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Basic Statistical Analysis of SVMs

Overview. So far we have not considered the fact that SVMs typically
deal with observations from a random process. This chapter addresses
this issue by so-called oracle inequalities that relate the risk of an
empirical SVM solution to that of the corresponding infinite-sample
SVM. In particular, we will see that the analysis of the learning abil-
ity of SVMs can be split into a statistical part described by the oracle
inequalities and a deterministic part based on the approximation error
function investigated in the previous chapter.

Prerequisites. The first three sections require only basic knowledge
of probability theory as well as some notions from the introduction in
Chapter 1 and Sections 2.1 and 2.2 on loss functions. In the last two
sections, we additionally need Sections 4.2, 4.3, and 4.6 on kernels
and Chapter 5 on infinite-sample SVMs.

Usage. The oracle inequalities of this chapter are necessary for Chap-
ter 8 on classification. In addition, they are helpful in Chapter 11,
where practical strategies for selecting hyper parameters are discussed.

Let us recall from the introduction that the goal of learning from a training set
D is to find a decision function fD such that RL,P(fD) is close to the minimal
risk R∗

L,P. Since we typically assume that the empirical data set D consists
of i.i.d. observations from an unknown distribution P, the decision function
fD and its associated risk RL,P(fD) become random variables. Informally, the
“learning ability” of a learning method D �→ fD can hence be described by
an answer to the following question:

What is the probability that RL,P(fD) is close to R∗
L,P?

The main goal of this chapter is to present basic concepts and techniques for
addressing this question for SVMs. To this end, we introduce two key notions
of statistical learning in Section 6.1, namely consistency and learning rates,
that formalize possible answers to the question above. While consistency is
of purely asymptotic nature, learning rates provide a framework that is more
closely related to practical needs. On the other hand, we will see in Section 6.1
that consistency can often be ensured without assumptions on P, while learn-
ing with guaranteed rates almost always requires assumptions on the unknown
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distribution P. In the second section, we then establish some basic concen-
tration inequalities that will be the key tools for investigating the statistical
properties of SVMs in this chapter. Subsequently we will illustrate their use
in Section 6.3, where we investigate empirical risk minimization. The last two
sections are devoted to the actual statistical analysis of SVMs. In Section 6.4,
we establish two oracle inequalities that, for a fixed regularization parame-
ter, relate the risk of empirical SVM decision functions to the approximation
error function. These oracle inequalities will then be used to establish basic
forms of both consistency and learning rates for SVMs using a priori defined
regularization parameters. Thereby it turns out that the fastest learning rates
our analysis provides require some knowledge about the distribution P. Un-
fortunately, however, the required type of knowledge on P is rarely available
in practice, and hence these rates are in general not achievable with a priori
defined regularization parameters. Finally, in Section 6.5 we present and ana-
lyze a simple method for determining the regularization parameter for SVMs
in a data-dependent way. Here it will turn out that this method is adaptive
in the sense that it achieves the fastest learning rates of our previous analysis
without knowing any characteristics of P.

6.1 Notions of Statistical Learning

In this section, we introduce some basic notions that describe “learning” in a
more formal sense. Let us begin by defining learning methods.

Definition 6.1. Let X be a set and Y ⊂ R. A learning method L on X×Y
maps every data set D ∈ (X × Y )n, n ≥ 1, to a function fD : X → R.

By definition, any method that assigns to every training set D of arbitrary
but finite length a function fD is a learning method. In particular, the meaning
of “learning” is not specified in this definition. However, before we can define
what we actually mean by “learning”, we have to introduce a rather technical
assumption dealing with the measurability of learning methods. Fortunately,
we will see later that this measurability is usually fulfilled for SVMs and
related learning methods. Therefore, readers not interested in these technical,
yet mathematically important, details may jump directly to Definition 6.4.

Before we introduce the required measurability notion for learning meth-
ods, let us first recall (see Lemma A.3.3) that the P-completion AP of a
σ-algebra A is the smallest σ-algebra that contains A and all subsets of P-zero
sets in A. Moreover, the universal completion of A is defined as the intersec-
tion of all completions AP, where P runs through the set of all probability
measures defined on A. In order to avoid notational overload, we always as-
sume in this chapter that (X×Y )n is equipped with the universal completion
of the product σ-algebra on (X×Y )n, where the latter is usually defined from
the context. Moreover, the canonical extension of a product measure Pn to
this completion will also be denoted by Pn if no confusion can arise.
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Definition 6.2. Let X �= ∅ be a set equipped with some σ-algebra and Y ⊂ R

be a closed non-empty subset equipped with the Borel σ-algebra. We say that
the learning method L on X × Y is measurable if for all n ≥ 1 the map

(X × Y )n ×X → R

(D,x) �→ fD(x)

is measurable with respect to the universal completion of the product σ-algebra
on (X × Y )n ×X, where fD denotes the decision function produced by L.

In the following sections, we will see that both ERM and SVMs are mea-
surable learning methods under rather natural assumptions, and therefore we
omit presenting examples of measurable learning methods in this section.

Now note that for measurable learning methods the maps x �→ fD(x) are
measurable for all fixed D ∈ (X × Y )n. Consequently, the risks RL,P(fD) are
defined for all D ∈ (X × Y )n and all n ≥ 1. The following lemma ensures
that for measurable learning methods the “probability” for sets of the form
{D ∈ (X × Y )n : RL,P(fD) ≤ ε}, ε ≥ 0, is defined.

Lemma 6.3. Let L be a measurable learning method on X ×Y producing the
decision functions fD. Then, for all loss functions L : X × Y ×R → [0,∞),
all probability measures P on X × Y , and all n ≥ 1, the maps

(X × Y )n → [0,∞]
D �→ RL,P(fD)

are measurable with respect to the universal completion of the product σ-algebra
on (X × Y )n.

Proof. By the measurability of L and L, we obtain the measurability of the
map (D,x, y) �→ L(x, y, fD(x)). Now the assertion follows from the measura-
bility statement in Tonelli’s Theorem A.3.10. ��

With these preparations, we can now introduce our first notion of learning.

Definition 6.4. Let L : X ×Y ×R→ [0,∞) be a loss, P be a distribution on
X × Y , and L be a measurable learning method on X × Y . Then L is said to
be L-risk consistent for P if, for all ε > 0, we have

lim
n→∞

Pn
(
D ∈ (X × Y )n : RL,P(fD) ≤ R∗

L,P + ε
)

= 0 . (6.1)

Moreover, L is called universally L-risk consistent if it is L-risk consistent
for all distributions P on X × Y .

When the training set is sufficiently large, consistent learning methods pro-
duce nearly optimal decision functions with high probability. In other words,
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in the long run, a consistent method is able to “learn” with high probabil-
ity decision functions that achieve nearly optimally the learning goal defined
by the loss function L. Moreover, universally consistent learning methods
accomplish this without knowing any specifics of the data-generating distrib-
ution P. From an orthodox machine learning point of view, which prohibits
assumptions on P, universal consistency is thus a minimal requirement for
any reasonable learning method. However, one might wonder whether this
point of view, though mathematically compelling, is, at least sometimes, too
unrealistic. To illustrate this suspicion, let us consider binary classification on
X := [0, 1]. Then every Bayes decision function is of the form 1X1 − 1X−1 ,
where X−1,X1 ⊂ [0, 1] are suitable sets. In addition, let us restrict our discus-
sion to nontrivial distributions P onX×{−1, 1}, i.e., to distributions satisfying
both PX(X1) > 0 and PX(X−1) > 0. For “elementary” classification prob-
lems, where X1 and X−1 are finite unions of intervals, consistency then seems
to be a natural minimal requirement for any reasonable learning methods.
On the other hand, “monster” distributions P, such as the one where X1 is
the Cantor set, X−1 is its complement, and PX is a mixture of the Hausdorff
measure on X1 and the Lebesgue measure on [−1, 1], seem to be less realistic
for practical applications, and hence it may be harder to argue that learning
methods should be able to learn for such P. In many situations, however, we
cannot a priori exclude elementary distributions that are disturbed by some
small yet not vanishing amount attributed to a malign or even monster dis-
tribution. Therefore, universal consistency can also be viewed as a notion of
robustness that prevents a learning method from asymptotically failing in the
presence of deviations from (implicitly) assumed features of P.

One of the drawbacks of the notion of (universal) consistency is that it
does not specify the speed of convergence in (6.1). In other words, consistency
is a truly asymptotic notion in the sense that it does not give us any confidence
about how well the method has learned for a given data set D of fixed length
n. Therefore, our next goal is to introduce a notion of learning that has a less
asymptotic nature. We begin by reformulating consistency.

Lemma 6.5 (Learning rate). Let L : X × Y ×R → [0,∞) be a loss, P be
a distribution on X × Y , and L be a measurable learning method satisfying

sup
D∈(X×Y )n

RL,P(fD) <∞ , n ≥ 1,

for its decision functions fD. Then the following statements are equivalent:

i) L is L-risk consistent for P.
ii) There exist a constant cP > 0 and a decreasing sequence (εn) ⊂ (0, 1] that

converges to 0 such that for all τ ∈ (0, 1] there exists a constant cτ ∈ [1,∞)
only depending on τ such that, for all n ≥ 1 and all τ ∈ (0, 1], we have

Pn
(
D ∈ (X × Y )n : RL,P(fD) ≤ R∗

L,P + cP cτ εn
)
≥ 1− τ . (6.2)

In this case, L is said to learn with rate (εn) and confidence (cτ )τ∈(0,1].
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Proof. The fact that (6.2) implies L-risk consistency is trivial, and hence it
remains to show the converse implication. To this end, we define the function
F : (0,∞)×N→ [0,∞) by

F (ε, n) := Pn
(
D ∈ (X×Y )n : RL,P(fD) > R∗

L,P +ε
)
, ε ∈ (0,∞), n ≥ 1.

The L-risk consistency then shows limn→∞ F (ε, n) = 0 for all ε > 0, and
hence Lemma A.1.4 yields a decreasing sequence (εn) ⊂ (0, 1] converging to
0 such that limn→∞ F (εn, n) = 0. For a fixed τ ∈ (0, 1], there consequently
exists an nτ ≥ 1 such that

Pn
(
D ∈ (X × Y )n : RL,P(fD) > R∗

L,P + εn
)
≤ τ , n > nτ . (6.3)

For n ≥ 1, we write bn := supD∈(X×Y )n RL,P(fD) −R∗
L,P. Then the bound-

edness of L shows bn < ∞ for all n ≥ 1 and, by the definition of bn, we also
have

Pn
(
D ∈ (X × Y )n : RL,P(fD) > R∗

L,P + bn
)
≤ τ , n = 1, . . . , nτ . (6.4)

Let us define cτ := ε−1
nτ

max{1, b1, . . . , bnτ
}. Then we have bn ≤ cτεn for all

n = 1, . . . , nτ and, since cτ ≥ 1, we also have εn ≤ cτεn for all n > nτ . Using
these estimates in (6.4) and (6.3), respectively, yields (6.2). ��

Note that in (6.2) the constant cP depends on the distribution P. There-
fore, if we do not know P, then in general we do not know cP. In other words,
even if we know that L learns with rate (εn) for all distributions P, this know-
ledge does not give us any confidence about how well the method has learned
in a specific application. Unfortunately, however, the following results show
that the situation is even worse in the sense that in general there exists no
method that learns with a fixed rate and confidence for all distributions P.
Before we state these results, we remind the reader that Lebesgue absolutely
continuous distributions on subsets of Rd are atom-free. A precise definition
of atom-free measures is given in Definition A.3.12.

Theorem 6.6 (No-free-lunch theorem). Let (an) ⊂ (0, 1/16] be a decreas-
ing sequence that converges to 0. Moreover, let (X,A, µ) be an atom-free prob-
ability space, Y := {−1, 1}, and Lclass be the binary classification loss. Then,
for every measurable learning method L on X × Y , there exists a distribution
P on X × Y with PX = µ such that R∗

Lclass,P
= 0 and

ED∼PnRLclass,P(fD) ≥ an , n ≥ 1.

