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Surrogate Loss Functions (*)

Overview. In many cases, the loss describing a learning problem is
not suitable when designing a learning algorithm. A common approach
to resolve this issue is to use a surrogate loss in the algorithm design.
For example, we saw in the introduction that SVMs use the convex
hinge loss instead of the discontinuous classification loss. The goal of
this chapter is to systematically develop a theory that makes it possible
to identify suitable surrogate losses for general learning problems.

Prerequisites. Besides Chapter 2 and Section A.3.3, only basic
mathematical knowledge is required.

Usage. Sections 3.1 – 3.3 and 3.6 provide the theoretical framework
required for Sections 3.4, 3.5, and 3.7 – 3.9, which deal with surro-
gate losses for common learning scenarios. These examples are im-
portant but not essential for classification, regression, and robustness,
discussed in Chapters 8, 9, and 10, respectively. On the other hand,
most of the material in this chapter is of general interest for machine
learning and hence relatively independent of the rest of this book.

In Chapter 2, we introduced some important learning scenarios and their cor-
responding loss functions. One way to design learning algorithms for these
learning scenarios is to use a straightforward empirical risk minimization
(ERM) ansatz based on the corresponding loss function. However, this ap-
proach may often be flawed, as the following examples illustrate:

• ERM optimization problems based on the classification loss are usually
combinatorial problems, and even solving these problems approximately
is often NP-hard.

• The least squares loss is known to be rather sensitive to outliers, and hence
for certain data sets a (regularized) ERM approach based on this loss may
fail, as we will see in Chapter 10.

• For some unsupervised learning scenarios, including the DLD scenario, we
do not know the associated loss function since it depends on the unknown
density.

These examples demonstrate that in many cases the loss function describing
the learning problem is not suitable for a (regularized) ERM ansatz. Now recall
that in the SVM approach discussed in the introduction one of the main ideas
was to use the hinge loss function as a surrogate for the classification loss, and



50 3 Surrogate Loss Functions (*)

consequently it is tempting to try surrogate losses in other learning scenarios,
too. However, it is not hard to imagine that, given a target loss, not every loss
function is a good surrogate, and hence we need some guidance for choosing
a suitable surrogate loss.

Therefore, let us now describe what properties we do expect from good
surrogate losses. To this end let, Ltar be a target loss that describes our
learning goal and Lsur be a surrogate loss. Furthermore, assume that we
have a learning method A, e.g., a regularized Lsur-ERM approach, that as-
ymptotically learns the surrogate learning problem defined by Lsur, i.e.,

lim
|D|→∞

RLsur,P(fD) = R∗
Lsur,P (3.1)

holds in probability, where fD is the decision function the method A produces
for the training set D of length |D|. However, since our learning goal is defined
by Ltar, we are actually interested in Ltar-consistency of A, i.e., in

lim
|D|→∞

RLtar,P(fD) = R∗
Ltar,P . (3.2)

Obviously, we obtain the latter if the convergence in (3.1) implies the conver-
gence in (3.2). This leads to the first question we will address in this chapter.

Question 3.1. Given a target loss Ltar, which surrogate losses Lsur ensure
the implication

lim
n→∞

RLsur,P(fn) = R∗
Lsur,P =⇒ lim

n→∞
RLtar,P(fn) = R∗

Ltar,P (3.3)

for all sequences (fn) of measurable functions fn : X → R ?

Question 3.1 is of purely asymptotic nature, i.e., it does consider any con-
vergence rate in (3.1) or (3.2). Consequently, the surrogate losses that we find
by answering Question 3.1 are a reasonable choice when dealing with consis-
tency but may be less suitable when we wish to establish convergence rates
for (3.2). This leads to the second question we will address.

Question 3.2. Given a target loss Ltar, which surrogate losses Lsur allow us
to deduce convergence rates for the right-hand side of (3.3) from convergence
rates on the left-hand side of (3.3)?

In particular, does there exist an increasing function Υ : [0,∞) → [0,∞)
that is continuous at 0 with Υ (0) = 0 such that, for all measurable f : X → R,
we have

RLtar,P(f)−R∗
Ltar,P ≤ Υ

(
RLsur,P(f)−R∗

Lsur,P

)
?

Recall that we have already seen an example of such an inequality in Sec-
tion 2.3, namely Zhang’s inequality, which relates the excess classification risk
to the excess hinge risk. In this chapter, we will systematically generalize
the ideas used in the proof of that inequality to develop a general theory on
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surrogate losses. The main results in this direction, including answers to the
questions above, can be found in Sections 3.2 and 3.3. Furthermore, these
general results will be applied to standard learning scenarios such as classi-
fication, regression, and density level detection in Sections 3.4, 3.5, 3.7, and
3.8.

3.1 Inner Risks and the Calibration Function

In order to address Questions 3.1 and 3.2, we need some tools and notions that
will be introduced in this section. To this end let, us first recall that, given
a loss function L and a distribution P on X × Y , the L-risk of a measurable
function f : X → R is given by

RL,P(f) =
∫

X

∫
Y

L
(
x, y, f(x)

)
dP(y|x) dPX(x). (3.4)

Now, motivated by the calculations made in the proof of Zhang’s inequality,
the basic idea of our approach is to treat the inner and outer integrals sepa-
rately. Besides some technical advantages, it will turn out that this approach
has the important benefit of making our analysis rather independent of the
specific distribution P, which, from the machine learning point of view, is
unknown to us.

Let us begin with some fundamental definitions that will be used through-
out this chapter.

Definition 3.3. Let L : X×Y ×R→ [0,∞) be a loss and Q be a distribution
on Y . We define the inner L-risks of Q by

CL,Q,x(t) :=
∫

Y

L(x, y, t) dQ(y) , x ∈ X, t ∈ R .

Furthermore, the minimal inner L-risks are denoted by

C∗L,Q,x := inf
t∈R
CL,Q,x(t) , x ∈ X.

Finally, if L is a supervised loss, we usually drop the subscript x in these
notations, and for unsupervised losses we analogously omit the subscript Q.

Note that by (3.4) and the definition of the inner risks, we immediately
obtain

RL,P(f) =
∫

X

CL,P( · |x),x

(
f(x)

)
dPX(x) . (3.5)

Our first goal is to establish the same relation between the minimal inner risks
C∗L,P( · |x),x, x ∈ X, and the Bayes risk R∗

L,P. To this end, we have to recall
the notion of a complete measurable space given after Lemma A.3.3.
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Lemma 3.4 (Computation of Bayes risks). Let X be a complete measur-
able space, L : X × Y × R → [0,∞) be a loss, and P be a distribution on
X × Y . Then x �→ C∗L,P( · |x),x is measurable and we have

R∗
L,P =

∫
X

C∗L,P( · |x),x dPX(x) . (3.6)

Proof. Let us define ϕ : X ×R→ [0,∞] by

ϕ(x, t) := CL,P( · |x),x(t) , x ∈ X, t ∈ R.

Then ϕ is measurable by the measurability statement in Tonelli’s theorem, and
hence the first assertion follows from iii) of Lemma A.3.18 using F (x) := R,
x ∈ X. Consequently, the integral on the right-hand side of (3.6) exists, and
it is easy to see that it satisfies

R∗
L,P = inf

f∈L0(X)

∫
X

CL,P( · |x),x(f(x)) dPX(x) ≥
∫

X

C∗L,P( · |x),x dPX(x) .

On the other hand, given n ≥ 1, the second part of iii) in Lemma A.3.18
yields a measurable function fn : X → R with

CL,P( · |x),x(fn(x)) ≤ C∗L,P( · |x),x +
1
n
, x ∈ X, (3.7)

and hence we obtain

R∗
L,P ≤ RL,P(fn) ≤

∫
X

C∗L,P( · |x),x dPX(x) +
1
n
.

Letting n→∞ then yields the assertion. ��

Lemma 3.4 shows that the Bayes risk R∗
L,P can be achieved by minimizing

the inner risks CL,P( · |x),x( · ), x ∈ X, which in general will be easier than
a direct minimization of RL,P( · ). Now assume that R∗

L,P < ∞. Then the
excess risk RL,P(f)−R∗

L,P is defined and can be computed by

RL,P(f)−R∗
L,P =

∫
X

CL,P( · |x),x(f(x))− C∗L,P( · |x),x dPX(x)

for all measurable f : X → R. Consequently, we can split the analysis of the
excess risk into:

i) the analysis of the inner excess risks CL,P( · |x),x( · )−C∗L,P( · |x),x, x ∈ X;
ii) the investigation of the integration with respect to PX .

The benefit of this approach is that the analysis in i) only depends on P via
the conditional distributions P( · |x), and hence we can consider the excess
inner risks CL,Q,x( · )−C∗L,Q,x for suitable classes of distributions Q on Y as a
template for CL,P( · |x),x( · )−C∗L,P( · |x),x. This leads to the following definition.
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Definition 3.5. Let Q be a set of distributions on Y . We say that a distrib-
ution P on X × Y is of type Q if P( · |x) ∈ Q for PX-almost all x ∈ X.

In view of Questions 3.1 and 3.2, we are mainly interested in functions
f : X → R that almost minimize the risk under consideration. Following the
idea of splitting the analysis into the steps i) and ii), we therefore write

ML,Q,x(ε) :=
{
t ∈ R : CL,Q,x(t) < C∗L,Q,x + ε

}
, ε ∈ [0,∞],

for the sets containing the ε-approximate minimizers of CL,Q,x( · ). More-
over, the set of exact minimizers is denoted by

ML,Q,x(0+) :=
⋂
ε>0

ML,Q,x(ε) .

Again, for supervised and unsupervised losses, we usually omit the subscripts
x and Q in the preceding definitions, respectively.

Before we investigate properties of the concepts above let us first illustrate
these definitions with some examples. We begin with some margin-based losses
introduced in Section 2.3. To this end, observe that any distribution Q on
Y := {−1, 1} can be uniquely described by an η ∈ [0, 1] using the identification
η = Q({1}). For a supervised loss L : Y ×R→ [0,∞), we thus use the notation

CL,η(t) := CL,Q(t) , t ∈ R ,
C∗L,η := C∗L,Q ,

(3.8)

as well as ML,η(0+) :=ML,Q(0+) and ML,η(ε) :=ML,Q(ε) for ε ∈ [0,∞].

Example 3.6. Let L be the least squares loss defined in Example 2.26. For
t ∈ R and η ∈ [0, 1], a simple calculation then shows

CL,η(t) = η(1− t)2 + (1− η)(1 + t)2 = 1 + 2t+ t2 − 4ηt ,

and hence elementary calculus givesML,η(0+) = {2η − 1}, C∗L,η = 4η(1− η),
and CL,η(t)− C∗L,η = (t− 2η + 1)2 for all t ∈ R and η ∈ [0, 1]. �

Example 3.7. Recall that in Example 2.27 we defined the hinge loss by
L(y, t) := max{0, 1 − yt}, y = ±1, t ∈ R. Now, for η ∈ [0, 1] and t ∈ R,
a simple calculation shows

CL,η(t) =

⎧⎪⎨
⎪⎩
η(1− t) if t ≤ −1
1 + t(1− 2η) if t ∈ [−1, 1]
(1− η)(1 + t) if t ≥ 1.

For η ∈ [1/2, 1], we thus have

ML,η(0+) =

⎧⎪⎨
⎪⎩

[−1, 1] if η = 1
2

{1} if 1
2 < η < 1

[1,∞) if η = 1 ,
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Fig. 3.1. The representing functions ϕ for some important margin-based loss func-
tions L (top row) and their minimizing sets ML,η(0+), η ∈ [0, 1] (bottom row). For
some losses and values of η, these sets are not singletons. This situation is displayed
by vertical lines. Moreover, the arrows at the ends of some of these vertical lines
indicate that the corresponding set is unbounded in the direction of the arrow.

C∗L,η = 2(1− η), and

CL,η(t)− C∗L,η =

⎧⎪⎨
⎪⎩

3η − 2− ηt if t ≤ −1
(1− t)(2η − 1) if t ∈ [−1, 1]
(t− 1)(1− η) if t ≥ 1.

In addition, similar formulas hold for η ∈ [0, 1/2] by symmetry. �

Both margin-based loss functions discussed above will serve us as surro-
gates for the classification loss. Therefore, let us now consider the inner risks
and the set of minimizers for the standard classification loss itself.

Example 3.8. Recall that the standard binary classification loss is defined
by L(y, t) := 1(−∞,0]

(
y sign t

)
, y ∈ Y , t ∈ R. For this loss, the inner risk is

given by
CL,η(t) = η1(−∞,0)(t) + (1− η)1[0,∞)(t)

for all η ∈ [0, 1] and t ∈ R. From this we easily conclude C∗L,η = min{η, 1−η},
which in turn yields
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CL,η(t)− C∗L,η = |2η − 1| · 1(−∞,0]

(
(2η − 1) sign t

)
(3.9)

for all η ∈ [0, 1] and t ∈ R. Considering the cases ε > |2η− 1| and ε ≤ |2η− 1|
separately, we thus find

ML,η(ε) =

{
R if ε > |2η − 1|
{t ∈ R : (2η − 1) sign t > 0} if 0 < ε ≤ |2η − 1| . �

Let us finally determine the inner risks and their minimizers for a more
elaborate example.

Proposition 3.9 (Quantiles and the pinball loss). For τ ∈ (0, 1), let L
be the τ -pinball loss defined in Example 2.43. Moreover, let Q be a distribution
on R with |Q|1 <∞ and let t∗ be a τ -quantile of Q, i.e., we have

Q
(
(−∞, t∗]

)
≥ τ and Q

(
[t∗,∞)

)
≥ 1− τ .

Then there exist real numbers q+, q− ≥ 0 such that q+ + q− = Q({t∗}) and

CL,Q(t∗ + t)− C∗L,Q = tq+ +
∫ t

0

Q
(
(t∗, t∗ + s)

)
ds , (3.10)

CL,Q(t∗ − t)− C∗L,Q = tq− +
∫ t

0

Q
(
(t∗ − s, t∗)

)
ds , (3.11)

for all t ≥ 0. Moreover, we have

ML,Q(0+) = {t∗}∪
{
t > t∗ : q++Q((t∗, t))=0

}
∪
{
t < t∗ : q−+Q((−t, t∗))=0

}
.

Proof. Recall from Example 2.43 that distance-based τ -pinball loss is repre-
sented by

ψ(r) =

{
(τ − 1)r, if r < 0
τr, if r ≥ 0.

Now let us consider the distribution Q(t∗) defined by Q(t∗)(A) := Q(t∗+A) for
all measurable A ⊂ R. Then it is not hard to see that 0 is a τ -quantile of Q(t∗).
Moreover, we obviously have CL,Q(t∗ + t) = CL,Q(t∗)(t), and hence we may
assume without loss of generality that t∗ = 0. Then our assumptions together
with Q((−∞, 0])+Q([0,∞)) = 1+Q({0}) yield τ ≤ Q((−∞, 0]) ≤ τ+Q({0}),
i.e., there exists a q+ satisfying 0 ≤ q+ ≤ Q({0}) and

Q((−∞, 0]) = τ + q+ . (3.12)

Let us now prove the first expression for the inner risks of L. To this end, we
first observe that for t ≥ 0 we have

∫
y<t

(y − t) dQ(y) =
∫

y<0

y dQ(y)− tQ((−∞, t)) +
∫

0≤y<t

y dQ(y)
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and ∫
y≥t

(y − t) dQ(y) =
∫

y≥0

y dQ(y)− tQ([t,∞))−
∫

0≤y<t

y dQ(y) .

Consequently, we obtain

CL,Q(t) = (τ − 1)
∫

y<t

(y − t) dQ(y) + τ
∫

y≥t

(y − t) dQ(y)

= CL,Q(0)− τt+ tQ((−∞, 0)) + tQ([0, t))−
∫

0≤y<t

y dQ(y) .

Moreover, using Lemma A.3.11, we find

tQ([0, t))−
∫

0≤y<t

y dQ(y) =
∫ t

0

Q([0, t)) ds−
∫ t

0

Q([s, t)) ds

= tQ({0}) +
∫ t

0

Q((0, s)) ds ,

and since (3.12) implies Q((−∞, 0))+Q({0}) = Q((−∞, 0]) = τ+q+, we thus
obtain

CL,Q(t) = CL,Q(0) + tq+ +
∫ t

0

Q
(
(0, s)

)
ds .

Moreover, applying this equation to the pinball loss with parameter 1− τ and
the distribution Q̄ defined by Q̄(A) := Q(−A), A ⊂ R measurable, gives a
real number 0 ≤ q− ≤ Q({0}) such that Q([0,∞)) = 1− τ + q− and

CL,Q(−t) = CL,Q(0) + tq− +
∫ t

0

Q
(
(−s, 0)

)
ds

for all t ≥ 0. Consequently, t∗ = 0 is a minimizer of CL,Q( · ) and hence we
find both (3.10) and (3.11). Moreover, combining Q([0,∞)) = 1− τ + q− with
(3.12), we find q+ + q− = Q({0}). Finally, the formula for the set of exact
minimizers is an obvious consequence of (3.10) and (3.11). ��

Let us now return to our general theory. We begin with the following
lemma, which collects some useful properties of the setsML,Q,x( · ). Its proof
is left as an exercise.

Lemma 3.10 (Properties of minimizers). Let L : X ×Y ×R→ [0,∞) be
a loss and Q be a distribution on Y . For x ∈ X and t ∈ R, we then have:

i)ML,Q,x(0) = ∅.
ii)ML,Q,x(ε) �= ∅ for some ε ∈ (0,∞] if and only if C∗L,Q,x <∞.
iii)ML,Q,x(ε1) ⊂ML,Q,x(ε2) for all 0 ≤ ε1 ≤ ε2 ≤ ∞.
iv) t ∈ML,Q,x(0+) if and only if CL,Q,x(t) = C∗L,Q,x and C∗L,Q,x <∞.
v) t ∈ML,Q,x(∞) if and only if CL,Q,x(t) <∞.
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Our goal in the following two lemmas is to show that we can use the sets
ML,P( · |x),x( · ) to construct (approximate) L-risk minimizers. Note that the
main difficulty in these lemmas is to ensure the measurability of the (approx-
imate) minimizers.

Lemma 3.11 (Existence of approximate minimizers). Let X be a com-
plete measurable space, L : X × Y ×R→ [0,∞) be a loss, P be a distribution
on X × Y , and ε ∈ (0,∞]. Then the following statements are equivalent:

i) C∗L,P( · |x),x <∞ for PX-almost all x ∈ X.
ii) There exists a measurable f : X → R such that f(x) ∈ML,P( · |x),x(ε) for

PX-almost all x ∈ X.

Proof. ii)⇒ i). This immediately follows from ii) of Lemma 3.10.
i)⇒ ii). Let n ≥ 1 with 1/n < ε. As in the proof of Lemma 3.4, we then

obtain a measurable function fn : X → R satisfying (3.7) for all x ∈ X. Since
C∗L,P( · |x),x <∞ for PX -almost all x ∈ X, we thus find the assertion. ��

While the preceding lemma characterizes the situations where uniform ε-
approximate minimizers exist, the following lemma characterizes L-risks that
have an exact minimizer, i.e., a Bayes decision function.

Lemma 3.12 (Existence of exact minimizers). Let X be a complete mea-
surable space, L : X × Y × R → [0,∞) be a loss, and P be a distribution on
X × Y satisfying R∗

L,P <∞. Then the following are equivalent:

i)ML,P( · |x),x(0+) �= ∅ for PX-almost all x ∈ X.
ii) There exists a measurable f∗ : X → R such that RL,P(f∗) = R∗

L,P.

Moreover, if one of the conditions is satisfied, every Bayes decision function
f∗L,P : X → R satisfies f∗L,P(x) ∈ML,P( · |x),x(0+) for PX-almost all x ∈ X.

Proof. i)⇒ ii). Let ϕ and F be defined as in the proof of Lemma 3.4. Using
the last part of iii) in Lemma A.3.18, we then find a measurable f∗ : X → R

with f∗(x) ∈ ML,P( · |x),x(0+) for PX -almost all x ∈ X. Obviously, part iv)
of Lemma 3.10 and Lemma 3.4 then show RL,P(f∗) = R∗

L,P.
ii)⇒ i). Let f∗L,P be a Bayes decision function, i.e., it satisfiesRL,P(f∗L,P) =

R∗
L,P. Since CL,P( · |x),x(f∗L,P) ≥ C∗L,P( · |x),x for all x ∈ X, Lemma 3.4 together

with R∗
L,P < ∞ then yields CL,P( · |x),x(f∗L,P) = C∗L,P( · |x),x for PX -almost all

x ∈ X. Moreover,R∗
L,P <∞ implies C∗L,P( · |x),x <∞ for PX -almost all x ∈ X,

and hence we find f∗L,P(x) ∈ML,P( · |x),x(0+) for PX -almost all x ∈ X by part
iv) of Lemma 3.10. ��

Let us now assume for a moment that we have two loss functions Ltar :
X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞) such that

∅ �=MLsur,P( · |x),x(0+) ⊂MLtar,P( · |x),x(0+) , x ∈ X. (3.13)
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Then Lemmas 3.4 and 3.12 show that every exact minimizer of RLsur,P( · ) is
also an exact minimizer of RLtar,P( · ), i.e., we have the implication

RLsur,P(f) = R∗
Lsur,P =⇒ RLtar,P(f) = R∗

Ltar,P . (3.14)

However, exact minimizers do not necessarily exist, as one can see by com-
bining Lemma 3.11 with Lemma 3.12, and even if they do exist, it is rather
unlikely that we will find them by a learning procedure. On the other hand,
we have already indicated in Chapter 1 that many learning procedures are
able to find approximate minimizers, and therefore we need an approximate
version of (3.14) to answer Question 3.1. Now, the key idea for establishing
such a modification of (3.14) is to consider approximate versions of (3.13). To
this end, we begin with the following fundamental definition.

