Chapter 37

Option Pricing and Hedging Performance Under Stochastic Volatility

and Stochastic Interest Rates

Gurdip Bakshi, Charles Cao, and Zhiwu Chen

Abstract Recent studies have extended the Black—Scholes
model to incorporate either stochastic interest rates or
stochastic volatility. But, there is not yet any comprehensive
empirical study demonstrating whether and by how much
each generalized feature will improve option pricing and
hedging performance. This paper fills this gap by first de-
veloping an implementable option model in closed-form that
admits both stochastic volatility and stochastic interest rates
and that is parsimonious in the number of parameters. The
model includes many known ones as special cases. Based
on the model, both delta-neutral and single-instrument min-
imum-variance hedging strategies are derived analytically.
Using S&P 500 option prices, we then compare the pricing
and hedging performance of this model with that of three
existing ones that respectively allow for (i) constant volatil-
ity and constant interest rates (the Black—Scholes), (ii) con-
stant volatility but stochastic interest rates, and (iii) stochastic
volatility but constant interest rates. Overall, incorporating
stochastic volatility and stochastic interest rates produces the
best performance in pricing and hedging, with the remaining
pricing and hedging errors no longer systematically related
to contract features. The second performer in the horse-race
is the stochastic volatility model, followed by the stochastic
interest rates model and then by the Black—Scholes.
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37.1 Introduction

Option pricing has, in the last two decades, witnessed an
explosion of new models that each relax some of the re-
strictive assumptions underlying the seminal Black—Scholes
(1973) model. In doing so, most of the focus has been on
the counterfactual constant-volatility and constant-interest-
rates assumptions. For example, Merton’s (1973) option pric-
ing model allows interest rates to be stochastic but keeps
a constant volatility for the underlying asset, while Amin
and Jarrow (1992) develop a similar model where, unlike in
Merton’s, interest rate risk is also priced. A second class of
option models admits stochastic conditional volatility for the
underlying asset, but maintains the constant-interest-rates as-
sumption. These include the Cox and Ross (1976) constant-
elasticity-of-variance model and the stochastic volatility
models of Bailey and Stulz (1989), Bates (1996b, 2000),
Heston (1993), Hull and White (1987a), Scott (1987), Stein
and Stein (1991), and Wiggins (1987). Recently, Bakshi and
Chen (1997) and Scott (1997) have developed closed-form
equity option formulas that admit both stochastic volatility
and stochastic interest rates.! Their efforts have, in some
sense, helped reach the ultimate possibility of completely re-
laxing the Black—Scholes assumptions of constant volatility
and constant interest rates. As a practical matter, these suffi-
ciently general pricing formulas should in principle result in
significant improvement in pricing and hedging performance
over the Black—Scholes model. While option pricing the-
ory has made such impressive progress, the empirical front
is nonetheless far behind.> Will incorporating these general

I Amin and Ng (1993), Bailey and Stulz (1989), and Heston (1993) also
incorporate both stochastic volatility and stochastic interest rates, but
their option pricing formulas are not given in closed form, which makes
applications difficult. Consequently, comparative statics and hedge ra-
tios are difficult to obtain in their cases.

2 There have been a few empirical studies that investigate the pricing,
but not the hedging, performance of versions of the stochastic volatil-
ity model, relative to the Black—Scholes model. These include Bates
(1996b, 2000), Dumas et al. (1998), Madan et al. (1998), Nandi (1996),
and Rubinstein (1985). In Bates” work, currency and equity index op-
tions data are respectively used to test a stochastic volatility model with
Poisson jumps included. Nandi does investigate the pricing and hedging
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features improve both pricing and hedging effectiveness? If
so, by how much? Can these relaxed assumptions help re-
solve the well known empirical biases associated with the
Black—Scholes formula, such as the volatility smiles [e.g.,
Rubinstein (1985, 1994)]? — These empirical questions must
be answered before the potential of the general models can
be fully realized in practical applications.

In this paper, we first develop a practically implementable
version of the general equity option pricing models in Bakshi
and Chen (1997) and Scott (1997), that admits stochas-
tic interest rates and stochastic volatility, yet resembles to
the extent possible the Black—Scholes model in its imple-
mentability. We present procedures for applying the resulting
model to price and hedge option-like derivative products.
Next, we conduct a complete analysis of the relative empir-
ical performance, in both pricing and hedging, of the four
classes of models that respectively allow for (i) constant
volatility and constant interest rates (the BS model), (ii) con-
stant volatility but stochastic interest rates (the SI model),
(iii) stochastic volatility but constant interest rates (the SV
model), and (iv) stochastic volatility and stochastic interest
rates (the SVSI model). As the SVSI model has all the other
three models nested, one should expect its static pricing and
dynamic hedging performance to surpass that of the other
classes. But, this performance improvement must come at
the cost of potentially more complex implementation steps.
In this sense, conducting such a horse-race study can at least
offer a clear picture of possible tradeoffs between costs and
benefits that each model may present.

Specifically, the SVSI option pricing formula is expressed
in terms of the underlying stock price, the stock’s volatil-
ity and the short-term interest rate. The spot volatility and
the short interest rate are each assumed to follow a Markov
mean-reverting square-root process. Consequently, seven
structural parameters need to be estimated as input to the
model. These parameters can be estimated using the Gener-
alized Method of Moments (GMM) of Hansen (1982), as is
done in, for instance, Andersen and Lund (1997), Chan et al.
(1992), and Day and Lewis (1997). Or, they can be backed
out from the pricing model itself by using observed option
prices, as is similarly done for the BS model both in the ex-
isting literature and in Wall Street practice.

In our empirical investigation, we will adopt this implied
parameter approach to implement the four models. In this
regard, it is important to realize that the BS model is imple-
mented as if the spot volatility and the spot interest rates were
assumed to be time-varying within the model, that is, the spot

performance of Heston’s stochastic volatility model, but he focuses ex-
clusively on a single-instrument minimum-variance hedge that involves
only the S&P 500 futures. As will be clear shortly, we address in this pa-
per both the pricing and the hedging effectiveness issues from different
perspectives and for four distinct classes of option models.

volatility is backed out from option prices each day and used,
together with the current yield curve, to price the following
day’s options. The SI and the SV models are implemented
with a similarly internally inconsistent treatment, though to
a lesser degree. Since this implementation is how one would
expect each model to be applied, we chose to follow this con-
vention in order to give the alternatives to the standard BS
model the “toughest hurdle.” Clearly, such a treatment works
in the strongest favor of the BS model and is especially bi-
ased against the SVSI model.

Based on 38,749 S&P 500 call (and put) option prices for
the sample period from June 1988 to May 1991, our empir-
ical investigation leads to the following conclusions. First,
on the basis of two out-of-sample pricing error measures,
the SVSI model is found to perform slightly better than the
SV model, while they both perform substantially better than
the SI (the third-place performer) and the BS model. That
is, when volatility is kept constant, allowing interest rates
to vary stochastically can produce respectable pricing im-
provement over the BS model. However, in the presence of
stochastic volatility, doing so no longer seems to improve
pricing performance much further. Thus, modeling stochastic
volatility is far more important than stochastic interest rates,
at least for the purpose of pricing options. It is nonetheless
encouraging to know that based on our sample both the SVSI
and the SV models typically reduce the BS model’s pricing
errors by more than half, whereas the SI model helps reduce
the BS pricing errors by 20% or more. While all four models
inherit moneyness- and maturity-related pricing biases, the
severity of these types of bias is increasingly reduced by the
SI, the SV, and the SVSI models. In other words, the SVSI
model produces pricing errors that are the least moneyness-
or maturity-related. This conclusion is also confirmed when
the Rubinstein (1985) implied-volatility-smile diagnostic is
adopted to examine each model.

Two types of hedging strategy are employed in this study
to gauge the relative hedging effectiveness. The first type
is the conventional delta-neutral hedge, in which as many
distinct hedging instruments as the number of risk sources
affecting the hedging target’s value are used so as to make
the net position completely risk-immunized (locally). Take
the SVSI model as an example. The call option value is
driven by three risk sources: the underlying price shocks,
volatility shocks, and shocks to interest rates. Accordingly,
we employ the underlying stock, a different call option, and
a position in a discount bond to create a delta-neutral hedge
for a target call option. That closed-form expressions are
derived for each hedge ratio is of great value for devising
hedging strategies analytically. Similarly, for the SV model,
we only need to rely on the underlying stock and an option
contract to design a delta-neutral hedge. Based on the delta-
neutral hedging errors, the same performance ranking of the
four models obtains as that determined by their static pricing
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performance, except that now the SVSI and the SV models,
and the SI and the BS models, are respectively pairwise vir-
tually indistinguishable. This reenforces the view that adding
stochastic interest rates may not affect performance much.
However, it is found that the average hedging errors by the
SVSI and the SV models are typically less than one third of
the corresponding BS model’s hedging errors. Furthermore,
reducing the frequency of hedge rebalancing does not tend to
reduce the SV and the SVSI models’ hedging effectiveness,
whereas the BS and the SI models’ hedging errors are often
doubled when rebalancing frequency changes from daily to
once every 5 days. Therefore, after stochastic volatility is
controlled for, the frequency of hedge rebalancing will have
relatively little impact on hedging effectiveness. This finding
is in accord with Galai’s (1983a) results that in any hedging
scheme it is probably more important to control for stochas-
tic volatility than for discrete hedging [see Hull and White
(1987b) for a similar, simulation-based result for currency
options].

To see how the models perform under different hedging
schemes, we also look at minimum-variance hedges involv-
ing only a position in the underlying asset. As argued by Ross
(1995), the need for this type of hedges may arise in contexts
where a perfect delta-neutral hedge may not be feasible, ei-
ther because some of the underlying risks are not traded or
even reflected in any traded financial instruments, or because
model misspecifications and transaction costs render it unde-
sirable to use as many instruments to create a perfect hedge.
In the present context, both volatility risk and interest rate
risk are, of course, traded and hence can, as indicated above,
be controlled for by employing an option and a bond. But,
a point can be made that it is sometimes more preferable
to adopt a single-instrument minimum-variance hedge. To
study this type of hedges, we again calculate the absolute and
the dollar-value hedging errors for each model. Results from
this exercise indicate that the SV model performs the best
among all four, while the BS and the SV models outperform
their respective stochastic-interest-rates counterparts, the SI
and the SVSI models. Therefore, under the single-instrument
hedges, incorporating stochastic interest rates actually wors-
ens hedging performance. It is also true that hedging errors
under this type of hedges are always significantly higher than
those under the conventional delta-neutral hedges, for each
given moneyness and maturity option category. Thus, when-
ever possible, including more instruments in a hedge will in
general produce better hedging effectiveness.

While our discussion is mainly focused on results ob-
tained using the entire sample period and under specific
model implementation designs, robustness of these empiri-
cal results is also checked by examining alternative imple-
mentation designs, different subperiods as well as option
transaction price data. Especially, given the popularity of the
“implied-volatility matrix” method among practitioners, we

will also implement each of the four models, and compare
their pricing and hedging performance, by using only op-
tion contracts from a given moneyness-maturity category. It
turns out that this alternative implementation scheme does
not change the rankings of the four models.

The rest of the paper proceeds as follows. Section 37.2
develops the SVSI option pricing formula. It discusses issues
pertaining to the implementation of the formula and derives
the hedge ratios analytically. Section 37.3 provides a descrip-
tion of the S&P 500 option data. In Sect. 37.4 we evaluate the
static pricing and the dynamic hedging performance of the
four models. Concluding remarks are offered in Sect. 37.5.

37.2 The Option Pricing Model

Consider an economy in which the instantaneous interest rate
at time ¢, denoted R(¢), follows a Markov diffusion process:

dR(t) = [0 — kg R(1)]d1 + or VR(t)dwr(t) 1 €[0,T],
(37.1)

where kg regulates the speed at which the interest rate ad-
justs to its long-run stationary value g—’;, and wg = {wg(?) :
t € [0,T]} is a standard Brownian motion.> This single-
factor interest rate structure of Cox et al. (1985) is adopted
as it requires the estimation of only three structural parame-
ters. Adding more factors to the term structure model will of
course lead to more plausible formulas for bond prices, but it
can make the resulting option formula harder to implement.

Take a generic non-dividend-paying stock whose price
dynamics are described by

ds(t)

—— = u(S,t)dt+/V({t)dws(t) te]0,T],

0 (37.2)

where (1(S, t), which is left unspecified, is the instantaneous
expected return, and wg a standard Brownian motion. The in-

stantaneous stock return variance, V(¢), is assumed to follow
a Markov process:

dv(t) =10, —k, V()] dt + o,/ V(t)dw,(t) t €][0,T],
(37.3)

where again w, is a standard Brownian motion and the struc-
tural parameters have the usual interpretation. We refer to

3 Here we follow a common practice to assume from the outset a
structure for the underlying price and rate processes, rather than derive
them from a full-blown general equilibrium. See Bates (1996a), Heston
(1993), Melino and Turnbull (1990, 1995), and Scott (1987, 1997). The
simple structure assumed in this section can, however, be derived from
the general equilibrium model of Bakshi and Chen (1997).
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V(¢) as the spot volatility or, simply, volatility. This process
is also frugal in the number of parameters to be estimated
and is similar to the one in Heston (1993). Letting p denote
the correlation coefficient between wg and w,, the covariance
between changes in S(¢) and in V(¢) is Cov, [dS(¢),d V(t)]
= poso,S(t) V(t) dt, which can take either sign and is time-
varying. According to Bakshi et al. (1997, 2000a, b), Bakshi
and Chen (1997), Bates (1996a), Cao and Huang (2008), and
Rubinstein (1985), this additional feature is important for ex-
plaining the skewness and kurtosis related biases associated
with the BS formula. Finally, for ease of presentation, assume
that the equity-related shocks and the interest rate shocks are
uncorrelated:* Cov, (dws, dwg) = Cov;(dw,, dwg) = 0.

