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Unspanned Stochastic Volatilities and Interest Rate
Derivatives Pricing

Feng Zhao

Abstract This paper first reviews the recent literature on
the Unspanned Stochastic Volatilities (USV) documented
in the interest rate derivatives markets. The USV refers to
the volatilities factors implied in the interest rate deriva-
tives prices that have little correlation with the yield
curve factors. We then present the result in Li and Zhao
(J Finance 61:341–378, 2006) that a sophicated DTSM with-
out USV feature can have serious difficulties in hedging
caps and cap straddles, even though they capture bond yields
well. Furthermore, at-the-money straddle hedging errors are
highly correlated with cap-implied volatilities and can ex-
plain a large fraction of hedging errors of all caps and
straddles across moneyness and maturities. These findings
strongly suggest that the unmodified dynamic term structure
models, assuming the same set of state variables for both
bonds and derivatives, are seriously challenged in captur-
ing the term structure volatilities. We also present a mul-
tifactor term structure model with stochastic volatility and
jumps that yields a closed-form formula for cap prices from
Jarrow et al. (J Finance 62:345–382, 2007). The three-fac-
tor stochastic volatility model with Poisson jumps can price
interest rate caps well across moneyness and maturity. Last
we present the nonparametric estimation results from Li and
Zhao (Rev Financ Stud, 22(11):4335–4376, 2009). Specifi-
cally, the forward densities depend significantly on the slope
and volatility of LIBOR rates, and mortgage markets activ-
ities have strong impacts on the shape of the forward den-
sities. These results provide nonparametric evidence of un-
spanned stochastic volatility and suggest that the unspanned
factors could be partly driven by activities in the mortgage
markets. These findings reinforce the claim that term struc-
ture models need to accommodate the unspanned stochastic
volatilities in pricing and hedging interest rate derivatives.
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47.1 Introduction

Interest rate caps and swaptions are among the most widely
traded interest rate derivatives in the world. According to
the Bank for International Settlements, their combined no-
tional values are more than 10 trillion dollars in recent years,
which are many times bigger than that of exchange-traded
options. Because of the size of these markets, accurate and
efficient pricing and hedging of caps and swaptions have
enormous practical importance. Pricing interest rate deriva-
tives are more demanding than pricing bonds in that the
derivatives are more sensitive to the higher order moments
of the distributions for underlying and therefore the mod-
els need to be able to capture the interest rate volatilities
as well as the interest rates themselves. Under the unified
framework of the dynamic term structure models (hereafter
DTSMs), a benchmark in the term structure literature, the
same set of risk factors are used in pricing bonds and deriva-
tives. Consequently, the set risk factors can be identified with
the observations of bond yields or swap rates while the inclu-
sion of derivative prices can help in terms of the efficiency of
the estimation but not essential. The practitioners on the other
hand generally apply the Heath–Jarrow–Morton (HJM) type
of models in pricing interest rate derivatives, in which the en-
tire yield curve is taken as given, and sometimes factors in-
dependent of yield curve, such as stochastic volatilities and
jumps, are added in a piece-meal approach. This divergence
foreshadows one of the key issues of the fast growing liter-
ature on Libor-based interest rate derivatives, the so-called
unspanned stochastic volatility (USV) puzzle.1

Interest rate caps and swaptions are derivatives written
on Libor and swap rates, and the traditional view is that
their prices be determined by the same set of risk factors
that determine Libor and swap rates. However, several recent
studies have shown that there seem to be risk factors that af-
fect the prices of caps and swaptions but are not spanned by

1 Another issue is the relative pricing between caps and swaptions.
Although both caps and swaptions are derivatives on Libor rates, exist-
ing models calibrated to one set of prices tend to significantly misprice
the other set of prices. For a more detailed review of the literature, see
Dai and Singleton (2003).
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the underlying Libor and swap rates. Heidari and Wu (2003)
show that while the three common term structure factors (i.e.,
the level, slope and curvature of the yield curve) can explain
99.5% of the variations of bond yields, they explain less
than 60% of swaption implied volatilities. After including
three additional volatility factors, the explanatory power is
increased to over 97%. Similarly, Collin-Dufresne and Gold-
stein (2002) show that there is a very weak correlation be-
tween changes in swap rates and returns on at-the-money
(ATM) cap straddles: the R2s of regressions of straddle re-
turns on changes of swap rates are typically less than 20%.
Furthermore, one principal component explains 80% of re-
gression residuals of straddles with different maturities. As
straddles are approximately delta neutral and mainly exposed
to volatility risk, they refer to the factor that drives straddle
returns but is not affected by the term structure factors as “un-
spanned stochastic volatility” (hereafter USV). Jagannathan
et al. (2003) find that an affine three-factor model can fit the
LIBOR swap curve rather well. However, they identify sig-
nificant shortcomings when confronting the model with data
on caps and swaptions, thus concluding that derivatives must
be used when evaluating term structure models. On the other
hand, Fan et al. (2003) provide evidence against the existence
of USV and show the swaptions can be hedged using bonds
alone with a HJM model and the difference from the previ-
ous studies results from the nonlinear dependence of deriva-
tive prices on the yield curve factors. Li and Zhao (2006)
show the yield curve factors extracted using a quadratic term

structure model can hedge the bonds perfectly, but not the
interest rate caps and the unhedged components can sys-
tematically improve hedging performance across moneyness.
They argue the difference is likely due to the fact that the in-
terest caps are more sensitive to the volatility factors than
the swaptions, and also the DTSMs are suitable to address
the question whether the derivatives are redundant since the
HJM type of models need using both data sets for estimation.
Overall, most studies suggest that interest rate derivatives are
not redundant securities and cannot be hedged using bonds
alone. In other words, bonds do not span interest rate deriva-
tives. In the following table we regress weekly cap strad-
dle returns at different moneyness and maturity on weekly
changes in the three yield factors and obtain very similar re-
sults. In general, the R2s in Table 47.1 are very small for
straddles that are close to the money. For deep ITM and OTM
straddles, the R2s increase significantly. This is consistent
with the fact that the ATM straddles are more sensitive to the
volatility risk than others away from money.

The existence of USV has profound implications for term
structure modeling, especially on the existing multifactor dy-
namic term structure models, a widely popular term structure
model followed by a huge literature in the last decade. One
of the main reasons of the popularity of these models is their
tractability: they provide closed-form solutions for the prices
of not only zero-coupon bonds, but also a wide range of in-
terest rate derivatives (see, e.g., Duffie et al. 2001; Chacko
and Das 2002; Leippold and Wu 2002). The closed-form

Table 47.1 Regression analysis of USV in caps market
Maturity

Moneyness

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.720 0.696 0.285 – 0.672 0.332 0.477 0.238 0.258

0.65 – – 0.816 0.754 0.725 0.719 0.293 0.245 0.636 0.284 0.210 0.134 0.149

0.70 – – 0.769 0.690 0.615 0.521 0.258 0.142 0.404 0.173 0.184 0.102 0.080

0.75 – 0.704 0.677 0.654 0.596 0.491 0.257 0.065 0.310 0.198 0.149 0.087 0.080

0.80 – 0.557 0.624 0.577 0.418 0.481 0.174 0.090 0.225 0.128 0.112 0.064 0.073

0.85 0.709 0.400 0.538 0.519 0.329 0.319 0.133 0.093 0.164 0.088 0.068 0.041 0.043

0.90 0.507 0.242 0.364 0.322 0.208 0.223 0.078 0.060 0.094 0.056 0.035 0.027 0.066
0.95 0.268 0.076 0.256 0.223 0.124 0.108 0.041 0.031 0.042 0.026 0.031 0.024 0.053
1.00 0.300 0.061 0.209 0.160 0.083 0.031 0.044 0.021 0.025 0.014 0.046 0.024 0.035
1.05 0.473 0.104 0.249 0.169 0.137 0.063 0.076 0.024 0.044 0.025 0.086 0.036 0.043

1.10 0.567 0.218 0.366 0.256 0.263 0.171 0.147 0.065 0.101 0.057 0.140 0.044 0.024

1.15 0.667 0.374 0.497 0.390 0.423 0.306 0.238 0.100 0.192 0.119 0.207 – –

1.20 0.751 0.543 0.608 0.510 0.552 0.476 0.302 0.167 0.251 0.209 0.228 – –

1.25 0.801 0.658 0.691 0.613 0.670 0.593 0.463 0.240 0.307 0.219 – – –

1.30 0.842 0.739 0.775 0.708 0.737 0.660 0.502 0.249 0.390 – – – –

1.35 0.872 0.784 0.827 0.785 0.796 0.756 0.553 – – – – – –

1.40 0.888 0.821 0.879 0.832 0.845 0.851 – – – – – – –

This table reports the R2s of regressions of weekly returns of cap straddles across moneyness and maturity on weekly changes of the three yield
factors. Due to changes in interest rates and strike prices, we do not have the same number of observations for each moneyness/maturity group.
The bold entries represent moneyness/maturity groups that have less than 10% of missing values and the rest are the ones with 10%–50% of
missing values
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formulae significantly reduce the computational burden of
implementing these models and simplify their applications
in practice. However, almost all existing DTSMs assume that
derivatives are redundant and can be perfectly hedged using
solely bonds. Hence, the presence of USV in the deriva-
tives market implies that one fundamental assumption un-
derlying all DTSMs does not hold, and these models need
to be substantially extended to incorporate the unspanned
factors before they can be applied to derivatives. However,
as Collin-Dufresne and Goldstein (2002) show, it is rather
difficult to introduce USV in traditional DTSMs: One must
impose highly restrictive assumptions on model parameters
to guarantee that certain factors that affect derivative prices
do not affect bond prices. In other words, the ATSMs with
USV are restricted version of the existing ATSMs. Some
recent papers, for example see Bikbov and Chernov (2004),
have tested the USV restrictions by comparing USV mod-
els to the nesting unrestricted ATSMs and rejected the USV
restrictions when both models are fitted to both bonds and
derivatives data. This approach however gives misleading
conclusions. The USV for term structure models resembles
the inclusion of stochastic volatility (SV) in the stock price
process, where the natural comparison is between the Black–
Scholes model and the SV model. Similarly the USV model
should be nesting the traditional DTSM without USV for sta-
tistical testing. Specifically, if the unrestricted three-factor
affine model is a good fit for the term structure of interest
rates, one should test whether adding one more factor, i.e.,
a four-factor affine model with USV, will help capture the
derivatives data.

Some recent studies have also provide evidence in support
of the existence of USV using bonds data alone. They show
the yield curve volatilities backed out from a cross-section of
bond yields do not agree with the time-series filtered volatil-
ities, via GARCH or high-frequency estimates from yields
data. This challenges the traditional DTSMs even more since
these models can not be expected to capture the option im-
plied volatilities if they can not even match the realized
yield curve volatilities. Specifically, Collin-Dufresne et al.
(2004, CDGJ) show that the LIBOR volatility implied by
an affine multi-factor specification from the swap rate curve
can be negatively correlated with the time series of volatil-
ity obtained from a standard GARCH approach. In response,
they argue that an affine four-factor USV model delivers
both realistic volatility estimates and a good cross-sectional
fit. Andersen and Benzoni (2006), through the use of high-
frequency data on bond yields, construct the model-free
“realized yield volatility” measure by computing empirical
quadratic yield variation for a cross-section of fixed ma-
turities. They find that the yield curve fails to span yield
volatility, as the systematic volatility factors are largely un-
related to the cross-section of yields. They claim that a
broad class of affine diffusive, Gaussian-quadratic and affine

jump-diffusive models is incapable of accommodating the
observed yield volatility dynamics. An important implica-
tion is that the bond markets per se are incomplete and yield
volatility risk cannot be hedged by taking positions solely in
the Treasury bond market. They also advocate using the em-
pirical realized yield volatility measures more broadly as a
basis for specification testing and (parametric) model selec-
tion within the term structure literature. Thompson (2004),
on the LIBOR swap data, argues when the affine models are
estimated with the time-series filtered yield volatility they
can pass on his newly proposed specification test, but not
with the cross-sectional backed-out volatility. From these
studies on the yields data alone, there may exist an alterna-
tive explanation for the failure of DTSMs in effectively pric-
ing derivatives in that the bonds small convexity makes bonds
not sensitive enough to identify the volatilities from measure-
ment errors. Therefore efficient inference requires derivatives
data as well.

It can be argued in the same fashion that identification of
the unspanned factors can be most efficient accomplished by
adding derivatives data to the analysis. Duarte (2008) shows
mortgage-backed security (MBS) hedging activity affects in-
terest rate volatility and proposes a model that takes these
effects as a measure for the stochastic volatility of the under-
lying term structure. However, it is unclear whether the real-
ized volatility is indeed different form the implied volatility
due to the MBS effects.

Li and Zhao (2009) provide one of the first nonparamet-
ric estimates of probability densities of LIBOR rates under
forward martingale measures using caps with a wide range
of strike prices and maturities.2 The nonparametric estimates
of LIBOR forward densities are conditional on the slope and
volatility factors of LIBOR rates, while the level factor is au-
tomatically incorporated in existing methods.3 They find that
the forward densities depend significantly on the slope and
volatility of LIBOR rates. For example, the forward densities
become more dispersed (compact) when the slope of the
term structure (the volatility of LIBOR rates) increases. Fur-
ther analysis reveals a nonlinear relation between the for-
ward densities and the volatility of LIBOR rates that depends
on the slope of the term structure. With a flat (steep) term
structure, higher volatility tends to lead to more dispersed

2 The nonparametric forward densities estimated using caps, which are
among the simplest and most liquid OTC interest rate derivatives, allow
consistent pricing of more exotic and/or less liquid OTC interest rate
derivatives based on the forward measure approach. The nonparametric
forward densities can reveal potential misspecifications of most existing
term structure models, which rely on strong parametric assumptions to
obtain closed-form formula for interest rate derivative prices.
3 Andersen and Benzoni (2006) show the “curvature” factor are not sig-
nificantly correlated with the yield volatility and it is true in this paper
as well, therefore the volatility effect here is not due to the “curvature”
factor.
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(compact) forward densities. This result suggests that the
speed of mean reversion of the volatility process depends
on the slope of the term structure, a feature that has not
been explicitly accounted for by existing term structure mod-
els. Additionally, this paper documents important impacts of
mortgage market activities on the LIBOR forward densities
even after controlling for both the slope and volatility fac-
tors. For example, the forward densities at intermediate ma-
turities (3, 4, and 5 years) are more negatively skewed when
refinance activities, measured by the Mortgage Bankers As-
sociation of America (MBAA) refinance index, are high. De-
mands for out-of–the-money (OTM) floors by investors in
mortgage-backed securities (MBS) to hedge potential losses
from prepayments could lead to more negatively skewed for-
ward densities. The impacts of refinance activities are most
significant at intermediate maturities because the durations
of most MBS are around 5 years. The forward density at 2
year maturity is more rightly skewed when ARMs origina-
tion (measured by the MBAA ARMs index) is high. Since
every ARM contains an interest rate cap that caps the mort-
gage rate at a certain level, demands for OTM caps from
ARMs lenders to hedge their exposures to rising interest rate
could lead to more rightly skewed forward densities. The im-
pacts of ARMs is most significant at 2 year maturity because
most ARMs get reset within the first 2 years. These empir-
ical results have important implications for the unspanned
stochastic volatility puzzle by providing nonparametric and
model-independent evidence of USV. The impacts of mort-
gage activities on the forward densities further suggest that
the unspanned factors could be partially driven by activities
in the mortgage markets.

