
Chapter 38
Application of the Characteristic Function in Financial Research

H.W. Chuang, Y.L. Hsu, and C.F. Lee

Abstract In this chapter we introduce the application of the
characteristic function in financial research. We consider the
technique of the characteristic function useful for many op-
tion pricing models. Two option pricing models are derived
in details based on the characteristic functions.

Keywords Characteristic function � Constant elasticity of
variance �Option pricing �Stochastic volatility

38.1 Introduction

The characteristic function in nonprobabilistic contexts is
called the Fourier transform. The characteristic function was
used widely in applied physics (signal process, quantum
mechanics).

The technique of the characteristic function is also use-
ful for determining the option prices. In Heston (1993), the
importance of the characteristic function was demonstrated
to find a closed-form solution for options with stochas-
tic volatility. It was subsequently considered by many au-
thors, including Bates (1996), Bakshi and Chen (1997), Scott
(1997), Carr and Madan (1999), among others. In addition,
we consider the constant elasticity of variance (CEV) op-
tion pricing model (see Cox 1996; Schroder 1989; and Hsu
et al. 2008) and options with stochastic volatility (see Heston
1993) based on the characteristic functions.
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38.2 The Characteristic Functions

In probability theory, the characteristic function of any
random variable completely defines its probability distribu-
tion. On the real line it is given by the following formula,
where X is any random variable with the distribution in
question:

'X.t/ D E.eitX/

D E.cos.tX//C iE.sin.tX// (38.1)

where t is a real number, I is the imaginary unit, and E
denotes the expected value. The characteristic function is
thus defined as the moment generating function but with the
real argument s replaced by it; it has the advantage that it
always exists because eitx is bounded.

If FX is the cumulative distribution function, then the
characteristic function is given by the Riemann-Stieltjes
integral

E.eitX/ D
1Z

�1
eitxdFX.x/: (38.2)

If there is a probability density function, fX , this becomes

E.eitX/ D
1Z

�1
eitxfX.x/dx: (38.3)

If X is a vector-valued random variable, one takes the argu-
ment t to be a vector and t0X to be an inner product. The char-
acteristic functions for the common distributions are given in
Table 38.1.

Besides, if F is a one-dimensional distribution function
and f is corresponding characteristic function, then the
cumulative distribution function FX and its corresponding
probability density function .x/ D F 0.x/ can be re-
trieved via:

.x/ D 1

2�

1Z

�1
e�itzf .t/dt (38.4)
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Table 38.1 The characteristic
functions of the specific
probability functions

Probability Characteristic

Distribution function Interval function

Normal 1
p

2�
e�x2=2 �1 < x < 1 e�t2=2

Uniform 1 0 < x < 1 eit
�1
it

Exponential e�x 0 < x < 1 1
1�it

Chi-Squared x.v�2/=2e�x=2

2v�.v=2/ 0 < x < 1 .1� 2it/�v=2

Binomial

 
n

x

!
px.1� p/n�x x D 0; 1; : : : ; n .1� p C peit/n

Poisson e���x

xŠ
x D 0; 1; : : : e�.e

it
�1/

F .x/ D 1

2
C 1

2�

1Z

0

eitxf .�t/ � e�itxf .t/

it
dt (38.5)

or

F.x/ D 1

2
� 1

�

1Z

0

Re

�
eitxf .t/

it

�
dt: (38.6)

If F1 and F2 have respective characteristic functions '1.t/
and '2.t/, then the convolution of F1 and F2 has character-
istic function '1.t/'2.t/. Although convolution is essential
to the study of sums of independent random variables, it is
a complicated operation, and it is often simpler to study the
products of the corresponding characteristic functions. Every
probability distribution on R or on Rn has a characteristic
function, because one is integrating a bounded function over
a space whose measure is finite, and for every characteristic
function there is exactly one probability distribution.

38.3 CEV Option Pricing Model

Cox (1996) has derived the renowned CEV option pricing
model. The CEV option pricing model assumes that the stock
price is governed by the diffusion process

dS D �Sdt C �S
ˇ=2dz; ˇ < 2 (38.7)

where dz is a Wiener process and � is a positive constant.
If ˇ D 2, the stock prices are log-normally distributed as
in Black–Scholes model (Black and Scholes 1973). In the
Black–Scholes case, there is only one source of random-
ness – the stock price, which can be hedged with the stock.
From the view of no-arbitrage, we can form a portfolio that
grows in the risk-free rate. We then have the partial differ-
ential equation (PDE) subject to some boundary conditions.
Similarly, we can get the option price derived from the CEV
model by the way of Black-Scholes.