Definition 3.13. Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞)
be loss functions, Q be a distribution on Y , and x ∈ X. Then we define the
calibration function δmax ( · ,Q, x) : [0,∞]→ [0,∞] of (Ltar, Lsur) by

δmax (ε,Q, x) :=

⎧⎪⎨
⎪⎩

inf
t∈R

t	∈MLtar,Q,x(ε)

CLsur,Q,x(t)− C∗Lsur,Q,x if C∗Lsur,Q,x <∞

∞ if C∗Lsur,Q,x =∞

for all ε ∈ [0,∞]. Moreover, we write δmax,Ltar,Lsur(ε,Q, x) := δmax (ε,Q, x)
whenever it is necessary to explicitly mention the target and surrogate losses.
Finally, if both losses are supervised, we usually omit the argument x.

The following lemma collects some simple though extremely important
properties of the calibration function.

Lemma 3.14 (Properties of the calibration function). Let Ltar : X ×
Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be losses and Q be a distribution
on Y . For all x ∈ X and ε ∈ [0,∞], we then have:

i)MLsur,Q,x(δmax (ε,Q, x)) ⊂MLtar,Q,x(ε).
ii)MLsur,Q,x(δ) �⊂ MLtar,Q,x(ε) whenever δ > δmax (ε,Q, x).

Consequently, the calibration function can be computed by

δmax (ε,Q, x) = max
{
δ ∈ [0,∞] :MLsur,Q,x(δ) ⊂MLtar,Q,x(ε)

}
. (3.15)

Finally, if both C∗Ltar,Q,x <∞ and C∗Lsur,Q,x <∞, then for all t ∈ R we have

δmax

(
CLtar,Q,x(t)− C∗Ltar,Q,x,Q, x

)
≤ CLsur,Q,x(t)− C∗Lsur,Q,x . (3.16)

Inequality (3.16) will be the key ingredient when we compare the excess
Ltar-risk with the excess Lsur-risk since it allows us to compare the inner
integrals of these risks. Furthermore, one can show by ii) that the calibration
function is the optimal way to compare these inner integrals. We refer to
Exercise 3.3 for details.
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Proof. Let us first assume C∗Lsur,Q,x =∞. Then we have δmax (ε,Q, x) =∞ and
hence ii) is trivially satisfied. Moreover, we haveMLsur,Q,x(δmax (ε,Q, x)) = ∅
by ii) of Lemma 3.10, and hence we obtain i). Let us now assume C∗Lsur,Q,x <
∞. Then, for t ∈MLsur,Q,x(δmax (ε,Q, x)), we have

CLsur,Q,x(t)− C∗Lsur,Q,x < δmax (ε,Q, x) = inf
t′∈R

t′ 	∈MLtar,Q,x(ε)

CLsur,Q,x(t′)− C∗Lsur,Q,x,

which shows t ∈MLtar,Q,x(ε). For the proof of the second assertion, let us fix
a δ with δ > δmax (ε,Q, x). By definition, this means

inf
t∈R

t	∈MLtar,Q,x(ε)

CLsur,Q,x(t)− C∗Lsur,Q,x = δmax (ε,Q, x) < δ,

and hence there exists a t ∈ MLsur,Q,x(δ) with t �∈ MLtar,Q,x(ε). This shows
part ii). Moreover, (3.15) is a direct consequence of i) and ii).

Let us finally prove Inequality (3.16). To this end, we fix a t ∈ R and
write ε := CLtar,Q,x(t) − C∗Ltar,Q,x. Then have t �∈ MLtar,Q,x(ε), which implies
t �∈ MLsur,Q,x(δmax (ε,Q, x)) by i). The latter means

CLsur,Q,x(t) ≥ C∗Lsur,Q,x + δmax (ε,Q, x)

= C∗Lsur,Q,x + δmax

(
CLtar,Q,x(t)− C∗Ltar,Q,x,Q, x

)
. ��

Due to algorithmic reasons, we are often interested in convex surrogate
losses. For such surrogates, the calibration function can be easily computed.

Lemma 3.15 (Calibration function for convex surrogates). Let Q be a
distribution on Y , Ltar : X × Y × R → [0,∞) be a loss, and x ∈ X, ε > 0
such thatMLtar,Q,x(ε) is an interval. Moreover, let Lsur : X×Y ×R→ [0,∞)
be a convex loss such that CLsur,Q,x(t) <∞ for all t ∈ R. If MLsur,Q,x(0+) ⊂
MLtar,Q,x(0+), then we have

δmax(ε,Q, x) = min
{
CLsur,Q,x(t−ε ), CLsur,Q,x(t+ε )

}
− C∗Lsur,Q,x , (3.17)

where we used the definitions t−ε := infMLtar,Q,x(ε), t+ε := supMLtar,Q,x(ε),
and CLsur,Q,x(±∞) :=∞.

Proof. Obviously, CLsur,Q,x( · ) : R → [0,∞) is convex, and thus it is also
continuous by Lemma A.6.2. SinceMLtar,Q,x(ε) is an interval, we then obtain

δmax(ε,Q, x) = min
{

inf
t≤t−ε

CLsur,Q,x(t), inf
t≥t+ε

CLsur,Q,x(t)
}
− C∗Lsur,Q,x .

Moreover, for t < t−ε , we have t �∈ MLtar,Q,x(ε) and hence t �∈ MLtar,Q,x(0+).
From this we conclude that t �∈ MLsur,Q,x(0+), i.e., CLsur,Q,x(t) > C∗Lsur,Q,x.
Consequently, the convexity of t �→ CLsur,Q,x(t) shows that this map is strictly
decreasing on (−∞, t−ε ], and hence we obtain inf{CLsur,Q,x(t) : t ≤ t−ε } =
CLsur,Q,x(t−ε ). For t ≥ t+ε , we can argue analogously. ��
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Let us close this section with an example that illustrates how to compute
the calibration function for specific loss functions.

Example 3.16. Let L be either the least squares loss LLS or the hinge loss
Lhinge. We write Lclass for the binary classification loss and identify distribu-
tions Q on {−1, 1} by η := Q({1}). Then Lemma 3.15 together with Example
3.8 yields δmax,Lclass,L(ε, η) =∞ if ε > |2η−1|. Moreover, for 0 < ε ≤ |2η−1|,
we find

δmax,Lclass,L(ε, η) = CL,η(0)− C∗L,η =

{
(2η − 1)2 if L = LLS

|2η − 1| if L = Lhinge

by applying Examples 3.6 and 3.7, respectively. In particular note that in both
cases we have δmax,Lclass,L(ε, η) > 0 for all η ∈ [0, 1] and all ε > 0. �

3.2 Asymptotic Theory of Surrogate Losses

In this section, we investigate the asymptotic relationship between excess risks
in the sense of Question 3.1. The main result in this direction is the following
theorem.

Theorem 3.17 (Asymptotic calibration of risks). Let X be a complete
measurable space, Ltar : X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞)
be losses, and P be a distribution on X × Y such that R∗

Ltar,P
< ∞ and

R∗
Lsur,P

<∞. Then
x �→ δmax(ε,P( · |x), x)

is measurable for all ε ∈ [0,∞]. In addition, consider the following statements:

i) For all ε ∈ (0,∞], we have PX

(
{x ∈ X : δmax(ε,P( · |x), x) = 0}

)
= 0.

ii) For all ε ∈ (0,∞], there exists a δ > 0 such that, for all measurable
functions f : X → R, we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε . (3.18)

Then we have ii) ⇒ i). Furthermore, i) ⇒ ii) holds if there exists a PX-
integrable function b : X → [0,∞) such that, for all x ∈ X, t ∈ R, we have

CLtar,P( · |x),x(t) ≤ C∗Ltar,P( · |x),x + b(x) . (3.19)

Proof. To show the measurability of δmax( · ,P( · |x), x), we may assume with-
out loss of generality that we have C∗Ltar,P( · |x),x < ∞ and C∗Lsur,P( · |x),x < ∞
for all x ∈ X. We equip [0,∞] with the Borel σ-algebra and write A := [ε,∞].
Furthermore, let h : X ×R→ [0,∞] be defined by

h(x, t) := CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x , (x, t) ∈ X ×R .
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Then h is measurable and, for the set-valued function F : X → 2R defined by
F (x) := {t ∈ R : h(x, t) ∈ A}, x ∈ X, we have R\MLtar,P( · |x),x(ε) = F (x)
for all x ∈ X. Furthermore, ϕ : X ×R→ [0,∞] defined by

ϕ(x, t) := CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x , (x, t) ∈ X ×R ,

is measurable. Now, for all x ∈ X, our construction yields

δmax(ε,P( · |x), x) = inf
t∈F (x)

ϕ(x, t) ,

and hence x �→ δmax(ε,P( · |x), x) is measurable by Lemma A.3.18.
ii)⇒ i). Assume that i) is not true. Then there is an ε ∈ (0,∞] such that

B :=
{
x ∈ X : δmax(ε,P( · |x), x) = 0 and C∗Ltar,P( · |x),x <∞

}

satisfies PX(B) > 0. Note that for x ∈ B we have C∗Lsur,P( · |x),x < ∞ by the
very definition of the calibration function. In addition, for x ∈ B, we have
δmax(ε,P( · |x), x) = 0 and hence there exists a t ∈ R\MLtar,Q,x(ε). Using the
notation of the first part of the proof, this t satisfies h(x, t) ≥ ε and hence we
have F (x) �= ∅. This shows B ⊂ DomF . By Lemma A.3.18, there thus exist
measurable functions f (1)

n : X → R such that

CLsur,P( · |x),x

(
f (1)

n (x)
)
− C∗Lsur,P( · |x),x ≤

1
n

and
CLtar,P( · |x),x

(
f (1)

n (x)
)
− C∗Ltar,P( · |x),x ≥ ε

for all x ∈ B and n ≥ 1. Furthermore, by Lemma 3.11, we find measurable
functions f (2)

n : X → R, n ≥ 1, with

CLsur,P( · |x),x

(
f (2)

n (x)
)
< C∗Lsur,P( · |x),x +

1
n

for PX -almost all x ∈ X. We define fn : X → R by

fn(x) :=

{
f

(1)
n (x) if x ∈ B
f

(2)
n (x) otherwise.

Then fn is measurable and our construction yields both

RLtar,P(fn)−R∗
Ltar,P ≥

∫
B

(
CLtar,P( · |x),x

(
fn(x)

)
− C∗Ltar,P( · |x),x

)
dPX(x)

≥ εPX(B)

and limn→∞RLsur,P(fn) = R∗
Lsur,P

. From this we conclude that ii) is not true.
i)⇒ ii). Let us assume that ii) is not true. Then there exists an ε0 ∈ (0,∞]

such that for all n ≥ 1 there exists a measurable function fn : X → R with
RLtar,P(fn)−R∗

Ltar,P
≥ ε0 and
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1
n
≥ RLsur,P(fn)−R∗

Lsur,P =
∫

X

∣∣∣ CLsur,P( · |x),x

(
fn(x)

)
−C∗Lsur,P( · |x),x

∣∣∣ dPX(x).

Hence there exists a sub-sequence (fni
) satisfying

CLsur,P( · |x),x

(
fni

(x)
)
→ C∗Lsur,P( · |x),x

for PX -almost all x ∈ X. Let us fix an x ∈ X at which the convergence takes
place and that additionally satisfies C∗Ltar,P( · |x),x <∞, C∗Lsur,P( · |x),x <∞, and
δmax(ε,P( · |x), x) > 0 for all ε > 0. For later use, note that the probability
for such an element x is 1 since δmax(ε,P( · |x), x) is monotonically increasing
in ε. Now, for ε > 0, there exists an i0 such that for all i ≥ i0 we have

CLsur,P( · |x),x

(
fni

(x)
)
< C∗Lsur,P( · |x),x + δmax(ε,P( · |x), x) .

By part i) of Lemma 3.14, this yields CLtar,P( · |x),x(fni
(x)) < C∗Ltar,P( · |x),x +ε,

i.e., we have shown

lim
i→∞

CLtar,P( · |x),x

(
fni

(x)
)

= C∗Ltar,P( · |x),x . (3.20)

Since the probability of the considered x was 1, the limit relation (3.20) holds
for PX -almost all x ∈ X, and hence we obtain RLtar,P(fni

) → R∗
Ltar,P

by
Lebesgue’s convergence theorem and (3.19). However, this contradicts the
fact that RLtar,P(fn)−R∗

Ltar,P
≥ ε0 holds for all n ≥ 1. ��

Theorem 3.17 shows that an almost surely strictly positive calibration
function is necessary for a positive answer to Question 3.1, i.e., for having an
implication of the form

RLsur,P(fn)→ R∗
Lsur,P =⇒ RLtar,P(fn)→ R∗

Ltar,P (3.21)

for all sequences (fn) of measurable functions. Moreover, Theorem 3.17 also
shows that an almost surely strictly positive calibration function is sufficient
for (3.21) if the additional assumption (3.19) holds. In this regard, note that
in general this additional assumption is not superfluous. For details, we refer
to Exercise 3.11.

Let us now recall that from a machine learning point of view we are not
interested in a single distribution since we do not know the data-generating
distribution P. However, we may know that P is a distribution of a certain
type Q, and consequently the following definition is of great importance in
practical situations.

Definition 3.18. Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞)
be two losses and Q be a set of distributions on Y . We say that Lsur is Ltar-
calibrated with respect to Q if, for all ε ∈ (0,∞], Q ∈ Q, and x ∈ X, we
have

δmax (ε,Q, x) > 0 .
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Note that, using (3.15), we easily verify that Lsur is Ltar-calibrated with
respect to Q if and only if for all ε ∈ (0,∞], Q ∈ Q, and x ∈ X there is a
δ ∈ (0,∞] with

MLsur,Q,x(δ) ⊂MLtar,Q,x(ε) . (3.22)

Now assume that our only information on the data-generating distribution
P is that it is of some type Q. Then Theorem 3.17 shows that we can only
hope for a positive answer to Question 3.1 if our surrogate loss Lsur is Ltar-
calibrated with respect to Q. In this sense, calibration of Lsur is a first test on
whether Lsur is a reasonable surrogate. The following corollary, whose proof is
left as an exercise, shows that for some target losses this test is also sufficient.

Corollary 3.19. Let X be a complete measurable space, Ltar : X × Y ×R→
[0,∞) and Lsur : X × Y × R → [0,∞) be two losses, and Q be a set of
distributions on Y . If Ltar is bounded, i.e., there is B > 0 with L(x, y, t) ≤ B
for all (x, y, t) ∈ X × Y ×R, then the following statements are equivalent:

i) Lsur is Ltar-calibrated with respect to Q.
ii) For all ε ∈ (0,∞] and all distributions P of type Q with R∗

Lsur,P
< ∞,

there exists a δ ∈ (0,∞] such that, for all measurable f : X → R, we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε .

Recall that both the classification loss and the density level detection loss
are bounded losses, and consequently the preceding corollary applies to these
target losses. Moreover, for the classification loss being the target loss and
the least squares or the hinge loss being the surrogate loss, we have already
shown in Example 3.16 that the corresponding calibration function is strictly
positive. Consequently, Corollary 3.19 shows that both loss functions are rea-
sonable surrogates in an asymptotic sense. However, we have already seen in
Zhang’s inequality, see Theorem 2.31, that there is even a strong quantitative
relationship between the excess classification risk and the excess hinge risk.
Such stronger relationships are studied in the next section in more detail.

3.3 Inequalities between Excess Risks

If one wants to find a good surrogate loss Lsur for a given target loss Ltar,
then implication (3.18) is in some sense a minimal requirement. However, we
have already indicated in Question 3.2 that in many cases one actually needs
quantified versions of (3.18), e.g., in terms of inequalities between the excess
Ltar-risk and the excess Lsur-risk. Considering Theorem 3.17, such inequalities
are readily available if, for all ε > 0, we know a δ(ε) > 0 such that implication
(3.18) holds for all measurable f : X → R. Indeed, for f with ε := RLtar,P(f)−
R∗

Ltar,P
> 0, we have RLsur,P(f)−R∗

Lsur,P
≥ δ(ε), or in other words

δ
(
RLtar,P(f)−R∗

Ltar,P

)
≤ RLsur,P(f)−R∗

Lsur,P . (3.23)
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In addition, if we define δ(0) := 0, then this inequality actually holds for
all measurable f : X → R. Unfortunately, however, the proof of Theorem
3.17 does not provide a constructive way to find a value for δ(ε), and hence
we have so far no method to establish inequalities of the form (3.23). This
problem is resolved in the following theorems for which we first introduce the
Fenchel-Legendre bi-conjugate of a function.

Definition 3.20. Let I ⊂ R be an interval and g : I → [0,∞] be a function.
Then the Fenchel-Legendre bi-conjugate g∗∗ : I → [0,∞] of g is the largest
convex function h : I → [0,∞] satisfying h ≤ g. Moreover, we write g∗∗(∞) :=
limt→∞ g

∗∗(t) if I = [0,∞).

Note that if g : [0, B]→ [0,∞) is a strictly positive and increasing function
on (0, B] with g(0) = 0, then Lemma A.6.20 shows that its bi-conjugate
g∗∗ is also strictly positive on (0, B]. Furthermore, a similar result holds for
continuous functions (see Lemma A.6.21). However, these results are in general
false if one considers functions on I := [0,∞), as, e.g., the square root

√ · :
[0,∞)→ [0,∞) shows.

Besides the Fenchel-Legendre bi-conjugate, we also need some additional
notations and definitions. To this end, let X be a complete measurable space,
Ltar : X × Y × R → [0,∞) be a loss function, and P be a distribution on
X × Y such that R∗

Ltar,P
< ∞. For a measurable function f : X → R, we

write
Bf :=

∥∥∥x �→ (CLtar,P( · |x),x(f(x))− C∗Ltar,P( · |x),x

) ∥∥∥
∞
, (3.24)

i.e., Bf is the supremum of the excess inner target risk with respect to f . Note
that in the following considerations we do not require Bf <∞.

Our first two results on inequalities between excess risks will only assume
that the involved distribution P is of some type Q. In this case, the following
notion of calibration will be crucial.

Definition 3.21. Let Ltar : X × Y × R → [0,∞) and Lsur : X × Y × R →
[0,∞) be two losses and Q be a set of distributions on Y . Then the uniform
calibration function with respect to Q is defined by

δmax(ε,Q) := inf
Q∈Q
x∈X

δmax (ε,Q, x) , ε ∈ [0,∞].

Moreover, we say that Lsur is uniformly Ltar-calibrated with respect to Q
if δmax(ε,Q) > 0 for all ε ∈ (0,∞].

Obviously, every uniformly calibrated loss function is calibrated; however,
the converse implication does not hold in general. Since we will see important
examples of the latter statement in Section 3.7, we do not present such an
example here. Finally, note that an alternative definition of δmax(ε,Q) can be
found in Exercise 3.5.

Now we are well-prepared to formulate our first result, which establishes
inequalities between excess risks of different loss functions.
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Theorem 3.22 (Uniform calibration inequalities). Let X be a complete
measurable space, Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be
losses, and Q be a set of distributions on Y . Moreover, let δ : [0,∞]→ [0,∞]
be an increasing function such that

δmax(ε,Q) ≥ δ(ε) , ε ∈ [0,∞]. (3.25)

Then, for all distributions P of type Q satisfying R∗
Ltar,P

<∞ and R∗
Lsur,P

<
∞ and all measurable f : X → R, we have

δ∗∗Bf

(
RLtar,P(f)−R∗

Ltar,P

)
≤ RLsur,P(f)−R∗

Lsur,P , (3.26)

where δ∗∗Bf
: [0, Bf ] → [0,∞] is the Fenchel-Legendre biconjugate of δ|[0,Bf ]

and Bf is defined by (3.24).

Proof. Inequalities (3.16) and (3.25) together withR∗
Ltar,P

<∞ andR∗
Lsur,P

<
∞ give

δ
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
≤ CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x (3.27)

for PX -almost all x ∈ X and all t ∈ R. For a measurable function f : X → R

with RLtar,P(f) < ∞, Jensen’s inequality together with the definition of Bf ,
δ∗∗Bf

( · ) ≤ δ( · ), and (3.27) now yields

δ∗∗Bf

(
RLtar,P(f)−R∗

Ltar,P

)

≤
∫

X

δ∗∗Bf

(
CLtar,P( · |x),x

(
f(x)

)
− C∗Ltar,P( · |x),x

)
dPX(x)

≤
∫

X

CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x dPX(x)

= RLsur,P(f)−R∗
Lsur,P .

