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Surrogate Loss Functions (*)

Overview. In many cases, the loss describing a learning problem is
not suitable when designing a learning algorithm. A common approach
to resolve this issue is to use a surrogate loss in the algorithm design.
For example, we saw in the introduction that SVMs use the convex
hinge loss instead of the discontinuous classification loss. The goal of
this chapter is to systematically develop a theory that makes it possible
to identify suitable surrogate losses for general learning problems.

Prerequisites. Besides Chapter 2 and Section A.3.3, only basic
mathematical knowledge is required.

Usage. Sections 3.1-3.8 and 3.6 provide the theoretical framework
required for Sections 3.4, 3.5, and 3.7-38.9, which deal with surro-
gate losses for common learning scenarios. These examples are im-
portant but not essential for classification, regression, and robustness,
discussed in Chapters 8, 9, and 10, respectively. On the other hand,
most of the material in this chapter is of general interest for machine
learning and hence relatively independent of the rest of this book.

In Chapter 2, we introduced some important learning scenarios and their cor-
responding loss functions. One way to design learning algorithms for these
learning scenarios is to use a straightforward empirical risk minimization
(ERM) ansatz based on the corresponding loss function. However, this ap-
proach may often be flawed, as the following examples illustrate:

e FERM optimization problems based on the classification loss are usually
combinatorial problems, and even solving these problems approximately
is often NP-hard.

e The least squares loss is known to be rather sensitive to outliers, and hence
for certain data sets a (regularized) ERM approach based on this loss may
fail, as we will see in Chapter 10.

e For some unsupervised learning scenarios, including the DLD scenario, we
do not know the associated loss function since it depends on the unknown
density.

These examples demonstrate that in many cases the loss function describing
the learning problem is not suitable for a (regularized) ERM ansatz. Now recall
that in the SVM approach discussed in the introduction one of the main ideas
was to use the hinge loss function as a surrogate for the classification loss, and
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consequently it is tempting to try surrogate losses in other learning scenarios,
too. However, it is not hard to imagine that, given a target loss, not every loss
function is a good surrogate, and hence we need some guidance for choosing
a suitable surrogate loss.

Therefore, let us now describe what properties we do expect from good
surrogate losses. To this end let, Ly, be a target loss that describes our
learning goal and Lg,, be a surrogate loss. Furthermore, assume that we
have a learning method A, e.g., a regularized Lg,~-ERM approach, that as-
ymptotically learns the surrogate learning problem defined by Lgy,, i.e.,

lim RLsumP (fD) = stur,P (31)

|D|—00

holds in probability, where fp is the decision function the method A produces
for the training set D of length | D|. However, since our learning goal is defined
by Liar, we are actually interested in Ly,,-consistency of A, i.e., in

lim RLtamP(fD) = thar,P . (32)

| D]—o0

Obviously, we obtain the latter if the convergence in (3.1) implies the conver-
gence in (3.2). This leads to the first question we will address in this chapter.

Question 3.1. Given a target loss Liay, which surrogate losses Lgy, ensure
the implication

lim Rp,p(fa) =Ry, e = I Rep(f)=Ri,pe (33)

for all sequences (f,) of measurable functions fp, : X — R ?

Question 3.1 is of purely asymptotic nature, i.e., it does consider any con-
vergence rate in (3.1) or (3.2). Consequently, the surrogate losses that we find
by answering Question 3.1 are a reasonable choice when dealing with consis-
tency but may be less suitable when we wish to establish convergence rates
for (3.2). This leads to the second question we will address.

Question 3.2. Given a target loss Ly, which surrogate losses Lgy, allow us
to deduce convergence rates for the right-hand side of (3.3) from convergence
rates on the left-hand side of (3.3)?

In particular, does there exist an increasing function 1 : [0,00) — [0, 00)
that is continuous at 0 with T(0) = 0 such that, for all measurable f : X — R,
we have

Rewp(f)—Ri.p < T(Re.p(f)—Ri..p)?

Recall that we have already seen an example of such an inequality in Sec-
tion 2.3, namely Zhang’s inequality, which relates the excess classification risk
to the excess hinge risk. In this chapter, we will systematically generalize
the ideas used in the proof of that inequality to develop a general theory on
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surrogate losses. The main results in this direction, including answers to the
questions above, can be found in Sections 3.2 and 3.3. Furthermore, these
general results will be applied to standard learning scenarios such as classi-
fication, regression, and density level detection in Sections 3.4, 3.5, 3.7, and
3.8.

3.1 Inner Risks and the Calibration Function

In order to address Questions 3.1 and 3.2, we need some tools and notions that
will be introduced in this section. To this end let, us first recall that, given
a loss function L and a distribution P on X x Y, the L-risk of a measurable
function f: X — R is given by

mﬂﬁ:AA}@%mW@M@Wﬂw (3.4)

Now, motivated by the calculations made in the proof of Zhang’s inequality,
the basic idea of our approach is to treat the inner and outer integrals sepa-
rately. Besides some technical advantages, it will turn out that this approach
has the important benefit of making our analysis rather independent of the
specific distribution P, which, from the machine learning point of view, is
unknown to us.

Let us begin with some fundamental definitions that will be used through-
out this chapter.

Definition 3.3. Let L: X xY xR — [0,00) be a loss and Q be a distribution
onY. We define the inner L-risks of Q by

Cr.qu(t) == /YL(fc,y,t) dQ(y) reX, teR.

Furthermore, the minimal inner L-risks are denoted by
CLqe = nf CLqa(t), € X.

Finally, if L is a supervised loss, we usually drop the subscript x in these
notations, and for unsupervised losses we analogously omit the subscript Q.

Note that by (3.4) and the definition of the inner risks, we immediately
obtain

Rmm:A@wmmmMmm. (3.5)

Our first goal is to establish the same relation between the minimal inner risks
ZP(-|I) . T € X, and the Bayes risk RZP. To this end, we have to recall
the notion of a complete measurable space given after Lemma A.3.3.
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Lemma 3.4 (Computation of Bayes risks). Let X be a complete measur-
able space, L : X x Y x R — [0,00) be a loss, and P be a distribution on
X xY. Then x — Cj P(-|2) 18 measurable and we have

R p = /X Chp 1oye APx (). (3.6)

Proof. Let us define ¢ : X x R — [0, 00] by
oz, t) = CL,P(~\z),x(t)> ze X, teR.

Then ¢ is measurable by the measurability statement in Tonelli’s theorem, and
hence the first assertion follows from #ii) of Lemma A.3.18 using F(x) := R,
2 € X. Consequently, the integral on the right-hand side of (3.6) exists, and
it is easy to see that it satisfies

Lp = inf CLp(-|o) dPx(z) > [ Cipr. 1. dPx ().
L.,p fegé(X)/)( L,P( I ), (f(‘r)) X(I) —/}( L,P( \ac),x X(I)

On the other hand, given n > 1, the second part of i) in Lemma A.3.18
yields a measurable function f,, : X — R with

. 1
CL,P( . |x)ac(fn(x)) < CL,P(~\z),9c + E R r e X, (37)

and hence we obtain
* « 1
Lp < Rep(fn) < /X CLp(-|2),0 WP x (@) + o

Letting n — oo then yields the assertion. O

Lemma 3.4 shows that the Bayes risk R7, p can be achieved by minimizing
the inner risks Cr p(.|s)2( ), © € X, which in general will be easier than
a direct minimization of Rp p(-). Now assume that R} p < oo. Then the
excess risk Ry p(f) — R} p is defined and can be computed by

Rep(f)—Ripp= /X Cr.p( 1a),=(f(2)) = CL p(.|2), P x (@)

for all measurable f : X — R. Consequently, we can split the analysis of the
excess risk into:

i) the analysis of the inner excess risks Cp, p(.|q).2(-)—C} () T € X;

i1) the investigation of the integration with respect to Px.

The benefit of this approach is that the analysis in i) only depends on P via
the conditional distributions P(-|z), and hence we can consider the excess
inner risks Cr, g« () —Cf g, for suitable classes of distributions Q on Y as a
template for Crp(.|2),2(*) —Cf p(.|4).- This leads to the following definition.
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Definition 3.5. Let Q be a set of distributions on Y. We say that a distrib-
ution P on X xY is of type Q if P(-|z) € Q for Px-almost all z € X.

In view of Questions 3.1 and 3.2, we are mainly interested in functions
f X — R that almost minimize the risk under consideration. Following the
idea of splitting the analysis into the steps ¢) and i), we therefore write

Mrqa(e) ={teR:Crqa(t) <Ciq.+e}: e € [0, o0l

for the sets containing the e-approximate minimizers of Cr, q (). More-
over, the set of exact minimizers is denoted by

Mp.qa(0F) == (| MLqa(e).

e>0

Again, for supervised and unsupervised losses, we usually omit the subscripts
z and Q in the preceding definitions, respectively.

Before we investigate properties of the concepts above let us first illustrate
these definitions with some examples. We begin with some margin-based losses
introduced in Section 2.3. To this end, observe that any distribution @ on
Y :={-1,1} can be uniquely described by an 7 € [0, 1] using the identification
n = Q({1}). For a supervised loss L : Y xR — [0, 00), we thus use the notation

CL,n(t) = CL7Q(t) s te R, (38)
Cz,n = ZQ’

as well as My, ,(0%) := M, o(07) and My, () := My q(¢) for € € [0, 00].

Ezample 3.6. Let L be the least squares loss defined in Example 2.26. For
t € R and n € [0,1], a simple calculation then shows

Crn(t) =n(1 =) + (L =) (1 +1)* =142t +¢* — dnt,

and hence elementary calculus gives My, ,(07) = {2n — 1}, C} , = 4n(1 — ),
and Cr»(t) —Cf, = (t —2n+ 1)? for all t € R and 7 € [0,1]. <
Example 3.7. Recall that in Example 2.27 we defined the hinge loss by

L(y,t) := max{0,1 — yt}, y = £1, t € R. Now, for n € [0,1] and ¢t € R,
a simple calculation shows

n(1—t) ift<—1
Coot)={1+t(1—2n) ifte-1,1]
1-n)1+t) ift>1

For n € [1/2,1], we thus have

My, (07) =< {1} ifi<n<i1

[1700) if77=1,
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Least Squares Hinge Trunc. Least Squares Logistic
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Fig. 3.1. The representing functions ¢ for some important margin-based loss func-
tions L (top row) and their minimizing sets My, ,(07), n € [0,1] (bottom row). For
some losses and values of 7, these sets are not singletons. This situation is displayed
by vertical lines. Moreover, the arrows at the ends of some of these vertical lines
indicate that the corresponding set is unbounded in the direction of the arrow.

Ci.,=2(1—n), and

3n—2-—nt ift< -1
Cryt)=Cr,=80-t)(2n—-1) ifte[-1,1]
t—1)({1-n) ift>1.

In addition, similar formulas hold for n € [0,1/2] by symmetry. <

Both margin-based loss functions discussed above will serve us as surro-
gates for the classification loss. Therefore, let us now consider the inner risks
and the set of minimizers for the standard classification loss itself.

Example 3.8. Recall that the standard binary classification loss is defined
by L(y,t) := 1_,0) (y Signt), y € Y, t € R. For this loss, the inner risk is
given by

Crn(t) =n1(—000)(t) + (1 = n)Lj,o0)(t)

for all n € [0,1] and ¢ € R. From this we easily conclude Cj , = min{n,1—n},
which in turn yields
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Crn(t) — sz =2n—1]-1(_x, ((277 -1) signt) (3.9)

for all € [0,1] and ¢ € R. Considering the cases ¢ > |2n—1| and ¢ < |2 —1|
separately, we thus find

R if e > (2 — 1|

M =
st {{teR:(2n—1)Sigﬂt>0} f0<e<p-1. <

Let us finally determine the inner risks and their minimizers for a more
elaborate example.

Proposition 3.9 (Quantiles and the pinball loss). For 7 € (0,1), let L
be the T-pinball loss defined in Example 2.43. Moreover, let Q be a distribution
on R with |Q|1 < co and let t* be a T-quantile of Q, i.e., we have

Q((—o0,t*]) =7 and Q([t*,00)) >1—1.

Then there exist real numbers q4,q— > 0 such that ¢y + q— = Q({t*}) and
¢
Crq(t™ +1t)—Ci g = tqy +/ Q((t*,t* +5)) ds (3.10)
0

t
Crq(t" —t)—Ciq =tq- +/ Q((t" —s,t")) ds, (3.11)
0
for allt > 0. Moreover, we have
Mpo(0F) = {t*Yu{t > t*: 4 +Q((t*, 1)) =0}U{t < t*: q_+Q((—t,t*))=0}.
Proof. Recall from Example 2.43 that distance-based 7-pinball loss is repre-
sented by
(=1, ifr<0
vir) = {TT, if » > 0.

Now let us consider the distribution Q®*") defined by Q") (A) := Q(t* +A) for
all measurable A C R. Then it is not hard to see that 0 is a 7-quantile of Q(*").
Moreover, we obviously have Cr q(t* +t) = Cp e+ (t), and hence we may
assume without loss of generality that ¢* = 0. Then our assumptions together
with Q((—o0,0])+Q([0, 00)) = 1+Q({0}) yield T < Q((—o0,0]) < 7+Q({0}),
i.e., there exists a g satisfying 0 < ¢+ < Q({0}) and

Q((=00,0]) =7+ g4 (3.12)

Let us now prove the first expression for the inner risks of L. To this end, we
first observe that for ¢ > 0 we have

/ _w=0d0w = / _ydQ() ~1Q((~0.1) + / ydQ(y)

0<y<t
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and

/ =1 dQw) = / _vdQly) — Q<) - / . wdQ).

Consequently, we obtain
Ca®)=(r-1) [ _=0daW) +7 / -4
= C.q(0) — 7t + 1Q((—00,0)) +1Q([0, 1)) — / Q).

Moreover, using Lemma A.3.11, we find

tQ“O’t”‘/@qude /Q 0,4)) ds—/ Qs 1)
—1QU{o}) + / Q(0, 5)) ds

and since (3.12) implies Q((—00,0)) +Q({0}) = Q((—00,0]) = 7+ ¢4, we thus
obtain

Cra(t) = Cro(0) +tas + / Q((0, ) ds.

Moreover, applying this equation to the pinball loss with parameter 1 —7 and
the distribution Q defined by Q(A) := Q(—A), A C R measurable, gives a
real number 0 < g < Q({0}) such that Q([0,00)) =1 — 7+ ¢_ and

CL,Q(—t) = CL7Q(0) +tq- + /0 Q((—S,O)) ds

for all ¢ > 0. Consequently, t* = 0 is a minimizer of Cr, q(-) and hence we
find both (3.10) and (3.11). Moreover, combining Q([0,00)) =1 —74¢_ with
(3.12), we find g4 + ¢g— = Q({0}). Finally, the formula for the set of exact
minimizers is an obvious consequence of (3.10) and (3.11). |

Let us now return to our general theory. We begin with the following
lemma, which collects some useful properties of the sets My, q (). Its proof
is left as an exercise.

Lemma 3.10 (Properties of minimizers). Let L: X xY xR — [0, 00) be
a loss and Q be a distribution on'Y. For x € X and t € R, we then have:

i) Mp,qu(0) =0.

i) Mr,qz(€) # 0 for some € € (0,00] if and only if C} o , < oc.

Z’LZ) ML,Q,J@(EI) - ML’Q7;E(52) fO’F all 0 < g1 <&y < 0.

w)t € Mp.q..(0%) if and only if Crq.(t) = C} g, and C} o, < 00
v)t € Mp.qa(00) if and only if Cr.q,.(t) < oo.
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Our goal in the following two lemmas is to show that we can use the sets
MU p(.|2),2(-) to construct (approximate) L-risk minimizers. Note that the
main difficulty in these lemmas is to ensure the measurability of the (approx-
imate) minimizers.

Lemma 3.11 (Existence of approximate minimizers). Let X be a com-
plete measurable space, L : X x Y x R — [0,00) be a loss, P be a distribution
on X XY, and ¢ € (0,00]. Then the following statements are equivalent:

i) Cy (- |2y, < OO for Px-almost all x € X.
ii) There exists a measurable f : X — R such that f(x) € M p(.|a),2(€) for
Px-almost all x € X.

Proof. i) = i). This immediately follows from i) of Lemma 3.10.

i) = i1). Let n > 1 with 1/n < e. As in the proof of Lemma 3.4, we then
obtain a measurable function f,, : X — R satisfying (3.7) for all x € X. Since
CLp(-|a)e < 00 for Px-almost all z € X, we thus find the assertion. ]

While the preceding lemma characterizes the situations where uniform e-
approximate minimizers exist, the following lemma characterizes L-risks that
have an ezact minimizer, i.e., a Bayes decision function.

Lemma 3.12 (Existence of exact minimizers). Let X be a complete mea-
surable space, L : X XY x R — [0,00) be a loss, and P be a distribution on
X XY satisfying R], p < co. Then the following are equivalent:

i) Mpp(.12),(0%) # 0 for Px-almost all z € X.
ii) There exists a measurable f*: X — R such that R p(f*) = R} p.

Moreover, if one of the conditions is satisfied, every Bayes decision function
fip: X — R satisfies f7 p(2) € ML p(.|0),2(0") for Px-almost all x € X.

Proof. i) = ii). Let ¢ and F be defined as in the proof of Lemma 3.4. Using
the last part of i4¢) in Lemma A.3.18, we then find a measurable f*: X — R
with f*(z) € Mg p(.|2),2(0F) for Px-almost all z € X. Obviously, part iv)
of Lemma 3.10 and Lemma 3.4 then show Ry p(f*) = R} p.

ii) = i). Let f] p be a Bayes decision function, i.e., it satisfies R p(f] p) =
R1 p- Since CL,p(_|m),z(fz,P) > CZ,P(-|I),9L’ for all x € X, Lemma 3.4 together
with R} p < oo then yields Cp p(.|2)(f] p) = Cip . for P x-almost all
z € X. Moreover, R} p < oo implies C;P( ey < 00 §0r Px-almost all z € X,
and hence we find f; p(z) € M p(. 2),2(0F) for Px-almost all z € X by part
iv) of Lemma 3.10. O

Let us now assume for a moment that we have two loss functions Ly, :
X XY xR —[0,00) and Lgy, : X XY x R — [0,00) such that

0 # MLb,ur’p(.m)’m(OjL) C ./\/lLtar’p(.u)’w(OjL) , Tz e X. (3.13)
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Then Lemmas 3.4 and 3.12 show that every exact minimizer of Ry, p(-) is

sur;

also an exact minimizer of Ry,, p(-), i.e., we have the implication

RLsunP(vf) = RESUNP = RLtanP(f) = thar,P ° (3'14)

However, exact minimizers do not necessarily exist, as one can see by com-
bining Lemma 3.11 with Lemma 3.12, and even if they do exist, it is rather
unlikely that we will find them by a learning procedure. On the other hand,
we have already indicated in Chapter 1 that many learning procedures are
able to find approximate minimizers, and therefore we need an approzimate
version of (3.14) to answer Question 3.1. Now, the key idea for establishing
such a modification of (3.14) is to consider approximate versions of (3.13). To
this end, we begin with the following fundamental definition.

