
Chapter 55
Stock Returns, Extreme Values, and Conditional Skewed Distribution

Thomas C. Chiang and Jiandong Li

Abstract This paper investigates stock returns presenting fat
tails, peakedness (leptokurtosis), skewness, clustered condi-
tional variance, and leverage effects. We apply the exponen-
tial generalized beta distribution of the second kind (EGB2)
to model stock returns as measured by six AMEX indus-
try indices. The evidence suggests that the error assumption
based on the EGB2 distribution is capable of accounting for
skewness and kurtosis and therefore of making good predic-
tions about extreme values. The goodness-of-fit statistic pro-
vides supporting evidence in favor of an EGB2 distribution
in modeling stock returns.

Keywords EGB2 distribution �Stock return �Fat tails �Risk
management �VaR

55.1 Introduction

In analyzing financial time series, the conventional approach
usually assumes a Gaussian distribution. The advantage of
using a Gaussian assumption is that the statistical analysis
of asset returns can be simplified: the main focus is on the
first two moments. This simplification is appealing to practi-
tioners, since it can directly link statistical tools to the mean-
variance framework in making daily portfolio decisions. This
advantage, however, entails a cost. Recent financial distur-
bances suggest that significant daily loss occurs more fre-
quently and the behavior of volatility cannot reasonably be
predicted based on a normal distribution.

To address this issue, practitioners have developed the
Value at Risk (VaR) and Expected Tail Loss methods to
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deal with extreme values of asset price movements. Yet,
using VaR to measure a portfolio’s maximum loss over a tar-
get horizon within a given confidence interval is essentially
based on a normal distribution. This scheme may work well
at the 95% confidence interval. However, using the normal
model, VaR estimates in general lead to under-forecasts of
losses at the 99% level. The 1987 market crash with its �17¢
attests to the failure of the VaR method in estimating variance
by employing the normal distribution.

Recognizing the frequent occurrences of market crashes,
major defaults, financial turmoil, and the collapse of as-
set prices, financial institutions have begun to treat extreme
values as a kind of common risk when managing their port-
folios. From a practical perspective, if portfolio distributions
depend on more than two parameters, optimal choice cannot
be satisfied by the mean-variance approach. To account for
the distributional anomalies of stock returns, we must incor-
porate skewness and kurtosis into portfolio decisions and risk
management. From an academic point of view, although it is
generally recognized that the GARCH type model is capable
of dealing with the volatility cluster phenomenon, it nonethe-
less fails to account for the fat tails and skewness. In fact, as
argued by Brooks et al. (2005), “If asset returns are fat-tailed,
it will lead to a systematic underestimate of the true riskiness
of a portfolio, where risk is measured as the likelihood of
achieving a loss greater than some threshold” (p. 400). From
an econometric point of view, the exclusion of fat-tailed and
skewed information in the asset return model is bound to re-
sult in missing variables and misspecification problems.

Several non-Gaussian distributions have been proposed in
the finance literature. For example, Bollerslev (1987) sug-
gests a Student’s t-distribution; Nelson (1991) proposes a
general error distribution (GED, also known as an exponen-
tial power distribution); and Fama (1963), Liu and Brorsen
(1995), Rachev and Mittnik (2000), and Khindanova et al.
(2001) use Paretian distributions (or stable distributions).
Despite the large volume of research into the distribution
of stock returns, attention has been directed to a particu-
lar feature of asset return behavior. The research lacks a
more general treatment of stock return characteristics such
as fat tails, peakedness (leptokurtosis), skewness, clustered
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conditional variance, and leverage effects. This paper
addresses these non-normality issues and provides empirical
evidence based on six industry indices from the American
Stock Exchange (AMEX): biotechnology, computers, natu-
ral gas, telecommunications, oil, and pharmaceuticals.