By a result from Harrison and Kreps (1979), there are
no free-lunches in the economy if and only if there exists
an equivalent martingale measure with which one can value
claims as if the economy were risk-neutral. For instance, the
time-¢ price B(t, t) of a zero-coupon bond that pays $1 in t
periods can be determined via

B(t,t)=Ep {exp (— /tt—H R(s)ds)} ,

where E¢ denotes the expectation with respect to an equiv-
alent martingale measure and conditional on the information
generated by R(¢) and V'(¢). Assume that the factor risk pre-
miums for R(¢) and V(¢) are respectively given by Az R(t)
and A, V(¢), for two constants Ag and A,. Bakshi and Chen
(1997) provide a general equilibrium model in which risk
premiums have precisely this form and in which the inter-
est rate and stock price processes are as assumed here. Under

(37.4)

4 This assumption on the correlation between stock returns and inter-
est rates is somewhat severe and likely counterfactual. To gauge the
potential impact of this assumption on the resulting option model’s per-
formance, we initially adopted the following stock price dynamics:

ds()
S(0)

= pu(S,t)dt+yV(t)dws(t)+osr vV R()dwgr(t) t €[0,T],

with the rest of the stochastic structure remaining the same as given
above. Under this more realistic structure, the covariance between
stock price changes and interest rate shocks is Cov, [dS(t), dR(t)]
= og.rog R(t)S(¢) dt, so bond market innovations can be transmit-
ted to the stock market and vice versa. The obtained closed-form option
pricing formula under this scenario would have one more parameter
os.r than the one presented shortly, but when we implemented this
slightly more general model, we found its pricing and hedging perfor-
mance to be indistinguishable from that of the SVSI model studied in
this paper. For this reason, we chose to present the more parsimonious
SVSI model derived under the stock price process in (37.2). We could
also make both the drift and the diffusion terms of V(¢) a linear func-
tion of R(¢) and wg(?). In such cases, the stock returns, volatility and
interest rates would all be correlated with each other (at least globally),
and we could still derive the desired equity option valuation formula.
But, that would again make the resulting formula more complex while
not improving its performance.

this assumption, we obtain the risk-neutralized processes for
R(t) and V(¢) below:

dR(t) = [Or—kr R(1)]dt + o/ R(t) dwg(t)(37.5)
dV(t) = [0, — k, V(1) dt + 0,/ V(1) dw,(t), (37.6)

where kg = kg +Ag and k, = k, + A,. The risk-neutralized
stock price process becomes

ds(r)
S(1)

That is, under the martingale measure, the stock should earn
no more and no less than the risk-free rate. With these ad-
justments, we solve the conditional expectation in (37.4) and
obtain the familiar bond price equation below:

= R(t)dt + V(1) dws (1),

(37.7)

B(1r,7) = exp[—¢(7) — o(0)R(1)] . (37.8)

where gO(‘L') = (97—112: {(g — KR) T4+ 2In [1 _ (l—e_ngg(g—l(k):l}’

2(1—e5°
o(r) = W and ¢ = ‘:/KIZQ + 203%. See Cox
et al. (1985) for an analysis of this class of term structure

models.

37.2.1 Pricing Formula for European Options

Now, consider a European call option written on the stock,
with strike price K and term-to-expiration t. Let its time-¢
price be denoted by C(z,7). As (S,R,V) form a joint
Markov process, the price C (¢, ) must be a function of S(z),
R(z) and V(¢) (in addition to 7). By a standard argument, the
option price must solve

T Te aC 2c 1, 9C
Zys2l = L ps = . ) vt
25 g5 TR Gy TSy TR0V g
oCc 1, PC
+ [9\/ — Ky V] W EO—R oOR2
aC dC

subject to C(t + 7,0) =
Appendix it is shown that

max{S(t + t) — K,0}. In the

Ct,r)=S@)I(t,7;S,R,V)—KB(t,t)[I,(t,t, S, R, V),
(37.10)

where the risk-neutral probabilities, I1; and I1,, are recov-
ered from inverting the respective characteristic functions
[see Heston (1993), and Scott (1997) for similar treatments]:
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[e’e) —i ¢ In[K] £, .
I, (67 S, R(), V() = ~ + l/ Re [e /it 7. 5@), RO), V(l)’d’)] dg, (37.11)
2 T Jo l ¢
for j = 1, 2. The characteristic functions f; are respectively
given by
— _ p—brT
filt,7) = exp{—e—lz2 |:2 In (1 _ Er— kel ze )) + [Er — KR]‘L'i|
oR 2R
-2 a1 Emnt ()]
; 2§,
0, . . 2i¢(1—e”*7)
g B (1 iIp0)] T iSO + g e RO)
ig(ig + 1)(1 —e57)
Tk O e e O G712
and,
* _ gt
fo(t,7) = exp § —9—1; |:2 In (1 iyt KR](l* ¢ )> + [Ex — /(R]r]
g} 285
9\/ Y ) v 1- _EV*I * .
- [2 In (1 _E +’¢ng; ¢ )) +[£F — i + idpo, ] z]
. ~ 2(i¢p — (1 —e¥Y)
FigIn[S(1)] — In[B(t, )] + Tl el =) R()
ig(ig — (1 —e57)
T et il e G711y
where §p = \/kj —20%i¢, & = kv — (1 +i¢)po]*  Furthermore, the volatility risk premium is time-varying and

VEIBGH+ Dod £ = \Jik— 2039 — 1), and &7 =

\/[KV —igpo,P —ig(ig — 1)o2. The price of a European
put on the same stock can be determined from the put-call
parity.

The option valuation model in (37.10) has several distinc-
tive features. First, it applies to cases with stochastically-
varying interest rates and volatility. It contains as special
cases most existing models, such as the SV models, the SI
models, and clearly the BS model. Second, as mentioned
earlier, it allows for a flexible correlation structure between
the stock return and its volatility, as opposed to the perfect
correlation assumed in, for instance, Heston’s (1993) model.

state-dependent. This is a departure from Hull and White
(1987), Scott (1987), Stein and Stein (1991), and Wiggins
(1987) where the volatility risk premium is either a con-
stant or zero. Third, when compared to the general models
in Bakshi and Chen (1997) and Scott (1997), the formula in
(37.10) is parsimonious in the number of parameters; Espe-
cially, it is given only as a function of identifiable variables
such that all parameters can be estimated based on available
financial market data.

The pricing formula in (37.10) applies to European eq-
uity options. But, in reality most of the traded option con-
tracts are American in nature. While it is beyond the scope
of the present paper to derive a model for American options,
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it is nevertheless possible to capture the first-order effect of
early exercise in the following manner. For options with early
exercise potential, compute the Barone-Adesi and Whaley
(1987) or Kim (1990) early-exercise premium, treating it as
if the stock volatility and the yield-curve were time-invariant.
Adding this early-exercise adjustment component to the Eu-
ropean option price in (37.10) should deliver a reasonable
approximation of the corresponding American option price
[e.g., Bates (1996b)].

37.2.2 Hedging and Hedge Ratios

One appealing feature of a closed-form option pricing for-
mula, such as the one in (37.10), is the possibility of deriv-
ing comparative statics and hedge ratios analytically. In the
present context, there are three sources of stochastic varia-
tions over time, price risk S(¢), volatility risk V'(¢) and inter-
est rate risk R(¢). Consequently, there are three deltas:

—KB(t, 1) { % — Q(‘L’)Hz} >0,

(37.16)
where, forg = V,Rand j = 1,2,

E = i/ Re (i¢)—le—i¢ln[1<]% d¢. (37.17)
dg 7o dg

The second-order partial derivatives with respect to these
variables are provided in the Appendix.

As V(t) and R(t) are both stochastic in our model, these
deltas will in general differ from their Black—Scholes coun-
terpart. To see how they may differ, let’s resort to an example
in which we set R(t) = 6.27%, S(t) = 270, V() =
22.12%, kg = 0.481, g = 0.037, o = 0.043, k, = 1.072,
0, = 0.041, 6, = 0.284, and p = —0.60. These values
are backed out from the S&P 500 option prices as of July 5,
1988. Fix K = $270 and t = 45 days. Let Ag be as given in
(37.14) for the SVSI model and Ags its BS counterpart, with
Ag‘" calculated using the same implied volatility. Figure 37.1

As(t, T K) = aC(t, 1) =1, >0 (37.14) plots the difference between Ag and AbS | across different
as spot price levels and different correlation values. The corre-
3C(t.7) lation coefficient p is chosen to be the focus as it is known
Ay, 1K) = —— to play a crucial role in determining the skewness of the
W stock return distribution. When p is respectively at —0.50
oI, oI, and —1.0 (see the [-curve and the o-curve), the difference
= S( )W — KB(t, T)W >0 (37.15)  between the deltas is We-shaped, and it reaches the highest
value when the option is at the money. The reverse is true
Anlt. 1K) = aC(t,t) S() oI, when p is positive. Thus, Ag is generally different from A,
RU, T - AR oR Analogous difference patterns emerge when the other option
CALL DELTA WITH RESPECT TO STOCK
< ° L |
O
[ —
o Sr 8
é L N
= St » e 1
3 25 e
S ol %gﬂwﬁﬁ g éff 1
il % ]
© 225 255 245 255 265 275 285 205 305 315

STOCK PRICE

Fig. 37.1 The o-curve, the [J-curve, the A-curve, the +-curve, and
the ¢-curve respectively plot the difference between the SVSI call op-
tion delta (with respect to stock) and its Black—Scholes counterpart,
as p varies from —1.0,—0.50, 0, 0.50, to 1.0. The structural parame-
ter values used in the computation of the delta in (37.14) are backed
out using Procedure B described in Sect. 37.2.3 and correspond to the

calendar date July 5, 1988. The values of the structural parameters
are: kg = 0.4811, g = 0.0370, og = 0.0429, k, = 1.072, 6, =
0.0409, 0, = 0.284, p = —0.60. The initial (time-r) R = 0.062733,
«/7 = 22.12%, B(t,0.1232) = 0.99163. The strike price is fixed at
$270 and the term-to-expiration of the option is 45 days
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Fig. 37.2 The o-curve, the
O-curve, the A-curve, the
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Fig. 37.3 The o-curve, the
O-curve, the A-curve, the "
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interest rate) and the — o[
Black—Scholes counterpart, as p g
varies from —1.0, —0.50, 0, 0.50, oS
to 1.0. The strike price is fixed at =
$270 and the term-to-expiration < £
of the option is 45 days. All E
computations are based upon the o ot
parameter values reported in the 4
. <
note to Fig. 37.1 S 6L
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deltas are compared with their respective BS counterpart.
From Figs. 37.2 and 37.3, one can observe the following.
(i) The volatility hedge ratio Ay from the SVSI model is,
at each spot price, lower than its BS counterpart (except for
deep in-the-money options when p < 0, and for deep out-
of-the-money options when p > 0).° (i) The interest-rate
delta, Ag, and its BS counterpart, A}j{, are almost not dif-
ferent from each other for slightly out-of-the-money options,
but can be dramatically different for at-the-money options as
well as for sufficiently deep in-the-money or deep out-of-the-
money calls. For example, pick p = —1.0. When S = $315,
we have Az = 30.94 and A% = 32.35; When S = $226, we
have Ag = 0.003 and A% = 0.430. (iii) As expected, out-

5 In making such a comparison, one should apply sufficient caution.
In the BS model, the volatility delta is only a comparative static, not a
hedge ratio, as volatility is assumed to be constant. In the context of the
SVSI model, however, Ay is time-varying hedge ratio as volatility is
stochastic. This distinction also applies to the case of the interest-rate
delta Ag.

235

245 255 265 275

STOCK PRICE

285 295 305 315

of-the-money options are overall less sensitive to changes in
the spot interest rate, regardless of the model used. In sum-
mary, if a portfolio manager/trader relies, in an environment
with stochastic interest rates and stochastic volatility, on the
BS model to design a hedge for option positions, the man-
ager/trader will likely fail.

Analytical expressions for the deltas are useful for con-
structing hedges based on an option formula. Below, we
present two types of hedges by using the SVSI model as an
example.

37.2.2.1 Delta-Neutral Hedges

To demonstrate how the deltas may be used to construct a
delta-neutral hedge, consider an example in which a finan-
cial institution intends to hedge a short position in a call
option with t periods to expiration and strike price K. In
the stochastic interest rate-stochastic volatility environment,
a perfectly delta-neutral hedge can be achieved by taking
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a long position in the replicating portfolio of the call. As
three traded assets are needed to control the three sources
of uncertainty, the replicating portfolio will involve a posi-
tion in (i) some X g(¢) shares of the underlying stock (to con-
trol for the S(¢) risk), (ii) some Xp(¢) units of a t-period
discount bond (to control for the R(¢) risk), and (iii) some
Xc(¢) units of another call option with strike price K (or
any option on the stock with a different maturity) in or-
der to control for the volatility risk V(¢). Denote the time-¢
price of the replicating portfolio by G(¢): G(¢) = Xo(t) +
Xs(t) S(t)+Xg(t) B(t, 1)+ Xc(t) C(t, t; K), where Xo(1)
denotes the amount put into the instantaneously-maturing
risk-free bond and it serves as a residual “cash position.” De-
riving the dynamics for G (¢) and comparing them with those
of C(¢,t; K), we find the following solution for the delta-
neutral hedge:

Av(l, T, K)

XeW =3 0ok

(37.18)

Xs(t) = As(t,1; K) — Ag(t,v; K) Xc (1) (37.19)

Xp(1) = {Ar(t. T K) Xc (1) — Ar(t.7: K)}

1
B(t,7) o(7)
(37.20)

and the residual amount put into the instantaneously-
maturing bond is

Xo(t) = C(t,1:K) — Xs(t) S(1) — Xc (1) C(t. 7 K)
—X5(t) B, 7), (37.21)

where all the primitive deltas, Ag, Ag and Ay, are as deter-
mined in equations (37.14)—(37.16). Like the option prices,
these hedge ratios all depend on the values taken by S(¢),
V() and R(¢) and those by the structural parameters. Such a
hedge created using the general option pricing model should
in principle perform better than using the BS model. In the
latter case, only the underlying price uncertainty is controlled
for, but not the uncertainties associated with volatility and in-
terest rate fluctuations.

In theory this delta-neutral hedge requires continu-
ous rebalancing to reflect the changing market conditions.
In practice, of course, only discrete rebalancing is possi-
ble. To derive a hedging effectiveness measure, suppose that
portfolio rebalancing takes place at intervals of length Az.
Then, precisely as described above, at time t short the call
option, go long in (i) Xs(¢) shares of the underlying asset,
(i) Xp(¢) units of the t—period bond, and (iii) X¢(¢) con-
tracts of a call option with the same term-to-expiration but a
different strike price K , and invest the residual, Xy, in an in-
stantaneously maturing riskfree bond. After the next interval,
compute the hedging error according to

H(t + At) = XpeROA 1 Xg(1)S(t + At)
+Xp(t)B(t + At, T — At)
+Xc()C(t + At, T — At; K)

—C(t + At,t — At; K). (37.22)
Then, at time ¢ + Af, reconstruct the self-financed portfolio,
repeat the hedging error calculation at time ¢ 4+ 2At, and
so on. Record the hedging errors H(t + jAt), for j =
1,---,J = TA__;' Finally, compute the average absolute
hedging error as a function of rebalancing frequency At:
H(At) = % Z]J-=1 | H(t + jAt) |, and the average dollar-
value hedging error: H(At) = % ZJJ:I H(t + jAt).

