
Chapter 15
Risk-Averse Portfolio Optimization via Stochastic Dominance
Constraints

Darinka Dentcheva and Andrzej Ruszczyński

Abstract We consider the problem of constructing a portfo-
lio of finitely many assets whose return rates are described
by a discrete joint distribution. We present a new approach
to portfolio selection based on stochastic dominance. The
portfolio return rate in the new model is required to stochas-
tically dominate a random benchmark. We formulate opti-
mality conditions and duality relations for these models and
construct equivalent optimization models with utility func-
tions. Two different formulations of the stochastic dominance
constraint: primal and inverse, lead to two dual problems
that involve von Neuman–Morgenstern utility functions for
the primal formulation and rank dependent (or dual) utility
functions for the inverse formulation. The utility functions
play the roles of Lagrange multipliers associated with the
dominance constraints. In this way our model provides a link
between the expected utility theory and the rank dependent
utility theory. We also compare our approach to models using
value at risk and conditional value at risk constraints. A nu-
merical example illustrates the new approach.
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15.1 Introduction

The problem of optimal portfolio selection is subject of ma-
jor theoretical and computational studies in finance. A fun-
damental issue while dealing with uncertain outcomes is a
theoretically sound approach to their comparison.

The theory of stochastic orders plays a fundamental role
in economics (see Mosler and Scarsini 1991; Whitmore and
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Findlay 1978). These are relations that induce partial order
in the space of real random variables in the following way.
A random variable R dominates the random variable Y if
EŒu.R/	 	 EŒu.Y /	 for all functions u.�/ from certain set
of functions, called the generator of the order. The concept
of stochastic dominance is very popular and widely used in
economics and finance because of its relation to models of
risk-averse preferences (Fishburn 1964). It originated from
the theory of majorization (Hardy et al. 1934) for the discrete
case, and was later extended to general distributions (Quirk
and Saposnik 1962; Hadar and Russell 1969; Rotschild and
Stiglitz 1969). Stochastic dominance of second order is de-
fined by the set of nondecreasing concave functions: a ran-
dom variable R dominates another random variable Y in the
second order if EŒu.R/	 	 EŒu.Y /	 for all nondecreasing con-
cave functions u.�/ for which these expected values are finite.
Thus, no risk-averse decision maker will prefer a portfolio
with return rate Y over a portfolio with return rate R.

A popular approach is the utility optimization approach.
Von Neumann and Morgenstern (1944) developed the ex-
pected utility theory: for every rational decision maker there
exists a utility function u.�/ such that the decision maker
prefers outcome R over outcome Y if and only if EŒu.R/	 >
EŒu.Y /	. This approach can be implemented also very effi-
ciently; however, it is almost impossible to elicit the util-
ity function of a decision maker explicitly. More difficulties
arise when a group of decision makers with different utility
functions have to reach a consensus. Recently, the dual util-
ity theory (or rank dependent expected utility theory) has at-
tracted much attention in economics. This approach was first
presented by Quiggin (1982) and later rediscovered in a spe-
cial case by Yaari (1987). From a different system of axioms
than those of von Neumann and Morgenstern, one derives
that every decision maker has a certain rank dependent util-
ity function w W Œ0; 1	 ! R. Then a nonnegative outcome R
is preferred over a nonnegative outcome Y , if and only if

�
1Z

0

w.p/dF.�1/.RIp/ 	 �
1Z

0

w.p/dF.�1/.Y Ip/;

(15.1)
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where, F.�1/.RI �/ is the inverse distribution function of R.
For a comprehensive treatment of the rank dependent utility
theory, we refer to Quiggin (1993), and for its application
in actuarial mathematics, see Wang et al. 1997; Wang and
Yong 1998.

Another classical approach, pioneered by Markowitz
(1952, 1959, 1987), is the mean-risk approach, which com-
pares the portfolios with respect to two characteristics. One
is the expected return rate (the mean) and another one is the
risk, which is given by some scalar measure of the uncer-
tainty of the portfolio return rate. The mean-risk approach
recommends the selection of Pareto-efficient portfolios with
respect to these two criteria. In a mean-risk portfolio model
we combine these criteria by specifying some parameter as
a tradeoff between them. As a parametric optimization prob-
lem the mean-risk model can be solved numerically very ef-
ficiently, which makes this approach very attractive (Konno
and Yamazaki 1991; Ruszczyński and Vanderbei 2003).