In this study, we employ a distribution called the ex-
ponential generalized beta distribution of the second kind
(EGB2).1 The distribution proposed by McDonald and Xu
(1995) and Wang et al. (2001) has several advantages com-
pared with alternative distributions. First, as a four-parameter
distribution, it allows diverse levels of skewness and kurtosis.
Its parameters are estimated simultaneously with the model
structure estimation process so that it is able to accommodate
a wider range of data characteristics. The skewness and ex-
cess kurtosis of EGB2 are in the range of (�2, 2) and (0, 6),
respectively. Second, a number of distributions used in sta-
tistical analysis, such as logistics distribution and log-normal
distribution, are nested in the EGB2 distribution.2 Third, un-
like a Hansen-type (1994) skewed generalized t-distribution
requiring the imposition of several restrictions on the param-
eter values to permit estimation (Brooks et al. 2005),3 the
EGB2 model is simple and has a closed-form density func-
tion for the distribution; its higher order moments are finite
and explicitly expressed by its parameters.

Although the EGB2 is capable of accounting for fat tails
and the higher order moments of returns, previous studies
using EGB2 distribution fail to incorporate a recent advance-
ment in asset return behavior: the asymmetric response of
asset return volatility to news (McDonald and Xu 1995). In
addition, their analysis has been focused on aggregate stock
market returns (Hueng and McDonald 2005). In this study,
we introduce this asymmetric behavior into an EGB2 distri-
bution and examine stock indices for six industries. Thus, our
model is characterized as an asymmetric GARCH(1,1) cum
EGB2 distribution model and provides evidence for indus-
trial stock return analysis.4

1 There are other names for the EGB2 distribution used in non-financial
fields or in non-American journals; for example, generalized logistic
distribution is used in Wu et al. (2000), z-distribution in Barndorff-
Nielsen et al. (1982), the Burr type distribution in actuarial science
(Hogg and Klugman 1983), and four-parameter Kappa distribution in
geology (Hosking 1994).
2 Wang et al. (2001) show that the EGB2 distribution is very powerful
in modeling exchange rates that have fat tails and leptokurtic features.
3 In following Hansen (1994), Theodossiou (1998) also develops the
skewed generalized t distribution (SGT) to examine stock market
indices.
4 It is not our intention to exhaust all the non-Gaussian models in
modeling stock returns, which is infeasible. Rather, our strategy is to
adopt a distribution that is rich enough to accommodate the features
of financial data. To our knowledge, there are different types of flexi-
ble parametric distributions parallel to the EGB2 distribution, such as
a skewed generalized t -distribution (SGT) (Hueng and Brooks 2002)
and an inverse hyperbolic sine distribution (IHS) (Johnson et al. 1994),
among others.

The remainder of the paper is organized as follows.
Section 2 describes the methodology of the AGARCH-EGB2
model. Section 3 discusses the data used in this study. Sec-
tion 4 presents the empirical results for U.S. industrial stock
returns. Section 5 reports the goodness-of-fit tests to assess
alternative distribution. Section 6 contains the probability
evaluation via non-Gaussian distributions. Section 7 contains
concluding remarks and a summary.

55.2 The AGARCH Model Based on the EGB2
Distribution

The AGARCH(1,1)-EGB2 stock return model can be
represented by:
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where Rt is the portfolio’s return at time t ; and �t is the
conditional mean that follows an ARMA(m; n) process.5 The
error term "t is assumed to be independent. The conditional
variance, ht , is assumed to follow GARCH(1,1); �c; �a, and
�b > 0 ensure a strictly positive conditional variance; I is
an indicator variable that takes the value of unity only when
the error term is negative; the negative error term component
in the variance equation captures the asymmetric effect of an
extraordinary shock to the variance: bad news usually has a
more profound effect than good news (Glosten et al. 1993); zt
is assumed to have a zero mean and unit variance and is in-
dependent and identically distributed .i:i:d / if the model is
correctly specified. The conditional distribution is assumed
to be the exponential generalized beta distribution of the sec-
ond kind (EGB2).

The EGB2 distribution has the probability density func-
tion (pdf) given by:
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(55.2)
where x is a random variable; ı is a location parameter that
affects the mean of the distribution; � reflects the scale of

5 The GARCH-M specification was explored. The conditional variance
variable is insignificant for all six indices. Other macro variables and in-
dustry factors may be added to the mean equation or variance equation.
Here, we focus on the time series property.
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the density function; p and q (p > 0 and q > 0) are shape
parameters that together determine the skewness and kurtosis
of the distribution of the asset return series; and B.p; q/ is
the beta function.6 As suggested by McDonald (1991), the
EGB2 is suitable for coefficient of skewness values between
�2 and 2 and coefficient of excess kurtosis values of up to 6.
Thus, it is capable of accommodating fat-tailed and skewed
error distributions pertinent to stock return modeling.

