
Chapter 4

Special Areas of Generalized Measure Theory

4.1 An Overview

The term ‘‘generalized measure theory,’’ as it is understood in this book, is
delimited by two extremes—the classical theory of additive measures or signed
additive measures at one extreme and the theory of general measures or signed
general measures at the other extreme. There are of course many measure
theories between these two extremes. They are based on measures that do not
require additivity, but that are not fully general as well. Three major types of
measures that are in this category are introduced in Chapter 3. They are
monotone measures and their large subclasses: superadditive and subadditive
measures. The purpose of this chapter is to further refine these large classes of
measures by introducing their various subclasses. We focus on those subclasses
that are well established in the literature.

In Section 4.2, we begin with an important family of measures that are
referred to in the literature as Choquet capacities of various orders. Classes of
measures captured by this family are significant as they are linearly ordered in
terms of their interpretations and methodological capabilities. In some sense
this family of measures is the core of generalized measure theory. Classes of
measures in this family are benchmarks against which other classes of measures
are compared in terms of their roles in generalized measure theory.

After introducing this important family of measures in Section 4.2, we return
to classical measure theory and examine the various ways of how to generalize
it. First, we introduce in Section 4.3 a simple generalization of classical mea-
sures via the so-called l-measures. Next, we show in Section 4.4 that the class of
l-measures is a member of a broader class of measures that we call quasi-
measures. Each member of this broader class of measures is connected to
additive measures via a particular type of reversible transformation. After
examining quasi-measures, we proceed in Section 4.5 to the strongest Choquet
capacities (referred to as capacities of order 1) and their dual measures
(referred to as alternating capacities of order1). These pairs of dual measures,
when normalized, form a basis for a well-developed and highly visible theory of
uncertainty, which is usually referred to in the literature as the Dempster–Shafer
theory. Another important and well-known theory of uncertainty, which is in
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some specific way connected with the Dempster–Shafer theory, is possibility
theory. Nonadditive measures upon which possibility theory is based are intro-
duced and examined in Section 4.6. Finally, some properties of finite monotone
measures are presented in Section 4.7.

4.2 Choquet Capacities

Definition 4.1.Given a particular integer k � 2, aChoquet capacity of order k is a
monotone measure � on a measurable space (X, F) that satisfies the inequalities
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for all families of k sets in F, where Nk ¼ f1; 2; . . . ; kg:
Since setsAj in the inequalities (4.1) are not necessarily distinct, every Choquet

capacity of order k is also of order k0 ¼ k� 1; k� 2; . . . ; 2:However, a capacity
of order kmay not be a capacity of any higher order (kþ 1, kþ 2, etc.). Hence,
capacities of order 2, which satisfy the simple inequalities

�ðA1 [ A2Þ � �ðA1Þ þ �ðA2Þ � �ðA1 \ A2Þ (4:2)

for all pairs of sets in F, are the most general capacities. The least general ones
are those of order k for all k � 2: These are calledChoquet capacities of order1
or totally monotone measures. They satisfy the inequalities
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for every k � 2 and every family of k sets in F.
It is trivial to see that the set of inequalities (4.2) contains all the inequalities

required for superadditive measures in Definition 3.3 (when A1 \ A2 ¼ Ø), but
contains additional inequalities (when A1 \ A2 6¼ Ø). Choquet capacities of
order 2—the most general class of Choquet capacities—are thus a subclass of
superadditive measures.

Definition 4.2.Given a particular integer k � 2, an alternating Choquet capacity
of order k is a monotone measure � on a measurable space (X, F) that satisfies
for all families of k sets in F the inequalities
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It is clear that the requirements for alternating capacities of some order k � 2
are weaker than those of orders kþ 1; kþ 2; . . . :Alternating capacities of order 2,
which are required to satisfy the inequalities

�ðA1 \ A2Þ � �ðA1Þ þ �ðA2Þ � �ðA1 [ A2Þ (4:5)

for all pairs of sets in F, are thus the most general alternating capacities. On the
other hand, alternating Choquet capacities of order1, which are defined by the
inequalities
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for every k � 2 and every family of k sets in F, are the least general ones.
It is obvious that the set of inequalities (4.5) contains all the inequalities

required in Definition 3.4 for subadditive measures (when A1 \ A2 ¼ Ø), but
contains some additional inequalities (when A1 \ A2 6¼ Ø). Alternating Cho-
quet capacities of order 2—the most general class of alternating Choquet
capacities—are thus subadditive measures, but not the other way around.

Choquet capacities of order k are often referred to in the literature as k-
monotone measures and, similarly, alternating Choquet capacities are often
called k-alternating measures. These shorter names are adopted, by and large,
in this book. For convenience, monotonemeasures that are not 2-monotone are
often referred to as 1-monotone measures. Using this terminology the inclusion
relationship among the introduced classes of k-monotone and k-alternating
measures for k � 1is depicted in Fig. 4.1.

Theorem 4.1. Let � be a normalized 2-monotone measure on a measurable space
(X, F). Then the dual measure of �, denoted by ��; is a normalized 2-alternating
measure on (X, F).

Proof.

��ðA1 \ A2Þ ¼ 1� �ðA1 \ A2Þ

¼ 1� �ðA1 [ A2Þ

� 1� �ðA1Þ � �ðA2Þ þ �ðA1 \ A2Þ

¼ 1� �ðA1Þ þ 1� �ðA2Þ � 1þ �ðA1 \ A2Þ

¼ 1� �ðA1Þ þ 1� �ðA2Þ � 1þ �ðA1 [ A2Þ
¼ ��ðA1Þ þ ��ðA2Þ � ��ðA1 [ A2Þ:

&

This theorem can be easily generalized to normalized k-monotone measures
for any k � 2. Observe, however, that the dual measure of a 1-monotone
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measure that is superadditive is not necessarily subadditive, as is shown by the
following counterexample.

Example 4.1. Let X ¼ fa; b; cg;F ¼ PðXÞ, and let � be the 1-monotone measure
on (X, P(X)) defined in Table 4.1. This measure is clearly normalized and
superadditive, but it is not 2-monotone due to the following two violations of
the required inequalities (4.2):

�ðXÞ ¼ 15�ðfa; bgÞ þ �ðfb; cg � �ðfbgÞ ¼ 1:4;

�ðXÞ ¼ 15�ðfa; cgÞ þ �ðfb; cgÞ � �ðfcgÞ ¼ 1:1:

The dual measure of �, denoted in Table 4.1 by ��; is not subadditive due to
the following violation of the inequalities required for subadditive measures in
Definition 3.4:

�ðfa; bgÞ ¼ 0:84�ðfagÞ þ �ðfbgÞ ¼ 0:7;

�ðfa; cgÞ ¼ 14�ðfagÞ þ �ðfcgÞ ¼ 0:6:

Fig. 4.1 Inclusion relationship among k-monotone and k-alternating measures for k � 1
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The whole family of k-monotone and k-alternating classes of measures plays
an important role in generalized measure theory and, particularly, in its appli-
cations dealing with various types of uncertainty. Especially important are
the classes of 2-monotone and 2-alternating measures, which are the most
general classes in this family, and the classes of1-monotone and1-alternating
measures. They represent important benchmarks from mathematical and com-
putational points of view. These issues are discussed later in the book in various
contexts.

Thus far, we have followed a top-down approach: we started by defining
general measures and we proceeded to defining monotone measures, super-
additive and subadditive measures, and, finally, k-monotone and k-alternating
measures. In the rest of this chapter we switch to the complementary, bottom-
up approach: we start with examining in detail some of the simplest general-
izations of classical measures and we proceed then by enlarging the framework
to discuss the various higher-level generalizations.

4.3 l-Measures

Definition 4.3. A monotone measure � satisfies the l-rule (on C) iff there exists

l 2 � 1

sup�
;1

� �
[ f0g;

where sup � ¼ supE2C �ðEÞ, such that

�ðE [ FÞ ¼ �ðEÞ þ �ðF Þ þ l � �ðEÞ � �ðF Þ;

whenever

E 2 C;F 2 C; E [ F 2 C; and E \ F ¼ Ø:

� satisfies the finite l-rule (onC) iff there exists the above-mentioned l such that

Table 4.1 Superadditive measure � and its dual measure �� (Example 4.1)

a b c �ðAÞ ��ðAÞ
A: 0 0 0 0.0 0.0

1 0 0 0.1 0.2

0 1 0 0.0 0.5

0 0 1 0.2 0.4

1 1 0 0.6 0.8

1 0 1 0.5 1.0

0 1 1 0.8 0.9

1 1 1 1.0 1.0
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for any finite disjoint class fE1; . . . ;Eng of sets in C whose union is also in C; �
satisfies the �-l-rule (on C) iff there exists the above-mentioned l, such that
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for any disjoint sequence fEng of sets in C whose union is also in C.
When l ¼ 0; the l-rule, the finite l-rule, or the �-l-rule is just the additivity,

the finite additivity, or the �-additivity, respectively.

Theorem 4.2. IfC=R is a ring and � satisfies the l-rule, then � satisfies the finite

l-rule.

