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Preface

In 1992we published a book entitled Fuzzy Measure Theory (Plenum Press,

New York), in which the term ‘‘fuzzy measure’’ was used for set functions

obtained by replacing the additivity requirement of classical measures with

weaker requirements of monotonicity with respect to set inclusion and conti-

nuity. That is, the book dealt with nonnegative set functions that were mono-

tone, vanished at the empty set, and possessed appropriate continuity

properties when defined on infinite sets.
It seems that Fuzzy Measure Theory was the only book available on the

market at that time devoted to this emerging new mathematical theory. Some

ten years after its publication we began to see that the subject had expanded so

much that a second edition of the book, or even a new book on the subject, was

needed.We eventually decided to write a new book because the newmaterial we

wished to include was too extensive for—and far beyond the usual scope—of a

second edition. More importantly, we felt that some fundamental changes

regarding this topic’s scope and terminology would be desirable and timely.
As far as the scope of the new book, Generalized Measure Theory, is con-

cerned, we felt, on the basis of recent developments in the literature, that the

material should not be restricted to set functions that had to be nonnegative and

monotone. Rather, it needed to capture a broader class of set functions; a

function in this class would have only one requirement to qualify as a ‘‘mea-

sure’’: it would vanish at the empty set. Then, various special requirements

could be introduced as needed to restrict this broad class of set functions to

specialized subclasses. One of these subclasses would consist of nonnegative,

monotone, and continuous set functions that vanish at the empty set—or fuzzy

measures—the subject of our previous book.
Regarding terminology, it was obvious that we needed to revise it completely

in view of the expanded scope of the book. First, we had to introduce a name for

the most general measures. We did so by referring to nonnegative set functions

that vanish at the empty set as general measures and referring to those that are

not required to be nonnegative as signed general measures. Second, we needed to

introduce appropriate names of the various subclasses of general measures or

signed general measures. This we did in Chapters 3 and 4, where we followed, by
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and large, the terminology established in the literature. However, it should be
emphasized that we made a deliberate decision to abandon the central term of
our previous book, the term ‘‘fuzzy measure.’’ We judge this term to be highly
misleading. Indeed, the so-called fuzzy measures do not involve any fuzziness.
They are just special set functions that are defined on specified classes of
classical sets, not on classes of fuzzy sets. Since the primary characteristic of
such functions is monotonicity, we deemed it reasonable to call these set func-
tions monotone measures rather than fuzzy measures.

However, contrary to the concept of fuzzy measures in our previous book,
monotone measures as understood in Generalized Measure Theory need not be
continuous. If, in fact, they are continuous then they are here specifically referred
to as continuous monotone measures. Moreover, if they are only semicontinuous
from below or from above, then they are called, respectively, lower-semicontinuous
or upper-semicontinuous monotone measures. Clearly, any continuous monotone
measure is both lower-semicontinuous and upper-semicontinuous.

There is another reason why abandoning the term ‘‘fuzzy measure’’ is justi-
fied: It is certainly meaningful to fuzzify any class of measures, as we show in
Chapter 14. A given class of measures is ‘‘fuzzified’’ when it is defined on fuzzy
sets rather than on classical sets. However, the resulting term—‘‘fuzzified fuzzy
measures’’ we find awkward, not properly descriptive, and quite confusing. For
all these reasons, we decided to replace the term ‘‘fuzzy measure’’ with ‘‘con-
tinuous monotone measure’’ and to use the term ‘‘monotone measure’’ when
continuity or even semicontinuity is not required. When they are fuzzified we
refer to these measures as ‘‘fuzzified monotone measures.’’ When measures of
any other type are defined on classes of fuzzy sets we refer to them as fuzzified
measures of the respective type. We thus use names such as fuzzified general
measures, fuzzified monotone measures, fuzzified continuous monotone measures,
and the like.

We realize it is not likely that the confusing term ‘‘fuzzy measures’’ for
‘‘measures defined on classes of crisp sets’’ will soon disappear in the literature.
However, we are confident that the time is ripe to stop using it. In a sense we
have joined some major contributors to generalized measure theory who have
already abandoned this ill-descriptive term.

We have made in this book a few additional terminological changes with
respect to our previous book. However, all these changes affect special con-
cepts, so we explain our rationale for making these changes as we introduce
each concept.