Definition 3.13. Let Lia, : X XY XR — [0,00) and Lgy, : X XY xR — [0, 00)
be loss functions, Q be a distribution on'Y, and x € X. Then we define the
calibration function Omayx (-, Q,x) : [0,00] — [0,00] of (Ltar, Lsur) by

mf Cruqe) = Cie ¥CLqe <™

5max (67 Qa LE) = thLmr,Q,w(s)
m if CESUK‘)Q7x = m
for all € € [0,00]. Moreover, we write dmax, Lear, Leus (€5 Qs ) 1= Omax (&, Q, )

whenever it is necessary to explicitly mention the target and surrogate losses.
Finally, if both losses are supervised, we usually omit the argument x.

The following lemma collects some simple though extremely important
properties of the calibration function.

Lemma 3.14 (Properties of the calibration function). Let L, : X X
Y xR — [0,00) and Lgy, : X XY xR — [0, 00) be losses and Q be a distribution
onY. For all z € X and € € [0, 0], we then have:

i) MLSl;r,Q,z(amax (6,Qum)) C MLtaryQym(E)'
i) Mr...Qz(0) € Mr,.. Q=€) whenever § > dmax (€,Q, ).

Consequently, the calibration function can be computed by
bmax (£,Q,z) =max{§ € [0,00] : My, q2(0) C Mr,..qa(e)}. (3.15)

Finally, if both C}, o, <00 andCj_ o, <00, then for allt € R we have

max (CrLin. Qo) = Ci 0 Q%) < Croque) —Ci q.-  (3.16)

Inequality (3.16) will be the key ingredient when we compare the excess
Lia-risk with the excess Lg,,-risk since it allows us to compare the inner
integrals of these risks. Furthermore, one can show by i) that the calibration
function is the optimal way to compare these inner integrals. We refer to
Exercise 3.3 for details.
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Proof. Let us first assume C}_ , , = 00. Then we have dpmax (¢, Q, z) = oo and
hence #7) is trivially satisfied. Moreover, we have Mp_ . q.z(0max (€,Q,2)) =0
by ii) of Lemma 3.10, and hence we obtain 7). Let us now assume C;_ o, <
0o. Then, for t € My_.. q,2(0max (€, Q,z)), we have

CLSur:Q7w (t) - CzsuryQyw < Omax <5a Q, CL‘) = t%relflvl CLSquﬂJ(t/) - Czdul‘7Q7‘T7
tlgMLtax-,Q,I(E)

which shows t € My,,.. q.«(€). For the proof of the second assertion, let us fix

a 0 with 0 > dmax (€, Q, z). By definition, this means

tlg]£ CLsunQ,ﬂJ(t) - CZM,Q@ = Omax (Eanm) < 67

tEML . ,Q.a(€)

and hence there exists a t € My, q.(0) with ¢t &€ My, q.2(¢). This shows
part ii). Moreover, (3.15) is a direct consequence of i) and ¥i).

Let us finally prove Inequality (3.16). To this end, we fix a ¢ € R and
write € := Cr,,,.Q.z(t) = Cf,. q.- Then have t My, q.(¢), which implies
t & M.z (0max (€,Q,x)) by i). The latter means

CLsuryQ7w (t) Z Czsur,Q,(E + 6max (57 Q7 ‘/I;)
= CzsunQafL' + 5max (CLtaerax(t) - Cztaran-'L" Q’ x) : o

Due to algorithmic reasons, we are often interested in conver surrogate
losses. For such surrogates, the calibration function can be easily computed.

Lemma 3.15 (Calibration function for convex surrogates). Let Q be a
distribution on'Y', Liay : X XY x R — [0,00) be a loss, and x € X, € > 0
such that My, q.«(€) is an interval. Moreover, let Lgy, : X XY xR — [0, 00)
be a convex loss such that Cr_,, q..(t) < oo for allt € R. If My, q..(07) C
Mr,..q.(01), then we have

6maX(57 va) = min{CLsuryQ7w<t€_)’CLsuraQ:z(t;r)} - CZM,Q,I ) (3~17)

where we used the definitions t7 = inf My, q.(g), tT :=supMyp,.. q.(€),
and Cr...Q.z (£00) := c0.

Proof. Obviously, Cr_,..q«(-) : R — [0,00) is convex, and thus it is also
continuous by Lemma A.6.2. Since My, q,-(€) is an interval, we then obtain

6max(5a Q7 Z‘) = mln{ inf CLsur7Q,I(t)7 inf CLsqu;I(t)} - sz,Q@ .
t<tZ t>tt

Moreover, for t < tZ, we have t ¢ My, q.»(¢) and hence t ¢ My, q.(07).
From this we conclude that t & My, q..(0%), e, Cr..e(t) > CL qa
Consequently, the convexity of ¢ — Cy, . q,.(t) shows that this map is strictly
decreasing on (—oo,t_], and hence we obtain inf{Cr_, q.(t) : t < {7} =
ClLow.Q.z(t2). For t > tF, we can argue analogously. O



60 3 Surrogate Loss Functions (*)

Let us close this section with an example that illustrates how to compute
the calibration function for specific loss functions.

Ezxample 3.16. Let L be either the least squares loss Li,g or the hinge loss
Lyinge. We write Lcjags for the binary classification loss and identify distribu-
tions Q on {—1,1} by 7 := Q({1}). Then Lemma 3.15 together with Example
3.8 yields Omax, Loy, 1. (€, 1) = 00 if € > |27 —1|. Moreover, for 0 < e < |2n—1]|,
we find

(2n—-1)2% ifL=Ls
5max. g, =C 0)-Ci, =
Letaee,L(E:7) L,n( ) L. {|277 _1 if L= Liinge
by applying Examples 3.6 and 3.7, respectively. In particular note that in both
cases we have Omax, Lo,..,(€,m) > 0 for all n € [0,1] and all € > 0. <

3.2 Asymptotic Theory of Surrogate Losses

In this section, we investigate the asymptotic relationship between excess risks
in the sense of Question 3.1. The main result in this direction is the following
theorem.

Theorem 3.17 (Asymptotic calibration of risks). Let X be a complete
measurable space, Ly : X XY X R — [0,00) and Lgy, : X XY x R — [0, 00)
be losses, and P be a distribution on X XY such that R} _p < oo and
Ri..p <oo. Then '

x> Omax (g, P(+ |2), 2)

is measurable for alle € [0, 00]. In addition, consider the following statements:

i) For all € € (0,00], we have Px ({z € X : max(e, P(+|z),2) = 0}) = 0.
i1) For all € € (0,00], there exists a § > 0 such that, for all measurable
functions f: X — R, we have

Re.p(f) <Ri,p+d = Re,p(f)<RL,.pt+te. (3.18)

sur;s

Then we have ii) = i). Furthermore, i) = 1ii) holds if there exists a Px-
integrable function b : X — [0,00) such that, for all x € X, t € R, we have

Cloa,P(-[2),2(t) < CL.. p( |2y, T 0(2). (3.19)

Proof. To show the measurability of dmax (-, P(|z), z), we may assume with-
out loss of generality that we have Cy P(-|2)e < OO and C}_ P(-jz)e < OO

for all x € X. We equip [0, oo] with the Borel o-algebra and write A := [e, o0].
Furthermore, let h: X x R — [0, 00] be defined by

h(z,t) := CLtar,P(~\w),w(t) — Cztar,P(‘\m),m , (z,t) € X x R.
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Then h is measurable and, for the set-valued function F : X — 2% defined by
F(z) :={t € R: h(z,t) € A}, z € X, we have R\ My, p(.|a),2(e) = F(z)
for all # € X. Furthermore, ¢ : X X R — [0, 00| defined by

Qﬁ(l',t) = CLsur7P('|x)7w(t) — CZSUHP( ) (l’,t) € X x ]R,

is measurable. Now, for all x € X, our construction yields

6max ;P : B} = f t
POl = nf (o),
and hence x — Omax (g, P(-|2),2) is measurable by Lemma A.3.18.

i1) = 1). Assume that 7) is not true. Then there is an € € (0, co] such that

B:={z € X : §pax(e,P(-|z),2) = 0 and ClowP( |2y < oo}

satisfies Px (B) > 0. Note that for z € B we have C} . oy,e < 00 by the
very definition of the calibration function. In addition, for x € B, we have
Omax (8, P(+|x), ) = 0 and hence there exists a t € ]R\MLM“Q,I( ). Usmg the
notation of the first part of the proof, this ¢ satisfies h(z,t) > ¢ and hence we
have F(z) # 0. This shows B C Dom F. By Lemma A.3.18, there thus exist

measurable functions fr(Ll) : X — R such that

IA

y 1
CLSM,P( z)@ (ﬁ(ml)(x)) - CL,W,P( o), n

and
CLow (o) (£ (2) = CL by = €

for all x € B and n > 1. Furthermore, by Lemma 3.11, we find measurable
functions fT(LQ) : X - R, n>1, with

1
Crowep(0)a (2 (2) < CLp( e+

for P x-almost all x € X. We define f, : X — R by

(1):10 if x

(2) (z) otherwise.

Then f,, is measurable and our construction yields both

RLtaryP(fn)_ zmr,P > /B(CLmr P(-|x) m(f’ﬂ( )) Ltdr, (\z),z)dPX(m)
Z EPx(B)

and lim,, o0 Rr.,,.p(fn) = R}_ p- From this we conclude that ii) is not true.

i) = 1it). Let us assume that ¢¢) is not true. Then there exists an g € (0, o0]
such that for all n > 1 there exists a measurable function f, : X — R with
R p(fn) =R, p = €0 and
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1

g 2 RLS““P (fn) 7R25\1r1p - A‘ CLS“""P( : |$),£ (fTL (1’)) 7Czsurap( . IZ),:E dPX (x).
Hence there exists a sub-sequence (f,,) satisfying

CLow,P(- \x),m(fm- (m)) - CZSM,P( @),z

for Px-almost all x € X. Let us fix an « € X at which the convergence takes
place and that additionally satisfies sz,P( e < 00 Czsmp( ey < 00, and
Omax (&, P(-|x),2) > 0 for all € > 0. For later use, note that the probability
for such an element z is 1 since dpmax (e, P(-|z), ) is monotonically increasing

in £. Now, for € > 0, there exists an 7y such that for all ¢ > iy we have

Cluwe P (- o) (e (2)) <CP_ b 1oy + Omax(e, P(+[2), @)

By part i) of Lemma 3.14, this yields Cr,, p(.|2),2(fn, () <C LeansP (o), T6
i.e., we have shown
hm CLMT (f’”q( )) == Cztaryp( . |:1:),w . (320)

Since the probability of the considered x was 1, the limit relation (3.20) holds
for Px-almost all z € X, and hence we obtain Rz, p(fn,) — R}, p by
Lebesgue’s convergence theorem and (3.19). However, this contradicts the
fact that Rp,,, p(fn) — R7,. p = €0 holds for all n > 1. O

Theorem 3.17 shows that an almost surely strictly positive calibration
function is necessary for a positive answer to Question 3.1, i.e., for having an
implication of the form

Lsur, (fn) Sur,P - RLtanP(fn) - Rim,p (321)

for all sequences (f,) of measurable functions. Moreover, Theorem 3.17 also
shows that an almost surely strictly positive calibration function is sufficient
for (3.21) if the additional assumption (3.19) holds. In this regard, note that
in general this additional assumption is not superfluous. For details, we refer
to Exercise 3.11.

Let us now recall that from a machine learning point of view we are not
interested in a single distribution since we do not know the data-generating
distribution P. However, we may know that P is a distribution of a certain
type Q, and consequently the following definition is of great importance in
practical situations.

Definition 3.18. Let Ly, : X XY XR — [0,00) and Lgy, : X XY xR — [0, 00)
be two losses and Q be a set of distributions on' Y. We say that Lgyy 1S Liar-
calibrated with respect to Q if, for all e € (0,00], Q € Q, and x € X, we
have

max( Q7 )
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Note that, using (3.15), we easily verify that Lg,, is Ly -calibrated with
respect to Q if and only if for all ¢ € (0,00], Q € Q, and z € X there is a
d € (0, 00] with

ML, Qa(0) C ML, Qua(e). (3:22)

Now assume that our only information on the data-generating distribution
P is that it is of some type Q. Then Theorem 3.17 shows that we can only
hope for a positive answer to Question 3.1 if our surrogate loss Lgyy i8S Liar-
calibrated with respect to Q. In this sense, calibration of Lg,, is a first test on
whether Lg,, is a reasonable surrogate. The following corollary, whose proof is
left as an exercise, shows that for some target losses this test is also sufficient.

Corollary 3.19. Let X be a complete measurable space, Ly : X XY X R —
[0,00) and Lgyy : X x Y x R — [0,00) be two losses, and Q be a set of
distributions on Y . If Ly, is bounded, i.e., there is B > 0 with L(x,y,t) < B
for all (z,y,t) € X xY X R, then the following statements are equivalent:

i) Leur 1S Lyar-calibrated with respect to Q.
ii) For all ¢ € (0,00] and all distributions P of type Q with R} p < oo,
there exists a 6 € (0,00] such that, for all measurable f : X — R, we have

Rr..p(f)<Ri..p+t0 = Rrwep(f) <RL,.. p+e-

Recall that both the classification loss and the density level detection loss
are bounded losses, and consequently the preceding corollary applies to these
target losses. Moreover, for the classification loss being the target loss and
the least squares or the hinge loss being the surrogate loss, we have already
shown in Example 3.16 that the corresponding calibration function is strictly
positive. Consequently, Corollary 3.19 shows that both loss functions are rea-
sonable surrogates in an asymptotic sense. However, we have already seen in
Zhang’s inequality, see Theorem 2.31, that there is even a strong quantitative
relationship between the excess classification risk and the excess hinge risk.
Such stronger relationships are studied in the next section in more detail.

3.3 Inequalities between Excess Risks

If one wants to find a good surrogate loss Lg,, for a given target loss Lia,,
then implication (3.18) is in some sense a minimal requirement. However, we
have already indicated in Question 3.2 that in many cases one actually needs
quantified versions of (3.18), e.g., in terms of inequalities between the excess
Liar-risk and the excess Lg,,-risk. Considering Theorem 3.17, such inequalities
are readily available if, for all € > 0, we know a d(g) > 0 such that implication
(3.18) holds for all measurable f : X — R. Indeed, for f withe := R, p(f)—
Ri,..p >0, wehave Rp_ p(f) —Rj_ p > 0(¢), or in other words

6(Rpwwp(f) —Rip) < Riwp(f)—Ri..p- (3.23)
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In addition, if we define 6(0) := 0, then this inequality actually holds for
all measurable f : X — R. Unfortunately, however, the proof of Theorem
3.17 does not provide a constructive way to find a value for d(¢), and hence
we have so far no method to establish inequalities of the form (3.23). This
problem is resolved in the following theorems for which we first introduce the
Fenchel-Legendre bi-conjugate of a function.

Definition 3.20. Let I C R be an interval and g : I — [0,00] be a function.
Then the Fenchel-Legendre bi-conjugate g** : I — [0, 00| of g is the largest
convex function h : I — [0, 00] satisfying h < g. Moreover, we write g**(c0) :=
limy oo g**(t) 4f I = [0,00).

Note that if g : [0, B] — [0, 00) is a strictly positive and increasing function
on (0,B] with ¢g(0) = 0, then Lemma A.6.20 shows that its bi-conjugate
g** is also strictly positive on (0, B]. Furthermore, a similar result holds for
continuous functions (see Lemma A.6.21). However, these results are in general
false if one considers functions on I := [0, 00), as, e.g., the square root /- :
[0,00) — [0, 00) shows.

Besides the Fenchel-Legendre bi-conjugate, we also need some additional
notations and definitions. To this end, let X be a complete measurable space,
Liay : X XY X R — [0,00) be a loss function, and P be a distribution on
X x Y such that R} p < oo. For a measurable function f : X — R, we
write

By i=||o = (Chunp o F@) = Chpma) | 329

i.e., By is the supremum of the excess inner target risk with respect to f. Note
that in the following considerations we do not require By < oco.

Our first two results on inequalities between excess risks will only assume
that the involved distribution P is of some type Q. In this case, the following
notion of calibration will be crucial.

Definition 3.21. Let Ly, : X XY X R — [0,00) and Lgyy : X XY x R —
[0,00) be two losses and Q be a set of distributions on'Y . Then the uniform
calibration function with respect to Q is defined by

Imax(€, Q) = (;i)relfg(smax (e,Q,z) , g €10, 00].
reX

Moreover, we say that Lg, is uniformly L., -calibrated with respect to Q
if Omax (g, Q) > 0 for all e € (0, 00].

Obviously, every uniformly calibrated loss function is calibrated; however,
the converse implication does not hold in general. Since we will see important
examples of the latter statement in Section 3.7, we do not present such an
example here. Finally, note that an alternative definition of dmax (g, Q) can be
found in Exercise 3.5.

Now we are well-prepared to formulate our first result, which establishes
inequalities between excess risks of different loss functions.
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Theorem 3.22 (Uniform calibration inequalities). Let X be a complete
measurable space, Liay : X XY xR — [0,00) and Lgy, : X XY XR — [0,00) be
losses, and Q be a set of distributions on'Y . Moreover, let § : [0, 00] — [0, <]
be an increasing function such that

Omax(g,Q) > d(e), e € [0, 00]. (3.25)

Then, for all distributions P of type Q satisfying R}, p <oo and R} p <
oo and all measurable f: X — R, we have

05y (R p(f) =R p) < Re.p(f) —RL.p (3.26)

where 6% - [0, Bf] — [0,00] is the Fenchel-Legendre biconjugate of d)j0, 5,
and By is defined by (3.24).