Different from the Student’s t-distribution, which has a
fat-tail feature, the EGB2 distribution allows both fat fail
and peakedness features. In other words, the pdf curve of
Student’s t-distribution is flat-topped; the pdf curve of the
EGB2 distribution has a peak around the mean. This fea-
ture makes the EGB2 distribution superior to the Student’s
t-distribution, since a histogram of actual equity returns
shows fat tails and peakedness. The disadvantage is that the
EGB2 distribution has four parameters to be estimated, while
the Student’s t-distribution has only three parameters.

Compared with other four-parameter distributions, such
as stable distributions and skewed t-distributions, the EGB2
distribution is plausible in that it has a closed-form pdf and
contains higher-order moments. It follows that the parame-
ters can be estimated by using a maximum likelihood func-
tion and the model can be evaluated based on skewness and
kurtosis coefficients.

The first four central moments are:
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where  ./;  0./;  00./ and  000./ denote digamma,
trigamma, tetragamma, and pentagamma functions, respec-
tively.7 Since the error term "t is standardized in the model,
we can express ı and � by using the above polygamma func-
tions as:
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where

 D  .p/ �  .q/

� D  0.p/C  0.q/

6 It should be noted that beta function here has nothing to do with the
stock’s beta.
7 The digamma function is the logarithmic derivative of the gamma
function; the trigamma function is the derivative of the digamma
function.

With some algebraic manipulation, we can write the
univariate GARCH-EGB2 log-likelihood function as
follows8:
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where T is the number of periods, B.p; q/ is the beta func-
tion, ht is the conditional variance, and "t is the standardized
error term. Various analysis packages can be used to con-
duct the maximum likelihood estimation. This paper uses the
BFGS algorithm in a RATS R� program.

The skewness and excess kurtosis for the EGB2 distribu-
tion are given, respectively, by:

Skewness D  00.p/ �  00.q/
. 0.p/C  0.q//1:5

Kurtosis D  000.p/C  000.q/
. 0.p/C  0.q//2

(55.6)

The standard deviation of skewness and kurtosis coefficients
can be drawn by using a standard delta method.9

This model is appealing, since it contains richer features
pertinent to asset return behavior. First, the asset return in
the mean equation embodies time series patterns, which can
facilitate forecasting. Second, the variance equation allows
for the evolution of volatility and treats the impacts of bad
news and goods news on variance asymmetrically. Third, the
distribution is flexible enough to nest alterative distributions.
For instance, the EGB2 converges to normal distribution as
p D q approaches infinity, to log-normal distribution when
only p approaches infinity, to the Weibull distribution when
p D 1 and q approaches infinity, and to the standard logistic
distribution when p D q D 1. It is symmetric if p D q. The
EGB2 is positively (negatively) skewed as p > q .p < q/

for � > 0.

55.3 Data

The use of industrial indices by institutional and individual
investors in making portfolio decisions has become a com-
mon strategy in pursuing higher returns, liquidity, investment

8 See the appendix in Wang et al. (2001).
9 The derivation is available upon request.
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style, and diversification. For this reason, in this paper we
explore indices for six industries traded on the American
Stock Exchange (AMEX): biotechnology, computers, natural
gas, telecommunications, oil, and pharmaceuticals.

The sample is non-balanced weekly data covering the pe-
riod from 8/26/1983 through 9/17/2006 The earliest data start
on 8/26/1983 for the computer and oil indices; the latest be-
gin on 12/9/1994 for biotechnology. The data source is Trade
Tool, Inc. We use weekly data in order to be consistent with
industry practices. For example, Value Line, Bloomberg, and
Baseline all use weekly stock data to calculate a stock’s beta.
In addition, weekly data are free of the Monday effect and
other calendar effects. Figure 55.1 shows the time series plots
for these six indices. We can easily see the boom period in
2001 for the computer, telecom, and biotech industries and
the rise in oil and natural gas in recent years.