Proof. The conclusion is obvious when l ¼ 0. Let l 6¼ 0 and fE1; . . . ;Eng be a
disjoint class of sets in R. We use the mathematical induction to prove
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From the definition we know directly that (4.7) is true when n ¼ 2. Now,

suppose that (4.7) is true for n ¼ k� 1. We have
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That is, (4.7) is true for n ¼ k. The proof is complete. &

In fact, Theorem 4.2 holds also when C is only a semiring. This is shown in
Section 4.4, after introducing a new concept called quasi-additivity.

Example 4.2. Let X ¼ fa; bg and C ¼ PðXÞ. If

�ðEÞ ¼

0 E ¼ Ø

0:2 E ¼ fag
0:4 E ¼ fbg
1 E ¼ X;

8
>>>><

>>>>:

then � satisfies the l-rule, where l ¼ 5. Since C is a finite ring, � satisfies the

finite l-rule and also the �-l-rule.

Definition 4.4. � is called a l-measure on C iff it satisfies the �-l-rule on C and

there exists at least one set E 2 C such that �ðEÞ51:
Usually the l-measure is denoted by gl: When C is a �-algebra and

glðXÞ ¼ 1, the l-measure gl is also called a Sugeno measure. The set function

given in Example 4.2 is a Sugeno measure.

Example 4.3. Let X ¼ fx1; x2; . . .g be a countable set, C be the semiring con-

sisting of all singletons of X and the empty set Ø, and faig be a sequence of

nonnegative real numbers. Define �ðfxigÞ ¼ ai; i ¼ 1; 2; . . . ; and �ðØÞ ¼ 0.

Then � is a l-measure for any l 2 ð�1= sup�;1Þ [ 0f g, where

sup � ¼ supðfaiji ¼ 1; 2; . . .gÞ.

Theorem 4.3. If gl is a l-measure on a class C containing the empty set Ø, then

glðØÞ ¼ 0, and gl satisfies the finite l-rule.

Proof. From Definition 4.4, there exists E 2 C such that glðEÞ51: When

l ¼ 0; gl is a classical measure and therefore glðØÞ ¼ 0. Otherwise, l 6¼ 0:
Since fE;E2;E3; . . .g; where E2 ¼ E3 ¼ � � � ¼ Ø is a disjoint sequence of sets

in C whose union is E, we have

gl Eð Þ ¼ 1

l

Y1

i¼2
½1þ l � glðEiÞ� � ½1þ l � glðEÞ� � 1

( )
;

where Ei ¼ Ø, and i ¼ 2; 3; . . . That is,

1þ l � glðEÞ ¼ ½1þ l � glðEÞ� �
Y1

i¼2
½1þ l � glðEiÞ�

( )
:

Noting the fact that l 2 ð�1= sup gl;1Þ and glðEÞ51; we know that

051þ l � glðEÞ51:
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Thus, we have

Y1

i¼2
½1þ l � glðEiÞ� ¼ 1

and therefore,

1þ lglðØÞ ¼ 1:

Consequently, we have

glðØÞ ¼ 0:

By using this result, the second conclusion is clear. &

Theorem 4.4. If gl is a l-measure on a semiring S, then gl is monotone.

Proof.When l ¼ 0 we refer the monotonicity of classical measures (Section 2.2).

Now, let l 6¼ 0 and let E 2 S; F 2 S; and E 	 F. Since S is a semiring, F� E ¼
[ni¼1Di; where fDig is a finite disjoint class of sets in S, and we have

1

l

Yn

i¼1
½1þ l � glðD1Þ � 1

( )
� 0

in both cases where l40 and l50: By using Theorem 4.3, gl satisfies the finite

l-rule. So, we have

glðFÞ ¼ glðE [D1 [ � � � [DnÞ

¼ 1

l

Yn
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½1þ l � glðD1Þ�½1þ l � glðEÞ� � 1
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1

l

Yn

i¼1
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� glðEÞ: &

Though we can prove directly that any l-measure on a semiring possesses the
continuity now, it seems more convenient to show this fact after introducing a

new concept called a quasi-measure. However, from Theorem 4.3, Theorem 4.4,

and the fact that l-measures are continuous, we know that any l-measure on a

semiring is a monotone measure.

Theorem 4.5. Let gl be a l-measure on a semiring S. Then, it is subadditive when

l50; it is superadditive when l40; and it is additive when l ¼ 0:
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Proof. From Theorems 4.3 and 4.4, we know that � satisfies the l-rule and is
monotone. The conclusion of this theorem can be obtained directly from
Definition 4.3. &

By selecting the parameter l appropriately, we can use a l-measure to fit a
given monotone measure approximately.

Theorem 4.6. Let gl be a l-measure on a ring R. Then, for any E 2 R and F 2 R;

(1) glðE� FÞ ¼ glðEÞ � glðE \ FÞ
1þ l � glðE \ FÞ ;

(2) glðE [ FÞ ¼ glðEÞ þ glðFÞ � glðE \ FÞ þ l � glðEÞ � glðFÞ
1þ l � glðE \ FÞ :

Furthermore, if R is an algebra and gl is normalized, then

(3) glð �EÞ ¼
1� glðEÞ

1þ l � glðEÞ
:

Proof. From

glðEÞ ¼ glððE \ FÞ [ ðE� FÞÞ

¼ glðE \ FÞ þ glðE� FÞ½1þ l � glðE \ FÞ�

we obtain (1). As to (2), we have

glðE [ FÞ ¼ glðE [ ½F� ðE \ F�Þ

¼ glðEÞ þ glðF� ðE \ FÞÞ � ½1þ l � glðEÞ�

¼ glðEÞ þ
glðFÞ � glðE \ FÞ
1þ l � glðE \ FÞ � ½1þ l � glðEÞ�

¼ glðEÞ þ glðFÞ � glðE \ FÞ þ l � glðEÞ � glðFÞ
1þ l � glðE \ FÞ

Formula (3) is a direct result of (1) and the normalization of gl: &

How to construct a l-measure on a semiring (or ring, algebra, �-ring, �-
algebra, respectively) is a significant and interesting problem. IfX ¼ fx1; . . . ; xng
is a finite set,C consists of X and all singletons of X, � is defined on C such that
�ðfxigÞ5�ðXÞ51 for i ¼ 1; 2; . . . ; n; and there are at least two points, xi1 and
xi2; satisfying �ðfxijgÞ40; j ¼ 1; 2; then such a set function � is always a
l-measure onC for some parameter l. When �ðXÞ ¼ �n

i¼1�ðfxigÞ; l ¼ 0; other-
wise, l can be determined by the equation

�ðXÞ ¼ 1

l

Yn

i¼1
ð1þ l � �ðfxigÞÞ � 1

" #
: (4:8)

In fact, we have the following theorem.
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Theorem 4.7. Under the condition mentioned above, the equation

1þ l � �ðXÞ ¼
Yn

i¼1
½1þ l � �ðfxigÞ�

determines the parameter l uniquely:

(1) l40 when
Pn

i¼1
�ðfxigÞ5�ðXÞ;

(2) l ¼ 0 when
Pn

i¼1
�ðfxigÞ ¼ �ðXÞ;

(3) � 1
�ðXÞ5l50 when

Pn

i¼1
�ðfxigÞ4�ðXÞ:

Proof. Denote �ðXÞ ¼ a; �ðfxigÞ ¼ ai for i ¼ 1; 2; . . . ; n; and

fkðlÞ ¼
Qk

i¼1 ð1þ ailÞ for k ¼ 2; . . . ; n:There is no loss of generality in assuming

a140 and a240: From the given condition we know that ð1þ aklÞ40 for

k ¼ 1; . . . ; n and any l 2 �1=a;1ð Þ. Since

fkðlÞ ¼ ð1þ aklÞfk�1ðlÞ;

we have

f 0kðlÞ ¼ ak � fk�1ðlÞ þ ð1þ aklÞf 0k�1ðlÞ;

and

f 00k ðlÞ ¼ 2ak � f 0k�1ðlÞ þ ð1þ aklÞ f 00k�1ðlÞ:

It is easy to see that, for any k ¼ 2; . . . ; n and any l 2 ð�1=a;1Þ; if f 0k�1ðlÞ40

and f 00k�140; then so are f 0kðlÞ and f 00kðlÞ: Now, since

f 02ðlÞ ¼ a1ð1þ a2lÞ þ a2ð1þ a1lÞ40

and

f 002ðlÞ ¼ 2a1a240;

we know that f 00kðlÞ40: This means that the function fnðlÞ is concave in

ð�1=a;1Þ: From the derivative of fnðlÞ;

f 0nð0Þ ¼
Xn

i¼1
ai:

Noting liml!1 fnðlÞ ¼ 1; we know that, if
Pn

i¼1 ai5a; the curve of fnðlÞ has
a unique intersection point with the line fðlÞ ¼ 1þ a � l (illustrated in Fig. 4.2a)

on some l40: If
Pn

i¼1 ai ¼ a; then the line f lð Þ ¼ 1þ a � l is just a tangent of
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Fig. 4.2 The uniqueness of parameter l
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fnðlÞ at point l ¼ 0 (illustrated in Fig. 4.2b), and therefore, the curve of fnðlÞ has
no intersection point anywhere else with the line fðlÞ ¼ 1þ a � l: If

Pn
i¼1 ai4a;

since f0nðlÞ40; and fðlÞ ¼ 1þ a � l � 0 when l � �1=a; the curve of fnðlÞmust

have a unique intersection point with the line fðlÞ ¼ 1þ a � l on some
l 2 �1=a; 0ð Þ (illustrated in Fig. 4.2c). Now, the proof is complete. &

If there is some xi such that �ðfxigÞ ¼ �ðXÞ; then Eq. (4.8) has infinitely
many solutions (i.e., � is a l-measure for any l 2 ð�1=�ðXÞ;1ÞÞ only when
�ðfxjgÞ ¼ 0 for all j 6¼ i; otherwise, it has no solution in ð�1=�ðXÞ;1Þ:

After determining the value of l, it is not difficult to extend this l-measure
from C onto the power set P(X) by using the finite l-rule.