Finally, for f : X → R with RLtar,P(f) =∞, we have Bf =∞. If δ∗∗∞(∞) = 0,
there is nothing to prove, and hence let us assume δ∗∗∞(∞) > 0. Then (3.25)
implies δ(0) = 0 and hence δ∗∗∞ is increasing because of its convexity and
δ∗∗∞(0) = δ(0) = 0. Consequently, if δ∗∗∞ is finite on [0,∞), then there exists a
t0 ≥ 0 and a c0 > 0 such that the (Lebesgue)-almost surely defined derivative
of δ∗∗∞ satisfies (δ∗∗∞)′(t) ≥ c0 for almost all t ≥ t0. By Lebesgue’s version of the
fundamental theorem of calculus, see Theorem A.6.6, we then find constants
c1, c2 ∈ (0,∞) with t ≤ c1δ∗∗∞(t) + c2 for all t ∈ [0,∞]. On the other hand,
if there is a t0 > 0 with δ∗∗∞(t0) = ∞, we have t ≤ c1δ∗∗∞(t) + c2 for c1 := 1,
c2 := t0, and all t ∈ [0,∞]. In both cases, (3.27) now yields

∞ =
∫

X

(
CLtar,P( · |x),x

(
f(x)

)
− C∗Ltar,P( · |x),x

)
dPX(x)

≤ c1
∫

X

δ∗∗∞

(
CLtar,P( · |x),x

(
f(x)

)
− C∗Ltar,P( · |x),x

)
dPX(x) + c2

≤ c1
(
RLsur,P(f)−R∗

Lsur,P

)
+ c2

and hence we have RLsur,P(f)−R∗
Lsur,P

=∞. ��
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Note that if Lsur is uniformly Ltar-calibrated with respect to Q and the
function f : X → R satisfies Bf < ∞, then Lemma A.6.20 shows that the
bi-conjugate of δmax( · ,Q)|[0,Bf ] is strictly positive on (0, Bf ]. Consequently,
Theorem 3.22 gives a non-trivial inequality in this case.

Let us now illustrate the theory we have developed so far by a simple
example dealing with the least squares and the hinge loss.

Example 3.23. Let L be either the least squares loss or the hinge loss,
QY be the set of all distributions on Y := {−1, 1}, and Lclass be the binary
classification loss. Using Example 3.16, we then obtain

δmax,Lclass,L(ε,QY ) = inf
η∈[0,1]

δmax,Lclass,L(ε, η) = inf
|2η−1|≥ε

δmax,Lclass,L(ε, η)

for all ε > 0. For the least squares loss, this yields

δmax,Lclass,L(ε,QY ) = ε2 , ε > 0,

which by Theorem 3.22 implies that, for all measurable f : X → R, we have

RLclass,P(f)−R∗
Lclass,P

≤
√
RL,P(f)−R∗

L,P .

On the other hand, for the hinge loss, we find δmax,Lclass,L(ε,QY ) = ε for all
ε > 0, and hence Theorem 3.22 recovers Zhang’s inequality. �

The following result shows that uniform calibration is also necessary to
establish non-trivial inequalities that hold for all distributions of some type.

Theorem 3.24. Let X be a complete measurable space, Ltar : X × Y ×R→
[0,∞) and Lsur : X × Y × R → [0,∞) be two losses, and Q be a set of
distributions on Y such that C∗Ltar,Q,x < ∞ and C∗Lsur,Q,x < ∞ for all x ∈ X
and Q ∈ Q. Furthermore, let δ : [0,∞] → [0,∞] be increasing with δ(0) = 0
and δ(ε) > 0 for all ε > 0. If for all distributions P of type Q satisfying
R∗

Ltar,P
<∞ and R∗

Lsur,P
<∞ and all measurable f : X → R we have

δ
(
RLtar,P(f)−R∗

Ltar,P

)
≤ RLsur,P(f)−R∗

Lsur,P ,

then Lsur is uniformly Ltar-calibrated with respect to Q.

Proof. Let us fix an x ∈ X and a Q ∈ Q. Furthermore, let P be the distribution
on X×Y with PX = δ{x} and P( · |x) = Q. Then P is of type Q, and we have
both RLi,P(f) = CLi,Q,x(f(x)) and R∗

Li,P
= C∗Li,Q,x < ∞ for i = {tar,sur}

and all measurable f : X → R. Consequently, our assumption yields

δ
(
CLtar,Q,x(t)− C∗Ltar,Q,x

)
≤ CLsur,Q,x(t)− C∗Lsur,Q,x , t ∈ R.

Now let ε > 0 and t ∈MLsur,Q,x(δ(ε)). Then we have CLsur,Q,x(t)−C∗Lsur,Q,x <
δ(ε), and hence the inequality above yields δ(CLtar,Q,x(t) − C∗Ltar,Q,x) < δ(ε).
Since δ is monotonically increasing, the latter shows CLtar,Q,x(t)−C∗Ltar,Q,x < ε,
i.e., we have found MLsur,Q,x(δ(ε)) ⊂ MLtar,Q,x(ε). Equation (3.15) then
shows δ(ε) ≤ δmax (ε,Q, x), and hence Lsur is uniformly Ltar-calibrated with
respect to Q. ��



3.3 Inequalities between Excess Risks 67

It will turn out in Sections 3.7 and 3.9, for example, that in many situations
we have calibrated losses that are not uniformly calibrated. We have just seen
that in such cases we need assumptions on P stronger than the Q-type to
establish inequalities. The following theorem presents a result in this direction.

Theorem 3.25 (General calibration inequalities). Let X be a complete
measurable space, Ltar : X × Y ×R→ [0,∞) and Lsur : X × Y ×R→ [0,∞)
be two losses, and P be a distribution on X × Y such that R∗

Ltar,P
< ∞ and

R∗
Lsur,P

< ∞. Assume that there exist a p ∈ (0,∞] and functions b : X →
[0,∞] and δ : [0,∞)→ [0,∞) such that

δmax(ε,P( · |x), x) ≥ b(x) δ(ε) , ε ≥ 0, x ∈ X, (3.28)

and b−1 ∈ Lp(PX). Then, for δ̄ := δ
p

p+1 : [0,∞)→ [0,∞) and all measurable
f : X → R, we have

δ̄∗∗Bf

(
RLtar,P(f)−R∗

Ltar,P

)
≤ ‖b−1‖

p
p+1

Lp(PX)

(
RLsur,P(f)−R∗

Lsur,P

) p
p+1 ,

where δ̄∗∗Bf
: [0, Bf ] → [0,∞] is the Fenchel-Legendre biconjugate of δ̄|[0,Bf ]

and Bf is defined by (3.24).

Proof. Let us first consider the case RLtar,P(f) <∞. Since δ̄∗∗Bf
is convex and

satisfies δ̄∗∗Bf
(ε) ≤ δ̄(ε) for all ε ∈ [0, Bf ], we see by Jensen’s inequality that

δ̄∗∗Bf

(
RLtar,P(f)−R∗

Ltar,P

)
≤
∫

X

δ̄
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) .

Moreover, using (3.28) and (3.16), we obtain

b(x) δ
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
≤ CLsur,P( · |x),x(t)− C∗Lsur,P( · |x),x

for PX -almost all x ∈ X and all t ∈ R. Now note that for q := (1 + p)/p
the conjugate exponent satisfies q′ = 1 + p = pq. By the definition of δ̄ and
Hölder’s inequality in the form of E|hg|1/q ≤ (E|h|q′/q)1/q′

(E|g|)1/q, we thus
find ∫

X

δ̄
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x)

≤
∫

X

(
b(x)
)− 1

q

(
CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x

) 1
q

dPX(x)

≤
(∫

X

b−pdPX

) 1
qp
(∫

X

CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x dPX(x)

)1/q

= ‖b−1‖
1
q

Lp(PX)

(
RLsur,P(f)−R∗

Ltar,P

)1/q
.

Combining this estimate with our first estimate then gives the assertion in
the case RLtar,P(f) < ∞. On the other hand, if RLtar,P(f) = ∞, we have
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Bf = ∞. If δ̄∗∗∞(∞) = 0, there is nothing to prove and hence we restrict
our considerations to the case where δ̄∗∗∞(∞) > 0. In this case, the proof of
Theorem 3.22 has already shown that then there exist constants c1, c2 ∈ (0,∞)
such that t ≤ c1δ̄∗∗∞(t) + c2 for all t ∈ [0,∞]. From this we obtain

∞ = RLtar,P(f)−R∗
Ltar,P

≤ c1
∫

X

δ̄∗∗∞
(
CLtar,P( · |x),x(t)− C∗Ltar,P( · |x),x

)
dPX(x) + c2

≤ c1
∫

X

(
b(x)
)− 1

q

(
CLsur,P( · |x),x

(
f(x)

)
− C∗Lsur,P( · |x),x

) 1
q

dPX(x) + c2 ,

where the last step is analogous to our considerations in the case RLtar,P(f) <
∞. Using b−1 ∈ Lp(PX) and Hölder’s inequality, we then conclude from the
estimate above that RLsur,P(f)−R∗

Lsur,P
=∞. ��

The condition b−1 ∈ Lp(PX) in the preceding theorem measures how much
the calibration function δmax(ε,P( · |x), x) violates a uniform lower bound of
the form δmax(ε,P( · |x), x) ≥ c δ(ε), ε ∈ [0,∞]. Indeed, the larger we can
choose p in condition (3.28), the more the function b is away from the critical
level 0, and thus the closer condition (3.28) is to a uniform lower bound. In
the extremal case p =∞, condition (3.28) actually becomes a uniform bound,
and the inequality of Theorem 3.25 equals the inequality of Theorem 3.22.
Finally, for δ(ε) := εr, ε ≥ 0, the function δ̄(ε) := δ

p
p+1 (ε) = ε

rp
p+1 is convex if

r ≥ 1 + 1/p. In this case, we can thus omit the Fenchel-Legendre biconjugate
in Theorem 3.25 and obtain the simpler inequality

RLtar,P(f)−R∗
Ltar,P ≤ ‖b

−1‖1/r
Lp(PX)

(
RLsur,P(f)−R∗

Lsur,P

)1/r
.

Here, the condition r ≥ 1 + 1/p means that we have to increase the convexity
of δ if we wish to weaken the uniformity of the calibration.

Our last goal in this section is to improve the inequalities above for the
following type of loss, which will be of great utility in the next sections.

Definition 3.26. Let A ⊂ X × R and h : X → [0,∞) be measurable. Then
we call L : X ×R→ [0,∞) a detection loss with respect to (A, h) if

L(x, t) = 1A(x, t)h(x) , x ∈ X , t ∈ R.

Every detection loss function is obviously measurable and hence an unsu-
pervised loss function. In addition, for x ∈ X and t ∈ R, we have

CL,x(t)−C∗L,x =

{
0 if A(x) :={t′ ∈ R : (x, t′) ∈ A}=R

1A(x, t)h(x) otherwise.
(3.29)

Since detection losses will play an important role for both supervised and
unsupervised learning scenarios let us now establish some specific results for
this class of target loss function. We begin with the following theorem, whose
proof is similar to the proof of Corollary 3.19 and hence is left as Exercise 3.7.
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Theorem 3.27 (Asymptotic calibration for detection losses). Let X
be a complete measurable space and Ltar : X ×R→ [0,∞) be a detection loss
with respect to some (A, h). Moreover, let Lsur : X × Y × R → [0,∞) be a
loss and Q be a set of distributions on Y . Then the following statements are
equivalent:

i) Lsur is Ltar-calibrated with respect to Q.
ii) For all distributions P of type Q that satisfy h ∈ L1(PX) and R∗

Lsur,P
<∞

and all ε ∈ (0,∞], there exists a δ ∈ (0,∞] such that for all measurable
f : X → R we have

RLsur,P(f) < R∗
Lsur,P + δ =⇒ RLtar,P(f) < R∗

Ltar,P + ε .

If the target loss is a detection loss, then we can, of course, establish
calibration inequalities by Theorems 3.22 and 3.25. However, using the specific
form of detection losses, one can often improve the resulting inequalities, as
we will discuss after the following rather general theorem.

Theorem 3.28 (Calibration inequalities for detection losses). Let X
be a complete measurable space, Ltar : X×R→ [0,∞) be a detection loss with
respect to (A, h), Lsur : X ×Y ×R→ [0,∞) be a loss, and P be a distribution
on X × Y with R∗

Ltar,P
<∞ and R∗

Lsur,P
<∞. For s > 0, we write

B(s) :=
{
x ∈ X : A(x) �= R and δmax

(
h(x),P( · |x), x

)
< sh(x)

}
.

If there exist constants c > 0 and α ∈ (0,∞] such that∫
X

1B(s)h dPX ≤ (c s)α , s > 0, (3.30)

then for all measurable functions f : X → R, we have

RLtar,P(f)−R∗
Ltar,P ≤ 2 c

α
α+1
(
RLsur,P(f)−R∗

Lsur,P

) α
α+1 .

Proof. We write Ctar,x(f) := CLtar,P( · |x),x(f(x))−C∗Ltar,P( · |x),x for x ∈ X and
measurable f : X → R. Furthermore, for s > 0, we write

C(s) :=
{
x ∈ X : A(x) �= R, and δmax(h(x),P( · |x), x) ≥ s h(x)

}
.

By (3.16) and (3.29), we then obtain

RLtar,P(f)−R∗
Ltar,P

=
∫

B(s)

1A(x, f(x))h(x) dPX(x) +
∫

C(s)

1A(x, f(x))h(x) dPX(x)

≤
∫

X

1B(s)h dPX + s−1

∫
C(s)

δmax

(
h(x),P( · |x), x

)
1A(x, f(x)) dPX(x)

≤ (c s)α + s−1

∫
C(s)

δmax

(
Ctar,x(f),P( · |x), x

)
dPX(x)

≤ (c s)α + s−1
(
RLsur,P(f)−R∗

Lsur,P

)
.
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If α < ∞, we now choose s := (αcα)−
1

α+1 (RLsur,P(f) − R∗
Lsur,P

)
1

α+1 . Using

α− α
α+1 + α

1
α+1 ≤ 2 then yields the assertion. Furthermore, for α = ∞, the

assertion follows by setting s−1 := 2c. ��

The preceding theorem can improve the inequalities we obtained for gen-
eral target losses in various cases. The following two remarks illustrate this.

Remark 3.29. For detection losses with h = 1X , Theorem 3.28 yields an im-
provement over Theorem 3.25. Indeed, if (3.28) is satisfied for δ(ε) = εq and
a b : X → [0,∞] with b−1 ∈ Lp(PX) and q ≥ p+1

p , then Theorem 3.25 gives

RLtar,P(f)−R∗
Ltar,P ≤ ‖b

−1‖1/q
Lp(PX)

(
RLsur,P(f)−R∗

Lsur,P

)1/q
. (3.31)

On the other hand, some calculations show B(s) ⊂ {x ∈ X : b(x) < s}, and
since b−1 ∈ Lp(PX) implies

PX

(
{x ∈ X : b(x) < s}

)
≤ ‖b−1‖pp sp , s > 0,

we find (3.30) for c := ‖b−1‖Lp(PX) and α := p. Theorem 3.28 thus yields

RLtar,P(f)−R∗
Ltar,P ≤ 2 ‖b−1‖

p
p+1

Lp(PX)

(
RLsur,P(f)−R∗

Lsur,P

) p
p+1 . (3.32)

Now note that for q > p+1
p , (3.32) is sharper than (3.31) whenever the excess

risk RLsur,P(f)−R∗
Lsur,P

is sufficiently small. �

Remark 3.30. In some cases, Theorem 3.28 also improves the inequalities of
Theorem 3.22. Indeed, if Lsur is uniformly Ltar-calibrated with respect to
some class Q of distributions and the uniform calibration function satisfies
δmax( · ,Q) ≥ cqεq for some q > 1, cq > 0, and all ε ≥ 0, then Theorem 3.22
gives

RLtar,P(f)−R∗
Ltar,P ≤ c−1/q

q

(
RLsur,P(f)−R∗

Lsur,P

)1/q (3.33)

for all measurable functions f : X → R. However, an easy calculation shows
that the assumptions above imply B(s) ⊂ {x ∈ X : 0 < h(x) < (s/cq)1/(q−1)}.
Consequently, if we have constants C > 0 and β ∈ (0,∞] such that

PX

({
x ∈ X : 0 < h(x) < s

})
≤ (C s)β , s > 0, (3.34)

then it is easy to check that (3.30) is satisfied for c = c−1
q C

βq−β
β+1 and α := β+1

q−1 .
Theorem 3.28 thus yields

RLtar,P(f)−R∗
Ltar,P ≤ 2 c

− β+1
β+q

q C
βq−β
β+q
(
RLsur,P(f)−R∗

Lsur,P

) β+1
β+q . (3.35)

Now note that for q > 1, we have β+1
β+q >

1
q , and thus (3.35) is sharper than

(3.33) whenever RLsur,P(f)−R∗
Lsur,P

is sufficiently small. �



3.4 Surrogates for Unweighted Binary Classification 71

3.4 Surrogates for Unweighted Binary Classification

In this section, we apply the general theory on surrogate loss functions devel-
oped in the previous sections to the standard binary classification scenario.
The result of this section will be important for Section 8.5, where we investi-
gate SVMs for classification that do not use the hinge loss as a surrogate.

Let us first recall (see Example 2.4) that in binary classification we consider
the label space Y := {−1, 1} together with the supervised loss Lclass. In the
following, we write QY for the set of all distributions on Y . Moreover, recall
that any distribution Q ∈ QY can be uniquely described by an η ∈ [0, 1] using
the identification η = Q({1}). If L : Y ×R → [0,∞) is a supervised loss, we
therefore use the notation

CL,η(t) := CL,Q(t) , t ∈ R,
C∗L,η := C∗L,Q ,

(3.36)

as well as ML,η(0+) := ML,Q(0+), ML,η(ε) := ML,Q(ε), and δmax(ε, η) :=
δmax(ε,Q) for ε ∈ [0,∞]. Note that, by the special structure of margin-based
losses and the distributions Q ∈ QY , we have the following symmetries:

CL,η(t) = CL,1−η(−t) and C∗L,η = C∗L,1−η ,

ML,η(ε) = −ML,1−η(ε) and ML,η(0+) = −ML,1−η(0+) .

Furthermore, it is interesting to note that the quantity 2η−1, which will occur
at many places in the following results, is the expectation of the corresponding
Q, i.e., EQ := EQ idY = 2η−1. Before we present our first results, let us finally
simplify our nomenclature.

Definition 3.31. A supervised loss function L : Y ×R→ [0,∞) is said to be
(uniformly) classification calibrated if it is (uniformly) Lclass-calibrated
with respect to QY .

Now our first aim is to compute the calibration function δmax,Lclass,L( · , η)
for supervised surrogates L of Lclass.

Lemma 3.32 (Calibration function). Let L : Y ×R→ [0,∞) be a super-
vised loss. Then, for all η ∈ [0, 1] and ε ∈ (0,∞], we have

δmax,Lclass,L(ε, η) =

{
∞ if ε > |2η − 1|
inft∈R:(2η−1) sign t≤0

(
CL,η(t)− C∗L,η

)
if ε ≤ |2η − 1|.

Proof. The assertion immediately follows from the formula

MLclass,η(ε) =

{
R if ε > |2η − 1|
{t ∈ R : (2η − 1) sign t > 0} if 0 < ε ≤ |2η − 1| ,

which we derived in Example 3.8, and inf ∅ =∞. ��
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The formula for the calibration function presented in Lemma 3.32 implies
that δmax( · , η) is a step function that only attains one value different from 0
and∞. This particular form of the calibration function is the key ingredient of
the following considerations on the relation between classification calibration
and uniform classification calibration. We begin with a preliminary lemma.

Lemma 3.33 (Alternative to the calibration function). Let L : Y ×R→
[0,∞) be a margin-based loss and H : [0, 1]→ [0,∞) be defined by

H(η) := inf
t∈R:(2η−1)t≤0

CL,η(t)− C∗L,η, η ∈ [0, 1]. (3.37)

Then the following statements are true:

i) L is classification calibrated if and only if H(η) > 0 for all η �= 1/2.
ii) If L is continuous, we have δmax(ε, η) = H(η) for all 0 < ε ≤ |2η − 1|.
iii) H is continuous and satisfies H(η) = H(1−η), η ∈ [0, 1], and H(1/2) = 0.

Proof. i). Let us first assume that L is classification calibrated. We fix an
η �= 1/2. Then Lemma 3.32 together with sign 0 = 1 shows CL,η(0) > C∗L,η if
η ∈ [0, 1/2). Moreover, if η ∈ (1/2, 1], we find the same inequality by

CL,η(0)− C∗L,η = CL,1−η(0)− C∗L,1−η > 0 .

Finally, Lemma 3.32 yields

inf
t∈R:(2η−1)t<0

CL,η(t)− C∗L,η ≥ δmax(ε, η) > 0 (3.38)

for 0 < ε ≤ |2η − 1|, and hence we find H(η) > 0. Conversely, Lemma 3.32
gives δmax(ε, η) ≥ H(η) for all 0 < ε ≤ |2η − 1|, and hence L is classification
calibrated if H(η) > 0 for all η �= 1/2.
ii). Since there is nothing to prove in the case η = 1/2, we assume η �= 1/2.