Proof. Inequalities (3.16) and (3.25) together with R}, = p < oo and R,
o0 give

wurP <
0 (Crone (- 12).e(®) = CLon P j)2) < CloweP(-12)e(®) = CLo p( o) (3:27)

for P x-almost all z € X and all ¢ € R. For a measurable function f: X — R
with Rp,., p(f) < 0o, Jensen’s inequality together with the definition of By,
05, (+) <6(-), and (3.27) now yields

05, (R p(f) = RL...p)

/ og, (CLW,P( o). (F(@) = CLoop () z)dPX( )

/ CLburs (-]z),x f( )) CLsm,P( |z), mdPX( )

=Riwp(f) = RL.p-

Finally, for f : X — R with Ry,,, p(f) = 0o, we have By = oo. If 6% (c0) = 0,
there is nothing to prove, and hence let us assume 03 (co0) > 0. Then (3.25)
implies 6(0) = 0 and hence §%F is increasing because of its convexity and
5:%(0) = §(0) = 0. Consequently, if %% is finite on [0, 00), then there exists a
to > 0 and a ¢g > 0 such that the (Lebesgue)-almost surely defined derivative
of §%* satisfies (03%)'(t) > ¢ for almost all t > to. By Lebesgue’s version of the
fundamental theorem of calculus, see Theorem A.6.6, we then find constants
c1,¢2 € (0,00) with ¢t < ¢1055(t) + ¢ for all ¢ € [0,00]. On the other hand,
if there is a to > 0 with 037 (to) = oo, we have t < ¢1052 () + ¢o for ¢ =1,
¢o :=tg, and all ¢ € [0, 00]. In both cases, (3.27) now yields

00 = / (CLtar,P« o),z (f(2)) = CZW,P(.|x),x)dPX(I)
X

<a L 5:; (CLtar,P( @)@ (f(IE)) - Czta,.,P( . \T),T)dPX(x) +e2
< e1(Rivu,p(f) =R

and hence we have Rr, . p(f) — sz p = 00. 0

p)+02

sur;
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Note that if Lgy, is uniformly Li.-calibrated with respect to Q and the
function f : X — R satisfies By < 0o, then Lemma A.6.20 shows that the
bi-conjugate of dmax (-, Q)jj0,5, is strictly positive on (0, By]. Consequently,
Theorem 3.22 gives a non-trivial inequality in this case.

Let us now illustrate the theory we have developed so far by a simple
example dealing with the least squares and the hinge loss.

Ezample 3.23. Let L be either the least squares loss or the hinge loss,
Qy be the set of all distributions on Y := {—1,1}, and Lejass be the binary
classification loss. Using Example 3.16, we then obtain

6maX1LclassuL(€’ QY) = inf 6maX7LclaSS1L(€7n) = inf 6maX7Lcla551L(€7n)
€[0,1] [2n—1|>e

for all € > 0. For the least squares loss, this yields

2
(Smax,Lclass,L(E7 QY) =&, € > 07

which by Theorem 3.22 implies that, for all measurable f: X — R, we have

R P(f) =Rip < \/RLp(f)—Rip-

On the other hand, for the hinge loss, we find dmax, Lo, 2 (€, Qy) = € for all
€ > 0, and hence Theorem 3.22 recovers Zhang’s inequality. <

The following result shows that uniform calibration is also necessary to
establish non-trivial inequalities that hold for all distributions of some type.

Theorem 3.24. Let X be a complete measurable space, Ly, : X XY X R —
[0,00) and Lgyy : X XY x R — [0,00) be two losses, and Q be a set of
distributions on Y such that Cj o, < oo andCj . < oo forallz e X
and Q € Q. Furthermore, let ¢ : [0,00] — [0,00] be increasing with §(0) = 0
and d(g) > 0 for all € > 0. If for all distributions P of type Q satisfying
Riwp <00 and R} p < oo and all measurable f: X — R we have

6(Rpp(f) —Rip) < Riwp(f)—Ri..p>

then Lgy, is uniformly Ly, -calibrated with respect to Q.

Proof. Letusfixanx € X and a Q € Q. Furthermore, let P be the distribution
on X xY with Px = 0,y and P(-|r) = Q. Then P is of type Q, and we have
both Rr, p(f) = Cr,,q.«(f(2)) and R}, p = C}, o, < oo for i = {tar,sur}
and all measurable f : X — R. Consequently, our assumption yields

6<CLtaraQ7z (t) - Cztar,Q,m) < CLsuryny (t) - Czsur,Q,m ’ teR.

Now let e > 0 and t € My, q,=(0(€)). Then we have Cr_,,.q.=(t) —C]_. q. <
d(¢), and hence the inequality above yields 6(Cr,,.,q=(t) = Ci . q.) < d(e).
Since ¢ is monotonically increasing, the latter shows Cr,,, q,«(t)—C7,. q. <&,
ie., we have found My q:(0(¢)) C Mp,...q«(€). Equation (3.15) then
shows d(g) < dmax (€, Q, x), and hence Lg,, is uniformly Li,-calibrated with
respect to Q. O
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It will turn out in Sections 3.7 and 3.9, for example, that in many situations
we have calibrated losses that are not uniformly calibrated. We have just seen
that in such cases we need assumptions on P stronger than the O-type to
establish inequalities. The following theorem presents a result in this direction.

Theorem 3.25 (General calibration inequalities). Let X be a complete
measurable space, Liay : X XY X R — [0,00) and Lgy, : X XY x R — [0, 00)
be two losses, and P be a distribution on X XY such that R} p < oo and
Ri..p < 00. Assume that there exist a p € (0,00] and functzons b: X —
[0, oo] and § : [0,00) — [0,00) such that

Omax (&, P(-|x),z) > b(x)d(e), e>0,z€eX, (3.28)

and b=' € L,(Px). Then, for ¢ := 5751 1 [0,00) — [0,00) and all measurable
f: X — R, we have

_ P
05, (Rewwp(f) = Rip) < I ey (Rewp(f) = RL,.0) 77,

where Sg*f : [0, Bf] — [0,00] is the Fenchel-Legendre biconjugate of 5|[073f]
and By is defined by (3.24).

Proof. Let us first consider the case Rp,,, p(f) < co. Since S*B*f is convex and
satisfies S*B"; (e) < d(¢) for all € € [0, By], we see by Jensen’s inequality that

5;;} (RLtar’P (f) - R*Ltaryp) < /)( S(CLtarvP( ez, (t) - sznp( : |:1:)’w) dPX (.17) .
Moreover, using (3.28) and (3.16), we obtain

b(2) 8(Crpn P (- 0)2(t) = CLon p(0)2) S CruweP(1a)a(t) = CLo P(- o)

for Px-almost all » € X and all #+ € R. Now note that for ¢ := (1 +p)/p
the conjugate exponent satisfies ¢’ = 1 + p = pq. By the definition of § and
Holder’s inequality in the form of E|hg|'/¢ < (E|n|9/9)Y/9 (E|g|)'/9, we thus
find

/X S(CLtarvp( -x),x (t) - szr,P( . |x),x) dPX (LL')

< /X (6(2) ™" (Crownp(- 2 (@) = Chp( o) dPx (@)

& 1/q
S (/ bdeX) (/ Clo P (- fa).0 (f(2)) = CLowe (- |2),2 dPX(@)
X X
-1 % * 1/q
= ”b ”LP(PX) (RLsulmp(f) - RLtaryp) :

Combining this estimate with our first estimate then gives the assertion in
the case Rp,,, p(f) < co. On the other hand, if Ry, p(f) = oo, we have



68 3 Surrogate Loss Functions (*)

By = oo. If §%(c0) = 0, there is nothing to prove and hence we restrict
our considerations to the case where §**(c0) > 0. In this case, the proof of
Theorem 3.22 has already shown that then there exist constants ¢;, ¢2 € (0, 00)
such that t < ¢, (t) + ¢ for all ¢ € [0, o). From this we obtain

o0 = RLtar,P(f) - thamp

S C1 /)( g:: (CLtanP( . |I),z(t) — Cztanp( . |m),w) dPX (x) + C2

< [X (b(x))7Z (CLsumP( a),x (f(:c)) - Czs‘mp( ) |£)7z) g dP x (ﬂf) + c2,

where the last step is analogous to our considerations in the case Rp,,, p(f) <
oc. Using b=! € L,(Px) and Holder’s inequality, we then conclude from the
estimate above that Rpr_,, p(f) —Ri_ p = 0. a

sur;

The condition b=! € L,(Px) in the preceding theorem measures how much
the calibration function dpax (g, P(-|x),x) violates a uniform lower bound of
the form dmax(e, P(-|2),2) > cd(e), € € [0,00]. Indeed, the larger we can
choose p in condition (3.28), the more the function b is away from the critical
level 0, and thus the closer condition (3.28) is to a uniform lower bound. In
the extremal case p = 0o, condition (3.28) actually becomes a uniform bound,
and the inequality of Theorem 3.25 equals the inequality of Theorem 3.22.
Finally, for 6(c) := £", € > 0, the function d(¢) := 6741 (¢) = £7+1 is convex if
r > 14 1/p. In this case, we can thus omit the Fenchel-Legendre biconjugate
in Theorem 3.25 and obtain the simpler inequality

* —11/r * 1/r
Riwep(f) =RL,.p < b 1||L/p(px)(RLsur,P(f) ~Ri..p) -

Here, the condition r > 1+ 1/p means that we have to increase the convexity
of § if we wish to weaken the uniformity of the calibration.

Our last goal in this section is to improve the inequalities above for the
following type of loss, which will be of great utility in the next sections.

Definition 3.26. Let A C X xR and h : X — [0,00) be measurable. Then
we call L: X x R — [0,00) a detection loss with respect to (A, h) if

L(z,t) =1a(x,t) h(x), re X,teR.

Every detection loss function is obviously measurable and hence an unsu-
pervised loss function. In addition, for x € X and ¢t € R, we have

0 if A(z):={t' eR: (z,t') € A} =R

3.29
1a(x,t)h(x) otherwise. (3.29)

CL,T«(t) _CZ,LE = {
Since detection losses will play an important role for both supervised and
unsupervised learning scenarios let us now establish some specific results for
this class of target loss function. We begin with the following theorem, whose
proof is similar to the proof of Corollary 3.19 and hence is left as Exercise 3.7.
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Theorem 3.27 (Asymptotic calibration for detection losses). Let X
be a complete measurable space and Lia, : X x R — [0,00) be a detection loss
with respect to some (A, h). Moreover, let Ly : X XY x R — [0,00) be a
loss and Q be a set of distributions on Y. Then the following statements are
equivalent:

i) Leur 18 Liar-calibrated with respect to Q.

ii) For all distributions P of type Q that satisfy h € L1(Px) and R} p < o0
and all ¢ € (0,00], there exists a § € (0,00] such that for all measurable
f: X — R we have

Rr..p(f)<Ri..p+0 = Rrw.p(f) <RL,.p+e.

If the target loss is a detection loss, then we can, of course, establish
calibration inequalities by Theorems 3.22 and 3.25. However, using the specific
form of detection losses, one can often improve the resulting inequalities, as
we will discuss after the following rather general theorem.

Theorem 3.28 (Calibration inequalities for detection losses). Let X
be a complete measurable space, Liay : X xR — [0,00) be a detection loss with
respect to (A, h), Loy : X XY XR — [0,00) be a loss, and P be a distribution
on X XY with R}, p <ooand Ry p <oo. Fors >0, we write

B(s) == {x € X : Ax) # R and Smax (h(), P(- |2), 2) < sh(m)} .

If there exist constants ¢ > 0 and o € (0, 00] such that

/ 1phdPx < (cs)”, s> 0, (3.30)
b'e
then for all measurable functions f: X — R, we have

Rrww.p(f) = RL..p < 2catt (Rewp(f) —RI.,p) .

Proof. We write Carz(f) = CL,0y,P(-12),0(f (%)) =C  p(.|s) . for © € X and
measurable f : X — R. Furthermore, for s > 0, we write

C(s):={w e X:Ax) # R, and dpax(h(z),P(-|2),2) > sh(z)}.
By (3.16) and (3.29), we then obtain
Riwwp(f) = RL,.p

- / 14(z, £(2)) h(z) dPx () + / 14(z, f(2)) h(z) dP (x)
B(s)

C(s)

< /X 1B(s)thX + 571 /C(S) 6max(h(x)a P( : |JJ),$) 1A(x7 f(l‘)) dPX('r)

< (cs)a + 8_1 /C( )6max(ctar7w(f),P(' |-’If),l‘) dpx(l‘)

<(cs)*+s  (Rep(f) —Ri..p)-
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If o < oo, we now choose s := (Ozc‘)‘)fw1 (Re..p(f) =R} P)%ﬂ. Using

surs

o~ w4 g < 2 then yields the assertion. Furthermore, for a = oo, the
assertion follows by setting s~! := 2c. O

The preceding theorem can improve the inequalities we obtained for gen-
eral target losses in various cases. The following two remarks illustrate this.

Remark 3.29. For detection losses with h = 1x, Theorem 3.28 yields an im-
provement over Theorem 3.25. Indeed, if (3.28) is satisfied for d(e) = €? and
ab:X —[0,00] withb=! € L,(Px) and ¢ > p#, then Theorem 3.25 gives

* * 1
Ripp(F) = Rip < 07 %0 ) (R p ()~ Rip)/7 (331

On the other hand, some calculations show B(s) C {z € X : b(x) < s}, and
since b~ € L,(Py) implies

Px({z e X :b(x) <s}) <|[b7"|P s, s> 0,
we find (3.30) for ¢ := [[b=!||, (py) and a := p. Theorem 3.28 thus yields

Riwep(f) = Rp,.p < 207 ”ETRX(RLMPLﬂ-*RLMP)”l- (3.32)

Now note that for ¢ > prl, (3.32) is sharper than (3.31) whenever the excess
risk Ry, p(f) —Ri_, p is sufficiently small. <

Remark 3.30. In some cases, Theorem 3.28 also improves the inequalities of
Theorem 3.22. Indeed, if Ly, is uniformly L,.-calibrated with respect to
some class Q of distributions and the uniform calibration function satisfies
Omax( -, Q) > cqe? for some ¢ > 1, ¢g > 0, and all ¢ > 0, then Theorem 3.22
gives

* — * 1
Riwr(f) = Rip < 7V (Rip(f) =Ry p)"* (3.33)

for all measurable functions f : X — R. However, an easy calculation shows
that the assumptions above imply B(s) C {z € X : 0 < h(z) < (s/c,)V/(@= V1.
Consequently, if we have constants C' > 0 and 3 € (0, oo] such that

Px({z € X:0<h(z) <s}) < (Cs)?, 5> 0, (3.34)

then it is easy to check that (3.30) is satisfied for ¢ = c;lcﬁﬁqﬁﬁ and a := %.
Theorem 3.28 thus yields

N — B+l 5e-p . 841
Riwp(f) = Rip < 2¢4 7CH0 (Rp,,p(f) = Ri,, p) 7. (3.35)
B+1

Now note that for ¢ > 1, we have Fra > 77 and thus (3.35) is sharper than
(3.33) whenever Ry, p(f) =Ry, pis sufﬁ(nently small. <
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3.4 Surrogates for Unweighted Binary Classification

In this section, we apply the general theory on surrogate loss functions devel-
oped in the previous sections to the standard binary classification scenario.
The result of this section will be important for Section 8.5, where we investi-
gate SVMs for classification that do not use the hinge loss as a surrogate.

Let us first recall (see Example 2.4) that in binary classification we consider
the label space Y := {—1, 1} together with the supervised loss Lcjass. In the
following, we write Qy for the set of all distributions on Y. Moreover, recall
that any distribution Q € Qy can be uniquely described by an 7 € [0, 1] using
the identification n = Q({1}). f L : ¥ x R — [0,00) is a supervised loss, we
therefore use the notation

CL,n(t) = CL’Q(t) s te IR,,

X " 3.36
CL’77 = CL’Q , ( )

as well as My ,(07) := My q(0F), Mp,(g) :== My q(e), and dmax(e,n) =
Omax (€, Q) for € € [0, 00]. Note that, by the special structure of margin-based
losses and the distributions Q € Qy, we have the following symmetries:

CLm(t) = CL,1777<_t) and Czﬂ? = Cz,lfn 5
ML,n(E) = _ML,l—n(E) and ./\/le(OJ") = _ML,l—n(0+) .

Furthermore, it is interesting to note that the quantity 2n—1, which will occur
at many places in the following results, is the expectation of the corresponding
Q,i.e., EQ :=Eqidy = 2n—1. Before we present our first results, let us finally
simplify our nomenclature.

Definition 3.31. A supervised loss function L : Y x R — [0, 00) is said to be
(uniformly) classification calibrated if it is (uniformly) Leass-calibrated
with respect to Qy .

Now our first aim is to compute the calibration function dmax, ru..,z( "> 7)
for supervised surrogates L of Ljags.

Lemma 3.32 (Calibration function). Let L : Y x R — [0,00) be a super-
vised loss. Then, for alln € [0,1] and € € (0, 00|, we have

00 if e > [2n — 1|
infer:(2n—1) sign t<0 (CL,n(t) — sz) if e <[2n—1].

Omax, Letnes L (€, 1) = {

Proof. The assertion immediately follows from the formula

R if e > |27 — 1|

M . . =
Lener1(€) {ﬁeR;@n—Uﬁgﬁ>0} ifo<e<|2n—1],

which we derived in Example 3.8, and inf () = oo. a
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The formula for the calibration function presented in Lemma 3.32 implies
that dmax(-,n) is a step function that only attains one value different from 0
and oo. This particular form of the calibration function is the key ingredient of
the following considerations on the relation between classification calibration
and uniform classification calibration. We begin with a preliminary lemma.

Lemma 3.33 (Alternative to the calibration function). Let L : Y xR —
[0,00) be a margin-based loss and H : [0,1] — [0,00) be defined by

() te]R:(qu?fl)tgoCL’”(t) CLap n € 10,1] (3.37)

Then the following statements are true:

i) L is classification calibrated if and only if H(n) > 0 for all n # 1/2.
ii) If L is continuous, we have dmax(g,n) = H(n) for all 0 < e < |2n—1].
iii) H is continuous and satisfies H(n) = H(1—n), n € [0,1], and H(1/2) = 0.

