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Kernels and Reproducing Kernel Hilbert
Spaces

Overview. We saw in Section 1.3 that kernels and their feature spaces
are the devices by which the linear SVM approach produces non-linear
decision functions. However, so far we only have a vague notion of
kernels and hence we investigate them in more detail in this chapter.

Prerequisites. This chapter requires basic knowledge in functional
analysis, which is provided in Section A.5. Section 4.4 on Gaussian
kernels also needs some complex analysis from Section A.7.

Usage. Sections 4.1, 4.2, 4.3, and 4.6, which deal with the core mater-
ial on kernels, are essential for the rest of this book. Moreover, Section
4.4 is needed for binary classification discussed in Chapter 8.

As we have described in the introduction, one of the major steps in construct-
ing a support vector machine is mapping the input space X into a feature
space H that is equipped with an inner product. The benefit of this step is
that for non-linear feature maps Φ : X → H, support vector machines can
produce non-linear decision functions, although SVMs are only based on a lin-
ear discriminant approach. Furthermore, we have seen that SVMs only require
computing the inner products k(x, x′) := 〈Φ(x), Φ(x′)〉H rather than Φ itself.
Thus, instead of first constructing Φ and then computing the inner products,
one can use SVMs with efficiently computable functions k : X ×X → R that
realize inner products of (possibly unknown) feature maps. We called such
functions k kernels, and the approach described was called the kernel trick.
Of course, this trick immediately raises some questions:

• When is a function k : X ×X → R a kernel?
• How can we construct kernels?
• Given a kernel k, can we find a feature map and a feature space of k in a

constructive way?
• How much does the kernel trick increase the expressive power of support

vector machines?

The aim of this chapter is to answer these questions. To this end, we formal-
ize the definition of kernels in Section 4.1. Moreover, in this section we also
present some simple but useful examples of kernels. Then, in Section 4.2 we
describe a canonical form of feature spaces, the so-called reproducing kernel
Hilbert spaces. Basic properties of the functions contained in these spaces are



112 4 Kernels and Reproducing Kernel Hilbert Spaces

presented in Section 4.3. Moreover, for an important type of kernel we deter-
mine these spaces explicitly in Section 4.4. In Section 4.5, we derive a specific
series representation for continuous kernels on compact spaces. Finally, in Sec-
tion 4.6 we describe a class of kernels for which SVMs have a large expressive
power.

4.1 Basic Properties and Examples of Kernels

In this section, we introduce the notions kernel, feature space, and feature map.
Then we show how to construct new kernels from given kernels and present
some important examples of kernels that will be used frequently in this book.
Finally, we establish a criterion that characterizes kernels with the help of
positive definite matrices related to these kernels.

Although in the context of machine learning one is originally only inter-
ested in real-valued kernels, we will develop the basic theory on kernels also
for complex-valued kernels. This more general approach does not require any
additional technical effort, but it will enable us in Section 4.4 to discover some
features of the Gaussian RBF kernels that are widely used in practice.

Before we begin with the basic definitions, let us recall that every complex
number z ∈ C can be represented in the form z = x+ iy, where x, y ∈ R and
i :=

√
−1. Both x and y are uniquely determined, and in the following we

thus write Re z := x and Im z := y. Moreover, the conjugate of z is defined
by z̄ := x− iy and its absolute value is |z| :=

√
zz̄ =

√
x2 + y2. In particular,

we have x̄ = x and |x| =
√
x2 for all x ∈ R. Furthermore, we use the symbol

K whenever we want to treat the real and the complex cases simultaneously.
For example, a K-Hilbert space H is a real Hilbert space when considering
K = R and a complex one when K = C. Recall from Definition A.5.8 that in
the latter case the inner product 〈 · , · 〉H : H × H → C is sesqui-linear, i.e.,
〈x, αx′〉H = ᾱ〈x, x′〉H , and anti-symmetric, i.e., 〈x, x′〉H = 〈x′, x〉H .

With the help of these preliminary considerations, we can now formalize
the notion of kernels.

Definition 4.1. Let X be a non-empty set. Then a function k : X×X → K is
called a kernel on X if there exists a K-Hilbert space H and a map Φ : X → H
such that for all x, x′ ∈ X we have

k(x, x′) = 〈Φ(x′), Φ(x)〉 . (4.1)

We call Φ a feature map and H a feature space of k.

Note that in the real case condition (4.1) can be replaced by the more
natural equation k(x, x′) = 〈Φ(x), Φ(x′)〉. In the complex case, however, 〈 · , · 〉
is anti-symmetric and hence (4.1) is equivalent to k(x, x′) = 〈Φ(x), Φ(x′)〉.

Given a kernel, neither the feature map nor the feature space are uniquely
determined. Let us illustrate this with a simple example. To this end, let



4.1 Basic Properties and Examples of Kernels 113

X := R and k(x, x′) := xx′ for all x, x′ ∈ R. Then k is a kernel since obviously
the identity map idR on R is a feature map with feature space H := R.
However, the map Φ : X → R2 defined by Φ(x) := (x/

√
2, x/

√
2) for all

x ∈ X is also a feature map of k since we have

〈Φ(x′), Φ(x)〉 =
x′√
2
· x√

2
+
x′√
2
· x√

2
= xx′ = k(x, x′)

for all x, x′ ∈ X. Moreover, note that a similar construction can be made for
arbitrary kernels, and consequently every kernel has many different feature
spaces. Finally, a less trivial example for different feature maps and spaces is
discussed in Exercise 4.9.

Let us now present some commonly used kernels. To this end, we need
some methods to construct kernels from scratch. We begin with a simple but
instructive and fundamental observation.

Lemma 4.2. Let X be a non-empty set and fn : X → K, n ∈ N, be functions
such that (fn(x)) ∈ �2 for all x ∈ X. Then

k(x, x′) :=
∞∑

n=1

fn(x)fn(x′), x, x′ ∈ X, (4.2)

defines a kernel on X.

Proof. Using Hölder’s inequality for the sequence spaces �1 and �2, we obtain

∞∑
n=1

|fn(x)fn(x′)| ≤ ‖(fn(x))‖�2 ‖(fn(x′))‖�2 ,

and hence the series in (4.2) converges absolutely for all x, x′ ∈ X. Now, we
write H := �2 and define Φ : X → H by Φ(x) := (fn(x)), x ∈ X. Then (4.2)
immediately gives the assertion. ��

We will see in the following that almost all kernels we are interested in
have a series representation of the form (4.2). However, before we present some
examples of such kernels, we first need to establish some results that allow us
to construct new kernels from given ones. We begin with the following simple
lemma, whose proof is left as an exercise.

Lemma 4.3 (Restriction of kernels). Let k be a kernel on X, X̃ be a set,
and A : X̃ → X be a map. Then k̃ defined by k̃(x, x′) := k(A(x), A(x′)),
x, x′ ∈ X, is a kernel on X̃. In particular, if X̃ ⊂ X, then k|X̃×X̃ is a kernel.

For a kernel k : Cd × Cd → C, Lemma 4.3 shows that the restriction
k|Rd×Rd is a kernel in the complex sense. The following result shows that it is
also a kernel in the real sense if it satisfies k(x, x′) ∈ R for all x, x′ ∈ Rd.
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Lemma 4.4 (Real vs. complex kernels). Let k : X×X → C be a kernel,
H be a C-Hilbert space, and Φ : X → H be a feature map of k. Assume that
we have k(x, x′) ∈ R for all x, x′ ∈ X. Then H0 := H equipped with the inner
product

〈w,w′〉H0 := Re 〈w,w′〉H , w, w′ ∈ H0,

is an R-Hilbert space, and Φ : X → H0 is a feature map of k.

Proof. It is elementary to check that 〈 · , · 〉H0 is a real inner product. Further-
more, we obviously have

k(x, x′) =
〈
Φ(x′), Φ(x)

〉
H

= Re
〈
Φ(x′), Φ(x)

〉
H

+ i Im
〈
Φ(x′), Φ(x)

〉
H

for all x, x′ ∈ X. Consequently, k(x, x′) ∈ R shows Im 〈Φ(x′), Φ(x)〉H = 0 for
all x, x′ ∈ X, and hence we obtain the assertion. ��

Let us now establish some algebraic properties of the set of kernels on X.
We begin with a simple lemma, whose proof is again left as an exercise.

Lemma 4.5 (Sums of kernels). Let X be a set, α ≥ 0, and k, k1, and k2
be kernels on X. Then αk and k1 + k2 are also kernels on X.

The preceding lemma states that the set of kernels on X is a cone. It
is, however, not a vector space since in general differences of kernels are not
kernels. To see this, let k1 and k2 be two kernels on X such that k1(x, x) −
k2(x, x) < 0 for some x ∈ X. Then k1 − k2 is not a kernel since otherwise we
would have a feature map Φ : X → H of k1 − k2 with 0 ≤ 〈Φ(x), Φ(x)〉 =
k1(x, x)− k2(x, x) < 0. Let us now consider products of kernels.

Lemma 4.6 (Products of kernels). Let k1 be a kernel on X1 and k2 be a
kernel on X2. Then k1 · k2 is a kernel on X1×X2. In particular, if X1 = X2,
then k(x, x′) := k1(x, x′)k2(x, x′), x, x′ ∈ X, defines a kernel on X.

Proof. Let Hi be a feature space and Φi : Xi → Hi be a feature map of ki,
i = 1, 2. Using the definition of the inner product in the tensor product space
H1 ⊗H2 and its completion H1⊗̂H2, see Appendix A.5.2, we obtain

k1(x1, x
′
1) · k2(x2, x

′
2) =

〈
Φ1(x′1), Φ1(x1)

〉
H1
·
〈
Φ2(x′2), Φ2(x2)

〉
H2

=
〈
Φ1(x′1)⊗ Φ2(x′2), Φ(x1)⊗ Φ2(x2)

〉
H1⊗̂H2

,

which shows that Φ1 ⊗ Φ2 : X1 × X2 → H1⊗̂H2 is a feature map of k1 · k2.
For the second assertion, we observe that k is a restriction of k1 · k2. ��

With the lemmas above, it is easy to construct non-trivial kernels. To
illustrate this, let us assume for simplicity that X := R. Then, for every
integer n ≥ 0, the map kn defined by kn(x, x′) := (xx′)n, x, x′ ∈ X, is a kernel
by Lemma 4.2. Consequently, if p : X → R is a polynomial of the form p(t) =
amt

m + · · ·+a1t+a0 with non-negative coefficients ai, then k(x, x′) := p(xx′),
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x, x′ ∈ X, defines a kernel on X by Lemma 4.5. In general, computing this
kernel needs its feature map Φ(x) := (

√
amx

m, . . . ,
√
a1x,
√
a0), x ∈ X, and

consequently the computational requirements are determined by the degree
m. However, for some polynomials, these requirements can be substantially
reduced. Indeed, if for example we have p(t) = (t+ c)m for some c > 0 and all
t ∈ R, then the time needed to compute k is independent of m. The following
lemma, whose proof is left as an exercise, generalizes this idea.

Lemma 4.7 (Polynomial kernels). Let m ≥ 0 and d ≥ 1 be integers and
c ≥ 0 be a real number. Then k defined by k(z, z′) := (〈z, z′〉+c)m, z, z′ ∈ Cd,
is a kernel on Cd. Moreover, its restriction to Rd is an R-valued kernel.

Note that the polynomial kernels defined by m = 1 and c = 0 are called
linear kernels. Instead of using polynomials for constructing kernels, one
can use functions that can be represented by Taylor series. This is done in the
following lemma.

Lemma 4.8. Let B̊C and B̊Cd be the open unit balls of C and Cd, respectively.
Moreover, let r ∈ (0,∞] and f : rB̊C → C be holomorphic with Taylor series

f(z) =
∞∑

n=0

anz
n, z ∈ rB̊C . (4.3)

If an ≥ 0 for all n ≥ 0, then

k(z, z′) := f(〈z, z′〉)Cd =
∞∑

n=0

an〈z, z′〉nCd , z, z′ ∈
√
rB̊Cd ,

defines a kernel on
√
rB̊Cd whose restriction to X := {x ∈ Rd : ‖x‖2 <

√
r}

is a real-valued kernel. We say that k is a kernel of Taylor type.

Proof. For z, z′ ∈ √rB̊Cd , we have |〈z, z′〉| ≤ ‖z‖2‖z′‖2 < r and thus k is well-
defined. Let zi denote the i-th component of z ∈ Cd. Since (4.3) is absolutely
convergent, the multinomial formula (see Lemma A.1.2) then yields

k(z, z′) =
∞∑

n=0

an

( d∑
j=1

zj z̄
′
j

)n

=
∞∑

n=0

an

∑
j1,...,jd≥0

j1+···+jd=n

cj1,...,jd

d∏
i=1

(ziz̄′i)
ji

=
∑

j1,...,jd≥0

aj1+···+jd
cj1,...,jd

d∏
i=1

(z̄′i)
ji

d∏
i=1

zji

i ,

where cj1,...,jd
:= n!∏d

i=1 ji!
. Let us define Φ : X → �2(Nd

0) by

Φ(z) :=
(√
aj1+···+jd

cj1,...,jd

d∏
i=1

z̄ji

i

)
j1,...,jd≥0

, z ∈
√
rB̊Cd .

Then we have k(z, z′) = 〈Φ(z′), Φ(z)〉�2(Nd
0) for all z, z′ ∈ √rB̊Cd , and hence k

is a kernel. The assertion for the restriction is obvious. ��
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With the help of Lemma 4.8 we can now present some more examples of
commonly used kernels.

Example 4.9. For d ∈ N and x, x′ ∈ Kd, we define k(x, x′) := exp(〈x, x′〉).
Then k is a K-valued kernel on Kd called the exponential kernel. �

Example 4.9 can be used to introduce the following kernel that is often
used in practice and will be considered in several parts of the book.

Proposition 4.10. For d ∈ N, γ > 0, z = (z1, . . . , zd) ∈ Cd, and z′ =
(z′1, . . . , z

′
d) ∈ Cd, we define

kγ,Cd(z, z′) := exp
(
−γ−2

d∑
j=1

(zj − z̄′j)2
)
.

Then kγ,Cd is a kernel on Cd, and its restriction kγ := (kγ,Cd)|Rd×Rd is an
R-valued kernel, which is called the Gaussian RBF kernel with width γ.
Moreover, kγ can be computed by

kγ(x, x′) = exp
(
−‖x− x

′‖22
γ2

)
, x, x′ ∈ Rd.

Proof. Let us fix z, z′ ∈ Cd. Decomposing kγ,Cd into

kγ,Cd(z, z′) =
exp(2γ−2〈z, z′〉)

exp
(
γ−2
∑d

j=1 z
2
j

)
exp
(
γ−2
∑d

j=1(z̄
′
j)2
)

and applying Lemmas 4.3 and 4.6, and Example 4.9 then yields the first
assertion. The second assertion is trivial. ��

Besides the Gaussian RBF kernel, many other R-valued kernels can be
constructed using Lemma 4.8. Here we only give one more example and refer
to Exercise 4.1 for some more examples.

Example 4.11. Let X := {x ∈ Rd : ‖x‖2 < 1} and α > 0. Then k(x, x′) :=
(1 − 〈x, x′〉)−α defines a kernel on X called a binomial kernel. Indeed, the
binomial series (1 − t)−α =

∑∞
n=0

(−α
n

)
(−1)ntn holds for all |t| < 1, where(

β
n

)
:=
∏n

i=1(β− i+1)/i. Now the assertion follows from
(−α

n

)
(−1)n > 0. �

The results above are based on Taylor series expansions. Instead of these
expansions, one can also employ Fourier series expansions for constructing
kernels. In the case K = R, the corresponding result reads as follows.

Lemma 4.12. Let f : [−2π, 2π] → R be a continuous function that can be
expanded in a pointwise convergent Fourier series of the form

f(t) =
∞∑

n=0

an cos(nt) . (4.4)

If an ≥ 0 holds for all n ≥ 0, then k(x, x′) :=
∏d

i=1 f(xi−x′i) defines a kernel
on [0, 2π)d. We say that k is a kernel of Fourier type.
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Proof. By induction and Lemma 4.6, we may restrict ourselves to d = 1. Then,
letting t = 0 in (4.4), we get (an)n≥0 ∈ �1, and thus the definition of k yields

k(x, x′) = a0 +
∞∑

n=1

an sin(nx) sin(nx′) +
∞∑

n=1

an cos(nx) cos(nx′)

for all x, x′ ∈ [0, 2π). Now the assertion follows from Lemma 4.2. ��

The following two examples can be treated with the help of Lemma 4.12.

Example 4.13. For fixed 0 < q < 1 and all t ∈ [−2π, 2π], we define

f(t) :=
1− q2

2− 4q cos t+ 2q2
.

Then k(x, x′) :=
∏d

i=1 f(xi − x′i), x, x′ ∈ [0, 2π]d, is a kernel since we have
f(t) = 1/2 +

∑∞
n=1 q

n cos(nt) for all t ∈ [0, 2π]. �

Example 4.14. For fixed 1 < q <∞ and all t ∈ [−2π, 2π], we define

f(t) :=
πq cosh(πq − qt)

2 sinh(πq)
.

Then k(x, x′) :=
∏d

i=1 f(xi − x′i), x, x′ ∈ [0, 2π]d, is a kernel since we have
f(t) = 1/2 +

∑∞
n=1(1 + q−2n2)−1 cos(nt) for all t ∈ [0, 2π]. �

Although we have already seen several techniques to construct kernels, in
general we still have to find a feature space in order to decide whether a given
function k is a kernel. Since this can sometimes be a difficult task, we will now
present a criterion that characterizes R-valued kernels in terms of inequalities.
To this end, we need the following definition.

Definition 4.15. A function k : X ×X → R is called positive definite if,
for all n ∈ N, α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X, we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi) ≥ 0 . (4.5)

Furthermore, k is said to be strictly positive definite if, for mutually dis-
tinct x1, . . . , xn ∈ X, equality in (4.5) only holds for α1 = · · · = αn = 0.
Finally, k is called symmetric if k(x, x′) = k(x′, x) for all x, x′ ∈ X.