The weekly returns along with other statistics for these six
indices are reported in Table 55.1. Looking at the skewness
coefficient, we find that all six indices have negative values
and four of them are significant at the 1% level. A nega-
tive skewness coefficient means that there are more negative
extreme values than positive extreme values in the sample
period. With respect to the excess kurtosis (the kurtosis co-
efficient minus 3), all of the estimated values are statistically
significant at the 1% level, suggesting that the presence of fat
tails is confirmed. The range of the excess kurtosis coefficient
is between 1.06 and 4.85. If we check the range of peaked-
ness, the values are between 1.08 and 1.20.10 This range
is much lower than the referenced figure, 1.35, indicating
the presence of a high peak in the probability density func-

10 See the notes to Table 55.1.

tion for all of the indices under investigation. Further, by in-
specting the Jarque–Bera statistics, the normality assumption
is uniformly rejected for all six indices. The Ljung–Box Q
statistics show that we cannot reject the null hypothesis of
the absence of serial correlation at the 5% level for all of
the series, indicating no evidence of serial correlation for the
stock return series under investigation. However, the Ljung–
Box Q2 tests indicate that all six statistics of return squares
are significant at the 1% level, suggesting volatility clustering
and that this finding would be consistent with a GARCH-type
specification.

In sum, the above statistics clearly indicate that the pop-
ular normality assumption does not match up well with the
weekly returns under investigation. Stock index returns of-
ten show positive excess kurtosis (fat tails), accompanied
by negative skewness. The peakedness does not conform
to that of the normal distribution either. Besides the non-
Gaussian features, some weekly returns show autocorrela-
tion, and all of the return squared series display significant
volatility clustering.

55.4 Empirical Evidence

55.4.1 GARCH(1,1) Model: The Normal
Distribution

It is convenient to start with a GARCH(1,1) model based on
the normal distribution, which sets a basis for comparison.
With a general model in hand, which is given by the set

Fig. 55.1 Level of six indices
Six industries traded on the
American Stock Exchange
(AMEX) are: biotechnology
(AMEXBIOT), computers
(AMEXCPT), natural gas
(AMEXNGAS),
telecommunications
(AMEXNTEL), oil (AMEXOIL),
and pharmaceuticals
(AMEXPHAR). Data source:
Trade Tool, Inc.
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Table 55.1 Descriptive statistics for six industry indices’ weekly returns
Jarque

Ticker Nobs Mean Variance Skew Kurtosis Peakedness –Bera Q(13) Q.13/2

AMEXBIOT 614 0:0034 0.0025 �0:205 3.187 1.087 264:328 21:354 412:762

Œ�2:08	 [16.12] 0:000 0:070 0:000

AMEXCPT 1; 203 0:0016 0.0012 �0:581 3.390 1.108 643:996 19:555 210:064

Œ�8:24	 [24.00] 0:000 0:110 0:000

AMEXNGAS 652 0:0017 0.0012 �0:309 1.060 1.191 40:927 14:0289 86:444

Œ�3:22	 [5.53] 0:000 0:370 0:000

AMEXNTEL 671 0:0014 9.93E-04 �0:760 4.858 1.083 724:532 18:083 197:119

Œ�8:04	 [25.69] 0:000 0:150 0:000

AMEXOIL 1; 203 0:0019 6.72E-04 �0:335 1.267 1.202 103:157 18:577 74:132

Œ�4:75	 [8.98] 0:000 0:140 0:000

AMEXPHAR 655 0:0022 6.67E-04 �0:060 1.494 1.187 61:357 11:957 83:497

Œ�0:63	 [7.81] 0:000 0:530 0:000

Notes: The six indices are biotechnology, computers, natural gas, telecommunications, oil, and pharmaceuticals. The numbers in
brackets below the estimated values are t-values. The critical t-value at the 1% level is 2.57. The standard deviations of skewness and
excess kurtosis coefficients are approximately given by .6=T/0:5 and .24=T/0:5 , respectively. Peakedness is measured by f0:75 � f0:25,
the distance between the value of the standardized variable at which the cumulative distribution function equals 0.75 and the value at
which the cumulative distribution function equals 0.25. The reference value of the standard normal distribution is 1.35. Peakedness
of less than 1.35 means there is a high peak in the probability density function. A normality test is conducted using the Jarque–Bera
statistics. Q and Q2 are Ljung–Box tests for examining independence up to the order of 13. The numbers below these statistics are
p-values

of equations in (52.1), we proceed with our estimation by
setting the error distribution to be normal; that is, "t jˆt�1 �
N.0; ht /, where N stands for the normal distribution.