Proof. i). Let us first assume that L is classification calibrated. We fix an
n # 1/2. Then Lemma 3.32 together with sign0 = 1 shows Cr,,(0) > Cy , if
n € [0,1/2). Moreover, if n € (1/2,1], we find the same inequality by

CL,77<O) — C}i’n = CL,1777<0) — 6271,77 > 0.
Finally, Lemma 3.32 yields

inf Crn(t)—Ci, > Omax(c, 0 3.38
e Crn®) = CLy 2 dmax(e,m) > (3.38)
for 0 < e < |2y — 1], and hence we find H(n) > 0. Conversely, Lemma 3.32
gives dmax(€,n) > H(n) for all 0 < ¢ < |2n — 1|, and hence L is classification
calibrated if H(n) > 0 for all n # 1/2.

i1). Since there is nothing to prove in the case n = 1/2, we assume 7 # 1/2.
Now, if L is continuous, then Cr ,(-) is continuous at 0, and hence we have
Omax(g,m) < inf Crat)—Ci, = inf Cont)—C;,=H
(8 77) te]R:(zlzl—l)Ko L’n( ) L tG]R:(21£]1—1)t§0 L’n< ) Lin (77)
by (3.38). Moreover, for 0 < & < |2n — 1|, we always have dmax(g,m) > H(n).
i17). The equality H(1/2) = 0 is trivial, and H(n) = H(1 —n), n € [0,1],
immediately follows from symmetries mentioned at the beginning of this sec-
tion. In order to prove the continuity of H, we now define

= i f
h(n) te]R:(Zlvr;fl)tSOCLm(t)’

(1) = inf Co ().

g
g (n) = gg(f) CrLy(t),

for n € [0,1]. Then the functions g™ : [0,1] — [0,00) and g~ : [0,1] —
[0,00) can be defined by suprema taken over affine linear functions in 7 €
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R, and since g7 and g~ are also finite for € [0,1], we find by Lemma
A.6.4 that g7 and g~ are continuous at every n € [0, 1]. Moreover, we have
Ci ., = min{g*(n), g (n)} for all € [0,1], and hence 7 + Cj , is continuous.
Finally, we have h(n) = g~ (n) for n € [0,1/2), h(n) = g*(n) for n € (1/2,1],
and h(1/2) = min{g™(1/2),97(1/2)} = g~ (1/2) = g7 (1/2). This shows that
h :[0,1] — [0,00) is continuous, and by combining these results we then
obtain the continuity of H. O

Now we can establish the main result of this section, which shows that
classification calibrated, margin-based losses are uniformly classification cal-
ibrated. In addition, it provides a lower bound of the Fenchel-Legendre bi-
conjugate (see Definition 3.20) of the uniform calibration function dpax (- ,Qy ).

Theorem 3.34 (Classification calibration). Let L : Y x R — [0,00) be a
margin-based loss. Then the following statements are equivalent:

i) L is classification calibrated.
i1) L is uniformly classification calibrated.

Furthermore, for H defined by (3.37) and § : [0,1] — [0,00) defined by

1+5)

d(e) ::H( 5 e €10,1],

the Fenchel-Legendre bi-conjugates of & and dmax (-, Qy) satisfy
67"(€) < O, Leraea, 2 (85 Qv ) 5 e €0,1], (3.39)

and both quantities are actually equal if L is continuous. Finally, if L is clas-
sification calibrated, we have 6**(g) > 0 for all £ € (0,1].

Proof. We begin with a preliminary consideration. To this end, let us fix an
e € (0,1]. Then, by Lemma 3.32 and the symmetry of H around 1/2, we find

Omax(g, Qy) = inf  dnax(e,n) > inf  H(n) = in£ H(n) =: 5(5),
n><Ht

|27—1|>¢ |2n—1]>e

and with §(0) := 0 we also have Syax(0, Qy) = 6(0).
i) < i1). Since 1) = 1) is trivial, it suffices to show ¢) = ii). To this end,
e+l

recall that H is continuous and strictly positive on all intervals [&=,1], € €

(0,1], by Lemma 3.33, and consequently we have 5(6) > 0 for all ¢ > 0. From
this we find dpmax (g, Qy) > 0 for all € > 0 by our preliminary consideration.

In order to show (3.39), recall that 5(¢) < Omax(e, Qy) holds for all
e € [0,1], and hence we find 6**(e) < d5% . (e,Qy) for all € € [0,1]. Fur-
thermore, we obviously have §(¢) = inf.s. d(¢'), and hence Lemma A.6.21
gives 6** = 6**. In addition, if L is continuous, then our preliminary consid-
eration together with Lemma 3.33 actually yields §(€) = dmax(g, Qy) for all
e € [0,1]. Repeating the arguments above thus shows §**(¢) = 6% . (¢, Qy)
for all € € [0, 1].
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Table 3.1. Some common margin-based losses and the corresponding values for
H(n), n € 10,1], and 655ax (£, Qy), € € [0, 1]. All results easily follow from Theorem
3.36. For the logistic loss, we used the abbreviation A(z) := x In(x). Note that if one
wants to derive inequalities for the logistic loss using the above form of 4. (&, Qv ),
it is useful to know that e < A(14¢) + A(1 —¢) < £?In4 for all € € [0, 1].

Loss function H(n) Omnx (8, Qy)
Least squares (21 — 1)? e?

Hinge loss |2n — 1] €

Squared hinge (2n —1)? e?

Logistic loss In2+ A(n) + A1 —n) (A +e)+ A1 —¢))

Finally, if L is classification calibrated, we have already seen 5(5) > 0 for
all e € (0,1], and hence 6**(¢) > 0, ¢ € (0,1], by Lemma A.6.20. Since we
have also proved 6** = ¢**, we finally find §**(¢) > 0, ¢ € (0, 1]. |

For classification calibrated margin-based losses L, the preceding theo-
rem shows that using §** in Theorem 3.22 always gives non-trivial inequali-
ties between the excess L-risk and the excess classification risk. Furthermore,
Theorem 3.34 shows that in order to establish such inequalities it suffices
to compute the function H(-) defined by (3.37), and as we will see later
in Theorem 3.36, this computation is rather simple if L is convex. For the
margin-based losses considered in the examples of Section 2.3, the functions
H and 6%, (-, Qy) are summarized in Table 3.1. Establishing the resulting
inequalities is left as an exercise (see Exercise 3.9). However, note that for
some losses these inequalities can be improved if the considered P satisfies
an additional assumption, as the following remark shows (see also Theorem
8.29).

Remark 3.35. It is important to note that (3.9) can be used to describe the
classification scenario by a detection loss. Indeed, if for a given distribution P
on X x Y with n(z) :=P(y = 1|z), z € X, we define

Lp(x,t) :=2n(z) — 1] - Lo, ((2n(z) — 1) signt), reX,teR,

then Lp : X x R — [0,00) is obviously a detection loss with respect to
A:={(z,t) € X xR: (2n(z) — 1)signt < 0} and h(x) = [2n(z) — 1|, z € X.
Furthermore, (3.9) states that

CLclasle(I) (t) - Czclass,n(w) = CLPJ (t) - CZP,w

for all x € X, t € R, i.e., for the distribution P, both losses describe the same
learning goal. Now, condition (3.34) becomes



3.4 Surrogates for Unweighted Binary Classification 75
Px({zeX:0<2n(z) -1 <s}) < (es)?, s> 0, (3.40)

which, in a slightly stronger form, will be very important condition on P when
establishing fast learning rates for SVMs in Section 8.3. For now, however,
we would only like to mention that, assuming (3.40), we can immediately
improve the inequalities that we would obtain by combining Theorem 3.34
with Theorem 3.22 for most of the margin-based losses considered in the
examples. For more details, we refer to Remark 3.30 and Exercise 3.9. <

Up to now, we only know that the few examples listed in Table 3.1 are
classification calibrated. The following theorem gives a powerful yet easy tool
to check whether a conver margin-based loss is classification calibrated or not.

Theorem 3.36 (Test for classification calibration). Let L be a conver,
margin-based loss represented by ¢ : R — [0,00). Then the following state-
ments are equivalent:

i) L is classification calibrated.
i) ¢ is differentiable at 0 and ©'(0) < 0.

Furthermore, if L is classification calibrated, then the Fenchel-Legendre bi-
conjugate of the uniform calibration function dmax(-, Qy) satisfies

Omax (8, Qy) = ¢(0) =C7 a1, e [0,1]. (3-41)

Proof. ii) = i). Since ¢ is differentiable at 0, the map t — Cr, , (¢) is differen-
tiable at 0 and its derivative is C7 , (0) = (2n—1)¢'(0). Consequently, we have
Crn(0) <0 for n € (1/2,1]. Now recall that the convexity of Cr ,(-) implies
that its derivative is almost everywhere defined and increasing by Theorem
A.6.6 and Proposition A.6.12. Therefore, Cr, (- ) is decreasing on (—o0, 0] and
for n € (1/2,1] we thus have

Hp)= i Cpy(t)—Ch, = infCpy(t) = Ch, = Cug(0) —Ci,. (3.42)
(2n-1)t<0 -

Furthermore, C7, , (0) < 0 shows that Cr, ,(-) does not have a minimum at 0
and thus we find H(n) > 0 for all n € (1/2,1]. Lemma 3.33 then gives the
classification calibration.

i) = ii). Recall the basic facts on subdifferentials listed in Section A.6.2.
Let us begin with assuming that ¢ is not differentiable at 0. Then there exist
wy, wg € 0p(0) with wy < we and wy # —ws. Let us fix an n with

Obviously, this choice implies §(ws — w1) > |wy + wa|(n — 3), and by the

definition of the subdifferential, we further have ¢(t) > w;t + »(0) for t € R
and ¢ = 1,2. For t > 0, we consequently find
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Crn(t) =ne(t) + (1=n)p(—t) = n(wat + ¢(0)) + (1 — n) (—wit + ¢(0))

= (;(wg—wl) + (w1+w2)(n - ;)) t+ p(0)
> ( jwy +ws| + (wy +w2)) (n—é)) t+Cp,.y(0)
> Cp(0). (3.43)

Furthermore, since L is classification calibrated, we have H(n) > 0, and thus
we find infy~o Cr () = C} . Together with (3.43), this shows C} , > Cr, 4(0).
However, the latter yields H(n) < 0 by (3.42), and thus ¢ must be differen-
tiable at 0. Let us now assume that ¢’(0) > 0. We then obtain

Cra(t) = ¢(t) = ¢'(0)t +¢(0) > Cr1(0)
for all ¢ > 0. Again this contradicts the classification calibration of L.

In order to show (3.41), we first observe C’le/Q(O) =10(0) - 14 (0) = 0.
This immediately gives Cp, 1/2(0) = Cia /25 and consequently we have

H(U) = 90(0) - Cz,n ) ne [1/27 1]7 (3‘44)

by (3.42) and Cr,(0) = ¢(0). Now recall that n — Cj , is defined by an
infimum taken over affine linear functions, and hence it is a concave func-
tion. Consequently, H is convex on [1/2,1] and therefore (3.44) together with
Theorem 3.34 and the continuity of L shows (3.41). |

3.5 Surrogates for Weighted Binary Classification

In this section, we investigate surrogate loss functions for the weighted binary
classification scenario introduced in Example 2.5. To this end, recall that this
scenario is characterized by the loss function

l—a ify=1landt<O0
La-class(ya t) =4« ify=—1landt>0
0 otherwise ,

where « € (0, 1) was a fixed weighting parameter and Y := {—1,1}. Adopting
the notations around (3.36), we begin by computing dyax (g, 7).

Lemma 3.37 (Calibration function). Let L : Y x R — [0,00) be a super-
vised loss. Then, for all a € (0,1), n € [0,1], and ¢ € (0, 00], we have

00 ife>|n—al
inftG]R:(nfa) sign t<0 (CL,n(t) - Cz,n) ng < |7] - a|'

6Ina‘X7La—claSS7L(€, 77) B {
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Proof. Fort € R, wehaveCr__ _ ,(t) = (1fa)nl(_oqo)(t)Jra(lfn)l[O,OO)(t)
and C} =min{(1 — a)n,a(1 —n)}. From this we easily deduce

a-class>’l

Cch—class i (t) - CZ

Now the assertion follows as in the proof of Lemma 3.32. g

=In—al 1o ((n—a)signt).

a—class"l

In the following, we investigate how margin-based losses must be modified
to make them L,-cass-calibrated. To this end, let L be a margin-based loss
represented by some ¢ : R — [0, 00). For a € (0, 1), we define the a-weighted
version L, of L by

- ify=1
La(y,t) := {acp(t) fy— 1, teR.

Our next goal is to translate the results from the previous section for the
unweighted classification scenario into results for the weighted case. To this
end, we will frequently use the quantities

wa(n) =1 —a)n+a(l —n) (3.45)
and
(1—a)n
(1—an+al-n)
which are defined for n € [0, 1]. Moreover, we need the following lemma, which
describes the relation between the inner risks of L, and L.

Va(n) ==

(3.46)

Lemma 3.38 (Weighted inner risks). Let L be a margin-based loss. Then
for a € (0,1) and n € [0,1] the following statements are true:

i) CLom(t) = wa(n)Cry, () for allt € R, and C} = wa(n)C} 45 (-
it) min{a, 1 — a} < wy(n) < max{a,1 — a}.
ii) If L is classification calibrated and 1 # «, then Cp, »(0) > Cy .

a(l—n)

= Tamtat—y and

Proof. ). A straightforward calculation shows 1—1,,(n)
hence we obtain

Cra.n(t) = (L= a)ne(t) + a(l = n)p(=t)
= (A= a)n+a —n) @aln)et) + (1 - da(n)e(-t))
= wa(n) Cro. 0 (t) -
it1). This follows from wq(n) = (1 — 2a)n + a.
i11). We have 1 # « if and only if ¥, (n) # 1/2. Furthermore, Lemma 3.33

showed H(n) > 0 for n # 1/2, where H is defined by (3.37), and hence we
have Cr,,(0) > Cy , for 1 # 1/2. Therefore, the assertion follows from

Cron(0) = wa(n)Cro.n)(0) > wa(n)CL g () =Clam- o
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With the help of the preceding lemma, we can now characterize when
a-weighted versions of margin-based loss functions are L-cj.ss-calibrated.

Theorem 3.39 (Weighted classification calibration). Let L be a margin-
based loss function and o € (0,1). We define H, : [0,1] — [0,00) by

Ha = 3 f C t _C* , O’ 1 . 347
() teR:(iﬁa)tgo Lan(t) Laym n € 10,1] ( )

Then the following statements are equivalent:

i) Lo, is uniformly L -class-calibrated with respect to Qy .
1) Lo, 18 Lo-class-calibrated with respect to Qy .
it1) L is classification calibrated.
iv) Ho(n) > 0 for all n € [0, 1] with n # a.

Furthermore, if H is defined by (3.37) then, for all n € [0,1], we have

H, (77) = Wa (n)H(ﬁa (77)) . (3‘48)
Proof. ii) < #i). An easy calculation shows 29, (n) — 1 = %, and
hence we find sign(n — a) = sign(294(n) — 1). For € < |n — «|, this gives

5max,La_claSS,La (57 77) = tlglg cLa,n(t) - szﬁ
(n—a) sign t<0
= wa(1) inf Croam () =CLg.m
(200 () —1) sign t<0
= Wa (N) Omax, Letass, L (€, Da (1)) - (3.49)

Since wq(n) > 0 and 9,([0, 1]) = [0, 1], we then obtain the equivalence. The
proof of (3.48) is analogous to (3.49).

i) = i1). Trivial.

i1i) = 1). Recall that L is uniformly classification calibrated by Theorem
3.34. Then the implication follows from using w, (1) > min{«, 1 —a} in (3.49).

ii) = iv). Part iii) of Lemma 3.38 together with Lemma 3.37 implies
H,(n) >0 for all n # a.

iv) = ii). By Lemma 3.37, we have dmax,a(€,m) > Ha(n) > 0 for n # «
and 0 < € < |n — «|. This gives the assertion. O

With the help of the results above we can now establish our main theo-
rem of this section, which describes an easy way to establish inequalities for
L o-class-calibrated loss functions.

Theorem 3.40 (Weighted uniform calibration function). Let L be a
margin-based loss and « € (0,1). For amax := max{a, 1 — a}, we define

da(e) == inf Ha(n), £ € [0, amax);
n€l0,1]
[n—al>e
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Table 3.2. The functions H, H,, and 6" for some common margin-based losses.
The values for 6. are only for a with 0 < a < 1/2. Note that, for the hinge loss, the
function 40" is actually independent of «. Furthermore, the formulas for the logistic
loss for classification do not fit into the table but can be easily computed.

Loss function H(n) Ha(n) da"(€)
12 (n—a)? e
Least squares (2n—1) a-tn—2an 2a(l—a)+e(l—2a)
Hinge loss [2n — 1] |n — «af €
; 2 | me? —
Squared hinge (2n—1) atr—2a7 2a(1—a)+e(1—2a)

where Hy () is defined by (3.47). Then, for all € € [0, max|, we have

057 (8) < Ofnax, L L(&Qy),

a~class?

and if L is continuous, both quantities are actually equal.

Proof. Let € € [0, &max]- Then Lemma 3.37 together with inf () = oo yields

inf Opax(e, Q) = inf inf  Cp () —C' > inf H.(n).
o Omax(,@) = inf inf Craw® = Croy 2z f Haln)
In—a|>e (n—a)signt<0 [n—a|>e

a

Obviously, we can use the identity Hea () = wa(n)H (94(n)) in order to
compute the function §,(g) of the preceding theorem. Doing so, we see that
04 18 a continuous function that is strictly positive on (0, amax] if L is classi-
fication calibrated. Consequently, Theorem 3.40 together with Theorem 3.22
yields non-trivial inequalities. Furthermore, for some important loss functions,
we already know H(n), n € [0,1], and hence the computation of §5*(¢) is
straightforward. The corresponding results are summarized in Table 3.2.

Up to now, we have only investigated the L,-¢1ass-calibration of a-weighted
versions of classification calibrated loss functions. We finally show that other
weighted versions are not L-class-calibrated.

Theorem 3.41 (Using the correct weights). Let o, 3 € (0,1), L be a
margin-based, classification calibrated loss, and Lg be its 3-weighted version.
Then Lg is Lq-class-calibrated if and only if B = a.

Proof. We already know that L, is L,-cass-calibrated, and hence we assume
a # [. Without loss of generality, we only consider the case 8§ > a. For a
fixed n € (o, 8), an easy computation then shows that 95(n) defined in (3.46)
satisfies ¥3(n) < 1/2 < ¥4(n), and hence for ¢ > 0 with € < | — a| we obtain

) = inf C t) —C;
05 Loctoe L (63 1) (n—a)Hsligntgo Lan(®) Lo

= wg (77) tH<n(C) CL,195 (n) (t) - szﬁﬁ(n) . (350)
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The classification calibration of L implies inf; > Cr, 9, () (t) =C], 9a(n) > 0, and
since infier Cr 9, () () fczﬁm) =0, we find infy <o CL 9,0y () fc;%(m =0.
Together with (3.50), this shows that Lg is not L-class-calibrated. O

The preceding theorem in particular shows that an a-weighted version of a
classification calibrated margin-based loss function is classification calibrated
if and only if @ = 1/2. In other words, using a weighted margin-based loss for
an unweighted classification problem may lead to methodical errors.

