacement from the development sample. The prediction model was fitted in each 
bootstrap sample and tested on the original sample. 

 The essential  R  code is:

    # 5 predictors in data set n544; develop model   
   full <- lrm(NEC ∼ TER+PREAFP+PREHCG+SQPOST+REDUC10, data=n544)   
   val.prob(logit=full$linear.predictor, y=full$y) # apparent   
   validate(full, B=200) # Internal validation with 200 bootstraps   
   # External validation; refit model for matrix x and
# comparison of coefs   
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   ext.full <-  lrm(NEC∼TER+PREAFP+PREHCG+SQPOST+REDUC10,
data=val, x=T, y=T)   

   lp <- ext.full$x %    % full$coef [2:length(full$coef)] + full$coef[1]   
   val.prob(logit=lp, y=ext.full$y, riskdist=“predicted”) # external     

 Nagelkerke’s  R  2  was 38.9% in the development sample, and slightly lower at 
internal validation (Table  15.1 ). At external validation, the  R  2  was estimated con-
siderably lower, as 26.7%. Note that  R  2  is based on the difference between a Null 
model (“intercept only”) and a model with recalibrated predictions (intercept + 
calibration slope×logit of predictions). 174  So, the  R  2  is estimated after recalibration 
of the predictions.      

 The Brier score was 0.174 and 0.178 at development and internal validation 
respectively. Remarkably, the Brier score was better at external validation (0.161). 
The external Brier score was simply calculated by comparing predictions with 
actual outcome, without recalibration as was done for  R  2 . The interpretation of the 
Brier score is easier with the scaled version, which compensates for the fact that the 
maximum Brier score was lower in the external validation set (necrosis in 76 of 273 
(28%); Brier 

max
 , 0.20) than in the development set (necrosis in 245 of 544 (45%); 

Brier 
max

 , 0.25). The scaled Brier score was clearly lower at external validation than 
at internal validation (20% vs. 28%, Table  15.1 ).       

  *15.1.4 Overall Performance Measures in Survival 

 Nagelkerke’s  R  2  can readily be calculated for survival outcomes, based on the 
difference in −2 log likelihood of a model without and a model with the linear 
predictor. Calculation of the Brier score is not directly possible because of censor-
ing: Not all subjects are followed long enough for the outcome to occur. To 
address the censoring issue, we can define a weight function, which considers the 
conditional probability of being uncensored during time. 146,375,374  The assumption 
is that the censoring mechanism is independent of survival and the subject’s history. 

 Table 15.1    Overall performance of testicular cancer prediction model  

    Development  Internal validation  External validation 

  R  2   38.9%  37.6%  26.7% 
 Brier  0.174  0.178  0.161 
 Brier 

max
   0.248  0.248  0.201 

 Brier 
scaled

   29.8%  28.2%  20.0% 

 Development and internal validation with  n =544 patients, external validation in  n =273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function. Brier 

scaled
  = 1 − 

Brier / Brier 
max

  



We can hence calculate the Brier score at fixed time points. For example, we can 
compare predicted survival vs. observed survival at 1, 2, and 5 years of follow-up. 
Choosing many consecutive time-points leads to a time-dependent graph. This is 
useful to use a benchmark curve, based on the Brier score for the overall Kaplan-
Meier estimator, which does not consider any predictive information. The sur-
vival estimates of the overall Kaplan-Meier curve only depend on time of 
follow-up, and are identical for all subjects alive at a certain point in time. An 
interesting example is provided by a case study on the disappointing contribution 
of microarray data to prediction of survival for patients with diffuse large-B-cell 
lymphoma. 374   

  *15.1.5 Decomposition in Discrimination and Calibration 

 Overall statistical performance measures incorporate both calibration and discrimi-
nation aspects. For example, the Brier score can formally be decomposed into indi-
cators of calibration and discrimination. 303,38  Discrimination relates to how well a 
prediction model can discriminate those with the outcome from those without the 
outcome. Calibration relates to the agreement between observed outcomes and pre-
dictions. Studying discriminative ability and calibration is often more meaningful 
than an overall measure such as  R  2  or Brier score when we want to appreciate the 
quality of model predictions for individuals. We therefore discuss these aspects 
further.  

  15.1.6 Summary Points  

  •   R  2  is a common measure to express the amount of variability in outcomes that is 
explained by the prediction model  

 •  The Brier score is another common performance measure for the distance 
between observed and predicted outcome, which can be decomposed in dis-
crimination and calibration aspects      

 Table 15.2    Classification of subjects according to a cutoff for the probability of an outcome 
(event or no event)  
    Event  No event 

 Predicted probability >= cutoff  TP  FP 
 Predicted probability < cutoff  FN  TN 
     N  

event
    N  

no event
  

 TP and FP: Numbers of true and false-positive classifications; FN and TN: Numbers of false and 
true-negative classifications, respectively.  N  

event
  = TP + FN;  N  

no event
  = FP + TN 
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  15.2 Discriminative Ability  

 Model predictions need to discriminate between those with and those without the 
outcome (Event vs. No event). Several measures can be used to indicate how good 
we classify patients in a binary prediction problem. The concordance ( c ) statistic is 
the most commonly used performance measure to indicate the discriminative abil-
ity of generalized linear regression models. For a binary outcome  c  is identical to 
the area under the receiver operating characteristic (ROC) curve. The ROC curve is 
a plot of the sensitivity (true positive rate) against 1 – specificity (false-positive 
rate) for consecutive cutoffs for the probability of an outcome. We therefore 
consider sensitivity and specificity first. 

  15.2.1 Sensitivity and Specificity of Prediction Models 

 Sensitivity is defined as the fraction of true-positive (TP) classifications among the 
total number of patients with the outcome (TP/ N  

event
 ), and the specificity as the frac-

tion of true-negative classifications among the total number of patients without the 
outcome (TN/ N  

no event
 , Table  15.2 ). To classify a patient as positive or negative, we 

need to apply a cutoff to the predicted probability. If the prediction is higher than 
the cutoff, the patient is classified as positive, otherwise as negative. It is common 
to use a cutoff of 50% for classification. This cutoff is often not defendable in a 
medical context, as we will discuss in detail in the next chapter (Chap. 16). We can 
examine sensitivity and specificity over the whole range of cutoffs from 0% to 
100%. The results can be plotted in an ROC curve. 172   

  15.2.2  Example: Sensitivity and Specificity of Testicular Cancer 
Prediction Model 

 If we classify patients as having necrosis when the probability of necrosis is over 
50%, we have a sensitivity of 68% and a specificity of 77% (FP rate, 23%). With a 
higher cut-off, for example 70%, these numbers are 42% and 92%, respectively. 
This illustrates that a higher cutoff leads to better specificity, at the price of a lower 
sensitivity. This trade-off is visualized in an ROC curve (Fig.  15.2 ).         

  15.2.3 ROC Curve 

 A plot of an ROC curve has often been used in diagnostic research to quantify the 
diagnostic value of a test over its whole range of possible cutoffs for classifying 
patients as positive vs. negative. We can also make an ROC curve with consecutive 
cutoffs for the predicted probability of a binary outcome. We start with a cutoff of 



0%, which implies that all subjects are classified as positive. The sensitivity is 100%, 
and the specificity 0% (upper-right point in Fig.  15.2 ). There are no false-negative 
classifications, and 100% false-positive classifications, since all subjects without the 
outcome are classified as positive. We then shift to a slightly higher cutoff, e.g. 1%, 
where sensitivity may still be 100%, but specificity above 0%. We follow all possible 
cutoffs till 100%, where all subjects are classified as negative. This is the lower-left 
point in Fig.  15.2 . The sensitivity is then 0%, and specificity 100%. The curves are 
more to the upper left corner when the distributions of predictions are more separate 
between those with and without the outcome (Fig.  15.3 ).         

 We can draw a line between the 0%, 0% and 100%, 100% points, indicating a 
non-informative model. Note that the sum of TP and TN is 1 at every cutoff for such 
a model. This sum (also known as Youden’s index) is larger than 1 for sensible pre-
diction models. 

 The area under the curve can be interpreted as the probability that a patient with 
the outcome is given a higher probability of the outcome by the model than a ran-
domly chosen patient without the outcome. 172  An uninformative model, such as a coin 
flip, will hence have an area of 0.5. A perfect model has an area of 1. The interpreta-
tion hence is relatively straightforward, but assumes that we have a pair of patients, 
one with and one without the outcome. This is a rather artificial situation. Statistically, 
this conditioning on a pair of patients is attractive, since it makes the area independent 
of the incidence of the outcome, in contrast to  R  2  or the Brier score for example. 

 Fig. 15.2    Receiver operating characteristic (ROC) curve for the testicular cancer model in the 
development data set of 544 patients. Using cutoffs for the predicted probability of necrosis 
(benign tissue) results in specific combinations of true-positive rate (sensitivity) and false-positive 
rate (1 – specificity). The area under the curve is 0.818  
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 A generalization of the area under the ROC curve is provided by the concord-
ance statistic ( c ). 175  The  c  statistic is a rank order statistic for predictions against 
true outcomes, related to Somer’s D statistic. As a rank order statistic, it is insensi-
tive to errors in calibration such as differences in average outcome. For binary out-
comes,  c  is identical to the area under the ROC curve. 

 Confidence intervals for the area under ROC curve (or  c  statistic) can be calculated 
with various methods. Standard asymptotic methods may be problematic, espe-
cially when sensitivity or specificity are close to 0% or 100%. 9  Bootstrap resam-
pling is a good choice for many situations. For example, differences in  c  between 
models fitted on the same data can be tested with standard formulas for the difference. 
But such formulas are only valid if the models were pre-specified. If one or both 
models were estimated on the same data, bootstrapping can be used for comparison 
of optimism-corrected estimates (see Chap. 17).  

  15.2.4 R 2  vs. c 

 We compare the behavior of Nagelkerke’s  R  2  and the  c  statistic in some simulations 
over a range of incidences of the outcome (1%, 10%, 50%, 90%, Fig.  15.4 ). At 50% 
incidence, a high  c  statistic such as 0.98 is associated with an  R  2  value of 87%. With 
lower incidence,  R  2  is somewhat lower.         
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 Fig. 15.3    ROC plot for five hypothetical prediction models. Models were created with distribu-
tions as shown in Fig.  15.4  (see also Fig. 4.6). The  c  statistics were 0.5, 0.6, 0.64, 0.7, 0.83, and 
0.98 at 50% incidence of the outcome  



50% 0
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0
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0
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R2: 87%  C: 0.98 R2: 43%  C: 0.83 R2: 17%  C: 0.71

R2: 8%  C: 0.64 R2: 4%  C: 0.6 R2: 0%  C: 0.5

1%

R2: 81%  C: 1 R2: 35%  C: 0.94 R2: 13%  C: 0.81

R2: 7%  C: 0.73 R2: 3%  C: 0.67 R2: 0%  C: 0.5

10%

R2: 83%  C: 0.99 R2: 37%  C: 0.87 R2: 14%  C: 0.74

R2: 7%  C: 0.67 R2: 3%  C: 0.62 R2: 0%  C: 0.5

90%

R2: 83%  C: 0.99 R2: 37%  C: 0.88 R2: 15%  C: 0.74

R2: 7%  C: 0.67 R2: 4%  C: 0.62 R2: 0%  C: 0.5

 Fig. 15.4    Distribution of observed outcomes (0 or 1), in relation to predicted probabilities from 
hypothetical logistic models relating  Y  to a predictor  X . The  top  six graphs relate to an incidence of 
50%. The next sets of 3 × 6 graphs relate to incidences of 1%, 10%, and 90% respectively. For each 
hypothetical model, Nagelkerke’s  R  2  and  c  statistic are listed. If  c =0.5 (and  R  2 =0%), predictions are 
at the incidence of the outcome for all subjects, with or without the outcome, indicated with a 
single spike. If  c  is close to 1 ( R  2  close to 100%), predictions are close to 0% for those without the 
outcome, and close to 100% for those with the outcome. Note that  R  2  and  c  statistics differ some-
what between 10% and 90% incidence, because of random noise in the simulation procedure  
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 Fig. 15.5    Box plots for predictions from six hypothetical prediction models with different dis-
criminative ability (see Fig  15.4 ). The discrimination slopes are calculated as the difference in 
means of predictions for those with and those without the outcome (mean incidence, 50%)  
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  *15.2.5 Box Plots and Discrimination Slope 

 The discrimination slope has been proposed as a simple measure for how well sub-
jects with and without the outcome are separated. It is easily calculated as the 
absolute difference in average predictions for those with and without the outcome. 

 Visualization is readily possible with a box plot (Figs.  15.5  and  15.7 ). The box 
plot may be a simple and intuitive way to communicate the extent of risk differen-
tiation achieved by the model. The same information can be shown by histograms, 
which will show less overlap between those with and those without the outcome for 
a better discriminating model (Fig.  15.4 ). Similar to Fig.  15.4 , the incidence of the 
outcome determines the visual expression that a box plot makes, and the magnitude 
of the discrimination slope. With low incidence, the slope is somewhat lower, for 
the same  c  statistic.                

  *15.2.6 Lorenz Curve 

 An alternative way to judge discriminative ability is the Lorenz curve (Fig.  15.6 ). 
The Lorenz curve has been used in economics to characterize the distribution of 
wealth in a population. 267  This curve has been used to plot the cumulative distribu-
tion of wealth against the cumulative distribution of the population, ranked on the 
basis of individual wealth.        



 Fig. 15.6    Lorenz curve showing proportion missed with the outcome vs. the cumulative propor-
tion of patients according to rank order of predictions, for an outcome incidence of 50%. We note 
that a near perfect model ( c =0.98) follows a horizontal line and then rises steeply to 100% false-
negative rate from the point of 50% cumulative proportion.  
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 Fig. 15.7    Box plot showing predictions by actual outcome (necrosis) for testicular cancer patients 
( n =544 and 273, respectively)  
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 For prediction models we can plot the cumulative proportion of the population 
on the  x  axis, ranked by predicted probability. On the  y  axis, we plot the cumulative 
proportion of subjects with the outcome. For example, we can show the proportion 
of subjects developing cancer against the cumulative proportion of the population 
ranked by cancer risk. 31  In terms of ROC curves, we plot the cumulative rate of 
false-negative classifications against the total of negative predictions. With inci-
dences of the outcome around 50%, the ROC and Lorenz curves look very similar, 
except that the Lorenz curve is flipped vertically and horizontally. In case of a non-
informative model, a straight line arises, since every rate of the population classi-
fied as negative corresponds to the same rate classified as negative among those 
with the outcome. A good model has a curve under this straight line, with a rela-
tively large proportion of the population classified as negative having only a small 
part of the outcomes (low false-negative rate). On the upper end of the  x  axis, a 
small part of the population should contain many subjects with the outcome. In the 
ideal case, a cutoff is used that classifies the fraction as positive, equal to the preva-
lence, and all these have the outcome. Indeed, we note that a  c  statistic of 0.98 leads 
to a nearly horizontal line till the 50% cumulative proportion point on the  x  axis, 
and increases more or less linearly to 100% after that. 

 The Gini index is often calculated as a summary measure for the Lorenz curve. 
The Gini index is the ratio between the area ( A ) between the Lorenz curve of the 
prediction model and the line for a non-informative model and the area under the 
line for an non-informative model (0.5). Hence,  G  = 2 A .     

 Other summaries are related to quantiles of the cumulative distribution. For exam-
ple, we can consider the number of missed outcomes when 25% of the population 
is classified as negative. If we want to be sure not to miss the outcome, usually only 

 Measure  Calculation  Visualization  Pros  Cons 

 Concordance 
statistic 

 Rank order 
statistic 

 ROC curve  Insensitive to outcome 
incidence; interpret-
able for pairs of 
patients with and 
without the outcome 

 Interpretation 
artificial 

 Discrimination 
slope 

 Difference in 
mean of 
predictions 
between 
outcomes 

 Box plot  Easy interpretation, nice 
visualization 

 Depends on the 
incidence of 
the outcome 

 Lorenz curve  Shows concentra-
tion of out-
comes missed 
by cumulative 
proportion of 
negative 
classifications 

 Concentration 
curve

 

 Shows balance between 
finding true positive 
subjects vs. total 
classified as positive

 

 Depends on the 
incidence of 
the outcome

 

 Table 15.3    Summary of some measures for discriminative ability of a prediction model for 
binary outcomes   



few can be classified as negative, unless a model is used with very good discrimina-
tive ability. At the upper end of the range, we can consider how many outcomes are 
concentrated in the upper quartile (above 75 percentile). We will illustrate these per-
centiles for the testicular cancer prediction case study (Fig.  15.8 ).        

 An advantage of the Lorenz concentration curve is that the trade-off is clearly 
visualized between how many subjects can be classified as negative without miss-
ing many with the outcome. A disadvantage is that the appearance of the Lorenz 
curve depends strongly on the incidence of the outcome; with low incidence, the 
graph looks impressive, and with high incidence, the graph looks rather poor. As an 
example, consider a screening setting with 1% of subjects having the disease of 
interest. Only few cases with disease are missed at 25% classified negative when 
we use a model with a  c  statistic of 0.83. The top 25% then easily contains most 
cases. With a more frequent outcome, more cases are missed at the point of 25% 
classified negative, and fewer of the cases are in the top 75 percentile.  

  15.2.7 Discrimination in Survival Data 

 For survival data, Harrell’s overall  c  statistic indicates the proportion of all pairs of 
subjects who can be ordered such that the subject with the higher predicted survival 
is the one who survived longer. 175  Ordering is possible if both subjects have an 
observed survival time, or when one has the outcome and a shorter survival time 
than the censored survival time of the other subject. Ordering is not possible if both 

 Fig. 15.8    Lorenz curves for prediction of necrosis vs. residual tumor. Patients classified as 
necrosis would not undergo surgical resection ( x  axis). With increasing fractions not undergoing 
resection, the fraction with unresected tumor increases (“missed tumor”). With 75% undergoing 
resection, 56% of the tumors are resected, leaving 44% unresected  
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subjects are censored, or if one has the outcome with a survival time longer than 
the censored survival time of the other subject. Some alternative definitions of  c  
have been proposed, which lead to time-dependent performance curves. 183  

 In oncology, prognostic groups are often created after constructing a prognostic 
model. A common procedure is to base these groups on quartiles of predicted sur-
vival; the lower 25% should have the worst survival and the highest 25% the best 
survival. This approach can well illustrate the discriminative ability of a model. 
An example is shown in Chap. 23 (Fig. 23.8).  

  15.2.8  Example: Discrimination of Testicular Cancer 
Prediction Model 

 We continue the example of predicting a benign histology in testicular cancer 
patients after chemotherapy. The  c  statistic was 0.818 at model development, with 
small optimism according to bootstrap validation (decrease by 0.006 to 0.812). At 
external validation, the  c  statistic was 0.785, with a relatively wide 95% confidence 
interval of 0.73 to 0.84 (Table  15.4 ).      

 The discrimination slope was 0.30 at model development, with small optimism 
according to bootstrap validation (decrease to 0.29). At external validation, the 
slope was much smaller (0.24). Part of this decrease is attributable to the lower 
average prevalence of necrosis (76 of 273, 28%, vs. 245 of 544, 45%). This lower 
prevalence is also evident from the box plots (Fig.  15.7 ). 

 The Lorenz curves were created with  x  axis as the cumulative fraction classi-
fied as necrosis, i.e. not having tumor, and hence classified as not undergoing 
surgical resection (Fig.  15.8 ). The  y  axis was the fraction of missed tumors, i.e. 
tumor masses left unresected. The point of 25% classified as necrosis corre-
sponds to using a cutoff of 68% for the probability of necrosis; only patients with 

 Table 15.4    Discriminative ability of testicular cancer prediction model  
    Development 

( n  = 544, 245 necrosis)  Internal validation 
 External validation 
( n  = 273, 76 necrosis) 

 c statistic  0.818  0.812  0.785 
 [95% CI]  [0.783–0.852]  [0.777–0.847] a   [0.726–0.844] 

 Discrimination slope  0.301  0.294  0.237 
 [95% CI]  [0.235–0.367] b   [0.228–0.360] a   [0.178–0.296] b  

 Lorenz curve p25, 
tumors missed 

 9%  –  13% 

 Lorenz curve p75, 
tumors missed 

 58%  –  65% 

 Development and internal validation with  n  = 544 patients, external validation in  n  = 273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function
   a Assuming the same SE applies as estimated for model development
   b Based on bootstrap resampling 



a probability over 68% are not resected. We miss 9% of the tumors with that cut-
off. Hence, sparing surgery in 25% leads to missing 9% of the tumors. The point 
of 75% classified as necrosis corresponds to using a low cutoff (21%), and miss-
ing 58% of the tumors. Hence 42% of the tumors are concentrated in the upper 
quartile of the distribution. 

 At external validation, the curve looks worse, which is related to a lower dis-
criminative ability and to a lower average prevalence of necrosis (28% vs. 45%). 
The 25% and 75% cumulative fractions correspond to cutoffs of 40% and 8% for 
the probability of necrosis, and lead to 13% and 65% missed tumors, respectively. 

 As a reference, we consider the current widely used policy of resection if the 
residual mass size exceeds 10 mm. 418  This policy uses only one of the five predic-
tors in the model (post-chemotherapy mass size), and hence has less discriminative 
ability (the point is closer to the 45° line in Fig.  15.8 ). In the development sample, 
107 of the 544 patients (20%) had residual masses <= 10 mm, but among them 30 
with tumor (fraction tumor missed, 30 of 299, 10%). In the validation sample, only 9 
of the 273 patients (3.3%) had residual masses <= 10 mm, but among them, 6 with 
tumor (fraction tumor missed, 6 of 197, 3%). Hence, the reference policy did not 
perform well in the validation sample.  

  *15.2.9 Verification Bias and Discriminative Ability 

 In the testicular cancer validation sample, only nine patients had very small residual 
masses. This reflects the policy for resection in the specific centre, where patients 
with such very small masses were not considered candidates for resection. 466  This 
leads to verification bias; we do not know the histology of these masses, since they 
were not resected, and cannot evaluate predictions for these patients. We know that 
the estimation of regression coefficients is not biased by this selection, if we 
include the selection criterion (residual mass size) in the prediction model. Hence 
model predictions are valid even with verification bias. 497  But performance meas-
ures such as sensitivity and specificity suffer from this verification bias. 30  The  c  
statistic may not be affected too much because verification bias makes that we 
merely shift on the ROC curve to a different combination of sensitivity and 
specificity.  

  *15.2.10 R Code 

 The boxplot is created simply with the boxplot command, based on a “full 
model,” including five predictors in the development data: 

    lp <- full$linear.predictors   
   boxplot(plogis(lp ∼ full$y) # Fig 15.7     
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 The discrimination slope is the difference between the mean predicted probabilities 
by outcome:
    mean(plogis(lp[full$y==1])) − mean(plogis(lp[full$y==0]))     

 Lorenz curves are created with the ROCR package:

    library(ROCR)   
   # Make ROC object with predicted probability for outcome   
   pred.full <- prediction(plogis(lp), full$y)   
   # Lorenz curve data and plot   
   perf1 <- performance(pred.full, “fpr”, “rpp”)   
   plot(perf1,  xlab=“NOT undergoing resection”, 

ylab=“with unresected tumor”)   
   abline(a=0, b=1) # Fig 15.8       

  15.3 Calibration  

 Another important property of a prediction model is calibration, i.e. the agreement 
between observed outcomes and predictions. For example, if we predict 70% prob-
ability of benign tissue for a testicular cancer patient, the observed frequency of 
benign tissue should be 70 out of 100 such patients. 

  15.3.1 Calibration Plot 

 A calibration plot has predictions on the  x  axis, and the outcome on the  y  axis. 
A line of identity helps for orientation: Perfect predictions should be on the 45° 
line. For linear regression, the calibration plot results in a simple scatter plot. For 
binary outcomes, the plot contains only 0 and 1 values for the  y  axis. Probabilities 
are not observed directly. However, smoothing techniques can be used to esti-
mate the observed probabilities of the outcome ( p ( y  = 1)) in relation to the pre-
dicted probabilities. The observed 0/1 outcomes are replaced by values between 
0 and 1 by combining outcome values of subjects with similar predicted proba-
bilities, e.g. using the loess algorithm. 174  We can also plot results for subjects 
grouped by similar probabilities (quantiles), and thus compare the mean pre-
dicted probability to the mean observed outcome. For example, we can plot 
observed outcome by decile of predictions (Fig.  15.9 ). This makes the plot a 
graphical illustration of the Hosmer-Lemeshow goodness-of-fit test (see Sect. 
15.3.8 and 15.3.10). A better discriminating model has more spread between 
such deciles than a poorly discriminating model. The choice of quantiles is 
important for the visual impression of calibration; if small groups are plotted, 
the variability will be large .         



  15.3.2 Calibration in Survival 

 In a survival context, the calibration of a model is usually studied at fixed time 
points. For these time points, we can consider grouped patients, with sufficient 
numbers per group to allow for calculation of survival rates with the Kaplan-Meier 
method. This observed survival is compared with the mean predicted survival from 
the prognostic model. Harrell suggests to use at least 50 subjects per group, depend-
ing on the hazard of the outcome. 174  It would be interesting to plot a smoothed curve 
as for binary outcomes, but this is not easy.  

  15.3.3 Calibration-in-the-Large 

 A calibration plot can easily be made for the data set used to develop a model. This 
indicates the apparent calibration. In model development, the average of predictions 
is the average of the outcomes: mean ( Y ) = mean(Ŷ). For example, mean(observed 
BP) = mean(predicted BP) in linear regression, and mean(observed 30-day mortality) 
is mean(predicted 30-day mortality). This correspondence is guaranteed by the 
intercept in a (generalized) linear model. This correspondence of average outcomes 
remains at internal validation with bootstrapping. When we apply the model to 
external data, this correspondence may be less. The difference between mean(Ŷ) 
and mean( Y  

new
 ) is referred to as “calibration-in-the-large.”  
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 Fig. 15.9    Calibration plot of actual outcome vs. predictions for a hypothetical model with  c  
statistic 0.7,  n =500. The distributions of actual 0 and 1 values are shown at the  bottom  and at the 
 top  of the graph; the loess smoother is close to the ideal 45° line; actual outcomes by deciles of 
risk are shown by triangles (each triangle,  n  = 50)  
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  15.3.4 Calibration Slope 

 Another important calibration measure is related to the average strength of the 
predictor effects. For linear regression, we can write   Y

new
 = a + b

overall
 Ŷ  , and for 

generalized linear models  f ( Y  
new

 ) =  a  +  b  
overall

  linear predictor, where the linear pre-
dictor is the combination of regression coefficients from the model and the predic-
tor values in the new data. A link function  f  is used for  Y  

new
 , e.g. logodds (or logit) 

in logistic regression. The  b  
overall

  is named the calibration slope. 86  Ideally, the 
calibration slope  b  

overall
  = 1. With apparent validation,  b  

overall
  = 1 because this yields 

the best fit on the data under study with either least squares or maximum likeli-
hood methods. At internal validation, the calibration slope reflects the amount of 
shrinkage that is required for a model ( b  

overall
  < 1). 81  It indicates how much we need 

to reduce the effects of predictors on average to make the model well calibrated for 
new patients from the underlying population. The calibration slope can hence be 
used as a shrinkage factor to adjust a model for future use (Chap. 14). At external 
validation, the calibration slope reflects the combined effect of two issues: overfit-
ting on the development data and true differences in effects of predictors.  

  15.3.5 Estimation of Calibration-in-the-Large and Calibration Slope 

 For continuous outcomes, calibration-in-the-large can be assessed easily by 
comparing the mean   (Ŷ)   and mean( Y  

new
 ), and testing the differences   Y

new
 - Ŷ  , e.g. 

with a one-sample  t -test. This test indicates the statistical significance of the mean 
under- or overestimation of the observed outcome:   mean(Y

new
 -Ŷ)  . In a linear regres-

sion model, we can estimate an intercept  a  in the model with as outcome the resid-
ual   Y

new
-Ŷ : Y

new
 - Ŷ =  a  . The recalibration model is simply   Y

new
 = a + b

overall  
Ŷ  . The 

deviation of the calibration slope from 1 can be tested in linear regression by a 
model that studies the residuals:   Y

new 
- Ŷ = a + b

overall
 Ŷ  . The significance of  b  

overall
  is 

then determined as usual in regression, and indicates on average stronger or weaker 
effects of the predictors in a model. 

 For binary outcomes, calibration-in-the-large again refers to the difference 
between   mean Ŷ   and mean( Y  

new
 ). A simple comparison can directly be made, with 

an odds ratio indicating the average under- or overestimation of the outcome:

  OR = odds(mean(Ŷ)) / odds(mean(Y
new

)) = 
[mean(Ŷ) / (1–mean(Ŷ)] / [mean(Y

new
) / (1–mean(Y

new
)].   

 For statistical testing of the difference we need to be more careful. In logistic 
regression, the relationship between the outcome  y  and the linear predictor is 
non-linear (i.e. logistic). We have to compare   logit(Y

new
 = 1) to logit(Ŷ)  , where   

mean (logit(Y
new

 = 1) – logit (Ŷ))   is not equal to   mean(logit(Y
new

 = 1)) – mean 
(logit (Ŷ))  . 

 In a model, we could write
  logit(Y

new
 = 1) - logit (Ŷ) = a;
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or logit(Y
new

 = 1) = a + logit (Ŷ) = a + offset (linear predictor).   

 The intercept  a  then reflects the difference in logodds between predictions and 
observed outcome, adjusted for the linear predictor. The offset makes that predic-
tions are taken literally, as in linear regression. Values of the offset variable are 
subtracted from the actual outcomes  Y  

new
  (as in Poisson regression). Equivalently 

we can think of a regression coefficient for the offset variable that is fixed at unity. 
The statistical significance of intercept  a  can be tested with standard regression 
tests, such as the Wald test or the likelihood ratio (LR) test. 

 The calibration slope can be estimated from the recalibration model 

  logit(Y
new

 = 1) = a + b
overall

 × logit (Ŷ) = a + b
overall

 × linear predictor.   

 The deviation of the calibration slope from 1 (“miscalibration”) can be tested by 
a model that includes an offset variable: 

  logit(Y
new

 = 1) = a + b
miscalibration

 × linear predictor + offset (linear  predictor).   

 The slope coefficient  b  
miscalibration

  reflects the deviations from the ideal slope of 1, 
and can be tested with Wald or LR statistics. 

 Calibration-in-the-large cannot be detected with a refitted Cox regression model, 
since the baseline hazard h

0
 is usually left free in fitting such a model. For a survival 

outcome, the calibration slope can be assessed as: 

  log(hazard(y
new

 = 1)) = h
0
 + b

overall
 × linear predictor.   

 The model for deviation from a slope of 1 is: 

  log(hazard (y
new

 = 1)) = h
0
 + b

miscalibration
 × linear predictor + offset (linear predictor).   

 Testing of coefficient  b  
miscalibration

  is as usual, i.e. with a Wald test or LR test. 
 With a parametric survival model, we can specify parameters that reflect 

differences in average survival, after adjustment for predictor effects. Van 
Houwelingen hereto transformed the baseline hazard from a Cox model to a 
Weibull model. 456  The Weibull model has two parameters to describe the baseline 
hazard parametrically (Chap. 4). These two parameters can be refitted for external 
validation data, together with the linear predictor, to estimate a recalibrated model.  

  *15.3.6 Other Calibration Measures 

 Various other measures are available for calibration. An intuitively appealing meas-
ure of calibration is the absolute difference between smoothed observed outcomes 
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and predicted probabilities (Harrell’s  E  statistic). 174  This measure is related to the 
calibration plot, and depends on the way the 0/1 outcomes are smoothed. The dif-
ference between smoothed observed outcomes and predicted probabilities can also 
be judged visually in a calibration plot such as Fig.  15.9 .  

  15.3.7 Calibration Tests 

 Statistical tests can be performed with various null hypotheses for calibration, 
phrased in the formulation of the recalibration model   y ~ a + b

overall
 Ŷ   (Table  15.5 ). 

Tests for calibration-in-the-large and calibration slope have one df; the calibration 
test has two df. The test for calibration-in-the-large requires that the predictions are 
taken literally ( b  

overall
  = 1). In generalized linear models, this can be achieved with 

an offset variable. The calibration slope can easily be estimated in the recalibration 
model. The recalibration test has several advantages (Table  15.6 ). It can pick-up 
common patterns of miscalibration, i.e. systematic differences between the new 
data and the model development data, and overfitting of the effects of predictors. 
Moreover the test parameters  a  and  b  

overall
  are well interpretable, provided that 

 a  |  b  
overall

  = 1 is reported (rather than a with  b  
overall

  left free). The slope  b  
overall

  can 
directly be taken from the re-calibration model (where  a  is left free).          

 Statistical testing for calibration has a number of drawbacks. First, the null 
hypothesis is of good calibration. Hence, if we test calibration in a small study, we 
have low power and will not reject the null hypothesis unless miscalibration is very 
severe. On the other hand, even a model with very good, but not perfect, calibration 
will fail if the sample size is sufficiently large.  

  15.3.8 Goodness-of-Fit Tests 

 Calibration is related to goodness-of-fit, which relates to the ability of a model to fit 
a given set of data. Typically, there is no single goodness-of-fit test that has good 
power against all kinds of lack of fit of a prediction model. Examples of lack of fit 
are missed non-linearities, interactions, or an inappropriate link function between the 
linear predictor and the outcome. Goodness-of-fit can be tested with a χ 2  statistic. 

 For binary outcomes, the Hosmer-Lemeshow (H-L) goodness-of-fit test is often 
used. 199  Usually, patients are grouped by decile of predicted probability. The sum 

 Table 15.5    Calibration tests for prediction model   y ~  a + b
overall

 ŷ    
     H  

0
    H  

1
   df 

 Calibration-in-the-large   a =0 |  b  
overall

  = 1   a <>0 |  b  
overall

  = 1  1 
 Calibration slope   b  

overall
  = 1   b  

overall
  <> 1  1 

 Recalibration   a  = 0 and  b  
overall

  = 1   a  <> 0 or  b  
overall

  <> 1  2 

  H  
0
  and  H  

1
  indicate the Null and alternative hypothesis respectively 



of predicted probabilities is the number of expected outcomes; this expected 
number is compared with the observed number in the ten groups with a χ 2  test. In 
model development, this χ 2  test has eight degrees of freedom; at external validation 
the degrees of freedom is 9. There are many drawbacks to the H-L test. 198,174  First, 
there are some technical issues: Should we always use deciles of predictions, or 
make the quantiles dependent on the sample size? Can we group by risk-interval, 
e.g. 0–10%, 11–20%, etc (“interval grouping”)? Second, the test has poor power to 
detect miscalibration in the common form of systematic differences between out-
comes in the new data and the model development data, or to detect overfitting of 
the effects of predictors. Some proposed that the H-L test should only be used in 
model development, in addition to more specific tests on model assumptions, such 
as tests for linearity (adding non-linear transformations) and additivity (adding 
interaction terms). Reported H-L tests are usually non-significant if they reflect 
apparent validation on the data that were also used to construct the model. Such 
non-significant results may contribute to the face validity of a model as perceived 
by some readers, but have no scientific meaning. 

 Table 15.6    Summary of some measures for calibration of a prediction model for binary 
outcomes  

 Performance 
aspect 

 
Calculation 

 
Visualization  Pros  Cons 

 Calibration-
in-the-large 

 Compare mean( y ) 
vs. mean( ŷ ) 

 Calibration 
graph 

 Key issue in valida-
tion; statistical 
testing possible 

 By definition 
OK in model 
development 
setting 

 Calibration 
slope 

 Regression slope of 
linear predictor 

 Calibration 
graph 

 Key issue in valida-
tion; statistical 
testing possible 

 By definition 
OK in model 
development 
setting 

 Calibration test  Joint test of 
calibration-in-
the-large and 
calibration 
slope 

 Calibration 
graph 

 Efficient test of two 
key issues in 
calibration 

 Insensitive to 
more subtle 
miscalibration 

 Harrell’s E 
Statistic 

 Absolute differ-
ence between 
smoothed  y  vs. 
line of identity   

 Calibration 
graph 

 Conceptually easy, 
summarizes mis-
calibration over 
whole curve 

 Depends on 
smoothing 
algorithm 

 Hosmer-
Lemeshow 
test 

 Compare observed 
vs. predicted 
in grouped 
patients 

 Calibration 
graph or 
table 

 Conceptually easy  Interpretation 
difficult; low 
power in 
small samples 

 Goeman–Le 
Cessie test 

 Consider correla-
tion between 
residuals 

 -  Overall statistical 
test; supplemen-
tary to calibra-
tion graph 

 Very general 

 Subgroup cali-
bration 

 Compare observed 
vs. predicted in 
subgroups 

 Table

 

 Conceptually easy

 

 Not sensitive to 
various mis-
calibration 
patterns 
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 Alternative goodness-of-fit tests have been proposed with better statistical prop-
erties, such as the Goeman-Le Cessie goodness-of-fit test. 250,141  It assesses the alter-
native hypothesis that any nonlinearities or interaction effects have been missed in 
a logistic regression model. Such neglected effects can be detected by looking for 
patterns in the residuals: Observations close to each other in covariate space, which 
deviate from the model in the same direction. The approach is to smooth the regres-
sion residuals and to test whether these smoothed residuals have more variance than 
expected under the null hypothesis, which occurs when residuals that are close 
together in the covariate space are correlated. The test statistic is a sum of squared 
smoothed residuals. 

 Another approach to goodness-of-fit is to study observed vs. expected out-
comes in subgroups of patients. For example, we can assess the difference 
between observed vs. expected outcomes in males and females, or other sub-
groups of patients. If the effect of the subgroup is not well modelled, e.g. an 
interaction was missed, this might be reflected in this assessment. There are how-
ever more direct ways of assessing the influence of subgroup characteristics, as 
was discussed in Chap. 13 on model specification. So, this check for calibration 
is also more for face validity of the model and for convincing potential users than 
a serious check of calibration. Measures for assessment of calibration are com-
pared in Table  15.6 .  

  15.3.9 Calibration of Survival Predictions 

 For survival outcomes, formal tests similar to the H-L test are possible by com-
parison of observed K-M percentages with average predictions across groups of 
patients. Furthermore, we can study the distribution of Cox-Snell residuals, in a 
plot of the cumulative hazard vs. the residuals, which should form a straight 
line. 174   

  *15.3.10  Example: Calibration in Testicular Cancer 
Prediction Model 

 For the prediction model of residual mass histology, we plot the actual outcome vs. 
predicted for the development sample and the validation sample (Fig.  15.10 ). We 
include the distribution of predicted risks, such that discrimination can also be 
judged. The results by decile of predicted risk are shown in Table  15.7 , to clarify 
the calculation of the Hosmer-Lemeshow statistic. Other tests for miscalibration 
included the overall test for calibration-in-the-large and calibration slope, and the 
Goeman–Le Cessie test, which were non-significant for model development and 
external validation (Table  15.8 ).                   



 Fig. 15.10    Validity of predictions of necrosis in the development sample ( n =544) and in the 
validation sample ( n =273). The distribution of predicted probabilities is shown at the bottom of 
the graphs, separately for those with necrosis and those with residual tumor. The triangles indicate 
the observed frequencies by deciles of predicted probability  
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 Table 15.8    Calibration of testicular cancer prediction model  

    Development  Internal validation  External validation 

 Calibration-in-the-large  0  0  −0.03 
 Calibration slope  1  0.97 a   0.74 
 Calibration tests          
 Overall miscalibration   p  = 1  –   p  = 0.13 
  Hosmer-Lemeshow   p  = 0.66  –   p  = 0.42 
  Goeman – Le Cessie b    p  = 0.63  –   p  = 0.94 

 Development and internal validation with  n =544 patients, external validation in  n =273 patients. 
Internal validation with 200 bootstrap resamples using Harrell’s validate function 
  a Equivalent to the uniform shrinkage factor as discussed in Chap. 14 
  b Test statistics of squared smoothed residuals calculated with R program from Jelle Goeman, 
available from website 

 Table 15.7    Hosmer-Lemeshow test for calibration of the testicular cancer prediction model  

 Development a   Validation b  

 Decile   P (%)   N   Predicted  Observed   P (%)   N   Predicted  Observed 

 1  <7.3  56  2.4  1  <1.8  31  0.2  1 
 2  7.3–16.5  53  6.3  4  1.8–7.3  25  1.1  1 
 3  16.6–26.5  55  11.6  13  7.4–11.1  31  2.6  4 
 4  26.6–34.7  54  16.4  15  11.2–17.5  30  4.4  5 
 5  34.8–43.6  54  21.0  25  17.6–24.3  27  5.6  7 
 6  43.7–54.0  58  28.5  33  24.4–31.0  30  8.1  6 
 7  54.1–63.5  52  31.0  31  31.1–37.2  20  6.7  9 
 8  63.6–73.8  54  36.9  36  37.3–54.6  38  17.2  18 
 9  73.9–85.0  54  42.8  40  54.7–64.7  15  8.8  8 
 10  >85.0  54  48.0  47  >64.7  26  20.3  17 
       544  245  245     273  74.9  76 

  a χ 2 =5.9, df=8,  p =0.66    b χ 2 =9.2, df=9,  p =0.42 
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  15.3.11 Calibration and Discrimination 

 The calibration plot can be extended into a “validation plot” as a central tool to vis-
ualize model performance. Calibration is shown by observed outcomes being close 
to prediction, while discrimination aspects can be indicated with the distribution of 
the predicted probabilities. The distribution can be shown by a histogram or density 
distribution. We can also make separate histograms for those with and without the 
outcome for further insights (see e.g. Fig.  15.10 ). It also helps to see the separation 
according to quantiles of predicted probabilities. For example, when deciles are 
used, these will be relatively far apart for a good discriminating model. 

 Calibration-in-the-large is a phenomenon that is fully independent of discrimi-
nation. For example, we can change the incidence of the outcome in a case-control 
study, but the discrimination will be unaffected. The calibration slope however has 
a direct relationship with discrimination. If the calibration slope is below unity, the 
discrimination is lower. Hence, overfitted models will show both poor calibration 
and poor discrimination when validated in new patients (Chap. 19). 

 Perfect calibration is possible with poor discrimination, for example when the 
range of predicted probabilities is small, such as between 9 and 11% for an average 
incidence of the outcome of 10%. At external validation, such a small range in pre-
dictions may arise from a narrow selection of patients (homogeneous case-mix). 
A drop in discriminative ability compared with the development setting can hence 
be explained by overfitting (calibration also poor), or a more homogeneous in 
case-mix (independent of calibration, see Chap. 19). On the other hand, a well dis-
criminating model can have poor calibration, which can be corrected with various 
updating methods (Chap. 20).   

  *15.3.12 R Code 

 The Hosmer-Lemeshow test is implemented in a simple function hl.ext at the 
book’s website. The user can specify the number of groups (ten by default) and degrees 
of freedom (groups – 2 for model development, groups – 1 for model validation). 

 Calibration plots are made by an extension of Harrell’s val.prob function, called 
val.prob.ci. This function also provides assessment of calibration-in-the-large, cali-
bration slope, and the calibration test  p -value. Goeman provided R code for the functions 
mlogit (for binary of multinomial logistic regression), smoothU (for calculation of 
smoothed residuals), and testfit (for the Goeman-Le Cessie goodness-of-fit test).  

  15.4 Concluding Remarks  

 In this chapter we have discussed a number of performance measures for prediction 
models; many more can be used, as systematically discussed in work by Hilden, 
Bjerregaard, and Habbema in the 1970s. 161,162,163,191,192  Many performance measures 
are related to each other; e.g. the  c  statistic is related to the Mann-Whitney U statistic, 



which is calculated as a rank order test for the difference between predictions by out-
come. The  c  statistic is also linearly related to Somer’s  D  statistic ( c  =  D /2 + 0.5). 

 From a simple statistical perspective we want a small distance between observed 
outcome  Y  and predicted outcome  Ŷ . Explained variation ( R  2 ) can then be used to 
indicate performance, and indicates the predictability of the outcome: How much 
do we know already about the phenomena that lead to the outcome. 372  Diagnostic 
prediction models would hence be expected to have higher  R  2  than prognostic 
models with long-term outcome. Indeed, prognostic models usually have  R  2  around 
0.20. This indicates that substantial uncertainty remains at the individual level; we 
can only provide probabilities, and no certainty on the individual outcome. 13,112  

 We have focused on measures that are in wide use in medical journals nowadays, 
including the concordance statistic (‘ c ’, or area under the ROC curve) for discrimi-
nation, and various tests for calibration and goodness-of-fit. The  c  statistic has been 
criticized by some, and should not be the only criterion in assessment of model 
performance. Especially,  c  may be rather insensitive to inclusion of additional pre-
dictors in prediction models, such as novel biomarkers. 79,330  But our theoretical 
examples and case study show that the  c  statistic is a key measure; it is closely 
related to other performance measures such as  R  2  and Brier score. 

 In principle we might focus our modelling strategy on optimizing performance 
measures such as the  c  statistic. Indeed, estimation algorithms have been described 
that maximize the  c  statistic rather than the log likelihood. 332  

 Compared with current practice, calibration should receive more attention when 
evaluating prediction models. The recalibration test and its components (calibra-
tion-in-the-large and calibration slope) should be used routinely in performance 
assessment in external validation of prediction models. 

  15.4.1 Bibliographic Notes 

 The framework of a recalibration model was already proposed by Cox, 86  and has 
been supported by many other researchers for evaluation of model perform-
ance. 81,174,290,291,458  Nice illustrations of diagnostic test evaluation with ROC curves 
are available at:
     http://www.anaesthetist.com/mnm/stats/roc/      
  Nice illustrations of Lorenz curves and the Gini index are at:  
    http://en.wikipedia.org/wiki/Gini_coefficient          
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  Questions   

    15.1    Overall performance measures  
      Overall performance measures for logistic regression models include Brier 
score and  R  2  type of measures, such as Nagelkerke’s  R  2 .

    (a)    What values can Brier scores and  R  2  take?  
    (b)    What types of scoring rules are Brier and  R  2 ?  
    (c)    What are disadvantages of Brier and  R  2 ?      

    15.2    Lorenz curve and incidence (Fig.  15.6 )  
      In a Lorenz curve, the visual impression of a model with a  c  statistic of 
0.80 depends on the incidence of the outcome.

    (a)     What happens when a Lorenz curve is made for situation with 1% 
incidence?  

    (b)    And what for 99% incidence?      
    15.3    Interpretation of validation graph (Fig.  15.10 )  

      Validity of predictions can well be judged graphically. How do you judge
    (a)    calibration-in-the-large?  
    (b)    calibration slope?  
    (c)    discrimination?      

    15.4    Relationship between calibration, discrimination, and overall performance.  
      Explain the differences and the relation between calibration, discrimination, 
and overall performance measures.            



   Chapter 16   
 Clinical Usefulness       

   Background   In addition to performance measures such as discrimination and 
calibration, we may want to know whether a prediction model is clinically useful: 
Is the model beneficial in clinical practice to guide diagnostic work-up, or decision 
making on therapy. For such decisions, we need a cutoff for the predicted prob-
ability (“decision threshold,” or “classification cutoff,” see Chap. 2). Patients with 
predictions above the cutoff are classified as positive; those under the cutoff as 
negative. We will use the term  clinical usefulness  for a model’s ability to make such 
classifications better than a default policy without the prediction model. 

 We consider performance measures for classification from a decision-analytic 
perspective, and discuss their relationships with performance measures as discussed 
in the previous chapter. Finally, we discuss study designs for measuring the actual 
impact of decision rules in clinical practice. We will illustrate the use of clinical 
usefulness measures in the testicular cancer case study, with model development in 
544 patients and external validation with 273 patients from another centre.    

  16.1 Clinical Usefulness  

 In the previous chapter we saw that the distance between the predicted outcome and 
actual outcome ( Y  – Y^   ) is central to quantify overall performance for regression 
models. 181  For classification, we replace  Y^  by a binary classifier, such that the dis-
tance becomes 0 for a correct classification and 1 for an incorrect classification. 
This is known as the error rate, which is simply the sum of false classifications 
divided by  n , the number of subjects in the sample. 

 A critical issue is the choice of cutoff to classify subjects as positive or negative. 
Traditionally, the cutoff is set to 50%. This implies that false-positive and false-
negative classifications are equally important. This is seldom the case in medicine. 
Often missing a patient with the outcome is more important than incorrect classifi-
cation of a patient without the outcome; false-negative errors are more important 
than false-positive errors. We will consider informal and formal approaches to deter-
mining the optimal cutoff for a specific medical problem. The optimal cutoff is 
defined by the decision context, not by statistical criteria. Once a cutoff is chosen, 
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clinical usefulness measures can be defined. These consider the relative weight of 
false-positive and false-negative classifications, e.g. in a weighted error rate. A fur-
ther approach is to study model performance over the whole range of possible cut-
offs, as is done with the receiver operating characteristic (ROC) curve, but now for 
a “decision curve.” 469  

  16.1.1 Intuitive Approach to the Cutoff 

 We consider two situations: treatment for bacterial meningitis and abandoning 
treatment for patients with traumatic brain injury. Bacterial meningitis is a severe 
infectious disease, with usually good outcome when treated early with antibiotics, 
but poor outcome when not treated in time. Several prediction models have been 
developed to predict the diagnosis “bacterial meningitis” among patients presenting 
at the emergency ward. If the probabilities from such models are used for deci-
sion making, we should use a rather low cutoff, such as not to miss bacterial 
meningitis cases. 

 Several prediction models have been developed for patients with traumatic brain 
injury. If presenting characteristics are dismal (e.g. high age, severe trauma, poor 
remaining brain function), the risk of a poor long-term outcome is high. Some 
researchers have tried to define patients who should not be treated because of very 
high risk of poor outcome. The cutoff was set close to 100%, since we only want 
to refrain from treatment in case of near certainty of a poor outcome.  

  16.1.2 Decision-Analytic Approach to the Cutoff 

 The cutoff for treatment against no treatment can formally be defined with a 
decision-analytic approach (Table  16.1 ). The loss (or “costs” in a broad sense) can 
include patient outcomes (mortality, morbidity, quality of life) as well as economic 
costs (including diagnostic work-up, therapeutic interventions, admission costs, 
costs of follow-up, etc).

       We define two groups of subjects: those with the event if not treated, and those 
without the event if not treated. In the first group the costs relate to undertreatment 

 Table 16.1    Costs of classification of subjects according to a 
decision threshold (“cutoff”)  

 Event  No event 

 Treatment: Risk >= cutoff  cTP  cFP 
 No treatment: Risk < cutoff  cFN  cTN 

 cTP and cFP: Costs of true and false-positive classification; 
cFN and cTN: Costs of false and true-negative classifications, 
respectively 



(false-negative classifications); in the second group overtreatment (false-positive 
classifications). The costs of false-negative classifications are referred to as cFN in 
Table  16.1 . These should be compared with the costs of true-positive classifications 
(cTP); the difference cFN–cTP is the benefit of treatment for those who would have 
the event without treatment. 

 In the second group, relevant costs are for those without the event if not treated, 
who are treated. The costs of these false-positive classifications (cFP) should be 
compared with the costs of true-negative classifications (cTN); the difference cFP–
cTN is the harm of overtreatment for those who would not have the event anyway. 

 Specifying a mathematical loss function leads to a simple definition for the 
optimal decision threshold: The odds of the cutoff corresponds to the relative 
weight of harm vs. benefit. 132  

   Odds(cutoff) = 
(cFP cTN)

(cFN cTP)

−
−

,    

where cTP and cFP refer to costs of true and false-positive classifications, and cFN 
and cTN to costs of false and true-negative classifications, respectively. 

 As discussed, benefit occurs for those with the event when not treated (cFN − cTP), 
and harm for those without the event when not treated (cFP − cTN). So, we note that 
only the differences between treated and non-treated situations are  relevant to decision-
making. Harm relates to the unnecessary treatment of those without the outcome; benefit 
to the correct treatment of those with the outcome. Patients with predicted risks (odds) 
above the threshold should be treated, and those below the threshold not treated.  