Example 4.4. Let X ¼ fa; b; cg; �ðXÞ ¼ 1; �ðfagÞ ¼ �ðfbgÞ ¼ 0:2; �ðfcgÞ ¼ 0:1:
According to Theorem 4.7, � is a l-measure. Now we use (4.8) to determine the
value of the parameter l. From (4.8), we have

1 ¼ ð1þ 0:2lÞð1þ 0:2lÞð1þ 0:1lÞ � 1

l
;

which results in the quadratic equation,

0:004l2 þ 0:08l� 0:5 ¼ 0:

Solving this equation, we have

l ¼ �0:08
 ð0:0064þ 0:008Þ1=2

0:008

¼ �0:08
 0:12

0:008

¼ 5 or � 25

:

Since –25 < –1, the unique feasible solution is l = 5.
Now we turn to consider constructing a normalized l-measure on the Borel

field for a given l 2 ð�1;1Þ. We already know that S ¼ f½ a; bÞj �15 a �
b51g is a semiring. If h(x) is a probability distribution function (left contin-
uous) on ð�1;1Þ; then we can define a set function  on S as follows:

 ð½a; bÞÞ ¼ hðbÞ � hðaÞ
1þ l � hðaÞ:

This set function  is continuous, and we can define

 ðXÞ ¼  ðð�1;1ÞÞ ¼ lim
a!�1;b!1

 ð½a; bÞÞ:

Since limx!1 hðxÞ ¼ 0 and limx!1 hðxÞ ¼ 1; we have

 ðXÞ ¼ 1:
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Moreover, we can verify that such a set function  satisfies the l-rule on S.
In fact, for any ½a; bÞ 2 S and ½b; cÞ 2 S; ½a; bÞ [ ½b; cÞ ¼ ½a; cÞ 2 S and

 ð½a; bÞÞ þ  ð½b; cÞÞ þ l �  ð½a; bÞÞ �  ð½b; cÞÞ

¼  ð½a; bÞÞ þ  ð½b; cÞÞ � ½1þ l �  ða; bÞ�

¼ hðbÞ � hðaÞ
1þ l � hðaÞ þ

hðcÞ � hðbÞ
1þ l � hðbÞ � 1þ l

hðbÞ � hðaÞ
1þ l � hðaÞ

� �

¼ hðbÞ � hðaÞ
1þ l � hðaÞ þ

½hðcÞ � hðbÞ� � ½1þ l � hðbÞ�
½1þ l � hðbÞ� � ½1þ l � hðaÞ�

¼ hðcÞ � hðaÞ
1þ l � hðaÞ

¼  ð½a; cÞÞ:

It is possible, but rather difficult to verify that such a set function  satisfies
the �-l-rule on S and to extend onto the Borel field in a way similar to that used
for classical measures. However, if we use the aid of the concept of a quasi-
measure, which is introduced in the next section, this problem becomes quite easy
to solve.

4.4 Quasi-Measures

Definition 4.5. Let a 2 ð0;1�. An extended real function � : ½0; a� ! ½0;1� is
called a T-function iff it is continuous, strictly increasing, and such that �ð0Þ ¼ 0
and ��1ðf1gÞ ¼ Ø or f1g, according to a being finite or not.

Definition 4.6. � is called quasi-additive iff there exists a T-function �, whose
domain of definition contains the range of �, such that the set function � � �
defined on C by

ð� � �ÞðEÞ ¼ �ð�ðEÞÞ; for any E 2 C ;

is additive;� is called a quasi-measure iff there exists aT-function � such that � � �
is a classical measure on C. The T-function � is called the proper T-function of �.

A normalized quasi-measure is called a quasi-probability.
Clearly, any classical measure is a quasi-measure with the identity function

as its proper T-function.

Example 4.5. The monotone measure given in Example 3.4 is a quasi-measure.
Its proper T-function is �ðyÞ ¼ ffiffiffiffi

y;
p

y 2 ½0; 1�.

Theorem 4.8. Any quasi-measure on a semiring is a quasi-additive monotone measure.

Proof. Let � be a quasi-measure on a semiring S and � be its proper T-function.
Since any classical measure on a semiring is additive, � is quasi-additive.
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Furthermore, �–1 exists, and it is continuous, strictly increasing, and ��1ð0Þ ¼ 0:
So; � ¼ ��1 � ð� � �Þ is continuous, monotone, and �ðØÞ ¼ 0. That is, � is a
monotone measure. &

Theorem 4.9. If � is a classical measure, then, for any T-function � whose range
contains the range of �; ��1 � � is a quasi-measure with � as its proper T-function.

Proof. Since � � ð��1 � �Þ ¼ �, the conclusion of this theorem is clear. &

Theorem 4.10. Let � be quasi-additive on a ring R with �ðØÞ ¼ 0. If � is either
continuous from below on R, or continuous from above at Ø and finite, then � is a
quasi-measure on R.

Proof. Since � is quasi-additive, there exists a T-function � such that � � � is
additive on R. The composition � � � is either continuous from below on R, or
continuous from above at Ø and finite. So � � � is a measure on R (Section 2.2,
Theorem 2.32). That is, � is a quasi-measure on R. &

Corollary 4.1.Any quasi-additive monotone measure on a ring is a quasi-measure.
Now, we return to solve the problems that are raised in Section 4.3.

Theorem 4.11. Let l 6¼ 0. Any l-measure gl is a quasi-measure with

�l yð Þ ¼ lnð1þlyÞ
kl

; y 2 ½0; sup gl�;

as its proper T-function, where k is an arbitrary finite positive real number.
Conversely, if � is a classical measure, then ��1l � � is a l-measure, where

��1l ðxÞ ¼
eklx � 1

l
; x 2 ½0;1�;

and k is an arbitrary finite positive real number.

Proof. �l is a T-function. Let fEng be a disjoint sequence of sets in C whose
union [1n¼1En is also in C. If gl is a l-measure on C then it satisfies the �-l-rule
and there exists E0 2 C such that glðE0Þ51: Therefore, we have

ð�l � glÞ
	[1

n¼1
En



¼ 1

k � l � ln
h
1þ l � gl

	[1

n¼1
En


i

¼ 1

k � l � ln 1þ
Y1

n¼1
½1þ l � glðEnÞ�

" #
� 1

 !

¼ 1

k � l �
X1

n¼1
ln½1þ l � glðEnÞ�

¼
X1

n¼1

ln ½1þ l � glðEnÞ�
k � l

¼
X1

n¼1
ð�l � glÞðEnÞ;
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and ð�l � glÞðE0Þ ¼ �lðglðE0ÞÞ51: So �l � gl is a classical measure on C.

Conversely, if � is a classical measure on C, then it is �-additive, and there

exists E0 2 C such that �ðE0Þ51: Therefore, we have

ð��1l � �Þ
	[1

n¼1
En



¼ ��1l

X1

n¼1
�ðEnÞ

" #

¼
exp kl

X1

n¼1
�ðEnÞ

" #
� 1

l

¼

Q1

n¼1
ekl��ðEnÞ � 1

l

¼ ð1=lÞ
Y1

n¼1
½1þ l � ��1l ð�ðEnÞÞ� � 1

( )

¼ ð1=lÞ
Y1

n¼1
½1þ l � ð��1l � �ÞðEnÞ� � 1

( )
;

that is, ��1l � � satisfies the �-l–rule. Noting thatð��1l � �ÞðE0Þ ¼ ��1l ð�ðE0ÞÞ<1;
we conclude that ��1l � � is a l-measure onC. &

Example 4.6. Let X ¼ fa; bg;F ¼ PðXÞ; gl be defined by

glðEÞ ¼

0 if E ¼ Ø

0:2 if E ¼ fag
0:4 if E ¼ fbg
1 if E ¼ X.