Since the proof of this theorem is out of the scope of this book, we refer
the interested reader to Theorem 7.2 in the book by Devroye et al. (1996).
In this regard, we also note that Lyapunov’s Theorem A.3.13 can be easily
utilized to generalize their proof to a fixed atom-free distribution. The details
are discussed in Exercise 6.4.
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Informally speaking, the no-free-lunch theorem states that, for sufficiently
malign distributions, the average risk of any classification method may tend
arbitrarily slowly to zero. Our next goal is to use this theorem to show that
in general no learning method enjoys a uniform learning rate. The first result
in this direction deals with the classification loss.

Corollary 6.7 (No uniform rate for classification). Let (X,A, µ) be an
atom-free probability space, Y := {−1, 1}, and L be a measurable learning
method on X×Y . Then, for all decreasing sequences (εn) ⊂ (0, 1] that converge
to 0 and all families (cτ )t∈(0,1] ⊂ [1,∞), there exists a distribution P on X×Y
satisfying PX = µ and R∗

Lclass,P
= 0 such that L does not learn with rate (εn)

and confidence (cτ )τ∈(0,1].

Proof. For brevity’s sake, we write L := Lclass. Let us assume that the as-
sertion is false, i.e., that there exist a decreasing sequence (εn) ⊂ (0, 1] that
converges to 0 and constants cτ ∈ [1,∞), τ ∈ (0, 1], such that, for all distri-
butions P on X × Y satisfying PX = µ and R∗

L,P = 0, the method L learns
with rate (εn) and confidence (cτ )τ∈(0,1]. In other words, we assume

Pn
(
D ∈ (X × Y )n : RL,P(fD) > cP cτ εn

)
≤ τ (6.5)

for all n ≥ 1 and τ ∈ (0, 1], where cP is a constant independent of n and τ .
Let us define F : (0, 1] × N → [0,∞) by F (τ, n) := τ−1cτεn. Then we have
limn→∞ F (τ, n) = 0 for all τ ∈ (0, 1], and consequently an obvious modifi-
cation of Lemma A.1.4 yields a decreasing sequence (τn) ⊂ (0, 1] converging
to 0 such that limn→∞ F (τn, n) = 0. We define an := 1/16 if τn ≥ 1/32
and an := 2τn otherwise. By the no-free-lunch theorem, there then exists a
distribution P on X × Y such that PX = µ, R∗

L,P = 0, and

an ≤ ED∼PnRL,P(fD)

=
∫

RL,P(fD)≤cP cτ εn

RL,P(fD) dPn(D) +
∫

RL,P(fD)>cP cτ εn

RL,P(fD) dPn(D)

≤ cP cτ εn + τ

for all n ≥ 1 and τ ∈ (0, 1], where in the last estimate we used (6.5) together
with RL,P(fD) ≤ 1. Consequently, we find

an − τn
cτn
εn

≤ cP , n ≥ 1.

On the other hand, our construction yields

lim
n→∞

an − τn
cτn
εn

= lim
n→∞

τn
cτn
εn

= lim
n→∞

1
F (τn, n)

=∞ ,

and hence we have found a contradiction. ��
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In the following, we show that the result of Corollary 6.7 is true not only
for the classification loss but for basically all loss functions. The idea of this
generalization is that whenever we have a loss function L that describes a
learning goal where at least two different labels have to be distinguished, then
this learning problem is in some sense harder than binary classification and
hence cannot be learned with a uniform rate. Since the precise statement of
this idea is rather cumbersome and requires notations from Section 3.1, we
suggest that the first-time reader skips this part and simply remembers the
informal result described above. Moreover, for convex losses L, the conditions
below can be substantially simplified. We refer the reader to Exercise 6.5 for
a precise statement and examples.

Corollary 6.8 (No uniform learning rate). Let (X,A, µ) be an atom-free
probability space, Y ⊂ R be a closed subset, and L : X × Y × R → [0,∞) be
a loss. Assume that there exist two distributions Q1 and Q2 on Y such that
ML,Q1,x(0+) �= ∅, ML,Q2,x(0+) �= ∅, and

ML,Q1,x(0+) ∩ML,Q2,x(0+) = ∅

for all x ∈ X. For x ∈ X, we define

M1,x :=
{
t ∈ R : dist(t,ML,Q2,x(0+)) ≥ dist(t,ML,Q1,x(0+))

}
,

M2,x :=
{
t ∈ R : dist(t,ML,Q2,x(0+)) < dist(t,ML,Q1,x(0+))

}
.

If there exists a measurable h : X → (0, 1] such that for all x ∈ X we have

inf
t∈M1,x

CL,Q2,x(t)− C∗L,Q2,x ≥ h(x) ,

inf
t∈M2,x

CL,Q1,x(t)− C∗L,Q1,x ≥ h(x) ,

then the conclusion of Corollary 6.7 remains true if we replace Lclass by L.

Proof. Clearly, the distribution µ̄ := ‖h‖−1
L1(µ)hµ on X is atom-free. Moreover,

for a distribution P on X × Y that is of type {Q1,Q2} and satisfies PX = µ,
we associate the distribution P̄ on X×{−1, 1} that is defined by P̄X = µ̄ and

P̄(y = 1|x) :=

{
0 if P( · |x) = Q1

1 if P( · |x) = Q2 .

In other words, P̄( · |x) produces almost surely a negative label if P( · |x) = Q1

and almost surely a positive label if P( · |x) = Q2. From this it becomes obvious
that R∗

Lclass,P̄
= 0. For x ∈ X and t ∈ R, we further define

π(t, x) :=

{
−1 if t ∈M1,x

1 if t ∈M2,x .
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In other words, π(t, x) becomes negative if t is closer to the minimizing set
ML,Q1,x(0+) of the distribution Q1 than to that of Q2. Here the idea be-
hind this construction is that Q1 is identified with negative classification la-
bels in the definition of P̄. Moreover, note that this definition is independent
of P. In addition, since t �→ dist(t, A) is continuous for arbitrary A ⊂ R and
x �→ dist(t,ML,Qi,x(0+)), i ∈ {1, 2}, is measurable by Aumann’s measurable
selection principle stated in Lemma A.3.18, we see by Lemma A.3.17 that
π : R×X → R is measurable. Now a simple calculation shows

h(x)CLclass,P̄( · |x)(π(t, x)) ≤ CL,P( · |x),x(t)− C∗L,P( · |x),x , x ∈ X, t ∈ R,

and thus we find ‖h‖L1(µ)RLclass,P̄(π ◦ f) ≤ RL,P(f)−R∗
L,P for all measurable

f : X → R, where π ◦ f(x) := π(f(x), x), x ∈ X. Now let L be a measurable
learning method producing decision functions fD. Then π ◦L defined by D �→
π ◦ fD is also a measurable learning method since π is measurable. Moreover,
π ◦ L is independent of P. Assume that L learns all distributions P of type
{Q1,Q2} that satisfy PX = µ with a uniform rate. Then our considerations
above show that π ◦ L learns all associated classification problems P̄ with the
same uniform rate, but by Corollary 6.7 this is impossible. ��

The results above show that in general we cannot a priori guarantee with
a fixed confidence that a learning method finds a nearly optimal decision
function. This is a fundamental limitation for statistical learning methods
that we cannot elude by, e.g., cleverly combining different learning methods
since such a procedure itself constitutes a learning method. In other words,
the only way to resolve this issue is to make a priori assumptions on the
data generating distribution P. However, since in almost no case will we be
able to rigorously check whether P actually satisfies the imposed assumptions,
such an approach has only very limited utility for a priori guaranteeing good
generalization performance. On the other hand, by establishing learning rates
for different types of assumptions on P, we can understand for which kind
of distributions the learning method considered learns easily and for which it
does not. In turn, such knowledge can then be used in practice where one has
to decide which learning methods are likely to be appropriate for a specific
application.

6.2 Basic Concentration Inequalities

We will see in the following sections that our statistical analysis of both ERM
and SVMs relies heavily on bounds on the probabilities

Pn
(
{D ∈ (X × Y )n : |RL,D(f)−RL,P(f)| > ε}

)
.

In this section, we thus establish some basic bounds on such probabilities.
Let us begin with an elementary yet powerful inequality that will be the

key ingredient for all the more advanced results that follow (see also Exercise
6.2 for a slightly refined estimate).
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Theorem 6.9 (Markov’s inequality). Let (Ω,A,P) be a probability space.
Then, for all measurable functions f : Ω → R and all t > 0, we have

P
(
{ω ∈ Ω : f(ω) ≥ t}

)
≤ EP|f |

t
.

Proof. For At := {ω ∈ Ω : f(ω) ≥ t}, we obviously have t1At
≤ f1At

≤ |f |,
and hence we obtain tP(At) = EP t1At

≤ EP|f |. ��

From Markov’s inequality, it is straightforward to derive Chebyshev’s in-
equality P({ω ∈ Ω : |f(ω)| ≥ t}) ≤ t−2

EP|f |2. The following result also
follows from Markov’s inequality.

Theorem 6.10 (Hoeffding’s inequality). Let (Ω,A,P) be a probability
space, a < b be two real numbers, n ≥ 1 be an integer, and ξ1, . . . , ξn : Ω →
[a, b] be independent random variables. Then, for all τ > 0, we have

P

(
1
n

n∑
i=1

(
ξi − EPξi

)
≥ (b− a)

√
τ

2n

)
≤ e−τ .

Proof. We begin with a preliminary consideration. To this end, let ã < b̃ be
two real numbers and ξ : Ω → [ã, b̃] be a random variable with EPξ = 0.
Note that from this assumptions we can immediately conclude that ã ≤ 0 and
b̃ ≥ 0. Moreover, observe that for x ∈ [ã, b̃] we have

x =
b̃− x
b̃− ã

ã+
x− ã
b̃− ã

b̃ ,

and hence the convexity of the exponential function implies

etx ≤ b̃− x
b̃− ã

etã +
x− ã
b̃− ã

etb̃ , t > 0.

Since EPξ = 0, we then obtain

EPe
tξ ≤ EP

(
b̃− ξ
b̃− ã

etã +
ξ − ã
b̃− ã

etb̃
)

=
b̃

b̃− ã
etã − ã

b̃− ã
etb̃

= etã
(

1 +
ã

b̃− ã
− ã

b̃− ã
et(b̃−ã)

)

for all t > 0. Let us now write p := −ã (b̃− ã)−1. Then we observe that
ã ≤ 0 implies p ≥ 0, and b̃ ≥ 0 implies p ≤ 1. For s ∈ R, we hence find
es > 0 ≥ 1− 1/p, from which we conclude that 1− p+ pes > 0. Consequently,
φp(s) := ln(1−p+pes)−ps is defined for all s ∈ R. Moreover, these definitions
together with our previous estimate yield

EPe
tξ ≤ e−tp(b̃−ã)

(
1− p+ pet(b̃−ã)

)
= eφp(t(b̃−ã)) .
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Now observe that we have φp(0) = 0 and φ′p(s) = pes

1−p+pes − p. From the
latter, we conclude that φ′p(0) = 0 and

φ′′p(s) =
(1− p+ pes)pes − pespes

(1− p+ pes)2
=

(1− p)pes
(1− p+ pes)2

≤ (1− p)pes
4(1− p)pes =

1
4

for all s ∈ R. By Taylor’s formula with Lagrangian remainder, we hence find

φp(s) = φp(0) + φ′p(0)s+
1
2
φ′′p(s′)s2 ≤ s

2

8
, s > 0,

where s′ ∈ [0, s] is a suitable real number. Consequently, we obtain

EPe
tξ ≤ eφp(t(b̃−ã)) ≤ exp

(
t2(b̃− ã)2

8

)
, t > 0 .

Applying this estimate to the random variables ξi−Eξi : Ω → [a−Eξi, b−Eξi],
where E := EP, we now find

EPe
t(ξi−Eξi) ≤ exp

(
t2(b− a)2

8

)
, t > 0, i = 1, . . . , n.