Before estimating the AGARCH-EGB2 model, we apply
the Box–Jenkins method to filter out the time series pattern.11

The residuals from the mean equation are normalized by di-
viding by the estimated standard deviation obtained from the
conditional variance equation. Using standardized residuals
to fit the model allows us to remove the heteroscedastic-
ity due to stochastic variance. The statistics are reported in
Table 55.2.

Checking the variance equation, we find that most of the
coefficients in the GARCH(1,1) equations are statistically
significant, indicating that stock-return volatilities are char-
acterized by a clustering phenomenon. Further, the average
variances for various stock returns are rather high, indicating
that variances display a higher degree of persistence. The in-
formation from the asymmetric coefficient suggests that only
half of the six cases show a significant asymmetric effect,
which seems to be less apparent than those found in the daily
data in the literature. This may be the result of using weekly
data, which moderates the effect.

11 According to the correlogram of each stock index, the following
ARMA processes are revealed. For biotechnology, AR(12) is detected;
AR(11) for computers; AR(10) for natural gas; AR(11,15) for telecom-
munications; AR(1) for oil; and AR(25) for pharmaceuticals.

Looking at the statistics for skewness, the evidence shows
that the null hypothesis of the absence of skewness is re-
jected at the 1% level in three out of six cases, while the
null hypothesis of the absence of kurtosis is rejected in five
cases. The significant excess kurtosis coefficients are in the
range of 0.52–1.26. A joint test of the Jarque–Bera statis-
tics shows that all of the return residuals are rejected by as-
suming a Gaussian distribution. The rejection occurs because
the stock-index changes are either not independent, not nor-
mally distributed, or both. Further looking into the measure
of peakedness, the estimate values are around 1.25, lower
than the reference point of the standard normal distribution
of peakedness, 1.35, indicating that all of the returns are lep-
tokurtic. It is apparent that the normality assumption of the
residuals is problematic.

We then examine the independence of stock returns up to
the 13th order, which is one-quarter for weekly data. On the
basis of the Ljung–Box statistics, none of Q(13) is signifi-
cant, indicating the absence of autocorrelation in the weekly
data. Further checking the Q.13/2 statistics for examining the
null hypothesis of dependency on the squared returns also
finds no case that is significant, suggesting that the volatil-
ity clustering phenomenon has been reduced significantly as
evidence of implementing an AGARCH(1,1) specification.
From the test results then, it can be argued that stock re-
turns departing from normality may be mainly attributed to
leptokurtosis.
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55.4.2 AGARCH(1,1): The EGB2 Distribution
Model

In this section, we estimate the parameters represented by
(55.1) that assumes an EGB2 distribution. Table 55.3 reports
the comparable statistics based on the standardized return
residuals from an AGARCH(1,1) cum EGB2 distribution.
The statistics, including the estimated coefficients and Q(13)
and Q.13/2, turn out to have results similar to those reported
in Table 55.2, which is based on a normal distribution. How-
ever, by using the EGB2 distribution, the skewness problem
has been removed for all six indices, and no coefficient is
rejected at the conventional significance levels.

Turning to the statistics of kurtosis, we find that none of
the cases are significant at the 1% level. This suggests that the
EGB2 distribution works well on the kurtosis. By inspecting
the estimates of p and q, we find that p ranges from 1.25 to
2.28 and q ranges from 1.60 to 4.53. These pair-wise figures
are nowhere near being equal and are far from the normal
distribution that requires that both p and q approach infinity.
Finally, we check the peakedness, which ranges from 1.22 to
1.28, conforming to the existence of a high peak. In sum, the
testing results suggest that the EGB2 distribution produces
a much more satisfactory result for modeling skewness and
tailed information than can be achieved by assuming a nor-
mal distribution.