8
>>>><

>>>>:

Then gl is a l-measure with a parameter l ¼ 5: If we take

�lðyÞ ¼
lnð1þ lyÞ
lnð1þ lÞ ¼

lnð1þ 5yÞ
ln6

;

then we have

ð�l � glÞðEÞ ¼

0 if E ¼ Ø

0:387 if E ¼ fag
0:613 if E ¼ fbg
1 if E ¼ X:

8
>>>><

>>>>:

�l � gl is a probability measure.
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Example 4.7. Let X ¼ fa; bg; F ¼ PðXÞ; and let gl be a l-measure defined by

glðEÞ ¼

0 if E ¼ Ø

0:5 if E ¼ fag
0:8 if E ¼ fbg
1 if E ¼ X:

8
>>>><

>>>>:

with l ¼ �0:75: If we take

�lðyÞ ¼
lnð1� 0:75yÞ

ln 0:25
;

then

ð�l � glÞðEÞ ¼

0 if E ¼ Ø

0:34 if E ¼ fag
0:66 if E ¼ fbg
1 if E ¼ X;

8
>>>><

>>>>:

which is a probability measure.
In a similar way, we know that under the mapping �l the l-rule and the finite

l-rule become the additivity and the finite additivity, respectively. Conversely,

under the mapping ��1l the additivity and the finite additivity become the l-rule
and the finite l-rule, respectively. Recalling some relevant knowledge in classi-

cal measure theory, we have the following corollaries.

Corollary 4.2. On a semiring, the l-rule is equivalent to the finite l-rule.

Corollary 4.3. Any l-measure on a semiring is continuous.

Corollary 4.4. On a ring, the l-rule together with continuity are equivalent to the

�-l-rule. Thus, on a ring, any monotone measure that satisfies the l-rule is a

l-measure.
Similarly as in classical measure theory, a monotone measure on a semiring

that satisfies the l-rule (or, is quasi-additive) may not satisfy the �-l-rule (or,
may not be a quasi-measure).

Corollary 4.5. If gl is a normalized l-measure on an algebra R, then its dual

measure �, which is defined by

�ðEÞ ¼ 1� glð �EÞ for any E 2 R;

is also a normalized l-measure on R, and the corresponding parameter is l0 ¼
�l=ðlþ 1Þ:
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Proof. Let E 2 R;F 2 R; and E \ F ¼ Ø. By using Theorem 4.6, we have

�ðEÞ þ �ðFÞ � l
lþ 1

�ðEÞ�ðFÞ

¼ 1� glð �EÞ þ 1� glð �FÞ �
l

lþ 1
½1� glð �EÞ�½1� glð �FÞ�

¼ ðlþ 1ÞglðEÞ
1þ lglðEÞ

þ ðlþ 1ÞglðFÞ
1þ lglðFÞ

� l
ðlþ 1ÞglðEÞglðFÞ

½1þ lglðEÞ�½1þ lglðFÞ�

¼ ðlþ 1Þ½glðEÞ þ glðFÞ þ lglðEÞglðFÞ�
½1þ lglðEÞ�½1þ lglðFÞ�

¼ ðlþ 1ÞglðE [ FÞ
1þ lglðE [ FÞ

¼ 1� glðE [ FÞ

¼ �ðE [ FÞ:

:

Since � is continuous, by Corollary 3.4, � satisfies the �-l-rule with a parameter

l0 ¼ �l=ðlþ 1Þ: So, noting that �ðXÞ ¼ 1� glðØÞ ¼ 1, we know that � is a

normalized l-measure on R with a parameter l0 ¼ �l=ðlþ 1Þ: &

As to the problem of constructing a l-measure on the Borel field, we deal
with it in Chapter 6.

4.5 Belief Measures and Plausibility Measures

In Section 4.4, a nonadditive measure is induced from a classical measure by a

transformation of the range of the latter. In this section we attempt to construct

a nonadditive measure in another way.

Definition 4.7. Let P(P(X)) be the power set of P(X). If p is a discrete probability

measure on (P(X), P(P(X))) with pðfØgÞ ¼ 0, then the set function m: P(X)!
[0, 1] determined by

mðEÞ ¼ pðfEgÞfor any E 2 PðXÞ

is called a basic probability assignment on P(X).

Theorem 4.12. A set function m: P(X)! [0, 1] is a basic probability assignment if

and only if

(1) mðØÞ ¼ 0;

(2)
P

E2PðXÞ
mðEÞ ¼ 1:
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Proof. The necessity of these two conditions follows directly from Definition

4.7. As for their sufficiency, if we write

Dn ¼ Ej 1
nþ15mðEÞ � 1

n

n o
; n ¼ 1; 2; . . . ;

then every Dn is a finite class,

D ¼
[1

n¼1
Dn ¼ fEjmðEÞ40g

is a countable class, and Ŝ ¼ ffEjE 2 PðXÞg [ fØg is a semiring. Define

pðfEgÞ ¼
mðEÞ if E 2 D

0 otherwise

�

for any E 2 PðXÞ and pðfØgÞ ¼ 0. Then, p is a probability measure on Ŝ with

pðfØgÞ ¼ 0, which can be extended uniquely to a discrete probability measure

on (P(X), P(P(X))) by the formula

pðEÞ ¼
X

E2E
pðfEgÞ:

for any E 2 PðPðXÞÞ. &

Definition 4.8. If m is a basic probability assignment on P(X), then the set

function Bel: P(X)! [0, 1] determined by the formula

BelðEÞ ¼
X

F	E
mðFÞ 8E 2 PðXÞ (4:9)

is called a belief measure on (X, P(X)), or, more specifically, a belief measure

induced from m.

Lemma 4.1. If E is a nonempty finite set, then

X

F	E
ð�1ÞjFj ¼ 0:

Proof. Let E ¼ fx1; . . . ; xngThen, we have

fjFjjF 	 Eg ¼ f0; 1; . . . ; ng

and

jfFjjFj ¼ igj ¼ n
i

� �
; i ¼ 0; 1; . . . ; n:
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So, we have

X

F	E
ð�1ÞjFj ¼

Xn

i¼0
ð�1Þi n

i

� �
¼ ð1� 1Þn ¼ 0:

&

Lemma 4.2. If E is a finite set, F 	 E and F 6¼ E, then

X

GjF	G	E
ð�1ÞjGj ¼ 0:

Proof. E – F is a nonempty finite set. Using Lemma 4.1, we have

X

GjF	G	E
ð�1ÞjGj ¼

X

D	E�F
ð�1ÞjF[Dj ¼ ð�1ÞjFj

X

D	E�F
ð�1ÞjDj ¼ 0:

&

Lemma 4.3. Let X be finite, and l and � be finite set functions defined on P(X).

Then we have

l Eð Þ ¼
X

F	E
� Fð Þ 8E 2 P Xð Þ (4:10)

if and only if

� Eð Þ ¼
X

F	E
�1ð ÞjE�Fjl Fð Þ 8E 2 P Xð Þ: (4:11)

Proof. If (4.10) is true, then

X

F	E
�1ð ÞjE�Fjl Fð Þ ¼ �1ð ÞjEj

X

F	E
�1ð ÞjFjl Fð Þ

¼ �1ð ÞjEj
X

F	E
�1ð ÞjFj

X

G	F
� Gð Þ

" #

¼ �1ð ÞjEj
X

G	E
� Gð Þ

X

FjG	F	E
�1ð ÞjFj

2
4

3
5

¼ �1ð ÞjEj� Eð Þ �1ð ÞjEj

¼ � Eð Þ:
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Conversely, if (4.11) is true, then we have

X

F	E
� Fð Þ ¼

X

F	E

X

G	F
�1ð ÞjF�Gjl Gð Þ

¼
X

G	E
�1ð ÞjGjl Gð Þ

X

FjG	F	E
�1ð ÞjFj

2

4

3

5

¼ �1ð ÞjEjl Eð Þ �1ð ÞjEj

¼ l Eð Þ: &

Theorem 4.13. If Bel is a belief measure on (X, P(X)), then

(BM1) Bel Øð Þ ¼ 0;
(BM2) Bel(X) = 1;

(BM3) Bel
Sn

i¼1
Ei

� �
�

P
I	f1;...;ng;I 6¼Ø

ð�1ÞjIjþ1 Bel
T
i2I

Ei

� �
;

where fE1; . . . ;Eng is any finite subclass of P(X );

(BM4) Bel is continuous from above.

Proof. From Theorem 4.12 and Definition 4.8, it is easy to see that (BM1) and

(BM2) are true. To show that (BM3) holds, let us consider an arbitrary finite

subclass fE1; . . . ;Eng, and set IðFÞ ¼ fij1 � i � n;F 	 Eig, for any F 2 PðXÞ.
Using Lemma 4.1, we have

X

I	f1;...;ng;I 6¼Ø
ð�1ÞjIjþ1 Bel

\

i2I
Ei

 !
¼

X

I	f1;...;ng;I6¼Ø
ð�1ÞjIjþ1

X

F	\i2IEi

mðFÞ
" #

¼
X

FjIðFÞ6¼Ø
mðFÞ

X

I	IðFÞ;I6¼Ø
ð�1ÞjIjþ1

2

4

3

5

¼
X

FjIðFÞ6¼Ø
mðFÞ 1�

X

I	IðFÞ
ð�1ÞjIj

0

@

1

A

2

4

3

5

¼
X

FjIðFÞ6¼Ø
mðFÞ

¼
X

F	Fi for some i

mðFÞ

�
X

F	[n
i¼1Ei

mðFÞ

¼ Bel
[n

i¼1
Ei

 !
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As to (BM4), let Ei be a decreasing sequence of sets in P(X), and
T1

i¼1 Ei= E. From

Theorem 4.12, we know there exists a countable class fDng 	 PðXÞ, such thatm(F)

=0wheneverF =2fDng, and for any � > 0 there exists n0 such that
P

n4n0
mðDnÞ5".