Using this estimate together with Markov’s inequality and the independence
assumption, we hence obtain with E := EP that

P
( n∑

i=1

(
ξi−Eξi

)
≥ εn

)
≤ e−tεn

E exp
(
t

n∑
i=1

(
ξi − Eξi

))
≤ e−tεn

n∏
i=1

Eet(ξi−Eξi)

≤ e−tεn e
nt2(b−a)2

8

for all ε > 0 and t > 0. Now we obtain the assertion by considering ε :=
(b− a)( τ

2n )1/2 and t := 4ε
(b−a)2 . ��

Ournext goal is to present a concentration inequality that refinesHoeffding’s
inequality when we know not only the ‖ · ‖∞-norms of the random variables
involved but also their variances, i.e., their ‖ · ‖2-norms. To this end, we need
the following technical lemma.

Lemma 6.11. For all x > −1, we have (1 + x) ln(1 + x)− x ≥ 3
2

x2

x+3 .

Proof. For x > −1, we define f(x) := (1+x) ln(1+x)−x and g(x) := 3
2

x2

x+3 .
Then an easy calculation shows that, for all x > −1, we have

f ′(x) = ln(1 + x) , f ′′(x) =
1

1 + x
,

g′(x) =
3x2 + 18x
2(x+ 3)2

, g′′(x) =
27

(x+ 3)3
.
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Consequently, we have f(0) = g(0) = 0, f ′(0) = g′(0) = 0, and f ′′(x) ≥ g′′(x)
for all x > −1. For x ≥ 0, the fundamental theorem of calculus thus gives

f ′(x) =
∫ x

0

f ′′(t)dt ≥
∫ x

0

g′′(t)dt = g′(x) ,

and by repeating this reasoning, we obtain the assertion for x ≥ 0. For x ∈
(−1, 0], we can show the assertion analogously. ��

Now we can establish the announced refinement of Hoeffding’s inequality.

Theorem 6.12 (Bernstein’s inequality). Let (Ω,A,P) be a probability
space, B > 0 and σ > 0 be real numbers, and n ≥ 1 be an integer. Fur-
thermore, let ξ1, . . . , ξn : Ω → R be independent random variables satisfying
EPξi = 0, ‖ξi‖∞ ≤ B, and EPξ

2
i ≤ σ2 for all i = 1, . . . , n. Then we have

P

(
1
n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ
3n

)
≤ e−τ , τ > 0.

Proof. By Markov’s inequality and the independence of ξ1, . . . , ξn, we have

P
( n∑

i=1

ξi ≥ εn
)
≤ e−tεn

EP exp
(
t

n∑
i=1

ξi

)
≤ e−tεn

n∏
i=1

EP e
tξi

for all t ≥ 0 and ε > 0. Furthermore, the properties of ξi imply

EP e
tξi =

∞∑
k=0

tk

k!
EPξ

k
i ≤ 1 +

∞∑
k=2

tk

k!
σ2Bk−2 = 1 +

σ2

B2

(
etB − tB − 1

)
.

Using the simple estimate 1 + x ≤ ex for x := σ2

B2 (etB − tB − 1), we hence
obtain

P
( n∑

i=1

ξi ≥ εn
)
≤ e−tεn

n∏
i=1

(
1 +

σ2

B2

(
etB − tB − 1

))

≤ exp
(
−tεn+

σ2n

B2

(
etB − tB − 1

))

for all t ≥ 0. Now elementary calculus shows that the right-hand side of the
inequality is minimized at

t∗ :=
1
B

ln
(
1 +

εB

σ2

)
.

Writing y := εB
σ2 and using Lemma 6.11, we furthermore obtain

−t∗εn+
σ2n

B2

(
et

∗B − t∗B − 1
)

= −nσ
2

B2

(
(1 + y) ln(1 + y)− y

)
≤ −3nσ2

2B2

y2

y + 3

= − 3ε2n
2εB + 6σ2

.
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Let us now define ε :=
√

2σ2τ
n + B2τ2

9n2 + Bτ
3n . Then we have τ = 3ε2n

2εB+6σ2 and

ε ≤
√

2σ2τ

n
+

2Bτ
3n

,

and thus we obtain the assertion. ��
It is important to keep in mind that in situations where we know upper

bounds σ2 and B for the variances and the suprema, respectively, Bernstein’s
inequality is often sharper than Hoeffding’s inequality. The details are dis-
cussed in Exercise 6.1.

Our next goal is to generalize Bernstein’s inequality to Hilbert space valued
random variables. To this end, we need the following more general result.

Theorem 6.13. Let (Ω,A,P) be a probability space, E be a separable Banach
space, and ξ1, . . . , ξn : Ω → E be independent E-valued P-integrable random
variables. Then, for all ε > 0 and all t ≥ 0, we have

P
(∥∥∥

n∑
i=1

ξi

∥∥∥ ≥ εn
)
≤ exp

(
−tεn+ tEP

∥∥∥
n∑

i=1

ξi

∥∥∥+
n∑

i=1

EP(et‖ξi‖−1− t‖ξi‖)
)
.

Proof. Let us consider the σ-algebras F0 := {∅, Ω} and Fk := σ(ξ1, . . . , ξk),
k = 1, . . . , n. Furthermore, for k = 1, . . . , n, we define

Xk := EP

(∥∥∥
n∑

i=1

ξi

∥∥∥
∣∣∣∣Fk

)
− EP

(∥∥∥
n∑

i=1

ξi

∥∥∥
∣∣∣∣Fk−1

)
,

Yk := EP

(∥∥∥
n∑

i=1

ξi

∥∥∥−
∥∥∥∑

i	=k

ξi

∥∥∥
∣∣∣∣Fk

)
.

By a simple telescope sum argument, we then have
n∑

i=1

Xi =
∥∥∥

n∑
i=1

ξi

∥∥∥− EP

∥∥∥
n∑

i=1

ξi

∥∥∥ . (6.6)

Moreover, note that
∑

i	=k ξi is independent of ξk, and hence we obtain

EP

(∥∥∥∑
i	=k

ξi

∥∥∥
∣∣∣∣Fk

)
= EP

(∥∥∥∑
i	=k

ξi

∥∥∥
∣∣∣∣Fk−1, ξk

)
= EP

(∥∥∥∑
i	=k

ξi

∥∥∥
∣∣∣∣Fk−1

)
.

Since Fk−1 ⊂ Fk, we thus find

Xk = EP

(∥∥∥
n∑

i=1

ξi

∥∥∥
∣∣∣∣Fk

)
− EP

(∥∥∥
n∑

i=1

ξi

∥∥∥
∣∣∣∣Fk−1

)

= EP

(∥∥∥
n∑

i=1

ξi

∥∥∥−
∥∥∥∑

i	=k

ξi

∥∥∥
∣∣∣∣Fk

)
− EP

(∥∥∥
n∑

i=1

ξi

∥∥∥−
∥∥∥∑

i	=k

ξi

∥∥∥
∣∣∣∣Fk−1

)

= Yk − EP(Yk|Fk−1) (6.7)
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for all k = 1, . . . , n. Using x ≤ ex−1 for all x ∈ R, we hence obtain

EP

(
etXk | Fk−1

)
= e−tEP(Yk|Fk−1)EP

(
etYk | Fk−1

)
≤ e−tEP(Yk|Fk−1)eEP(etYk | Fk−1)−1

= exp
(
EP

(
etYk − 1− tYk | Fk−1

))
. (6.8)

Now, an easy calculation shows ex − e−x ≥ 2x for all x ≥ 0, which in turn
implies e−x− 1− (−x) ≤ ex− 1− x for all x ≥ 0. From this we conclude that
ex − 1 − x ≤ e|x| − 1 − |x| for all x ∈ R. Moreover, it is straightforward to
check that the function x �→ ex − 1 − x is increasing on [0,∞). In addition,
the triangle inequality in E gives

|Yk| ≤ EP

(∣∣∣∥∥
n∑

i=1

ξi
∥∥−∥∥∑

i	=k

ξi
∥∥∣∣∣
∣∣∣∣Fk

)
≤ EP

(∥∥∥
n∑

i=1

ξi−
∑
i	=k

ξi

∥∥∥
∣∣∣∣Fk

)
= ‖ξk‖ ,

where in the last step we used that ‖ξk‖ is Fk-measurable. Consequently, (6.8)
implies

EP

(
etXk | Fk−1

)
≤ exp

(
EP

(
et|Yk| − 1− t|Yk|

∣∣Fk−1

))

≤ exp
(
EP

(
et‖ξk‖ − 1− t‖ξk‖

∣∣Fk−1

))

= exp
(
EP

(
et‖ξk‖ − 1− t‖ξk‖

))
, (6.9)

where in the last step we used that ξk is independent of Fk−1. Moreover,∑k−1
i=1 Xi is Fk−1-measurable, and writing E := EP we hence have

E

(
et
∑k−1

i=1 XiE
(
etXk

∣∣Fk−1

))
= E

(
E
(
et
∑k−1

i=1 XietXk
∣∣Fk−1

))
= Eet

∑k
i=1 Xi .

Combining this last equation with (6.9) now yields

EPe
t
∑k

i=1 Xi = EP

(
et
∑k−1

i=1 Xi EP

(
etXk

∣∣Fk−1

))

≤ EP

(
et
∑k−1

i=1 Xi

)
· exp

(
EP

(
et‖ξk‖ − 1− t‖ξk‖

))
,

and by successively applying this inequality we hence obtain

EPe
t
∑n

i=1 Xi ≤
n∏

i=1

exp
(
EP

(
et‖ξi‖−1−t‖ξk‖

))
= exp

( n∑
i=1

EP

(
et‖ξi‖−1−t‖ξi‖

))

for all t ≥ 0. By Markov’s inequality and (6.6), we thus find
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P
(∥∥∥

n∑
i=1

ξi

∥∥∥ ≥ εn
)
≤ e−tεn

EP exp
(
t
∥∥∥

n∑
i=1

ξi

∥∥∥
)

= e−tεn
EP exp

(
t

n∑
i=1

Xi + tEP

∥∥∥
n∑

i=1

ξi

∥∥∥
)

≤ exp
(
−tεn+ tEP

∥∥∥
n∑

i=1

ξi

∥∥∥+
n∑

i=1

EP

(
et‖ξi‖ − 1− t‖ξi‖

))

for all ε > 0 and all t ≥ 0. ��

With the help of the previous theorem we can now establish the following
Hilbert space version of Bernstein’s inequality.

Theorem 6.14 (Bernstein’s inequality in Hilbert spaces). Let (Ω,A,P)
be a probability space, H be a separable Hilbert space, B > 0, and σ > 0. Fur-
thermore, let ξ1, . . . , ξn : Ω → H be independent random variables satisfying
EPξi = 0, ‖ξi‖∞ ≤ B, and EP‖ξi‖2H ≤ σ2 for all i = 1, . . . , n. Then we have

P

(∥∥∥ 1
n

n∑
i=1

ξi

∥∥∥
H
≥
√

2σ2τ

n
+

√
σ2

n
+

2Bτ
3n

)
≤ e−τ , τ > 0.