  16.1.3 Error Rate and Accuracy 

 If benefit and harm are weighted equally, the odds of the threshold is 1:1, or a 
threshold probability of 50%. This cutoff is by default considered in the calculation 
of the error rate, which is defined as (FN+FP)/ N  (Table  16.2 ). The complement is 
the accuracy rate: (TN+TP)/ N . Often FN classifications are more important than FP 
classifications, which makes the accuracy rate not a sensible indicator of clinical 
usefulness. Other disadvantages include that the accuracy rate by definition is high 
for a frequent or infrequent outcome. For example, if the average mortality is 7% 
after an acute MI, the accuracy is 93% when we classify all patients as survivers.

 Table 16.2    Classification of subjects according to a decision-treshold  

 Event  No event 

 Treatment: Risk >= cutoff  TP  FP 
 No treatment: Risk < cutoff  FN  TN 

 TP and FP: Numbers of true and false-positive classifications; FN and 
TN: numbers of false and true-negative classifications, respectively 
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         16.1.4 Accuracy Measures for Clinical Usefulness 

 The accuracy rate is usually calculated at the simplistic cutoff of 50%, but can also 
be calculated at clinically defendable thresholds. The accuracy then indicates the 
proportion of the population that receives the optimal treatment if the predictions 
from the model are followed. Similarly, sensitivity and specificity can be calculated 
at the  optimal decision threshold: Sensitivity = TP / (TP+FN); Specificity = TN/ 
(FP+TN). 

 The harm to benefit ratio that underpins the choice of the cutoff can also be 
used to calculate a weighted accuracy, and its complement, the weighted error 
rate. We can express the TN classifications in units of the TP classifications, such 
that the weighted accuracy is calculated as (TP + w TN) / ( N  

event
  + w  N  

no event
 ). 

Similarly, the weighted error rate can be calculated as (FN + w FP) / ( N  
event

  + w 
 N  

no event
 ). These rates can also be calculated for a default policy, which would be 

followed without using the prediction model. The default policy could be treat all, 
or treat none. The improvement that is obtained by making decisions based on 
predictions from the model is the difference between the weighted accuracy 
obtained with the model vs. the weighted accuracy of the default policy.  

  16.1.5 Decision Curves 

 In practice, it is often difficult to define the optimal threshold precisely. Difficulties 
may lie at the population level, i.e. that we do not have sufficent data to quantify 
harms and benefits for the typical threshold in a decision problem. Moreover, the 
relative weight of harms and benefits may differ from patient to patient, necessitat-
ing individual thresholds. 

 An impression of the order of magnitude of the typical threshold can usually be 
obtained from clinical experts. We could consider lower and upper values for the 
threshold, with a grey area in between. This approach was for example followed in 
classifying patients with possibly indolent prostate cancer, where those with proba-
bilities < 30% were advised to undergo surgery, and those with probabilities > 60% 
to undergo active surveillance, and a grey area in between. 424  

 It is also possible to consider the whole range of decision thresholds, ranging 
from 0% to 100%. This approach was worked out by Vickers and Elkin. 469  They 
constructed a “decision curve,” which considers a threshold over the range 0–1. The 
method starts as we did before, by noting that the threshold is directly related to the 
harm to benefit ratio. Next they create a plot which shows the net benefit (NB) of 
treating patients according to the prediction model. The formula for NB goes back 
to work published long ago 328 : 

  Net benefit = NB =
(TP wFP)

N

−
,   

where TP is the number of true-positive classifications, FP the number of  false-
positive classifications, and  w  is a weight equal to the odds of the threshold 



( p  
t
 /(1 −  p  

t
 ), or the ratio of harm to benefit. For example, a threshold of 10% means 

that the FP classifications are valued at 1/9th of a TP classification. 
 The NB of a prediction model should be compared with default policies of “treat 

none,” or “treat all.” Treat none means that the NB is zero (since TP and FP are 
zero). The NB for “treat all” depends on the threshold and the incidence of the 
 outcome. The NB of a well-calibrated prediction model is at the maximum when 
the threshold is at the incidence of the outcome. At this point, the policy “treat all” 
has an NB of zero, as well as the policy “treat none.” 

 If the prediction model required efforts such as obtaining data from extra 
 medical tests that were invasive, burdensome, or costly, a different version of the 
NB formula can be used:

  NB = (TP wFP) / N test harm− −   

where test harm is expressed per patient in units of the TP result. 469  
 The interpretion of the NB is in units of the true positives; how many more 

patients are correctly treated (TP decisions) at the same rate of not treating those 
who do not need treatment (TN decisions). For the interpretation of a decision 
curve we need to identify a range of plausible threshold probabilities for treatment, 
and then see whether the model has benefit at all values within this range. If so, the 
model can clearly be recommended for clinical use.  

  *16.1.6 Examples of NB in Decision Curves 

 We present decision curves for prediction models with increasing  c  statistics in Fig. 
 16.1 , based on the distributions as shown in Fig. 15.4. With a  c  statistic of 0.5, the NB 

  Fig. 16.1    Decision curves for prediction models with increasing  c  statistics, based on the distribu-
tions as shown in Fig. 15.4. We note that the net benefit strongly depends on the  c  statistic, but 
that a near perfect model ( c =0.98) is always clinically useful. “Treat all” is associated with a 
negative NB for thresholds over 50%       
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is identical to the strategy of treat all; no gain is obtained from using the decision 
model. With a near perfect model ( c =0.98), the NB appears to be substantial over the 
whole range of thresholds from 0% to 100%. With 50% incidence, the maximum NB 
is 0.5 at a threshold of 0%, i.e. treat all (50% correct, 50% incorrect).

   The maximum gain from using a prediction model is when the threshold is equal 
to the incidence of the outcome. The default policies of “treat all” or “treat none” 
both have an NB of zero at these points. Table  16.3  shows that the maximum gain 
is less than 1% at an incidence of 1%; but increases to over 0.8 for a near perfect 
prediction model at incidence 90%. NB refers here to identifying the cases. If we 
reverse the coding, we consider identifying the non-cases, and we can keep the 
incidence between 0 and 50%.

         16.1.7   Example: Clinical Usefulness of Prediction Model 
for Testicular Cancer 

 In the testicular cancer example, the residual mass histology is classified as benign 
(necrosis) vs. malignant (residual tumor). Malignant histology should surgically be 
resected, but resection of benign tissue is harmful (risks of surgical complications, 
hospital admission, costs). A decision analysis suggested a threshold of 70% for the 
probability of benign histology. 422  This implies a ratio of 7:3 for missing malignant 
histology vs. unnecessary surgery of benign histology, or equivalently, a ratio of 3:7 
for unnecessary vs. necessary surgery. 

 At model development, the sensitivity and specificity were 92% and 42%, 
respectively, at a cutoff of 70% (Table  16.4 ). At external validation, only 23 patients 
had predictions over 70%. The specificity was lower (21%), but the sensitivity 
higher (96%) than at model development. The accuracy rate was (102+275) / 544 
= 69% at development, and remarkably, slightly better at validation: (16+190) / 273 
= 75%. The error rates are the complements of the accuracy rate (31% and 25%).

       The weighted accuracy rate is expressed in necessary resections of tumor (TP), 
where an unnecessary resection of necrosis (FP) is weighted at 3/7 of a missed 

 Table 16.3    Maximum net benefit of various prediction models at decision 
thresholds equal to incidences of the outcome  

 Prediction model 

 Incidence 

 1%  10%  50%  90% 

  c =0.6  0.0028  0.019  0.073  0.150 
  c =0.64  0.0032  0.026  0.104  0.218 
  c =0.7  0.0048  0.036  0.149  0.324 
  c =0.83  0.0071  0.059  0.250  0.511 
  c =0.98  0.0096  0.092  0.429  0.817 

 The default policies of treat all or treat none have a net benefit of zero at these 
points. Net benefit is expressed in units of true-positive decisions (TP) 



tumor. Resection of all masses leads to 299 tumor resections, but also to 245 unnec-
essary resections. This is a better choice than resection in none, since the average 
probability of benign tissue was 45%, which is below the threshold of 70%. This 
default policy has a weighted accuracy rate of 299/(299+3/7×245) = 74%. Using 
the model with a cutoff of 70% would lead to 275 necessary resections plus 102 
correct omissions of resection in patients with necrosis. The weighted accuracy rate 
is (275+3/7×102) / (299 + 3/7×245) = 79%. So, missing 299 − 275 = 24 patients 
with tumor (FN decisions) is more than compensated by the increase in correct 
omission of resection from 0 to 102 (TN decisions). The NB = (TP −  w  FP) /  N  = 
(275 − 3/7×143) / 544 = 0.393, in contrast to (299 − 3/7×245) / 544 = 0.357 for 
resection in all. 

 In the validation sample, resection of all masses would lead to 197 tumor resec-
tions, but also 76 unnecessary resections, for a weighted accuracy rate of 
197/(3/7×76 + 197) = 86%. Using the model with a cutoff of 70% would lead to 
190 necessary resections plus 16 correct omissions of resection in patients with 
necrosis. The weighted accuracy rate is also 86% ([3/7×16 + 190] / [3/7×76 + 
197]). The NB = (TP −  w  FP) /  N  = (190 − 3/7×60) / 273 = 0.602, in contrast to 
(197 − 3/7×76) / 273 = 0.602 for resection in all. Hence, the model is not clinically 
useful in the validation setting. Put simply, sparing resection in 16 patients with 
necrosis does not compensate missing tumor in 7, when we weigh tumor as 7/3 of 
necrosis (Table  16.4 ).  

  16.1.8 Decision Curves for Testicular Cancer Example 

 Thus far we assumed a constant utility function, i.e. a weight of 7/3, for the decision 
to perform surgery on a residual mass in a testicular cancer patient. The correspond-
ing threshold of 30% for the probability of tumor is an average and may vary for 
individual patients based on their personal weighing of surgical risks against 

 Table 16.4    Classification table for the development ( n =544) and validation ( n =273) sets of tes-
ticular cancer patients at a cutoff for the probability of necrosis of 70% (or tumor)=30%)  

 Development ( n =544)  Validation ( n =273) 

 Necrosis  Tumor  Necrosis  Tumor 

 Prediction >= 70%  102  24  16  7 
 Prediction <70%  143  275  60  190 

 245  299  76  197 
 Spec=42%  Sens=92%  Spec=21%  Sens=96% 
 Accuracy=69%, wAcc=74%  Accuracy=75%, wAcc=86% 
 NB 

model
 =0.393 NB 

treat all
 =0.357 

Increase in NB=0.036 
 NB 

model
 =0.602 NB 

treat all
 =0.602 

Increase in NB=0 

 Sensitivity, specificity, accuracy and weighted accuracy are calculated for both data sets   Sensitivity 
calculated for patients with tumor (the more severe outcome), and specificity for patients with 
necrosis (the less severe outcome) 
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increased chances of long-term survival. 469  Instead of a single relative weight, we 
may consider a range of weights in a decision curve. This curve shows that the 
model is clinically useful for thresholds over 20% in the development sample, 
equivalent to thresholds for the probability of necrosis below 80% (Fig.  16.2 ). In 
the validation sample, the range is 55–95%, confirming that the model is not clini-
cally useful in the validation setting when we assume a decision threshold of 
30%. 426  The lines for resection in all and resection in none cross at the frequencies 
of tumor (55% and 72% respectively). At these points the model has maximum gain 
in NB.

     *16.1.9 Verification Bias and Clinical Usefulness 

 As mentioned in the previous chapter, the policy for resection was generally that 
residual masses should be detected on CT scan. This usually means that the radiolo-
gist considers a lymph node as enlarged, i.e. >10 mm. Patients with masses <=10 mm 
are generally not considered candidates for resection, and these patients are hence not 
included in our evaluations of clinical usefulness. 466  Such verification bias affects 
performance measures such as sensitivity and specificity, and also the clinical useful-
ness measures. The conclusion from Fig.  16.2  is that the prediction model has limited 
to no clinical usefulness for the patients in these samples; hence we cannot easily 
reduce resections in those who underwent resection under current policies. There is 
however a large group of patients who are currently not considered for resection. 

  Fig. 16.2    Decision curves of predictions of tumor in patients with testicular cancer in the devel-
opment sample ( n =544) and in the validation sample ( n =273). We note that the model is not 
clinically useful in the validation setting. The lines for resection in all and resection in none cross 
at the frequencies of tumor (55% and 72% respectively)       

0 20 40 60 80 100 0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Threshold probability for resection of tumor (%)

N
et

 B
en

ef
it

Optimal
threshold

Resection in none

Resection
in all

Resection
if prediction
> threshold

Development, n=544

0.0

0.2

0.4

0.6

0.8

Threshold probability for resection of tumor (%)

N
et

 B
en

ef
it

Optimal
threshold

Resection in none

Resection
in all

Resection
if prediction
> threshold

Validation, n=273



Among these patients, with small or “normal” residual masses, some will harbor 
residual tumor cells. These patients likely would benefit from resection, while they 
are currently not considered candidates in most centres. An exploratory analysis in 
241 patients from a MRC/EORTC trial suggested that 84 (31%) of these might be 
candidates for resection, using the decision threshold of 30% risk of tumor. 467   

  *16.1.10 R Code 

 Classification tables can readily be calculated with the  table  command, with accu-
racy and weighted variants. Andrew Vickers provided a function  dca  for  R  and 
Stata, which enables drawing decision curves (  http://www.mskcc.org/mskcc/
html/74366.cfm    ). For the development data, the commands are as follows:

    # tumor as outcome; predictions were for necrosis,   
   # hence “1 − y,” and “1 − prob” in dca function from Vickers 
dca.dev <- dca (yvar=1-full$y, xmatrix=1-plogis(lp), prob=“Y”)   
   # plot 3 lines: net benefit using model; treat all; treat none   
   plot(x=dca.dev$threshold, y=dca.dev[,1], …)   
   lines(x=dca.dev$threshold, y=dca.dev[,2:3]) # Fig    16.2        

  16.2 Discrimination, Calibration, and Clinical Usefulness  

 From a statistical perspective, some have argued that discrimination is the primary 
criterion of a prediction model, since miscalibration can relatively easily be cor-
rected when we apply a model in a new setting. However, when we apply a model, 
we do not know about any miscalibration yet. Hence, clinical usefulness of a 
model in clinical practice depends at least on the combination of discrimination 
and calibration. Of course some discriminative ability is important for any clinical 
usefulness, as is clear from the decision curves in Fig.  16.1 . Some refer to  c  statis-
tics over 0.7 as “acceptable” or “modest,” over 0.8 as “good,” and over 0.9 as 
“excellent.” This is, however, very problematic: It is not possible to indicate a 
minimum value for the  c  statistic to make a model clinically useful. In addition to 
not considering calibration aspects, the consequences of decisions are not consid-
ered in the  c  statistic. Once the ratio of harms to benefits is used to define a clini-
cally relevant threshold, the distribution of predictions around this threshold has a 
major influence on clinical usefulness. The NB of a model with well-calibrated 
predictions is maximal if the decision threshold has the same value as the 
incidence of the outcome. Approximately half of the predictions are then above 
and the other half below the threshold. If all predictions are above or below the 
threshold, the model is not clinically useful, even with a “good” c statistic of 0.8 
for example. 

 As an example, we review the performance of the testicular cancer prediction 
model according to various criteria (Table  16.5 ). We note that overall performance, 
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 Table 16.5    Summary of performance measures for prediction model in testicular cancer  

 Aspect  Measure  Development a   Validation 

 Overall performance   R  2   38%  27% 
 Brier 

scaled
   28%  20% 

 Discrimination   c  statistic  0.81  0.79 
 Discrimination slope  0.29  0.24 
 Lorenz curve p25  9%  13% 

 p75  58%  65% 
 Calibration  Calibration-in-the-large  –  −0.03 

 Calibration slope  0.97  0.74 
 Test for miscalibration   p =1   p =0.13 

 Clinical usefulness at 
cutoff 

 Sensitivity  92%  96% 

 Specificity  42%  21% 
 p(tumor)=30%  Accuracy  69%  75% 

 Weighted accuracy  74%  86% 
 Net benefit – resection in all  0.39 − 0.36 = 0.03  0.60 − 0.60 = 0 

  a Internally validated measures if available 

discrimination, and calibration look quite satisfactory, although predictive effects 
were slightly less strong than anticipated at external validation (calibration slope, 
0.74). The external validation data set was relatively small, hence providing limited 
power for tests of miscalibration. The clinical usefulness measures show a less-fortunate 
pattern. Sensitivity is quite high, but specificity low. Hence, we can spare only few 
patients with necrosis a resection. Indeed, there was no clinical usefulness at the 
cutoff of 30% in the external data set. Hence, good calibration and discrimination 
are necessary but not sufficient for clinical usefulness.

        16.2.1 Aim of the Prediction Model and Performance Measures 

 Performance measures have different relevance in relation to the aim of the predic-
tion model (see also Chap. 2). As discussed earlier, clinical usefulness requires 
considering a decision threshold, which is determined by the relative weight of 
harms and benefits of a treatment. Clinical usefulness then depends on the combi-
nation of calibration, discrimination, and the distribution of predictions around the 
decision threshold. 

 One application of a model is in targeting preventive activities to certain “high 
risk” groups for efficient use of sparse resources. Discrimination is then the primary 
requirement; the main issue is to reasonably order subjects according to risk. If sparse 
resources are not an issue, the targeting should be based on harm to benefit considera-
tions, making clinical usefulness the most relevant aspect of performance. 

 If the aim is to inform or make decisions in clinical practice, calibration is an 
essential requirement. Miscalibration implies that we provide biased information, 



which can lead to worse decision making than with a default policy that ignores the 
model predictions (a loss in NB, Chap. 19). Of course discriminative ability is also 
required, but limited discrimination with a well-calibrated model will lead to a lim-
ited, but never a negative, NB. Miscalibration can lead to a negative NB. 

 Prediction models may have several roles in research. In RCTs, inclusion criteria 
can be according to a model, e.g. to select high-risk groups for investigation of a 
new treatment. For such an application, calibration is essential. Vickers et al. have 
described a method to determine eligibility for an RCT based on NB considera-
tions, including the expected effect of a treatment. 470  For covariate adjustment in an 
RCT, discrimination is most important. If no strong predictors are known, covariate 
adjustment has no benefit over unadjusted analysis of the treatment effect. 
Calibration is not an issue when covariate effects are included in a model to esti-
mate adjusted treatment effects. When a prediction model is used for confounder 
adjustment or case-mix adjustment, calibration is also automatically corrected for. 
Confounder adjustment can be achieved with various approaches, including tradi-
tional regression analyses, including the exposure and confounders, and propensity 
score adjustment. Discrimination of a model with confounders can range from low to 
high values, which does not make the adjustment less or more valid. With very high 
discrimination, we may even suspect that we adjust for a predictor that is too close 
to the outcome that we want to analyze; hence very high discrimination is suspi-
cious. Similarly, a high  c  statistic of a propensity score does not imply validity; it 
merely means that we can predict who gets treatment and who does not. Most rel-
evant is that all relevant confounders are included in the adjustment, i.e. covariates 
that are associated with treatment decisions and with outcome. The latter requires 
subject knowledge rather than statistical criteria.  

  16.2.2 Summary Points 

   •  Discriminative ability is the primary requirement of a prediction model if we 
want to identify a high-risk group, or perform covariate adjustment of a rand-
omized controlled trial.  

 •  For informing patients and medical decision making, calibration is the primary 
requirement, which determines clinical usefulness together with discrimination 
and the distribution of prediction around the decision threshold.      

  16.3 From Prediction Models to Decision Rules  

 Prediction models provide diagnostic or prognostic probabilities. They may assist 
clinical decision making without telling to clinicians what to do precisely. One 
motivation for providing probabilities only is that decision thresholds may differ 
from patient to patient. Some argue, however, that prediction models will more 
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likely have an impact on clinical practice when clear actions are defined in relation 
to the predictions. They favor presentation as a decision rule rather than as a predic-
tion model. 

 Decision rules may be most useful when decision making is complex, when the 
clinical stakes are high, or when there are opportunities to achieve cost savings 
without compromising patient care. 282  But few rules have undergone formal analy-
sis to determine whether they improve outcomes when used in clinical practice 
(“impact analysis”). The medical impact of most published prediction or decision 
rules is unknown. 

 For application as a decision rule, prediction models may require simplification 
to provide clear advise on actions with high and low predictions. A decision thresh-
old has to be defined, either chosen informally or by formal decision analysis, 
based on the relative weights of false-negative and false-positive decisions. In some 
diagnostic rules, we may not want to miss any patient with the outcome of interest 
(e.g. Ottawa Ankle rules, 147  CT head rules 391 ). This implies that we aim for a sensi-
tivity of 100%, and hope for reasonable specificity. We accept false-positive classi-
fications, since the 100% sensitivity implies an infinite cost of false-negative 
classifications. 

 Reilly and Evans have proposed a set of criteria for assessing the impact of pre-
diction models as decision rules (Table  16.6 ). 344  These progressive evidentiary 
standards emphasize that a prediction model rises to the level of a decision rule only 
if clinicians use its predictions to help make decisions for patients.

      The first level of evidence is at the development of a prediction model. Reilly 
and Evans emphasize the model selection aspects (“identification of predictors”) 
and blinded assessment of outcomes. We have seen that overfitting and measures to 
prevent overoptimistic expectations of model performance are especially 
important. 

 Levels 2 and 3 are related to model validation, which indeed is essential before 
application of a model can be recommended. Validation in multiple settings is 
required to gain confidence in the applicability of a model for a new setting. 

 Levels 4 and 5 consider impact analysis, where a prediction model is used as a 
decision rule. We assess whether the rule improves physicians’ decisions (quality 
or cost-effectiveness of patient care). 

  16.3.1 Performance of Decision Rules 

 Sensitivity and specificity are often used as performance criteria for a decision rule. 
As discussed before, these criteria may also be used for validation of a prediction 
model at certain cutoffs. Reilly and Evans note that decision rules generally 
improve physicians’ specificity more than sensitivity; physicians ascribe greater 
value to true-positive decisions (provide care to patients who need it) than to true-
negative decisions (withhold care from patients who do not need it). This is equiva-
lent to weighing FN more than FP classifications, or a ratio of harm to benefit less 



than 1. This implies a threshold for treatment below 50%. An important issue is that 
the sensitivity and specificity of a decision rule in clinical practice is not only influ-
enced by the quality of the prediction model, but also by the adherence of clinicians 
to the rule. Validation of a prediction model may indicate the efficacy of a rule (the 
maximum that can be attained with 100% adherence), but impact analysis will 
indicate the effectiveness in practice. 

 Clinicians may choose to overrule the decision rule, which may improve sensitiv-
ity and/or specificity. But overruling may also dilute the effects of the rule. 56  There 
may be various barriers to the clinical use of decision rules. Barriers include issues in 
attitude such as skepticism of guidelines (in general and with respect to the specific 
rule), questions on the clinical sensibility of the rule, too high confidence in clinical 
judgment, fear of medicolegal risks, concern that important factors are not addressed 
by the decision rule, concern on patient safety, and practical issues such as availability 
of the rule at the time of decision making, and easy of use. 

 Table 16.6    Developing and evaluating clinical prediction models and decision rules (based on 
Reilly and Evans 344 )  

 Level of evidence 
 Definitions and standards of 
evaluation  Clinical implications 

 Level 1 
 Derivation of prediction 

model 
 Identification of predictors 

for multivariable model; 
blinded assessment of 
outcomes 

 Needs validation and further 
evaluation before using in 
actual patient care 

 Level 2 
 Narrow validation of predic-

tion model 
 Assessment of predictive 

ability when tested pro-
spectively in one setting; 
blinded assessment of 
outcomes 

 Needs validation in varied set-
tings; may use predictions 
cautiously in patients simi-
lar to sample studied 

 Level 3 
 Broad validation of prediction 

model 
 Assessment of predictive abil-

ity in varied settings with 
wide spectrum of patients 
and physicians 

 Needs impact analysis; may 
use predictions with confi-
dence in their accuracy 

 Level 4 
 Narrow impact analysis of 

prediction model used as 
decision rule 

 Prospective demonstration 
in one setting that use of 
decision rule improves 
physicians’ decisions (quality 
or cost-effectiveness 
of patient care) 

 May use cautiously to inform 
decisions in settings simi-
lar to that studied 

 Level 5 
 Broad impact analysis of pre-

diction model used as 
decision rule 

 Prospective demonstration in 
varied settings that use of 
decision rule improves 
physicians’ decisions for 
wide spectrum of patients 

 May use in varied settings 
with confidence that its 
use will benefit patient 
care quality or 
effectiveness 
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 An impact analysis should ideally be designed as an RCT. Randomization by 
centre is an obvious approach to organizational changes such as using a decision 
rule in practice. But there is a risk for contaminating intervention and control 
groups and the logistic and economic challenges of multi-centre studies are formi-
dable. Some previous evidence of impact is required, which may come from a 
single centre. Such evaluation measures the actual effects of using the rule in clinical 
practice, which is critical information when planning multi-centre (level 5) studies. 
The Ottawa Ankle rules provide an excellent case study for model development, 
validation, and impact assessment. 427,334   

  *16.3.2 Treatment Benefit in Prognostic Subgroups 

 Prediction models may indicate subgroups of patients with a poor prognosis, 
often suggesting that these patients may need more aggressive treatment. Note 
that this assumes a curative intend; e.g. in oncology, palliative treatments are 
generally considered when cure is not possible, and more aggressive treatment 
may do more harm than good. On the other hand, good prognosis groups may be 
defined, where less-intensive treatment may be sufficient. This distinction is for 
example made by the International Germ Cell Classification (IGCC). 5  In this 
clinical area, several RCTs have been performed that follow the IGCC classifica-
tion. More aggressive treatment was studied in “poor risk” patients (e.g. high 
dose instead of standard dose chemotherapy), and less intensive therapy in 
“good prognosis” patients (e.g. three instead of four cycles of cisplatin-based 
chemotherapy).  

  *16.3.3 Evaluation of Classification Systems 

 In the near future, new classification systems will come up, which include genetic 
profiles or other novel biomarkers. Systematic studies are required to validate these 
new systems, and provide evidence on any treatment benefits in subgroups as indi-
cated by such new classification systems. For example, a clinical trial has started, 
which will use a genetic profile to test which early-stage breast cancer patients need 
chemotherapy. 483  For efficient design, the trial can focus on the patients whose risk 
classification is discordant between the genetic profile and the traditional classifica-
tion with clinical–pathological information only. For example, women who are 
determined to be at high risk for relapse of breast cancer by both the genetic profile 
and traditional clinical pathological criteria may be treated with chemotherapy, as 
is current standard practice. Those who are low risk by both criteria will not receive 
chemotherapy. However, the women who are determined to be at high risk for dis-
tant relapse by one criterion and low risk by the other will be randomly assigned to 
one of two arms. 439  Such a study is important for the evaluation of treatment benefit, 



but also validates the prognostic model by comparing outcomes between various 
prognostic groups under standard treatment. The design of trials of markers in 
oncology is discussed in more detail elsewhere. 364  

 A limitation of this design is that differences between groups may be small, 
leading to large sample sizes to be studied. Moreover, the prognostic value of a 
classification can usually well be determined in observational data, e.g. in a prospec-
tive validation study. For example, the prediction model for the residual histology in 
testicular cancer was validated in three validation studies. 467  We did consider setting 
up an RCT in discordant pairs of patients: Those with an indication for surgery 
according to either the model or current policy, but no indication according to 
the other. The benefits of surgery were however considered to be clear once the 
histology was known. This is similar to other diagnostic studies, where knowledge 
of the reference standard is considered sufficient to estimate further treatment 
benefit. In contrast, the definition of “indolent prostate cancer” causes a lot of 
debate among urologists, with uncertainty as to whether such “indolent cancers” 
can be safely selected for active surveillance rather than surgery (see discussion on 
papers presenting nomograms for “indolent cancer” 424,227 ).   

  16.4 Concluding Remarks  

 In this chapter we have discussed measures for clinical usefulness of prediction 
models. From a statistical perspective we may simply calculate error rates, with 
implicit equal weighing of false-positive and false-negative classifications. We 
noted that the  c  statistic was not sufficient to indicate clinical usefulness, 
although a low  c  statistic made it unlikely that a model was clinically useful. 
Good calibration was required, and the distribution of predictions had to be on 
both sides of the decision threshold. Usefulness is high for a perfectly calibrated 
model, with a substantial  c  statistic, in a clinical problem where the decision 
threshold is equal to the incidence of the outcome. A further discussion follows 
in Chap. 19. 

 Note that the determination of the decision threshold is fully independent from 
developing and validating the decision model. It should ideally be based on a for-
mal weighting of harms and benefit of a treatment, compared with the alternative 
of no treatment and treatment for all. Clinical usefulness is hence problem depend-
ent, and not in the hands of the modeler. Final impact of a prediction model as a 
decision rule is one further step in the evaluation. 

 Compared with current practice, calibration should receive more attention 
when evaluating prediction models. The recalibration test and its components 
(calibration-in-the-large and calibration slope) should be used routinely in per-
formance assessment in external data. Also, measures of clinical usefulness 
should be considered more often. Decision curves are promising tools by provid-
ing simple graphs to summarize a model’s quality for the full range of possible 
decision thresholds. 
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  16.4.1 Bibliographic notes 

 For comparison of performance of alternative prediction models, Cook recently 
proposed to start with a comparison of overall model performance (e.g.  R  2 ), fol-
lowed by calibration and discrimination. She suggests to consider reclassification 
of individuals across categories, and outcome for these reclassified individuals. 78  
Similarly, a “predictiveness curve” has been proposed to assess the usefulness of a 
prediction model for a population. For a diagnostic problem, it shows the predicted 
probabilities ( y -axis) vs. the cumulative distribution (x-axis, as in Lorenz curves) 
[  http://www.bepress.com/uwbiostat/paper282/    ]. Pencina et al. recently proposed 
some statistical summary measures, which initiated substantial discussion. 329,330  
These proposals all lack a thorough decision-analytic motivation, in contrast to for 
example, decision curves.   



  Questions  

     16.1     Calculation of net benefit (sect.  16.1.5 ) 
  Net benefit is defined as: NB = (TP −  w  FP) /  N , where TP means a true-

positive classification,  w  FP weighted false-positive classification, and  N  the 
sample size.

    (a)     What is the NB if we classify all subjects as positive, in a setting of 
50% incidence of the outcome, and a relative weight of FP classifica-
tions as 1:1?  

    (b)    And what if the relative weight of FP classifications is 1:2?  
    (c)     Recalculate the sensitivity, specificity, accuracy, and NB for the 273 vali-

dation patients in Table  16.4 .      

    16.2    Decision curves (Fig.  16.1 )
    (a)     Why is the “treat all” strategy in Fig  16.1  associated with a negative NB 

for thresholds over 50%?  
    (b)     What will happen to the decision curves when a lower incidence than 

50% is considered? Or a higher incidence?      

    16.3    Verification bias (Sect.  16.1.9 ) 
  What is verification bias? How does it effect clinical usefulness, e.g. in the 

right panel of Fig  16.2 ?    

    16.4    Usefulness for decision making vs. research purposes 
  When would you consider a model clinically useful? And useful for 

research?  

    16.5    Errors in an Editorial 
  Consider the Editorial in JNCI on discrimination, calibration, and interpreta-

tion of risks. 112 
    (a)    What is wrong in Fig. 2?  
    (b)     What is the decision threshold for this problem? What is the basis for this 

threshold?  
    (c)     How clinically useful is the Gail model with this threshold, according to 

weighted accuracy and NB?              

Questions 297



   Chapter 17   
 Validation of Prediction Models        

  Background   The purpose of a predictive model is to provide valid outcome 
predictions for new patients. Essentially, the data set to develop a model is not of 
interest other than to learn for the future. Validation hence is an important aspect 
of the process of predictive modelling. An important distinction is between internal 
and external validation. We discuss internal and external validation techniques in 
this chapter, with illustrations in case studies.    

  17.1 Internal vs. External Validation, and Validity  

 A general framework for validation and validity concepts is shown in Fig.  17.1 . 
We develop a model within a representative sample of patients from an underlying 
population. This underlying population has specific characteristics, e.g. a specific 
hospital with a certain profile of how patients come to this hospital. By necessity, 
the sample is historic in nature, although we generally will aim for recent data, 
which are representative of current practice. At least we should determine the 
internal validity (or “reproducibility”) of our predictive model for this underlying 
population. We do so by testing the model in our development sample (“internal 
validation”). Internal validation is the process of determining internal validity. 
Internal validation assesses validity for the setting where the development data 
originated from.  

 Another aspect is the external validity (or “generalizability” / “transportability”) 
of the prediction model to populations that are “plausibly related.” 222  Generalizability 
is a desired property from both a scientific and practical perspective. Scientifically 
speaking hypotheses and theories are stronger when their generalizability is larger. 
Practically, we hope to be able to validly apply a prediction model to our specific 
setting. 

 The definition of “plausibly related” populations is not self-evident, and requires 
subject knowledge and expert judgment on epidemiological study design aspects. 
We consider “plausibly related” as that populations can be thought of as parts of a 
“superpopulation” (Fig.  17.1 ). We could also state that we consider populations that 
would be reasonable to apply the previously developed model to. Populations will 
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be slightly different, e.g. treated at different hospitals or in different time frames. 
Various aspects may differ between these populations, e.g. the selection of patients 
(e.g. referral centre vs. more standard setting), and definitions of predictors and 
outcome. For example, a superpopulation could be formed by “patients with an 
acute MI,” with the GUSTO-I data representing one population, defined by the 
inclusion criteria for this trial, the participating centres, and the time of accrual. 

 We learn about external validity by testing the model in other samples (sample 
2 to  i  in Fig.  17.1 , “external validation”). These samples are fully independent from 
the development data and originate from different but plausibly related settings. 
The more often the model is externally validated and the more diverse these set-
tings, the more confidence we gain in the generalizability of the model. This is 
similar to the approach to assessing any scientific hypothesis. 222   

  17.2 Internal Validation Techniques  

 Several techniques are available to assess internal validity. Some of the most com-
mon techniques in medical research are discussed here (Table  17.1 ).      

  17.2.1 Apparent Validation 

 With apparent validation, model performance is assessed directly in the sample 
where it was derived from (Fig.  17.2 ). Naturally this leads to an optimistic estimate 
of performance (biased assessment), since model parameters were optimized for 

‘Superpopulation’: patients with a certain disease

Setting 1 Setting 2 Setting i 

Sample 1 Sample 2 Sample i 

Model 1
Internal
validation External validation

External validity/Generalizability

Internal
validity

  Fig. 17.1    A conceptual framework on internal vs. external validition, and validity. We consider a 
superpopulation, consisting of several subpopulations (referred to as “settings”). We develop a model 
in sample 1 from setting 1. Internal validation is the process of determining internal validity for set-
ting 1. External validation is the process of determining generalizability to settings 2 to  i        



the sample. However, we use 100% of the available data to develop the model, and 
100% of the data to test the model. Hence, the procedure gives optimistic but stable 
estimates of performance.   

  17.2.2 Split-Sample Validation 

 With split-sample validation, the sample is randomly divided into two groups. This 
very classical approach is inspired by the design of an external validation study. 
However, the split in derivation and test set is at random. In one group the model is 
created (e.g. 50% of the data) and in the other the model performance is evaluated 
(e.g. the other 50% of the data, Fig.  17.3 ) . Typical splits are as 50%:50% or 
2/3:1/3.  

 Several aspects need attention when a split-sample validation is performed. If 
samples are split fully at random, substantial imbalances may occur with respect to 
distribution of predictors and the outcome. For example, if we perform split-sample 
validation with a small subsample from GUSTO-I ( n  = 429), the average incidence 
of 30-day mortality is 5.6% (24/429), but it may easily be 4% in a 50% random part 
and 7% in another part. Similarly, the distribution of predictors may vary. For pre-
dictors with skewed distributions the consequences may be even worse. For exam-
ple, a random development sample may not contain any patient with shock, which 
occurred in only 1.6% (7/429). A practical possibility is to stratify the random 
sampling by outcome and relevant predictors. 

 The drawbacks of split-sample methods are numerous. 174,292,374  One major objec-
tion is related to variance. Only part of the data is used for model development, 
leading to less-stable model results compared with development with all development 

 Table 17.1    Overview of characteristics of some techniques for internal validation  

 Method  Development  Validation 

 Apparent  Original 100%  Original 100% 
 Split-sample  50–67% of original  Independent 50–33% 
 Cross-validation a  

 Classical  2 × 50% – 10×90% of original  Independent 2×50% – 10×10% 
 Jack-knife   N  × ( N  − 1 of original)  Independent  N ×1 patient 

 Bootstrap  Bootstrap sample of size  N   Original 100% 

  a  More stable cross-validation results are obtained by repeating the cross-validation many times, 
e.g. 50 times (“multi-fold cross-validation”) 

  Fig. 17.2    Apparent validition refers to assessing model 
performance in the sample where the model was
derived from       

Sample 1

Model 1
Apparent
validation
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data. Also, the validation part is relatively small, leading to unreliable assessment 
of model performance. Further, the investigator may be unlucky in the split; the 
model may show a very poor performance in the random validation part. It is not 
more than human that the investigator is tempted to repeat the splitting process until 
more favorable results are found. Another objection is related to bias. We obtain an 
assessment of the performance when a part of the data is used, while we want to 
know the performance of a model based on the full sample. 

 In sum, split-sample validation is a classical but inefficient approach to model 
validation. It dates from the time before efficient but computer-intensive methods 
were available, such as bootstrapping. 108  Simulation studies have shown that rather 
large sample sizes are required to make split-sample validation reasonable. 413  But 
with large samples, the apparent validity is already a good indicator of model 
performance. Hence, we may conclude that split-sample validation is a method that 
works when we do not need it. It should be replaced in medical research by more 
efficient internal validation techniques, and by attempts of external validation.  

  17.2.3 Cross-Validation 

 Cross-validation is an extension of split-sample validation, aiming for more stabil-
ity (Fig.  17.4 ). A prediction model is again tested on a random part that was left out 
from the sample. The model is developed in the remaining part of the sample. But 
this process is repeated for consecutive fractions of patients. For example, the data 
set may be split in deciles (containing 1/10 of the patients), with model develop-
ment in nine of the ten and testing in one of the ten, which is repeated ten times 
(“ten-fold cross-validation”). In this way, all patients have served once to test the 
model. The performance is commonly estimated as the average of all 
assessments. 174   

 Compared with split-sample validation, cross-validation can use a larger part 
of the sample for model development (e.g. 90%). This is an advantage. However, 
the whole cross-validation procedure may need to be repeated several times to 
obtain truly stable results, for example 50 times ten-fold cross-validation. The 
most extreme cross-validation is to leave out each patient once, which is equivalent 
to the jack-knife procedure. 108  With large numbers of patients, this procedure is 
not very efficient. 

Sample 1

Model 1−50%

50% 50%

Split-sample
validation

  Fig. 17.3    Split-sample validation refers to assess-
ing model performance in a random part of the 
sample, with model development in the other part       



 A problem is that cross-validation may not properly reflect all sources of model 
uncertainty, such as caused by automated variable selection methods. We provide 
an example at the book’s website, where we consider the stability of a backward 
stepwise selection procedure in the large subsample from GUSTO-I (sample4, 
 n =785, 52 deaths). A ten-fold cross-validation procedure suggests a quite stable 
selection of “important predictors”: SHO, A65, HIG, and HRT. In contrast, boot-
strapping shows a much wider variability. The underestimation of variability is 
easily recognized for jack-knife cross-validation, where the development sample is 
identical to the full sample except for one patient. Hence, largely the same predic-
tors will generally be selected in each jack-knife sample as in the full sample. Such 
model uncertainty can better be reflected with bootstrap validation.  

  17.2.4 Bootstrap Validation 

 As discussed in Chap. 5, bootstrapping reflects the process of sampling from the 
underlying population (Fig.  17.5 ). Bootstrap samples are drawn with replacement 
from the original sample, reflecting the drawing of samples from an underlying 
population. Bootstrap samples are of the same size as the original sample. 108  In the 
context of model validation, 100–200 bootstraps may often be sufficient to obtain 
stable estimates, but in one simulation study we reached a plateau only after 500 
bootstrap repetitions. 401  With current computer power bootstrap validation is a fea-
sible technique for most prediction problems.  

 For bootstrap validation a prediction model is developed in each bootstrap sam-
ple. This model is evaluated both in the bootstrap sample and in the original sample. 
The first reflects apparent validation, the second test validation in new subjects. The 
difference in performance indicates the optimism. This optimism is subtracted from 
the apparent performance of the original model in the original sample. 174,108,409,413  
The bootstrap was illustrated for estimation of optimism in Chap. 5. 

 Advantages of bootstrap validation are various. The optimism-corrected per-
formance estimate is rather stable, since samples of size  N  are used to develop the 
model as well as to test the model. This is similar to apparent validation, and an 
advantage over split-sample and cross-validation methods. Compared with apparent 
validation, some uncertainty is added by having to estimate the optimism. When 
sufficient bootstraps are taken, this additional uncertainty is however negligible. 

 Moreover, simulations have shown that bootstrap validation can appropriately 
reflect all sources of model uncertainty, especially variable selection. 401  The bootstrap 

  Fig. 17.4    Cross-validation refers to assessing model 
performance consecutively in a random part of the 
sample, with model development in the other parts. 
With ten-fold cross-validation, deciles of the sample 
serve as validation parts       

Sample 1

Model 1−j

b j

Cross-
validation

a c…i 
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also seems to work reasonably in high-dimensional settings of genetic markers, 
where the number of potential predictors is larger than the number of patients (“ p > n  
problems”), although some modifications may be considered. 374  Disadvantages of 
bootstrap validation, and other resampling methods such as cross-validation, 
include that only automated modelling strategies can be used, such as fitting a full 
model without selection, or following an automated stepwise selection approach. In 
many analyses, intermediate steps are made, such as collapsing categories of varia-
bles, truncation of outliers or omission of influential observations, assessing linear-
ity visually in a plot, testing some interaction terms, studying both univariate and 
multivariable  p  values, or assessing proportionality of hazards for a Cox regression 
model. It may be difficult to repeat all these steps in a bootstrap procedure. 

 In such situations, it may be reasonable to at least validate the full model 
containing all predictors to obtain a first impression of the optimism. For example, 
when we consider 30 candidate predictors, and build a final model with predictors 
that have multivariable  p  < 0.20 in a backward stepwise selection procedure, but 
after univariate screening with e.g.  p  < 0.50, the optimism can be estimated by validating 
the full 30 predictor model. Another reasonable approximation for the optimism in 
this example may be to simply perform backward stepwise selection with  p  < 0.20, 
ignoring the univariate screening. We would definitely be cheating if we validated 
the finally selected model and ignored all selection steps. In one study we found an 
optimism estimate of 0.07 for the  c  statistic when we replayed all modeling steps 
(based on univariate and multivariable  p  values) in contrast to 0.01 when we 
considered the final model as pre-defined. 401    

  17.3 External Validation Studies  

 External validation of models is essential to support general applicability of a 
prediction model. Where internal validation techniques are all characterized by 
random splitting of development and test samples, external validation considers 
patients that differ in some respect from the development patients (Fig.  17.1 ). 
External validation studies may address aspects of historic (or temporal), 
 geographical (or spatial), methodological, and spectrum transportability. 222  Historic 
transportability refers to performance when a model is tested in different historical 
periods. Especially relevant is validity in more recently treated patients. Geographic 

Sample 1

Model 1*

Bootstrap
validationSample 1*

  Fig. 17.5    Bootstrap validation refers to assessing model per-
formance in the original sample for a model (Model 1 * ) that 
was developed in a bootstrap sample (Sample 1 * ), drawn with 
replacement from the original sample       



transportability refers to testing in patients from other places, e.g. other hospitals or 
other regions, see e.g. a recent study in stroke patients. 240  Methodological transport-
ability refers to testing with data collected by using alternative methods, e.g. when 
comorbidity data are collected from claims data rather than from patients’ charts. 
Spectrum transportability refers to testing in patients who are, on average, more (or 
less) advanced in their disease process, or who have a somewhat different dis-
ease. 222  Spectrum transportability is relevant when models are developed in second-
ary care and validated in primary care, or models developed in randomized trials 
are validated in a broader, less-selected sample. 

 In addition to these aspects, we may consider whether external validation 
was performed by the same investigators who developed the model, or by inves-
tigators not involved at the development stage. If model performance is found 
adequate by fully independent investigators, in their specific setting, this is 
more convincing than when this result was found by investigators who also 
developed the model. 

 A simple distinction in types of external validation studies is shown in Table 
 17.2  . We distinguish temporal validation (validation in more recent patients), 
geographic validation (validation in other places), and fully independent valida-
tion (by other investigators at other sites). Mixed forms of these types can occur 
in practice. For example, we validated a testicular cancer prediction model in 172 
patients: 100 more recently treated patients from hospitals that participated in the 
model development phase and 72 from a hospital not included among the devel-
opment centres. 412      

  17.3.1 Temporal Validation 

 With temporal validation, we typically validate a model in more recently treated 
patients. A straightforward approach is to split the development data into two parts: 
one part containing early treated patients to develop the model and another part 
containing the most recently treated patients to assess the performance. 

 Also, we may aim for a prospective application of the model in a specifically 
collected cohort. An example is from a study in patients suspected of Lynch 
syndrome (see Chap. 10).  

 Table 17.2    Summary of types of external validation studies (based on Justice et al. 222 )  

 Method  Characteristics 

 Temporal validation  Prospective testing, more recent patients 
 Geographic validation  Multi-site testing 
 Fully independent validation  Other investigators at another site 
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  *17.3.2  Example: Development and Validation of a Model 
for Lynch Syndrome 

 We aimed to predict the prevalence of Lynch-syndrome related genetic defects 
( MLH1  or  MSH2  mutations) based in proband and relative characteristics (“family 
history”). Predictors included type of cancer diagnosis, age, and number of affected 
relatives. We developed a model with 898 patients who were tested at Myriad 
Genetics between 2000 and 2003. This model was tested in a validation sample 
containing 1,016 patients who were tested between 2003 and 2004 (Table  17.3  ).      

 In the validation sample, the outcome definition was slightly different, since not 
only mutations but also deletions of genes were assessed. This led to a slightly 
higher prevalence of mutations (15% at validation versus 14% at development), 

 Predictors 
 Development 
OR [95% CI] 

 Validation OR 
[95% CI] 

 Combined OR 
[95% CI] 

 Proband 
 CRC 1  2.2 [1.9 – 2.5]  7.0 [6.0 – 8.1]  3.8 [3.6 – 4.1] 
 CRC 2+  8.2 [5.6 – 12]  37 [25 – 55]  16 [14 – 20] 
 Adenoma  1.8 [1.5 – 2.2]  1.5 [1.2 – 1.7]  1.5 [1.4 – 1.6] 
 Endometrial cancer  2.5 [2.1 – 3.1]  7.1 [6.1 – 8.2]  4.2 [3.9 – 4.6] 
 Other HNPCC cancer  2.1 [1.7 – 2.5]  1.4 [1.1 – 1.8]  1.8 [1.6 – 2.0] 

 Family history 
 CRC in 1st/2nd degree a   2.3 [2.1 – 2.5]  3.0 [2.8 – 3.3]  2.6 [2.5 – 2.7] 
 CRC 2 in 1st degree  3.1 [2.6 – 3.6]  4.2 [3.6 – 4.8]  3.6 [3.4 – 3.8] 
 Endometrial cancer 1st/2nd 
 degree a  

 2.7 [2.4 – 3.2]  2.7 [2.3 – 3.1]  2.6 [2.4 – 2.8] 

 Endometrial cancer 2 in 1st 
 degree 

 6.5 [1.8 – 24]  26 [6.0 – 113]  12 [6.3 – 23] 

 Other HNPCC cancer  1.5 [1.4 – 1.7]  1.4 [1.2 – 1.6]  1.5 [1.4 – 1.6] 
 Age at diagnosis 

 CRC b   1.5 [1.4 – 1.6]  1.4 [1.2 – 1.5]  1.4 [1.3 – 1.5] 
 Endometrial cancer c   1.3 [1.2 – 1.4]  1.4 [1.3 – 1.5]  1.3 [1.2 – 1.4] 

 Model performance 
  c  statistic  0.79 [0.76–0.83] d   0.80 [0.76–0.84] e   0.80 [0.77–0.83] d  
 Mean observed vs. 
 predicted 

 14% vs. 14%  15% vs. 13% e   15% vs. 15% 

 Calibration slope  0.85 d   1.26 [1.03–1.49] e   0.94 d  

 Table 17.3    Multivariable analysis of Lynch syndrome prediction model  

 Odds ratios of predictors are shown for the development ( n =898) and validation ( n =1,016) 
patients, as well as in the combined data set ( n =1,914) used for estimation of the final prediction 
model. Model performance includes assessment of discrimination and calibration   
a  Family history coded as first-degree + 0.5 second-degree relatives, with first-degree and second-
degree relatives coded as 0, 1, 2+   
b  Age effect for colorectal cancer and/or adenoma in probands, and colorectal cancer in first- and 
second-degree relatives
   c  Age effect for endometrial cancer in probands, in first degree, and in second-degree relatives
   d  Internal validation by bootstrapping for  c  statistic and calibration slope
   e  External validation for  c  statistic, mean observed and predicted probabilities, and calibration slope 



 Table 17.4    Examples of studies with external validation according to site (“leave-one-centre-out 
cross-validation”)  

 Model  Development  Validation  Site 

 Testicular cancer  6 × 5 groups  6 × 1 group  A group consisted of a 
single hospital or a 
previously published 
patient series 

  Chlamydia trachomatis   4 × 3 regions  4 × 1 region  Municipality health 
centres organizing 
regional case finding 

 DRASTIC study  5 × 4 hospitals  5 × 1 hospital  Large hospitals partici-
pating in an RCT and 
a category “other” 

while the case-mix remained similar (mean predicted probability for validation 
sample, 13%). This difference in prevalence of the outcome could easily be adjusted 
by using a slightly higher intercept in the logistic regression model (+0.25, indicat-
ing 25% higher odds). The effects of the predictors were similar in the development 
and validation samples. Also, the discriminative ability remained at a similar level 
as at development with  c  statistic around 0.80. 

 The good performance at external validation may not be too surprising given that 
definitions of predictors were exactly the same. For the final model, both data sets 
were combined, such that 1,914 patients were analyzed, leading to smaller confi-
dence intervals for the effects of the predictors and the  c  statistic.  

  17.3.3 Geographic Validation 

 With geographic validation, we evaluate a predictive model according to site. 
Geographic validation can be seen as a variant of cross-validation. It could be 
labelled “leave-one-centre-out cross-validation.” Importantly, standard cross-vali-
dation makes splits in the data at random; with geographic validation the splits are 
not at random. Some examples are shown in Table  17.4 . Geographic validation is 
often possible with collaborative studies, and more meaningful than a standard 
cross-validation.     

 A drawback of such geographical validations is that validation samples may get 
quite small, leading to unreliable results. Results may easily be overinterpreted, for 
example as showing that “the model was not valid for hospital X.” For example, in 
the testicular cancer case study, we found a systematic difference in calibration for 
patients treated in one centre (Fig.  17.6 ). 467  In fact, we perform multiple, small, 
subgroup analyses. Emphasis should be on general consistency (if this is observed) 
rather than on differences that will always occur with small numbers. On the other 
hand, remarkable findings for a specific setting may indicate a need for further valida-
tion before applying the model in this setting, and trigger further research.   
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  17.3.4 Fully Independent Validation 

 Finally we mention external validation by independent investigators (“fully inde-
pendent validation”). Other investigators may use slightly different definitions of 
predictors, outcome, and study patients that were differently selected compared 
with the development setting. An example of that is a prostate cancer model devel-
oped for clinically seen patients and validated in patients selected by a systematic 
screening program (European Study on Prostate Cancer, ERSPC). 424  Here, case-
mix seemed similar, but a severe underestimation of relatively innocent (“indo-
lent”) cancer probability was found (Table  17.5 ). This phenomenon was addressed 
by a new logistic model intercept, while keeping the regression coefficients close 
to their original values.      