In comparison, if one relies on the BS model to construct a
delta-neutral hedge, the hedging error measures can be simi-
larly defined as in (37.22), except that X g(¢) and X¢ (¢) must
be restricted to zero and Xg(¢) must be the BS delta. Like-
wise, if the SI model is applied, the only change is to set
Xc (t) to zero with Ag and Ag determined by the SI model;
In the case of the SV model, set Xp(t) = 0 and let Ag and
Ay be as determined in the SV model. The Appendix pro-
vides in closed form a SI option pricing formula and a SV
option formula.

37.2.2.2 Single-Instrument Minimum-Variance
Hedges

As discussed before, consideration of such factors as model
misspecification and transaction costs may render it more
practical to use only the underlying asset of the target op-
tion as the hedging instrument. Under this single-instrument
constraint, a standard design is to choose a position in the
underlying stock so as to minimize the variance of instanta-
neous changes in the value of the hedge. Letting Xg(¢) again
be the number of shares of the stock to be purchased, solving
the standard minimum-variance hedging problem under the
SVSI model gives

_ Cov, [dS(1),dC(t,7)] Ay (t, 1)
XsO == T aso] TP 50
(37.23)

and the resulting residual cash position for the replicating
portfolio is

Xo(t) =C(t,t) — Xs()S(2). (37.24)
This minimum-variance hedge solution is quite intuitive, as
it says that if stock volatility is deterministic (i.e., o, = 0),
or if stock returns are not correlated with volatility changes

(i.e., p = 0), one only needs to long Ag(¢) shares of the stock
and no other adjustment is necessary. However, if volatility
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is stochastic and correlated with stock returns, the position
to be taken in the stock must control not only for the di-
rect impact of underlying stock price changes on the target
option value, but also for the indirect impact of that part of
volatility changes which is correlated with stock price fluc-
tuations. This effect is reflected in the last term in (37.23),
which shows that the additional number of shares needed be-
sides Ay is increasing in p (assuming o, > 0).

As for the previous case, suppose that the target call is
shorted and that Xs(¢) shares are bought and X, (¢) dollars
are put into the instantaneous risk-free bond, at time 7. The
combined position is a self-financed portfolio. At time ¢ + At,
the hedging error of this minimum-variance hedge is calcu-
lated as

H(t + A1) = Xs(1)S(t + At) + Xo()eRO4
—C(t + At T = Ap). (37.25)

Unlike in Nandi (1996) where he uses the remaining variance
of the hedge as a hedging effectiveness gauge, we compute,
based on the entire sample period, the average absolute and
the average dollar hedging errors to measure the effective-
ness of the hedge.

Minimum-variance hedging errors under the SV model as
well as under the SI model can be similarly determined ac-
counting for their modeling differences. In the case of the
SV model, there is still an adjustment term for the single
stock position as in (37.23). But, for the SI model, the cor-
responding Xg(¢) is the same as its Ag. For the BS model,
this single-instrument minimum-variance hedge is the same
as the delta-neutral hedge. Both types of hedging strategy
will be examined under each of the four alternative models.

37.2.3 Implementation

In addition to the strike price and the term-to-expiration
(which are specified in the contract), the SVSI pricing for-
mula in (37.10) requires the following values as input:

e The spot stock price. If the stock pays dividends, the stock
price must be adjusted by the present value of future divi-
dends;

e The spot volatility;

e The spot interest rate;

e The matching t-period yield-to-maturity (or the bond
price);

e The seven structural parameters: {«g, Or, Or, ky, 6,
oy, P}

For computing the price of a European option, we offer
two alternative two-step procedures below. One can imple-
ment these steps on any personal computer:

Procedure A:

Step 1. Obtain a time-series each for the short rate, the stock
return, and the stock volatility. Jointly estimate the structural
parameters, {kg, g, Or, Ky, 6,, 0, p}, using Hansen’s (1982)
GMM.

Step 2. Determine the risk-neutral probabilities, I1, and I,
from the characteristic functions in (37.12) and (37.13). Sub-
stitute (i) the two probabilities, (ii) the stock price, and
(iii) the yield-to-maturity, into (37.10) to compute the option
price.

While offering an econometrically rigorous method to es-
timate the structural parameters, Step 1 in Procedure A may
not be as practical or convenient, because of its requirement
on historical data. A further difficulty with this approach is
its dependence on the measurement of stock volatility. In im-
plementing the BS model, practitioners predominantly use
the implied volatility from the model itself, rather than re-
lying on historical data. This practice has not only reduced
data requirement dramatically but also resulted in significant
performance improvement [e.g., Bates (2000), and Melino
and Turnbull (1990, 1995)]. Clearly, one can also follow this
practice to implement the SVSI model:

Procedure B:
Step 1. Collect N option prices on the same stock and taken
from the same point in time (or same day), for any N > 8.
Let C’,, (t, Ty, K,) be the observed price, and C, (¢, t,,, K,,) the
model price as determined by (37.10) with S(¢) and R(¢)
taken from the market, for the nth option with 7, periods
to expiration and strike price K, and foreachn = 1,..., N.
Clearly, the difference between C‘n and C,, is a function of the
values taken by V(¢) and by ® = {kg, O, or, &y, 6,, 0, p}.
Define

V1), @ = Co(t, 1. Kp) — Co(t. . Kp).  (37.26)
for each n. Then, find V(¢) and parameter vector @ (a total
of eight), so as to minimize the sum of squared errors:

N
Yo lalve), o .

n=1

(37.27)

The result from this step is an estimate of the implied spot
variance and seven structural parameter values, for date ¢.
See Bates (1996b, 2000), Day and Lewis (1997), Dumas
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et al. (1998), Longstaff (1995), Madan et al. (1998), and
Nandi (1996) where they adopt this technique for similar
purposes.

Step 2. Based on the estimate from the first step, follow Step
2 of Procedure A to compute date-(# + 1)’s option prices on
the same stock.

In the existing literature, the performance of a new op-
tion pricing model is often judged relative to that of the BS
model when the latter is implemented using the model’s own
implied volatility and the time-varying interest rates. Since
volatility and interest rates in the BS are assumed to be
constant over time, this internally inconsistent practice will
clearly and significantly bias the application results in favor
of the BS model. But, as this is the current standard in judg-
ing performance, we will follow Procedure B to implement
the SVSI model and similar procedures to implement the BS,
the SV, and the SI models. Then, the models will be ranked
relative to each other according to their performance so de-
termined.

37.3 Data Description

For all the tests to follow, we use, based on the following
considerations, S&P 500 call option prices as the basis. First,
options written on this index are the most actively traded
European-style contracts. Recall that like the BS model, for-
mula (37.10) applies to European options. Second, the daily
dividend distributions are available for the index (from the
S&P 500 Information Bulletin). Harvey and Whaley (1992a,
b), for instance, emphasize that critical pricing errors can
result when dividends are omitted from empirical tests of
any option valuation model. Furthermore, S&P 500 options
and options on S&P 500 futures have been the focus of
many existing empirical investigations including, among oth-
ers, Bates (2000), Dumas et al. (1998), Madan et al. (1998),
Nandi (1996), and Rubinstein (1994). Finally, we also used
S&P 500 put option prices to estimate the pricing and hedg-
ing errors of all four models and found the results to be sim-
ilar, both qualitatively and quantitatively, to those reported
in the paper. To save space, we chose to focus on the results
based on the call option prices.

The sample period extends from June 1, 1988 through
May 31, 1991. The intradaily transaction prices and bid-ask
quotes for S&P 500 options are obtained from the Berke-
ley Option Database. Note that the recorded S&P 500 index
values are not the daily closing index levels. Rather, they
were the corresponding index levels at the moment when
the recorded option transaction took place or when an option
price quote was recorded. Thus, there is no non-synchronous
price issue here, except that the S&P 500 index level itself
may contain stale component stock prices at each point in
time.

The data on the daily Treasury-bill bid and ask discounts
with maturities up to 1 year are hand-collected from the Wall
Street Journal and provided to us by Hyuk Choe and Steve
Freund. By convention, the average of the bid and ask Trea-
sury bill discounts is used and converted to an annualized
interest rate. Careful attention is given to this construction
since Treasury bills mature on Thursdays while index options
expire on the third Friday of the month. In such cases, we uti-
lize the two Treasury-bill rates straddling the option’s expi-
ration date to obtain the interest rate of that maturity, which
is done for each contract and each day in the sample. The
Treasury bill rate with 30-days to maturity is the surrogate
used for the short rate in (37.1) [and in the determination of
the probabilities in (37.10)].

For European options, the spot stock price must be ad-
justed for discrete dividends. For each option contract with t
periods to expiration from time #, we first obtain the present
value of the daily dividends D(¢) by computing

T—t
D(t.t) =) e " D(r + ),

s=1

(37.28)

where R(z,s) is the s-period yield-to-maturity. This proce-
dure is repeated for all option maturities and for each day in
our sample. In the next step, we subtract the present value of
future dividends from the time-¢ index level, in order to ob-
tain the dividend-exclusive S&P 500 spot index series that is
later used as input into the option models.

Several exclusion filters are applied to construct the op-
tion price data set. First, option prices that are time-stamped
later than 3:00 PM Central Daytime are eliminated. This en-
sures that the spot price is recorded synchronously with its
option counterpart. Second, as options with less than 6 days
to expiration may induce liquidity-related biases, they are ex-
cluded from the sample. Third, to mitigate the impact of price
discreteness on option valuation, option prices lower than $%
are not included. Finally, quote prices that are less than the
intrinsic value of the option are taken out of the sample.

We divide the option data into several categories accord-
ing to either moneyness or term to expiration. A call option
is said to be at-the-money (ATM) if its % € (0.97,1.03),
where S is the spot price and K the strike; out-of-the-money
(OTM) if £ < 0.97; and in-the-money (ITM) if £ > 1.03.
A finer partition resulted in 9 moneyness categories. By the
term to expiration, each option can be classified as [e.g., Ru-
binstein (1985)] (i) extremely short-term (<30 days ); (ii)
short-term (30-60 days); (iii) near-term (60—120 days); (iv)
middle-maturity (120-180 days); and (v) long-term (>180
days). The proposed moneyness and term-to-expiration clas-
sifications resulted in 54 categories for which the empirical
results will be reported.

Table 37.1 describes sample properties of the S&P 500
call option prices used in the tests. Summary statistics are
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Table 37.1 Sample properties of -
S&P 500 index ogtiolr)]s.l")[he Moneyness o to-expiration (days)
reported numbers are 3 <30 3060 6090  90-120  120-180  >180  Subtotal
respectively the average quoted
bid-ask mid-point price and the <0.93 0.78 1.33 1.99 2.84 4.88 7.82
number of observations. Each {23} {246} {266} {431} {1080} {1538} {3584}
option contract is consolidated 0.93-0.95 1.02 1.91 3.30 5.08 8.14 12.86
across moneyness and (121} (595} (267} {319} { 596} { 646} (2544}
erm-fo-expiration categories. 095-0.97 135 3.05 5.35 7.45 10.87 1591
The sample period extends from
June 1, 1988 through May 31, (488} (1012} {316} (351} (670} (628} (3465)
1991 for a total of 38,749 calls. 0.97-0.99 247 5.53 8.23 10.83 14.19 19.33
Daily information from the last (838} {1020} {312} (336} {676} {706} (3888}
quote of each option contract is 0.99-1.01 527 8.9 11.96 14.55 17.95 23.20
‘S‘f;‘iisg’cgbtam the summary (776} {954} {285} {308} 1629} (631} {3583}
1.01-1.03 9.65 13.17 15.99 18.84 22.06 27.74
{752} {906} {276} {283} {607} {597} {3421}
1.03-1.05 14.79 17.80 20.80 23.36 26.39 31.91
{675} {844} {241} {264} {542} {501} {3067}
1.05-1.07 20.20 22.63 25.83 27.83 30.69 35.70
(620} (760} (224} (242} (449} (473} (2818}
>1.07 41.23 42.28 47.50 49.27 51.34 59.82
(2143) (2350} {1284} {1355} (2184} (3063} {12379}
Subtotal {6436} {8687} {3471} {3889} {7483} {8783} {38749}

S denotes the spot S&P 500 Index level and K is the exercise price.

reported for the average bid-ask mid-point price and the total
number of observations, for each moneyness-maturity cate-
gory. Note that there is a total of 38,749 call price obser-
vations, with deep in-the-money and at-the-money options
respectively taking up 32% and 28% of the total sample,
and that the average call price ranges from $0.78 for ex-
tremely short-term, deep out-of-the money options to $59.82
for long-term, deep in-the-money options.

37.4 Empirical Tests

This section examines the relative empirical performance
of the four models. The analysis is intended to present a
complete picture of what each generalization of the bench-
mark BS model can really buy in terms of performance
improvement and whether each generalization produces a
worthy tradeoff between benefits and costs. We will pur-
sue this analysis by using three yardsticks: (i) the size of
the out-of-sample cross-sectional pricing errors (static per-
formance); (i) the size of model-based hedging errors (dy-
namic performance); and (iii) the existence of systematic bi-
ases across strike prices or across maturities (i.e., does the
implied volatility still smile?).

Based on Procedure B of Sect. 37.2.3, Table 37.2 re-
ports the summary statistics for the daily estimated struc-
tural parameters and the implied spot standard deviation,

respectively for the SVSI, the SV, the SI and the BS models.
Take the SVSI model as an example. Over the entire sample
period 06:1988-05:1991, k, = 0.906, 6, = 0.042, and 0, =
0.414. These estimates imply a long-run mean of 21.53%
for the volatility process. The implicit (average) half-life
for variance mean-reversion is 9.18 months. These estimates
are similar in magnitude to those reported in Bates (1996b,
2000) for S&P 500 futures options. The estimated parame-
ters for the (risk-neutralized) short rate process are also rea-
sonable and comparable to those in Chan et al. (1992). The
presented correlation estimate for p is —0.763. The average
implied-standard-deviation is 19.27%. As seen from the re-
ported standard errors in Table 37.2, for each given model
the daily parameter and spot volatility estimates are quite sta-
ble from subperiod to subperiod. Histogram-based inferences
(not reported) indicate that the majority of the estimated val-
ues are centered around the mean.