Proof. We will prove the assertion by applying Theorem 6.13. To this end,
we first observe that the independence of ξ1, . . . , ξn yields E〈ξi, ξj〉H =
〈Eξi,Eξj〉H = 0 for all i �= j, where E := EP. Consequently, we obtain

E

∥∥∥
n∑

i=1

ξi

∥∥∥
H
≤
(

E

∥∥∥
n∑

i=1

ξi

∥∥∥2
H

)1/2

=
( n∑

i=1

E‖ξi‖2H
)1/2

≤
√
nσ2 . (6.10)

In addition, the series expansion of the exponential function yields

n∑
i=1

E
(
et‖ξi‖ − 1− t‖ξi‖

)
=

n∑
i=1

∞∑
j=2

tj

j!
E‖ξi‖jH ≤

n∑
i=1

∞∑
j=2

tj

j!
Bj−2

E‖ξi‖2H

for all t ≥ 0, and therefore we find

n∑
i=1

E
(
et‖ξi‖ − 1− t‖ξi‖

)
≤ σ2

B2

n∑
i=1

∞∑
j=2

tj

j!
Bj =

nσ2

B2

(
etB − 1− tB

)

for all t ≥ 0. By Theorem 6.13, we hence obtain

P
(∥∥∥

n∑
i=1

ξi

∥∥∥
H
≥ εn

)
≤ exp

(
−tεn+ tE

∥∥∥
n∑

i=1

ξi

∥∥∥+
n∑

i=1

E(et‖ξi‖ − 1− t‖ξi‖)
)

≤ exp
(
−tεn+ t

√
nσ2 +

nσ2

B2

(
etB − 1− tB

))
(6.11)
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for all t ≥ 0. Let us now restrict our considerations to ε ≥ σn−1/2. Then we
have y := εB

σ2 − B√
nσ2 > 0, and consequently it is easy to see that the function

on the right-hand side of (6.11) is minimized at

t∗ :=
1
B

ln
(

1 +
εB

σ2
− B√

nσ2

)
.

Moreover, Lemma 6.11 yields

−t∗εn+ t∗
√
nσ2 +

nσ2

B2

(
et

∗B − 1− t∗B
)

= −nσ
2

B2

(
(1 + y) ln(1 + y)− y

)

≤ −3nσ2

2B2

y2

y + 3
.

By combining this estimate with (6.11), we then find

P
(∥∥∥

n∑
i=1

ξi

∥∥∥
H
≥ εn

)
≤ exp

(
−3nσ2

2B2

y2

y + 3

)
.

Let us now define ε :=
√

2σ2τ
n + B2τ2

9n2 + Bτ
3n +

√
σ2

n . Then, an easy calculation
shows

y =
εB

σ2
− B√

nσ2
=

√
2B2τ

nσ2
+
B4τ2

9n2σ4
+
B2τ

3nσ2
,

and hence we find τ = − 3nσ2

2B2
y2

y+3 . Now the assertion follows from

ε =

√
2σ2τ

n
+
B2τ2

9n2
+
Bτ

3n
+

√
σ2

n
≤
√

2σ2τ

n
+

2Bτ
3n

+

√
σ2

n
. ��

The following Hilbert space version of Hoeffding’s inequality is an imme-
diate consequence of Theorem 6.14. We will use it in Section 6.4 to derive an
oracle inequality for SVMs.

Corollary 6.15 (Hoeffding’s inequality in Hilbert spaces). Let (Ω,A,P)
be a probability space, H be a separable Hilbert space H, and B > 0. Fur-
thermore, let ξ1, . . . , ξn : Ω → H be independent H-valued random variables
satisfying ‖ξi‖∞ ≤ B for all i = 1, . . . , n. Then, for all τ > 0, we have

P
(∥∥∥ 1

n

n∑
i=1

(
ξi − EPξi

) ∥∥∥
H
≥ B
√

2τ
n

+B

√
1
n

+
4Bτ
3n

)
≤ e−τ .

Proof. Let us define ηi := ξi − EPξi, i = 1, . . . , n. Then we have EPηi = 0,
‖ηi‖∞ ≤ 2B, and

EP‖ηi‖2H = EP〈ξi, ξi〉 − 2EP〈ξi,EPξi〉+ 〈EPξi,EPξi〉 ≤ EP〈ξi, ξi〉 ≤ B2

for all i = 1, . . . , n. Applying Theorem 6.14 to η1, . . . , ηn then yields the
assertion. ��
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6.3 Statistical Analysis of Empirical Risk Minimization

In this section, we investigate statistical properties for empirical risk mini-
mization. Although this learning method is not our primary object of interest,
there are two reasons why we consider it before investigating SVMs. First, the
method is so elementary that the basic ideas of its analysis are not hidden by
technical considerations. This will give us good preparation for the more in-
volved analysis of SVMs in Section 6.4. Second, the results we establish will be
utilized in Section 6.5, where we investigate how the regularization parameter
of SVMs can be chosen in a data-dependent and adaptive way.

Let us begin by formally introducing empirical risk minimization.

Definition 6.16. Let L : X × Y ×R→ [0,∞) be a loss and F ⊂ L0(X) be a
non-empty set. A learning method whose decision functions fD satisfy

RL,D(fD) = inf
f∈F
RL,D(f) (6.12)

for all n ≥ 1 and D ∈ (X × Y )n is called empirical risk minimization
(ERM) with respect to L and F .

By definition, empirical risk minimization produces decision functions that
minimize the empirical risk over F . The motivation for this approach is based
on the law of large numbers which says that for fixed f ∈ F we have

lim
n→∞

RL,D(f) = RL,P(f)

if the training sets D of length n are identically and independently distributed
according to some probability measure P onX×Y . This limit relation suggests
that in order to find a minimizer of the true risk RL,P, it suffices to find
a minimizer of its empirical approximation RL,D. Unfortunately, however,
minimizing RL,D over F := L0(X) or F := L∞(X) can lead to “overfitted”
decision functions, as discussed in Exercise 6.7, and hence ERM typically
minimizes over a smaller set F of functions. Moreover, note that for general
losses L and sets of functions F there does not necessarily exist a function
fD satisfying (6.12). In addition, there are also situations in which multiple
minimizers exist, and consequently one should always be aware that ERM
usually is not a uniquely determined learning method. Let us now show that
there usually exists a measurable ERM if there exists an ERM.1

Lemma 6.17 (Measurability of ERM). Let L : X × Y ×R→ [0,∞) be a
loss and F ⊂ L0(X) be a subset that is equipped with a complete and separable
metric dominating the pointwise convergence. Then, if there exists an ERM,
there also exists a measurable ERM.

1 Since this is little more than a technical requirement for the following results, the
first-time reader may skip this lemma.
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Before we present the proof of this lemma, let us first note that finite
subsets F ⊂ L0(X) equipped with the discrete metric satisfy the assump-
tions above. In addition, the existence of an ERM is automatically guaranteed
in this case, and hence there always exists a measurable ERM for finite F .
Similarly, for closed, separable F ⊂ L∞(X), there exists a measurable ERM
whenever there exists an ERM.

Proof. Lemma 2.11 shows that the map (x, y, f) �→ L(x, y, f(x)) defined on
X × Y × F is measurable. From this it is easy to conclude that the map
ϕ : (X × Y )n ×F → [0,∞) defined by

ϕ(D, f) := RL,D(f) , D ∈ (X × Y )n, f ∈ F ,

is measurable with respect to the product topology of (X×Y )n×F . By taking
F (D) := F , D ∈ (X × Y )n, in Aumann’s measurable selection principle (see
Lemma A.3.18), we thus see that there exists an ERM such that D �→ fD is
measurable with respect to the universal completion of the product σ-algebra
of (X × Y )n. Consequently, the map (X × Y )n × X → F × X defined by
(D,x) �→ (fD, x) is measurable with respect to the universal completion of
the product σ-algebra of (X × Y )n ×X. In addition, Lemma 2.11 shows that
the map F ×X → R defined by (f, x) �→ f(x) is measurable. Combining both
maps, we then obtain the measurability of (D,x) �→ fD(x). ��

Let us now analyze the statistical properties of ERM. To this end, let us
assume that R∗

L,P,F <∞. Moreover, let us fix a δ > 0 and a function fδ ∈ F
such that RL,P(fδ) ≤ R∗

L,P,F + δ. Then a simple calculation shows

RL,P(fD)−R∗
L,P,F ≤ RL,P(fD)−RL,D(fD) +RL,D(fD)−RL,P(fδ) + δ

≤ RL,P(fD)−RL,D(fD) +RL,D(fδ)−RL,P(fδ) + δ
≤ 2 sup

f∈F

∣∣RL,P(f)−RL,D(f)
∣∣+ δ ,

and by letting δ → 0 we thus find

RL,P(fD)−R∗
L,P,F ≤ 2 sup

f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ . (6.13)

Let us now assume that F is a finite set with cardinality |F| and that B > 0
is a real number such that

L(x, y, f(x)) ≤ B , (x, y) ∈ X × Y, f ∈ F . (6.14)

Note that the latter assumption ensures the earlier imposed R∗
L,P,F <∞. For

a measurable ERM, (6.13) together with Hoeffding’s inequality then yields
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Pn

(
D ∈ (X × Y )n : RL,P(fD)−R∗

L,P,F ≥ B
√

2τ
n

)

≤ Pn

(
D ∈ (X × Y )n : sup

f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ ≥ B

√
τ

2n

)

≤
∑
f∈F

Pn

(
D ∈ (X × Y )n :

∣∣RL,P(f)−RL,D(f)
∣∣ ≥ B

√
τ

2n

)

≤ 2 |F|e−τ . (6.15)

By elementary algebraic transformations, we thus find the following result.

Proposition 6.18 (Oracle inequality for ERM). Let L : X × Y × R →
[0,∞) be a loss, F ⊂ L0(X) be a non-empty finite set, and B > 0 be a constant
such that (6.14) holds. Then, for all measurable ERMs, all distributions P on
X × Y , and all τ > 0, n ≥ 1, we have

Pn

(
D ∈ (X×Y )n : RL,P(fD) < R∗

L,P,F +B

√
2τ + 2 ln(2 |F|)

n

)
≥ 1−e−τ .

Inequalities like the one above are called oracle inequalities since they
compare the empirically obtained decision function with the one an omniscient
oracle, having an infinite amount of observation, would obtain when pursuing
the same goal, which in the case above is minimizing the L-risk over F .

Proposition 6.18 shows that with high probability the function fD ap-
proximately minimizes the risk RL,P in F . In other words, the heuristic of
replacing the unknown risk RL,P by the empirical risk RL,D is justified for
finite sets F . However, the assumption that F is finite is quite restrictive,
and hence our next goal is to remove it. To this end we first observe that we
cannot use a simple limit argument for |F| → ∞ in Proposition 6.18 since
the term B

√
2τ + 2 ln(2 |F|)n−1/2 is unbounded in |F|. To resolve this prob-

lem we introduce the following fundamental concept, which will enable us to
approximate infinite F by finite subsets.

Definition 6.19. Let (T, d) be a metric space and ε > 0. We call S ⊂ T an
ε-net of T if for all t ∈ T there exists an s ∈ S with d(s, t) ≤ ε. Moreover,
the ε-covering number of T is defined by

N (T, d, ε) := inf
{
n ≥ 1 : ∃ s1, . . . , sn ∈ T such that T ⊂

n⋃
i=1

Bd(si, ε)
}
,

where inf ∅ := ∞ and Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} denotes the closed ball
with center s ∈ T and radius ε.

Moreover, if (T, d) is a subspace of a normed space (E, ‖·‖) and the metric
is given by d(x, x′) = ‖x−x′‖, x, x′ ∈ T , we write N (T, ‖ · ‖, ε) := N (T, d, ε).
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In simple words, an ε-net approximates T up to ε. Moreover, the cov-
ering number N (T, d, ε) is the size of the smallest possible ε-net, i.e., it is
the smallest number of points that are needed to approximate the set T up
to ε. Note that if T is compact, then all covering numbers are finite, i.e.,
N (T, d, ε) <∞ for all ε > 0. Moreover, N (T, d, ε) is a decreasing function in
ε and supε>0N (T, d, ε) <∞ if and only if T is finite.

Besides covering numbers, we will also need the following “inverse” con-
cept.

Definition 6.20. Let (T, d) be a metric space and n ≥ 1 be an integer. Then
the n-th (dyadic) entropy number of (T, d) is defined by

en(T, d) := inf
{
ε > 0 : ∃ s1, . . . , s2n−1 ∈ T such that T ⊂

2n−1⋃
i=1

Bd(si, ε)
}
.

Moreover, if (T, d) is a subspace of a normed space (E, ‖ · ‖) and the metric d
is given by d(x, x′) = ‖x− x′‖, x, x′ ∈ T , we write

en(T, ‖ · ‖) := en(T,E) := en(T, d) .