In this paper we formulate a model for risk-averse portfo-
lio optimization and demonstrate its relation to the expected
utility approach and to rank dependent utility approach. We
optimize the portfolio performance under an additional con-
straint that the portfolio return rate stochastically dominates
a benchmark return rate, for example, the return rate of an
index. The model is based on the publications of Dentcheva
and Ruszczyński (2003a, b, c; 2004a, b) where a new model
of risk-averse optimization has been introduced. This ap-
proach has a fundamental advantage over mean-risk mod-
els and utility function models. All data for our model are
readily available. In mean-risk models the choice of the risk
measure has an arbitrary character, and it is difficult to ar-
gue for one measure against another. Similarly, optimization
of expected utility requires the form of the utility function
to be specified. Our analysis, departing from the benchmark
outcome, generates implied utility function of the decision
maker. It is implicitly defined by the benchmark used, and
by the problem under consideration. We provide two prob-
lem formulations in which the stochastic dominance has a
primal or inverse form: a Lorenz curve. The primal form has
a dual problem in terms of expected utility functions, and
the inverse form has a dual problem in terms of rank de-
pendent utility functions. In this way our model provides a
link between this two competing economic approaches. Du-
ality relations with coherent measures of risk are explored in
Dentcheva and Ruszczyński (2008).

15.2 The Portfolio Problem

Let R1;R2; : : : ; Rn be random return rates of assets
1; 2; : : : ; n. We assume that EŒjRj j	 <1 for all j D 1; : : : ; n.

Our aim is to invest our capital in these assets in order to
obtain some desirable characteristics of the total return rate
on the investment. Denoting by x1; x2; : : : ; xn the fractions of
the initial capital invested in assets 1; 2; : : : ; n we can easily
derive the formula for the total return rate:

R.x/ D R1x1 CR2x2 C : : :CRnxn: (15.2)

Clearly, the set of possible asset allocations can be defined as
follows:

XDfx2Rn Wx1Cx2C: : :CxnD1; xj 	0; j D 1; 2; : : : ; ng:

In some applications one may introduce the possibility of
short positions (i.e., allow some xj ’s to become negative).
Other restrictions may limit the exposure to particular assets
or their groups, by imposing upper bounds on the xj ’s or on
their partial sums. One can also limit the absolute differences
between the xj ’s and some reference investments Nxj , which
may represent the existing portfolio, and so on. Our analysis
does not depend on the detailed way this set is defined; we
only use the fact that it is a convex polyhedron. All modifi-
cations discussed above define some convex polyhedral fea-
sible sets and are, therefore, covered by our approach.

The main difficulty in formulating a meaningful portfo-
lio optimization problem is the definition of the preference
structure among feasible portfolios. If we use only the mean
return rate EŒR.x/	, then the resulting optimization problem
has a trivial and meaningless solution: invest everything in
assets that have the maximum expected return rate. For these
reasons, the practice of portfolio optimization usually resorts
to two approaches.

In the first approach we associate with portfolio x some
dispersion measure �.R.x// representing the variability of
the return rate R.x/. In the classical Markowitz model the
function �.R.x// is the variance of the return rate,

�.R.x// D VŒR.x/	;

but many other measures are possible here as well.
The mean-risk portfolio optimization problem is formu-

lated as follows:

max
x2X EŒR.x/	 � ��.R.x//: (15.3)

Here, � is a nonnegative parameter representing our desir-
able exchange rate of mean for risk. If � D 0, the risk has
no value and the problem reduces to the problem of maxi-
mizing the mean. If � > 0 we look for a compromise be-
tween the mean and the risk. Alternatively, one can minimize
the risk function �.x/, while fixing the expected return rate
EŒR.x/	 at some value m, and consider a family of problems



15 Risk-Averse Portfolio Optimization via Stochastic Dominance Constraints 249

parametrized by m. The reader is referred to the book by
Elton et al. (2006) for the modern perspective on mean-risk
analysis in portfolio theory.

The general question of constructing mean-risk models
that are in harmony with the stochastic dominance relations
has been the subject of the analysis of the recent papers by
Ogryczak and Ruszczyński (1999; 2001; 2002). We have
identified there several primal risk measures, most notably
central semideviations, and dual risk measures, based on the
Lorenz curve, which are consistent with the stochastic dom-
inance relations.

The second approach is to select a certain utility func-
tion u W R ! R and to formulate the following optimization
problem

max
x2X EŒu.R.x//	: (15.4)

It is usually required that the function u.�/ is concave and
nondecreasing, thus representing preferences of a risk-averse
decision maker (Fishburn 1964; 1970).

Recently, a dual (rank dependent) utility model attracts
much attention. It is based on distorting the cumulative prob-
ability distribution of the random variable R.x/ rather than
applying a nonlinear function u.�/ to the realizations ofR.x/.
The corresponding problem has the following form

max
x2X

1Z

0

F.�1/.R.x/; p/dw.p/: (15.5)

Here F.�1/.R.x/; p/ is the p-quantile of the random vari-
able R.x/, and w.�/ is the rank dependent utility function,
which distorts the probability distribution. We discuss this in
Sect. 15.3.2.

The challenge in both utility approaches is to select the ap-
propriate utility function or rank dependent utility function
that represent our preferences and whose application leads
to nontrivial and meaningful solutions of Equation (15.4)
or (15.5).