3.6 Template Loss Functions

Sometimes an unsupervised loss function explicitly depends on the data-
generating distribution. For example, if we have a distribution P on X x R
with |[P]; < oo and we wish to estimate the conditional mean function
z — Ep(Y]z), we could describe this learning goal by the loss function

L(z,t) := ‘]Ep(Y\x) —t

, re X, teR.

Now note that when we change the distribution we have to change the loss
function, though the learning goal remains the same. In view of our analysis
on surrogate losses, this fact is at least annoying. The goal of this section is
to resolve this issue by introducing a new type of “loss function” that may
depend on distributions Q. Let us begin with a precise definition.

Definition 3.42. Let Q be a set of distributions on a closed subset Y C R.
Then we call a function L : Q@ x R — [0,00) a template loss if, for all com-
plete measurable spaces X and all distributions P of type Q, the P-instance
Lp of L defined by

Lp: X xR — [0,00)

(e,1) v L(P(-|2), 1) (3:51)

18 measurable.

Note that the key condition of this definition is the measurability, which
enables us to interpret P-instances as unsupervised losses. In particular, we
can define the risk of a template loss L by the risk of its P-instance, i.e., by

Rip() = Rupe(f) = [ LP(-la).f(@) dPx(a).
where f : X — R is measurable. This motivates us to define the inner risks
of a template loss L : @ x R — [0,00) analogously to the inner risks of
unsupervised losses, i.e., we write

Crq(t) == L(Q,t),

CLq = ti/relifRL(Q,t')
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for Q € Q and t € R. Note that the right-hand sides of these definitions have
the form we used for unsupervised losses in the sense that no integrals occur
while the left-hand sides have the form we obtained for supervised losses in
the sense that the inner risks are independent of x. Having defined the inner
risks, we write, as usual,

Mpqe)={teR:Crq(t) <Ciq+e}, Qe Q,e€0,00],

for the corresponding sets of approximate minimizers. Moreover, given a super-
vised surrogate loss Lg,, : Y X R — [0, 00), we define the calibration function
6max( Ty Q) : [07 OO] - [Oa OO] Of (L, Lsur) by

5maX1L7Lsur (57 Q) = gg{{ CLsunQ(t) - CZSM,Q ’ €€ [07 00]7

tEML,q(e)

if C7_...q <00 and by dmax,1,L.,. (€, Q) := oo otherwise. Since in the proof of
Lemma 3.14 we did not use that the inner risks are defined by integrals, it is
then not hard to see that this lemma also holds for the calibration function
above. Consequently, we say that L, is L-calibrated with respect to Q if

5max,L,Lsur (57Q) >0

for all € > 0 and Q € Q. Analogously, we say that Lg,, is uniformly L-
calibrated with respect to Q if

(Smax,L,LSur (57 Q) = éIéfQ 6max,L,Lsur (57 Q) >0
for all € > 0. If we now consider a P-instance Lp of L, we immediately obtain

Omax,Lp L (&, P(+ |2), Z) = Omax L, L.., (8, P( - ]2)) (3.52)

for alle € [0, 00] and z € X, where dmax,Lp, Lo (-5 *» - ) denotes the calibration
function of (Lp, Lgyy). In other words, L-calibration of Ly, can be investigated
analogously to supervised losses, i.e., in terms of Q and independent of =, while
the corresponding results can be used to determine the relation between the
excess Lg,-risk and the excess risk of the unsupervised loss Lp. In the following
sections, we will extensively make use of template losses, mainly because of
this technical merit.

3.7 Surrogate Losses for Regression Problems

In regression, the goal is to predict a real-valued output y given an input x.
The discrepancy between the prediction f(x) and the observation y is often
measured by the least squares loss, but we have already seen in Section 2.4
that there are various alternatives. In this section, we investigate the relation
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of these alternatives to the least squares loss. These considerations will be
important for Chapters 9 and 10 on regression and robustness, respectively.
Let us begin by introducing some notation. To this end let, Q be a set of
distributions on R and L : R x R — [0, oo] be a supervised loss. Since in our
general results on calibration the assumption C} o < co was crucial, we define

Q(L):={QeQ:C} o<}

Recall that for distance-based losses we have investigated the condition C} o <
oo in Lemma 2.36. In the following, Qi denotes the set of distributions on
R, and more generally, Q; denotes the set of all distributions whose support
is contained in the subset I C R. In addition, for p € (0,00], the set of
distributions on R with p-th finite moment is denoted by

](15) = {Q : Q distribution on R with |Q, < oo},

whereas the set of all distributions with bounded support is denoted by

Obounded = Q(OO) U Q —M,M]

M>0

Note that Q7 € Qpounded C Q](Rl ) holds for all bounded intervals I, and if L is

a continuous, distance-based loss, we actually have Qpounded C Q(l)( L).
Now let Q be a distribution on R such that |Q|; < co. Then the mean of
Q is denoted by

EQ = /R ydQy)

We call Q symmetric around some ¢ € R if Q(c+ A4) = Q(c — A) for all
measurable A C [0,00). Furthermore, we say that Q is symmetric if it is
symmetric around some ¢ € R. Obviously, Q is symmetric around c if and
only if its centered version Q(°) defined by Q(9)(A) := Q(c+ A), A C R
measurable, is centered around 0. In the following, the set of all symmetric
distributions with p-finite moment is denoted by Q](If, )sym. Finally, the sets
Or.sym, for I C R, and Qpounded,sym are defined in the obvious way.

Let us now assume that Q is symmetric around c. For a measurable func-
tion h : R — R, we then have

/h — 0)dQ(y /h )dQ (y) /h )dQ' (y)
- /R he—y)dQ(y)  (3.53)

whenever one (and then all) of the integrals exists. In particular, for h(y) :=
y+c¢ y € R, and Q satisfying |Q|1 < oo, this equation yields

BQ = [ Q) = [ My = aQu) = o+ [ 9aQ) = c
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i.e., the center ¢ is unique and equals the mean EQ.
Let us get back to our main goal, which is identifying Ly g-calibrated losses,
where Lpg denotes the least squares loss. To this end, recall that for Q €

Or(Lis) = Q](RQ) we have already seen in Example 2.6 that

M.q(07) = {EQ}.

Consequently, if L is a supervised, Lyg-calibrated loss function, we must have
Mip.q(07) C {EQ} forall Q € Q](I?) (L). This observation motivates the follow-
ing two propositions in which we investigate the sets My, q(0") for distance-
based losses.

Proposition 3.43 (Exact minimizers for distance-based losses I). Let
L be a distance-based loss whose representing function 1) : R — [0, 00) satisfies
lim, _, 4 o0 ¥(1) = 00. Moreover, let Q € Qg be a distribution with Cr, q(t) < oo
for allt € R. Then the following statements are true:

i) If ¢ is convex, then t — Cr q(t) is convex and continuous. Moreover, we
have lim¢_, 4o Cr.q(t) = 00 and My q(07) # 0.

ii) If ¢ is strictly convex, then t — Cr, q(t) is strictly convex and My, q(01)
contains exactly one element.

Proof. Our first goal is to show that lim;_,4. Cr q(t) = oo. To this end,
we fix a B > 0 and let (t,) C R be a sequence with ¢, — —oo. Since
lim, 400 ¥(r) = oo, there then exists an 79 > 0 such that ¢(r) > 2B for
all » € R with |r| > 7. Since Q(R) = 1, there exists also an M > 0 with
Q([-M,M]) > 1/2. Finally, there exists an ng > 1 with ¢, < —M — rq for
all n > ng. For y € [-M, M], this yields y — t,, > 19, and hence we find
Y(y —t,) > 2B for all n > ng. From this we easily conclude

Crqltn) > / by — ) dQ(y) > 2BQ(I—M, M]) = B,

[7M7M]

i.e., we have shown Cp, q(t,) — o0o. Analogously we can show lim,;_,., Cr, o(t) =
00, and consequently we have lim;_ 1, Cr, q(t) = co. This shows that

{teR:Crq(t) <CLql0)}

is a non-empty and bounded subset of R. Furthermore, the convexity of
implies that ¢ — Cr, (t) is convex and hence this map is continuous by Lemma
A.6.2. Now the assertions follow from Theorem A.6.9. O

Note that for distributions Q € Qpounded We automatically have Cr, q(t) <
oo for all ¢ € R and all distance-based losses L. Furthermore, if L is of some
growth type p € (0,00), then Lemma 2.36 shows Cr, q(t) < oo for all t € R
and all distributions Q having finite p-th moment. Consequently, the preceding
proposition gives My, o(0") # 0 in both cases.

The following proposition compares My, o(0") with the mean EQ.
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Proposition 3.44 (Exact minimizers for distance-based losses II). Let
L be a distance-based loss whose representing function v is locally Lipschitz
continuous, and let M > 0. Then the following statements are true:

i) IfEQ € M q(0%) for all Q € Qs asym, then L is symmetric.
i) If EQ € My q(0%) for all Q € Quounded, then there exists a constant
¢ >0 with ¥(t) = ct* for allt € R.

Proof. Recall that the fundamental theorem of calculus for Lebesgue integrals
(see Theorem A.6.6) shows that the derivative ¢ is (Lebesgue)-almost surely
defined and integrable on every bounded interval.

i). Let us fix a y € [-M, M] such that ¢ is differentiable at y and —y. We
define QQ := %6{,?4} + %6{?;}. Then we have Q € Qg sym With EQ = 0, and
Cr,q(t) = 3¥(—y—t)+1¢(y—t). Consequently, the derivative of Cp o - ) exists
at 0 and can be computed by C} (0) = —3¢'(—y) — 3¢/ (y). Furthermore,
our assumption shows that Cr q(-) has a minimum at 0, and hence we have
0=C} o(0), ie, ¥'(-y) = —¢'(y). According to our preliminary remark, the
latter relation holds for almost all y, and hence Theorem A.6.6 shows that,
for all yp € R, we have

0

b) = v + [ Wit = w0 — [ w(-dt =90 — [ o0

0 0 —%Yo

= 1(=yo) -

i1). Let y # 0 and o > 0 be real numbers such that v is differentiable at
y, —y, and ay. We define QQ := ﬁé{o} + ﬁd{(lﬁx)y}’ so that we obtain
EQ=yand Crq(t) = 59 (-t)+ 14%aw(gﬁ—ozy—t) for all ¢ € R. This shows
that the derivative of Cr, q(-) exists at y and can be computed by

«

C?:,Q(Z/) = 1 Ta

1 « 1
/ _ - / - 7 s /
V) - gV en) = v ) - v (ew),
where in the last step we used ). Now, our assumption EQ € My o(0T)
gives C} o(y) = 0, and hence we find ay)’(y) = ¢’'(ay). Obviously, the latter
relation holds for almost all @ > 0, and thus we obtain

’ / i / 'll)/(y) 2
P(ty) =v(0)+ [ P (sylyds= [ s¢'(y)yds = o (ty)
0 0
for all £ > 0. From this we easily obtain the assertion for ¢ := w;(yy). O

Proposition 3.44 shows that there is basically no distance-based surrogate
for the least squares loss Ly, if one is interested in the entire class

Or(Lis) = OF) = {Q € Or : |Q|s < o0} .

Furthermore, it shows that the least squares loss is essentially the only
distance-based loss function whose minimizer is the mean for all distributions
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in Q](RZ ) In other words, if we are actually interested in finding the regression
function = — Ep(Y|x), and we just know |P|s < oo, then the least squares
loss is the only suitable distance-based loss for this task. However, if we cannot
ensure the tail assumption |P|y < oo but know instead that the conditional
distributions P(-|xz) are symmetric, then Proposition 3.44 suggests that we
may actually have alternatives to the least squares loss. In order to investigate
this conjecture systematically, we first need a target loss that describes the
goal of estimating the mean. To this end, let us consider the mean distance
template loss Lyean : Q](Rl) x R — [0, 00), which is defined by

Lmean(Qat) = |EQ_t‘7 tERvQGQ](Rl)'

Note that this indeed defines a template loss, since given a Q](Pi)—type distrib-
ution P on X x R, it is easy to see that

(fvt)'_’Lmean< ( ‘x |EP Y|l‘ 7t|

is measurable. Moreover, we have

mean(Q t) (EQ - t)2 = CLLS,Q(t) - CELS,Qv Q € Q]R)v te R

and since the minimal Lyean-risks equal 0, we thus obtain My, _ . qo(Ve) =
My, s.q(e) for all € > 0. From this we immediately find

5maX,mean,L(\£a Q) = 5max,LLs,L(€7 Q) ) oS [07 00]7 (354)

for all distance-based losses L and all Q € Q](R?) N Or(L). In other words,
by considering Lean-calibration, we simultaneously obtain results on Lyg-
calibration.

We saw in Section 3.1 that the inner risks are the key quantities for com-
puting calibration functions. The following lemma presents a way to compute
the inner risks Cr, q(-) when both L and Q are symmetric.

Lemma 3.45 (Inner risks of symmetric losses). Let L be a symmetric

loss with representing function 1 and Q € Q](Rl)sym(L). Then we have

C1.o(EQ+1) = CLaEQ—1) = [ ¥y —EQ—1)+ vly—EQ+1)dQly)
for allt € R. In addition, if L is convex, we have

CrLq(EQ)=Crq,
and if L is strictly convez, we also have Cr, o(EQ +t) > Cl.q forallt #0.

Proof. Let us write m := EQ. Recalling that the centered version Q™ of Q
is symmetric around 0, the symmetry of ¢ and (3.53) then yield
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Crq(m+t) /1/1 (y — )dQ"™(y /1/) y — t)dQ™ (y)

— [ wly+ 0™ )
R
= CL,Q(m —1).
Since this yields Cr,.q(m +t) = 1(Cr,q(m +t) +Cr,q(m — t)), we also obtain

the second equation. Furthermore, if ¢ is convex, we can easily conclude that

Cro(m+t) = /¢ y—t)+p(y+1)dQ™ (y /w )dQ™ (y) = Cp.q(m)

for all t € R. This shows the second assertion. The third assertion can be
shown analogously. O

With the help of the preceding lemma, we can derive a simple formula for
the calibration function Omax, Lyean.L (€, Q) if L is convex.

Lemma 3.46 (Calibration function for symmetric losses). Let L be a
symmetric, convex loss and Q € Q]R Sym(L). Then, for all € > 0, we have

5maX7Lmean7L(€7 Q) = CLQ(]EQ + E) — CL7Q(]EQ) . (3.55)

Consequently, € — Omax,L L(e,Q) is conver and the following statements

are equivalent:

1) Omax, Liean, L (£, Q) > 0 for all € > 0.
it) Cro(EQ +1t) > Cr.q(EQ) for allt € R with t # 0.

mean

Proof. Obviously, it suffices to prove (3.55). To this end, observe that ¢ —
Cr.q(EQ+1t) is a convex function on R, and Lemma 3.45 shows that it is
also symmetric in the sense of Cp (EQ+1t) = Cr,o(EQ —t) for all t € R.
Therefore, t — Cr, (EQ + t) is decreasing on (oo, 0] and increasing on [0, 00),
and hence we find

6maX7Lmean:L(€7 Q) = tgi(rlf )CL7Q(EQ + t) - CZ,Q = CL7Q(EQ + 6) - CZ7Q .
g,
Since we already know that C} o = Cr,(EQ) by Lemma 3.45, we then obtain
the assertion. O

Our next result is a technical lemma that will be used to establish upper
bounds on dmax, Lyean, (€, Q). For its formulation, we need the set

Of ym = {Q € Ol - QUEQ — p,EQ + p]) > 0 for all p > o} ,

which contains all symmetric distributions on R that do not vanish around
their means. Moreover, we also need the sets Q7 ., == QrNQR o, for I C R,
and onunded,sym = OQpounded N Q]}_Sym. Now the result reads as follows.
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Lemma 3.47 (Upper bound on excess risks). Let L be a symmetric,
continuous loss with representing function 1. Assume that there exist a dy €
R, s1,82 € R with s1 # s2, and an g9 > 0 such that for all e € [0, eq] we have

P(s1te)+P(sat+e) w(% I 5) < 6. (3.56)

2
Let us write M := |%| +¢eo and t := 22521, Then, for all § > 0, there

exists a Lebesque absolutely continuous Q € QT_M M],sym with EQ = 0 and

CLo(EQ-+1t) —CrLq(EQ) < do+4.

Moreover, there exists a Lebesgue absolutely continuous Q € Qs m],sym With
EQ =0 and Cp q(EQ +t) — CL.o(EQ) < do.

Proof. In the following, p[44 denotes the uniform distribution on the interval
[a, b]. We write yo := 52, Furthermore, if yo = 0, we define Q := pj_c, <],
and otherwise we define

11—« 11—«

Q= ap_ s s + —5Hl-yo—co,—y0] T —5 Hlyo.so+eo] »

where o € (0,1) is a real number satisfying

sup Yy —t) + Py +1t)

2
ye[=12 12 ]

)| <2

Now we obviously have EQ = 0 in both cases. Moreover, if yy # 0, the
construction together with Lemma 3.45 yields
Craq(t) = Crq(0)
:/ Ply—t) + 9y +1)
R

: ~ H)dQy)

:a/ Py —1) + oy +1)
SERES) 2

—Y(y) dpp— ), 2 (y)

-1 t
+(1-a) / P9+t b(Y) disgyo yoteo] ()
[yo,y0+e0] 2

s5+(1—a>/[0 ]7”(51*5);1#(82%) _w(sl-gsz

+ E) d:u[O,ag] (E)
<d+6.

Furthermore, the case yo = 0 can be shown analogously, since yo = 0 implies
y—t=s +yandy+t=sy+y. The last assertion follows if we repeat the
construction above with a = 0. g

Let us now establish our first two main results, which characterize losses L

that are Lycan-calibrated with respect to Qg ¢ . (L) and Q% )Sym, respectively.
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Theorem 3.48 (Mean calibration I). Let L : R x R — [0,00) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L i8 Lican-calibrated with respect to Q]’%’Sym(L).
i) L is Liean-calibrated with respect to Qf . qed sym-
i11) L is Lyean-calibrated with respect to Q M, M],sym for all M > 0.

i) L is convez, and its representing functwn w has its only minimum at 0.