Now, if L is continuous, then CL,η( · ) is continuous at 0, and hence we have

δmax(ε, η) ≤ inf
t∈R:(2η−1)t<0

CL,η(t)− C∗L,η = inf
t∈R:(2η−1)t≤0

CL,η(t)− C∗L,η = H(η)

by (3.38). Moreover, for 0 < ε ≤ |2η − 1|, we always have δmax(ε, η) ≥ H(η).
iii). The equality H(1/2) = 0 is trivial, and H(η) = H(1 − η), η ∈ [0, 1],

immediately follows from symmetries mentioned at the beginning of this sec-
tion. In order to prove the continuity of H, we now define

h(η) = inf
t∈R:(2η−1)t≤0

CL,η(t) ,

g+(η) = inf
t≤0
CL,η(t) ,

g−(η) = inf
t≥0
CL,η(t) ,

for η ∈ [0, 1]. Then the functions g+ : [0, 1] → [0,∞) and g− : [0, 1] →
[0,∞) can be defined by suprema taken over affine linear functions in η ∈
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R, and since g+ and g− are also finite for η ∈ [0, 1], we find by Lemma
A.6.4 that g+ and g− are continuous at every η ∈ [0, 1]. Moreover, we have
C∗L,η = min{g+(η), g−(η)} for all η ∈ [0, 1], and hence η �→ C∗L,η is continuous.
Finally, we have h(η) = g−(η) for η ∈ [0, 1/2), h(η) = g+(η) for η ∈ (1/2, 1],
and h(1/2) = min{g+(1/2), g−(1/2)} = g−(1/2) = g+(1/2). This shows that
h : [0, 1] → [0,∞) is continuous, and by combining these results we then
obtain the continuity of H. ��

Now we can establish the main result of this section, which shows that
classification calibrated, margin-based losses are uniformly classification cal-
ibrated. In addition, it provides a lower bound of the Fenchel-Legendre bi-
conjugate (see Definition 3.20) of the uniform calibration function δmax( · ,QY ).

Theorem 3.34 (Classification calibration). Let L : Y ×R→ [0,∞) be a
margin-based loss. Then the following statements are equivalent:

i) L is classification calibrated.
ii) L is uniformly classification calibrated.

Furthermore, for H defined by (3.37) and δ : [0, 1]→ [0,∞) defined by

δ(ε) := H
(1 + ε

2

)
, ε ∈ [0, 1],

the Fenchel-Legendre bi-conjugates of δ and δmax( · ,QY ) satisfy

δ∗∗(ε) ≤ δ∗∗max,Lclass,L
(ε,QY ) , ε ∈ [0, 1], (3.39)

and both quantities are actually equal if L is continuous. Finally, if L is clas-
sification calibrated, we have δ∗∗(ε) > 0 for all ε ∈ (0, 1].

Proof. We begin with a preliminary consideration. To this end, let us fix an
ε ∈ (0, 1]. Then, by Lemma 3.32 and the symmetry of H around 1/2, we find

δmax(ε,QY ) = inf
|2η−1|≥ε

δmax(ε, η) ≥ inf
|2η−1|≥ε

H(η) = inf
η≥ ε+1

2

H(η) =: δ̃(ε) ,

and with δ̃(0) := 0 we also have δmax(0,QY ) = δ̃(0).
i)⇔ ii). Since ii)⇒ i) is trivial, it suffices to show i)⇒ ii). To this end,

recall that H is continuous and strictly positive on all intervals [ ε+1
2 , 1], ε ∈

(0, 1], by Lemma 3.33, and consequently we have δ̃(ε) > 0 for all ε > 0. From
this we find δmax(ε,QY ) > 0 for all ε > 0 by our preliminary consideration.

In order to show (3.39), recall that δ̃(ε) ≤ δmax(ε,QY ) holds for all
ε ∈ [0, 1], and hence we find δ̃∗∗(ε) ≤ δ∗∗max (ε,QY ) for all ε ∈ [0, 1]. Fur-
thermore, we obviously have δ̃(ε) = infε′≥ε δ(ε′), and hence Lemma A.6.21
gives δ∗∗ = δ̃∗∗. In addition, if L is continuous, then our preliminary consid-
eration together with Lemma 3.33 actually yields δ̃(ε) = δmax(ε,QY ) for all
ε ∈ [0, 1]. Repeating the arguments above thus shows δ∗∗(ε) = δ∗∗max (ε,QY )
for all ε ∈ [0, 1].
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Table 3.1. Some common margin-based losses and the corresponding values for
H(η), η ∈ [0, 1], and δ∗∗max (ε,QY ), ε ∈ [0, 1]. All results easily follow from Theorem
3.36. For the logistic loss, we used the abbreviation Λ(x) := x ln(x). Note that if one
wants to derive inequalities for the logistic loss using the above form of δ∗∗max (ε,QY ),
it is useful to know that ε2 ≤ Λ(1 + ε) + Λ(1 − ε) ≤ ε2 ln 4 for all ε ∈ [0, 1].

Loss function H(η) δ∗∗max (ε,QY )

Least squares (2η − 1)2 ε2

Hinge loss |2η − 1| ε

Squared hinge (2η − 1)2 ε2

Logistic loss ln 2 + Λ(η) + Λ(1 − η) 1
2

(
Λ(1 + ε) + Λ(1 − ε)

)

Finally, if L is classification calibrated, we have already seen δ̃(ε) > 0 for
all ε ∈ (0, 1], and hence δ̃∗∗(ε) > 0, ε ∈ (0, 1], by Lemma A.6.20. Since we
have also proved δ∗∗ = δ̃∗∗, we finally find δ∗∗(ε) > 0, ε ∈ (0, 1]. ��

For classification calibrated margin-based losses L, the preceding theo-
rem shows that using δ∗∗ in Theorem 3.22 always gives non-trivial inequali-
ties between the excess L-risk and the excess classification risk. Furthermore,
Theorem 3.34 shows that in order to establish such inequalities it suffices
to compute the function H( · ) defined by (3.37), and as we will see later
in Theorem 3.36, this computation is rather simple if L is convex. For the
margin-based losses considered in the examples of Section 2.3, the functions
H and δ∗∗max ( · ,QY ) are summarized in Table 3.1. Establishing the resulting
inequalities is left as an exercise (see Exercise 3.9). However, note that for
some losses these inequalities can be improved if the considered P satisfies
an additional assumption, as the following remark shows (see also Theorem
8.29).

Remark 3.35. It is important to note that (3.9) can be used to describe the
classification scenario by a detection loss. Indeed, if for a given distribution P
on X × Y with η(x) := P(y = 1|x), x ∈ X, we define

LP(x, t) := |2η(x)− 1| · 1(−∞,0]

(
(2η(x)− 1) sign t

)
, x ∈ X , t ∈ R,

then LP : X × R → [0,∞) is obviously a detection loss with respect to
A := {(x, t) ∈ X ×R : (2η(x)− 1) sign t ≤ 0} and h(x) = |2η(x)− 1|, x ∈ X.
Furthermore, (3.9) states that

CLclass,η(x)(t)− C∗Lclass,η(x) = CLP,x(t)− C∗LP,x

for all x ∈ X, t ∈ R, i.e., for the distribution P, both losses describe the same
learning goal. Now, condition (3.34) becomes
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PX

({
x ∈ X : 0 < |2η(x)− 1| < s

})
≤ (c s)β , s > 0, (3.40)

which, in a slightly stronger form, will be very important condition on P when
establishing fast learning rates for SVMs in Section 8.3. For now, however,
we would only like to mention that, assuming (3.40), we can immediately
improve the inequalities that we would obtain by combining Theorem 3.34
with Theorem 3.22 for most of the margin-based losses considered in the
examples. For more details, we refer to Remark 3.30 and Exercise 3.9. �

Up to now, we only know that the few examples listed in Table 3.1 are
classification calibrated. The following theorem gives a powerful yet easy tool
to check whether a convex margin-based loss is classification calibrated or not.

Theorem 3.36 (Test for classification calibration). Let L be a convex,
margin-based loss represented by ϕ : R → [0,∞). Then the following state-
ments are equivalent:

i) L is classification calibrated.
ii) ϕ is differentiable at 0 and ϕ′(0) < 0.

Furthermore, if L is classification calibrated, then the Fenchel-Legendre bi-
conjugate of the uniform calibration function δmax( · ,QY ) satisfies

δ∗∗max (ε,QY ) = ϕ(0)− C∗
L, ε+1

2
, ε ∈ [0, 1]. (3.41)

Proof. ii) ⇒ i). Since ϕ is differentiable at 0, the map t→ CL,η(t) is differen-
tiable at 0 and its derivative is C′L,η(0) = (2η−1)ϕ′(0). Consequently, we have
C′L,η(0) < 0 for η ∈ (1/2, 1]. Now recall that the convexity of CL,η( · ) implies
that its derivative is almost everywhere defined and increasing by Theorem
A.6.6 and Proposition A.6.12. Therefore, CL,η( · ) is decreasing on (−∞, 0] and
for η ∈ (1/2, 1] we thus have

H(η) = inf
t∈R:

(2η−1)t≤0

CL,η(t)− C∗L,η = inf
t≤0
CL,η(t)− C∗L,η = CL,η(0)− C∗L,η . (3.42)

Furthermore, C′L,η(0) < 0 shows that CL,η( · ) does not have a minimum at 0
and thus we find H(η) > 0 for all η ∈ (1/2, 1]. Lemma 3.33 then gives the
classification calibration.

i) ⇒ ii). Recall the basic facts on subdifferentials listed in Section A.6.2.
Let us begin with assuming that ϕ is not differentiable at 0. Then there exist
w1, w2 ∈ ∂ϕ(0) with w1 < w2 and w1 �= −w2. Let us fix an η with

1
2
< η <

1
2

+
w2 − w1

2|w1 + w2|
.

Obviously, this choice implies 1
2 (w2 − w1) > |w1 + w2|(η − 1

2 ), and by the
definition of the subdifferential, we further have ϕ(t) ≥ wit + ϕ(0) for t ∈ R

and i = 1, 2. For t > 0, we consequently find
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CL,η(t) = ηϕ(t) + (1−η)ϕ(−t) ≥ η
(
w2t+ ϕ(0)

)
+ (1− η)

(
−w1t+ ϕ(0)

)

=
(

1
2
(w2−w1) + (w1+w2)

(
η − 1

2

))
t+ ϕ(0)

>

((
|w1+w2|+ (w1+w2)

)(
η− 1

2

))
t+ CL,η(0)

≥ CL,η(0) . (3.43)

Furthermore, since L is classification calibrated, we have H(η) > 0, and thus
we find inft>0 CL,η(t) = C∗L,η. Together with (3.43), this shows C∗L,η ≥ CL,η(0).
However, the latter yields H(η) ≤ 0 by (3.42), and thus ϕ must be differen-
tiable at 0. Let us now assume that ϕ′(0) ≥ 0. We then obtain

CL,1(t) = ϕ(t) ≥ ϕ′(0)t+ ϕ(0) ≥ CL,1(0)

for all t > 0. Again this contradicts the classification calibration of L.
In order to show (3.41), we first observe C′L,1/2(0) = 1

2ϕ
′(0)− 1

2ϕ
′(0) = 0.

This immediately gives CL,1/2(0) = C∗L,1/2, and consequently we have

H(η) = ϕ(0)− C∗L,η , η ∈ [1/2, 1], (3.44)

by (3.42) and CL,η(0) = ϕ(0). Now recall that η → C∗L,η is defined by an
infimum taken over affine linear functions, and hence it is a concave func-
tion. Consequently, H is convex on [1/2, 1] and therefore (3.44) together with
Theorem 3.34 and the continuity of L shows (3.41). ��

3.5 Surrogates for Weighted Binary Classification

In this section, we investigate surrogate loss functions for the weighted binary
classification scenario introduced in Example 2.5. To this end, recall that this
scenario is characterized by the loss function

Lα-class(y, t) =

⎧⎪⎨
⎪⎩

1− α if y = 1 and t < 0
α if y = −1 and t ≥ 0
0 otherwise ,

where α ∈ (0, 1) was a fixed weighting parameter and Y := {−1, 1}. Adopting
the notations around (3.36), we begin by computing δmax(ε, η).

Lemma 3.37 (Calibration function). Let L : Y ×R→ [0,∞) be a super-
vised loss. Then, for all α ∈ (0, 1), η ∈ [0, 1], and ε ∈ (0,∞], we have

δmax,Lα-class,L(ε, η) =

{
∞ if ε > |η − α|
inft∈R:(η−α) sign t≤0

(
CL,η(t)− C∗L,η

)
if ε ≤ |η − α|.
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Proof. For t ∈ R, we have CLα-class,η(t) = (1−α)η1(−∞,0)(t)+α(1−η)1[0,∞)(t)
and C∗Lα-class,η = min

{
(1− α)η, α(1− η)

}
. From this we easily deduce

CLα-class,η(t)− C∗Lα-class,η = |η − a| · 1(−∞,0]

(
(η − α) sign t

)
.

Now the assertion follows as in the proof of Lemma 3.32. ��

In the following, we investigate how margin-based losses must be modified
to make them Lα-class-calibrated. To this end, let L be a margin-based loss
represented by some ϕ : R→ [0,∞). For α ∈ (0, 1), we define the α-weighted
version Lα of L by

Lα(y, t) :=

{
(1− α)ϕ(t) if y = 1
αϕ(−t) if y = −1,

t ∈ R.

Our next goal is to translate the results from the previous section for the
unweighted classification scenario into results for the weighted case. To this
end, we will frequently use the quantities

wα(η) := (1− α)η + α(1− η) (3.45)

and

ϑα(η) :=
(1− α)η

(1− α)η + α(1− η) , (3.46)

which are defined for η ∈ [0, 1]. Moreover, we need the following lemma, which
describes the relation between the inner risks of Lα and L.

Lemma 3.38 (Weighted inner risks). Let L be a margin-based loss. Then
for α ∈ (0, 1) and η ∈ [0, 1] the following statements are true:

i) CLα,η(t) = wα(η) CL,ϑα(η)(t) for all t ∈ R, and C∗Lα,η = wα(η) C∗L,ϑα(η).
ii) min{α, 1− α} ≤ wα(η) ≤ max{α, 1− α}.
iii) If L is classification calibrated and η �= α, then CLα,η(0) > C∗Lα,η.

Proof. i). A straightforward calculation shows 1−ϑα(η) = α(1−η)
(1−α)η+α(1−η) , and

hence we obtain

CLα,η(t) = (1− α)ηϕ(t) + α(1− η)ϕ(−t)
=
(
(1− α)η + α(1− η)

)(
ϑα(η)ϕ(t) + (1− ϑα(η))ϕ(−t)

)
= wα(η) CL,ϑα(η)(t) .

ii). This follows from wα(η) = (1− 2α)η + α.
iii). We have η �= α if and only if ϑα(η) �= 1/2. Furthermore, Lemma 3.33

showed H(η) > 0 for η �= 1/2, where H is defined by (3.37), and hence we
have CL,η(0) > C∗L,η for η �= 1/2. Therefore, the assertion follows from

CLα,η(0) = wα(η) CL,ϑα(η)(0) > wα(η) C∗L,ϑα(η) = C∗Lα,η . ��
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With the help of the preceding lemma, we can now characterize when
α-weighted versions of margin-based loss functions are Lα-class-calibrated.

Theorem 3.39 (Weighted classification calibration). Let L be a margin-
based loss function and α ∈ (0, 1). We define Hα : [0, 1]→ [0,∞) by

Hα(η) := inf
t∈R:(η−α)t≤0

CLα,η(t)− C∗Lα,η, η ∈ [0, 1]. (3.47)

Then the following statements are equivalent:

i) Lα is uniformly Lα-class-calibrated with respect to QY .
ii) Lα is Lα-class-calibrated with respect to QY .
iii) L is classification calibrated.
iv) Hα(η) > 0 for all η ∈ [0, 1] with η �= α.

Furthermore, if H is defined by (3.37) then, for all η ∈ [0, 1], we have

Hα(η) = wα(η)H
(
ϑα(η)

)
. (3.48)

Proof. ii) ⇔ iii). An easy calculation shows 2ϑα(η)− 1 = η−α
(1−α)η+α(1−η) , and

hence we find sign(η − α) = sign(2ϑα(η)− 1). For ε ≤ |η − α|, this gives

δmax,Lα-class,Lα
(ε, η) = inf

t∈R
(η−α) sign t≤0

CLα,η(t)− C∗Lα,η

= wα(η) inf
t∈R

(2ϑα(η)−1) sign t≤0

CL,ϑα(η)(t)− C∗L,ϑα(η)

= wα(η) δmax,Lclass,L(ε, ϑα(η)) . (3.49)

Since wα(η) > 0 and ϑα([0, 1]) = [0, 1], we then obtain the equivalence. The
proof of (3.48) is analogous to (3.49).

i) ⇒ ii). Trivial.
iii) ⇒ i). Recall that L is uniformly classification calibrated by Theorem

3.34. Then the implication follows from using wα(η) ≥ min{α, 1−α} in (3.49).
ii) ⇒ iv). Part iii) of Lemma 3.38 together with Lemma 3.37 implies

Hα(η) > 0 for all η �= α.
iv) ⇒ ii). By Lemma 3.37, we have δmax,α(ε, η) ≥ Hα(η) > 0 for η �= α

and 0 < ε ≤ |η − α|. This gives the assertion. ��

With the help of the results above we can now establish our main theo-
rem of this section, which describes an easy way to establish inequalities for
Lα-class-calibrated loss functions.

Theorem 3.40 (Weighted uniform calibration function). Let L be a
margin-based loss and α ∈ (0, 1). For αmax := max{α, 1− α}, we define

δα(ε) := inf
η∈[0,1]
|η−α|≥ε

Hα(η) , ε ∈ [0, αmax],
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Table 3.2. The functions H, Hα, and δ∗∗α for some common margin-based losses.
The values for δ∗∗α are only for α with 0 < α ≤ 1/2. Note that, for the hinge loss, the
function δ∗∗α is actually independent of α. Furthermore, the formulas for the logistic
loss for classification do not fit into the table but can be easily computed.

Loss function H(η) Hα(η) δ∗∗α (ε)

Least squares (2η − 1)2
(η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

Hinge loss |2η − 1| |η − α| ε

Squared hinge (2η − 1)2
(η−α)2

α+η−2αη
ε2

2α(1−α)+ε(1−2α)

where Hα( · ) is defined by (3.47). Then, for all ε ∈ [0, αmax], we have

δ∗∗α (ε) ≤ δ∗∗max,Lα-class,L(ε,QY ) ,

and if L is continuous, both quantities are actually equal.

Proof. Let ε ∈ [0, αmax]. Then Lemma 3.37 together with inf ∅ =∞ yields

inf
Q∈QY

δmax(ε,Q) = inf
η∈[0,1]
|η−α|≥ε

inf
t∈R

(η−α) sign t≤0

CLα,η(t)− C∗Lα,η ≥ inf
η∈[0,1]
|η−α|≥ε

Hα(η) .

��

Obviously, we can use the identity Hα(η) = wα(η)H
(
ϑα(η)

)
in order to

compute the function δα(ε) of the preceding theorem. Doing so, we see that
δα is a continuous function that is strictly positive on (0, αmax] if L is classi-
fication calibrated. Consequently, Theorem 3.40 together with Theorem 3.22
yields non-trivial inequalities. Furthermore, for some important loss functions,
we already know H(η), η ∈ [0, 1], and hence the computation of δ∗∗α (ε) is
straightforward. The corresponding results are summarized in Table 3.2.

Up to now, we have only investigated the Lα-class-calibration of α-weighted
versions of classification calibrated loss functions. We finally show that other
weighted versions are not Lα-class-calibrated.

Theorem 3.41 (Using the correct weights). Let α, β ∈ (0, 1), L be a
margin-based, classification calibrated loss, and Lβ be its β-weighted version.
Then Lβ is Lα-class-calibrated if and only if β = α.

Proof. We already know that Lα is Lα-class-calibrated, and hence we assume
α �= β. Without loss of generality, we only consider the case β > α. For a
fixed η ∈ (α, β), an easy computation then shows that ϑβ(η) defined in (3.46)
satisfies ϑβ(η) < 1/2 < ϑα(η), and hence for ε > 0 with ε ≤ |η−α| we obtain

δmax,Lα-class,Lβ
(ε, η) = inf

(n−α) sign t≤0
CLβ ,η(t)− C∗Lβ ,η

= wβ(η) inf
t<0
CL,ϑβ(η)(t)− C∗L,ϑβ(η) . (3.50)
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The classification calibration of L implies inft≥0 CL,ϑβ(η)(t)−C∗L,ϑβ(η) > 0, and
since inft∈R CL,ϑβ(η)(t)−C∗L,ϑβ(η) = 0, we find inft<0 CL,ϑβ(η)(t)−C∗L,ϑβ(η) = 0.
Together with (3.50), this shows that Lβ is not Lα-class-calibrated. ��

The preceding theorem in particular shows that an α-weighted version of a
classification calibrated margin-based loss function is classification calibrated
if and only if α = 1/2. In other words, using a weighted margin-based loss for
an unweighted classification problem may lead to methodical errors.

3.6 Template Loss Functions

Sometimes an unsupervised loss function explicitly depends on the data-
generating distribution. For example, if we have a distribution P on X × R

with |P|1 < ∞ and we wish to estimate the conditional mean function
x �→ EP(Y |x), we could describe this learning goal by the loss function

L(x, t) :=
∣∣EP(Y |x)− t

∣∣ , x ∈ X, t ∈ R.