Our previous book contains, in addition to its original material, six of our
reprinted papers. In this book, no reprinted papers are included. Instead the
original material is substantially expanded. Major expansions are in the area of
integration, methods for constructing generalized measures, fuzzification of
generalized measures, and applications of generalized measure theory.

Much like our previous book, this book is primarily a text for a one-semester
graduate or upper division course. Such a course is suitable not only for
programs in mathematics, where it might be offered at the junior or senior
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level, but also for programs in numerous other areas. These would include
systems science, computer science, information science, and cognitive sciences,
as well as artificial intelligence, quantitative management, mathematical social
sciences, and virtually all areas of engineering and natural sciences. The book
may also be useful for researchers in these areas.

Although a solid background in mathematical analysis is required for under-
standing the material presented, the book is otherwise self-contained. This is
achieved by the inclusion of needed prerequisites regarding classical sets, clas-
sical measures, and fuzzy sets, as given in Chapter 2. In general, the book is
written in the textbook style, characterized by generous use of examples and
exercises. Each chapter concludes with notes containing relevant historical,
bibliographical, and other remarks relating to the covered material, which are
useful for further study of generalized measure theory and its applications.
Compared with our previous book, the bibliography of Generalized Measure
Theory is substantially expanded. Two glossaries are included for convenience
of the reader, Glossary of Key Concepts (Appendix A) and Glossary of Sym-
bols (Appendix B).

Omaha, Nebraska, USA Zhenyuan Wang
Binghamton, New York, USA George J.Klir
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Chapter 1

Introduction

Generalized measure theory, which is the subject of this book, emerged from the
well-established classical measure theory by the process of generalization. As is
well known, classical measures are nonnegative real-valued set functions, each
defined on a specific class of subsets of a given universal set, that satisfy certain
axiomatic requirements. One of these requirements, crucial to classical mea-
sures, is known as the requirement of additivity. This requirement is basically
that the measure of the union (finite or countably infinite) of any recognized
family of sets that are pairwise disjoint be equal to the sum of measures of the
individual sets in the union. In generalized measure theory, the additivity
requirement is replaced with a considerably weaker requirement. Any real-
valued set function � on a given class of sets that vanishes on the empty set
(i.e., �ðØÞ ¼ 0 ) is accepted in generalized measure theory as a measure. Clearly,
various additional requirements are applied as needed to introduce special types
of measures. One of these special types consists of classical (i.e., additive)
measures. The meaning of the term ‘‘measure’’ in generalized measure theory
is thus verymuch broader than its counterpart in classical measure theory. Since
generalized measure theory deals with various types of measures, contrary to
classical measure theory, each type is characterized by an adjective added to the
term ‘‘measure.’’ When we refer to measures of classical measure theory, we use
either the term ‘‘classical measures’’ or the term ‘‘additive measures.’’

Classical (additive) measures have their roots in metric geometry, which is
characterized by assigning numbers to lengths, areas, or volumes. In antiquity
this assignment process—or measurement—was first conceived simply as a
comparison with a standard unit and the requirement that the assigned num-
bers be invariant under displacement of the respective geometric objects. Soon,
however, the problem of incommensurables (exemplified by the problem of
measuring the length of the diagonal of a square whose sides each measure
one unit) revealed that measurement is more complicated than this simple,
intuitively suggestive process. It became clear thatmeasurementmust inevitably
involve infinite sets and infinite processes.

Prior to the emergence and sufficient development of the calculus, the
problem of incommensurables had caused a lot of anxiety since there were no
satisfactory tools to deal with it. Integral calculus, based upon the Riemann
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integral, which became well developed in the second half of the nineteenth
century, was the first tool to deal with the problem. Certain measurements
contingent upon the existence of associated limits could finally be determined
by using appropriate techniques of integration. However, it was increasingly
recognized in the 1870s and 1880s that the Riemann integral also had a number
of deficiencies. One deficiency of the Riemann integral is its applicability only to
functions that are continuous except at a finite number of points. This means
that the class of Riemann integrable functions is overly restrictive. Another
deficiency is that the fundamental operations of differentiation and integration
are, in general, not reversible within the context of Riemann’s theory of inte-
gration. One additional deficiency is connected with limiting operations and
can be described as follows. If functions f1; f2; . . . are Riemann integrable on
interval X ¼ ½a; b� and lim fnðxÞ ¼ fðxÞ everywhere in X, then it is not, in
general, true that the Riemann integral of fðxÞ is equal to the limit of the
Riemann integrals of fnðxÞ:

In the late nineteenth century, there was a growing need for more precise
mathematical analysis, a need induced primarily by the rapidly advancing
science and technology. As a result, new questions regarding measurement
emerged. Considering, for example, the set of all real numbers between 0
and 1, which may be viewed as points on a real line, mathematicians asked:
When we remove the end points 0 and 1 from this set, what is the measure of the
remaining set (or the length of the remaining open interval on the real line)?
What is the measure of the set obtained from the given set by removing some
rational numbers, say 1, 1/2, 1/3, 1/4, and so on? What is the measure of the set
obtained by removing all rational numbers?