Proof. i) = i) = iii). Trivial.

iv) = 4). Assume that L is not Lycan-calibrated with respect to Qf ... (L).
By Lemma 3.46, there then exist a Q € Qf .. (L) and a t # 0 with
Cr.q(m +1t) = Cf o, where m := EQ. Using Cp, Q( ) = C} q» which we know
from Lemma 3.45, then yields

Yy —t) + 9y +1)
2

—(y)dQ"™ (y) = Crq(m+1t) — Crq(m) =0,

and hence the convexity of 1) shows w(y—m—t)-gw(y—m—i-t) —(y—m) =0 for Q-
almost all y € R. The continuity of ¢ and the assumption Q(m + [—p, p]) > 0
for all p > 0, then guarantee that w(yfmft);w(yfmﬂ) —¥(y —m) = 0 holds
for y := m. However, by the symmetry of 1, this implies ¥ (t) = ¥(0).

ii1) = 1v). Assume that v is not convex. Then Lemma A.6.17 shows that
there exist s1,s2 € R with s; # sp and w(sl);w(@) - 1/)(51“2) < 0. By the
continuity of ¢, we then find (3.56) for some suitable y < 0 and g9 > 0, and
hence Lemma 3.47 gives an M > 0, a Q € QiM’M],Sym, and a t* # 0 with
Cr.q(t*) < Cr,q(0) and EQ = 0. Now observe that since ¢ is continuous and
Q has bounded support, the map ¢ — Cr, (t) is continuous on R by Lemma
A.6.2. Let (t,) C R be a sequence with Cr, q(tn) — Cf o for n — oo. Since
our previous considerations showed Cr, (0) # C} o, there must exist an e > 0
and an ng € IN such that |¢,,| > ¢ for all n > ny. Since EQ = 0, this shows

6IIIHX7Lmean»L(€? Q) = tg(lng o) CL Q( ) - CZ,Q S CL7Q(t7L) - CE,Q

for all n > ng. For n — oo, we hence find d,ax(¢, Q) = 0, and consequently L
is convex. Finally, assume that there exists a t # 0 with ¢(t) = 1(0). Then we
find Cr q(t) = C} q for the distribution Q defined by Q({0}) = 1, and hence
we obtain Smax(|t|, Q) = 0. Therefore 1 has its only minimum at 0 |

Theorem 3.49 (Mean calibration II). Let L : R x R — [0,00) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L is Liean-calibrated with respect to Q](;)Sym(L).
it) L is Limean-calibrated with respect t0 Qbounded,sym -
i) L is Liean-calibrated with respect to Qs ar)sym for all M > 0.

i) L is strictly conver.



3.7 Surrogate Losses for Regression Problems 89

Proof. i) = ii) = iii). Trivial.

iv) = 1). It immediately follows from Lemma 3.45 and Lemma 3.46.

iii) = iv). If L is Lmcan-calibrated with respect to Q[_ps ar,sym for all
M > 0, then Theorem 3.48 shows that L is convex. Let us suppose that its
representing function v is not strictly convex. Then there are 1,75 € R with
r1 # 19 and

P(5m+ ) = 390 + 3¥(r)

From this and Lemma A.6.17, we find (3.56) for dyp = 0 and some suitable
51 # s2 and g9 > 0. Lemma 3.47 then gives an M > 0, a Q € Q(_ar,m],sym>
and a to # 0, with Cr q(EQ + to) = Cr,o(EQ), and hence Lemma 3.46 shows
that L is not Liean-calibrated with respect to Q € Q_az,am],sym (L)- O

Our next aim is to estimate the function € — dyax (g, Q) for some classes of
distributions @ C QR sym. To this end, we define the modulus of convexity
of a function f : I — R defined on some interval I by

dp(e) = inf{ fl@) + f(z2) f(:m +

5 5 ):wl,xQGIwith |x1—:c2|>5},

where ¢ > 0. In addition we say that f is uniformly convex if §;(¢) > 0
for all € > 0. We refer to Section A.6.3 for some properties of the modulus of
convexity and uniformly convex functions.

With the help of the modulus of convexity, we can now formulate the
following theorem that estimates dmax, Lyean, L (€, @) and characterizes uniform
Lean-calibration.

Theorem 3.50 (Uniform mean calibration). Let L be a symmetric, con-
vex loss with representing function 1. Then the following statements are true:

i) For all M > 0, € > 0, and QF—M,M],sym C Q C Q|- M, M],sym, we have

6w|[7(2M+5),2NI+a](26) < 6maX7Lmean:L(6’ Q) < 5"[’\[—NI/2,M/2](2E)' (3'57)

Moreover, the following statements are equivalent:
a) L is uniformly Lyean-calibrated w.r.t. QE:M M],sym for all M > 0.
b) L is uniformly Limcan-calibrated w.r.t. Q[_pr ] sym for all M > 0.

¢) The function 1 is strictly convez.

i1) For all € > 0, we have

5¢(25) = 6maX7Lmean7L(€7 QR7SyIn (L)) = 6H1a'x (6’ Qﬁounded,sym) . (3'58)

Moreover, the following statements are equivalent:

a) L is uniformly Lyean-calibrated with respect to Q](Rl?sym(L).

b) L is uniformly Lyean-calibrated with respect to Qi;oundedsym.
¢) The function ¢ is uniformly convez.



90 3 Surrogate Loss Functions (*)

Proof. i). Let Q € Q[_ar m],sym- Then we have EQ € [-M, M], and hence
Lemmas 3.45 and 3.46 yield

Sma(£, Q) = / v(y—EQ—¢) +¥(y —EQ+¢)

[~ M, M] 2
= 511’\[

-y —EQ) dQ(y)

—(2M+¢€),2M+¢] (2€> .

This shows the first inequality of (3.57). To prove the second inequality, we
observe that it suffices to consider the case ¢ < M/2 since for ¢ > M/2
we have Oy, 5 (26) = 00, Let us now fix an n > 1. Then there exist
s1,82 € [-M/2, M /2] with s; — s3 > 2¢ and

V(s1) +(s2) w3 + 52
2 2

1
> < 61!’\[—M/2,M/2] (25) + E =:Jp < 00.

By the continuity of 1, there thus exists an gy € (0, M /2] such that (3.56) is

satisfied for dp, and consequently Lemma 3.47 gives a Q € Qr_ M, M],sym with

2
CL,Q(EQ + t) - CL,Q<]EQ) < 51#\[-1»1/2,1»1/2] (25) + E )

81—

where t := 5

52 Using t > ¢ and Lemma 3.46, we hence find

N 2
6max(57 Q[—M,M],sym) S 5Inax(6a Q) S 5w|[7M/2,M/2](26) + ﬁ

Since this holds for all n > 1, the second inequality of (3.57) follows. Fi-

nally, from Lemma A.6.17, we know that v is strictly convex if and only if

Oyy_p.p(€) > 0 for all B and & > 0, and hence the characterization follows.
i). Analogously to the proof of the first inequality in (3.57), we find

5¢' (26) < émax(ga Q]R,sym (L)) 5 e > 0.

Furthermore, analogously to the proof of the second inequality in (3.57), we
obtain

Omax (€, Q;ounded,sym> < 6w(25)’ >0,
and hence (3.58) is proved. Finally, the characterization is a trivial conse-
quence of (3.58). O

The preceding theorem shows that the modulus of convexity completely
determines whether a symmetric loss is uniformly Lean-calibrated with re-
spect to Q](Rl,)sym(L) or QF Junded sym- Unfortunately, Lemma A.6.19 shows that,
for all distance-based losses of upper growth type p < 2, we have d,(e) = 0
for all ¢ > 0. In particular, Lipschitz continuous, distance-based losses, which

are of special interest for robust regression methods (see Chapter 10), are not

uniformly calibrated with respect to Q](Rly)sym(L) or QF inded, sym» and conse-
quently we cannot establish distribution independent relations between the
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Table 3.3. Some symmetric loss functions and corresponding upper and lower
bounds for the moduli of convexity dy_j 5 (2¢), 0 < ¢ < B. The asymptotics for
the Ly-loss, 1 < p < 2, are computed in Exercise 3.12. For the Lp-loss, p > 2, and
Huber’s loss, the lower bounds can be found by Clarkson’s inequality (see Lemma
A.5.24), and the upper bounds can be found by picking suitable t1,t2 € [—B, BJ.
The calculations for the logistic loss can be found in Example 3.51.

Loss Function Lower Bound of 0y, , (2¢)| Upper Bound of 6y, , (2¢)
Li_aist 0 0
1 B 2,2
Ly aist, p € (1,2) 2-D) pr-2g ST
L;U—dista pe [27 OO) P &
l—e—¢ B+ 2e _ B+ 2e

Lr—logist + In eeB +€eE (1 —€ E) In eeB_:ee

e if B< a e if B<a
La-Hubera a>0 2 - 2 -

0 else 0 else

excess L-risks and Rz . p(-) in the sense of Question 3.2. On the other
hand, symmetric, strictly convex losses L are Lean-calibrated with respect
to Q](Rl)sym( ), and hence we can show analogously to Theorem 3.61 below
that fn — E(Y|+) in probability Px whenever Ry p(fn) — R} p and P is of
type Q]R Bym(L). In addition, if we restrict our considerations to Qs a,sym
or Q[f M, M],sym> then every symmetric, strictly convex loss becomes uniformly
Lean-calibrated, and in this case 6y, _, 4 (+), B >0, can be used to describe
the corresponding calibration function. For some important losses, we have
listed the behavior of dy_, ., (-) in Table 3.3. Furthermore, Lemma A.6.19
establishes a formula for the modulus of convexity that often helps to bound
the modulus. The following example illustrates this.

Ezxample 3.51. Recall from Example 2.40 that the loglstlc loss for regres-
sion is the symmetric loss represented by ¢ (¢t) := —In =557, t € R. Let us

(1+e )
show, that for B > 0 and ¢ € (0, B], we have
1—¢ ¢ 6B 4 625 B BB + 625
5 In B et < 61#\[75,5](25) < (1-e 5)1117684_65 .

To see this, we first observe that ¢’'(t) = *+1 for all t € R, and hence we
obtain
et —1 et —ef 2et(ef — 1)

W) -t —e) = e+1 elte (et +1)(et + e°)

for all t € R and € > 0. Consequently, we have
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et —1 e —1
< () =Y (t — < 2——
T SV -Vt < 25—

for all £ > 0 and € > 0. Furthermore, for € > 0 an easy calculation gives

x+e £ B € B
-1 -1
inf / etidt = / Ry (1—e79) (t - ln(etJreE))

z€[0,B—¢] J, et +ef B_e €l +e° t—B—c

B 2e

e” +e
= 1 —e € 1 —_— .

(-t

Using Lemma A.6.19 then yields the assertion. <

In Theorem 3.48, we have seen that for Q € QO . ,,(L) we may have
Omax(€,Q) > 0, e > 0, even if L is not strictly convex. The key reason for this
possibility was the assumption that Q has some mass around its center. Now
recall that in the proof of the upper bounds of Theorem 3.50 we used the fact
that for general Q € Qf . ., this mass can be arbitrarily small. However, if
we enforce lower bounds on this mass, the construction of this proof no longer
works. Instead, it turns out that we can establish lower bounds on d,,.x (g, Q),
as the following example illustrates (see also Example 3.67).

Ezample 3.52. Recall that the absolute distance loss is the symmetric loss

represented by ¥(t) = |t[, t € R. Then, for all Q € Q](Rl’)sym and € > 0, we have

6maX7Lmean7L1»dist (6’ Q) = / Q(]EQ) ((_57 8)> dS : (3'59)
0

To see this, recall that for symmetric distributions the mean equals the me-
dian, i.e., the 1/2-quantile. Now (3.59) follows from Proposition 3.9. <

The results in this section showed that using symmetric surrogate losses for
regression problems requires some care: for example, let us suppose that the
primary goal of the regression problem is to estimate the conditional mean.
If we only know that the conditional distributions P(-|x), z € X, have finite
variances (and expect these distributions to be rather asymmetric), then the
least squares loss is the only reasonable, distance-based choice by Proposition
3.44. However, if we know that these distributions are (almost) symmetric,
then symmetric, strictly convex, and Lipschitz continuous losses such as the
logistic loss can be reasonable alternatives. In addition, if we are confident
that these conditional distributions are also rather concentrated around their
mean, e.g., in the form of QR ((—s,s)) > cqs? for small s > 0, then even
the absolute distance loss can be a good choice. Finally, if we additionally
expect that the data set contains extreme outliers, then the logistic loss or
the absolute distance loss may actually be a better choice than the least
squares loss. However, recall that such a decision only makes sense if the noise
distribution is (almost) symmetric.
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3.8 Surrogate Losses for the Density Level Problem

In this section, our goal is to find supervised loss functions that are calibrated
with respect to the density level detection loss Lpp introduced in Example
2.9. To this end, let us first recall that in the density level detection scenario
our learning goal was to identify the p-level set {g > p} of an unknown density
g : X — [0,00) whose reference distribution p on X is known. Unfortunately,
the loss Lprp formalizing this learning goal does depend on the unknown
density g, and thus we cannot compute its associated risks. Consequently,
our goal in this section is to find supervised surrogates for Lpyp that do not
depend on g. At first glance, this goal seems to be rather impossible since
supervised losses require labels that do not exist in the description of the
DLD learning scenario. Therefore, our first goal is to resolve this issue by
introducing artificial labels. To this end, we need the following definition.

Definition 3.53. Let u be a distribution on some X and Y := {—1,1}. Fur-
thermore, let g : X — [0,00) be measurable with ||g||z,,y = 1. Then, for
p >0, we write gp ©, p for the distribution P on X X Y that is defined by

gt+p
Px ==——
X 1+p )
g(x)
Ply=1lz) = , z e X.
& =1l) 9(x) +p

An elementary calculation shows that for measurable A C X x Y we have

- _r

1+p 1+p
and hence P := gu ©, v describes a binary classification problem in which
the negative samples are drawn from the distribution p with probability ﬁ
and in which the positive samples are drawn from the distribution gu wit
probability fp.

We have already mentioned in Example 2.9 that we are primarily interested
in the quantity Rz, ;.. (f), which describes the discrepancy of the estimated
level set {f > 0} to the true p-level set. Now observe that, for P := gu o, u
and measurable f: X — R, we have

gr Sp p(A) Eongula(z,1) + Epnpla(z, —1), (3.60)

) f tp
Ripnu(f) = /X Lpup(z, f(x)) du(z) = /X LDLD(I,f(x))g(x) T

and consequently we can describe the DLD learning scenario by P and the
detection loss L : X x R — [0, 00) defined by

Px(x),

_ 1+p
LI,t 5:LDLD :Z?,ti,
(@9 ( )g(w‘) +p
The first benefit of this reformulation is that our new target risk Ry p(-) is
defined by a distribution P, which produces labels, and consequently it makes

ze X, teR. (3.61)
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sense to look for supervised surrogates for L. Furthermore, we have access to
P via (3.60) in the sense that a) the distribution gu can be estimated from
the unlabeled samples given in the DLD scenario, see Example 2.9, and b)
both p and p are known. This makes it possible to construct an empirical
approximation of P that can then lead to learning algorithms based on this
approximation. For some literature in this direction, we refer to Section 2.5
and to the end of Section 8.6. The second benefit of considering the L-risk
is that P describes a classification problem, and hence it seems natural to a)
investigate L-calibration with the help of classification calibration and b) use
classification algorithms for the DLD learning scenario. In order to confirm
this intuition, let us consider the function Lprp : [0,1] x R — [0, 00) defined
by

Lorp(n,t) := (1 =)L oo 0)((2n — 1) signt) . (3.62)

Using the identification n = Q({1}) between n € [0,1] and Q € Qy, where
Y :={-1,1}, we can regard the function Lppp as a template loss. For P =
gl ©, p, the P-instance Lprp,p of Lprp then becomes

Lpip.p(7,t) = LpLp (P( -z), t) = (1 =n())1(—o0,0) ((277(3:) - 1) signt)
= g(x)%pl(_oo’o) ((9(95) — p) sign t)

p,
=L I(x1),
1+p( )

g(x)
- _ g(@)+p
Lpip.p of LpLp equals our detection loss L up to the constant —£—, and hence

. 1+p’
we obtain

where we used n(z) := P(y = 1|z) = . In other words, the P-instance

)

Rinuoul§) = Rip(f) = LR (1) (3.63)

for P = gu ©, p and all measurable functions f : X — R. Consequently,
suitable supervised surrogates for the DLD problem are exactly the losses
that are Lpyp-calibrated in the following sense.

Definition 3.54. Let Y := {—1,1} and L : Y x R — [0,00) be a supervised
loss. We say that L is (uniformly) density level detection calibrated if
L is (uniformly) Lpyp-calibrated with respect to Qy .

In order to identify DLD-calibrated losses, we need to know the corre-
sponding calibration function. This function is computed in the next lemma.

Lemma 3.55 (Calibration function for DLD). Let L : Y x R — [0, 00)
be a supervised loss function. Then, for all n € [0,1] and € € (0, 00], we have

00 ife>1—n

6max L L(€7 7]) =9. .
PR lnftE]R:(Qn—l) sign t<0 CL,ﬂ(t) - sz ZfE <1- n.
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*

Proof. A simple calculation shows C Toiom = 0, and consequently we obtain
Mioion@)=Rife>1—n and Mg~ (c) ={t € R:(2n—1)signt > 0}
otherwise. From this we immediately find the assertion. O

With the help of the preceding lemma, we now obtain the first main result,
which compares classification calibration with Lprp-calibration.

Theorem 3.56 (DLD-calibration). Let L : Y x R — [0,00) be a supervised
loss and n € [0,1]. Then, for all 0 <& < min{l — 7, |2n — 1|}, we have

5max,iDLD,L(E7 77) > 5maX7Lclass7L(€) T]) ;

and consequently L is DLD-calibrated if L is classification calibrated. More-
over, if L is continuous, then the inequality above becomes an equality and L
1s classification calibrated if and only if L is DLD-calibrated.

Proof. Combining Lemma 3.55 with Lemma 3.32 yields

6max,iDLD,L(E7 77) = tienllg: CLW (t) - 02717 > tl€n]I£ CL,”](t) - Cz,n
(2n—1) signt<0 (2n—1) sign t<0

= Omax, Lejaee L (65 7) -

Now assume that L is continuous. Since there is nothing to prove for n = 1/2,
we additionally assume 1 # 1/2. Then the assertion can be found by using
the continuity of ¢ — Cr,,(t) in the estimate above. O

By the results on classification calibrated, margin-based losses from Section
3.4, we immediately obtain a variety of DLD-calibrated losses. Furthermore,
the P-instances of Lpy,p are bounded and hence Theorem 3.27 yields

RL,P(fn) - RZ,P = RLDLD,M(fn) —0

whenever P = gu ©, p and L is classification calibrated. In addition, one can
show that for L := L, the converse implication is also true. For details, we
refer to Exercise 3.13.

Our next goal is to identify uniformly DLD-calibrated losses. The following
theorem gives a complete, though rather disappointing, solution.

Theorem 3.57 (No uniform DLD-calibration). There ezists no super-
vised loss L : Y x R — [0,00) that is uniformly Lpyp-calibrated with respect

to both {Q € Qy : Q({1}) € [0,1/2)} and {Q € Qy : Q({1}) € (1/2,3/4]}. In

particular, there exists no uniform DLD-calibrated supervised loss.