In this paper we propose an alternative approach:
introducing a comparison to a benchmark return rate into
our optimization problem. The comparison is based on the
stochastic dominance relation. More specifically, we con-
sider only portfolios whose return rates stochastically domi-
nates a certain benchmark return rate.

15.3 Stochastic Dominance

15.3.1 Direct Forms

In the stochastic dominance approach, random return
rates are compared by a point-wise comparison of some
performance functions constructed from their distribution

functions. For a real random variable V , its first performance
function is defined as the right-continuous cumulative distri-
bution function of V :

F1.V I �/ D PfV � �g for � 2 R:

A random return V is said (Lehmann 1955; Quirk and Sapos-
nik 1962) to stochastically dominate another random return
S in the first order, denoted V �.1/ S , if

F1.V I �/ � F1.S I �/ for all � 2 R:

We can say that V is “stochastically larger” than S , because it
takes values lower than �with smaller (or equal) probabilities
than S , no matter what the target � is.

The second performance function F2 is given by areas be-
low the distribution function F ,

F2.V I �/ D
�Z

�1
F1.V I �/ d� for � 2 R;

and defines the weak relation of the second order stochastic
dominance (SSD). That is, random return V stochastically
dominates S in the second order, denoted V �.2/ S , if

F2.V I �/ � F2.S I �/ for all � 2 R:

(see Hadar and Russell 1969; Rotschild and Stiglitz 1969).
We can express the function F2.V I �/ as the expected

shortfall (see, for example, Levy 2006; Ogryczak and
Ruszczyński 1999): for each target value � we have

F2.V I �/ D EŒ.�� V /C	; (15.6)

where .� � V /C D max.� � V; 0/. The function F.2/.V I �/
is continuous, convex, nonnegative and nondecreasing. It is
well defined for all random variables V with finite expected
value. Due to this representation, the second order stochastic
dominance relation V �.2/ S can be equivalently character-
ized by the system of inequalities on the expected shortfall
below any target �:

EŒ.� � V /C	 � EŒ.�� S/C	 for all � 2 R: (15.7)

Also, we obtain an equivalent characterization in terms of
the expected utility theory of von Neumann and Morgen-
stern (see, for example, Hanoch and Levy 1969; Levy 2006;
Müller and Stoyan 2002):

	 For any two random variables V; S the relation V �.1/ S

holds true if and only if for all nondecreasing functions
u.�/ defined on R we have

EŒu.V /	 	 EŒu.S/	: (15.8)
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	 For any two random variables V; S with finite
expectations, the relation V �.2/S holds true if and only if
Equation (15.8) is satisfied for all nondecreasing concave
functions u.�/.

In the context of portfolio optimization, we consider stochas-
tic dominance relations between random return rates defined
by Equation (15.2). Thus, we say that portfolio x dominates
portfolio y in the first order, if

F1.R.x/I �/ � F1.R.y/I �/ for all �2 R:

This is illustrated in Fig. 15.1.
Similarly, we say that x dominates y in the second order

.R.x/ �.2/ R.y//, if

F2.R.x/I �/ � F2.R.y/I �/ for all � 2 R:

The second order relation is illustrated in Fig. 15.2.
Recall that the individual return rates Rj have finite

expected values and thus the function F2.R.x/I �/ is well
defined.

0

0.5

1

F1(R(x);h)
F1(R(y);h)

h

Fig. 15.1 First order stochastic dominance R.x/ �.1/ R.y/

F2(R(x);h)

F2(R(y);h)

h

Fig. 15.2 Second order dominance R.x/ �.2/ R.y/

15.3.2 Inverse Forms

Let us consider the inverse model of stochastic dominance,
frequently referred to as Lorenz dominance. For a real ran-
dom variable V (for example, a random return rate) we de-
fine the left-continuous inverse of the cumulative distribution
function F1.V I �/ as follows:

F.�1/.V Ip/ D inf f� W F1.V I �/ 	 pg for 0 < p < 1:

Given p 2 .0; 1/, the number q D q.V Ip/ is called a
p-quantile of the random variable V if

PfV < qg � p � PfV � qg:

For p 2 .0; 1/ the set of p-quantiles is a closed interval and
F.�1/.V Ip/ represents its left end. Directly from the defini-
tion of the first order dominance we see that

V �.1/ S , F.�1/.V Ip/ 	 F.�1/.S Ip/ for all 0 < p < 1:
(15.9)

The first order dominance constraint can be interpreted as
a continuum of probabilistic (chance) constraints, studied
in stochastic optimization (see, Dentcheva 2005; Prékopa
2003).