Questions like these and many more difficult questions were carefully exam-
ined by Émile Borel (1871–1956), a French mathematician. He developed a
theory [Borel, 1898] to deal with these questions, which was an important step
toward a more general theory that we now refer to as the classical measure
theory.

Borel’s theory deals with the s-algebra (the class of sets closed under the set
union of countably many sets and the set complement) that is generated by the
family of all open (or semi-open) intervals of real numbers (or within some
interval [a, b] of real numbers). Borel defines ameasure that associates a positive
real number with each bounded subset in the s-algebra, which, in the case of an
interval, is exactly equal to the length of the interval. The measure is additive in
the sense that its value for a bounded union of a sequence of pairwise disjoints
sets is equal to the sum of the values associated with the individual sets.

In the second half of the nineteenth century there was a growing interest in
studying arbitrary real-valued functions, particularly in the context of integra-
tion. This involved some strange classes of functions, such as functions that are
nowhere continuous or continuous functions that are nowhere differentiable.
The existence of such strange classes of functions was already well established at
that time. The first example of a continuous function that is nowhere differenti-
able was apparently constructed already in 1830 by Bernard Bolzano
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(1781–1848). These functions eventually became significant within a relatively
new area: fractal geometry.

Borel did not connect his theory with the theory of integration. This was
done a few years later (between 1899 and 1902) by Henri Lebesgue (1875–1941),
another French mathematician. In a paper published in 1901, he defined an
integral, more general than the Riemann integral, which is based on a measure
that subsumes the Borel measure as a special case. These new concepts of a
measure and an integral (further developed in Lebesgue’s doctoral dissertation
and published in the Italian journal Annali di Matematica in 1902), which are
now referred to as the Lebesgue measure and the Lebesgue integral, are the
cornerstones of classical measure theory [Halmos, 1950]. The significance of
Lebesgue’s work is that he connected, in a natural way, measures of sets with
measures of functions.

Perhaps the best nontechnical exposition of the motivation behind the
Lebesgue measure and the Lebesgue integral, and a discussion of their physical
meaning, was prepared by Lebesgue himself; it is available in a book edited by
K. O. May, which also contains a biographical sketch of Lebesgue and a list of
his key publications [Lebesgue, 1966].

Classical measure theory is closely connected with probability theory.
A probability measure, as any other classical measure, is a set function that
assigns measure 0 to the empty set and a nonnegative number to any other set,
and that is additive. However, a probability measure requires, in addition, that
measure 1 be assigned to the universal set in question. Hence, probability theory
may be viewed as a part of classical measure theory.

The concept of a probability measure (or simply a probability) was formu-
lated axiomatically by Andrei N. Kolmogorov (1903–1987), a Russian mathe-
matician, in a book written in German that was published in 1933. An English
translation of the book was published almost 20 years later [Kolmogorov,
1950]. Kolmogorov’s concept of probability is sometimes called a quantitative
or numerical probability to distinguish it from other types of probability, such as
classificatory or comparative probabilities [Fine, 1973; Walley and Fine, 1979;
Walley, 1991]. Nevertheless, the term ‘‘probability theory’’ with no additional
qualifications refers normally to the theory based upon Kolmogorov’s axioms.

After more than 50 years of the existence and steady development of the
classical measure theory, the additivity requirement of classical measures
became a subject of controversy. Some mathematicians felt that additivity is
too restrictive in some application contexts. For example, it is too restrictive to
capture adequately the full scope of measurement. While additivity charac-
terizes well many types of measurements under idealized, error-free conditions,
it is not fully adequate to characterize most measurements under real, physical
conditions, when measurement errors are unavoidable. Moreover, some mea-
surements, for example, those involving subjective judgments or nonrepeatable
experiments, are intrinsically nonadditive.