The next question naturally is how to best incorporate
USV into a term structure model so it can price wide spec-
trum of interest rate derivatives effectively. In contrast to
the approach of adding USV restrictions to DTSMs, it is
relatively easy to introduce USV in the Heath et al. (1992)
(hereafter, HJM) class of models, which include the LIBOR
models of Brace et al. (1997) and Miltersen et al. (1997),
the random field models of Goldstein (2000), and the string
models of Santa-Clara and Sornette (2001). Indeed, any
HJM model in which the forward rate curve has stochas-
tic volatility and the volatility and yield shocks are not per-
fectly correlated exhibits USV. Therefore, in addition to the
commonly known advantages of HJM models (such as per-
fectly fitting the initial yield curve), they offer the addi-
tional advantage of easily accommodating USV. Of course,
the trade-off here is that in an HJM model, the yield curve is
an input rather than a prediction of the model.

Recently, several HJM models with USV have been
developed and applied to price caps and swaptions. Collin-
Dufresne and Goldstein (2003) develop a random field model
with stochastic volatility and correlation in forward rates.
Applying the transform analysis of Duffie et al. (2000),

they obtain closed-form formulae for a wide variety of in-
terest rate derivatives. However, they do not calibrate their
models to market prices of caps and swaptions. Han (2007)
extends the model of LSS (2001) by introducing stochastic
volatility and correlation in forward rates. Han (2007) shows
that stochastic volatility and correlation are important for rec-
onciling the mispricing between caps and swaptions. Trolle
and Schwartz (in press) developed a multifactor term struc-
ture model with unspanned stochastic volatility factors and
correlation between innovations to forward rates and their
volatilities.

Jarrow et al. (2007) develop a multifactor HJM model
with stochastic volatility and jumps in LIBOR forward rates.
The LIBOR rates follow the affine jump diffusions (here-
after, AJDs) of Duffie et al. (2000) and a closed-form solution
for cap prices is provided. Given a small number of factors
can explain most of the variation of bond yields, they con-
sider low-dimensional model specifications based on the first
few (up to three) principal components of historical forward
rates. Their model explicitly incorporates jumps in LIBOR
rates, making it possible to differentiate between the impor-
tance of stochastic volatility versus jumps for pricing interest
rate derivatives.

In section two of this review, we will discuss how the
original DTSMs have difficulty in pricing and hedging in-
terest rate derivatives, as shown in Li and Zhao (2006). In
section three, we present the HJM model as in Jarrow, Li
and Zhao (2007). Finally, we will provide nonparametric
evidence from Li and Zhao (2009) showing both the real-
ized and implied yield volatilities can not be spanned by the
yield curve factors.

47.2 Term Structure Models with Spanned
Stochastic Volatility

We begin with a two-factor spot rate model with stochas-
tic volatility as in Longstaff and Schwartz (1992). Under
the risk-neutral measure Q the short rate r and its volatility
V follow a two-dimensional square-root process,

drt D �r .�r � rt / dt C
p
VtdWQ

1t I (47.1)

dV t D �V .�V � Vt/ dt C �
p
VtdWQ

2t : (47.2)

The price of the zero coupon bond P.t; T / with maturity T
can be solved through the fundamental PDE for bond pricing,

1

2
V
�
Prr C �2PV V

�C Pr�r .�r � r/

CPV �V .�V � V /C Pt D rP (47.3)
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for 0 � t � T with the terminal condition P.T; T / D 1:

The price P.t; T / and yield y.t; T / are functions of the state
variables frt ; Vt g ;

P.t; T / D eA.T�t /CB.T�t /rtCC.T�t /Vt ; (47.4)

y.t; T / D � log .P.t; T //

T � t

D �A.T � t/
T � t �B.T � t/

T � t
rt�C.T � t/

T � t
Vt ; (47.5)

where A;B and C are coefficients depending on maturity.
It is clear here that the state variables are linear combina-
tions of the yield curve factors such as level and slope. In this
sense, the stochastic volatility is spanned by the bond yields.
Both bonds and bond derivatives can be priced through the
fundamental PDE and the same set of state variables enters
into their prices. We should note here that the volatility pro-
cess in this model serves two roles. First it helps to price
the cross section of bonds making the model more flexible
than one-factor models in generating various shapes of the
yield curve. Second, it is the volatility process of the short
rate therefore it can be inferred using the time series of the
short rate alone. One essential question to address therefore
is whether the volatility process inferred cross-sectionally fits
the time-series properties stipulated by the model. The poten-
tial failure in the fit can be due to the model misspecification
or the fact that the volatility process can not be identified us-
ing the yield curve factors. For illustration, we discuss the
example given in Casassus et al. (2005),

drt D �r .�t � rt / dt C
p
VtdWQ

1t ; (47.6)

d�t D �r

	
��.t/ � 2�r�t C Vt

�r



dt; (47.7)

dV t D �V .Vt ; t/dt C �.Vt ; t/dWQ
2t ; (47.8)

where the long-run mean of the short rate �t has a pure drift
process and the short rate volatility Vt follows a stochastic
process with general drift and diffusion functions that only
depend on the volatility itself. It can be shown that the zero
coupon bond price P.t; T / depends only on the short rate
and its long-run mean, not on the volatility, i.e.

P.t; T / D eA.t;T /CB.T�t /rtCC.T�t /�t : (47.9)

It can also be shown that the price of a European call option
on the zero coupon bond however depends on the volatility
Vt : For this example, the call option can not be hedged by
using bonds alone.

Therefore, it is an important exercise to test whether
a sophicated DTSM without the USV factor can be
used to hedge the interest derivatives. Dai and Singleton

(2002) review many of the current dynamic term structure
models and these models include the affine term structure
models (ATSMs) of Duffie and Kan (1996) and the QTSMs
of ADG (2002) and many others.4

In a typical dynamic term structure model, the econ-
omy is represented by the filtered probability space .�;F;
fFtg0�t�T ; P

�
; where fFt g0�t�T is the augmented filtra-

tion generated by an N-dimensional standard Brownian mo-
tion, W; on this probability space. It is usually assumed that
fFtg0�t�T satisfies the usual hypothesis (see Protter 1990).

The ATSMs rely on the following assumptions:

	 The instantaneous interest rate rt is an affine or quadratic
function of the N-dimensional state variables Xt;

r .Xt/ D ˇ0Xt C ˛ : (47.10)

	 The state variables follow a multivariate affine process,

dXt D K Œ� � Xt	 dt C†StdWt ; (47.11)

where St is a diagonal matrix with elements being the
squareroot of an affine function of Xt . Hence the condi-
tional means and variances of the state variables are affine
functions of the state variables.

	 The market price of risk is a function of the state variables,

�.Xt/ D �0XtS
�
t C �1St ; (47.12)

where S�
t is a diagonal matrix with elements being the

inverse of those in St wherever positive zero otherwise.

The zero coupon bond with time to maturity � can be
priced by risk-neutral pricing

D.t; �/ D E
Q
t

h
e� R tC�

t r.Xs/ds � 1
i

D e�A.�/�B.�/0Xt : (47.13)

The functions ofA .�/ andB .�/ satisfy a system of ordinary
differential equations. The continuously compounding yields
y.t; �/ follows

y.t; �/ D 1

�

�
A.�/C B .�/0Xt

�
: (47.14)

4 The affine models include the completely affine models of Dai and
Singleton (2000), the essentially affine models of Duffee (2002), and the
semi-affine models of Duarte (2004). Other DTSMs include the hybrid
models of Ahn et al. (2003), the regime-switching models of Bansal and
Zhou (2002) and Dai et al. (2003), and models with macroeconomic
jump effects, such as Piazzesi (2005) and many others.
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The interest rate derivatives can be priced similarly via risk-
neutral pricing. Without any restrictions on the model param-
eters, the loadings for the state variables, B .�/ ; are not zero
in general. Hence the state variables can always be backed
out given enough number of yields, leaving the derivative
prices been redundant in identifying the state variables.

The QTSMs rely on the following assumptions:

	 The instantaneous interest rate rt is an affine or quadratic
function of the N-dimensional state variablesXt ;

r .Xt / D X 0
t ‰Xt C ˇ0Xt C ˛ (47.15)

	 The state variables follow a multivariate Gaussian
process,

dXt D Œ�C �Xt 	 dt C†dW t ; (47.16)

	 The market price of risk is an affine function of the state
variables,

�.Xt/ D �0 C �1Xt : (47.17)

Note that in the above equations ‰; �;†; and �1 are
N-by-N matrices, ˇ;� and �0 are vectors of length N and ˛ is
a scalar. The quadratic relation between rt andXt has the de-
sired property that rt is guaranteed to be positive if‰ is posi-
tive semidefinite and ˛� 1

4
ˇ0‰ˇ 	 0: AlthoughXt follows a

Gaussian process in Equation (47.2), interest rate rt exhibits
conditional heteroskedasticity because of the quadratic rela-
tionship between rt andXt :As a result, the QTSMs are more
flexible in modeling volatility clustering in bond yields and
correlations among the state variables than the ATSMs.

Consequently, the yield-to-maturity,y.t; �/; is a quadratic
function of the state variables

y.t; �/ D 1

�

�
X 0
t A.�/Xt C b.�/0Xt C c.�/

�
: (47.18)

In contrast, in the ATSMs the yields are linear in the state
variables and therefore the correlations among the yields are
solely determined by the correlations of the state variables.
Although the state variables in the QTSMs follow multivari-
ate Gaussian process, the quadratic form of the yields helps
to model the time varying volatility and correlation of bond
yields. Leippold and Wu (2002) show that a large class of
fixed-income securities can be priced in closed-form in the
QTSMs using the transform analysis of Duffie et al. (2001).
The details of the derivation are in Appendix.

The first test for these models is to capture both the cross-
sectional and time-series properties of bond yields, which has
been reviewed in Dai and Singleton (2003). Even though the
most sophiscated models can fit the cross section of bond
prices very well and they can capture the time series property

of the first moment of the yield curve factors, they do not per-
form satisfactorily in capturing the second moment. The sec-
ond test is to see whether these models can be used to price
and hedge a cross section of interest rate derivatives. The task
to performing the second task is made somewhat easier due
to one major advantage of these DTSMs in that they pro-
vide closed-form solutions for a wide range of interest rate
derivatives.

The empirical results shown below are from Li and Zhao
(2006), in which they study the performance of QTSMs in
pricing and hedging interest rate caps. Even though the study
is based on QTSMs, the empirical findings are common to
ATSMs as well.5 To price and hedge caps in the QTSMs,
both model parameters and latent state variables need to be
estimated. Due to the quadratic relationship between bond
yields and the state variables, the state variables are not iden-
tified by the observed yields even in the univariate case in the
QTSMs. Previous studies, such as ADG (2002) have used the
efficient method of moments (EMM) of Gallant and Tauchen
(1998) to estimate the QTSMs. Li and Zhao (2006) use the
extended Kalman filter (EKF) to estimate model parameters
and extract the latent state variables in one step. The details
of the implementation of the EKF is in Appendix.

The pricing analysis can reveal two sources of potential
model misspecification. One is on the number of factors in
the model as a missing factor usually causes large pricing
errors. An analogy is using Black–Scholes model while the
stock price is generated from a stochastic volatility model.
The other is on the assumption of the innovation process of
each factor. If the innovation of the factor has a fat-tailed dis-
tribution, the convenient assumption of Gaussian distribution
is going to deliver large pricing error as well. So from a pric-
ing study, we can not conclude one or the other or both cause
large pricing errors. On the other hand, hedging analysis fo-
cuses on the changes of the prices, so even if the marginal
distribution of the prices can be highly non-gaussian, the
conditional distribution for a small time step can still be

5 In the empirical analysis of Li and Zhao (2006), the QTSMs are cho-
sen for several reasons. First, since the nominal spot interest rate is a
quadratic function of the state variables, it is guaranteed to be positive
in the QTSMs. On the other hand, in the ATSMs, the spot rate, an affine
function of the state variables, is guaranteed to be positive only when all
the state variables follow square-root processes. Second, the QTSMs do
not have the limitations facing the ATSMs in simultaneously fitting in-
terest rate volatility and correlations among the state variables. That is,
in the ATSMs, increasing the number of factors that follow square-root
processes improves the modeling of volatility clustering in bond yields,
but reduces the flexibility in modeling correlations among the state vari-
ables. Third, the QTSMs have the potential to capture observed nonlin-
earity in term structure data (see e.g., Ahn and Gao 1999). Indeed, ADG
(2002) and Brandt and Chapman (2002) show that the QTSMs can cap-
ture the conditional volatility of bond yields better than the ATSMs.
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reasonably approximated with Gaussian distribution. As the
result, a deficiency in hedging, especially at high frequency,
reveals more about the potential missing factors than the dis-
tribution assumption in a model.

In Li and Zhao (2006), QTSMs can capture yield curve
dynamics extremely well. First, given the estimated model
parameters and state variables, they compute the one day
ahead projection of yields based on the estimated model.
Figure 47.1 shows that QTSM1 model projected yields
are almost indistinguishable from the corresponding ob-
served yields. Secondly, they examine the performance of
the QTSMs in hedging zero-coupon bonds assuming that the
filtered state variables are traded and use them as hedging
instruments. The delta-neutral hedge is conducted for zero-
coupon bonds of six maturities on a daily basis. Hedging per-
formance is measured by variance ratio, which is defined as

the percentage of the variations of an unhedged position that
can be reduced by hedging. The results on the hedging per-
formance in Table 47.2 show that in most cases the variance
ratios are higher than 95%. This should not be surprising
given the excellent fit of bond yields by the QTSMs.