55.5 Distributional Fit Test

While highlighting the model’s ability to account for the
skewness and kurtosis of the residuals may not be adequate to
justify the performance of the distribution, in this section we
shall conduct the log-likelihood ratio test and goodness-of-
fit test for different distributions. The log-likelihood function
values in Tables 55.2 and 55.3 already clearly show that the
EGB2 distribution has outperformed the normal distribution.
We conduct a log-likelihood ratio test, which is expressed as:

LR D �2.InL0 � InL1/ (55.7)

where ln L1 is the maximum log-likelihood of the unre-
stricted distribution and lnL0 is the maximum log-likelihood
of the restricted distribution. The likelihood ratio statistic,
LR, follows an asymptotic �2.k/ distribution with k degrees
of freedom under the null hypothesis that the restrictions are
valid, where k is the number of restrictions imposed. We find
that in Table 55.4 all of the LR statistics are highly significant
at the 1% level. The evidence is firmly in favor of the EGB2
distribution.

We further use the �2 goodness-of-fit (GoF) statistic
to compare differences between observed distributions of

standardized residuals and theoretical distributions based on
estimated shape parameters (Snedecor and Cochran 1989).12

The null hypothesis tested by the GoF statistic is that the ob-
served and predicted distribution functions are identical. The
test statistic is given by:

GoF D
kX

iD1

.fi � Fi /
2

Fi
(55.8)

where fi is the observed count of actual standardized resid-
uals in the i th data class (interval), Fi is the predicted count
derived from the estimated values for the distribution param-
eters, and k is the number of data intervals used in distribu-
tional comparisons. GoF has an asymptotic �2 distribution
with degrees of freedom equal to the number of intervals
minus the number of estimated distribution parameters mi-
nus one. For the EGB2 distribution, two parameters are esti-
mated; for the normal distribution, no parameter is required,
since the error term has been standardized.

Table 55.4 reports the results of the �2 test for the stan-
dardized residuals generated by the AGARCH(1,1) – the
EGB2 distribution model. The test power is maximized by
choosing a data class equiprobably (equal probability). The
rule of thumb of a Chi-squared test is to choose the number of
groups starting at 2
T 0:4. Our sample contains either 660 or
1,200 observations with 40 intervals being used. The degree
of freedom is 37 for the EGB2 distribution and 39 for the
normal distribution. The critical values for the chi-squared
distribution are provided in the notes to the table.

The testing results show that the null is rejected for the
computer index on the normal distribution at the 5% level;
however, none is rejected on the EGB2 distribution. Al-
though both distributions in general are acceptable for the
sample, the EGB2 distribution yields lower values of the �2

statistics. Putting the goodness-of-fit test, LR test, and previ-
ous skewness and kurtosis coefficient tests together, plus the
peakedness analysis, it is clear that the EGB2 distribution is
superior to the normal distribution in our empirical analysis.

55.6 The Implication of the EGB2
Distribution

In addition to the superior performance justified by statistical
criteria, the EGB2 distribution offers a useful tool for eval-
uating the probability of those extreme values. According

12 The chi-square test is an alternative to the Anderson-Darling and
Kolmogorov-Smirnov goodness-of-fit tests. The chi-square test and
Anderson-Darling test make use of the specific distribution in calculat-
ing critical values. This has the advantage of allowing a more sensitive
test and the disadvantage that critical values must be calculated for each
distribution.
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Table 55.4 Goodness-of-fit
(Chi square statistics) and
log-likelihood ratio test between
Gaussian distribution and the
EGB2 distribution

Ticker Nobs Normal EGB2 LR

AMEXBIOT 601 37.867 37.533 1; 096:372���

AMEXCPT 1; 191 54:83�� 39.767 2; 151:709���

AMEXNGAS 641 40.875 27.312 1; 166:723���

AMEXNTEL 655 29.000 24.412 1; 196:314���

AMEXOIL 1; 201 35.300 18.567 2; 181:069���

AMEXPHAR 629 35.313 28.312 1; 149:995���

Notes: Normal is the standardized residual from GARCH(1,1)-normal distribution; EGB2
is the standardized residual from GARCH(1,1)-EGB2; The two columns are based on the
same model structure. The quantiles are computed via 40 intervals. For the EGB2 distri-
bution, the degree of freedom (d.f.) is 37, and the critical values at the 1%, 5%, and 10%
levels are 59.89, 52.19 and 48.36, respectively. For the normal distribution, the degree of
freedom is 39, and the critical values at the 1%, 5% and 10% levels are 62.43, 54.57 and
50.66, respectively. LR is log-likelihood ratio.��� and �� indicate significance at the 1%
and 5% levels, respectively