Then, for each Dn, where n � n0, if Dn 6	 E (that is, Dn � E 6¼ Ø), there exists i(n),

such that Dn 6	 EiðnÞ: Let i0 ¼ maxðið1Þ; . . . ; iðn0ÞÞ. Then, if Dn 6	 E, we have

Dn 6	 Ei0 for any n� n0. Hence,

BelðEÞ ¼
X

F	E
mðFÞ

¼
X

Dn	E
mðDnÞ

�
X

Dn	E;n�n0
mðDnÞ

�
X

Dn	Ei0
;n�n0

mðDnÞ

�
X

Dn	Ei0

mðDnÞ �
X

n4n0

mðDnÞ

4
X

F	Ei0

mðFÞ � "

¼ BelðEi0Þ � ":

Noting that Bel(E) � BelfEig for i = 1, 2,. . ., and fBelðEiÞg is decreasing with

respect to i, we have Bel(E) = lim
i

BelðEiÞ. &

Observe that due to property (BM3), established for belief measures by
Theorem 4.13, belief measures are 1-monotone measures introduced in

Section 4.2.

Theorem 4.14. Any belief measure is monotone and superadditive.

Proof. Let E1 	 X;E2 	 X; and E1 \ E2 ¼ Ø. We have

BelðE1 [ E2Þ � BelðE1Þ þ BelðE2Þ � BelðE1 \ E2Þ

¼ BelðE1Þ þ BelðE2Þ � max fBelðE1Þ; BelðE2Þg:

From this inequality, it is easy to see that Bel is monotone and super-

additive. &

From Theorems 4.13 and 4.14, we know that the belief measure is an
upper semicontinuous monotone measure.
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On a finite space, we can express a basic probability assignment by the belief
measure induced from it.

Theorem 4.15. Let X be finite. If a set function �: P(X ) ! [0, 1] satisfies the
conditions

(1) �ðØÞ ¼ 1;
(2) �ðXÞ ¼ 1;

(3) �
Tn

i¼1
Ei

� �
�

P
I	 1;...nf g;I6¼Ø

ð�1ÞjIjþ1�
T
i2I

Ei

� �
;

where fE1; . . . ;Eng is any finite subclass of P(X ), then the set function m deter-
mined by

mðEÞ ¼
X

F	E
ð�1ÞjE�Fj�ðFÞ 8E 2 PðXÞ; (4:12)

is a basic probability assignment, and � is the belief measure induced from m.
That is,

�ðEÞ ¼ BelðEÞ ¼
X

F	E
mðFÞ:

Proof. First, mðØÞ ¼
P

F	Øð�1ÞjØ�Fj�ðFÞ ¼ �ðØÞ ¼ 0. Next, from (4.12) and
Lemma 4.3, we have

X

E	X
mðEÞ ¼ �ðXÞ ¼ 1:

To prove that m is a basic probability assignment, we should show that
m(E) � 0 for any E 	 X. Indeed, since X is finite, E is also finite, and we
can write E ¼ fx1; . . . ; xng. If we denote Ei ¼ E� fxig, then E ¼

Sn
i¼1 Ei and

mðEÞ ¼
X

F	E
ð�1ÞjE�Fj�ðFÞ

¼ �ðEÞ �
X

I	 1;...;nf g;I6¼Ø
ð�1ÞjIjþ1�

\

i2I
Ei

 !

¼ �
[n

i¼1
Ei

 !
�

X

I	 1;...;nf g;I6¼Ø
ð�1ÞjIjþ1�

\

i2I
Ei

 !

� 0:

The last conclusion in this theorem is a direct result of Lemma 4.3. &
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Definition 4.9. If m is a basic probability assignment on P(X), then the set

function Pl: P(X)! [0, 1] determined by

P1ðEÞ ¼
X

F\E 6¼Ø
mðFÞ 8 E 2 PðXÞ (4:13)

is called a plausibility measure on (X, P(X)), or, more exactly, a plausibility

measure induced from m.

Theorem 4.16. If Bel and Pl are the belief measure and plausibility measure,

respectively, induced from the same basic probability assignment then

BelðEÞ ¼ 1� P1ð �EÞ (4:14)

and

BelðEÞ � P1ðEÞ
for any E 	 X.

Proof.

BelðEÞ ¼
X

F	E
mðFÞ

¼
X

F	X
mðFÞ �

X

F 6	E
mðFÞ

¼ 1�
X

F\ �E 6¼Ø
mðFÞ

¼ 1� P1ð �EÞ:
The second conclusion can be obtained directly from Definitions 4.8 and 4.9.&

Theorem 4.17. If P1 is a plausibility measure on (X, P(X)), then

ðPMIÞ P1ðØÞ ¼ 0;

ðPM2Þ P1ðXÞ ¼ 1;

ðPM3Þ P1
\n

i¼1
Ei

 !
�

X

I	 1;...nf g;I6¼Ø
ð�1ÞjIjþ1 P1

[

i2I
Ei

 !
;

where fE1; . . . ;Eng is any finite subclass of P(X ).

(PM4) P1 is continuous from below.
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Proof. From Theorem 4.13 and Theorem 4.16, we can directly obtain (PM1),

(PM2), and (PM4). As to (PM3), by using Lemma 4.1, we have

P1
\n

i¼1
Ei

 !
¼ 1� Bel

\n

i¼1
Ei

 !

¼ 1� Bel
[n

i¼1

�Ei

 !

� 1�
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1Bel

\

i2I

�Ei

 !

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1 1� Bel

\

i2I

�Ei

 !" #

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1 1� Bel

[

i2I
Ei

 !" #

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1Pl

[

i2I
Ei

 !
:

&

Due to the property (PM3), which is established for plausibility measures by
Theorem 4.17, plausibility measures are1-alternating measures introduced in

Section 4.2.

Theorem 4.18. Any plausibility measure is monotone and subadditive.

Proof. E 	 F 	 X, then �F 	 �E 	 X. From Theorem 4.14 and Theorem 4.16, we

have

P1ðEÞ ¼ 1� Belð �EÞ � 1� Belð �FÞ ¼ P1ðFÞ

As to subadditivity, if E1 	 X and E2 	 X, then

0 � P1ðE1 \ E2Þ

� P1ðE1Þ þ P1ðE2Þ � P1ðE1 [ E2Þ:

So P1ðE1 [ E2Þ � P1ðE1Þ þ P1ðE2Þ. &

From Theorem 4.17 and Theorem 4.18, we know that the plausibility mea-
sure is a lower semicontinuous monotone measure.

Theorem 4.19. Any discrete probability measure p on (X, P(X )) is both a belief

measure and a plausibility measure. The corresponding basic probability assign-

ment focuses on the singletons of P(X ). Conversely, if m is a basic probability
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assignment focusing on the singletons of P(X ), then the belief measure and the

plausibility measure induced from m coincide, resulting in a discrete probability

measure on (X, P(X )).

Proof. Since p is a discrete probability measure, there exists a countable set

fx1; x2; � � �g 	 X, such that

X1

i¼1
pðfxigÞ ¼ 1:

Let

mðEÞ ¼ pðEÞ if E ¼ fxig for some i

0 otherwise

�

for any E 2 PðXÞ. Then, m is a basic probability assignment, and

pðEÞ ¼
X

xi2E
pðfxigÞ ¼

X

F	E
mðFÞ ¼

X

F\E 6¼Ø
mðFÞ

for anyE 2 PðXÞ. That is, p is both a belief measure and a plausibility measure.

Conversely, if a basic probability assignmentm focuses only on the singletons of

P(X), then, for any E 2 PðXÞ,

BelðEÞ ¼
X

F	E
mðFÞ ¼

X

x2E
mðfxgÞ ¼

X

F\E 6¼Ø
mðFÞ ¼ P1ðEÞ:

So, Bel and Pl coincide, and it is easy to verify that they are �-additive.
Consequently, they are discrete probability measures on ðX; PðXÞÞ. &

Theorem 4.20. Let Bel and Pl be the belief measure and the plausibility measure,

respectively, induced from a basic probability assignment m. If Bel coincides with

Pl, then m focuses only on singletons.

Proof. If there exists E 2 PðXÞ that is not a singleton of P(X) such that

m(E) > 0, then, for any x 2 E,

BelðfxgÞ ¼ mðfxgÞ5mðfxgÞ þmðEÞ �
X

F\ xf g6¼Ø
mðFÞ ¼ P1ð xf gÞ:

This contradicts the coincidence of Bel and Pl. &

The Sugeno measures defined on the power set P(X) are special examples
of belief measures and plausibility measures when X is countable.