If the Libor and swap market and the cap market are
well integrated, the estimated three-factor QTSMs should
be able to hedge caps well. Based on the estimated model
parameters, the delta-neutral hedge of weekly changes of dif-
ference cap prices is conducted using filtered state variables
as hedging instruments. It is also possible to use Libor zero-
coupon bonds as hedging instruments by matching the hedge
ratios of a difference cap with that of zero-coupon bonds.
Daily rebalance – adjustment of the hedge ratios everyday
given changes in market conditions – is implemented to im-
prove hedging performance. Therefore daily changes of a

Fig. 47.1 The observed yields
(dot and the QTSM1 projected
yields)
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Table 47.2 The performance of
QTSMs in modeling bond yields

Maturity (years)

0:5 1 2 5 7 10

QTSM3 0:717 0:948 0:982 0:98 0:993 0.93

QTSM2 0:99 0:956 0:963 0:975 0:997 0.934

QTSM1 0:994 0:962 0:969 0:976 0:997 0.932

This table reports the performance of the three-factor QTSMs in capturing bond yields.
Variance ratios of model-based hedging of zero-coupon bonds in QTSMs using filtered
state variables as hedging instruments. Variance ratio measures the percentage of the
variations of an unhedged position that can be reduced through hedging
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hedged position is the difference between daily changes of
the unhedged position and the hedging portfolio. The latter
equals to the sum of the products of a difference cap’s hedge
ratios with respect to the state variables and changes in the

corresponding state variables. Weekly changes are just the
accumulation over daily positions. The hedging effectiveness
is measured by variance ratio, the percentage of the variations
of an unhedged position that can be reduced by hedging. This
measure is similar in spirit to R2 in linear regression. The
variance ratios of the three QTSMs in Table 47.3 show that

Table 47.3 The performance of QTSMs in hedging interest rate caps
Panel A. Variance ratio of QTSM1

Maturity
Moneyness

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.917 – – – 0.862 0.679 0.665 0.494 0.257

0.65 – – 0.904 0.919 0.920 – 0.671 0.549 0.861 0.704 0.609 0.431 0.255

0.70 – – 0.903 0.913 0.916 0.862 0.666 0.487 0.822 0.619 0.565 0.355 0.218

0.75 – 0.865 0.884 0.911 0.902 0.852 0.689 0.447 0.807 0.620 0.544 0.326 0.198

0.80 – 0.831 0.890 0.900 0.876 0.864 0.670 0.504 0.785 0.594 0.537 0.305 0.185

0.85 0.894 0.818 0.880 0.893 0.869 0.833 0.649 0.531 0.773 0.590 0.516 0.296 0.159

0.90 0.890 0.810 0.853 0.872 0.851 0.832 0.631 0.514 0.748 0.577 0.491 0.314 0.171
0.95 0.888 0.779 0.832 0.855 0.847 0.833 0.596 0.481 0.716 0.578 0.481 0.303 0.182
1.00 0.875 0.677 0.803 0.824 0.826 0.815 0.575 0.456 0.695 0.533 0.476 0.287 0.164
1.05 0.856 0.619 0.767 0.799 0.797 0.805 0.536 0.424 0.671 0.512 0.492 0.245 0.138

1.10 0.851 0.575 0.737 0.779 0.763 0.773 0.523 0.411 0.623 0.490 0.415 0.204 –

1.15 0.789 0.529 0.692 0.755 0.724 0.722 0.483 0.422 0.611 0.426 – – –

1.20 0.756 0.489 0.645 0.692 0.654 0.673 0.521 0.470 0.533 0.415 – – –

1.25 0.733 0.438 0.603 0.645 0.575 0.634 0.587 0.551 0.514 – – – –

1.30 0.724 0.393 0.534 0.591 0.444 0.602 0.540 – 0.334 – – – –

1.35 0.691 0.324 0.449 0.539 0.408 0.515 0.436 – – – – – –

1.40 – 0.260 0.373 0.464 0.319 – – – – – – – –

Panel B. Variance ratio of QTSM1 combined with the changes of the three yield factors

Maturity
Moneyness

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.921 – – – 0.912 0.788 0.815 0.658 0.579

0.65 – – 0.929 0.928 0.921 – 0.676 0.573 0.904 0.804 0.765 0.611 0.471

0.70 – – 0.927 0.922 0.919 0.872 0.675 0.507 0.847 0.679 0.666 0.462 0.353

0.75 – 0.914 0.908 0.922 0.903 0.861 0.697 0.450 0.835 0.687 0.646 0.429 0.312

0.80 – 0.886 0.915 0.912 0.882 0.873 0.675 0.510 0.811 0.653 0.639 0.417 0.324

0.85 0.951 0.870 0.905 0.899 0.872 0.839 0.654 0.543 0.802 0.647 0.610 0.397 0.286

0.90 0.942 0.853 0.876 0.882 0.855 0.837 0.633 0.524 0.776 0.632 0.573 0.412 0.310
0.95 0.935 0.825 0.860 0.864 0.853 0.837 0.597 0.488 0.738 0.623 0.554 0.395 0.306
1.00 0.923 0.746 0.841 0.836 0.839 0.820 0.578 0.462 0.709 0.566 0.541 0.361 0.269
1.05 0.906 0.694 0.816 0.816 0.819 0.814 0.539 0.428 0.679 0.537 0.545 0.338 0.210

1.10 0.895 0.659 0.799 0.804 0.794 0.786 0.530 0.421 0.630 0.508 0.480 0.278 –

1.15 0.857 0.624 0.770 0.789 0.773 0.742 0.491 0.439 0.623 0.434 – – –

1.20 0.848 0.611 0.741 0.746 0.729 0.701 0.530 0.486 0.572 0.427 – – –

1.25 0.824 0.577 0.712 0.716 0.673 0.668 0.612 0.598 0.541 – – – –

1.30 0.796 0.560 0.680 0.687 0.626 0.679 0.559 – 0.378 – – – –

1.35 0.777 0.511 0.634 0.662 0.603 0.636 0.464 – – – – – –

1.40 – 0.455 0.582 0.638 0.573 – – – – – – – –

This table reports the performance of the three QTSMs in hedging difference caps. Hedging effectiveness is measured by variance ratio, the
percentage of the variations of an unhedged position that can be reduced through hedging. The bold entries represent moneyness/maturity groups
that have less than 10% of missing values and the rest are the ones with 10–50% of missing values



47 Unspanned Stochastic Volatilities and Interest Rate Derivatives Pricing 721

all models have better hedging performance for ITM, short-
term (maturities from 1.5 to 4 years) difference caps6 than
OTM, medium and long-term difference caps (maturities
longer than 4 years) caps. There is a high percentage of varia-
tions in long-term and OTM difference cap prices that cannot
be hedged. The maximal flexible model QTSM1 again has
better hedging performance than the other two models. To
control for the fact that the QTSMs may be misspecified, in
Panel B of Table 47.3, the hedging errors of each money-
ness/maturity group are further regressed on the changes of
the three yield factors. While the three yield factors can ex-
plain some additional hedging errors, their incremental ex-
planatory power is not very significant. Thus even excluding
hedging errors that can be captured by the three yield fac-
tors, there is still a large fraction of difference cap prices that
cannot be explained by the QTSMs. Table 47.4 reports the
performance of the QTSMs in hedging cap straddles. The dif-
ference floor prices are computed from difference cap prices
using the put-call parity and construct weekly straddle re-
turns. As straddles are highly sensitive to volatility risk, both
delta and gamma neutral hedge is needed. The variance ra-
tios of QTSM1 are as low as the R2s of linear regressions
of straddle returns on the yield factors in Table 47.1, sug-
gesting that neither approach can explain much variations of
straddle returns. Collin-Dufresne and Goldstein (2002) show
that 80% of straddle regression residuals can be explained by
one additional factor. Principle component analysis of ATM
straddle hedging errors in Panel B of Table 47.4 shows that
the first factor can explain about 60% of the total variations
of hedging errors. The second and third factor each explains
about 10% of hedging errors and two additional factors com-
bined can explain about another 10% of hedging errors. The
correlation matrix of the ATM straddle hedging errors across
maturities in Panel C shows that the hedging errors of short-
term (2, 2.5, 3, 3.5, and 4 year), medium-term (4.5 and 5
year) and long-term (8, 9, and 10 year) straddles are highly
correlated within each group, suggesting that there could be
multiple unspanned factors.

To further understand whether the unspanned factors are
related to stochastic volatility, we study the relationship be-
tween ATM cap implied volatilities and straddle hedging er-
rors. Principle component analysis in Panel A of Table 47.5
shows that the first component explains 85% of the variations
of cap implied volatilities. In Panel B, we regress straddle
hedging errors on changes of the three yield factors and ob-
tain R2s that are close to zero. However, if we include the
weekly changes of the first few principle components of cap
implied volatilities, the R2s increase significantly: for some

6 The difference cap is the difference of the caps with subsequent matu-
rities and the same strike prices. Instead of having caplets ranging from
as early as six months, the difference cap only has caplets of a small
maturity region.

maturities, the R2s are above 90%. Although the time series
of implied volatilities are very persistent, their differences are
not and we do not suffer from the well-known problem of
spurious regression. In the extreme case in which we regress
straddle hedging errors of each maturity on changes of the
yield factors and cap implied volatilities with the same matu-
rity, theR2s in most cases are above 90%. These results show
that straddle returns are mainly affected by volatility risk but
not term structure factors.

As ATM straddles are mainly exposed to volatility risk,
their hedging errors can serve as a proxy of the USV. Panel A
and B of Table 47.6 report the R2s of regressions of hedging
errors of difference caps and cap straddles across moneyness
and maturity on changes of the three yield factors and the
first five principle components of straddle hedging errors. In
contrast to the regressions in Panel D of Table 47.6, which
only include the three yield factors, the additional factors
from straddle hedging errors significantly improve the R2s
of the regressions: for most moneyness/maturity groups, the
R2s are above 90%. Interestingly for long-term caps, theR2s
of ATM and OTM caps are actually higher than that of ITM
caps. Therefore, a combination of the yield factors and the
USV factors can explain cap prices across moneyness and
maturity very well.

While the above analysis is mainly based on the QTSMs,
the evidence on USV is so compelling that the results should
be robust to potential model misspecification. The fact that
the QTSMs provide excellent fit of bond yields but can ex-
plain only a small percentage of the variations of ATM strad-
dle returns is a strong indication that the models miss some
risk factors that are important for the cap market. While we
estimate the QTSMs using only bond prices, we could also
include cap prices in model estimation. We do not choose
the second approach for several reasons. First, the current ap-
proach is consistent with the main objective of our study: Use
risk factors extracted from the swap market to explain cap
prices. Second, it is not clear that modifications of model pa-
rameters without changing the fundamental structure of the
model could remedy the poor crosssectional hedging perfor-
mance of the QTSMs. In fact, if the QTSMs indeed miss
some important factors, then no matter how they are esti-
mated (using bonds or derivatives data), they are unlikely
to have good hedging performance. Finally, Jagannathan
et al. (2003) do not find significant differences between pa-
rameters of ATSMs estimated using LIBOR/swap rates and
cap/swaption prices. The existence of USV strongly suggests
that existing DTSMs need to relax their fundamental assump-
tion that derivatives are redundant securities by explicitly in-
corporating USV factors. It also suggests that it might be
more convenient to consider derivative pricing in the for-
ward rate models of HJM (1992) or the random field mod-
els of Goldstein (2000) and Santa-Clara and Sornette (2001)
because it is generally very difficult to introduce USV in
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Table 47.4 Hedging interest rate cap straddles
Panel A. The performance of QTSM1 in hedging difference cap straddles measured by variance ratio

Maturity

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.711 – – – 0.709 0.329 0.596 0.362 0.250

0.65 – – 0.794 0.756 0.711 – 0.270 0.215 0.672 0.427 0.495 0.283 0.185

0.70 – – 0.776 0.723 0.674 0.557 0.250 0.152 0.473 0.206 0.187 0.096 0.074

0.75 – 0.690 0.682 0.683 0.589 0.497 0.254 0.078 0.399 0.211 0.148 0.072 0.063

0.80 – 0.560 0.652 0.615 0.437 0.488 0.179 0.093 0.293 0.126 0.113 0.053 0.070

0.85 0.727 0.438 0.579 0.532 0.366 0.349 0.133 0.095 0.227 0.091 0.068 0.025 0.037

0.90 0.558 0.278 0.405 0.339 0.248 0.265 0.066 0.049 0.138 0.052 0.032 0.016 0.060
0.95 0.416 0.127 0.287 0.236 0.207 0.215 0.022 0.017 0.069 0.018 0.034 0.012 0.043
1.00 0.364 0.081 0.210 0.142 0.149 0.142 0.024 0.006 0.045 0.006 0.047 0.009 0.002
1.05 0.471 0.111 0.237 0.133 0.190 0.187 0.058 0.010 0.078 0.035 0.091 0.022 0.035

1.10 0.622 0.212 0.368 0.226 0.314 0.283 0.146 0.065 0.133 0.054 0.091 0.018 –

1.15 0.727 0.357 0.508 0.378 0.472 0.399 0.235 0.162 0.252 0.107 – – –

1.20 0.788 0.527 0.633 0.515 0.593 0.481 0.368 0.201 0.343 0.256 – – –

1.25 0.831 0.640 0.721 0.636 0.662 0.600 0.464 0.296 0.408 – – – –

1.30 0.851 0.727 0.808 0.728 0.781 0.729 0.525 – 0.454 – – – –

1.35 0.876 0.778 0.852 0.802 0.833 0.804 0.551 – – – – – –

1.40 – 0.817 0.894 0.863 0.880 – – – – – – – –

Panel B. Percentage of variance of ATM straddles hedging errors explained by the principle components

Principle component

1 2 3 4 5 6

59.3% 12.4% 9.4% 6.7% 4.0% 2.8%

Panel C. Correlation matrix of ATM straddles hedging errors across maturity

Maturity

Maturity 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

1.5 1.00 – – – – – – – – – – – –

2 0.38 1.00 – – – – – – – – – – –

2.5 0.28 0.66 1.00 – – – – – – – – – –

3 0.03 0.33 0.73 1.00 – – – – – – – – –

3.5 0.27 0.52 0.63 0.59 1.00 – – – – – – – –

4 0.13 0.44 0.37 0.37 0.77 1.00 – – – – – – –

4.5 0.20 0.21 �0.04 �0.08 �0.05 �0.06 1.00 – – – – – –

5 0.10 0.11 �0.12 �0.13 �0.16 �0.15 0.96 1.00 – – – – –

6 0.21 0.16 0.19 0.13 0.25 0.05 0.27 0.23 1.00 – – – –

7 0.30 0.34 0.33 0.35 0.46 0.38 0.28 0.22 0.08 1.00 – – –

8 0.10 0.12 0.30 0.30 0.25 0.11 0.36 0.34 0.29 0.29 1.00 – –

9 0.14 0.11 0.25 0.29 0.26 0.12 0.39 0.37 0.32 0.38 0.83 1.00 –

10 0.08 �0.01 0.17 0.14 0.12 0.01 0.32 0.35 0.26 0.28 0.77 0.86 1.00

DTSMs. For example, Collin-Dufresne and Goldstein (2002)
show that highly restrictive assumptions on model parame-
ters need to be imposed to guarantee that some state vari-
ables that are important for derivative pricing do not affect
bond prices. In contrast, they show that it is much easier to
introduce USV in the HJM and random field class of mod-
els: Any HJM or random field model in which the forward
rate has a stochastic volatility exhibits USV. While it has
always been argued that HJM and random field models are

more appropriate for pricing derivatives than DTSMs, the
reasoning given here is quite different. That is, in addition
to the commonly known advantages of these models (such as
they can perfectly fit the initial yield curve while DTSMs
generally cannot), another advantage of HJM and random
field models is that they can easily accommodate USV (see
Collin-Dufresne and Goldstein (2002) for illustration).