Numerous arguments have been or can be raised against the necessity and
adequacy of the additivity axiom of probability theory. One such argument was
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presented by Viertl [1987]. It is based on the fact that all measurements are
inherently imprecise due to finite resolution of measuring instruments and
unavoidable measurement errors. Consider, for example, two disjoint events
A and B defined in terms of adjoining intervals of real numbers, as shown in
Fig. 1.1a. Observations in close neighborhoods (within a measurement error) of
the endpoint of each event are unreliable and should be properly discounted, for
example, according to the discount rate functions shown in Fig. 1.1a. That is,
observations in the neighborhood of the endpoints should carry less evidence
than those outside these neighborhoods. When measurements are taken for the
union of the two events, as shown in Fig. 1.1b, one of the discount rate functions
is not applicable. Hence, the same observations produce more evidence for the
single eventA [ B than they do for the two disjoint eventsA and B. This implies
that the degree of support for A [ B (probability of A [ B) should be greater
than the sum of the respective degrees of support forA andB (probabilities ofA
and B). The additivity axiom is thus violated.

The earliest challenge to classical measure theory came from a theory pro-
posed by a French mathematician, Gustave Choquet, for which he coined the
name theory of capacities. This theory is based on a potentially infinite family of
distinct types of nonadditive measures that are linearly ordered by their general-
ities. They range from capacities of order 2 (the most general type) to capacities
of order infinity (the least general type). Each Choquet capacity is a real-valued
function defined on a class of subsets of a given universal set (with an appro-
priate algebraic structure) that is monotone increasing with respect to set
inclusion and, depending on its type, satisfies one additional axiomatic require-
ment. For each given Choquet capacity there exists a unique alternating capa-
city. These two capacities are always dual in the sense defined in Chapter 3.
Choquet also developed integrals applicable to his capacities, which are now
routinely referred to as Choquet integrals (Chapter 11).

Fig. 1.1 An example illustrating the violation of the additivity axiom of probability theory
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Choquet developed his theory of capacities at the University of Kansas in

Lawrence, where he spent an entire academic year (1953–54) as Visiting

Research Professor of Mathematics. The theory was an outcome of a research

project entitled ‘‘Research on Modern Potential Theory and Dirichlet

Problem,’’ which was sponsored by the US Air Force. It was initially published

in May 1954 as Technical Note No. 1 (on the project) by the Department of

Mathematics of the university, and it was soon republished as [Choquet,

1953–54]. The theory is also covered in Volume I of Choquet’s lecture notes

for a course on mathematical analysis he gave at Princeton University

[Choquet, 1969].
In his writings, Choquet emphasizes that the theory of capacities is closely

connected with potential theory [Dellacherie andMeyer, 1978; Du Plessis, 1970;

Helms, 1963] and that the former theory emerged from the latter. However, the

applicability of his capacities extends far beyond potential theory. For example,

these capacities play an important role in formalizing imprecise probabilities of

various types [Klir, 2006].
Another approach to developing generalized measures was taken in the

1970s byMichio Sugeno, a distinguished Japanese scholar. He tried to compare

membership functions of fuzzy sets with probabilities [Sugeno, 1974, 1977].

Since no direct comparison is possible, Sugeno conceived of the generalization

of classical measures into nonclassical (nonadditive) measures as an analogy of

the generalization of classical (crisp) sets into fuzzy sets. Using this analogy he

coined for the nonclassical (nonadditive) measures the term ‘‘fuzzy measures.’’
Fuzzy measures, according to Sugeno, are obtained by replacing the addi-

tivity requirement of classical measures with the weaker requirements of

increasing monotonicity (with respect to set inclusion) and continuity. The

requirement of continuity was later found to be too restrictive and was replaced

with a weaker requirement of semicontinuity. For example, lower and upper

probability measures in the various theories of imprecise probabilities, which

are introduced in Section 15.3, are only semicontinuous.
The term ‘‘fuzzy measure’’ in the sense Sugeno introduced it has been

accepted by most researchers working in the area of generalized measures,

including the authors of this book.We published a book entitled FuzzyMeasure

Theory [Wang and Klir, 1992], and we used the term in our other publications.