In estimating the structural parameters and the implied
volatility for a given day, we used all S&P 500 options col-
lected in the sample for that day (regardless of maturity and
moneyness). This is the treatment applied to the SI, the SV
and the SVSI models. For the BS model, however, Wha-
ley (1982) makes the point that ATM options may give an
implied-volatility estimate which produces the best pricing
and hedging results. Based on his justification, we used, for
each given day, one ATM option that had at least 15 days
to expiration to back out the BS model’s implied-volatility
value. This estimate was then used to determine the next
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Table 37.2 Estimates of the structural parameters for stochastic inter-
est rates (SI), stochastic volatility (SV). and stochastic volatility and
stockastic interest rates (SVSI) models. Each day in the sample, the
structural parameters of a given model are estimated by minimizing
the sum of squared pricing errors between the market price and the
model-determined price for each option. The daily average of the es-

timated parameters is reported first, followed by its standard error in
parentheses. The average implied volatility obtained from inverting
the Black—Scholes model (using a short-term at-the-money option) is
respectively 18.47%, 17.72%, 17.41%, and 20.52% over the sample
periods: 06:1988-05:1991, 06:1988-05:1989, 06:1989-05:1990, and
06:1990-05:1991

SI NY% SVSI SI NY SVSI SI NY% SVSI SI NY% SVSI
Parameters 06:1988-05:1991 06:1988-05:1989 06:1989-05:1990 06:1990-05:1991
KR 2.35 0.61 2.51 0.49 2.29 0.61 2.03 0.76
(0.03) (0.02) (0.06) (0.02) (0.05) (0.03) (0.05) (0.04)
Or 0.35 0.02 0.33 0.02 0.34 0.02 0.35 0.02
(0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
OR 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.03
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
Ky 1.10 0.91 1.29 1.16 1.05 0.78 0.94 0.76
(0.02) (0.03) (0.05) (0.07) (0.03) (0.05) (0.04) (0.04)
0, 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
oy 0.38 0.41 0.30 0.35 0.42 0.44 0.43 0.46
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
o —0.64 —0.76 —0.54 —0.73 —0.62 —0.74 —0.76 —0.82
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SV (@) (%) 18.14 19.02 19.27 17.22 18.41 18.50 17.43 17.61 18.10 20.14 21.19 21.47
(0.13) (0.15) (0.15) (0.15) 0.17) (0.18) (0.13) (0.18) 0.21) (0.25) (0.35) (0.35)

day’s pricing and hedging errors of the BS model. See Bates
(1996a) for a review of alternative approaches to estimating
the BS model’s implied volatility.

Observe in Table 37.2 that for the overall sample pe-
riod, the average implied standard-deviation is 19.27% by
the SVSI model, 19.02% by the SV, 18.14% by the SI, and
18.47% by the BS model, where the difference between the
highest and the lowest is only 1.13%. For each subperiod
the implied-volatility estimates are similarly close across the
four models. This is somewhat surprising. It should how-
ever be recognized that this comparison is based only on
the average estimates over a given period. When we exam-
ined the day-to-day time-series paths of the four models’
implied-volatility estimates, we found the difference between
two models’ implied standard-deviations to be sometimes as
high as 6%. Economically, option prices and hedge ratios are
generally quite sensitive to the volatility input [see Figlewski
(1989)]. Even small differences in the implied-volatility es-
timate can lead to significantly different pricing and hedging
results.

37.4.1 Static Performance

To examine out-of-sample cross-sectional pricing perfor-
mance for each model, we use previous day’s option prices
to back out the required parameter values and then use them
as input to compute current day’s model-based option prices.

Next, subtract the model-determined price from the observed
market price, to compute both the absolute pricing error and
the percentage pricing error. This procedure is repeated for
each call and each day in the sample, to obtain the average
absolute and the average percentage pricing errors and their
associated standard errors. These steps are separately fol-
lowed for each of the BS, the SI, the SV and the SVSI mod-
els. The results from this exercise are reported in Table 37.3.

Let’s first examine the relative performance in pricing
OTM options. Overpricing of OTM options is often con-
sidered a critical problem for the BS model [e.g., McBeth
and Merville (1979) and Rubinstein (1985)]. Panel A of
Table 37.3 reports the absolute and the percentage pricing
error estimates for OTM options. According to both error
measures, the overall ranking of the four models is consis-
tent with our priors: the SVSI model outperforms all others,
followed by the SV, the SI and finally the BS model. For
extremely short-term (<30 days) and extremely out-of-the-
money (% < 0.93) options, for example, the average abso-
lute pricing error by the SVSI model is $0.23 versus $0.53 by
the BS, $0.28 by the SI, and $0.25 by the SV model. For this
category, the BS model’s absolute pricing error is cut by more
than a half by each of the other three models. Fix the mon-
eyness category at % € (0.93,0.95). Then, for medium-term
(120-180 days) options, the SVSI model produces an aver-
age absolute pricing error of $0.44 versus $1.38 by the BS,
$0.72 by the SI, and $0.39 by the SV model. For short-term
(30-60 days) calls, the absolute pricing errors are $0.44 by
the SVSI, $0.48 by the SV, $0.73 by the SI, and $0.90 by the
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Table 37.3 Out-of-sample pricing errors.

Panel A: Out-of-the-money options. For a given model, compute the
price of each option using previous day’s implied parameters and im-
plied stock volatility. The reported percentage pricing error is the sam-
ple average of the market price minus the model price divided by the

market price. The reported absolute pricing error is the sample average
of the absolute difference between the market price and the model price
for each call. The corresponding standard errors are recorded in paren-
theses. The sample period is 06:1988-05:1991, with a total of 38,749
call option prices

Percentage pricing error
Term-to-expiration (days)

Absolute pricing error
Term-to-expiration (days)

Moneyness
% Model <30 30-60 60-90 90-120 120-180 =180 <30 30-60 60-90 90-120 120-180 =>180
<0.93 BS —65.99 —86.80 —62.45 —57.63 —47.71 —33.72 0.53 1.00 1.14 1.50 1.96 2.36
(12.02) (4.51) (2.96) (2.92) (1.37) (1.05) (0.10) (0.04) (0.05) (0.06) (0.05) (0.06)
SI —24.53 —58.13 —40.04 —2843 —16.70 —3.92 0.24 0.66 0.72 0.80 0.91 0.96
(6.59) (3.81) (2.60) (1.67) (0.95) (0.63) (0.04) (0.03) (0.04) (0.03) (0.05) (0.05)
NY% —22.08 —30.38 —12.43 —4.02 0.89 6.08 0.25 0.44 0.34 0.33 0.43 0.62
(6.90) (3.07) (1.54) (0.90) 0.47) (0.39) (0.04) (0.03) (0.02) (0.02) (0.04) (0.05)
SVSI —16.29 —-21.96 —5.68 —1.68 0.92 0.18 0.23 0.38 0.29 0.33 0.46 0.66
(7.79) (2.64) (1.40) (0.93) (0.51) (0.64) (0.05) (0.02) (0.02) (0.02) (0.04) (0.04)
0.93-095 BS —53.68 —54.50 —33.82 -—21.88 —1643 —11.25 0.56 0.90 1.05 1.24 1.38 1.80
(5.31) (2.08) (1.79) (1.25) (0.61) (0.56) (0.04) (0.03) (0.04) (0.06) (0.04) (0.06)
SI —42.06 —49.30 -—32.22 —15.78 —10.18 —5.91 0.42 0.77 0.92 0.83 0.85 0.98
(5.32) (2.18) (2.07) (1.07) (0.55) (0.43) (0.03) (0.02) (0.05) (0.05) (0.03) (0.05)
SV —25.68 —26.16 —8.83 —3.39 —0.55 1.23 0.40 0.48 0.35 0.39 0.39 0.52
(4.61) (1.43) (0.81) 0.61) (0.30) (0.24) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
SVSI —22.50 —18.85 —4.84 —239 0.66 0.71 0.38 0.44 0.31 0.42 0.44 0.58
(4.53) (1.43) (0.85) (0.74) (0.32) (0.26) (0.03) (0.02) (0.02) (0.03) (0.02) (0.03)
0.95-097 BS —36.61 —28.83 —16.21 —9.91 —=7.75 =577 0.55 0.81 0.87 1.03 1.05 1.44
(2.33) (0.93) (0.95) (0.84) 0.41) (0.45) (0.03) (0.02) (0.04) (0.05) (0.04) (0.06)
SI —35.83 —30.09 -—1897 —7.44 =570 —-3.62 0.51 0.81 0.92 0.69 0.79 0.86
(2.45) (1.09) (1.30) (0.68) 0.41) (0.32) (0.04) (0.02) (0.05) (0.04) (0.03) (0.04)
SV —23.68 —16.94 —5.63 —1.63  —0.26 0.56 0.45 0.51 0.40 0.40 0.41 0.49
(2.06) (0.68) (0.58) 0.42) 0.22) (0.20) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
SVSI  —16.90 —13.53 =359 —1.80 0.05 0.30 0.42 0.49 0.38 0.47 0.45 0.56
(2.01) 0.72) (0.60) 0.51) (0.23) 0.21) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02)

BS model. Clearly, the performance improvement is signif-
icant for each moneyness and maturity category in Panel A,
from the BS to the SI, to the SV, and to the SVSI model. This
pricing performance ranking of the four models can also be
seen using the average percentage pricing errors, as given in
the same table. Here, the SVSI model produces percentage
pricing errors that are the lowest in magnitude. As an ex-
ample, take OTM options with term-to-expiration of 30-60
days and with % € (0.93,0.95). In this category the BS, the
SI, the SV, and the SVSI models respectively have average
percentage pricing errors of —54.50%, —46.20%, —26.16%,
and —18.85%. For long-term options with % € (0.93,0.95)
and with % € (0.95,0.97), the SVSI model results in a per-
centage pricing error that is as low as 0.71% and 0.30%,
respectively.

For ATM calls, recall that the BS model’s implied-
volatility input is backed out from the (previous day’s) short-
term ATM options, which should give the BS model a relative
advantage in pricing ATM options. In contrast, the implied

spot variance for the other models is obtained by minimizing
the sum of squared errors for all options of the previous day.
Thus, for ATM options, one would expect the BS model to
perform relatively better. As seen from Panel B of Table 37.3,
except for the shortest-term ATM calls, the SVSI model typ-
ically generates the lowest absolute and percentage pricing
errors (especially for longer-term options), followed by the
SV, by the SI and finally by the BS model. For the shortest-
term options with % € (0.97,0.99) and % € (0.99,1.01),
the BS and the SI models perform somewhat better than the
other two.

Panel C of Table 37.3 reports the average absolute and
percentage pricing errors of I'TM calls by all four models.
While the previous ranking of the models based on OTM and
ATM options is preserved by Panel C, it can be noted that the
average percentage pricing error is below 1.0% for 12 out of
the 18 categories in the case of the SVSI model, for 8 out of
the 18 categories in the case of the SV model, for 3 categories
out of 18 for the SI model, and for none of the 18 categories
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Table 37.3 Out-of-sample pricing errors.
Panel B: At the money options

Percentage pricing error
Term-to-expiration (days)

Absolute pricing error
Term-to-expiration (days)

Moneyness
% Model <30 30-60 6090 90-120 120-180 =>180 <30 30-60 60-90 90-120 120-180 =>180
0.97-0.99  BS —19.94 —10.16 —4.83 —2.66 —2.21 —1.42 051 0.66 0.63 0.77 0.82 1.18
(1.03) (0.49) (0.58) (0.56)  (0.30) (0.35) (0.02) (0.02) (0.03) (0.05) (0.03) (0.05)
SI —22.85 —1138 —7.76 —1.69 —2.29 —1.76  0.53 0.68 0.71 0.58 0.67 0.74
(1.16) (0.59) (0.70) (0.46)  (0.30) (0.23) (0.02) (0.02) (0.04) (0.03)  (0.03) (0.03)
SV —18.93 —837 —2.76 —044 —0.16 —0.04 050 0.52 0.37 0.37 0.40 0.48
(1.01) (0.40) 0.37)  (0.28)  (0.17) (0.15) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
SvSI —-17.10 =774 =236 —1.04 —0.42 —0.29 049 0.53 0.38 0.46 0.44 0.52
(1.05) (0.45) 0.39)  (0.37)  (0.17) (0.15) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02)
0.99-1.01  BS —4.42 —-129 1.14 1.44 1.06 0.86 044  0.57 0.54 0.74 0.77 0.97
(0.47) (0.30) (0.39) (0.45)  (0.24) (0.26) (0.01) (0.02) (0.03) (0.04) (0.03) (0.04)
SI —597 =228 —1.08 1.81 0.29 —0.63 0.50 0.63 0.59 0.68 0.70 0.75
(0.57) (0.38) (0.48) (0.39)  (0.25) (0.22) (0.02) (0.02) (0.04) (0.05)  (0.03) (0.04)
SV —7.93 —-3.72 —-0.76 0.1 0.13 0.05 050 0.0 0.38 0.43 0.42 0.51
0.47) (0.26) 0.27)  (0.25)  (0.14) (0.13) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
SvSI —822 393 —-0.74 —040 —031 —-0.25 0.51 0.55 0.42 0.51 0.46 0.59
(0.49) (0.29) (0.30) (0.31)  (0.15) (0.15) (0.02) (0.02) (0.03) (0.03)  (0.02) (0.03)
1.01-1.03  BS 243 3.01 4.15 3.76 3.36 247 046  0.63 0.77 0.96 1.01 1.42
(0.23) (0.19) 0.29)  (0.38)  (0.19) (0.28) (0.01) (0.02) (0.04) (0.05)  (0.03) (0.05)
SI 1.65 2.29 2.08 3.52 1.76 —0.34 047 0.65 0.70 0.88 0.76 0.81
(0.27) (0.23) (0.38) (0.30)  (0.19) (0.20) (0.02) (0.02) (0.04) (0.05)  (0.03) (0.04)
SV —099 —0.69 046 1.04 0.38 —0.21 0.39 0.42 0.37 0.44 0.42 0.49
(0.23) (0.17) (0.22)  (0.20)  (0.11) (0.11) (0.01) (0.02) (0.02) (0.03)  (0.02) (0.02)
SvSI —-149 —1.16 0.12 0.27 —0.19 —0.55 041 0.46 0.39 0.48 0.46 0.54
(0.23) (0.18) 0.24) (0.24) (0.12) (0.11)  (0.02) (0.02) (0.03) (0.03)  (0.02) (0.02)

in the case of the BS model. The pricing improvement by
the SV and the SVSI models over the BS and the SI is quite
substantial for ITM options, especially for long-term options.