The existence of USV suggests that these models may
not be directly applicable to derivatives because they all rely
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Table 47.5 Straddle hedging errors and cap implied volatilities
Panel A. Percentage of variance of ATM Cap implied volatilities explained by the principle components

Principle component

1 2 3 4 5 6

85.73% 7.91% 1.85% 1.54% 0.72% 0.67%

Panel B. R2s of the regressions of ATM straddles hedging errors on changes of the three yield factors (row one);
changes of the three yield factors and the first four principle components of the ATM Cap implied volatilities (row
two); and changes of the three yield factors and maturity-wise ATM Cap implied volatility (row three)

Maturity

1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.10 0.06 0.02 0.01 0.01 0.04 0.00 0.00 0.01 0.01 0.00 0.01 0.04

0.29 0.49 0.54 0.43 0.63 0.47 0.95 0.96 0.21 0.70 0.68 0.89 0.96

0.68 0.70 0.81 0.87 0.85 0.90 0.95 0.98 0.95 0.98 0.97 0.98 0.99

This table reports the relation between straddle hedging errors and ATM Cap implied volatilities

on the fundamental assumption that bonds and derivatives
are driven by the same set of risk factors. In this paper, we
provide probably the first empirical analysis of DTSMs in
hedging interest rate derivatives and hope to resolve the con-
troversy on USV through this exercise.

47.3 LIBOR Market Models with Stochastic
Volatility and Jumps: Theory
and Estimation

In this section, we develop a multifactor HJM model with
stochastic volatility and jumps in LIBOR forward rates and
discuss model estimation and comparison using a wide cross
section of difference caps. Instead of modeling the unobserv-
able instantaneous spot rate or forward rate, we focus on the
LIBOR forward rates which are observable and widely used
in the market.

47.3.1 Specification of the LIBOR Market
Models

Throughout our analysis, we restrict the cap maturity T to a
finite set of dates 0 D T0 < T1 < � � � < TK < TKC1; and
assume that the intervals TkC1 � Tk are equally spaced by ı,
a quarter of a year. Let Lk .t/ D L.t; Tk/ be the LIBOR
forward rate for the actual period ŒTk; TkC1	 ; and similarly
let Dk .t/ D D .t; Tk/ be the price of a zero-coupon bond
maturing on Tk: Thus, we have

L.t; Tk/ D 1

ı

	
D .t; Tk/

D .t; TkC1/
� 1



; for k D 1; 2; : : :K:

(47.19)

For LIBOR-based instruments, such as caps, floors and
swaptions, it is convenient to consider pricing under the
forward measure. Thus, we will focus on the dynamics of
the LIBOR forward rates Lk .t/ under the forward measure
QkC1, which is essential for pricing caplets maturing at TkC1.
Under this measure, the discounted price of any security us-
ingDkC1 .t/ as the numeraire is a martingale. Therefore, the
time t price of a caplet maturing at TkC1 with a strike price
of X is

Caplet .t; TkC1; X/ D ıDkC1 .t/ EQkC1

t

�
.Lk .Tk/ �X/C� ;

(47.20)

where EQkC1

t is taken with respect to QkC1 given the in-
formation set at t . The key to valuation is modeling the
evolution of Lk .t/ under QkC1 realistically and yet parsi-
moniously to yield closed-form pricing formula: To achieve
this goal, we rely on the flexible AJDs of Duffie et al. (2000)
to model the evolution of LIBOR rates.

We assume that under the physical measure P, the dy-
namics of LIBOR rates are given by the following system
of SDEs, for t 2 Œ0; Tk/ and k D 1; : : : ; K;

dLk .t/

Lk .t/
D ˛k .t/ dt C �k .t/ dZk .t/C dJk .t/ ; (47.21)

where ˛k .t/ is an unspecified drift term,Zk .t/ is the k-th el-
ement of a Kdimensional correlated Brownian motion with
a covariance matrix‰ .t/ ; and Jk .t/ is the k-th element of a
Kdimensional independent pure jump process assumed inde-
pendent of Zk .t/ for all k:To introduce stochastic volatility
and correlation, we could allow the volatility of each LIBOR
rate �k .t/ and each individual element of ‰ .t/ to follow a
stochastic process. But, such a model is unnecessarily com-
plicated and difficult to implement. Instead, we consider a
low dimensional model based on the first few principal com-
ponents of historical LIBOR forward rates. We assume that
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Table 47.6 ATM straddle hedging error as a proxy of systematic USV
Panel A: R2s of regressions of cap hedging errors

Maturity
Moneyness

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.945 – – – 0.948 0.880 0.884 0.786 0.880

0.65 – – 0.938 0.949 0.954 – 0.947 0.952 0.960 0.928 0.871 0.807 0.838

0.70 – – 0.934 0.944 0.943 0.911 0.934 0.936 0.940 0.885 0.839 0.791 0.776

0.75 – 0.934 0.926 0.945 0.943 0.910 0.936 0.919 0.950 0.899 0.862 0.814 0.791

0.80 – 0.917 0.934 0.938 0.935 0.909 0.950 0.946 0.951 0.898 0.862 0.821 0.840

0.85 0.958 0.909 0.927 0.928 0.928 0.889 0.956 0.959 0.959 0.906 0.861 0.818 0.843

0.90 0.949 0.900 0.908 0.922 0.924 0.896 0.961 0.969 0.969 0.920 0.871 0.856 0.871
0.95 0.943 0.886 0.905 0.918 0.936 0.906 0.966 0.976 0.980 0.967 0.889 0.882 0.893
1.00 0.932 0.859 0.905 0.909 0.939 0.902 0.988 0.989 0.984 0.973 0.910 0.894 0.907
1.05 0.919 0.821 0.897 0.902 0.937 0.897 0.986 0.985 0.980 0.969 0.908 0.917 0.885

1.10 0.913 0.793 0.890 0.894 0.928 0.880 0.979 0.976 0.974 0.967 0.913 0.921 –

1.15 0.879 0.763 0.871 0.880 0.915 0.860 0.970 0.968 0.966 0.963 – – –

1.20 0.881 0.749 0.844 0.848 0.894 0.846 0.966 0.963 0.954 0.957 – – –

1.25 0.870 0.742 0.818 0.817 0.870 0.819 0.945 0.943 0.941 – – – –

1.30 0.861 0.702 0.802 0.808 0.836 0.802 0.920 – 0.908 – – – –

1.35 0.855 0.661 0.764 0.774 0.801 0.758 0.884 – – – – – –

1.40 – 0.640 0.725 0.743 0.761 0.536 – – – – – – –

Panel B: R2s of regressions of cap straddle hedging errors

Maturity

(K/F) 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10

0.60 – – – – 0.851 – – – 0.839 0.589 0.724 0.712 0.744

0.65 – – 0.883 0.916 0.876 – 0.891 0.902 0.860 0.704 0.789 0.768 0.785

0.70 – – 0.874 0.897 0.825 0.775 0.854 0.886 0.800 0.621 0.688 0.749 0.730

0.75 – 0.869 0.844 0.845 0.833 0.760 0.850 0.853 0.812 0.655 0.740 0.800 0.761

0.80 – 0.812 0.839 0.828 0.800 0.734 0.872 0.886 0.751 0.607 0.740 0.805 0.805

0.85 0.915 0.772 0.833 0.798 0.772 0.685 0.898 0.910 0.738 0.604 0.744 0.821 0.807

0.90 0.883 0.718 0.801 0.791 0.763 0.690 0.919 0.930 0.721 0.622 0.777 0.859 0.840
0.95 0.884 0.672 0.828 0.826 0.840 0.747 0.936 0.945 0.746 0.684 0.812 0.908 0.861
1.00 0.901 0.745 0.861 0.822 0.851 0.745 0.971 0.976 0.738 0.703 0.849 0.922 0.894
1.05 0.893 0.745 0.871 0.789 0.863 0.728 0.966 0.972 0.729 0.758 0.874 0.913 0.902

1.10 0.896 0.757 0.883 0.769 0.880 0.735 0.953 0.960 0.758 0.788 0.892 0.931 –

1.15 0.908 0.785 0.882 0.765 0.886 0.778 0.945 0.943 0.789 0.821 – – –

1.20 0.920 0.831 0.883 0.785 0.890 0.808 0.947 0.935 0.809 0.843 – – –

1.25 0.944 0.873 0.894 0.813 0.898 0.843 0.918 0.898 0.823 – – – –

1.30 0.945 0.890 0.913 0.859 0.921 0.872 0.920 – 0.830 – – – –

1.35 0.960 0.906 0.927 0.885 0.933 0.901 0.906 – – – – – –

1.40 – 0.924 0.941 0.912 0.946 – – – – – – – –

This table reports the contribution of USV proxied by the first few principle components of ATM straddle hedging errors in explaining the
hedging errors of caps and cap straddles across moneyness and maturity. It reports the R2s of regressions of hedging errors of caps across
moneyness and maturity on changes of the three yield factors and the first five principle components of straddle hedging errors. The bold en-
tries represent moneyness/maturity groups that have less than 10% of missing values and the rest are the ones with 10–50% of missing values

the entire LIBOR forward curve is driven by a small num-
ber of factors N < K (N � 3 in our empirical analysis):
By focusing on the first N principal components of histori-
cal LIBOR rates, we can reduce the dimension of the model
fromK to N:

Following LSS (2001) and Han (2007), we assume that
the instantaneous covariance matrix of changes in LIBOR
rates share the same eigenvectors as the historical covariance
matrix. Suppose that the historical covariance matrix can be
approximated as H D Uƒ0U

0; where ƒ0 is a diagonal
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matrix whose diagonal elements are the firstN largest eigen-
values in descending order, and the N columns of U are the
corresponding eigenvectors.7 Our assumption means that the
instantaneous covariance matrix of changes in LIBOR rates
with fixed time-to-maturity,�t ; share the same eigenvectors
as H: That is

�t D UƒtU
0; (47.22)

where ƒt is a diagonal matrix whose i -th diagonal element,
denoted by Vi .t/ ; can be interpreted as the instantaneous
variance of the i -th common factor driving the yield curve
evolution at t: We assume that V .t/ follows the square-root
process that has been widely used in the literature for model-
ing stochastic volatility (see, e.g., Heston 1993):

dV i .t/ D �i .Nvi � Vi .t// dt C �i
p
Vi .t/d QWi .t/ (47.23)

where QWi .t/ is the i -th element of an N -dimensional in-
dependent Brownian motion assumed independent of Zk .t/
and Jk .t/ for all k:8

While Equations (47.4) and (47.5) specify the
instantaneous covariance matrix of LIBOR rates with fixed
time-to-maturity, in applications we need the instantaneous
covariance matrix of LIBOR rates with fixed maturities †t .
At t D 0, †t coincides with �t ; for t > 0, we obtain
†t from �t through interpolation. Specifically, we assume
that Us;j is piecewise constant,9 i.e., for time to maturity
s 2 .Tk; TkC1/ ;

U 2
s D 1

2

�
U 2
k C U 2

kC1
�
: (47.24)

We further assume thatUs;j is constant for all caplets belong-
ing to the same difference cap. For the family of the LIBOR
rates with maturities T D T1; T2; : : : TK; we denote UT�t
the time-t matrix that consists of rows of UTk�t ; and there-
fore we have the time-t covariance matrix of the LIBOR rates
with fixed maturities,

†t D UT�tƒtU
0
T�t : (47.25)

7 We acknowledge that with jumps in LIBOR rates, both the historical
and instantaneous covariance matrix of LIBOR rates contain a compo-
nent that is due to jumps. Our approach implicitly assumes that the first
three principal components from the historical covariance matrix cap-
tures the variations in LIBOR rates due to continuous shocks and that
the impact of jumps is only contained in the residuals.
8 Many empirical studies on interest rate dynamics (see, for example,
Andersen and Lund 1997; Ball and Torous 1999; Chen and Scott 2001)
have shown that correlation between stochastic volatility and interest
rates is close to zero. That is, there is not a strong “leverage” effect for
interest rates as for stock prices. The independence assumption between
stochastic volatility and LIBOR rates in our model captures this stylized
fact.
9 Our interpolation scheme is slightly different from that of Han (2007)
for the convenience of deriving closed-form solution for cap prices.

To stay within the family of AJDs, we assume that the
random jump times arrive with a constant intensity �J ; and
conditional on the arrival of a jump, the jump size follows a
normal distribution N

�
�J ; �

2
J

�
: Intuitively, the conditional

probability at time t of another jump within the next small
time interval 
t is �J
t and, conditional on a jump event,
the mean relative jump size is � D exp

�
�J C 1

2
�2J
� � 1:10

We also assume that the shocks driving LIBOR rates, volatil-
ity, and jumps (both jump time and size) are mutually inde-
pendent from each other.

Given the above assumptions, we have the following dy-
namics of LIBOR rates under the physical measure P,

dLk .t/

Lk .t/
D ˛k .t/ dt C

NX

jD1
UTk�t;j

q
Vj .t/dWj .t/

CdJk .t/ ; k D 1; 2; : : : ; K: (47.26)

To price caps, we need the dynamics of LIBOR rates
under the appropriate forward measure. The existence of
stochastic volatility and jumps results in an incomplete mar-
ket and hence the non-uniqueness of forward martingale
measures. Our approach for eliminating this nonuniqueness
is to specify the market prices of both the volatility and
jump risks to change from the physical measure P to the
forward measure QkC1.11 Following the existing literature,
we model the volatility risk premium as �kC1

j

p
Vj .t/; for

j D 1; : : : ; N: For the jump risk premium, we assume
that under the forward measure QkC1; the jump process has
the same distribution as that under P , except that the jump
size follows a normal distribution with mean �kC1

J and vari-
ance �2J : Thus, the mean relative jump size under QkC1 is

�kC1 D exp
�
�kC1
J C 1

2
�2J


� 1: Our specification of the

market prices of jump risks allows the mean relative jump
size under QkC1 to be different from that under P, accommo-
dating a premium for jump size uncertainty. This approach,
which is also adopted by Pan (2002), artificially absorbs
the risk premium associated with the timing of the jump
by the jump size risk premium. In our empirical analysis,
we make the simplifying assumption that the volatility and
jump risk premiums are linear functions of time-to-maturity,
i.e., �kC1

j D cj v .Tk � 1/ and �kC1
J D �J C cJ .Tk � 1/ :12

10 For simplicity, we assume that different forward rates follow the same
jump process with constant jump intensity. It is not difficult to allow dif-
ferent jump processes for individual LIBOR rates and the jump intensity
to depend on the state of the economy within the AJD framework.
11 The market prices of interest rate risks are defined in such a way that
the LIBOR rate is a martingale under the forward measure.
12 In order to estimate the volatility and jump risk premiums, we need a
joint analysis of the dynamics of LIBOR rates under both the physical
and forward measure, as in Chernov and Ghysels (2000), Pan (2002),
and Eraker (2003). In our empirical analysis, we only focus on the dy-
namics under the forward measure. Therefore, we can only identify the
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Due to the no arbitrage restriction, the risk premiums of
shocks to LIBOR rates for different forward measures are
intimately related to each other. If shocks to volatility and
jumps are also correlated with shocks to LIBOR rates, then
both volatility and jump risk premiums for different forward
measures should also be closely related to each other. How-
ever, in our model shocks to LIBOR rates are independent
of that to volatility and jumps, and as a result, the change of
measure of LIBOR shocks does not affect that of volatility
and jump shocks. Due to stochastic volatility and jumps, the
underlying LIBOR market is no longer complete and there
is no unique forward measure. This gives us the freedom to
choose the functional forms of �kC1

j and�kC1
J : See Andersen

and Brotherton-Ratcliffe (2001) for similar discussions.
Given the above market prices of risks, we can write down

the dynamics of log.Lk .t// under forward measure QkC1;

d log.Lk .t// D �
0

@�J�kC1 C 1

2

NX

jD1
U 2
Tk�t;j Vj .t/

1

A dt

C
NX

jD1
UTk�t;j

q
Vj .t/dWQkC1

j .t/

CdJQkC1

k .t/ : (47.27)

For pricing purpose, the above process can be further simpli-
fied to the following one which has the same distribution,

d log.Lk .t// D �
0

@�J�kC1 C 1

2

NX

jD1
U 2
Tk�t;j Vj .t/

1

A dt

C
vuut

NX

jD1
U 2
Tk�t;j Vj .t/dZQkC1

k .t/

CdJQkC1

k .t/ ; (47.28)

differences in the risk premiums between forward measures with differ-
ent maturities. Our specifications of both risk premiums implicitly use
the one year LIBOR rate as a reference point.

whereZQkC1

k .t/ is a standard Brownian motion under QkC1.
Now the dynamics of Vi .t/ under QkC1 becomes

dV i .t/ D �kC1
i

�
NvkC1
i � Vi .t/


dt C �i

p
Vi .t/d QW QkC1

i .t/

(47.29)

where QW QkC1
is independent ofZQkC1

; �kC1
j D �j ��j �kC1

j ;

and NvkC1
j D �j Nvj

�j��j �kC1
j

; j D 1; : : : ; N: The dynamics of

Lk .t/ under the forward measure QkC1 are completely cap-
tured by Equations (47.28) and (47.29).