Now, we set up a portfolio… containing the option being
priced whose value is denoted by U.S; t/, a quantity �
 of
the stock

�

 D @U

@S

�
. That is,

… D U �
S: (38.8)

The small change of the portfolio in a time interval dt is
given by

d… D
�
@U

@t
dt C @U

@S
dS C 1

2

@2U

@S2
.dS/2 � @U

@S
dS

�

D
	
@U

@t
C 1

2

@2U

@S2
�2Sˇ



dt: (38.9)

Since there is no diffusion term, the value of the arbitrage
portfolio is certain. In order to preclude arbitrage, the payoff
must equal …rdt; that is,

	
@U

@t
C 1

2

@2U

@S2
�2Sˇ



dt D

	
U � @U

@S
S



rdt: (38.10)

We have the PDE

@U

@t
C rS

@U

@S
C 1

2

@2U

@S2
�2Sˇ � rU D 0: (38.11)

Hence, we have the derivative’s price by solving Equation
(38.11) and giving the boundary conditions. If U.S; t/ is a
call option, CT D max.ST �K; 0/, then

8
<

:

@C

@t
C rS

@C

@S
C 1

2

@2C

@S2
�2Sˇ � rC D 0

CT D max.ST �K; 0/
(38.12)

where K is the strike price of the option.
Now, we can simplify Equation (38.11) by rewriting it

in terms of the logarithm of the spot price; that is, x D
ln.S/, thus

@C

@S
D @C

@x

1

S
;
@C

@S2
D 1

S2
@2C

@x2
� 1

S

@C

@x
: (38.13)

We transform the problem into

8
<

:

@C

@t
C
	
r � 1

2
�2


@C

@x
C 1

2

@2C

@x2
�2ex.ˇ�2/ � rC D 0

CT D max.exT �K; 0/:
(38.14)
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By analogy with the Black–Scholes formula, we guess a
solution of the form:

Ct.x; t/ D exP1.x; t/ � Ke�r.T�t /P2.x; t/ (38.15)

where the first term is the present value of the spot asset upon
optimal exercise, and the second term is the present value
of the strike-price payment. And we substitute the proposed
solution Equation (38.15) into (38.14).

Substituting the proposed solution into the PDE shows
that both P1.x; t/ and P2.x; t/ are satisfied

@P1

@t
C
	
r C 1

2
�2


@P1

@x
C 1

2

@2P1

@x2
�2ex.ˇ�2/ D 0 (38.16)

@P2

@t
C
	
r � 1

2
�2


@P2

@x
C 1

2

@2P2

@x2
�2ex.ˇ�2/ D 0; (38.17)

Respectively, and subject to the terminal condition for
j D 1, 2

lim
t!0

Pj .x; t I lnŒK	/ D
�
1; if x

T
> lnŒK	

0; if xT � lnŒK	
: (38.18)

We can apply the characteristic function of Pj .x; t/ D
Pj .xT 	 lnŒK	jxt /.

It can be taken the following form

Pj .xt / D Pj .xT 	 lnŒK	jxt /

D 1

2�

1Z

�1

e�i' lnŒK	

i'
Qfj .xT;' jxt /d': (38.19)

Using the above formula, we can shift Equation (38.14) in
Fourier space and define � D T � t , we have

�@
Qf1

@�
C
	
r C 1

2
�2


@ Qf1
@x

C1

2

@2 Qf1
@x2

�2ex.ˇ�2/ D 0; (38.20)

subject to Qf1.x�D0; '/ D ei'xŒ�D0	 ,

�@
Qf2

@�
C
	
r � 1

2
�2


@ Qf2
@x

C1

2

@2 Qf2
@x2

�2ex.ˇ�2/ D 0; (38.21)

subject to Qf2.x�D0; '/ D ei'xŒ�D0	 .

We guess the solution Qfj .x�D0; 'jx�/ D eC
j
� Ci'x� .