 Similarly it was found that a prediction model for the selection of patients under-
going in vitro fertilization for single embryo transfer needed an adjustment when a 
model developed at one hospital was applied in another centre. Again, a systematic 
difference remained even after adjustment for well-known and important predic-
tors. 206  This difference in average outcome (“calibration-in-the-large”) is an impor-
tant motivation for recalibration of model predictions as a simple but important 
updating technique (see Chap. 19). 

 Some examples of fully independent validation studies with their main conclu-
sions are listed in Table  17.6 . It seems that fully external validation studies often 

  Fig. 17.6    Results of external validation by centre for the testicular cancer prediction model. We 
note  c  statistics around 0.8 for all sites, and non-significant miscalibration according to the 
Hosmer-Lemeshow test (H-L test), except in graph(F). B, benign tissue; T, tumor 467        
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 Table 17.6    Examples of studies with fully independent external validation  

 Model  Development  Validation  Conclusions 

 Prostate cancer  Two hospitals 227   Screening setting 
(ERSPC) 424  

 Intercept problem 

 Aneurysm mortality  One hospital + meta-
analysis 421  

 UK small aneurysm 
trial 54  and another 
hospital 231  

 Missing predictors; 
poor/moderate 
performance 

 Renal artery stenosis  RCT 243   One French hospital 278   “Reasonably valid” 

provide more unfavourable results than a temporal or geographical external valida-
tion. This is also illustrated by other examples of fully independent validation, 
showing generally poor results, in a review by Altman and Royston. 13       

  17.3.5 Reasons for Poor Validation 

 Unfavourable results at validation may often be explained by inadequate model 
development. Sample size may have been relatively small, or patients were selected 
from a single centre. This was for example noted in a review of over 25 models in 
traumatic brain injury. 333  Also, statistical analysis may often have been suboptimal, 
e.g. with stepwise selection in relatively small samples with many potential predictors, 
and no shrinkage of regression coefficients to compensate overfitting. 

 Other explanations include true differences between development and validation 
settings, especially in coding of predictors and outcome. The problem of transport-
ability of models that incorporate laboratory test results was already recognized in 
the 1980s for a prediction rule for jaundice, where units of measurement were not 
consistent. 379  Indeed, the validation of a model that was previously developed by 
others is often more difficult than anticipated. If a nomogram is presented with some 

 Table 17.5    Prediction accuracy of three previous nomograms for indolent prostate cancer devel-
oped by Kattan et al. 227  for 247 ERSPC patients 424   

 Nomogram 

 Performance parameter  Base  Medium  Full 

 Area under the ROC 
curve 

 Kattan et al.  0.64  0.74  0.79 

 ERSPC  0.61 [0.54–0.68]  0.72 [0.66–0.78]  0.76 [0.70–0.82] 
 Calibration-in-the-large  Predicted  24%  22%  15% 

 Observed  49% [43–55%]  49% [43–55%]  49% [43–55%] 
 Calibration slope  Predicted  1  1  1 

 Observed  0.78 [0.32–1.24]  0.87 [0.55–1.19]  1.07 [0.74–1.40] 

 Base: Serum PSA + clinical stage + biopsy Gleason grade 1 and 2  
Medium: Base + US volume + %positive cores  
Full: Base + US volume + mm cancerous tissue + mm non-cancerous tissue 
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non-linear terms, it is not so easy to derive a formula to calculate outcome predic-
tions for new patients. So, it is quite likely that errors are made at such external 
validation studies. Units of measurement and the intercept value require special 
attention. Contacting the authors may help to prevent mistakes. 

 Moreover, variables required for a model may not be available at validation. 
A constant value can be filled in (e.g. the mean or median), but obviously this limits 
the external performance of a model. For example, a Dutch model for abdominal 
aneurysm mortality was validated in the UK small aneurysm study, while two of 
the seven predictors were not available. 54  In a validation study with patients from 
Rotterdam, all predictors except one were available and a better external perform-
ance was found. 231    

  17.4 Concluding Remarks  

 We considered several approaches to internal and external validation. For internal 
validation, bootstrapping appears most attractive, provided that we can replay all 
modelling steps. This may sometimes be difficult, e.g. when decisions on coding of 
predictors, and selection of predictors are made in the modelling process. Several 
variants of bootstrapping are under study, which may be more efficient than the 
procedure described here. Also, the optimism may in fact be larger than estimated 
by bootstrapping when the ratio of predictors considered to the sample size is very 
unfavourable, such as in genetic marker research. 292,220,221  

 Any internal validation technique should be seen as validating the modelling process 
rather than a specific model. 181  For example, when a split-sample validation is 
followed, e.g. to convince physicians who are skeptical of modern developments, the 
final model should still be derived from the full sample. It would be a waste of pre-
cious information if the final model were only based on a random part of the sample. 
Differences in regression coefficients will generally be small, since the split was at 
random, and the data have overlap, but the estimates of the full sample will be more 
stable. If a stepwise selection procedure was followed in the random sample, it should 
be repeated in the full sample. This may result in a different model specification, but 
this is preferable to sticking to results from only part of the available data. 

 The same reasoning holds for cross-validation and bootstrap validation. 
Especially with bootstrap validation we may well illustrate the instability of stepwise 
selection procedures (see Chap. 11). The final model may only be selected in a few 
of the bootstrap samples. This model uncertainty has to be taken into account in the 
optimism estimate for the final model. 

 If external validation has been performed, we may similarly define the final 
model from the combined data set. This was for example done in the Lynch syn-
drome case study (Table  17.3 ). 25  This combination of data implies that the two 
samples represent the same population, which is not necessarily the case.  If rele-
vant differences are found, a setting-specific intercept or setting-specific interaction 
terms may be included (see Chaps. 19–21).  



  Questions   

   17.1    Stability of internal validation techniques (Table  17.1 )

   (a)    Split-sample validation is notoriously unstable. In contrast, apparent vali-
dation and bootstrap validation share stability in the estimation of model 
performance. Do you agree?  

   (b)    Cross-validation eventually uses 100% of the sample for validation; why 
might multi-fold cross-validation help?      

   17.2    Interpretation of external validation (Fig.  17.6 )     
   Fig.  17.6  can be interpreted in different ways. One perspective is to emphasize 

the similarity in performance between settings. Alternatively, we might focus 
on graph E and F, which show a systematic miscalibration. What would be 
your view on the performance of this centre? Consider a fixed effect and ran-
dom effect perspective (see also Chap. 20).

   17.3    Problems with internal validation 50      
  Interpret the published results on “internal validation” in Table 2 of an Ann 

Int Med paper (  http://www.annals.org/cgi/reprint/143/4/265.pdf    ).

   (a)    What do you think went wrong?  
   (b)    What do you think of the interpretation provided in the text?  
   (c)    What do you think about the “corrected Table 2,” published as an erratum? 

  http://www.annals.org/cgi/reprint/144/8/620.pdf                

Questions 311



   Chapter 18   
 Presentation Formats        

  Background   The presentation of a prediction model deserves careful attention. 
Epidemiologic regression analyses commonly concentrate on estimation of relative 
effects, and present tables with odds ratios or hazard ratios, and their confidence 
intervals. Such tables are usually not sufficient to calculate absolute risks, which 
requires a model intercept (for continuous or binary outcomes) or a baseline hazard 
(for survival outcomes). We need to separate presentations that generate predic-
tions (“clinical prediction models”) from presentations that generate advice for a 
decision (“clinical decision rules”). Various presentation formats are possible for 
prediction models and for decision rules, some of which will be discussed in this 
chapter. We illustrate the creation of some formats at a technical level for the tes-
ticular cancer case study.    

  18.1 Prediction vs. Decision Rules  

 A clinical prediction model provides an estimate of absolute risk, based on the 
combination of several patient characteristics. For a good prediction model, the 
prediction for an individual patient can span a wide range, from relatively low to 
relatively high. The interpretation of the prediction and any actions following from 
it are left to the treating physician and/or the patient. We can also present a decision 
rule, where a specific course of action is suggested depending on the combination 
of patient characteristics. Decision rules are hence not synonymous with prediction 
models. 344  Decision rules require more subject matter input, e.g. from clinical 
experts, especially on the choice of a cutoff point for predictions (see Chap. 16). 

 Some have argued that presentation as a decision rule leads more easily to a wide 
application of a model. Examples include decision rules for traumatic injuries to the 
ankle or foot, knee, cervical spine, and head (“Ottawa rules”). The developers of the 
rules suggest substantial impact, and conclude that emergency physicians should 
adopt these clinical decision rules to standardize care and reduce costs. 334  Decision 
rules may also be a natural extension of heuristic rules that humans tend to use. 135  

 We discuss several options for presentation of prediction models and clinical 
decision rules (Table  18.1 ). Formats differ on aspects such as the medium by which 
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they are presented (on paper, or electronically), the level of detail in the predictions 
(rough indications of risk, or exact probabilities), presence of indicators of uncertainty 
(e.g. 95% confidence intervals around predictions), and user-friendliness (simple to 
complex formats).       

  18.2 Clinical Prediction Models  

 Clinical prediction models provide probabilities of diagnostic or prognostic out-
comes. We discuss detailed presentations with a regression formula, a nomogram, 
or a score chart (Table  18.1 ). 

  18.2.1 Regression Formula 

 Clinical prediction models can be presented in various formats. The simplest form 
is to present the final regression formula. An example is the regression formula 
presented in the abstract of a study in anovulatory infertile women (Box  18.1 ).  209  

 Calculation of predictions with a regression formula incorporates two steps. 
The first step is to calculate the linear predictor. The linear predictor is central to 
regression models such as linear, logistic, polytomous, Cox, or parametric sur-
vival models. In the linear predictor, we multiply regression coefficients with 
predictor values. Definitions and encoding of the predictors have to be clear to 
the user. For binary predictors, a 0/1 coding is convenient, which makes that 
patients without a characteristic have a score of zero. For categorical predictors, 
dummy variables are usually constructed. The reference category for these 
dummy variables can be based on frequency (e.g., the most common category is 
the reference), or on clinical considerations. For continuous variables, the units 
have to be clear. For example units for concentrations are important (by weight, 
e.g. mg/dl, or molecular count, e.g. mmol/l). Also, continuous predictors are 
sometimes centred to the mean value, which should then be subtracted from the 
original value when using the regression formula. 

 The second step is to translate the linear predictor values to units on the outcome 
scale. For a logistic model, we use the logistic transformation to estimate probabilities 
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 Box 18.1 Regression formula for prediction of the individual follicle-stimu-
lating hormone threshold  209   

 FSH response dose = 4 body mass index (in kg/m 2 ) + 32 clomiphene citrate 
resistance (yes = 1 or no = 0) + 7 initial free insulin-like growth factor-I (in 
ng/mL) + 6 initial serum FSH level (in IU/L) – 51 
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of the outcome (  p  (  Y  =1)). For survival, we can estimate survival probabilities, e.g. 
at 1,2, or 5-year, median survival, or other quantiles of survival. With a Cox model, 
we need the baseline hazard function to estimate these survival probabilities    
 S  (  t  ) =  h  

0
  (  t  ) × exp(linear predictor), where  h  

0
  (  t  ) indicates the baseline hazard 

function for time  t  . Parametric survival models have an intercept similar to other 
regression models. Predictions from such parametric models are straightforward to 
calculate, and are more stable at the end of follow-up (Chap. 4). 

 Heuristic shrinkage can be incorporated in the translation from linear predictor 
to predictions. One way is to standardize predictor values, such that the average of 
the linear predictor is zero.  459  We can then multiply the linear predictor with the 
shrinkage factor. The average of the predictions will then remain reasonably cor-
rect. However, a systematic error will arise when the range of predictions is wide, 
or the shrinkage severe, because of the non-linearity in the translation from linear 
predictor to prediction. As an alternative, we can shrink regression coefficients and 
re-estimate the intercept for proper calibration-in-the-large. 

 Regression formulas can serve as the basis for computerized implementation, in 
PDAs, mobile phones, hospital information systems or electronic patient records, 
webpages, or spreadsheets (see   http://www.nomograms.org    ). One example is a 
spreadsheet to show survival after surgery for lung cancer, where a model is pre-
sented, including seven predictors. The predicted survival curve was calculated 
according to the individual predictor values, with an approximate 95% confidence 
interval.  36  

 Similarly, specific programs can be developed for presentation of the prediction 
model. An example is the OncologIQ program (http://oncologiq.nl/). The program 
provides individualized survival predictions for cancer patients in graphical and 
tabular format, similar to what can be done with a spreadsheet. The program also 
provides documentation on the prediction model. Finally, Web-based calculators 
become more and more common. A wide collection is provided commercially at 
  http://www.infopoems.com/    .  

  *18.2.2 Confidence Intervals for Predictions 

 Uncertainty around predictions for linear regression models can be presented with 
 confidence  intervals and  prediction  intervals. Confidence intervals indicate the 
uncertainty around the average and become very small with very large sample size. 
For example, a growth curve predicting length by age will have a very tight confidence 
interval when based on thousands of adolescents. Prediction intervals for individual 
subjects will however remain of substantial size because of the variability in the 
population. 

 For predicted probabilities, the fact that a probability is estimated reflects the 
inherent uncertainty of the prediction process. Confidence intervals around predicted 
probabilties can become quite small with large sample size, but the prediction for 
an individual remains a probability. With regression analysis, predictions can 



approach, but never reach, 0 or 1. Uncertainty in survival can be indicated around 
probabilities at time points in follow-up. We can also indicate uncertainty around 
survival duration, e.g. median survival surrounded by 2.5%, 5%, 10%, 25%, 75%, 
90%, 95%, 97.5% quantiles. The latter quantiles will always cover a substantial 
width, even with infinite sample size, similar to the prediction intervals in linear 
regression. 

 Confidence intervals are only a valid indication of the uncertainty of the prediction 
model if there is no systematic bias in the predictions. The total uncertainty in a 
prediction is the sum of systematic and random errors. Miscalibration of predic-
tions is an example of a systematic error, which may be due to various differences 
between the development setting and the setting where the model is applied, e.g. 
encoding of predictors, missed predictors with different distributions, and truly 
differential effects. Hence we must be cautious in the interpretation of predictions 
when the confidence interval is small because of a large sample size. On the other 
hand, a model derived from a small data set will show large confidence intervals, 
which is useful warning against overinterpretation of predictions. Further, one 
might argue that the values of the predictions remain of primary interest for decision 
making, and uncertainty is less relevant. If we cannot make a better estimate than 
the one provided by the model, following that estimate is the best we can do, even 
when the estimate is uncertain. 

 Technically, confidence intervals are calculated with the standard error of a prediction. 
The standard error is calculated from the covariance matrix of the regression model. 
If shrinkage was applied, it may be reasonable to still use the covariance matrix of 
the original, unshrunken model. With a penalized model we can use the covariance 
matrix of the penalized model, which will result in slightly smaller standard errors 
of predictions than the original model. 

 Every combination of predictor values leads to a different standard error of the 
prediction. The same linear predictor value can have a different standard error, 
since different combinations of predictor values may lead to the same sum. This is 
handled easily in a regression formula and in a spreadsheet, but more complicated 
in other presentation formats such as nomograms and score charts. In the latter 
formats, using the mean or median standard error can be considered to indicate 
uncertainty for a given linear predictor value.  

  18.2.3 Nomograms 

 Nomograms are graphical presentations of a prediction model, and have a long 
 history in the precomputer era, with a more recent role as presentation format of a 
clinical prediction model.  269  Again, two steps are discerned. The calculation of the 
linear predictor is essentially as for a regression formula. The nomogram has a ref-
erence line for reading scoring points (e.g. 0–100 or 0–10, Fig.  18.1 ). The user 
manually totals the points and the total corresponds linearly to the linear predictor. 
The second step is the transformation of the linear predictor to predictions, which 
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can be read at the bottom of the nomogram. Predictions can be in the form of a 
probability, median survival, or other quantities. Harrell’s  nomogram  function is a 
valuable tool to develop these presentations.  174   

 Nomograms have especially been promoted for urological tumors, such as prostate 
cancer, by Kattan et al.  351,72  Advantages are several. The relative importance of the 
predictors can be judged by the length of the lines with nomogram scores, provided 
that the predictor values on the lines are based on the distribution of the predictor 
in the data under study. Hence, the reader obtains a visual impression of the relevance 
of a predictor in the model, relative to the other predictors. Furthermore, interaction 
terms can be handled well. Separate lines are constructed, such that always only 
one axis has to be read to obtain a score corresponding to a predictor value. 
Complex models, e.g. survival models with time-dependent covariates, can also be 
presented as nomograms.  228  The translation of the total points to the probability or 
survival scale is relatively easy. Scales can be extended with approximate confidence 
intervals (with the median standard error per decile of predicted risk), or additional 
scales for the outcome, e.g. 25 and 75 survival percentiles. 

 Disadvantages of nomogram presentations include the relative complexity at 
first sight, the inaccuracy of readings when many predictors are included, and the 
inaccuracy of translation to the final outcome. It is not clear yet whether clinicians 
prefer nomograms to other formats such as score charts. 

  Fig. 18.1    Nomogram for benign histology based on six predictors in a penalized logistic regression 
model. Teratoma, teratoma elements in the primary tumor; Pre.AFP, pre-chemotherapy AFP 
normal / elevated; Pre.HCG, pre-chemotherapy HCG normal / elevated; LDHst, standardized 
pre-chemotherapy LDH (LDH divided by upper limit of normal values; 1 means values equal to 
upper normal); Post.size, post-chemotherapy mass size in mm. Reduction, % reduction in size 
during chemotherapy, e.g. 50–10mm =80%       
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 *18.2.3.1 Instructions for nomogram 

  Instruction to physicians using the model in their care:  Determine the patient’s 
value for each predictor, and draw a straight line upwards to the points axis to 
determine how many points towards benign histology the patient receives. Sum the 
points received for each predictor and locate this sum on the total points axis. Draw 
a straight line down to find the patient’s predicted probability of benign histology. 

  Instruction to patient:  “Mr. X, if we had 100 men exactly like you, we would 
expect that the chemotherapy was fully succesfull in approximately <predicted 
probability from nomogram × 100>, as reflected in fully benign disease at surgical 
resection of your abdominal lymph nodes.” (text based on Kattan et al.  227  )   

  18.2.4 Score Chart  

 Score charts are another simple presentation format for clinical prediction models. 
The first step is to round regression coefficients to scores. A simple approach is to 
multiply coefficients by ten, and round them. However, we can often find lower numbers 
for multiplication that still allow for a sufficiently refined prediction. Some define 
scores by dividing through the smallest coefficient of a binary predictor, which has 
then by definition a score of 1. The other predictors get rounded scores. This procedure 
is suboptimal, since it capitalizes on the estimate of one coefficient. This leads to 
unnecessary extra uncertainty in the rounded coefficients. It is preferable to search for 
a common denominator across all coefficients. A score chart for the testicular cancer 
model is shown in Table  18.2 , with corresponding probabilities in Fig.  18.2.         

 Table 18.2    Score chart for estimation of the probability of benign tissue after chemotherapy for 
metastatic testicular cancer with continuous predictors  

 Characteristic  Scores  Sum score 

 Primary tumor 
 Teratoma elements  1 

 Prechemotherapy tumor markers 
 AFP elevated  1 
 HCG elevated  1 

 LDH times normal 
 Values  0.6  1  1.6  2.5  4  6 
 Scores a   −0.5  0  0.5  1  1.5  2 

 Postchemotherapy size (mm) 
 Values  <5  10  20  40  70 
 Scores a   +0.5   0  −0.5  −1  −1.5 

 Reduction in size 
 Values  Increase  0%  50%  100% 
 Scores a   −1  0  1  2 

 Total score (add all)  … 
 Probability of benign tissue and  …% 
 95% CI from Fig.  18.2   […% – …%] 

  a  Intermediate scores can be estimated with linear interpolation 
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  Fig. 18.2    Probability of necrosis (benign tissue) in relation to the sum score from Table  18.2 . 
Number of patients with each score are indicated at the  bottom , and reflected in the size of the 
dots. 95% confidence intervals are shown around the predicted probabilities       
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  18.2.5 Tables with Predictions  

 Predictions can sometimes be presented in table format, but this may require some 
simplifications of the model. Especially, we need to categorize continuous predictors, 
which implies a loss of information (see for an example from the Framingham 
Heart Study  487  :   http://www.nhlbi.nih.gov/about/framingham/riskabs.htm    ). Also, 
the Adult Treatment Panel III presents a number of tools for detailed calculations 
on the Web (  http://hp2010.nhlbihin.net/atpiii/calculator.asp?usertype=prof    ). An 
interactive risk assessment tool is presented to estimate 10-year risk for “hard” cor-
onary heart disease outcomes (myocardial infarction and coronary death), and 
calculators are downloadable for use on a Palm OS or as a spreadsheet. 

 A simple table has been successful in providing indications for statin treatment. 
This table defines absolute 10-year risks of cardiovascular events by smoking sta-
tus, hypertension, diabetis, cholesterol to HDL-cholesterol ratio, and sex. Moreover, 
colors were added corresponding to treatment advice: treat with a statin, do not 
treat with a statin, or treat in the presence of a family history of cardiovascular 
disease. This presentation was followed in several Dutch guidelines for prevention 
of cardiovascular disease. 

 A tabular presentation was considered as a simple way to present the testicular 
cancer model.  416  The advantage is that decision guidelines can easily be coupled to 
the predictions. In this case, a clear treatment advice was linked to predictions over 
90% (follow-up) and prediction below 60% (resection, Table  18.3 ). In between is a 
gray area, where treatment decision making is not straightforward and may depend 
on various factors, such as feasibility of close follow-up, experience of surgeon, and the 



 Table 18.3    Probability of benign tissue in relation to the sum of five favourable characteristics 
and mass size for the testicular cancer case study  

 Sum of favourable characteristics a  

 Residual mass size (mm)  0  1  2  3  4  5 

  0–9   p  > 60%   p  > 70%   p  > 80%  Follow-up 
 10–19  Resection   p  > 90% 
 20–29   p  > 60% 

 30–49   p  > 70%   p  > 80% 

  > = 50 or increased mass   p  <=60% 

  a Sum of five characteristics: primary tumor teratoma negative; pre-chemotherapy AFP normal; 
Pre-chemotherapy HCG normal; Pre-chemotherapy LDH elevated; reduction in mass size >= 70% 

technical difficulty of the resection. All patients with a large (>= 50 mm) or 
increased mass should undergo resection, as well as all with less than two favorable 
characteristics. This tabular format however implies a severe loss of discriminative 
ability ( c  decreases from 0.839 to 0.773).      

  *18.2.6 Specific Formats 

 Specific formats may appeal to certain audiences. For example, radiologists are 
important in the monitoring of treatment of cancer. They usually compare images 
obtained during or after treatment with images made before treatment. Hence, a 
presentation of prediction model might focus on the information in such images. 
This was attempted for the relevance of pre- and post-chemotherapy mass size in 
the testicular cancer prediction example (Fig.  18.3 ).  419  We created iso-probability 
curves for combinations of pre- and post-chemotherapy mass size, based on the 
underlying logistic regression function. The graph shows that the post-chemotherapy 
size was more relevant than the pre-chemotherapy size; probabilities increase 
sharply with smaller post-chemotherapy size. This is caused by a direct effect of 
post-chemotherapy size, in combination with a strong effect of reduction in size 
(larger reductions with smaller post-chemotherapy sizes).    

  18.3  Case Study: Clinical Prediction Model for Testicular 
Cancer Model  

  18.3.1 Regression Formula from Logistic Model 

 In the testicular cancer case study we concentrate on the prediction of a benign his-
tology (“necrosis”) after chemotherapy for metastatic disease. A logistic regression 
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model with six predictors was fitted. Bootstrapping suggests a shrinkage factor of  s  
of ∼ 0.95. Further, a penalty factor of 4 was used in a penalized maximum likelihood 
procedure (Table  18.4 ). 

 Predictor  Coef  
orig

   Coef  
shrunk

   Coef  
pen

   10* Coef  
pen

   10/8* coef 

 Teratoma   0.909   0.872   0.873   9  1 
 Pre.AFP   0.903   0.865   0.860   9  1 
 Pre.HCG   0.783   0.750   0.729   7  1 
 Log(LDHst)   0.985   0.944   0.884   9  1 
 Sqrt(Post.size)  −0.292  −0.279  −0.261  −3  0 
 Reduction (%)   0.016   0.015   0.016   0  0 

 Table 18.4    Regression coefficients in logistic regression models for post-chemotherapy histology 
in testicular cancer, with uniform shrinkage (  s  = 0.95), penalized ML estimation (penalty factor 4), 
and the scores for a score chart (multiplication by 10, or 10/8 to achieve simpler scores)  

  Fig. 18.3    Predictions for benign histology based on pre-chemotherapy and post-chemotherapy 
mass size, and by score of four prognostic characteristics (no teratoma elements in primary tumor, 
normal AFP, normal HCG, or elevated LDH). Lines are labelled with 5 for 50%, 6 for 60%, 7 for 
70%, 8 for 80%, and 9 for 90% probability of benign tissue. Patients with a score of zero always 
had predicted probabilities below 50%. For example, a post-chemotherapy size of 20 mm after a 
prechemotherapy size of 100 mm results in a probability around 90% when the score is 4, but a 
probability around 65% when the score is 2       
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 The formula with shrunk coefficients is: 

  
lp Teratoma Pre AFP Pre HCGshrunk = − + × + × + × +0 97 0 84 0 83 0 72 0 9. . . . . . . 11

0 27 0 014× − × + ×ln( ) . ( . ) . ,LDHst sqrt Post size Reduction
  

where Teratoma = 1 if teratoma elements were present in the primary tumor, 0 
otherwise; Pre.AFP = 1 if pre-chemotherapy AFP was elevated, 0 if normal; Pre.
HCG = 1 if pre-chemotherapy HCG was elevated, 0 if normal; ln(LDHst) refers to 
the natural logarithm of the pre-chemotherapy LDH value, standardized to the 
upper limit of local normal limits; sqrt(Post.size) refers to the square root of the 
post-chemotherapy size in mm; Reduction refers to the reduction is size during 
chemotherapy in %. 

 The formula with penalized coefficients is: 

  lp
penalized

 = –1.1 + 0.87 × Teratoma + 0.86 × Pre.AFP + 0.73 × Pre.HCG} + 0.88
 × In(LDHst) –0.26 × sqrt(Post.size) + 0.016 × Reduction   

 The formula to calculate predicted probabilities is simply: 

   

1
P

(1 exp( lp))
=

+ −     

 If we want to calculate confidence intervals, we need to consider the covariance 
matrix, which looks like:    

  Inter cept    Terat oma    Pre.AFP    Pre.HCG    LDHst    Post.size    Reduction  
  Intercept     0.3700    −3.1e–02    −3.0e–02    −1.4e–02     0.04200    −0.04300    −2.7e–03  

  Teratoma    −0.0310     4.6e–02     5.7e–03    −2.4e–03    −0.00150     0.00100     5.6e–05  

  Pre.AFP    −0.0300     5.7e–03     5.4e–02    −9.2e–03     0.00320     0.00130     8.6e–05  
  Pre.HCG    −0.0140    −2.4e–03    −9.2e–03     5.3e–02     0.01100    −0.00160     8.0e–06  
  LDHst     0.0420    −1.5e–03     3.2e–03     1.1e–02     0.04400    −0.00970    −4.1e–04  
  Post.size    −0.0430     1.0e–03     1.3e–03    −1.6e–03    −0.00970     0.00660     3.1e–04  
  Reduction    −0.0027     5.6e–05     8.6e–05     8.0e–06    −0.00041     0.00031     2.7e–05  
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 The square root of the diagonal indicates the variance of the regression coefficients. 
The off-diagonal numbers are used for the calculation of variance of specific combi-
nations of predictor values: SE  

prediction
  = transpose(  X  ) × covariance matrix ×  X  . 

A detailed example is provided for the EuroSCORE, which predicts cardiac operative 
risks.  286  The predictions for the testicular cancer histology are presented with 95% 
confidence in an Excel spreadsheet, which is freely available at the Web.      
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  18.3.2 Nomogram 

 A nomogram can easily be constructed with Harrell’s Design library:

    nomogram(full.pen, fun=plogis, lp=T, lp.at=c(−2,0,2,4), 
LDHst=c(.5,1,1.5,2,3,4), post.size=c(50,20,10,5,2), 
Reduction=c(0, 35, 70, 100), 
fun.at=c(seq(.1, .9,by=.1), 0.95), funlabel=“p(benign histology)”, 
vnames=“lab”, maxscale=10)     

 We used a maximum of 10 points in Fig.  18.1 , accepting some loss in accuracy 
in summing the points corresponding to each predictor value. The total points cor-
respond linearly to the linear predictor, which correspond to  p (benign histology) 
through the logistic transformation.  

  *18.3.3 Score Chart 

 A score chart for the testicular cancer prediction model was shown in Table  18.2 . 
We consider the following steps with some technical details:

   1.    multiply and round regression coefficients of binary predictors and dummy vari-
ables of categorical predictors  

   2.    search scores for continuous predictors, continuous or categorized  
   3.    estimate the multiplication factor for the scores  
   4.    estimate the intercept and present as score chart  

 18.3.3.1 Rounding coefficients 

          The first step is to multiply regression coefficients and round them to scores. 
A simple approach is to multiply coefficients by ten. But we can also search for smaller 
rounded scores. For example, the coefficients of the binary predictors Teratoma, Pre.
AFP, and Pre.HCG were quite similar (∼ 0.8 for the penalized coefficients, Table  18.4 ). 
We multiply by 10/8 to give these three predictors each a score of 1. In general, we can 
often find lower numbers for multiplication that still allow for a refined prediction. 
 The R command for a search of scaling factor for the penalized coefficients was:
    for(i in seq(1, 10, by=0.5)) {   
   cat(“Multiply by:”, 10/i, “i=”, i, “Coefs:”, 
round(full.pen$coefficients[−1] * 10 / i), “\n”) }      

 18.3.3.2 Scores for continuous predictors 

      Three continuous predictors are considered in the prediction model, with a log transfor-
mation (LDHst), square root transformation (Post.size), and linear (Reduction in size 
during treatment). These continuous predictors need to be rescaled in such a way that a 
one point change in score corresponds approximately to a 10/8 increase in logodds. We 



first treat these predictors as continuous variables, and later consider categorization as 
a further simplification. We go through several steps:

   (a)    Score 0: convenient? With a predictor such as age, it is often strange to have 
a score of 0 at 0 years. We may need to change the reference point to a sen-
sible value, which we subtract from the original value.  

   (b)    Score points: We aim to find values of the predictors where the scores are 
+1, +2, etc. points, depending on the distribution of predictor values and the 
predictor effects.  

   (c)    Intermediate scores: We have to think about intermediate values, which 
have e.g. a score of +0.5 points. Other values can then be scored by linear 
interpolation.         

 We consider these three steps for the three continuous predictors in the 
 testicular cancer histology prediction model (LDH, postchemotherapy size, and 
reduction in size). 

  LDH 

 A score of zero is obtained for log(1), i.e. when LDH values are equal to the upper 
limit of normal. This is convenient as a reference. 

 The log transformed variable happens to have a penalized coefficient of 0.88, 
which can be rounded directly to one point when multiplied by 10/8 (0.88 × 10/8 = 1.1). 
Hence, when the natural log = 1, the score is one point. The LDHst value then is 
exp(1) = 2.7. So an LDH value 2.7 times the upper limit of normal has a score of 
1. The score of 1.1 was actually somewhat larger than 1. Hence, we can set one 
point at 2.5 times normal, and a score of zero at 1 times normal levels. A score of 
2 points is achieved at 2.5 × 2.5 is ∼ 6 times normal levels. 

  Fig. 18.4    Relation between LDHst and rounded values of the score in the testicular cancer model. 
We can read the scores for increasing values of LDHst. The density of the data is plotted at the 
bottom of the graph       
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 A more general approach is to study the relation between the score corresponding 
to LDH values. We calculate the score (rounded at one decimal) for the LDHst values 
(Fig.  18.4 ). We note that intermediate levels of LDH are common; the median value 
was 1.36 times normal. We note that a score of +0.5 is found at 1.6 times normal 
LDH, and we show this value in the score chart; a score of +1.5 is found at 4 times 
normal LDH. Scores to be shown for LDHst are 0.6, 1, 1.6, 2.5, 4, and 6 times upper 
limit of normal, with scores of −0.5, 0, 0.5, 1, 1.5, and 2 respectively.   

  Post-size and Reduction in Size 

 Similarly, points were chosen for post-chemotherapy sizes (<5 mm, +0.5; 10mm, 
0; 20 mm, −0.5; 40 mm, −1, and 70 mm, −1.5 point), and for reduction in size (<0%: 
−1, 0%, 0; 50%, 1; 100%, 2 points). Details are presented at the Web. 

 We check the regression coefficients for each rescaled predictor with a logistic 
regression model: 

    lrm(NEC ∼ Teratoma+Pre.AFP+Pre.HCG+LDHr+SQPOSTr+REDUC5, data=n544)     

 The coefficients are 0.91, 0.91, 0.77, 0.89, 0.89, and 0.80. Hence the rescaling 
worked to obtain effects around 0.8, which was the typical value of the coefficients 
of the three dichotomous predictors.  

 18.3.3.3 Multiplication factors 

      After finding a suitable set of weights we need to find the multiplication 
factor for the scores. In the testicular cancer model we round after multiplication 
with the factor 10/8 in a logistic model. To compensate for this multiplication, the 
actual multiplier was 0.86. This factor can be multiplied with the shrinkage factor 
(in this case, 0.95) to obtain shrunk predictions (shrunk.beta=0.81). 

 The calculation is as follows, where we omit the intercept from the set of 
coefficients:

    score.fit <-lrm(NEC∼Teratoma + Pre.AFP + Pre.HCG + LDHr+SQPOSTr+
    REDUC5, data = n544, x = T, y = T)   
   rounded.lp <- score.fit$x %*% rep(1,6) # All scores a weight of 1   
   # multiplier makes the rescaled factors for logistic formula   
   multiplier <- lrm.fit(y = score.fit$y, x = rounded.lp)$coef[2]   
   shrunk.beta <- 0.95 * multiplier # shrinkage * 0.86   
   shrunk.beta # shrunk multiplier for better predictions 0.81      

 18.3.3.4 Final steps 

      We estimate the intercept corresponding to the scores, using the rounded coeffi-
cients multiplied with the shrunk.beta coefficient as an offset variable:
    lrm.fit (y=score.fit$y,offset=shrunk.beta ∗ rounded.lp)     
 # The formula becomes lp = −1.94 + 0.81×score.  



      We check the deterioriation in discriminative performance. The  c  statistic of the 
original model was 0.839; uniform shrinkage does not affect this value. We find 
that the  c  statistic with rounded scores and using continuous predictors is only 
0.001 lower (0.838). This is in line with evaluations of alternative versions of the 
EuroSCORE, where a simple version had a  c  statistic that was 0.002 lower than a 
full logistic version. 287   

      The final score chart can be constructed in several ways. Especially, the presen-
tation of values for continuous predictors is possible with scores horizontally or 
vertically.       

  *18.3.4 Coding with Categorization 

 Categorization of the three continuous predictors can also be considered in the tes-
ticular cancer example. It should consider the distribution and the predictive effects 
of the predictors. Strong predictors, with a wide range of predictor values, should 
have more categories than weaker predictors. 

 For LDHst, we could simply categorize the predictor as normal vs. abnormal, 
as was done for AFP and HCG. For post-chemotherapy size, we could use three 
categories: <20mm, 20–49mm, and >=50mm, with 2, 1, and 0 as scores respec-
tively. For reduction in size, we could create three categories, with increase, 
0–49% reduction, and >=50% reduction in size having −1, 0, and +1 points 
respectively. 

 These categorizations can also be checked in a regression analysis, where the 
coefficient for the categorized predictors should have values around 0.8. Indeed, 
this is the case when we fit the following model with categorized predictors, where 
coefficients were 0.92, 0.86, 0.66, 0.91, 0.86, and 0.79:

    lrm(NEC ∼ Teratoma+Pre.AFP+Pre.HCG+PRELDH+POST2+REDUCr, data=n544)     

 Of note, using categorized versions of the continuous predictors led to a substan-
tial drop in  c  statistic (from 0.839 to 0.808). Hence, categorizing simplifies presen-
tation at the cost of performance. A score chart with the categorized version is 
available at the Web.      

  18.3.5 Summary Points  

  •  Several presentation formats are possible for the testicular cancer model that 
predicts benign tissue after chemotherapy  

 •  Userfriendliness may vary, but empirical evidence on what formats clinicians 
prefer is limited  

 •  The discriminative ability may suffer from very simple presentations (Table  18.5 )      
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  18.4 Clinical Decision Rules  

  18.4.1 Regression Tree 

 Some modelling techniques, such as regression and classification trees, more natu-
rally lead to decision rules. A regression tree classifies patients according to a (usu-
ally limited) number of characteristics. It is therefore often possible for clinical 
experts to link treatment recommendations to the various groups that are defined by 
the tree. Once these treatments have been defined, the tree can often be reformatted 
for easier application. This was for example done for the Goldman diagnostic index 
for acute MI. Based on a tree analysis of 482 patients suspected of acute MI, a deci-
sion protocol was constructed in the format of a simple flow chart considering nine 
clinical factors. 142  As discussed before, deriving a stable, reliable tree requires rela-
tively large amounts of data: Trees are data-hungry. But tree presentations are gen-
erally considered to be very easy to understand.   

  18.4.2 Score Chart Rule 

 Scores can be based on severely rounded coefficients, e.g. counting each predictor 
as one point. This may be reasonable when the actual regression coefficients are 
similar in magnitude. When coefficients vary in magnitude, an alternative is to 
define minor and major risk factors. Such major rounding of coefficients leads to 
less-accurate predictions than the original rule. Especially, calibration may suffer. 287  
The advantage of severe rounding is that it is possible to remember such decision 
rules by heart, in contrast to more refined prediction models. 

 A simple rule is that exceeding a certain score is an indication for a certain 
action. An example is the difficult issue of which patients should have a CT 
scan after minor head injury (defined as having sustained blunt injury to the 
head, with normal or minimally altered level of consciousness upon presenta-
tion. In one recent study, a detailed prediction model was developed, from 
which a simple decision rule was derived. Major and minor risk factors were 
defined based on rounding of the regression coefficients from a logistic model, 

 Format  Table / figure   c  statistic 

 Logistic formula / nomogram / 
graphical 

 Table  18.4  / Fig.  18.1  / Fig.  18.3   0.839 

 Rounded scores  Table  18.2  / Fig.  18.2   0.838 
 Categorized scores  Tables at Web site  0.808 
 Tabular  Table 18.3  0.773 

 Table 18.5    Discriminatory ability of different formats of presentation of the testicular cancer 
prediction model  



and categorization of continuous predictors (such as age: <40, zero score; 40–
59, minor; >=60, major). The decision rule was CT scan in case of presence of 
at least one major or two minor risk factors (out of a list of ten major and eight 
minor risk factors).  391  With this rule, the sensitivity was 100% for neurosurgi-
cal interventions, which was considered a clinically very important outcome 
that should not be missed. Internal validation showed that we should not expect 
100% sensitivity in new patients. The average sensitivity from a bootstrap vali-
dation procedure was 96%, with 100% sensitivity in 56% of the samples. On 
the other hand, many CT scans would still be made in those without an impor-
tant outcome (specificity 25%, or a false-positive CT scan rate of 75%). 
Implementation of the decision rule was expected to reduce the number of CTs 
by ∼25%. Hence most patients with minor head injury should have a CT scan 
if we want to exclude serious injury.  

  18.4.3 Survival Groups 

 Results from survival analyses are often presented by grouped predictions, e.g. 
quartiles. Such groupings can be linked to treatment recommendations. Survival 
can also be shown in relation to specific combinations of risk factors, similar to a 
regression tree. This approach was e.g. followed for the IGCC classification. 5  Five 
predictors were considered: two were coded as dichotomous predictors (poor vs. 
good), and three tumor markers were coded as low, intermediate, and high according 
to their level. A good prognosis group contained patients without intermediate or 
poor risk characteristics. An intermediate group contained patients with intermedi-
ate levels of tumor markers, but no poor risk characteristics. A poor prognosis 
group contained patients with at least one high tumor marker or a poor risk factor. 
The numbers of patients were 50%, 35%, and 15%, with 5-year survival of 92%, 
80%, and 50%, respectively. The choice of risk group definitions was motivated by 
the idea to study more aggressive new therapy in the poor risk group (e.g. stem-cell 
therapy), and less aggressive therapy in the good prognosis group (e.g. three instead 
of four cycles of chemotherapy). 

 Such risk classifications present predictions for combined groups of patients, 
which is expected to lead to stable predictions at a group level. But the definition 
of the risk groups is often motivated by the distribution of risk rather than by decision-
analytic considerations.  

  18.4.4 Meta-Model 

 Another option is to develop a meta-model, which describes an underlying, more 
complex model with a certain level of accuracy. A meta-model is a model that 
predicts the predictions from an underlying model. It aims to capture the general 
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patterns and inherits any shrinkage of coefficients from the underlying more 
complex model. For a decision rule, we may categorize the predictions from the 
underlying model at a relevant cut-off, e.g. as needing treatment vs. no treatment. 
Subsequently, we can predict membership of either category. The meta-model 
can be presented in various forms, for example as a tree. A tree is an attractive 
format for this step because of its intuitive communication (see e.g. Fig.  18.5 , 418  
details at the Web site).   

  18.5 Concluding Remarks  

 The presentation format is an important issue in predictive modelling and deserves 
more attention than is usually done in current practice. The overview in this chapter 
is probably not complete, but intends to give inspiration for presentation of prediction 
models and decision rules. The format should match with the intended audience; 
some clinical areas have a more quantitative orientation than do others for example. 
Also, some formats have become more or less standard in certain areas (e.g. 
nomograms for prostate cancer). 72  Graphical presentations may sometimes be con-
sidered, e.g to show predictions in relation to a single continuous predictor and one 
or two categorical predictors. There is no convincing evidence on the preference of 
certain presentation formats over others for optimal communication of 
individualized predictions. 433  

 We can imagine that the ongoing automatization, e.g. with electronic patient 
records, will enable the direct and easy availability of predictions from detailed and 
rather complex prediction models. Hence, computarized presentations may have 
the future, both for prediction models and decision rules.  

  Fig. 18.5    Decision rule for patients with testicular cancer  418        

Testicular cancer patient after
chemotherapy for metastatic disease

no yes

0 or 1 true 2 or 3 true

Reduction >50%?

Necrosis in
134/398 (34%)

Reduction >70%?
Primary teratoma - ?
Prechemo AFP normal?  

Necrosis in
111/146 (76%) 



  Questions   

   18.1    Testicular cancer presentation formats 
  Calculate predicted probabilities for a man with a post-chemotherapy mass of 

12 mm, which was 24 mm before chemotherapy, who had no teratoma ele-
ments in his primary tumor, elevated AFP, normal HCG, and 3 times normal 
LDH levels, using

   (a)    the nomogram (Fig.  18.1 )  
   (b)    the score chart (Table  18.2  with Fig.  18.2 )  
   (c)    the simplified table (Table  18.3 )  
   (d)    the graphs for radiologists (Fig.  18.3 )  
   (e)    the penalized regression formula (Sect.  18.3.1 )  
   (f)    the classification tree (Fig. 18.5)       

   18.2    Continuous predictors in a score chart (Sect.  18.3.3 )

   (a)    What specific challenges are posed by continuous predictors in a score chart?  
   (b)     What is the disadvantage of categorizing scores for a score chart (see 

Table  18.5 )?      

   18.3    Odds ratios or regression coefficients for scores 297  
  Several investigators have used odds ratios to derive scores for logistic regres-

sion models, which are added in a sum score.

   (a)    Why is this incorrect?  
   (b)     What kind of deviations will occur if some odds ratios are small and some 

very large?      

   18.4    Prediction models and decision rules

   (a)    What is the difference between a prediction model and a decision rule?  
   (b)    How can we derive a decision rule from a prediction model?              
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   Part III   
 Generalizability of Prediction Models        

 Generalizability refers to the external validity of predictions from a model. The qual-
ity of predictions can be quantified by various performance measures, e.g. related 
to calibration, discrimination, and clinical usefulness. These measures are deter-
mined by validity of regression coefficients and the specific case-mix of the exter-
nal setting. 

 For generalizability, internal validity is a minimum prerequisite. To achieve 
internal validity, we need to follow the seven steps outlined in Part II. In part III, 
we first consider differences between populations that may affect generalizability 
(Chap. 19). Next, we consider approaches to updating of a prediction model for a 
specific setting (Chap. 20). Finally, we consider the situation that a prediction 
model is applied in multiple settings. Detection of differences between settings may 
then actually be the purpose of the analysis, for example the comparison of quality 
of hospitals in a league table (“provider profiling,” Chap. 21).    



   Chapter 19   
 Patterns of External Validity        

  Background   Generalizability depends on the quality of the prediction model as 
developed for the development setting (internal validity), and on characteristics of 
the population where the model is applied (validity of regression coefficients and 
distribution of predictor values). The general framework of validity of predictions 
was discussed in Chap. 17 (see in particular Fig. 17.1). Here, we first consider a 
number of typical situations that we may encounter when a prediction model is 
applied in an external setting. Theoretical relationships are illustrated with a large 
sample simulation and findings in some case studies. Approximate power calcula-
tions are given for tests of invalidity of a prediction model.    

  19.1 Determinants of External Validity  

 We concentrate on the external validity of predictions for a binary outcome  Y . We 
consider a number of differences between populations that determine this external 
validity, related to case-mix and regression coefficients b (Table  19.1 ).  

  19.1.1 Case-Mix 

 With case-mix we refer to the distribution of predictors  X  that are included in the 
regression model  Y  ∼  X , as well as the distribution of predictors that are not 
included in the model, either observable or unobservable. Predictors not included 
in the model are referred to as “missed predictors,” despite the fact that some may 
in fact be observable. Since the linear predictor (lp) is a linear function of the 
predictors  X , we will for simplicity consider one predictor “ x ” in the model  Y  ∼  x . 
Here,  x  represents a linear combination of  X . Similarly, the missed predictors  Z  are 
represented as one variable “ z ” in the regression model  Y  ∼  x  +  z .  
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336 19 Patterns of External Validity

  19.1.2 Differences in Case-Mix 

 A different case-mix may be encountered because the setting differs compared with 
the development situation; e.g. model development in secondary care and valida-
tion in a primary or tertiary care setting. Or a model was developed in patients 
participating in a randomized controlled trial (RCT) and is applied in a less selected 
population. Such situations make that the distribution of observed predictors  X  is 
different between development and validation setting. The distribution of missed 
predictors  Z  may also differ when we apply a model in a different setting; per 
definition, such differences cannot be excluded a priori. Missed predictors  Z  may 
be fully independent of  X , or be correlated. Finally, the design of a study may cause 
differences in incidence of the outcome  Y , and may hence influence case-mix 
indirectly. For example, a case-control design can be followed, where the ratio of 
cases to controls is different than in the population.  

  19.1.3 Differences in Regression Coefficients 

 Regression coefficients  b  can be different between settings because of true differ-
ences between populations. Various reasons can be thought of, including definitions 
of predictors, the definition of the outcome, and a different selection of patients. 

 In practice, the coefficients  b  are not known for the development setting, but only 
estimated from a finite sample size. The same holds for a validation sample from a 
validation setting. This makes it impossible that the same regression coefficients are 
found when a regression model is re-estimated in a validation sample. Even if the 
underlying true coefficients are identical, some of the re-estimated coefficients will 
be larger and some smaller than in the development sample. 

 Table 19.1    Differences between populations that determine external validity  

 Scenario  Characteristic  Differences  Example 

 Case-mix  Distribution of 
observed predictors 
(“ X ”) 

 Different selection, e.g. 
more-severe patients are 
selected; or inclusion 
criteria smaller/wider 

 Validation in referral 
centre; validation 
in/outside RCT 

 Distribution of missed 
predictors (“ Z ”) 

 Different selection based on 
predictors not considered 
in the model 

 Validation in different 
setting 

 Distribution of 
outcomes (“ Y ”) 

 Retrospective sampling of 
cases and controls 

 Case-control design 

 Coefficients  Coefficients  b  smaller 
than expected 

 Overfitted model is validated  Validation of model from 
small development 
sample 

 Coefficients  b  different  Truly different population  Validation in different 
setting 



 Another problem is that regression coefficients may on average have been esti-
mated too large because of overfitting in the development data set. Such overfitting 
is most likely for models developed in small data sets with a relatively large number 
of (candidate) predictors (see e.g. Chap. 5, 11, and 13). Shrinkage of coefficients at 
model development should have prevented overestimation of coefficients for pre-
dictive purposes, but this is not the case for many currently developed models.   

  19.2  Impact on Calibration, Discrimination, 
and Clinical Usefulness  

 In the following we will consider various scenarios for differences between popula-
tions (Table  19.1 ). We will study the impact of these differences on calibration, 
discrimination, and clinical usefulness of prediction models for binary outcomes. 
We simulate an outcome  y , which depends on  x  and a missed predictor  z  (both with 
standard normal distribution). In the development population, we estimate a logistic 
regression model with an intercept  a  

0
  and coefficient  b  

1
  for  x , while in fact the out-

come  y  is determined by  x  and  z . The missed predictor  z  and  x  are uncorrelated, 
weakly correlated, or moderately correlated (Pearson correlation coefficients  r , 0, 
0.33, 0.5, Table  19.2  and Fig.  19.1 ). Findings are summarized in Table  19.3 .    

 Correlation  x  −  z   Adjusted coefficients  Unadjusted coefficient 

 Pearson  r  = 0,  r  2  = 0%  2.05* x  + 1.5* z   1.5* x  
 Pearson  r  = 0.33,  r  2  = 11%  1.5* x  + 1.5* z   1.5 *x  
 Pearson  r  = 0.5,  r  2  = 25%  1.18 *x  + 1.5* z   1.5 *x  

 Table 19.2    Design of simulations with predictor  x  and missed predictor  z , for 
a logistic regression model  Y  ~  x  +  z  (adjusted analysis) and  Y  ~  x  (unadjusted 
analysis)  
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  Fig. 19.1    Correlation between  x  (represented in the linear predictor) and  z  (a missed predictor), 
with or without correlation. Illustration for  n  = 1,000;  n  = 500,000 in further simulations       
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338 19 Patterns of External Validity

  19.2.1 Simulation Set-Up 

 We create a validation population where we apply the developed model. Various 
differences are simulated for the validation population compared with the develop-
ment population. We first consider populations ( n  = 500,000) and later samples of 
smaller size to illustrate sampling variability and statistical power. We consider a 
scenario inspired by the testicular cancer case study, with average incidence of 
tumor close to 50%, and a decision threshold for the probability of tumor of 30% 
(Chaps. 15 and 16). We consider a good discriminating model, with a  c  statistic of 
0.81. This  c  statistic is achieved with a logistic regression model with a single 
predictor  x , with  x  normally distributed and regression coefficient b, 1.5. We can 
hence define the linear predictor “lp” as lp = 1.5* x . 

 We generate the outcome  y  with inclusion of the missed predictor  z  (uncorrelated 
or correlated). In the underlying model the lp is a function of  x  and  z . With uncor-
related  x  −  z , we define the lp as lp = 2.05 *x  + 1.5* z . The adjusted regression coef-
ficient for  x  is 2.05 rather than 1.5. This may be surprising, but is related to the 
“stratification” or “conditioning” effect in non-linear models such as logistic 
regression and Cox regression models. In such models, adjusted effects are more 
extreme than unadjusted effects when a covariate is considered that is related to the 
outcome, but uncorrelated to other covariates. This is well known in the analysis of 
randomized clinical trials (see Chaps. 2 and 22). 133,182,348,403  In unadjusted analysis, 
the coefficient for  x  is 1.5 (Table  19.2 ). 