Given that LIBOR rates follow AJDs under both the
physical and forward measure, we can directly apply the
transform analysis of Duffie et al. (2000) to derive closed-
form formula for cap prices. Denote the state variables at
t as Yt D .log .Lk .t// ; Vt /

0 and the time-t expectation of
eu�YTk under the forward measure QkC1 as  .u; Yt ; t; Tk/ ,
E

QkC1

t

�
eu�YTk

�
: Let u D .u0; 01�N /0; then the time-t expec-

tation of LIBOR rate at Tk equals;

E
QkC1

t fexp Œu0 log .Lk .Tk//	g D  .u0; Yt ; t; Tk/

D exp
h
a.s/C u0 log.Lk .t//

CB.s/0Vt
i
; (47.30)

where s D Tk � t and closed-form solutions of a.s/ and
B.s/ (an N -by-1 vector) are obtained by solving a system of
Ricatti equations in the Appendix.

Following Duffie et al. (2000), we define

Ga;b.yIYt ;Tk;QkC1/DEQkC1

t

h
ea�log.Lk.Tk //1fb�log.Lk.Tk//�yg

i
;

(47.31)
and its Fourier transform,

Ga;b.vIYt ; Tk;QkC1/ D
Z

R

eivydGa;b.y/

D E
QkC1

t

h
e.aCivb/�log.Lk.Tk//

i

D  .a C ivb; Yt ; t; Tk/ : (47.32)

Levy’s inversion formula gives

Ga;b.yIYt ; Tk;QkC1/ D  .a C ivb; Yt ; t; Tk/

2
� 1

�

Z 1

0

Im
�
 .aC ivb; Yt ; t; Tk/ e�ivy�

v
dv: (47.33)

The time-0 price of a caplet that matures at TkC1 with a
strike price of X equals

Caplet.0; TkC1; X/ D ıDkC1 .0/EQkC1

0

�
.Lk .Tk/� X/C

�
;

(47.34)
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where the expectation is given by the inversion formula,

E
QkC1

0 ŒLk.Tk/� X	C D G1;�1.� lnX IY0; Tk;QkC1/

�XG0;�1.� lnX IY0; Tk;QkC1/:

(47.35)

The new models developed in this section nest some of the
most important models in the literature, such as LSS (2001)
(with constant volatility and no jumps) and Han (2007) (with
stochastic volatility and no jumps). The closed-form formula
for cap prices makes an empirical implementation of our
model very convenient and provides some advantages over
existing methods. For example, Han (2007) develops approx-
imations of ATM cap and swaption prices using the tech-
niques of Hull and White (1987). However, such an approach
might not work well for away-from-the-money options. In
contrast, our method would work well for all options, which
is important for explaining the volatility smile.

In addition to introducing stochastic volatility and jumps,
our multifactor HJM models also has advantages over the
standard LIBOR market models of Brace et al. (1997),
Miltersen et al. (1997), and their extensions often applied to
caps in practice.13 While our models provide a unified mul-
tifactor framework to characterize the evolution of the whole
yield curve, the LIBOR market models typically make sepa-
rate specifications of the dynamics of LIBOR rates with dif-
ferent maturities. As suggested by LSS (2001), the standard
LIBOR models are “more appropriately viewed as a collec-
tion of different univariate models, where the relationship be-
tween the underlying factors is left unspecified.” In contrast,
the dynamics of LIBOR rates with different maturities under
their related forward measures are internally consistent with
each other given their dynamics under the physical measure
and the market prices of risks. Once our models are estimated
using one set of prices, they can be used to price and hedge
other fixed-income securities.

47.3.2 Estimation Method and Results

We estimate our new market model using prices form
a wide cross section of difference caps with different
strikes and maturities. Every week we observe prices
of difference caps with ten moneyness and 13 maturi-
ties. However, due to changing interest rates, we do not
have enough observations in all moneyness/maturity cat-
egories throughout the sample. Thus, we focus on the

13 Andersen and Brotherton-Ratcliff (2001) and Glasserman and Kou
(in press) develop LIBOR models with stochastic volatility and jumps,
respectively.

53 moneyness/maturity categories that have less than ten
percent of missing values over the sample estimation pe-
riod. The moneyness and maturity of all difference caps
belong to the following sets f0:7; 0:8; 0:9; 1:0; 1:1g and
f1:5; 2:0; 2:5; 3:0; 3:5; 4:0; 4:5; 5:0; 6:0; 7:0; 8:0; 9:0; 10:0g
(unit in years), respectively. The difference caps with time-
to-maturity less than or equal to 5 years represent portfolios
of two caplets, while those with time-to-maturity longer than
5 years represent portfolios of four caplets.

We estimate the model parameters by minimizing the
sum of squared percentage pricing errors (SSE) of all rele-
vant difference caps.14 Consider the time series observations
t D 1; : : : ; T , of the prices of 53 difference caps with money-
nessmi and time-to-maturities �i ; i D 1; : : : ;M D 53: Let �
represent the model parameters which remain constant over
the sample period. Let C .t;mi ; �i / be the observed price of
a difference cap with moneynessmi and time-to-maturity �i
and let OC .t; �i ; mi ; Vt .�/ ; �/ denote the corresponding the-
oretical price under a given model, where Vt .�/ is the model
implied instantaneous volatility at t given model parameters
� . For each i and t , denote the percentage pricing error as

ui;t .�/ D C .t;mi ; �i / � OC .t;mi ; �i ; Vt .�/ ; �/

C .t;mi ; �i /
;

(47.36)
where Vt .�/ is defined as

Vt .�/ D arg min
fVt g

MX

iD1

"
C .t;mi ; �i / � OC .t;mi ; �i ; Vt ; �/

C .t;mi ; �i /

#2
:

(47.37)

We provide empirical evidence on the performance of six
different models in capturing the cap volatility smile. The
first three models, denoted as SV1, SV2 and SV3, allow one,
two, and three principal components to drive the forward rate
curve, respectively, each with its own stochastic volatility.
The next three models, denoted as SVJ1, SVJ2 and SVJ3,
introduce jumps in LIBOR rates in each of the previous SV
models. SVJ3 is the most comprehensive model and nests
all the others as special cases. We first examine the separate
performance of each of the SV and SVJ models, then we
compare performance across the two classes of models. The
estimation of all models is based on the principal components
extracted from historical LIBOR forward rates between June
1997 and July 2000.15

14 Due to the wide range of moneyness and maturities of the differ-
ence caps involved, there could be significant differences in the prices
of difference caps. Using percentage pricing errors helps to mitigate this
problem.
15 The LIBOR forward curve is constructed from weekly LIBOR and
swap rates from Datastream following the bootstrapping procedure of
LSS (2001).



728 F. Zhao

The SV models contribute to cap pricing in four impor-
tant ways. First, the three principal components capture vari-
ations in the levels of LIBOR rates caused by innovations
in the “level”, “slope”, and “curvature” factors. Second, the
stochastic volatility factors capture the fluctuations in the
volatilities of LIBOR rates reflected in the Black implied
volatilities of ATM caps.16 Third, the stochastic volatility
factors also introduce fatter tails in LIBOR rate distributions
than implied by the log-normal model, which helps capture
the volatility smile. Finally, given our model structure, inno-
vations of stochastic volatility factors also affect the covari-
ances between LIBOR rates with different maturities. The
first three factors, however, are more important for our ap-
plications, because difference caps are much less sensitive to
time varying correlations than swaptions.17 Our discussion of
the performance of the SV models focuses on the estimates
of the model parameters and the latent volatility variables,
and the time series and cross-sectional pricing errors of dif-
ference caps.

A comparison of the parameter estimates of the three SV
models in Table 47.7 shows that the “level” factor has the
most volatile stochastic volatility, followed, in decreasing or-
der, by the “curvature” and “slope” factor. The long-run mean

16 Throughout our discussion, volatilities of LIBOR rates refer to mar-
ket implied volatilities from cap prices and are different from volatilities
estimated from historical data.
17 See Han (2007) for more detailed discussions on the impact of time
varying correlations for pricing swaptions.

(Nv1) and volatility of volatility (�1) of the first volatility factor
are much bigger than that of the other two factors. This sug-
gests that the fluctuations in the volatilities of LIBOR rates
are mainly due to the time varying volatility of the “level”
factor. The estimates of the volatility risk premium of the
three models are significantly negative, suggesting that the
stochastic volatility factors of longer maturity LIBOR rates
under the forward measure are less volatile with lower long-
run mean and faster speed of mean reversion. This is consis-
tent with the fact that the Black implied volatilities of longer
maturity difference caps are less volatile than that of short-
term difference caps.

Our parameter estimates are consistent with the volatil-
ity variables inferred from the prices of difference caps. The
volatility of the “level” factor is the highest among the three
(although at lower absolute levels in the more sophisticated
models). It starts at a low level and steadily increases and
stabilizes at a high level in the later part of the sample pe-
riod. The volatility of the “slope” factor is much lower and
relatively stable during the whole sample period. The volatil-
ity of the “curvature” factor is generally between that of the
first and second factors. The steady increase of the volatil-
ity of the “level” factor is consistent with the increase of
Black implied volatilities of ATM difference caps through-
out our sample period. In fact, the correlation between the
Black implied volatilities of most difference caps and the
implied volatility of the “level” factor are higher than 0.8.
The correlation between Black implied volatilities and the
other two volatility factors is much weaker. The importance

Table 47.7 Parameter estimates
of stochastic volatility models

SV1 SV2 SV3

Parameter Estimate Std. err Estimate Std. err Estimate Std. err

›1 0.0179 0.0144 0.0091 0.0111 0.0067 0.0148

›2 0.1387 0.0050 0.0052 0.0022

›3 0.0072 0.0104

Nv1 1.3727 1.1077 1.7100 2.0704 2.1448 4.7567

Nv2 0.0097 0.0006 0.0344 0.0142

Nv3 0.1305 0.1895

—1 1.0803 0.0105 0.8992 0.0068 0.8489 0.0098

—2 0.0285 0.0050 0.0117 0.0065

—3 0.1365 0.0059

c1v �0:0022 0.0000 �0:0031 0.0000 �0:0015 0.0000

c2v �0:0057 0.0010 �0:0007 0.0001

c3v �0:0095 0.0003

Objective
function

0.0834 0.0758 0.0692

This table reports parameter estimates and standard errors of the one-, two-, and three-factor stochastic
volatility models. The estimates are obtained by minimizing sum of squared percentage pricing errors
(SSE) of difference caps in 53 moneyness and maturity categories observed on a weekly frequency from
August 1, 2000 to September 23, 2003. The objective functions reported in the table are re-scaled SSEs
over the entire sample at the estimated model parameters and are equal to RMSE of difference caps.
The volatility risk premium of the i th stochastic volatility factor for forward measure QkC1 is defined as
˜i

kC1 D civ.Tk � 1/
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of stochastic volatility is obvious: the fluctuations in Black
implied volatilities show that a model with constant volatil-
ity simply would not be able to capture even the general level
of cap prices.

The other aspects of model performance are the time se-
ries and cross-sectional pricing errors of difference caps.
The likelihood ratio tests in Panel A of Table 47.8 over-
whelmingly reject SV1 and SV2 in favor of SV2 and SV3,
respectively. The Diebold–Mariano statistics in Panel A of
Table 47.8 also show that SV2 and SV3 have significantly
smaller SSEs than SV1 and SV2, respectively, suggesting
that the more sophisticated SV models improve the pricing
of all caps. The time series of RMSEs of the three SV mod-
els over our sample period18 suggest that except for two spe-
cial periods where all models have extremely large pricing
errors, the RMSEs of all models are rather uniform with the
best model (SV3) having RMSEs slightly above 5%. The two
special periods with high pricing errors cover the period be-
tween the second half of December of 2000 and the first half
of January of 2001, and the first half of October 2001, and co-
incide with high prepayments in mortgage-backed securities
(MBS). Indeed, the MBAA refinancing index and prepay-
ment speed (see Figure 3 of Duarte 2004) show that after a
long period of low prepayments between the middle of 1999
and late 2000, prepayments dramatically increased at the end
of 2000 and the beginning of 2001. There is also a dramatic
increase of prepayments at the beginning of October 2001.
As widely recognized in the fixed-income market,19 exces-
sive hedging demands for prepayment risk using interest rate
derivatives may push derivative prices away from their equi-
librium values, which could explain the failure of our models
during these two special periods.20

In addition to overall model performance as measured by
SSEs, we also examine the cross-sectional pricing errors of
difference caps with different moneyness and maturities. We
first look at the squared percentage pricing errors, which
measure both the bias and variability of the pricing errors.
Then we look at the average percentage pricing errors (the
difference between market and model prices divided by the
market price) to see whether SV models can on average cap-
ture the volatility smile in the cap market.

The Diebold–Mariano statistics of squared percentage
pricing errors of individual difference caps between SV2 and

18 RMSE of a model at t is calculated as

r
u0

t

� O�


ut
� O�

=M: We plot

RMSEs instead of SSEs because the former provides a more direct mea-
sure of average percentage pricing errors of difference caps.
19 We would like to thank Pierre Grellet Aumont from Deutsche Bank
for his helpful discussions on the influence of MBS markets on OTC
interest rate derivatives.
20 While the prepayments rates were also high in later part of 2002 and
for most of 2003, they might not have come as surprises to participants
in the MBS markets given the two previous special periods.