Theorem 4.21. Let X be countable, and glðl 6¼ 0Þ be a Sugeno measure on

(X, P(X )). Then gl is a belief measure when l > 0, and is a plausibility measure

when l < 0.
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Proof. Let X = {x1, x2,. . .}. When l > 0, we define m: P(X)! [0, 1] by

mðEÞ ¼ ljEj�1
Q

xi2E glð xif gÞ if E 6¼ Ø

0 if E ¼ Ø

�

for any E 2 PðXÞ. Obviously,m(E)� 0 for any E 2 PðXÞ. From Definition 4.3,
we have

glðEÞ ¼
1

l

Y

xi2E
ð1þ l � glð xif gÞÞ � 1

" #

¼ 1

l

X

F	E;F6¼Ø
ljFj �

Y

xi2F
glð xif gÞ

" #

¼
X

F	E;F6¼Ø
ljFj�1 �

Y

xi2F
glð xif gÞ

" #

¼
X

F	E
mðFÞ:

Since glðXÞ ¼ 1, we have

X

F	X
mðFÞ ¼ 1:

Therefore,m is a basic probability assignment, and thus, gl is the belief measure
induced from m. When l < 0, we have l0 = –l/(l þ 1) > 0. By using Corollary
4.5 and Theorem 4.16, we know that gl is a plausibility measure. &

4.6 Possibility Measures and Necessity Measures

Definition 4.10. A monotone measure � is called maxitive on C iff

�
[

t2T
Et

 !
¼ sup

t2T
�ðEtÞ (4:15)

for any subclass fEtjt 2 Tg of C whose union is in C, where T is an arbitrary
index set.

If C is a finite class, then the maxitivity of � on C is equivalent to the simpler
requirement that

�ðEi [ E2Þ ¼ �ðE1Þ _ �ðE2Þ (4:16)
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whenever Ei 2 C ;E2 2 C , and E1 [ E2 2 C . Symbol _ denotes the maxi-

mum of �ðE1Þ and �ðE2Þ:

Definition 4.11. A monotone measure � is called a generalized possibility

measure on C iff it is maxitive on C and there exists E 2 C such that �(E)<1.
Usually, a generalized possibility measure is denoted by p.

Definition 4.12. If p is a generalized possibility measure defined on P(X), then

the function f defined on X by

fðxÞ ¼ pðfxgÞ for any x 2 X

is called its possibility profile.

Theorem 4.22. Any generalized possibility measure p (on C) is a lower semicon-

tinuous monotone measure (on C).

Proof. According to the convention, when T ¼ Ø we have [t2TEt ¼ Ø and

supt2T �ðEtÞ ¼ 0. So, if Ø 2 C , then pðØÞ ¼ 0. Furthermore, if E 2 C;
F 2 C , and E 	 F, then, by using maxitivity, we have

pðFÞ ¼ pðE [ FÞ ¼ pðEÞ _ pðFÞ � pðEÞ:

At last, p is continuous from below. In fact, if fEng is an increasing sequence of

sets in C whose union E is also in C, from the definition of the supremum, for

any "40, there exists n0 such that

pðEn0Þ � sup
n

pðEnÞ � " ¼ pðEÞ � ":

Noting that p is monotone, we know that

lim
n

pðEnÞ ¼ pðEÞ:
&

Definition 4.13. When a generalized possibility measure p defined on P(X) is

normalized, it is called a possibility measure.
The following example shows that a possibility measure is not necessarily

continuous from above.

Example 4.8. Let X = (–1,1). A set function p : P(X)! [0, 1] is defined by

pðEÞ ¼ 1 if E 6¼ Ø;

0 if E ¼ Ø

�

for any E 2 P ðXÞ. Clearly, p is maxitive and p(X)=1; therefore it is a

possibility measure on P(X). But it is not continuous from above. In fact, if

we take E=(0,1/n), then fEng is decreasing, and
T1

n¼1 En ¼ Ø. We have

pðEnÞ ¼ 1 for all n=1, 2,. . ., but pðØÞ ¼ 0. So limn pðEnÞ 6¼ pð
T1

n¼1 EnÞ.
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Theorem 4.23. If f is the possibility profile of a possibility measure p, then

sup
x2X

fðxÞ ¼ 1: (4:17)

Conversely, if a function f : X ! [0, 1] satisfies (4.17), then f can determine a

possibility measure p uniquely, and f is the possibility profile of p.

Proof. From (4.15), we have

sup
x2X

fðxÞ ¼ sup
x2X

pð pf gÞ

¼ pð
[

x2X
xf gÞ

¼ pðXÞ

¼ 1:

Conversely, let

pðEÞ ¼ sup
x2E

fðxÞ

for any E 2 PðXÞ, then p is a possibility measure, and

pðfxgÞ ¼ sup
x2fxg

fðxÞ ¼ fðxÞ:
&

A similar result can be easily obtained for generalized possibility measures:
Any function f : X! ½0;1Þ uniquely determines a generalized possibility mea-

sure p on P(X) by

pðEÞ ¼ sup
x2E

fðxÞ for any E 2 PðXÞ:

Definition 4.14. A basic probability assignment is called consonant iff it focuses

on a nest (that is, a class fully ordered by the inclusion relation of sets).

Theorem 4.24. Let X be finite. Then any possibility measure is a plausibility

measure, and the corresponding basic probability assignment is consonant. Con-

versely, the plausibility measure induced by a consonant basic probability assign-

ment is a possibility measure.

Proof. Let X ¼ fx1; . . . ; xng and p be a possibility measure. There is no loss of

generality in assuming

1 ¼ pðfx1gÞ � pðfx2gÞ � � � � � pðfxngÞ:
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Define a set function m on P(X) by

mðEÞ ¼
pðfxigÞ � pðfxiþ1gÞ if E ¼ Fi; i ¼ 1; . . . ; n� 1

pðfxngÞ if E ¼ Fn

0 otherwise,

8
<

:

where Fi ¼ fx1; . . . ; xig; i ¼ 1; . . . ; n: Then m is a basic probability assignment

focusing on fF1; . . . ;Fng; which is a nest. The plausibility measure induced from

this basic probability assignmentm is justp. Conversely, letmbe a basic probability

assignment focusingonanestfF1; . . . ;Fkgthat satisfiesF1 	 F2 	 � � � 	 Fk andPl

be theplausibilitymeasure induced fromm.ForanyE1 2 PðXÞ;E2 2 PðXÞ, denote

j0 ¼ minfjjFj \ ðE1 [ E2Þ 6¼ Øg;

and

j0i ¼ minfjjFj \ Ei 6¼ Øg; i ¼ 1; 2:

Then we have

PlðE1 [ E2Þ ¼
X

Fj\ðE1[E2Þ6¼Ø
mðFjÞ

¼
X

j� j
0

mðFjÞ

¼
X

j� j
01

mðFjÞ

2

4

3

5 _
X

j� j
02

mðFjÞ

2

4

3

5

¼
X

Fj\E1 6¼Ø
mðFjÞ

2
4

3
5 _

X

Fj\E2 6¼Ø
mðFjÞ

2
4

3
5

¼ PlðE1Þ _ PlðE2Þ:

That is, Pl satisfies (4.16) on P(X). So, Pl is a possibility measure. &

Example 4.9. LetX ¼ fx1; x2; x3; x4; x5g; p be a possibilitymeasure on (X,P(X))

with a possibility profile fðxÞ ¼ pðfxgÞ; x ¼ x1; . . . ; x5; as follows:

fðx1Þ ¼ 1; fðx2Þ ¼ 0:9; fðx3Þ ¼ 0:5; fðx4Þ ¼ 0:5; fðx5Þ ¼ 0:3:

The corresponding basic probability assignment m focuses on four subsets of

X : F1 ¼ fx1g;F2 ¼ fx1; x2g;F4 ¼ fx1; x2; x3; x4g; and F5 ¼ X; with mðF1Þ ¼
0:1;mðF2Þ ¼ 0:4;mðF4Þ ¼ 0:2; and mðF5Þ ¼ 0:3: This is illustrated in Fig. 4.3.

fF1;F2;F4;F5g forms a nest. In this example, mðF3Þ ¼ mðfx1; x2; x3gÞ ¼ 0:
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When X is not finite, a possibility measure on P(X) may not be a plausibility

measure even when X is countable.

Example 4.10. Let X be the set of all rational numbers in [0, 1] and

fðxÞ ¼ x; 8x 2 X: X is a countable set. Define a set function p onP(X) as follows:

pðEÞ ¼ sup
x2E

fðxÞ; 8E 2 PðXÞ:

Then, p is a possibility measure on P(X), but it is not a plausibility measure.

Definition 4.15. If p is a possibility measure on P(X), then its dual set function v,

which is defined by

�ðEÞ ¼ 1� pð �EÞ for any E 2 PðXÞ

is called a necessity measure (or consonant belief measure) on P(X).