Unfortunately, there is no common use of the preceding definitions in
the literature. Indeed, some authors call positive definite functions positive
semi-definite, and strictly positive definite functions are sometimes called
positive definite. Moreover, for fixed x1, . . . , xn ∈ X, the n × n matrix
K := (k(xj , xi))i,j is often called the Gram matrix. Note that (4.5) is equi-
valent to saying that the Gram matrix is positive definite.
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Obviously, if k is an R-valued kernel with feature map Φ : X → H, then
k is symmetric since the inner product in H is symmetric. Moreover, k is also
positive definite since for n ∈ N, α1, . . . , αn ∈ R, and x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi) =
〈 n∑

i=1

αiΦ(xi),
n∑

j=1

αjΦ(xj)
〉

H

≥ 0 . (4.6)

Now the following theorem shows that symmetry and positive definiteness are
not only necessary for k to be a kernel but also sufficient.

Theorem 4.16 (Symmetric, positive definite functions are kernels).
A function k : X × X → R is a kernel if and only if it is symmetric and
positive definite.

Proof. In view of the discussion above, it suffices to show that a symmetric
and positive definite function k is a kernel. To this end, we write

Hpre :=
{ n∑

i=1

αik( · , xi) : n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X
}
,

and for f :=
∑n

i=1 αik( · , xi) ∈ Hpre and g :=
∑m

j=1 βjk( · , x′j) ∈ Hpre, we
define

〈f, g〉 :=
n∑

i=1

m∑
j=1

αiβjk(x′j , xi) .

Note that this definition is independent of the representation of f since we have
〈f, g〉 =

∑m
j=1 βjf(x′j). Furthermore, by the symmetry of k, we find 〈f, g〉 =∑n

i=1 αig(xi), i.e., the definition is also independent of the representation
of g. Moreover, the definition immediately shows that 〈 · , · 〉 is bilinear and
symmetric, and since k is positive definite, 〈 · , · 〉 is also positive, i.e., 〈f, f〉 ≥ 0
for all f ∈ Hpre. Conequently (see Exercise 4.3), 〈 · , · 〉 satisfies the Cauchy-
Schwarz inequality, i.e.,

|〈f, g〉|2 ≤ 〈f, f〉 · 〈g, g〉 , f, g ∈ Hpre .

Now let f :=
∑n

i=1 αik( · , xi) ∈ Hpre with 〈f, f〉 = 0. Then, for all x ∈ X, we
have

|f(x)|2 =
∣∣∣∣

n∑
i=1

αik(x, xi)
∣∣∣∣
2

=
∣∣〈f, k( · , x)〉∣∣2 ≤ 〈k( · , x), k( · , x)〉 · 〈f, f〉 = 0 ,

and hence we find f = 0. Therefore we have shown that 〈 · , · 〉 is an inner
product on Hpre. Let H be a completion of Hpre and I : Hpre → H be the
corresponding isometric embedding. Then H is a Hilbert space and we have

〈Ik( · , x′), Ik( · , x)〉H = 〈k( · , x′), k( · , x)〉Hpre = k(x, x′)

for all x, x′ ∈ X, i.e., x �→ Ik( · , x), x ∈ X, defines a feature map of k. ��
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The characterization above is often useful for checking whether a given
function is a kernel. Let us illustrate this with the following example.

Corollary 4.17 (Limits of kernels are kernels). Let (kn) be a sequence of
kernels on the set X that converges pointwise to a function k : X ×X → R,
i.e., limn→∞ kn(x, x′) = k(x, x′) for all x, x′ ∈ X. Then k is a kernel on X.

Proof. Every kn is symmetric and satisfies (4.5). Therefore, the same is true
for the pointwise limit k. ��

4.2 The Reproducing Kernel Hilbert Space of a Kernel

In this section, we will introduce reproducing kernel Hilbert spaces (RKHSs)
and describe their relation to kernels. In particular, it will turn out that the
RKHS of a kernel is in a certain sense the smallest feature space of this kernel
and consequently can serve as a canonical feature space.

Let us begin with the following fundamental definitions.

Definition 4.18. Let X �= ∅ and H be a K-Hilbert function space over X,
i.e., a K-Hilbert space that consists of functions mapping from X into K.

i) A function k : X × X → K is called a reproducing kernel of H if we
have k( · , x) ∈ H for all x ∈ X and the reproducing property

f(x) = 〈f, k( · , x)〉

holds for all f ∈ H and all x ∈ X.
ii) The space H is called a reproducing kernel Hilbert space (RKHS)

over X if for all x ∈ X the Dirac functional δx : H → K defined by

δx(f) := f(x) , f ∈ H,

is continuous.

Note that L2(Rd) does not consist of functions and consequently it is not
an RKHS. For a generalization of this statement, we refer to Exercise 4.2.

Reproducing kernel Hilbert spaces have the remarkable and, as we will
see later, important property that norm convergence implies pointwise con-
vergence. More precisely, let H be an RKHS, f ∈ H, and (fn) ⊂ H be a
sequence with ‖fn − f‖H → 0 for n→∞. Then, for all x ∈ X, we have

lim
n→∞

fn(x) = lim
n→∞

δx(fn) = δx(f) = f(x) (4.7)

by the assumed continuity of the Dirac functionals. Furthermore, reproducing
kernels are actually kernels in the sense of Definition 4.1, as the following
lemma shows.
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Lemma 4.19 (Reproducing kernels are kernels). Let H be a Hilbert
function space over X that has a reproducing kernel k. Then H is an RKHS
and H is also a feature space of k, where the feature map Φ : X → H is given
by

Φ(x) = k( · , x) , x ∈ X.
We call Φ the canonical feature map.

Proof. The reproducing property says that each Dirac functional can be rep-
resented by the reproducing kernel, and consequently we obtain

|δx(f)| = |f(x)| = |〈f, k( · , x)〉| ≤ ‖k( · , x)‖H ‖f‖H (4.8)

for all x ∈ X, f ∈ H. This shows the continuity of the functionals δx, x ∈ X.
In order to show the second assertion, we fix an x′ ∈ X and write f :=

k( · , x′). Then, for x ∈ X, the reproducing property yields

〈Φ(x′), Φ(x)〉 = 〈k( · , x′), k( · , x)〉 = 〈f, k( · , x)〉 = f(x) = k(x, x′) . ��

We have just seen that every Hilbert function space with a reproducing
kernel is an RKHS. The following theorem now shows that, conversely, every
RKHS has a (unique) reproducing kernel, and that this kernel can be deter-
mined by the Dirac functionals.

Theorem 4.20 (Every RKHS has a unique reproducing kernel). Let
H be an RKHS over X. Then k : X ×X → K defined by

k(x, x′) := 〈δx, δx′〉H , x, x′ ∈ X,

is the only reproducing kernel of H. Furthermore, if (ei)i∈I is an orthonormal
basis of H, then for all x, x′ ∈ X we have

k(x, x′) =
∑
i∈I

ei(x)ei(x′) . (4.9)

Proof. We first show that k is a reproducing kernel. To this end, let I : H ′ →
H be the isometric anti-linear isomorphism derived from Theorem A.5.12
that assigns to every functional in H ′ the representing element in H, i.e.,
g′(f) = 〈f, Ig′〉 for all f ∈ H, g′ ∈ H ′. Then, for all x, x′ ∈ X, we have

k(x, x′) = 〈δx, δx′〉H′ = 〈Iδx′ , Iδx〉H = δx(Iδx′) = Iδx′(x) ,

which shows k( · , x′) = Iδx′ for all x′ ∈ X. From this we immediately obtain

f(x′) = δx′(f) = 〈f, Iδx′〉 = 〈f, k( · , x′)〉 ,

i.e., k has the reproducing property. Now let k̃ be an arbitrary reproducing
kernel of H. For x′ ∈ X, the basis representation of k̃( · , x′) then yields



4.2 The Reproducing Kernel Hilbert Space of a Kernel 121

k̃( · , x′) =
∑
i∈I

〈k̃( · , x′), ei〉ei =
∑
i∈I

ei(x′)ei ,

where the convergence is with respect to ‖ · ‖H . Using (4.7), we thus obtain
(4.9) for k̃. Finally, since k̃ and (ei)i∈I were arbitrarily chosen, we find k̃ = k,
i.e., k is the only reproducing kernel of H. ��

Theorem 4.20 shows that an RKHS uniquely determines its reproducing
kernel, which is actually a kernel by Lemma 4.19. The following theorem
now shows that, conversely, every kernel has a unique RKHS. Consequently,
we have a one-to-one relation between kernels and RKHSs. In addition, the
following theorem shows that the RKHS of a kernel is in some sense the
smallest feature space, and hence it can be considered as the “natural” feature
space.

Theorem 4.21 (Every kernel has a unique RKHS). Let X �= ∅ and k be
a kernel over X with feature space H0 and feature map Φ0 : X → H0. Then

H :=
{
f :X → K

∣∣ ∃w ∈ H0 with f(x)=〈w,Φ0(x)〉H0 for all x ∈ X
}

(4.10)

equipped with the norm

‖f‖H := inf
{
‖w‖H0 : w ∈ H0 with f = 〈w,Φ0( · )〉H0

}
(4.11)

is the only RKHS for which k is a reproducing kernel. Consequently, both
definitions are independent of the choice of H0 and Φ0. Moreover, the operator
V : H0 → H defined by

V w := 〈w,Φ0( · )〉H0 , w ∈ H0,

is a metric surjection, i.e. V B̊H0 = B̊H , where B̊H0 and B̊H are the open unit
balls of H0 and H, respectively. Finally, the set

Hpre :=
{ n∑

i=1

αik( · , xi) : n ∈ N, α1, . . . , αn ∈ K, x1, . . . , xn ∈ X
}

(4.12)

is dense in H, and for f :=
∑n

i=1 αik( · , xi) ∈ Hpre we have

‖f‖2H =
n∑

i=1

n∑
j=1

αiαjk(xj , xi) . (4.13)

Proof. Let us first show that H is a Hilbert function space over X. To this
end, observe that H is obviously a vector space of functions from X to K, and
V is a surjective linear operator. Furthermore, for all f ∈ H, we have

‖f‖H = inf
w∈V −1({f})

‖w‖H0 ,
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where V −1({f}) denotes the pre-image of f under V . Let us show that ‖ · ‖H
is a Hilbert space norm on H. To this end, let (wn) ⊂ kerV be a convergent
sequence in the null space kerV := {w ∈ H0 : V w = 0} of V and w ∈ H0

its limit. Then we have 〈w,Φ(x)〉 = limn→∞〈wn, Φ(x)〉 = 0 for all x ∈ X.
Since this shows w ∈ kerV , the null space kerV is a closed subspace of
H0. Let Ĥ denote its orthogonal complement so that we have the orthogonal
decomposition H0 = kerV ⊕ Ĥ. Then the restriction V|Ĥ : Ĥ → H of V to Ĥ
is injective by construction. Let us show that it is also surjective. To this end,
let f ∈ H and w ∈ H0 with f = V w. Since this w can be decomposed into
w = w0+ŵ for suitable w0 ∈ kerV and ŵ ∈ Ĥ, we get f = V (w0+ŵ) = V|Ĥŵ,
which shows the surjectivity of V|Ĥ . Furthermore, a similar reasoning gives

‖f‖2H = inf
w0∈ker V, ŵ∈Ĥ

w0+ŵ∈V −1({f})

‖w0 + ŵ‖2H0
= inf

w0∈ker V, ŵ∈Ĥ
w0+ŵ∈V −1({f})

‖w0‖2H0
+ ‖ŵ‖2H0

=
∥∥ (V|Ĥ)−1f

∥∥2
Ĥ
,

where (V|Ĥ)−1 denotes the inverse operator of V|Ĥ . From the equation above

and the fact that Ĥ is a Hilbert space, we can immediately deduce that
‖ · ‖H is a Hilbert space norm on H and that V|Ĥ : Ĥ → H is an isometric
isomorphism. Furthermore, from the definition of V and ‖ · ‖H , we can easily
conclude that V is a metric surjection.

Let us now show that k is a reproducing kernel of H. To this end, observe
that for x ∈ X we have k( · , x) = 〈Φ0(x), Φ0( · )〉 = V Φ0(x) ∈ H. Furthermore,
we have 〈w,Φ0(x)〉 = 0 for all w ∈ kerV , which shows Φ0(x) ∈ (kerV )⊥ = Ĥ.
Since V|Ĥ : Ĥ → H is isometric, we therefore obtain

f(x) =
〈
(V|Ĥ)−1f, Φ0(x)

〉
H0

=
〈
f, V|ĤΦ0(x)

〉
H

= 〈f, k( · , x)〉H
for all f ∈ H, x ∈ X, i.e., k has the reproducing property. By Lemma 4.19 we
conclude that H is an RKHS.

Let us now show that the assertions on Hpre are true for an arbitrary
RKHS H̃ for which k is a reproducing kernel. To this end, we first observe
that k( · , x) ∈ H̃ for all x ∈ X implies Hpre ⊂ H̃. Now let us suppose that
Hpre was not dense in H̃. This assumption yields (Hpre)⊥ �= {0}, and hence
there would exist an f ∈ (Hpre)⊥ and an x ∈ X with f(x) �= 0. Since this
would imply

0 = 〈f, k( · , x)〉 = f(x) �= 0 ,

we see that Hpre is dense in H̃. Finally, for f :=
∑n

i=1 αik( · , xi) ∈ Hpre, the
reproducing property implies

‖f‖2
H̃

=
n∑

i=1

n∑
j=1

αiαj

〈
k( · , xi), k( · , xj)

〉
H̃

=
n∑

i=1

n∑
j=1

αiαjk(xj , xi) .

Let us now prove that k has only one RKHS. To this end, let H1 and H2 be
two RKHSs of k. We have seen in the previous step that Hpre is dense in both
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H1 andH2 and that the norms ofH1 andH2 coincide onHpre. Let us choose an
f ∈ H1. Then there exists a sequence (fn) ⊂ Hpre with ‖fn−f‖H1 → 0. Since
Hpre ⊂ H2, the sequence (fn) is also contained in H2, and since the norms of
H1 and H2 coincide on Hpre, the sequence (fn) is a Cauchy sequence in H2.
Therefore, there exists a g ∈ H2 with ‖fn−g‖H2 → 0. Since convergence with
respect to an RKHS norm implies pointwise convergence, see (4.7), we then
find f(x) = g(x) for all x ∈ X, i.e., we have shown f ∈ H2. Furthermore,
‖fn − f‖H1 → 0 and ‖fn − f‖H2 → 0 imply

‖f‖H1 = lim
n→∞

‖fn‖H1 = lim
n→∞

‖fn‖Hpre = lim
n→∞

‖fn‖H2 = ‖f‖H2 ,

i.e., H1 is isometrically included in H2. Since the converse inclusion H2 ⊂ H1

can be shown analogously, we obtain H1 = H2 with equal norms. ��

Theorem 4.21 describes the RKHS H of a given kernel k as the “smallest”
feature space of k in the sense that there is a canonical metric surjection V
from any other feature space H0 of k onto H. However, for kernelized algo-
rithms, it is more the specific form (4.10) that makes the RKHS important.
To illustrate this, recall from the introduction that the soft margin SVM pro-
duces decision functions of the form x �→ 〈w,Φ0(x)〉, where Φ0 : X → H0 is a
feature map of k and w ∈ H0 is a suitable weight vector. Now, (4.10) states
that the RKHS associated to k consists exactly of all possible functions of this
form. Moreover, (4.10) shows that this set of functions does not change if we
consider different feature spaces or feature maps of k.

Theorem 4.21 can often be used to determine the RKHS of a given kernel
and its modifications such as restrictions and normalization (see Exercise 4.4
for more details). To illustrate this, let us recall that every C-valued kernel
on X that is actually R-valued has an R-feature space by Lemma 4.4. The
following corollary of Theorem 4.21 describes the corresponding R-RKHS.

Corollary 4.22. Let k : X × X → C be a kernel and H its corresponding
C-RKHS. If we actually have k(x, x′) ∈ R for all x, x′ ∈ X, then

HR :=
{
f : X → R

∣∣ ∃ g ∈ H with Re g = f
}

equipped with the norm

‖f‖HR
:= inf

{
‖g‖H : g ∈ H with Re g = f

}
, f ∈ HR,

is the R-RKHS of the R-valued kernel k.

Proof. We have already seen in Lemma 4.4 that H0 := H equipped with the
inner product

〈f, f ′〉H0 := Re 〈f, f ′〉H , f, f ′ ∈ H0,

is an R-feature space of the R-valued kernel k. Moreover, for f ∈ H0 and
x ∈ X, we have
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f(x) = 〈f, Φ(x)〉H = Re 〈f, Φ(x)〉H +i Im 〈f, Φ(x)〉H = 〈f, Φ(x)〉H0 +i Im f(x),

i.e., we have found 〈f, Φ(x)〉H0 = Re f(x). Now, the assertion follows from
Theorem 4.21. ��

Let us finally assume that we have an RKHSH with kernel k : Cd×Cd → C

whose restriction to Rd is R-valued, i.e., k|Rd×Rd : Rd × Rd → R. Then
combining the preceding corollary with Exercise 4.4 shows that

HR :=
{
f : Rd → R

∣∣ ∃ g : Cd → C with g ∈ H and Re g|Rd = f
}

equipped with the norm

‖f‖HR
:= inf

{
‖g‖H : g ∈ H with Re g|Rd = f

}
, f ∈ HR,

is the R-RKHS of the restriction k|Rd×Rd .

4.3 Properties of RKHSs

Usually, a kernel has additional properties such as measurability, continuity,
or differentiability. In this section, we investigate whether the functions of its
associated RKHS share these properties.

Let us begin by observing that for a kernel k on X with RKHS H the
Cauchy-Schwarz inequality and the reproducing property imply

|k(x, x′)|2 =
∣∣〈k( · , x′), k( · , x)〉

H

∣∣2 ≤ ‖k( · , x′)‖2H · ‖k( · , x)‖2H
= k(x′, x′) · k(x, x) (4.14)

for all x, x′ ∈ X. This yields supx,x′∈X |k(x, x′)| = supx∈X k(x, x), and hence
k is bounded if and only if

‖k‖∞ := sup
x∈X

√
k(x, x) <∞ . (4.15)

Now, let Φ : X → H0 be a feature map of k. Then we find ‖Φ(x)‖H0 =√
k(x, x) for all x ∈ X, and hence Φ is bounded if and only if k is. The follow-

ing lemma provides another important characterization of bounded kernels.