Finally, if S : E → F is a bounded, linear operator between the normed spaces
E and F , we write en(S) := en(SBE , ‖ · ‖F ).

Note that the (dyadic) entropy numbers consider ε-nets of cardinality 2n−1

instead of ε-nets of cardinality n. The reason for this is that this choice ensures
that the entropy numbers share some basic properties with other s-numbers
such as the singular numbers introduced in Section A.5.2. Basic properties of
entropy numbers and their relation to singular numbers together with some
bounds for important function classes can be found in Section A.5.6.

The following lemma shows that bounds on entropy numbers imply bounds
on covering numbers (see Exercise 6.8 for the inverse implication).

Lemma 6.21 (Equivalence of covering and entropy numbers). Let
(T, d) be a metric space and a > 0 and q > 0 be constants such that

en(T, d) ≤ an−1/q , n ≥ 1.

Then, for all ε > 0, we have

lnN (T, d, ε) ≤ ln(4) ·
(a
ε

)q

.

Proof. Let us fix a δ > 0 and an ε ∈ (0, a]. Then there exists an integer n ≥ 1
such that

a(1 + δ)(n+ 1)−1/q ≤ ε ≤ a(1 + δ)n−1/q . (6.16)

Since en(T, d) < a(1 + δ)n−1/q, there then exists an a(1 + δ)n−1/q-net S of T
with |S| ≤ 2n−1, i.e., we have
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N
(
T, d, a(1 + δ)n−1/q

)
≤ 2n−1 .

Moreover, (6.16) implies 21/qε ≥ 21/qa(1 + δ)(n+ 1)−1/q ≥ a(1 + δ)n−1/q and
n ≤

( (1+δ)a
ε

)q. Consequently, we obtain

lnN (T, d, 2
1
q ε) ≤ ln

(
2N (T, d, a(1 + δ)n−

1
q )
)
≤ n ln 2 ≤ ln(2) ·

(
(1 + δ)a
ε

)q

.

Since lnN (T, d, ε) = 0 for all ε > a, we then find the assertion. ��

With the help of covering numbers, we can now investigate the statistical
properties of ERM over certain infinite sets F .

Proposition 6.22 (Oracle inequality for ERM). Let L : X × Y × R →
[0,∞) be a locally Lipschitz continuous loss and P be a distribution on X×Y .
Moreover, let F ⊂ L∞(X) be non-empty and compact, and B > 0 and M > 0
be constants satisfying (6.14) and ‖f‖∞ ≤M , f ∈ F , respectively. Then, for
all measurable ERMs and all ε > 0, τ > 0, and n ≥ 1, we have

Pn

(
RL,P(fD) ≥ R∗

L,P,F +B

√
2τ+2 ln(2N (F , ‖ · ‖∞, ε))

n
+ 4ε|L|M,1

)
≤ e−τ .

Before we prove this proposition, let us first note that the compactness
of F together with the continuity of RL,D : L∞(X) → [0,∞) ensures the
existence of an empirical risk minimizer. Moreover, the compactness of F
implies that F is a closed and separable subset of L∞(X). The remarks after
Lemma 6.17 then show that there exists a measurable ERM. In addition,
Proposition 6.22 remains true if one replaces the compactness assumption by
N (F , ‖ · ‖∞, ε) < ∞ for all ε > 0. However, in this case the existence of
an ERM is no longer “automatically” guaranteed. Finally, if L is not locally
Lipschitz continuous, variants of Proposition 6.22 still hold if the covering
numbers are replaced by other notions measuring the “size” of F . For the
classification loss, corresponding results are briefly mentioned in Section 6.6.

Proof. For a fixed ε > 0, the compactness of F shows that there exists an
ε-net Fε of F with |Fε| = N (F , ‖ · ‖∞, ε) < ∞. For f ∈ F , there thus exists
a g ∈ Fε with ‖f − g‖∞ ≤ ε, and hence we find

∣∣RL,P(f)−RL,D(f)
∣∣

≤
∣∣RL,P(f)−RL,P(g)

∣∣+ ∣∣RL,P(g)−RL,D(g)
∣∣+ ∣∣RL,D(g)−RL,D(f)

∣∣
≤ 2 ε |L|M,1 +

∣∣RL,P(g)−RL,D(g)
∣∣ ,

where in the last step we used the local Lipschitz continuity of the L-risks
established in Lemma 2.19. By taking suprema on the right- and left-hand
sides we thus obtain

sup
f∈F

∣∣RL,P(f)−RL,D(f)
∣∣ ≤ 2 ε |L|M,1 + sup

g∈Fε

∣∣RL,P(g)−RL,D(g)
∣∣ ,
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and combining this estimate with (6.13), the latter inequality leads to

Pn

(
D ∈ (X × Y )n : RL,P(fD)−R∗

L,P,F ≥ B
√

2τ
n

+ 4ε|L|M,1

)

≤ Pn

(
D ∈ (X × Y )n : sup

g∈Fε

∣∣RL,P(g)−RL,D(g)
∣∣ ≥ B

√
τ

2n

)

≤ 2N (F , ‖ · ‖∞, ε) e−τ (6.17)

for all ε, τ > 0. Some algebraic transformations then yield the assertion. ��

6.4 Basic Oracle Inequalities for SVMs

In Section 6.3, we introduced some basic techniques to analyze the statistical
properties of empirical risk minimization. Since the only difference between
ERM and SVMs is the additional regularization term λ‖ · ‖2H , it seems plau-
sible that these techniques can be adapted to the analysis of SVMs. This will
be the idea of the second oracle inequality for SVMs we establish in this sec-
tion. Moreover, we will also provide some bounds on the covering numbers
for certain RKHSs. First, however, we will present another technique for es-
tablishing oracle inequalities for SVMs. This technique, which requires fewer
assumptions on the kernel and the input space, combines a stability argu-
ment with the Hilbert space valued version of Hoeffding’s inequality proved
in Section 6.2. Finally, we illustrate how the established oracle inequalities
can be used to establish both consistency and learning rates for SVMs.

Before we present the first oracle inequality, we have to ensure that SVMs
are measurable learning methods. This is done in the following lemma.

Lemma 6.23 (Measurability of SVMs). Let L : X × Y ×R → [0,∞) be
a convex loss and H be a separable RKHS over X with measurable kernel k.
Then, for all λ > 0, the corresponding SVM that produces the decision func-
tions fD,λ for D ∈ (X ×Y )n and n ≥ 1 is a measurable learning method, and
the maps D �→ fD,λ mapping (X × Y )n to H are measurable.

Proof. Obviously, H is a separable metric space and Lemma 4.24 ensures
H ⊂ L0(X). Moreover, the Dirac functionals are continuous on H by the
definition of RKHSs, and hence the metric of H dominates the pointwise
convergence. Finally, the norm ‖ · ‖H : H → R is continuous and hence
measurable. Analogously to the proof of Lemma 6.17, we hence conclude that
ϕ : (X × Y )n ×H → [0,∞) defined by

ϕ(D, f) := λ‖f‖2H +RL,D(f) , D ∈ (X × Y )n, f ∈ H,

is measurable. In addition, Lemma 5.1 shows that fD,λ is the only element in
H satisfying
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ϕ(D, fD,λ) = inf
f∈H

ϕ(D, f) , D ∈ (X × Y )n,

and consequently the measurability of D �→ fD,λ with respect to the universal
completion of the product σ-algebra of (X × Y )n follows from Aumann’s
measurable selection principle (see Lemma A.3.18). As in the proof of Lemma
6.17, we then obtain the first assertion. ��

Let us recall that in this chapter we always assume that (X × Y )n is
equipped with the universal completion of the product σ-algebra of (X×Y )n.
In addition, given a distribution P on X × Y , we always write Pn for the
canonical extension of the n-fold product measure of P to this completion.
Note that these conventions together with Lemmas 6.23 and 6.3 make it pos-
sible to ignore measurability questions for SVMs.

Let us now establish a first oracle inequality for SVMs.

Theorem 6.24 (Oracle inequality for SVMs). Let L : X×Y ×R→ [0,∞)
be a convex, locally Lipschitz continuous loss satisfying L(x, y, 0) ≤ 1 for all
(x, y) ∈ X × Y , H be a separable RKHS over X with measurable kernel k
satisfying ‖k‖∞ ≤ 1, and P be a distribution on X × Y . For fixed λ > 0,
n ≥ 1, and τ > 0, we then have with probability Pn not less than 1− e−τ that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H < A2(λ)+λ−1|L|2

λ− 1
2 ,1

(√
8τ
n

+

√
4
n

+
8τ
3n

)
,

where A2( · ) denotes the corresponding approximation error function.

Before we prove Theorem 6.24, we note that the condition L(x, y, 0) ≤ 1 is
satisfied for all margin-based losses L(y, t) = ϕ(yt) for which we have ϕ(0) ≤ 1.
In particular, all examples considered in Section 2.3, namely the (truncated)
least squares loss, the hinge loss, and the logistic loss for classification, fall
into this category. Furthermore, “restricted” distance-based losses i.e., losses
L : [−1, 1] × R → [0,∞) of the form L(y, t) = ψ(y − t), y ∈ [−1, 1], t ∈ R,
satisfy L(y, 0) ≤ 1, y ∈ [−1, 1], if and only if ψ(r) ≤ 1 for all r ∈ [−1, 1].
Note that the least squares loss, the logistic loss for regression, Huber’s loss
for α ≤

√
2, the ε-insensitive loss, and the pinball loss satisfy this assumption.

Proof. Let Φ : X → H denote the canonical feature map of k. By Corollary
5.10, there exists a bounded measurable function h : X × Y → R such that

‖h‖∞ ≤ |L|λ−1/2,1 ,∥∥ fP,λ − fD,λ

∥∥
H
≤ 1
λ

∥∥EPhΦ− EDhΦ
∥∥

H
,

for all D ∈ (X × Y )n. Moreover, since ‖h(x, y)Φ(x)‖H ≤ ‖h‖∞ ≤ |L|λ−1/2,1

for all (x, y) ∈ X × Y , we find by Corollary 6.15 that

Pn

(
D∈(X×Y )n :

∥∥EPhΦ−EDhΦ
∥∥

H
≥ |L|λ−1/2,1

(√
2τ
n

+

√
1
n

+
4τ
3n

))
≤ e−τ .
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Combining these estimates yields

Pn

(
D∈(X×Y )n : ‖fD,λ−fP,λ‖H ≥ λ−1|L|

λ− 1
2 ,1

(√
2τ
n

+

√
1
n

+
4τ
3n

))
≤ e−τ .

Furthermore, λ‖fD,λ‖2H +RL,D(fD,λ) ≤ λ‖fP,λ‖2H +RL,D(fP,λ) implies

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H −A2(λ)

= λ‖fD,λ‖2H +RL,P(fD,λ)− λ‖fP,λ‖2H −RL,P(fP,λ)
= RL,P(fD,λ)−RL,D(fD,λ)

+λ‖fD,λ‖2H +RL,D(fD,λ)− λ‖fP,λ‖2H −RL,P(fP,λ)
≤ RL,P(fD,λ)−RL,P(fP,λ) +RL,D(fP,λ)−RL,D(fD,λ) . (6.18)

Moreover, ‖fQ,λ‖∞ ≤ ‖fQ,λ‖H ≤ λ−1/2 holds for all distributions Q on X×Y
by Lemma 4.23, (5.4), and RL,Q(0) ≤ 1. Consequently, for every distribution
Q on X × Y , we have

RL,Q(fD,λ)−RL,Q(fP,λ) ≤ |L|λ−1/2,1‖fD,λ − fP,λ‖H

by Lemma 2.19. Applying this estimate to (6.18) twice yields

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H −A2(λ) ≤ 2|L|λ−1/2,1‖fD,λ − fP,λ‖H ,

and by combining this inequality with the above concentration inequality we
obtain the assertion. ��

We will later see that a key feature of the oracle inequality above is the fact
that it holds under somewhat minimal assumptions. In addition, the technique
used in its proof is very flexible, as we will see, e.g., in Chapter 9 when dealing
with regression problems having unbounded noise. On the downside, however,
the oracle inequality above often leads to suboptimal learning rates. In order
to illustrate this, we first need the following oracle inequality.