Theorem 4.25.A set function � : PðXÞ ! 0; 1½ � is a necessity measure if and only if

it satisfies

�
\

t2T
Et

 !
¼ inf

t2T
�ðEtÞ;

for any subclass Etjt 2 Tf g of P(X ), where T is an index set, and �ðØÞ ¼ 0.

Proof. From Definitions 4.13 and 4.15, the conclusion is easy to obtain. &

Theorem 4.26. Any necessity measure is an upper semicontinuous monotone

measure. Moreover, if X is finite, then any necessity measure is a special

example of belief measure and the corresponding basic probability assignment

is consonant.

Proof. The conclusion follows directly fromDefinition 4.15, Theorem 4.16, and

Theorem 4.24. &

Fig. 4.3 A possibility profile
on a finite space and the
corresponding basic
probability assignment
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4.7 Properties of Finite Monotone Measures

In this section, we take a �-ring F as the class C.

Theorem 4.27. If � is a finite monotone measure, then we have

lim
n

�ðEnÞ ¼ �ðlim
n

EnÞ

for any sequence Enf g 	 F whose limit exists.

Proof. Let fEng be a sequence of sets in F whose limit exists. Write

E ¼ limn En ¼ lim supn En ¼ lim infn En: By applying the finiteness of �, we have

�ðEÞ ¼ �ðlim sup
n

EnÞ ¼ lim
n
�ð [
1

i¼n
EiÞ ¼ lim sup

n
�ð [
1

i¼n
EiÞ

� lim sup
n

�ðEnÞ � lim inf
n

� ðEnÞ

� lim inf
n

� \
1

i¼n
Ei

� �
¼ �ðlim inf

n
EnÞ ¼ �ðEÞ

Therefore, lim
n
�ðEnÞ exists and

lim
n
�ðEnÞ ¼ �ðEÞ &

Definition 4.16. � is exhaustive iff

lim
n
�ðEnÞ ¼ 0

for any disjoint sequence fEng of sets in F.

Theorem 4.28. If � is a finite upper semicontinuous monotone measure, then it is

exhaustive.

Proof. Let fEng be a disjoint sequence of sets in F. If we write Fn ¼
S1

i¼n Ei, then

fFng is a decreasing sequence of sets in F, and

lim
n

Fn ¼ \
1

n¼1
Fn ¼ lim sup

n
En ¼ Ø:

Since � is a finite upper semicontinuous monotone measure, by using the

finiteness and the continuity from above of �, we have

lim
n
�ðFnÞ ¼ �ðlim

n
FnÞ ¼ �ðØÞ ¼ 0:

Noting that

0 � �ðEnÞ � �ðFnÞ;
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we obtain

lim
n
�ðEnÞ ¼ 0:

So, � is exhaustive. &

Corollary 4.6. Any finite monotone measure on a measurable space is exhaustive.

Notes

4.1. The special nonadditive measures that are now called Choquet capacities
were introduced by Gustave Choquet in the historical context outlined in
Chapter 1. After their introduction [Choquet, 1953–54], they were virtually
ignored for almost twenty years. They became a subject of interest of a
small group of researchers in the early 1970s, primarily in the context of
statistics. Among them, Peter Huber played an important role by recog-
nizing that Choquet capacities are useful in developing robust statistics
[Huber, 1972, 1973, 1981, Huber and Strassen, 1973]. Another researcher
in this group, Anger [1971, 1977], focused more on further study of
mathematical properties of Choquet capacities. It seems that the interest
of these researchers in Choquet capacities was stimulated by an important
earlier work of Dempster on upper and lower probabilities [Dempster,
1967a,b, 1968a,b]. Although Dempster was apparently not aware of Cho-
quet capacities (at least he does not refer to the seminal paper by Choquet
in his papers), the mathematical structure he developed for dealing with
upper and lower probabilities is closely connected with Choquet capacities.
It is well documented that Dempster’s work on upper and lower probabil-
ities also stimulated in the 1970s the development of evidence theory, which
is based on 1-monotone and 1-alternating measures (Note 4.5). Refer-
ences to Choquet capacities in the literature have increased significantly
since the late 1980s, primarily within the emerging areas of imprecise
probabilities [Kyburg, 1987, Chateauneuf and Jaffray, 1989, De Campos
and Bolanos, 1989, Wasserman and Kadane, 1990, 1992, Grabisch et al.,
1995, Kadane and Wasserman, 1996, Walley, 1991].

4.2. The class of l-measures was introduced and investigated by Sugeno [1974,
1977]. The fact that any l-measure can be induced from a classical measure
was shown by Wang [1981]. l-measures were also investigated by Kruse
[1980, 1982ab, 1983], Banon [1981], and Wierzchon [1982, 1983].

4.3. The concept of quasi-measures (often referred to in the literature as pseudo-
additive measures) was introduced and investigated by Wang [1981].
Important examples of quasi-measures are special monotone measures
that are called decomposable measures. These are normalized monotone
measures, �?, on measurable space (X, C) that are semicontinuous from
below and satisfy the property �?ðA [ BÞ ¼ ? �?ðAÞ; �?ðBÞ½ � for all
A;B;A [ B 2 C such that A \ B ¼ Ø. Symbol ? denotes here a function
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from [0,1]2 to [0,1] that qualifies as a triangular conorm (or t-conorm)
[Klement, et al., 2000] and C is usually a �-algebra. Since decomposable
measures are not covered in this book, the following are some useful
references for their study: [Dubois and Prade, 1982, Weber, 1984,
Chateauneuf, 1996, Pap, 1997a,b, 1999, 2002b, Grabisch, 1997d].

4.4. In an early paper, Banon [1981] presents a comprehensive overview of the
various types of monotone measures (defined on finite spaces) and dis-
cusses their classification. Lamata and Moral [1989] continue this discus-
sion by introducing a classification of pairs of dual monotone measures.
This classification is particularly significant in the area of imprecise prob-
abilities, where one of the dual measures represents the lower probability
and the other one the upper probability.

4.5 A theory based upon belief and plausibility measures was originated and
developed by Shafer [1976]. Its emergence was motivated by previous work
on lower and upper probabilities by Dempster [1967a,b, 1968a,b], as well as
by Shafer’s historical reflection upon the concept of probability [Shafer,
1978] and his critical examination of the Bayesian treatment of evidence
[Shafer, 1981]. The theory is now usually referred to as the Dempster–
Shafer theory of evidence (or just evidence theory). Although the seminal
book by Shafer [1976] is still the best introduction to the theory (even
though it is restricted to finite sets), several other books devoted to the
theory, which are more up-to-date, are now available: [Guan and Bell,
1991–92, Kohlas and Monney, 1995, Kramosil, 2001, Yager et al., 1994].
There are too many articles dealing with the theory and its applications to
be listed here, but most of them can be found in reference lists of the
mentioned books and in two special journal issues devoted to the theory:
Intern. J. of Approximate Reasoning, 31(1–2), 2002, pp. 1–154, and Intern.
J. of Intelligent Systems, 18(1), 2003, pp. 1–148. The theory is well covered
from different points of view in articles by Shafer [1979, 1981, 1982, 1990],
Höhle [1982], Dubois and Prade [1985, 1986a], Walley [1987], Smets [1988,
1992, 2002], and Smets and Kennes [1994]. Possible ways of fuzzifying the
theory are suggested by Höhle [1984], Dubois and Prade [1985], and Yen
[1990]. Axiomatic characterizations of comparative belief structures, which
are generalizations of comparative probability structures [Walley and Fine,
1979], were formulated by Wong, Yao, and Bollmann [1992].

4.6. A mathematical theory that is closely connected with Dempster-Shafer
theory, but which is beyond the scope of this book, is the theory of random
sets. Random sets were originally conceived in connection with stochastic
geometry. They were proposed in the 1970s independently by two authors,
Kendall [1973, 1974] and Matheron [1975]. The connection of random sets
with belief measures is examined by Nguyen [1978] and Smets [1992], and it
is also the subject of several articles in a book edited byGoutsias et al. [1997].
A recent book by Molchanov [2005] is currently the most comprehensive
and up-to-date reference for the theory and applications of random sets.
A good introduction to random sets was written by Nguyen [2006].
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4.7. Possibility measures were introduced in several different contexts. In the
late 1940s the British economist George Shackle introduced possibility
measures indirectly, via monotone decreasing set functions that he called
measures of potential surprise [Shackle, 1949]. He argued that these func-
tions are essential in dealing with uncertainty in economics [Shackle 1955,
1961]. As shown by Klir [2002], measures of potential surprise can be
reformulated in terms of monotone increasing measures—possibility mea-
sures. In the late 1970s possibility measures were introduced in two very
different contexts: the context of fuzzy sets [Zadeh, 1978] and the context
of plausibility measures [Shafer, 1976, 1987]. The literature on the theory
based on possibility measures (and their dual necessity measures) is now
very extensive. An early book byDubois and Prade [1988] is a classic in this
area. More recent developments in the theory are covered in a text by
Kruse et al. [1994] and in monographs byWolkenhauer [1998] and Borgelt
and Kruse [2002]. Important sources are also edited books by De Cooman
et al. [1995] and Yager [1982]. A sequence of three papers by De Cooman
[1997] is perhaps the most comprehensive and general treatment of possi-
bility theory. Thorough surveys of possibility theory with extensive bib-
liographies were written by Dubois et al. [1998, 2000].