Lemma 4.23 (RKHSs of bounded kernels). Let X be a set and k be a
kernel on X with RKHS H. Then k is bounded if and only if every f ∈ H is
bounded. Moreover, in this case the inclusion id : H → �∞(X) is continuous
and we have ‖ id : H → �∞(X)‖ = ‖k‖∞.

Proof. Let us first assume that k is bounded. Then the Cauchy-Schwarz in-
equality and the reproducing property imply

|f(x)| = |〈f, k( · , x)〉| ≤ ‖f‖H
√
k(x, x) ≤ ‖f‖H‖k‖∞
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for all f ∈ H, x ∈ X. Hence we obtain ‖f‖∞ ≤ ‖k‖∞‖f‖H for all f ∈ H, which
shows that id : H → �∞(X) is well-defined and ‖ id : H → �∞(X)‖ ≤ ‖k‖∞.

Conversely, let us now assume that every f ∈ H is bounded. Then the
inclusion id : H → �∞(X) is well-defined. Our first goal is to show that the
inclusion is continuous. To this end, we fix a sequence (fn) ⊂ H for which
there exist an f ∈ H and a g ∈ �∞(X) such that limn→∞ ‖fn − f‖H = 0 and
limn→∞ ‖ id fn − g‖∞ = 0. Then the first convergence implies fn(x) → f(x)
for all x ∈ X, while the second convergence implies fn(x) → g(x) for all
x ∈ X. We conclude f = g and hence id : H → �∞(X) is continuous by the
closed graph theorem, see Theorem A.5.4. For x ∈ X, we then have

|k(x, x)| ≤ ‖k( · , x)‖∞ ≤ ‖ id : H → �∞(X)‖ · ‖k( · , x)‖H = ‖ id ‖
√
k(x, x) ,

i.e.,
√
k(x, x) ≤ ‖ id ‖. This shows ‖k‖∞ ≤ ‖ id : H → �∞(X)‖. ��

Our next goal is to investigate measurable kernels and their integrability.
We begin with the following lemma.

Lemma 4.24 (RKHSs of measurable kernels). Let X be a measurable
space and k be a kernel on X with RKHS H. Then all f ∈ H are measurable
if and only if k( · , x) : X → R is measurable for all x ∈ X.

Proof. If all f ∈ H are measurable, then k( · , x) ∈ H is measurable for all
x ∈ X. Conversely, if k( · , x) is measurable for all x ∈ X, then all functions
f ∈ Hpre are measurable, where Hpre is defined by (4.12). Let us now fix
an f ∈ H. By Theorem 4.21, there then exists a sequence (fn) ⊂ Hpre with
limn→∞ ‖fn − f‖H = 0, and since all Dirac functionals are continuous, we
obtain limn→∞ fn(x) = f(x), x ∈ X. This gives the measurability of f . ��

The next lemma investigates the measurability of canonical feature maps.

Lemma 4.25 (Measurability of the canonical feature map). Let X be
a measurable space and k be a kernel on X such that k( · , x) : X → R is
measurable for all x ∈ X. If the RKHS H of k is separable, then both the
canonical feature map Φ : X → H and k : X ×X → R are measurable.

Proof. Let w ∈ H ′ be a bounded linear functional. By the Fréchet-Riesz
representation theorem (see Theorem A.5.12) there then exists an f ∈ H
with

〈w,Φ(x)〉H′,H = 〈f, Φ(x)〉H = f(x) , x ∈ X,
and hence 〈w,Φ( · )〉H′,H : X → R is measurable by Lemma 4.24. By Petti’s
measurability theorem (see Theorem A.5.19), we then obtain the measurabil-
ity of Φ. The second assertion now follows from k(x, x′) = 〈Φ(x′), Φ(x)〉 and
the fact that the inner product is continuous. ��

Our next goal is to investigate under which assumptions on the kernel k
the functions of its RKHS are integrable. To this end, recall that x �→ k(x, x)
is a non-negative function, and hence its integral is always defined, though in
general it may not be finite.
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Theorem 4.26 (Integral operators of kernels I). Let X be a measurable
space, µ be a σ-finite measure on X, and H be a separable RKHS over X with
measurable kernel k : X ×X → R. Assume that there exists a p ∈ [1,∞) such
that

‖k‖Lp(µ) :=
(∫

X

kp/2(x, x)dµ(x)
)1/p

<∞ . (4.16)

Then H consists of p-integrable functions and the inclusion id : H → Lp(µ) is
continuous with ‖ id : H → Lp(µ)‖ ≤ ‖k‖Lp(µ). Moreover, the adjoint of this
inclusion is the operator Sk : Lp′(µ)→ H defined by

Skg(x) :=
∫

X

k(x, x′)g(x′)dµ(x′) , g ∈ Lp′(µ), x ∈ X, (4.17)

where p′ is defined by 1
p + 1

p′ = 1. Finally, the following statements are true:

i) H is dense in Lp(µ) if and only if Sk : Lp′(µ)→ H is injective.
ii) Sk : Lp′(µ) → H has a dense image if and only if id : H → Lp(µ) is

injective.

Proof. Let us fix an f ∈ H. Using ‖k( · , x)‖H =
√
k(x, x), we then find

∫
X

|f(x)|pdµ(x) =
∫

X

∣∣〈f, k( · , x)〉∣∣pdµ(x) ≤ ‖f‖pH
∫

X

kp/2(x, x)dµ(x) ,

which shows the first two assertions. Furthermore, for g ∈ Lp′(µ), inequality
(4.14) together with Hölder’s inequality yields

∫
X

∣∣k(x, x′)g(x′)∣∣ dµ(x′) ≤√k(x, x)
∫

X

√
k(x′, x′) |g(x′)| dµ(x′)

≤
√
k(x, x) ‖k‖Lp(µ) ‖g‖Lp′ (µ) , (4.18)

and hence x′ �→ k(x, x′)g(x′) is integrable. In other words, the integral defining
Skg(x) exists for all x ∈ X. Moreover, since

√
k(x′, x′) = ‖Φ(x′)‖H , the second

inequality in (4.18) shows (x′ �→ ‖g(x′)Φ(x′)‖H) ∈ L1(µ), i.e., this function is
Bochner integrable and

ḡ :=
∫

X

g(x′)Φ(x′) dµ(x′) ∈ H .

Moreover, (A.32) applied to the bounded linear operator 〈 · , Φ(x)〉 : H → R

yields

Skg(x) =
∫

X

〈Φ(x′), Φ(x)〉H g(x′) dµ(x′) =
〈∫

X

g(x′)Φ(x′) dµ(x′), Φ(x)
〉

H

for all x ∈ X, and hence we conclude that Skg = ḡ ∈ H. For f ∈ H, another
application of (A.32) yields
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〈g, id f〉Lp′ (µ),Lp(µ) =
∫

X

g(x)
〈
f, k( · , x)

〉
H
dµ(x) =

〈
f,

∫
X

g(x)k( · , x) dµ(x)
〉

H

= 〈f, Skg〉H
= 〈ιSkg, f〉H′,H ,

where ι : H → H ′ is the isometric isomorphism described in Theorem A.5.12.
By identifying H ′ with H via ι, we then find id′ = Sk. Finally, the last two
assertions follow from the fact that a bounded linear operator has a dense
image if and only if its adjoint is injective, as mentioned in Section A.5.1
around (A.19). ��

One may be tempted to think that the “inclusion” id : H → Lp(µ) is
always injective. However, since this map assigns every f to its equivalence
class [f ]∼ in Lp(µ), see (A.33), the opposite is true. To see this, consider for
example an infinite-dimensional RKHS (see Section 4.6 for examples of such
spaces) and an empirical measure µ. Then Lp(µ) is finite-dimensional and
hence the map id : H → Lp(µ) cannot be injective. For a simple condition
ensuring that id : H → Lp(µ) is injective, we refer to Exercise 4.6.

Let us now have a closer look at the case p = 2 in the preceding theorem.
The following theorem shows that in this case the Hilbert space structure of
L2(µ) provides some additional features of the operator Sk which will be of
particular interest in Chapter 7.

Theorem 4.27 (Integral operators of kernels II). Let X be a measurable
space with σ-finite measure µ and H be a separable RKHS over X with mea-
surable kernel k : X×X → R satisfying ‖k‖L2(µ) <∞. Then Sk : L2(µ)→ H
defined by (4.17) is a Hilbert-Schmidt operator with

‖Sk‖HS = ‖k‖L2(µ) . (4.19)

Moreover, the integral operator Tk = S∗
kSk : L2(µ) → L2(µ) is compact,

positive, self-adjoint, and nuclear with ‖Tk‖nuc = ‖Sk‖HS = ‖k‖L2(µ).

Proof. Let us first show that S∗
k : H → L2(µ) is a Hilbert-Schmidt operator.

To this end, let (ei)i≥1 be an ONB of H. By Theorem 4.20, we then find

∞∑
i=1

‖S∗
kei‖2L2(µ) =

∫

X

∞∑
i=1

|S∗
kei(x)|2 dµ(x) =

∫

X

∞∑
i=1

e2i (x) dµ(x) = ‖k‖2L2(µ) <∞,

i.e., S∗
k is indeed Hilbert-Schmidt with the desired norm. Consequently, Sk is

Hilbert-Schmidt, too. Now the remaining assertions follow from the spectral
theory recalled around Theorem A.5.13. ��

Since S∗
k = id : H → L2(µ), one may be tempted to think that the opera-

tors Tk and Sk are the same modulo their image space. However, recall that
in general L2(µ) does not consist of functions, and hence Skf(x) is defined,
while Tkf(x) is not .
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Our next goal is to investigate continuity properties of kernels. To this
end, we say that a kernel k on a topological space X is separately contin-
uous if k( · , x) : X → R is continuous for all x ∈ X. Now, our first lemma
characterizes RKHSs consisting of continuous functions.

Lemma 4.28 (RKHSs consisting of continuous functions). Let X be
topological space and k be a kernel on X with RKHS H. Then k is bounded and
separately continuous if and only if every f ∈ H is a bounded and continuous
function. In this case, the inclusion id : H → Cb(X) is continuous and we
have ‖ id : H → Cb(X)‖ = ‖k‖∞.

Proof. Let us first assume that k is bounded and separately continuous. Then
Hpre only contains continuous functions since k is separately continuous. Let
us fix an arbitrary f ∈ H. By Theorem 4.21, there then exists a sequence
(fn) ⊂ Hpre with limn→∞ ‖fn − f‖H = 0. Since k is bounded, this implies
limn→∞ ‖fn − f‖∞ = 0 by Lemma 4.23 and hence f , as a uniform limit of
continuous functions, is continuous. Finally, both the continuity of id : H →
Cb(X) and ‖ id : H → Cb(X)‖ = ‖k‖∞ follow from Lemma 4.23, too.

Conversely, let us now assume that H only contains continuous functions.
Then k( · , x) : X → K is continuous for all x ∈ X, i.e., k is separately con-
tinuous. Furthermore, the boundedness of k follows from Lemma 4.23. ��

Lemma 4.28 in particular applies to continuous kernels. Let us now discuss
these kernels in more detail. To this end, let k be a kernel on X with feature
map Φ : X → H. Then the kernel metric dk on X is defined by

dk(x, x′) := ‖Φ(x)− Φ(x′)‖H , x, x′ ∈ X. (4.20)

Obviously, dk is a pseudo-metric on X, and if Φ is injective it is even a metric.
Moreover, since

dk(x, x′) =
√
k(x, x)− 2k(x, x′) + k(x′, x′) , (4.21)

the definition of dk is actually independent of the choice of Φ. Furthermore,
the kernel metric can be used to characterize the continuity of k.

Lemma 4.29 (Characterization of continuous kernels). Let (X, τ) be a
topological space and k be a kernel on X with feature space H and feature map
Φ : X → H. Then the following statements are equivalent:

i) k is continuous.
ii) k is separately continuous and x �→ k(x, x) is continuous.
iii) Φ is continuous.
iv) id : (X, τ)→ (X, dk) is continuous.

Proof. i) ⇒ ii). Trivial.
ii)⇒ iv). By (4.21) and the assumptions, we see that dk( · , x) : (X, τ)→ R

is continuous for every x ∈ X. Consequently, {x′ ∈ X : dk(x′, x) < ε} is open
with respect to τ and therefore id : (X, τ)→ (X, dk) is continuous.
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iv) ⇒ iii). This implication follows from the fact that Φ : (X, dk)→ H is
continuous.

iii) ⇒ i). Let us fix x1, x
′
1 ∈ X and x2, x

′
2 ∈ X. Then we have

|k(x1, x
′
1)− k(x2, x

′
2)| ≤ |〈Φ(x′1), Φ(x1)− Φ(x2)〉|+ |〈Φ(x′1)− Φ(x′2), Φ(x2)〉|
≤ ‖Φ(x′1)‖·‖Φ(x1)−Φ(x2)‖+‖Φ(x2)‖·‖Φ(x′1)−Φ(x′2)‖,

and from this we can easily deduce the assertion. ��

As discovered by Lehto (1952), separately continuous, bounded kernels are
not necessarily continuous, even if one only considers X = [−1, 1]. However,
since his example is out of the scope of this book, we do not present it here.

We have seen in Lemma 4.23 that an RKHS over X is continuously in-
cluded in �∞(X) if its kernel is bounded. The next proposition gives a con-
dition that ensures that this inclusion is even compact. This compactness
will play an important role when we investigate the statistical properties of
support vector machines in Chapter 6.

Proposition 4.30 (RKHSs compactly included in �∞(X)). Let X be a
set and k be a kernel on X with RKHS H and canonical feature map Φ : X →
H. If Φ(X) is compact in H, then the inclusion id : H → �∞(X) is compact.

Proof. Since Φ(X) is compact, k is bounded and the space (X, dk) is compact,
where dk is the semi-metric defined in (4.20). We write C(X, dk) for the space
of functions from X to R that are continuous with respect to dk. Obviously,
C(X, dk) is a subspace of �∞(X). Moreover, for x, x′ ∈ X and f ∈ H, we
obtain

|f(x)− f(x′)| = |〈f, Φ(x)− Φ(x′)〉| ≤ ‖f‖H · dk(x, x′) ,

i.e., f is Lipschitz continuous on (X, dk) with Lipschitz constant not larger
than ‖f‖H . In particular, the unit ball BH of H is equicontinuous, and since
BH is also ‖ · ‖∞-bounded by the boundedness of k, the theorem of Arzelà-
Ascoli shows that BH is compact in C(X, dk) and thus in �∞(X). ��

Obviously, the proposition above remains true if one only assumes the
compactness of Φ(X) for an arbitrary feature map Φ. Furthermore, continu-
ous images of compact sets are compact, and hence Proposition 4.30 has the
following direct consequence.

Corollary 4.31. Let X be a compact topological space and k be a continuous
kernel on X with RKHS H. Then the inclusion id : H → C(X) is compact.

We emphasize that in general one cannot expect compactness of the inclu-
sion id : H → Cb(X) if k is bounded and continuous but X is not compact.
The following example illustrates this.
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Example 4.32. Let kγ be the Gaussian RBF kernel on R with width γ > 0
and RKHS Hγ(R). Obviously, kγ is bounded and continuous, and hence the
inclusion id : Hγ(R)→ Cb(R) is well-defined and continuous. Moreover, since
‖kγ‖∞ = 1, we also have kγ( · , x) ∈ BHγ(R) for all x ∈ R. However, for all
n,m ∈ N with n �= m, we obtain

‖kγ( · , n)− kγ( · ,m)‖∞ ≥ |kγ(n, n)− kγ(n,m)| ≥ |1− exp(−γ−2)| ,

and thus BHγ(R) cannot be relatively compact in Cb(R).

Let us end the discussion on continuous kernels with the following lemma
that gives a sufficient condition for the separability of RKHSs.

Lemma 4.33 (Separable RKHSs). Let X be a separable topological space
and k be a continuous kernel on X. Then the RKHS of k is separable.

Proof. By Lemma 4.29, the canonical feature map Φ : X → H into the
RKHS H of k is continuous and hence Φ(X) is separable. Consequently, Hpre,
considered in Theorem 4.21, is also separable, and hence so is H by Theorem
4.21. ��

Our last goal in this section is to investigate how the differentiability of
a kernel is inherited by the functions of its RKHS. In order to formulate the
next lemma, which to some extent is of its own interest, we need to recall
Banach space valued differentiation from Section A.5.3. Moreover, note that
we can interpret a kernel k : Rd × Rd → R as a function k̃ : R2d → R.
Consequently, considering the mixed partial derivative of the kernel k(x, x′)
with respect to the i-th coordinates in x and x′ is the same as considering
the mixed partial derivative ∂i∂i+dk̃ at (x, x′). In the following, we make this
identification implicitly by writing ∂i∂i+dk := ∂i∂i+dk̃. Moreover, we extend
this notation to kernels defined on open subsets of Rd in the obvious way.

Lemma 4.34 (Differentiability of feature maps). Let X ⊂ Rd be an
open subset, k be a kernel on X, H be a feature space of k, and Φ : X → H be
a feature map of k. Let i ∈ {1, . . . , d} be an index such that the mixed partial
derivative ∂i∂i+dk of k with respect to the coordinates i and i + d exists and
is continuous. Then the partial derivative ∂iΦ of Φ : X → H with respect to
the i-th coordinate exists, is continuous, and for all x, x′ ∈ X we have

〈
∂iΦ(x), ∂iΦ(x′)

〉
H

= ∂i∂i+dk(x, x′) = ∂i+d∂ik(x, x′) . (4.22)

Proof. Without loss of generality, we may assume X = Rd. For h ∈ R and
ei ∈ Rd being the i-th vector of the canonical basis of Rd, we then define
∆hΦ(x) := Φ(x+ hei)− Φ(x), x ∈ X. In order to show that ∂iΦ(x) exists for
an arbitrary x ∈ X, it obviously suffices to show that h−1

n ∆hn
Φ(x) converges

for all sequences (hn) ⊂ Rd \ {0} with hn → 0. Since a feature space is
complete, it thus suffices to show that (h−1

n ∆hn
Φ(x)) is a Cauchy sequence.