Our analysis uses the absolute Lorenz function
F.�2/.V I �/ W Œ0; 1	 ! R, introduced in (Lorenz 1905). It
is defined as the cumulative quantile:

F.�2/.V Ip/ D
pZ

0

F.�1/.V I t/dt for 0 < p � 1;

(15.10)

F.�2/.V I 0/ D 0:

Similarly to F2.V I �/, the function F.�2/.V I �/ is well defined
for any random variable V , which has a finite expected value.
We notice that

F.�2/.V I 1/ D
1Z

0

F.�1/.V I t/dt D EŒV 	:

By construction, the Lorenz function is convex. Lorenz func-
tions are commonly used for inequality ordering of positive
random variables, relative to their (positive) expectations (see
Gastwirth 1971; Muliere and Scarsini 1989). Such a Lorenz
function, p 7! F.�2/.V Ip/=EŒV 	, is convex and nondecreas-
ing. The absolute Lorenz function, however, is not monotone,
when negative outcomes occur.
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It is well known (see, for example, Ogryczak and
Ruszczyński 2002) that we may fully characterize the second
order dominance relation by using the function F.�2/.V I �/:

V �.2/ S , F.�2/.V Ip/ 	 F.�2/.S Ip/ for all 0 � p � 1:

(15.11)

This characterization of stochastic dominance by Lorenz
functions is widely used in economics and statistics.

We now provide an equivalent characterization by rank
dependent utility functions. It is analogous to the characteri-
zation by expected utility functions.

Dentcheva and Ruszczyński (2006b) provide the follow-
ing characterization.

	 For any two random variables V; S the relation V �.1/ S

holds true if and only if for all nondecreasing functions
w.�/ defined on [0,1] we have

1Z

0

F.�1/.V Ip/dw.p/ 	
1Z

0

F.�1/.S Ip/dw.p/:

(15.12)

	 For any two random variables V; S with finite expec-
tations, the relation V �.2/S holds true if and only if
Equation (15.12) is satisfied for all nondecreasing con-
cave functions w.�/.

The functions w.�/ appearing in this characterization are rank
dependent (dual) utility functions.

In the context of portfolio optimization, we consider
stochastic dominance relations between random return rates
defined by Equation (15.2). Thus, we say that portfolio x
dominates portfolio y in the first order, if

F.�1/.R.x/Ip/ 	 F.�1/.R.y/Ip/ for all p 2 .0; 1/:

This is illustrated in Fig. 15.3.

0 0.5 1

p

F(–1)(R(y);p)

F(–1)(R(x);p)

Fig. 15.3 First order stochastic dominance R.x/ �.1/ R.y/ in the in-
verse form

0.50 1

F(–2)(R(x);p)

F(–2)(R(y);p)

p

Fig. 15.4 Second order dominanceR.x/ �.2/ R.y/ in the inverse form

Similarly, we say that x dominates y in the second order
.R.x/ �.2/ R.y//, if

F.�2/.R.x/Ip/ 	 F.�2/.R.y/Ip/ for al l p 2 Œ0; 1	:
(15.13)

Recall that the individual return ratesRj have finite expected
values and thus the function F.�2/.R.x/I �/ is well defined.
The second order relation is illustrated in Fig. 15.4.

15.3.3 Relations to Value at Risk
and Conditional Value at Risk

There are fundamental relations between the concepts of
Value at Risk .VaR/ and Conditional Value at Risk .CVaR/
and the stochastic dominance constraints. The VaR constraint
in the portfolio context is formulated as follows. We define
the loss rate L.x/ D �R.x/. We specify the maximum frac-
tion !p of the initial capital allowed for risk exposure at risk
level p 2 .0; 1/, and we require that

PŒL.x/ � !p	 	 1� p:

Denoting by VaRp.L.x// the left .1�p/-quantile of the ran-
dom variable L.x/, we can equivalently formulate the VaR
constraint as

VaRp.L.x// � !p:

The first order stochastic dominance relation between two
portfolios is equivalent to the continuum of VaR constraints.
Portfolio x dominates portfolio y in the first order, if

VaRp.L.x// � VaRp.L.y// for all p 2 .0; 1/:

The CVaR at level p, roughly speaking, has the following
form

CVaRp.L.x// D EŒL.x/jL.x/ 	 VaRp.L.x//	:
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This formula is precise if VaRp.L.x// is not an atom of the
distribution ofL.x/. More precisely we express it as follows:

CVaRp.L.x// D 1

p

pZ

0

VaRt .L.x//dt:

We note that

CVaRp.L.x// D � 1
p
F.�2/.R.x/; p/: (15.14)

Another description uses extremal properties of quantiles
and equivalently represents CVaR as follows (Rockafellar and
Uryasev 2000):

CVaRp.L.x// D inf
�

�
1

p
EŒ.�� R.x//C	 � �

�
: (15.15)

A CVaR constraint on the portfolio x can be formulated as
follows:

CVaRp.L.x// � !p: (15.16)

Using Equations (15.14) and (15.13) we conclude that the
second order stochastic dominance relation for two portfolios
x and y is equivalent to the continuum of CVaR constraints:

R.x/ �.2/ R.y/ , CVaRp.L.x//

� CVaRp.L.y// for all p 2 .0; 1	:
(15.17)

Assume that we compare the performance of a portfolio x
with a random benchmark Y (for example, an index return
rate or another portfolio return rate) requiring R.x/ �.2/ Y .
Then the fraction !p of the initial capital allowed for risk
exposure at level p is given by the benchmark Y :