Unfortunately, the term is confusing since there is no fuzziness involved in so-

called ‘‘fuzzy measures.’’ These are just special nonnegative real-valued set

functions that are defined on specified classes of classical sets, not on classes

of fuzzy sets. However, these functions, as well as any other types of set

functions involved in generalized measure theory, can be fuzzified (defined on

fuzzy sets), as is shown in Chapter 14. This would result then in the term

‘‘fuzzified fuzzy measures,’’ which is even more confusing. These are the main

considerations that led us to abandon the confusing term ‘‘fuzzy measures’’ and

replace it with a more descriptive term ‘‘monotone measures.’’ We are glad to

observe that some other authors are starting to abandon the other term as well.
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We should mention at this point that monotone measures, as we define them
in this book, do not require continuity. If the requirement of continuity is
added, then we refer to the measures as continuous monotone measures. It is
this class of measures that is equivalent to the class of fuzzymeasures, as defined
in our previous book. If the requirement of only lower or upper semicontinuity
is added to monotonicity, we call the measures lower-semicontinuous monotone
measures or upper-semicontinuous monotone measures, respectively.

In the second half of the twentieth century, some researchers recognized that
the required precision of classical probabilities is not realistic in some applica-
tions. This stimulated interest in investigating imprecise probabilities. It seems
that the notion of imprecise probabilities was first introduced and investigated
by Dempster [1967a]. He was concerned with convex sets of probability mea-
sures rather than single probability measures. For each given convex set of
probability measures, Dempster introduced two types of nonadditive measures,
which he called lower and upper probabilities. These measures are superadditive
and subadditive, respectively, in the sense introduced in Chapter 3, and allow us
to represent probabilities imprecisely by intervals of real numbers rather than
by precise real numbers.

Special types of lower and upper probabilities, referred to as belief measures
and plausibility measures, were later introduced and thoroughly investigated by
Shafer [1976]. The theory based on these two nonadditive measures is usually
called Dempster–Shafer theory or evidence theory. Since belief measures are
always smaller than or equal to the corresponding plausibility measures, the
intervals between belief and plausibility values may be viewed as ranges of
admissible probabilities. The Dempster–Shafer theory may thus be viewed as
a theory that is capable of dealing with interval-valued probabilities. It turns
out that belief measures are Choquet capacities of order infinity, and plausi-
bility measures are alternating capacities of order infinity.

Another theory based upon nonadditive measures, referred to as the theory
of graded possibilities, emerged from the concept of a fuzzy set, which was
proposed by Zadeh [1965]. A fuzzy set is a set whose boundary is not required
to be sharp. That is, the change from nonmembership to membership is allowed
to be gradual rather than abrupt. This gradual change is expressed by amember-
ship function of the fuzzy set, which assigns to each individual of a given
universal set its degree of membership in the fuzzy set. If these degrees are
expressed by values in the unit interval [0, 1], the fuzzy set is called standard. At
this time standard fuzzy sets are the most common, and these are the only fuzzy
sets that are considered in this book. A fuzzy set is called normalized if the
supremum of its membership function is 1. It is clear that classical sets are
special fuzzy sets in which each degree of membership is either 0 or 1. These
special fuzzy sets are usually referred to as crisp sets.

Given a standard fuzzy set that is normalized, Zadeh [1978] defines a possi-
bility function associated with the fuzzy set as numerically equal to its member-
ship function. Then, he defines a possibility measure by taking the supremum of
the possibility function in each crisp set or, more generally, fuzzy set of concern.
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If the fuzzy set is not normalized the possibility function must be defined in a

more general way [Klir, 1999]. The fuzzy-set interpretation is only one of several

other established interpretations of the theory of graded possibilities.
It turns out that possibility measures also emerge from Dempster–Shafer

theory. They are plausibility measures with a special mathematical structure. In

this context, possibility measures are usually called consonant plausibility mea-

sures [Dubois and Prade, 1988; Klir, 2006]. Their dual measures, which are

special (consonant) belief measures, are called necessity measures.
Similar to Choquet capacities, monotone measures are too loose to allow us to

develop a theory thatwould capture their full generality and, yet, are of pragmatic

utility. On the other hand, some very special types of general measures appear to

be unnecessarily restrictive in some application contexts. These considerations led

to a more systematic investigation of useful structural characteristics of set func-

tions, primarily by Wang [1984, 1985a], as presented in Chapter 5. These char-

acteristics are essential for capturing mathematical properties of measurable

functions on generalizedmeasure spaces (Chapter 7), and that, in turn, is requisite

for developing a theory of generalized integrals (Chapters 8–12).
There have been many additional developments pertaining to various

aspects of generalized measure theory that we do not deem necessary to cover

in this introduction. Since most of these developments are rather technical and

involve special terminology, we leave their historical and bibliographical cover-

age to Notes accompanying the individual chapters.