To this end, we first observe that
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∥∥h−1
n ∆hn

Φ(x)− h−1
m ∆hm

Φ(x)
∥∥2

H
=
〈
h−1

n ∆hn
Φ(x), h−1

n ∆hn
Φ(x)

〉
H

+
〈
h−1

m ∆hm
Φ(x), h−1

m ∆hm
Φ(x)

〉
H

−2
〈
h−1

n ∆hn
Φ(x), h−1

m ∆hm
Φ(x)

〉
H

for all x ∈ X and n,m ∈ N. For the functionK(x′) := k(x+hnei, x
′)−k(x, x′),

x′ ∈ X, we further have 〈∆hn
Φ(x),∆hm

Φ(x′)〉H = K(x′ +hmei)−K(x′), and
hence the mean value theorem yields a ξm,n ∈ [−|hm|, |hm|] such that〈

∆hn
Φ(x), h−1

m ∆hm
Φ(x′)

〉
H

= ∂iK(x′ + ξm,nei)
= ∂i+dk(x+hnei, x

′+ξm,nei)− ∂i+dk(x, x′+ξm,nei).

Another application of the mean value theorem yields an ηm,n ∈ [−|hn|, |hn|]
such that〈

h−1
n ∆hn

Φ(x), h−1
m ∆hm

Φ(x′)
〉

H
= ∂i∂i+dk(x+ηm,nei, x

′+ξm,nei) .

By the continuity of ∂i∂i+dk, we conclude that for a given ε > 0 there exists
an n0 ∈ N such that for all n,m ≥ n0 we have∣∣∣〈h−1

n ∆hn
Φ(x), h−1

m ∆hm
Φ(x′)

〉
H
− ∂i∂i+dk(x, x′)

∣∣∣ ≤ ε . (4.23)

Applying (4.23) for x = x′ to the three terms on the right-hand side of our
first equation, we see that (h−1

n ∆hn
Φ(x)) is a Cauchy sequence. By definition,

its limit is ∂iΦ, and the first equality in (4.22) is then a direct consequence of
(4.23). The second equality follows from the symmetry of k. ��

A direct consequence of the result above is that ∂i∂i+dk is a kernel on
X × X with feature map ∂iΦ. Now assume that even ∂j∂j+d∂i∂i+dk ex-
ists and is continuous. Then an iterated application of the preceding lemma
shows that ∂j∂iΦ exists, is continuous, and is a feature map of the ker-
nel ∂j∂j+d∂i∂i+dk. Obviously, we can further iterate this procedure if even
higher-order derivatives exist. In order to describe such situations, we write
∂α,α := ∂α1

1 . . . ∂αd

d ∂α1
1+d . . . ∂

αd

2d , where α = (α1, . . . , αd) ∈ Nd
0 is a multi-index

and arbitrary reorderings of the partial derivatives are allowed.

Definition 4.35. Let k be a kernel on an open X ⊂ Rd. For m ≥ 0, we say
that k is m-times continuously differentiable if ∂α,αk : X×X → R exists
and is continuous for all multi-indexes α ∈ Nd

0 with |α| ≤ m.

Iteratively applying Lemma 4.34 to an m-times continuously differentiable
kernel yields the following result.

Corollary 4.36 (RKHSs of differentiable kernels). Let X ⊂ Rd be an
open subset, m ≥ 0, and k be an m-times continuously differentiable kernel on
X with RKHS H. Then every f ∈ H is m-times continuously differentiable,
and for α ∈ Nd

0 with |α| ≤ m and x ∈ X we have
∣∣∂αf(x)

∣∣ ≤ ‖f‖H · (∂α,αk(x, x)
)1/2

. (4.24)
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Proof. Let us write Φ : X → H for the canonical feature map of k. By
iteratively applying Lemma 4.34, we see that ∂αΦ : X → H is a feature map
of the kernel ∂α,αk : X × X → R. By the continuity of 〈f, · 〉H : H → R,
we then conclude that 〈f, ∂αΦ(x)〉H = ∂α〈f, Φ(x)〉H = ∂αf(x), i.e, the latter
partial derivative exists and is continuous. Finally, (4.24) follows from∣∣∂αf(x)

∣∣ = ∣∣〈f, ∂αΦ(x)〉H
∣∣ ≤ ‖f‖H ·√〈∂αΦ(x), ∂αΦ(x)〉H (4.25)

and an iterated application of (4.22) to the right-hand side of (4.25). ��

4.4 Gaussian Kernels and Their RKHSs

The goal of this section is to use the developed theory on RKHSs to investi-
gate the Gaussian RBF kernels and their RKHSs in more detail. In particular,
we will present two representations of these RKHSs and discuss some conse-
quences. We begin, however, with a simple result that describes the effect of
the kernel parameter γ on the input domain.

Proposition 4.37. Let X ⊂ Rd be a non-empty subset and s, γ > 0 be real
numbers. Given a function f : sX → R, we define τsf(x) := f(sx) for x ∈ X.
Then, for all f ∈ Hsγ(sX), we have τsf ∈ Hγ(X), and the corresponding
linear operator τs : Hsγ(sX)→ Hγ(X) is an isometric isomorphism.

Proof. We define Φ : X → Hsγ(sX) by Φ(x) := Φsγ(sx), where x ∈ X and
Φsγ : sX → Hsγ(sX) is the canonical feature map of ksγ , i.e., Φsγ(y) =
ksγ( · , y) for all y ∈ sX. For x, x′ ∈ X, we then have

〈Φ(x′), Φ(x)〉Hsγ(sX) = 〈Φsγ(sx′), Φsγ(sx)〉Hsγ(sX) = ksγ(sx′, sx)

= exp
(
−(sγ)−2‖sx−sx′‖22

)
= kγ(x, x′) ,

and hence Φ : X → Hsγ(sX) is a feature map of kγ : X×X → R. Let us now
fix an f ∈ Hsγ(sX). By Theorem 4.21, we then know that 〈f, Φ( · )〉Hsγ(sX) ∈
Hγ(X) and ∥∥ 〈f, Φ( · )〉Hsγ(sX)

∥∥
Hγ(sX)

≤ ‖f‖Hsγ(X) .

Moreover, for x ∈ X, the reproducing property in Hsγ(sX) yields

〈f, Φ(x)〉Hsγ(sX) = 〈f, Φsγ(sx)〉Hsγ(sX) = f(sx) = τsf(x) ,

and hence we have found τsf ∈ Hγ(X) with ‖τsf‖Hγ(X) ≤ ‖f‖Hsγ(sX). Fi-
nally, we obtain the converse inequality by applying the results above to the
dilation operator τ1/s. ��

Portions of Section 4.4 are based on material originally published in “I. Steinwart,
D. Hush, and C. Scovel (2006), ‘An explicit description of the reproducing kernel
Hilbert spaces of Gaussian RBF kernels.’ IEEE Trans. Inf. Theory, 52, 4635–
4643”
c© 2006 IEEE. Reprinted, with permission.



4.4 Gaussian Kernels and Their RKHSs 133

Roughly speaking, the preceding proposition states that scaling the kernel
parameter has the same effect on the RKHSs as scaling the input space.
Considering the definition of the Gaussian RBF kernels, this is not really
surprising.

Our next goal is to determine an explicit formula for the RKHSs of
Gaussian RBF kernels. To this end, let us fix γ > 0 and d ∈ N. For a given
holomorphic function f : Cd → C, we define

‖f‖γ,Cd :=
( 2d

πdγ2d

∫
Cd

|f(z)|2eγ
−2∑d

j=1(zj−z̄j)
2
dz
)1/2

, (4.26)

where zj is the j-th component of z ∈ Cd, z̄j its conjugate, and dz stands for
the complex Lebesgue measure on Cd. Furthermore, we write

Hγ,Cd :=
{
f : Cd → C | f holomorphic and ‖f‖γ,Cd <∞

}
. (4.27)

Obviously, Hγ,Cd is a C-vector space with pre-Hilbert norm ‖ · ‖γ,Cd . Now,
our first result shows that Hγ,Cd is the RKHS of the complex Gaussian RBF
kernel kγ,Cd defined in Proposition 4.10.

Theorem 4.38 (RKHS of the complex Gaussian RBF). Let γ > 0 and
d ∈ N. Then (Hγ,Cd , ‖·‖H

γ,Cd
) is an RKHS and kγ,Cd is its reproducing kernel.

Furthermore, for n ∈ N0, let en : C→ C be defined by

en(z) :=
√

2n

γ2nn!
zne−γ−2z2

, z ∈ C . (4.28)

Then the system (en1⊗· · ·⊗end
)n1,...,nd≥0 of functions en1⊗· · ·⊗end

: Cd → C

defined by

en1 ⊗ · · · ⊗ end
(z1, . . . , zd) :=

d∏
j=1

enj
(zj) , (z1, . . . , zd) ∈ Cd,

is an orthonormal basis of Hγ,Cd .

For the proof of Theorem 4.38, we need the following technical lemma.

Lemma 4.39. For all d ∈ N, all holomorphic functions f : Cd → C, all
r1, . . . , rd ∈ [0, 1), and all z ∈ Cd, we have

|f(z)|2 ≤ 1
(2π)d

2π∫

0

· · ·
2π∫

0

∣∣f(z1 + r1eiθ1 , . . . , zd + rdeiθd)
∣∣2dθ1 · · · dθd , (4.29)

where i :=
√
−1 denotes the imaginary unit.
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Proof. We proceed by induction over d. For d = 1, Hardy’s convexity theorem
(see Theorem A.7.3) states that the function

r �→ 1
2π

∫ 2π

0

∣∣f(z + reiθ)
∣∣2dθ

is non-decreasing on [0, 1), and hence we obtain the assertion in this case.
Now let us suppose that we have already shown the assertion for d ∈ N.

Let f : Cd+1 → C be a holomorphic function, and choose r1, . . . , rd+1 ∈ [0, 1).
Since for fixed (z1, . . . , zd) ∈ Cd the function zd+1 �→ f(z1, . . . , zd, zd+1) is
holomorphic, we already know that

|f(z1, . . . , zd+1)|2 ≤
1
2π

∫ 2π

0

∣∣f(z1, . . . , zd, zd+1 + rd+1e
iθd+1)

∣∣2dθd+1 .

Now applying the induction hypothesis to the holomorphic functions

(z1, . . . , zd) �→ f(z1, . . . , zd, zd+1 + rd+1e
iθd+1)

on Cd gives the assertion for d+ 1. ��

Proof (of Theorem 4.38). We first prove that Hγ,C is an RKHS. To this end,
we begin by showing that for all compact subsets K ⊂ Cd there exists a
constant cK > 0 with

|f(z)| ≤ cK ‖f‖γ,Cd , z ∈ K, f ∈ Hγ,Cd . (4.30)

In order to establish (4.30), we define

c := max{e−γ−2∑d
j=1(zj−z̄j)

2
: (z1, . . . , zd) ∈ K + (BC)d} ,

where BC denotes the closed unit ball of C. Now, by Lemma 4.39, we have

2dr1 · · · rd|f(z)|2 ≤
r1 · · · rd
πd

2π∫

0

· · ·
2π∫

0

∣∣f(z1 + r1eiθ1 , . . . , zd + rdeiθd)
∣∣2dθ1 · · · dθd,

and integrating this inequality with respect to r = (r1, . . . , rd) over [0, 1)d

then yields

|f(z)|2 ≤ 1
πd

∫

z+(BC)d

|f(z′)|2dz′ ≤ c

πd

∫

z+(BC)d

|f(z′)|2eγ
−2∑d

j=1(z
′
j−z̄′

j)
2
dz′

≤ cγ
2d

2d
‖f‖2γ,Cd , z ∈ K,

by the continuity of f . This means that we have established (4.30). Now,
(4.30) obviously shows that the Dirac functionals are bounded on Hγ,Cd . Fur-
thermore, (4.30) also shows that convergence in ‖ · ‖γ,C implies compact con-
vergence, i.e., uniform convergence on every compact subset. Using the fact
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that a compactly convergent sequence of holomorphic functions has a holo-
morphic limit (see, e.g., Theorem A.7.2), we then immediately find that Hγ,Cd

is complete. Therefore Hγ,Cd is an RKHS.
To show that the system (en1 ⊗ · · · ⊗ end

)n1,...,nd≥0 is an ONB of Hγ,Cd ,
we first consider the case d = 1. To this end, we observe that for n ∈ N0 we
have

∫
C

zn(z̄)ne−2γ−2zz̄dz =
∫ ∞

0

r

∫ 2π

0

r2ne−2γ−2r2
dθdr

= 2π
∫ ∞

0

r2n+1e−2γ−2r2
dr

=
πγ2(n+1)

2n+1

∫ ∞

0

tne−tdt

=
πγ2(n+1)n!

2n+1
, (4.31)

where in the last step we used the gamma function, see Section A.1. Further-
more, for n,m ∈ N0 with n �= m, a simple calculation gives
∫
C

zn(z̄)me−2γ−2zz̄dz =
∫ ∞

0

r

∫ 2π

0

rn+mei(n−m)θe−2γ−2r2
dθdr = 0 . (4.32)

In addition, for z, z̄ ∈ C and n,m ≥ 0, we have

en(z)em(z)eγ
−2(z−z̄)2 =

√
2n+m

n!m! γ2(n+m)
zn(z̄)me−γ−2z2−γ−2z̄2

eγ
−2(z−z̄)2

=

√
2n+m

n!m! γ2(n+m)
zn(z̄)me−2γ−2zz̄ ,

and consequently we obtain

〈en, em〉 =
2
πγ2

∫
C

en(z)em(z)eγ
−2(z−z̄)2dz =

{
1 if n = m

0 otherwise

by (4.31) and (4.32), i.e., (en)n≥0 is an ONS. Now, let us show that this system
is actually an ONB. To this end, let f ∈ Hγ,C. Then z �→ eγ

−2z2
f(z) is an

entire function, and therefore there exists a sequence (an) ⊂ C such that

f(z) =
∞∑

n=0

anz
ne−γ−2z2

=
∞∑

n=0

an

√
γ2nn!

2n
en(z) (4.33)

for all z ∈ C. Obviously, it suffices to show that the convergence above also
holds with respect to ‖·‖γ,C. To prove this, we first recall from complex analysis
that the series in (4.33) converges absolutely and compactly. Therefore, for
n ≥ 0 equations (4.31), (4.32), and (4.33) yield
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〈f, en〉 =
2
πγ2

∫
C

f(z)en(z)eγ
−2(z−z̄)2dz

=
2
πγ2

∞∑
m=0

am

∫
C

zme−γ−2z2
en(z)eγ

−2(z−z̄)2dz

=
2
πγ2

√
2n

γ2nn!

∞∑
m=0

am

∫
C

zm(z̄)ne−2γ−2zz̄dz

= an

√
γ2nn!

2n
. (4.34)

Furthermore, since (en) is an ONS, there exists a function g ∈ Hγ,C with
g =

∑∞
n=0〈f, en〉en, where the convergence takes place in Hσ,C. Now, using

(4.33), (4.34), and the fact that norm convergence in RKHSs implies point-
wise convergence, we find g = f , i.e., the series in (4.33) converges with respect
to ‖ · ‖σ,C.

Now, let us briefly treat the general, d-dimensional case. In this case, a
simple calculation shows

〈en1 ⊗ · · · ⊗ end
, em1 ⊗ · · · ⊗ emd

〉H
γ,Cd

=
d∏

j=1

〈enj
, emj

〉Hγ,C
,

and hence we find the orthonormality of (en1 ⊗ · · · ⊗ end
)n1,...,nd≥0. In order

to check that this orthonormal system is an ONB, let us fix an f ∈ Hσ,Cd .
Then z �→ f(z) exp(σ2

∑d
i=1 z

2
i ) is an entire function, and hence there exist

an1,...,nd
∈ C, (n1, . . . , nd) ∈ Nd

0, such that

f(z) =
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

zni
i e

−σ2z2
i

=
∑

(n1,...,nd)∈Nd
0

an1,...,nd

d∏
i=1

√
ni!

(2σ2)ni
eni

(z)

for all z = (z1, . . . , zd) ∈ Cd. From this we easily derive

〈f, en1 ⊗ · · · ⊗ end
〉 = an1,...,nd

d∏
i=1

√
ni!

(2σ2)ni
.

Now we see that (en1⊗· · ·⊗end
)n1,...,nd≥0 is an ONB as in the one-dimensional

case.
Finally, let us show that kγ,Cd is the reproducing kernel of Hγ,Cd . To this

end, we write k for the reproducing kernel of Hγ,Cd . Then (4.9) and the Taylor
series expansion of the exponential function yield



4.4 Gaussian Kernels and Their RKHSs 137

k(z, z′) =
∞∑

n1,...,nd=0

en1 ⊗ · · · ⊗ end
(z)en1 ⊗ · · · ⊗ end

(z′)

=
∞∑

n1,...,nd=0

d∏
j=1

2nj

γ2njnj !
(zj z̄′j)

nje−γ−2z2
j−γ−2(z̄′

j)
2

=
d∏

j=1

∞∑
nj=0

2nj

γ2njnj !
(zj z̄′j)

nje−γ−2z2
j−γ−2(z̄′

j)
2

=
d∏

j=1

e−γ−2z2
j−γ−2(z̄′

j)
2+2γ−2zj z̄′

j

= e−γ−2∑d
j=1(zj−z̄′

j)
2
. ��

With the help of Theorem 4.38, we can obtain some interesting information
on the RKHSs of the real-valued Gaussian RBF kernels kγ . Let us begin with
the following corollary that describes their RKHSs.

Corollary 4.40 (RKHS of Gaussian RBF). For X ⊂ Rd and γ > 0, the
RKHS Hγ(X) of the real-valued Gaussian RBF kernel kγ on X is

Hγ(X) =
{
f : X → R | ∃ g ∈ Hγ,Cd with Re g|X = f

}
,

and for f ∈ Hγ(X) the norm ‖ · ‖Hγ(X) in Hγ(X) can be computed by

‖f‖Hγ(X) = inf
{
‖g‖γ,Cd : g ∈ Hγ,Cd with Re g|X = f

}
.