 Table 19.3    Patterns of invalidity for a prediction model for binary outcomes in relation to 
differences between development and validation populations  
 Scenario  Characteristics  Differences   a | b  =1   b    c  stat  NB 

 Development 
setting 

  y  = 1.5* x  ( x ~ N (0,1))  –  0  1  0.81  0.055 

 Case-mix in 
validation 
setting 

 Distribution of 
observed predictors 
(“ x ”) 

 More-severe patients  0  1  0.77  0.006 
 Less-severe patients  0  1  0.77  0.104 
 More heterogeneous  0  1  0.90  0.104 
 Less heterogeneous  0  1  0.75  0.030 

 Distribution of missed 
predictors (“ z ”) 

 More-severe patients a   0.70  1  0.81  0.001 
 Less-severe patients a   −0.70  1  0.81  0.109 
 More heterogeneous a   0  1  0.83  0.062 
 Less heterogeneous a   0  1  0.81  0.053 

 Distribution of out-
comes (“ y ”) 

 2 times more cases  log(2)  1  0.81  NA 
 2 times less cases  −log(2)  1  0.81  NA 

 Coefficients in 
validation 
setting 

 Coefficients b smaller 
than expected 

 Slope 0.8  0  0.8  0.77  0.037 
 Slope 0.6  0  0.6  0.72  0.014 

 Coefficients b different   X  effects * 0.5 or 1.5  0  0.84  0.78  0.040 
  X  effects * 0.25 or 1.5  0  0.68  0.74  0.023 

  a  For correlation  x  −  z  of 0.33; detailed results in Figs.  19.5  and  19.6;     a | b  = 1, intercept given that 
calibration slope is 1, indicating “calibration-in-the-large”;  b , calibration slope;  c  stat,  c  statistic 
to indicate discriminative ability; NB, net benefit; NA, not applicable 



 For moderately correlated  x  −  z  data ( r  = 0.5), we define the lp as lp = 1.18* x  + 
1.5 *z . Now the adjusted regression coefficient is 1.18 rather than 1.5, which is 
caused by the positive correlation between  x  and  z . The confounding effect of this 
correlation was stronger than the stratification effect. In unadjusted analysis, the 
coefficient for  x  is again 1.5. An intermediate situation was identified by trial and 
error, where the correlation between  x  and  z  was 0.33, such that the negative effect 
of confounding and positive effect of stratification on  z  are exactly balanced in the 
adjusted analysis. The model is lp = 1.5* x  + 1.5* z . 

 In both development and validation settings, we study predictions only in rela-
tion to  x , since  z  is a missed predictor. The observed relation is lp = 1.5* x  at devel-
opment, with a  c  statistic of 0.81. At validation we hope to see  y =  0+1*lp in a 
logistic regression model (see Chap. 15 and 20 for more background on this calibra-
tion model). 86  This relation between  y  and lp may be influenced by changes in the 
distribution of the  x ,  z , or  y , or differences in the regression coefficients that deter-
mine the lp (see Table  19.1 ).  

  19.2.2 Performance Measures 

 In the following, we concentrate on a limited number of indicators of calibration, 
discrimination, and clinical usefulness, although many more performance measures 
can be considered for validation of predictions for binary outcomes (see Chaps. 15 
and 16). For calibration we consider calibration-in-the-large (intercept given that 
slope b is set to 1,  a | b  = 1) and the calibration slope (b). Both are determined in 
logistic regression models: y ∼ lp. The linear predictor lp is entered as an offset 
variable ( a | b  = 1), or as the only predictor (to estimate slope b) in a logistic regres-
sion model estimated in the validation data. The  c  statistic is used to indicate dis-
criminative ability (Chap. 15). For clinical usefulness, we calculate the net benefit 
(NB), with the formula NB = (TP −  w  FP) /  N , where TP is the number of true-posi-
tive classifications, FP the number of false-positive classifications, and  w  is a 
weight equal to the odds of the threshold (cutoff/(1 − cutoff)), or the ratio of harm 
to benefit (see Chap. 16). We compare the NB of the model with a cutoff at 30% 
with the strategy with the next best NB (“treat all” or “treat none”). With an inci-
dence of the outcome at 50% and a threshold of 30%, “treat all” has the next best 
NB: for every 100 patients, 50 true-positive classifications are made, and 50 false-
positive classifications (which are weighted as 3/7). The NB of treat all hence is 50 
− 3/7 * 50 = 28.6 /100 patients. A clinically useful model should have an NB 
higher than this refe-rence value. 

 When the considered model is applied in the development population, the 
calibration is perfect ( a | b =1 = 0; slope  b  = 1) and discrimination good ( c  = 0.81, 
Fig.  19.2 ). The increase in NB by 0.055 means that 5.5 more true-positive classi-
fications are obtained per 100 patients, at the same number of false-positive 
classifications (see Chap. 16). The model performance is identical whether 
uncorrelated or correlated missed predictors are present.    
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  19.3 Distribution of Predictors  

 We consider various selection mechanisms based on observed predictors  X  and 
missed predictors  Z . Such selection is an example of missing not at random (MNAR, 
Chap. 7). We already know that regression coefficients of a predictor  X  remain unbi-
ased with an MNAR mechanism. Hence, calibration is expected to remain unaffected. 
Of interest is any influence on discrimination and clinical usefulness. 

  19.3.1 More- or Less-Severe Case-Mix According to X 

 Subjects may be more likely to be included in the validation setting because they 
have higher  X  values (“more suspect cases”). For example, we may assume that 
only the higher  X  values are represented (correlation with missingness, 0.62;  
R  2 , 39%). This leads to a more-severe case-mix at validation.

    n <- 500000   
   x <- rnorm(n) #standard normal x   
   xM <- ifelse (rnorm(n=n, sd=.8)<x,x,NA) #50% missing, r=0.62     

 In our particular simulation, the more-severe case-mix is associated with 
somewhat less spread in predictions, and hence a lower  c  statistic (0.77 instead of 
0.81, Fig.  19.3  left panel). Moreover, only few patients have predictions below the 
postulated threshold of 30%, reducing the NB to 0.006 instead of 0.055. The 
prediction model would be judged of very limited use in this validation setting. If the 
missingness was even more selective ( r  > 0.75), the NB would become zero, meaning 
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  Fig. 19.2    Calibration, discrimination, and clinical usefulness when the prediction model is 
applied in a population with identical distribution of predictors  x  and missed predictor  z  (from left 
to right:  r  = 0, 0.33, 0.5).  a | b  = 1, intercept given slope  b  is 1; slope  b , calibration slope in a model 
 y  ∼ lp;  c  stat,  c  statistic indicating discriminative ability; NB, net benefit compared with “treat all.” 
The value of 0.055 means that 5.5 more true positive decisions are taken per 100 patients, at the 
same number of false-positive decisions (see Chap. 16). Triangles represent deciles of patients 
grouped by similar predicted probability. The distribution of patients is indicated with spikes at 
the  bottom  of the graph, separately for those with and without the outcome       



that “treat all” would be as good a policy as using the model. In contrast, a less-
severe case-mix led to a higher NB (NB, 0.104; Fig.  19.3 , right panel). These 
patterns were identical with uncorrelated or correlated  z .   

  *19.3.2 Example: Interpretation of Testicular Cancer Validation 

 These findings are important for the interpretation of the external validity of the tes-
ticular cancer example presented in Chaps. 15 and 16. When applied in more-severe 
patients treated at a tertiary referral centre (Indiana University Medical Center), we 
noted a decrease in clinical usefulness of the prediction model. But we have to realize 
that not all testicular cancers undergo surgical resection; there is “verification bias.” 30  
Typically a selection is made towards those with a suspicion of residual tumor (e.g. 
larger residual masses). If all testicular cancer patients were considered, the model 
would also indicate resection in some patients who are not candidates for resection 
under current policies. Clinical usefulness would hence be judged higher.  

  19.3.3 More or Less Heterogeneous Case-Mix According to X 

 Another situation is that a more heterogeneous setting is considered, which is fully 
represented by the  X  values. For example, inclusion criteria may be wider in surveys 
of patients with traumatic brain injury (TBI) compared with randomized controlled 
trials (RCTs). RCTs typically have a list of inclusion and exclusion criteria. If these 
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  Fig. 19.3    Influence of selection of more- or less-severe cases according to observed predictor 
values (“ x ”). 50% of the subjects were selected, with higher or lower likelihood of selection with 
higher  x  values. Validation with a less-severe case-mix makes the prediction model clinically more 
useful ( right panel )       
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criteria apply to predictors that are all considered in the prediction model, the 
distribution of  X  values will be more heterogeneous in surveys. Note that the selec-
tion on  X  values may lead to extrapolation of model predictions in the validation 
data beyond observed  X  values in the development data. 

 The heterogeneity in case-mix translates into a higher discriminative ability; we 
can distinguish more patients with very low or very high prediction ( c  statistic, 0.90 
instead of 0.81, Fig.  19.4 , left panel). More patients have predictions below the 
postulated threshold of 30%, doubling the NB (0.104 instead of 0.055). The predic-
tion model would be judged quite useful in this more heterogeneous validation 
setting. The reverse is found for validation in a setting with less heterogeneity 
(lower  c  statistic, 0.75; lower NB, 0.03, Fig.  19.4 , right panel). These patterns were 
identical with uncorrelated or correlated  z .   

  19.3.4 More- or Less-Severe Case-Mix According to Z 

 Similar to distributions of observed predictors, distributions of missed predictors  Z  
may also differ between development and validation settings. We will see that the 
correlation between observed predictors  X  and missed predictors  Z  is especially 
relevant for calibration. 

 The first situation is that a prediction model is applied in a setting of more- or 
less-severe cases, according to predictors that are not (or not fully) captured in the 
prediction model. A more-severe case-mix mainly causes a systematic miscalibra-
tion of predictions (Fig.  19.5 , top row). The calibration-in-the-large ( a | b =1) values 
are around 0.7, which reflects that approximately twice as many cases are found 
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than predicted (odds ratio, exp(0.7) = 2.0). The calibration slope is around 1. 
Without correlation between  x  and  z  ( r  = 0, Fig.  19.5 , upper left panel), the slope is 
1.12, which is explained by the reduced stratification effect of  z  in the regression 
model. In the development setting, the stratification effect was such that the 
adjusted coefficient was 2.05 for an unadjusted coefficient of 1.5 for  x ; with less 
stratification, the unadjusted coefficient is 1.12*1.5 = 1.68. With moderate correla-
tion ( r =0.5, Fig.  19.5 , upper right panel), the confouding effect is weaker, leading 
to an unadjusted coefficient of 0.93*1.5 = 1.4 for  x .  

 The discrimination follows the same pattern as the calibration slope, with values 
around the original estimate of 0.81. The poor calibration causes the model to have 
at most small clinical usefulness. The NB of the model may even become negative 
(−0.004 in Fig.  19.5 , upper right panel). This means that worse decisions are made 
with the model than the reference strategy of “treat all.” This can be understood by 
realizing that the model assigns patients with a prediction under 30% to “no treat-
ment,” while predictions are systematically miscalibrated. Hence, many among 
those with a prediction under 30% have actual probabilities over 30% and should 
have been classified for “treat.” On balance, the loss of inappropriately withholding 
treatment from those with actual probabilities over 30% was larger than the gain of 
reducing false-positive classifications (100% with a “treat all” strategy). 

 The reverse pattern is noted when selection is on less-severe patients according 
to some missed predictor (Fig.  19.5 , second row). Calibration-in-the-large is the 
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  Fig. 19.5    Influence of selection of more- or less-severe cases according to a missed predictor 
(“ z ,”  x  –  z  correlation, 0, 0.33, or 0.5). 50% of the subjects were selected, with higher or lower 
likelihood of selection with higher  z  values       
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main problem. But interestingly, the clinical usefulness is now increased, despite 
this miscalibration.  

  19.3.5 More or Less Heterogeneous Case-Mix According to Z 

 Similar to observed predictors, we can imagine that missed predictors may have a 
more or less heterogeneous distribution in a validation setting. Such distributional 
changes affect the calibration slope, but not calibration-in-the-large (Fig.  19.6 ). The 
specific patterns can again be explained by the magnitude of stratification and con-
founding effects. Discrimination and clinical usefulness were better with higher 
calibration slopes.    

  19.4 Distribution of Observed Outcomes  Y   

 A case–control design allows for separate sampling of cases ( y  = 1) and controls 
( y =0). Cases and controls should come from the same underlying populations as 
would be considered in a cohort study (Chap. 3). In our examples, the ratio of cases 
and controls was 1:1 (50% incidence of the outcome  Y ). The effect of manipulating 
the outcome incidence is reflected in calibration-in-the-large. With a ratio of 2 
cases to 1 control, the odds ratio of the intercept is 2. Indeed, the coefficient is 0.69, 

  Fig. 19.6    Influence of selection of more or less heterogeneous cases according to a missed 
predictor (“ z ,”  x  –  z  correlation, 0, 0.33 or 0.5). Approximately 35% of the subjects were selected, 
with higher or lower likelihood of selection with more extreme  z  values       
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or log(2) (Fig.  19.7 , left panel). Conversely, a ratio of 1 case to 2 controls leads to 
an intercept of −0.69. With a proper case–control design, the effects of predictors 
remain identical (calibration slope = 1), as well as the  c  statistic (0.81). Calculation 
of clinical usefulness is only sensible after correction of the intercept, which can be 
seen as translating a case–control design back to clinical practice.  

 In a traditional case–control design, the number of controls is unknown. This 
makes it impossible to correctly adjust the intercept. In a  nested  case–control design, 
we sample the cases and controls from a defined underlying cohort. The number of 
controls is known in such a design, which makes it straightforward to adjust the 
intercept, for example by weighting the controls by the inverse of their sampling ratio.  

  19.5 Coefficients b  

  19.5.1 Coefficient of Linear Predictor < 1 

 Overfitting is a major problem of predictive modelling (Chaps. 4–18). At external 
validation, we may often find less predictive effect of the linear predictor  lp . This 
reduced effect might have been detected already at internal validation, and might 
have led to incorporation of a shrinkage factor to compensate for overfitting. True 
differences in predictive effects may also play a role, for example caused by defini-
tion and selection issues. 

 A typical shrinkage factor found at internal validation is 0.8; more-severe 
overfitting might lead to a shrinkage factor of 0.6. At external validation, we find 
that such patterns of overfitting lead to a reduction in discriminative ability ( c , 0.77 
or 0.72 instead of 0.81) and a reduction in clinical usefulness (NB, 0.037 or 0.014 
instead of 0.055, Fig.  19.8 ).   

  Fig. 19.7    Influence of a case–control design on the model intercept; calibration slope and discrimina-
tion remain unaffected. The ratio of cases to controls was set to 2:1 ( left ) and 1:2 ( right panel )       
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346 19 Patterns of External Validity

  19.5.2 Coefficients  Different  

 In addition to being overestimated on average, regression coefficients may truly 
differ between development setting and validation setting. Various causes can be 
imagined, all related to the validation population not being “plausibly related” 
anymore to the development population. 222  Terrin et al. considered various scenarios 
of different effects of predictors in a validation setting. In simulation studies, they 
simulated weaker effects of predictors, motivated by clinical scenarios, and found 
reductions in  c  statistic from 0.75 to 0.72. 431  

 In Chap. 5, we used an arbitrary example of differences in predictor effects, with 
half of the predictors having 0.5 and half having 1.5 times the effect of the develop-
ment setting. We use this example here for illustration, and a more extreme situation, 
with half of the predictors having a very small effect at validation (0.25).  

  *19.5.3 R Code 

 The programming code may help to understand how simulations were performed. 
First 10  x  variables were created, with decreasing standard deviation:

    n <− 500000   
   x1 <− rnorm(n,sd=1)   
   x2 <− rnorm(n,sd=.9)   
   …   
   x10 <− rnorm(n,sd=.1)     
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  Fig. 19.8    Influence of overfitting in model development. The slope of the linear predictor is 0.8 
or 0.6, with lower discriminative ability ( c  = 0.77 or 0.72), and lower clinical usefulness (net benefit, 
0.037 or 0.014)       



 For the development setting, we assume that each  x  has a coefficient of 1; but in 
the two validation settings these weights are different.

    #development data   
   xsum <− x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10   
   #validation data: 2 scenarios   
   xva1 <−  .50*x1+1.5*x2 + .50*x3+1.5*x4 + … + .50*x9+1.5*x10   
   xva12 <−  .25*x1+1.5*x2 + .25*x3+1.5*x4 + … + .25*x9+1.5*x10     

 Logistic regression models were constructed with the  xsum, xva1 , and  xva12  
variables. When the latter2 variables are multiplied by 0.76, the  c  statistics are 0.81 for 
both models. We validate predictions from the model with  xsum  as predictor in settings 
where 0.76* xva1  or 0.76* xva12  is the true linear predictor determining outcome.  

  19.5.4 Influence of Different Coefficients  

 Calibration-in-the-large may remain unaffected when predictive effects are different 
(Fig.  19.9 ). However, the calibration slope was smaller than 1. When effects in the 
validation setting remained close to the effects at development, the slope was 0.84, 
and discrimination was slightly decreased (0.78 instead of 0.81). When differences 
in coefficients were more substantial (Fig.  19.9 , right panel), the calibration slope 
was 0.68, the  c  statistic 0.74, and clinical usefulness smaller (0.023 instead of 
0.055). Hence, differences between effects in the development setting vs. the vali-
dation setting may seriously deteriorate model performance.   

  Fig. 19.9    Influence of differences in regression coefficients between development and validation 
setting. Regression coefficients were 0.5 or 1.5 times as large in the  left panel , and 0.25 or 1.5 
times as large in the right panel. In the right panel, miscalibration was severe (slope, 0.68), 
discriminative ability and clinical usefulness modest ( c  statistic, 0.74; net benefit, 0.023)       
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  *19.5.5 Other Scenarios of Invalidity 

 Thus far, we considered one element at a time for differences between development 
and validation populations. All simulation results depend on the specific parameters 
chosen; with more extreme parameters, differences will be larger. We can consider 
other scenarios that are also plausible in medical research, where we combine 
differences in distribution of  x ,  z , and regression coefficients (Table  19.4 ). Detailed 
results are provided at the book’s Web site.   

  19.5.6 Summary of Patterns of Invalidity  

  •  Calibration 
 In the development setting, the calibration was perfect, the  c  statistic 0.81 and 

the NB of applying the model 0.055. Calibration remained perfect when the valida-
tion setting consisted of more- or less-severe patients according to predictor values, 
or more or less heterogeneous patients according to observed or missed predictor 
values. Calibration can be systematically disturbed by a more- or less-severe distri-
bution of missed predictor values ( z , e.g. intercept +0.70 or −0.70). A similar 
disturbance can be caused by a case–control design; however, the case:control ratio 
is under the influence of the researcher, while the distribution of a missed predictor 
usually is not. Calibration can also be affected by overfitting at model development 
(e.g. slope, 0.8 or 0.6), or truly differential predictive effects (coefficients of 
individual predictors 0.25 / 0.5 / 1.5 times as large).  

 •  Discrimination 
 Discriminative ability is related to the calibration slope, with a lower  c  statistic 

associated with a lower calibration slope. Another reason for a lower  c  statistic is a 
less heterogeneous case-mix (e.g., slope = 1, but  c  = 0.75 instead of 0.81, Fig.  19.4 , 
right panel). A high  c  statistic such as 0.90 was found for a more heterogeneous 

 Table 19.4    Combinations of differences between development and validation populations and 
their impact on validity of a prediction model for binary outcomes  

 Scenario   x    z   Coefficients   a | b =1   b    c  stat  NB 

 Change of 
setting 

 –  More severe   X  effects * 0.5 
or 1.5 

 0.67  0.87  0.78  −0.008 
 –  Less severe  −0.67  0.87  0.78  0.098 

 RCT vs. 
survey 

 More hetero-
geneous 

 More severe   X  effects * 0.5 
or 1.5 

 0.64  1.04  0.88  0.027 

 Less hetero-
geneous 

 More severe  0.69  0.59  0.65  −0.036 

 More hetero-
geneous 

 Less severe  −0.68  1.03  0.88  0.167 

 Less hetero-
geneous 

 Less severe  −0.68  0.59  0.65  0.037 



setting (Fig.  19.4 , left panel). More heterogeneity in missed predictors had only 
small effects (Fig.  19.6 ). These examples illustrate that discrimination is deter-
mined by validity of estimated regression coefficients b and case-mix. Poor dis-
crimination can hence result from both aspects (i.e. poor calibration and/or 
relatively homogeneous case-mix).  

 •  Clinical usefulness 
 Tables  19.3  and  19.4  highlight the importance of calibration for clinical useful-

ness. A systematic miscalibration, e.g. caused by a more-severe case-mix according 
to a missed predictor  z , may lead to a model without clinical usefulness. With incor-
rect calibration, we can even make systematically wrong decisions. This is not the 
case if predictions are well calibrated. Discrimination and calibration slope are 
linked, with a low calibration slope or low discrimination both associated with a 
low clinical usefulness.    

 Perfect calibration and good discrimination do not guarantee clinical usefulness. 
Discrimination is important; better discrimination may lead to better decision making. 
If a model has no discriminative ability, it cannot be clinically useful. Discrimination is 
hence a  necessary but not sufficient  condition for clinical usefulness. 

 When applying the model in more- or less-severe patients, the  c  statistic was 0.77 for 
both settings, but clinical usefulness was 0.006 for a more-severe setting and 0.104 for a 
less-severe setting. These findings are in line with the lack of clinical usefulness of the 
testicular cancer case study in Chap. 16, where we noted that few patients had a prediction 
above the threshold of 70% for the probability of benign tissue at external validation. 

 Case-mix is also very relevant. The case-mix in observed predictors ( X ) affects 
clinical usefulness through the distribution of predictions around the decision threshold, 
while leaving calibration largely intact. The case-mix in missed predictors ( Z ) may 
predominantly affect clinical usefulness through poor calibration-in-the-large.   

  19.6 Reference Values for Performance  

 The distribution of predictors  X  can be taken into account in the calculation of 
“reference values” for model performance. Reference values indicate a model’s 
performance under the condition that the model predictions are valid in the valida-
tion sample. For a regression model this means that the regression coefficients for 
predictors  X  and the model intercept are fully correct for the validation setting. 
Such reference values may be very useful to obtain insight in what is happening at 
validation: Are there differences in case-mix or differences in regression coeffi-
cients compared with the development setting? 

  19.6.1 Calculation of Reference Values 

 For calibration, obvious reference values are 0 for calibration-in-the-large, and 1 for 
the calibration slope. For discrimination, we noted that the  c  statistic can vary 
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with case-mix. Similarly, overall performance measures such as  R  2  and Brier score 
depend on the case-mix in observed predictors  X . 202  

 A practical approach is to simulate the outcome  Y  for the observed case-mix 
in  X , given that the prediction model is correct. This is simply obtained by first 
calculating the predictions for each subject in the validation data, and subse-
quently randomly assigning an outcome  Y  based on this prediction. With at least 
100 repetitions for each patient, a stable estimate of the reference values is 
obtained. We illustrate the calculation below for 1,000 repetitions per patient in a 
logistic regression model.  

  *19.6.2 R Code  

    # fit in development data   
   fit <- lrm(y~x1 + x2, data=dev.data)   
   # linear predictor for validation data   
   lp <- predict(fit, newdata=val.data)   
   # External validation   
   val.prob(logit=lp, y=val.data$y, …)   
   # Start simulation of outcomes   
   n <- nrow(val.data)   
   nsamples <- 1000 # for stable results   
   perf.m <- matrix(nrow=nsamples   *   n, ncol=2)   
   perf.m[,1] <- rep(lp, nsamples) # repeat lp nsamples times   
   # Generate y for validation data   
   perf.m[,2] <-  ifelse(runif(length(perf.m[,1])) <= 

plogis(perf.m[,1]), 1, 0)   
   # Determine reference values   
   val.prob(logit=perf.m[,1],y = perf.m[,2], … )      

  19.6.3 Performance with Refitting 

 Another type of reference value is the performance obtained by refitting the 
model in the validation data. The regression coefficients are then optimal for the 
validation data, and hence provide an upper bound for the performance, which 
would be obtained if the coefficients from the development setting were exactly 
equal to those in the validation setting. However, this upper bound does not only 
depend on case-mix, but also on the effects of predictors in the validation set-
ting. It is hence not simple to compare performance between development and 
validation settings: Differences may be attributable to both case-mix and/or 
coefficients.  



  *19.6.4 Examples: Testicular Cancer and TBI 

 We apply the calculation of reference values to the testicular cancer and traumatic brain 
injury (TBI) case studies (Table  19.5 ). The apparent performance is calculated for 
 n  = 544 testicular cancer patients ( n  = 245 (45%) with benign histology) and  n  = 2,036 
TBI patients ( n  = 798 (39%) with unfavorable 6-month outcome). The 544 testicular 
cancer patients are mostly from secondary care centres, 417  while validation was done in 
273 patients from a tertiairy care centre (Indiana). A benign outcome was less frequent 
among these patients ( n =76/273, 28%). 466  The 2,036 TBI patients were from the 
Tirilazad randomized controlled trials, 203  with validation in three largely unselected 
series (UK 4 centre study, European Brain Injury Consortium survey, Traumatic Coma 
Databank,  n  = 2,090). 271  These patients more often had an unfavourable outcome at 6 
months ( n  = 1,249/2,090, 60%) compared with the development sample.  

 In the testicular cancer case study, the apparent  c  statistic was 0.818, with 
0.006 optimism according to a bootstrap procedure. At external validation, the  c  
statistic was 0.785, while 0.824 was expected based on the case-mix of the 
predictor variables (“reference,” Table  19.5 ). When the model was refitted, the 
performance was slightly lower than this reference value ( c  statistic, 0.819 vs. 
0.824). A similar pattern was noted for the  R  2  and Brier statistics. We might test 
the statistical significance of these differences in performance, but concentrate 
here on the point estimates. 

 In the TBI case study, the apparent  c  statistic was 0.767, with negligible opti-
mism. Surprisingly, the  c  statistic was higher at external validation (0.816), while 
0.804 was expected based on the case-mix of the predictor variables. When the 
model was refitted, the performance was also higher than the reference ( c  0.819 vs. 
0.804). A similar pattern was noted for the  R  2  and Brier statistics. 

 The interpretation of Table  19.5  is a follows:

    1.    Internal validation corrects for the statistical problem of overfitting in the devel-
opment setting; case-mix is unchanged  

 Table 19.5    Examples of reference values for performance of two prediction models, developed 
in one setting and applied in another setting  

 Example  Measure  Apparent 
 Internally 
validated 

 Externally 
validated  Reference  Refitted 

 Testicular cancer   c  stat  0.818  0.812  0.785  0.824  0.819 
  R  2   38.9%  37.4%  26.7%  37.0%  34.2% 
 Brier  0.174  0.178  0.161  0.144  0.147 

 Traumatic brain 
injury 

  c  stat  0.767  0.765  0.816  0.804  0.819 
  R  2   27.9%  27.3%  37.1%  35.3%  38.0% 
 Brier  0.186  0.188  0.180  0.181  0.168 
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    2.    External validation tests the model in a sample from a new setting, where both 
case-mix and coefficients may be different than in the development sample  

    3.    The reference performance corrects for the new case-mix according to predictor 
values in the validation sample, while keeping the coefficients at the values from 
the development setting (that would ideally have been corrected with shrinkage 
to correct for overfitting)  

    4.    The refitted performance corrects for the new case-mix and estimates optimal 
regression coefficients in the validation sample     

 The poorer external performance of the testicular cancer model is not explained 
by case-mix, at least not in the distribution of observed predictor values, since the 
reference performance was very similar to that in the development sample. The 
poorer external validity should hence be attributed to differences in regression coef-
ficients between the settings. The refitted performance was similar to the reference 
performance, indicating that the predictors had similar predictiveness in both 
settings when refitted. 

 The better external performance of the TBI model is partly explained by case-mix, 
since the reference performance was higher than in the development sample. The 
surprisingly good external validity should further be attributed to differences in 
regression coefficients between the settings; predictive effects were overall stronger 
in the validation setting (calibration slope, 1.08), in line with the even better refitted 
performance (refitted  c , 0.819, Table  19.5 ).   

  19.7 Estimation of Performance  

 Thus far, we examined theoretical patterns of invalidity with very large simulated 
samples, which can be considered as populations. The testicular cancer and TBI case 
studies considered more limited sample sizes for model development and validation; 
differences in model performance might at least partly be attributed to chance. 
Performance parameters such as model intercept ( a | b =1), calibration slope ( b ),  c  
statistic, and measures of clinical usefulness are subject to sampling error in real life. 

  19.7.1 Uncertainty in Validation of Performance 

 We illustrate the empirical behaviour of measures for calibration and discrimination 
of logistic regression models. The prediction model is the same as before, with a 
linear predictor defined by ten normally distributed  x  variables, each with a regres-
sion coefficient of 0.76. The model has a  c  statistic of 0.812. We consider small to 
large sample sizes for model development ( N  

dev
  = 100–10,000) and for model vali-

dation ( N  
val

  = 100–10,000), with outcome incidence 50% or 10%. Simulations are 
first performed under the Null hypothesis, i.e. that both samples originate from the 
same underlying population (Table  19.6 ). Case-mix and regression coefficients 



 Scenario  Events/ N  
dev

   Events/ N  
val

    a | b =1  slope  b    c  statistic 

  Incidence 50%  
 Large sizes  5,000/10,000  5,000/10,000  0 ± 0.03  1.00 ± 0.03  0.81 ± 0.004 
 Small development 

samples 
 50/100  5,000/10,000  0 ± 0.28  0.64 ± 0.15  0.77 ± 0.017 
 100/200  0 ± 0.17  0.82 ± 0.13  0.79 ± 0.010 
 250/500  0 ± 0.12  0.92 ± 0.09  0.80 ± 0.006 
 500/1000  0 ± 0.08  0.95 ± 0.07  0.81 ± 0.005 
 1,000/2,000  0 ± 0.06  0.97 ± 0.05  0.81 ± 0.004 

 Small validation
 samples 

 5,000/10,000  50/100  0 ± 0.24  1.06 ± 0.24  0.82 ± 0.043 
 100/200  0 ± 0.16  1.03 ± 0.17  0.81 ± 0.030 
 250/500  0 ± 0.11  1.01 ± 0.10  0.80 ± 0.018 
 500/1,000  0 ± 0.08  1.00 ± 0.07  0.81 ± 0.014 
 1,000/2,000  0 ± 0.06  1.00 ± 0.05  0.81 ± 0.009 

 Small development 
samples, half 
size validation 

 50/100  25/50  0 ± 0.52  0.71 ± 0.31  0.77 ± 0.070 
 100/200  50/100  0 ± 0.34  0.83 ± 0.25  0.79 ± 0.048 
 250/500  100/200  0 ± 0.20  0.95 ± 0.18  0.80 ± 0.030 
 500/1,000  250/500  0 ± 0.13  0.98 ± 0.11  0.81 ± 0.018 
 1,000/2,000  500/1,000  0 ± 0.10  0.99 ± 0.09  0.81 ± 0.014 

 Small development 
samples and 
equal size valida-
tion samples 

 50/100  50/100  0 ± 0.44  0.66 ± 0.23  0.77 ± 0.051 
 75/150  75/150  0 ± 0.32  0.77 ± 0.22  0.78 ± 0.039 
 100/200  100/200  0 ± 0.27  0.82 ± 0.19  0.79 ± 0.033 
 175/350  175/350  0 ± 0.19  0.89 ± 0.15  0.80 ± 0.023 
 250/500  250/500  0 ± 0.15  0.93 ± 0.13  0.80 ± 0.019 
 500/1,000  500/1,000  0 ± 0.11  0.97 ± 0.09  0.81 ± 0.014 
 1,000/2,000  1,000/2,000  0 ± 0.08  0.99 ± 0.07  0.81 ± 0.010 

  Incidence 10%  
 Large sizes  1,000/10,000  1,000/10,000  0 ± 0.05  1.00 ± 0.05  0.83 ± 0.007 
 Selected combina-

tions of devel-
opment and 
validation 
sample sizes 

 50/500  50/500  0 ± 0.25  0.85 ± 0.18  0.81 ± 0.033 
 100/1,000  0 ± 0.23  0.85 ± 0.15  0.81 ± 0.021 
 200/2,000  0 ± 0.19  0.86 ± 0.14  0.81 ± 0.018 
 1,000/10,000  0 ± 0.18  0.86 ± 0.14  0.81 ± 0.010 

 100/1,000  50/500  0 ± 0.22  0.93 ± 0.17  0.82 ± 0.032 
 100/1,000  0 ± 0.18  0.93 ± 0.13  0.82 ± 0.021 
 200/2,000  0 ± 0.15  0.93 ± 0.11  0.82 ± 0.015 
 1,000/10,000  0 ± 0.13  0.93 ± 0.11  0.82 ± 0.008 

 200/2,000  50/500  0 ± 0.19  0.95 ± 0.15  0.82 ± 0.031 
 100/1,000  0 ± 0.18  0.96 ± 0.13  0.82 ± 0.022 
 200/2,000  0 ± 0.11  0.97 ± 0.10  0.83 ± 0.017 
 1,000/10,000  0 ± 0.09  0.96 ± 0.07  0.82 ± 0.007 

 1,000/10,000  50/500  0 ± 0.17  1.01 ± 0.15  0.83 ± 0.030 
 100/1,000  0 ± 0.13  0.99 ± 0.10  0.83 ± 0.021 
 200/2,000  0 ± 0.09  1.00 ± 0.07  0.83 ± 0.015 

 Table 19.6    Estimation of calibration and discrimination of logistic regression models in small to 
large sample sizes for model development and for model validation  

 Numbers are mean ± standard error, as observed in simulations (100–1,000 repetitions for suffi-
ciently stable results) 

were hence identical in both settings, and estimates may only vary because of finite 
sample sizes at development and/or validation.  
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 With 50% incidence of the outcome in very large development and validation 
sizes ( N  

dev
  = 10,000 and  N  

val
  = 10,000), the standard errors (SEs) are small: The SE 

around the calibration-in-the-large and calibration slope  b  is 0.03, around the 
 c  statistic 0.004. With 10% incidence,  N  

dev
  = 10,000 and  N  

val
  = 10,000, the SEs are 

larger, corresponding to the lower number of events (1,000 instead of 5,000). 
 We find that the calibration-in-the-large is 0 on average in all scenarios; the SE 

depends on the size of the development sample and the size of the validation sam-
ple. With only 100 subjects for model development, the SE is 0.28 if validation is 
in 10,000 subjects; if validation is in 50 or 100 subjects, the SE is much larger 
(± 0.52 and ± 0.44 respectively). A quite low SE (± 0.06) is found with  n  = 2,000 
for model development and 10,000 for model validation, or with a reversal of this 
design (development  n =10,000, validation  n  = 2,000). 

 The calibration slope is below 1 when small samples are used for model devel-
opment (e.g. slope  b =0.65 with  N  

dev
  = 100 and  N  

val
  = 10,000, reflecting clear overfit-

ting and a need for shrinkage of coefficients). In contrast, small validation samples 
lead to an upward bias for the slope (e.g. slope  b  = 1.08 with  N  

dev
  = 10,000 and 

 N  
val

  = 100). The SE is somewhat larger with small validation samples than with 
small development samples (e.g.  N  

dev
  = 100: SE ± 0.15;  N  

val
 = 100: SE ± 0.25). 

 The discriminative ability ( c  statistic) was 0.81 in the population, but smaller 
with small development samples (e.g.  c =0.77 with  N  

dev
  = 100,  N  

val
  = 10,000). Again 

small validation samples led to an upward bias (e.g.  c =0.82 with  N  
dev

  = 10,000 and 
 N  

val
  = 100). The SE was markedly higher with small validation samples (e.g. 

 N  
dev

  = 100: SE ± 0.017;  N  
val

  = 100: SE ± 0.043). Apparently, small development 
samples lead to poor discriminating models, which can reliably be quantified with 
large validation samples, but small validation samples lead anyway to uncertain 
estimates of discrimination.  

  *19.7.2 Estimating Standard Errors in Validation Studies 

 In Table  19.6 , we calculate SEs empirically by studying the distribution of coeffi-
cients over samples. We can also use the asymptotic SE for the performance meas-
ures. The SE of calibration-in-the-large and calibration slope can be obtained from 
the variance estimates in logistic regression models. The SE of the  c  statistic can be 
calculated with standard formulas for rank order statistics. 172  We found that the 
asymptotic SEs agreed rather well with the empirical estimates.       

  19.7.3 Summary Points  

  •  Variability is substantial with small development samples, but especially with 
small validation samples  



 •  The effective sample size is largely determined by the number of events rather 
than the total sample size  

 •  SEs can be estimated with asymptotic formulas or from simulations 
(“empirically”)      

  19.8 Design of External Validation Studies  

 The variability in performance has implications for the design and power of valida-
tion studies (see references for validation of linear regression models). 392,336  We 
have seen in Chap. 17 that the bootstrap is generally preferable for internal valida-
tion purposes. Despite its inefficiency, some researchers may like a split-sample 
approach to convince their readership. This design was discouraged in Chap. 17. 
A common ratio in such a design is 2/3 of the sample for model development and 
1/3 for validation. According to Table  19.6 , a lower variability of performance is 
obtained with a half–half split-sample design; but this design has more optimism in 
calibration slope and discrimination. A 2:1 ratio may be a reasonable balance 
between optimizing bias and variability. 

 For external validation we may well choose a temporal validation design. 222  But 
we then face the same question on how to choose the size of the development data 
set vs. the size of the more recent validation set. With spatial validation, e.g. “leave-
one-centre-out” cross-validation, the validation sets may be much smaller than the 
development set. The results in Table  19.6  show that this makes the performance 
quite uncertain in each validation part per se. 

 Another situation is that a model was published, and we simply wish to exter-
nally validate this model for our setting. We set up a fully independent external 
validation study, and wonder about a reasonable sample size, accepting the devel-
oped model as reasonable to test. This design requires some estimates of power to 
detect relevant differences in performance. 

  19.8.1 Power of External Validation Studies 

 Power calculations depend on various quantities: Statistical Type I and Type II 
error; the variability in the quantity we want to test, and the “clinically relevant” 
difference we do not want to miss. Type I error is conventionally set at 5%, and type 
II error at 20% (power 80%). The variability of performance measures is shown in 
Table  19.6 . Note that these are empirically derived SEs for one specific logistic 
regression model (with ten normally distributed predictors). In practice, we may 
only know the asymptotic (i.e. estimated) SE of some measures such as the model 
intercept. Clinically relevant differences may be context-dependent. For logistic 
regression models we might consider a systematic over or underestimation by 1.5 
times the odds of the outcome (intercept + or − ln(1.5)), a calibration slope less than 
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0.8 (difference 0.2 with ideal slope of 1), and a decrease in  c  statistic by more than 
0.05 (given the same case-mix). 

 Some specific issues come up in power calculations for validation studies. The 
first is whether we should perform one-sample or two-sample tests. If we consider 
the prediction model as a system generating predictions, a one-sample test is rea-
sonable to test whether the validation performance deviates from hypothesized val-
ues. For calibration, these values are obvious: 0 for calibration-in-the-large and 1 
for calibration slope. For the  c  statistic, we may consider the reference value given 
the case-mix in the validation setting (see Sect. 19.11). For the  c  statistic we might 
also consider a two-sample test, including uncertainty in the estimate from the 
development setting. A further issue is whether we should perform one-sided or 
two-sided tests. Calibration-in-the-large asks for a two-sided test, since the inci-
dence in the validation setting may be higher or lower than predicted. But for cali-
bration slope we could test for slope<1, rather than slope <> 1. Similarly, only a 
decrease in discrimination is an interesting alternative hypothesis.   

 Finally, one might argue that we should consider assessment of validity as a non-
inferiority design. This implies that we change the Null hypothesis to stating that the 
model is invalid, and test whether the model performance is within reasonable limits 
from the expected value. The reasonable limits may be context dependent, similar to 
defining “clinically relevant” differences in traditional sample-size calculations. 

  *19.8.2 Required Sample Sizes for Validation Studies 

 We first approximate the power given the SE under the null hypothesis, i.e. the 
model was actually valid in both development and validation setting. We consider 
SEs for model development with a large sample size in Table  19.6 , such that the 
predominant source of variability is the validation sample size. For simplicity we use 
one-sample tests for all measures. For calibration-in-the-large, we use a two-sided 
test; for calibration slope, a one-sided test (slope<1); for the  c  statistic, a one-sided 
test ( c  < c  

reference
 ). The critical values  1    for power calculations are determined by Type 

I and Type II error, which we set at 5% (one-sided or two-sided) and 20% (one-
sided). The critical value is 1.96+0.84=2.80 for two-sided tests, and 1.64+0.84=2.49 
for one-sided tests. We multiply these critical values with the SE to obtain the mini-
mum differences that can be detected with 80% power (Table  19.7 ). 

 As expected, small validation sizes only have 80% power to detect substantial 
invalidity. For example, if we validate a model in a sample with 50 events and 50 
non-events, we only have enough power to detect a calibration-in-the-large problem 
with twice too high, or twice too low predictions (odds ratio, 1.96); a dramatically 
poor calibration slope (less than 0.4), and a decrease in  c  statistic over 0.1 (Table 
 19.7 ). To detect a more modest calibration-in-the-large problem, such as 1.5 times too 
low or too high predictions, we would need at least 100 events and 100 non-events 

  1  Critical value: the value that a test statistic must exceed for the null hypothesis to be rejected. 



(total sample size > 200). This sample size would also have 80% power for a slope 
less than 0.58, and a decrease in  c  by 0.077. With more non-events (incidence of out-
come, 10%), the picture is slightly better in terms of number of events required, but 
the total sample size should be at least 1,000 (100 events) for reasonable power.   

 In a secondary analysis, we simulate power in the case that the prediction model 
is invalid. We create a model with coefficients 0.76 for ten normally distributed 
predictors x1 to x10, and validate in a setting where the coefficients are 0.5 or 1.5 
times as large (see Fig.  19.9 ). In the validation setting, calibration-in-the-large is fine 
(average, 0), but the slope is 0.84 instead of 1, and the  c  statistic is 0.778 instead 
of 0.821 in the development setting (decrease, 0.043). From Table  19.7 , we expect that 
the power for detecting that the slope is lower than 0.84 is slightly below 80% with 500 
events; indeed we find 78% power with this sample size (Table  19.8 ). For a decrease in 
 c  statistic by −0.043, we expect that more than 250 events and 250 non-events are 
required; indeed the power is 57% with these numbers, and 87% with 500 events.     

  19.8.3 Summary Points  

  •  The variability of external validation assessments depends on the size of the 
development sample and the size of the validation sample  
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 Table 19.7    Required sample size for 80% power when validating a logistic 
regression model in a setting with 50% or 10% incidence of the outcome  
 Scenario  Events/ N  

val
    a | b =1 <> 1a  slope  b  < 1b   c  

validation
  <  c  

reference
c  

 Incidence 
50% 

 50/100  ±0.67, OR=1.96  <0.40  <−0.107 
 100/200  ±0.45, OR=1.57  <0.58  <−0.077 
 250/500  ±0.31, OR=1.36  <0.75  <−0.045 
 500/1,000  ±0.22, OR=1.25  <0.83  <−0.035 
 1,000/2,000  ±0.17, OR=1.18  <0.88  <−0.022 

 Incidence 
10% 

 50/500  ±0.45, OR=1.61  <0.63  <−0.075 
 100/1000  ±0.34, OR=1.44  <0.75  <−0.052 
 200/2000  ±0.25, OR=1.29  <0.83  <−0.037 

 OR, Odds ratio 
a Asymptotic SE and minimum OR that can be detected with 80% power
b Minimum slope that can be detected with 80% power
c Minimum differences in c statistic that can be detected with 80% power

 Table 19.8    Power for slope < 1 (true value, 0.84) and  c  statistic decrease (true decrease 
from, 0.821 to 0.778, −0.043)  

 Scenario  Events/ N  
val

   slope  b  0.84   c  statistic −0.043   

 Incidence 50%  50/100  15%  11% 
 100/200  25%  24% 
 250/500  50%  57% 
 500/1,000  78%  87% 
 1,000/2,000  97%  99% 
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 •  For statistical testing, we may accept the prediction model as given, and hence 
perform one-sample tests in the validation data  

 •  For such tests to have reasonable power, we need at least 100 events and at least 
100 non-events in external validation studies, but preferably more (>250 events). 

With lower numbers the uncertainty in performance measures is large.     

  19.9 Concluding Remarks  

 The performance of a prediction model in a new setting (“generalizability” or “trans-
portability”) essentially depends on two aspects: the validity of the regression coeffi-
cients, and the case-mix in the validation setting. The validity of regression coefficients 
can be assessed by comparing regression coefficients between settings. Indeed we note 
that many validation studies report on the coefficients in their sample and compare 
these to the previous estimates. With relatively small development and validation sam-
ples it would be highly coincidental if coefficients agreed well. Even if the two samples 
came from exactly the same underlying population, chance processes will cause the 
coefficients in both samples to differ from each other to some extent, with some coef-
ficients larger and some smaller than expected from the development sample. 

 Differences in case-mix between development and validation setting are usually 
considered informally, by comparing patient characteristic in a kind of “Table 1.” 
One usually makes only informal comparisons to the case-mix in the development 
sample. Some statistical measures have previously been proposed for a more formal 
assessment of comparability, such as the “M statistic” to compare trauma popula-
tions. 53  With this approach, survival probabilities of trauma patients are grouped, 
for example as 0–25%, 26–50%, 51–75%, 76–90%, 91–95%, and 96–100%. The 
fraction of patients in these groups at validation is compared with the fraction at 
model development. The smaller of the two fractions is summed over all groups. 
This creates a number ranging from 0–1.  M  values close to 1 indicate a perfect 
match with the development case-mix, while 0 indicates a total discrepancy 
between the two samples. An arbitrary cutoff point of 0.88 has been suggested, and 
studies with  M  values below 0.88 should be “interpreted cautiously.” 53  

 We followed a more systematic approach to study the influence of differences 
in case-mix. Differences in predictor distributions (“ X ”) do not affect calibra-
tion, and only discrimination aspects, as long as the model is correctly specified 
for the range of  X  values examined. If non-linearities and/or interactions had 
been missed at model development, we can imagine that shifting to another 
predictor distribution may impact on calibration as well. Furthermore, we may 
assume that a very different distribution in  X  implies that differences in missed 
predictors (“ Z ”) are also likely. Differences in missed predictors between 
settings may severely invalidate a prediction model, both with respect to calibra-
tion (especially calibration-in-the-large) and discrimination. When predictions 
are systematically miscalibrated, we can make systematically wrong decisions 
based on the model. This may lead to a negative NB of using the model, com-



pared with a default policy without using the model. It is therefore important to 
perform external validation studies. 40  

 We also noted that the distribution of predictors can formally be taken into account 
in the calculation of reference values for model performance, given that the model is 
valid in the validation sample. This may be very useful to obtain insight in what is hap-
pening at validation: differences in case-mix or differences in regression coefficients. 

 Finally, we studied design issues of validation studies for predictive regression 
models. If a temporal split is made, a 2:1 ratio may be reasonable. This limits over-
fitting at development, and still gives reasonable power at validation. A validation 
data set should contain at least 100 events and 100 non-events for reasonable 
power. 401,465  For the detection of smaller but still quite relevant invalidity, higher 
sample sizes are advisable, e.g. 250 events and 250 non-events or 100 events and 
900 non-events.  450,493  

   Questions   

   19.1    Differences between populations (Table  19.1 ) 
   Consider a hypothetical model that is developed with logistic regression 

analysis in a sample of 100 patients in a clinical setting. The model is 
validated in a screening setting. What differences would you expect with 
respect to
   (a)    case-mix  
   (b)    regression coefficients      

   19.2    Validity of a model 
   What would happen to the calibration and discrimination of a prediction model 

if
   (a)    units of measurement were wrong, e.g. mg/dl vs. mmol/L?  
   (b)     a different measurement device was used, with random deviations com-

pared with the measurements in the development setting  
   (c)    a more heterogeneous case-mix was present in the validation setting  
   (d)    a treatment that was very effective for all patients was used  
   (e)    a treatment that was very effective for one subgroup was used      

   19.3    Influence of case-mix on clinical usefulness 
   A less-severe case-mix led to a higher net benefit than a more-severe case-

mix (NB 0.104 vs. 0.006, Fig.  19.3 ). How do you explain this finding?  

   19.4    Disturbance of calibration (Sect.  19.8 ) 
   We found that calibration is not disturbed when the validation setting consists 

of (a) more-or less-severe patients according to predictor values, or (b) more 
or less heterogeneous patients according to observed or missed predictor 
values.
   (a)    What disturbs calibration-in-the-large?  
   (b)    What disturbs the calibration slope?      
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   19.5    Discrimination and clinical usefulness 
    Why is discrimination a  necessary but not sufficient  condition for clinical 

usefulness?  

   19.6    Reference values for performance (Sect.  19.6 ) 
    Reference values indicate a model’s performance under the condition that the 

model predictions are valid in the validation sample. How is it possible that 
the reference value for performance can be better than the performance esti-
mate in the development setting?  

   19.7    Power of validation studies (Table  19.7 ) 
    Suppose we wish to detect a possible deterioration in calibration-in-the-large 

of an odds ratio of 1.5, and a calibration slope < 0.8. What sample size would 
you recommend?  

   19.8    Study design: epidemiologic and statistical aspects 
    Suppose we can do a single centre study with 1,000 patients, where 200 

(20%) will have the event of interest. Alternatively, we can do a multi-centre 
study with three centres, each contributing 300 patients. Among the 900, we 
expect 180 (20%) patients with the event of interest. 

    Which design would you prefer? Explain why, weighing epidemiological 
considerations (such as generalizability) and statistical considerations (such 
as standard error).           



   Chapter 20   
 Updating for a New Setting       

   Background   A prediction model ideally provides valid predictions of outcome 
for individual patients at another setting than where the model was developed, e.g. 
differing in time and place. The validity of predictions can be assessed by compar-
ing observed outcomes and predictions when empirical data from this setting are 
available. Various patterns of invalidity may however be observed as we have seen 
in the previous chapter. Detection of calibration-in-the-large problems should have 
top priority since miscalibration can cause systematically wrong decision making 
with the model (negative net benefit). Obviously, we may subsequently aim to 
update the model to improve predictions for future patients from the new setting. 
We discuss several approaches for updating a previously developed model. The risk 
is that simply re-estimating all regression coefficients in a model might replace reli-
able but slightly biased estimates by unbiased but very unreliable ones, particularly 
if the validation data set is relatively small. 

 We start with considering updating methods that focus on re-calibration 
(re-estimation of the intercept and/or updating of the slope of the linear predictor). 
Next, we turn to more structural model revisions (re-estimation of some or all 
regression coefficients, model extension with more predictors). For illustration we 
consider case studies with updating of a previously developed logistic regression 
model, a regression tree, and a previously developed Cox regression model. We 
conclude that parsimonious updating methods may often be preferable to more 
extensive model revisions, which should only be attempted with relatively large 
validation samples, in combination with shrinkage of differences between the 
updated model and the previously developed model.    

  20.1 Updating the Intercept  

 The external validity (or generalizability) of model predictions is important 
when a previously developed model is applied in another setting, such as another 
medical centre, and/or in a more recent time period. When empirical data are 
available, we can assess the external validity according to measures such as 
 calibration and  discrimination. Also, we may consider updating a previously 
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 developed model, such that the prediction model is adjusted to local and/or 
 contemporary circumstances. 