Notes

1.1 An overview of relevant concepts and results of classical measure theory is
given in Section 2.2. For further study we recommend the classic text by
Halmos [1950]. An excellent text on classical measure theory by Billingsley
[1986] is recommended to readers that are interested particularly in prob-
ability measures.

1.2 Among many other books on classical measure theory, let us mention a few
that are significant in various respects. The book by Caratheodory [1963],
whose original German version was published in 1956, is one of the earliest
and most highly influential books on classical measure theory. Books by
Chae [1995], Temple [1971], and Weir [1973] provide pedagogically excel-
lent introductions to classical measure theory; they require only some basic
knowledge of calculus and algebra as prerequisites. The book by
Constantinescu and Weber [1985], suitable for a mathematically mature
reader, attempts to unify abstract and topological approaches. Other valu-
able books are by Berberian [1965], Kingman and Taylor [1966], and
Wheeden and Zygmund [1977]. The book by Faden [1977] is an extensive
treatise on the use of measure theory, particularly in the area of economics,
which also contains a good introduction to measure theory itself.
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1.3 The various shortcomings of classical probabilities and the reasons why
nonadditive measures are needed to overcome these shortcomings are
thoroughly discussed by Walley [1991]. These shortcomings have also
been discussed within the area of generalized information theory [Klir,
2006]. It has been demonstrated that classical probability measures can
capture only one of several recognized types of uncertainty.

1.4 The history of classical measure theory and Lebesgue’s integral is carefully
traced in a fascinating book by Hawkins [1975]. He describes how modern
mathematical concepts regarding these theories (involving concepts such as a
function, continuity, convergence, measure, integration, and the like) devel-
oped (primarily in the nineteenth century and the early twentieth century)
through the work of many mathematicians, including Cauchy (1789–1857),
Fourier (1768–1830), Dirichlet (1805–1859), Weierstrass (1815–1897),
Riemann (1826–1866), Borel (1871–1956), Cantor (1845–1918), Hankel
(1839–1873), Jordan (1838–1922), Volterra (1860–1897), Peano (1858–1932),
Lebesgue (1875–1941), Radon (1887–1956), Riecz (1880–1956), Vitali
(1875–1932), Egoroff (1869–1931), Fubini (1879–1943), Young (1863–1942),
Dini (1845–1918), and many others. The book by Saks [1937] is an excellent
overview of the development of the classical theory of integration.

1.5 For the history of probability theory, we recommend a book by Hacking
[1975] and a paper by Shafer [1978]. From the standpoint of generalized
measure theory it is most interesting that Bernoulli (1654–1705) and, later,
Lambert (1728–1777) were already concerned with a calculus of probabil-
ities that are not additive and, consequently, are imprecise. Their work,
unfortunately, was forgotten for more than two centuries.

1.6 The significance of the contribution byKolmogorov [1950] to the transition
from a classical foundation of probability, which emerged early in the
eighteenth century, to a measure-theoretic foundation is thoroughly dis-
cussed by Shafer and Vovk in an extensive report entitled ‘‘The Origins and
Legacy of Kolmororov’s Grundbegriffe’’ on the following website: http://
www.probabilityandfinance.com. This report, which was prepared in 2005
and consists of more than 100 pages, contains a large list of references
pertaining to the discussed issue. A shorter version of this report is [Shafer
and Vovk, 2006]. The evolution from Lebesgue’s measure and integral to
Kolmogorov’s axiomatic formulation of probability theory is also well
described in papers by Doob [1994] and Bingham [2000].

1.7 The literature dealing with classical probability theory is abundant. Per-
haps the most comprehensive examination of foundations of classical
probability theory was made by Fine [1973].

1.8 A very valuable resource regarding classical as well as generalized measures
and the associated integration is a Handbook edited by Pap [2002a].