Thus, we have for j D 1, 2

@ Qfj
@x

D ieC
j
� Cix; (38.22)

@2 Qfj
@x2

D �2eCj� Cix; (38.23)

@ Qfj
@�

D eC
j
� Cix @C

j
�

@�
: (38.24)

Substituting the above Equations into (38.20) and (38.21),
we have

@C 1
�

@�
D ri C 1

2
�2Œi � ex.ˇ�2/	; (38.25)

C1
�D0 D 0; (38.26)

@C 2
�

@�
D ri � 1

2
�2Œi C ex.ˇ�2/	; (38.27)

C2
�D0 D 0: (38.28)

They are all first-order ordinary differential equations with
constant coefficient, and they can be solved using a single
integration:

C1
� D ri� C 1

2
�2Œi � ex.ˇ�2/	�; (38.29)

C2
� D ri� � 1

2
�2Œi C ex.ˇ�2/	�: (38.30)

Hence, we have Qfj .x�D0; 'jx�/ D eC
j
� Ci'x� where C1

� and
C2
� are given by above equations.

Finally, we can found the analytical form of probability
functions Pj ; that is,

Pj .x�D0 	 lnŒK	jx�/

D 1

2
C 1

�

1Z

0

Re
�
e�i' lnŒK	

i'
Qfj .xT;' jxt /

�
d' (38.31)

or

Pj.x�D0 	 lnŒK	jx� /

D 1

2
C 1

�

1Z

0

Im
�
e�i lnŒK	

i
Qfj .xT; jxt /

�
d: (38.32)

38.4 Options with Stochastic Volatility

Heston (1993) used the characteristic functions to derive a
closed-form solution for the price of a European call option
on an asset with stochastic volatility.
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We begin by assume that the spot asset at time t follows
the diffusion

dS.t/ D �Sdt C
p

v.t/Sd z1.t/; (38.33)

where z1.t/ is a Wiener process. If the volatility follows
an Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein
1930),

d
p

v.t/ D �ˇpv.t/dt C ıdz2.t/; (38.34)

then Itô’s Lemma (Itô 1944) shows that the variance follows
the process

dv.t/ D Œı2 � 2ˇv.t/	dt C 2ı
p

v.t/dz2.t/; (38.35)

where z2.t/ has correlation � with z1.t/. This can be written
as the familiar square-root process

dv.t/ D �Œ� � v.t/	dt C �
p

v.t/dz2.t/: (38.36)

For simplicity, we assume a constant interest rate r .
Therefore, the price at time t of a unit discount bond that

matures at time t C � is

P.t; t C �/ D e�r� : (38.37)

In this case, there two random sources – the stock price and
random change in volatility – which needs to be hedged to
form a riskless portfolio. Thus, we set up a portfolio … con-
taining the option being priced the value of which is de-
noted byU.S; v; t/, a quantity �
 of the stock and a quantity
�
1 of another asset whose value U1 depends on volatility.
That is,

… D U �
S �
1U1 (38.38)

The small change of the portfolio in a time interval dt is
given by

d… D
�
@U

@t
C 1

2
vS2.t/

@2U

@S2
C ��vS.t/

@2U

@v@S

C1

2
v�2

@2U

@v2

�
dt

�
1

�
@U1

@t
C 1

2
vS2.t/

@2U1

@S2
C ��vS.t/

@2U1

@v@S

C1

2
v�2

@2U1

@v2

�
dt

C
�
@U

@S
�
1

@U1

@S
�


�
dS

C
�
@U

@v
�
1

@U1

@v

�
dv: (38.39)

In order to make the portfolio instantaneously risk-free, we
choose

@U

@S
�
1

@U1

@S
�
 D 0 and

@U

@v
�
1

@U1

@v
D 0:

(38.40)
The portfolio grows the risk-free rate. We have

d… D
�
@U

@t
C 1

2
vS2.t/

@2U

@S2
C ��vS.t/

@2U

@v@S

C1

2
v�2

@2U

@v2

�
dt

�
1

�
@U1

@t
C 1

2
vS2.t/

@2U1

@S2
C ��vS.t/

@2U1

@v@S

C1

2
v�2

@2U1

@v2

�
dt

D r…dt

D r .U �
S �
1U1/ dt: (38.41)

If we use some simple algebra to collect all U terms on the
left-hand side and U1 terms on the left-hand side, we get

@U

@t
C 1

2
vS2.t/

@2U

@S2
C 2�ıvS.t/

@2U

@v@S
C 2vı2

@2U

@v2
C rS

@U

@S
� rU

@U

@v

D
@U1

@t
C 1

2
vS2.t/

@2U1

@S2
C 2�ıvS.t/

@2U1

@v@S
C 2vı2

@2U1

@v2
C rS

@U1

@S
� rU1

@U1

@v

:

(38.42)

From the factor model, the two risk assets must satisfy the
internal consistent relationship. Then the value of any asset
U.S; v; t/ must satisfy the PDE

@U

@t
C 1

2
vS2.t/

@2U

@S2
C ��vS.t/

@2U

@v@S

C1

2
v�2

@2U

@v2
C rS

@U

@S
� rU

D �f�Œ� � v.t/	 � �.S; v; t/g@U
@v
: (38.43)

The unspecified term �.S; v; t/ represents the price of volatil-
ity risk, and must be independent of the particular asset. Con-
ventionally, �.S; v; t/ is called the market price of volatil-
ity risk. We note that in Breeden’s (1979) consumption-
based model,

�.S; v; t/dt D �Cov

	
dv;

dC

C



; (38.44)
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where C.t/ is the consumption rate and � is the relative-risk
aversion of an investor. And we note that in Cox et al.
(1985) model,

dC.t/ D �cv.t/Cdt C �c
p

v.t/Cdz3.t/; (38.45)

where consumption growth has constant correlation with the
spot asset return. These two papers motivate us with the
choice of �.S; v; t/ to v; �.S; v; t/ D �v.

A European call option with strike price K and maturing
at time T satisfies Equation (38.43) subject to the following
boundary conditions:

U.S; v; T / D Max.0;S � K/; (38.46)

U.0; v; t/ D 0; (38.47)

@U

@S
.1; v; t/ D 1; (38.48)

rS
@U

@S
.S; 0; t/C ı2

@U

@v
.S; 0; t/� rU.S; 0; t/

C@U

@t
.S; 0; t/ D 0; (38.49)

U.S;1; t/ D S: (38.50)

Now, we can simplify Equation (38.43) by rewriting them in
terms of the logarithm of the spot price; that is, x D ln.S/
and V.x; v; t/ D U.S; v; t/.

@V

@t
C 1

2
v
@2V

@x2
C ��v

@2V

@v@x
C 1

2
v�2

@2V

@v2

C
	
r � 1

2
v



@V

@x
C Œ�.� � v/ � �v	

@V

@v
� rV D 0:

(38.51)

By analogy with the Black–Scholes formula, we can guess a
solution of the form

C.S; v; t/ D SP1.x; v; t/� Ke�r.T�t /P2.x; v; t/; (38.52)

where the first term is the present value of the spot asset upon
optimal exercise, and the second term is the present value
of the strike-price payment. And we substitute the proposed
solution into Equation (38.51).

For P2.x; v; t/, we have

@P2

@t
C 1

2
v
@2P2

@x2
C ��v

@2P2

@v@x
C 1

2
v�2

@2P2

@v2

C
	
r � 1

2
v



@P2

@x
C Œ�.� � v/ � �v	

@P2

@v
D 0: (38.53)

For P1.x; v; t/, we have

@P1

@t
C 1

2
v
@2P1

@x2
C ��v

@2P1

@v@x
C 1

2
v�2

@2P1

@v2

C
	
rC1

2
v



@P1

@x
CŒ�.��v/C��v � �v	

@P1

@v
D 0: (38.54)

Besides, bothP1.x; v; t/ andP2.x; v; t/ are subject to the ter-
minal condition

lim
t!0

Pj.x; v; t I lnŒK	/ D
�
1; if x > lnŒK	
0; if x � lnŒK	

: (38.55)

The probabilities of P1.x; v; t/ and P2.x; v; t/ are not im-
mediately available in close form. We will show that their
characteristic function satisfies Equation (38.51).

Suppose that we have two processes

dx.t/ D
�
r � 1

2
v.t/

�
dt Cp

v.t/dW1.t/; (38.56)

dv.t/ D f�Œ� � v.t/	 � �v.t/g dt C �
p

v.t/dW2.t/;

(38.57)

cov ŒdW1.t/; dW2.t/	 D �dt; (38.58)

and a twice-differentiable function

f .x.t/; v.t/; t / D E Œg.x.T /; v.T //jx.t/ D x; v.t/ D v	 :
(38.59)