Theorem 6.25 (Oracle inequality for SVMs using benign kernels).
Let X be a compact metric space and L : X × Y × R → [0,∞) be a convex,
locally Lipschitz continuous loss satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ X×Y .
Moreover, let H be the RKHS of a continuous kernel k on X with ‖k‖∞ ≤ 1
and P be a probability measure on X×Y . Then, for fixed λ > 0, n ≥ 1, ε > 0,
and τ > 0, we have with probability Pn not less than 1− e−τ that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H

< A2(λ) + 4ε|L|
λ− 1

2 ,1
+
(
|L|

λ− 1
2 ,1
λ−

1
2 +1

)
√

2τ+2 ln
(
2N (BH , ‖ · ‖∞, λ

1
2 ε)
)

n
.
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Proof. By Corollary 4.31, id : H → C(X) is compact, i.e., the ‖ · ‖∞-closure
BH of the unit ball BH is a compact subset of C(X). From this we conclude
that N (BH , ‖ · ‖∞, ε) < ∞ for all ε > 0. In addition, the compactness of X
implies that X is separable, and hence Lemma 4.33 shows that H is separable.
Consequently, the SVM is measurable. Moreover, from (6.18) and ‖fQ,λ‖∞ ≤
‖fQ,λ‖H ≤ λ−1/2 for all distributions Q on X × Y , we conclude that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P,H−A2(λ) ≤ 2 sup

‖f‖H≤λ−1/2
|RL,P(f)−RL,D(f)| .

In addition, for f ∈ λ−1/2BH and B := |L|λ−1/2,1λ
−1/2 + 1, we have

∣∣L(x, y, f(x))
∣∣ ≤ ∣∣L(x, y, f(x))− L(x, y, 0)

∣∣+ L(x, y, 0) ≤ B

for all (x, y) ∈ X × Y . Now let Fε be an ε-net of λ−1/2BH with cardinality

|Fε| = N
(
λ−1/2BH , ‖ · ‖∞, ε

)
= N

(
BH , ‖ · ‖∞, λ1/2ε

)
.

As in (6.17), we then conclude that for τ > 0 we have

Pn

(
λ‖fD,λ‖2H +RL,P(fD,λ)−R∗

L,P,H ≥ A2(λ) +B

√
2τ
n

+ 4ε|L|λ−1/2,1

)

≤ 2N (BH , ‖ · ‖∞, λ1/2ε) e−τ .

By simple algebraic calculations, we then obtain the assertion. ��

The right-hand side of the oracle inequality of Theorem 6.25 involves ‖·‖∞-
covering numbers of the unit ball BH of the RKHSH. By Corollary 4.31, these
covering numbers are finite, and hence the right-hand side is non-trivial for
certain values of ε, λ, and n. In order to derive consistency and learning rates
from Theorem 6.25, however, we need quantitative statements on the covering
numbers. This is the goal of the following two results, which for later purposes
are stated in terms of entropy numbers reviewed in Section A.5.6.

Theorem 6.26 (Entropy numbers for smooth kernels). Let Ω ⊂ Rd

be an open subset, m ≥ 1, and k be an m-times continuously differentiable
kernel on Ω. Moreover, let X ⊂ Ω be a closed Euclidean ball and let H|X
denote the RKHS of the restricted kernel k|X×X . Assume that we have an
r0 ∈ (1,∞] such that rX ⊂ Ω for all r ∈ [1, r0). Then there exists a constant
cm,d,k(X) > 0 such that

ei
(
id : H|rX → �∞(rX)

)
≤ cm,d,k(X) rm i−m/d , i ≥ 1, r ∈ [1, r0).

Proof. By the definition of the space C0(rX̊) given in Section A.5.5, there
exists a (unique) norm-preserving extension operator ˆ : C0(rX̊) → C(rX),
i.e., we have f̂|rX̊ = f and ‖f‖∞ = ‖f̂‖∞ for all f ∈ C0(rX̊). Moreover, recall
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that Corollary 4.36 showed that the RKHS H of k is embedded into Cm(Ω),
and using the compactness of X together with (4.24) we then conclude that
the restriction operator ·|rX̊ : H|rX → Cm(rX̊) is continuous. Since H|rX

consists of continuous functions, we thus obtain the commutative diagram

H|rX C(rX)

Cm(rX̊) C0(rX̊)

�

�

�

�

id

·|rX̊ ˆ

id

Now the multiplicity (A.38) together with (A.46), (A.47), (A.40), and the fact
that C(rX) is isometrically embedded into �∞(rX) yields the assertion. ��

Let us briefly translate the result above into the language of covering
numbers. To this end, we assume that X and k satisfy the assumptions of
Theorem 6.26. Lemma 6.21 then shows that

lnN (BH|rX
, ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0. (6.19)

for 2p := d/m and a := ln(4) · (cm,d(X))d/m rd. Now recall that Taylor and
Gaussian RBF kernels are infinitely often differentiable and hence (6.19) holds
for arbitrarily small p > 0. For Gaussian RBF kernels, however, the parameter
γ is usually not fixed (see Section 8.2), and hence it is important to know how
the constant a depends on γ. This is the goal of the next theorem.

Theorem 6.27 (Entropy numbers for Gaussian kernels). Let X ⊂ Rd

be a closed Euclidean ball and m ≥ 1 be an integer. Then there exists a
constant cm,d(X) > 0 such that, for all 0 < γ ≤ r and all i ≥ 1, we have

ei
(
id : Hγ(rX)→ �∞(rX)

)
≤ cm,d(X) rm γ−mi−

m
d .

Proof. For x ∈ rγ−1X and f ∈ Hγ(rX), we write τγf(x) := f(γx). Propo-
sition 4.37 applied to the dilation factor γ, the kernel parameter 1, and the
set rγ−1X then shows that τγ : Hγ(rX) → H1(rγ−1X) is an isometric iso-
morphism. Moreover, the dilation τ1/γ : �∞(rγ−1X) → �∞(rX) is clearly an
isometric isomorphism, too. In addition, we have the commutative diagram

Hγ(rX) �∞(rX)

H1(rγ−1X) �∞(rγ−1X)

�

�

�

�

id

τγ τ1/γ

id

and hence we obtain the assertion by Theorem 6.26 and (A.38). ��
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Our last goal in this section is to illustrate how the above oracle inequal-
ities can be used to establish both consistency and learning rates for SVMs.
For conceptional simplicity, we thereby restrict our considerations to Lipschitz
continuous losses L with |L|1 ≤ 1, but similar results can be easily derived
for locally Lipschitz continuous losses, too. Now recall that the Lipschitz con-
tinuity together with L(x, y, 0) ≤ 1 yields L(x, y, t) ≤ 1 + |t|, and hence L is
a P-integrable Nemitski loss of order 1 for all distributions P on X × Y . In
the following we further assume for simplicity that we use a fixed RKHS H
that in addition is assumed to be dense in L1(µ) for all distributions µ on X.
Here we recall that we have intensively investigated such RKHSs in Section
4.6. Moreover, Theorem 5.31 showed for such H that R∗

L,P,H = R∗
L,P, i.e., the

Bayes risk can be approximated by functions from H.
In the following, we only consider the situation of Theorem 6.25 since for

Theorem 6.24 the results are similar (see Exercise 6.9 for precise statements
and a comparison of the resulting learning rates). Since Theorem 6.25 involves
covering numbers, we assume for simplicity that there exist constants a ≥ 1
and p > 0 such that

lnN (BH , ‖ · ‖∞, ε) ≤ a ε−2p , ε > 0. (6.20)

By Theorem 6.26 and Lemma 6.21, we see that both Taylor and Gaussian
kernels satisfy this assumption for all p > 0. Moreover, we saw in Section
4.6 that (a) Taylor kernels often have RKHSs that are dense in L1(µ) and
(b) Gaussian kernels always satisfy this denseness assumption. Consequently,
these kernels are ideal candidates for our discussion.

In order to illustrate the utility of the oracle inequalities obtained let us
now fix a λ ∈ (0, 1] and a τ ≥ 1. For

ε :=
(p

2

)1/(1+p)(2a
n

)1/(2+2p)

λ−1/2 .

Theorem 6.25 together with Lemma A.1.5 and (p + 1)(2/p)p/(1+p) ≤ 3 then
shows that

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P < A2(λ)+

3
λ1/2

(
2
(2a
n

) 1
2+2p

+
(2τ
n

)1
2
)

(6.21)

holds with probability Pn not less than 1− e−τ .
Let us now assume that for sample size n we choose a λn ∈ (0, 1] such that

limn→∞ λn = 0 and
lim

n→∞
λ1+p

n n =∞ . (6.22)

Lemma 5.15, see also (5.32), then shows that the right-hand side of (6.21)
converges to 0, and hence we have RL,P(fD,λn

) → R∗
L,P in probability. In

other words, we have shown that, for RKHSs satisfying both the denseness
assumption above and (6.20), the SVM is universally L-risk consistent when-
ever the regularization sequence tends to zero in a controlled way described
by (6.22).
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In order to establish learning rates, let us additionally assume that there
exist constants c > 0 and β ∈ (0, 1] such that

A2(λ) ≤ cλβ , λ ≥ 0. (6.23)

Then a straightforward calculation shows that the asymptotically best choice
for λn in (6.21) is a sequence that behaves like n−

1
(1+p)(2β+1) and that the

resulting learning rate is given by

Pn
(
D ∈ (X × Y )n : RL,P(fD,λn

)−R∗
L,P ≤ C

√
τ n−

β
(2β+1)(1+p)

)
≥ 1− e−τ ,

where C is a constant independent of τ and n. It is important to note that
the regularization sequence (λn) that achieves this rate depends on β. Unfor-
tunately, however, we will almost never know the value of β, and hence we
cannot choose the “optimal” regularization sequence suggested by Theorem
6.25. In the following section, we will therefore investigate how this problem
can be addressed by choosing λ in a data-dependent way.

6.5 Data-Dependent Parameter Selection for SVMs

In this section, we first present a simple method for choosing the regularization
parameter λ in a data-dependent way. We will then show that this method
is adaptive in the sense that it does not need to know characteristics of the
distribution such as (6.23) to achieve the learning rates we obtained in the
previous section by knowing these characteristics.

Let us begin by describing this parameter selection method, which in some
sense is a simplification of cross-validation considered in Section 11.3.

Definition 6.28. Let L : X × Y × R → [0,∞) be a convex loss that can be
clipped at 1, H be an RKHS over X, and Λ := (Λn) be a sequence of finite
subsets Λn ⊂ (0, 1]. Given a D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, we
define

D1 := ((x1, y1), . . . , (xm, ym)) ,
D2 := ((xm+1, ym+1), . . . , (xn, yn)) ,

where m := �n/2�+1 and n ≥ 3. Then use D1 as a training set by computing
the SVM decision functions

fD1,λ := arg min
f∈H

λ‖f‖2H +RL,D1(f) , λ ∈ Λn, (6.24)

and use D2 to determine λ by choosing a λD2 ∈ Λn such that

RL,D2(
�
fD1,λD2

) = min
λ∈Λn

RL,D2(
�
fD1,λ) , (6.25)

where
�
fD1,λ denotes the clipped version of fD1,λ. Every learning method that

produces the resulting decision functions fD1,λD2
is called a training valida-

tion support vector machine (TV-SVM) with respect to Λ.
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Informally speaking, the idea of TV-SVMs2 is to use the training set D1

to build a couple of SVM decision functions and then use the decision func-
tion that best performs on the independent validation set D2. Here we note
that Theorem 5.5 ensures that the SVM solutions fD1,λ, λ ∈ Λn, found in the
training step (6.24) exist, and hence there exists a TV-SVM. However, note
that in general the validation step (6.25) does not provide a unique regular-
ization parameter λD2 , and hence the TV-SVM, like ERM, is not a uniquely
defined learning method. The following lemma shows that for all interesting
cases there exists a measurable TV-SVM.