SV1 in Panel B of Table 47.8 show that SV2 reduces the
pricing errors of SV1 for some but not all difference caps.
SV2 has the most significant reductions in pricing errors of
SV1 for mid- and short-term around-the-money difference
caps. On the other hand, SV2 has larger pricing errors for
deep ITM difference caps. The Diebold–Mariano statistics
between SV3 and SV2 in Panel C of Table 47.8 show that
SV3 significantly reduces the pricing errors of many short-
(2–3 years) and mid-term around-the-money, and long-term
(6–10 years) ITM difference caps.

Table 47.9 reports the average percentage pricing errors
of all difference caps under the three SV models. Panel A of
Table 47.9 shows that, on average, SV1 underprices short-
term and overprices mid- and long-term ATM difference
caps, and underprices ITM and overprices OTM difference
caps. This suggests that SV1 cannot generate enough skew-
ness in the implied volatilities to be consistent with the data.
Panel B shows that SV2 has some improvements over SV1,
mainly for some short-term (less than 3.5 years) ATM, and
mid-term (3.5–5 years) slightly OTM difference caps. But
SV2 has worse performance for most deep ITM (m D 0:7

and 0:8) difference caps: it actually worsens the underpric-
ing of ITM caps. Panel C of Table 47.9 shows that relative to
SV1 and SV2, SV3 has smaller average percentage pricing
errors for most long-term (7–10 years) ITM, mid-term (3.5–
5 years) OTM, and short-term (2–2.5 years) ATM difference
caps, and bigger average percentage pricing errors for mid-
term (3.5–6 years) ITM difference caps. There is still signifi-
cant underpricing of ITM and overpricing of OTM difference
caps under SV3.

Overall, the results show that stochastic volatility factors
are essential for capturing the time varying volatilities of
LIBOR rates. The Diebold–Mariano statistics in Table 47.8
shows that in general more sophisticated SV models have
smaller pricing errors than simpler models, although the
improvements are more important for close-to-the-money
difference caps. The average percentage pricing errors in
Table 47.9 show that, however, even the most sophisticated
SV model cannot generate enough volatility skew to be con-
sistent with the data. While previous studies, such as Han
(2007), have shown that a three-factor stochastic volatility
model similar to ours performs well in pricing ATM caps
and swaptions, our analysis shows that the model fails to
completely capture the volatility smile in the cap markets.
Our findings highlight the importance of studying the relative
pricing of caps with different moneyness to reveal the inad-
equacies of existing term structure models, the same inade-
quacies cannot be obtained from studying only ATM options.

One important reason for the failure of SV models is that
the stochastic volatility factors are independent of LIBOR
rates. As a result, the SV models can only generate a symmet-
ric volatility smile, but not the asymmetric smile or skew ob-
served in the data. The pattern of the smile in the cap market
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is rather similar to that of index options: ITM calls (and OTM
puts) are overpriced, and OTM calls (and ITM puts) are un-
derpriced relative to the Black model. Similarly, the smile
in the cap market could be due to a market expectation of
dramatically declining LIBOR rates. In this section, we ex-
amine the contribution of jumps in LIBOR rates in capturing
the volatility smile. Our discussion of the performance of the
SVJ models parallels that of the SV models.

Parameter estimates in Table 47.10 show that the three
stochastic volatility factors of the SVJ models resemble that
of the SV models closely. The “level” factor still has the most
volatile stochastic volatility, followed by the “curvature” and
the “slope” factor. With the inclusion of jumps, the stochas-
tic volatility factors in the SVJ models, especially that of the
“level” factor, tend to be less volatile than that of the SV
models (lower long run mean and volatility of volatility).
Negative estimates of the volatility risk premium show that
the volatility of the longer maturity LIBOR rates under the
forward measure have lower long-run mean and faster speed
of mean-reversion.

Most importantly, we find overwhelming evidence of
strong negative jumps in LIBOR rates under the forward
measure. To the extend that cap prices reflect market expecta-
tions of future evolutions of LIBOR rates, the evidence sug-
gests that the market expects a dramatic declining in LIBOR
rates over our sample period. Such an expectation might

be justifiable given that the economy has been in recession
during a major part of our sample period. This is similar to
the volatility skew in the index equity option market, which
reflects investors fear of the stock market crash such as that
of 1987. Compared to the estimates from index options (see,
e.g., Pan 2002), we see lower estimates of jump intensity
(about 1.5% per annual), but much higher estimates of jump
size. The positive estimates of a jump risk premium suggest
that the jump magnitude of longer maturity forward rates
tend to be smaller. Under SVJ3, the mean relative jump size,
exp

�
�J C cJ .Tk � 1/C �2J =2

� � 1; for one, five, and ten
year LIBOR rates are �97%, �94%, and �80%, respec-
tively. However, we do not find any incidents of negative
moves in LIBOR rates under the physical measure with a size
close to that under the forward measure. This big discrepancy
between jump sizes under the physical and forward measures
resembles that between the physical and risk-neutral measure
for index options (see, e.g., Pan 2002). This could be a result
of a huge jump risk premium.

The likelihood ratio tests in Panel A of Table 47.11 again
overwhelmingly reject SVJ1 and SVJ2 in favor of SVJ2 and
SVJ3, respectively. The Diebold–Mariano statistics in Panel
A of Table 47.11 show that SVJ2 and SVJ3 have significantly
smaller SSEs than SVJ1 and SVJ2, respectively, suggesting
that the more sophisticated SVJ models significantly improve
the pricing of all difference caps. The Diebold–Mariano

Table 47.10 Parameter
estimates of stochastic volatility
and jumps models

SVJ1 SVJ2 SVJ3

Parameter Estimate Std. err Estimate Std. err Estimate Std. err

›1 0.1377 0.0085 0.0062 0.0057 0.0069 0.0079

›2 0.0050 0.0001 0.0032 0.0000

›3 0.0049 0.0073

Nv1 0.1312 0.0084 0.7929 0.7369 0.9626 1.1126

Nv2 0.3410 0.0030 0.2051 0.0021

Nv3 0.2628 0.3973

—1 0.8233 0.0057 0.7772 0.0036 0.6967 0.0049

—2 0.0061 0.0104 0.0091 0.0042

—3 0.1517 0.0035

c1v �0:0041 0.0000 �0:0049 0.0000 �0:0024 0.0000

c2v �0:0270 0.0464 �0:0007 0.0006

c3v �0:0103 0.0002

œ 0.0134 0.0001 0.0159 0.0001 0.0132 0.0001

�J �3:8736 0.0038 �3:8517 0.0036 �3:8433 0.0063

cJ 0.2632 0.0012 0.3253 0.0010 0.2473 0.0017

¢J 0.0001 3.2862 0.0003 0.8723 0.0032 0.1621

Objective function 0.0748 0.0670 0.0622

This table reports parameter estimates and standard errors of the one-, two-, and three-factor stochastic
volatility and jump models. The estimates are obtained by minimizing sum of squared percentage pricing
errors (SSE) of difference caps in 53 moneyness and maturity categories observed on a weekly frequency
from August 1, 2000 to September 23, 2003. The objective functions reported in the table are re-scaled
SSEs over the entire sample at the estimated model parameters and are equal to RMSE of difference
caps. The volatility risk premium of the i th stochastic volatility factor and the jump risk premium for
forward measure QkC1 is defined as ˜i

kC1 D civ.Tk � 1/ and �kC1
J D �J C cJ.Tk � 1/, respectively
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statistics of squared percentage pricing errors of individual
difference caps in Panel B of Table 47.11 show that SVJ2
significantly improves the performance of SVJ1 for long-,
mid-, and short-term around-the-money difference caps. The
Diebold–Mariano statistics in Panel C of Table 47.11 show
that SVJ3 significantly reduces the pricing errors of SVJ2
for long-term ITM, and some mid- and short-term around-
the-money difference caps. Table 47.12 shows the average
percentage pricing errors also improve over the SV models.

Table 47.13 compares the performance of the SVJ and SV
models. During the first 20 weeks of our sample, the SVJ
models have much higher RMSEs than the SV models. As
a result, the likelihood ratio and Diebold–Mariano statistics
between the three pairs of SVJ and SV models over the entire
sample are somewhat smaller than that of the sample period
without the first 20 weeks. Nonetheless, all the SV models
are overwhelmingly rejected in favor of their corresponding
SVJ models by both tests. The Diebold–Mariano statistics of
individual difference caps in Panel B, C, and D show that
the SVJ models significantly improve the performance of the
SV models for most difference caps across moneyness and
maturity. The most interesting results are in Panel D, which
show that SVJ3 significantly reduces the pricing errors of
most ITM difference caps of SV3, strongly suggesting that
the negative jumps are essential for capturing the asymmet-
ric smile in the cap market.

Our analysis shows that a low dimensional model with
three principal components driving the forward rate curve,
stochastic volatility of each component, and strong negative
jumps captures the volatility smile in the cap markets reason-
ably well. The three yield factors capture the variations of the
levels of LIBOR rates, while the stochastic volatility factors
are essential to capture the time varying volatilities of LIBOR
rates. Even though the SV models can price ATM caps rea-
sonably well, they fail to capture the volatility smile in the
cap market. Instead, significant negative jumps in LIBOR
rates are needed to capture the smile. These results highlight
the importance of studying the pricing of caps across mon-
eyness: the importance of negative jumps is revealed only
through the pricing of alway-from-the-money caps. Exclud-
ing the first 20 weeks and the two special periods, SVJ3
has a reasonably good pricing performance with an average
RMSEs of 4.5%. Given that the bid-ask spread is about 2–5%
in our sample for ATM caps, and because ITM and OTM
caps tend to have even higher percentage spreads,21 this cam
be interpreted as a good performance.

Despite its good performance, there are strong indications
that SVJ3 is misspecified and the inadequacies of the model
seem to be related to MBS markets. For example, while SVJ3

21 See, for example, Deuskar et al. (2003).

works reasonably well for most of the sample period, it has
large pricing errors in several special periods coinciding with
high prepayment activities in the MBS markets. Moreover,
even though we assume that the stochastic volatility factors
are independent of LIBOR rates, Table 47.14 shows strong
negative correlations between the implied volatility variables
of the first factor and the LIBOR rates. This result suggests
that when interest rate is low, cap prices become too high
for the model to capture and the implied volatilities have to
become abnormally high to fit the observed cap prices. One
possible explanation of the “leverage” effect is that higher
demands for caps to hedge prepayments from MBS markets
in low interest rate environments could artificially push up
cap prices and implied volatilities. Therefore, extending our
models to incorporate factors from MBS markets seems to
be a promising direction of future research.

47.4 Nonparametric Estimation
of the Forward Density

For LIBOR-based instruments such as caps, floors, and
swaptions, it is convenient to consider pricing using the for-
ward measure approach. We will therefore focus on the dy-
namics of LIBOR forward rateLk .t/ under the forward mea-
sure QkC1, which is essential for pricing caplets maturing at
TkC1. Under this measure, the discounted price of any secu-
rity using DkC1 .t/ as the numeraire is a martingale. Thus,
the time-t price of a caplet maturing at TkC1 with a strike
price of X is

C .Lk .t/ ; X; t; Tk/ D ıDkC1 .t/
Z 1

X

.y � X/pQkC1


 .Lk .Tk/ D yjLk .t// dy;
(47.38)

where pQkC1
.Lk .Tk/ D yjLk .t// is the conditional density

of Lk .Tk/ under forward measure QkC1: Once we know the
forward density, we can price any security whose payoff on
TkC1 depends only on Lk .t/ by discounting its expected
payoff under QkC1 using DkC1 .t/ :

Existing term structure models rely on parametric as-
sumptions on the distribution of Lk .t/ to obtain closed-
form pricing formulae for caplets. For example, the standard
LIBOR market models of Brace et al. (1997) and Miltersen
et al. (1997) assume that Lk .t/ follows a log-normal distri-
bution and price caplet using the Black formula. The mod-
els of Jarrow et al. (2007) assume that Lk .t/ follows affine
jump-diffusions of Duffie et al. (2000).
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Table 47.14 Correlations
between LIBOR rates and
implied volatility variables

L(t,1) L(t,3) L(t,5) L(t,7) L(t,9) V1.t/ V2.t/ V3.t/

V1(t) �0:8883 �0:8772 �0:8361 �0:7964 �0:7470 1 �0:4163 0.3842

V2(t) 0.1759 0.235 0.2071 0.1545 0.08278 �0:4163 1 �0:0372
V3(t) �0:5951 �0:485 �0:4139 �0:3541 �0:3262 0.3842 �0:0372 1

This table reports the correlations between LIBOR rates and implied volatility variables from SVJ3. Given
the parameter estimates of SVJ3 in Table 4, the implied volatility variables are estimated at t by minimizing
the SSEs of all difference caps at t

47.4.1 Nonparametric Method

We estimate the distribution of Lk .t/ under QkC1 using
the prices of a cross section of caplets that mature at TkC1

and have different strike prices. Following Breeden and
Litzenberger (1978), we know that the density of Lk .t/
under QkC1 is proportional to the second derivative of
C .Lk .t/ ; t; Tk; X/ with respect to X;

pQkC1

.Lk .Tk/ jLk .t// D 1

ıDkC1 .t/
@2C .Lk .t/ ; t; Tk; X/

@X2
jXDLk.Tk/: (47.39)

In standard LIBOR market models, it is assumed that the
conditional density of Lk .Tk/ depends only on the current
LIBOR rate. This assumption, however, can be overly restric-
tive given the multifactor nature of term structure dynamics.
For example, while the level factor can explain a large frac-
tion (between 80 and 90%) of the variations of LIBOR rates,
the slope factor still has significant explanatory power of in-
terest rate variations. Moreover, there is overwhelming ev-
idence that interest rate volatility is stochastic,22 and it has
been suggested that interest rate volatility is unspanned in
the sense that it can not be fully explained by the yield curve
factors such as the level and slope factors.