Some patterns of mispricing can, however, be noted across
all moneyness-maturity categories. First, all four models pro-
duce negative percentage pricing errors for options with
moneyness % < 0.99, and positive percentage pricing errors
for options with % > 1.03, subject to their time-to-expiration
not exceeding 120 days. This means that the models system-
atically overprice OTM call options while underprice ITM
calls. But the magnitude of such mispricing varies dramati-
cally across the models, with the BS producing the strongest
and the SVSI model the weakest systematic biases. Next, ac-
cording to the absolute pricing error measure, the SV model
seems to perform slightly better than the SVSI in pricing
calls with more than 90 days to expiration. This pattern is,
however, not supported by the percentage pricing errors re-
ported in Table 37.3, possibly because for these relatively
long-term calls the two models produce pricing errors that
have mixed signs, in which case taking the average absolute
value of the pricing errors can sometimes distort the picture.

According to the percentage pricing errors, the SVSI model
does slightly better than the SV in pricing those longer-term
options. Finally, for the BS model, its absolute pricing error
has a U-shaped relationship (i.e., “smile”) with moneyness,
and the magnitude of its percentage pricing error increases
as the call goes from deep in the money to deep out of the
money, regardless of time to expiration. These patterns are
reduced by each relaxation of the BS model assumptions.

37.4.2 Dynamic Hedging Performance

Recall that in implementing a hedge using any of the four
models, we follow three basic steps. First, based on Proce-
dure B of Sect. 37.2.3, estimate the structural parameters and
spot variance by using day 1’s option prices. Next, on day
2, use previous day’s parameter and spot volatility estimates
and current day’s spot price and interest rates, to construct
the desired hedge as given in Sect. 37.2.2. Finally, rely on
either equation (37.22) or equation (37.25) to calculate the



37 Option Pricing and Hedging Performance Under Stochastic Volatility and Stochastic Interest Rates 561
Table 37.3 Out-of-sample pricing errors.
Panel C: In the money options
Percentage pricing error Absolute pricing error
Term-to-expiration (days) Term-to-expiration (days)
Moneyness
% Model <30 30-60 60-90 90-120 120-180 >180 <30 30-60 60-90 90-120 120-180 >180
1.03-1.05 BS 3.69 4.45 5.31 4.76 4.38 2.98 0.59 0.85 1.14 1.20 1.29 1.40
(0.13) (0.14) (0.24) (0.29) (0.17) (0.24)  (0.02) (0.03) (0.05) (0.07) (0.04) (0.06)
SI 3.37 3.83 3.64 4.08 2.51 0.17 0.57 0.82 0.92 1.04 0.90 0.83
(0.15)  (0.18) (0.28)  (0.25) (0.17) (0.19)  (0.02) (0.03) (0.05) (0.06) (0.04) (0.04)
SV 1.27 0.79 1.09 1.11 0.43 —0.20 0.38 0.42 0.42 0.43 0.42 0.50
(0.13)  (0.13) (0.17)  (0.15) (0.10) (0.11)  (0.01) (0.02) (0.03) (0.03) (0.02) (0.02)
SVSI  0.84 0.32 0.83 0.29 —0.03 —0.41 0.37 0.45 0.42 0.49 0.45 0.54
(0.13) (0.14)  (0.19)  (0.20) (0.10) (0.11)  (0.01) (0.02) (0.03) (0.03) (0.02) (0.03)
1.05-1.07 BS 3.37 4.54 5.57 5.08 4.82 4.27 0.70 1.06 1.46 1.47 1.56 1.73
(0.10)  (0.11)  (0.22)  (0.27) (0.14) (0.22)  (0.02) (0.02) (0.05) (0.06) (0.04) (0.06)
SI 3.28 4.02 4.08 4.47 2.65 0.59 0.69 0.97 1.13 1.29 0.99 0.88
(0.12) (0.14) (0.24) (0.22) (0.15) (0.18)  (0.02) (0.03) (0.06) (0.06) (0.04) (0.05)
SV 1.82 1.41 1.47 1.44 0.54 —0.40 0.45 0.46 0.53 0.50 0.45 0.57
(0.09) (0.09) (0.16) (0.14) (0.09) (0.11)  (0.02) (0.02) (0.03) (0.03) (0.02) (0.03)
SVSI  1.59 1.12 1.35 0.83 0.17 —0.52  0.42 0.46 0.52 0.51 0.44 0.58
(0.09) (0.10) (0.17)  (0.17) (0.09) (0.11)  (0.01) (0.02) (0.03) (0.04) (0.02) (0.03)
>1.07 BS 1.79 2.65 2.96 3.10 3.36 2.61 0.60 0.95 1.22 1.35 1.56 1.58
(0.04) (0.05) (0.07) (0.08) (0.05) (0.05) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
SI 1.86 2.50 2.14 2.45 1.63 —0.76  0.59 0.89 0.88 1.04 0.86 1.09
(0.05) (0.06) (0.07) (0.08) (0.05) (0.05) (0.01) (0.02) (0.02) (0.03) (0.02) (0.02)
SV 1.36 1.33 1.06 0.92 0.45 —0.64 0.50 0.55 0.52 0.49 0.42 0.64
(0.13) (0.13)  (0.17)  (0.15) (0.10) (0.11)  (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
SVSI  1.29 1.26 1.18 0.81 0.40 —0.37 046 0.55 0.58 0.52 0.44 0.57
(0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

hedging error as of day 3. We then compute both the average
absolute and the average dollar hedging errors of all call op-
tions in a given moneyness-maturity category, to gauge the
relative hedging performance of each model.

It should be recognized that in both the delta-neutral and
the minimum-variance hedging exercises conducted in the
two subsections below, the spot S&P 500 index, rather than
an S&P 500 futures contract, is used in place of the “spot
asset” for the hedges devised in Sect. 37.2.2. This is done
out of two considerations. First, the spot S&P 500 and the
immediate-expiration-month S&P 500 futures price gener-
ally have a correlation coefficient close to one. This means
that whether the spot index or the futures price is used in
the hedging exercises, the qualitative as well as the quanti-
tative conclusions are most likely the same. In other words,
if it is demonstrated using the spot index that one model re-
sults in better hedging performance than another, the same
hedging performance ranking of the two models will likely
be achieved by using an S&P 500 futures contract. After all,
our main interest here lies in the relative performance of the
models. Second, when a futures contract is used in construct-

ing a hedge, a futures pricing formula has to be adopted. That
will introduce another dimension of model misspecification
(due to stochastic interest rates), which can in turn produce a
compounded effect on the hedging results. For these reasons,
using the spot index may lead to a cleaner comparison among
the four option models.

37.4.2.1 Effectiveness of Delta-Neutral Hedges

Observe that the construction and the execution of the
hedging strategy in (37.22) requires, in the cases of the
SV and the SVSI models, (i) the availability of prices
for four time-matched target and hedging-instrumental
options: C(t,7:K), C(t,t;K), C(t + At,t — At;K),
C(t + At,t — At;K) and (i) the computation of Ag,
Ay and Apg for the target and the instrumental option. Due
to this requirement, it is important to match as closely as pos-
sible the time points at which the target and the instrumental
option prices were respectively taken, in order to ensure that
the hedge ratios are properly determined. For this reason,
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we use as hedging instruments only options whose prices
on both the hedge construction day and the following lig-
uidation day were quoted no more than 15 s apart from the
times when the respective prices for the target option were
quoted. This requirement makes the overall sample for the
hedging exercise smaller than that used for the preceding
pricing exercise, but it nonetheless guarantees that the deltas
for the target and instrumental options on the same day are
computed based on the same spot price. The remaining sam-
ple contains 15,041 matched pairs when hedging revision
occurs at 1-day intervals, and 11,704 matched pairs when
rebalancing takes place at 5-day intervals. In addition, we
partition the target options into three maturity classes: less
than 60 days, 60—180 days, and greater than 180 days, and
report hedging results accordingly.

In theory, a call option with any expiration date and any
strike price can be chosen as a hedging instrument for any
given target option. In practice, however, different choices
can mean different hedging effectiveness, even for the same
option pricing model. Out of this consideration, we employ
as a hedging instrument the call option which has the same
expiration date as the target option and whose strike price is
the closest, but not identical, to the target option’s.

Table 37.4 presents delta-neutral hedging results for the
four models. Several patterns emerge from this table. First,
the BS model produces the worst hedging performance by
most measures, the SI shows noticeable improvement ac-
cording to the average dollar hedging errors (especially in
the 5-day hedging revision categories) but not so according
to the average absolute hedging errors, while the SV and the
SVSI models have average absolute and average dollar hedg-
ing errors that are typically one-third of the corresponding
BS hedging errors, or lower. The improvement by the SV and
the SVSI is thus remarkable. Second, as portfolio adjustment
frequency decreases from daily to once every 5 days, hedg-
ing effectiveness deteriorates, regardless of the model used.
The deterioration is especially apparent for OTM and ATM
options with % < 1.05. It should however be noted with
emphasis that for both the SV and the SVSI models, their
hedging effectiveness is relatively stable, whether the hedges
are rebalanced each day or once every 5 days. For the BS and
the SI models, such a change in revision frequency can mean
doubling their hedging errors. This finding is strong evidence
in support of the SV and the SVSI models for hedging.

Third, the BS model-based delta-neutral hedging strategy
always overhedges a target call option, as its average dollar
hedging error is negative for each moneyness-maturity cate-
gory and at either frequency of portfolio rebalancing. In con-
trast, the dollar hedging errors based on the SV and the SVSI
models are more random and can take either sign. There-
fore, the BS formula has a systematic hedging bias pattern,
whereas the SV and the SVSI do not.

Fourth, the SVSI model is indistinguishable from the SV
according to their absolute hedging errors, but is slightly bet-
ter than the latter when judged using their average dollar
hedging errors. Similarly, the SI model has worse hedging
performance than the BS according to their absolute hedging
error values, but the reverse is true according to their dol-
lar hedging errors. This phenomenon exists possibly because
with stochastic interest rates there are larger hedging errors
of opposite signs, so that when added together, these errors
cancel out, but the sum of their absolute values is nonetheless
large.

Finally, no matter which model is used, there do not ap-
pear to be moneyness- or maturity-related bias patterns in the
hedging errors. In other words, hedging errors do not seem to
“smile” across exercise prices or times to expiration, as pric-
ing errors do. This is a striking disparity between pricing and
hedging results.

37.4.2.2 Effectiveness of Single-Instrument
Minimum-Variance Hedges

If one is, for reasons given before, constrained to using only
the underlying stock to hedge a target call option, dimensions
of uncertainty that move the target option value but are un-
correlated with the underlying stock price cannot be hedged
by any position in the stock and will necessarily be uncon-
trolled for in such a single-instrument minimum-variance
hedge. Based on the sample option data, the average abso-
lute and the average dollar hedging errors, with either a daily
or a 5-day rebalancing frequency, are given in Table 37.5 for
each of the four models and each of the moneyness-maturity
categories. With this type of hedges, the relative performance
of the models is no longer clear-cut. For OTM options with
% < 0.97, the SV model has, regardless of the hedging er-
ror measure used and the hedge revision frequency adopted,
the lowest hedging errors, followed by the SVSI, then by the
BS, and lastly by the SI model. For ATM options, the hedging
performance by the BS and the SV models is almost indistin-
guishable, but still better, by a small margin, than that by both
the SI and the SVSI models, whereas the latter two models’
performance is also indistinguishable. Finally, for ITM op-
tions, the BS model has the best hedging performance, fol-
lowed by the SV, the SVSI, and then by the SI model. Having
said the above, it should nonetheless be noted that for vir-
tually all cases in Table 37.5 the hedging error differences
among the BS, the SV and the SVSI models are economi-
cally insignificant because of their low magnitude. Only the
SI model’s performance appears to be significantly poorer
than the others’.