Table 55.5 The probability of negative extreme shocks in the error term between EGB2 and normal distributions
Shocks

Index �9¢ �8¢ �7¢ �6¢ �5¢ �4¢ �3¢ �2¢ �1¢
AMEXBIOT EGB2 4.58E-08 3.49E-07 2.36E-06 1.56E-05 0.000103 0.000681 0:004435 0:02758 0:145553

AMEXCPT 1.91E-07 1.23E-06 6.92E-06 3.79E-05 0.000207 0.001125 0:006063 0:031589 0:146058

AMEXNGAS 4.82E-08 3.80E-07 2.66E-06 1.83E-05 0.000125 0.000837 0:005404 0:031757 0:150973

AMEXNTEL 1.40E-08 1.29E-07 1.08E-06 8.86E-06 7.22E-05 0.000575 0:004362 0:029306 0:151308

AMEXOIL 5.34E-08 4.05E-07 2.72E-06 1.80E-05 0.000118 0.00077 0:004927 0:029597 0:148128

AMEXPHAR 6.49E-09 6.49E-08 5.89E-07 5.29E-06 4.73E-05 0.000416 0:003505 0:026360 0:149579

Normal 1.13E-19 6.22E-16 1.28E-12 9.87E-10 2.87E-07 3.17E-05 0:00135 0:02275 0:158655

Notes: The probability values are calculated based on estimated parameter values of the EGB2 distribution. The probability values based on the
normal distribution are the same for all six indices

to the normal distribution, the 1987 market crash, which is
beyond �17¢ (daily data), would have never happened. How-
ever, recent market crashes indicate that big market swings or
significant declines in asset prices happen more frequently
than we expect. Although VaR is one of the most prevalent
risk measures under normal conditions, it cannot deal with
the involvement of those extreme values, since extreme val-
ues are not in the state of normal. From this perspective, the
EGB2 distribution provides a management tool for calculat-
ing risk.

Table 55.5 reports the probability of the semivolatility
of shocks. We find that the predicted probabilities for ex-
treme values for the EGB2 distribution become greater than
that of the normal distribution, especially in the horizon be-
yond �2¢ . For instance, the probability of a �5¢ and �7¢
shock in the biotechnology index for the EGB2 distribution
is 1.03E-4 and 2.36E-6. These values are much greater than
the 2.87E-7 and 1.28E-12 values, respectively, based on the
normal distribution.

Yet, the probabilities for the EGB2 distribution under a
moderate regime (within ˙2¢) are less than that of the nor-
mal distribution. This is another way to tell the peakedness
and fat tails of portfolio returns. Notice that the dividing point
between the EGB2 distribution and the normal distribution is

in the neighborhood of ˙2¢ , where the probabilities of both
distributions are equivalent. This feature implies that VaR at
the 95% confidence level based on the normal distribution is
by chance consistent with reality. However, beyond this crit-
ical level, the VaR method based on the normal distribution
leads to overly optimistic forecasts of losses.

55.7 Conclusion

This study provides a time series model that incorporates
the asymmetric GARCH feature into a non-Gaussian dis-
tribution: an exponential generalized beta distribution of the
second kind (EGB2). When we apply data for six stock in-
dices to the EGB2 distribution, the evidence consistently
shows that the model is capable of dealing with skewness
and kurtosis of stock returns. Testing the model by using
goodness-of-fit and likelihood ratio statistics, the EBG2 dis-
tribution outperforms the model by assuming normal distri-
bution. Because of its capacity for modeling skewness and fat
tails, the EGB2 model provides a useful tool for forecasting
variances involving extreme values. As a result, this model
can be practically used for risk management.
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