Proof. The assertion directly follows from Theorem 4.38, Proposition 4.10,
and the discussion following Corollary 4.22. ��

The preceding corollary shows that every f ∈ Hγ(X) of the Gaussian RBF
kernel kγ originates from the complex RKHS Hγ,Cd , which consists of entire
functions. Consequently, every f ∈ Hγ(X) can be represented by a power
series that converges on Rd. This observation suggests that there may be an
intimate relationship between Hγ(X) and Hγ(Rd) if X contains an open set.
In order to investigate this conjecture, we need some additional notation. For a
multi-index ν := (n1, . . . , nd) ∈ Nd

0, we write |v| := n1+· · ·+nd. Furthermore,
for X ⊂ R and n ∈ N0, we define eXn : X → R by

eXn (x) :=
√

2n

γ2nn!
xne−γ−2x2

, x ∈ X , (4.35)

i.e., we have eXn = (en)|X = (Re en)|X , where en : C → C is an element
of the ONB of Hγ,C defined by (4.28). Furthermore, for a multi-index ν :=
(n1, . . . , nd) ∈ Nd

0, we write

eXν := eXn1
⊗ · · · ⊗ eXnd
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and eν := en1 ⊗ · · · ⊗ end
. Given an x := (x1, . . . , xd) ∈ Rd, we also adopt the

notation xν := xn1
1 · . . . ·xnd

d . Finally, recall that �2(Nd
0) denotes the set of all

real -valued square-summable families, i.e.,

�2(Nd
0) :=

{
(aν)ν∈Nd

0
: aν ∈ R for all ν ∈ Nd

0 and ‖(aν)‖22 :=
∑

ν∈Nd
0

a2
ν <∞

}
.

With the help of these notations, we can now show an intermediate result.

Proposition 4.41. Let γ > 0, X ⊂ Rd be a subset with non-empty interior,
i.e., X̊ �= ∅, and f ∈ Hγ(X). Then there exists a unique element (bν) ∈ �2(Nd

0)
such that

f(x) =
∑

ν∈Nd
0

bνe
X
ν (x) , x ∈ X, (4.36)

where the convergence is absolute. Furthermore, for all functions g : Cd → C,
the following two statements are equivalent:

i) We have g ∈ Hγ,Cd and Re g|X = f .
ii) There exists an element (cν) ∈ �2(Nd

0) with

g =
∑

ν∈Nd
0

(bν + icν)eν . (4.37)

Finally, we have the identity ‖f‖2Hγ(X) =
∑

ν∈Nd
0
b2ν .

Proof. i)⇒ ii). Let us fix a g ∈ Hγ,Cd with Re g|X = f . Since (eν) is an ONB
of Hγ,Cd , we then have

g =
∑

ν∈Nd
0

〈g, eν〉 eν ,

where the convergence is with respect to Hγ,Cd . In addition, recall that the
family of Fourier coefficients is square-summable and satisfies Parseval’s iden-
tity, see Lemma A.5.11,

‖g‖2H
γ,Cd

=
∑

ν∈Nd
0

∣∣〈g, eν〉∣∣2 .

Since convergence in Hγ,Cd implies pointwise convergence, we then obtain

f(x) = Re g|X(x) = Re

( ∑
ν∈Nd

0

〈g, eν〉 eν(x)

)
=
∑

ν∈Nd
0

Re
(
〈g, eν〉

)
eXν (x)

for all x ∈ X, where in the last step we used eν(x) ∈ R for x ∈ X. In
order to prove ii), it consequently remains to show that bν := Re 〈g, eν〉 only
depends on f but not on g. To this end, let g̃ ∈ Hγ,Cd be another function
with Re g̃|X = f . By repeating the argument above for g̃, we then find
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f(x) =
∑

ν∈Nd
0

Re
(
〈g̃, eν〉

)
eXν (x) , x ∈ X.

Using the definition (4.35) of eXn , we then obtain
∑

ν∈Nd
0

Re
(
〈g̃, eν〉

)
aν x

ν =
∑

ν∈Nd
0

Re
(
〈g, eν〉

)
aν x

ν , x ∈ X,

where aν := an1 · · · and
and an :=

(
2n

γ2nn!

)1/2. Since X has a non-empty inte-
rior, the identity theorem for power series and aν �= 0 then give Re 〈g̃, eν〉 =
Re 〈g, eν〉 for all ν ∈ Nd

0. This shows both (4.36) and (4.37). Finally, Corollary
4.40 and Parseval’s identity give

‖f‖2Hγ(X) = inf
{
‖g‖γ,Cd : g ∈ Hγ,Cd with Re g|X = f

}

= inf

{ ∑
ν∈Nd

0

b2ν + c2ν : (cν) ∈ �2(Nd
0)

}

=
∑

ν∈Nd
0

b2ν .

ii)⇒ i). Since (bν) ∈ �2(Nd
0) and (cν) ∈ �2(Nd

0) imply
(
|bν+icν |

)
∈ �2(Nd

0),
we have g ∈ Hγ,Cd . Furthermore, Re g|X = f follows from

Re g(x) = Re
∑

ν∈Nd
0

(bν + icν)eν(x) =
∑

ν∈Nd
0

bνe
X
ν (x) = f(x) , x ∈ X.

��

With the help of the preceding proposition, we can now establish our main
result on Hγ(X) for input spaces X having a non-empty interior. Roughly
speaking, this result states that Hγ(X) is isometrically embedded into Hγ,Cd

via a canonical extension procedure based on a specific ONB of Hγ(X).

Theorem 4.42 (ONB of real Gaussian RKHS). Let γ > 0 and X ⊂ Rd

be a subset with a non-empty interior. Furthermore, for an f ∈ Hγ(X) repre-
sented by (4.36), we define

f̂ :=
∑

ν∈Nd
0

bνeν .

Then the extension operator ˆ: Hγ(X)→ Hγ,Cd defined by f �→ f̂ satisfies

Re f̂|X = f ,

‖f̂‖H
γ,Cd

= ‖f‖Hγ(X)

for all f ∈ Hγ(X). Moreover, (eXν ) is an ONB of Hγ(X), and for f ∈ Hγ(X)
having the representation (4.36), we have bν = 〈f, eXν 〉 for all ν ∈ Nd

0.
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Proof. By (4.36), the extension operator is well-defined. The identities then
follow from Proposition 4.41 and Parseval’s identity. Moreover, the extension
operator is obviously R-linear and satisfies êXν = eν for all ν ∈ Nd

0. Conse-
quently, we obtain

‖eXν1
± eXν2

‖Hγ(X) = ‖êXν1
± êXν2

‖H
γ,Cd

= ‖eν1 ± eν2‖Hγ,Cd

for ν1, ν2 ∈ Nd
0. Using the first polarization identity of Lemma A.5.9, we then

see that (eXν ) is an ONS in Hγ(X). To see that it actually is an ONB we fix
an f ∈ Hγ(X). Furthermore, let (bν) ∈ �2(Nd

0) be the family that satisfies
(4.36). Then

f̃ :=
∑

ν∈Nd
0

bνe
X
ν

converges in Hγ(X). Since convergence in Hγ(X) implies pointwise conver-
gence, (4.36) then yields f̃(x) = f(x) for all x ∈ X. Consequently, (eXν ) is an
ONB of Hγ(X). Finally, the identity bν = 〈f, eXν 〉, ν ∈ Nd

0, follows from the
fact that the representation of f by (eXν ) is unique. ��

In the following, we present some interesting consequences of the preceding
theorem.

Corollary 4.43. Let X ⊂ Rd be a subset with non-empty interior, γ > 0,
and ˆ : Hγ(X) → Hγ,Cd be the extension operator defined in Theorem 4.42.
Then the extension operator I : Hγ(X) → Hγ(Rd) defined by If := Re f̂|Rd ,
f ∈ Hγ(X), is an isometric isomorphism.

Proof. For f ∈ Hγ(X), we have (〈f, eXν 〉) ∈ �2(Nd
0), and hence

f̃ :=
∑

ν∈Nd
0

〈f, eXν 〉eR
d

ν

is an element of Hγ(Rd). Moreover, for ν ∈ Nd
0, we have (Re eν)|Rd = eR

d

ν and
〈f, eXν 〉 ∈ R, and hence we find If = f̃ . Furthermore, ‖f‖Hγ(X) = ‖If‖Hγ(Rd)

immediately follows from Parseval’s identity. Consequently, I is isometric,
linear, and injective. The surjectivity finally follows from the fact that, given
an f̃ ∈ Hγ(Rd), the function

f :=
∑

ν∈Nd
0

〈
f, eR

d

ν

〉
eXν

obviously satisfies f ∈ Hγ(X) and If = f̃ . ��

Roughly speaking, the preceding corollary means that Hγ(Rd) does not
contain “more” functions than Hγ(X) if X has a non-empty interior. More-
over, Corollary 4.43 in particular shows that Hγ(X1) and Hγ(X2) are isomet-
rically isomorphic via a simple extension-restriction mapping going through
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Hγ(Rd) whenever both input spaces X1,X2 ⊂ Rd have a non-empty in-
terior. Consequently, we sometimes use the notation Hγ := Hγ(X) and
‖ · ‖γ := ‖ · ‖Hγ(X) if X has a non-empty interior and no confusion can arise.

Besides the isometry above, Theorem 4.42 also yields the following inter-
esting observation.

Corollary 4.44 (Gaussian RKHSs do not contain constants). Let γ >
0, X ⊂ Rd be a subset with a non-empty interior, and f ∈ Hγ(X). If f is
constant on a non-empty open subset A of X, then f = 0.

Proof. Let c ∈ R be a constant with f(x) = c for all x ∈ A. Let us define an :=
( 2n

γ2nn! )
1/2 for all n ∈ N0. Furthermore, for a multi-index ν := (n1, . . . , nd) ∈

Nd
0, we write bν := 〈f, eXν 〉 and aν := an1 · . . . ·and

. For x := (x1, . . . , xd) ∈ A,
the definition (4.35) and the representation (4.36) then yield

c exp
(
γ−2

d∑
j=1

x2
j

)
= f(x) exp

(
γ−2

d∑
j=1

x2
j

)
=
∑

ν∈Nd
0

bνaνx
ν . (4.38)

Moreover, for x ∈ Rd, a simple calculation shows

exp
(
γ−2

d∑
j=1

x2
j

)
=

d∏
j=1

eγ
−2x2

j =
d∏

j=1

( ∞∑
nj=0

x
2nj

j

nj ! γ2nj

)

=
∞∑

n1,...,nd=0

d∏
j=1

x
2nj

j

nj ! γ2nj
.

Using (4.38) and the identity theorem for power series, we hence obtain

bνaν =

⎧⎪⎨
⎪⎩
c γ−|ν|

d∏
j=1

1
nj !

if ν = (2n1, . . . , 2nd) for some (n1, . . . , nd) ∈ Nd
0

0 otherwise ,

or in other words

bν =

⎧⎪⎨
⎪⎩
c

d∏
j=1

√
(2nj)!

nj !
2−nj if ν = (2n1, . . . , 2nd) for some (n1, . . . , nd) ∈ Nd

0

0 otherwise .

Consequently, Parseval’s identity yields

‖f‖2Hγ(X) =
∑

ν∈Nd
0

b2ν =
∞∑

n1,...,nd=0

c2
d∏

j=1

(2nj)!
(nj !)2

2−2nj

=
d∏

j=1

( ∞∑
nj=0

c2/d (2nj)!
(nj !)2

2−2nj

)

=
( ∞∑

n=0

c2/d (2n)!
(n!)2

2−2n

)d

.
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Let us write αn := (2n)!
(n!)2 2−2n for n ∈ N0. By an easy calculation, we then

obtain

αn+1

αn
=

(2(n+ 1))! (n!)2 2n

(2n)! ((n+ 1)! )2 22(n+1)
=

(2n+ 1)(2n+ 2)
4(n+ 1)2

=
2n+ 1
2n+ 2

≥ n

n+ 1

for all n ≥ 1. In other words, (nαn) is an increasing, positive sequence. Con-
sequently there exists an α > 0 with αn ≥ α

n for all n ≥ 1, and hence we find∑∞
n=0 αn = ∞. Therefore, ‖f‖2Hγ(X) < ∞ implies c = 0, and thus we have

f = 0. ��

The preceding corollary shows in particular that 1A �∈ Hγ(X) for all open
subsets A ⊂ X. Some interesting consequences of this observation with respect
to the hinge loss used in classification are discussed in Exercise 4.8.

Let us now compare the norms ‖ · ‖γ for different values of γ. To this end,
we first observe that the weight function in the definition of ‖ · ‖γ,Cd satisfies

eγ
−2∑d

j=1(zj−z̄j)
2

= e−4γ−2∑d
j=1 y2

j ,

where yj := Im zj , j = 1, . . . , d. For γ1 ≤ γ2, we hence find Hγ2,Cd ⊂ Hγ1,Cd

and
‖f‖H

γ1,Cd
≤
(γ2
γ1

)d

‖f‖H
γ2,Cd

, f ∈ Hγ2,Cd .

This suggests that a similar relation holds for the RKHSs of the real Gaussian
kernels. In order to investigate this conjecture, let us now present another
feature space and feature map for kγ . To this end, recall that L2(Rd) denotes
the space of Lebesgue square-integrable functions Rd → R equipped with the
usual norm ‖ · ‖2. Our first result shows that L2(Rd) is a feature space of kγ .

Lemma 4.45. For 0 < γ <∞ and X ⊂ Rd, we define Φγ : X → L2(Rd) by

Φγ(x) :=
2

d
2

π
d
4 γ

d
2
e−2γ−2‖x− · ‖2

2 , x ∈ X.

Then Φγ : X → L2(Rd) is a feature map of kγ .

Proof. Let us first recall that, using the density of the normal distribution,
we have ∫

Rd

e−t−1‖z−x‖2
2dz = (πt)

d
2 (4.39)

for all t > 0 and x ∈ Rd. Moreover, for α ≥ 0, an elementary calculation
shows that

‖y − x‖22 + α‖y − x′‖22 =
α

1 + α
‖x− x′‖22 + (1 + α)

∥∥∥ y − x+ αx′

1 + α

∥∥∥2
2

(4.40)

for all y, x, x′ ∈ Rd. By using (4.39) and setting α := 1 in (4.40), we now
obtain
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〈Φγ(x), Φγ(x′)〉L2(Rd) =
2d

π
d
2 γd

∫
Rd

e−2γ−2‖x−z‖2
2e−2γ−2‖x′−z‖2

2dz

=
2d

π
d
2 γd

e−γ−2‖x−x′‖2
2

∫
Rd

e−4γ−2‖z− x+x′
2 ‖2

2dz

=
2d

π
d
2 γd
· e−γ−2‖x−x′‖2

2

(πγ2

4

) d
2

= kγ(x, x′) ,

and hence Φγ is a feature map and L2(Rd) is a feature space of kγ . ��
Having the feature map Φγ : X → L2(Rd) of kγ , we can now give another

description of the RKHS of kγ . To this end, we need the integral operators
Wt : L2(Rd)→ L2(Rd), t > 0, defined by

Wtg(x) := (πt)−
d
2

∫
Rd

e−t−1‖y−x‖2
2g(y)dy , g ∈ L2(Rd), x ∈ Rd. (4.41)

Note that Wt is actually a convolution operator, i.e., for g ∈ L2(Rd) we have
Wtg = k ∗ g, where k := (πt)−

d
2 e−t−1‖·‖2

2 . Moreover, we have ‖k‖1 = 1 by
(4.39), and hence Young’s inequality (see Theorem A.5.23) that shows

‖Wtg‖2 ≤ ‖g‖2 , g ∈ L2(Rd), t > 0. (4.42)

In other words, we have ‖Wt : L2(Rd)→ L2(Rd)‖ ≤ 1 for all t > 0.
With the help of the operator family (Wt)t>0, we can now give another

description of the spaces Hγ(X).

Proposition 4.46. For 0 < γ1 < γ2 < ∞, we define t := 1
2 (γ2

2 − γ2
1). Then,

for all non-empty X ⊂ Rd, we obtain a commutative diagram

Hγ2(X) Hγ1(X)

L2(Rd) L2(Rd)

�

�� ��

�

id

Vγ2 Vγ1

(γ2
γ1

)
d
2Wt

where the vertical maps Vγ1 and Vγ2 are the metric surjections of Theorem
4.21. Moreover, these metric surjections are of the form

Vγg(x) =
2

d
2

γ
d
2 π

d
4

∫
Rd

e−2γ−2‖x−y‖2
2g(y)dy , g ∈ L2(Rd), x ∈ X, (4.43)

where γ ∈ {γ1, γ2}. Finally, we have

‖ id : Hγ2(X)→ Hγ1(X)‖ ≤
(
γ2
γ1

) d
2

. (4.44)
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Proof. For γ > 0, let Vγ : L2(Rd) → Hγ(X) be the metric surjection of
Theorem 4.21. Furthermore, let Φγ be the feature map defined in Lemma
4.45. For g ∈ L2(Rd) and x ∈ X, we then have Vγg(x) = 〈g, Φγ(x)〉L2(Rd),
and hence we obtain (4.43). In order to establish the diagram, let us first
consider the case X = Rd. Then (4.41) together with (4.43) gives the relation

Vγg = (πγ2)
d
4W γ2

2
g , g ∈ L2(Rd). (4.45)

Let us now show that the operator family (Wt)t>0 is a semi-group, i.e., it
satisfies

Wt1+t2 = Wt1Wt2 , t1, t2 > 0. (4.46)

To this end, let us fix a g ∈ L2(Rd) and an x0 ∈ Rd. Then, for α := t1
t2

,
equations (4.40) and (4.39) yield

Wt1Wt2g(x0) = (πt1)−
d
2

∫
Rd

e−t−1
1 ‖x0−y‖2

2Wt2g(y)dy

= (π2t1t2)−
d
2

∫
Rd

∫
Rd

e−t−1
1 ‖x0−y‖2

2e−t−1
2 ‖x−y‖2

2g(x)dx dy

= (π2t1t2)−
d
2

∫
Rd

∫
Rd

e−
‖x0−x‖2

2
t1+t2

− t1+t2
t1t2

‖y− x0+αx
1+α ‖2

2g(x)dy dx

= Wt1+t2g(x0) ,

i.e., (4.46) is verified. Combining (4.45) and (4.46) then gives the diagram in
the case of X = Rd. The general case X ⊂ Rd follows from the fact that the
computation of Vγ in (4.43) is independent of X. Finally, since Vγ2 is a metric
surjection, we obtain

‖ id ◦Vγ2 : L2(Rd)→ Hγ1(X)‖ = ‖ id : Hγ2(X)→ Hγ1(X)‖ ,

and hence the commutativity of the diagram implies

‖ id : Hγ2(X)→ Hγ1(X)‖ =
(
γ2
γ1

) d
2

‖Vγ1 ◦Wt‖ ≤
(
γ2
γ1

) d
2

‖Wt‖ .

