
Chapter 48
Catastrophic Losses and Alternative Risk Transfer Instruments

Jin-Ping Lee and Min-Teh Yu

Abstract This study reviews the valuation models for three
types of catastrophe-linked instruments: catastrophe bonds,
catastrophe equity puts, and catastrophe futures and options.
First, it looks into the pricing of catastrophe bonds under
stochastic interest rates and examines how (re)insurers can
apply catastrophe bonds to reduce the default risk. Second,
it models and values the catastrophe equity puts that give
the (re)insurer the right to sell its stocks at a predetermined
price if catastrophe losses surpass a trigger level. Third, this
study models and prices catastrophe futures and catastrophe
options contracts that are based on a catastrophe index.

Keywords Catastrophe risk �Catastrophe bond �Catastrophe
equity put � Catastrophe futures options � Contingent claim
analysis

48.1 Introduction

Catastrophic events having low frequency of occurrence but
generally high loss severity can easily erode the underwrit-
ing capacity of property and casualty insurance and rein-
surance companies (P&Cs, hereafter). P&Cs traditionally
hedge catastrophe risks by buying catastrophe reinsurance
contracts. Because of capacity shortage and constraints in
the reinsurance markets, the capital markets develop alterna-
tive risk transfer instruments to provide (re)insurance compa-
nies with vehicles for hedging their catastrophe risk. These
instruments can be broadly classified into three categories:
insurance-linked debt contracts (e.g., catastrophe bonds),
contingent capital financing instruments (e.g., catastrophe
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equity puts), and catastrophe derivatives (e.g., catastrophe
futures and catastrophe options).

The Chicago Board of Trade (CBOT) launched catastro-
phe (CAT) futures in 1992 and CAT futures call spreads in
1993 with contract values linked to the loss index compiled
by the Insurance Services Office. The CBOT switched to
CAT options in 1995 to try to spur growth in the CAT deriva-
tives market, but was unable to generate meaningful activity
and ultimately abandoned it in 2000. The CAT bonds, how-
ever, have been quite successful with 89 transactions com-
pleted, representing $15.53 billion in issuance since the first
issue in 1997.1 Since 1996, several CAT equity put deals
were negotiated usually with obligations to purchase stock
of $100 million each.

This study looks into the valuation models for these CAT-
linked instruments and examines how their values are related
to catastrophe risk, terms of the contract, and other key ele-
ments of these instruments. The rest of this study is organized
into four sections. Section II provides a model to value catas-
trophe bonds under stochastic interest rates. Section III mod-
els and values the catastrophe equity puts with credit risk, and
section IV models and prices catastrophe futures and catas-
trophe options contracts that are based on specified catastro-
phe indices. Section V investigates how reinsurers can apply
catastrophe bonds to reduce their default risk. This study’s
valuation approach employs the contingent claim analysis,
and when a closed-form solution cannot be derived numeri-
cal estimates will be computed using the Monte Carlo simu-
lation method.

48.2 Catastrophe Bonds

The CAT bond, which is also named as an “Act of God bond,”
is a liability-hedging instrument for insurance companies.
There are debt-forgiveness triggers in CAT bond provisions,
whereby the generic design allows for the payment of interest

1 See MMC Security (2007).
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and/or the return of principal forgiveness, and the extent of
forgiveness can be total, partial, or scaled to the size of the
loss. Moreover, the debt forgiveness can be triggered by the
(re)insurer’s actual losses or on a composite index of insur-
ers’ losses during a specific period. The advantage of a CAT
bond hedge for (re)insurers is that the issuer can avoid the
credit risk. The CAT bondholders provide the hedge to the
(re)insurer by forgiving existing debt. Thus, the value of this
hedge is independent of the bondholders’ assets and the is-
suer has no risk of non-delivery on the hedge. However, from
the bondholder’s perspective, the default risk, the potential
moral hazard behavior, and the basis risk of the issuing firm
are critical in determining the value of CAT bonds.

48.2.1 CAT Bond Valuation Models

Litzenberger et al. (1996) considered a 1-year bond with an
embedded binary CAT option. The repayment of principal is
indexed to the (re)insurer’s catastrophe loss (denoted as CT ).
This security may be decomposed into two components: (1)
long a bond with a face value of F and (2) short a binary call
on the catastrophe loss and with a strike price K . Under the
assumption that the natural logarithm of the catastrophe loss
is normally distributed, the 1-year CAT bond can be priced
as follows:

PCAT D e�rT 
 .F �ˆ Œ�zK	 
 POT / ; (48.1)

zK D log.K/� u

�
:

Here, r is the risk free interest rate; � and � are respectively
the mean and standard deviation of ln.CT /; ˆ.�/ denotes the
cumulative distribution function for a standard normal ran-
dom variable; POT refers to the option’s payout at maturity
date, T . For a CAT call option spread, when the (re)insurer’s
catastrophe loss (CT ) is less thanK1, the bondholder receives
a repayment of the entire principal; when the loss is between
K1 andK2 (whereK2 > K1), the fraction of principal lost is
.CT�K1/
.K2�K1/ ; and for the loss greater thanK2, the entire principal
payment is lost.

This security may be divided into two components
(1) long a bond with an above-market coupon (c) and (2)
a CAT call option spread consisting of a short position on the
CAT call with a strike price of K1 and a long position on the
CAT call with a strike price ofK2. Under the assumption that
the (re)insurer’s catastrophe loss is lognormally distributed
with mean � and standard deviation � , the CAT bond can be
priced as follows:
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zKi D log.Ki /� u

�
; i D 1; 2.

Litzenberger et al. (1996) provided a bootstrap approach
to price these hypothetical CAT bonds and compared them
with the prices calculated under the assumption of the
lognormality of catastrophe loss distribution. Zajdenweber
(1998) followed Litzenberger et al. (1996), but changed the
CAT loss distribution to the stable-Levy distribution. Con-
trary to Litzenberger et al. (1996) and Zajdenweber (1998),
there were a series of attempts to relax the interest rate
assumption to be stochastic. For instance, Loubergé et al.
(1999) numerically estimated the CAT bond price by assum-
ing the interest rate follows a binomial random process and
the catastrophe loss a compound Poisson process.

Lee and Yu (2002) extended the literature and priced
CAT bonds with a formal term structure model of Cox
et al. (1985). Under the setting that the aggregate loss is a
compound Poisson process, a sum of jumps, the aggregate
catastrophe loss facing the (re)insurer i can be described as
follows 2:

Ci;t D
N.t/X

jD1
Xi;j ; (48.3)

where the process fN.t/gt�0 is the loss number process,
which is assumed to be driven by a Poisson process with
intensity �. TermsXi;j denote the amount of losses caused by
the j th catastrophe during the specific period for the issuing
(re)insurance company. Here, Xi;j , for j D 1; 2; :::; N.T /;

are assumed to be mutually independent, identical, and
lognormally-distributed variables, which are also indepen-
dent of the loss number process, and their logarithmic means
and variances are �i and �2i ; respectively.