22 See Andersen and Lund (1997), Ball and Torous (1999), Brenner
et al. (1996), Chen and Scott (2001), and many others.

One important innovation of our study is that we allow the
volatility of Lk .t/ to be stochastic and the conditional den-
sity of Lk .Tk/ to depend on not only the level, but also the
slope and volatility factors of LIBOR rates. Denote the con-
ditioning variables as Z .t/ D fs.t/; v .t/g; where s.t/ (the
slope factor) is the difference between the 10- and 2-year
LIBOR forward rates and v .t/ (the volatility factor) is the
first principal component of EGARCH-filtered spot volatili-
ties of LIBOR rates across all maturities. Under this general-
ization, the conditional density of Lk .Tk/ under the forward
measure QkC1 is given by

pQkC1

.Lk .Tk/ jLk .t/ ; Z .t// D 1

ıDkC1 .t/
@2C .Lk .t/ ; X; t; Tk;Z .t//

@X2
jXDLk.Tk/: (47.40)

Next we discuss how to estimate the SPDs by combining
the forward and physical densities of LIBOR rates. Denote a
SPD function as �: In general, � depends on multiple eco-
nomic factors, and it is impossible to estimate it using interest
rate caps alone. Given the available data, all we can estimate
is the projection of � onto the future spot rate Lk .Tk/:

�k .Lk.Tk/ILk.t/; Z.t// D EP
t Œ�jLk.Tk/ILk.t/; Z.t/	 ;

(47.41)
where the expectation is taken under the physical measure.
Then the price of the caplet can be calculated as

C .Lk .t/ ; X; t; Tk;Z .t// D ıEP
t

�
� � .Lk .Tk/� X/C

�

D ı

Z 1

X

�k .y/ .y � X/pP .Lk .Tk/ D yjLk .t/ ; Z .t// dy; (47.42)

where the second equality is due to iterated expectation and
pP .Lk .Tk/ D yjLk .t/ ; Z .t// is the conditional density of
Lk .Tk/ under the physical measure.
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Comparing Equations (47.2) and (47.6), we have

�k .Lk.Tk/ILk.t/; Z.t// D DkC1 .t/
pQkC1

.Lk .Tk/ jLk .t/ ; Z .t//
pP .Lk .Tk/ jLk .t/ ; Z .t// : (47.43)

Therefore, by combining the densities ofLk .Tk/ under QkC1
and P; we can estimate the projection of � onto Lk.Tk/: The
SPDs contain rich information on how risks are priced in
financial markets. While Aït-Sahalia and Lo (1998, 2000),
Jackwerth (2000), Rosenberg and Engle (2002), and others
estimate the SPDs using index options (i.e., the projection

of � onto index returns), our analysis based on interest rate
caps documents the dependence of the SPDs on term struc-
ture factors.

Similar to many existing studies, to reduce the dimension-
ality of the problem, we further assume that the caplet price
is homogeneous of degree 1 in the current LIBOR rate:

C .Lk .t/ ; X; t; Tk;Z .t// D ıDkC1 .t/ Lk .t/ CM .Mk.t/; t; Tk;Z .t// ; (47.44)

where Mk.t/ D X=Lk .t/ represents the moneyness of the
caplet. Hence, for the rest of the paper we estimate the for-

ward density of Lk .Tk/ =Lk .t/ as the second derivative of
the price function CM with respect to M W

pQkC1

	
Lk .Tk/

Lk .t/
jZ .t/



D 1

ıDkC1 .t/
@2CM .Mk.t/; t; Tk;Z .t//

@M2
jMDLk.Tk/=Lk.t/: (47.45)

47.4.2 Empirical Results

In this section, we present nonparametric estimates of the
probability densities of LIBOR rates under physical and for-
ward martingale measures. In particular, we document the
dependence of the forward densities on the slope and volatil-
ity factors of LIBOR rates.

Figure 47.2 presents nonparametric estimates of the for-
ward densities at different levels of the slope and volatility
factors at 2, 3, 4, and 5 year maturities. The two levels of the
slope factor correspond to a flat and a steep forward curve,
while the two levels of the volatility factor represent low and
high volatility of LIBOR rates. The 95% confidence inter-
vals are obtained through simulation. The forward densities
should have a zero mean since LIBOR rates under appropri-
ate forward measures are martingales. The expected log per-
centage changes of the LIBOR rates are slightly negative due
to an adjustment from the Jensen’s inequality. We normalize
the forward densities so that they integrate to one. However,
we do not have enough data at the right tail of the distribution
at 4 and 5 year maturities. We do not extrapolate the data to
avoid potential biases.

Figure 47.2 documents three important features of the
nonparametric LIBOR forward densities. First, the log-
normal assumption underlying the popular LIBOR market

models is grossly violated in the data, and the forward densi-
ties across all maturities are significantly negatively skewed.
Second, all the forward densities depend significantly on the
slope of the term structure. For example, moving from a
flat to a steep term structure, the forward densities across
all maturities become much more dispersed and more neg-
atively skewed. Third, the forward densities also depend on
the volatility factor. Under both flat and steep term struc-
tures, the forward densities generally become more compact
when the volatility factor increases. This is consistent with
a mean reverting volatility process: High volatility right now
leads to low volatility in the future and more compact for-
ward densities.

To better illustrate the dependence of the forward densities
on the two conditioning variables, we also regress the quan-
tiles of the forward densities on the two factors. We choose
quantiles instead of moments of the forward densities in our
regressions for two reasons. First, quantiles are much easier
to estimate. While quantiles can be obtained from the CDF
function, which is the first derivative of the price function,
moments require integrations of the forward density, which
is the second derivative of the price function. Second, a wide
range of quantiles provide a better characterization of the for-
ward densities than a few moments, especially for the tail
behaviors of the densities.

Suppose we consider I and J levels of the transformed
slope and volatility factors in our empirical analysis. For a
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Fig. 47.2 Nonparametric
estimates of the LIBOR forward
densities at different levels of the
slope and volatility factors. The
slope factor is defined as the
difference between the 10 and
2-year 3-month LIBOR forward
rates. The volatility factor is
defined as the first principal
component of EGARCH-filtered
spot volatilities and has been
normalized to a mean that equals
one. The two levels of the slope
factor correspond to flat and steep
term structures, while the two
levels of the volatility factor
corresponds to low and high
levels of volatility
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given level of the two conditioning variables
�
si ; vj

�
; we

first obtain a nonparametric estimate of the forward density
at a given maturity and its quantiles Qx

�
si ; vj

�
; where x

can range from 0 to 100%. Then we consider the following
regression model

Qx

�
si ; vj

� D b0x C b1x � si C b2x � vj C b3x � si � vj C "x;

(47.46)
where i D 1; 2; : : : ; I; and j D 1; 2; : : : ; J: We include the
interaction term to capture potential nonlinear dependence of
the forward densities on the two conditioning variables.
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Fig. 47.2 (continued) 4-Year 
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Figure 47.3 reports regression coefficients of the slope and
volatility factors for the most complete range of quantiles
at each maturity, i.e., b1x and b2x as a function of x: While
Fig. 47.2 includes only the slope and volatility factors as ex-
planatory variables, Fig. 47.4 contains their interaction term

as well. Though in results not reported here we also include
lagged conditioning variables in our regressions, their coeffi-
cients are generally not statistically significant.

The regression results in Fig. 47.3 are generally consistent
with the main findings in Fig. 47.2. The slope coefficients are
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Fig. 47.3 Impacts of the slope and volatility factors on LIBOR for-
ward densities. This figure reports regression coefficients of different
quantiles of the forward densities at 2, 3, 4, and 5 year maturities on the

slope and volatility factors of LIBOR rates in Equation (47.27) without
the interaction term

generally negative (positive) for the left (right) half of the dis-
tribution and become more negative or positive at both tails.
Consistent with Fig. 47.2, this result suggests that when the
term structure steepens, the forward densities become more
dispersed and the effect is more pronounced at both tails.
One exception to this result is that the slope coefficients be-
come negative and statistically insignificant at the right tail
at 5 year maturity. The coefficients of the volatility factor are
generally positive (negative) for the left (right) half of the
distribution. Although the volatility coefficients start to turn
positive at the right tail of the distribution, they are not statis-
tically significant. These results suggest that higher volatility
leads to more compact forward densities, a result that is gen-
erally consistent with that in Fig. 47.2.

In Fig. 47.4, although the slope coefficients exhibit similar
patterns as that in Fig. 47.3, the interaction term changes the
volatility coefficients quite significantly. The volatility coef-

ficients become largely insignificant and exhibit quite differ-
ent patterns than those in Fig. 47.3. For example, the volatil-
ity coefficients at 2 and 3 year maturities are largely constant
across different quantiles. At 4 and 5 year maturities, they
even become negative (positive) for the left (right) half of the
distribution. On the other hand, the coefficients of the inter-
action term exhibit similar patterns as that of the volatility co-
efficients in Fig. 47.3. These results suggest that the impacts
of volatility on the forward densities depend on the slope of
the term structure.

Figure 47.5 presents the volatility coefficients at different
levels of the slope factor (i.e., Ob2x C Ob3x � si ; where si D 0:3

or 2.4). We see clearly that the impact of volatility on the
forward densities depends significantly on the slope factor.
With a flat term structure, the volatility coefficients gener-
ally increase with the quantiles, especially at 3, 4, and 5 year
maturities. The volatility coefficients are generally negative
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Fig. 47.4 Impacts of the slope and volatility factors (with their interac-
tion term) on LIBOR forward densities. This figure reports regression
coefficients of different quantiles of the forward densities at 2, 3, 4, and

5 year maturities on the slope and volatility factors of LIBOR rates and
their interaction term in Equation (47.27)

(positive) for the left (right) tail of the distribution, although
not all of them are statistically significant. However, with a
steep term structure, the volatility coefficients are generally
positive (negative) for the left (right) half of the distribution

for most maturities. Therefore, if the current volatility is high
and the term structure is flat (steep), then volatility is likely
to increase (decline) in the future. We observe flat term struc-
ture during early part of our sample when the Fed has raised
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Fig. 47.5 Nonlinear dependence of LIBOR forward densities on the
volatility factor of LIBOR rates. This figure presents regression coeffi-
cients of quantiles of LIBOR forward densities on the volatility factor

at different levels of the slope factor. The two levels of the slope factor
represent flat and steep term structures

interest rate to slow down the economy. It could be that the
market was more uncertain about future state of the econ-
omy because it felt that recession was imminent. On the other
hand, we observe steep term structure after the internet bub-
ble bursted and the Fed has aggressively cut interest rate. It
could be that the market felt that the worst was over and thus
was less uncertain about future state of the economy.

Our nonparametric analysis reveals important nonlinear
dependence of the forward densities on both the slope and
volatility factors of LIBOR rates. These results have impor-
tant implications for one of the most important and contro-
versial topics in the current term structure literature, namely
the USV puzzle. While existing studies on USV mainly rely
on parametric methods, our results provide nonparametric
evidence on the importance of USV: Even after control-

ling for important bond market factors, such as level and
slope, the volatility factor still significantly affects the for-
ward densities of LIBOR rates. Even though many existing
term structure models have modelled volatility as a mean-
reverting process, our results show that the speed of mean
reversion of volatility is nonlinear and depends on the slope
of the term structure.

Some recent studies have documented interactions be-
tween activities in mortgage and interest rate derivatives mar-
kets. For example, in an interesting study, Duarte (2008)
shows that ATM swaption implied volatilities are highly cor-
related with prepayment activities in the mortgage markets.
Duarte (2008) extends the string model of Longstaff et al.
(2001) by allowing the volatility of LIBOR rates to be a
function of the prepayment speed in the mortgage markets.
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Fig. 47.6 Mortgage Bankers
Association of America (MBAA)
weekly refinancing and ARMs
indexes. This figure reports the
logs of the refinance and ARMs
indexes obtained by weekly
surveys at the (MBAA)
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He shows that the new model has much smaller pricing errors
for ATM swaptions than the original model with a constant
volatility or a CEV model. Jarrow et al. (2007) also show
that although their LIBOR model with stochastic volatility
and jumps can price caps across moneyness reasonably well,
the model pricing errors are unusually large during a few
episodes with high prepayments in MBS. These findings sug-
gest that if activities in the mortgage markets, notably the
hedging activities of government sponsored enterprises, such
as Fannie Mae and Freddie Mac, affect the supply/demand of
interest rate derivatives, then this source of risk may not be
fully spanned by the factors driving the evolution of the term
structure.23

In this section, we provide nonparametric evidence on the
impact of mortgage activities on LIBOR forward densities.
Our analysis extends Duarte (2008) in several important di-
mensions. First, by considering caps across moneyness, we
examine the impacts of mortgage activities on the entire for-
ward densities. Second, by explicitly allowing LIBOR for-
ward densities to depend on the slope and volatility factors
of LIBOR rates, we examine whether prepayment still has
incremental contributions in explaining interest rate option
prices in the presence of these two factors.24 Finally, in ad-
dition to prepayment activities, we also examine the impacts
of ARMs origination on the forward densities. Implicit in any
ARM is an interest rate cap, which caps the mortgage rate at
a certain level. Since lenders of ARMs implicitly sell a cap
to the borrower, they might have incentives to hedge such
exposures.25

23 See Jaffee (2003) and Duarte (2009) for excellent discussions on the
use of interest rate derivatives by Fannie Mae and Freddie Mac in hedg-
ing interest rate risks.
24 While the slope factor can have nontrivial impact on prepayment be-
havior, the volatility factor is crucial for pricing interest rate options.
25 We thank the referee for the suggestion of examining the effects of
ARMs origination on the forward densities.

Our measures of prepayment and ARMs activities are the
weekly refinancing and ARMs indexes based on the weekly
surveys conducted by MBAA, respectively. The two indexes,
as plotted in Fig. 47.6, tend to be positively correlated with
each other. There is an upward trend in ARMs activities dur-
ing our sample period, which is consistent with what hap-
pened in the housing market in the past few years.

To examine the impacts of mortgage activities on LIBOR
forward densities, we repeat the above regressions by includ-
ing two additional explanatory variables that measure refi-
nance and ARMs activities. Specifically, we refer to the top
20% of the observations of the refinance (ARMs) index as
the high prepayment (ARMs) group. After obtaining a non-
parametric forward density at a particular level of the two
conditioning variables, we define two new variables “Refi”
and “ARMs,” which measure the percentages of observations
used in estimating the forward density that belong to the high
prepayment and ARMs groups, respectively. These two vari-
ables allow us to test whether the forward densities behave
differently when prepayment/ARMs activities are high. To
control for potential collinearity among the explanatory vari-
ables, we have orthogonalized any new explanatory variable
with respect to existing ones.

Figure 47.7 contain the new regression results with “Refi”
and “ARMs” for the four maturities. The coefficients of the
slope, volatility, and the interaction term exhibit similar pat-
terns as that in Fig. 47.4.26

The strongest impacts of ARMs on the forward densities
occur at 2 year maturity, as shown in Panel A of Fig. 47.7.
Therefore, high ARMs origination shifts the median and
the right tail of the forward densities at 2 year maturity to-
ward the right. This finding is consistent with the notion that
hedging demands from ARMs lenders for the cap they have

26 In results not reported, we find that the nonlinear dependence of the
forward densities on the volatility factor remain the same as well.



47 Unspanned Stochastic Volatilities and Interest Rate Derivatives Pricing 745

0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5
0

0.5
1

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.3
−0.2
−0.1

0
0.1

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

S
lo

pe
*V

ol
.

Quantile

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4
−0.2

0
0.2
0.4

R
E

F
I C

oe
ffi

ci
en

t

Quantile

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

0

0.5

A
R

M
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5
0

0.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.2

0

0.2

0.4

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

S
lo

pe
*V

ol
.

Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

R
E

F
I C

oe
ffi

ci
en

t
Quantile

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.6
−0.4
−0.2

0
0.2
0.4

A
R

M
 C

oe
ffi

ci
en

t

Quantile

2-Yeara b 3-Year 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

0

0.5

S
lo

pe
*V

ol
.

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

0

0.5

R
E

F
I C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8
−0.6
−0.4
−0.2

0
0.2

A
R

M
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.4
−0.2

0
0.2
0.4

S
lo

pe
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

0
0.2
0.4
0.6

V
ol

at
ili

ty
 C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1
−0.5

0

S
lo

pe
*V

ol
.