!p D CVaRp.�Y /; p 2 .0; 1	:

Assume that Y has a discrete distribution with realizations
yi ; i D 1; : : : ; m. Then relation Equation (15.7) is equiva-
lent to

EŒ.yi � R.x//C	 � EŒ.yi � Y /C	; i D 1; : : : ; m:

(15.18)

This result does not imply that the continuum of CVaR con-
straints Equation (15.17) can be replaced by finitely many
constraints of form

CVaRpi .R.x// 	 CVaRpi .Y /; i D 1; : : : ; m;

with some fixed probabilities pi ; i D 1; : : : ; m. The reason
is that we do not know at which probability levels the CVaR
constraints have to be imposed.

15.4 The Dominance-Constrained Portfolio
Problem

15.4.1 Direct Formulation

The starting point for our model is the assumption that a
benchmark random return rate Y having a finite expected
value is available. It may have the form of Y D R.z/, for
some benchmark portfolio z. It may be an index or our cur-
rent portfolio. Our intention is to have the return rate of the
new portfolio, R.x/, preferable over Y . Therefore, we in-
troduce the following extension of the optimization problem
Equation (15.3):

max EŒR.x/	 � ��.R.x// (15.19)

subject to

R.x/ �.2/ Y; (15.20)

x 2 X: (15.21)

Similarly to Equation (15.3), we optimize a mean-risk ob-
jective function, but we introduce a constraint that the port-
folio return dominates a benchmark. Even when � D 0 and
we maximize just the expected value of the return rate, our
model will still lead to nontrivial solutions, due to the pres-
ence of the dominance constraint Equation (15.20).

To increase flexibility of model Equations (15.19)–
(15.21), we may also allow a uniform shift of R.x/ by a
constant c, as in the following model:

max EŒR.x/	 � ��.R.x// � ıc

subject to

R.x/C c �.2/ Y;

x 2 X:

Here ı > 0 can be interpreted a cost of the shift c. Observe
that the shift c may also become negative, in which case we
are rewarded for uniformity of dominating Y . The shift c
may be interpreted as an additional cash added to the return,
and ı is the interest to be paid when the loan is paid back.

To simplify the derivations, from now on we focus on the
simplest formulation of the dominance-constrained problem:

max EŒR.x/	 (15.22)

subject to

R.x/ �.2/ Y; (15.23)

x 2 X: (15.24)



15 Risk-Averse Portfolio Optimization via Stochastic Dominance Constraints 253

We can observe the first advantage of our problem formu-
lation: all data in it are readily available. Moreover, the
set defined by Equation (15.23) is convex (Dentcheva and
Ruszczyński 2003c; 2004a, c).

Let us assume now that Y has a discrete distribution
with realizations yi attained with probabilities �i ; i D
1; : : : ; m. We also assume that the return rates have a discrete
joint distribution with realizations rjt; t D 1; : : : ; T; j D
1; : : : ; n, attained with probabilities pt ; t D 1; 2; : : : ; T .
Then the formulation of the stochastic dominance relation
Equation (15.23) resp. Equation (15.18) simplifies even fur-
ther. Introducing variables sit representing the shortfall of
R.x/ below yi in realization t; i D 1; : : : ; m; t D 1; : : : ; T ,
we can formulate problem Equations (15.22)–(15.24) as
follows:

max
TX

iD1
pt

nX

jD1
xj rjt (15.25)

subject to
nX

jD1
xj rjt C sit 	 yi ; i D 1; : : : ; m; t D 1; : : : ; T;

(15.26)

TX

tD1
ptSit �

mX

lD1
�k.yi � yk/C; i D 1; : : : ; m; (15.27)

sit 	 0; i D 1; : : : ; m; t D 1; : : : ; T: (15.28)

x 2 X: (15.29)

Indeed, or every feasible point x of (15.22)–(15.24), setting

sit D max

0

@0; yi �
nX

jD1
xj rjt

1

A ; i D 1; : : : ; m;

t D 1; : : : ; T;

we obtain a feasible pair .x; s/ for Equations (15.26)–
(15.29). Conversely, for any feasible pair .x; s/ for
Equations (15.26)–(15.29), inequalities Equations (15.26)
and (15.28) imply that

sit 	 max.0; yi�
nX

jD1
xj rjt/; i D 1; : : : ; m; t D 1; : : : ; T:

Taking the expected value of both sides and using
Equation (15.27) we obtain

F2.R.x/Iyi / � F2.Y Iyi /; i D 1; : : : ; m:

Therefore, problem Equations (15.22)–(15.24) is equivalent
to problem Equations (15.25)–(15.29).