A discount bond whose payoffs .POT / at maturity
(i.e., time T) can be specified as follows:

POT D
�
F if Ci;T � K

rp 
 F if Ci;T > K;
(48.4)

2 The process of aggregate catastrophe losses facing the (re)insurer
specified by Lee and Yu (2002) is different from the process of
(re)insurer’s total liabilities specified by Duan and Yu (2005).
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where K is the trigger level set in the CAT bond provisions,
Ci;T is the aggregate loss at maturity, rp is the portion of
principal needed to be paid to bondholders when the forgive-
ness trigger has been pulled, and F is the face value of the
CAT bond. Under the assumption that the term structure of
interest rates is independent of the catastrophe risk, the CAT
bond can be priced as follows:

PCAT D PCIR.0; T / 

2

4
1X

jD0
e��T .�T /j

j Š
F j .K/

Crp
 
1 �

1X

jD0
e��T .�T /j

j Š
F j .K/

3

5 ; (48.5)

where

F j .K/ D P r.Xi;1 CXi;2 C :::CXi;j � K/

denotes the j th convolution of F , and

PCIR.0; T / D A.0; T /e�B.0;T /r.0/;

where

ACIR.0; T / D
"

2�e.�C�/ T2
.� C �/.e�T � 1/C 2�

# 2�m

v2

B.0; T /CIR D 2.e�T � 1/

.� C �/.e�T � 1/C 2�

� D
p
�2 C 2v2:

Here, � is the mean-reverting force measurement, and v is the
volatility parameter for the interest rate.

48.2.1.1 Approximating An Analytical Solution

Under the assumption that the catastrophe loss amount is
independent and identically lognormally-distributed, the ex-
act distribution of the aggregate loss at maturity, denoted as
f .Ci;T /, cannot be known. Lee and Yu (2002) approximated
the exact distribution by a lognormal distribution, denoted as
g.Ci;T /; with specified moments.3 Following the approach,
the first two moments of g.Ci;T / are set to be equal to those
of f .Ci;T /, which can be written as:

3 Jarrow and Rudd (1982), Turnbull and Wakeman (1991), and Nielson
and Sandmann (1996) used the same assumption in approximating the
values of Asian options and basket options.

�g D EŒCi;T 	 D �Te�XC 1
2 �

2
X (48.6)

�2g D VarŒCi;T 	 D �Te2�XC2�2X ; (48.7)

where �g and �2g denote the mean and variance of the ap-
proximating distribution g.Ci;T /, respectively. The price of
the approximating analytical CAT bond can be shown to be
the following:

PCIR.0; T /

"Z K

0

1p
2��gCi;T

e� 1
2 .lnCi;T��g/2dCi;T C rp
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(48.8)

We report the results of Lee and Yu (2002) in Table 48.1
to illustrate the difference between the analytical estimates
and numerical estimates. Table 48.1 shows that the values of
the approximating solution and the values from the numerical
method are very close and within the range of ten basis points
for most cases. In addition, the approximate CAT bond prices
are higher than those estimated by the Monte Carlo simula-
tions for a high value of �i . This is because the approximate
lognormal distribution underestimates the tail probability of
losses and this underestimation is more significant when �i
is high. We also note that the CAT bond price increases with
trigger levels and this increment rises with occurrence inten-
sity and loss variance.

48.2.1.2 Default-Risky CAT Bonds

In order to look into the practical considerations of default
risk, basis risk, and moral hazard relating to CAT bonds, Lee
and Yu (2002) developed a structural model in which the
insurer’s total asset value consists of two risk components –
interest rate and credit risk. The term credit risk refers to all
risks that are orthogonal to the interest rate risk. Specifically,
the value of an insurer’s assets is governed by the following
process:

dVt

Vt
D �V dt C drt C �V dWV;t ; (48.9)

where Vt is the value of the insurer’s total assets at time t; rt
is the instantaneous interest rate at time t; WV;t is the Wiener
process that denotes the credit risk; �A is the instantaneous
drift due to the credit risk; �V is the volatility of the credit
risk; and  is the instantaneous interest rate elasticity of the
insurer’s assets.
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Table 48.1 Default-free CAT bond prices: approximating solution vs. numerical estimates no moral hazard and
basis risk.

Triggers .K/

Approximating solutions Numerical estimates

(�; �XI ) 100 110 120 100 110 120

(0.5,0.5) 0.95112 0.95117 0.95120 0.95119 0.95119 0.95119

(0.5,1) 0.94981 0.95009 0.95031 0.94977 0.95029 0.95062

(0,5,2) 0.92933 0.93128 0.93293 0.92675 0.92903 0.93103

(1,0.5) 0.95095 0.95106 0.95113 0.95119 0.95119 0.95119

(1,1) 0.94750 0.94829 0.94887 0.94825 0.97877 0.94977

(1,2) 0.90559 0.90933 0.91254 0.90273 0.90682 0.91058

(2,0.5) 0.95038 0.95071 0.95091 0.95110 0.95115 0.95119

(2,1) 0.94015 0.94259 0.94441 0.93916 0.94263 0.94492

(2,2) 0.85939 0.86603 0.87183 0.85065 0.85717 0.86378

Notes. All values are calculated assuming bond term T D 1, the market price of interest rate �r D �0:01, the
initial spot interest rate r D 5%; the long-run interest rate m D 5%, the force of mean-reverting � D 0:2, the
volatility of the interest rate � D 10%; and the volatility of the asset return that is caused by the credit risk
�V D 5%. All estimates are computed using 20,000 simulation runs

In the case where the CAT bondholders have priority for
salvage over the other debtholders, the default-risky payoffs
of CAT bonds can be written as follows:

POi;T

D

8
ˆ̂<

ˆ̂:

a � L if Ci;T � K and
Ci;T � Vi;T � a � L

rp � a � L if K <Ci;T �Vi;T � rp � a �L
Max fVi;T �Ci;T ; 0g otherwise;

(48.10)

where POi;T are the payoffs at maturity for the CAT bond
forgiven on the issuing firm’s own actual losses; Vi;T is the is-
suing firm’s asset value at maturity; Ci;T is the issuing firm’s
aggregate loss at maturity; a is the ratio of the CAT bond’s
face amount to total outstanding debts (L). According to the
payoff structures inPOi;T and the specified asset and interest
rate dynamics, the CAT bonds can be valued as follows:

Pi D 1

a � LE
�
0 Œe

�NrT POi;T 	; (48.11)

where Pi is the default-risky CAT bond price with no basis
risk. Term E�

0 denotes expectations taken on the issuing date
under risk-neutral pricing measure; Nr is the average risk-
free interest rate between issuing date and maturity date; and
1

a�L is used to normalize the CAT bond prices for a $1 face
amount.