Lemma 6.29 (Measurability of TV-SVMs). Let L : X×Y ×R→ [0,∞)
be a convex loss that can be clipped at 1, and let H be a separable RKHS over
X having a measurable kernel. Then there exists a measurable TV-SVM.

Proof. Lemma 6.23 showed that (D,x) �→ fD1,λ(x) is measurable, and hence
ϕ : (X × Y )n × Λn → [0,∞) defined by

ϕ(D,λ) := RL,D2(
�
fD1,λ) , D ∈ (X × Y )n, λ ∈ Λn,

is measurable. The rest of the proof is analogous to the proofs of Lemmas 6.17
and 6.23. ��

Our next goal is to establish oracle inequalities for TV-SVMs. To this end,
we need the following lemma that describes how the term on the right-hand
side of our oracle inequalities for SVMs can be approximately minimized.

Lemma 6.30. Let L : X × Y × R → [0,∞) be a loss, H be the RKHS of a
measurable kernel over X, P be a distribution on X × Y with R∗

L,P,H < ∞,
and A2 : [0,∞) → [0,∞) be the corresponding approximation error function.
We fix a bounded interval I ⊂ (0,∞). In addition, let α, c ∈ (0,∞) be two
constants and Λ be a finite ε-net of I for some fixed ε > 0. Then we have

min
λ∈Λ

(
A2(λ) + cλ−α

)
≤ A2(2ε) + inf

λ∈I

(
A2(λ) + cλ−α

)
.

Proof. Let us assume that Λ is of the form Λ = {λ1, . . . , λm} with λi−1 < λi

for all i = 2, . . . ,m. We write λ0 := inf I. Our first goal is to show that

λi − λi−1 ≤ 2ε , i = 1, . . . ,m. (6.26)

To this end, we fix an i ∈ {1, . . . ,m} and write λ̄ := (λi +λi−1)/2 ∈ I ∪{λ0}.
Since Λ∪{λ0} is an ε-net of I∪{λ0}, we then have λi− λ̄ ≤ ε or λ̄−λi−1 ≤ ε.
Simple algebra shows that in both cases we find (6.26). For δ > 0, we now fix
a λ∗ ∈ I such that

A2(λ∗) + c(λ∗)−α ≤ inf
λ∈I

(
A2(λ) + cλ−α

)
+ δ . (6.27)

2 For simplicity, we only consider (almost) equally sized data sets D1 and D2, but
the following results and their proofs remain almost identical for different splits.
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Then there exists an index i ∈ {1, . . . ,m} such that λi−1 ≤ λ∗ ≤ λi, and
by (6.26) we conclude that λ∗ ≤ λi ≤ λ∗ + 2ε. By the monotonicity and
subadditivity of A2( · ) established in Lemma 5.15, we thus find

min
λ∈Λ

(
A2(λ) + cλ−α

)
≤ A2(λi) + cλ−α

i ≤ A2(λ∗ + 2ε) + c(λ∗)−α

≤ A2(λ∗) + c(λ∗)−α +A2(2ε) .

Combining this estimate with (6.27) then yields the assertion. ��

With the help of the Lemma 6.30, we can now establish our first oracle
inequality for TV-SVMs. For simplicity, it only considers the situation inves-
tigated at the end of Section 6.4, but generalizations are easy to establish.

Theorem 6.31 (Oracle inequality for TV-SVMs and benign kernels).
Let X be a compact metric space and L : X × Y × R → [0,∞) be a convex,
Lipschitz continuous loss with |L|1 ≤ 1. Assume that L can be clipped at 1
and that it satisfies L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y . Furthermore, let H
be the RKHS of a continuous kernel k on X satisfying ‖k‖∞ ≤ 1 and

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p , ε > 0, (6.28)

where a ≥ 1 and p > 0 are constants. Moreover, for n ≥ 4 and ε > 0, let
Λn ⊂ (0, 1] be a finite ε-net of (0, 1] of cardinality |Λn|. For fixed τ > 0 and
τn := 2 + τ + ln |Λn|, we then have with probability Pn not less than 1− e−τ

that

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈(0,1]

(
A2(λ)+

13√
λ

((a
n

) 1
2+2p

+
√
τn
n

))
+A2(2ε) .

Consequently, if we use εn-nets Λn with εn → 0 and n−1 ln |Λn| → 0, then the
resulting TV-SVM is consistent for all P satisfying R∗

L,P,H = R∗
L,P. Finally,

if εn ≤ 1/n and |Λn| grows polynomially in n, then the TV-SVM learns with
rate

n−
β

(2β+1)(1+p) (6.29)

for all distributions P that satisfy A2(λ) ≤ cλβ for some constants c > 0 and
β ∈ (0, 1] and all λ ≥ 0.

Proof. Let us define m := �n/2� + 1. Since m ≥ n/2, we obtain similarly to
(6.21) that with probability Pm not less than 1− |Λn|e−τ we have

RL,P(fD1,λ)−R∗
L,P,H < A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
)

for all λ ∈ Λn simultaneously. In addition, we have L(x, y,�t ) ≤ |L|1 +
L(x, y, 0) ≤ 2 =: B, and hence Proposition 6.18 yields
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Pn−m

(
D2 : RL,P(

�
fD1,λD2

)< inf
λ∈Λn

RL,P(
�
fD1,λ)+4

√
2τ+2 ln(2|Λn|)

n

)
≥ 1−e−τ ,

where we used n−m ≥ n/2− 1 ≥ n/4. Since RL,P(
�
fD1,λ) ≤ RL,P(fD1,λ), we

conclude that with probability Pn not less than 1− (|Λn|+ 1)e−τ we have

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈Λn

(
A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
))

+4

√
2τ+2 ln(2|Λn|)

n

≤ inf
λ∈(0,1]

(
A2(λ) +

3
λ1/2

(
2
(4a
n

) 1
2+2p

+
(2τ + 2

n

) 1
2
))

+A2(2ε) + 4

√
2τ+2 ln(2|Λn|)

n
,

where in the last step we used Lemma 6.30. From this we easily obtain the
first assertion. The second and third assertions then follow by the arguments
used at the end of Section 6.4. ��

Note that the preceding proof heavily relied on the assumption that L can
be clipped. Indeed, without this assumption, Proposition 6.18 only shows that

RL,P(fD1,λD2
) < inf

λ∈Λn

RL,P(fD1,λ) + 4 sup
λ∈Λn

λ−1/2

√
2τ+2 ln(2|Λn|)

n

holds with probability not less than 1−e−τ . Since for n−1-nets Λn of (0, 1] we
have supλ∈Λn

λ−1/2 ≥ n1/2, it becomes obvious that the preceding proof does
not provide consistency or the rates (6.29) if L cannot be clipped. In other
words, the fact that L is clippable ensures that the error of the parameter
selection step does not dominate the error of the SVM training step.

Let us now recall the end of Section 6.4, where we saw that SVMs satisfying
the covering number assumption (6.28) and the approximation error assump-
tion A2(λ) ≤ cλβ can learn with rate (6.29). Unfortunately, however, this
rate required a regularization sequence λn := n−

1
(1+p)(2β+1) , i.e., the rate was

only achievable if we had knowledge on the distribution P, the RKHS H, and
their interplay. Of course, we almost never know the exponent β that bounds
the approximation error function, and hence it remained unclear whether the
learning rate (6.29) was actually realizable. Theorem 6.31 now shows that the
TV-SVM does achieve this learning rate without knowing the exponent β.
Moreover, the theorem also shows that we do not even have to know the ex-
ponent p in the covering number assumption (6.28) to achieve this rate. Of
course, this p is independent of P and hence in principle a priori known. In
practice, however, covering number bounds are often extremely difficult to
establish for new RKHSs, and hence the independence of the TV-SVM from
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this exponent is an important feature. Furthermore, the following oracle in-
equality for TV-SVMs shows that this learning method achieves non-trivial
learning rates even if there is no exponent p satisfying (6.28).

Theorem 6.32 (Oracle inequality for TV-SVMs). Let L : X×Y ×R→
[0,∞) be a convex Lipschitz continuous loss that can be clipped at 1 and that
satisfies |L|1 ≤ 1 and L(x, y, 0) ≤ 1 for all (x, y) ∈ X×Y . Furthermore, let H
be a separable RKHS with measurable kernel k over X satisfying ‖k‖∞ ≤ 1.
Moreover, for n ≥ 4 and ε > 0, let Λn ⊂ (0, 1] be a finite ε-net of (0, 1]. For
fixed τ > 0, we then have with probability Pn not less than 1− e−τ that

RL,P(
�
fD1,λD2

)−R∗
L,P,H < inf

λ∈(0,1]

(
A2(λ)+

14
λ

(√
τ+ln(2|Λn|)

n
+
τ+ln(2|Λn|)

n

))

+A2(2ε) .

In particular, if we use εn-nets Λn with εn → 0 and n−1 ln |Λn| → 0, then the
resulting TV-SVM is consistent for all P with R∗

L,P,H = R∗
L,P. Moreover, for

εn ≤ n−1/2 and |Λn| growing polynomially in n, the TV-SVM learns with rate

(
ln(n+ 1)

n

) β
2β+2

(6.30)

for all distributions P that satisfy A2(λ) ≤ cλβ for some constants c > 0 and
β ∈ (0, 1] and all λ ≥ 0.

Proof. Repeat the proof of Theorem 6.31, but use Theorem 6.24 instead of
Theorem 6.25. ��

Theorem 6.32 shows that the TV-SVM learns with a specific rate if an
approximation error assumption is satisfied. Moreover, this rate equals the
“optimal” rate we can derive from Theorem 6.24 up to a logarithmic factor
(see Exercise 6.9), i.e., the TV-SVM is again adaptive with respect to the
unknown exponent β bounding the approximation error function. Moreover,
by combining the two oracle inequalities for the TV-SVM, we see that the
TV-SVM is in some sense also adaptive to the size of the input domain. To
illustrate this, let us consider the space X := Rd. Moreover, assume that
we have an RKHS H over X such that the covering number bound (6.28) is
satisfied for some exponent p(X ′) whenever we consider the restriction of H
to some compact subset X ′ ⊂ Rd. By combining Theorem 6.31 with Theorem
6.32, we then see that the TV-SVM learns with rate (6.30) if the support of
PX is not compact and with rate

min

{(
ln(n+ 1)

n

) β
2β+2

, n
− β

(1+p(X′))(2β+1)

}

if X ′ := supp(PX) is compact. In this sense, the TV-SVM is adaptive not only
to the approximation error assumption (6.23) but also to the input domain
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of the data. Finally, note that these considerations can be refined using the
more advanced techniques of the next chapter. We refer to Section 8.3, where
this is worked out in detail for binary classification.

6.6 Further Reading and Advanced Topics

The first learning method that was shown to be universally consistent (see
Stone, 1977) was the so-called nearest-neighbor method. Since then, universal
consistency has been established for a variety of different methods. Many
examples of such methods for classification and regression can be found in
the books by Devroye et al. (1996) and Györfi et al. (2002), respectively.
Moreover, besides the no-free-lunch theorem, which was proved by Devroye
(1982), Devroye et al. (1996) also present some other fundamental limitations
in statistical learning theory. These limitations include the non-existence of an
overall best-performing classification method, the no-free-lunch theorem under
certain additional assumptions on P, and the non-existence of a method that
estimates the Bayes risk with a uniform rate. Moreover, learning rates (and
their optimality) for certain regression methods are presented in great detail
by Györfi et al. (2002).