Now note that when we change the distribution we have to change the loss
function, though the learning goal remains the same. In view of our analysis
on surrogate losses, this fact is at least annoying. The goal of this section is
to resolve this issue by introducing a new type of “loss function” that may
depend on distributions Q. Let us begin with a precise definition.

Definition 3.42. Let Q be a set of distributions on a closed subset Y ⊂ R.
Then we call a function L : Q×R→ [0,∞) a template loss if, for all com-
plete measurable spaces X and all distributions P of type Q, the P-instance
LP of L defined by

LP : X ×R → [0,∞)
(x, t) �→ L

(
P( · |x), t

) (3.51)

is measurable.

Note that the key condition of this definition is the measurability, which
enables us to interpret P-instances as unsupervised losses. In particular, we
can define the risk of a template loss L by the risk of its P-instance, i.e., by

RL,P(f) := RLP,P(f) =
∫

X

L
(
P( · |x), f(x)

)
dPX(x) ,

where f : X → R is measurable. This motivates us to define the inner risks
of a template loss L : Q × R → [0,∞) analogously to the inner risks of
unsupervised losses, i.e., we write

CL,Q(t) := L(Q, t),
C∗L,Q := inf

t′∈R
L(Q, t′)
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for Q ∈ Q and t ∈ R. Note that the right-hand sides of these definitions have
the form we used for unsupervised losses in the sense that no integrals occur
while the left-hand sides have the form we obtained for supervised losses in
the sense that the inner risks are independent of x. Having defined the inner
risks, we write, as usual,

ML,Q(ε) :=
{
t ∈ R : CL,Q(t) < C∗L,Q + ε

}
, Q ∈ Q, ε ∈ [0,∞],

for the corresponding sets of approximate minimizers. Moreover, given a super-
vised surrogate loss Lsur : Y ×R→ [0,∞), we define the calibration function
δmax( · ,Q) : [0,∞]→ [0,∞] of (L,Lsur) by

δmax,L,Lsur(ε,Q) := inf
t∈R

t	∈ML,Q(ε)

CLsur,Q(t)− C∗Lsur,Q , ε ∈ [0,∞],

if C∗Lsur,Q
<∞ and by δmax,L,Lsur(ε,Q) :=∞ otherwise. Since in the proof of

Lemma 3.14 we did not use that the inner risks are defined by integrals, it is
then not hard to see that this lemma also holds for the calibration function
above. Consequently, we say that Lsur is L-calibrated with respect to Q if

δmax,L,Lsur(ε,Q) > 0

for all ε > 0 and Q ∈ Q. Analogously, we say that Lsur is uniformly L-
calibrated with respect to Q if

δmax,L,Lsur(ε,Q) := inf
Q∈Q

δmax,L,Lsur(ε,Q) > 0

for all ε > 0. If we now consider a P-instance LP of L, we immediately obtain

δmax,LP,Lsur(ε,P( · |x), x) = δmax,L,Lsur(ε,P( · |x)) (3.52)

for all ε ∈ [0,∞] and x ∈ X, where δmax,LP,Lsur( · , · , · ) denotes the calibration
function of (LP, Lsur). In other words, L-calibration of Lsur can be investigated
analogously to supervised losses, i.e., in terms ofQ and independent of x, while
the corresponding results can be used to determine the relation between the
excess Lsur-risk and the excess risk of the unsupervised loss LP. In the following
sections, we will extensively make use of template losses, mainly because of
this technical merit.

3.7 Surrogate Losses for Regression Problems

In regression, the goal is to predict a real-valued output y given an input x.
The discrepancy between the prediction f(x) and the observation y is often
measured by the least squares loss, but we have already seen in Section 2.4
that there are various alternatives. In this section, we investigate the relation
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of these alternatives to the least squares loss. These considerations will be
important for Chapters 9 and 10 on regression and robustness, respectively.

Let us begin by introducing some notation. To this end let, Q be a set of
distributions on R and L : R×R→ [0,∞] be a supervised loss. Since in our
general results on calibration the assumption C∗L,Q <∞ was crucial, we define

Q(L) :=
{
Q ∈ Q : C∗L,Q <∞

}
.

Recall that for distance-based losses we have investigated the condition C∗L,Q <
∞ in Lemma 2.36. In the following, QR denotes the set of distributions on
R, and more generally, QI denotes the set of all distributions whose support
is contained in the subset I ⊂ R. In addition, for p ∈ (0,∞], the set of
distributions on R with p-th finite moment is denoted by

Q(p)
R :=

{
Q : Q distribution on R with |Q|p <∞

}
,

whereas the set of all distributions with bounded support is denoted by

Qbounded := Q(∞)
R =

⋃
M>0

Q[−M,M ] .

Note that QI ⊂ Qbounded ⊂ Q(1)
R holds for all bounded intervals I, and if L is

a continuous, distance-based loss, we actually have Qbounded ⊂ Q(1)
R (L).

Now let Q be a distribution on R such that |Q|1 <∞. Then the mean of
Q is denoted by

EQ :=
∫
R

y dQ(y) .

We call Q symmetric around some c ∈ R if Q(c + A) = Q(c − A) for all
measurable A ⊂ [0,∞). Furthermore, we say that Q is symmetric if it is
symmetric around some c ∈ R. Obviously, Q is symmetric around c if and
only if its centered version Q(c) defined by Q(c)(A) := Q(c + A), A ⊂ R

measurable, is centered around 0. In the following, the set of all symmetric
distributions with p-finite moment is denoted by Q(p)

R,sym. Finally, the sets
QI,sym, for I ⊂ R, and Qbounded,sym are defined in the obvious way.

Let us now assume that Q is symmetric around c. For a measurable func-
tion h : R→ R, we then have

∫
R

h(y − c)dQ(y) =
∫
R

h(y)dQ(c)(y) =
∫
R

h(−y)dQ(c)(y)

=
∫
R

h(c− y)dQ(y) (3.53)

whenever one (and then all) of the integrals exists. In particular, for h(y) :=
y + c, y ∈ R, and Q satisfying |Q|1 <∞, this equation yields

EQ =
∫
R

ydQ(y) =
∫
R

h(y − c)dQ(y) = c+
∫
R

ydQ(c)(y) = c ,
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i.e., the center c is unique and equals the mean EQ.
Let us get back to our main goal, which is identifying LLS-calibrated losses,

where LLS denotes the least squares loss. To this end, recall that for Q ∈
QR(LLS) = Q(2)

R we have already seen in Example 2.6 that

MLLS,Q(0+) = {EQ} .

Consequently, if L is a supervised, LLS-calibrated loss function, we must have
ML,Q(0+) ⊂ {EQ} for all Q ∈ Q(2)

R (L). This observation motivates the follow-
ing two propositions in which we investigate the setsML,Q(0+) for distance-
based losses.

Proposition 3.43 (Exact minimizers for distance-based losses I). Let
L be a distance-based loss whose representing function ψ : R→ [0,∞) satisfies
limr→±∞ ψ(r) =∞. Moreover, let Q ∈ QR be a distribution with CL,Q(t) <∞
for all t ∈ R. Then the following statements are true:

i) If ψ is convex, then t �→ CL,Q(t) is convex and continuous. Moreover, we
have limt→±∞ CL,Q(t) =∞ and ML,Q(0+) �= ∅.

ii) If ψ is strictly convex, then t �→ CL,Q(t) is strictly convex and ML,Q(0+)
contains exactly one element.

Proof. Our first goal is to show that limt→±∞ CL,Q(t) = ∞. To this end,
we fix a B > 0 and let (tn) ⊂ R be a sequence with tn → −∞. Since
limr→±∞ ψ(r) = ∞, there then exists an r0 > 0 such that ψ(r) ≥ 2B for
all r ∈ R with |r| ≥ r0. Since Q(R) = 1, there exists also an M > 0 with
Q([−M,M ]) ≥ 1/2. Finally, there exists an n0 ≥ 1 with tn ≤ −M − r0 for
all n ≥ n0. For y ∈ [−M,M ], this yields y − tn ≥ r0, and hence we find
ψ(y − tn) ≥ 2B for all n ≥ n0. From this we easily conclude

CL,Q(tn) ≥
∫

[−M,M ]

ψ(y − tn) dQ(y) ≥ 2BQ
(
[−M,M ]

)
= B ,

i.e., we have shown CL,Q(tn)→∞. Analogously we can show limt→∞ CL,Q(t) =
∞, and consequently we have limt→±∞ CL,Q(t) =∞. This shows that

{
t ∈ R : CL,Q(t) ≤ CL,Q(0)

}

is a non-empty and bounded subset of R. Furthermore, the convexity of ψ
implies that t �→ CL,Q(t) is convex and hence this map is continuous by Lemma
A.6.2. Now the assertions follow from Theorem A.6.9. ��

Note that for distributions Q ∈ Qbounded we automatically have CL,Q(t) <
∞ for all t ∈ R and all distance-based losses L. Furthermore, if L is of some
growth type p ∈ (0,∞), then Lemma 2.36 shows CL,Q(t) < ∞ for all t ∈ R

and all distributions Q having finite p-th moment. Consequently, the preceding
proposition givesML,Q(0+) �= ∅ in both cases.

The following proposition comparesML,Q(0+) with the mean EQ.
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Proposition 3.44 (Exact minimizers for distance-based losses II). Let
L be a distance-based loss whose representing function ψ is locally Lipschitz
continuous, and let M > 0. Then the following statements are true:

i) If EQ ∈ML,Q(0+) for all Q ∈ Q[−M,M ],sym, then L is symmetric.
ii) If EQ ∈ ML,Q(0+) for all Q ∈ Qbounded, then there exists a constant
c ≥ 0 with ψ(t) = ct2 for all t ∈ R.

Proof. Recall that the fundamental theorem of calculus for Lebesgue integrals
(see Theorem A.6.6) shows that the derivative ψ′ is (Lebesgue)-almost surely
defined and integrable on every bounded interval.
i). Let us fix a y ∈ [−M,M ] such that ψ is differentiable at y and −y. We

define Q := 1
2δ{−y} + 1

2δ{y}. Then we have Q ∈ QR,sym with EQ = 0, and
CL,Q(t) = 1

2ψ(−y−t)+ 1
2ψ(y−t). Consequently, the derivative of CL,Q( · ) exists

at 0 and can be computed by C′L,Q(0) = − 1
2ψ

′(−y) − 1
2ψ

′(y). Furthermore,
our assumption shows that CL,Q( · ) has a minimum at 0, and hence we have
0 = C′L,Q(0), i.e., ψ′(−y) = −ψ′(y). According to our preliminary remark, the
latter relation holds for almost all y, and hence Theorem A.6.6 shows that,
for all y0 ∈ R, we have

ψ(y0) = ψ(0) +
∫ y0

0

ψ′(t)dt = ψ(0)−
∫ y0

0

ψ′(−t)dt = ψ(0)−
∫ 0

−y0

ψ′(t)dt

= ψ(−y0) .

ii). Let y �= 0 and α > 0 be real numbers such that ψ is differentiable at
y, −y, and αy. We define Q := α

1+αδ{0} + 1
1+αδ{(1+α)y}, so that we obtain

EQ = y and CL,Q(t) = α
1+αψ(−t)+ 1

1+αψ(y+αy− t) for all t ∈ R. This shows
that the derivative of CL,Q( · ) exists at y and can be computed by

C′L,Q(y) = − α

1 + α
ψ′(−y)− 1

1 + α
ψ′(αy) =

α

1 + α
ψ′(y)− 1

1 + α
ψ′(αy) ,

where in the last step we used i). Now, our assumption EQ ∈ ML,Q(0+)
gives C′L,Q(y) = 0, and hence we find αψ′(y) = ψ′(αy). Obviously, the latter
relation holds for almost all α > 0, and thus we obtain

ψ(ty) = ψ(0) +
∫ t

0

ψ′(sy)y ds =
∫ t

0

sψ′(y)y ds =
ψ′(y)
2y

(ty)2

for all t > 0. From this we easily obtain the assertion for c := ψ′(y)
2y . ��

Proposition 3.44 shows that there is basically no distance-based surrogate
for the least squares loss LLS if one is interested in the entire class

QR(LLS) = Q(2)
R =

{
Q ∈ QR : |Q|2 <∞

}
.

Furthermore, it shows that the least squares loss is essentially the only
distance-based loss function whose minimizer is the mean for all distributions
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in Q(2)
R . In other words, if we are actually interested in finding the regression

function x �→ EP(Y |x), and we just know |P|2 < ∞, then the least squares
loss is the only suitable distance-based loss for this task. However, if we cannot
ensure the tail assumption |P|2 < ∞ but know instead that the conditional
distributions P( · |x) are symmetric, then Proposition 3.44 suggests that we
may actually have alternatives to the least squares loss. In order to investigate
this conjecture systematically, we first need a target loss that describes the
goal of estimating the mean. To this end, let us consider the mean distance
template loss Lmean : Q(1)

R ×R→ [0,∞), which is defined by

Lmean(Q, t) := |EQ− t| , t ∈ R ,Q ∈ Q(1)
R .

Note that this indeed defines a template loss, since given a Q(1)
R -type distrib-

ution P on X ×R, it is easy to see that

(x, t) �→ Lmean(P( · |x), t) =
∣∣EP(Y |x)− t

∣∣
is measurable. Moreover, we have

L2
mean(Q, t) =

(
EQ− t

)2 = CLLS,Q(t)− C∗LLS,Q , Q ∈ Q(2)
R , t ∈ R,

and since the minimal Lmean-risks equal 0, we thus obtain MLmean,Q(
√
ε) =

MLLS,Q(ε) for all ε > 0. From this we immediately find

δmax,Lmean,L(
√
ε,Q) = δmax,LLS,L(ε,Q) , ε ∈ [0,∞], (3.54)

for all distance-based losses L and all Q ∈ Q(2)
R ∩ QR(L). In other words,

by considering Lmean-calibration, we simultaneously obtain results on LLS-
calibration.

We saw in Section 3.1 that the inner risks are the key quantities for com-
puting calibration functions. The following lemma presents a way to compute
the inner risks CL,Q( · ) when both L and Q are symmetric.

Lemma 3.45 (Inner risks of symmetric losses). Let L be a symmetric
loss with representing function ψ and Q ∈ Q(1)

R,sym(L). Then we have

CL,Q(EQ + t) = CL,Q(EQ− t) =
1
2

∫
R

ψ(y − EQ− t) + ψ(y − EQ + t) dQ(y)

for all t ∈ R. In addition, if L is convex, we have

CL,Q(EQ) = C∗L,Q ,

and if L is strictly convex, we also have CL,Q(EQ + t) > C∗L,Q for all t �= 0.

Proof. Let us write m := EQ. Recalling that the centered version Q(m) of Q
is symmetric around 0, the symmetry of ψ and (3.53) then yield
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CL,Q(m+ t) =
∫
R

ψ(y − t)dQ(m)(y) =
∫
R

ψ(−y − t)dQ(m)(y)

=
∫
R

ψ(y + t)dQ(m)(y)

= CL,Q(m− t) .

Since this yields CL,Q(m+ t) = 1
2 (CL,Q(m+ t) + CL,Q(m− t)), we also obtain

the second equation. Furthermore, if ψ is convex, we can easily conclude that

CL,Q(m+t) =
1
2

∫
R

ψ(y−t)+ψ(y+t)dQ(m)(y) ≥
∫
R

ψ(y)dQ(m)(y) = CL,Q(m)

for all t ∈ R. This shows the second assertion. The third assertion can be
shown analogously. ��

With the help of the preceding lemma, we can derive a simple formula for
the calibration function δmax,Lmean,L(ε,Q) if L is convex.

Lemma 3.46 (Calibration function for symmetric losses). Let L be a
symmetric, convex loss and Q ∈ Q(1)

R,sym(L). Then, for all ε ≥ 0, we have

δmax,Lmean,L(ε,Q) = CL,Q(EQ + ε)− CL,Q(EQ) . (3.55)

Consequently, ε �→ δmax,Lmean,L(ε,Q) is convex and the following statements
are equivalent:

i) δmax,Lmean,L(ε,Q) > 0 for all ε > 0.
ii) CL,Q(EQ + t) > CL,Q(EQ) for all t ∈ R with t �= 0.

Proof. Obviously, it suffices to prove (3.55). To this end, observe that t �→
CL,Q(EQ + t) is a convex function on R, and Lemma 3.45 shows that it is
also symmetric in the sense of CL,Q(EQ + t) = CL,Q(EQ− t) for all t ∈ R.
Therefore, t �→ CL,Q(EQ + t) is decreasing on (∞, 0] and increasing on [0,∞),
and hence we find

δmax,Lmean,L(ε,Q) = inf
t	∈(ε,ε)

CL,Q(EQ + t)− C∗L,Q = CL,Q(EQ + ε)− C∗L,Q .

Since we already know that C∗L,Q = CL,Q(EQ) by Lemma 3.45, we then obtain
the assertion. ��

Our next result is a technical lemma that will be used to establish upper
bounds on δmax,Lmean,L(ε,Q). For its formulation, we need the set

Q∗
R,sym :=

{
Q ∈ Q(1)

R,sym : Q
(
[EQ− ρ,EQ + ρ]

)
> 0 for all ρ > 0

}
,

which contains all symmetric distributions on R that do not vanish around
their means. Moreover, we also need the setsQ∗

I,sym := QI∩Q∗
R,sym, for I ⊂ R,

and Q∗
bounded,sym := Qbounded ∩Q∗

R,sym. Now the result reads as follows.
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Lemma 3.47 (Upper bound on excess risks). Let L be a symmetric,
continuous loss with representing function ψ. Assume that there exist a δ0 ∈
R, s1, s2 ∈ R with s1 �= s2, and an ε0 > 0 such that for all ε ∈ [0, ε0] we have

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε
)
≤ δ0 . (3.56)

Let us write M := | s1+s2
2 | + ε0 and t := s2−s1

2 . Then, for all δ > 0, there
exists a Lebesgue absolutely continuous Q ∈ Q∗

[−M,M ],sym with EQ = 0 and

CL,Q(EQ + t)− CL,Q(EQ) ≤ δ0 + δ .

Moreover, there exists a Lebesgue absolutely continuous Q ∈ Q[−M,M ],sym with
EQ = 0 and CL,Q(EQ + t)− CL,Q(EQ) ≤ δ0.

Proof. In the following, µ[a,b] denotes the uniform distribution on the interval
[a, b]. We write y0 := s1+s2

2 . Furthermore, if y0 = 0, we define Q := µ[−ε0,ε0],
and otherwise we define

Q := αµ[−| y0
2 |,| y0

2 |] +
1− α

2
µ[−y0−ε0,−y0] +

1− α
2

µ[y0,y0+ε0] ,

where α ∈ (0, 1) is a real number satisfying

sup
y∈[−| y0

2 |,| y0
2 |]

∣∣∣ψ(y − t) + ψ(y + t)
2

− ψ(y)
∣∣∣ ≤ δ

α
.

Now we obviously have EQ = 0 in both cases. Moreover, if y0 �= 0, the
construction together with Lemma 3.45 yields

CL,Q(t)− CL,Q(0)

=
∫
R

ψ(y − t) + ψ(y + t)
2

− ψ(y)dQ(y)

= α

∫
[−| y0

2 |,| y0
2 |]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dµ[−| y0
2 |,| y0

2 |](y)

+(1− α)
∫

[y0,y0+ε0]

ψ(y − t) + ψ(y + t)
2

− ψ(y) dµ[y0,y0+ε0](y)

≤ δ + (1− α)
∫

[0,ε0]

ψ(s1 + ε) + ψ(s2 + ε)
2

− ψ
(s1 + s2

2
+ ε
)
dµ[0,ε0](ε)

≤ δ0 + δ .

Furthermore, the case y0 = 0 can be shown analogously, since y0 = 0 implies
y − t = s1 + y and y + t = s2 + y. The last assertion follows if we repeat the
construction above with α = 0. ��

Let us now establish our first two main results, which characterize losses L
that are Lmean-calibrated with respect to Q∗

R,sym(L) and Q(1)
R,sym, respectively.
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Theorem 3.48 (Mean calibration I). Let L : R × R → [0,∞) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L is Lmean-calibrated with respect to Q∗
R,sym(L).

ii) L is Lmean-calibrated with respect to Q∗
bounded,sym.

iii) L is Lmean-calibrated with respect to Q∗
[−M,M ],sym for all M > 0.

iv) L is convex, and its representing function ψ has its only minimum at 0.