Moreover, we have ‖Wt‖ ≤ 1 by (4.42), and thus we find the assertion. ��

If the set X in the preceding proposition has a non-empty interior, then
the metric surjections Vγ1 and Vγ2 are actually isometric isomorphisms. This
is a direct consequence of the following theorem, (4.43), and the fact that the
restriction operator mapping Hγ(Rd) to Hγ(X) is an isometric isomorphism.

Theorem 4.47 (Injectivity of Gaussian integral operators). Let µ be
either a finite measure on Rd or the Lebesgue measure on Rd, and p ∈ (1,∞).
Moreover, let kγ be the Gaussian RBF kernel with width γ > 0. Then the
operator Skγ

: Lp(µ)→ Hγ(Rd) defined by (4.17) is injective.



4.4 Gaussian Kernels and Their RKHSs 145

Proof. Let us write Sγ := Skγ
. We fix an f ∈ Lp(µ) with Sγf = 0. Obviously,

our goal is to show that f = 0. To this end, our first intermediate goal is to
prove that the map g : Rd × (0,∞)→ R defined by

g(x, t) :=
∫
Rd

e−t‖x−x′‖2
2 f(x′) dµ(x′) , x ∈ Rd, t ∈ (0,∞),

is real-analytic in t for all fixed x ∈ Rd. Here we note that e−t‖x−·‖2
2 ∈ Lp′(µ)

together with Hölder’s inequality ensures that the integral above is defined
and finite. To show the analyticity, we now fix a t0 ∈ (0,∞) and define

ai(x, x′, t) :=
(−‖x− x′‖22)ie−t0‖x−x′‖2

2

i!
(t− t0)i f(x′)

for all x, x′ ∈ Rd, t ∈ (0, t), and i ≥ 0. Obviously, we have

g(x, t) =
∫
Rd

∞∑
i=0

ai(x, x′, t) dµ(x′) (4.47)

for all x ∈ Rd and t ∈ (0,∞). Moreover, for t ∈ (0, t0], we find

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ =

∞∑
i=0

‖x− x′‖2i
2 e

−t0‖x−x′‖2
2

i!
(t0 − t)if(x′) = e−t‖x−x′‖2

2f(x′) ,

and hence Hölder’s inequality yields

∫
Rd

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ dµ(x′) <∞ . (4.48)

On the other hand, for t ∈ [t0,∞), we have

∞∑
i=0

∣∣ai(x, x′, t)
∣∣ =

∞∑
i=0

‖x− x′‖2i
2 e

−t0‖x−x′‖2
2

i!
(t− t0)if(x′)

= e−(2t0−t)‖x−x′‖2
2f(x′) ,

and from this it is easy to conclude by Hölder’s inequality that (4.48) also
holds for t ∈ [t0, 2t0). By Fubini’s theorem, we can then change the order of
integration and summation in (4.47) to obtain

g(x, t) =
∞∑

i=0

(∫
Rd

(−‖x− x′‖22)ie−t0‖x−x′‖2
2

i!
f(x′) dµ(x′)

)
(t− t0)i

for all t ∈ (0, 2t0). In other words, g(x, · ) can be locally expressed by a power
series, i.e., it is real-analytic. Let us now define
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u(x, t) := t−
d
2 g
(
x,

1
4t

)
=
∫
Rd

t−
d
2 e−

‖x−x′‖2
2

4t f(x′) dµ(x′) , x ∈ Rd, t > 0 .

Obviously, u(x, · ) is again real-analytic for all x ∈ Rd. Moreover, for fixed
x′ := (x′1, . . . , x

′
d) ∈ Rd, the map

u0(x, t) := t−
d
2 e−

‖x−x′‖2
2

4t , x ∈ Rd, t > 0,

which appears in the integral above, satisfies

∂u0

∂t
(x, t) = t−

d
2−2e−

‖x−x′‖2
2

4t

(
‖x− x′‖22

4t
− d t

2

)
,

∂2u0

∂2xi
(x, t) = t−

d
2−2e−

‖x−x′‖2
2

4t

(
(xi − x′i)2

4t
− t

2

)
,

for all t > 0 and all x = (x1, . . . , xd) ∈ Rd. Consequently, u0 satisfies the
partial differential equation

∂u0

∂t
= ∆u0 :=

d∑
i=1

∂2u0

∂2xi
.

Moreover, as a function of x′, all derivatives of u0 are contained in Lp′(µ), and
these derivatives are continuous with respect to the variables x and t. Another
application of Hölder’s inequality, together with Corollary A.3.7, shows that
the function u satisfies the same partial differential equation. This leads to

∂2u

∂2t
=
∂

∂t

d∑
i=1

∂2u

∂2xi
=

d∑
i=1

∂3u

∂2xi∂t
=

d∑
i=1

d∑
j=1

∂4u

∂2xi∂2xj
= ∆2u ,

and by iterating this procedure we obtain ∂nu
∂nt = ∆nu for all n ≥ 1. Let us

now recall that our f ∈ Lp(µ) satisfies Sγf = 0. For t0 := γ2/4, we then have
u(x, t0) = (2/γ)d Sγf(x) = 0 for all x ∈ Rd, and hence we obtain

∂nu

∂nt
(x, t0) = ∆nu(x, t0) = 0 , x ∈ Rd.

By the analyticity of u(x, · ), we thus conclude that u(x, t) = 0 for all x ∈ Rd

and all t > 0. Now let h : Rd → R be a continuous function with compact
support. Then we obviously have ‖h‖∞ <∞, h ∈ Lp(µ), and

0 =
∫
Rd

h(x)u(x, t)dx = t−
d
2

∫
Rd

∫
Rd

h(x)e−
‖x−x′‖2

2
4t f(x′) dµ(x′)dx (4.49)

for all t > 0. Now note that if µ is finite, we easily find that

(x, x′) �→ h(x)e−
‖x−x′‖2

2
4t f(x′) (4.50)
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is integrable with respect to the product of µ and the Lebesgue measure on
Rd. Moreover, if µ is the Lebesgue measure, its translation invariance yields∫

Rd

∫
Rd

∣∣h(x)e− ‖x−x′‖2
2

4t f(x′)
∣∣ dµ(x′)dx

≤
∫
Rd

∣∣h(x)| · ‖f‖Lp(µ)

(∫
Rd

e−
p′‖x−x′‖2

2
4t dµ(x′)

)1/p′

dx

<∞ ,

i.e., the function in (4.50) is integrable in this case, too. For

ht(x′) := t−
d
2

∫
Rd

h(x)e−
‖x−x′‖2

2
4t dx, x′ ∈ Rd, t > 0,

Fubini’s theorem and (4.49) then yield

0 = t−
d
2

∫

Rd

∫

Rd

h(x)e−
‖x−x′‖2

2
4t f(x′) dx dµ(x′) =

∫

Rd

f(x′)ht(x′)dµ(x′) . (4.51)

Now fix an x ∈ Rd and an ε > 0. Then there exists a δ > 0 such that, for all
x′ ∈ Rd with ‖x′ − x‖2 ≤ δ, we have |h(x′)− h(x)| ≤ (4π)−d/2ε. Since

(4πt)−
d
2

∫
Rd

e−
‖x−x′‖2

2
4t dx′ = 1 , t > 0,

we hence obtain

ht(x)− (4π)
d
2 h(x) = t−

d
2

∫
Rd

(
h(x′)− h(x)

)
e−

‖x−x′‖2
2

4t dx′

≤ ε+ t−
d
2

∫

‖x′−x‖2>δ

(
h(x′)− h(x)

)
e−

‖x−x′‖2
2

4t dx′

≤ ε+ 2‖h‖∞ t−
d
2

∫

‖x′‖2>δ

e−
‖x′‖2

2
4t dx′

≤ ε+ 8πd/2 max{1, d/2}
Γ (d/2)

‖h‖∞ δd−2t1−d/2e−
δ2
4t

for all 0 < t ≤ δ2/(2d), where in the last step we used (A.3) and (A.5).
Since the last term of this estimate tends to 0 for t → 0, we conclude that
limt→0 ht(x) = (4π)

d
2 h(x) for all x ∈ Rd. Therefore the dominated conver-

gence theorem and (4.51) yield

0 = lim
t→0

∫
Rd

f(x′)ht(x′)dµ(x′) =
∫
Rd

f(x′)h(x′)dµ(x′) = 〈f, h〉Lp′ (µ),Lp(µ).

Since for finite measures it follows from Theorem A.3.15 and Theorem A.5.25
that the continuous functions with compact support are dense in Lp(µ), we
find f = 0. Finally, the Lebesgue measure is also regular, and hence we find
the assertion in this case analogously. ��
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Our last goal is to compute Sobolev norms for functions in Hγ(X). This
is done in the following theorem.

Theorem 4.48 (Sobolev norms for Gaussian RKHSs). Let X ⊂ Rd be
a bounded non-empty open set, γ > 0, and m ≥ 1. Then there exists a constant
cm,d > 0 only depending on m and d such that for all f ∈ Hγ(X) we have

‖f‖W m(X) ≤ cm,d

√
vol(X)

( ∑
α∈Nd

0
|α|≤m

γ−2|α|

)1/2

‖f‖Hγ(X) .

Proof. Let us fix a multi-index α = (α1, . . . , αd) ∈ Nd
0 with |α| = m. Moreover,

let Vγ : L2(X)→ Hγ(X) be the metric surjection defined by (4.43). For a fixed
f ∈ Hγ(X) and ε > 0, there then exists a g ∈ L2(Rd) such that Vγg = f and
‖g‖L2(Rd) ≤ (1 + ε)‖f‖Hγ(X). By Hölder’s inequality, we then have

∥∥ ∂αf
∥∥2
L2(X)

=
2d

γdπ
d
2

∫
X

(
∂α

x

∫
Rd

e−2γ−2‖x−y‖2
2g(y)dy

)2

dx

≤ 2d

γdπ
d
2

∫
X

(∫
Rd

∂α
x e

−2γ−2‖x−y‖2
2 |g(y)| dy

)2

dx

≤ 2d

γdπ
d
2
‖g‖2L2(Rd)

∫
X

∫
Rd

∣∣∂α
x e

−2γ−2‖x−y‖2
2
∣∣2dy dx . (4.52)

Now recall that the Hermite polynomials hn, n ≥ 0, defined in (A.1) satisfy

∂n

∂tn
e−t2 = (−1)ne−t2hn(t) , t ∈ R ,

and hence we have

∂n

∂tn
e−2γ−2(t−s)2 =

(
−
√

2 γ−1
)n
e−2γ−2(t−s)2hn

(√
2 γ−1(t− s)

)

for all s, t ∈ R. Using the translation invariance of the Lebesgue measure,
hn(−s) = (−1)nhn(s), a change of variables, and (A.2), we conclude that
∫
R

∣∣∣ dn

dtn
e−2γ−2(t−s)2

∣∣∣2ds =
(
2γ−2

)n ∫
R

e−4γ−2(t−s)2h2
n

(√
2 γ−1(t− s)

)
ds

=
(
2γ−2

)n ∫
R

e−4γ−2s2
h2

n

(√
2 γ−1s

)
ds

=
(√

2 γ−1
)2n−1

∫
R

e−2s2
h2

n(s)ds

≤
√
π 22n−1/2n! γ1−2n .

Since e−2γ−2‖x−y‖2
2 =
∏d

i=1 e
−2γ−2(xi−yi)

2
, we hence find
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∫
Rd

∣∣∂α
x e

−2γ−2‖x−y‖2
2
∣∣2dy ≤ πm/222m−d/2α! γd−2m ,

where α! := α1! · · ·αd!. Combining this estimate with (4.52), we obtain
∥∥ ∂αf

∥∥2
L2(X)

≤ (1 + ε) 22m+d/2π(m−d)/2α! vol(X)γ−2m‖f‖2Hγ(X) .

Finally, since f is a restriction of an analytic function defined on Rd, see Corol-
lary 4.40, we have ∂(α)f = ∂αf , where ∂(α)f denotes the weak α-derivative
defined in Section A.5.5. From this we easily obtain the assertion. ��

4.5 Mercer’s Theorem (*)

In this section, we present Mercer’s theorem, which provides a series represen-
tation for continuous kernels on compact domains. This series representation
is then used to describe the corresponding RKHSs.

Let us begin with some preliminary considerations. To this end, let X be
a measurable space, µ be a σ-finite measure on X, and k be a measurable
kernel on X with ‖k‖L2(µ) < ∞. Moreover, recall the following factorization
of the operators defined in Theorem 4.26 and Theorem 4.27:

L2(µ) L2(µ)

H

�
�

�
�

�� �
�

�
��

Tk

Sk S∗
k

Theorem 4.27 showed that Tk = S∗
kSk is compact, positive, and self-adjoint,

and hence the Spectral Theorem A.5.13 shows that there exist an at most
countable ONS (ei)i∈I and a family (λi)i∈I ⊂ R converging to 0 such that
|λ1| ≥ |λ2| ≥ · · · > 0 and

Tkf =
∑
i∈I

λi〈f, ei〉ei, f ∈ L2(µ) .

Moreover, {λi : i ∈ I} is the set of non-zero eigenvalues of Tk. Let us write
ẽi := λ−1

i Skei ∈ H for i ∈ I. Then the diagram shows ẽi = λ−1
i Tkei almost

surely, and hence we have ei = λ−1
i Tkei = ẽi almost surely. Consequently, we

may assume without loss of generality that ei ∈ H and λiei = Skei for all
i ∈ I. From this we conclude that

λiλj〈ei, ej〉H = 〈Skei, Skej〉H = 〈ei, S∗
kSkej〉L2(µ) = 〈ei, Tkej〉L2(µ)

= λj〈ei, ej〉L2(µ) .
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In other words, (
√
λiei)i∈I is an ONS in H. The goal of this section is to show

that under certain circumstances this family is even an ONB. To this end, we
need the following theorem, whose proof can be found, for example, in Riesz
and Nagy (1990).

Theorem 4.49 (Mercer’s theorem). Let X be a compact metric space and
k : X ×X → R be a continuous kernel. Furthermore, let µ be a finite Borel
measure with suppµ = X. Then, for (ei)i∈I and (λi)i∈I as above, we have

k(x, x′) =
∑
i∈I

λiei(x)ei(x′) , x, x′ ∈ X, (4.53)

where the convergence is absolute and uniform.

Note that (4.53) together with the proof of Lemma 4.2 shows that Φ : X →
�2 defined by Φ(x) := (

√
λiei(x))i∈I , x ∈ X, is a feature map of k. In order to

show that (
√
λiei)i∈I is an ONB of H, we need the following corollary.

Corollary 4.50. With the assumptions and notations of Theorem 4.49, the
series

∑
i∈I ai

√
λiei(x) converges absolutely and uniformly for all (ai) ∈ �2(I).

Proof. For x ∈ X and J ⊂ I, Hölder’s inequality and Mercer’s theorem imply

∑
i∈J

|ai

√
λiei(x)| ≤

(∑
i∈J

a2
i

)1/2(∑
i∈J

λie
2
i (x)
)1/2

= ‖(ai)‖�2(I) ·
√
k(x, x) .

From this the assertion easily follows. ��

With the help of the Corollary 4.50, we can now give an explicit represen-
tation of the RKHSs of continuous kernels on a compact metric space X.

Theorem 4.51 (Mercer representation of RKHSs). With the assump-
tions and notations of Theorem 4.49, we define

H :=
{∑

i∈I

ai

√
λiei : (ai) ∈ �2(I)

}
.

Moreover, for f :=
∑

i∈I ai

√
λiei ∈ H and g :=

∑
i∈I bi

√
λiei ∈ H, we write

〈f, g〉H :=
∑
i∈I

aibi .

Then H equipped with inner product 〈 · , · 〉H is the RKHS of the kernel k.
Furthermore, the operator T 1/2

k : L2(µ)→ H is an isometric isomorphism.
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Proof. Routine work shows that 〈 · , · 〉 is a well-defined inner product and
hence H is a Hilbert function space. Now, for fixed x ∈ X, Mercer’s theorem
implies

k( · , x) =
∑
i∈I

√
λiei(x)

√
λiei( · ) ,

and since Mercer’s theorem also yields

‖(
√
λiei(x))‖2�2(I) =

∑
i∈I

λie
2
i (x) = k(x, x) <∞ ,

we find k( · , x) ∈ H. Moreover, for f :=
∑

i∈I ai

√
λiei ∈ H, we have

〈f, k( · , x)〉H =
∑
i∈I

ai

√
λiei(x) = f(x) , x ∈ X,

i.e., k is the reproducing kernel of H.
Let us now consider the operator T 1/2

k . To this end, let us fix an f ∈
L2(µ). Since (ei) is an orthonormal basis in L2(µ), we then find f =∑

i∈I〈f, ei〉L2(µ)ei, where the convergence takes place in L2(µ). Consequently,
we have

T
1/2
k f =

∑
i∈I

〈f, ei〉L2(µ)

√
λiei , (4.54)

where the convergence is again with respect to the L2(µ)-norm. Now, Parse-
val’s identity gives (〈f, ei〉L2(µ)) ∈ �2(I), and hence we find T 1/2

k f ∈ H for all
f ∈ L2(µ). Moreover, this also shows by Corollary 4.50 that the convergence
in (4.54) is absolute and uniform and that

‖T 1/2
k f‖2H =

∑
i∈I

|〈f, ei〉L2(µ)|2 = ‖f‖2L2(µ) .