The fact that the SI model performs worse than the BS
and that the SVSI model performs slightly worse than the
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Table 37.4 Delta-neutral hedging errors

Panel A: Out-of-the-money options. For each call option, calculate
the hedging error, which is the difference between the market price
of the call and the replicating portfolio. The average dollar hedging
error and the average absolute hedging error are reported for each

model. The standard errors are given in parentheses. The sample pe-
riod is 06:1988-05:1991. In calculating the hedging errors generated
with daily (once every 5 days) hedge rebalancing, 15,041 (11,704) ob-
servations are used

Dollar hedging error

1-day revision 5-day revision

Absolute hedging error

1-day revision 5-day revision

Term-to-expiration (days)

Term-to-expiration (days)

Moneyness

% Model <60 60-180 >180 <60 60-180 >180 <60 60-180 >180 <60 60-180 >180

<0.93 BS NA —0.06 —0.04 NA —0.33 —0.21 NA 0.37 0.45 NA 0.91 0.87
(0.03) (0.02) (0.09) (0.06) (0.01) (0.01) (0.06) (0.04)

SI —0.08 —0.05 —0.40 —0.36 0.35 0.40 0.69 0.81
(0.02) (0.02) (0.05) (0.06) (0.01) (0.01) (0.03) (0.04)

SV 0.02 0.01 0.03 0.03 0.15 0.14 0.17 0.21
(0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

SVSI 0.02 0.00 0.03 0.00 0.16 0.14 0.17 0.22
(0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.02)

0.93-0.95 BS NA —0.06 —0.01 NA —0.24 —0.02 NA 0.32 0.46 NA 0.79 0.82
(0.02) (0.03) (0.07) (0.07) (0.01) (0.02) (0.04) (0.05)

SI —0.08 0.00 —0.29 —0.22 0.33 0.43 0.67 0.66
(0.02) (0.04) (0.05) (0.07) (0.01) (0.02) (0.03) (0.05)

SV —0.01 —0.01 —0.00 0.00 0.12 0.23 0.13 0.18
(0.01) (0.02) (0.01) (0.03) (0.01) (0.01) (0.01) (0.02)

SVSI —0.01 —0.01 —0.00 0.00 0.12 0.24 0.13 0.18
(0.01) (0.02) (0.01) (0.03) (0.01) (0.02) (0.01) (0.02)

0.95-0.97 BS —0.08 —0.06 —-0.01 —0.55 —0.21 —-0.12 0.23 0.33 0.45 0.66 0.77 0.85
(0.06) (0.02) (0.03) (0.16)  (0.06) (0.08) (0.04) (0.02) (0.03) (0.13) (0.04) (0.05)

SI —0.06 —0.06 —-0.06 —0.22 —0.31 —0.34 0.27 0.34 0.41 0.61 0.71 0.89
(0.02) (0.02) (0.04) (0.05) (0.05) (0.09) (0.01) (0.01) (0.02) (0.03) (0.03) (0.06)

SV 0.03 —0.01 —-0.01 —0.03 —0.00 —0.02 0.10 0.13 0.19 0.10 0.14 0.26
(0.03) (0.01) (0.02) (0.03) (0.01) (0.03) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02)

SVSI  0.02 —0.01 —-0.01 —0.02 —0.01 —0.01 0.09 0.13 0.20 0.08 0.14 0.27
(0.03) (0.01) (0.02) (0.02) (0.01) (0.03) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02)

SV suggests that adding stochastic interest rates to the op-
tion pricing framework actually make the single-instrument
hedge’s performance worse. This can be explained as fol-
lows. In the setup of the present paper, interest rate shocks
are assumed to be independent of shocks to the stock price
and/or to the stochastic volatility. Therefore, in the single-
instrument minimum-variance hedges, there is no adjustment
in the optimal position in the underlying stock to be taken.
The hedging results in Table 37.5 have shown that if interest
rate risk is not to be controlled by any position in the hedg-
ing instrument, then it is perhaps better to design a single-
instrument hedge based on an option model that assumes no
interest rate risk. Assuming interest rate risk in an option
pricing model and yet not controlling for this risk in a hedge
can make the hedging effectiveness worse.

In the case of the SV versus the BS model, the situ-
ation is somewhat different from the above. As volatility

shocks are assumed to be correlated with stock price shocks,
the position to be taken in the underlying stock (i.e., the
hedging instrument) needs to be adjusted relative to the BS
model-determined hedge, so that this single position not only
helps contain the underlying stock’s price risk but also neu-
tralize that part of volatility risk which is related to stock
price fluctuations [see equation (37.23)]. Thus, by render-
ing it possible to use the single hedging position to con-
trol for both stock price risk and volatility risk, introduc-
ing stochastic volatility into the BS framework helps im-
prove the single-instrument hedging performance, albeit by
a small amount. Nandi (1996) uses the remaining variance
of a hedged position as a hedging effectiveness measure,
according to which he finds the SV model performs better
than the BS model. Our single-instrument hedging results
are hence consistent with his, regarding the SV versus the
BS model.
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Table 37.4 Delta-neutral hedging errors.
Panel B: At the money options

Dollar hedging error

1-day revision 5-day revision

Absolute hedging error

1-day revision 5-day revision

Term-to-expiration (days)

Term-to-expiration (days)

Moneyness
% Model <60 60-180 >180 <60 60-180 >180 <60 60-180 >180 <60 60-180 >180
0.97-0.99 BS —0.01 —0.04 —-0.04 —-036 —0.11 —0.21 0.34 0.34 0.46 0.54 0.75 0.89
(0.05) (0.02) (0.03) (0.08) (0.05) (0.07)  (0.03) (0.01) (0.02) (0.06) (0.03) (0.05)
SI 0.08 —0.05 —-0.07 —-0.30 —0.25 —0.44 0.29 0.36 0.41 0.73 0.70 0.79
(0.01) (0.02) (0.02) (0.05) (0.05) (0.08) (0.01) (0.01) (0.02) (0.03) (0.03) (0.06)
SV —0.03 0.01 0.00 —0.04 —0.00 —0.01 0.12 0.13 0.17 0.14 0.14 0.23
(0.02) (0.01) (0.01) (0.03) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
SVSI —0.02 0.01 0.00 0.02 0.00 —0.01 0.12 0.13 0.17 0.13 0.14 0.24
(0.02) (0.01) (0.01) (0.03) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
0.99-1.01 BS —0.10 —0.02 —0.01 —043 —0.08 —0.10 0.37 0.37 0.47 0.80 0.77 0.77
(0.01) (0.02) (0.03) (0.09) (0.05) (0.07)  (0.01) (0.01) (0.02) (0.06) (0.03) (0.05)
SI —0.08 —0.05 —-0.03 —0.29 —0.24 —0.18 0.36 0.37 0.42 0.81 0.67 0.61
(0.02) (0.02) (0.03) (0.05) (0.05) (0.08) (0.01) (0.01) (0.02) (0.03) (0.03) (0.05)
SV 0.01 —0.00 —0.01 0.02 0.01 0.03 0.14 0.13 0.17 0.15 0.15 0.25
(0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02)
SVSI 0.01 0.00 —0.01 0.02 —0.00 0.04 0.14 0.13 0.17 0.16 0.15 0.25
(0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.01) (0.01)
1.01-1.03 BS —0.09 —0.02 —-0.01 —-040 —0.11 —0.09 040 0.39 0.46 0.82 0.75 0.82
(0.03) (0.02) (0.03) (0.08) (0.05) (0.07)  (0.02) (0.01) (0.02) (0.05) (0.03) (0.05)
SI —0.09 —0.05 —-0.07 —-030 —0.25 —0.27 0.38 0.36 0.43 0.75 0.65 0.71
(0.02) (0.02) (0.04) (0.05) (0.05) (0.09) (0.01) (0.01) (0.01) (0.03) (0.03) (0.06)
SV 0.00 —0.00 0.03 0.01 —0.01 0.05 0.13 0.14 0.17 0.13 0.17 0.24
(0.03) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SVSI 0.00 —0.00 0.03 —0.00 —0.01 0.05 0.14 0.14 0.17 0.13 0.17 0.24
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

It is useful to recall that all four models are implemented
allowing both the spot volatility and the spot interest rates
to vary from day to day, which is, except in the sole case
of the SVSI model, not consistent with the models’ assump-
tions. Given this practical ad hoc treatment, it may not come
as a surprise that when only the underlying asset is used as
the hedging instrument, the four models performed virtually
indifferently, with the magnitude of their hedging error dif-
ferences being generally small. As easily seen, if all four
models were implemented in a way consistent with the re-
spective model setups, the single-instrument hedges based on
the SVSI model would for sure perform the best.

Comparing Tables 37.4 and 37.5, one can conclude that
based on a given option model, the conventional delta-neutral
hedges perform far better than their single-instrument coun-
terparts, for every moneyness-maturity category. This is not
surprising as the former type of hedges involves more hedg-
ing instruments (except under the BS model).

37.4.3 Regression Analysis of Option Pricing
and Hedging Errors

So far we have examined pricing and hedging performance
according to option moneyness-maturity categories. The pur-
pose was to see whether the errors have clear moneyness- and
maturity-related biases. By appealing to a regression analy-
sis, we can more rigorously study the association of the er-
rors with factors that are either contract-specific or market
condition-dependent. Fix an option pricing model, and let
€, (1) denote the nth call option’s percentage pricing error on
day z. Then, run the regression below for the entire sample:

a0 = oty

+B5s LAGVOL(t — 1) + B4 SLOPE(t) + 1, (1),
(37.29)

4+ B2ty + B3 SPREAD, (1)
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Table 37.4 Delta-neutral hedging errors.
Panel C: In the money options
Dollar hedging error Absolute hedging error
1-day revision 5-day revision 1-day revision 5-day revision
Term-to-expiration (days) Term-to-expiration (days)
Moneyness
% Model <60 60-180 >180 <60 60-180 >180 <60 60-180 >180 <60 60-180 >180
1.03-1.05 BS —0.06 —0.03 —-0.05 —-036 —0.09 —0.23  0.40 0.38 0.47 0.70 0.69 0.90
(0.02) (0.02) (0.03) (0.05) (0.04) (0.08) (0.02) (0.01) (0.02) (0.03) (0.03) (0.05)
SI —0.09 —0.05 -0.07 —-031 —0.19 —0.35 0.39 0.36 0.41 0.65 0.61 0.81
(0.02) (0.02) (0.04) (0.06) (0.05) (0.09) (0.01) (0.01) (0.02) (0.03) (0.03) (0.06)
Y% 0.01 0.01 —0.01  0.00 0.00 —0.03 0.15 0.13 0.15 0.17 0.15 0.24
(0.03) (0.01) (0.02) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SVSI 0.01 0.00 —0.00 0.00 0.00 —0.03 0.15 0.12 0.16 0.16 0.14 0.25
0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
1.05-1.07 BS —-0.05 —0.02 —-0.06 —0.35 —0.06 —-0.22 041 0.40 0.47 0.68 0.64 0.77
0.02) (0.02) 0.04) (0.04 (0.04 (0.07)  (0.01) (0.01) 0.02) (0.02) (0.03) (0.04)
SI —0.07 —0.04 —0.11 —-0.26 —0.12 —0.56 0.40 0.37 0.44 0.57 0.51 0.59
(0.02) (0.02) (0.04) (0.04) (0.04) (0.08) (0.01) (0.02) (0.02) (0.03) (0.03) (0.01)
NY% —0.00 —0.00 —0.01 —0.05 —0.02 0.00 0.16 0.13 0.18 0.18 0.15 0.22
(0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SVSI —0.00  0.00 —0.00 —0.03 —0.02 0.00 0.15 0.12 0.17 0.17 0.15 0.22
(0.01) (0.01) (0.02) (0.01) (0.00) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
>1.07 BS —-0.04 —0.03 —-0.02 —-0.15 —0.07 —0.10 0.36 0.39 0.48 0.51 0.58 0.72
(0.01)  (0.00) 0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SI —0.05 —0.04 —-0.03 —0.18 0.08 —-0.21 0.35 0.37 0.43 0.45 0.51 0.66
(0.03) (0.01) 0.02) (0.02) (0.02) (0.08)  (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SV —-0.01 —0.01 —-0.00 —0.03 —0.01 0.01 0.15 0.14 0.20 0.17 0.18 0.27
(0.01)  (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)  (0.00) (0.00) (0.00)
SVSI —0.00 —0.00 0.00 —0.01  0.00 0.01 0.15 0.14 0.20 0.16 0.17 0.27
(0.00)  (0.00) (0.01) (0.01) (0.00) (0.01)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.01)

where K, is the strike price of the call, 7, the remain-
ing time to expiration, and SPREAD, (¢) the percentage bid-
ask spread at date ¢ of the call (constructed by computing
(15‘?%%), all of which are contract-specific variables.
The variable, LAGVOL(t — 1), is the (annualized) standard
deviation of the previous day’s intraday S&P 500 returns
computed over 5-min intervals, and it is included in the re-
gression to see whether the previous day’s volatility of the
underlying may cause systematic pricing biases. The vari-
able, SLOPE(t), represents the yield differential between
1-year and 30-day Treasury bills. This variable can provide
information on whether the single-factor Cox-Ingersoll-Ross
(1985) term structure model assumed in the present paper
is sufficient to make the resulting option formula capture
all term structure-related effects on the S&P 500 index op-
tions. In some sense, the contract-specific variables help de-
tect the existence of cross-sectional pricing biases, whereas
LAGVOL(t — 1) and SLOPE(t) serve to indicate whether the
pricing errors over time are related to the dynamically chang-
ing market conditions. Similar regression analyses have been

done for the BS pricing errors in, for example, Galai (1983b),
George and Longstaff (1993), and Madan et al. (1998). For
each given option model, the same regression as in (37.29)
is also run for the conventional delta-neutral hedging errors,
with €, (¢) in (37.29) replaced by the dollar hedging error for
the nth option on day 7.

Table 37.6 reports the regression results based on the en-
tire sample period, where the standard error for each coef-
ficient estimate is adjusted according to the White (1980)
heteroskedasticity-consistent estimator and is given in the
parentheses. Let’s first examine the pricing error regressions.
For every option model, each independent variable has statis-
tically significant explanatory power of the remaining pricing
errors. That is, the pricing errors from each model have some
moneyness, maturity, intraday volatility, bid-ask spread, and
term structure related biases. The magnitude of each such
bias, however, decreases from the BS to the SI, to the SV,
and to the SVSI model. For instance, the BS percentage pric-
ing errors will on the average be 2.29 points higher when
the yield spread SLOP E(t) increases by one point, whereas
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Table 37.5 Single instrument hedging errors.