Proof. i)⇒ ii)⇒ iii). Trivial.
iv)⇒ i). Assume that L is not Lmean-calibrated with respect toQ∗

R,sym(L).
By Lemma 3.46, there then exist a Q ∈ Q∗

R,sym(L) and a t �= 0 with
CL,Q(m+ t) = C∗L,Q, where m := EQ. Using CL,Q(m) = C∗L,Q, which we know
from Lemma 3.45, then yields
∫
R

ψ(y − t) + ψ(y + t)
2

− ψ(y) dQ(m)(y) = CL,Q(m+ t)− CL,Q(m) = 0 ,

and hence the convexity of ψ shows ψ(y−m−t)+ψ(y−m+t)
2 −ψ(y−m) = 0 for Q-

almost all y ∈ R. The continuity of ψ and the assumption Q(m+ [−ρ, ρ]) > 0
for all ρ > 0, then guarantee that ψ(y−m−t)+ψ(y−m+t)

2 − ψ(y −m) = 0 holds
for y := m. However, by the symmetry of ψ, this implies ψ(t) = ψ(0).
iii)⇒ iv). Assume that ψ is not convex. Then Lemma A.6.17 shows that

there exist s1, s2 ∈ R with s1 �= s2 and ψ(s1)+ψ(s2)
2 − ψ( s1+s2

2 ) < 0. By the
continuity of ψ, we then find (3.56) for some suitable δ0 < 0 and ε0 > 0, and
hence Lemma 3.47 gives an M > 0, a Q ∈ Q∗

[−M,M ],sym, and a t∗ �= 0 with
CL,Q(t∗) < CL,Q(0) and EQ = 0. Now observe that since ψ is continuous and
Q has bounded support, the map t �→ CL,Q(t) is continuous on R by Lemma
A.6.2. Let (tn) ⊂ R be a sequence with CL,Q(tn) → C∗L,Q for n → ∞. Since
our previous considerations showed CL,Q(0) �= C∗L,Q, there must exist an ε > 0
and an n0 ∈ N such that |tn| ≥ ε for all n ≥ n0. Since EQ = 0, this shows

δmax,Lmean,L(ε,Q) = inf
t	∈(−ε,ε)

CL,Q(t)− C∗L,Q ≤ CL,Q(tn)− C∗L,Q

for all n ≥ n0. For n→∞, we hence find δmax(ε,Q) = 0, and consequently L
is convex. Finally, assume that there exists a t �= 0 with ψ(t) = ψ(0). Then we
find CL,Q(t) = C∗L,Q for the distribution Q defined by Q({0}) = 1, and hence
we obtain δmax(|t|,Q) = 0. Therefore ψ has its only minimum at 0. ��

Theorem 3.49 (Mean calibration II). Let L : R×R→ [0,∞) be a sym-
metric and continuous loss. Then the following statements are equivalent:

i) L is Lmean-calibrated with respect to Q(1)
R,sym(L).

ii) L is Lmean-calibrated with respect to Qbounded,sym.
iii) L is Lmean-calibrated with respect to Q[−M,M ],sym for all M > 0.
iv) L is strictly convex.
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Proof. i)⇒ ii)⇒ iii). Trivial.
iv)⇒ i). It immediately follows from Lemma 3.45 and Lemma 3.46.
iii) ⇒ iv). If L is Lmean-calibrated with respect to Q[−M,M ],sym for all

M > 0, then Theorem 3.48 shows that L is convex. Let us suppose that its
representing function ψ is not strictly convex. Then there are r1, r2 ∈ R with
r1 �= r2 and

ψ
(1

2
r1 +

1
2
r2

)
=

1
2
ψ(r1) +

1
2
ψ(r2) .

From this and Lemma A.6.17, we find (3.56) for δ0 = 0 and some suitable
s1 �= s2 and ε0 > 0. Lemma 3.47 then gives an M > 0, a Q ∈ Q[−M,M ],sym,
and a t0 �= 0, with CL,Q(EQ + t0) = CL,Q(EQ), and hence Lemma 3.46 shows
that L is not Lmean-calibrated with respect to Q ∈ Q[−M,M ],sym(L). ��

Our next aim is to estimate the function ε �→ δmax(ε,Q) for some classes of
distributions Q ⊂ QR,sym. To this end, we define the modulus of convexity
of a function f : I → R defined on some interval I by

δf (ε) := inf
{
f(x1) + f(x2)

2
− f
(x1 + x2

2

)
: x1, x2 ∈ I with |x1 − x2| ≥ ε

}
,

where ε > 0. In addition we say that f is uniformly convex if δf (ε) > 0
for all ε > 0. We refer to Section A.6.3 for some properties of the modulus of
convexity and uniformly convex functions.

With the help of the modulus of convexity, we can now formulate the
following theorem that estimates δmax,Lmean,L(ε,Q) and characterizes uniform
Lmean-calibration.

Theorem 3.50 (Uniform mean calibration). Let L be a symmetric, con-
vex loss with representing function ψ. Then the following statements are true:

i) For all M > 0, ε > 0, and Q∗
[−M,M ],sym ⊂ Q ⊂ Q[−M,M ],sym, we have

δψ|[−(2M+ε),2M+ε](2ε) ≤ δmax,Lmean,L(ε,Q) ≤ δψ|[−M/2,M/2](2ε) . (3.57)

Moreover, the following statements are equivalent:
a) L is uniformly Lmean-calibrated w.r.t. Q∗

[−M,M ],sym for all M > 0.
b) L is uniformly Lmean-calibrated w.r.t. Q[−M,M ],sym for all M > 0.
c) The function ψ is strictly convex.

ii) For all ε > 0, we have

δψ(2ε) = δmax,Lmean,L(ε,QR,sym(L)) = δmax(ε,Q∗
bounded,sym) . (3.58)

Moreover, the following statements are equivalent:
a) L is uniformly Lmean-calibrated with respect to Q(1)

R,sym(L).
b) L is uniformly Lmean-calibrated with respect to Q∗

bounded,sym.
c) The function ψ is uniformly convex.
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Proof. i). Let Q ∈ Q[−M,M ],sym. Then we have EQ ∈ [−M,M ], and hence
Lemmas 3.45 and 3.46 yield

δmax(ε,Q) =
∫

[−M,M ]

ψ
(
y − EQ− ε

)
+ ψ
(
y − EQ + ε

)
2

− ψ(y − EQ) dQ(y)

≥ δψ|[−(2M+ε),2M+ε](2ε).

This shows the first inequality of (3.57). To prove the second inequality, we
observe that it suffices to consider the case ε ≤ M/2 since for ε > M/2
we have δψ|[−M/2,M/2](2ε) = ∞. Let us now fix an n ≥ 1. Then there exist
s1, s2 ∈ [−M/2,M/2] with s1 − s2 ≥ 2ε and

ψ(s1) + ψ(s2)
2

− ψ
(
s1 + s2

2

)
< δψ|[−M/2,M/2](2ε) +

1
n

=: δ0 <∞ .

By the continuity of ψ, there thus exists an ε0 ∈ (0,M/2] such that (3.56) is
satisfied for δ0, and consequently Lemma 3.47 gives a Q ∈ Q∗

[−M,M ],sym with

CL,Q(EQ + t)− CL,Q(EQ) ≤ δψ|[−M/2,M/2](2ε) +
2
n
,

where t := s1−s2
2 . Using t ≥ ε and Lemma 3.46, we hence find

δmax(ε,Q∗
[−M,M ],sym) ≤ δmax(ε,Q) ≤ δψ|[−M/2,M/2](2ε) +

2
n
.

Since this holds for all n ≥ 1, the second inequality of (3.57) follows. Fi-
nally, from Lemma A.6.17, we know that ψ is strictly convex if and only if
δψ|[−B,B](ε) > 0 for all B and ε > 0, and hence the characterization follows.

ii). Analogously to the proof of the first inequality in (3.57), we find

δψ(2ε) ≤ δmax(ε,QR,sym(L)) , ε > 0.

Furthermore, analogously to the proof of the second inequality in (3.57), we
obtain

δmax(ε,Q∗
bounded,sym) ≤ δψ(2ε) , ε > 0,

and hence (3.58) is proved. Finally, the characterization is a trivial conse-
quence of (3.58). ��

The preceding theorem shows that the modulus of convexity completely
determines whether a symmetric loss is uniformly Lmean-calibrated with re-
spect to Q(1)

R,sym(L) or Q∗
bounded,sym. Unfortunately, Lemma A.6.19 shows that,

for all distance-based losses of upper growth type p < 2, we have δψ(ε) = 0
for all ε > 0. In particular, Lipschitz continuous, distance-based losses, which
are of special interest for robust regression methods (see Chapter 10), are not
uniformly calibrated with respect to Q(1)

R,sym(L) or Q∗
bounded,sym, and conse-

quently we cannot establish distribution independent relations between the
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Table 3.3. Some symmetric loss functions and corresponding upper and lower
bounds for the moduli of convexity δψ|[−B,B](2ε), 0 < ε ≤ B. The asymptotics for
the Lp-loss, 1 < p < 2, are computed in Exercise 3.12. For the Lp-loss, p ≥ 2, and
Huber’s loss, the lower bounds can be found by Clarkson’s inequality (see Lemma
A.5.24), and the upper bounds can be found by picking suitable t1, t2 ∈ [−B, B].
The calculations for the logistic loss can be found in Example 3.51.

Loss Function Lower Bound of δψ|[−B,B](2ε) Upper Bound of δψ|[−B,B](2ε)

L1-dist 0 0

Lp-dist, p ∈ (1, 2)
p(p−1)

2
Bp−2ε2

p
2(p−1)2

Bp−2ε2

Lp-dist, p ∈ [2,∞) εp εp

Lr-logist
1−e−ε

2
ln

eB+e2ε

eB+eε (1 − e−ε) ln
eB+e2ε

eB+eε

Lα-Huber, α>0
ε2

2
if B ≤ α

0 else

ε2

2
if B ≤ α

0 else

excess L-risks and RLmean,P( · ) in the sense of Question 3.2. On the other
hand, symmetric, strictly convex losses L are Lmean-calibrated with respect
to Q(1)

R,sym(L), and hence we can show analogously to Theorem 3.61 below
that fn → E(Y | · ) in probability PX whenever RL,P(fn)→ R∗

L,P and P is of

type Q(1)
R,sym(L). In addition, if we restrict our considerations to Q[−M,M ],sym

or Q∗
[−M,M ],sym, then every symmetric, strictly convex loss becomes uniformly

Lmean-calibrated, and in this case δψ|[−B,B]( · ), B > 0, can be used to describe
the corresponding calibration function. For some important losses, we have
listed the behavior of δψ|[−B,B]( · ) in Table 3.3. Furthermore, Lemma A.6.19
establishes a formula for the modulus of convexity that often helps to bound
the modulus. The following example illustrates this.

Example 3.51. Recall from Example 2.40 that the logistic loss for regres-
sion is the symmetric loss represented by ψ(t) := − ln 4et

(1+et)2 , t ∈ R. Let us
show, that for B > 0 and ε ∈ (0, B], we have

1− e−ε

2
ln
eB + e2ε

eB + eε
≤ δψ|[−B,B](2ε) ≤ (1− e−ε) ln

eB + e2ε

eB + eε
.

To see this, we first observe that ψ′(t) = et−1
et+1 for all t ∈ R, and hence we

obtain

ψ′(t)− ψ′(t− ε) =
et − 1
et + 1

− e
t − eε
et + eε

=
2et(eε − 1)

(et + 1)(et + eε)

for all t ∈ R and ε ≥ 0. Consequently, we have
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eε − 1
et + eε

≤ ψ′(t)− ψ′(t− ε) ≤ 2
eε − 1
et + eε

for all t ≥ 0 and ε ≥ 0. Furthermore, for ε > 0 an easy calculation gives

inf
x∈[0,B−ε]

∫ x+ε

x

eε − 1
et + eε

dt =
∫ B

B−ε

eε − 1
et + eε

dt = (1− e−ε)
(
t− ln

(
et+eε

))∣∣∣∣
B

t=B−ε

= (1− e−ε) ln
eB + e2ε

eB + eε
.

Using Lemma A.6.19 then yields the assertion. �

In Theorem 3.48, we have seen that for Q ∈ Q∗
R,sym(L) we may have

δmax(ε,Q) > 0, ε > 0, even if L is not strictly convex. The key reason for this
possibility was the assumption that Q has some mass around its center. Now
recall that in the proof of the upper bounds of Theorem 3.50 we used the fact
that for general Q ∈ Q∗

R,sym this mass can be arbitrarily small. However, if
we enforce lower bounds on this mass, the construction of this proof no longer
works. Instead, it turns out that we can establish lower bounds on δmax(ε,Q),
as the following example illustrates (see also Example 3.67).

Example 3.52. Recall that the absolute distance loss is the symmetric loss
represented by ψ(t) = |t|, t ∈ R. Then, for all Q ∈ Q(1)

R,sym and ε > 0, we have

δmax,Lmean,L1-dist(ε,Q) =
∫ ε

0

Q(EQ)
(
(−s, s)

)
ds . (3.59)

To see this, recall that for symmetric distributions the mean equals the me-
dian, i.e., the 1/2-quantile. Now (3.59) follows from Proposition 3.9. �

The results in this section showed that using symmetric surrogate losses for
regression problems requires some care: for example, let us suppose that the
primary goal of the regression problem is to estimate the conditional mean.
If we only know that the conditional distributions P( · |x), x ∈ X, have finite
variances (and expect these distributions to be rather asymmetric), then the
least squares loss is the only reasonable, distance-based choice by Proposition
3.44. However, if we know that these distributions are (almost) symmetric,
then symmetric, strictly convex, and Lipschitz continuous losses such as the
logistic loss can be reasonable alternatives. In addition, if we are confident
that these conditional distributions are also rather concentrated around their
mean, e.g., in the form of Q(EQ)((−s, s)) > cQs

q for small s > 0, then even
the absolute distance loss can be a good choice. Finally, if we additionally
expect that the data set contains extreme outliers, then the logistic loss or
the absolute distance loss may actually be a better choice than the least
squares loss. However, recall that such a decision only makes sense if the noise
distribution is (almost) symmetric.
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3.8 Surrogate Losses for the Density Level Problem

In this section, our goal is to find supervised loss functions that are calibrated
with respect to the density level detection loss LDLD introduced in Example
2.9. To this end, let us first recall that in the density level detection scenario
our learning goal was to identify the ρ-level set {g > ρ} of an unknown density
g : X → [0,∞) whose reference distribution µ on X is known. Unfortunately,
the loss LDLD formalizing this learning goal does depend on the unknown
density g, and thus we cannot compute its associated risks. Consequently,
our goal in this section is to find supervised surrogates for LDLD that do not
depend on g. At first glance, this goal seems to be rather impossible since
supervised losses require labels that do not exist in the description of the
DLD learning scenario. Therefore, our first goal is to resolve this issue by
introducing artificial labels. To this end, we need the following definition.

Definition 3.53. Let µ be a distribution on some X and Y := {−1, 1}. Fur-
thermore, let g : X → [0,∞) be measurable with ‖g‖L1(µ) = 1. Then, for
ρ > 0, we write gµ�ρ µ for the distribution P on X × Y that is defined by

PX :=
g + ρ
1 + ρ

µ ,

P(y = 1|x) :=
g(x)

g(x) + ρ
, x ∈ X.

An elementary calculation shows that for measurable A ⊂ X × Y we have

gµ�ρ µ (A) =
1

1 + ρ
Ex∼gµ1A(x, 1) +

ρ

1 + ρ
Ex∼µ1A(x,−1) , (3.60)

and hence P := gµ �ρ µ describes a binary classification problem in which
the negative samples are drawn from the distribution µ with probability ρ

1+ρ
and in which the positive samples are drawn from the distribution gµ with
probability 1

1+ρ .
We have already mentioned in Example 2.9 that we are primarily interested

in the quantity RLDLD,µ(f), which describes the discrepancy of the estimated
level set {f ≥ 0} to the true ρ-level set. Now observe that, for P := gµ �ρ µ
and measurable f : X → R, we have

RLDLD,µ(f) =
∫

X

LDLD(x, f(x)) dµ(x) =
∫

X

LDLD(x, f(x))
1 + ρ
g(x) + ρ

dPX(x) ,

and consequently we can describe the DLD learning scenario by P and the
detection loss L̄ : X ×R→ [0,∞) defined by

L̄(x, t) := LDLD(x, t)
1 + ρ
g(x) + ρ

, x ∈ X, t ∈ R. (3.61)

The first benefit of this reformulation is that our new target risk RL̄,P( · ) is
defined by a distribution P, which produces labels, and consequently it makes
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sense to look for supervised surrogates for L̄. Furthermore, we have access to
P via (3.60) in the sense that a) the distribution gµ can be estimated from
the unlabeled samples given in the DLD scenario, see Example 2.9, and b)
both µ and ρ are known. This makes it possible to construct an empirical
approximation of P that can then lead to learning algorithms based on this
approximation. For some literature in this direction, we refer to Section 2.5
and to the end of Section 8.6. The second benefit of considering the L̄-risk
is that P describes a classification problem, and hence it seems natural to a)
investigate L̄-calibration with the help of classification calibration and b) use
classification algorithms for the DLD learning scenario. In order to confirm
this intuition, let us consider the function L̄DLD : [0, 1]×R→ [0,∞) defined
by

L̄DLD(η, t) := (1− η)1(−∞,0)

(
(2η − 1) sign t

)
. (3.62)

Using the identification η = Q({1}) between η ∈ [0, 1] and Q ∈ QY , where
Y := {−1, 1}, we can regard the function L̄DLD as a template loss. For P =
gµ�ρ µ, the P-instance L̄DLD,P of L̄DLD then becomes

L̄DLD,P(x, t) = L̄DLD

(
P( · |x), t

)
= (1− η(x))1(−∞,0)

(
(2η(x)− 1) sign t

)
=

ρ

g(x) + ρ
1(−∞,0)

(
(g(x)− ρ) sign t

)

=
ρ

1 + ρ
L̄(x, t) ,

where we used η(x) := P(y = 1|x) = g(x)
g(x)+ρ . In other words, the P-instance

L̄DLD,P of L̄DLD equals our detection loss L̄ up to the constant ρ
1+ρ , and hence

we obtain
RLDLD,µ(f) = RL̄,P(f) =

1 + ρ
ρ
RL̄DLD,P,P(f) (3.63)

for P = gµ �ρ µ and all measurable functions f : X → R. Consequently,
suitable supervised surrogates for the DLD problem are exactly the losses
that are L̄DLD-calibrated in the following sense.

Definition 3.54. Let Y := {−1, 1} and L : Y × R → [0,∞) be a supervised
loss. We say that L is (uniformly) density level detection calibrated if
L is (uniformly) L̄DLD-calibrated with respect to QY .

In order to identify DLD-calibrated losses, we need to know the corre-
sponding calibration function. This function is computed in the next lemma.

Lemma 3.55 (Calibration function for DLD). Let L : Y × R → [0,∞)
be a supervised loss function. Then, for all η ∈ [0, 1] and ε ∈ (0,∞], we have

δmax,L̄DLD,L(ε, η) =

{
∞ if ε > 1− η
inft∈R:(2η−1) sign t<0 CL,η(t)− C∗L,η if ε ≤ 1− η.
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Proof. A simple calculation shows C∗
L̄DLD,η

= 0, and consequently we obtain
ML̄DLD,η(ε) = R if ε > 1− η, andML̄DLD,η(ε) = {t ∈ R : (2η − 1) sign t ≥ 0}
otherwise. From this we immediately find the assertion. ��

With the help of the preceding lemma, we now obtain the first main result,
which compares classification calibration with L̄DLD-calibration.

Theorem 3.56 (DLD-calibration). Let L : Y ×R→ [0,∞) be a supervised
loss and η ∈ [0, 1]. Then, for all 0 ≤ ε ≤ min{1− η, |2η − 1|}, we have

δmax,L̄DLD,L(ε, η) ≥ δmax,Lclass,L(ε, η) ,

and consequently L is DLD-calibrated if L is classification calibrated. More-
over, if L is continuous, then the inequality above becomes an equality and L
is classification calibrated if and only if L is DLD-calibrated.

Proof. Combining Lemma 3.55 with Lemma 3.32 yields

δmax,L̄DLD,L(ε, η) = inf
t∈R:

(2η−1) sign t<0

CL,η(t)− C∗L,η ≥ inf
t∈R:

(2η−1) sign t≤0

CL,η(t)− C∗L,η

= δmax,Lclass,L(ε, η) .

Now assume that L is continuous. Since there is nothing to prove for η = 1/2,
we additionally assume η �= 1/2. Then the assertion can be found by using
the continuity of t �→ CL,η(t) in the estimate above. ��

By the results on classification calibrated, margin-based losses from Section
3.4, we immediately obtain a variety of DLD-calibrated losses. Furthermore,
the P-instances of L̄DLD are bounded and hence Theorem 3.27 yields

RL,P(fn)→ R∗
L,P =⇒ RLDLD,µ(fn)→ 0

whenever P = gµ�ρ µ and L is classification calibrated. In addition, one can
show that for L := Lclass the converse implication is also true. For details, we
refer to Exercise 3.13.

Our next goal is to identify uniformly DLD-calibrated losses. The following
theorem gives a complete, though rather disappointing, solution.

Theorem 3.57 (No uniform DLD-calibration). There exists no super-
vised loss L : Y × R → [0,∞) that is uniformly L̄DLD-calibrated with respect
to both {Q ∈ QY : Q({1}) ∈ [0, 1/2)} and {Q ∈ QY : Q({1}) ∈ (1/2, 3/4]}. In
particular, there exists no uniform DLD-calibrated supervised loss.

Proof. Let L : Y ×R→ [0,∞) be a supervised loss. For η ∈ [0, 1], we define

g+(η) = inf
t<0
CL,η(t) and g−(η) = inf

t≥0
CL,η(t) .