If the set X is a convex polyhedron, problem Equations
(15.25)–(15.29) becomes a large scale linear programming
problem. It may be solved by general-purpose linear pro-
gramming solvers. However, the size of the problem in-
creases dramatically with the number of assets n, their return
realizations T , and benchmark realizations m, which makes
it impractical for even moderate dimensions (in thousands).
For the purpose of solving these problems, we developed a
specialized decomposition method presented in Dentcheva
and Ruszczyński (2006a).

15.4.2 Inverse Formulation

Assume that the return rates have a joint discrete distribu-
tion realizations rjt; t D 1; : : : ; T and j D 1; : : : ; n, attained
with probabilities pt ; t D 1; 2; : : : ; T . Moreover, we assume
that all probabilities pt are equal, that is, pt D 1=T; t D
1; : : : ; T . This is the case of empirical distributions. Corre-
spondingly, we assume that Y has a discrete distribution with
m D T equally probable realizations yt ; t D 1; : : : ; T .

We use the symbol RŒt	.x/ to denote the ordered realiza-
tions of R.x/; that is,

RŒ1	.x/ � RŒ2	.x/ � : : : � RŒT 	.x/:

Since R.x/ has a discrete distribution, the functions
F2.R.x/I �/ and F.�2/.R.x/I �/ are piecewise linear. Owing to
the fact that all probabilities pt are equal, the break points of
F.�2/.R.x/I �/ occur at t=T , for t D 0; 1; : : : ; m. The same
applies to F.�2/.Y I �/. It follows from Equation (15.13) that
the stochastic dominance constraint Equation (15.23) can be
equivalently expressed as

F.�2/
	
R.x/I t

T



	 F.�2/

	
Y I t
T



; t D 1; : : : ; T:

Note that F.�2/.R.x/I 0/ D F.�2/.Y I 0/ D 0. We have

F.�2/
	
R.x/I t

T



D 1

T

tX

kD1
RŒk	.x/; t D 1; : : : ; T:

Therefore problem Equations (15.22)–(15.24) can be written
with an equivalent inverse form of the dominance constraint:

max EŒR.x/	 subject to (15.30)

tX

kD1
RŒk	.x/ 	

tX

kD1
yŒk	; t D 1; : : : ; T; (15.31)

x 2 X: (15.32)
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It was shown in (Ogryczak and Ruszczyński 2002) that the
function x 7! Pt

kD1 RŒk	.x/ is concave and positively homo-
geneous. It is also polyhedral. Therefore, Equation (15.31)
are convex polyhedral constraints. If the set X is a con-
vex polyhedron, problem Equations (15.30)–(15.32) has an
equivalent linear programming formulation.

All these transformations are possible due to the crucial
assumption that the probabilities of all elementary events are
equal. If they are not equal, the break points of the func-
tion F.�2/.R.x/I �/ depend on x, and therefore inequality
Equation (15.13) cannot be reduced to finitely many con-
vex inequalities. This is in contrast to the primal formulation,
where the discreteness of Y alone was sufficient to reduce the
stochastic dominance constraint to finitely many convex in-
equalities.

We have to observe that the quantile formulation Equation
(15.31) of stochastic dominance constraints is more involved
than the primal formulation, and requires more sophisticated
computational methods. Using Equation (15.31) directly
would require employing nonsmooth optimization methods
to solve problem Equations (15.30)–(15.32). Equivalent for-
mulation with linear constraints has very many constraints,
because of the large number of pieces of the function x 7!Pt

kD1 RŒk	.x/. Still, Dentcheva and Ruszczyński (2010) de-
veloped a highly efficient cutting plane method, which sig-
nificantly outperforms direct approaches.

15.5 Optimality and Duality

15.5.1 Primal Form

From now on we assume that the probability distributions of
the return rates are discrete with finitely many realizations
realizations rjt; t D 1; : : : ; T; j D 1; : : : ; n, attained with
probabilities pt ; t D 1; 2; : : : ; T . We also assume that there
are finitely many ordered realizations of the benchmark out-
come Y W y1 < y2 < � � � < ym. The probabilities of these
realizations are denoted by �i ; i D 1; : : : ; m. We also as-
sume that the set X is compact.

We define the set U of functions u W R ! R satisfying the
following conditions:

	 u.�/ is concave and nondecreasing
	 u.�/ is piecewise linear with break points yi ; i D 1; : : : ; m

	 u.t/ D 0 for all t 	 ym

It is evident that U is a convex cone.
Let us define the function L W Rn 
 U ! R as follows

L.x; u/ D EŒR.x/C u.R.x// � u.Y /	: (15.33)

It will play for problem Equations (15.22)–(15.24) a similar
role to that of a Lagrangian. It is well defined, because for
every u 2 U and every x 2 Rn the expected value EŒu.R.x//	
exists and is finite.

The following theorem has been proved in a more general
version in (Dentcheva and Ruszczyński 2003c).