Proof. Let L: Y x R — [0,00) be a supervised loss. For 5 € [0, 1], we define

gt (n) = inf Crn(2) and g~ (n) =inf Cr ,(¢).

t<0 >0

Then the functions g™ : [0, 1] — [0,00) and g~ : [0,1] — [0, 00) can be defined
by suprema taken over affine linear functions in 1 € R, and since g% and g~
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are also finite for n € [0,1], we find by Lemma A.6.4 that ¢g* and g~ are
continuous at every 7 € [0, 1]. Moreover, we have C; , = min{g™*(n),9~ (1)}
for all n € [0, 1], and hence sz is continuous in 7). Let us first consider the case

Ta2 = g7 (1/2). To this end, we first observe that there exists a sequence
(tn) C (—00,0) with

g (1/241/n) < Coajpoa(ta) < " (2+1/n) +1/n  (3.64)

for all n. > 1. Moreover, our assumption Cj , ;5 = g7 (1/2) yields

ICr.1/241/n(tn) — 02,1/2“/”’ < ’CL,1/2+1/n(tn) —g"(1/2+1/n)|
+ gt (1/2+1/n) — g7 (1/2)]
+ ’02,1/2 - 02,1/2+1/n|

for all n > 1. By (3.64) and the continuity of g* and n — C > we hence find
B [Cp1y241/n(tn) = CL1jagasm| =0-

For Q := {Q € Qy : Q({1}) € (1/2,3/4]}, Lemma 3.55, the definition g,
and (3.64) then yield

Omax, Lop,L (€ Q) = neiéf:% g () —-C;, < }Lgfl Cra/2+1/n(tn) = CLaja41/m

=0.

Consequently, L is not uniformly Lppp-calibrated with respect to Q. Finally,
in the case C , ,, = g~ (1/2), we can analogously show that L is not uniformly

Lprp-calibrated with respect to {Q € Qy : Q({1}) € [0,1/2)}. |

The preceding theorem shows that there exists no uniformly DLD-cali-
brated, supervised loss. Now recall that Theorem 3.24 showed that uniform
calibration is necessary to establish inequalities between excess risks if es-
sentially no assumptions on the data-generating distribution are imposed.!
Together with Theorem 3.57, we consequently see that it is impossible to
find a supervised loss L : ¥ x R — [0,00) and an increasing function
4 : [0, 00] — [0, 0] such that §(0) =0, §(¢) > 0 for all € > 0, and

§(Ripwou(f)) < Rep(f)—Rip (3.65)

for all u, g, p, f, and P := gu ©, p. However, in the DLD learning sce-
nario, we actually know p and p, and hence the question remains whether for
certain fized p and p there exists a non-trivial function 0 satisfying (3.65).
Unfortunately, Steinwart (2007) showed that the answer is again no.

! Formally, the result only holds for loss functions and not template losses. However,
it is quite straightforward to see that the proof of Theorem 3.24 can be easily
modified to establish an analogous result for instances of template losses.
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3.9 Self-Calibrated Loss Functions

Given a loss L and a distribution P such that an ezact minimizer f7 p of
Rprp(-) exists, one may ask whether, and in which sense, approximate mini-
mizers f of Ry p(-) approximate J1p- For example, in binary classification,
one often wants to find a decision function f that not only has a small classi-
fication error but also estimates the conditional probability P(y = 1|z). Now
assume that we have found an f whose excess L-risk is small for a suitable
surrogate L of the classification loss (recall Section 3.4 for examples of such
surrogates). Assume further that the L-risk has a unique minimizer f1 p that,
in addition, has a one-to-one correspondence to the conditional probability.
If we have a positive answer to the question above, we can then use a suit-
able transformation of f(z) to estimate P(y = 1|z). An important example of
such a loss, namely the logistic loss for classification, is discussed in Example
3.66. Moreover, we will discuss how the pinball loss can be used to estimate
quantiles. The main goal of this section is, however, to provide some general
answers to the question above.

Let us begin by introducing some notation. To this end, let L : ¥ x R —
[0,00) be a supervised loss function for some Y C R closed. We write

Omin(L) := {Q : Q is a distribution on Y with M o(0") # 0},
Qi-min(L) = {Q € Qmin(L) : 317 o € R such that M q(07) = {tzQ}} ,

i.e., Qmin(L) contains the distributions on Y whose inner L-risks have an
exact minimizer, while Qj-in (L) contains the distributions on Y whose inner
L-risks have exactly one exact minimizer. Obviously, Q1-min(L) C Qmin(L)
holds, and for strictly convex losses L, both sets actually coincide. Moreover,
note that by Lemma 3.10 we have C] o < oo for all Q € Quin(L). For Q €
Omin(L), we now define the self-calibration loss of L by

L(Q,t) := dist(t, M1 o(01)) := inf t—t'], teR, (3.66
Q1) ist(t, Mrq(07)) = | inf | (3.66)

ie., IUJ(Q7 t) measures the distance of ¢ to the set of elements minimizing Cy, q.
The next lemma shows that the self-calibration loss is a template loss.

Lemma 3.58. Let Y C R be closed and L : Y x R — [0,00) be a supervised
loss. Then L : Quin(L) X R — [0,00) defined by (5.66) is a template loss.

Proof. Let X be a complete measurable space and P be a distribution on
X x Y with P(-]z) € Qmn(L) for all z € X. We write X := X x R and
Z := R. Furthermore, for Z = (z,t) € X and t’ € Z, we define

Wz, t') == Crp( ) t') = CLp(. 1) »
F(z) = {t" € R: h(z,1") = 0},

and @(z,t') := |t — t'|. For the P-instance Lp of L, we then have
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v

L t) = inf t—t|= inf z,t'),
p(@,?) t'eMLgl(.‘z)(m)' | t%%@)Qp(x )

and consequently we obtain the assertion by part i7i) of Lemma A.3.18. O

It is almost needless to say that the main statement of the preceding lemma
is the measurability of the instances of L. Now note that the definition of L
immediately gives CE Q= 0, and therefore we have

M) ={teR: L(Q,t) <el = {t € R: It € Mpo(0") with [t—t'| <&}

for all Q € OQuin(L) and € € [0, 00]. Moreover, we have already mentioned in
Section 3.6 that the results of Lemma 3.14 remain true for template losses. By
(3.16), the self-calibration function 5max,i,L( -,Q), which can be computed
by

5max,E,L(€7Q) = inf CL7Q(t) — C};Q (3.67)

teR
dist(t, M, q(07))>e

for all € € [0, 00], thus satisfies

5max,E,L (dist(t, MLQ(OJF)), Q) < CL,Q(t) — CZ,Q , t € R,
for all Q € Omin(L). Note that for Q € Qq-min(L) this inequality becomes
S ir ([t =110l Q) < Craq(t) = Ciq, teR,

where My, q(0%) = {t} o} Consequently, the self-calibration function indeed
quantifies how well an approximate Cr, g-minimizer ¢ approximates the exact
minimizer {7 . This motivates the following, main definition of this section.

Definition 3.59. Let L : Y x R — [0,00) be a supervised loss function and
Q C Qnin(L). We say that L is (uniformly) self-calibrated with respect to
Q if L is (uniformly) L-calibrated with respect to Q.

Fortunately, convex loss functions are always self-calibrated, as the follow-
ing lemma shows.

Lemma 3.60 (Self-calibration of convex losses). Fvery convez loss func-
tion L:Y x R — [0,00) is self-calibrated with respect t0 Qmin(L).

Proof. For a fixed distribution Q € Quin(L), we write tyin := inf M q(07)
and tmax = sup My q(07). Now the map ¢ — Cpq(t) — CZ,Q is convex,
and thus it is decreasing on (—o0, tmin] and increasing on [tmax, 00). Further-
more, the convexity shows that My o(0") is an interval and hence we find

M qle)={teR: L(Q,t) <€} = (tmin — & tmax + €), £ > 0. This gives

1)  (6,Q)= inf Cro(t)—C;
max,L,L( Q) M} () L7Q( ) L,Q
- min{CLyQ(tmin —8),Cr.0(tmax + 5)} —Ciqo (3.68)
>0,

where we used the convention Cr, q(£00) := oo. O
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It is easy to see by the results of Section 3.7 that in general convex losses
are not uniformly self-calibrated. Therefore, we usually cannot expect strong
inequalities in the sense of Theorem 3.22 for the self-calibration problem.
However, the following theorem shows that for general self-calibrated losses,
approximate risk minimizers approximate the Bayes decision functions in a
weak sense. Its consequences for convex losses are discussed in Corollary 3.62.

Theorem 3.61 (Asymptotic self-calibration). Let X be a complete mea-
surable space, L : Y x R — [0,00) be a supervised loss that is self-calibrated
with respect to some Q C Quin(L), and P be a distribution of type Q with
Rip <oo. Then, for alle >0 and p > 0, there exists a > 0 such that for
all measurable f : X — R satisfying Ry p(f) < Ry p + 0 we have

PX ({JJ e X: dlbt(f(x),ML’p(W)(OJr)) > ,0}) <eg.

Proof. For a fixed p > 0, we write 4, = {(Q,t) € Q@ x R : L(Q,t) > p}.
By Lemma 3.58, we then see that L:= 14, defines a template loss function
whose P-instance Lp is a detection loss with respect to h := 1x and A :=
{(x,t) € X x R: L(P(-|z),t) > p}. Furthermore, we have

Miq(e) = {t e R: L(Q,t) < p} = M; 4(p)
for all € € (0,1] and Q € Q, and thus we obtain
6max7E,L(57 Q) = 5maxj"L(pv Q) > Oa €€ (07 1]7 Q € Q

Since calibration functions are increasing, we then find that L is Lp-calibrated
with respect to Q. For £ > 0, Theorem 3.27 thus gives a § > 0 such that for
f:X — R with Ry p(f) <Rjp+0 we have

Px({z € X : Lp(x,f(x) > p}) =R, p(f) — R}, p <e. O

For convex losses L and distributions of Qj_nin(L)-type, we obtain the
following consequence.

Corollary 3.62. Let X be a complete measurable space, L : Y x R — [0, 00)
be a convex, supervised loss, and P be a distribution of type Q1-min(L) with
Rip < oc. Then there exists a Px-almost surely unique minimizer fi p of
Rrp, and for all sequences (fy) of measurable f,, : X — R, we have '

Rep(fn) —Rip—0 = fn— frp in probability Px.

Proof. Lemma 3.12 together with the definition of Q1-min(L) shows that there
exists a P x-almost surely unique minimizer f; p, and we thus find

v

Lp(z,t) = [t — fI p(2)], re X, teR.

Theorem 3.61 together with Lemma 3.60 then yields f,, — f} p in probability
whenever the sequence (f,,) satisfies R p(fn) — R p- O
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Let us complete this discussion by describing situations in which we can
replace the convergence in probability by a stronger notion of convergence.

Theorem 3.63 (Self-calibration inequalities). Let X be a complete mea-
surable space, L :' Y x R — [0,00) be a supervised loss that is self-calibrated
with respect to some Q C Q1-min(L), and P be a distribution of type Q such
that R}, p < oo. Moreover, assume that there exist a p € (0,00] and functions
b: X —[0,00] and § : [0,00) — [0,00) such that

Onax, £, (& P(+[7)) = b(z) 0(e), €>0,z€X,
and b=' € L,(Px). For a fized q € (0,00), we define 6 : [0,00) — [0,00) by
5(g) := 67T (£1/9) e €[0,00].

Then, for all measurable f : X — R and By == ||f — f} pl|4, we have

05, (I1f = fLplli,pyy) < N7 1||”+1 oRLp(f) =RLp)"™,
where Sg*f : [0, Bf] — [0,00] is the Fenchel-Legendre bi-conjugate of 5|[073f].

Proof. We write () := §(¢'/%) for £ > 0, and L := éq. Then L is a template
loss by Lemma 3.58, and since M; o(g) = {t € R: L(Q,1) < &}, we find

Oma,,0(5:Q) = O£ 2(69,Q) > b(x)d(e) £>0,Q€0Q.

Moreover, we have SriT = 8, and hence Theorem 3.25 applied to L and §
yields the assertion. O

Note that if the function ¢ is of the form d(¢) = ¢ for some r > 0 and we

consider ¢ := +1’ then we obtain §(g) = . In this case, Theorem 3.63 yields
—fi < Y (R — Ry )T 3.69
1 = Fipllmny < 1670 (Rep(h) = Rip) . (3.69)

Moreover, if in this case we can only ensure b=! € L, o (Px), then the norm
[-llz,(px) can be replaced by the Lorentz-norm ||-[|z, _(p) defined in Section
A5 5 For more details, we refer to Exercise 3.14.

The rest of this section applies the theory developed to some examples of
practical importance. We begin with the problem of estimating the conditional
probability P(y = 1|x) in classification, which has already been mentioned in
the introduction of this section and which will be revisited in Section 8.5.
To this end, we assume Y := {—1,1} in the following. Our first goal is to
characterize situations when Q,in(L) = Qy for margin-based losses L.

Lemma 3.64 (Minimizers of margin-based losses). Let L be a convez,
margin-based loss represented by ¢ : R — [0,00). Then we have Quin(L) =
Qy if and only if p has a global minimum.
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Proof. If ¢ does not have a minimum, Cr, 1(-) = ¢ does not have a minimum,
i.e., M 1(07) = 0. Conversely, if ¢ has a minimum, the same argument shows
that My, o(07) = =My 1(0T) # 0. Therefore, let us fix an n € (0,1). If ¢ is
constant, there is nothing to prove and hence we additionally assume that ¢ is
not constant. The convexity of ¢ then shows that we have lim;_,« ¢(t) = oo or
lim;—,_ o ¢(t) = co. From this we immediately find Cr, ,,(t) — oo for t — +oo,
and since Cr,,( - ) is continuous and convex, it thus has a global minimum. 0O

Together with Lemma 3.60, the preceding lemma immediately gives the
following corollary that will be important when considering sparseness prop-
erties of support vector machines for classification in Section 8.5.

Corollary 3.65 (Self-calibration of margin-based losses). Let L be a
convex, margin-based loss whose representing function ¢ : R — [0,00) has a
global minimum. Then L is self-calibrated with respect to Qy .

With the help of Corollary 3.65, we see that the least squares loss and
the (squared) hinge loss are self-calibrated with respect to Qy, whereas the
logistic loss is not. Furthermore, a simple calculation using Example 3.6 shows
that the least squares loss is actually uniformly self-calibrated with respect
to Qy and that the corresponding uniform self-calibration function is

2
(smax’zlsquaresuLLS (E’ QY) =&, e>0.

However, neither the truncated least squares loss nor the hinge loss are uni-
formly self-calibrated with respect to Qy, as we discuss in Exercise 3.15.

Let us now return to the problem of estimating the conditional probability
n(z) = Py = 1|z), + € X. If we have a margin-based loss function L for
which there is a one-to-one transformation between the sets of minimizers
My ,(0%) and 7, then it seems natural to use self-calibration properties of
L to investigate whether suitably transformed approximate L-risk minimizers
approximate 7. This approach is discussed in the following example.

Ezample 3.66. Exercise 3.2 shows that the logistic loss for classification
L1ogist satisfies

MLc»logist;n(OJr) = {111( 77 )} ) 77 E (07 1)'
L=
In other words, if ¢; denotes the element contained in My_, ... »(0"), then
we have n = H_%tn Consequently, if ¢ approximately minimizes Cr,_,,;...n( "),
e

then it is close to ¢ by Lemma 3.60 and hence # can serve as an estimate
of n. However, investigating the quality of this estimate by the self-calibration
function of L. jogist causes some technical problems since Le.1ogist is only self-
calibrated with respect to the distributions Q € Qy with Q({1}) & {0,1}.
Consequently, we now assess the quality of the estimate above directly. To

this end, we introduce a new loss L : Qy x R — [0, 00), which we define by
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1

W, UE[O,l],tER.

LWJ%:h—

Then L is a template loss that measures the distance between n and its esti-
mate Tle*t Let us compute the calibration function of (L, Le.1ogist). To this
end, we first observe that C; , = 0 for all 5 € [0,1], and hence for € > 0 an
elementary calculation shows that

Mp,(e) ={teR: L(n,t) <e}

:{teR:mcn(ﬂ+<t<h1n+€}
g

L—n+ (1—n—e)t
where (z)4 := max{0,z} for z € R and In 0 := —o0. For C,(c0) := C,(—00) :=
0o and Cy(t) == Cr. g (t) = Cf_ ... > Lemma 3.15 thus shows that

bt =6, (-n(S20) ) (m(755), )}

From this we can conclude that dmax, 1, L iopie (8:7) = Omax,L, Lo togise (€2 1= 1)
for all e > 0, n € [0, 1]. Moreover, using the formulas of Exercise 3.2, we find

1— .
cnon<"—ﬁ') > _ {nmn"g+(1—nﬂn1n16 ife<n
+

L=n+e o0 otherwise
and
e(-m(12%)) = {nln Hr-mh o<1y
nte /e o0 otherwise.
In order to compare these expressions, let us write g(n) := nln nze —nln nZs

for a fixed € € (0,1/2) and all n with ¢ <7 <1 —e. Then we have

1—n 1—n
- =1-nh—"M" —~(1-p)ln——"_
g(1—mn)=( n)nlfnfg ( 7ﬂn17n+€
and 2 2 +
’I’] &
() = (n* —&*)In - 2en . 9y (2)
772 _ 52 : 772 _ 52 :

Now observe that g,(0) = 0 and g; (¢) < 0 for all € > 0, and hence we obtain
g'(n) < 0. Consequently, we have g(n) > g(1 — ), or in other words

L—n L—n
l—-n)ln —— —_
n—e+( n)nl—n+e 1—n—c¢

n
In > npln——+(1—n)ln
7 = nin o= )

if and only if < . Therefore, for n € [0,1/2], we find

nlnnie—i—(l—n)lnli;is ife<l—n

00 otherwise.

5max,L,Lc_1og;St (87 77) = {
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In order to investigate whether Lc.iogist is L-calibrated with respect to Qy,
let us now find a simple lower bound of the calibration function above. To
this end, let ho(n) := nln L for n € [0,1/2] and & > 0. Then its derivative
satisfies

(0 O U Y R s )
n+e mn+e n+e n+e n+e mn+e

n+e

and hence we find 7 ln

> 1
5 -2
we obtain (1 — 7)In 1= 777’6 >
estimates together then yield

for all n € [0,1/2], € > 0. Analogously,

In 1+25
In = for n € [0,1/2], ¢ € [0,1 — 7). Both

1 1 1
6max i s > -1 1 > 2
Lot (&) 2 5 Nt >«

for all n € [0,1/2] and all ¢ € [0,1 — 7). Consequently, Lc.iogist is uni-
formly L-calibrated with respect to Qy, and the calibration function satisfies
Omax (g, Qy) > €2 for all € > 0. For the loss function L2, we thus obtain

1/2
6maX7L27chlogist (g, QY) = 6maXaL7Lc—logist (5 / ) QY) >e, e 2 0.