Then the functions g+ : [0, 1]→ [0,∞) and g− : [0, 1]→ [0,∞) can be defined
by suprema taken over affine linear functions in η ∈ R, and since g+ and g−
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are also finite for η ∈ [0, 1], we find by Lemma A.6.4 that g+ and g− are
continuous at every η ∈ [0, 1]. Moreover, we have C∗L,η = min{g+(η), g−(η)}
for all η ∈ [0, 1], and hence C∗L,η is continuous in η. Let us first consider the case
C∗L,1/2 = g+(1/2). To this end, we first observe that there exists a sequence
(tn) ⊂ (−∞, 0) with

g+
(
1/2 + 1/n

)
≤ CL,1/2+1/n(tn) ≤ g+

(
1/2 + 1/n

)
+ 1/n (3.64)

for all n ≥ 1. Moreover, our assumption C∗L,1/2 = g+(1/2) yields
∣∣CL,1/2+1/n(tn)− C∗L,1/2+1/n

∣∣ ≤ ∣∣CL,1/2+1/n(tn)− g+(1/2 + 1/n)
∣∣

+
∣∣g+(1/2 + 1/n

)
− g+(1/2)

∣∣
+
∣∣C∗L,1/2 − C∗L,1/2+1/n

∣∣
for all n ≥ 1. By (3.64) and the continuity of g+ and η �→ C∗L,η, we hence find

lim
n→∞

∣∣CL,1/2+1/n(tn)− C∗L,1/2+1/n

∣∣ = 0 .

For Q :=
{
Q ∈ QY : Q({1}) ∈ (1/2, 3/4]

}
, Lemma 3.55, the definition g+,

and (3.64) then yield

δmax,L̄DLD,L(ε,Q) = inf
η∈( 1

2 , 3
4 ]
g+(η)− C∗L,η ≤ inf

n≥1
CL,1/2+1/n(tn)− C∗L,1/2+1/n

= 0 .

Consequently, L is not uniformly L̄DLD-calibrated with respect to Q. Finally,
in the case C∗L,1/2 = g−(1/2), we can analogously show that L is not uniformly
L̄DLD-calibrated with respect to {Q ∈ QY : Q({1}) ∈ [0, 1/2)}. ��

The preceding theorem shows that there exists no uniformly DLD-cali-
brated, supervised loss. Now recall that Theorem 3.24 showed that uniform
calibration is necessary to establish inequalities between excess risks if es-
sentially no assumptions on the data-generating distribution are imposed.1

Together with Theorem 3.57, we consequently see that it is impossible to
find a supervised loss L : Y × R → [0,∞) and an increasing function
δ : [0,∞]→ [0,∞] such that δ(0) = 0, δ(ε) > 0 for all ε > 0, and

δ
(
RLDLD,µ(f)

)
≤ RL,P(f)−R∗

L,P (3.65)

for all µ, g, ρ, f , and P := gµ �ρ µ. However, in the DLD learning sce-
nario, we actually know µ and ρ, and hence the question remains whether for
certain fixed µ and ρ there exists a non-trivial function δ satisfying (3.65).
Unfortunately, Steinwart (2007) showed that the answer is again no.
1 Formally, the result only holds for loss functions and not template losses. However,

it is quite straightforward to see that the proof of Theorem 3.24 can be easily
modified to establish an analogous result for instances of template losses.



3.9 Self-Calibrated Loss Functions 97

3.9 Self-Calibrated Loss Functions

Given a loss L and a distribution P such that an exact minimizer f∗L,P of
RL,P( · ) exists, one may ask whether, and in which sense, approximate mini-
mizers f of RL,P( · ) approximate f∗L,P. For example, in binary classification,
one often wants to find a decision function f that not only has a small classi-
fication error but also estimates the conditional probability P(y = 1|x). Now
assume that we have found an f whose excess L-risk is small for a suitable
surrogate L of the classification loss (recall Section 3.4 for examples of such
surrogates). Assume further that the L-risk has a unique minimizer f∗L,P that,
in addition, has a one-to-one correspondence to the conditional probability.
If we have a positive answer to the question above, we can then use a suit-
able transformation of f(x) to estimate P(y = 1|x). An important example of
such a loss, namely the logistic loss for classification, is discussed in Example
3.66. Moreover, we will discuss how the pinball loss can be used to estimate
quantiles. The main goal of this section is, however, to provide some general
answers to the question above.

Let us begin by introducing some notation. To this end, let L : Y ×R→
[0,∞) be a supervised loss function for some Y ⊂ R closed. We write

Qmin(L) :=
{
Q : Q is a distribution on Y with ML,Q(0+) �= ∅

}
,

Q1-min(L) :=
{
Q ∈ Qmin(L) : ∃ t∗L,Q ∈ R such that ML,Q(0+) = {t∗L,Q}

}
,

i.e., Qmin(L) contains the distributions on Y whose inner L-risks have an
exact minimizer, while Q1-min(L) contains the distributions on Y whose inner
L-risks have exactly one exact minimizer. Obviously, Q1-min(L) ⊂ Qmin(L)
holds, and for strictly convex losses L, both sets actually coincide. Moreover,
note that by Lemma 3.10 we have C∗L,Q < ∞ for all Q ∈ Qmin(L). For Q ∈
Qmin(L), we now define the self-calibration loss of L by

L̆(Q, t) := dist
(
t,ML,Q(0+)

)
:= inf

t′∈ML,Q(0+)
|t− t′| , t ∈ R, (3.66)

i.e., L̆(Q, t) measures the distance of t to the set of elements minimizing CL,Q.
The next lemma shows that the self-calibration loss is a template loss.

Lemma 3.58. Let Y ⊂ R be closed and L : Y ×R → [0,∞) be a supervised
loss. Then L̆ : Qmin(L)×R→ [0,∞) defined by (3.66) is a template loss.

Proof. Let X be a complete measurable space and P be a distribution on
X × Y with P( · |x) ∈ Qmin(L) for all x ∈ X. We write X̄ := X × R and
Z := R. Furthermore, for x̄ = (x, t) ∈ X̄ and t′ ∈ Z, we define

h(x̄, t′) := CL,P( · |x)(t′)− C∗L,P( · |x) ,

F (x̄) := {t∗ ∈ R : h(x̄, t∗) = 0} ,

and ϕ(x̄, t′) := |t− t′|. For the P-instance L̆P of L̆, we then have
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L̆P(x, t) = inf
t′∈ML,P( · |x)(0+)

|t− t′| = inf
t′∈F (x̄)

ϕ(x̄, t′) ,

and consequently we obtain the assertion by part iii) of Lemma A.3.18. ��
It is almost needless to say that the main statement of the preceding lemma

is the measurability of the instances of L̆. Now note that the definition of L̆
immediately gives C∗

L̆,Q
= 0, and therefore we have

ML̆,Q(ε) =
{
t ∈ R : L̆(Q, t) < ε

}
=
{
t ∈ R : ∃t′ ∈ML,Q(0+) with |t−t′| < ε

}
for all Q ∈ Qmin(L) and ε ∈ [0,∞]. Moreover, we have already mentioned in
Section 3.6 that the results of Lemma 3.14 remain true for template losses. By
(3.16), the self-calibration function δmax,L̆,L( · ,Q), which can be computed
by

δmax,L̆,L(ε,Q) = inf
t∈R

dist(t,ML,Q(0+))≥ε

CL,Q(t)− C∗L,Q (3.67)

for all ε ∈ [0,∞], thus satisfies

δmax,L̆,L

(
dist(t,ML,Q(0+)),Q

)
≤ CL,Q(t)− C∗L,Q , t ∈ R,

for all Q ∈ Qmin(L). Note that for Q ∈ Q1-min(L) this inequality becomes

δmax,L̆,L

(
|t− t∗L,Q|,Q

)
≤ CL,Q(t)− C∗L,Q , t ∈ R,

whereML,Q(0+) = {t∗L,Q}. Consequently, the self-calibration function indeed
quantifies how well an approximate CL,Q-minimizer t approximates the exact
minimizer t∗L,Q. This motivates the following, main definition of this section.

Definition 3.59. Let L : Y × R → [0,∞) be a supervised loss function and
Q ⊂ Qmin(L). We say that L is (uniformly) self-calibrated with respect to
Q if L is (uniformly) L̆-calibrated with respect to Q.

Fortunately, convex loss functions are always self-calibrated, as the follow-
ing lemma shows.

Lemma 3.60 (Self-calibration of convex losses). Every convex loss func-
tion L : Y ×R→ [0,∞) is self-calibrated with respect to Qmin(L).

Proof. For a fixed distribution Q ∈ Qmin(L), we write tmin := infML,Q(0+)
and tmax := supML,Q(0+). Now the map t �→ CL,Q(t) − C∗L,Q is convex,
and thus it is decreasing on (−∞, tmin] and increasing on [tmax,∞). Further-
more, the convexity shows that ML,Q(0+) is an interval and hence we find
ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε} = (tmin − ε, tmax + ε), ε > 0. This gives

δmax,L̆,L(ε,Q) = inf
t	∈ML̆,Q(ε)

CL,Q(t)− C∗L,Q

= min
{
CL,Q(tmin − ε), CL,Q(tmax + ε)

}
− C∗L,Q (3.68)

> 0 ,

where we used the convention CL,Q(±∞) :=∞. ��
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It is easy to see by the results of Section 3.7 that in general convex losses
are not uniformly self-calibrated. Therefore, we usually cannot expect strong
inequalities in the sense of Theorem 3.22 for the self-calibration problem.
However, the following theorem shows that for general self-calibrated losses,
approximate risk minimizers approximate the Bayes decision functions in a
weak sense. Its consequences for convex losses are discussed in Corollary 3.62.

Theorem 3.61 (Asymptotic self-calibration). Let X be a complete mea-
surable space, L : Y × R → [0,∞) be a supervised loss that is self-calibrated
with respect to some Q ⊂ Qmin(L), and P be a distribution of type Q with
R∗

L,P < ∞. Then, for all ε > 0 and ρ > 0, there exists a δ > 0 such that for
all measurable f : X → R satisfying RL,P(f) < R∗

L,P + δ we have

PX

({
x ∈ X : dist

(
f(x),ML,P( · |x)(0+)

)
≥ ρ
})
< ε .

Proof. For a fixed ρ > 0, we write Aρ = {(Q, t) ∈ Q × R : L̆(Q, t) ≥ ρ}.
By Lemma 3.58, we then see that L̄ := 1Aρ

defines a template loss function
whose P-instance L̄P is a detection loss with respect to h := 1X and A :=
{(x, t) ∈ X ×R : L̆(P( · |x), t) ≥ ρ}. Furthermore, we have

ML̄,Q(ε) =
{
t ∈ R : L̆(Q, t) < ρ

}
=ML̆,Q(ρ)

for all ε ∈ (0, 1] and Q ∈ Q, and thus we obtain

δmax,L̄,L(ε,Q) = δmax,L̆,L(ρ,Q) > 0 , ε ∈ (0, 1], Q ∈ Q.

Since calibration functions are increasing, we then find that L is L̄P-calibrated
with respect to Q. For ε > 0, Theorem 3.27 thus gives a δ > 0 such that for
f : X → R with RL,P(f) < R∗

L,P + δ we have

PX

({
x ∈ X : L̆P(x, f(x)) ≥ ρ

})
= RL̄P,P(f)−R∗

L̄P,P < ε . ��

For convex losses L and distributions of Q1-min(L)-type, we obtain the
following consequence.

Corollary 3.62. Let X be a complete measurable space, L : Y ×R→ [0,∞)
be a convex, supervised loss, and P be a distribution of type Q1-min(L) with
R∗

L,P < ∞. Then there exists a PX-almost surely unique minimizer f∗L,P of
RL,P, and for all sequences (fn) of measurable fn : X → R, we have

RL,P(fn)−R∗
L,P → 0 =⇒ fn → f∗L,P in probability PX .

Proof. Lemma 3.12 together with the definition of Q1-min(L) shows that there
exists a PX -almost surely unique minimizer f∗L,P, and we thus find

L̆P(x, t) = |t− f∗L,P(x)| , x ∈ X, t ∈ R.

Theorem 3.61 together with Lemma 3.60 then yields fn → f∗L,P in probability
whenever the sequence (fn) satisfies RL,P(fn)→ R∗

L,P. ��



100 3 Surrogate Loss Functions (*)

Let us complete this discussion by describing situations in which we can
replace the convergence in probability by a stronger notion of convergence.

Theorem 3.63 (Self-calibration inequalities). Let X be a complete mea-
surable space, L : Y × R → [0,∞) be a supervised loss that is self-calibrated
with respect to some Q ⊂ Q1-min(L), and P be a distribution of type Q such
that R∗

L,P <∞. Moreover, assume that there exist a p ∈ (0,∞] and functions
b : X → [0,∞] and δ : [0,∞)→ [0,∞) such that

δmax,L̆,L(ε,P( · |x)) ≥ b(x) δ(ε) , ε > 0, x ∈ X,

and b−1 ∈ Lp(PX). For a fixed q ∈ (0,∞), we define δ̄ : [0,∞)→ [0,∞) by

δ̄(ε) := δ
p

p+1 (ε1/q) , ε ∈ [0,∞].

Then, for all measurable f : X → R and Bf := ‖f − f∗L,P‖q∞, we have

δ̄∗∗Bf

(
‖f − f∗L,P‖qLq(PX)

)
≤ ‖b−1‖

p
p+1

Lp(PX)

(
RL,P(f)−R∗

L,P

) p
p+1 ,

where δ̄∗∗Bf
: [0, Bf ]→ [0,∞] is the Fenchel-Legendre bi-conjugate of δ̄|[0,Bf ].

Proof. We write δ̂(ε) := δ(ε1/q) for ε ≥ 0, and L̄ := L̆q. Then L̄ is a template
loss by Lemma 3.58, and since ML̆,Q(ε) = {t ∈ R : L̆(Q, t) < ε}, we find

δmax,L̄,L(ε,Q) = δmax,L̆,L(ε1/q,Q) ≥ b̂(x) δ(ε) ε > 0, Q ∈ Q.

Moreover, we have δ̂
p

p+1 = δ̄, and hence Theorem 3.25 applied to L̄ and δ̂
yields the assertion. ��

Note that if the function δ is of the form δ(ε) = εr for some r > 0 and we
consider q := pr

p+1 , then we obtain δ̄(ε) = ε. In this case, Theorem 3.63 yields

‖f − f∗L,P‖Lq(PX) ≤ ‖b−1‖1/r
Lp(PX)

(
RL,P(f)−R∗

L,P

)1/r
. (3.69)

Moreover, if in this case we can only ensure b−1 ∈ Lp,∞(PX), then the norm
‖·‖Lq(PX) can be replaced by the Lorentz-norm ‖·‖Lq,∞(PX) defined in Section
A.5.5. For more details, we refer to Exercise 3.14.

The rest of this section applies the theory developed to some examples of
practical importance. We begin with the problem of estimating the conditional
probability P(y = 1|x) in classification, which has already been mentioned in
the introduction of this section and which will be revisited in Section 8.5.
To this end, we assume Y := {−1, 1} in the following. Our first goal is to
characterize situations when Qmin(L) = QY for margin-based losses L.

Lemma 3.64 (Minimizers of margin-based losses). Let L be a convex,
margin-based loss represented by ϕ : R → [0,∞). Then we have Qmin(L) =
QY if and only if ϕ has a global minimum.
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Proof. If ϕ does not have a minimum, CL,1( · ) = ϕ does not have a minimum,
i.e.,ML,1(0+) = ∅. Conversely, if ϕ has a minimum, the same argument shows
that ML,0(0+) = −ML,1(0+) �= ∅. Therefore, let us fix an η ∈ (0, 1). If ϕ is
constant, there is nothing to prove and hence we additionally assume that ϕ is
not constant. The convexity of ϕ then shows that we have limt→∞ ϕ(t) =∞ or
limt→−∞ ϕ(t) =∞. From this we immediately find CL,η(t)→∞ for t→ ±∞,
and since CL,η( · ) is continuous and convex, it thus has a global minimum. ��

Together with Lemma 3.60, the preceding lemma immediately gives the
following corollary that will be important when considering sparseness prop-
erties of support vector machines for classification in Section 8.5.

Corollary 3.65 (Self-calibration of margin-based losses). Let L be a
convex, margin-based loss whose representing function ϕ : R → [0,∞) has a
global minimum. Then L is self-calibrated with respect to QY .

With the help of Corollary 3.65, we see that the least squares loss and
the (squared) hinge loss are self-calibrated with respect to QY , whereas the
logistic loss is not. Furthermore, a simple calculation using Example 3.6 shows
that the least squares loss is actually uniformly self-calibrated with respect
to QY and that the corresponding uniform self-calibration function is

δmax,L̆lsquares,LLS
(ε,QY ) = ε2 , ε > 0 .

However, neither the truncated least squares loss nor the hinge loss are uni-
formly self-calibrated with respect to QY , as we discuss in Exercise 3.15.

Let us now return to the problem of estimating the conditional probability
η(x) = P(y = 1|x), x ∈ X. If we have a margin-based loss function L for
which there is a one-to-one transformation between the sets of minimizers
ML,η(0+) and η, then it seems natural to use self-calibration properties of
L to investigate whether suitably transformed approximate L-risk minimizers
approximate η. This approach is discussed in the following example.

Example 3.66. Exercise 3.2 shows that the logistic loss for classification
Lc-logist satisfies

MLc-logist,η(0+) =
{

ln
( η

1− η
)}
, η ∈ (0, 1).

In other words, if t∗η denotes the element contained in MLc-logist,η(0+), then
we have η = 1

1+e
−t∗η

. Consequently, if t approximately minimizes CLc-logist,η( · ),
then it is close to t∗η by Lemma 3.60 and hence 1

1+e−t can serve as an estimate
of η. However, investigating the quality of this estimate by the self-calibration
function of Lc-logist causes some technical problems since Lc-logist is only self-
calibrated with respect to the distributions Q ∈ QY with Q({1}) �∈ {0, 1}.
Consequently, we now assess the quality of the estimate above directly. To
this end, we introduce a new loss L : QY ×R→ [0,∞), which we define by
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L(η, t) :=
∣∣∣η − 1

1 + e−t

∣∣∣ , η ∈ [0, 1], t ∈ R.

Then L is a template loss that measures the distance between η and its esti-
mate 1

1+e−t . Let us compute the calibration function of (L,Lc-logist). To this
end, we first observe that C∗L,η = 0 for all η ∈ [0, 1], and hence for ε > 0 an
elementary calculation shows that

ML,η(ε) = {t ∈ R : L(η, t) < ε}

=
{
t ∈ R : ln

(η − ε)+
1− η + ε

< t < ln
η + ε

(1− η − ε)+

}
,

where (x)+ := max{0, x} for x ∈ R and ln 0 := −∞. For Cη(∞) := Cη(−∞) :=
∞ and Cη(t) := CLc-logist,η(t)− C∗Lc-logist,η

, Lemma 3.15 thus shows that

δmax,L,Lc-logist(ε, η) = min
{
Cη
(
− ln
(1− η − ε

η + ε

)
+

)
, Cη
(

ln
( η − ε

1− η + ε

)
+

)}
.

From this we can conclude that δmax,L,Lc-logist(ε, η) = δmax,L,Lc-logist(ε, 1−η)
for all ε ≥ 0, η ∈ [0, 1]. Moreover, using the formulas of Exercise 3.2, we find

Cη
(

ln
( η − ε

1− η + ε

)
+

)
=

{
η ln η

η−ε + (1− η) ln 1−η
1−η+ε if ε < η

∞ otherwise

and

Cη
(
− ln
(1− η − ε

η + ε

)
+

)
=

{
η ln η

η+ε + (1− η) ln 1−η
1−η−ε if ε < 1− η

∞ otherwise.

In order to compare these expressions, let us write g(η) := η ln η
η−ε − η ln η

η+ε

for a fixed ε ∈ (0, 1/2) and all η with ε < η < 1− ε. Then we have

g(1− η) = (1− η) ln
1− η

1− η − ε − (1− η) ln
1− η

1− η + ε

and

g′(η) =
(η2 − ε2) ln η+ε

η−ε − 2εη

η2 − ε2 =:
gη(ε)
η2 − ε2 .

Now observe that gη(0) = 0 and g′η(ε) < 0 for all ε > 0, and hence we obtain
g′(η) < 0. Consequently, we have g(η) ≥ g(1− η), or in other words

η ln
η

η − ε + (1− η) ln
1− η

1− η + ε
≥ η ln

η

η + ε
+ (1− η) ln

1− η
1− η − ε ,

if and only if η ≤ 1
2 . Therefore, for η ∈ [0, 1/2], we find

δmax,L,Lc-logist(ε, η) =

{
η ln η

η+ε + (1− η) ln 1−η
1−η−ε if ε < 1− η

∞ otherwise.
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In order to investigate whether Lc-logist is L-calibrated with respect to QY ,
let us now find a simple lower bound of the calibration function above. To
this end, let hε(η) := η ln η

η+ε for η ∈ [0, 1/2] and ε ≥ 0. Then its derivative
satisfies

h′ε(η) = ln
η

η + ε
+

ε

η + ε
= ln

(
1− ε

η + ε

)
+

ε

η + ε
≤ − ε

η + ε
+

ε

η + ε
= 0 ,

and hence we find η ln η
η+ε ≥

1
2 ln 1

1+2ε for all η ∈ [0, 1/2], ε ≥ 0. Analogously,
we obtain (1 − η) ln 1−η

1−η−ε ≥ ln 1
1−ε for η ∈ [0, 1/2], ε ∈ [0, 1 − η). Both

estimates together then yield

δmax,L,Lc-logist(ε, η) ≥
1
2

ln
1

1 + 2ε
+ ln

1
1− ε ≥ ε2

for all η ∈ [0, 1/2] and all ε ∈ [0, 1 − η). Consequently, Lc-logist is uni-
formly L-calibrated with respect to QY , and the calibration function satisfies
δmax(ε,QY ) ≥ ε2 for all ε ≥ 0. For the loss function L2, we thus obtain

δmax,L2,Lc-logist(ε,QY ) = δmax,L,Lc-logist(ε
1/2,QY ) ≥ ε , ε ≥ 0.