Theorem 15.1. If Ox is an optimal solution of Equations
(15.22)–(15.24) then there exists a function Ou 2 U such that

L. Ox; Ou/ D max
x2X L.x; Ou/ (15.34)

EŒOu.R. Ox//	 D EŒOu.Y /	: (15.35)

Conversely, if for some function Ou 2 U an optimal solution Ox
of Equation (15.34) satisfies Equations (15.23) and (15.35),
then Ox is an optimal solution of Equations (15.22)–(15.24).

We can also develop duality relations for our problem.
With the function Equation (15.33) we can associate the dual
function

D.u/ D max
x2X L.x; u/:

We are allowed to write the maximization operation here, be-
cause the set X is compact and L.�; u/ is continuous.

The dual problem has the following form

min
u2E

D.u/: (15.36)

The set U is a closed convex cone and D.�/ is a convex
function, so Equation (15.36) is a convex optimization prob-
lem.

Theorem 15.2. Assume that Equations (15.22)–(15.24) has
an optimal solution. Then problem Equation (15.36) has
an optimal solution and the optimal values of both prob-
lems coincide. Furthermore, the set of optimal solutions of
Equation (15.36) is the set of functions Ou 2 U satisfy-
ing Equations (15.34)–(15.35) for an optimal solution Ox of
Equations (15.22)–(15.24).

Note that all constraints of our problem are linear or con-
vex polyhedral, and therefore we do not need any constraint
qualification conditions here.

The “Lagrange multiplier” u is directly related to the
expected utility theory of von Neumann and Morgenstern.
We have established earlier that the second order stochas-
tic dominance relation is equivalent to Equation (15.8) for
all utility functions in U. Our result shows that one of
them, Ou.�/, assumes the role of a Lagrange multiplier as-
sociated with Equation (15.23). A point Ox is a solution to
Equations (15.22)–(15.24) if there exists a utility function
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Ou.�/ such that Ox maximizes over X the objective function
EŒR.x/	 augmented with this dual utility. We see that the op-
timization problem in Equation (15.34) is equivalent to

max
x2X EŒv.R.x//	; (15.37)

where v.�/ D �C u.�/. At the optimal solution the function
Ov.�/ D � C Ou.�/ is the implied utility function. It attaches
higher penalty to smaller realizations of R.x/ (bigger real-
izations of L.x/). By maximizing L.R.x/; u/ we look for x
such that the left tail of the distribution of R.x/ is thin.

It is important to stress that the optimal function Ou.�/
is piecewise linear, with break points at the realizations
y1; : : : ; ym of the benchmark Y . Therefore, the dual problem
has also an equivalent linear programming formulation.

15.5.2 Inverse Form

In addition to the assumption that all involved distributions
are discrete, we also assume that all probabilities pt are
equal, and that m D T .

We introduce the set W of concave nondecreasing func-
tions w W Œ0; 1	 ! R. It is evident that W is a convex cone.

Recall the identity

EŒR.x/	 D
1Z

0

F.�1/.R.x/Ip/dp:

Let us define the functionˆ W X 
 W ! R, as follows

ˆ.x;w/ D
1Z

0

F.�1/.R.x/Ip/dp C
1Z

0

F.�1/.R.x/Ip/dw.p/

�
1Z

0

F.�1/.Y Ip/dw.p/: (15.38)

It plays a role similar to that of a Lagrangian of
Equations (15.30)–(15.32).

Theorem 15.3. If Ox is an optimal solution of
Equations (15.30)–(15.32) then there exists a function Ow 2 W
such that

ˆ. Ox; Ow/ D max
x2X ˆ.x; Ow/ (15.39)

1Z

0

F.�1/.R. Ox/Ip/d Ow.p/ D
1Z

0

F.�1/.Y Ip/d Ow.p/:

(15.40)

Conversely, if for some function Ow 2 W we find an
optimal solution Ox of Equation (15.39) that satisfies
Equations (15.31) and (15.40), then Ox is an optimal solution
of Equations (15.30)–(15.32).

We can also develop a duality theory based on Lagrangian
Equation (15.38). For every function w 2 W the problem

max
x2X ˆ.x;w/ (15.41)

is a Lagrangian relaxation of problem Equations (15.30)–
(15.32). Its optimal value, ‰.w/, is always greater than or
equal to the optimal value of Equations (15.30)–(15.32).

We define the dual problem as

min
w2W

‰.w/: (15.42)

The set W is a closed convex cone and‰.�/ is a convex func-
tion, so problem Equation (15.42) is a convex optimization
problem. Duality relations in convex programming yield the
following result.

Theorem 15.4. Assume that problem Equations (15.30)–
(15.32) has an optimal solution. Then problem
Equation (15.42) has an optimal solution and the optimal
values of both problems coincide. Furthermore, the set of
optimal solutions of Equation (15.42) is the set of functions
Ow 2 W satisfying Equations (15.39)–(15.40) for an optimal
solution Ox of Equations (15.30)–(15.32).