 The first issue to consider is calibration-in-the-large. The mean observed out-
come should be equal to the mean of the predicted outcomes; for a survival out-
come, the number of observed deaths should agree with the predicted number. 
Calibration-in-the-large is controlled by the model intercept for continuous and 
dichotomous outcomes and by the baseline hazard function in a survival model. 
Several approaches can be followed to adjust the intercept for a new setting. 

  20.1.1 Simple Updating Methods 

 A simple approach is to consider the mean observed outcome in the new setting, 
and compare this to the mean of the development setting. The difference is used to 
update the intercept. This is a naïve Bayesian approach, based on a univariate com-
parison of outcomes incidences in the development and validation setting. This 
approach has been shown to work reasonably well in a number of case studies, sug-
gesting that differences in mean outcome are often largely attributable to factors 
outside the model. 299, 67  

 Similarly, it is possible to present a prediction model with the explicit option 
to use a setting-specific intercept, An example is the score chart for operative 
mortality for elective aortic aneurysm surgery (Chap. 14). 421  Another example is 
a model to guide the indication for a CT scan in patients with minor head 
injury. 391  The model was developed in a setting with 243 of 3,181 (7.6%) patients 
presenting with intracranial traumatic lesions. The model was presented with a 
range from 2.5% to 15% for the “prior probability” of an intracranial traumatic 
lesion. Such a simple adjustment is directly applicable if the case-mix between 
development and validation samples is fully comparable with respect to the 
 predictors in the model. A variant is to use the mean outcome and the mean of 
predictor values in the calculation of the required update of the intercept. 264  The 
intercept adjustment reflects differences between settings in other aspects than 
captured by the predictors. 

 A special case is infectious disease prediction, where seasonal patterns are 
important and epidemics occur. These background incidences have impact on the 
intercept of prediction rules for infectious diseases. 346, 123   

  20.1.2 Bayesian Updating 

 Another approach, similar to shrinkage (see Chap. 13), is to use Bayesian estima-
tion methods for model updating. We assume that the development and validation 
samples come from an underlying superpopulation with some heterogeneity 
between settings. We use the estimated heterogeneity to obtain Bayesian estimates 



of updated coefficients. An updated intercept  a  
updated

  can be obtained with a  standard 
formula: 300 

     a m t t s a - mupdated estimated estimated= / ( + ) * (    + )2 2 2

 where µ   is the overall mean estimate,  t   2  is the variance between development 
and validation settings (“heterogeneity”), and    a

estimated
  and   s 2

estimated
   are the esti-

mated intercept and its variance in the validation sample. A relatively large 
sampling uncertainty (large   s 2

estimated
  ) implies substantial shrinkage for    a

estimated
  

towards the overall mean  µ . In contrast, large heterogeneity (large  τ  2 ) implies 
that  a  

estimated
  is not much shrunken towards the overall mean  µ . The extreme is 

that  t  2  is infinity, i.e. each  a  
estimated

  is used as estimate for  α  
updated

 . Every setting is 
considered as unique and may have any intercept. The latter is implausible, and 
argues for some form of Bayesian analysis. The problem of such a Bayesian 
analysis is however that we need to specify a value for  t   2 ;  µ  is readily obtained 
from the previous model. 

 A full Bayesian approach is to elicit  t  2  from experts; they may for example 
state that it is unlikely that the incidence of the outcome (adjusted for the predic-
tion model) is more than 4 times lower or higher than the original incidence. 152  
Interpreting these limits as 95% credibility intervals means that  t  ≈ log(4)/2 = 
0.69 and  t  2  = 0.48. Stating that the limits are 2 times lower to 2 times higher 
incidence implies  τ  ≈ log(2)/2 = 0.35 and t 2  = 0.12, leading to more shrinkage.

The Empirical Bayes approach is to estimate  t  2  from the distribution of inter-
cepts in different validation samples. This approach will be followed in the fol-
lowing chapter. In addition to the intercept, we can in principle consider other 
model parameters in a Bayesian framework, for example the calibration slope or 
individual regression coefficients.   

  20.2 Approaches to More-Extensive Updating  

 In addition to calibration-in-the-large, further aspects of calibration need to be 
considered. These may conveniently be studied in the context of a general calibration 
model, where the linear predictor based on the previously developed model is the only 
covariate. 86  This model has only two free parameters: intercept  a  and calibration 
slope  b  

overall
 . A simple updating method might focus on re-calibration, i.e. that the 

updated model has a new intercept  a  and new regression coefficients based on 
multiplication of the original coefficients with  b  

overall
 . This re-calibration approach has 

been followed for updating of a previously developed model in the context of risk-
adjustment 95,212  and prediction. 456,291  We may also consider more extensive updating 
methods (“model revision”), such as re-estimation of regression coefficients of some 
or all predictor variables, and considering more covariables for inclusion of the model 
(“model extension,” following terminology proposed by Van Houwelingen). 456  
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  *20.2.1  A comparison of Eight Updating Methods 

 We consider eight updating methods for predictions of binary outcomes (Table 
 20.1 ). For illustration we assume that a previously developed logistic regression 
model is available with eight predictors, but that eight more are of interest as 
potential predictors for the validation setting. The described methods generalize 
to updating of any previously developed prediction model. The methods are 
ordered according to the number of parameters that are estimated for updating of 
the original model. 402 

  •   No updating  
 The first method is not to allow for any updating, that is to keep all regression 
coefficients fixed at their original value, including the intercept. The linear 
predictor lp for method 1 (lp 

1
 ) is calculated as

  lp
1
 = a

orig
 + b

orig
 * X1..8, 

  

where a 
orig

  indicates the intercept from the original study; β 
orig

  the regression 
coefficients from the original study; and X 

1..8
  the eight predictors in the new (valida-

tion) sample. This method provides a reference upon which improvement should 
be obtained with any updating method.  

 Table 20.1    Updating methods considered for a previously developed logistic regression model 
with eight predictors, in a validation sample where eight more potential predictors are available  
 
No.  Label  Notation 

 Predictors 
considered 

 Parameters 
tested 

 Parameters 
estimated 

  No updating  
 1  Apply original 

prediction model 
 –   8   0  0 

  Re-calibration  
 2  Update intercept  a   8   0  1 
 3  Re-calibration of 

intercept and slope 
 a + calibration slope 

b 
overall

  
  8   0  2 

  Model revision  
 4  Re-calibration + selec-

tive re-estimation 
 a + b 

overall
  + γ 

1..8 ⎢ p  ≤ 0.05
    8   8  2–9 

 5  Re-estimation  a + b 
1..8

    8   0  9 
  Model extension  

 6  Re-calibration + selec-
tive re-estimation + 
selective extension 

 a + b 
overall

  + γ 
1..8 ⎢  p ≤ 0.05

  + 
b 

9..16 ⎢  p ⎢0.05
  

 16  16  2–17 

 7  Re-estimation + selec-
tive extension 

 a + b 
1..8

  + b 
9..16 ⎢  p  ≤ 0.05

   16   8  9–17 

 8  Re-estimation + 
extension 

 a + b 
1..16

   16   0  17 



 •   Re-calibration  
 The second and third methods are simple re-calibration methods. Updating of 
the intercept  a  intends to correct “calibration-in-the-large,” i.e. to make the average 
predicted probability equal to the observed overall event rate:

   l lp p2 1= +anew .     

 Hereto we may fit a logistic regression model in the validation sample with the 
intercept  α  as the only free parameter and the linear predictor lp 

1
  as an offset 

variable (i.e. the slope is fixed at unity). 
 In method 3, we update both the intercept  α  and the overall calibration slope 

 β  
overall

  by fitting a logistic regression model in the validation sample with lp 
1
  as 

the only covariable:

   lp p3 1= +a bnew overall × l .    

 This method has also been labelled “logistic calibration.” 176   
 •   Model revision  

 Methods 4 and 5 re-estimate more parameters in the model, referred to as “model 
revision.” With method 4, we first perform method 3, and then test whether 
predictors have an effect that is clearly different in the validation sample. We 
hereto perform likelihood ratio tests of model extensions in a forward stepwise 
manner, considering the predictor with the strongest difference first. We may 
extend the revised model until all differences in predictive effects have  p  > 0.05 for 
each predictor (or another  p  value or use AIC). As a maximum, seven predictors 
could be selected, since  b  

overall
  was always included in the model. The number of 

estimated parameters could hence vary between two and nine. The linear predic-
tor becomes:

   
l l Xp pp p4 1 1 8 0 05 1 8 0 05= + + ≤ ≤a bnew overall γ ×.. | . .. | . ,

   

where a maximum of 7 of the 8 predictors is selected, and  γ  
i
  indicates the deviation 

from the re-calibrated coefficient:  g  
i
  =  β  

i
  −  β  

overall
  lp 

1
 . We estimate  γ  

i
  with a logistic 

regression model in the validation sample with the re-calibrated linear predictor lp 
3
  

as an offset variable (i.e. the slope is fixed at unity). 
 With method 5 we fit the 8 predictor model in the validation data:

   
l Xp5 1 8= +a bnew new × .. ,

   

where  a  
new

  and  b  
new

  indicate the intercept and eight regression coefficients for 
the validation sample. Note that method 4 falls in between method 3 and 5: If 
selection of  γ  

i
  is extremely stringent ( p  value of 0), method 4 is equal to method 

3 (no individual coefficients re-estimated), and if selection is extremely liberal 
( p  value of 1), method 4 is equal to method 5 (all individual coefficients re-esti-
mated). We therefore label method 4 re-calibration + selective re-estimation.  

 •   Model extension  
 Methods 6–8 consider additional predictors, and are labelled “model extension” 
methods. Method 6 is a variant of method 4: We re-calibrate the original model 
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with an intercept α and the overall calibration slope β 
overall

  and test 16 predictors 
for statistically significant effects. The linear predictor becomes:

   
l l X pp p6 1 1 8 0 05 1 8 0 05 9 16 0= + + +≤ ≤ ≤a bnew overall p pγ × γ.. | . .. | . .. | .005 9 16 0 0× X p.. | .≤    

where at most 15 of the 16 predictors are selected. 
 Method 7 is a variant of method 5, where we re-estimate the original model and 
selectively extend the model with more predictors  X  

9..16
  that have statistically 

significant predictive effects in the validation sample:

   
l X Xp pp7 1 8 9 16 0 05 9 16 0 0= + + ≤ ≤a bnew new × γ ×.. .. | . .. | .     

 With method 8 we fit a model with 16 predictors, i.e. eight from the original 
model and eight additional predictors:

   l Xp8 1 16= +a bnew new × ..              

  20.3 Case Study: Validation and Updating in GUSTO-I  

 For illustration of updating methods we consider a prediction model for patients 
with acute MI that was developed with logistic regression analysis in the TIMI-II 
trial. 302  This trial included 3,339 patients treated in 50 US centres between 1986 and 
1988. 1  The model was developed with backward stepwise selection methods and 
some continuous predictors were dichotomized. Although these approaches may be 
considered suboptimal for model development, we may still consider the “TIMI-II 
model” relevant for generating predictions in GUSTO-I. 

 The TIMI-II model included eight dichotomous predictors: shock, age > 65 
years, high risk (anterior infarct location or previous MI), diabetes, hypotension 
(systolic blood pressure < 100 mmHg), tachycardia (pulse > 80), relief of chest 
pain > 1 h, and female gender. The outcome was 42-day mortality, in contrast to 
30-day mortality in GUSTO-I.         

  20.3.1 Validity of TIMI-II Model for GUSTO-I 

 We construct a calibration plot for a first impression of validity of the TIMI-II 
model for the GUSTO-I patients (Fig.  20.1 ). We note that the observed mortality is 
systematically lower than that predicted. This may be attributed to the slight differ-
ence in outcome definition (30-day mortality in GUSTO-I vs. 42-day mortality in 
TIMI-II) and improvements in care for acute MI patients. 

 The validity is further assessed by comparing the regression coefficients between 
TIMI-II and GUSTO-I (Table  20.2 ). We note that the coefficients are reasonably 



similar, although the coefficients of age>65 and hypotension are somewhat larger 
in GUSTO-I, and those of shock, high risk, and diabetes smaller.     

 We further study the estimated coefficients in smaller parts of the GUSTO-I data 
set. A total of 23,034 patients are included from the United States. Within the United 

 Table 20.2    Logistic regression coefficients ± standard error in the TIMI-II data and in parts of 
the GUSTO-I data 402   

 Predictors  TIMI-II 
( n  = 3,339) 

 GUSTO-I 
total 
( n  = 40,830) 

 GUSTO-I US 
patients 
( n  = 23,034) 

 GUSTO-I W 
region 
( n  = 2,188 )

 GUSTO-I 
sample 5 
( n  = 429) 

 Shock  1.79 ± 0.29  1.60 ± 0.08  1.56 ± 0.11  2.39 ± 0.41   2.96 ± 0.92 
 Age>65  0.99 ± 0.18  1.43 ± 0.05  1.34 ± 0.06  1.64 ± 0.22   1.37 ± 0.49 
 High risk  0.92 ± 0.26  0.71 ± 0.04  0.70 ± 0.06  0.85 ± 0.21   0.76 ± 0.50 
 Diabetes  0.74 ± 0.19  0.28 ± 0.05  0.31 ± 0.07  0.07 ± 0.25  −0.11 ± 0.64 
 Hypotension  0.69 ± 0.27  1.19 ± 0.06  1.19 ± 0.07  1.22 ± 0.25   1.39 ± 0.57 
 Tachycardia  0.59 ± 0.16  0.62 ± 0.04  0.61 ± 0.06  0.65 ± 0.20   0.88 ± 0.49 
 Time to relief  0.53 ± 0.20  0.50 ± 0.05  0.51 ± 0.06  0.26 ± 0.21   0.68 ± 0.54 
 Sex  0.47 ± 0.19  0.43 ± 0.04  0.47 ± 0.06  0.62 ± 0.20  −0.04 ± 0.51 
 Intercept  −4.47 ± 0.35  −4.82 ± 0.06  −4.84 ± 0.09  −5.09 ± 0.30  −5.19 ± 0.72 

 Fig. 20.1    Calibration plot of the TIMI-II model (developed in  n  = 3,339) to predict 30-day mortality 
after acute myocardial infarction in GUSTO-I ( n  = 40,830). The  solid line  represents a non-parametric 
smooth curve for the relation between observed frequency and predicted probability. Perfect calibra-
tion is represented by the  dotted line  through the origin.  Triangles  are based on deciles of patients 
with similar predicted probabilities. The distribution of predicted probabilities is shown above the 
 x  axis ( vertical lines ). We note that the predicted risks are systematically too high; e.g. the highest 
decile has a mean predicted probability of 35% while the observed frequency is 27% 402   
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States, 2,188 patients are from the West region, including 429 patients in sample 5. 
The logistic regression coefficient of diabetes is close to zero in the West region and 
negative in sample 5. The effect of sex has vanished in the smallest sample.  

  20.3.2 Updating the TIMI-II Model for GUSTO-I 

 We illustrate the application of the updating methods 2, 3, and 4 in Table  20.3 . 
Corresponding to the observed miscalibration in Fig.  20.1 , the intercepts are nega-
tive (around −0.3) when method 2 is applied, with somewhat more extreme estimates 
in the smaller validation sets. The corresponding odds ratios are between 0.63 in 
sample 5 (OR = e −0.47 ,  p =0.03) and 0.76 in the total GUSTO-I data set (OR = e −0.28 , 
 p  < 0.001), indicating that the predicted probabilities are 1.3 to 1.6 times too high. 
The calibration slopes are close to 1 (method 3).      

 Method 4 updates the original model as in method 3 plus estimation of coeffi-
cients that are clearly different from overall re-calibrated values. We find that the 
differences in effects of age > 65, high risk, diabetes, hypotension, and tachycardia 
are statistically significant in the total GUSTO-I data set. No statistically significant 
deviations are observed in the smallest sample, obviating a clear need for re-estimation 
of individual coefficients (Table  20.3 ). 

 Table 20.3    Illustration of updating of the TIMI-II model in parts of the GUSTO-I data according 
to calibration methods (method 2 and 3) and model revision with statistically significant different 
coefficients (method 4)  

 GUSTO-I total 
( n  = 40,830) 

 GUSTO-I US 
patients 
( n  = 23,034) 

 GUSTO-I region 
1 ( n  = 2,188) 

 GUSTO-I 
sample 5 
( n  = 429) 

  Re-calibration  
 Method 2 

 a: Intercept  −0.28 ± 0.02  −0.34 ± 0.03  −0.36 ± 0.09  −0.47 ± 0.22 
 Method 3 

 a: Intercept  −0.28 ± 0.03  −0.39 ± 0.05  −0.10 ± 0.16  −0.26 ± 0.47 
 b 

overall
 : Slope   0.99 ± 0.02   0.98 ± 0.03   1.13 ± 0.09   1.11 ± 0.22 

  Model revision  
 Method 4 a  

 a: Intercept  −0.76 ± 0.15  −0.62 ± 0.17  −0.25 ± 0.36  −0.26 ± 0.47 
 b 

overall
 : Slope   0.91 ± 0.04   0.94 ± 0.04   1.14 ± 0.12   1.11 ± 0.22 

 g 
1
 : Shock  +0  +0  +0  +0 

 g 
2
 : Age > 65  +0.53 ± 0.06  +0.42 ± 0.07  +0.49 ± 0.24  +0 

 g 
3
 : High risk  −0.12 ± 0.06  −0.17 ± 0.07  +0  +0 

 g 
4
 : Diabetes  −0.39 ± 0.06  −0.38 ± 0.08  −0.79 ± 0.27  +0 

 g 
5
 : Hypotension  +0.56 ± 0.07  +0.52 ± 0.08  +0  +0 

 g 
6
 : Tachycardia  +0.09 ± 0.05  +0  +0  +0 

 g 
7
 : Time to relief  +0  +0  +0  +0 

 g 
8
 : Sex  +0  +0  +0  +0 

  a  The updated regression coefficients  b  
i
  can be calculated as  b  

overall
  ×  b  

i,  timi 
  +  b  

i
  



 The results of method 5 (re-estimating all model coefficients), are already shown 
in Table  20.2 . For updating methods 6–8, eight additional predictors are considered. 
These are height, weight, hypertension, smoking, hypercholesterolaemia, previous 
angina, family history, and ST elevation in > 4 leads. These eight additional predictors 
are to some extent correlated to the eight TIMI-II predictors. In a 16-predictor 
model, the eight additional predictors are each statistically significant ( p  < 0.01) in 
the full GUSTO-I data set ( n  = 40,830) and the US part ( n  = 23,034), but their predic-
tive effects are smaller than those of the eight predictors from the TIMI-II model. 
In the West region, only weight and ST elevation have statistically significant 
effects, while none of the additional predictors have statistically significant effects 
in the smallest sample.  

  20.3.3 Performance of Updated Models 

 We hope that updating improves the performance of the prediction model. The 
calibration problem as noted in Fig.  20.1  is solved when the intercept is updated 
(all methods except method 1). The  c  index of the TIMI-II model was around 0.78 
with methods 1–3 (Table  20.4 ). Updating of some (method 4) or all (method 5) of 
the coefficients led to a somewhat higher apparent discriminative ability ( c  around 

 Table 20.4    Number of parameters estimated and apparent performance of updated versions of the 
TIMI-II model in parts of the GUSTO-I data  

 Method  GUSTO-I total 
( n  = 40,830) 

 GUSTO-I US 
patients 
( n  = 23,034) 

 GUSTO-I W 
region 
( n  = 2,188) 

 GUSTO-I 
sample 5 
( n  = 429) 

 Parameters 
estimated 

 1  0  0  0  0 
 2  1  1  1  1 
 3  2  2  2  2 
 4  7  6  4  2 
 5  9  9  9  9 
 6  17  13  5  2 
 7  17  17  11  9 
 8  17  17  17  17 

 Discrimination 
( c  statistic) 

 1  0.782  0.780  0.795  0.776 
 2  0.782  0.780  0.795  0.776 
 3  0.782  0.780  0.795  0.776 
 4  0.793  0.791  0.810  0.776 
 5  0.793  0.790  0.819  0.793 
 6  0.802  0.800  0.819  0.776 
 7  0.802  0.800  0.828  0.793 
 8  0.802  0.800  0.830  0.852 

 Results are shown for methods 1–8 as defined in Table  20.1  
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0.80 in the larger samples). The extension of the TIMI-II model with more predictors 
increased the apparent discriminative ability further, although the increase was 
small in the total data set (from 0.79 to 0.80).      

 Since the apparent performance may be a severely optimistic estimate of per-
formance in new patients, we studied the internal validity of the updated predic-
tion models as identified with method 3, 5, and 8 for the smallest sample ( n  = 429). 
Models were developed in 200 bootstrap samples (drawn with replacement from 
the validation sample) and tested in the validation sample to estimate the opti-
mism in apparent performance measures. The optimism was smallest for the 2 
parameter model (method 3), and largest with the 17 parameter model (method 
8), where discrimination was expected to decrease from 0.852 to 0.770. The high-
est internal validity was found for method 3, with optimism-corrected  c  0.772. 
This suggests that a model with updating of fewer parameters may perform better 
in independent data than a more extensively updated model. This issue is system-
atically studied in Sect.  20.4 .  

  *20.3.4 R Code for Updating Methods 

 We start with defining 2 models in the GUSTO-I sample (sample 5,  n  = 429):
    full8 <- lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX,

data=gusto5, x=T,y=T)   
   full  <- lrm (DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX+

HEI+WEI+HTN+SMK+LIP+PAN+FAM+ST4,data=gusto5,x=T,y=T)     

 The eight coefficients in TIMI-II are in the same order as the full8 model:
    timi8.par <-  c(−4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 

0.53, 0.47)     

 For method 1, we calculate the linear predictor:
    lp1 <- full8$x %*% timi8.par[−1] + timi8.par[1]     

 For methods 2 and 3, we update the intercept or re-calibrate the model:
    lp2 <- lrm.fit(y=full8$y, offset=lp1$linear.predictor)   
   lp3 <- lrm.fit(y=full8$y, x=lp1$linear.predictor)     

 For method 4, we test for deviations of effects, while always updating the intercept 
and slope:

    for (i in 1:8)   
   {fit4 <- lrm.fit(y=full8$y, x=cbind(full8$x[,i], lp1)) 
… } # some printing of results of fit4     

 For methods 5 and 8, we simply refit the model
    lp5 <- full8$linear.predictor   
   lp8 <- full$linear.predictor     

 For methods 6 and 7 we again examine contributions of predictors beyond the effect 
of lp1. For example, method 7 works like:

    for (i in 9:16)   
   {fit7 <- lrm.fit(y=full$y, x=cbind(full$x[,i], full8$x)) 
…} # some printing of results of fit7       



  20.4 Shrinkage and Updating  

 Traditionally, regression coefficients can be shrunken towards zero (see Chap. 13). 
For model updating, we consider shrinkage of regression coefficients of revised 
models towards their re-calibrated values. 456, 402  This implies that some regression 
coefficients are pulled to higher values rather than towards zero. 

 In traditional model development, a simple heuristic shrinkage factor can be 
defined as (model  χ  2  − df) / model  χ  2  (see Chap. 13). 81  Here model  χ  2  refers to the 
difference in − 2 log likelihood between a model with and without predictors, and df 
refers to the degrees of freedom used by the predictors. We can use the same formula 
in the context of model revision (methods 4 and 5) and model extension (methods 
6–8, Table  20.1 ). The model  χ  2  then refers to the difference in − 2 log likelihood 
between a model with re-estimated predictors and the re-calibrated model, and df 
correspond to the difference in degrees of freedom of these models. Regression 
coefficients can be pulled towards their re-calibrated values as obtained with 
method 3. A theoretical motivation for this shrinkage approach was developed by 
Van Houwelingen and is presented at the Web. 

  20.4.1  Example: Shrinkage towards Re-calibrated Values 
in GUSTO-I 

 We apply shrinkage towards re-calibrated values as obtained with method 3 for the 
TIMI-II model, when applied in GUSTO-I. Re-estimated coefficients for the first 
eight predictors are pulled towards β 

overall
   × β 

i, TIMI 
  with methods 4 and 5. The coeffi-

cients of the additional eight predictors considered in methods 6–8 are shrunken 
towards zero, since these predictors were not included in the TIMI-II model. The 
intercept of the shrunken model was re-estimated to ensure that the sum of pre-
dicted probabilities equaled the sum of observed outcomes (in our case, deaths). 
When stepwise regression is applied to select predictors for the model, the degrees 
of freedom of the candidate predictors should be considered in the formula. 176, 459  

 As an alternative, we may shrink coefficients towards the original TIMI coeffi-
cients. This is also straightforward with penalized maximum likelihood for model 
re-estimation. Hereto we use the original model predictions as an offset variable in 
the re-estimated logistic regression model. 

 For illustration, we consider updating of the TIMI-II model for the West region 
in GUSTO-I ( n  = 2,188, Table  20.5 ). Re-estimated coefficients were somewhat dif-
ferent from the re-calibrated coefficients, with larger effects for shock, age, and 
hypotension, and smaller effects for diabetes and time to relief. The re-calibrated 
model had a model  χ  2  of 170, which increased by 24 to 94 for the re-estimated 
model. The traditional shrinkage factor is (model  χ  2  − df) / model χ2 = (194 − 
8)/194 = 0.96. This factor is used to shrink coefficients towards zero. The 
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re- calibration shrinkage factor is (24 − 7)/24 = 0.71. This factor is used to shrink 
co efficients towards the re-calibrated values. We can also examine the improvement 
of re-estimated coefficients over using the original TIMI coefficients; this appears 
to be a model  χ  2  of 27. With df = 8, the shrinkage factor towards TIMI coefficients 
becomes (model  χ  2  − df) / model χ2 = (27 − 8)/27 = 0.70.     

 The coefficients are surprisingly similar when shrunken to zero or pulled to re-
calibrated values. The largest discrepancy is for diabetes, where the re-estimated 
coefficient was close to zero (0.07), while the re-calibrated value was much higher 
(0.84, Table  20.5 ). Shrinkage towards zero leaves the coefficient at 0.07, but pulling 
towards the re-calibrated value of 0.84 leads to a value of 0.29. Pulling towards 
TIMI-II coefficients leads to slightly smaller coefficients. Shrinkage towards zero 
is in the spirit of Bayesian analysis with an uninformative prior (coefficients are 
assumed to be zero); pulling towards (re-calibrated) coefficients assumes that the TIMI-
II model is relevant for the new setting (coefficients are assumed to be close to the 
TIMI-II values). 

 For comparison, we examine results from penalized maximum likelihood proce-
dures. In the re-estimated 8 predictor model, the optimal penalty factor is 6. The 
same value is found when the TIMI coefficients are used as an offset variable in the 
logistic regression model. The resulting penalized coefficients in the standard formu-
lation of the penalized model are quite similar to the “shrunken to zero” coefficients. 
When penalized towards TIMI-II values, all coefficients are slightly larger, and closer 
to the re-estimated coefficient values.  

  *20.4.2 R code for Shrinkage and Penalization in Updating 

 We start with re-estimating the 8 predictor model in the West region
    full8 <-lrm (DAY30∼SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, 

data=West,x=T,y=T)     

 Table 20.5    Logistic regression coefficients in updated models for the West region of GUSTO-I 
( n =2,188). Shrinkage and penalization were applied towards zero or towards (re-calibrated) values 
of coefficients from the TIMI-II model  

 Predictor  Re-
estimated 

 Re-
calibrated  TIMI 

 Shrunken towards  Penalized towards 

 zero  re-cal.  TIMI  zero  TIMI 

 Shock  2.40  2.02  1.79  2.30  2.29  2.21  2.37  2.38 
 Age>65  1.64  1.12  0.99  1.57  1.49  1.44  1.53  1.60 
 High risk  0.85  1.04  0.92  0.81  0.90  0.87  0.80  0.85 
 Diabetes  0.07  0.84  0.74  0.07  0.29  0.27  0.07  0.10 
 Hypotension  1.22  0.78  0.69  1.17  1.09  1.06  1.16  1.19 
 Tachycardia  0.65  0.67  0.59  0.62  0.65  0.63  0.61  0.64 
 Time to relief  0.26  0.60  0.53  0.25  0.36  0.34  0.25  0.28 
 Female Sex  0.62  0.53  0.47  0.60  0.60  0.58  0.61  0.62 



 The original TIMI coefficients are in linear predictor 1
    timi8.par <- c(− 4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 
 0.53, 0.47)   
   lp1 <- full8$x %*% timi8.par[−1] + timi8.par[1]     

 Coefficients with traditional heuristic shrinkage are calculated as ( c  2  − df)/ c  2 
    s.orig  <- (full8$stats[3]-full8$stats[4]) / full8$stats [3]   
   full8.coef.s.orig <- s.orig * full8$coef[−1]     

 Shrinkage towards re-calibrated values is calculated as
    full3  <- lrm.fit(y=full8$y, x=lp1) # re-calibration model   
   model.chi2  <- deviance(full3)[2] - deviance(full8)[2]   
   s.recal  <- (model.chi2 - (full8$stats[4] - full3$stats[4])) 

/ model.chi2   
   full8.coef.s.recal <- full3$coef[2]*timi8.par[−1] 

+ s.recal  * (full8$coef[−1] - full3$coef[2]*timi8.par[−1])     

 Shrinkage towards TIMI-II values is calculated as
    full8.off  <- update(full8, offset=lp1) # offset model   
   s.off  <- (full8.off$stats[3]-full8.off$stats[4]) / full8.

off$stats[3]   
   full8.coef.s.off <- s.off * full8.off$coef[−1] + timi8.par[−1]     

 Standard penalized maximum likelihood estimation is as
    p  <- pentrace(full8, 0:20, maxit=50)   
   full.pen  <- update(full8, penalty=p$penalty)     

 Penalization towards TIMI-II values is calculated as
    p.off  <- pentrace(full8.off, 0:20, maxit=50)   
   full.off.pen <- update(full8.off, penalty=p.off$penalty)   
   full.off.pen.coef <- full.off.pen$coef + timi8.par       

  20.5 Sample Size and Updating Strategy  

 The choice of updating method depends on various factors. The first requirement is 
that it is reasonable to apply the previously developed model in the new setting 
from a clinical point of view. The model should not evidently be overfitted, include 
predictors with plausible effects, and have been developed with adequate statistical 
methods given the sample size. The relevance of the model should be supported by 
reasonable validity in the sample from the new setting, i.e. some correlation should 
be present between predictions and outcomes. If this is not the case, we should not 
consider updating methods, but may essentially consider the situation as developing 
a new model. 458  Also, the size of the development sample may have been too small 
to consider updating seriously. Possibly we can then start our updated model with 
the selection as considered in the previous model, but directly re-estimate coefficients 
(method 5, Table  20.1 ). 

 In the situation of a large development sample, we may have good confidence in 
the previously estimated regression coefficients. If we only have a small validation 
sample size, we should be modest in updating the model and re-calibration may 
be sufficient (methods 2 and 3, Table  20.1 ). In contrast, if we have a large validation 
sample, more rigorous updating is probably reasonable. 
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  *20.5.1  Simulations of Sample Size, Shrinkage, 
and Updating Strategy 

 Simulation studies were performed in GUSTO-I to increase our insights in the 
relationship between sample size and updating strategy (Fig.  20.2 ). Validation sam-
ple size ranged from  n  = 200 to 1,000 in Fig.  20.3 , and from  n  = 1,000 to 10,000 in 
Fig.  20.4 . We note that a modest improvement in discriminative ability may be 
achieved by model re-estimation and model revision (methods 4–8), if validation 
sample sizes are relatively large and shrinkage is used. But with a relatively small 
validation sample we should only attempt to improve calibration, i.e. with updating 
of the model intercept (method 2) and calibration slope (method 3). Shrinkage is 
essential to prevent overfitting in updated models from small validation samples 
(Figs.  20.3  and  20.5 ).                             

 More extensive updating is beneficial if the previous model was based on a relatively 
small sample ( n  = 500 instead of  n  = 3,339), while a relatively large validation sample 
was available (Fig.  20.5 ). See Web for more details, and a paper in  Stat Med . 402    

 Fig. 20.2    Schematic presentation of the sampling design of the simulation study in GUSTO-I. 
The GUSTO-I data was split in 13 regions. The seven US regions were West (W), South-East 
(SE), South-West (SW), Massachusetts (MA), New England (NE), Mid-South/Mid-West (MS/
MW), and Great Lakes (GL). The six non-US regions were Belgium (BE), the Netherlands/United 
Kingdom (NL/UK), middle Europe–including France, Spain, Germany, Poland–(MEUR), Israel 
(IS), Canada (CN), and Australia/New Zealand (AU/NZ). Updating methods 1–8 were applied in 
random samples from each region with sizes of 200, 500, or 1,000 patients. Updated models were 
tested in independent test samples with 1,000 patients from the same region as where the validation 
sample originated from  
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 Fig. 20.3    Dotcharts showing the average results for eight updating methods (numbers 1–8, Table 
 20.1 ) with or without application of shrinkage in the updating of regression coefficients. For methods 
1–5, valdation sample sizes were 200, 500, or 1,000 (three rows). For methods 6–8, validation sample 
sizes were 500 or 1,000 (two rows). Validation samples were drawn from 13 regions within the 
GUSTO-I study (Fig.  20.2 ). Slope, calibration slope, unreliability statistic,  χ  2  test for calibration 
intercept and slope. Performance was determined in independent test samples with  n = 1,000  
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 Fig. 20.4    Dotcharts showing the results of simulation studies in the US patients from the GUSTO-
I study. Average results are shown for eight updating methods (numbers 1–8), with or without 
application of shrinkage in the updating of regression coefficients. Validation sample sizes were 
1,000, 2,000, 5,000, or 10,000 (four rows for each method), with test sample sizes of  n =10,000  
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  20.6 Validation and Updating of Tree Models  

 Prediction models developed with CART methods, or recursive partitioning, are 
attractively presented as trees (see Chap. 4). Usually, predicted outcomes are pre-
sented for each branch. Validation can then be performed in different ways. 

 A radical validation approach is to try to re-develop a new tree in a validation 
sample, and compare the structure. For example, Van Dijk re-developed a tree for 
survival of testicular cancer patients. 452  They found that the statistically optimal tree 
was very different from the tree as developed in a relatively small sample of 
German patients ( n  = 332). 239  This approach to validation is similar to developing a 
model with stepwise methods in a validation sample, if stepwise methods were 
applied in a development sample. As discussed in Chap. 11 it is highly unlikely that 
this model building results in the same selection of predictors. Such model re-
development gives insight in the instability of the modelling procedure, but does 
not directly answer the question to what extent the outcomes in the validation data 
are adequately predicted by the old model. 

 Another validation strategy could be to accept the tree structure, but to re-estimate 
the predictions of the outcome. For a binary outcome, these estimates are simply 
the observed frequencies of the outcome in the branches. This is analogous to 
updating method 5 (model re-estimation while accepting the model structure). 
Some revision of the tree structure might be inspired by these findings; e.g. when 
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 Fig. 20.5    Dotcharts showing the results of simulation studies with smaller development samples 
( n  = 500 instead of 3,339 for the original TIMI-II model as shown in Fig.  20.1 ). Average results 
are shown for eight updating methods (numbers 1–8), with or without application of shrinkage in 
the updating of regression coefficients. For methods 1–5, validation samples contained 200, 500, 
or 1,000 patients (three rows). For methods 6–8, sample sizes were 500 or 1,000 (two rows)  



two branches lead to similar outcomes at validation, the split might be omitted for 
future predictions. 

 A more parsimonious strategy is to use a re-calibration model, similar to method 
3 (Table  20.1 ). For a binary outcome we model the outcome  y  as a function of a 
new intercept α and calibration slope b 

overall
 :

   y ~ * y,overalla b+ ˆ
    

 where  y  is the outcome, a the updated intercept, b 
overall

  the calibration slope, and   ŷ    
the predicted outcome. If the outcome is binary, we need to transform the   ŷ    to e.g. 
log(odds(  ŷ   )); for survival outcomes we could use the log(cumulative hazard) of the 
Kaplan-Meier estimates at certain time points during follow-up: log(−log( S ( t |branch))), 
with  S ( t |branch) indicating survival at time  t  in a branch of the tree. This approach 
preserves the relative effects of the tree, but updates the predictions to obtain calibra-
tion-in-the-large (updating of intercept), and compensates for any overfitting that may 
have occurred at model development (b 

overall
  < 1). 

  *20.6.1 Example: Tree Modelling in Testicular Cancer 

 Patients with metastatic non-seminomatous germ-cell tumors nowadays have a 
long-term cure rate over 80%, due to highly effective chemotherapy. Because of the 
high overall cure rate, interest has shifted to reducing treatment-related toxicity for 
patients with a relatively good prognosis. On the other hand, patients with a rela-
tively poor prognosis should be considered for more aggressive treatment, such as 
dose intensification and high-dose chemotherapy with stem-cell support. The 
International Germ Cell Cancer Collaborative Group (IGCCCG) developed the 
International Germ Cell Consensus (IGCC) classification to distinguish patients 
according to prognosis. 5  A poor prognosis group was defined by the presence of 
any “poor risk factor.” These were: mediastinal primary site, (non-pulmonary) vis-
ceral metastases, a-fetoprotein (AFP) poor (>10,000 ng/ml), human chorionic 
gonadotrophin (HCG) poor (>10,000 ng/ml), and lactate dehydrogenase (LDH) 
poor (>10 times the upper limit of normal). 

 Tree modelling was used to find subsets within 332 poor prognosis patients. 239  The 
risk factors visceral metastases, primary site, and abdominal mass were used. This 
resulted in a tree with five poor prognosis subgroups (Fig.  20.6 ). The subgroups 
differed in 2-year survival, ranging from 49% to 84%. Some subgroups however had 
only a small number of patients, and their identification might be the result of pure 
chance. Such subgroups may not be present when new data are considered. 
Furthermore, survival estimates of small groups are often unreliable. This was illus-
trated by the group of patients with visceral metastases and primary site testis, in 
which patients with an abdominal mass had a higher 2-year survival (72%; 95% 
confidence interval (CI), 64–80%) than patients without (52%; 95% CI, 27–77%).        

 We validated the 2-year survival probabilities in the poor prognosis patients in 
the IGCCCG database ( n  = 456). 452  We found that the survival probabilities were 
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generally lower in the IGCCCG patients compared with the development setting 
(Fig.  20.6 ). A total of 125 patients was expected to have died by 2 years, while the 
observed number was 199 (i.e., 1.6 times more deaths). We assessed the calibration 
slope in the model:

  
log( log( ( | ))) log( log(− = + −S t SIGCCCG overall developmbranch α β ∗ eent branch( | ))),t

   

 where  S ( t |branch) refers to the observed Kaplan-Meier survival probabilities for 
tree branch, and b 

overall
  is the calibration slope. We found a = −0.19 and b 

overall
 =0.46. 

The predictive effects in the IGCCCG data were hence much less than at model 
development (  boverall << 1   ), consistent with the hypothesis that the original tree was 
overfitted. This same pattern was noticed from a comparison of the discriminative 
ability. The  c  statistic was 0.63 at model development, and only 0.56 at validation.   

  20.7 Validation and Updating of Survival Models  

 Predictions of survival models involve a time dimension, e.g. for the fraction of 
patients surviving 1, 2, or 5 years after start of follow-up. The most common prognostic 
model in medicine is the Cox proportional hazards model, which can combine 
multiple prognostic factors to predict survival at different time points:

 Fig. 20.6    Regression tree as developed in 332 poor prognosis patients with non-seminomatous 
germ-cell cancer. The 2-year survival is shown for the development sample (“original”) and for 
the validation sample (“update”) 452   
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   S t X S t X( | ) ( ) ,exp( )= 0
b

    

 where  S ( t | X ) denotes the probability of being alive at time  t  for a patient with 
predictors  X ;  S  

0
 ( t ) denotes the baseline survival function for time  t  (usually for the 

average of predictor values), and  bX  indicates the linear predictor (multiplication of 
regression coefficients b with predictor values  X ). We can also write the survival 
function based on the baseline cumulative hazard  H  

0
 ( t ) as  S ( t | X ) = exp(−  H  

0
 ( t ) *  b X ). 

The baseline cumulative hazard  H  
0
 ( t ) = −log( S  

0
 ( t )). 

 Hence, making predictions with the Cox model for individual patients requires 
that we know the baseline survival (or baseline cumulative hazard) function as well 
as the regression coefficients b.

  •  The full baseline survival function is usually not specified in publications, but 
sometimes survival at clinically relevant time points is provided (e.g. 1-, 2-, and 
5-year survival). Also Kaplan-Meier curves can provide the baseline survival 
function graphically.  

 •  The regression coefficients b are often provided in a table as hazard ratios 
(exp(b)). This makes it possible to calculate a detailed linear predictor for new 
patients. But often a simplified version of the model is presented as a “prognostic 
index,” e.g. based on a sum score, or a count of the number of adverse prognostic 
factors.    

  20.7.1  Case Study: Validation of a Simple Index
for Non-Hodgkin’s Lymphoma 

 A Cox regression model for overall survival for aggressive non-Hodgkin’s lym-
phoma was developed by an international group of investigators. 3  Five pre-treatment 
clinical characteristics were considered: age, Karnovsky score, Ann Arbor stage, 
extra nodal sites, and LDH scores. The five predictors are dichotomized for use in 
the “international prognostic index” (IPI). The IPI score counts the number of unfa-
vorable predictors. The more extreme categories 0 and 1, and 4 and 5 are combined, 
resulting in groups with IPI 1–4. The 2-year survival probabilities ranged from 34 
to 84%, and the 5-year probabilities from 26% to 73% (Table  20.6 ).      

 The validity of the IPI was studied by Hermans from a pragmatic perspective, 187  
and later by Van Houwelingen from a more methodological perspective. 456  The val-
idation sample was a Dutch cohort from a population-based registry of non-
Hodgkin’s lymphoma patients. Hermans constructed Kaplan-Meier curves for each 
of the four IPI groups, which showed a clear separation. However, the observed 
survival probabilities were lower than expected (Table  20.6 ). This discrepancy was 
attributed to the selection of patients: From clinical trials at model development, 
and from a population-based registry at model validation. The validation cohort 
was less selected, e.g. with respect to age. 
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 The Kaplan-Meier curves answer the qualitative question on whether the dis-
criminative ability of the original model was retained in an external setting. More 
quantitative questions relate to calibration: Is there a systematic difference between 
predicted and observed survival for all IPI groups, and what is the predictive 
strength of the IPI in the validation setting? These questions can well be studied in 
the re-calibration framework. 456   

  20.7.2 Updating the Prognostic Index 

 The observed Kaplan-Meier probabilities can be considered as updated estimates 
of survival for future Dutch non-Hodgkin’s lymphoma patients (Table  20.6 ). 
However, this update only considers the grouping of the IPI, and discards any further 
prognostic information from the development sample on survival during follow-up. 
The Kaplan-Meier curves are non-parametric, and allow for non-proportional hazards 
of the IPI risk groups. Identical results can be obtained from a Cox regression 
model in the validation sample with the four IPI groups as strata. 

 Re-calibration of the IPI probabilities is an alternative approach, which may be 
especially valuable in relatively small validation samples. The Dutch cohort of 426 
patients may be considered sufficiently large for the Kaplan-Meier approach, but 
the standard error (SE) around the survival estimates in Table  20.6  is around 0.05. 
This means that 95% CIs are ± 10% around the Kaplan-Meier survival probabilities 
in Table  20.6 . With a smaller size the updated survival probabilities would have 
been even more uncertain.  

  20.7.3 Re-calibration for Groups by Time Points 

 Simple re-calibration is possible for the two time points (2 and 5 years), comparing 
the predicted survival with the observed survival for groups of patients in a calibra-
tion model on the log hazard scale:

 Table 20.6    Validity of the original and updated IPI for a Dutch cohort of 426 non 
Hodgkin’s lymphoma patients  

 IPI  2-year survival (%)  5-year survival (%) 

 Original  K-M  Re-cali-
brated 

 Original  K-M  Re-cali-
brated 

 1 ( n  = 148)  84  78  78  73  61  58 
 2 ( n  = 110)  66  54  55  51  35  31 
 3 ( n  = 85)  54  39  41  43  15  23 
 4 ( n  = 83)  34  24  21  26  10   9 

 Updating was with Kaplan-Meier curves (Sect.  20.7.2 ) for the four IPI groups and a 
re-calibration procedure (Sect.  20.7.3 , for groups by time points) 456  



   log( log( ( | ))) log( log( ( | ))),− = + −S t g S t ga b ∗ model     

 where  S ( t | g ) refers to the observed Kaplan-Meier survival probabilities for the 
groups  g , and  S  

model
 ( t  |  g ) to the predicted survival probabilities for these groups. 

Setting b to 1 means that we accept the hazard ratios for the four IPI groups as estimated 
in the development data set. This is analogous to method 2 for logistic regression 
models (Tables  20.1  and  20.7 ).     

 With b = 1, Van Houwelingen reports that a = 0.37 at 2 years, and a = 0.56 at 
5 years. 456  Hence, we make somewhat different corrections on the log hazard scale 
for the two time points. The re-calibrated survival probabilities are shown in Table 
 20.6 , calculated with the formula

   S t g S t gcal model( | ) exp( exp( log( log( ( | ))).= − + −α      

  20.7.4 Re-calibration with a Cox Regression Model 

 A further validity assessment is to study the calibration slope b 
overall

  in a Cox regres-
sion model:

  
S t S t X

cal new
overall( | ) ( ) ,,

exp( )b C b b= 0
∗

   

 where  S  
cal

 ( t  |b X ) refers to the re-calibrated survival,  S  
0, new

  ( t ) to the re-calibrated 
baseline survival function, and b 

overall
  to the calibration slope for the linear predictor 

b X . A Cox regression with the linear predictor b X  as the single covariable assumes 
proportional effects of the IPI during follow-up. The baseline hazard function is 
updated, and a calibration slope is identified to calibrate the linear predictor to the 
new setting. This approach is more or less analogous to method 3 for logistic 
regression models (Tables  20.1  and  20.7 ). 

 Such re-calibration requires that we know the linear predictor for the four IPI 
classes. The original regression coefficients for the four IPI classes were not 
published, but we can try to calculate the coefficients from the published 2-year 
and 5-year survival probabilities. 456  Hereto we rewrite the Cox survival formula 
 S ( t | X ) =  S  

0
 ( t ) exp(b X )  as log(−log( S ( t|  X ))) = log(−log( S  

0
 ( t ))) + b X . The Weibull model 

can be used for the baseline survival function  S  
0
 ( t ), which specifies that 

log(−log( S  
0
 ( t ))) = b 

0
  + b 

1
  log(t). The Weibull is attractive since it specifies the 

baseline survival with only two parameters, but other parametric models can also 
be used. The Weibull model reads like b 

0
  + b 

1
  × log( t  

j
 ) + b 

i
  X  

i
  with  j  = 2, 5 and 

 i  = 1, 2, 3, 4 for the four IPI groups. Since we do not have access to the original 
IPI data, Van Houwelingen uses a simple linear regression model to fit the para-
meters. The IPI-Weibull model becomes:

   log( log( ( ))) . . log( ) ,− = − + +S t t0 0 319 0 439∗ b X     
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 with bX = −1.638; −0.824; −0.514; and 0 for IPI=1, 2, 3, and 4, respectively. The 
resulting survival curves are plotted in Fig.  20.7 . A reasonable fit is found for the 
observed 2- and 5-year estimates.        

 When this PI is used in a Cox regression model, the coefficient becomes 1.03 
(SE = 0.10). This indicates a very similar predictive effect of the IPI in the valida-
tion sample compared with the development sample. 456   

  *20.7.5 Parametric Re-calibration 

 Instead of re-calibration with a Cox regression model, Van Houwelingen also 
describes how we can use an exponential model or a Weibull model. 456  

 The baseline cumulative hazard function of the IPI-Weibull model is defined as: 
 H  

0, model
  ( t ) = −ln( S  

0, model
  ( t )) = exp(−0.319 + 0.439 * log( t )) = 0.727 *  t  0.439 . 

 We use this transformation for the time  T  in the validation sample:

   T T∗ = ×0 727 0 439. ..
    

 This transformed time  T * follows an exponential distribution if the IPI - Weibull 
model is valid. 458  

 An assessment of calibration-in-the-large is possible in various ways. We can 
use an exponential survival model with log( T *) = a + PI,   where a refers to a con-
stant that controls the level of the log(hazard), adjusted for the IPI effects in the 
prognostic index (PI, based on the IPI coefficients as defined in Sect.  20.7.4 ). A 
simple alternative is to directly compare the number of observed deaths to the 
number predicted (correcting for censoring). Van Houwelingen reports that a = 
0.436 (SE, 0.06). 456  This is equivalent to a hazard ratio of exp(0.436) = 1.55. Hence, 
the overall survival was 1.55 times worse in the validation sample than in the devel-
opment sample, adjusted for IPI score. 

 Re-calibration can also be assessed with an exponential model with the PI as the 
single predictor:

   log( ) * .T ∗ α β= + PI     

 Van Houwelingen however prefers re-calibration assessment with a Weibull model, 
which allows for a different shape of the baseline hazard in the validation sample:

 Table 20.7    Updating approaches for the IPI in non-Hodgkin’s lymphoma  

 Method  Approach 
 Proportionality assumption 
and baseline hazard  b 

IPI
  

 –  Kaplan-Meier  Non-proportional, free  Free 
 2  Kaplan-Meier re-calibration  Non-proportional, free  Original 
 3a  Cox, re-calibrate IPI  Proportional, free  Re-calibrated 
 3b  Weibull, re-calibrate IPI  Proportional, re-calibrated  Re-calibrated 



   log( ) .T ∗ α β ∗ γ ∗= + +PI e     

 Here α refers to a constant that controls the level of the log(hazard), b refers to 
the effect of the prognostic index PI, based on the IPI coefficients, and g controls 
the shape of the hazard function, and e indicates the exponential distribution. If g = 
1, the shape of the baseline hazard function is maintained in the validation data. If 
b = 0, b = −1, and g = 1, the calibration is perfect. The ratio of −b and g is the usual 
calibration slope. 

 Re-calibration of the IPI-Weibull model results in estimates of a = −0.24 (SE, 
0.06), b = −0.68 (SE, 0.07), and γ  =  0.65 (SE, 0.03). 456  Since g is clearly different 
from 1, the shape of the hazard function is different in the validation data than 
estimated with the IPI-Weibull model. We hence cannot simply adjust the baseline 
hazard from the IPI-Weibull model by a constant factor, such as an hazard ratio of 
1.55. This is consistent with the finding of different values for α when re-calibration 
is done by time points (Sect.  20.7.3 ). 

 In the proportional hazards interpretation of the Weibull model the calibration 
slope for the linear predictor is −b / g = 0.68/0.65 = 1.04. This is in line with the Cox  
re-calibration model (see Sect.  20.7.4 ), which also indicated that the predictive 
effect of the IPI was remarkably similar in the validation setting. 

 The Weibull re-calibration procedure updates the IPI survival predictions by 
estimating three parameters. The parameters a and g are used to update the baseline 
survival; b is used to re-calibrate the IPI effect. It is a parsimonious (and hence 
attractive) alternative to re-calibration with a Cox model. 

 Fig. 20.7    Survival according to the International Prognostic Index (IPI) for non-Hodgkin’s lym-
phoma patients. The reported 2- and 5-year survival probabilties are shown (O), with the Weibull 
approximation of survival with lines from 0 to 10 years of follow-up (“IPI-Weibull model”) 456   
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 More extensive model updating is also possible. For example we can reweight 
the five components of the IPI (method 4 in Table  20.1 ). This is actually similar to 
for example reweighting components of a comorbidity summary score as discussed 
in Chap. 9. Van Houwelingen reports that the predictor age > 60 had a statistically 
significant stronger effect than that assumed in the IPI. 456  We can also update a 
model with inclusion of non-proportionality of the hazards between prognostic 
groups. For further details see papers by Van Houwelingen. 456, 458   

  20.7.6 Summary Points 

   •  The IPI could be updated in at least four ways with different freedom for the 
baseline hazard, with or without a proportionality assumption on the effect of the 
IPI, and with different assumptions on the validity of the previously estimated 
regression coefficients (Table  20.7 ).  