By Theorem 3.22, we then see that for all measurable f : X → R we have
∫

X

∣∣∣η(x)− 1
1 + e−f(x)

∣∣∣2 dPX(x) ≤ RLc-logist,P(f)−R∗
Lc-logist,P

,

i.e., we can assess the quality of the estimate 1
1+e−f(x) in terms of ‖ · ‖2. �

Our last goal is to investigate the self-calibration properties of the τ -pinball
loss Lτ -pin. Proposition 3.9 showed that the minimizer of this convex super-
vised loss was the τ -quantile, and consequently Lτ -pin can be used to estimate
the conditional τ -quantile. However, so far we only have a rather weak justi-
fication in the sense of Theorem 3.61. The following example discusses some
conditions on the distribution P, which provides a stronger justification.

Example 3.67. For fixed τ ∈ (0, 1), let L := Lτ -pin be the τ-pinball loss
defined in Example 2.43. Furthermore, let Q be a distribution on R such that
|Q|1 <∞ and let t∗ be a τ -quantile of Q, i.e., we simultaneously have

Q
(
(−∞, t∗]

)
≥ τ and Q

(
[t∗,∞)

)
≥ 1− τ . (3.70)

If t∗ is the only τ -quantile of Q, i.e., t∗ is uniquely defined by (3.70), then the
formulas of Proposition 3.9 show

δmax,L̆,L(ε,Q) = min
{
εq++

∫ ε

0

Q
(
(t∗, t∗+s)

)
ds, εq−+

∫ ε

0

Q
(
(t∗−s, t∗)

)
ds

}

for all ε ≥ 0, where q+ and q− are the real numbers found in Proposition 3.9.
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Let us now denote the set of all distributions Q for which the inequalities
in (3.70) strictly hold by Q>0

τ . For Q ∈ Q>0
τ , we then have min{q+, q−} > 0

and hence t∗ is uniquely determined. Moreover, the self-calibration function
satisfies

δmax,L̆,L(ε,Q) ≥ cQ ε , ε ≥ 0, (3.71)

where cQ := min{q+, q−}. For a fixed distribution P of Q>0
τ -type, we now

define the function b : X → [0,∞) by b(x) := cP( · |x), x ∈ X, where cP( · |x)

denotes the constant in (3.71), which belongs to the conditional distribution
P( · |x). If we have b−1 ∈ Lp(PX), then Theorem 3.63, see also (3.69), shows

‖f − f∗τ,P‖Lq(PX) ≤ ‖b−1‖Lp(PX)

(
RL,P(f)−R∗

L,P

)
(3.72)

for all measurable functions f : X → R, where f∗τ,P(x) denotes the τ -quantile
of P( · |x) and q := p

p+1 .
Although (3.72) provides a nice relationship between the excess pinball

risk and our goal of estimating the conditional quantile function f∗τ,P, the
distributions P of Q>0

τ -type seem a bit unrealistic for practical situations.
Therefore, let us finally consider a more realistic scenario. To this end, we fix
an α > 0 and say that a distribution Q with |Q|1 <∞ is of type Qα

τ if there
exists a τ -quantile t∗ of Q and a constant cQ > 0 such that

Q
(
(t∗, t∗ + s)

)
≥ cQ s and Q

(
(t∗ − s, t∗)

)
≥ cQ s (3.73)

for all s ∈ [0, α]. Obviously, for such distributions, the τ -quantile t∗ is uniquely
determined. Moreover, if Q has a density hQ with respect to the Lebesgue
measure and this density satisfies hQ(t) ≥ cQ for all t ∈ [t∗ − α, t∗ + α], then
Q is of type Qα

τ . Let us now define δ : [0,∞)→ [0,∞) by

δ(ε) :=

{
ε2/2 if ε ∈ [0, α]
αε− α2/2 if ε > α .

Then a simple calculation yields

δmax,L̆,L(ε,Q) ≥ cQδ(ε) , ε ≥ 0,

for all Q ∈ Qα
τ , where cQ is the constant satisfying (3.73). For fixed p ∈ (0,∞],

we further define δ̄ : [0,∞) → [0,∞) by δ̄(ε) := δ
p

p+1 (ε
p+1

p ), ε ≥ 0. In view
of Theorem 3.63, we then need to find a convex function δ̂ : [0,∞) → [0,∞)
such that δ̂ ≤ δ̄. To this end, we define

δ̂(ε) :=

{
sppε

2 if ε ∈
[
0, spap

]
ap

(
ε− sp+2

p ap

)
if ε > spap ,

where ap := αp/(p+1) and sp := 2−1/(p+1). An easy calculation shows that δ̂ :
[0,∞)→ [0,∞) is continuously differentiable with non-decreasing derivative.
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Consequently, δ̂ is convex. Moreover, since (ε
p+1

p − α/2)−
1

p+1 ε
1
p ≥ 1 we have

δ̂′ ≤ δ̄′ and hence we find δ̂ ≤ δ̄ by the fundamental theorem of calculus.
For a distribution P of Qα

τ -type, we now define the function b : X →
[0,∞) by b(x) := cP( · |x), x ∈ X, where cP( · |x) is determined by (3.73). If b
satisfies b−1 ∈ Lp(PX) for some p ∈ (0,∞], Theorem 3.63 together with our
considerations above shows

‖f − f∗τ,P‖Lq(PX) ≤
√

2 ‖b−1‖1/2
Lp(PX)

(
RL,P(f)−R∗

L,P

)1/2 (3.74)

for q := p
p+1 and all f : X → R satisfying RL,P(f)−R∗

L,P ≤ 2−
p+2
p+1α

2p
p+1 . �

3.10 Further Reading and Advanced Topics

The idea of using a surrogate loss developed quite independently in statistics
and machine learning. Indeed, in statistics, its development was mainly mo-
tivated by the search for more robust estimation methods (see, e.g., Huber,
1964), in particular for regression problems. On the other hand, in machine
learning, surrogate losses were mainly considered as a trick to find faster clas-
sification algorithms. However, only very recently has the relation between
the risks of these surrogates and the classification risk been investigated. The
first observations on the set of minimizers were made by Lin (2002b). Later
he (see Lin, 2004, Theorem 3.1 and Lemma 4.1) established a result some-
what similar to Theorem 3.36 and a bound on the excess classification risk
that generalizes the widely known Theorem 2.2 from Devroye et al. (1996).
Independently of Lin, Zhang (2004b) established the first general inequalities
between the excess classification risk and the excess risks of margin-based sur-
rogate losses. Furthermore, he mentioned that some applications also require
estimating the conditional probability and concludes that some margin-based
losses, including the hinge loss, are not suited for this task. Another indepen-
dent result, established by Steinwart (2005), gives a sufficient condition for
continuous, supervised losses L that ensures an asymptotic relation (in the
sense of Question 3.1) between the excess classification risk and the excess L-
risk. However, the big breakthrough in understanding surrogate margin-based
losses was then made by Bartlett et al. (2006). In fact, all the main results
on classification calibrated, margin-based losses presented in Section 3.4 were
shown by these authors, though condition (3.40) was already investigated by
Mammen and Tsybakov (1999), and Tsybakov (2004) in the context of den-
sity level detection. We refer to Steinwart et al. (2005) and Steinwart (2007),
who translated their findings into the language of calibration inequalities.

Prior to Steinwart (2007), the only result for weighted classification (also
known as cost-sensitive classification) that deals with calibration issues was
presented by Lin et al. (2002), though weighted classification itself had been
considered earlier by, e.g., Elkan (2001). The presentation in Section 3.5 closely
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follows Steinwart’s work. Furthermore, there are recent results on surrogates
for multi-class classification that we have not presented here due to lack of
space. For more information, we refer to Lee et al. (2004), Zhang (2004a),
Tewari and Bartlett (2005), and the references therein.

Proposition 3.44, which shows the unique role of the least squares loss for
estimating the regression function, was independently found by Caponnetto
(2005) and Steinwart (2007). Besides the basic notions and examples, the rest
of Section 3.7 is based on the work of Steinwart (2007). Finally, it is worth
mentioning that the approach in Section 3.7 substantially differs from the
traditional maximum-likelihood motivation for the least squares loss already
used by Gauss. We refer to Schölkopf and Smola (2002) for a brief introduction
to the maximum-likelihood motivation and to Kardaun et al. (2003) for a
discussion on this motivation.

The asymptotic theory on surrogate losses developed in Section 3.2 is a
generalization of the results of Steinwart (2005). Moreover, the inequalities for
general surrogate losses established in Section 3.3 were deeply inspired by the
work of Bartlett et al. (2006). However, the key results of this section, namely
Theorem 3.22 and Theorem 3.25, can also be derived from Theorem 24 of
Zhang (2004a). Finally, a self-calibration result for classification calibrated
surrogates similar to Theorem 3.61 was already shown by Steinwart (2003).
In the presentation of all of these results, we closely followed Steinwart (2007).

3.11 Summary

In this chapter, we developed a general theory that allows us to a) identify
suitable surrogate loss functions and b) relate the excess risks of such surrogate
losses with the excess risks of the original (target) loss function. The main
concept of this theory was the calibration function, which compares the inner
excess risks of the losses involved. With the help of the calibration function,
we then introduced the notions of calibration and uniform calibration, which
(essentially) characterize how the excess risks involved can be compared. We
then applied the general theory to some important learning scenarios:

• Classification. Here we showed that, for margin-based losses, calibration
and uniform calibration are equivalent concepts. Furthermore, we devel-
oped a way to establish inequalities between the excess classification risk
and the excess risk of margin-based losses. We then established an easy
test to check whether a given convex , margin-based loss function is clas-
sification calibrated. Finally, we further simplified the computation of the
uniform calibration function for such losses.

• Weighted classification. We showed that a simple weighting method for
classification calibrated, margin-based loss functions produces loss func-
tions that are calibrated to the weighted classification scenario. With the
help of this weighting method, we then translated the major results on
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unweighted classification calibration into analogous results on weighted
classification calibration.

• Regression. Here we first showed that the least squares loss is essen-
tially the only distance-based loss that can be used to find the regression
function if one only knows that the average second moment of the noise
distributions is finite. For some large classes of symmetric noise distrib-
utions, we then characterized (uniformly) least squares calibrated losses.
Here it turned out that the convexity and related stronger notions play
a crucial role. In particular, we showed that for symmetric, unbounded
noise every uniformly least squares calibrated and symmetric loss must
grow at least as fast as the least squares loss, and consequently one cannot
avoid assuming the finiteness of the second moments for such distributions
and losses. Furthermore, we have seen that for slower-growing losses, such
as the absolute distance loss, the latter requirement can be replaced by
non-parametric assumptions on the concentration around the mean.

• Density level detection. We first showed that the DLD learning sce-
nario can be treated as a supervised learning problem that is similar to
a classification problem. It then turned out that every classification cal-
ibrated loss is DLD-calibrated. However, unlike for classification, there
exists no uniformly DLD-calibrated supervised loss, and consequently it is
impossible to establish inequalities between the DLD-risk and excess risks
of supervised surrogates without further assumptions on the density.

• Self-calibration. It is of both theoretical and practical interest whether
approximate risk minimizers approximate the true risk minimizer. In Sec-
tion 3.9, we developed a general framework to investigate this issue. In
particular, we showed that convex losses always guarantee a weak posi-
tive result. Finally, we applied the general theory to the logistic loss for
classification and the pinball loss.

The theory developed and its consequences for the learning scenarios above
will play an important role when we investigate the corresponding kernel-
based learning procedures in later chapters. However, it is worth mentioning
that the results of this chapter are algorithm independent, i.e., they can be
used for any algorithm whose surrogate risk performance is understood.

3.12 Exercises

3.1. Inner risks of the squared hinge loss (�)
Recall that in Example 2.28 we defined the squared hinge loss by L(y, t) :=
(max{0, 1− yt})2, y = ±1, t ∈ R. Using the definitions in (3.8), show that for
η ∈ [0, 1] we have C∗L,η = 4η(1− η) and

ML,η(0+) =

⎧⎪⎨
⎪⎩

(−∞,−1] if η = 0
{2η − 1} if 0 < η < 1
[1,∞) if η = 1 .
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Moreover, show that, for η ∈ [1/2, 1] and t ∈ R, the excess inner risk can be
computed by

CL,η(t)− C∗L,η =

⎧⎪⎨
⎪⎩

4η2 − 3η − 2ηt+ ηt2 if t ≤ −1
(t− 2η + 1)2 if t ∈ [−1, 1]
(1− η)(1 + 2t+ t2 − 4η) if t ≥ 1 .

3.2. Logistic loss for classification(�)
Recall that in Example 2.29 we defined the logistic loss for classification by
L(y, t) := ln(1+exp(−yt)), y = ±1, t ∈ R. Show the following formulas using
the notations in (3.8) and the convention 0 ln 0 := 0:

C∗L,η = −η ln(η)− (1− η) ln(1− η) ,
ML,η(0+) =

{
ln(η)− ln(1− η)

}
, if η �= 0, 1,

CL,η(t)− C∗L,η = η ln
(
η(1 + e−t)

)
+ (1− η) ln

(
(1− η)(1 + et)

)
.

3.3. Calibration function (�)
Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be loss functions,
Q be a distribution on Y , and x ∈ X with C∗Ltar,Q,x < ∞ and C∗Lsur,Q,x < ∞.
Assume that δ : [0,∞]→ [0,∞] is an increasing function with

δ
(
CLtar,Q,x(t)− C∗Ltar,Q,x

)
≤ CLsur,Q,x(t)− C∗Lsur,Q,x , t ∈ R.

Show that δ(ε) ≤ δmax(ε,Q, x) for all ε ∈ [0,∞].
Hint: Assume the converse and use Lemma 3.14.

3.4. Characterization of calibration (���)
Prove Corollary 3.19.

Hint for ii) ⇒ i): Assume that Lsur is not Ltar-calibrated to construct a
“simple” distribution P that violates ii). Furthermore, use that the condition
R∗

Ltar,P
<∞ is automatically satisfied since Ltar is bounded.

3.5. Uniform calibration function (��)
Let Ltar : X×Y ×R→ [0,∞) and Lsur : X×Y ×R→ [0,∞) be loss functions
and Q be a set of distributions on Y . Show that for all ε ∈ [0,∞] we have

δmax(ε,Q) = max
{
δ ≥ 0 :MLsur,Q,x(δ) ⊂MLtar,Q,x(ε) for all Q∈Q, x∈X

}
.

3.6. Uniformly calibrated supervised losses (����)
Let Ltar : Y × R → [0,∞) and Lsur : Y × R → [0,∞) be supervised loss
functions, X be a complete measurable space, and µ be a probability measure
on X. Assume that there exist mutually disjoint measurable subsets An ⊂ X
with µ(An) > 0 for all n ∈ N. Finally, let Q be a set of distributions on Y
such that C∗Ltar,Q

<∞ and C∗Lsur,Q
<∞ for all Q ∈ Q. Show that there exists

a distribution P on X × Y of type Q such that PX = µ and
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δmax(ε,Q) = inf
x∈X

δmax(ε,P( · |x), x) , ε ∈ [0,∞]. (3.75)

Hint: First show that U := {ε > 0 : δmax( · ,Q) not continuous at ε} is
at most countable. Then show equation (3.75) for an enumeration (εn)n∈N of
U ∪ {r ∈ Q : r ≥ 0}. Use this to conclude the general case.

3.7. Characterization of calibration for detection losses (���)
Prove Theorem 3.27 using the same idea as in Exercise 3.4.

3.8. Some more margin-based losses (��)
Determine the calibration function with respect to the classification loss for
the exponential loss given by ϕ(t) := exp(−t), t ∈ R, and the sigmoid loss
given by ϕ(t) := 1− tanh t, t ∈ R. Is the latter classification calibrated?

3.9. Inequalities for unweighted classification (��)
Use Theorems 3.34 and 3.22 to establish inequalities between the excess clas-
sification risk and the excess L-risk for L being the least squares loss, the
hinge loss, the squared hinge loss, and the logistic loss for classification. How
do these inequalities change when we additionally assume (3.40)?

3.10. Another weighted classification scenario (���)
Let h : X → [0,∞) be measurable. For the loss L : X × Y × R → [0,∞)
defined by L(x, y, t) := h(x)Lclass(y, t), perform the following tasks:

i) Investigate which margin-based losses are L-calibrated.
ii) When are L-calibrated margin-based losses uniformly L-calibrated?
iii) Given a margin-based loss represented by some ϕ, determine the calibra-

tion function for the loss (x, y, t) �→ h(x)ϕ(yt). Compare the results with
those for the unweighted version.

iv) Find some practical situations in which L may be of interest.

3.11. Asymptotic relation between excess risks revisited (��)
Show that in general a strictly positive calibration function is not sufficient
for the implication (3.18).

Hint: Assume that LLS is the target loss and that Lp-dist is the surrogate
loss for some p ∈ [1, 2). Furthermore, consider the distribution P on [0, 1)×R

with PX being the uniform distribution and P( · |x) = δ{0} for all x ∈ [0, 1].

3.12. Modulus of convexity for p-th power distance loss (���)
For p ∈ (1, 2), define ψ : R→ [0,∞) by ψ(t) := |t|p, t ∈ R. Show for all B > 0
and ε ∈ [0, B] that

p(p− 1)
2

Bp−2ε2 ≤ δψ|[−B,B](2ε) ≤
p

2(p− 1)2
Bp−2ε2 .

Hint: First show a sa−1 ≤ sa − (s − 1)a ≤ sa−1 for all 0 < a < 1 and all
s ≥ 1. Use this to estimate ψ′(t)− ψ′(t− ε), and then apply Lemma A.6.19.
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3.13. Reverse calibration for DLD (���)
Let µ be a probability measure on a measurable space X and Y := {−1, 1}.
Furthermore, let ρ > 0 and g : X → [0,∞) be a measurable function with
‖g‖L1(µ) = 1. Then, for P := gµ �ρ µ and all sequences (fn) of measurable
functions fn : X → R, we have

RLDLD,P(fn)→ 0 =⇒ RLclass,P(fn)→ R∗
Lclass,P

.

Hint: Compute the calibration function δmax,Lclass,L̄DLD
( · , · ) using Lemma

3.32. Then observe that µ({x ∈ X : η(x) = 1}) = 0 and use Corollary 3.19.

3.14. Another inequality for self-calibrated losses (���)
Let L : Y ×R→ [0,∞) be a supervised loss that is self-calibrated with respect
to some Q ⊂ Qmin(L) and P be a distribution on X × Y that is of type Q.
Assume further that there exist p > 0, q > 0, and a function b : X → [0,∞]
with b−1 ∈ Lp,∞(PX) and

δmax,L̆P,L(ε,P( · |x), x) ≥ εq b(x) , ε > 0, x ∈ X.

Show that for all measurable f : X → R we have

PX

({
x ∈ X : L̆P

(
x, f(x)

)
≥ ρ
})
≤ 2

(‖b−1‖p
(
RL,P(f)−R∗

L,P

)
ρq

) p
p+1

.

If in addition RL,P( · ) has an almost surely unique minimizer f∗L,P, interpret
the result in terms of Lorentz norms and compare it with Theorem 3.63.

Hint: Use the set Aρ from the proof of Theorem 3.61 and apply Theorem
3.28.

3.15. Self-calibration of the (squared) hinge loss (���)
i) Show that the self-calibration function of the hinge loss is given by

δmax,L̆hinge,Lhinge
(ε, η) =

⎧⎪⎨
⎪⎩
ε min

{
η, 1− η, 2η − 1

}
if η �= 0, 1/2, 1

ε if η ∈ {0, 1}
∞ if η = 1/2

for all ε ∈ (0, 2], η ∈ [0, 1]. Is the hinge loss uniformly self-calibrated?
ii) Show that, for all distributions P on X × Y and all p ∈ (0,∞) and ε > 0,
there exists a δ > 0 such that for all measurable f : X → R we have

RLhinge,P(f)−R∗
Lhinge,P ≤ δ =⇒ ‖x �→ L̆hinge,P(x,

�
f(x))‖Lp(PX) ≤ ε,

where the clipping is at ±1. Compare this with Theorem 3.61. Find conditions
on P such that Theorem 3.25 gives inequalities for clipped functions.
iii) Use Exercise 3.1 and Equation (3.68) to show that the squared hinge loss
is not uniformly self-calibrated.

Hint: For the first implication in ii) use Theorem 3.17.