The “Lagrange multiplier” w in this case is related to rank
dependent expected utility theory. We have established ear-
lier that the second order stochastic dominance relation is
equivalent to Equation (15.12) for all dual utility functions in
W. Our result shows that one of them, Ow.�/, assumes the role
of a Lagrange multiplier associated with Equation (15.31).
A point Ox is a solution to Equations (15.30)–(15.32) if there
exists a dual utility function Ow.�/ such that Ox maximizes over
X the objective function EŒR.x/	 augmented with this dual
utility. We can transform the Lagrangian Equation (15.38) in
the following way:

ˆ.X;w/ D
1Z

0

F.�1/.R.x/Ip/dp C
1Z

0

F.�1/.R.x/Ip/dw.p/

�
1Z

0

F.�1/.YIp/dw.p/D
1Z

0

F.�1/.R.x/Ip/dv.p/

�
1Z

0

F.�1/.Y Ip/dw.p/;
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where v.p/ D pCw.p/. At the optimal solution the function
Ov.p/ D p C Ow.p/ is the quantile utility function implied

by the benchmark Y . Since
1R

0

F.�1/.Y Ip/dw.p/ is fixed,

the problem at the right hand side of Equation (15.39) be-
comes a problem of maximizing the implied rank dependent
expected utility in X . It attaches higher weights to quan-
tiles corresponding to smaller probabilities p. By maximiz-
ing ˆ.R.x/;w/ we look for x such that the left tail of the
distribution of R.x/ is thin.

Similarly to von Neumann–Morgenstern utility function,
it is very difficult to elicit the dual utility function in advance.
Our model derives it from a random benchmark.

The optimal function Ow.�/ is piecewise linear, with break
points at t

T
; t D 1; : : : ; T . Therefore, the dual problem

has also an equivalent linear programming formulation. This
property, however, is conditioned on the assumption of equal
probabilities.

15.6 Numerical Illustration

We have tested our approach on a basket of 719 real-world
assets, using 616 possible realizations of their joint return
rates (Ruszczyński and Vanderbei 2003). Historical data on
weekly return rates in the 12 years from spring 1990 to spring
2002 were used as equally likely realizations.

Implied utility functions corresponding to dominance
constraints for four benchmark portfolios.

We have used four benchmark return rates Y . Each of
them was constructed as a return rate of a certain index com-
posed of our assets. As we actually know the past return
rates, for the purpose of comparison we have selected equally
weighted indexes composed of the N assets having the high-
est average return rates in this period. Benchmark 1 corre-
sponds to N D 26, Benchmark 2 corresponds to N D 54,
Benchmark 3 corresponds toN D 82, and Benchmark 4 cor-
responds to N D 200. Our problem was to maximize the
expected return rate, under the condition that the return rate
of the benchmark portfolio is dominated. Since the bench-
mark point was a return rate of a portfolio composed from
the same basket, we have m D T D 616 in this case.

We have solved the problem by our method of minimiz-
ing the dual problem that was presented in Dentcheva and
Ruszczyński (2006a).

The implied utility functions from Equation (15.37) ob-
tained by solving the optimization problem Equation (15.34)
in the optimality conditions are illustrated in Fig. 15.5. We
see that for Benchmark Portfolio 1, which contains only a
small number of fast-growing assets, the utility function is
linear on almost the entire range of return rates. Only very
negative return rates are penalized.

A different situation occurs when the benchmark portfo-
lio contains more assets and is therefore more diversified and
less risky. In order to dominate such a benchmark, we have to
use a utility function which introduces penalty for a broader
range of return rates and is steeper. For the broadly based
index in Benchmark Portfolio 4, the optimal utility function
is smoother and is nonlinear even for positive return rates. It
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is worth mentioning that all these utility functions, although
nondecreasing and concave, have rather complicated shapes.
It would be a very hard task to determine in advance the util-
ity function that should be used to obtain a solution dominat-
ing our benchmark portfolio.

Obviously, the shape of the utility function is determined
by the benchmark within the context of the optimization
problem considered. If we change the optimization problem,
the utility function will change.

Finally, we may remark that our model
Equations (15.22)–(15.24) can be used for testing the sta-
tistical hypothesis that the return rate Y of the benchmark
portfolio is nondominated.

15.7 Conclusions

We presented a new approach to portfolio selection based
on stochastic dominance. The portfolio return rate in the new
model is required to stochastically dominate a random bench-
mark, for example, the return rate of an index. We formulated
optimality conditions and duality relations for these models
and constructed equivalent optimization models with utility
functions. Two different formulations of the stochastic dom-
inance constraint: primal and inverse, lead to two dual prob-
lems that involve von Neuman–Morgenstern utility functions
for the primal formulation and rank dependent (or dual) util-
ity functions for the inverse formulation. The utility func-
tions play the roles of Lagrange multipliers associated with
the dominance constraints. In this way our model provides a
link between the expected utility theory and the rank depen-
dent utility theory. A numerical example illustrates the new
approach and demonstrates the efficacy of the method.

Future challenges are extensions of the approach to mul-
tivariate and multistage outcomes and benchmarks.
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