48.2.1.3 Moral Hazard and Basis Risk

Moral hazard results from less loss-control efforts by the in-
surer issuing CAT bonds, since these efforts may increase

the amount of debt that must be repaid at the expense of the
bondholders’ coupon (or principal) reduction. Bantwal and
Kunreuther (2000) noted the tendency for insurers to write
additional policies in the catastrophe-prone area, spending
less time and money in their auditing of losses after a disaster.

Another important element that needs to be considered in
pricing a CAT bond is the basis risk. The CAT bond’s basis
risk refers to the gap between the insurer’s actual loss and the
composite index of losses that makes the insurer not receive
complete risk hedging. The basis risk may cause insurers to
default on their debt in the case of high individual loss, but a
low index of loss. There is a trade-off between basis risk and
moral hazard. If one uses an insurer’s actual loss to define
the CAT bond payments, then the insurer’s moral hazard is
reduced or eliminated, but basis risk is created.

In order to incorporate the basis risk into the CAT bond
valuation, aggregate catastrophe losses for a composite index
of catastrophe losses (denoted as Cindex;t ) can be specified as
follows:

Cindex;t D
N.t/X

jD1
Xindex;j ; (48.12)

where the process fN.t/gt�0 is the loss number process,
which is assumed to be driven by a Poisson process with
intensity �. Terms Xindex;j denote the amount of losses
caused by the j th catastrophe during the specific period for
the issuing insurance company and the composite index of
losses, respectively. Terms Xindex;j , for j D 1; 2; :::; N.T /;

are assumed to be mutually independent, identical, and
lognormally-distributed variables, which are also indepen-
dent of the loss number process, and their logarithmic means
and variances are �index and �2index; respectively. In addition,
the correlation coefficients of the logarithms of Xi;j and
Xindex; j, for j D 1; 2; :::; N.T / are equal to �X .
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In the case of the CAT bond being forgiven on the
composite index of losses, the default-risky payoffs can be
written as:

POindex;T

D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

a � L if Cindex;T � K and
Ci;T � Vi;T � a � L

rp � a � L if Cindex;T > K and
Ci;T � Vi;T � rp � a � L

Max fVi;T � Ci;T ; 0g otherwise;

(48.13)

whereCindex;T is the value of the composite index at maturity,
and a, L, rp, Vi;T , Ci;T , and K are the same as defined in
Equation (48.10). In the case where the basis risk is taken
into account the CAT bonds can be valued as follows:

Pindex D 1

a � LE
�
0

�
e�NrT POindex;T

�
; (48.14)

where Pindex is the default-risky CAT bond price with basis
risk at issuing time. Terms E�

0 , Nr , and 1
a�L are the same as

defined in Equation (48.11).
The issuing firm might relax its settlement policy once

the accumulated losses fall into the range close to the trigger.
This would then cause an increase in expected losses for the
next catastrophe. This change in the loss process can be de-
scribed as follows:

�
0

i D
(
.1C ˛/�i if .1 � ˇ/K � Ci;j � K;

�i otherwise;
(48.15)

where �
0

i is the logarithmic mean of the losses incurred by
the .j C 1/th catastrophe when the accumulated loss Ci;j
falls in the specified range, .1�ˇ/K � Ci;j � K . Term ˛ is
a positive constant, reflecting the percentage increase in the
mean, and ˇ is a positive constant, which specifies the range
of moral hazard behavior.

We expect that both moral hazard and basis risk will drive
down the prices of CAT bonds. The results of the effects of
moral hazard and basis risk on CAT bonds can be found in
Lee and Yu (2002). The significant price differences indicate
that the moral hazard is an important factor and should be
taken into account when pricing the CAT bonds.4 A low loss
correlation between the firm’s loss and the industry loss in-
dex subjects the firm to a substantial discount in its CAT bond
prices.

4 Bantwal and Kunreuther (2000) also pointed out that moral hazard
may explain the CAT bond premium puzzle .

48.3 Catastrophe Equity Puts

If a insurer suffers a loss of capital due to a catastrophe,
then its stock price is likely to fall, lowering the amount
it would receive for newly issued stock. Catastrophe equity
puts (CatEPut) give insurers the right to sell a certain amount
of its stock to investors at a predetermined price if catastro-
phe losses surpass a specified trigger.5 Thus, catastrophe eq-
uity puts can provide insurers with additional equity capital
when they need funds to cover catastrophe losses. A major
advantage of catastrophe equity puts is that they make eq-
uity funds available at a predetermined price when the in-
surer needs them the most. However, the insurer that uses
catastrophe equity puts faces a credit risk - the risk that the
seller of the catastrophe equity puts will not have enough
cash available to purchase the insurer’s stock at the prede-
termined price. For the investors of catastrophe equity puts
they also face the risk of owning shares of a insurer that is no
longer viable.

48.3.1 Catastrophe Equity Put Valuation
Models

The CatEPut gives the owner the right to issue shares at a
fixed price, but that right is only exercisable if the accu-
mulated catastrophe losses exceed a trigger level during the
lifetime of the option. Such a contract is a special “double
trigger” put option. Cox et al. (2004) valued a CatEPut by as-
suming that the price of the insurer’s equity is driven by a ge-
ometric Brownian motion with additional downward jumps
of a specified size in the event of a catastrophe.

The price of the insurer’s equity can be described as:

St D S0 exp

	
�ANt C �Wt C

�
�S � 1

2
�2S

�
t



;

(48.16)

where St denotes the equity price at time t ; fW gt�0 is a stan-
dard Brownian motion; fN.t/gt�0 is the loss number process,
which is assumed to be driven by a Poisson process with in-
tensity �S ; A 	 0 is the factor to measure the impact of
catastrophe on the market price of the insurer’s equity; and
�S and �S are respectively the mean and standard deviation
of return on the insurer’s equity given that no catastrophe oc-
curs during an interval. The option is exercisable only if the
number of catastrophes occurring during the lifetime of the

5 Catastrophe equity puts, or CatEPuts, are underwritten by Centre Re
and developed by Aon with Centre Re.
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contract is larger than a specified number (denoted as n). The
payoffs of the CatEPut at maturity can be written as:

POCFP D
�
K � ST if ST < K and NT 	 n

0 otherwise
;

(48.17)

where K is the exercise price. This CAT put option can be
priced as follows:

P CFP D
1X

jDn
e��S T .�ST /

j

j Š

 
Ke�rT ˆ

�
dj
�

�S0e�AjCkTˆ
�
dj � �S

p
T
!
; (48.18)

where

k D �S
�
1 � e�A�

dj D
log

�
K
S0


� rT C Aj � kT C �2ST

2

�S
p
T

:

Improving upon the assumption of Cox et al. (2004) that
the size of the catastrophe is irrelevant, Jaimungal and Wang
(2006) assumed that the drop in the insurer’s share price
depends on the level of the catastrophe losses and valued
the CatEPut under a stochastic interest rate. Jaimungal and
Wang (2006) modeled the process of the insurer’s share price
as follows:

St D S0 exp .�˛ .L .t/ � 't/CX .t// ; (48.19)

whereby

L.t/ D
N.t/X

jD1
lj ;

dX.t/ D
	
�S � 1

2
�2S



dt C �SdW

S .t/ ;

dr.t/ D � .� � r .t//C �rdW
r .t/ ;

d
�
W S;W r

�
.t/ D �S;rdt;

where W S .t/ and W r .t/ are correlated Wiener processes
driving the returns of the insurer’s equity and the short
rate, respectively;L.t/ denotes the accumulated catastrophe
losses facing the insurer at time t ; lj ; for j D 1; 2; :::, are as-
sumed to be mutually independent, identical, and distributed
variables representing the size of the j th loss with p.d.f

fL .y/ and mean l ; fN.t/gt�0 is a homogeneous Poisson
process with intensity �. The term 't is used to compensate
for the presence of downward jumps in the insurer’s share
price and is chosen as:

' D �

˛

Z 1

0

.1 � e�˛y/ fL .y/ dy:

The parameter ˛ represents the percentage drop in the share
price per unit of a catastrophe loss and is calibrated such that:

˛E
�
lj
� D ı H) ˛ D ı

l
::

Since the right is exercisable only if the accumulated
catastrophe losses exceed a critical coverage limit during the
lifetime of the option, the payoffs of the CatEPut at maturity
can be specified as:

POJW D
8
<

:
K � ST if ST < K and L.T / >

^
L

0 otherwise
;

(48.20)

where the parameter
^
L represents the trigger level of catas-

trophe losses above which the issuer is obligated to purchase
unit shares. Under these settings, the price of the CatEPut at
the initial date can be described as follows:

PJW D e��T
1X

jD1

.�T /j

j Š

Z 1
^
L

f
.n/
L .y/

n
KP .0; T /

ˆ .�d� .y//� S0e
�˛.y�'T /ˆ .�dC .y//

o
dy;

(48.21)

where f .n/
L .y/ represents the n-fold convolution of the catas-

trophe loss density function f .L/;

d˙ .y/ D ln
�
St
K
PVasicek .0; T /

� � ˛ .y � 'T /˙ 1
2

~

�2r
~
�r .0; T /

;

~

�2r .0; T / D �2ST C 2��S;r�S�r C �2r
�2


 .T � BVasicek .0; T //� �2r
2�
B2

Vasicek .0; T / :

Here, P .0; T / is a T -maturity zero coupon bond in the
Vasicek model:

PVasicek .0; T /

D exp fAVasicek .0; T / � BVasicek .0; T / r .0/g ;
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where

A .0; T /Vasicek D
	
� � �2r

2�2



.BVasicek .0; T /� T /

��
2
r

4�
B2

Vasicek .0; T / ;

BVasicek .0; T / D 1

�

�
1 � e��T � :

48.3.1.1 Credit Risk and CatEPuts

Both Cox et al. (2004) and Jaimungal and Wang (2006) did
not consider the effect of credit risk, the vulnerability of the

issuer, on the catastrophe equity puts.6 Here, we follow Cox
et al. (2004) to assume that the option is exercisable only if
the number of catastrophes occurring during the lifetime of
the contract is larger than a specified number, and we develop
a model to incorporate the effects of credit risk on the valu-
ation of CatEPuts. Consider an insurer with m1 shares out-
standing that wants to be protected in the event of catastrophe
losses by purchasing m2 units of CatEPuts from a reinsurer.
Each CAT put option allows the insurer the right to sell one
share of its stock to the reinsurer at a price ofK if the number
of catastrophes occurring during the lifetime of the contract
is larger than the trigger level (denoted as n). The payoffs
while incorporating the effect of the reinsurer’s vulnerability,
POLY , can be written as:

6 Though CatPut issuer may adopt alternative credit instruments or
derivative market vehicles to transfer its credit risk to the capital mar-
ket as suggested in Saunders and Allen (2002). Watson (2008) also dis-
cussed the impact of transferring the credit risk by securitizing mortgage
credit.

8
ˆ̂<

ˆ̂:

K � ST if ST< K and PL;T	 n and VRe;T�LRe;T > m2.K � ST /
.K � ST /
 .K � ST /m2

.K � ST /m2 C LRe;T
if ST< K and PL;T	 n and VRe;T�LRe;T� m2.K � ST /

0 otherwise

; (48.22)

where PL;t is the loss number process, which is assumed to
be driven by a Poisson process with intensity �P ; Si;t denotes
the insurer’s share price and can be shown as:

Si;t D Vi;t �Li;t
m1

; (48.23)

where Vi;t andLi;t represent the values of the insurer’s assets
and liabilities at time t , respectively.

The value dynamics for the insurer’s asset and liability are
specified as follows:

dV i;t D .r C �Vi /Vi;tdt C �Vi Vi;tdWVi ;t ; (48.24)

dLi;t D
�
r C �Li � �P e

�yi C 1
2 �

2
yi


Li;t�dt

C�Li Li;t� dWLi ;t C YPLi ;tLi;t�dPL;t ; (48.25)

where r is the risk-free interest rate; �Vi is the risk premium
associated with the insurer’s asset risk; �Li denotes the risk
premium for small shocks in the insurer’s liabilities; WVi ;t is
a Weiner process denoting the asset risk; WLi ;t is a Weiner
process summarizing all continuous shocks that are not re-
lated to the asset risk of the insurer; and YPLi ;t is a sequence
of independent and identically-distributed positive random
variables describing the percentage change in liabilities in
the event of a jump. We assume that ln.YPLi ;t / has a normal
distribution with mean �yi and standard deviation �yi . The

term �P e
�yi C 1

2 �
2
yi offsets the drift arising from the compound

Poisson component YPLi ;tLi;t�dPL;t .