 •  Kaplan-Meier estimates can be generated for the four IPI groups separately, 
which implies re-estimation of the baseline hazard, and new, separate effects for 
the relative effects implied by IPI.  

 •  Kaplan-Meier estimates can also be used in a re-calibration procedure per time 
point, preserving the original IPI effects.  

 •  A Cox regression model can be used to re-estimate the baseline hazard, while 
recalibrating the IPI effects  

 •  A Weibull model can be used for a more parametric re-calibration of the baseline 
hazard and the relative effects implied by IPI.      

  20.8 Continuous Updating  

 So far, we assumed that a validation sample with a fixed size was available for 
model updating. The updating strategy then depends, among other considerations, 
on the size of this validation sample, and on the size of the development sample. 
We can also imagine a more dynamic situation, where a previously developed 
model is applied in a new setting, with accumulation of patient numbers over time. 
The prediction model should gradually adapt to the new setting. It is reasonable to 
start with parsimonious updating methods, such as re-calibration, and gradually 
move to model revision and model extension following the framework set out in 
Table  20.1 . 

 As a continuous updating strategy for logistic regression models, we start with 
accepting the original model to generate predictions. After a relatively limited 
number of patients has been enrolled, we can consider updating of the model 
intercept to correct calibration-in-the-large (method 2, Table  20.1 ). This updating 
attempts to correct for any systematic differences between the development and 
validation setting. This correction of calibration-in-the-large should have top priority 



since miscalibration can cause systematically wrong decision making with the 
model (Chap. 19). Next, we can consider model re-calibration, i.e. update the 
intercept and slope of the linear predictor. Updating of the slope is important to 
correct for overfitting that may have occurred in the development sample. 

 When more patients are enrolled we may turn to re-estimation of regression 
coefficients (method 5), with shrinkage of updated coefficients towards the re-
calibrated values. An intermediate approach would be to test each predictor for a 
deviation of its re-calibrated effect (method 4). Finally, when a substantial number 
of patients is enrolled, we may consider model extension with more predictors 
(method 8), or intermediate methods that involve testing of the effects of additional 
predictors (methods 6 and 7, Table  20.1 ). 

  20.8.1 A Continuous Updating Strategy 

 The question is when to move on to more extensive updating in the dynamic situa-
tion with gradually increasing numbers of patients. We should not use more extensive 
updating methods too early, since updated predictions may then be unbiased but 
quite imprecise, and lead to poorer model performance instead of better performance 
for the new setting. Statistically, we can try to set a minimum number of patients 
before thinking about updating the intercept. In Table  19.6 , we reported (SE) for the 
intercept for different sample sizes in the situation that the prediction model was 
fully valid for the validation setting. With 50 events among 100 or 500 subjects, the 
SEs were 0.24 and 0.17; with 100 events 0.16 and 0.13 respectively. So, if we 
would always update the intercept, considerable variability would be introduced. 
On the other hand we should not update too late, i.e. in the situation that the model 
is only partly valid and updating is in fact indicated. A compromise is to consider 
statistical testing of the difference in intercept. Testing is technically already possible 
after a few events that have occurred. An important issue is the  p  value to consider 
for updating; we may use  p  < 0.05 as a default selection rule, but we should feel free 
to use higher  p  values. 

 A similar discussion holds for the calibration slope. In Table  19.6  we found that 
the SE was between 0.10 and 0.15 for 50 and 100 events respectively. Again, we 
may test for a deviation from the ideal value of 1, and requiring  p  < 0.05 before 
updating the slope. If the model is developed in a small sample, a slope below 1 is 
likely in the validation data, arguing for a higher  p  value and/or a one-sided test for 
the alternative hypothesis “slope < 1.” 

 Re-estimation of coefficients and model extension with new predictors should 
not be considered too early, since our simulations indicated that the predictive 
performance of an updated model can be worse than the original model (e.g. a lower 
discriminative ability). 402  We propose to perform an overall test for the improve-
ment in performance of a model with re-estimated coefficients compared with a 
re-calibrated model. Hereto we compare the −2 log likelihood (−2LL) of the 
re-calibrated and re-estimated models for a likelihood ratio test. The difference in 
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−2LL follows a χ 2  distribution. Similarly, predictions from an extended model are 
assessed in comparison with a re-estimated model. We may require  p  < 0.05 in 
overall tests before updating of coefficients is considered. The updating should 
include shrinkage. We note that the shrinkage factor is zero unless the χ 2  is larger 
than the df used in model estimation ( s  = (model  χ  2  − df) / model  χ  2 ). This also sets 
an effective limit to the  p  values for testing; e.g. with 8 df, the χ 2  has to be larger than 
8, which is equivalent to  p  < 0.43.  

  *20.8.2 Example: Continuous Updating in GUSTO-I 

 For illustration we consider continuous updating of the TIMI-II model in the West 
region of GUSTO-I. Tests for model improvement are considered for increasingly 
complex models (Table  20.8 ). Updating of the intercept uses 1 df; the re-calibration 
model has 2 df; the re-estimated model estimates eight regression coefficients and 
a new intercept (9 df), while the extended model estimates 16 regression coefficients 
and a new intercept (17 df). The differences in −2LL are tested with the difference 
in df between models.     

 In the full sample of  n  = 2,188 patients, the −2LL of the original TIMI model was 
862. With a new intercept (−0.36, see Table  20.3 ), the −2LL improves from 862 to 
846 ( χ  2 , 16, 1 df,  p  < 0.001). A small further improvement is obtained by using a 
calibration slope of 1.13 (Table  20.3 ). The −2LL improves from 846 to 844 ( χ  2 , 2, 
1 df,  p  < 0.15). Re-estimation of the eight predictors as defined in the TIMI-II model 
leads to a −2LL of 819, at the price of estimating seven parameters more ( χ  2 , 24.6, 
7 df,  p  < 0.001). Model extension with eight more predictors leads to a −2LL of 803 
for the 16 predictor model. This extension is a statistically significant improvement 
over the re-estimated 8 predictor model ( χ  2 , 15.8, 8 df,  p =0.045). In sum, an important 
updating aspect in this example is to re-calibrate the model intercept; re-calibration 
of the linear predictor is not necessary; some further improvement can be obtained 
with model revision and model extension. 

 We now turn to the dynamic situation of increasing sample size. Sample size 
refers in this context to the number of patients with predictors and the outcome 
known. In the GUSTO-I example, the outcome is 30-day mortality, which is 

 Table 20.8    Tests for model improvement in a dynamic updating strategy for the TIMI-II model 
in GUSTO-I  

 Method  Label  Parameter   df  
model

    df  
model improvement

  

 2  Update intercept  Intercept  1  1 (vs. TIMI-II model) 
 3  Re-calibration  Intercept and slope  2  1 (vs. updated intercept) 
 5  Model revision  Re-estimate 

coefficients 
 9  7 (vs. re-calibrated model) 

 8  Model extension  Re-estimation + 
extension 

 17  8 (vs. re-estimated model) 



hence known to the analyst without much delay. If a more long-term outcome is 
specified, e.g. 1-year survival, the delay is obviously longer before updating 
analyses can start. We arbitrarily start testing for a difference in intercept from a 
sample size after including 100 patients in the validation sample, which implies 
approximately 7 events with an incidence of 30-day mortality of 7% in GUSTO-I. 
Inclusion is supposed to increase with calender time. We note that the  p  value for 
a different intercept is still high at  n  = 100 ( p  = 0.64 in this example, Fig.  20.8 ). 
The  p  value decreases rapidly, to  p  < 0.05 at  n =170 in this particular example. The 
calibration slope is not statistically different from 1 in the full sample of  n  = 2,188; 
in the dynamic situation, the  p  value was over 0.50 for  n  <500. From  n  = 500, we 
also start testing for model revision and model extension. The “model extension” 
method approaches statistical significance around  n  = 650, while model revision 
does so only at  n  > 1,500 (Fig.  20.8 ). Around  n  = 650, we might only re-calibrate 
the effects of the first eight predictors, and extend the model with shrunken 
effects for eight more predictors. Model extension is not statistically significant 
between  n  = 700 and 2,000; with shrinkage of regression coefficients the differ-
ence would anyway be small between predictions with or without the eight addi-
tional predictors. From  n  > 1,500 we would re-estimate the effects of the first 
eight predictors.        

 This example illustrates how continuous updating can be applied. Somewhat higher 
 p  values might also be used for testing of updating parameters. We may then rely 
on the shrinkage methods to prevent “over-updating,” just as shrinkage prevents 
overfitting in standard model development.   

 Fig. 20.8    Continuous updating with accumulating numbers of patients. The  p  value for validity 
of the intercept is significant from  n  > 170; the  p  value for the calibration slope does not reach 
significance even at  n  = 2,188; model revision and model extension are statistically significant 
from  n  > 1,500 and 2,000  
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  20.9 Concluding Remarks  

 Re-calibration methods are attractive because of their stability, which is related to 
the fact that few parameters are estimated. 86, 456  The disadvantage of simple re-cali-
bration methods is a potential for bias in the individual regression coefficients. In 
contrast, model revision may lead to a lower bias but higher variance in the updated 
model, since more parameters are estimated. 402  

 From a clinical perspective, the question needs to be answered whether a previ-
ously developed model is reasonable to apply in a new setting. This requires subject 
knowledge rather than statistical methods. Three examples are in Table  20.9 . From 
a statistical perspective, the sample sizes of both the validation data set and the 
development data set are crucial in the choice of an updating method. Our simula-
tions in Figs.  20.3 – 20.5  supported the idea that substantial sample sizes are required 
before an improvement in discriminative ability is achieved by updating of regres-
sion coefficients. 402      

 Shrinkage methods in model updating may not only improve calibration, but 
also discrimination. This is in contrast to traditional model development, where 
shrinkage does merely improve calibration and has no substantial impact on 
discrimination. 

 A specific situation of model updating is that we consider a new predictor, 
which was not part of a previously developed model. For example, a new biomar-
ker may be promising, with prognostic value shown in a meta-analysis. If we 
know the correlation of this biomarker with traditional predictors, we may try to 
update the regression coefficients in a multivariable model with both the tradi-
tional predictors and the biomarker. An illustration is available for coronary heart 
disease. 200   

 Table 20.9    Examples of re-calibration of previously developed prediction models  

 Patients  Outcome  Development  Validation  Updating 

 Children with 
growth 
hormone 
deficiency 93  

 Growth  Kabi Pharmacia 
International 
Growth Study 
database 
( n  = 593) 

 Dutch Growth 
Foundation 
database 
( n  = 136) 

   ˆ ˆ ( . . ˆ ),Y Y Yc o o= + − ×2 15 0 19

  where   Ŷc
   and   Ŷo

   are the 
calibrated and original 
predictions 

 Men under-
going prosta-
tectomy for 
prostate 
cancer 424  

 Indolent 
cancer 

 Clinical series 
( n =409) 

 European 
Randomized 
Study on 
Screening for 
Prostate Cancer 
( n  = 247) 

 Re-calibration of intercept 
and rounding of coeffi-
cients for score chart 

 Patients under-
going surgery 215  

 Severe  post-
operative 
pain 

 Clinical series 
Amsterdam 

 Clinical series 
Utrecht ( n  = 752 
+ 283) 

 Five updating methods 
performed similarly 



  Questions  

     20.1    Simple updating of model intercept 
  Suppose a model predicts an average operative mortality for elective aortic 

aneurysm surgery of 8%, but we observe 10 deaths out of 200 (5%) in 
another series from another hospital.

     (a)    What would be the most naïve update of the model intercept?  
     (b)    What problems should be considered in such a naïve update?      

    20.2    Model updating framework (Table  20.1 ) 
  Which updating methods can be seen as nested models, i.e. that a next 

updating method is an extension of a previous, simpler, method?  

    20.3    Updating strategies (Table  20.1 ) 
  What updating strategy makes sense when major improvements in care have 

taken place

     (a)    for all patients  
     (b)    for a subgroup of patients      

    20.4    Shrinkage and re-calibration (Table  20.5 ) 
  We note that the shrunken coefficients for female sex are very similar, what-

ever method is applied (0.60, 0.60, and 0.58 for shrinkage towards zero, re-
calibrated coefficients, or TIMI coefficients respectively). How is this 
possible?  

    20.5    Performance of updated models (Table  20.4  and Figs.  20.3 – 20.5 ) 
  We note that the  c  statistic for method 8 (Re-estimation + extension, 16 pre-

dictors) seems to perform best in all parts of GUSTO-I. Performance seems 
especially good in the smallest sample (sample5,  n  = 429,  c  = 0.852).

     (a)    How do you explain this high apparent  c  statistic?  
     (b)     How is it possible that re-estimation can lead to a poorer performing 

model at validation in independent patients (Fig.  20.3 )?  
     (c)     Does consideration of eight more predictors in methods 6–8 lead to bet-

ter models compared with method 5 in Figs.  20.3 – 20.5 ?      

    20.6    Continuous updating (Fig.  20.8 ) 
  In Fig.  20.8 , we note that the  p  value for updating of the intercept decreases 

quickly to small, statistically significant, values. How do you explain this 
pattern?  

    20.7    Validation and updating of a Framingham model 
  Consider the paper by D′ Agostino on validity of the Framingham risk func-

tion to other populations. 90  What is the essential strategy for validation and 
updating of predictions?             

Questions 389



   Chapter 21   
 Updating for Multiple Settings        

  Background   Updating of a prediction model can be considered for a single new 
setting, but also for a range of settings, such as multiple hospitals. We can consider 
such settings as parts of an underlying superpopulation, making them to some 
extent related. We first quantify the distribution of differences between settings, and 
subsequently update the model to setting-specific values considering this distribution. 
This approach is well possible with random effects models or Empirical Bayes 
estimation. We illustrate the approach for logistic regression models. 

 We may specifically be interested in differences between centres in the context 
of quality assessment. We illustrate modern methods for estimation of differences 
and rank ordering between centres for patients with stroke (“provider profiling”).    

  21.1 Differences Between Settings  

  21.1.1 Testing for Calibration-in-the Large 

 We first concentrate on systematic differences between settings in outcome, reflected 
in calibration-in-the-large. We consider the situation of differences between hospi-
tals in logistic regression models, and subsequently turn to survival models. For 
logistic regression models, we can simply include “hospital” as a categorical varia-
ble in our model, and test for statistical significance of the differences between 
hospitals. Such an analysis can be performed without adjustment for predictors 
(“unadjusted” or “crude” comparison), or with adjustment for important predictors 
of outcome (“adjusted” comparison). The differences that remain after adjustment 
are obviously of most interest, both from the viewpoint of the applicability of a 
prediction model across centres, and from the viewpoint of provider profiling (the 
comparison of the quality across centres). 47  

 A theoretical objection to this “fixed-effect” approach is that “hospital” is actu-
ally measured at a higher level than at the patient level. This argues for using a 
multi-level (or “mixed”) model, where hospital is at the first level, and patients are 
considered within hospitals. 95  The hospital is defined as a random factor, and patient 
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392 21 Updating for Multiple Settings 

characteristics are considered as fixed factors (within hospitals). We then estimate 
the distribution of the random effects, and can test for significance of this distribution, 
i.e. that the distribution is wider than expected based on chance alone.  

  21.1.2 Illustration of Heterogeneity in GUSTO-I 

 Several prediction models can be considered for application in patients suffering 
from an acute myocardial infarction (MI). We focus on the TIMI-II model, as 
defined before (Chap. 20). This model includes eight dichotomous predictors. 302  We 
apply the TIMI-II model in patients from the GUSTO-I trial, with special attention 
to the validity in geographic groups. 405  Patients were entered in GUSTO-I between 
1990 and 1993 at 1 of 1,082 participating hospitals in 14 countries. We distin-
guished 16 geographical regions within the GUSTO-I trial: 8 in the United States, 
6 in Europe (based on combinations of neighboring countries), and 2 other regions 
(Canada and Australia/New Zealand). These regions included on average 2,552 
patients and 178 deaths. Furthermore, we performed more detailed analyses based 
on geographically related groups of hospitals. The number of patients per hospital 
was too low for meaningful analyses at the hospital level (average,  n  = 38, 2.4 
deaths). Grouping resulted in 121 small and 48 large groups, consisting of on aver-
age 9 and 23 hospitals and at least 20 and 50 deaths, respectively. The distinction 
in 16 regions, 48 large groups, and 121 small groups was considered to study 
regional heterogeneity. 

 We first test for regional differences in logistic regression models that included 
dummy variables for each region or group of hospitals. All such tests were highly 
statistically significant, indicating that the regional differences in 30-day mortality 
could not reasonably be explained by chance (Table  21.1 ). We used the TIMI-II 
model in two ways: as an offset variable, and with refitting of the regression coeffi-
cients. With an offset, the regression coefficients were kept at the values as esti-
mated in TIMI-II, and the intercept and centre effects were the free parameters. We 
found slightly higher  c  2  statistics if the original TIMI-II coefficients were used 
(as shown in Table  21.1 ) rather than refitted coefficients.     

 Second, we test for regional differences in a random effects logistic regression 
model, where region or groups of hospitals are considered as a random factor, and 

 Table 21.1    Testing for heterogeneity in mortality across groups in GUSTO-I, with adjustment 
according to the TIMI-II model  

   Groups  Groups as fixed effect  Groups as random effect 

 Regions  16   c  2  = 69, 15 df,  p  < 0.0001   t  2  = 0.025,  χ  2  = 28, 1 df,  p  < 0.0001 
 Large subsamples  48   c  2  = 102, 47 df,  p  < 0.0001   t  2  = 0.023,  χ  2  = 18, 1 df,  p  < 0.0001 
 Small subsamples  121   c  2  = 197, 120 df,  p  < 0.0001   t  2  = 0.033,  χ  2  = 17, 1 df,  p  < 0.0001 



the TIMI-II coefficients are considered in an offset variable. We compare models 
with the random effect to models without and confirm that the random effect is sta-
tistically significant. The likelihood ratio test gives a one-sided  p  value; the two-
sided  p  value is obtained by dividing by 2. 390  

 An advantage of the random effects model is that we can interpret the values of 
the heterogeneity between groups (variance, t 2 ). The standard deviation (t) reflects 
differences between groups on the original scale, corrected for random noise. We 
find that t 2  is around 0.025 (t around 0.16). The heterogeneity was similar between 
small or large subsamples and between the 16 regions.  

  21.1.3 Updating for Better Calibration-in-the Large 

 If differences in outcome between centres are relevant (e.g. statistically significant 
and with substantial magnitude), we may want to update the prediction model with 
centre-specific estimates of the intercept. 458  In the traditional, fixed effects, 
approach we could simply use the intercepts per centre after adjusting for patient 
characteristics as centre-specific estimates (Table  21.2 ). These estimates may 
often be quite unstable, and show a relatively wide distribution. This will espe-
cially occur when many small centres are considered, i.e. with relatively few 
patients and/or events.     

 Preferably, we consider the hospitals as parts of an underlying superpopulation, 
making them to some extent related. This leads to Empirical Bayes (EB) estimation 
(Table  21.2 ). 458  The formula for EB adjusted centre effects is 300 :

 α µ τ τ σ ∗ α µEB = + + −2 2 2/ ( ) ( ),i i  

where µ is the overall mean estimate; t 2  is the variance between settings (“hetero-
geneity”); and a 

 i 
  and s

i
2 are the estimated intercepts and their variances. The tradi-

tional fixed effect estimates a 
 i 
  are shrunken towards the overall mean µ. The extent 

of shrinkage depends on t 2  and s
i
2. A relatively large sampling uncertainty (large 

s
i
2) implies substantial shrinkage for a

i
 
  
  towards the overall mean µ. In contrast, large 

heterogeneity (large t 2 ) implies that a
i
 
  
  is not much shrunken towards the overall 

mean µ. As mentioned in Chap. 20, an infinite value for t 2  implies that the fixed 
effect estimates a 

 i 
  
  
  are used as estimates for a 

EB
 . Every setting is then considered as 

unique and may have any intercept.  

 Table 21.2    Approaches for testing and estimation of differences between settings to correctly 
estimate average outcomes  

 Approach  Testing  Estimation 

 Fixed effects  Setting as categorical variable  Adjusted intercepts 
 Random effects  Heterogeneity across settings  Empirical Bayes (direct or two steps) 

21.1 Differences Between Settings 393
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  21.1.4 Empirical Bayes Estimates 

 There are nowadays two approaches possible to EB estimation: a direct and a 
two-step approach. The direct approach is to use a random effects model, where 
the distribution of random effects and the updated intercepts are estimated in one 
step. This direct approach sounds attractive, but has not yet been completely 
worked out for non-linear models such as the Cox survival model. Especially, the 
model may have difficulties in the joint estimation of random effects for multiple 
differences between centres. For example, we may try to estimate hetereogeneity 
in both intercept and calibration slope, but find that the model estimation does not 
converge. 

 The two-step approach starts with a traditional fixed effect analysis of between 
centre differences. We may choose one large centre as the reference category for 
comparison of intercepts, but preferably we compare differences to the average 
outcome. Technically, this can be achieved by studying each centre while includ-
ing an offset variable based on predictions for all centres. For each centre, we 
obtain an estimate of the difference to the average outcome, and a standard error 
(SE). For the second step, we use the centre-specific estimates as outcomes in a 
linear random effects model for continuous outcomes, with weights according to 
the variance of the fixed effect estimates. With this second step we estimate the 
heterogeneity between centres for use in the EB formula. The uncertainty in 
determining the heterogeneity is ignored in this two-step procedure, while it is 
included in the direct approach. Several examples of the two-step approach are 
available. 405,458,390   

  21.1.5 Illustration of Updating in GUSTO-I 

 We wonder how large the differences between centres are relative to each other, and 
whether a simple overall update of the intercept from the TIMI-II model would be 
sufficient in GUSTO-I. 405  We use the TIMI-II model as an offset variable for updating 
in the GUSTO-I data. 

 With a fixed effects approach, we estimate the difference in intercept for each 
group within GUSTO-I compared with the predicted logodds from TIMI-II. We 
also obtain SEs for these differences. The R code is shown in Sect. 21.1.8. With a 
random effects model (lmer function in R), we can directly obtain EB estimates 
of the intercepts per group. 

 We find that the overall intercept should be updated with the value −0.27. 
Regional differences as estimated with traditional fixed effect methods were sub-
stantially reduced in the EB estimation, whether 16 regions, 48 large subsamples 
or 121 small subsamples were considered (Fig.  21.1 ). The EB estimates for the 2 
extreme regions are −0.49 and −0.02, while the fixed effect estimates are −0.59 
and +0.11. Hence, we would traditionally estimate that one region had a much 



  Fig. 21.1    Updating of intercepts of the TIMI-II model for subsamples in GUSTO-I. The overall 
intercept adjustment is −0.27 ( dotted line ). We note a substantial variability in fixed effect adjusted 
intercept estimates for the smaller groups (121 small subsamples), which are shrunk towards the 
average with Empirical Bayes estimation in a random effects model. Also among the 16 regions 
we note that smaller regions have more shrinkage of the intercept       
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lower mortality than observed in TIMI-II (−0.59), and one region a slightly higher 
mortality (+0.11). With EB estimation, these estimates are shrunken towards the 
average of −0.27. Not surprisingly, these 2 extremes had the smallest and second 
smallest sample size among the regions. The same patterns are observed for 
groups of hospitals, with shrinkage to values between −0.56 and −0.02 for large 
and between −0.58 and −0.002 for small subsamples. We can conclude that a sub-
stantial part of the variability in adjusted intercepts of the smaller groups can be 
attributed to chance.   

  21.1.6 Testing and Updating of Predictor Effects 

 Next to the intercept, an obvious question is whether the effects of predictors 
differ by setting. A simple approach is to test for interactions between predictor 
effects by setting. This is the traditional fixed effects approach. We can also 
consider the effect of one or more predictors as having distributions across settings 
in a random effects model. 

 It is more parsimonious to study interactions by setting for the linear predictor 
of the prediction model, since the linear predictor summarizes the effects of predic-
tors. We can also study differences in overall effects in a random effects model.  

  21.1.7 Heterogeneity of Predictor Effects in GUSTO-I 

 We study the calibration slope for the (logodds of the) TIMI-II predictions of 30-day 
mortality for regional groups in GUSTO-I. We hereto use the linear predictor based 
on the TIMI-II model as the only predictor for updating in the GUSTO-I data. 

 We find that the calibration slope should be updated to the value 1.00; overall, 
there is no need for updating of the slope. In a fixed effect analysis we test inter-
actions with groups and find that there is overall no such interaction within 
GUSTO-I (Table  21.3 ). This finding is confirmed in random effect models, where 
a very small distribution is estimated around the overall recalibration slope. If we 
consider the EB estimates of the slopes, these appear very close to the overall 
slope of 1.00.     

 In addition, we tested for fixed effect interactions of effects of individual predic-
tors by group, e.g. age * group, and shock * group. 405  None of these overall tests 

 Table 21.3    Testing for heterogeneity in calibration slope of the TIMI-II model across groups in 
GUSTO-I  

   Groups  Fixed effect  Random effect 

 Regions  16   χ  2  = 18, 15 df,  p  = 0.24   τ  2  = 0.000,  χ  2  = 0, 1 df,  p  = 0.49 
 Large subsamples  48   χ  2  = 53, 47 df,  p  = 0.25   τ  2  = 0.000,  χ  2  = 0, 1 df,  p  = 0.50 
 Small subsamples  121   χ  2  = 117, 120 df,  p  = 0.56   τ  2  = 0.000,  χ  2  = 0, 1 df,  p  = 0.50 



for interaction are statistically significant, suggesting that is it reasonable to assume 
a single effect of each predictor across the geographical areas in GUSTO-I. 

 We conclude that the variability in effects of predictors is extremely small in 
GUSTO-I. Hence no updating by group is necessary beyond the simple update of 
the model intercept (with – 0.27). This small variability may potentially be 
explained by the fact that predictors were registered according to uniform defini-
tions, were relatively objective characteristics with limited measurement error 
(e.g. age), and that the quality of data collection was controlled well in this trial. 
Comparisons across less-controlled settings may show less consistency with 
respect to the effects of predictors.  

  *21.1.8 R Code for Random Effect Analyses 

 The essential R code for some of the random analyses in GUSTO-I is shown below, 
with a full script at the Web.

    library(lme4)  # linear and generalized linear random effect models   
   timi8.par <− c(−4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 0.53, 0.47)   
   full8 <− lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, data=gusto, x=T)   
   lp1 <− full8$x %*% timi8.par[−1] + timi8.par[1] # lp1 based on TIMI–II     

  Test differences between regions (Table   21.1   )  
 Fixed and random effects with lp1 (including TIMI-II coefficients) as offset for 16 
regions:

    full8.REGL.o <− lrm(DAY30~as.factor(REGL), offset=lp1, data=gusto)   
   fullr.REGL.o <− lmer(gusto$DAY30~1+(1 | gusto$REGL), offset=lp1, 

 family=binomial, method=“Laplace”)     

 Likelihood ratio test for REGL effect, compare to deviance with offset only:

    pchisq(q=deviance(full8.REGL.o)[2] − deviance (fullr.REGL.o) ,  
         df=1, lower.tail=F) / 2 # divide 2–sided p–value     
 # Result:  χ  2 =28, df=1, p=6.67E-8 

  Estimate calibration slopes between centres (Table   21.3   )  
 Fixed effects with lpl (including TIMI-II coefficients) as predictor, interacting with 
region:
    full8.REGL.lp <− lrm(DAY30~as.factor(gusto$REGL) * lp1, data=gusto)     

 Random coefficient model for lp1 #
    fullr.lp.REGL <− lmer(DAY30~lp1 + (1 | REGL) + (0 + lp1 | REGL), 

family=binomial, method=“Laplace,” data=gusto)     

 # Examine Empirical Bayes estimates
    ranef(fullr.lp.REGL)     

 We note no heterogeneity in calibration slopes by region.   

21.1 Differences Between Settings 397



398 21 Updating for Multiple Settings 

  21.2 Provider Profiling  

 Whether prediction models are applicable across centres requires an assessment of 
differences between centres. Differences between centres are also central in com-
parisons of the quality of centres as part of provider profiling. Provider profiling 
often includes outcomes such as mortality and morbidity, but may also include 
measures such as patient satisfaction, and organizational issues such as procedures 
and processes of delivering care. 99,219  In addition to testing and estimation of differ-
ences between centres, a specific aspect of provider profiling is that we may want 
to rank centres according to their performance in league tables. Such ranking would 
enable patients (or “consumers”) to choose the best provider for their health prob-
lem. Moreover, a relative poor performance might be an incentive for a provider to 
critically review the processes of care delivery, and stimulate improvements. Such 
feedback should lead to a continuous quality improvement. 

 Provider profiling according to outcome is surrounded by many methodological 
problems. 382  Observational data are analyzed, which generally need to be interpreted 
with more caution than an experimental study. Some argue that we should concentrate 
on direct measurement of adherence to clinical and managerial standards. 260  If we aim 
to compare outcome across centres, two methodological issues are essential:

   1.    case-mix adjustment  
   2.    dealing with uncertainty     

 Case-mix adjustment should appropriately capture differences between centres in 
patient characteristics that are outside the influence of actions in the centre. Instead of 
predictors, we now consider these patient characteristics as confounders, since they may 
be both related to setting and outcome. Some centres may treat more severe patients, 
which hampers a fair comparison with a centre with less severe patients. We want to 
compare centres after adjusting for confounding factors. Choosing an appropriate adjust-
ment model is not easy, and may be limited by the type of data that is available. For 
example, administrative data bases may not include all potential confounders, and have 
problems in coding. For example, postoperative complications may be miscoded as 
comorbidities. 173  Moreover, end point assessment is often non-standardized. 383  Prediction 
model development was discussed at a technical level in Part II (Chaps. 7–18). Risk 
adjustment is discussed in a broader context by Iezzoni. 208  

 Second, substantial differences may appear in traditional analysis, with or without 
adjustment for confounders. But this picture is noisy. We have seen that EB estima-
tion is a more conservative solution, compensating for the randomness in the fixed 
effect analysis. EB estimates hence allow for a better interpretation of any differences 
between centres that remain after adjustment for case-mix. 136,260,279,382,384,390,405  

 21.2.1 Indicators for Differences Between Centres 

 A simple indicator of differences between centres is obtained by comparing the 
observed outcomes to the expected outcomes for each centre. The expected outcomes 
can be estimated with a regression model that includes relevant confounders. 



For dichotomous outcomes, we can express the absolute difference in the  W  statistic: 
 W  

 i 
  = ( N  

Obs, i 
  −  N  

exp, i 
 )/ N  

 i 
 , or mean(observed 

 i 
 ) – mean(expected 

 i 
 ), calculated for each 

centre  i . 432,324  The weighted sum of the obsolute W statistics can be interpreted 
as the percentage of patients that had a different outcome than that expected. 

The alternative is to use indicator variables for centres in a regression model, 
such that relative centre effects are estimated in comparison with the mean outcome 
over all centres. The intercepts α 

 i 
  can be obtained from traditional fixed effect 

models. EB estimates of α 
EB

  can be obtained directly with random effects models, 
or with a two-step approach as discussed before:

 α µ τ τ σ ∗ α µEB = + + −2 2 2/ ( ) ( ),i i  

 The approximate relationship between α 
 i 
  and  W  
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  is: α 
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  ≈  W  
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 /( p ( 1  −  p) ), or  W  

 i  
 ≈ α 

 i 
  * 

(p(1−p)), where  p  = mean(observed 
 i 
 ). A more exact calculation of  W  statistics is 

possible by comparing the mean predictions per centre, including the centre effect 
α

  i 
 , to the mean predictions from a model without centre (and only the overall inter-

cept α). This calculation can also be done with α 
EB

  instead of α 
 i 
 . 432  

 The SE of the  W  statistic is (1/ N  
 i
)

 
  * sqrt(var 

 i  
); for fixed effect estimates we 

obtain the SE from the regression model. For EB estimation with the two-step 
approach, the variance is:
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iα τ σ τ σEB
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where t 2  is the heterogeneity between settings and s
i
2 is the estimated variance for 

α 
 i 
 . We note that if all centres have the same s

i
2, the fixed estimate α 

 i 
  and EB esti-

mate α 
EB

  differ only in scale, but the ranking nor uncertainty about the ranking have 
changed. However, centres may have different sample sizes reflected in different 
s

i
2. For centres with a small variance s

i
2, α 

EB
  is close to α 

 i 
 , and the SE(α 

EB
 ) close 

to SE(α 
 i 
 ), while centres with large variance have effects near the overall outcome 

µ, with SE close to t. 
The SE can be used to calculate 95% confidence intervals, or in the case of EB 

estimates, “posterior probability intervals”:

α
EB ± 1.96*Övar(α

EB
).

  21.2.2 Ranking of Centres 

 The first attempts of provider profiling already included league tables: rankings 
were made for physician-specific mortality after coronary-artery bypass grafting 
surgery in New York State. 150  Ranking is also very popular in the lay press. 476  

 Many argue that the uncertainty in differences between centres needs to be 
reflected in such league tables. The key problem with ranking is that one centre has 
to be first and one has to be last. One approach was illustrated for league tables of 
in vitro fertilization clinics, where the uncertainty in rank was indicated with a 95% 
confidence interval around the rank. 279  If ranking is very noisy, the confidence 
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intervals are very wide. Van Houwelingen advocates to use expected ranks as was 
also proposed before, 457,385  and is similar to the idea of using a median rank from a 
distribution of ranks. 143  

The expected rank is determined by the probability that the performance at cen-
tre  i  is better than at another centre  j : P(α 

EB, i
  > α 

EB, j
 ). We use the EB estimates of 

differences α 
 i 
  and α 

 j 
 , since these are considered better reflections of any true dif-

ferences between centres. In practice, we can calculate this probability from the 
standardized difference in performance estimates:

(α 
EB, i

  – α
EB, j

)/ Ö
 (var(α

EB, i
)

 
+

 
var(α

EB, j
))

 We take the sum of these probabilities over all comparisons with centres  j : 
Σ P(α 

EB,i
  > α 

EB,j
 ), where  j  ≠  i

 
. The expected rank ER is estimated as:

ER
i
 = Σ P(α 

EB, i
  > α 

EB, j
 ) = 1+ Σ Φ (α 

EB, i
  – α

EB, j
)/

 
Ö (var(α

EB, i
) +

 
var(α

EB, j
))

where  
j
  ≠  

i
 , and Φ is the normal distribution function. We assume that low val-

ues of α 
EB

  are good; if the low value is quite certain, the rank should be close 
to 1. Indeed, we note that if the summed probability that centre  i  has worse 
outcomes than any other centre  j  is low, the rank remains close to 1. If this prob-
ability is high, the rank becomes high (poor performance). Such ranking is 
possible if the differences α 

EB,i
  − α 

EB, j 
  are large relative to the SE of this 

 difference. If the standardized differences are close to zero, this corresponds to 
overlap between posterior probability intervals, and expected ranks are around 
the mid-rank. 

 For better interpretation we can scale the expected ranks ER between 0 and 
100%: 

PCER
i
 = 100*(ER

i
 − 0.5) / Ncenters,

where PCER stands for percentiles based on expected ranks. The PCER 
 i 
  can be 

interpreted as the probability that the performance in centre  i  is better than in any 
randomly selected other centre. If the ER is 1 for a centre, this indicates a much 
better performance than the other centres. If the comparison is with nine other 
centres (Ncenters=10), the PCER becomes 5%; if the comparison is with 99 
other centres (Ncenters=100), the PCER becomes 0.5%. The definition hence 
accounts for the discrete nature of the number of centres instead of the simpler scaling 
as PCER 

 i 
  = 100 * (ER 

 i 
  − 1) / (Ncenters − 1). 

 In summary, the ER and PCER incorporate both the magnitude of the difference 
of a particular centre compared with other centres and the uncertainty in this differ-
ence. These measures for ranking are still relatively new, and need further empirical 
support for their applicability. We will illustrate the ranking of centres in a case 
study of outcome after stroke, after considering traditional and EB estimation for 
between centre differences.  



  21.2.3 Example: Provider Profiling in Stroke 

 We consider differences in outcome between ten hospitals in The Netherlands. 261  All 
patients who were admitted to the neurology department with suspected acute brain 
ischemia between October 2002 and May 2003 were considered for enrollment in 
the Netherlands Stroke survey. 373  The participating sites comprised one small (<400 
beds), four intermediate (400–800 beds) and five large centres (>800 beds). Two 
centres were University hospitals. All centres had a neurology department, a neurol-
ogist with expertise in stroke, and a multi-disciplinary stroke team. All but one hos-
pital had a stroke unit, eight were participating in a regional stroke service, and nine 
were equipped for thrombolytic therapy. 

 Data were collected by trained research assistants. The primary outcome was 
whether patients were dead or disabled at 1 year after admission, i.e. a score on the 
modified Rankin scale ≥3. Potential confounders included demographics (age, sex), 
stroke subtype (brain infarction vs. transient ischemic attack), vascular risk factors 
(e.g. ischemic heart disease, diabetes, hypertension), history characteristics (previ-
ous stroke, pre-stroke living condition), presenting characteristics (consciousness 
level according to Glasgow Coma Scale, arrival at hospital < 48 h). In total 12 con-
founders were considered for a “full” logistic regression model for adjustment of 
differences in outcome between hospitals.  

  21.2.4 Testing of Differences Between Centres 

 The sample consisted of 505 patients with complete data on potential confounders 
and outcome. The lowest numbers enrolled were 22 and 24 patients in hospitals 5 
and 6, and the highest numbers 92 and 99 in hospitals 2 and 7 respectively (Table 
 21.4 ). The mean age was 71 years; 279 were male (55%) and 451 (89%) had a brain 
infarction. The distributions of age and stroke subtype varied significantly by hospital 
(Table  21.4 ).     

 Table 21.4    Characteristics of 10 hospitals treating 505 patients with acute brain ischemia  

 Hospital   n   Age (years)  Sex (male) 
 Stroke subtype 
(brain infarction)  Poor outcome 

 1  39  77  46%  97%  59% 
 2  92  73  54%  95%  72% 
 3  31  69  61%  97%  35% 
 4  41  65  59%  80%  44% 
 5  22  74  55%  91%  73% 
 6  24  65  67%  63%  29% 
 7  99  68  65%  94%  39% 
 8  37  70  41%  92%  78% 
 9  50  71  56%  88%  54% 
 10  70  72  47%  81%  46% 
 Total  505  71  55%  89%  53% 
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 At 1 year, 268 (53%) patients had a poor outcome (dead,  n  = 143; Rankin 3, 4, or 
5;  n  = 125). The fraction of patients with a poor outcome varied substantially between 
centres in unadjusted analysis, with apparently best results in hospital 6 (29% poor 
outcome) and worst in hospital 8 (78%, Table  21.4 ). These differences were highly 
significant in a traditional fixed effects analysis of differences between hospitals (χ 2  = 
48, 9 df,  p  < 0.0001, Table  21.5 ), but were partly explained by a higher age of patients 
in hospitals with worse outcome. For example, hospitals 2, 5, and 8 had over 70% poor 
outcome, but mean ages of 73, 74, and 70 years (Table  21.4 ). Adjusting for all 12 
potential confounders led to halving of the differences seen in unadjusted analysis (χ 2  
= 23 instead of 48, Table  21.5 ). This pattern was also seen in the random effects analy-
sis, where the estimated τ 2  (indicating heterogeneity between centres) with adjustment 
for 12 confounders was half that of the unadjusted τ 2  (0.17 vs. 0.34, Table  21.5 ).      

  21.2.5 Estimation of Differences Between Centres 

 We can estimate the differences between centres in logistic regression models, where 
we compare each centre to the average. The traditional fixed effects change consid-
erably between an unadjusted and an adjusted analysis with 12 confounders (Table 
 21.6 ). Hospital 1 seems to perform relatively poor in unadjusted analysis (positive 
coefficient), while an adjusted analysis indicates that this hospital performs rela-
tively good (negative coefficient). Changes for other hospitals were only noted 
quantitatively, without changing sign, with adjusted differences generally closer to 
zero. Further changes were seen with EB estimation of differences. All differences 
were reduced, especially for smaller centres (e.g hospital 5: from 0.91 to 0.33).      

 Table 21.5    Testing for heterogeneity between ten hospitals providing care for stroke patients  

   Fixed effect  Random effect 

 Unadjusted  χ 2  = 48, 9 df,  p  < 0.0001  τ 2  = 0.34, χ 2  = 22, 1 df,  p  < 0.0001 
 Age adjusted  χ 2  = 39, 9 df,  p  < 0.0001  τ 2  = 0.29, χ 2 =15, 1 df,  p  < 0.0001 
 12 confounders  χ 2  = 23, 9 df,  p  = 0.0056  τ 2  = 0.17, χ 2 =3.3, 1 df,  p  = 0.035 

 Table 21.6    Traditional fixed effects and Empirical Bayes (EB) estimates for 
differences between ten hospitals, adjusted for 12 confounders  

 Hospital   n   Unadjusted  Adjusted  EB 

 1  39  0.24  −0.36  −0.18 
 2  92  0.81  0.45  0.34 
 3  31  −0.72  −1.04  −0.49 
 4  41  −0.37  −0.39  −0.21 
 5  22  0.86  0.91  0.33 
 6  24  −1.01  −0.47  −0.20 
 7  99  −0.55  −0.15  −0.12 
 8  37  1.17  1.16  0.56 
 9  50  0.04  0.00  0.01 
 10  70  −0.29  −0.09  −0.05 
 Values are logistic regression coefficients 



 Very similar patterns are noted for the  W  statistics (Table  21.7 ). The  W  statistics 
indicate the absolute percentages of patients that have a worse than expected outcome 
(positive  W  statistic) and better than expected outcome (negative  W  statistic, Table 
 21.7 ). The weighted sum of the absolute  W  statistics was 13.3% in unadjusted 
analysis, 6.7% in adjusted analysis, and only 3.7% in EB analysis.       

  *21.2.6 Uncertainty in Differences 

 The uncertainty around the estimated differences between centres is indicated in 
Fig.  21.2  for the adjusted and EB analyses. We note that EB estimation does not 
affect the point estimate nor the confidence interval for the larger centres, such as 

 Table 21.7     W  statistics for differences between ten hospitals treating 
patients with stroke  

 Hospital   n   Unadjusted  Adjusted  EB 

 1  39  6  −6  −3 
 2  92  19  8  5 
 3  31  −18  −19  −10 
 4  41  −9  −7  −4 
 5  22  20  14  5 
 6  24  −24  −8  −3 
 7  99  −14  −3  −2 
 8  37  25  18  9 
 9  50  1  0  0 
 10  70  −7  −2  −1 

 The  W  statistic represents the number of patients with a worse or 
better than average outcome per 100 patients. Values are quite similar 
in relative effect to the logistic regression coefficients with fixed 
effect estimation 

  Fig. 21.2    Differences between ten centres with traditionally adjusted, fixed effect, estimates, and 
Empirical Bayes estimates. We note that estimates of relatively small centres (e.g. 5, 6, and 8) are 
shrunk towards to average with EB estimation       

Adjusted estimates

Center effect

H
o

sp
ita

l

10

9

8

7

6

5

4

3

2

1

−1 0 1

Center effect

−1 0 1

Empirical Bayes estimates

21.2 Provider Profiling 403



404 21 Updating for Multiple Settings 

hospital 2 and 7. For smaller centres, such as hospitals 5, 6, and 8, the point estimates 
for the deviation from the average are shrunken, and the confidence intervals smaller. 
None of the centres have a deviation that is significantly away from zero in the EB 
estimation, while the overall heterogeneity is statistically significant (Table  21.5 ).   

  21.2.7 Ranking of Centres 

 We can simply rank hospitals in unadjusted, adjusted, and EB analyses (Fig.  21.3 ). 
The EB analyses are preferable for estimation of the magnitude of differences 
between hospitals. Ranking of hospitals based on EB estimates does however not 
circumvent the problem that one hospital has to be at the top and one at the bottom 
of a league table. We should also incorporate the uncertainty in the ranking, since 
there can still be substantial variability in the EB estimates of differences between 
hospitals. We therefore consider the expected rank (ER) and percentile expected 
rank (PCER) of each hospital (formulas in Sect.  21.2.2 ).  

 The ER can be calculated with consideration of the probability that a hospital is 
worse than any other hospital. Figure  21.3  shows that this approach leads to shrink-
age of the ranks towards the median rank of 5.5 for the ten hospitals. Hospital 8 has 
rank 10 (poorest performance) in unadjusted, adjusted, and EB analyses, but the ER 
or EPC is 9.1 or 9.2 respectively, meaning that 1 of 10 centres is expected to be 
worse than this centre (Fig.  21.3 ). Hospital 6 seemed to do best in unadjusted analysis 
(rank 1), shifted to rank 2 in adjusted analysis, to rank 3 in EB analysis, and has an 
ER around 4. 

  Fig 21.3    Ranks of the ten hospitals in unadjusted, adjusted, Empirical Bayes (EB) analyses, and 
the expected rank (ER). Dot size is based on the square root of the sample size per hospital. 
According to all analyses, hospital 8 ranks the poorest. Hospital 6 seemed to do best in unadjusted 
analysis (rank 1), shifted to rank 2 in adjusted analysis, to rank 3 in EB analysis, and has an ER 
around 4       
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 We can also express these shrunk ranks on a 0–100% scale in the PCER. Hospital 
8 has a PCER of 86%, which means that there is 86% probability that the perform-
ance in hospital 8 is worse than any randomly selected other centre. Hospital 6 has 
PCER 36%. Hospital 3 ranks highest, with PCER 17%, meaning that there is only 
17% probability that any randomly selected other centre is better than this centre.  

  21.2.8 Essential R Code for Provider Profiling 

 Some of the R code for the analyses in the stroke example is shown below. 

  Estimate differences between centres (Table   21.6   )  
 # Adjusted EB differences with random effects estimation

    fullr.ZH.Laplace <- lmer(RANKI1J2~AGE+ ..11 vars.. +(1|ZHCLUCO), 
 family=binomial, method=“Laplace”, data=cva, x=T, model=T)   

   rZH  <- ranef(fullr.ZH.Laplace, postVar=T) # EB estimates and variance
EB.ZH <- cbind(as. vector(rZH[[1]]), as.vector (sqrt(rZH[[1]]@postVar)))
names(EB.ZH) <- c(“Coef”, “SE”)   
   > EB.ZH    

    Coef    SE  

  1    −0.17579    0.301  
  2    0.34016    0.252  
  3    −0.48861    0.305  

  Ranking of centres (Fig .   21.3   )  
 Simple ranking of unadjusted, adjusted and EB estimates of between centre differ-
ences, e.g.:
    rank(unadj.ZH[, “Coef”])     

  Expected rank (ER) and percentile expected rank (PCER): 

    ER <- rep(NA, 10)   
   tau2 <- as.numeric(VarCorr(fullr.ZH.Laplace) [[1]])   
   for (i in 1:10) {   
   ER[i] <-  1 + sum(pnorm((EB.ZH[i, 1] − EB.ZH [−i,1])/   

   sqrt(EB.ZH[i, 2]^2 + EB.ZH[−i,2]^2)))} # end loop   
   PCER <- 100*(ER–0.5)/10   
   > cbind(rank (unadj.ZH[, “Coef”]), rank(adj.ZH[,“Coef”]),   

         rank(EB.ZH[,“Coef”]), ER, PCER) # Fig    21.3     

    Unadj    Adj    EB    ER    PCER  

  1    7    4    4    4.24    37.4  
  2    8    8    9    8.09    75.9  
  3    2    1    1    2.23    17.3  
. . .
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  21.2.9 Guidelines for Provider Profiling 

 Some guidelines have recently been suggested for statistical methods for public 
reporting of health outcomes. These list seven preferred attributes of the statistical 
modelling: 244 

   1.    clear and explicit definition of patient sample  
   2.    clinical coherence of model variables  
   3.    sufficiently high-quality and timely data  
   4.    designation of a reference time before which covariates are derived and after which 

outcomes are measured  
   5.    use of an appropriate outcome and a standardized period of outcome assessment  
   6.    application of an analytical approach that takes into account the multi-level 

organization of data  
   7.    disclosure of the methods used to compare outcomes, including disclosure of per-

formance of risk-adjustment methodology in derivation and validation samples.     

 Attributes 1–5 are more general in nature than attributes 6 and 7. We have focused 
in this chapter on the latter 2 attributes, especially attribute 6 (multi-level organiza-
tion of data, implying random effects analysis and EB estimation).   

  21.3 Concluding Remarks  

 We started this chapter with some considerations on the local applicability of pre-
diction models. Specifically, we studied the influence of centre on calibration of 
predictions. Calibration-in-the-large can be improved by adjusting the intercept in 
a regression model. The intercept is equivalent to the baseline hazard function in a 
survival model. The two main approaches to updating of the intercept are a fixed 
effect and a random effects approach. 

 If we consider only one specific setting, a fixed effect approach is most natural, 
although we might also attempt to perform an EB update of the intercept (see Chap. 
20). If we consider multiple settings, such as multiple hospitals, EB updating has 
many advantages, as illustrated with the GUSTO-I and stroke examples. EB estima-
tion is advisable whether we update the intercept, calibration slope, or effects of 
individual predictor effects per centre. 

 There may be some confusion about naming and notation in traditional and 
random effect models. Van Houwelingen refers to “crude” and “adjusted” 
estimates where we refer to “adjusted” and “EB” estimates. The latter is 
closer to standard epidemiological nomenclature, where crude estimates are 
synonymous to unadjusted, fixed effect estimates. Furthermore, random 
effects models are also known as mixed effect models, or multi-level models. 
A random effects model for between centre differences may also be labelled 
a random intercept model. 



 The methodologic issues around applicability of prediction models are very 
similar to issues in provider profiling. Note that we have to assume that the pre-
dictor effects are identical across settings for provider profiling, similar to tradi-
tional confounder correction in epidemiology. If predictor effects differ by 
setting, the comparison between settings becomes conditional on the specific 
values of the predictor, similar to the interpretation of predictive effects in the 
presence of interaction. Again, differences between centres can best be quantified 
with EB estimates rather than with fixed effect estimates. The randomness of 
estimates per setting can also be included in the ranking, as was illustrated with 
the Expected Rank and related measures. 

  21.3.1 Bibliographic Notes 

 The reliability of registration and case-mix adjustment have received substantial 
attention in debates around provider profiling. The issues of estimation of differ-
ences and ranking under uncertainty have only more recently received more atten-
tion, while we have seen that the uncertainty in estimates per centre has a large 
impact on the interpretation of provider profiling attempts. Individual centres are 
often too small to reliably determine whether they are an outlier (either good or 
bad). 311  Various graphical possibilities have emerged to indicate performance while 
taking into account uncertainty. One example is the funnel plot, which can be used 
in meta-analysis to check for publication bias. 110  Funnel plots avoid spurious rank-
ing of centres into “league tables,” by plotting control limits around the estimated 
performance based on the precision of the estimates. 396  The performance of a centre 
over time can be monitored in a CUSUM graph. 156  Finally, we used EB estimation 
in a direct or two-step approach. A full Bayesian approach is possible with the 
Gibbs sampler, 134  as e.g. implemented in WinBUGS software (  http://www.mrc-bsu.
cam.ac.uk/bugs/winbugs/contents.shtml    ).   
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  Questions   

    21.1    Heterogeneity in across GUSTO-I (Table  21.1 )

    (a)     In Table  21.1 , we note that estimate of regional variability, τ 2 , is larger 
when we consider the smaller subsamples (0.033 vs. 0.025 for regions). 
What could be an explanation for this increase in τ 2 ?  

    (b)     The corresponding χ 2  is 17, which is smaller than the value 28 for regions. 
How do you explain this?  