From Itô’s Lemma we have

df D
	
1

2
v�2

@2f

@v2
C ��v

@2f

@v@x
C 1

2
v
@2f

@x2
C
	
r � 1

2
v



@f

@x

C Œ�.� � v/� �v	
@f

@v
C @f

@t



dt

C
	
r � 1

2
v



@f

@x
dW1Cf�Œ� � v	 � �vgdW2 (38.60)

Besides, by integrated expectations, we know that
f .x.t/; v.t/; t/ is a martingale, then the df coefficient must
vanish; that is,

1

2
v�2

@2f

@v2
C ��v

@2f

@v@x
C 1

2
v
@2f

@x2
C
	
r � 1

2
v



@f

@x

C Œ�.� � v/� �v	
@f

@v
C @f

@t
D 0: (38.61)

The final condition f .x; v; T / D g.x; v/ which depends on
the choice of g. Choosing the g.x; v/ D ei'x the solution is
the characteristic function, which is available in closed form.
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In order to solve Equation (38.61) with above condition,
we invert the time direction: � D T � t . It means that we
have solved

1

2
v�2

@2f

@v2
C ��v

@2f

@v@x
C 1

2
v
@2f

@x2
C
	
r � 1

2
v



@f

@x

C Œ�.� � v/ � �v	
@f

@v
� @f

@t
D 0 (38.62)

subject to the initial condition:

f .x; v; 0/ D eix: (38.63)

To solve the characteristic function explicitly, we guess the
functional form to be

f .x; v; t/ D eŒC.�/CD.�/v	Ci'x	 (38.64)

with C.0/ D 0 and D.0/ D 0.
By substituting the function form Equation (38.64)

into (38.62) we have:

1

2
v�2D2f C ��viDf � 1

2
v2f C

	
r � 1

2
v



if

C Œ�.� � v/� �v	 Df � .C 0 CD0v/f D 0: (38.65)

Therefore, we get the PDE,

	
1

2
�2D2 C �� iD � 1

2
2 C 1

2
i � .� C �/D �D0



vf

C �
ir C ��D � C 0�f D 0; (38.66)

to reduce it two ordinary differential equations, respectively,

D0 D 1

2
�2D2C�� i'D� 1

2
'2C 1

2
i'�.�C�/D (38.67)

and
C 0 D ir C ��D: (38.68)

For Equation (38.67), we shall solve the Riccati differential
equation

D0 D 1

2
�2D2C�� i'D� 1

2
'2C 1

2
i'�.�C�/D (38.69)

by using D D � E0

�2

2 E
.

It follows that E 00 � .�� i' � � � �/E 0 �
1
2
�2
�
1
2
'2 C 1

2
i'
� D 0.

Let d D p
.�� i' � � � �/2 C �2.'2 C i'/, then the

above equation has the general solution

E.�/ D Aey1� C Bey2� ; (38.70)

where y1 D .�� i'����/Cd
2

and y2 D .�� i'����/�d
2

.
A and B can get from the boundary conditions

�
E.0/ D AC B

Ay1 C By2 D 0
:

Hence, we obtain

E.�/ D E.0/

g � 1
.gey1� � ey2� / ;

E 0.�/ D E.0/

g � 1
.gy1e

y1� � y2ey2� / ;

g D y1

y2
D �� i � � � � � d

�� i � � � �C d
;

and

D.�/ D � 2

�2
y2
ey2� � ey1�
ey2� � gey1�

D � C �C d � �� i

�2

�
1 � ed�
1 � ged�

�
:

For Equation (38.68), the C.�/ can be solved integration
merely,

C.�/ D ir'� C ��

0Z

�

� E 0.s/
�2

2
E.s/

ds

D ir'� � 2��

�2

0Z

�

E 0.s/
E.s/

ds

D ir'� � 2��

�2
ln
E.�/

E.0/

D ir'� C ��

�2

�
.� C �C d � �� i'/�

�2 ln

	
1 � ged�

1 � ed�


�
: (38.71)

As a result, we can invert the characteristic function to get
the desired probabilities.

Pj .x; v; t I lnŒK	/ D 1

2
C 1

�

1Z

0

Re

"
e�i' lnŒK	fj .x; v; T I'/

i'

#
d':

(38.72)
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38.5 Conclusion

In this chapter, we use characteristic functions to solve option
pricing problems. The characteristic functions are widely
used in solving differential equations and the inversion for-
mula permits one to determine the underlying distribution
function from the characteristic function. The use of the char-
acteristic functions in finance will provide an effective and
practical means of dealing with the option pricing.
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