In other words, T 1/2
k : L2(µ) → H is isometric. Finally, to check that the

operator is surjective, we fix an f ∈ H. Then there exists an (ai) ∈ �2 such
that f(x) =

∑
i∈I ai

√
λiei(x) for all x ∈ X. Now we obviously have g :=∑

i∈I aiei ∈ L2(µ) with convergence in L2(µ), and thus 〈g, ei〉L2(µ) = ai.
Furthermore, we have already seen that the convergence in (4.54) is pointwise,
and hence for all x ∈ X we finally obtain

T
1/2
k g(x) =

∑
i∈I

〈g, ei〉L2(µ)

√
λiei(x) =

∑
i∈I

ai

√
λiei(x) = f(x) . ��

4.6 Large Reproducing Kernel Hilbert Spaces

We saw in Section 1.2 that SVMs are based on minimization problems over
RKHSs. Moreover, we will see in the following chapters that the size of the
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chosen RKHS has a twofold impact on the generalization ability of the SVM:
on the one hand, a “small size” inhibits the learning machine to produce highly
complex decision functions and hence can prevent the SVM from overfitting
in the presence of noise. On the other hand, for complex distributions, a
“small” RKHS may not be sufficient to provide an accurate decision function,
so the SVM underfits. In this section, we thus investigate RKHSs that are rich
enough to provide arbitrarily accurate decision functions for all distributions.
The reason for introducing these RKHSs is that their flexibility is necessary
to guarantee learning in the absence of assumptions on the data-generating
distribution. However, as we have indicated above, this flexibility also carries
the danger of overfitting. We will thus investigate in Chapters 6 and 7 how
regularized learning machines such as SVMs use the regularizer to avoid this
overfitting.

Let us now begin by introducing a class of particularly large RKHSs.

Definition 4.52. A continuous kernel k on a compact metric space X is called
universal if the RKHS H of k is dense in C(X), i.e., for every function
g ∈ C(X) and all ε > 0 there exists an f ∈ H such that

‖f − g‖∞ ≤ ε .

Instead of using the RKHS in the preceding definition, one can actually
consider an arbitrary feature space H0 of k. Indeed, if Φ0 : X → H0 is a
corresponding feature map, then the RKHS of k is given by (4.10) and hence
k is universal if and only if for all g ∈ C(X) and ε > 0 there exists a w ∈ H0

such that ‖〈w,Φ0( · )〉−g‖∞ ≤ ε. Although this is a rather trivial observation,
we will see below that it is very useful for finding universal kernels.

One may wonder whether the preceding definition also makes sense for
compact topological spaces. At first glance, this is indeed the case, but some
further analysis shows that there exists no universal kernel if the topology is
not generated by a metric (see Exercise 4.13).

Let us now discuss some of the surprising geometric properties of universal
kernels. To this end, we need the following definition.

Definition 4.53. Let k be a kernel on a metric space X with RKHS H. We
say that k separates the disjoint sets A,B ⊂ X if there exists an f ∈ H
with f(x) > 0 for all x ∈ A, and f(x) < 0 for all x ∈ B. Furthermore, we say
that k separates all finite (or compact) sets if k separates all finite (or
compact) disjoint sets A,B ⊂ X.

It can be shown (see Exercise 4.11) that strictly positive definite kernels
separate all finite sets. Furthermore, every kernel that separates all compact
sets obviously also separates all finite sets, but in general the converse is
not true (see Exercise 4.14). Moreover, every universal kernel separates all
compact sets, as the following proposition shows.

Proposition 4.54. Let X be a compact metric space and k be a universal
kernel on X. Then k separates all compact sets.
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Proof. Let A,B ⊂ X be disjoint compact subsets and d be the metric of X.
Then, for all x ∈ X, we define

g(x) :=
dist(x,B)

dist(x,A) + dist(x,B)
− dist(x,A)

dist(x,A) + dist(x,B)
,

where we used the distance function dist(x,C) := infx′∈C dist(x, x′) for x ∈
X and C ⊂ X. Since this distance function is continuous, we see that g is
a continuous function. Furthermore, we have g(x) = 1 for all x ∈ A and
g(x) = −1 for all x ∈ B. Now, let H be the RKHS of k. Then there exists an
f ∈ H with ‖f − g‖∞ ≤ 1/2, and by our previous considerations this f then
satisfies f(x) ≥ 1/2 for all x ∈ A and f(x) ≤ 1/2 for all x ∈ B. ��

Although Proposition 4.54 easily follows from the notion of universality, it
has surprising consequences for the geometric interpretation of the shape of
the feature maps of universal kernels. Indeed, let k be a universal kernel on
X with feature space H0 and feature map Φ0 : X → H0. Furthermore, let us
suppose that we have a finite subset {x1, . . . , xn} of X. Then Proposition 4.54
ensures that for every choice of signs y1, . . . , yn ∈ {−1, 1} we find a function f
in the RKHS H of k with yif(xi) > 0 for all i = 1, . . . , n. By (4.10), this f can
be represented by f = 〈w,Φ0( · )〉 for a suitable w ∈ H0. Consequently, the
mapped training set ((Φ0(x1), y1), . . . , (Φ0(xn), yn)) can be correctly separated
in H0 by the hyperplane defined by w. Moreover, a closer look at the proof
of Proposition 4.54 shows that this can even be done by a hyperplane that
has almost the same distance to every point of Φ(xi), i = 1, . . . , n . Obviously,
all these phenomena are impossible for general training sets in R2 or R3,
and hence every two- or three-dimensional illustration of the feature space of
universal kernels such as Figure 1.1 can be misleading. In particular, it seems
to be very difficult to geometrically understand the learning mechanisms of
both hard- and soft margin SVMs when these SVMs use universal kernels.

The geometric interpretation above raises the question of whether univer-
sal kernels can exist. As we will see below, the answer to this question is “yes”
and in addition, many standard kernels, including the Gaussian RBF kernels,
are universal. To establish these results, we need the following simple lemma.

Lemma 4.55 (Properties of universal kernels). Let X be a compact met-
ric space and k be a universal kernel on X. Then the following statements are
true:

i) Every feature map of k is injective.
ii) We have k(x, x) > 0 for all x ∈ X.
iii) Every restriction of k onto some compact X ′ ⊂ X is universal.
iv) The normalized kernel k∗ : X ×X → R defined by

k∗(x, x′) :=
k(x, x′)√

k(x, x)k(x′, x′)
, x, x′ ∈ X,

is universal.
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Proof. The first three assertions are direct consequences of Proposition 4.54
and the definition. To prove the fourth assertion, let Φ : X → H be the
canonical feature map of k into its RKHS H. Defining α(x) := k(x, x)−1/2 for
all x ∈ X, we see that αΦ : X → H is a feature map of k∗ and thus k∗ is a
kernel. To show that k∗ is universal, we fix a function g ∈ C(X) and an ε > 0.
For c := ‖α‖∞ <∞, we then get an f ∈ H with ‖f − g

α‖∞ ≤
ε
c . This yields

∥∥ 〈f, α( · )Φ( · )
〉
− g
∥∥
∞ ≤ ‖α‖∞

∥∥ f − g
α

∥∥
∞ ≤ ε ,

and thus k∗ is universal by the observation following Definition 4.52. ��
Let us now investigate the existence of universal kernels. We begin by

presenting a simple sufficient condition for the universality of kernels.

Theorem 4.56 (A test for universality). Let X be a compact metric space
and k be a continuous kernel on X with k(x, x) > 0 for all x ∈ X. Suppose that
we have an injective feature map Φ : X → �2 of k. We write Φn : X → R for its
n-th component, i.e., Φ(x) = (Φn(x))n∈N, x ∈ X. If A := span {Φn : n ∈ N}
is an algebra, then k is universal.

Proof. We will apply Stone-Weierstraß’ theorem (see Theorem A.5.7). To this
end, we first observe that the algebra A does not vanish since ‖(Φn(x))‖2�2 =
k(x, x) > 0 for all x ∈ X. Moreover, k is continuous and thus every Φn : X →
R is continuous by Lemma 4.29. This shows that A ⊂ C(X). Moreover, the
injectivity of Φ implies that A separates points, and thus Stone-Weierstraß’
theorem shows that A is dense in C(X). Now we fix a g ∈ C(X) and an ε > 0.
Then there exists a function f ∈ A of the form

f =
m∑

j=1

αjΦnj

with ‖f − g‖∞ ≤ ε. For n ∈ N, we define wn := αj if there is an index
j with nj = n and wn := 0 otherwise. This yields w := (wn) ∈ �2 and
f = 〈w,Φ( · )〉�2 , and thus k is universal by the observation following Definition
4.52. ��

With the help of the preceding theorem, we are now in a position to give
examples of universal kernels. Let us begin with kernels of Taylor type.

Corollary 4.57 (Universal Taylor kernels). Fix an r ∈ (0,∞] and a C∞-
function f : (−r, r) → R that can be expanded into its Taylor series at 0,
i.e.,

f(t) =
∞∑

n=0

ant
n , t ∈ (−r, r).

Let X := {x ∈ Rd : ‖x‖2 <
√
r}. If we have an > 0 for all n ≥ 0, then k given

by
k(x, x′) := f(〈x, x′〉) , x, x′ ∈ X,

is a universal kernel on every compact subset of X.
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Proof. We have already seen in Lemma 4.8 and its proof that k is a kernel
with feature space �2(Nd

0) and feature map Φ : X → �2(Nd
0) defined by

Φ(x) :=
(√
aj1+···+jd

cj1,...,jd

d∏
i=1

xji

i

)
j1,...,jd≥0

, x ∈ X.

Obviously, k is also continuous and a0 > 0 implies k(x, x) > 0 for all x ∈ X.
Furthermore, it is easy to see that Φ is injective. Finally, since polynomials
form an algebra, span {Φj1,...,jd

: j1, . . . , jd ≥ 0} is an algebra, and thus we
obtain by Theorem 4.56 that k is universal. ��

Recall that we presented some examples of Taylor kernels in Section 4.1.
The following corollary shows that all these kernels are universal.

Corollary 4.58 (Examples of universal kernels). Let X be a compact
subset of Rd, γ > 0, and α > 0. Then the following kernels on X are universal:

exponential kernel : k(x, x′) := exp(〈x, x′〉) ,
Gaussian RBF kernel : kγ(x, x′) := exp(−γ−2‖x− x′‖22) ,

binomial kernel : k(x, x′) := (1− 〈x, x′〉)−α ,

where for the last kernel we additionally assume X ⊂ {x ∈ Rd : ‖x‖2 < 1}.

Proof. The assertion follows from Examples 4.9 and 4.11, Proposition 4.10,
Corollary 4.57, and part iv) of Lemma 4.55. ��

Note that a result similar to Corollary 4.57 can be established for Fourier
type kernels (see Exercise 4.12 for details). Furthermore, it is obvious that
polynomial kernels cannot be universal whenever |X| = ∞. By Proposition
5.41, it will thus be easy to show that there do exist learning problems that
are extremely underfitted by these types of kernels.

We will see in Corollary 5.29 that the universality of a kernel with RKHS
H guarantees

inf
f∈H
RL,P(f) = R∗

L,P (4.55)

for all continuous P-integrable Nemitski losses. However, this result requires
the input space X to be a compact metric space, and hence many interesting
spaces, such as Rd and infinite discrete sets, are excluded. On the other hand,
Theorem 5.31 will show that, for almost all interesting loss functions, it suffices
to know that H is dense in Lp(PX) for some p ≥ 1 in order to establish
(4.55). In the rest of this section, we will therefore investigate RKHSs that
are dense in Lp(PX). To this end, our main tool will be Theorem 4.26, which
characterized this type of denseness by the injectivity of the associated integral
operator Sk : Lp′(PX)→ H defined by (4.17).

We begin by considering distributions PX that are absolutely continuous
with respect to a suitable reference measure µ.
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Lemma 4.59. Let X be a measurable space, µ be a measure on X, and k be a
measurable kernel on X with RKHS H and ‖k‖Lp(µ) <∞ for some p ∈ [1,∞).
Assume that the integral operator Sk : Lp′(µ) → H is injective. Then H is
dense in Lq(hµ) for all q ∈ [1, p] and all measurable h : X → [0,∞) with
h ∈ Ls(µ), where s := p

p−q .

Proof. Let us fix an f ∈ Lq′(hµ). Then we have f |h|
1
q′ ∈ Lq′(µ) and, for r

defined by 1
q′ + 1

r = 1
p′ , Hölder’s inequality and r

q = s thus yield

‖fh‖Lp′ (µ) =
∥∥ f |h| 1q′ |h| 1q ∥∥

Lp′ (µ)
≤
∥∥ f |h| 1q′ ∥∥

Lq′ (µ)

∥∥ |h| 1q ∥∥
Lr(µ)

< ∞ .

Moreover, if f �= 0 in Lq′(hµ), we have fh �= 0 in Lp′(µ), and hence we obtain

0 �= Sk(fh) =
∫

X

f(x)h(x)k( · , x) dµ(x) =
∫

X

f(x)k( · , x) d(hµ)(x) .

Since the latter integral describes the integral operator Lq′(hµ)→ H, we then
obtain the assertion by Theorem 4.26. ��

Let us now investigate denseness properties of RKHSs over discrete spaces
X. To this end, let us write �p(X) := Lp(ν), where p ∈ [1,∞] and ν is the
counting measure on X, which is defined by ν({x}) = 1, x ∈ X. Note that
these spaces obviously satisfy the inclusion �p(X) ⊂ �q(X) for p ≤ q, which is
used in the proof of the following result.

Proposition 4.60 (Large RKHSs on discrete spaces I). Let X be a
countable set and k be a kernel on X with ‖k‖�p(X) <∞ for some p ∈ [1,∞).
If k satisfies ∑

x,x′∈X

k(x, x′)f(x)f(x′) > 0 (4.56)

for all f ∈ �p′(X) with f �= 0, then the RKHS of k is dense in Lq(µ) for all
q ∈ [1,∞) and all distributions µ on X.

Proof. Recall that the counting measure ν is σ-finite since X is countable. Let
us fix an f ∈ �p′(X) with f �= 0. For the operator Sk : �p′(X) → H defined
by (4.17), we then have Skf ∈ H ⊂ �p(X) and hence we obtain

〈Skf, f〉�p(X),�p′ (X) =
∑

x,x′∈X

k(x, x′)f(x)f(x′) > 0 .

This shows that Sk : �p′(X)→ H is injective. Now let µ be a distribution on
X. Then there exists a function h ∈ �1(X) with µ = hν. Since for q ∈ [1, p]
we have s := p

p−q ≥ 1, we then find h ∈ �s(X) and hence we obtain the
assertion by applying Lemma 4.59. In addition, for q > p, we have ‖k‖�q(X) ≤
‖k‖�p(X) < ∞ and �q′(X) ⊂ �p′(X), and consequently this case follows from
the case q = p already shown . ��
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Note that the case p =∞ is excluded in Proposition 4.60. The reason for
this is that the dual of �∞(X) is not �1(X). However, if instead we consider
the pre-dual of �1(X), namely the Banach space of functions vanishing at
infinity,

c0(X) :=
{
f : X → R

∣∣ ∀ε > 0∃ finite A ⊂ X ∀x ∈ X\A : |f(x)| ≤ ε
}
,

which is equipped with the usual ‖ · ‖∞-norm, we obtain the following result.

Theorem 4.61 (Large RKHSs on discrete spaces II). Let X be a count-
able set and k be a bounded kernel on X that satisfies both k( · , x) ∈ c0(X)
for all x ∈ X and (4.56) for all f ∈ �1(X) with f �= 0. Then the RKHS of k
is dense in c0(X).

Proof. Since k( · , x) ∈ c0(X) for all x ∈ X, we see Hpre ⊂ c0(X), where Hpre

is the space defined in (4.12). Let us write H for the RKHS of k. Since k
is bounded, the inclusion I : H → �∞(X) is well-defined and continuous by
Lemma 4.23. Now let us fix an f ∈ H. By Theorem 4.21, there then exists
a sequence (fn) ⊂ Hpre with limn→∞ ‖f − fn‖H = 0, and the continuity of
I : H → �∞(X) then yields limn→∞ ‖f − fn‖∞ = 0. Now the completeness of
c0(X) shows that c0(X) is a closed subspace of �∞(X), and since we already
know fn ∈ c0(X) for all n ≥ 1, we can conclude that f ∈ c0(X). In other
words, the inclusion I : H → c0(X) is well-defined and continuous. Moreover,
a simple calculation analogous to the one in the proof of Theorem 4.26 shows
that its adjoint operator is the integral operator Sk : �1(X) → H. Since this
operator is injective by (4.56), we see that H is dense in c0(X) by Theorem
4.26. ��

One may be tempted to assume that condition (4.56) is already satisfied
if it holds for all functions f : X → R with 0 < |{x ∈ X : f(x) �= 0}| < ∞,
i.e., for strictly positive definite kernels. The following result shows that this
is not the case in a strong sense.

Theorem 4.62. There exists a bounded, strictly positive definite kernel k on
X := N0 with k( · , x) ∈ c0(X) for all x ∈ X such that for all finite measures
µ on X with µ({x}) > 0, x ∈ X, and all q ∈ [1,∞], the RKHS H of k is not
dense in Lq(µ).

Proof. Let us write pn := µ({n}), n ∈ N0. Moreover, let (bi)i≥1 ⊂ (0, 1) be a
strictly positive sequence with ‖(bi)‖2 = 1 and (bi) ∈ �1. Furthermore, let (en)
be the canonical ONB of �2. We write Φ(0) := (bi) and Φ(n) := en, n ≥ 1.
Then we have Φ(n) ∈ �2 for all n ∈ N0, and hence

k(n,m) :=
〈
Φ(n), Φ(m)

〉
�2
, n,m ≥ 0,

defines a kernel. Moreover, an easy calculation shows k(0, 0) = 1, k(n,m) =
δn,m, and k(n, 0) = bn for n,m ≥ 1. Since bn → 0, we hence find k( · , n) ∈
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c0(X) for all n ∈ N0. Now let n ∈ N0 and α := (α0, . . . , αn) ∈ Rn+1 be a
vector with α �= 0. Then the definition of k yields

A :=
n∑

i=0

n∑
j=0

αiαjk(i, j) = α2
0k(0, 0) + 2

n∑
i=1

αiα0k(i, 0) +
n∑

i=1

n∑
j=1

αiαjk(i, j)

= α2
0 + 2α0

n∑
i=1

αibi +
n∑

i=1

α2
i

= α2
0 +

n∑
i=1

αi(2α0bi + αi) .

If α0 = 0, we hence find A =
∑n

i=1 α
2
i > 0 since we assumed α �= 0. Moreover,

if α0 �= 0, we find t(2α0bi + t) ≥ −α2
0b

2
i for all t ∈ R by simple calculus, and

hence our assumptions ‖(bi)‖2 = 1 and bi > 0, i ≥ 1, imply

A ≥ α2
0 −

n∑
i=1

α2
0b

2
i = α2

0

∞∑
i=n+1

b2i > 0 .