By Theorem 3.22, we then see that for all measurable f: X — R we have

/ ’" l—l-e 14e /@ “dPx(a) < Riciogion,(F) = R o P

i.e., we can assess the quality of the estimate l-ﬁ—e%ﬂz) in terms of || - |l2. <

Our last goal is to investigate the self-calibration properties of the 7-pinball
loss Ly pin. Proposition 3.9 showed that the minimizer of this convex super-
vised loss was the T-quantile, and consequently L, i, can be used to estimate
the conditional 7-quantile. However, so far we only have a rather weak justi-
fication in the sense of Theorem 3.61. The following example discusses some
conditions on the distribution P, which provides a stronger justification.

Example 3.67. For fixed 7 € (0,1), let L := L, in be the T-pinball loss
defined in Example 2.43. Furthermore, let Q be a distribution on R such that
|Q|1 < 0o and let t* be a T-quantile of Q, i.e., we simultaneously have

Q((—o0,t*]) > 7 and Q([t*,00) >1—7. (3.70)

If ¢* is the only T-quantile of Q, i.e., t* is uniquely defined by (3.70), then the
formulas of Proposition 3.9 show

Omax, 1,1 (8, Q) —min{6q++/0 Q((t*,t"+s)) ds, sq_+/0 Q((t*—s,t) ds}

for all € > 0, where ¢4 and ¢_ are the real numbers found in Proposition 3.9.
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Let us now denote the set of all distributions Q for which the inequalities

in (3.70) strictly hold by ©>°. For Q € Q2% we then have min{q,,q_} > 0

and hence t* is uniquely determined. Moreover, the self-calibration function
satisfies

Omax.i.1(E: Q) = cqe, >0, (3.71)

where cq = min{q;,¢_}. For a fixed distribution P of Q7%-type, we now
define the function b : X — [0,00) by b(x) := cp(.|s), © € X, where cp(.|s)
denotes the constant in (3.71), which belongs to the conditional distribution
P(-|z). If we have b=! € L,(Px), then Theorem 3.63, see also (3.69), shows

1f = fEple, ey < 107z, (Rep(f) — RLp) (3.72)

for all measurable functions f : X — R, where f:’P(x) denotes the T-quantile
of P(-[z) and ¢ := ;7.

Although (3.72) provides a nice relationship between the excess pinball
risk and our goal of estimating the conditional quantile function fp, the
distributions P of Q>%-type seem a bit unrealistic for practical situations.
Therefore, let us finally consider a more realistic scenario. To this end, we fix
an o > 0 and say that a distribution Q with |Q|; < oo is of type Q% if there
exists a 7-quantile t* of Q and a constant cq > 0 such that

Q((t*,t* +5)) > cqs and Q((t* —s,t")) > cqs  (3.73)

for all s € [0, ). Obviously, for such distributions, the 7-quantile t* is uniquely
determined. Moreover, if Q has a density hq with respect to the Lebesgue
measure and this density satisfies hq(t) > cq for all t € [t* — a,t* + a], then
Q is of type Q2. Let us now define § : [0, 00) — [0, 00) by

€%/2 ife €[0,a]
i(e) := ) )
ac—a?/2  ife>a.
Then a simple calculation yields
5max,i,L(€’ Q) > CQ(S(F:) s e >0,

for all Q € QF, where c¢q is the constant satisfying (3.73). For fixed p € (0, 00],
we further define § : [0,00) — [0,00) by d(¢) := (5#(5%1), e > 0. In view
of Theorem 3.63, we then need to find a convex function é : [0, 00) — [0, 00)
such that § < §. To this end, we define

2 .
5e) = sPe y ?f e € [0, spap)
ap(e — sbT2a,)  if e > spa,,

where a, := a?/P+1) and s, := 27+ An easy calculation shows that § :
[0,00) — [0,00) is continuously differentiable with non-decreasing derivative.
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Consequently, § is convex. Moreover, since (6%1 —a/ 2)_ﬁ6% > 1 we have
5 < ¢" and hence we find 5 <46 by the fundamental theorem of calculus.

For a distribution P of Q%-type, we now define the function b : X —
[0,00) by b(z) := cp(.|2), © € X, where cp(.|,) is determined by (3.73). If b
satisfies b1 € L,(Px) for some p € (0,c], Theorem 3.63 together with our
considerations above shows

* — * 1/2
I = Frpllaes < V21V Sp ) (Rop(f) = Rip) (3.74)

for ¢ := 1% and all f: X — R satisfying R p(f) - R} p < . g

3.10 Further Reading and Advanced Topics

The idea of using a surrogate loss developed quite independently in statistics
and machine learning. Indeed, in statistics, its development was mainly mo-
tivated by the search for more robust estimation methods (see, e.g., Huber,
1964), in particular for regression problems. On the other hand, in machine
learning, surrogate losses were mainly considered as a trick to find faster clas-
sification algorithms. However, only very recently has the relation between
the risks of these surrogates and the classification risk been investigated. The
first observations on the set of minimizers were made by Lin (2002b). Later
he (see Lin, 2004, Theorem 3.1 and Lemma 4.1) established a result some-
what similar to Theorem 3.36 and a bound on the excess classification risk
that generalizes the widely known Theorem 2.2 from Devroye et al. (1996).
Independently of Lin, Zhang (2004b) established the first general inequalities
between the excess classification risk and the excess risks of margin-based sur-
rogate losses. Furthermore, he mentioned that some applications also require
estimating the conditional probability and concludes that some margin-based
losses, including the hinge loss, are not suited for this task. Another indepen-
dent result, established by Steinwart (2005), gives a sufficient condition for
continuous, supervised losses L that ensures an asymptotic relation (in the
sense of Question 3.1) between the excess classification risk and the excess L-
risk. However, the big breakthrough in understanding surrogate margin-based
losses was then made by Bartlett et al. (2006). In fact, all the main results
on classification calibrated, margin-based losses presented in Section 3.4 were
shown by these authors, though condition (3.40) was already investigated by
Mammen and Tsybakov (1999), and Tsybakov (2004) in the context of den-
sity level detection. We refer to Steinwart et al. (2005) and Steinwart (2007),
who translated their findings into the language of calibration inequalities.
Prior to Steinwart (2007), the only result for weighted classification (also
known as cost-sensitive classification) that deals with calibration issues was
presented by Lin et al. (2002), though weighted classification itself had been
considered earlier by, e.g., Elkan (2001). The presentation in Section 3.5 closely
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follows Steinwart’s work. Furthermore, there are recent results on surrogates
for multi-class classification that we have not presented here due to lack of
space. For more information, we refer to Lee et al. (2004), Zhang (2004a),
Tewari and Bartlett (2005), and the references therein.

Proposition 3.44, which shows the unique role of the least squares loss for
estimating the regression function, was independently found by Caponnetto
(2005) and Steinwart (2007). Besides the basic notions and examples, the rest
of Section 3.7 is based on the work of Steinwart (2007). Finally, it is worth
mentioning that the approach in Section 3.7 substantially differs from the
traditional maximum-likelihood motivation for the least squares loss already
used by Gauss. We refer to Schélkopf and Smola (2002) for a brief introduction
to the maximum-likelihood motivation and to Kardaun et al. (2003) for a
discussion on this motivation.

The asymptotic theory on surrogate losses developed in Section 3.2 is a
generalization of the results of Steinwart (2005). Moreover, the inequalities for
general surrogate losses established in Section 3.3 were deeply inspired by the
work of Bartlett et al. (2006). However, the key results of this section, namely
Theorem 3.22 and Theorem 3.25, can also be derived from Theorem 24 of
Zhang (2004a). Finally, a self-calibration result for classification calibrated
surrogates similar to Theorem 3.61 was already shown by Steinwart (2003).
In the presentation of all of these results, we closely followed Steinwart (2007).

3.11 Summary

In this chapter, we developed a general theory that allows us to a) identify
suitable surrogate loss functions and b) relate the excess risks of such surrogate
losses with the excess risks of the original (target) loss function. The main
concept of this theory was the calibration function, which compares the inner
excess risks of the losses involved. With the help of the calibration function,
we then introduced the notions of calibration and uniform calibration, which
(essentially) characterize how the excess risks involved can be compared. We
then applied the general theory to some important learning scenarios:

e Classification. Here we showed that, for margin-based losses, calibration
and uniform calibration are equivalent concepts. Furthermore, we devel-
oped a way to establish inequalities between the excess classification risk
and the excess risk of margin-based losses. We then established an easy
test to check whether a given convexr, margin-based loss function is clas-
sification calibrated. Finally, we further simplified the computation of the
uniform calibration function for such losses.

e Weighted classification. We showed that a simple weighting method for
classification calibrated, margin-based loss functions produces loss func-
tions that are calibrated to the weighted classification scenario. With the
help of this weighting method, we then translated the major results on
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unweighted classification calibration into analogous results on weighted
classification calibration.

e Regression. Here we first showed that the least squares loss is essen-
tially the only distance-based loss that can be used to find the regression
function if one only knows that the average second moment of the noise
distributions is finite. For some large classes of symmetric noise distrib-
utions, we then characterized (uniformly) least squares calibrated losses.
Here it turned out that the convexity and related stronger notions play
a crucial role. In particular, we showed that for symmetric, unbounded
noise every uniformly least squares calibrated and symmetric loss must
grow at least as fast as the least squares loss, and consequently one cannot
avoid assuming the finiteness of the second moments for such distributions
and losses. Furthermore, we have seen that for slower-growing losses, such
as the absolute distance loss, the latter requirement can be replaced by
non-parametric assumptions on the concentration around the mean.

e Density level detection. We first showed that the DLD learning sce-
nario can be treated as a supervised learning problem that is similar to
a classification problem. It then turned out that every classification cal-
ibrated loss is DLD-calibrated. However, unlike for classification, there
exists no uniformly DLD-calibrated supervised loss, and consequently it is
impossible to establish inequalities between the DLD-risk and excess risks
of supervised surrogates without further assumptions on the density.

e Self-calibration. It is of both theoretical and practical interest whether
approximate risk minimizers approximate the true risk minimizer. In Sec-
tion 3.9, we developed a general framework to investigate this issue. In
particular, we showed that convex losses always guarantee a weak posi-
tive result. Finally, we applied the general theory to the logistic loss for
classification and the pinball loss.

The theory developed and its consequences for the learning scenarios above
will play an important role when we investigate the corresponding kernel-
based learning procedures in later chapters. However, it is worth mentioning
that the results of this chapter are algorithm independent, i.e., they can be
used for any algorithm whose surrogate risk performance is understood.

3.12 Exercises

3.1. Inner risks of the squared hinge loss (%)

Recall that in Example 2.28 we defined the squared hinge loss by L(y,t) :=
(max{0,1—yt})?, y = £1, t € R. Using the definitions in (3.8), show that for
n € [0,1] we have C; , = 4n(1 —n) and

(=00, —1] ifn=0
Mp,(0t)y=<¢{2n—1} ifo<n<1
[1,00) ifn=1.
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Moreover, show that, for n € [1/2,1] and ¢ € R, the excess inner risk can be
computed by

an® — 3n — 2nt + nt? ift<—1
Cry(t) =Cp, = (t—2n+1)? if t € [~1,1]
(1—n)(Q+2t+t2—4y) ift>1.

3.2. Logistic loss for classification(x)

Recall that in Example 2.29 we defined the logistic loss for classification by
L(y,t) := In(1 +exp(—yt)), y = +1, t € R. Show the following formulas using
the notations in (3.8) and the convention 01n0 := 0:

Cz,n =" ln(n) ( )1 ( )7
My, (0%) = {In(n) —In(1—n)}, if n#0,1,
Crn(t)—Cr, =nln(n(l+e "))+ (1 —n)In((1—n)(1+e)).

3.3. Calibration function (%)

Let Liay : X XY XR — [0,00) and Lgyy : X XY xR — [0, 00) be loss functions,
Q be a distribution on Y, and z € X with C} o, <ooand Cj_ o, < oo
Assume that ¢ : [0, 00] — [0, 00] is an increasing function with

6<CLtar7Qyz (t) - Cztar,Q,w) < CL:;uryQyw (t) - sz,Q,z ’ teR.

Show that §(g) < dmax(e, Q,x) for all € € [0, x].
Hint: Assume the converse and use Lemma 3.14.

3.4. Characterization of calibration (%*x)
Prove Corollary 3.19.

Hint for ii) = i): Assume that Lg,, is not Li,,-calibrated to construct a
“simple” distribution P that violates i¢). Furthermore, use that the condition
Rzm,P < oo is automatically satisfied since Ly, is bounded.

3.5. Uniform calibration function (xx)
Let Liay : X XY xR — [0,00) and Ly, : X XY xR — [0, 00) be loss functions
and Q be a set of distributions on Y. Show that for all € € [0, o] we have

Smax (g, Q) =max{6 > 0: Mr_, qu(6) C My, qu(€) forall QeQ, zeX}.

3.6. Uniformly calibrated supervised losses (xxxx)

Let Liay : Y xR — [0,00) and Ly, : Y x R — [0,00) be supervised loss
functions, X be a complete measurable space, and p be a probability measure
on X. Assume that there exist mutually disjoint measurable subsets A, C X
with u(A,) > 0 for all n € IN. Finally, let Q be a set of distributions on Y
such that C} o <ocand C}_ o <ooforall Q€ Q. Show that there exists
a distribution P on X x Y of type Q such that Px = p and
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Omax(g,Q) = %1; Omax (e, P(-|x), 2), e € [0, 00]. (3.75)

Hint: First show that U := {&¢ > 0 : dpax(-, Q) not continuous at £} is
at most countable. Then show equation (3.75) for an enumeration (g,,)nen of
UU{reQ:r >0} Use this to conclude the general case.

3.7. Characterization of calibration for detection losses (xx*)
Prove Theorem 3.27 using the same idea as in Exercise 3.4.

3.8. Some more margin-based losses (x*)

Determine the calibration function with respect to the classification loss for
the exponential loss given by (t) := exp(—t), t € R, and the sigmoid loss
given by ¢(t) := 1 —tanht, t € R. Is the latter classification calibrated?

3.9. Inequalities for unweighted classification (xx)

Use Theorems 3.34 and 3.22 to establish inequalities between the excess clas-
sification risk and the excess L-risk for L being the least squares loss, the
hinge loss, the squared hinge loss, and the logistic loss for classification. How
do these inequalities change when we additionally assume (3.40)7

3.10. Another weighted classification scenario (xx*)
Let h : X — [0,00) be measurable. For the loss L : X x Y x R — [0,00)
defined by L(x,y,t) := h(x)Leass(y, t), perform the following tasks:

i) Investigate which margin-based losses are L-calibrated.
1) When are L-calibrated margin-based losses uniformly L-calibrated?
i11) Given a margin-based loss represented by some ¢, determine the calibra-
tion function for the loss (z,y,t) — h(x)p(yt). Compare the results with
those for the unweighted version.
iv) Find some practical situations in which L may be of interest.

3.11. Asymptotic relation between excess risks revisited (¥x*)
Show that in general a strictly positive calibration function is not sufficient
for the implication (3.18).

Hint: Assume that Lig is the target loss and that L, gis; is the surrogate
loss for some p € [1,2). Furthermore, consider the distribution P on [0,1) x R
with Px being the uniform distribution and P(-|z) = 00} for all z € [0, 1].

3.12. Modulus of convexity for p-th power distance loss (xx*)
For p € (1,2), define ¢ : R — [0,00) by 9 (t) := |¢|?, t € R. Show for all B > 0
and ¢ € [0, B] that

p

—2. 2
72@_1)23” e”.

-1
Z%BP_QEQ < 61&\[75,5](2‘6) <

Hint: First show a s~ < s — (s=1)* < s forall 0 < a < 1and all
s > 1. Use this to estimate ¢’ (t) — ¢’ (t — ¢), and then apply Lemma A.6.19.
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3.13. Reverse calibration for DLD (%)

Let p be a probability measure on a measurable space X and Y := {—1,1}.
Furthermore, let p > 0 and g : X — [0,00) be a measurable function with
l9llz,(uy = 1. Then, for P := gu ©, p and all sequences (f,) of measurable
functions f, : X — R, we have

Ripip.p(fn) =0 = RicaeeP(fn) = R b+

Hint: Compute the calibration function 0,y 1. 7., (+, +) using Lemma
3.32. Then observe that u({z € X : n(x) = 1}) = 0 and use Corollary 3.19.

3.14. Another inequality for self-calibrated losses (xxx)

Let L : Y xR — [0, 00) be a supervised loss that is self-calibrated with respect
to some @ C Quin(L) and P be a distribution on X x Y that is of type Q.
Assume further that there exist p > 0, ¢ > 0, and a function b : X — [0, o]
with b1 € L, »(Px) and

) (&, P(-|z),x) > e?b(x), e>0,zeX.

max,Lp,L

Show that for all measurable f: X — R we have

16~y (Rep(f) — Ry p)\ 751
P '

Px({z € X: Lo(e f(z)) > p}) < 2 (

If in addition Rz p(-) has an almost surely unique minimizer /1 p» interpret
the result in terms of Lorentz norms and compare it with Theorem 3.63.

Hint: Use the set A, from the proof of Theorem 3.61 and apply Theorem
3.28.

3.15. Self-calibration of the (squared) hinge loss (H*x*)
i) Show that the self-calibration function of the hinge loss is given by

emin{n,1—n,2n—1} ifn+#0,1/2,1
5maX’Lhinge7Lhinge (e,m) =q¢ if n € {0,1}
00 ifn=1/2

for all € € (0,2], n € [0,1]. Is the hinge loss uniformly self-calibrated?
it) Show that, for all distributions P on X x Y and all p € (0,00) and £ > 0,
there exists a § > 0 such that for all measurable f : X — R we have

R P(F) = Ripoor < 0 = |2 Luingep(@ f(@)L, ) < &

where the clipping is at +£1. Compare this with Theorem 3.61. Find conditions
on P such that Theorem 3.25 gives inequalities for clipped functions.
iii) Use Exercise 3.1 and Equation (3.68) to show that the squared hinge loss
is mot uniformly self-calibrated.

Hint: For the first implication in %) use Theorem 3.17.