The value dynamics for the reinsurer’s assets (VRe;T ) and
liabilities (LRe;T ) are specifically governed by the following
processes:

dVRe;t D .r C �VRe /VRe;t dt C �VReVRe;t dWVRe;t ;

(48.26)

dLRe;t D
�
r C �LRe � �P e�yRe C 1

2 �
2
yRe


LRe;t�dt

C�LReLRe;t�dWLRe;t C YPLRe ;t
LRe;t�dPL;t ;

(48.27)

where VRe;t and LRe;t represent the values of the reinsurer’s
assets and liabilities at time t , respectively; r is the risk-
free interest rate; �VRe is the risk premium associated with
the reinsurer’s asset risk; �LRe denotes the risk premium
for continuous shocks in the insurer’s liabilities; WVRe;t is a
Weiner process denoting the asset risk; WLRe;t is a Weiner
process summarizing all continuous shocks that are not re-
lated to the asset risk of the reinsurer; and YPLRe ;t

is a se-
quence of independent and identically-distributed positive
random variables describing the percentage change in the
reinsurer’s liabilities in the event of a jump. We assume that
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ln.YPLRe ;t
/ has a normal distribution with mean�yRe and stan-

dard deviation �yRe . In addition, assume that the correlation
coefficient of ln.YPi ;t / and ln.YPLRe ;t

/ is equal to �Y . The

term �P e
�yReC 1

2 �
2
yRe offsets the drift arising from the com-

pound Poisson component YPLRe ;t
LRe;t�dPL;t .

According to the payoff structures, the catastrophe loss
number process, and the dynamics for the (re)insurer’s assets
and liabilities specified above, the CatEPut can be valued as
follows:

PLY D E� �e�rT 
 POLY
�
: (48.28)

Here, E� Œ�	 denotes expectations taken on the issuing date
under a risk-neutral pricing measure.

The CAT put prices are estimated by the Monte Carlo sim-
ulation. Table 48.2 presents the numerical results. It shows
that the possibility of a reinsurer’s vulnerability (credit risk)
drives the put price down dramatically. We also observe
that the higher the correlation coefficient of ln.YPi ;t / and

ln.YPLRe ;t
/ (i.e., �Y ) is, the lower the value of the CatEPut

will be. This implies that the reinsurer with efficient diver-
sification in providing reinsurance coverage can increase the
value of the CatEPut.

48.4 Catastrophe Derivatives

Catastrophe risk for (re)insurers can be hedged by buying
exchange-traded catastrophe derivatives such as catastrophe
futures, catastrophe futures options, and catastrophe options.
Exchange-traded catastrophe derivatives are standardized
contracts based on specified catastrophe loss indices. The
loss indices reflect the entire P&C insurance industry.
The contracts entitle (re)insurers (the buyers of catastrophe
derivatives) a cash payment from the seller if the catastro-
phes cause the index to rise above the trigger specified in the
contract.

Table 48.2 Catastrophe put option prices with vs. without credit risk
With credit risk

�y

�P Without credit risk 0.3 0.5 0.8 1

Panel A:
VRe

Vi
D 1

2 0.12787 0.02241 0.02200 0.02140 0.02071

1 0.09077 0.01940 0.01913 0.01864 0.01843

0.5 0.05064 0.00872 0.00873 0.00861 0.00858

0.33 0.02878 0.00451 0.00448 0.00437 0.00433

0.1 0.00391 0.00048 0.00048 0.00043 0.00044

Panel B:
VRe

Vi
D 5

2 0.12787 0.03008 0.02918 0.02833 0.02778

1 0.09077 0.02637 0.02616 0.02576 0.02515

0.5 0.05064 0.01333 0.01319 0.01300 0.01280

0.33 0.02878 0.00693 0.00683 0.00664 0.00670

0.1 0.00391 0.00081 0.00081 0.00084 0.00085

Panel C:
VRe

Vi
D 10

2 0.12787 0.03126 0.03029 0.02935 0.02860

1 0.09077 0.02730 0.02698 0.02654 0.02611

0.5 0.05064 0.01403 0.01389 0.01357 0.01347

0.33 0.02878 0.00733 0.00722 0.00707 0.00704

0.1 0.00391 0.00087 0.00086 0.00088 0.00091

Note. All values are calculated assuming option term T D 2, the number of catastrophe trigger n D 2; risk-free
interest rate r D 5%, the mean of logarithmic jump magnitude �yi D �2:3075651 (�yRe D �2:3075651),
the standard deviation of logarithmic jump magnitude �yi D 0:5 (�yRe D 0:5), the (re)insurer’s initial capital
position Vi

Li
D 1:2 ( VRe

LRe
D 1:2), the volatility of (re)insurer’s assets �Vi D 10% (�VRe D 10%), and the

volatility of (re)insurer’s pure liabilities �Li D 10% (�LRe D 10%). The catastrophe intensity �P is set at 2, 1,
0.5, 0.33, and 0.1. All estimates are computed using 20,000 simulation runs
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48.4.1 Catastrophe Derivatives Valuation
Models

A general formula for the catastrophe futures price can be
developed as in Cox and Schwebach (1992) as follows:

Ft D 1

Q
.ALt C E ŒYt jJt 	/ ; (48.29)

where Q is the aggregate premium paid for in the catastro-
phe insurance portfolio. Here, Yt denotes the losses of the
catastrophe insurance portfolio which are reported after the
current time t; but included in the settlement value, ALt is
the current amount of catastrophe losses announced by the
exchange, and Jt denotes the information available at time t .
Cox and Schwebach (1992) further derived the catastrophe
futures price by assuming Yt follows a compound Poisson
distribution with a intensity parameter �Y . The aggregate
losses of a catastrophe insurance portfolio would be the sum
of a random variable of individual catastrophe losses which
are independent and identically distributed. In other words,
Yt D X1 C X2 C � � � C XN , where X1; X2; :::; XN are mu-
tually independent individual catastrophe losses. According
to these assumptions, the futures price can be described as
follows:

Ft D 1

Q
ALt C .T � t/ �Y p1; (48.30)

where p1 represents the first moment of the individual catas-
trophe loss distribution, i.e., p1 D E .Xi /. Assuming that the
loss of a catastrophe insurance portfolio at maturity (i.e., YT )
is lognormally distributed, that is, the logarithm of ALT

ALt
is normally distributed with mean � .T � t/ and variance
�2 .T � t/, the futures price can be described as:

Ft D ALt

Q
e

	
�.T�t /C �2.T�t /

2




: (48.31)

In the case where ALT is set to be lognormally distributed,
Cox and Schwebach (1992) presented the value of a catas-
trophe futures call option with exercise price x; denoted as
CCS , as follows:

CCS D e�r.T�t /

Q

	
ALte

�
�C �2

2


.T�t /

ˆ .y1/� xQˆ.y2/



;

(48.32)

y1 D
log

�
ALt
xQ


C � .T � t/C �2.T�t /

2

�
p
T � t

and y2 D y1 � �
p
T � t :

Cummins and Geman (1995) used two different processes
to describe the instantaneous claim processes during the

event quarter and the run-off quarter. They argued that the re-
porting claims by policyholders are continuous and take only
a positive value, hence specifying the instantaneous claim to
be a geometric Brownian motion during the run-off quarter.
Moreover, they added a jump process to the process during
the event quarter. Consequently, the two instantaneous claim
processes during the event quarter

�
t 2 �0; T

2

��
and run-off

quarter
�
t 2 �T

2
; T
��

can be respectively specified as follows:

dct D ct� .�cdt C �cdWc;t /C JcdNc;t for t 2
�
0;
T

2

�
;

dct D ct

�
�

0

cdt C �
0

cdWc;t


for t 2

�
T

2
; T

�
;

where ct denotes the instantaneous claim which means that
the amount of claims reported during a small length of time
dt is equal to ctdt . Terms �c and �

0

c represent the mean of
the continuous part of the instantaneous claims during the
event quarter and run-off quarter, respectively, while �c and
�

0

c represent the standard deviation of the continuous part of
the instantaneous claims during the event quarter and run-off
quarter, respectively. Term Jc is a positive constant repre-
senting the severity of loss jump due to a catastrophe, Nc;t
is a Poisson process with intensity �c , and Wc;t is a standard
Brownian motion.