Consequently, we have A > 0 in any case, and from this it is easy to see that
k is strictly positive definite. Let us now define f : N0 → R by f(0) := 1 and
f(n) := − bn

pn
p0 for n ≥ 1. Then we have ‖f‖L1(µ) = p0 +p0‖(bn)‖�1 <∞, and

a simple calculation yields

Skf(0) = k(0, 0)f(0)p0 +
∞∑

n=1

k(0, n)f(n)pn = p0 − p0
∞∑

n=1

b2n = 0 .

Furthermore, for m ≥ 1, our construction yields

Skf(m) = k(m, 0)f(0)p0 +
∞∑

n=1

k(m,n)f(n)pn = bmf(0)p0 − f(m)pm = 0 ,

and hence we have Skf = 0, i.e., Sk : L1(µ) → H is not injective. Moreover,
by (A.34), the space L1(µ) can be interpreted as a subspace of L′

∞(µ), and
we have S′′

kf = Skf for all f ∈ L1(µ) as we mention in (A.20). From this we
conclude that S′′

k : L′
∞(µ) → H is not injective, and hence S′

k : H → L∞(µ)
does not have a dense image. Repeating the proof of Theorem 4.26, we further
see that id : H → L∞(µ) equals S′

k, and thus H is not dense in L∞(µ). From
this we easily find the assertion for q ∈ [1,∞). ��

Finally, let us treat the Gaussian RBF kernels yet another time.

Theorem 4.63 (Gaussian RKHS is large). Let γ > 0, p ∈ [1,∞), and
µ be a finite measure on Rd. Then the RKHS Hγ(Rd) of the Gaussian RBF
kernel kγ is dense in Lp(µ).

Proof. Since Lp(µ) is dense in L1(µ), it suffices to consider the case p > 1.
Moreover, by Theorem 4.26, it suffices to show that the integral operator
Skγ

: Lp′(µ) → Hγ(Rd) of kγ is injective. However, the latter was already
established in Theorem 4.47. ��
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4.7 Further Reading and Advanced Topics

The idea of using kernels for pattern recognition algorithms dates back to the
1960s, when Aizerman et al. (1964) gave a feature space interpretation of the
potential function method. However, it took almost thirty years before Boser
et al. (1992) combined this idea with another old idea, namely the generalized
portrait algorithm of Vapnik and Lerner (1963), in the hard margin SVM.
Shortly thereafter, Cortes and Vapnik (1995) added slack variables to this
first type of SVM, which led to soft margin SVMs. In these papers on SVMs,
the feature space interpretation was based on an informal version of Mercer’s
theorem, which may cause some misunderstandings, as discussed in Exercise
4.10. The RKHS interpretation for SVMs was first found in 1996 and then
spread rapidly; see, e.g., the books by Schölkopf (1997) and Vapnik (1998).
For more information, we refer to G. Wahba’s talk on multi-class SVMs given
at IPAM in 2005 (see http://www.oid.ucla.edu/Webcast/ipam/). Since the
introduction of SVMs, many kernels for specific learning tasks have been de-
veloped; for an overview, we refer to Schölkopf and Smola (2002) and Shawe-
Taylor and Cristianini (2004). In addition, it was first observed by Schölkopf
et al. (1998) that the “kernel trick”, i.e., the idea of combining a linear algo-
rithm with a kernel to obtain a non-linear algorithm, works not only for SVMs
but actually for a variety of different algorithms. Many of these “kernelized”
algorithms can be found in the books by Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004).

As indicated above, the use of kernels for machine learning methods was
discovered relatively recently. However, the theory of kernels and their ap-
plications to various areas of mathematics are much older. Indeed, Mercer’s
theorem has been known for almost a century (see Mercer, 1909), and based
on older work by Moore (1935, 1939) and others, Aronszajn (1950) devel-
oped the theory of RKHSs in the 1940s. The latter article also provides a
good overview of the early history and the first applications of kernels. Since
then, many new applications have been discovered. We refer to the books by
Berlinet and Thomas-Agnan (2004), Ritter (2000), and Wahba (1990) for a
variety of examples.

We must admit that two important types of kernels have been almost
completely ignored in this chapter. The first of these are the translation-
invariant kernels, i.e., kernels k : Rd × Rd → K for which there exists a
function κ : Rd → K such that

k(x, x′) = κ(x− x′) , x, x′ ∈ Rd. (4.57)

Bochner (1932, 1959) showed that, given a continuous function κ : Rd → C,
equation (4.57) defines a kernel k if and only if there exists a unique finite
Borel measure µ on Rd such that

κ(x) =
∫
Rd

ei〈x,y〉 dµ(y) , x ∈ Rd. (4.58)



160 4 Kernels and Reproducing Kernel Hilbert Spaces

From this and Exercise 4.5, it is easy to conclude that for continuous functions
κ : Rd → R, equation (4.57) defines a kernel if there exists a unique finite
Borel measure µ on Rd such that

κ(x) =
∫
Rd

cos〈x, y〉 dµ(y) , x ∈ Rd. (4.59)

Note that this sufficient condition is a generalization of the Fourier kernels
introduced in Lemma 4.12, and in fact one could prove this condition directly
along the lines of the proof of Lemma 4.12. Finally, Cucker and Zhou (2007)
showed in their Proposition 2.14 that k is a kernel if the Fourier transform of κ
is non-negative. The second type of kernel we did not systematically consider
are radial kernels, i.e., kernels k : Rd × Rd → R for which there exists a
function κ : Rd → R such that

k(x, x′) = κ(‖x− x′‖22) , x, x′ ∈ Rd. (4.60)

Schoenberg (1938), see also Section 5.2 in Berg et al. (1984), showed that,
given a continuous function κ : R→ R, equation (4.60) defines a kernel k for
all d ≥ 1, if and only if there exists a unique finite Borel measure µ on [0,∞)
such that

κ(t) =
∫
Rd

e−ty dµ(y) , t ∈ [0,∞). (4.61)

Finally, it is known that if κ is completely monotonic, then (4.60) defines a
kernel. For a proof, we refer to Proposition 2.18 of Cucker and Zhou (2007).

Most of the material presented in Sections 4.1, 4.2, and 4.3 is folklore and
can be found in many other introductions to RKHSs (see, e.g., Hille, 1972;
Meschkowski, 1962; Saitoh, 1988, 1997). Polynomial kernels were first used
in the machine literature by Poggio (1975). The exponential kernel and its
RKHS are closely related to the so-called Fock space considered in quantum
mechanics (see, e.g., Bargmann, 1961; Folland, 1989). Furthermore, the bi-
nomial kernel is a generalization of the Bergmann kernel (see, e.g., Duren,
1970; Duren and Schuster, 2004; Hedenmalm et al., 2000), and the examples
of Fourier type kernels were considered by Vapnik (1998), who also presents
some more examples of kernels of possible interest for machine learning. Fi-
nally, the notion of separately continuous kernels in Section 4.3 is taken from
Hein and Bousquet (2004).

The description of Hγ(X) follows Steinwart et al. (2006a), but some of
the results can also be found in the book by Saitoh (1997). The operator Wt

is known as the Gauss-Weierstraß integral operator and is used for the heat
equation (see, e.g., Hille and Phillips, 1957). Since this integral operator is
neither surjective nor compact, Theorem 4.47 can be used to show that the
inclusion id : Hγ2(X) → Hγ1(X) considered in Proposition 4.46 is neither
surjective nor compact if X has a non-empty interior. In addition, the bound
on its norm given in (4.44) turns out to be sharp for such X. We refer to
Steinwart et al. (2006a) for more information.



4.8 Summary 161

The RKHS representation based on Mercer’s theorem closely follows the
presentation of Cucker and Smale (2002). This article also provides some other
useful insights into the theory of RKHSs. For a proof of Mercer’s theorem, we
refer to Werner (1995) and Riesz and Nagy (1990).

The first part of Section 4.6 is taken almost completely from Steinwart
(2001). It is not hard to see that Corollary 4.57 does not provide a necessary
condition for universality. Indeed, if, for example, one only assumes an > 0
for all indexes n but one n0 �= 0, then k is still a universal kernel. This
raises the question of how many non-vanishing coefficients are necessary for
the universality. Surprisingly, this question was answered by Dahmen and
Micchelli (1987) in a different context. Their result states that k is universal
if and only if a0 > 0 and

∑
a2n>0

1
2n

=
∑

a2n+1>0

1
2n+ 1

=∞ .

Note that this condition implies that the sets Neven := {2n ∈ N : a2n > 0}
and Nodd := {2n + 1 ∈ N : a2n+1 > 0} are infinite. Interestingly, Pinkus
(2004) has recently shown that the latter characterize strictly positive defi-
nite kernels, i.e., he has shown that a kernel is strictly positive definite if and
only if a0 > 0 and |Nodd| = |Neven| =∞. In particular, both results together
show that not every strictly positive definite kernel is universal. An elemen-
tary proof of this latter observation can be found by combining Exercise 4.11
and Exercise 4.14. Moreover, it is interesting to note that this observation can
also be deduced from Theorem 4.62. Recently, Micchelli et al. (2006) investi-
gated under which conditions translation-invariant kernels and radial kernels
are universal. Besides other results, they showed that complex translation-
invariant kernels are universal if the support of the measure µ in (4.58) has
a strictly positive Lebesgue measure. Using a feature map similar to that of
the proof of Lemma 4.12, it is then easy to conclude that kernels represented
by (4.59) are universal if vol(suppµ) > 0. Moreover, Micchelli et al. (2006)
showed that radial kernels are universal if the measure µ in (4.61) satisfies
suppµ �= {0}. Finally, the second part of Section 4.6, describing denseness
results of H in Lp(µ), is taken from Steinwart et al. (2006b).

4.8 Summary

In this chapter, we gave an introduction to the mathematical theory of kernels.
We first defined kernels via the existence of a feature map, but it then turned
out that kernels can also be characterized by simple inequalities, namely the
positive definiteness condition. Furthermore, we saw that certain representa-
tions of kernel functions lead directly to feature maps. This observation helped
us to introduce several important kernels.

Although neither the feature map nor the feature space are uniquely deter-
mined for a given kernel, we saw in Section 4.2 that we can always construct
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a canonical feature space consisting of functions. We called this feature space
the reproducing kernel Hilbert space. One of our major results was that there
is a one-to-one relation between kernels and RKHSs. Moreover, we showed in
Section 4.3 that many properties of kernels such as measurability, continuity,
or differentiability are inherited by the functions in the RKHS.

We then determined the RKHSs of Gaussian RBF kernels and gained some
insight into their structure. In particular, we were able to compare the RKHS
norms for different widths and showed that these RKHSs do not contain con-
stant functions. We further investigated properties of their associated integral
operators, showing, e.g., that in many cases these operators are injective.

For continuous kernels on compact input spaces, Mercer’s theorem pro-
vided a series representation in terms of the eigenvalues and functions of the
associated integral operators. This series representation was then used in Sec-
tion 4.5 to give another characterization of the functions contained in the
corresponding RKHSs.

In Section 4.6, we then considered kernels whose RKHS H is large in
the sense that H is dense in either C(X) or a certain Lebesgue space of
p-integrable functions. In particular, we showed that, among others, the
Gaussian RBF kernels belong to this class. As we will see in later chapters, this
denseness is one of the key reasons for the universal learning ability of SVMs.

4.9 Exercises

4.1. Some more kernels of Taylor type (�)
Use Taylor expansions to show that the following functions can be used to
construct kernels by Lemma 4.8: x �→ coshx, x �→ arcothx−1, x �→ ln

(
1+x
1−x

)
,

and x �→ arctanhx. What are the corresponding (maximal) domains of these
kernels? Are these kernels universal?

4.2. Many standard Hilbert spaces are not RKHSs (�)
Let µ be a measure on the non-empty set X. Show that L2(µ) is an RKHS if
and only if for all non-empty A ⊂ X we have µ(A) > 0.

4.3. Cauchy-Schwarz inequality (��)
Let E be an R-vector space and 〈 · , · 〉 : E → R be a positive, symmetric
bilinear form, i.e., it satisfies

i) 〈x, x〉 ≥ 0
ii) 〈x, y〉 = 〈y, x〉
iii) 〈αx+ y, z〉 = α〈x, z〉+ 〈y, z〉
for all x, y, z ∈ E, α ∈ R. Show the Cauchy-Schwarz inequality

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 , x, y ∈ E.

Hint: Start with 0 ≤ 〈x + αy, x + αy〉 and consider the cases α = 1 and
α = −1 if 〈x, x〉 = 〈y, y〉 = 0. Otherwise, if, e.g., 〈y, y〉 �= 0, use α := − 〈x,y〉

〈y,y〉 .
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4.4. The RKHSs of restricted and normalized kernels (���)
Let k be a kernel on X with RKHS H. Using Theorem 4.21, show that:

i) For X ′ ⊂ X, the RKHS of the restricted kernel k|X′×X′ is

H|X′ :=
{
f : X ′ → R | ∃f̂ ∈ H with f̂|X′ = f

}

with norm ‖f‖H|X′ := inf{‖f̂‖H : f̂ ∈ H with f̂|X′ = f}.
ii) Suppose k(x, x) > 0 for all x ∈ X. Then the RKHS H∗ of the normalized

kernel k∗ considered in Lemma 4.55 is

H∗ =
{
f : X → R | (x �→ k(x, x)f(x)) ∈ H

}

and has norm ‖f‖H∗ := ‖(x �→ k(x, x)f(x))‖H .
iii) Determine the RKHS of the exponential kernel with the help of Hγ,Cd .

4.5. Real part of complex kernels (��)
Let k : X ×X → C be a kernel. Show that Re k : X ×X → R is a kernel.

Hint: Show that Re k is symmetric and positive definite. For the latter,
use k(x, x′) + k(x′, x) = 2Re k(x, x′).

4.6. Injectivity of id : H → Lp(µ) (��)
LetX be a Polish space and µ be a Borel measure with suppµ = X. Moreover,
let k be a continuous kernel on X with ‖k‖Lp(µ) < ∞ for some p ∈ [1,∞].
Show that id : H → Lp(µ) is injective.

4.7. Properties of functions contained in the Gaussian RKHSs (��)
For γ > 0, show the following statements:

i) Every f ∈Hγ(Rd) is infinitely many times differentiable.
ii) Every f ∈Hγ(Rd) is 2-integrable, and the inclusion id : Hγ(Rd)→ L2(Rd)

is continuous.
iii) Every f ∈Hγ(Rd) is bounded, and the inclusion id : Hγ(Rd) → �∞(Rd)

is continuous.

Hint: For ii), use that the integral operator Sk : L2(Rd)→ Hγ(Rd) is contin-
uous. Then consider its adjoint.

4.8. Gaussian kernels and the hinge loss (���)
Let P be a distribution on X × Y , where X ⊂ Rd and Y := {−1, 1}. Further-
more, let Lhinge be the hinge loss defined in Example 2.27 and Hγ(X) be a
Gaussian RKHS. Show that no minimizer f∗Lhinge,P of the Lhinge-risk is con-
tained inHγ(X) if for η(x) := P(y = 1|x), x ∈ X, the set {x : η(x) �= 0, 1/2, 1}
has a non-empty interior. Give some (geometric) examples for such distribu-
tions. Does a similar observation hold for P satisfying R∗

Lhinge,P = 0?

4.9. Different feature spaces of the Gaussian kernels (��)
Compare the different feature spaces and maps of the Gaussian RBF kernels
we presented in Corollary 4.40 and Lemma 4.45.
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4.10. Discussion of Mercer’s theorem (���)
Using inadequate versions of Mercer’s theorem can lead to mistakes. Consider
the following two examples:

i) Sometimes a version of Mercer’s theorem is presented that holds not only
for continuous kernels but also for bounded and measurable kernels. For
these kernels, the relation (4.53) is only stated µ2-almost surely. Now,
one might think that by modifying the eigenfunctions on a zero set one
can actually obtain (4.53) for all x, x′ ∈ X. Show that in general such a
modification does not exist.

ii) Show that if the assumption suppµ = X of Theorem 4.49 is dropped,
(4.53) holds at least for all x, x′ ∈ suppµ. Furthermore, give an example
that demonstrates that in general (4.53) does not hold for all x, x′ ∈ X.

Hint: For for i) Use [0, 1] equipped with the Lebesgue measure and consider
the kernel k defined by k(x, x) := 1 for x ∈ X and k(x, x′) = 0 otherwise.

4.11. Strictly positive definite kernels separate all finite subsets (��)
Let k : X×X → R be a kernel. Show that k separates all finite subsets if and
only if it is strictly positive definite.

Hint: Recall from linear algebra that a symmetric matrix is (strictly) pos-
itive definite if and only if its eigenvalues are all real and (strictly) positive.
Then express the equations f(xi) = yi, i = 1, . . . , n, f ∈ H, in terms of the
Gram matrix (k(xj , xi))i,j .

4.12. Universality of Fourier type kernels (���)
Formulate and prove a condition for Fourier type kernels (see Lemma 4.12)
that ensures universality. Then show that the kernels in Examples 4.13 and
4.14 are universal.

Hint: Use a condition similar to that of Corollary 4.57.

4.13. Existence of universal kernels (����)
Let (X, τ) be a compact topological space. Show that the following statements
are equivalent:

i) (X, τ) is metrizable, i.e., there exists a metric d on X such that the col-
lection of the open subsets defined by d equals the topology τ .

ii) There exists a continuous kernel on X whose RKHS is dense in C(X).

Hint: Use that X is metrizable if and only if C(X) is separable (see, e.g.,
Theorem V.6.6 of Conway, 1990). Furthermore, for i) ⇒ ii), use a countable,
dense subset of C(X) to construct a universal kernel in the spirit of Lemma 4.2.
For the other direction, use that every compact topological space is separable.

4.14. A kernel separating all finite but not all compact sets (����)
Let X := {−1, 0}∪{1/n : n ∈ N} and (en) be the canonical ONB of �2. Define
the map Φ : X → �2 ⊕2 R by Φ(−1) := (

∑∞
n=1 2−nen, 1), Φ(0) := (0, 1), and

Φ(1/n) := (n−2en, 1) for n ∈ N. Then the kernel associated to the feature
map Φ separates all finite sets but does not separate the compact sets {−1}
and X\{−1}.