Panel A: Out-of-the-money options. For each call option, calculate
the hedging error, which is the difference between the market price
of the call and the replicating portfolio. The average dollar hedging
error and the average absolute hedging error are reported for each

model. The standard errors are shown in parentheses. The sample pe-
riod is 06:1988-05:1991. In calculating the hedging errors generated
with daily (once every 5 days) hedge rebalancing, 15,041 (11,704) ob-
servations are used

Dollar hedging error

1-day revision 5-day revision

Absolute hedging error

1-day revision 5-day revision

Term-to-expiration (days)

Term-to-expiration (days)

Moneyness

% Model <60 60-180 =>180 <60 60-180 =>180 <60 60-180 >180 <60 60-180 >180

<0.93 BS NA —0.06 —0.04 NA —0.33 —0.21 NA 0.37 0.45 NA 0.91 0.87
(0.03) (0.02) (0.09) (0.06) (0.01) (0.01) (0.06) (0.04)

SI —0.09 —0.06 —0.51 —0.45 0.49 0.52 1.33 0.91
(0.05) (0.04) (0.17) (0.08) (0.03) (0.03) (0.10) (0.05)

SV —0.02 —0.05 —0.03 —0.09 0.30 0.39 0.75 0.75
(0.03) (0.02) (0.08) (0.05) (0.02) (0.02) (0.05) (0.04)

SVSI 0.02 —0.04 0.11 —0.13 0.35 0.43 0.76 0.82
(0.03) (0.03) (0.08) (0.05) (0.03) (0.02) (0.05) (0.04)

0.93-0.95 BS NA —0.06 —0.01 NA —0.24 —0.02 NA 0.32 0.46 NA 0.79 0.82
(0.02) (0.03) (0.07) (0.07) (0.01) (0.02) (0.04) (0.05)

SI —0.10 —0.00 —0.36 —0.38 0.35 0.52 0.97 0.72
(0.03) (0.04) (0.10) (0.08) (0.02) (0.03) (0.06) (0.06)

SV —0.06 0.00 —0.14 —0.00 0.33 0.43 0.79 0.73
(0.02) (0.03) (0.07) (0.06) (0.02) (0.02) (0.04) (0.04)

SVSI —0.04 —0.00 —0.17 —0.17 0.36 0.47 0.82 0.78
(0.03) (0.03) (0.07) (0.07) (0.02) (0.02) (0.04) (0.04)

0.95-0.97 BS —0.08 —0.06 —-0.01 —0.55 —0.21 —-0.12 0.23 0.33 0.45 0.66 0.77 0.85
(0.06) (0.02) (0.03) (0.16)  (0.06) (0.08) (0.04) (0.02) (0.03) (0.13) (0.04) (0.05)

SI —-0.04 —0.09 0.04 —0.44 —0.38 —0.42 0.33 0.39 0.47 0.74 0.94 0.92
(0.11)  (0.03) (0.05) (0.05) (0.09) (0.10)  (0.01) (0.01) (0.03) (0.09) (0.06) (0.07)

SV —-0.03 —0.05 —-0.01 —0.06 —0.14 —-0.16 0.21 0.32 0.42 0.48 0.77 0.74
(0.06) (0.02) (0.03) (0.16)  (0.06) (0.07)  (0.04) (0.02) (0.02) (0.09) (0.04) (0.04)

SVSI —0.04 —0.02 —0.00 —-0.21 —0.14 —023 022 0.35 0.46 0.65 0.83 0.79
(0.01) (0.02) (0.03) (0.03) (0.04) (0.06) (0.03) (0.01) (0.02) (0.11) (0.04) (0.04)

the SV and the SVSI percentage errors will only be, respec-
tively, 0.32 and 0.34 points higher in response. Thus, a higher
yield spread on the term structure means higher pricing er-
rors, regardless of the option model used. This points out
that a possible direction to further improve pricing perfor-
mance is to include the yield spread as a second factor in
the term structure model of interest rates. Other noticeable
patterns include the following. The BS pricing errors are de-
creasing, while the SI, the SV and the SVSI pricing errors are
increasing, in both the option’s time-to-expiration and the un-
derlying stock’s volatility on the previous day. The deeper in-
the-money the call or the wider its bid-ask spread, the lower
the SI’s, the SV’s and the SVSI model’s mispricing. But, for
the BS model, its mispricing increases with moneyness and
decreases with bid-ask spread.

Even though all four models’ pricing errors are signif-
icantly related to each independent variable, the collective

explanatory power of these variables is not so impressive.
The adjusted R? is 29% for the BS formula’s pricing errors,
22% for the SI's, 12% for the SV’s, and 7% for the SVSI
model’s. Therefore, while both the BS and the SI model have
significant overall biases related to contract terms and market
conditions (indicating systematic model misspecifications),
the remaining pricing errors under the SV and the SVSI are
not as significantly associated with these variables. About
93% of the SVSI model’s pricing errors cannot be explained
by these variables!

As reported in Table 37.6, delta-neutral hedging errors by
the BS and the SI model tend to increase with the money-
ness and the bid-ask spread of the target call, but decrease
with the non-contract-specific yield spread and lagged stock
volatility variables. Therefore, the two models are misspeci-
fied for hedging purposes and they lead to systematic hedg-
ing biases. But, overall, these variables can explain only 1%
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Table 37.5 Single instrument hedging errors.
Panel B: At the money options
Dollar hedging error Absolute hedging error
1-day revision 5-day revision 1-day revision 5-day revision
Term-to-expiration (days) Term-to-expiration (days)
Moneyness
% Model <60 60-180 >180 <60 60-180 >180 <60 60-180 >180 <60 60-180 >180
0.97-0.99 BS —0.01 —0.04 —0.04 —-036 —0.11 —0.21 0.34 0.34 0.46 0.54 0.75 0.89
0.05) (0.02) (0.03) (0.08) (0.05) 0.07)  (0.03) (0.01) (0.02) (0.06) (0.03) (0.05)
SI 0.00 —0.06 —0.06 —034 —0.11 —042 034 0.40 0.51 0.82 0.90 0.82
(0.06)  (0.03) (0.04) (0.05) (0.09) (0.08)  (0.05) (0.02) (0.03) (0.09) (0.06) (0.06)
NY% —0.01 —0.05 —0.06 —020 —0.11 —0.19 0.35 0.35 0.44 0.56 0.81 0.84
(0.06) (0.02) (0.03) (0.12) (0.06) (0.07)  (0.04) (0.01) (0.02) (0.07) (0.03) (0.04)
SVSI —-0.03 —0.05 —-0.03 —0.15 —0.16 —-0.27 0.36 0.37 0.45 0.59 0.86 0.89
0.06)  (0.02) (0.03) (0.11)  (0.06) 0.07) (0.04) (0.01) 0.02) (0.07) (0.03) (0.05)
0.99-1.01 BS —-0.10 —0.02 —-0.01 —0.43 —0.08 —-0.10 0.37 0.37 0.47 0.80 0.77 0.77
0.01) (0.02) (0.03) (0.09) (0.05) 0.07)  (0.01) (0.01) 0.02) (0.06) (0.03) (0.05)
SI —0.15 —0.04 0.03 —034 —0.18 —0.31 0.39 0.41 0.55 0.77 0.82 0.78
(0.05)  (0.03) (0.05) (0.15)  (0.07) (0.09)  (0.03) (0.02) (0.03) (0.09) (0.05) (0.06)
NY% —-0.12 —0.02 —0.00 —-0.22 —0.12 —0.06 0.38 0.37 0.45 0.78 0.79 0.69
(0.04) (0.02) (0.03) (0.11) (0.05) (0.06) (0.03) (0.01) (0.02) (0.06) (0.03) (0.04)
SVSI —0.04 —0.01 —-0.00 —0.27 —0.13 —0.15 0.38 0.40 0.47 0.88 0.89 0.80
(0.01) (0.02) (0.03) (0.11) (0.05) (0.06) (0.03) (0.01) (0.02) (0.07) (0.04) (0.04)
1.01-1.03 BS —-0.09 —0.03 —-0.01 —-0.40 —0.11 —0.09 0.40 0.39 0.46 0.82 0.75 0.82
0.03) (0.02) (0.03) (0.08) (0.05) 0.07) (0.02) (0.01) 0.02) (0.05) (0.03) (0.05)
SI —-0.10 —0.05 —-0.04 —-043 -0.16 —0.34 041 0.41 0.51 0.86 0.83 0.89
0.04) (0.03) 0.05) (0.11) (0.07) (0.10)  (0.02) (0.01) (0.03) (0.07) (0.05) 0.07)
SV —0.06 —0.04 0.00 -0.21 —0.15 —0.03 0.38 0.39 0.43 0.84 0.81 0.72
0.03) (0.02) (0.03)  (0.09) (0.05) (0.06) (0.02) (0.02) (0.02) (0.05) (0.03) (0.04)
SVSI 0.06 —0.04 —-0.01 —-0.29 —0.18 —0.17 0.41 0.42 0.45 0.91 0.85 0.76
0.03) (0.02) (0.03) (0.08) (0.05) (0.06) (0.02) (0.01) (0.02) (0.05) (0.03) (0.04)

of the hedging errors by the two models. And, even more
impressively, none of the included independent variables can
explain any of the remaining hedging errors by the SV and
the SVSI model, as their R? values are both zero.

Finally, when the dollar pricing errors are used to replace
the percentage pricing errors or when the percentage hedging
errors are employed to replace the dollar hedging errors in
the above regressions, the sign of each resulting coefficient
estimate and the magnitude of each R? value in Table 37.6
remain unchanged. Thus, the conclusions drawn from Table
37.6 are independent of the choice of the pricing or hedging
error measure. Results from these exercises are not reported
here but available upon request.

37.4.4 Robustness of Empirical Results

Using the entire sample period data, we have concluded that
the evidence, based on both static performance and dynamic

performance measures, is in favor of both the SVSI and the
SV model. However, it is important to demonstrate that this
conclusion still holds when alternative test designs and dif-
ferent sample periods are used. Below we briefly report re-
sults from two controlled experiments.

According to Rubinstein (1985), the volatility smile pat-
tern and the nature of pricing biases are time period-
dependent. To see whether our conclusion may be reversed,
we separately examined the pricing and hedging perfor-
mance of the models in three sub-periods: 06:1988-05:1989,
06:1989-05:1990, and 06:1990-05:1991. Each sub-period
contains about 10,000 call option observations. As the re-
sults are similar for each subperiod, we provide the percent-
age pricing errors in Panel A and the absolute delta-neutral
hedging errors in Panel B of Table 37.7, for the subperiod
06:1990-05:1991. It is seen that these results are qualita-
tively the same as those in Tables 37.3 and 37.4.

We examined the pricing and hedging error measures of
each model when the structural parameters were not updated
daily. Rather, retain the structural parameter values estimated
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Table 37.5 Single instrument hedging errors.
Panel C: In the money options.

Dollar hedging error

1-day revision 5-day revision

Absolute hedging error

1-day revision 5-day revision

Term-to-expiration (days)

Term-to-expiration (days)

Moneyness
% Model <60 60-180 =>180 <60 60-180 =>180 <60 60-180 >180 <60 60-180 >180
1.03-1.05 BS —0.06 —0.03 —-0.05 —036 —0.09 —0.23 040 0.38 0.47 0.70 0.69 0.90
(0.02) (0.02) (0.03) (0.05) (0.04) (0.08) (0.02) (0.01) (0.02) (0.03) (0.03) (0.05)
SI —0.08 —0.03 —-0.04 —-047 -0.11 —0.52 0.43 0.40 0.48 0.84 0.77 0.97
(0.03) (0.03) (0.05) (0.08) (0.06) (0.09) (0.02) (0.02) (0.03) (0.05) (0.04) (0.07)
SV —0.04 —0.02 —-0.07 —-0.23 —0.09 —-0.23 041 0.39 0.46 0.70 0.76 0.88
(0.03) (0.02) (0.04) (0.06) (0.05) (0.08) (0.02) (0.01) (0.02) (0.03) (0.03) (0.05)
SVSI —0.05 —0.02 —-0.04 —027 —0.14 —-0.31 041 0.40 0.47 0.77 0.80 0.90
(0.02) (0.02) (0.03) (0.05) (0.05) (0.08) (0.01) (0.01) (0.02) (0.03) (0.03) (0.05)
1.05-1.07 BS —0.05 —0.02 —0.06 —035 —0.06 —0.22 041 0.40 0.47 0.68 0.64 0.77
0.02) (0.02) (0.04) (0.04) (0.04) (0.07)  (0.01) (0.01) (0.02) (0.02) (0.03) (0.04)
SI —0.07 —0.04 —-0.07 —-0.37 —0.09 —0.55 045 0.42 0.50 0.74 0.66 0.81
(0.03) (0.03) (0.05) (0.05) (0.06) (0.08) (0.02) (0.02) (0.03) (0.04) (0.04) (0.06)
SV —0.06 —0.03 —-0.05 —-032 —0.09 —0.10 0.43 0.40 0.44 0.71 0.68 0.69
0.02) (0.02) (0.04) (0.04) (0.04) (0.07) (0.02) (0.01) (0.03) (0.02) (0.03) (0.04)
SVSI —-0.05 —0.02 —-0.02 —-031 —0.09 —0.09 0.42 0.43 0.46 0.74 0.79 0.75
(0.02) (0.02) (0.04) (0.04) (0.04) (0.07)  (0.01) (0.01) (0.02) (0.03) (0.03) (0.05)
>1.07 BS —-0.04 —0.03 —-0.02 —-0.15 —0.07 —0.10 0.36 0.39 0.48 0.51 0.58 0.72
(0.01)  (0.00) (0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SI —0.05 —0.04 —-0.04 —0.17 —0.07 —0.26  0.40 0.41 0.47 0.61 0.66 0.79
(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
SV —0.04 —0.04 —-0.02 —-0.18 —0.14 —0.09 0.35 0.39 0.44 0.50 0.58 0.64
(0.04) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
SVSI —0.04 —0.03 —0.01 —-0.18 —0.14 —0.10 0.36 0.41 0.46 0.50 0.63 0.70
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Table 37.6 Regression analysis of pricing and hedging errors. The re-
gression results below are based on the equation:

en(t) = Bo+ P1 32 + Baty + B3 SPREAD, (1) + P4 SLOPE(1) +
Bs LAGVOL(t — 1) + n,(2),

where €, (f) denotes either the percentage pricing error or the dollar
hedging error of the nth call on date-; K% and t, respectively represent
the moneyness and the term-to-expiration of the option contract; The

variable SPREAD,, () is the percentage bid-ask spread; SLOPE(t) the
yield differential between the 1-year and the 30-day Treasury bill rates;
And LAGVOL(t — 1) the previous day’s (annualized) standard devia-
tion of S&P 500 index returns computed from 5-min intradaily returns.
The standard errors, reported in parenthesis, are White’s (1980) het-
eroskedastically consistent estimator. The sample period is 06:1988—
05:1991 for a total of 38,749 observations.