Cummins and Geman (1995) derived a formula to value
the futures price at time t as follows:

Ft D
Z t

0

csds C ct

 
exp˛.

T
2 �t/�1
˛

!

CJc�c
 

exp˛.
T
2 �t/�˛ �T

2
� t
� � 1

˛2

!

Cc0 exp˛
0

. T2 �t/
 

exp˛
0 T
2 �1
˛

0

!

CJc�c
 

exp˛.
T
2 �t/�1
˛

! 
exp˛

0 T
2 �1
˛

0

!
; (48.33)

where ˛ D �c � ��c and ˛
0 D �

0

c � ��
0

c . Here, � repre-
sents the equilibrium market price of claim level risk and is
assumed to be constant over period Œ0; T 	. Cummins and Ge-
man (1995) also considered catastrophe call spreads written
on the catastrophe loss ratio. The payoffs of European call
spreads at maturity T , denoted as Cspread .S; k1; k2/, can be
written as follows:

Cspread .c; k1; k2/

D Min

(
Max

"
100

R T
0
csds

Qc

� k1; 0
#
; k2 � k1

)
; (48.34)
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Table 48.3 20/40 European catastrophe call spreads prices
�s

Time to maturity 0.2 0.4 0.6

0 3.234 3.842 4.421

0.05 3.192 3.798 4.376

0.10 3.155 3.760 4.336

0.15 3.122 3.727 4.301

0.20 3.095 3.698 4.270

0.25 3.071 3.674 4.244

0.30 3.052 3.653 4.221

0.35 3.035 3.635 4.202

0.40 3.022 3.620 4.185

0.45 3.010 3.608 4.171

0.50 3.002 3.598 4.160

Note. All values are calculated assuming the contract with an expected
loss ratio of 20%, the risk-free rate r D 5%, �c D 0:5; Jc D 0:8, and
the parameters ˛; ˛

0

and � to be set at 0.1, 0.1, and 0.15, respectively.
Strike prices are also in points. Values are quoted in terms of loss ratio
percentage points

where k1 and k2 are the exercise prices of the catastrophe call
spread and k2 > k1, whileQc is the premiums earned for the
event quarter. Since no close-form solution can be obtained,
the catastrophe call spreads under alternative combinations
of exercise prices can be estimated by Monte Carlo simu-
lation. We report the values of 20/40 call spreads estimated
by Cummins and Geman (1995) in Table 48.3 to present the
effects of parameter values on the value of catastrophe call
spreads.

Chang et al. (1996) used the randomized operational time
approach to transfer a compound Poisson process to a more
tractable pure diffusion process and led to the parsimo-
nious pricing formula of catastrophe call options as a risk-
neutral Poisson sum of Black’s call prices in information
time. Chang et al. (1996) assumed catastrophe futures price
changes follow jump subordinated processes in calendar-
time. The parent process is assumed to be a lognormal diffu-
sion directed by a homogenous Poisson process as follows:

dXt

Xt
D �Xt dt C �Xt dWXt ; (48.35)

where �Xt and �Xt are the stochastic calendar-time instanta-
neous mean and variance, respectively, and:

�Xt dt D �Xdn .t/ (48.36)

�2Xt dt D �2Xdn .t/ ; (48.37)

where

dn.t/ D 1 if the jump occurs once in dt
with probability jXdt; otherwise

dn.t/ D 0 with probability 1 � jXdt:

Since the instantaneous mean and variance of calendar-
time futures return, �Xt dt and �2Xt dt , are linear to random
information arrival, the information–time proportional fac-
tors, �X and �2X , are constant. Substituting Equations (48.36)
and (48.37) into Equation (48.35), the parent process in in-
formation time can be transferred into a lognormal diffusion
process:

dXn

Xn
D �Xdt C �XdWXn: (48.38)

According to the model, the value of the information-type
European catastrophe call option with strike price k, denoted
as c .X; n; k/, can be written as follows:

c .X; n; k/ D P1
mD0 � .m; jX/B .Xˆ .d1/� kˆ .d2// ;

(48.39)

d1 D
ln

	
X

k



C 1

2
�2Xm

�X
p
m

; d2 D d1 � �Xp
m;

where � .m; j / D e�jX .T�t / ŒjX .T�t /	m
mŠ

is the Poisson proba-
bility mass function with intensity jx . Moreover, T � t is the
option’s calendar-time maturity, r is the riskless interest rate,
B D e�r.T�t / is the price of a riskless matching bond with
maturity T � t , andm denotes the information time maturity
index.

Chang et al. (1996) followed Barone-Adsei and Wha-
ley (1987) for an analytical approximation of the Ameri-
can extension of the Black formula to get the value of the
information–time American catastrophe futures call option
with strike price k, denoted as C .X; n; k/, as follows:

C .X; n; k/ D
1X

mD0
� .m; jX/ CB .X; n; k/ ; (48.40)

where

CB .X; n; k/ D

8
<̂

:̂

e�rm ŒXˆ .d1/� kˆ .d2/	 CA
�
X
X�

�q
;

where X � X�

X � k; where X >X�
;

(48.41)

A D
	
X�

q


 �
1 � Bˆ �d1

�
X���� ;

d1
�
X�� D

ln
�
X�

X


C 1

2
�2Xm

�X
p
m

;

q D 1C p
1C 4h

2
; and h D 2r

�2X .1 � B/
:
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Table 48.4 The Black .B/ and
Information–time .IT /
American spread values

Maturity (Years)