4.8. An interesting connection betweenmodal logic [Chellas, 1980; Hughes and
Cresswell, 1996] and the various nonadditive measures is suggested in
papers by Resconi et al. [1992, 1993]. Modal logic interpretation of belief
and plausibility measures on finite sets is studied in detail by Harmanec
et al. [1994] and Tsiporkova et al. [1999], and on infinite sets by Harmanec
et al. [1996]. A modal logic interpretation of possibility theory is estab-
lished in a paper by Klir and Harmanec [1994].

Exercises

4.1. Consider the monotone measures �i ði ¼ 1; 2; . . . ; 9Þ on (X, P(X)), where
X ¼ fa; b; cg; which are defined in Table 4.2. Determine for each of these
measures the following:

Table 4.2 Monotone measures in Exercises 4.1. and 4.2

a b c �1ðAÞ �2ðAÞ �3ðAÞ �4ðAÞ �5ðAÞ �6ðAÞ �7ðAÞ �8ðAÞ �9ðAÞ
A: 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0 0 0.0 0.2 0.4 0.2 0.0 1.0 0.2 0.3 0.2

0 1 0 0.0 0.2 0.2 0.3 0.0 1.0 0.0 0.1 0.3

0 0 1 0.0 0.2 0.0 0.4 0.0 1.0 0.0 0.3 0.4

1 1 0 0.7 0.6 0.5 0.6 1.0 1.0 0.5 0.3 0.6

1 0 1 0.8 0.6 0.6 0.6 1.0 1.0 0.2 0.6 0.7

0 1 1 0.9 0.4 0.5 0.7 1.0 1.0 0.0 1.0 0.8

1 1 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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(a) Is the measure superadditive or subadditive?
(b) Is the measure 2-monotone or 2-alternating?
(c) Is the measure a belief measure or a plausibility measure?
(d) Is the measure a possibility measure or a necessity measure?

4.2. Determine the dual measures for each of the measures in Exercise 4.1, and
answer for each of them the questions stated in Exercise 4.1.

4.3. Check for each of the following set functions whether it is a l-measure. If
the answer is affirmative, determine the parameter l.

(a) X ¼ fa; bg;F ¼ PðXÞ; and � is given by �ðØÞ ¼ 0; �ðfagÞ ¼ 1=2;
�ðfbgÞ ¼ 3=4; �ðXÞ ¼ 1:

(b) X ¼ fa; bg;F ¼ PðXÞ; and � is given by �ðØÞ ¼ 0; �ðfagÞ ¼ 1=2;
�ðfbgÞ ¼ 1=3; �ðXÞ ¼ 1:

(c) X ¼ fa; b; cg;F ¼ PðXÞ; and � is given by

�ðEÞ ¼
1 if E = X

0 if E = Ø

1=2 otherwise

8
><

>:

for any E 2 F

(d) X ¼ fa; b; cg;F ¼ PðXÞ; and � is given by

�ðEÞ ¼ 1 if E = X

0 otherwise

�

for any E 2 F:

4.4. Is any of the set functions defined in Exercise 4.3 a normalized l-measure?
For each that is a normalized l-measure, determine the dual l-measure as
well as the value of the corresponding parameter l.

4.5. Prove that the �-l-rule is equivalent to the continuity and the l-rule for a
nonnegative set function defined on a ring. Give an example to show that a
similar conclusion need not be true on a semiring.

4.6. Let X ¼ fx1; x2; x3; x4g; and a1 ¼ 0:1; a2 ¼ 0:2; a3 ¼ 0:3; a4 ¼ 0:4: Find
the l-measure, gl, defined on (X, P(X)) and subject to glðfxigÞ ¼ ai; i ¼
1; 2; 3; 4; for each of the following values of parameter l:

(a) l¼ 5;ðbÞ l¼ 2;ðcÞ l¼ 1;ðdÞ l¼ 0;ðeÞ l¼�1;ðfÞ l¼�2;ðgÞ l¼�2:4:

Can you use l ¼ �2:5 or l ¼ �5 to find a l-measure satisfying the above-

mentioned requirement? Justify your answer.
4.7. Prove the following: If � is a Dirac measure on (X, F), then � is a Sugeno

measure for any l 2 ð�1= sup�;1Þ [ f0g; conversely, if X is countable,
F = P(X), and � is a Sugeno measure on (X, F) for two different para-
meters l and l’, then � is a Dirac measure.

4.8. Let X ¼ fa; b; cg and �ðfagÞ ¼ 0:25; �ðfbgÞ ¼ �ðfcgÞ ¼ 0:625; �ðXÞ ¼ 1:
Viewing � as a l-measure, determine the value of the associated parameter l.
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4.9. Let X ¼ fa; bg;F ¼ PðXÞ; and let m be a measure on (X, F) defined by

mðEÞ ¼

1 ifE = X

3=4 ifE = fbg
1=4 ifE = fag
0 ifE = Ø.

8
>>><

>>>:

Find a quasi-measure � by using �ðyÞ ¼ ffiffiffi
y
p

; y 2 ½0; 1�, as its proper T-

function. Is there any other T-function (say � 0) such that � ¼ � 0 �m? If

you find any such T-functions, what can you conclude from them?
4.10. LetX ¼ fa1; a2g and � be a nonnegative set function ofP(X). Show that if

0 ¼ �ðØÞ5�ðaiÞ5�ðXÞ51; i ¼ 1; 2; . . ., then � is a quasi-measure.
4.11. Let X ¼ fa; b; c; dg and let mðfagÞ ¼ 0:4;mðfb; cgÞ ¼ 0:1;mðfa; c; dgÞ ¼

0:3;mðXÞ ¼ 0:2 be a basic probability assignment. Determine the corre-
sponding belief measure and plausibility measure.

4.12. Repeat Exercise 4.11 for each of the basic probability assignments given in
Table 4.3, where subsets of X are defined by their characteristic functions.

4.13. Determine which basic probability assignments given in Table 4.3 are
consonant.

4.14. Determine which basic probability assignments given in Table 4.3 induce
a discrete probability measure on (X, P(X)).

4.15. Given X ¼ fa; b; c; dg;
BelðØÞ ¼ BelðfbgÞ ¼ BelðfcgÞ ¼ BelðfdgÞ ¼ Belðfb; dgÞ ¼

Belðfc; dgÞ ¼ 0;
BelðfagÞ¼Belðfa;bgÞ¼Belðfa;cgÞ¼Belðfa;dgÞ¼Belðfa;b;dgÞ¼0:1;

Table 4.3 Basic probability assignments employed in Exercises 4.12–4.14

a b c d m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0.2 0 0 0.2 0.2 0 0.05 0 0 0

0 0 1 0 0 0.4 0 0 0.2 0 0.05 0 0 0

0 0 1 1 0 0 0 0.1 0 0 0.05 0 0 0

0 1 0 0 0 0.5 0 0 0.3 1 0.05 0.2 0 0.9

0 1 0 1 0 0 0 0 0 0 0.05 0 0 0

0 1 1 0 0.3 0 0 0 0 0 0.05 0 0 0

0 1 1 1 0 0 0 0 0 0 0.05 0.5 0 0

1 0 0 0 0.1 0.1 0.2 0 0.3 0 0.05 0 0 0.1

1 0 0 1 0 0 0 0 0 0 0.05 0 0 0

1 0 1 0 0.1 0 0.3 0 0 0 0.05 0 0 0

1 0 1 1 0 0 0 0 0 0 0.1 0 0 0

1 1 0 0 0 0 0 0 0 0 0.1 0 1 0

1 1 0 1 0.2 0 0 0 0 0 0.1 0 0 0

1 1 1 0 0.1 0 0.4 0 0 0 0.1 0 0 0

1 1 1 1 0 0 0.1 0.7 0 0 0.1 0.3 0 0
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Belðfb; cgÞ ¼ Belðfb; c; dgÞ ¼ 0:2;Belðfa; b; cgÞ ¼ 0:3;Belðfa; c; dgÞ ¼ 0:4;
BelðXÞ ¼ 1; determine the corresponding basic probability assignment.

4.16. Let X ¼ fa; b; c; dg:Use each of the possibility profiles given in Table 4.4
to determine the corresponding possibility measures and basic probabil-
ity assignments.

4.17. Determine the dual necessity measure for each possibility measure obtained
in Exercise 4.16.

4.18. Find an example that illustrates that a possibility measure defined on an
infinite space need not be a plausibility measure.

Table 4.4 Possibility profiles employed in Exercises 4.16 and 4.17

f1 f2 f3 f4 f5 f6

a 1 1 0 0.9 1 1

b 0.8 1 1 0 1 1

c 0.4 0.2 0.3 0 1 0

d 0.1 0.6 0.3 1 1 0

Exercises 109
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