BS SI SV SVSI BS SI SV SVSI
Coefficient Percentage pricing errors Hedging errors
Constant —0.05 0.28 0.24 0.11 —0.41 —0.30 0.00 —0.03
(0.03) (0.03) (0.02) (0.02) (0.11) (0.10) (0.05) (0.05)
% 0.22 —0.18 —-0.20 —0.09 0.34 0.29 0.00 0.03
(0.03) (0.02) (0.01) (0.02) (0.09) (0.08) (0.04) (0.04)
T —0.04 0.04 0.08 0.05 0.03 0.08 0.00 0.00
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
SPREAD —5.24 —4.48 —2.13 —1.57 2.26 1.04 0.32 0.34
(0.12) (0.11) (0.07) (0.08) (0.48) (0.32) (0.23) (0.23)
SLOPE 2.29 1.33 0.32 0.34 —2.09 —2.01 —0.39 —-0.39
(0.16) (0.13) (0.08) (0.11) (0.58) (0.65) (0.26) (0.25)
LAGVOL —0.16 0.12 0.06 0.04 —0.31 —0.51 —0.06 —0.05
(0.02) (0.02) (0.01) (0.01) (0.07) (0.05) (0.02) (0.02)
Adj. R? 0.29 0.22 0.12 0.07 0.01 0.01 0.00 0.00
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Table 37.7 Robustnes§ fcmalysis. Term-to-expiration (days)
Panel A: percentage pricing Moneyness
errors, 06:1990-05:1991. The 3 Model <30 3060 60-90  90-120  120-180  >180
reported percentage pricing error
is the sample average of the <0.93 BS —=76.51 —96.75 —7473 —78.71 —61.36 —46.83
market price minus the model SI —26.88 —62.89 —38.89 —3440 —18.68 —5.14
price divided by the market price. SV —25.05 —35.80 —12.59 —1.25 1.64 8.51
The sample period is SVSI  —20.56 —31.82 —815 —3.00  0.58 3.57
06:1990-05:1991 for a total of
11,979 call options 0.93-0.95 BS —5499 —59.06 —31.97 —2429 —19.28 —12.36
SI —46.25 —46.77 —2899 —10.62 —9.55 —5.37
SV —26.57 2532 —8.57 —1.60 —0.33 1.50
SVSI  —2825 —21.71 —6.26 —2.18 —0.04 0.79
0.95-0.97 BS —3472 —=2997 -—1671 —1274 —10.27 —7.33
SI —-31.85 —24.18 —16.79 —4.92 —5.35 —4.49
Sv —20.09 —1389 —554 —1.68 —0.56 0.61
SVSI  —15.83 —13.08 —4.20 —-3.29 —0.91 0.18
0.97-0.99 BS —1593 —1036 —5.84 —3.22 —3.46 —2.14
SI —1527 =745 =722 2.36 —2.05 —1.24
SV —13.09 —7.04 —3.64 0.77 —0.47 0.15
SVSI  —1238 —7.49 —3.37 —0.90 —0.83 —0.33
0.99-1.01 BS —-3.92 —1.23 0.62 1.54 0.65 1.99
SI —3.24 —0.09 —0.87 522 0.38 —0.09
Sv —6.69 —3.43 —1.23 1.22 —0.10 0.14
SVSI  —7.46 —4.17 —1.49 —0.33 —0.48 —0.27
1.01-1.03 BS 2.48 3.36 4.17 4.05 3.28 293
SI 2.73 3.75 2.78 5.57 1.82 —0.60
SV —0.92 —0.56 0.24 1.44 0.19 —0.24
SVSI  —1.41 —1.02 —0.09 —0.59 —0.16 —0.53
1.03-1.05 BS 3.93 4.86 5.35 5.57 4.62 341
SI 3.95 4.92 4.08 6.62 2.61 —0.08
SV 1.21 0.74 0.82 1.87 0.39 —0.17
SVSI  0.85 0.19 0.48 0.79 0.08 —0.40
1.05-1.07 BS 3.69 5.07 5.84 6.36 5.12 4.93
SI 3.82 5.08 4.67 6.55 2.87 1.29
Sv 1.83 1.52 1.49 2.07 0.51 —0.54
SVSI 1.68 1.18 1.17 1.38 0.32 —0.57
>1.07 BS 1.99 2.98 3.58 435 4.00 3.59
SI 2.44 2.90 2.77 4.08 1.93 —1.01
Sv 1.43 1.40 1.21 1.47 0.45 —0.69
SVSI 1.38 1.30 1.18 1.18 0.46 —0.40
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Table 37.7 Robustness analysis.

Panel B: Absolute hedging errors I-day revision 5-day revision
(1 and 5 day), 06:1990-05:1991. Term-to-expiration (days)
The average absolute hedging Moneyness
error for each model is reported % Model <60 60-180 >180 <60 60-180 >180
e e S s?g‘ilt’tlfap;r;do . <0.93 BS NA 042 048 NA  LI3 0.99
6,440 observations) SI 0.46 0.45 0.77 0.82
SV 0.17 0.22 0.18 0.30
SVSI 0.17 0.22 0.18 0.30
0.93-0.95 BS NA 0.40 0.50 NA 0.97 0.95
SI 0.45 0.47 0.73 0.75
SV 0.13 0.25 0.15 0.30
SVSI 0.13 0.25 0.15 0.30
0.95-0.97 BS NA 0.37 0.44 NA 0.96 0.85
SI 0.45 0.44 0.77 0.86
SV 0.16 0.22 0.16 0.29
SVSI 0.16 0.22 0.16 0.29
0.97-0.99 BS 0.39 0.42 0.47 0.72 0.95 0.97
SI 0.33 0.45 0.41 0.66 0.74 0.76
SV 0.14 0.17 0.17 0.16 0.17 0.24
SVSI 0.14 0.17 0.16 0.15 0.17 0.23
0.99-1.01 BS 0.41 0.43 0.50 0.99 0.91 0.89
SI 0.40 0.48 0.50 0.79 0.71 0.78
SV 0.16 0.16 0.17 0.20 0.17 0.28
SVSI 0.16 0.16 0.17 0.19 0.17 0.26
1.01-1.03 BS 0.40 0.46 0.47 0.99 0.89 0.83
SI 0.45 0.44 0.45 0.74 0.71 0.73
SV 0.17 0.17 0.18 0.19 0.20 0.25
SVSI 0.17 0.17 0.17 0.19 0.20 0.25
1.03-1.05 BS 0.45 0.43 0.50 0.88 0.85 0.97
SI 0.46 0.44 0.48 0.71 0.72 0.68
SV 0.17 0.14 0.17 0.18 0.16 0.27
SVSI 0.17 0.14 0.17 0.18 0.16 0.27
1.05-1.07 BS 0.46 0.47 0.51 0.73 0.78 0.77
SI 0.47 0.45 0.50 0.61 0.67 0.68
SV 0.18 0.14 0.22 0.19 0.16 0.24
SVSI 0.17 0.14 0.21 0.19 0.16 0.22
>1.07 BS 0.41 0.45 0.53 0.62 0.70 0.81
SI 0.38 0.46 0.50 0.48 0.64 0.75
SV 0.17 0.15 0.22 0.18 0.19 0.32

SVSI 0.16 0.15 0.21 0.18 0.18 0.31
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from the options of the first day of each month and then, for
the remainder of the month, use them as input to compute
the corresponding model-based price for each traded option,
except that the implied spot volatility is updated each day
based on the previous day’s option prices. The obtained ab-
solute pricing errors for the subperiod 06:1990-05:1991 indi-
cate that the performance ranking of the four models remains
the same as before.

In addition, when we used only ATM (or only ITM or
only OTM) option prices to back out each model’s param-
eter values, the resulting pricing and hedging errors did not
change the performance ranking of the models either. This
means that even if one would estimate and use a matrix of
implied volatilities (across moneynesses and maturities) to
accordingly price and hedge options in different moneyness-
maturity categories, it would still not change the fact that the
SV and the SVSI models are better specified than the other
two for pricing and hedging. Given that the implied-volatility
matrix method has gained some popularity among practition-
ers, our results should be appealing. On the one hand, they
suggest that with the SV and the SVSI models there is far
less a need to engage in moneyness- and maturity-related fit-
ting. On the other hand, if one is still interested in the matrix
method, the SV and the SVSI models should be better model
choices.

Early in the project we used only option transaction price
data for the pricing and hedging estimations. But, that meant
a far smaller data set, especially for the hedging estima-
tions. Nonetheless, the results obtained from the transaction
prices were similar to these presented and discussed in this

paper.

37.5 Conclusions

We have developed and analyzed a simple option pricing
model that admits both stochastic volatility and stochastic in-
terest rates. It is shown that this closed-form pricing formula
is practically implementable, leads to useful analytical hedge
ratios, and contains many known option formulas as special
cases. This last feature has made it relatively straightforward
to conduct a comparative empirical study of the four classes
of option pricing models.

According to the pricing and hedging performance mea-
sures, the SVSI and the SV models both perform much better
than the SI and the BS models, as the former typically re-
duce the pricing and hedging errors of the latter by more
than a half. These error reductions are also economically
significant. Furthermore, the hedging errors by the SV and
the SVSI models are relatively insensitive to the frequency
of portfolio revision, whereas those of the SI and the BS

models are sensitive. Given that both the SV and the SVSI
models can be easily implemented on a personal computer,
they should thus be better alternatives to the widely applied
BS formula. A regression-based analysis of the pricing and
hedging errors indicates that while the BS and the SI mod-
els show significant pricing biases related to moneyness,
time-to-expiration, bid-ask spread, lagged stock volatility
and interest rate term spread, pricing errors by the SV and
the SVSI models are not as systematically related to either
contract-specific or market-dependent variables. Overall, the
results lend empirical support to the claim that incorporating
stochastic interest rates and, especially, stochastic volatility,
can both improve option pricing and hedging performance
substantially and resolve some known empirical biases asso-
ciated with the BS model.

The empirical issues and questions addressed in this pa-
per can also be re-examined using data from individual stock
options, American-style index options, options on futures,
currency and commodity options, and so on. Eventually, the
acceptability of option pricing models with the added fea-
tures will be judged not only by its easy implementability
or even its impressive pricing and hedging performance as
demonstrated in this paper using European-style index calls,
but also by its success or failure in pricing and hedging other
types of options. These extensions are left for future research.
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Appendix 37A

Proof of the option pricing formula in (37.10). The valua-
tion PDE in (37.9) can be re-written as:

1 92C e 9C

S8 i (r=—2v) & 4 e,

28L2+( p )8L+'00V8L8V

1, 9*C aC

—OV I 40, -k, V] —

+20v 8V2+[ K, V] 3V

1, ¥C aC  aC

S0 RS [0k — kxRl o — % _RC =0,
T30k R e 10 =Rl g =50

(37.30)

where we have applied the transformation L(z) = In[S(z)].
Inserting the conjectured solution in (37.10) into (37.30) pro-
duces the PDEs for the risk-neutralized probabilities, IT; for
j=12

VP (1O
2 L2 27 ) oL TP Srav
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(37.31)
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and with the boundary condition:
1 82172 1 JaIl, 82172 . . — LioL+T)
= R—-V)|— LV fit+1.0:9)=¢ j=12. (37.36)
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+500V + [0y — V] —— + S0z R is respectively given b
27" V2 w2 R? p y grven by
2
i og— (kg - Ok IBUDN 1L 0L f (e S(1), V), R(): ) = expluy(7) + uy(7)
B(t,r) OR oR a0t < y
t v t
. () R() +x,(1) V(D)

Observe that (37.31) and (37.32) are the Fokker-Planck for-
ward equations for probability functions. This implies that
I1; and IT, must indeed be valid probability functions, with
values bounded between 0 and 1. These PDEs must be sepa-
rately solved subject to the terminal condition:

Ii; t+10)=1440>x Jj=12. (37.33)

The corresponding characteristic functions for I1, and I1,
will also satisfy similar PDEs:
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e 0ok B 0L S _
+[9R (KR Beo ok )Rk " =0

(37.35)

+igIn[S ()]}
(37.37)

S (1,7, 8(2), V(1) R(t): ) = exp{z:(7) + 2(7)
+y:(7) R(2) + »u(7) V(?)
+i¢ In[S(z)] — In[B(¢, 7)]}
(37.38)

with u,(0) = u,(0) = x,(0) = x,(0) = 0 and z,(0) =
z,(0) = y,(0) = y,(0) = 0. Solving the resulting system of
differential equations and noting that B(t + 7,0) = 1 will
respectively produce the desired characteristic functions in
(37.12) and (37.13).

Both the constant interest rate—stochastic volatility and
constant volatility—stochastic interest rate option pricing
models are nested in (37.10). In the constant interest rate—
stochastic volatility model, for instance, the partial deriva-
tives with respect to R vanishes in (37.30). The general
solution in (37.37)—(37.38) will still apply except that now
R(t) = R (a constant), B(t,7) = e *°, x,(r) = i¢r,
yr(t) = (i¢p — D7, and u,(r) = z(r) = 0. The final
characteristic functions f] for the constant interest
rate—stochastic volatility option model are respectively
given by

v —ky + (1 +i¢)pa](1 —e™®7)

ﬁ = exp { —i¢pIn[B(t,7)] — % |:2 In (1 - 5

v

v

e — e+ (L ig)po)] T+ i InlS(0)] +
0} 2

= )

ip(idp + 1)(1 —e57)
£ — & — i + (1 +ip)pa,](1 — e67)

vinl, (3739
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and,

N * H P 4
fr=expy—i¢In[B(t,7)] — % |:2 In (1 et lq;(;?](l ‘ )):|

0, ig(ig —H(1—e™57)
o (&) — kv +igpoy] T+ i¢In[S(1)] + T P v g V(t)} : (37.40)

Similarly, the constant volatility—stochastic interest rate
option model obtains with V(t) = V (a constant), x,(t) =

Lig(+ig)r, y(0) = Lig(ip—D)r, andu(r) = 2(r) =0.  , _ PCC0) 0N
The final characteristic functions f; for the stochastic inter- 982 EN
est rate—constant volatility model are: _ 1 / o o1 —igmiK] L9
=%, Re|(igp) e flS de. > 0.
fi =exp % %igb(l +ig)VT +ipIn[S(1)] (37.43)
32C(t, r)
_ _ p—brT Iy =
_ Q_R [21 (1 x KR]Z(I ¢ )) + [Er —KR]{| YR
ok £ (37.44)
2ig(1 —e57) } PC(t.7) 11
+ R(t); , 37.41 — ) 1
28 — [Er — kR](1 — e75kT) 2 ( ) Tr=—— =507
0211 oIT
and, —KB(t. 1) { BTZZ - 2g(z)a—R2 + Qz(z)nz} .
~ 1
fo=exp | i~ DVe +ig bS] - [5G, ) (37.45)

_ ¥C@t.) @

* —tke I'sy =
_ [2 ln(l_[sR—KR]z(;*—e ¢ )) Hg;_w} Tasav
K — / Re [(z¢>) le=!¢ lEd aﬁ} dg. (37.46)

2(i¢p — 1)(1 — e k"
(o —DU=e)  pil (37.42)
28% — [Ex — kr](1 — e75&T) where forg =V, Rand j = 1,2
O 8217 | 0> f;
— —1 ¢ In[K] J
Expressions for the gamma measures. The various second- / Re [(l ¢)” g2 :| dg.
order partial derivatives of the call price in (37.10), which are (37.47)

commonly referred to as Gamma measures, are given below: U
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