Strike/Strike .k1=k2/ Model 0.025 0.05 0.1 0.25 0.5

20/40 B .IT1
/ 0.756 1.067 1.505 2.231 3.048

IT30 0.549 0.943 1.503 2.583 3.706

IT15 0.424 0.774 1.322 2.369 3.348

IT2 0.154 0.303 0.580 1.288 2.140

40/60 B .IT1
/ 0 0 0 0.030 0.228

y IT30 0 0 0 0.056 0.288

IT15 0 0 0 0.064 0.281

IT2 0.013 0.024 0.053 0.146 0.321

Note. All option values are calculated assuming annual volatility �X D 60%, annual risk-free interest rate
r D 5%, and futures price X D 20. IT30; IT15, and IT2 denote information–time values with annual
jump arrival intensities jX D 30; 15; and 2, respectively. B denotes the Black value and is identical to
IT1, the information–time value when jump arrival intensity is infinity.
The option is capped at 200

Here, CB .X; n; k/ represents the American extension of the
Black formula based on MacMillan (1986) quadratic approx-
imation of the American stock options. Moreover, X� is the
critical futures price above where the American futures op-
tion should be exercised immediately and is determined by
solving:

X� � k D e�rm ŒXˆ .d1/ � kˆ .d2/	C A

	
X

X�


q

C
	
X�

q


 �
1 � Bˆ �d1

�
X���� :

Since a diffusion is a limiting case of a jump subordinated
process when the jump arrival intensity approaches infinity
and the jump size simultaneously approaches zero, the pric-
ing model of Black (1976) is a special case of Equations
(48.39) and (48.40).

Table 48.4 reports the values of information–time
American catastrophe call spreads estimated by Chang et al.
(1996). It shows that the Black formula underprices the
spread for the 40/60 case. However, for the 20/40 case, the
Black formula overprices when the maturity is short. Chang
et al. (1996) noted that the Black formula is a limiting case
of information–time formula, so that the largest mispricing
occurs when the jump intensity j is set at a low value.

48.5 Reinsurance with CAT-Linked Securities

P&Cs traditionally diversify and transfer catastrophe risk
through reinsurance arrangements. The objective of catas-
trophe reinsurance is to provide protection for catastrophe
losses that exceed a specified trigger level. Dassios and
Jang (2003) priced stop-loss catastrophe reinsurance con-
tracts while using the Cox process to model the claim arrival

process for catastrophes. However, in the case of catastrophic
events, reinsurers might not have sufficient capital to cover
the losses. Recent studies of the catastrophe reinsurance mar-
ket have found that these catastrophe events see limited avail-
ability of catastrophic reinsurance coverage in the market
(Froot 1999, 2001; Harrington and Niehaus 2003). P&C rein-
surers can strengthen their ability in providing catastrophe
coverages by issuing CAT-linked instruments. For example,
Lee and Yu (2007) developed a model to value the catas-
trophe reinsurance while considering the issuance of CAT
bonds.

The amount that can be forgiven by CAT bondholders
when the trigger level has been pulled, ı, can be specified
as follows:

ı.C �/ D FCAT � PCAT;T ; (48.42)

where PCAT;T is the payoffs of the CAT bond at maturity and
is specified as follows:

PCAT;T D
�
FCAT if C � � KCAT bond

rp 
 FCAT if C � > KCAT bond
: (48.43)

Here, FCAT is the face value of CAT bonds, and C � can be
the actual catastrophe loss facing the reinsurer (denoted as
Ci;T , specified by Equation (48.3)) or a composite catastro-
phe index (denoted asCindex;T , specified by Equation (48.12))
which depends on the provision set by the CAT bond. When
the contingent debt forgiven by the CAT bond depends on
the actual losses, there is no basis risk. When the basis risk
exists, the payoffs of the reinsurance contract remain the
same except that the contingent savings from the CAT bond,
ı.C �/; depending on the catastrophic-loss index, become
ı.Cindex;T /: Since the debt forgiven by the CAT bond does
not depend on the actual loss, the realized losses and savings
may not match and may therefore affect the insolvency of
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the reinsurer and the value of the reinsurance contract in a
way that differs from that without basis risk. Here, KCAT bond

denotes the trigger level set in the CAT bond provision.

In the case where the reinsurer i issues a CAT bond to
hedge the catastrophe risk, at maturity the payoffs of the rein-
surance contract written by the reinsurer, denoted by Pb;T ,
can be described as follows:

Pb;T D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

M � A if Ci;T 	 M and ARe;T C ı 	 DRe;T CM � A

Ci;T � A if A � CiT < M and ARe;T C ı 	 DRe;T C Ci;T � A
.M � A/.ARe;T C ı/

DRe;T CM � A
if CiT 	 M and ARe;T C ı < DRe;T CM � A

.Ci;T �A/.ARe;T C ı/

DRe;T C Ci;T � A
if M > CiT 	 A and ARe;T C ı < DRe;T C CiT � A

0 otherwise;

(48.44)

where ARe;T denotes the reinsurer’s asset value at time t ,
which is assumed to be governed by the following process:

dARe;t

ARe;t
D �ARedt C ARedrt C �ARedWARe;t ; (48.45)

where �ARe and �ARe denote respectively the mean and stan-
dard deviation of the reinsure’s asset return; ARe is the in-
stantaneous interest rate elasticity of the reinsurer’s assets;
CRe;T is the catastrophe loss covered by the reinsurance con-
tract; and M and A are respectively the cap and attachment
level arranged in the reinsurance contract. In addition to the
liability of providing catastrophe reinsurance coverage, the
reinsurer also faces a liability that comes from providing
reinsurance coverages for other lines. Since the liability rep-
resents the present value of future claims related to the non-
catastrophic policies, the value of a reinsurer’s liability, de-
noted as DRe;t , can be modeled as follows:

dDRe;t D .rt C �DRe/DRe;t dt C DReDRe;t drt

C�DReDRe;t dWDRe;t ; (48.46)

where DRe is the instantaneous interest rate elasticity of the
reinsurer’s liabilities.

The continuous diffusion process reflects the effects of in-
terest rate changes and other day-to-day small shocks. Term
�DRe denotes the risk premium for the small shock, and
WDRe;t denotes the day-to-day small shocks that pertain to id-
iosyncratic shocks to the capital market. In order to incorpo-
rate the effect of the interest rate risk on the reinsurer’s assets,
the asset value of the reinsurance company is assumed to be
governed by the same process as defined in Equation (48.10).

Under the term structure assumption of Cox et al. (1985)
the rate on line (ROL) or the fairly-priced premium rate can
be calculated as follows:

ROL D 1

M � A

 E�

0

h
e� R T

0 rsds 
 Pb;T
i
; (48.47)

where ROL is the premium rate per dollar covered by the
catastrophe reinsurance; and E�

0 denotes the expectations
taken on the issuing date under risk-neutral pricing measure.
Table 48.5 reports ROLs with and without basis risk calcu-
lated by Lee and Yu (2007). When the coefficient of correla-
tion between the individual reinsurer’s catastrophe loss and
the composite loss index, �X , equals 1, no basis risk exists.
The lower the �c is , the higher the basis risk the reinsurer
has. The difference of ROLs for a contract with �X D 1 and
other alternative values is the basis risk premium. We note
that the basis risk drives down the value of the reinsurance
contract and the impact magnitude increases with the basis
risk, catastrophe intensity, and loss volatility. We also note
that the basis risk premium decreases with the trigger level
and the reinsurer’s capital position, but increases with catas-
trophe occurrence intensity and loss volatility.