    (c)     What are the 95% probability intervals for true differences between regions 
and for true differences between the 121 small subsamples? First make the 
calculations at the logodds scale and verify that these estimates are consistent 
with Fig.  21.1 . Next calculate the 95% probability intervals as odds ratios.      

    21.2    Adjusted vs. Empirical Bayes estimates in GUSTO-I (Fig.  21.1 )

    (a)     How do you explain the much larger spread between adjusted intercepts 
between the 121 small subsamples compared with the 16 regions? Why are 
these shrunk more?  

    (b)     Consider a subsample where we estimate a logistic regression coefficient of 
0.4 for the difference to the (adjusted) average outcome (SE of estimate 0.5, 
traditional fixed effect analysis). What is the EB estimate if the heterogeneity 
τ 2  across centres is 0.2, 0.5, or 2? Use the formula from Sect.  21.1.3  for α 

EB
 .      

    21.3    Provider profiling (Sect.  21.2 )

    (a)     Mention at least two key problems of ranking providers, such as hospitals.  
    (b)    Why is ranking especially difficult for relatively small hospitals?      

    21.4    Case-mix adjustment (Tables  21.4 – 21.7 ) 

    Verify (a) that centres with a many good outcomes of stroke had mostly lower 
aged patients in Table  21.4  and (b) that case-mix adjustment halves the appar-
ent heterogeneity between centres in Tables  21.5  to  21.7 .  

    21.5    Rankability of stroke outcomes

    (a)     The heterogeneity in the stroke outcomes is substantial and statistically 
significant (Table  21.5 ). Nevertheless, the expected ranks of many centres 
are close to the median rank of 5.5 in Fig.  21.3 . How do you explain this 
modest rankability?  

    (b)     Calculate the rankability according to the formula ρ = τ 2  / (τ 2  + median 
( s  2 )), with  s  2  indicating the between centre variance. Use the τ 2  estimate 
from Table  21.5 . Use Fig.  21.2  to determine the median(s) (and 
median( s  2 )).                         
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     Chapter 22   
 Prediction of a Binary Outcome: 30-Day 
Mortality After Acute Myocardial Infarction        

  Background   Binary outcomes are encountered in many medical prediction prob-
lems, including diagnostic problems (presence of disease) and prognostic outcomes 
(occurrence of complications, short-term mortality). In this book, one key example 
of a binary outcome is 30-day mortality in patients suffering from an acute myocar-
dial infarction. A prediction model was developed in over 40,000 patients from the 
GUSTO-I trial. We review the development of this model according to the seven 
steps of the checklist for developing valid prediction models presented in Part II. In 
addition we discuss design and results of a number of methodological studies that 
were performed in the GUSTO-I data set.    

  22.1 GUSTO-I Study 

  22.1.1 Acute Myocardial Infarction 

 Acute myocardial infarction (heart attack) is caused by the formation of a clot in 
one of the coronary arteries that supply blood to the heart muscle. Acute MI is a 
major public health problem. The age-adjusted incidence of hospitalization for 
myocardial infarction is around 2 per 1,000 women and 4 per 1,000 for men in the 
United States. 350  Mortality is substantial in the period immediately after the event, 
and also during the years after surviving the initial infarction. Some patients die 
before reaching hospital. Patients seen in hospitals are reported to have an average 
mortality within 30 days around 6–15%. 

 The risk of 30-day mortality strongly depends on various prognostic factors (Table 
 22.1 ). In younger patients, risks are much lower than in older patients. Other patient 
demographics are also important (gender, length, weight), as well as the presence of 
risk factors (hypertension, diabetes, smoking, family history) and the history of previ-
ous cardiovascular events (previous MI, angina, stroke, bypass surgery). Relevant 
presenting characteristics include the location of the infarction and the extent of ECG 
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abnormalities. Very important is the acute state of the patient as reflected by blood 
pressure, heart rate, and left ventricular function (Killip class, presence of shock).   

  22.1.2 Treatment Results from GUSTO-I 

 Various drugs and treatments are available for acute MI, including drugs that attack 
the clot (thrombolytics) and acute revascularization, such as percutaneous interven-
tions (PTCA). GUSTO-I is one of the major randomized controlled trials that com-
pared alternative treatments for acute MI. Specifically, the comparison was on 
efficacy of four intravenous thrombolytic regimens. 2  Earlier studies had shown that a 
new and more expensive thrombolytic drug, tissue plasminogen activator (tPA), 
restored blood flow through the coronary arteries more quickly and more often than 
alternative drug regimens. The hypothesis in GUSTO-I was that tPA would show a 
1% absolute reduction in 30-day mortality. 2  Treatments in the three other arms 
included streptokinase (SK), an older and less-expensive thrombolytic drug, which 
was given with two different regimens of heparin (a drug that helps keep the coronary 
artery open after the initial break-up of the clot by a thrombolytic drug), and a com-
bination of tPA and SK. The trial enrolled 41,021 patients admitted to 1,081 hospitals 
in 15 countries. The trial convincingly showed a benefit of tPA treatment ( p <0.001). 

 The GUSTO-I trial provides a rich and unique source of information. Various 
substudies have been reported, often in major general and cardiovascular journals. 
The large number of patients from all over the world makes for a good base to draw 
reliable conclusions. GUSTO-I has hence contributed to major progress in knowl-
edge of acute MI.  

  22.1.3 Prognostic Modelling in GUSTO-I 

 In the GUSTO-I trial, a comprehensive set of prognostic factors was collected, 
which was first used for prognostic modelling by Dr. Kerry Lee, representing a 

  Table 22.1    Categories of prognostic factors predicting 30-day mortality in acute MI    

 Categories  Examples 

 Demographics  Age, sex, weight, height, geographical site 
 Risk factors  Diabetes, hypertension, smoking status, 

hypercholesterolemia, family history of MI 
 Other history  Previous MI, angina, cerebrovascular disease 

(e.g. stroke), bypass surgery, angioplasty 
 Cardiac state  Location of infarction, electrocardiogram 

abnormalities 
 Presenting characteristics  Systolic and diastolic blood pressure, heart 

rate, left ventricular function (e.g. presence 
of shock, Killip class) 



team of GUSTO-I investigators. 255  A detailed analysis of predictors for 30-day 
mortality was presented. The Lee et al. paper in  Circulation  is quite extensive com-
pared with other prognostic studies published in medical journals. It provides many 
statistical details on several predictive modelling issues for logistic regression. 255  
The paper is freely available from the  Circulation  Web site 254 ; the abstract is given 
in Box 22.1. We review the Lee et al. paper with the model development checklist 
(Table  22.2 ).    

Box 22.1 Abstract of the paper by Lee et al. in Circulation (1995;91:
1659–1668)254,255

Predictors of 30-Day Mortality in the Era of Reperfusion for Acute 
Myocardial Infarction: Results From an International Trial of 41 021 
Patients

Kerry L. Lee, PhD; Lynn H. Woodlief, MS; Eric J. Topol, MD; W. Douglas 
Weaver, MD; Amadeo Betriu, MD; Jacques Col, MD; Maarten Simoons, 
MD; Phil Aylward, MD; Frans Van de Werf, MD; Robert M. Califf, MD; for 
the GUSTO-I Investigators

Background Despite remarkable advances in the treatment of acute myocar-
dial infarction, substantial early patient mortality remains. Appropriate 
choices among alternative therapies and the use of clinical resources depend 
on an estimate of the patient’s risk. Individual patients reflect a combination 
of clinical features that influence prognosis, and these factors must be appro-
priately weighted to produce an accurate assessment of risk. Prior studies to 
define prognosis either were performed before widespread use of thromboly-
sis or were limited in sample size or spectrum of data. Using the large popula-
tion of the GUSTO-I trial, we performed a comprehensive analysis of 
relations between baseline clinical data and 30-day mortality and developed 
a multivariable statistical model for risk assessment in candidates for throm-
bolytic therapy.

Methods and Results For the 41 021 patients enrolled in GUSTO-I, a rand-
omized trial of four thrombolytic strategies, relations between clinical 
descriptors routinely collected at initial presentation, and death within 30 
days (which occurred in 7% of the population) were examined with both uni-
variate and multivariable analyses. Variables studied included demographics, 
history and risk factors, presenting characteristics, and treatment assignment. 
Risk modeling was performed with logistic multiple regression and validated 
with bootstrapping techniques. Multivariable analysis identified age as the 
most significant factor influencing 30-day mortality, with rates of 1.1% in the 
youngest decile (<45 years) and 20.5% in patients >75 (adjusted χ2=717, 
P<.0001). Other factors most significantly associated with 

(continued)
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Box 22.1 (continued)

increased mortality were lower systolic blood pressure (χ2=550, P<.0001), 
higher Killip class (χ2=350, P<.0001), elevated heart rate (χ2=275, P<.0001), 
and anterior infarction (χ2=143, P<.0001). Together, these five characteristics 
contained 90% of the prognostic information in the baseline clinical data. 
Other significant though less important factors included previous myocardial 
infarction, height, time to treatment, diabetes, weight, smoking status, type of 
thrombolytic, previous bypass surgery, hypertension, and prior cerebrovascu-
lar disease. Combining prognostic variables through logistic regression, we 
produced a validated model that stratified patient risk and accurately esti-
mated the likelihood of death.

Conclusions The clinical determinants of mortality in patients treated with 
thrombolytic therapy within 6 hours of symptom onset are multifactorial and 
the relations complex. Although a few variables contain most of the prognos-
tic information, many others contribute additional independent prognostic 
information. Through consideration of multiple characteristics, including age, 
medical history, physiological significance of the infarction, and medical 
treatment, the prognosis of an individual patient can be accurately estimated.

  Table 22.2    Checklist for developing valid prediction models applied to the GUSTO-I analysis by 
Lee et al. in  Circulation  254,255     

 Step  Specific issues  GUSTO-I model 

  General considerations      
 Research question  Aim: predictors/prediction?  Both 
 Intended application  Clinical practice/research?  Clinical practice 
 Outcome  Clinically relevant?  30-day mortality 
 Predictors  Reliable measurement? 

 Comprehensiveness 
 Standard clinical work-up; 

extensive set of candi-
date predictors 

 Study design  Retrospective/prospective? 
 Cohort; case–control 

 RCT data: Prospective 
cohort 

 Statistical model  Appropriate for research 
question and type of 
outcome? 

 Logistic regression 

 Sample size  Sufficient for aim?  >40,000 patients; 2,851 
events: excellent 

  7 modelling steps  
 Data inspection  Distribution of data  Table 1 (here: Table  22.3 ) 
   Missing values  Single imputation 
 Coding of predictors  Continuous predictors  Extensive checks of trans-

formations for continu-
ous predictors 

(continued)



  22.2 General Considerations of Model Development 

  22.2.1 Research Question and Intended Application 

 The title of the paper mentions “Predictors of 30-day mortality …,” and indeed 
insight in prognostic effects is an aspect that receives much attention in this paper. 
But the text also states that the goal of the study was to develop a multivariable sta-
tistical model “with patient data routinely collected at initial presentation that 
would be clinically useful in managing patients who are candidates for thrombo-
lytic therapy.” 255  So, research questions relate both to insight into the relevance of 
predictors and to obtaining predictions. “Managing patients with acute MI” likely 
refers to making appropriate decisions among alternative therapies, including the 
more expensive thrombolytic drug (tPA) and the cheaper drug (SK). The authors 
argue rightly that these choices should depend on an estimate of the patient’s risk. 

 Step  Specific issues  GUSTO-I model 

   Combining categorical 
predictors 

   Categories kept separate 

   Combining predictors with 
similar effects 

 Model specification  Appropriate selection of main 
effects? 

 Stepwise selection 

   Assessment of assumptions 
(distributional, linearity 
and additivity)? 

 Additivity checked with 
interaction terms, one 
included 

 Model estimation  Shrinkage included?  Not necessary 
   External information used?  No 
 Model performance  Appropriate measures used?  Calibration and discrimina-

tion 
 Model validation  Internal validation, including 

model specification 
and estimation? 

 Bootstrap and ten-fold 
cross-validation 

   External validation?   
 Model presentation  Format appropriate for 

audience 
 No; formula in appendix; 

later paper focused on 
clinical application 

  Validity  
 Internal: overfitting  Sufficient attempts to limit 

and correct for overfitting? 
 Large sample size, predic-

tors from literature 
 External: generalizability  Predictions valid for plausibly 

related populations? 
 Large set of predictors, 

representing important 
domains; not assessed in 
this study 

Table 22.2 (continued)

22.2 General Considerations of Model Development 415



416 22 Prediction of a Binary OutcomeInfarction

This issue is further expanded on in a subsequent paper by Califf et al. 63  Decision-
making based on risk is also illustrated in two other publications. 138,229  

 The authors provide statements on the requirements for such a prognostic 
model: 

 To be broadly useful, a risk-assessment algorithm should include all clinically relevant 
prognostic indicators and should be derived from a population that represents the types 
of patients seen in clinical practice so that stable estimates of true risk relations can be 
assessed. A useful model should appropriately weight clinically relevant predictors 
and be validated in a population with a broad spectrum of patients and hospital 
settings.   

 According to the authors, the GUSTO-I trial data set fulfills these requirements.  

  22.2.2 Outcome and Predictors 

 The outcome was 30-day mortality. This is a “hard” end point, and it was the pri-
mary end point in the analysis of treatment efficacy in this trial. 255  For decision 
making on therapy, mortality and quality of life in the longer term may be more 
relevant. The gain by using a more expensive thrombolytic drug (tPA) is then 
reflected in a better (quality-adjusted) life-expectancy. 44  

 The study considers many characteristics with potential predictive value. 
A comprehensive set was considered, loosely based on subject matter knowledge 
(input from expert clinicians, literature). An overview of the main characteristics is 
provided in Table  22.3 , with their relationship to 30-day mortality in univariate and 
multivariable analyses.   

  22.2.3 Study Design and Analysis 

 The data come from an RCT. Data collection was prospective, with rigorous quality 
control on predictor information and outcome assessment. The inclusion criteria for 
GUSTO-I were relatively liberal, making the findings probably well generalizable 
to other acute MI patients. 

 The choice of the statistical model does not receive much attention in the 
paper; logistic regression is assumed to be suitable for this situation with a 
dichotomous outcome (dead or alive). This is in agreement with our overview in 
Chap. 4, where we noted that the logistic regression model is more flexible than 
some other methods, and can approach non-linear models by including interac-
tions and non-linear terms. 

 A total of 2,851 patients had died by 30 days. Thirty-nine percent of the deaths 
(1,125) occurred within 24 h; more than half (55%) occurred within 48 h of rand-
omization. This number of events provides an exceptional and excellent basis for 
prognostic modelling.   



  22.3 Seven Modelling Steps in GUSTO-I 

  22.3.1 Data Inspection 

 An overview of the data is provided in Table  22.3  (based on Table 1 of the original 
paper). 255  Outcome (30-day mortality) was complete for 40,830 of the 41,021 
patients (99.5%). Distributions of some candidate predictors was quite skewed, e.g. 

  Table 22.3    Illustration of the effects of prognostic factors in predicting 30-day mortality in 
acute MI   

 Predictor  Overall ( N  = 40,830)  Deaths ( N  = 2,851) 
 Unadjusted and 
adjusted  χ  2  

   median [25–75p]  median [25–75p]   
 Age (years)  62 [52–70]  72 [64–78]  2,099  717 (1 df) 
 Systolic BP 

(mm Hg) 
 130 [112–144]  120 [100–140]  733  550 (1 df) 

 N  col%  N    row% 
 Killip          2,343      350 (3 df) 

 I  34,825  85%  1,773  5.1%     
 II  5,141  13%  716  14%     
 III  551  1.3%  181  33%     
 IV  313  0.6%  181  58%     

 Location of 
infarction 

         361  143 (2 df) 

 Anterior  15,900  39%  1,582  9.9%     
 Inferior  23,704  58%  1,181  5.0%     
 Other  1,226  3%  88  7.2%     

 Previous MI  6,726  16%  807  12%  293  64 (1 df) 
 Diabetes a   6,005  15%  653  11%  146  21 (1 df) 

 Smoking a           483  22 (2 df) 
 Current  17,543  43%  736  4.2%     
 Ex-smoker  11,210  27%  805  7.2%     
 Never 
smoked 

 12,077  30%  1,310  11%     

 Thrombolytic 
therapy a  

         15  15 (3 df) 

 SK+i.v. hep  10,377  25%  770  7.4%     
 SK+subcut 
hep 

 9,796  24%  705  7.2%     

 tPA+SK  10,504  26%  723  7.0%     
 tPA+i.v. hep  10,344  25%  653  6.3%     

 Total  40,830  100%  2,851  7.0%     

  The  c  2  statistics are based on the difference in −2 log likelihood between a logistic regression 
model with one (unadjusted) or more (adjusted) predictors and a model without the predictor
  MI: myocardial infarction; SK Streptokinase; tPA: tissue plasminogen activator; hep heparin
   a  Data from later version of data set compared with the original publication 255   
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for Killip class (a measure of left ventricular function). Categories III or IV were 
present in only 2% of the patients; these categories represent patients in shock. 

 Missing values occurred for various candidate predictors, but usually only in a 
small fraction. Missing values were imputed for further statistical analysis (“single 
imputation,” see Chap. 7 and 8). Imputation was based on the correlation among 
predictors, which were exploited with flexible functions (transcan function in R / 
S+). Details on the missing values were not provided, nor were analyses repeated 
with complete cases only.  

  22.3.2 Coding of Predictors 

 Much attention was given to the transformations of continuous predictors. Linear 
and restricted cubic spline functions were used to describe the relationships 
between predictor and mortality (see Chap. 10). For further analysis, some simpli-
fying transformations were chosen, including truncation of values (for example for 
systolic blood pressure). 

 For categorical variables, detailed categorizations were kept as such for statisti-
cal analysis, which was reasonable given the large sample size. For example, many 
studies consider location of infarction as anterior vs. other. In GUSTO-I, the coding 
was as anterior (39%), inferior (58%), or other (3%), where “other” included pos-
terior, lateral, and apical locations. Also, Killip class was considered as a categori-
cal variable, despite that classes, III and IV each contained only 1% of the patients. 
The ordinal nature of this predictor was ignored in the analyses.  

  22.3.3 Model Specification 

 The authors state that they aimed to identify which variables were most strongly 
related to short-term mortality. This answers a research question related to hypoth-
esis testing, rather than prediction per se. The specific technique used for selection 
is not explicitly stated, but likely only statistically significant variables were con-
sidered as predictors ( p <0.05). 

 The authors tested interactions among the predictors, i.e. they examined whether 
the prognostic relation of a predictor differed by levels of other predictors (“additiv-
ity assumption,” Chap. 12). Linearity of predictors was assessed in detail; transfor-
mations chosen at univariate analysis were also used in multivariable analysis.  

  22.3.4 Model Estimation 

 Regression coefficients were estimated with standard logistic regression analysis, 
which maximizes the log-likelihood of the fit of the model to the data. More advanced 



methods are available (Chap. 13), but these modern estimation methods are less 
relevant in very large data sets such as GUSTO-I.  

  22.3.5 Model Performance 

 Discrimination and calibration were studied to indicate model performance. The area 
under the receiver operating characteristic curve (AUC, equivalent to the  c  statistic) 
was used to study discrimination. The authors explain that the AUC measures the 
concordance of predictions with actual outcomes (how well the predictions rank order 
patients with respect to their outcomes) and that AUC is a simple transformation of 
Somer’s Dxy rank correlation between the model predictions and actual outcomes. 

 Calibration of the model predictions was assessed graphically and by compari-
son of the average model prediction to the observed mortality rate across deciles of 
risk. The latter grouping procedure is often used in the Hosmer–Lemeshow good-
ness of fit test (Chap. 15). Further, the authors compared predictions and observed 
mortality within specific subgroups of patients with different risk levels. This 
method is not often performed to study calibration of prediction models. First, it is 
only reasonable with large numbers of patients in the subgroups, as in GUSTO-I. 
More importantly, it is only a check on marginals of predictions according to pre-
dictor values. The comparison with observed outcomes will only show violations 
of non-linearity for continuous variables, and is insensitive to having missed inter-
actions in the model. We discussed various other measures for calibration in Chap. 15. 
Clinical usefulness was not evaluated explicitly.  

  22.3.6 Model Validation 

 GUSTO-I is a very large data set. This makes that the performance of the model 
can be assessed reliably in a simple and direct way, i.e. on the same patients that 
were used to develop the model. Optimism in performance would be a problem in 
relatively small data sets, i.e. either that many predictors were considered, or that 
relatively few events were available for the logistic regression analysis. Both are not 
the case in GUSTO-I. Nevertheless, the authors embarked on attempts to validate the 
predictive performance of the model, especially the AUC. The authors explain their 
approach clearly: 

 First, 10-fold cross validation was performed: the model was fitted on a randomly selected 
subset of 90% of the study patients, and the resulting fit was tested on the remaining 10%. 
This process was repeated 10 times to estimate the extent to which the predictive accuracy 
of the model (based on the entire sample) was overoptimistic. Second, for each of 100 
bootstrap samples (samples of the same size as the original population but with patients 
drawn randomly, with replacement, from the full study population), the model was refitted 
and then tested on the original sample, again to estimate the degree to which the predictive 
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accuracy of the model would be expected to deteriorate when applied to an independent 
sample of patients. 255    

 A more extensive description of these validation techniques was provided in Chap. 
17. As expected, model optimism was negligible, both in the ten fold cross-valida-
tion procedure and with bootstrapping.  

  22.3.7 Presentation 

  22.3.7.1 Predictor Effects 

 Results of the modelling process were presented in various ways. The relevance of 
each predictor was shown by an ANOVA table, where the contribution of each 
predictor was indicated by the drop in an adjusted c 2  statistic (Table  22.3 , last col-
umn). It appears that age is associated with a contribution to the c 2  statistic of 717, 
systolic blood pressure 550, and Killip class (a measure for left ventricular func-
tion) 350. The contribution to the multivariable model is much smaller for most 
predictors than in univariate analysis. This is explained by correlations between 
predictors. Such correlation is also reflected in the odds ratios (OR). For example, 
the OR for an increase of 10 years in age was 2.3 in univariate analysis, but 2.1 in 
multivariable analysis. 

 Interestingly, the choice of thrombolytic therapy had an adjusted c 2  of only 15, which 
is small compared with the importance of the other predictors. This phenomenon is 
observed in many prognostic studies: Treatment has a statistically significant impact on 
outcome, but its relevance is small compared with other prognostic factors. 

 ORs for the effect of predictors were shown graphically. 255  ORs are calculated 
from the logistic regression coefficients as exp(coef): OR = e coef . An OR larger than 
1 indicates that the risk of mortality is increased, while an OR smaller than 1 indi-
cates that the risk of mortality is decreased (e.g. for tPA treatment vs. SK treat-
ment). For continuous variables, the ORs were presented as the odds of death for 
patients at the 75 percentile of the distribution of the predictor vs. patients at the 25 
percentile. Unfortunately, the graph showed ORs on a linear scale rather than a log 
scale, which makes it hard to compare the relative magnitude of effects. On a log 
scale, an OR of 4 would be twice as far away from 1 as an OR of 2, consistent with 
a doubling in prognostic effect.  

  22.3.7.2 Predictions 

 The Appendix lists a formula that can be used to calculate the probability of 30-day 
mortality for an individual patient.255 Note however that the formula is difficult to 
follow. It does not clearly indicate that some transformed variables (height) need a 
cubic transformation (X3). Also, it may seem remarkable that height is included as 
a linear term and five transformed variables, while it is stated in the text that 4 df 



were used to model height. This is because the restricted cubic spline function was 
re-formulated. The coefficients are un-normalized and two coefficients are added 
that are linearly dependent on the other coefficients. This makes the model easier 
to use in a formula or spreadsheet program (see the book’s Web site ).    

  22.4 Validity 

  22.4.1 Internal Validity: Overfitting 

 Overfitting was of limited relevance, because of the very large data set. Quite exten-
sive checks of assumptions were performed for a substantial number of candidate 
predictors, but this “data hungry” approach was reasonable in such a huge data set. 
Overfitting was assessed by cross-validation and bootstrapping, and found to be 
irrelevant.  

  22.4.2 External Validity: Generalizability 

 Will predictions be valid for plausibly related populations? External validity was 
not assessed in the paper. We note however that a large set of predictors was con-
sidered and included in the model, representing important domains of predictors. 

 Various other models have been developed to predict short-term mortality after 
acute MI, some before and some after the development of the GUSTO-I model. 
Usually, large sample sizes were available, such that model development could start 
 de novo . Examples of models developed earlier were the TIMI-II model, 302  
the GISSI-II model, 274  and a model from a Belgium centre. 104  More recent models 
have been developed, 437,7,168  which have not explicitly considered results from the 
GUSTO-I model. Different predictors were chosen, but the main factors have 
always included age, infarct location, and measures of ventricular function (such as 
Killip class). 

 Interestingly, we found that different models for acute MI may have a similar 
performance, e.g. an AUC around 0.8, but provide very different predictions for 
individual patients. 406  These differences were attributable to choice of predictors 
rather than to differences in regression coefficients, highlighting the importance of 
model selection issues.  

  22.4.3 Summary Points 

   •  The Lee et al. paper is an excellent illustration of many of the essential steps in 
developing a valid prediction model  

 •  Nowadays, we could readily deal with missing values in a slightly more 
sophisticated way than single imputation, although single imputation comes 

22.4 Validity 421



422 22 Prediction of a Binary OutcomeInfarction

close to multiple imputation, and is much better than a complete case analysis 
(Chap. 7).  

 •  A limitation of the model is the translation into clinical practice, where no easily 
applicable format was used.  

 •  Moreover, generalizability to current clinical practice is doubtful since the over-
all mortality may have decreased since the years that patients were enrolled in 
GUSTO-I (early 1990s). We expect a need for model updating, at least of the 
model intercept.      

  22.5 Translation into Clinical Practice 

 The model presented in  Circulation  is not easily applicable in the presented form. 
Many predictors were included, while it was found that 90% of the prognostic 
information was contained in five variables: 

 A perspective on the overall contribution of various components of the baseline clinical 
data to the prediction of mortality can be obtained by use of the global χ2 statistic from 
the logistic model as an index of prognostic information. This index from the full model 
can be compared with reduced models containing a smaller number of variables. The 
likelihood ratio χ2 statistic for the full model containing all of the prognostic factors was 
4379. In contrast, this statistic for a model containing age alone was 2099, meaning that 
age provides nearly half the prognostic information. Adding other variables provides an 
increased proportion of information; combining age, systolic blood pressure, Killip class, 
heart rate, infarct location, and age-by-Killip-class interaction provides approximately 
90% of the total prognostic information contained in this array of baseline clinical 
characteristics. 255    

 Further, the presentation in the Appendix as a formula is probably frightening to 
most clinicians. A simpler format was required. Both issues were addressed in a 
later publication, which focused on decision making on thrombolytic therapy. 63  

  22.5.1 Score Chart for Choosing Thrombolytic Therapy 

 Five predictors were considered and presented in a table to derive a summary score 
for a patient (see Chap. 18). Age and Killip class were included as main effects and 
with interaction terms. The interaction effect is well illustrated in Table  22.4 . At 
younger ages, Killip class makes a substantial difference. Equivalently, age matters 
among those with Killip class I, but less among those with higher Killip classes. At 
the end of the age range (100 years), some strange patterns arise, with Killip class 
I patients having a higher score than those with Killip class II or III. This is a bio-
logically implausible pattern. It illustrates that even in a huge data set such as 
GUSTO-I, artifacts can show up. These artifacts may be due to the specification of 
the logistic model with a linear interaction term, or to the specific sample. The 



implausible pattern could have been prevented by placing some restrictions on the 
interactions, as was done for a prediction model for renal artery stenosis 243  and 
illustrated in Chap. 12.   

  *22.5.2 Predictions for Choosing Thrombolytic Therapy 

 The score from Table  22.4  corresponds to a probability of 30-day mortality (Table 
 22.5 ). We can also determine the benefit of administering tPA instead of SK from 
this table. A substantial benefit should be estimated before treating with tPA since 
this drug is expensive and has a substantial risk of side effects (especially bleed-
ing). 138,229  Note that the tPA reduction shows an increase with the score on an abso-
lute scale. The relative reduction was however more or less constant at 15% on the 
odds scale (OR, 0.85). So, the same relative benefit leads to substantially different 
absolute benefits. This observation has been made for many other diseases as well 
(see Chap. 2).  

 As an example, we consider the score for a hypothetical 65-year-old male. The 
score would be 60 points for the combination of age 65 and Killip class II, 8 points 
for a systolic blood pressure of 100 mm Hg, 5 points for heart rate 75 bpm, 6 points 
for anterior infarct location, and no points for previous MI. The total is 79 points. 

  Table 22.4    Score chart to estimate 30-day mortality after acute MI 63     

 Predictor  Units  Points       

 Age (years)    Killip class       
   I  II  III  IV 

 40  28  42  53  59 
 50  38  49  59  65 
 60  47  56  64  70 
 70  57  63  70  76 
 80  66  70  75  82 
 90  75  77  81  88 

 100  94  91  92  100 
 Systolic BP (mm Hg)  40  34       

 80  17       
 120+  0       

 Heart rate (beats/min)  10  10       
 30  5       
 50  0       
 90  8       

 130  16       
 Infarct location  Anterior  6       

 Inferior  0       
 Other  3       

 Previous MI  Yes  5       

 Total  Add points  …       
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When treated with tPA, his 30-day mortality risk is estimated as ∼16%, while SK 
would be predicted to lead to a mortality of ~19%. So, tPA would reduce mortality 
by ~3%.  

  *22.5.3 Covariate Adjustment in GUSTO-I 

 The effects of adjustment for predictors have been described for the GUSTO-I data 
in two methodological studies. 256,403  Both studies considered the effect of tPA vs. 
SK. The first study considered adjustment for age or a comprehensive set of 17 pre-
dictors (age plus 16 other baseline characteristics). 403  The second study used 
another approach and adjusted for the five most important predictors. 63,256  

 In the first analysis, it was found that patients were 0.17 years older in the tPA 
group (61.03 years,  n  = 10,348) than in the two SK groups (60.86 years, 
 n  = 20,162). 403  This difference should be fully attributed to chance, and a formal 
test to compare the ages makes no sense if a proper randomization procedure was 
followed. 380  However, we know that age is a very strong predictor. The univariate 
regression coefficient for age was 0.082 per year. We estimated the difference in 
treatment effect that was attributable to age imbalance by multiplying the difference 
in mean age with the regression coefficient: 0.17 × 0.082 = 0.014. The 0.17 years 
older age of the tPA group made that the treatment effect was underestimated by a 
factor 0.014 on the logistic scale. The adjusted treatment effect corrects for this 
imbalance. But it also provides a stratified estimate, which has an expectation fur-
ther from zero. 133,348  This stratification effect was calculated as the remaining part 
of the difference between unadjusted and adjusted treatment effect. 403  

 The unadjusted treatment effect was an OR of 0.853 (coefficient, −0.1586), and 
the adjusted estimate was an OR 0.829 (coefficient, −0.1878, 18% more extreme). 
Age imbalance explained −0.014 or 9% of the difference, leaving another 9% 
attributable to stratification. Some argue that unadjusted treatment effects are hence 
biased in a certain sense. 133,182  

 It was estimated that an adjusted analysis with 26,900 patients would have the 
same power as the original unadjusted analysis of 30,510 patients. Such a 12% 
reduction in sample size is a major argument in favour of adjusted analyses to test 

  Table 22.5    Translation of score from Table  22.4  into estimated mortality with SK or tPA 
treatment 63     

 Score  SK mortality (%)  tPA mortality (%)  tPA reduction (%) 

 30  0.4  0.4  – 
 40  0.8  0.8  0.01 
 50  1.7  1.4  0.3 
 60  3.5  2.8  0.8 
 70  10  8.3  1.7 
 80  20  17  3 
 90  40  35  5 



for treatment effect. Either sample sizes could be reduced, or the sample size could 
be kept at the number based on a traditional, unadjusted, analysis, while the actual 
analysis would give more power. 

 Much more can be said on adjustment of treatment effects in randomized clinical 
trials, which is however beyond the scope of this book. Adjusted analyses were the 
primary analysis in about half of recently reported RCTs. 18  Advantages are that 
adjusted analyses have more power, and that adjusted treatment effects may be 
more relevant for clinical practice. Note that adjusted  p- values of a particular trial 
do not necessarily have to be more extreme than those from an unadjusted analy-
sis. 256  However, since we are more interested in the adjusted than the unadjusted 
effect, the adjusted  p- value is arguably preferable. The actual gain in power depends 
on the strength of the prognostic relationships of predictors to outcome. Some 
argue that adjusted analyses make sense once a specific type of correlation gets 
larger than 0.2. 339  Finally, any adjustment procedure should be pre-specified in the 
trial protocol, to prevent a search for the adjustment model that gives the most 
impressive effect estimate or most extreme  p  value for the treatment effect.   

  22.6 Concluding Remarks 

 The GUSTO-I case study by Lee et al. illustrates many of the steps that need to be 
considered in the development of a valid prediction model. 255  It is fortunate that the 
paper is freely accessible, 254  and that we can make parts of this rich data set availa-
ble for practical experience in prediction modelling (Chap. 24, data courtesy: the 
GUSTO Investigators and  Duke Clinical Research Institute, Durham, NC).  
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  Questions 

    22.1    Estimate 30-day mortality (Table  22.4  and spreadsheet) 
  Consider a male patient with Killip class I, a systolic blood pressure of 100 

mm Hg, heart rate 80 bpm, anterior infarct location, and with a previous MI. 
Use the simple table (Table  22.4 ) to estimate 30-day mortality, and compare 
this estimate to the more exact calculation with the full regression formula 
(spreadsheet at www.clinicalpredictionmodels.org).

    (a)    What is the risk of mortality from acute MI if this patient is 55-years old?  
    (b)    What if he were 75-years old? 

  Now consider decision-making on tPA treatment.  

    (c)     What is the impact of age on prioritizing tPA treatment based on the 
reduction in 30-day mortality?  

    (d)     What might be the priority if we consider gain in life-expectancy instead 
of 30-day mortality?  

    (e)     What is the threshold for the ratio between life-expectancies of a 75-vs. 
55-year old patient in this example?      

   22.2    Stratification and treatment effects 
 We study the effect of a hypothetical treatment, with and without stratifica-
tion for gender. The Table with results is presented here. We compare 30-day 
mortality (“dead”) between treatments A and B. 

   Table: hypothetical treatment effect in a randomized controlled trial, with stratification by 
gender    

   Men    Women   

 Treatment  Dead  Survived  Dead  Survived 

 A  10  80  72  18 
 B  18  72  80  10 

    (a)    What is the odds ratio for the treatment effect (A vs. B) among men?  
    (b)    And among women?  
    (c)    What is the OR for treatment if we do not stratify by gender?  
    (d)    Is treatment balanced by gender?  
     (e)    How do you explain these findings?  
    (f)    What is the OR of gender, ignoring treatment?  
    (g)    What is the OR of gender, conditional on treatment?  
    (h)     What would happen if gender had no prognostic effect, i.e. the OR for 

gender was 1?  
    (i)     How do these results explain the impact of covariate adjustment in 

GUSTO-I? Specifically, the unadjusted OR was 0.853 and the adjusted 
OR 0.829, while imbalance only accounted for a difference of −0.014 on 
the logodds scale 403 ?             



   Chapter 23   
 Case Study on Survival Analysis: 
Prediction of Secondary Cardiovascular Events        

  Background   Survival is an important long-term outcome in prognostic research, 
including medical areas such as cardiovascular disease and oncology. We consider 
a model for the occurrence of vascular events in patients with symptomatic cardio-
vascular disease. Patient data were from the second manifestations of arterial dis-
ease (SMART) study. We go through the seven steps of the checklist for developing 
valid prediction models, as presented in Part II. The final model looks promising, 
but needs external validation to prove its actual value. The data set and R code is 
made available at the book’s Web site.    

  23.1 Prognosis in the SMART Study  

 The SMART study is an ongoing prospective cohort study at the University Medical 
Centre Utrecht, the Netherlands, initiated and led by Prof Van der Graaf and col-
leagues. The study was designed to

   (a)     establish the prevalence of concomitant arterial diseases and risk factors for 
cardiovascular disease in a high-risk population;  

   (b)     identify predictors of future cardiovascular events in patients with symptomatic 
cardiovascular disease. 388      

 Currently available prediction models include the Framingham risk score, 
PROCAM, and SCORE. 17,441,487  These were all developed with data from subjects 
without clinically manifest atherosclerosis and cannot reasonably be used for 
patients with clinically manifest cardiovascular disease. These models may be able 
to rank patients with clinically manifest disease according to risk, but would be 
expected to underestimate absolute risk. 113  

 Assessment of absolute risk is important for secondary prevention. According to 
the current guidelines all patients who experienced a symptomatic cardiovascular event 
should be considered as at high risk (more than 20% absolute risk on a future event in 
the next 10 years). No further categorization is available. 

 Relevant outcomes in patients with cardiovascular disease (coronary artery dis-
ease, cerebral artery disease, peripheral arterial disease and abdominal aortic aneurysm 
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(AAA)) include stroke, myocardial infarction, or cardiovascular death (Table  23.1 ). 
Other end points can be considered depending on the research question, e.g. includ-
ing cardiovascular interventions. Hard outcomes are generally preferred because 
they lead to better comparability between studies and hence a better generalizabil-
ity. The aim in the current study was to develop a prediction rule for patients with 
cardiovascular disease. We estimate the 1-, 3-, and 5-year risks on the occurrence 
of vascular events (stroke, myocardial infarction, or cardiovascular death).     

  23.1.1 Patients in SMART 

 We consider 3,873 patients who were enrolled in the study in the period September 
1996 to March 2006. Patients had a clinical manifestation of atherosclerosis (tran-
sient ischaemic attack, ischaemic stroke, peripheral arterial disease, AAA, or coro-
nary heart disease). After informed consent, they underwent a standardized vascular 
screening, including a health questionnaire for clinical information, laboratory 
assessment, and anthropometric measurements at enrolment. During follow-up, 
patients were biannually asked to fill in a questionnaire on hospitalizations and 

 Table 23.1    Definitions of fatal and non-fatal vascular events in the SMART study  
 Event  Definition 

 Ischaemic stroke  Definite: Relevant clinical features that have caused an increase 
in impairment of at least one grade on the modified Rankin 
scale, accompanied by a fresh ischaemic infarction on a repeat 
brain-scan 

 Probable: Clinical features that have caused an increase in impair-
ment of at least one grade on the modified Rankin scale; with-
out a fresh ischaemic infarction on a repeat brain-scan 

 Myocardial infarction  Fatal or non-fatal myocardial infarction: at least two of the follow-
ing criteria 

 1.  chest pain for at least 20 min, not disappearing after adminis-
tration of nitrates 

 2.  ST-elevation > 1 mm in two following leads or a left bundle 
branch block on the ECG 

 3.  CK elevation of at least two times the normal value of CK and 
a MB-fraction > 5% of the total CK 

 Vascular death  Sudden death: Unexpected cardiac death occurring within 1 h after 
onset of symptoms, or within 24 h given convincing circum-
stantial evidence 

 Death from ischaemic stroke 
 Death from intracerebral haemorrhage (haemorrhage on CT-scan) 
 Death from congestive heart failure 
 Death from myocardial infarction 
 Death from rupture of abdominal aortic aneurysm (AAA) 
 Vascular death from other cause, such as sepsis following stent 
placement 



outpatient clinic visits. When a possible event was reported by a participant, 
 correspondence and relevant data were collected (discharge letters, laboratory and 
radiology results). Based on all obtained information, every event was audited by 
three physicians from different departments. The end points of interest for the 
present study were (acute) vascular death, (non-)fatal ischaemic stroke or (non-)fatal 
myocardial infarction and the composite end point of any of these vascular events 
(Table  23.1 ). If a patient had multiple events, the first recorded event was used for 
analysis. Data were available on 14,530 person–years collected during a mean fol-
low-up of 3.8 years (range, 0–9 years). A total of 460 events occurred, corresponding 
to 1-, 3-, and 5-year cumulative incidences of 4.0%, 8.4%, and 14.1% respectively.   

  23.2 General Considerations in SMART  

  23.2.1 Research Question and Intended Application 

 The aim was to develop a prediction model for long-term outcome. Given the avail-
able follow-up, 1-, 3-, and 5-year risks could be assessed. Achieving adequate pre-
dictions was more prominent than insight in the predictor effects per se (Table 
 23.2 ). The intended application was in patient counseling; a high absolute risk 
might motivate patients to change inappropriate lifestyles and to comply with their 
medication regimens.      

  23.2.2 Outcome and Predictors 

 The primary outcome was any cardiovascular event, comprising cardiovascular 
death, non-fatal stroke and non-fatal myocardial infarction. Combining different 
events is a common approach in cardiovascular research to increase statistical 
power. A cardiovascular event occurred in 460 patients during follow-up. 

 The selection of predictors was motivated by characteristics included in Framingham 
and SCORE models. The relation with future events has also been established for 
several traditional risk factors, including hyperhomocysteinemia, intima media thick-
ness (IMT), and creatinin. 98,165  Other candidate predictors were demographics (sex 
and age) and risk factors for vascular events in the general population (smoking, 
alcohol use, body mass index (BMI), diastolic and systolic blood pressure, lipids, and 
diabetes). It is well conceivable that indicators of the extent of atherosclerosis are very 
relevant to predict events in patients with symptomatic atherosclerosis. Such indica-
tors are the location of symptomatic vascular disease (cerebral, coronary, peripheral 
arterial disease, or AAA), and markers of the extent of atherosclerosis (homocysteine, 
creatinin, albumin, IMT, and presence of a carotid artery stenosis, Table 23.3). In 
sum, a relatively limited set of well-defined predictors was studied.   
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 Table 23.2    Checklist for developing a valid prediction model in the SMART study  
 Step  Specific issues  SMART model 

  General considerations  
 Research question  Aim: predictors/

prediction? 
 Emphasis on prediction 

 Intended application  Clinical practice/
research? 

 Clinical practice 

 Outcome  Clinically relevant?  Hard cardiovascular events 
 Predictors  Reliable measurement? 

 Comprehensiveness 
 Detailed work-up; comprehensive 

set of candidate predictors 
 Study design  Retrospective/

prospective? 
 Prospective cohort 

 Cohort; case–control 
 Statistical model  Appropriate for research 

question and type of 
outcome? 

 Cox regression 

 Sample size  Sufficient for aim?  3,873 patients, 460 events: Very 
good 

  Seven modeling steps  
 Data inspection  Distribution of data  Table  23.3  

 Missing values  Multiple and single imputation 
 Coding of predictors  Continuous predictors 

 Combining categorical 
predictors 

 Combining predictors with 
similar effects 

 Truncation and spline transforma-
tions for continuous predictors; 
sum scores for cardiovascular 
history 

 Model specification  Appropriate selection of main 
effects? 

 Stepwise selection with high 
 p  value and Lasso 

 Assessment of assumptions 
(distributional, linearity,
and additivity)? 

 Additivity checked with interaction 
terms, one included 

 Proportional hazards checked 
 Model estimation  Shrinkage included?  Penalized estimation with Lasso 

 External information used?  No 
 Model performance  Appropriate measures used?  Focus on discrimination 
 Model validation  Internal validation, including 

model specification and 
estimation? 

 Bootstrap 

 External validation?  No external validation 
 Model presentation  Format appropriate for 

audience 
 Nomogram 

  Validity  
 Internal: Overfitting  Sufficient attempts to limit 

and correct for overfitting? 
 Large sample size, predictors from 

literature, Lasso for selection 
and shrinkage 

 External: 
Generalizability 

 Predictions valid for plausibly 
related populations? 

 Large set of predictors, representing 
important domains; not assessed in 
this study 
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  Table 23.3    Potential predictors in the SMART study data set ( n  = 3873)    

 Characteristics 

  Demographics  
 Female sex (“SEX,”  n , 0 missing)  975 (25%) 
 Age (“AGE,” in years, 0 missing)  60 [52–68] 
  Classical risk factors  
 Smoking (“SMOKING,”  n  (%), 25 missing) 

 Never  693 (18%) 
 Former  2711 (70%) 
 Current  444 (12%) 

 Packyears (“PACKYRS,” in years, 21 missing)  20 [6–34] 
 Alcohol (“ALCOHOL,”  n  (%), 25 missing) 

 Never  751 (20%) 
 Former  408 (11%) 
 Current  2,689 (69%) 

 Body mass index (“BMI,” in kg/m 2 , 3 missing)  26.7 (24–29) 
 Diabetes (“DIABETES,”  n  (%), 40 missing)  846 (22%) 
  Blood pressure  
 Systolic, by hand (“SYSTH,” in mm Hg, 

1,498 missing) 
 140 (126–155) 

 Systolic, automatic (“SYSTBP,” in mm Hg, 
1,223 missing) 

 139 (127–154) 

 Diastolic, by hand (“DIASTH,” in mm Hg, 
1,499 missing) 

 82 (75–90) 

 Diastolic, automatic (“DIASTBP,” in mm Hg, 
1,221 missing) 

 79 (73–86) 

  Lipid levels  
 Total cholesterol (“CHOL,” in mmol/L, 18 missing)  5.1 [4.4–5.9] 
 High-density lipoprotein cholesterol (“HDL,” mmol/L, 

30 missing) 
 1.17 [0.96–1.42] 

 Low-density lipoprotein cholesterol (“LDL,” mmol/L, 
216 missing) 

 3.06 [2.39–3.83] 

 Triglycerides (“TRIG,” mmol/L, 28 missing)  1.54 [1.12–2.23] 
  Previous symptomatic atherosclerosis  
 Cerebral (“CEREBRAL,”  n  (%), 0 missing)  1,147 (30%) 
 Coronary (“CARDIAC,”  n  (%), 0 missing)  2,160 (56%) 
 Peripheral (“PERIPH,”  n  (%), 0 missing)  940 (24%) 
 Abdominal aortic aneurysm (“AAA,”  n  (%), 0 missing)  416 (11%) 
  Markers of atherosclerosis  
 Homocysteine (“HOMOC,” µmol/L, 463 missing)  12.8 [10.3–15.7] 
 Glutamine (“GLUT,” µmol/L, 19 missing)  5.7 [5.3–6.5] 
 Creatinine clearance (“CREAT,” mL/min, 17 missing)  89 [78–101] 
 Albumin (“ALBUMIN,”  n  (%), 207 missing) 

 No  2,897 (79%) 
 Micro  655 (18%) 
 Macro  114 (3%) 

 Intima media thickness (“IMT,” mm, 98 missing)  0.88 [0.75–1.07] 
 Carotid artery stenosis > 50% (“STENOSIS,”  n  (%), 93 missing)  722 (19%) 

Numbers are n (%) or median (25–75 percentile)
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  23.2.3 Study Design and Analysis 

 The SMART study is designed as an ongoing, prospective dynamic cohort study. 
Patients are enrolled when presenting at the hospital, with follow-up starting from 
study inclusion. We used the Cox regression model, which is the default statistical 
model for survival outcomes. This model is appropriate for prediction of an out-
come at relatively short-term such as 5-year cumulative incidence of cardiovascular 
events. For long-term predictions (e.g. 10-year incidences), a parametric model 
might be preferable such as a Weibull model. A Weibull model provides more sta-
ble estimates at the end of the follow-up. 312,65  

 With respect to sample size, the balance of 460 events and ∼25 candidate predic-
tors is reasonable (Table  23.3 ). At least 10–20 events per candidate predictor have 
been proposed in previous guidelines for sensible development of a prediction 
model. 175,326,410    

  23.3 Data Inspection in the SMART Cohort  

 It appeared that the number of missing values was rather limited for most of the 18 
potential predictors (<1%, Table  23.3  and Fig.  23.1 ). Many missings were however 
noted among four variables that relate to blood pressure measurements (two for 
diastolic and two for systolic pressure). In the first years of the study, blood pres-
sure was measured combined with measurement of the distensibility of the carotid 
artery wall (“SYSTBP” and “DIASTBP” variables). Four years after the start of the 
study it was decided to measure blood pressure with the conventional sphygmoma-
nometry as well. This measurement is considered in most current guidelines. 
Hence, conventional diastolic and systolic measurements are obvious candidate 
predictors for our model rather than the automated measurements. Nearly all 
patients had at least one type of blood pressure measurement, but many had missing 
values for conventional sphygmomanometry ( n =1,498, “SYSTH” and “DIASTH” 
variables). Pearson correlation coefficients were 0.69 and 0.59 for systolic and 
diastolic blood pressure measurements in 1,155 and 1,156 patients with conven-
tional as well as automatic measurements available, respectively.  

 The variable homocysteine (“HOMOC”) had 463 missings (12%, Table  23.3 , 
Fig.  23.1 , upper left panel). This was related to the fact that homocysteine was not 
routinely measured in the first years of the study. This is a typical “missing com-
pletely at random” (MCAR) situation. Also for the other variables we assume that 
missingness was more related to logistic reasons, because all patients underwent 
the same screening protocol. The decision to measure variables was not obviously 
dependent on other observations (MAR mechanism), the values of the characteris-
tic itself, or characteristics not available in our dataset (MNAR mechanisms). 

 A total of 925 patients had no missing values among the 18 potential predictors, 
and 1,975 patients had 2 missing values (mostly: 1 type of blood pressure measure-
ment not performed). Few patients had many missings (18 with 7 or more missings, 



Fig.  23.1 , upper right panel). If one type of blood pressure measurement was miss-
ing, few other variables had missing values. If cholesterol or triglycerides were 
missing (which was very rare), many other predictors were also missing (Fig.  23.1 , 
lower left and lower right panels). Further details on the combinations of missing 
values are shown in Fig.  23.2 . Again we note that the diastolic and systolic blood 
pressure measurements are always jointly missing. In the early years of the study, 
both homocysteine (“HOMOC”) and conventional sphygmomanometry blood pres-
sure measurements (“SYSTH” and “DIASTH” variables) were not performed, 
leading to some correlation of missingness between these variables.  

 Missing data per predictor would lead to a substantial loss of information if only 
complete cases were used in the multivariable model. We therefore used multiple 
imputation techniques (aregImpute function) to replace the missing values 
(Fig.  23.3 ). The set of first imputations was used for further analyses (“single impu-
tation”). Although multiple imputation is preferable from a theoretical view point, 
single imputation was considered more practical and sufficient to obtain reasonable 
predictions (Chap. 7). Final models were also constructed with multiple imputed 
data sets to check for any relevant differences in point estimates, and widening of 
confidence intervals.   

  Fig. 23.1    Patterns of missing data in the SMART study (n=3873, na.plot2 function). NA: not 
available (“missing”)       
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  Fig. 23.2    Cluster analysis of patterns of missingness in the SMART study ( n =3,873, naclus 
function)       

  Fig. 23.3    Distribution of imputed values for the 18 most relevant predictors, which had missing 
values in the SMART study       
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  23.4 Coding of Predictors  

  23.4.1 Extreme Values 

 Before any modelling started, the distributions of all potential predictors were carefully 
examined for extreme values. Preferably data are checked with the source documents 
but sometimes such decisions have to be made on common sense. Biologically implau-
sible values were set to missing values, and remaining extreme values were truncated 
by shifting the values below the 1 centile and above the 99 centile to “truncation points” 
(Chap. 9). Such truncation may prevent distortion of the relationship between predictor 
and outcome due to high leverage of the extreme values, which is not desirable. 356  

 We truncated extreme values for IMT (Fig.  23.4 ). The mean IMT was 0.94 mm, 
but some patients had measurements as high as 4 mm. These high values are the 
result of plaque formation in the carotid artery, and may have an unduly large influ-
ence on estimates of cardiovascular event risk. A total of 51 values higher than 1.83 
were shifted to 1.83 (the upper truncation point), and 13 values below 0.47 were 
shifted to 0.47 (the lower truncation point). We note a substantial effect of truncation 
on the relationship between IMT and outcome (Fig.  23.4 , right panel). A restricted 
cubic spline based on the original IMT values flattens off with high IMT (>1.5 mm), 
while a restricted cubic spline based on the truncated IMT values is very close to a 
straight line. This finding illustrates that truncation may obviate the need for a non-
linear transformation.174 Before truncation the Cox regression coefficient for a linear 
IMT variable was 0.91, while it was 1.36 after truncation. The univariate model  χ  2  
improved from 61 before to 75 (1 df) after truncation. Similarly we truncated BMI, 
lipids (cholesterol, HDL, LDL, triglycerides), homocysteine, and creatinin levels by 
shifting values below 1 centile and above 99 centile to the truncation points.   