The classical concentration inequalities presented in Section 6.2 were proven
by Hoeffding (1963) and Bernstein (1946). Sharper versions of Bernstein’s in-
equality were found by Bennett (1962) and Hoeffding (1963). For a more
detailed discussion on these inequalities, we refer to Hoeffding (1963) and
Bousquet (2003a). Finally, Theorem 6.13 and the Hilbert space valued ver-
sions of Bernstein’s and Hoeffding’s inequalities were taken from Chapter 3
of Yurinsky (1995). Note that the crucial step in deriving these Hilbert space
valued versions is the estimate (6.10), which by symmetrization holds (up to
some constant) in every Banach space of type 2. Moreover, weaker versions of
(6.10) can actually be established whenever the Banach space has some non-
trivial type. For more information on the type concept for Banach spaces, we
refer to Chapter 11 of Diestel et al. (1995).

The discussion in Section 6.3 is nowadays folklore in the machine learning
literature. The idea of estimating the excess risk of an empirical risk mini-
mizer by a supremum (6.13) goes back to Vapnik and Chervonenkis (1974).
Generalizations of this bound to infinite sets F require bounds on the “size”
or “complexity” of F . Probably the most classical such complexity measure is
the so-called Vapnik-Chervonenkis (VC) dimension, which can be applied if,
e.g., L is the binary classification loss. Furthermore, there are various exten-
sions and generalizations of the VC dimension that make it possible to deal
with other types of loss functions. We refer to the books by Vapnik (1998),
Anthony and Bartlett (1999), and Vidyasagar (2002).

Using covering numbers as a complexity measure is another idea that
frequently appears in the literature. Probably the easiest way to use these
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numbers is presented in (6.17), but there also exist more sophisticated con-
centration inequalities, such as Lemma 3.4 of Alon et al. (1997) and Theorem
9.1 of Györfi et al. (2002), where the latter goes back to Pollard (1984). Cov-
ering numbers themselves were first investigated by Kolmogorov (1956) and
Kolmogorov and Tikhomirov (1961). Since then various results for interest-
ing function classes have been established. We refer to the books of Pinkus
(1985), Carl and Stephani (1990), and Edmunds and Triebel (1996) for a
detailed account and to Section A.5.6 for a brief overview.

Results similar to Theorem 6.25 were first established by Cucker and Smale
(2002) and Steinwart (2005). Moreover, results in the spirit of Theorem 6.24
were found by Zhang (2001), Steinwart (2005), and in a different context by
Bousquet and Elisseeff (2002). Universal consistency of SVMs for binary clas-
sification was first shown by Steinwart (2002), Zhang (2004b), and Steinwart
(2005). Finally, consistency of SVMs for certain violations of the i.i.d. assump-
tion was recently shown by Steinwart et al. (2008) and Steinwart and Anghel
(2008) with techniques similar to the one used for Theorem 6.24.

In its simplistic form, the parameter selection method considered in
Section 6.5 is little more than an illustration of how oracle inequalities can be
used to analyze learning methods that include the parameter selection step.
Nonetheless, the TV-SVM procedure is related to commonly used methods
such as grid search and cross-validation, discussed in Section 11.3. A different
approach for the parameter selection problem is considered by Lecué (2007b),
who proposes to use the aggregated decision function

∑
λ∈Λ

wλ
�
fD1,λ ,

where the weights wλ are computed in terms of RL,D2(
�
fD1,λ). More precisely,

he considers weights of the form

wλ :=
exp(−|D2|RL,D2(

�
fD1,λ))∑

λ′∈Λ exp(−|D2|RL,D2(
�
fD1,λ′))

and establishes, for example for the hinge loss, oracle inequalities for this
approach. These oracle inequalities imply that this aggregation procedure is
adaptive to characteristics of P considered in Chapter 8. Moreover, a similar
weighting approach was taken by Bunea and Nobel (2005) for the least squares
loss. For further methods and results, we refer to Bartlett (2008), Bunea et al.
(2007), Dalalyan and Tsybakov (2007), Lecué (2007a), Tsybakov (2003), and
the references therein.

6.7 Summary

In this chapter, we developed basic techniques for investigating the statistical
properties of SVMs. To this end, we first introduced two notions of statistical
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learning, namely the purely asymptotic notion of consistency and the more
practically oriented notion of learning rates. We further presented the no-
free-lunch theorem, which implied that uniform learning rates are impossible
without assumptions on P.

In Section 6.2, we then established concentration inequalities, which de-
scribed how close empirical averages of i.i.d. random variables are centered
around their mean. The main results in this direction were Hoeffding’s inequal-
ity , which gives an exponential tail for bounded real-valued random variables,
and Bernstein’s inequality , which improves this tail when the variance of the
random variables is substantially smaller than their supremum norm. Finally,
we generalized these inequalities to Hilbert space valued random variables.

In Section 6.3, we used these inequalities to analyze empirical risk mini-
mization. We began by considering empirical risk minimizers over finite func-
tion classes and introduced covering and entropy numbers to generalize the
basic idea to infinite function classes. The techniques developed for ERM were
then modified in Section 6.4 to establish oracle inequalities for SVMs. There
we also illustrated how these oracle inequalities can be used to establish both
consistency and learning rates for SVMs whose regularization parameter only
depends on the sample size. Unfortunately, however, the fastest learning rates
we obtained required knowledge about certain characteristics of the data-
generating distribution P. Since this knowledge is typically not available, we
finally introduced and analyzed a data-dependent choice of the regularization
parameter in Section 6.5. This selection method turned out to be consistent
and, more important, we also saw that this method is adaptive to some un-
known characteristics of P.

6.8 Exercises

6.1. Comparison of Hoeffding’s and Bernstein’s inequalities (�)
Let (Ω,A,P) be a probability space, B > 0, and σ > 0. Furthermore, let
ξ1, . . . , ξn : Ω → R be independent and bounded random variables with
‖ξi‖∞ ≤ B and Eξ2i ≤ σ2 for all i = 1, . . . , n. Finally, let τ > 0 be a real
number and n ≥ 1 be an integer satisfying n ≥ 8

9τ . Show that Bernstein’s
inequality is sharper than Hoeffding’s inequality if and only if

σ <

(
1−
√

8τ
9n

)
B .

What happens if we additionally assume Eξi = 0 for all i = 1, . . . , n?

6.2. A variant of Markov’s inequality (��)
Let (Ω,A,P) be a probability space and f : Ω → R be a measurable function.
Show that for all t > 0 the following inequalities hold:
∞∑

n=1

P
(
{ω ∈ Ω : |f(ω)| ≥ nt}

)
≤ EP|f |

t
≤ 1+

∞∑
n=1

P
(
{ω ∈ Ω : |f(ω)| ≥ nt}

)
.



6.8 Exercises 237

Hint: Apply Lemma A.3.11.

6.3. Chebyshev’s inequality for sums of i.i.d. random variables (��)
Let (Ω,A,P) be a probability space and ξ1, . . . , ξn : Ω → R be independent
random variables for which there exists a constant σ > 0 such that EPξ

2
i ≤ σ2

for all i = 1, . . . , n.
i). Show the following inequality:

P
(

1
n

n∑
i=1

(
ξi − Eξi

)
≥
√

2σ2eτ

n

)
≤ e−τ , τ > 0.

ii). Compare this inequality with Hoeffding’s and Bernstein’s inequalities.
iii). Generalize the inequality above to Hilbert space valued random variables.

6.4. Proof of the no-free-lunch theorem(����)
Prove Theorem 6.6 using the proof of Theorem 7.2 by Devroye et al. (1996).

Hint: Fix an arbitrary decreasing sequence (pi) ⊂ (0, 1] with
∑
pi = 1.

Using Lyapunov’s Theorem A.3.13, which in particular states that {µ(A) : A ∈
A} = [0, 1], construct a sequence (Ai) of mutually disjoint Ai ∈ A satisfying
µ(Ai) = pi for all i ≥ 1. Use this to suitably modify the construction at the
beginning of the proof of Theorem 7.2 by Devroye et al. (1996). Check that
the rest of the proof can be kept unchanged.

6.5. No uniform rate for convex losses (���)
Let L : X×Y ×R→ [0,∞) be a convex loss function for which there exist two
distributions Q1 and Q2 on Y that have mutually distinct L-risk minimizers,
i.e., for all x ∈ X, we have ML,Q1,x(0+) �= ∅, ML,Q2,x(0+) �= ∅, and

ML,Q1,x(0+) ∩ML,Q2,x(0+) = ∅ .

i). Show that L satisfies the assumptions of Corollary 6.8.
ii). Show that for margin-based and distance-based convex losses L �= 0 there
exist two distributions Q1 and Q2 on Y having mutually distinct L-risk min-
imizers.

Hint: For i) show that there exists a constant c > 0 such that for all x ∈ X
we have dist(t,ML,Q2,x(0+)) ≥ c if t ∈ M1,x and dist(t,ML,Q1,x(0+)) ≥ c if
t ∈M2,x. Then repeat the argument used in the proof of Lemma 3.15.

6.6. Simple analysis of approximate empirical risk minimizers (���)
Let L : X × Y × R → [0,∞) be a loss function, B > 0 be a real number,
and F ⊂ L0(X) be a finite set of bounded measurable functions such that
L(x, y, f(x)) ≤ B for all (x, y) ∈ X × Y and all f ∈ F . In addition, assume
that for some ε > 0 we have a measurable learning algorithm that produces
ε-approximate minimizers fD of RL,D( · ), i.e.,

RL,D(fD) ≤ inf
f∈F
RL,D(f) + ε , D ∈ (X × Y )n.
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Show that, for all τ > 0 and all n ≥ 1, the following inequality holds:

Pn

(
D ∈ (X×Y )n : RL,P(fD) < R∗

L,P,F+B

√
2τ + 2 ln(2|F|)

n
+ε
)
≥ 1−e−τ .

6.7. A simple example of overfitting ERM (���)
Let (X,A) be a measurable space such that {x} ∈ A for all x ∈ X. Fur-
thermore, let Y := {−1, 1}, Lclass be the binary classification loss, and
F := L∞(X). ForD := ((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n, define the function
fD : X → R by

fD :=
1
n

n∑
i=1

yi1{xi} .

i). Show that D �→ fD is a measurable empirical risk minimizer with respect
to F and Lclass.
ii). Let P be a distribution on X × Y such that PX({x}) = 0 for all x ∈ X.
Show that RL,P(fD) = RL,P(0).
iii). Find distributions P on X ×Y such that R∗

L,P = 0 and RL,P(fD) = 1/2.

6.8. Entropy vs. covering numbers (���)
Let (T, d) be a metric space and a > 0 and q > 0 be constants such that

lnN (T, d, ε) <
(a
ε

)q

, ε > 0.

Show that en(T, d) ≤ 3
1
q an−

1
q for all n ≥ 1.

6.9. Consistency and rates for SVMs using their stability (��)
Let L : X × Y ×R→ [0,∞) be a convex, Lipschitz continuous loss satisfying
L(x, y, 0) ≤ 1 for all (x, y) ∈ X × Y , and |L|1 ≤ 1. Moreover, let H be a
separable RKHS with measurable kernel k over X satisfying ‖k‖∞ ≤ 1, and
let P be a distribution on X × Y such that H is dense in L1(PX).
i). Show that with probability Pn not less than 1− e−τ we have

λ‖fD,λ‖2H +RL,P(fD,λ)−R∗
L,P < A2(λ) + λ−1

(√
8τ
n

+

√
4
n

+
8τ
3n

)
.

ii). Show that the SVM is consistent whenever we choose a sequence (λn) ⊂
(0, 1] such that limn→∞ λn = 0 and limn→∞ λ

2
nn =∞.

iii). Assume that (6.23) holds, i.e., there exist constants c > 0 and β ∈ (0, 1]
such that A2(λ) ≤ cλβ for all λ > 0. Show that the asymptotically best choice
for λn is a sequence that behaves like n−

1
2β+2 and that the resulting learning

rate is given by

Pn
(
D ∈ (X × Y )n : RL,P(fD,λn

)−R∗
L,P ≤ C̃τn−

β
2β+2

)
≥ 1− e−τ ,

where C̃ is a constant independent of τ and n.
iv). Show that the learning rates established in iii) are faster than those of
Theorem 6.25 if p > 1/(2β + 1).