48.6 Conclusion

This study investigates the valuation models for three types
of CAT-linked securities: CAT bonds, CAT equity puts, and
exchange-traded CAT futures and options. These three new
types of securities are capital market innovations which se-
curitize the reinsurance premiums into tradable securities and
share the (re)insurers’ catastrophe risk with investors.

The study demonstrates how prices of CAT-linked secu-
rities can by valued by using a contingent-claim framework
and numerical methods via risk-neutral pricing techniques.
It begins with introducing a structural model of the CAT
bond that incorporates stochastic interest rates and allows
for endogenous default risk and shows how its price can be
estimated. The model can also evaluate the effect of moral
hazard and basis risk related to the CAT bonds. This study
then extends the literature by setting up a model for valuing
CAT equity puts in which the issuer of the puts is vulnerable.
The results show how the values of CAT equity puts change
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Table 48.5 Values of reinsurance contracts (ROL) with CAT bonds and basis risk
KCATbond 80 100 120

�c 0:3 0:5 1 0:3 0:5 1 0:3 0:5 1

(�; �c; �cindex ) ARe=DRe=1.1

(0.5,0.5,0.5) 0:00283 0:00283 0:00283 0:00283 0:00283 0:00283 0:00283 0:00283 0:00283

(0.5,1,1) 0:01696 0:01698 0:01709 0:01694 0:01695 0:01701 0:01694 0:01695 0:01701

(0.5,2,2) 0:05335 0:05354 0:05424 0:05327 0:05343 0:05403 0:05326 0:05340 0:05392

(1,0.5,0.5) 0.01067 0:01067 0:01607 0:01066 0:01066 0:01066 0:01066 0:01066 0:01066

(1,1,1) 0:03989 0:03995 0:04018 0:03987 0:03990 0:04002 0:03978 0:03978 0:03986

(1,2,2) 0:10632 0:10663 0:10798 0:10615 0:10640 0:10749 0:10594 0:10620 0:10712

(2,0.5,0.5) 0:04331 0:04331 0:04337 0:04331 0:04331 0:04333 0:04331 0:04331 0:04331

(2,1,1) 0:09952 0:09964 0:10011 0:09931 0:09938 0:09967 0:09925 0:09930 0:09943

(2,2,2) 0:21774 0:21825 0:22703 0:21719 0:21767 0:21981 0:21687 0:21732 0:21910

ARe=DRe=1.3

(0.5,0.5,0.5) 0:00296 0:00296 0:00296 0:00295 0:00295 0:00295 0:00295 0:00295 0:00295

(0.5,1,1) 0:01904 0:01905 0:01918 0:01902 0:01902 0:01908 0:01902 0:01902 0:01906

(0.5,2,2) 0:06184 0:06203 0:06280 0:06177 0:06193 0:06259 0:06175 0:06189 0:06246

(1,0.5,0.5) 0:01123 0:01123 0:01123 0:01123 0:01123 0:01123 0:01123 0:01123 0:01123

(1,1,1) 0:04479 0:04484 0:04510 0:04492 0:04494 0:04508 0:04473 0:04473 0:04482

(1,2,2) 0:12335 0:12365 0:12512 0:12342 0:12367 0:12488 0:12300 0:12326 0:12428

(2,0.5,0.5) 0:04669 0:04669 0:04670 0:04666 0:04666 0:04667 0:04663 0:04663 0:04663

(2,1,1) 0:11265 0:11277 0:11337 0:11249 0:11257 0:11292 0:11237 0:11242 0:11258

(2,2,2) 0:24566 0:24603 0:24791 0:24531 0:24567 0:24732 0:24506 0:24540 0:24677

ARe=DRe=1.5

(0.5,0.5,0.5) 0:00296 0:00296 0:00296 0:00296 0:00296 0:00295 0:00296 0:00296 0:00296

(0.5,1,1) 0:02016 0:02018 0:02030 0:02017 0:02017 0:01906 0:02020 0:02020 0:02023

(0.5,2,2) 0:06887 0:06905 0:06988 0:06882 0:06897 0:06246 0:06887 0:06899 0:06962

(1,0.5,0.5) 0:01130 0:01130 0:01130 0:01130 0:01130 0:01123 0:01130 0:01130 0:01130

(1,1,1) 0:04767 0:04771 0:04800 0:04764 0:04766 0:04482 0:04763 0:04763 0:04773

(1,2,2) 0:13795 0:13824 0:13983 0:13796 0:13820 0:12428 0:13768 0:13793 0:13907

(2,0.5,0.5) 0:04735 0:04735 0:04735 0:04733 0:04733 0:04663 0:04734 0:04734 0:04734

(2,1,1) 0:12066 0:12076 0:12147 0:12051 0:12057 0:11258 0:12055 0:12058 0:12080

(2,2,2) 0:27106 0:27153 0:27417 0:27066 0:27110 0:24677 0:27038 0:27081 0:27268

Note. This table presents ROLs with CAT bond issuance and the payoffs to CAT bonds are linked to a catastrophe loss index. ROLs are calculated
and report alternative sets of trigger values (KCATbond ), catastrophe intensities (�), catastrophe loss under volatilities (�c; �cindex ) and the coef-
ficient of correlation between the reinsurer’s catastrophe loss and the composite loss index (�X ). ARe=DRe represents the initial asset-liability
structure or capital position of the reinsurers. All estimates are computed using 20,000 simulation runs

with the issuer’s vulnerability and the correlation between
the (re)insurer’s individual catastrophe risk and the catastro-
phe index. Both results indicate that the credit risk and the
basis risk are important factors in determining CAT bonds
and CAT equity puts. This study also compares several mod-
els in valuing CAT futures and options. Though differences
exist in alternative models, model prices are within reason-
able ranges and similar patterns are observed on price rela-
tions with the underlying elements. The hedging effect for a
reinsurer issuing CAT bonds is also examined.

As long as the threat that natural disasters pose to the fi-
nancial viability of the P&C industry continues to exist, there

is a need for further innovations on better management of
catastrophe risk. The analytical framework in this study in
fact provides a platform for future research on catastrophic
events with more sophisticated products and contracts in
the insurance industry as well as other financial industries.
For example, our analysis can be applied to the recent mas-
sive losses of derivatives associated with subprime mortgage
loans and the vulnerability of the firm that has created these
structured mortgage products.7

7 See Watson (2008).
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