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

R
E

F
I C

oe
ffi

ci
en

t

Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8
−0.6
−0.4
−0.2

0

A
R

M
 C

oe
ffi

ci
en

t

Quantile

4-Yearc d 5-Year 

Fig. 47.7 Impacts of refinance and ARMs activities on LIBOR forward
densities. In this figure, for each quantile of LIBOR forward densities
at 2, 3, 4, and 5 year maturities, we report regression coefficients of the

quantile on (1) the slope and volatility factors and their interaction term
as in Equation 47.27; and (2) refinance and ARMs activities
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shorted might increase the price of OTM caps. One possible
reason that the effects of ARMs are more pronounced at 2
year maturity than at 3, 4, and 5 year maturities is that most
ARMs get reset within the first 2 years.

While high ARMs activities shift the forward density at 2
year maturity to the right, high refinance activities shift the
forward densities at 3, 4, and 5 year maturities to the left. We
see that the coefficients of Refi at the left tail are significantly
negative. While the coefficients also are significantly nega-
tive for the middle of the distribution (40–70% quantiles), the
magnitude of the coefficients are much smaller. These can be
seen in Panels B, C, and D of Fig. 47.7. Therefore, high pre-
payment activities lead to much more negatively skewed for-
ward densities. This result is consistent with the notion that
investors in MBS might demand OTM floors to hedge their
potential losses from prepayments. The coefficients of Refi
are more significant at 4 and 5 year maturities because the
duration of most of MBS are close to 5 years.

Our results confirm and extend the findings of Duarte
(2008) by showing that mortgage activities affect the entire
forward density and consequently the pricing of interest rate
options across moneyness. While prepayment activities af-
fect the left tail of the forward densities at intermediate ma-
turities, ARMs activities affect the right tail of the forward
densities at short maturity. Our findings hold even after con-
trolling for the slope and volatility factors and suggest that
part of the USV factors could be driven by activities in the
mortgage markets.

47.5 Conclusion

The unspanned stochastic volatility puzzle is one of the most
important topics in the current term structure modeling. Sim-
ilar to the stochastic volatility in the equity options liter-
ature, the existence of USV challenges the benchmark in
the current term structure literature, the dynamic term struc-
ture models. But it also in part explains why the praction-
ers generally apply the HJM type of models for interest rate
derivatives, where sometimes the models are applied in an
inconsistent manner across securities. Unlike the equity op-
tions literature where the underlying follows a univariate pro-
cess, it is more difficult to argue the stochastic volatilities of
yields are not spanned by the existing yield curve factors. We
in this paper review the current literature, which is mostly in
support of the USV using either bonds data or both bonds and
derivatives data. We present the results in Li and Zhao (2006)
that the DTSMs have serious difficulty in hedging against
the interest rate caps. We also present the results from Li and

Zhao (2008) where they show nonparametrically both the ac-
tual volatility of interest rates and the liquidity component of
the implied volatility affect the derivative prices after con-
trolling for the yield curve factors. This paper also presents
the model developed in Jarrow, Li and Zhao (2007), which
is quite rich parametrically to capture a spectrum of deriva-
tive prices. We can expect that the USV will have the similar
effect on interest rate derivatives as the stochastic volatility
on the equity options literature with many more issues to be
addressed in the future.
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Appendix 47A The Derivation for QTSMs

To guarantee the stationarity of the state variables, we assume
that � permits the following eigenvalue decomposition,

� D UƒU�1

where ƒ is the diagonal matrix of the eigenvalues that take
negative values, ƒ � diag Œ�i 	N ; and U is the matrix of
the eigenvectors of �, U � Œu1 u2 � � � uN 	 : The conditional
distribution of the state variablesXt is multivariate Gaussian
with conditional mean

E ŒXtC
t jXt	 D Uƒ�1 Œˆ� IN 	U
�1�

CUƒ�1 Œˆ � IN 	 U�1Xt (47.47)

and conditional variance

var ŒXtC
t jXt	 D U‚U 0 (47.48)

where ˆ is a diagonal matrix with elements exp.�i
t/ for
i D 1; : : : ; N; ‚ is a N-by-N matrix with elements

�
vij

�i C �j

�
e
t.�iC�j / � 1

�
;

where
�
vij
�
N�N D U�1††0U 0�1:

With the specification of market price of risk, we can re-
late the risk-neutral measure Q to the physical one P as
follows;

E

�
dQ

dP
jFt
�

D exp

�
�
Z t

0

�.Xs/
0dWs � 1

2

Z t

0

�.Xs/
0�.Xs/ds

�
; for t � T: (47.49)

Applying Girsanov’s theorem, we obtain the risk-neutral
dynamics of the state variables

dXt D Œı C �Xt	 dt C†dW
Q
t

where ı D � � †�0; � D � � †�1; and W
Q
t is an

N-dimensional standard Brownian motion under measureQ:
Under the above assumptions, a large class of fixed-

income securities can be priced in (essentially) closed-form
(see Leippold and Wu 2002). We discuss the pricing of zero-
coupon bonds below and the pricing of caps. Let V.t; �/
be the time-t value of a zero-coupon bond that pays 1 dol-
lar at time T .� D T � t/. In the absence of arbitrage, the

discounted value process exp
�
� R t

0
r .Xs/ ds


V.t; �/ is a

Q�martingale. Thus the value function must satisfy the fun-
damental PDE, which requires the bond’s instantaneous re-
turn equals the risk-free rate,

1

2
tr

	
††0 @2V .t; �/

@Xt@X
0
t



C @V.t; �/

@X 0
t

.ı C �Xt/

C@V.t; �/

@t
D rtV .t; �/ (47.50)

with the terminal condition V.t; 0/ D 1: The solution takes
the form

V.t; �/ D exp
��X 0

t A.�/Xt � b.�/0Xt � c.�/� ;

where A.�/; b.�/ and c.�/ satisfy the following system of
ordinary differential equations (ODEs),

@A .�/

@�
D ‰ C A.�/� C � 0A.�/ � 2A.�/††0A.�/I

@b .�/

@�
D ˇ C 2A.�/ı C � 0b.�/� 2A.�/††0b .�/ I

@c .�/

@�
D ˛ C b.�/0ı � 1

2
b.�/0††0b .�/

Ctr
�
††0A.�/

� I
with A.0/ D 0N�N I b.0/ D 0N I c.0/ D 0:

Consequently, the yield-to-maturity, y.t; �/; is a quadratic
function of the state variables

y.t; �/ D 1

�

�
X 0
t A.�/Xt C b.�/0Xt C c.�/

�
:

In contrast, in the ATSMs the yields are linear in the state
variables and therefore the correlations among the yields are
solely determined by the correlations of the state variables.
Although the state variables in the QTSMs follow multivari-
ate Gaussian process, the quadratic form of the yields helps
to model the time varying volatility and correlation of bond
yields.

Leippold and Wu (2002) show that a large class of fixed-
income securities can be priced in closed-form in the QTSMs
using the transform analysis of Duffie et al. (2001). They
show that the time-t value of a contract that has an expo-
nential quadratic payoff structure at terminal time T, i.e.,

exp .�q.XT // D exp
�
�X 0

T AXT � b
0
XT � c
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has the following form

 .q;Xt ; t; T / D EQ

�
e� R T

t r.Xs/dse�q.XT /jFt


(47.51)

D exp
��XtA.T � t/Xt � b.T � t/0Xt � c.T � t/� :

where A.:/; b.:/ and c.:/ satisfy the ODEs (4)-(6) with the
initial conditions A.0/ D A; b.0/ D b and c.0/ D c:

The time-t price a call option with payoff
�
e�q.XT / � y

�C

at T D t C � equals

C .q; y;Xt ; �/ D EQ

�
e� R T

t r.Xs/ds
�
e�q.XT / � y�C jFt



D EQ

�
e� R T

t r.Xs/ds
�
e�q.XT / � y� 1f�q.XT /�ln.y/gjFt



D Gq;q .� ln .y/ ; Xt ; �/� yG0;q .� ln .y/ ; Xt ; �/ ;

whereGq1;q2 .y;Xt ; �/ DEQ

h
e� R T

t r.Xs/dse�q1.XT /1fq2.XT /�ygjFt
i

and can be computed by the inversion formula,

Gq1;q2 .y;Xt ; �/ D  .q1;Xt ; t; T /

2
� 1

�

Z 1

0

eivy .q1 C ivq2/� e�ivy .q1 � ivq2/

iv
dv: (47.52)

Similarly, the price of a put option is

P .q; y; �; Xt / D yG0;�q .ln .y/ ; Xt ; �/�Gq;�q .ln .y/ ; Xt ; �/ :

We are interested in pricing a cap which is portfolio of
European call options on future interest rates with a fixed
strike price. For simplicity, we assume the face value is
1 and the strike price is r . At time 0; let �; 2�; : : : ; n�
be the fixed dates for future interest payments. At each
fixed date k�; the r-capped interest payment is given by
� .R ..k � 1/ �; k�/� r/C ; where R ..k � 1/ �; k�/ is the
�-year floating interest rate at time .k � 1/ �; defined by

1

1C �R ..k � 1/ �; k�/ D % ..k � 1/ �; k�/ D EQ

 
exp

 
�
Z k�

.k�1/�
r .Xs/ ds

!
jF.k�1/�

!
:
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The market value at time 0 of the caplet paying at date k�
can be expressed as

Caplet .k/ D EQ

"
exp

 
�
Z k�

0

r .Xs/ ds

!
� .R ..k � 1/ �; k�/ � r/C

#

D .1C �r/EQ

"
exp

 
�
Z .k�1/�

0

r .Xs/ ds

!	
1

.1C �r/
� % ..k � 1/ �; k�/


C#
:

Hence, the pricing of the k�th caplet is equivalent to the pric-
ing of an .k � 1/ �-for-� put struck at K D 1

.1C�r/ : There-
fore,

Caplet.k/ D G0;�q�
�
lnK;X.k�1/� ; .k � 1/ �

�

� 1

K
Gq� ;�q�

�
lnK;X.k�1/� ; .k � 1/ �

�
:

(47.53)

Similarly for the k � th floorlet

Floorlet.k/ D �G0;q�
�� lnK;X.k�1/� ; .k � 1/ �

�

C 1

K
Gq� ;q�

�� lnK;X.k�1/� ; .k � 1/ �
�
:

(47.54)

Appendix 47B The Implementation
of the Kalman Filter

To implement the extended Kalman filter, we first recast the
QTSMs into a state-space representation. Suppose we have a
time series of observations of yields of L zero-coupon bonds
with maturities � D .�1; �2; : : : ; �L/: Let „ be the set of
parameters for QTSMs, Yk D f .Xk; �I„/ be the vector of
the L observed yields at the discrete time points k
t; for
k D 1; 2; : : : ; K;where
t is the sample interval (one day in
our case). After the following change of variable,

Zk D U�1.��1�CXk/;

we have the state equation:

Zk D ˆZk�1 C wk; wk � N.0;‚/

where ˆ and ‚ are first introduced in (4) and (5), and mea-
surement equation:

Yk D dk CHkZk C vk; vk � N.0;Rv/

where the innovations in the state and measurement
equations wk and vk follow serially independent Gaussian
processes and are independent from each other. The time-
varying coefficients of the measurement equation dk and Hk

are determined at the ex ante forecast of the state variables,

Hk D @f .U z � ��1�; �/
@z

jzDZkjk�1

dk D f .UZkjk�1 � ��1�; �/ �HkZkjk�1 C Bk;

where Zkjk�1 D ˆZk�1:
In the QTSMs, the transition density of the state variables

is multivariate Gaussian under the physical measure. Thus
the transition equation in the Kalman filter is exact. The only
source of approximation error is due to the linearization of
the quadratic measurement equation. As our estimation uses
daily data, the approximation error, which is proportional
to one-day ahead forecast error, is likely to be minor. Fur-
thermore, we can minimize the approximation error by in-
troducing the correction term Bk .27 The Kalman filter starts
with the initial state variable Z0 D E.Z0/ and the variance–
covariance matrix PZ

0 ;

PZ
0 D E

�
.Z0 � E.Z0// .Z0 � E.Z0//

0� :

These unconditional mean and variance have closed-form
expressions that can be derived using Equations (47.4) and
(47.5) by letting
t goes to infinity. Given the set of filtering
parameters, f„;Rvg ; we can write down the log-likelihood
of observations based on the Kalman filter

27 The differences between parameter estimates with and without the
correction term are very small and we report those estimates with the
correction term Bk .
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logL .Y I„/ D
KX

kD1
logf .Yk IYk�1; f„;Rvg/

D �LK
2

log .2�/� 1

2

KX

kD1
log

ˇ̌
ˇPY

kjk�1
ˇ̌
ˇ� 1

2

KX

kD1

��
Yk � OYkjk�1

0 �
PY
kjk�1

�1 �
Yk � OYkjk�1

�

with Yk�1 is the information set at time .k � 1/
t; and
PY
kjk�1 is the time .k � 1/
t conditional variance of Yk ,

PY
kjk�1 D HkP

Z
kjk�1H

0
k CRvI

PZ
kjk�1 D ˆPZ

k�1ˆ0 C‚:

Appendix 47C Derivation
of the Characteristic Function

The solution to the characteristic function of log.Lk .Tk// ;

 .u0; Yt ; t; Tk/ D exp
�
a.s/C u0 log.Lk .t//C B.s/0Vt

�
;

a.s/ and B.s/; 0 � s � Tk satisfy the following system of
Ricatti equations:

dBj .s/

ds
D ��kC1

j Bj .s/C 1

2
B2
j .s/�

2
j

C1

2

�
u20 � u0

�
U 2
s;j ; 1 � j � N;

da.s/

ds
D

NX

jD1
�kC1
j �kC1

j Bj .s/

C�J Œ� .u0/ � 1 � u0 .�.1/ � 1/	 ;

where the function � is

�.c/ D exp

	
�kC1
J c C 1

2
�2J c

2



:

The initial conditions are B.0/ D 0N�1; a.0/ D 0; and �kC1
j

and �kC1
j are the parameters of Vj .t/ process under QkC1:

For any l < k; Given that B .Tl/ D B0 and a .Tl/ D
a0; we have the closed-form solutions for B .TlC1/ and
a .TlC1/ : Define constants p D �

u20 � u0
�
U 2
s;j ; q Dr�

�kC1
j

2 C p�2j ; c D p

q��kC1
j

and d D p

qC�kC1
j

: Then we

have

Bj .TlC1/ D c � .c C d/ .c � Bj0/�
d C Bj0

�
exp.�qı/C �

c � Bj0
� ; 1 � j � N;

a.TlC1/ D a0 �
NX

jD1

"
�kC1
j �kC1

j

 
dı C 2

�2j
ln

 �
d C Bj0

�
exp.�qı/C �

c � Bj0
�

c C d

!!#

C�J ı Œ� .u0/ � 1 � u0 .�.1/� 1/	 ;

if p ¤ 0 and Bj .TlC1/ D Bj0; a.TlC1/ D a0 otherwise.
B .Tk/ and a .Tk/ can be computed via iteration.
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