  Fig. 23.4    Boxplot of intima media thickness (IMT, in mm, left panel) before and after truncation, 
and a plot of the effect of IMT on cardiovascular events in a univariate Cox regression model (right 
panel). The original IMT values are sometimes extremely high, leading to a spline that flattens off 
with high IMT values. The truncated IMT values have a smaller range and lead to a quite linear 
relationship (solid line, linear term; dotted line, spline)       
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  23.4.2 Transforming Continuous Predictors 

 Age is an important predictor of cardiovascular events. We considered several age 
transformations (Fig.  23.5 , Table  23.4 ). In our cohort the Wald c2   of the linear fit 
was 97. Adding age   increased the  c2    to 125, but there was a biologically implausi-
ble increased risk below age 40 years. Based on visual inspection (Fig.  23.5 ), it may 
be judged reasonable to assume no age effect till age 55, and a linear effect for age 
>55 (“(Age–55) 

+
 ” variable,  c2    119). A transformation such as   (Age–50)

+
2   led to an 

even better model ( c2  130, Fig.  23.5 ). A restricted cubic spline with 3 df (4 knots) 
did not describe the relationship of age to outcome better ( c2    125). Categorizing in 
quartiles has a clearly lower performance (c2 93). Such categorization should not 
be used because jumps in predictions are unnatural. Dichotomizing at age 60 (close 
to the median of 61 years) led to a substantial decrease in performance ( c2    72, Table 
 23.4 ), illustrating that dichotomization is “a bad idea.” 355    

  Fig. 23.5    Transformations of age in univariate analysis of the SMART study.  Upper left:  
age linear and age plus age squared;  upper right:  age linear after 55 years (“Age–55) 

+
 )” and age 

squared above 50 years (“Age–50) 
+

  2 )”;  lower left:  restricted cubic spline, 4 knots, 3 df;  Lower 
right : age categorized in four groups.       
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 Other continuous predictor variables were examined in a similar way; some examples 
are shown in Table  23.4 . For creatinine, a log transformation gave the best fit (Fig. 
 23.6 ). A linear coding of systolic blood pressure was reasonable, and diastolic blood 
pressure had no effect when we analyzed the conventional sphygmomanometry 
blood pressure measurements (“SYSTH” and “DIASTH” variables). All analyses 
were repeated with multiply imputed data sets, with largely similar results.   

  23.4.2 Combining Predictors with Similar Effects 

 Combining predictors with similar effects can be an effective way to limit the 
degrees of freedom of predictors in a model (Chap. 10). In atherosclerotic 
patients several variables reflect the extent of atherosclerosis. The affected organs 
reflect the load of atherosclerosis in one particular patient. The location of symp-
tomatic events (cerebral, coronary, AAA, peripheral artery disease) can be 
entered separately in the model. For each parameter we would spend 1 df, result-
ing in a model  c   2  of 123 (4 df, Table  23.4 ). If we combine the presence of previous 

  Table 23.4    Impact of various codings of predictors in a univariate Cox regression models for 
the SMART study    

 Predictor  Coding  Wald  c  2   df 

 Age  Linear  97  1 
 Squared  125  2 
 (Age–55) 

+
 : Linear effect after age 55  119  1 

 (Age–50) +  2 : Square effect after age 50  130  2 
 Restricted cubic spline, 3 df  125  3 
 <50, 50–59.9, 60–69.9, ≥ 70  93  3 
 <60, ≥ 60  72  1 

 Creatinine  Linear  93  1 
 Restricted cubic spline, 3 df  116  3 
 Restricted cubic spline, 2 df  99  2 
 Log  131  1 

 Blood pressure 
(conventional reading) 

 Linear systolic 
 Restricted cubic spline systolic, 2 df 
 Linear diastolic 
 Restricted cubic spline diastolic, 2 df 
 Sumscore 0–4 
 Sumscore 0–5 (AAA=2) 
 Separate terms 
 Cerebral 
 Coronary 
 Peripheral 
 Abdominal aneurysm aorta 

 15 
 15 
 0.7 
 2 
 96 
 119 
 123 
 36 
 19 
 23 
 96 

 1 
 2 
 1 
 2 
 1 
 1 
 4 
 1 
 1 
 1 
 1 

 Previous symptomatic 
atherosclerosis 
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vascular events in one variable, simply by assuming equal weights for each con-
dition, the model  c   2  is 96 (1 df). The difference of the two models is a  c  2  of 27, 
which is highly significant at 3 df. Separate terms hence lead to a much better fit. 
When we test for the separate contributions of each localization it appears that the 
contribution of an AAA is considerably higher than the contribution of the other 
localizations. If we attribute 2 points for the presence of an AAA, the sumscore 
performs remarkably better (range, 0–5; model  c   2 , 119, close to 123 for separate 
terms, Table  23.4 ).   

  23.5 Model Specification  

 A full, main effects model was defined, which included the common demographics 
age and sex, important classical risk factors (smoking status, alcohol use, BMI, 
blood pressure, lipid levels, and diabetes), the sum score for previous symptoms of 
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  Fig. 23.6    Transformations of creatinine in univariate analysis of the SMART study       



atherosclerosis, and finally markers of the extent of the atherosclerotic process 
(including hyperhomocysteinemia, creatinin, IMT of the carotid artery, carotid 
artery stenosis, and albuminuria). We focused on systolic blood pressure since 
recent publications stress the more important role of systolic rather than diastolic 
blood pressure in predicting cardiovascular events. 428  The full model consisted of 
14 predictors, with several having rather limited contributions (Table  23.5 ). 
Predictors with a large prognostic strength were age ( c   2  39), the localization of the 
symptom of atherosclerosis (sumscore  c   2  37), and the marker of renal damage cre-
atinin (c    2  24). Other characteristics had much smaller prognostic relevance, with 
some impact of the general marker of atherosclerosis IMT (c    2  9.9), but a minor 
contribution of homocysteine. The classical risk factors had at most a  c   2  of 6 (for 
HDL) and hence hardly contributed to the model predictions.  

  Table 23.5    Hazard ratios (HRs) and contribution to Cox regression model (c   2  and df) of the 
predictors in a full model for cardiovascular events in the SMART study    

 Predictor  HR [95% CI] α    c   2   df 

 (Age–50) 
+
  2  (years above 50)  1.5 [1.3–1.7]  39  1 

 Gender (male)  0.9 [0.7–1.2]  0.1  1 
  Classical risk factors  
 Smoking  1.1  2 

 Never  0.9 [0.7–1.2] 
 Former  1 
 Current  1.1 [0.7–1.6] 

 Alcohol  1.1  2 
 Never  1.2 [0.8–1.6] 
 Former  1 
 Current  1.1 [0.8–1.4] 

 Body mass index (kg/m 2 )  0.9 [0.8–1.0]  3.2  1 
 Systolic blood pressure (mm Hg)  1.0 [0.9–1.2]  0.3  1 
 HDL  0.8 [0.7–1.0]  5.4  1 
 Diabetes  1.3 [1.0–1.8]  4.5  1 
  Previous symptomatic atherosclerosis  
 Sumscore (AAA 2 points)  1.4 [1.3–1.6]  37  1 
  Markers of atherosclerosis  
 Homocysteine (mmol/L)  1.0 [0.9–1.1]  0.2  1 
 Creatinin (mmol/L)  1.2 [1.1–1.3]  24  1 
 Albumin  5.2  2 

 No  0.8 [0.6–1.0] 
 Micro  1 
 Macro  1.1 [0.7–1.7] 

 Intima media thickness (mm)  1.2 [1.1–1.3]  10  1 
 Carotid artery stenosis > 50%  1.2 [1.0–1.5]  3.6  1 

   A single imputed data set was used with  n =3,873   α  Hazard ratio [95% confidence interval] refers 
to interquartile range for continuous predictors  
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440 23 Case Study on Survival Analysis

 We tested interactions between the predictors and gender by including cross-
product terms with predictors in the selected model (overall  c   2  15, 10 df,  p =0.14). 
The strongest interaction was between sex and the sumscore for previous sympto-
matic atherosclerosis ( c  2  8.1, 1 df,  p =0.004). In all, the interactions were not con-
sidered relevant enough to include an interaction term with sex in the model. We 
also tested proportionality of hazards. The overall test was not significant (overall 
 c   2  12, df 10,  p =0.27, cox.zph function). Detailed results of the assessment of 
interactions are provided at the Web. 

  23.5.1 Selection 

 We judged our sample size as large enough to allow for some model reduction for 
easier practical application (460 events, full model with 17 degrees of freedom, ignoring 
that the coding of predictors also consumed some degrees of freedom). One approach 
was to apply a backward selection procedure with a higher than standard  p  value. 
We used Akaike’s Information Criterium (AIC), which implies a  p  value < 0.157 
for selection of predictors with 1 df. 14  

 A promising alternative is to apply the Lasso method, which achieves selection of 
predictors by shrinking some coefficients to zero by setting a constraint on the sum 
of the absolute standardized coefficients. 435  The Lasso model was found to be optimal 
with ten predictors, but in this model, the coefficient of homocysteine was close to 
zero. With more shrinkage, this predictor was dropped, and the same set of nine predictors 
was selected as in the stepwise selection procedure with AIC (Table  23.6 ).    

  23.6  Model Estimation, Performance, Validation, 
and Presentation  

  23.6.1 Model Estimation 

 Regression coefficients were first estimated as default with Cox regression analy-
sis, i.e. by maximizing the log-likelihood of the fit of the model to the data. The 
coefficients of the nine predictors in the stepwise backward selected model were 
rather similar to their corresponding coefficients in the full model (Table  23.6 ). 
In contrast, the Lasso model shrunk coefficients of weaker predictors such as 
BMI, HDL, diabetes, and albumin considerably towards zero. The effects of 
strong predictors, such as age, sumscore for atherosclerosis, creatinin, IMT, and 
carotid artery stenosis, were comparable with the maximum likelihood estimates 
(Fig.  23.7 ).   



  Table 23.6    Cox regression coefficients in the full model, a stepwise selected model (using 
Akaike’s Information Criterion), and in the Lasso model    

 Predictor  Full  Stepwise (AIC)  Lasso 

 (Age–50) 
+
  2  (years above 50)  0.0013  0.0013  0.0012 

 Gender (male)  −0.049  Not selected  Not selected 
 Smoking  Not selected  Not selected 

 Never  0 
 Former  0.13 
 Current  0.21 

 Alcohol  Not selected  Not selected 
 Never  0 
 Former  −0.15 
 Current  −0.11 

 Body mass index (kg/m 2 )  −0.025  −0.026  −0.001 
 Blood pressure (mm Hg)  0.0012  Not selected  Not selected 
 HDL  −0.37  −0.39  −0.16 
 Diabetes  0.23  0.23  0.11 
 Previous vascular disease  0.34  0.35  0.33 
 Homocysteine (mmol/L)  0.0042  Not selected  Not selected 
 Log(creatinin) (mmol/L)  0.68  0.71  0.71 
 Albumin 

 No  0  0  0 
 Micro  0.22  0.24  0.13 
 Macro  0.35  0.35  0.20 

 Intima media thickness (mm)  0.55  0.56  0.50 
 Carotid artery stenosis > 50%  0.20  0.22  0.16 

  Fig. 23.7    Lasso path with increasing sum of the absolute standardized coefficients (| b |). The 
optimal AIC is obtained with 11 predictors, but differences are small between models with 9–12 
predictors. The coefficient path shows that predictors have effects other than zero with higher |b|       
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  23.6.2 Model Performance 

 Discrimation of the final model was indicated by the  c  statistic, which was 0.693 
(95% CI, 0.65–0.73). Discrimination was further illustrated by dividing the predic-
tions in quartiles, and plotting the Kaplan-Meier curves of these four groups 
(Fig.  23.8 ). We note that patients in the lower quartile had a considerably poorer 
chance of being free of cardiovascular events during follow-up: Around 75% at 5 
years of follow-up, and near 50% at 9 years of follow-up.   

  23.6.3 Model Validation: Stability 

 We used a bootstrap re-sampling procedure to study the stability of our stepwise 
selected model, and to quantify the optimism of our modelling strategy. We found 
that age and localization of symptoms were strong predictors and were always 
selected when we repeated the stepwise selection procedure in 200 bootstraps (Table 
 23.7 ). In contrast, sex, smoking, alcohol, and systolic blood pressure were selected 
in only 26%, 40%, 36%, and 57% of the bootstrap samples respectively, consistent 
with their exclusion from the stepwise model. Albumin, HDL, and IMT were 
selected in the majority of the bootstraps, but not in all. 

  Fig. 23.8    Fraction free of cardiovascular event according to quartiles of the linear predictor. 
Numbers at risk are indicated for the upper to lower quartile (numbered 1–4)       
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 There was a clear association between the estimated effect of a predictor accord-
ing to the Lasso and the frequency of selection in the bootstrap procedure. The 
coefficients for BMI, HDL, and diabetes were considerably reduced according to 
the Lasso, and indeed these were not selected in 40%, 22%, and 32% of the boot-
strap samples. Instead of excluding the predictor, which is equivalent to setting the 
coefficient to zero, the coefficient was shrunk towards zero. The coefficients of age, 
localization of symptoms, creating, and IMT were virtually not affected by the 
Lasso, consistent with their selection in over 95% of the bootstraps.   

  23.6.4 Model Validation: Optimism 

 The  c  statistic was expected to decrease from 0.693 to 0.680, or a decrease of 0.013, 
in a bootstrap procedure with repeated selection of predictors in every bootstrap 
sample. We estimated the required shrinkage for the coefficients in the stepwise 
selected model as 0.94, suggesting that each coefficient should be reduced by 6% 
to correct for optimism of the modelling process. Instead of using this shrinkage 
factor for the final model, we used the Lasso coefficients, which reduce coefficients 
for weak predictors more than for strong predictors. In all, the bootstrap validation 
procedure showed some instability of the model specification, but a modest amount 
of optimism in the final model.  

  23.6.5 Model Presentation 

 The results of the modelling process can be presented in various ways. From Table 
 23.4  we learn about the relative contributions of each predictor to the model. For a 
survival model such as the SMART prediction model, an attractive way is to present 
the model as a nomogram (Fig.  23.9 ). In the nomogram, we can judge the relative 
importance of each predictor by the number of points attributed over the range of 
the predictor, and we can calculate 3-year and 5-year survival estimates. Survival 
relates to the probability of being free of a cardiovascular event.    

  23.7 Concluding Remarks  

 This case study illustrates how a prediction model can be developed and internally 
validated for a survival analysis problem. We recognize that not all modelling steps 
could be considered in the bootstrap procedure for internal validation. Further 
external validation is necessary in the same setting (with more recent patients) and 
in other settings (to assess transportability). 



 We note a distinction between risk factors in the general population (without 
cardiovascular disease) and prognostic factors in patients with symptomatic dis-
ease. Classical risk factors such as smoking, alcohol use, BMI, blood pressure, 
HDL and diabetes, had very limited prognostic value in the clinical setting. These 
characteristics are hence not useful to predict future events once cardiovascular 
disease has developed. Indicators of previous symptomatic cardiovascular disease 
and the extent of atherosclerosis were more useful. This finding is similar to find-
ings in the GUSTO-I sample, where e.g. smoking was associated with a better out-
come after acute MI. 

  Fig. 23.9    Nomogram to calculate predicted 3-year and 5-year survival (probability of being free 
of a cardiovascular event). Coefficients are based on the Lasso model. For example, a 75-year-old 
patient, with a BMI of 28, HDL 1, no diabetes, previous aortic aneurysm but no other symptoms of 
atherosclerosis (HISTCAR2=2), a creatinin value of 100, low albumin, no carotid stenosis, IMT 
of 1 mm, has a total points score of 5 + 2 + 4 + 0 + 2 + 2 + 0 + 0 + 2 = 17. This corresponds to 
predicted 3- and 5-year survival of 87% and 79% respectively       
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  Questions 

   23.1     Composite outcomes (Sect.  23.2.2  and Table  23.1 ) 
   Outcomes were combined in the presented analyses.

      (a)     What does this imply about the effects of the predictors for each 
outcome?  

      (b)    How could this be tested? See Glynn and Rosner 140       

   23.2    Missing values (Fig.  23.1 )

      (a)     Some might argue to exclude patients with many missing values. What 
would be a reasonable number as maximum of missing values per patient 
in this analysis?  

      (b)     We note that missing values occur together for some predictors. We 
could also choose to exclude patients with missing values (NA) in spe-
cific predictors. Which would you choose?      

   23.3    Effects of Lasso vs. stepwise selection (Table  23.6 ) 
     We select the same predictors with a Lasso procedure as with stepwise selec-

tion using AIC.

      (a)     How is it possible to obtain the same selection with these very different 
methods?  

      (b)     The effect of age is similar with both methods, while the effect of BMI is 
very weak according to the Lasso. How is this possible? Consider also the 
validation in Table  23.7 .             



   Chapter 24   
 Lessons from Case Studies        

  Background   In this final chapter, we review some practical issues of development, 
validation, and updating of prediction models, based on the empirical experience from 
case studies as described in this book, and modelling experience in other medical 
prediction problems. We consider the essential elements to successful modelling: suffi-
cient sample size; emphasis on validation; using, not ignoring, subject matter knowledge. 
Tentative recommendations are made, recognizing that specific circumstances may ask 
for specific approaches. We end this chapter with a description of the case studies used 
throughout this book, where data sets are available through the book’s Web site.    

  24.1 Sample Size  

 Developing a valid prediction model from a relatively small data set has proven to 
be hard. Empirical examples discussed by Altman and Royston all show a poor 
performance at external validation. 13  Overfitting is a severe problem; it is common 
to ask too much from a small sample. Asking many questions is natural: Data 
collection in empirical studies is costly, and we are curious what patterns emerge 
from our precious data. Small data sets hence usually should serve to explore rather 
than to derive firm relationships. Yet, we need such firm relationships for accurate 
predictions. Also, we need strong predictors 332 ; hence, when we have only a few rela-
tively weak predictors it is tempting to search further for additional predictors. 210  An 
honest internal validation procedure should reveal the optimism that is associated 
with the full modelling procedure, including any searches for interesting patterns. 401  
Harrell has observed that model uncertainty usually is more important for optimism 
in model performance than parameter uncertainty. 174  Hence, this step should never 
be forgotten. See Chatfield for a more theoretical but well-readable discussion. 69  

  24.1.1 Example: Sample Size and Number of Predictors 

 Simulations in GUSTO-I have highlighted the relevance of sample size to derive 
well-performing models. 409,410  When we study an 8 predictor model in samples with 
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on average 23 events, discriminative ability is clearly below the maximum possible 
with a very large sample size ( n  = 20,512, 1,423 deaths, Fig.  24.1 ). Moreover, step-
wise selection is a poor-performing strategy, which is explained by the lack of 
power to select important predictors. Calibration of standard maximum likelihood 
estimates was poor, either with stepwise selection or with a full model. Shrinkage 
of penalized estimation largely resolved this miscalibration.  

 In larger samples (62 deaths on average), everything looks somewhat better: The 
performance was closer to the maximum, and stepwise methods were less detrimental 
than in smaller samples.  

  24.1.2 Number of Predictors 

 When we study more predictors, we would expect that we could obtain better 
performing models. Remarkably this was not the case in simulations in GUSTO-I. 409  

  Fig. 24.1    Influence of sample size on model performance. 409  Graphs show performance of an 8 
predictor model in simulations from the GUSTO-I trial. Small and large subsamples included on 
average 23 and 62 events respectively (30-day mortality). Models were created with stepwise 
selection ( p  < 0.01,  p  < 0.05, AIC ( p  < 0.157),  p  < 0.50) and with fitting a full model, with estima-
tion by standard maximum likelihood, shrinkage of regression coefficients, and penalized maxi-
mum likelihood. Models were tested in a large independent test part (part B,  n  = 20,318). 
Performance criteria included the area under the ROC curve (or  c  statistic, to indicate discrimina-
tion), and the slope of the linear predictor (to indicate calibration). We note that better models 
were identified with shrinkage or penalized estimation, with no (full) or limited selection ( p  < 
0.50). Substantially better performance was noted for models derived from the larger subsamples; 
using  p  < 0.05 for model selection in the larger subsamples led to better performance than the 
full models from the smaller subsamples       
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A full model with 17 predictors had at most similar performance to a full 8 predictor 
model, when we applied penalized maximum likelihood estimation. But backward 
stepwise selection with  p  < 0.05 led to poorer models when 17 predictors were 
considered instead of 8 (Fig.  24.2 ). Hence, when we start with too many predictors, 
stepwise selection methods may not be able to save us. The balance between 
number of predictors and number of events should be for candidate predictors, not 
the number of selected predictors (Chap. 4).   

  24.1.3 Potential Solutions 

 A potential solution for small sample size is to perform collaborative studies (Table 
 24.1 ). For example, instead of analyzing a single centre retrospective cohort study, 
we may try to collect data from multiple centres, leading to a multicentre cohort 
study. Apart from simply increasing sample size other advantages occur. The 
multiple centres may be slightly different from each other, in local protocols for 
diagnostic work-up, treatment choices, definition of predictors, etc. Such hetero- 
geneity is beneficial for the generalizability of the resulting model. If it were derived 
from a single centre, the results might be typical for that setting, rather than represent 

  Fig. 24.2    Influence of number of predictors on model performance (8 vs. 17 predictors). See 
legend of Fig.  24.1 . We note that models estimated with standard maximum likelihood were worse 
with 17 rather than 8 predictors considered: Discrimination was 0.01 lower, and the calibration 
slope with further below 1 (indicating more need for shrinkage)       
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“current practice.” Also, cross-validation becomes possible, where we leave out one 
centre to test a model that was developed on other centres (Chaps. 17 and 19).         

  24.2 Validation  

 Internal and external validations deserve our full attention in prediction modelling. 
Describing patterns in a data set have no meaning if these patterns are invalid 
outside the specific data set. First, we need to check internal validity. The bootstrap 
is a very useful tool for this purpose, but we should be careful to apply it honestly, 
i.e. not forgetting some model specification steps. 401  Second, we are concerned 
about external validity; if a model is only applicable in strict settings, we are astray 
from serious science. 222  

 Sample size is important both for development and validation samples. If sample 
size is insufficient at model development, overfitting will occur. If sample size is 
insufficient at model validation, we may falsely conclude that a model performs 
satisfactorily, while substantial invalidity may in fact exist. 

  24.2.1 Examples of Internal and External Validation 

 The practical experience with validation is mixed: Some models may generalize 
well if developed according to the principles outlined in Part II, but some models 

 Table 24.1    Problem areas with prognostic modelling, and potential solutions with their benefits  

 Problem  Characterization  Potential solutions  Benefits 

 Sample size  Asking too much from 
the data relative to 
its size 

 Balance research ques-
tion with available 
information 

 Less overfitting 

   Particularistic, single 
centre samples used 

 Collaborative efforts  Statistical and epidemiologi-
cal advantages (standard 
errors decrease with 
larger sample size; gen-
eralizability increases; 
cross-validation possible 
for external validation) 

 Validation  Internal validity is a 
minimum require-
ment; 

 Bootstrap validation;  Honest impression of model 
performance for similar 
patients 

   External validity impor-
tant as a second aim 

 Multi-centre/interna-
tional studies for 
external validation 

 Impression of model per-
formance in plausibly 
related settings 

 Subject 
matter 
knowledge 

 Use rather than ignore  Literature review;
expert opinion 

 Model stability, hence less 
overfitting; better esti-
mation possible 



require at least an adjustment for the average, case-mix adjusted incidence of the 
outcome. In GUSTO-I, we noted that the variability by subsample or region was 
largely attributable to chance, but this was in the context of a randomized trial, with 
a specific protocol (Chap. 22). A previously developed model (TIMI-II) required 
updating of the intercept. 402,406  In the testicular cancer example, we noted some 
differences between centres, but the sample sizes were not large enough to draw a 
firm conclusion on similarity of the intercept across settings (Chap. 19). 467  In the 
stroke example, substantial differences between centres were noted that were 
beyond chance (Chap. 21). Systematic differences can sometimes be attributed to 
specific circumstances; for example, we found systematically poorer than predicted 
outcome in patients from the CRASH trial, which included many patients with 
traumatic brain injury from developing and middle-income countries. 

 Konig et al. recently reported on the internal, temporal, and geographic validity 
of outcome prediction models in stroke. 240  They noted that internal validation was 
not enough, and that some form of external validation was necessary for a good 
impression of model performance in new patients. This was partly caused by prob-
lems to fully capture all modelling steps in the internal validation procedure, which 
hence resulted in still too optimistic estimates of model performance. A study in 
children with fever also suggested that external validation was necessary beyond 
internal validation. 40    

  24.3 Subject Matter Knowledge  

 Throughout this book, using subject matter knowledge has been emphasized. 
Examples of valid models that were built from scratch are rare. Most successful 
models combine well-known predictors, and limit the use of the data set to some 
fine-tuning of the model specification. For example, we eliminate some main 
effects that do not contribute to outcome prediction. On the other hand we include 
some non-linear terms that are important to capture the relationship of a continuous 
predictor with the outcome. We may include some interactions, if these are very 
strong. The main role of the data set then is to quantify the predictor–outcome rela-
tionship, and provide an impression of the performance of the model. As discussed 
in Chap. 1, we aim to avoid the situation that we develop a model without some 
knowledge on which predictors to include, in what functional form, and unknown 
effects (see Table 1.1). A huge sample size would be required for this situation. 

 Model updating is a formal approach to use prior knowledge (Chaps. 20 and 21). 
We start with assuming that a prior model is valid for a new setting, and modify 
coefficients and add other predictors if indicated by the data under study. Such 
model updating is only possible if a reasonable prior multivariable model exists. We 
are back at standard model development if only univariate associations are known, 
or qualitative statements on the strength of a predictive effects. 

 Several disadvantages can be mentioned for modelling with subject knowledge. 
First, we may miss important new predictors. We should be prepared to take this 
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risk, since searching for new predictors has many risks of its own, including testi-
mation bias and instability of the search. Second, we do not discover new knowl-
edge. We only combine what is known already. This is however precisely the role 
of prediction models in medicine: They quantify what is already known. Knowledge 
discovery is a phase before we can start serious prediction modelling. Prediction 
models may have a role beyond systematic review of prognostic factors, as is start-
ing to be promoted by the Cochrane collaboration. Systematic reviews may provide 
summaries of relative effects; prediction models provide absolute effects. 

 We may be interested in a prediction model that includes new predictors, such 
as a genetic marker or other type of biomarker. We first would need robust evidence 
on the univariate effect of the marker, and preferably also on its effect adjusted for 
other important predictors. 285  If this evidence is sufficient, we could study the 
performance of the marker when integrated in a prediction model. Of interest is the 
incremental value of the marker. 225  Several performance criteria can be used, such 
as increase in discriminative ability, re-classification, and decision-curve analysis 
(see Chap. 16).  

  24.4 Data Sets  

 We considered many examples throughout the text. For some case studies, empiri-
cal data are available through the book’s Web site (Table  24.2 ). These case studies 
are discussed below in a simple format. First we list the abstract of the key publica-
tion of the study, if relevant. We then list the contents of the data sets. The data sets 

  Table 24.2    Summary of case studies with data sets available at the book’s Web site    

 Case study  Charaterization   N  patients (outcome); predictors 

 GUSTO-I  Prediction of 30-day mortality in 
acute myocardial infarction 

 Original:  n  = 40,830 (2,851). 
 West region  n =2,188 (135); Sample4, 

 n  = 785 (52); Sample5,  n  = 429 (24); 
17 predictors 

    

 SMART  Prediction of secondary 
cardiovascular events 

  N =3,873 (460); 26 predictors 

 Testicular cancer  Diagnosis of residual mass 
histology (benign vs. other, 
or in three categories) 

 Development,  n  = 544 (245 benign) ; six 
predictors

     validation,  n  = 273 (76 benign); 
five predictors 

 Abdominal aortic 
aneurysm 

 Prediction of peri-operative mor-
tality after elective 
surgery 

  N  = 238 (18); seven predictors 

 Traumatic brain 
injury 

 Prediction of 6-month
 outcome 

  N =2,159; 503 deaths, 851 unfavorable 
outcome; 14 predictors 



are made available for didactic purposes only. If publication by any means is pur-
sued, investigators are required to contact the authors of the original publication 
and the author of this book.    

  24.4.1 GUSTO-I Prediction Models 

 The key publication is by Lee  et al . ( Circulation,  1995, see Box  22.1 ). 255  Many 
other publications are available that use the GUSTO-I data, including a practical 
prediction tool by Califf  et al. ). 63  Small parts of the GUSTO-I data set are made 
available here: sample5 contains 429 patients, sample4 785 patients, and the West 
region 2,188 patients (Table  24.3  ). The patients partly overlap, which can be identi-
fied by matching on the 17 predictors and the outcome in the data set.   

  24.4.2 Modern Learning Methods in GUSTO-I 

 Several simulation studies have been performed with the GUSTO-I data base. Ennis 
et al. compared a variety of modern learning methods, including logistic regression, 
Tree, GAM, and MARS methods (see Chap. 6). 115  For evaluation purposes, the data 
set was randomly divided into two parts: two-thirds of the data form the training set 
( n  = 27,220), and the rest form the test set ( n  = 13,610). The training set was used for 
model development, with a smaller training set ( n  = 18,147) and a validation set 
( n  = 9,073) if necessary, leaving the test set ( n  = 13,610) for final assessment of 
predictive performance. Performance measures included the log-likelihood and 
AUC of predictions in the test set.  

  24.4.3 Modelling Strategies in Small Data Sets from GUSTO-I 

 The GUSTO-I data set has also been instrumental to compare various aspects of 
predictive modelling strategies in small data sets. 402,405,406,407,409,410,413  The large size 
of GUSTO-I makes that subsamples can be created where models can be devel-
oped, which can subsequently be tested on an independent part of the data set. This 
approach has been followed to empirically test many aspects of logistic regression 
modelling. Especially we have focused on aspects of selection of predictors in a 
prognostic model and estimation of regression coefficients. 407,409,410,413  Detailed 
results were presented in many chapters. 

 The design of a key study for this book is shown in Fig.  24.3 . The GUSTO-I data 
set consists of patients from 1,081 hospitals in 14 countries. At a higher level, eight 
regions could be defined within the United States, and from neighbouring countries 
outside the United States (another eight regions). As a first split, the 16 regions 
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were used to create a training part four US regions, four other) and a test part (four 
US regions, four other). So, the split was not at random but based on geographical 
balance. Care was taken that the mortality was 7% in both parts. Each part con-
tained eight regions, and within regions subsamples were created, labelled “large” 
and “small.” Large subsamples contained at least 50 patients who died, and small 
subsamples at least 20. The grouping was based on merging patients from nearby 
hospitals. This process mimicked the real-life situation that a prognostic model is 
developed in cooperation with a number of centres. Note that the large and small 
subsamples contained partly the same patients, and hence were not independent.  

 In the training part, 23 large subsamples were created, which contained on average 
892 patients, of whom 62 had died by 30 days. A total of 61 small subsamples was 
created, with 23 deaths among 336 patients on average. All models were tested in the 
independent test part of 20,318 patients. As a gold standard we could use models 
based on the full training part. Because of the still very large sample size ( n  =  20,512, 
1,423 deaths), optimism was not a concern in this training part. Sample4 and sample5 
were chosen for illustration in this book since the results of modelling in these sam-
ples was representative for the average pattern over the small and large subsamples.  

  24.4.4 SMART Case Study 

 The SMART (second manifestations of arterial disease) study is discussed in detail 
in Chap. 23. The seven modeling steps from part II were followed, and R computer 
code is available to perform the described analyses (Table  24.4 ).   

  24.4.5 Testicular Cancer Case Study 

 The key publication for clinicians is a paper in the  Journal of Clinical Oncology  in 
1995, with a validation study in 1998. 112, 417  The methodological aspects are discussed 
in a paper in  Statistics in Medicine  in 2001 (see Box  24.1  ). 425  See also Table  24.5 .  

  Fig. 24.3    Simulation design for GUSTO-I, with creation of 23 large and 61 small subsamples       

GUSTO-I data set
n=40,830; 2,851 died

Training part:
n=20,512; 1,423 died

Test part:
n=20,318; 1,428 died

.....

23 'large' subsamples: n=892; 62 died (average)
61 'small' subsamples: n=336, 23 died (average)
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  Table 24.5    Description of testicular cancer development ( n  = 544) and validation set ( n  = 273)    

 Name 
 Description (coding: no/yes 
is coded as 0/1) 

 Development 
(245/544 (45%)) 

 Validation 
(76/273 (28%)) 

 patkey  Patient ID  –  – 
 hosp  Institution ID  –  – 
 orchyr  Year of orchiedectomy (surgical 

removal of primary tumor) 
 1985  1993 

 histr3  Histology at resection: 1 = necrosis; 
2 = teratoma; 3 = viable cancer 

 45%/42%/13%  28%/58%/13% 

 ter  primary tumor teratoma-negative? 
(0–1) 

 46%  38% 

 preafp  Prechemotherapy AFP normal? 
(0–1) 

 34%  25% 

 prehcg  Prechemotherapy HCG normal? 
(0–1) 

 38%  27% 

  Table 24.4    SMART study data set ( n =3,873)    

 Name  Description (coding: no/yes is coded as 0/1)  Development (460/3,873) 

 Tevent  Time to cardiovascular event (days)  1370 
 Event  Cardiovascular event (clinical, 0/1)  460 
 Sex  1 = male, 2 = female sex  25% 
 Age  Age (years)  60 
 Diabetes  Ever diabetes (0/1)  22% 
 Cerebral  Ever cerebrovascular disease (0/1)  30% 
 Cardiac  Ever cardiovascular disease (0/1)  56% 
 AAA  Ever abdominal aortic aneurysm (0/1)  11% 
 Periph  Ever periferal vascular disease (0/1)  24% 
 Stenosis  Carotic stenosis >= 50% by duplex (0/1)  19% 
 Systbp  Systolic blood pressure (automatic, in mm Hg)  141 
 Diastbp  Diastolic blood pressure (automatic, in mm Hg)  80 
 Systh  Systolic blood pressure (by hand, in mm Hg)  142 
 Diasth  Diastolic blood pressure (by hand, in mm Hg)  82 
 Length  Length (m)  1.74 
 Weight  Weight (kg)  81 
 BMI  Body mass index (kg/m 2 )  26.7 
 Chol  Cholesterol level (mmol/L)  5.2 
 HDL  High-density lipoprotein cholesterol (mmol/L)  1.2 
 LDL  Low-density lipoprotein cholesterol (mmol/L)  3.1 
 Trig  Triglycerides level (mmol/L)  1.9 
 Homoc  Homocysteine level (µmol/L)  13.8 
 Glut  Glutamine (µmol/L)  6.3 
 Creat  Creatinine clearance (mL/min)  98 
 IMT  Intima media thickness (mm)  0.93 
 Albumin  Albumin in urine: 1 = no; 2 = low; 3 = high  79%/18%/3% 
 Smoking  Smoking status: 1 = no; 2 = former; 3 = current  18%/70%/12% 
 Packyrs  packyears smoked  23 
 Alcohol  Alcohol consumption: 1 = no; 2 = former; 3 = current  20%/11%/70% 

   The primary outcome was a cardiovascular event, which occurred in 460 patients during follow-up 
(5-year cumulative incidence, 14%)  

(continued)



 Box 24.1 Abstract of the methodological paper on prediction of residual 
mass histology in testicular cancer patients 425  

  Residual mass histology in testicular cancer: development and validation 
of a clinical prediction rule  

 Ewout W. Steyerberg; Yvonne Vergouwe; H. Jan Keizer and J. Dik F. Habbema 
for the ReHiT study group 

 After chemotherapy for metastatic non-seminomatous testicular cancer, surgi-
cal resection is a generally accepted treatment to remove remnants of the initial 
metastases, since residual tumour may still be present (mature teratoma or viable 
cancer cells). In this paper, we review the development and external validation 
of a logistic regression model to predict the absence of residual tumour. 

 Three sources of information were used. A quantitative review identified 
six relevant predictors from 19 published studies (996 resections). 420  Second, 
a development data set included individual data of 544 patients from six cen-
tres. 417  This data set was used to assess the predictive relationships of five 
continuous predictors, which resulted in dichotomization for two, and a log, 
square root, and linear transformation for three other predictors. The multiple 
logistic regression coefficients were reduced with a shrinkage factor (0.95) to 
improve calibration, based on a bootstrapping procedure. Third, a validation 
data set included 172 more recently treated patients. 412  The model showed 
adequate calibration and good discrimination in the development and in the 
validation sample (areas under the ROC curve 0.83 and 0.82). 

 This study illustrates that a careful modeling strategy may result in an 
adequate predictive model. Further study of model validity may stimulate 
application in clinical practice. 

PMID: 11782038

  Table 24.5         (continued)  

 Name 
 Description (coding: no/yes is 
coded as 0/1) 

 Development 
(245/544 (45%)) 

 Validation 
(76/273 (28%)) 

 lnldhst  Ln of standardized prechemotherapy 
LDH (LDH/upper limit of local 
normal value) 

 0.46 (LDHst 2.0)  NA 

 sqpost  Square root of post-chemotherapy 
mass size (original mass size in mm) 

 5.1 (33 mm)  7.8 (70 mm) 

 reduc10  Reduction in mass size per 10%: (pre–
pos)/pre*10 

 4.5 (=45%)  1.4 (=14%) 

 nec  Necrosis at resection (0–1)  45%  28% 
 matter  Mature teratoma vs. cancer, if not 

necrosis (0–1) 
 77%  82% 

 dev  Part of data set: 1=development 
( n =544); 0=validation ( n =273) 

 1  0 

   The primary outcome was a benign histology at post-chemotherapy resection, which occurred in 
45% and 28% respectively  
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    24.4.6 Abdominal Aortic Aneurysm Case Study 

 The Leiden cohort contains patients undergoing elective surgery for an abdominal 
aortic aneurysm (Table  24.6 ). Results are described in detail in a PhD thesis by 
Dr. Alexander de Mol van Otterloo (currently working as a surgeon in The Hague). 
The publication that presents the prediction rule based on the combination of the 
Leiden data and literature data is in  Archives of Internal Medicine  in 1995 (see 
Box  22.2 ). 421     

 Box 24.2 Abstract of the paper on prediction of perioperative mortality in 
AAA 421  

  Perioperative mortality of elective abdominal aortic aneurysm surgery. 
A clinical prediction rule based on literature and individual patient 
data  

 Steyerberg EW, Kievit J, de Mol Van Otterloo JC, van Bockel JH, Eijkemans 
MJ, Habbema JD. 
 BACKGROUND: Abdominal aortic aneurysm surgery is a major vascular 
procedure with a considerable risk of (mainly cardiac) mortality. OBJECTIVE: 
To estimate elective perioperative mortality, we developed a clinical predic-
tion rule based on several well-established risk factors: age, gender, a history 
of myocardial infarction, congestive heart failure, ischemia on the electrocar-
diogram, pulmonary impairment, and renal impairment. 
 METHODS: Two sources of data were used: (1) individual patient data from 
246 patients operated on at the University Hospital Leiden (the Netherlands) 
and (2) studies published in the literature between 1980 and 1994. The 
Leiden data were analyzed with univariate and multivariable logistic regres-
sion. Literature data were pooled with meta-analysis techniques.

  Table 24.6    Aortic aneurysm data set ( n  = 238)    

 Name 
 Description (coding: no/yes is 
coded as 0/1) 

 Development 
(18/238 (8%)) 

 Sex  Female (0/1)  9% 
 Age10  Age in decades  6.6 (66 years) 
 MI  Infarction on ECG (0/1)  24% 
 CHF  Congestive heart failure (0/1)  34% 
 Ischaemia  Ischaemia on ECG (0/1)  35% 
 Lung  Lung comorbidity (0/1)  19% 
 Renal  Renal comorbidity (0/1)  6% 
 Status  Peri-operative mortality (0/1)  8% 
   The primary outcome was surgical mortality, which occurred in only 
18 patients (7.6%)  

(continued)



  24.4.7 Traumatic Brain Injury Data Set 

 Prognostic studies based on patients included in the Tirilazad trials are described in 
detail in a PhD thesis by Chantal Hukkelhoven. The publication that presents a 
prognostic model is in a neurosurgical journal ( J Neurotrauma  2005) (see Box 
 24.3 ). 203  More extensive data became later available through the IMPACT project 
as described in Chap. 10, with several publications led by Prof. Dr. Andrew Maas. 
See Table  24.7 .    

  24.5 Concluding Remarks  

 The described data sets are made available to promote practical experience 
with the described techniques in this book. Many other medical data sets are 
publicly available nowadays, which can be used to train researchers in prediction 
modelling, and readers are encouraged to examine these. The author welcomes 
any comments and suggestions for improvement of the text of this book, the 
questions at the end of each chapter, the practical exercises at the Web, and use-
fulness of data sets.  

Box 24.2 (continued)

The clinical prediction rule was based on the pooled odds ratios from the 
literature, which were adapted by the regression results of the Leiden data. 

 RESULTS: The strongest adverse risk factors in the literature were conges-
tive heart failure and cardiac ischemia on the electrocardiogram, followed by 
renal impairment, history of myocardial infarction, pulmonary impairment, 
and female gender. The literature data further showed that a 10-year increase 
in age more than doubled surgical risk. In the Leiden data, most multivariable 
effects were smaller than the univariate effects, which is explained by the 
positive correlation between the risk factors. In the clinical prediction rule, 
cardiac, renal, and pulmonary comorbidity are the most important risk fac-
tors, while age per se has a moderate effect on mortality. 

 CONCLUSIONS: A readily applicable clinical prediction rule can be based 
on the combination of literature data and individual patient data. The risk 
estimates may be useful for clinical decision making in individual patients. 

 PMID: 7575054 
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 Box 24.3 Abstract of the paper on prediction of outcome in traumatic brain 
injury 203  

  Predicting outcome after traumatic brain injury: development and vali-
dation of a prognostic score based on admission characteristics  

 Hukkelhoven CW, Steyerberg EW, Habbema JD, Farace E, Marmarou A, 
Murray GD, Marshall LF, Maas AI. 

 The early prediction of outcome after traumatic brain injury (TBI) is impor-
tant for several purposes, but no prognostic models have yet been developed 
with proven generalizability across different settings. The objective of this 

Table 24.7 Traumatic brain injury data set (n=2,159). Patients are from the International and US 
Tirilazad trials. The primary outcome was 6 months Glasgow Outcome Scale (range 1 for dead to 
5 for good recovery)

Name Description (coding: no/yes is coded as 0/1)
Development 
n=2,159

trial Tirilazad international (n = 1,118) / US (n = 1,041) –
d.gos GOS at 6 months:

1 = dead 23%
2 = vegetative 4%
3 = severe disability 12%
4 = moderate disability 16%
5 = good recovery* 44%

d.mort Mortality at 6 months (0/1) 23%
d.unfav Unfavorable outcome at 6 months (0/1) 39%
age Age (in years, median [interquartile range]) 29 [21–42]
d.motor Admission motor score (1–6, median) 4
d.pupil Pupillary reactivity (1 = both reactive/2 = one reactive/ 

3 = no reactive pupils)
70%/14%/16%

pupil.i Single imputed pupillary reactivity (1/2/3) 70%/14%/16%
hypoxia Hypoxia before/at admission (0/1) 22%
hypotens Hypotension before/at admission 19%
ctclass Marshall CT classification (1–6, median) 2
tsah tSAH at CT (0/1) 46%
edh EDH at CT (0/1) 13%
cisterns Compressed cisterns at CT (0 = no/1 = slightly compressed/

2 = fully compressed)
57%/26%/10%

shift Midline shift > 5 mm at CT (0/1) 18%
glucose Glucose at admission (mmol/l, median [interquartile range]) 8.2 [6.7–10.4]
glucoset Truncated glucose values (median [interquartile range]) 8.2 [6.7–10.4]
ph pH (median [interquartile range]) 7.4 [7.3–7.5]
sodium Sodium (mmol/l, median [interquartile range]) 140 [137–142]
sodiumt Truncated sodium (median [interquartile range]) 140 [137–142]
hb Hb (g/dL, median [interquartile range]) 12.8 [10.9–14.3]
hbt Truncated hb (median [interquartile range]) 12.8 [10.9–14.3]
*d. variables denote “derived”.

(continued)
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Box 24.3 (continued)

study was to develop and validate prognostic models that use information 
available at admission to estimate 6-month outcome after severe or moderate 
TBI. To this end, this study evaluated mortality and unfavorable outcome, 
that is, death, and vegetative or severe disability on the Glasgow Outcome 
Scale (GOS), at 6 months post-injury. 

 Prospectively collected data on 2269 patients from two multi-centre clinical 
trials were used to develop prognostic models for each outcome with logistic 
regression analysis. We included seven predictive characteristics: age, motor 
score, pupillary reactivity, hypoxia, hypotension, computed tomography clas-
sification, and traumatic subarachnoid hemorrhage. The models were validated 
internally with bootstrapping techniques. External validity was determined in 
prospectively collected data from two relatively unselected surveys in Europe 
(n = 796) and in North America (n = 746). We evaluated the discriminative 
ability, that is, the ability to distinguish patients with different outcomes, with 
the area under the receiver operating characteristic curve (AUC). Further, we 
determined calibration, that is, agreement between predicted and observed out-
come, with the Hosmer-Lemeshow goodness-of-fit test. 

 The models discriminated well in the development population (AUC 0.78–
0.80). External validity was even better (AUC 0.83–0.89). Calibration was less 
satisfactory, with poor external validity in the North American survey (p < 
0.001). Especially, observed risks were higher than predicted for poor progno-
sis patients. A score chart was derived from the regression models to facilitate 
clinical application. 

 Relatively simple prognostic models using baseline characteristics can 
accurately predict 6-month outcome in patients with severe or moderate TBI. 
The high discriminative ability indicates the potential of this model for clas-
sifying patients according to prognostic risk. 

 PMID: 16238481 



462 24 Lessons from Case Studies

  Questions   

   24.1    Number of predictors and sample size (Fig.  24.2 ) 
 In Fig.  24.2 , we note that the discriminative ability (area under ROC curve, or 
 c  statistic) does not increase by considering 17 rather than 8 predictors with 
standard maximum likelihood or shrunk estimation.  

    (a)     How is it possible that considering more predictors does not increase the 
discriminative ability?  

    (b)     What is the slope of the linear predictor (or calibration slope) with stand-
ard estimation, with 17 or 8 predictors?  

    (c)     And what is the slope with shrinkage or penalized estimation, with 17 or 
8 predictors?  

    (d)     What would you do if 17 candidate predictors were available in a data set 
with ∼50 events, and the aim was to make a model for predictions in indi-
vidual patients?               
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definition, 106
logistic regression models, 108

StatLog project, 109–110
testing, 104

Statistical modelling
estimation problem and hypothesis 

testing, 2–3
model uncertainty, 3
sample size, 4–5

Statistical prediction models
binary outcomes

Bayes rule, 61–62
classification and regression tree 

methods, 67–70
generalized additive model, 65–66
likelihood ratio calculations, 62–63
log likelihood scale, R2 calculation, 

58–60
logistic regression analysis, 57–58
MARS and SVM, 70–71
multivariable diagnostic univariate 

log, 65
Naïve Bayes estimation, 63–65

categorical outcomes
differential diagnoses, 71
multivariable dichotomous logistic 

models, 73–75
polytomous logistic regression, 72
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Statistical prediction models (cont.)
residual masses histology, 72–73

continuous outcomes
cost prediction, 54
generalized additive model, 55–57
linear regression model, 53–54
transformation, 54–55
variance estimation, 55

economic outcomes, 54
estimation problem and hypothesis 

testing, 2–3
model uncertainty, 3
ordinal outcomes

continuation ratio model, 77
Glasgow outcome scale, 74–75
proportional odds logistic regression 

model, 75–77
sample size, 4–5
survival outcomes

Cox proportional hazards regression 
model, 77–78

Kaplan–Meier analysis, 79
nerve-function impairment, 79–80
parametric models, 80
proportionality assumption, 78–79
risky heart valves replacement, 80–81

Stein’s paradox, 90
Stepwise selection, prediction models

advantages of, 196
disadvantages of

biased coefficients, 199
event variable bias, 199–201
p-values exaggeration, 204
selection instability, 197–199
variability misspecifcation, 201–204

stopping rules, 195–196
variants, 194–195

Streptokinase (SK), 414
Stroke, provider profiling, 403
Support vector machine (SVM), 70–71

T
Traumatic brain injury (TBI) trials, 24
Temporal validation, 305–307
Testicular cancer

candidate predictors, 176–177
non-linearity case study

analysis, univariate and multivariable, 
224–226

fractional polynomials, multivariable, 224
LDH effect, 222–223
predictive performance, 226–227

prediction model

Brier score, 257
calibration method, 276–277
discriminative ability, 260
receiver operating characteristic (ROC) 

curve, 260–262
Testicular cancer case study, 457–459
Testicular cancer, prediction models, 307–308

clinical usefulness, 286–287
decision curves, 287–288
decision rule, 330
more–or less-severe patients, 349
nomogram, 324
performance, 289–290
pre–and post-chemotherapy mass size, 

321–322, 326–327
predictor categorization, 327
presentation formats, 330
reference values, 351–352
regression formula, 321–323
score chart, 319, 324–325
tabular presentation, 320–321
validity interpretation, 341

Thrombolytic therapy, acute MI
predictions for selection of, 423–424
score chart for, 422–423

TIMI-II models and GUSTO-I trial
outcome differences in

centre-specific estimates, 395
intercepts updating, 397
logistic regression models, 394
R code for random effect analyses, 399
random effect models, 394, 395
standard error (SE), 396

predictor effects in
heterogeneity in calibration slope, 

398–399
testing and updating, 398

Tissue plasminogen activator (tPA), 414
Transforming continuous predictors, 

438–439
Transportability. See Prediction model, 

generalizability
Traumatic brain injury (TBI)

adjusted effects estimation
complete predictors, 151–154
incomplete predictors, 154–155
logistic regression coefficients, 151

age and outcome, 108–109
continuous predictors

coding impact, 161
effects of, 171

Glasgow outcome scale (GOS)
imputation model, 147, 149
imputed values distribution, 149
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missing values, 142
missingness patterns, 144–146
patient selection, 140
predictor coding and time dependency, 

141–142
predictors missingness quantification, 

143–144
predictors selection, 140–141

glucose values and outcome, 168–169
haematocrit (ht) and haemoglobin (Hb) 

correlation, 122
multivariable analyses, 155

Traumatic brain injury (TBI) data set, 461

U
Univariate analyses, model specification

advantages of, 207
multivariable modelling, 206
screening of, 207

Univariate logistic regression coefficients, 
248–249

Updating prediction model
centre-specific estimates and EB 

estimation, 395
in GUSTO-I, 396–398
intercept updating, 397
predictor effects in

heterogeneity in calibration slope, 
398–399

testing and updating of, 398

V
Validation. See also Prediction models, 

external validity patterns
case-mix, 337–338
missed predictors Z

heterogeneous case-mix, 344
more–or less-severe case-mix, 

342–344
observed predictors X

heterogeneous case-mix, 341–342
more–or less-severe case-mix, 340–341

performance measures, 339
power calculations, 356
regression coefficients, 336–337, 341

Validation, internal and external prediction 
models, 450–451

Variance inflation factors (VIF). See Collinear 
models

W
W statistic, differences between centres, 

400–401
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