1.9 In our previous book [Wang and Klir, 1992] fuzzy measures are defined as
monotone and continuous, nonnegative, real-valued set functions that
vanish at the empty set. In the literature the term ‘‘fuzzy measure’’ is usually
used in this sense, but in some publications the continuity is not required.
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Chapter 2

Preliminaries

2.1 Classical Sets

2.1.1 Set Inclusion and Characteristic Function

Let X be a nonempty set. Unless otherwise stated, all sets that we consider are
subsets of X. Set X is called a universe of discourse or a universal set. The
elements of X are called points. Universal set X may contain finite, countably
infinite, or uncountably infinite number of points. A set that consists of a finite
number of points x1; x2; . . . ; xn (or, a countably infinite number of points
x1; x2; . . .) may be denoted by fx1; x2; . . . ; xngðfx1; x2; . . .g, respectively). A set
containing no point is called the empty set and is denoted by Ø.

If x is a point of X and E is a subset of X, the notation

x 2 E

means that x belongs to E, i.e., x is an element of E; and the statement that x
does not belong to E is denoted by

x =2 E:

Thus, for every point x of X we have

x 2 X

and

x =2 Ø:

A set of sets is called a class. If E is a set and C is a class, then

E 2 C

means that set E belongs to class C.
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If, for each x; pðxÞ is a proposition concerning x, then the symbol

fxjpðxÞg

denotes the set of all those points x for which pðxÞ is true; that is,

x0 2 fxjpðxÞg , pðx0Þis true:

If the point x is replaced with set E, such a symbol may be used to indicate a
class. For example,

fEjx 2 Eg

denotes the class of those sets that contain the point x.

Example 2.1. Let X ¼ f1; 2; . . .g: Then, A ¼ fxjx is odd and less than10g ¼
f1; 3; 5; 7; 9g:

Example 2.2. Let X be the set of all real numbers, which is often referred to as
the real line or one-dimensional Euclidean space. The class fða; bÞj �15
a5b51g is the class consisting of all open intervals on the real line.

If E and F are sets, the notation

E � F or F � E

means that E is a subset of F, i.e., every point of E belongs to F. In this case, we
say that F includes E, or that E is included by F. For every set E we have

Ø � E � X:

Two sets E and F are called equal iff

E � F and F � E;

that is, they contain exactly the same points. This is denoted by

E ¼ F:

The symbols� or � also may be used for classes. If E and F are classes, then

E � F

means that every set of E belongs to F, that is, E is a subclass of F.
If E1;E2; . . . ;En are nonempty sets, then

E ¼ fðx1; x2; . . . ; xnÞjxi 2 Ei; i ¼ 1; 2; . . . ; ng
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is called an n-dimensional product set and is denoted by

E ¼ E1 � E2 � . . .� En:

Similarly, if fEtjt 2 Tg is a family of nonempty sets, where T is an infinite index
set, then

E ¼ fxt; t 2 T j xt 2 Et for each t 2 Tg

is called an infinite-dimensional product set.

Example 2.3. Let X1 and X2 be one-dimensional Euclidean spaces. Then X ¼
X1 � X2 ¼ fðx1; x2Þjx1 2 ð�1;1Þ; x2 2 ð�1;1Þg is the two-dimensional
Euclidean space. The set fðx1; x2Þjx1 > x2g is a half (open) plane under the
line x2 ¼ x1, while the set fðx1; x2Þjx21 þ x225r2g is the open circle centering at
the origin with a radius r, where r > 0.

Example 2.4. Let Xt ¼ f0; 1g; t 2 f1; 2; . . .g. The space

X ¼ X1 � X2 � . . .� Xn � . . .

¼ fðx1; x2; . . . ; xn; . . .Þjxt 2 f0; 1g for each t 2 f1; 2; . . .gg

is an infinite-dimensional product space. Each point ðx1; x2; . . . ; xn; . . .Þ in this
space corresponds to the binary number 0. x1x2 . . . xn . . . in ½0; 1�: Such a
correspondence is not one to one, but it is onto.

If E is a set, the function �
E
, defined for all x 2 X by

�
E
ðxÞ ¼

1 if x 2 E

0 if x =2 E;

�

is called the characteristic function of set E. The correspondence between sets
and their characteristic functions is one to one, that is,

E ¼ F, �
E
ðxÞ ¼ �

F
ðxÞ; 8x 2 X:

It is easy to see that

E � F, �
E
ðxÞ � �

F
ðxÞ; 8x 2 X;

and that

�
X
� 1; �

Ø
� 0:
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2.1.2 Operations on Sets

LetC be any class of subsets ofX. The set of all those points ofX that belong to at

least one set of the class C is called the union of the sets of C. This is denoted by

[
C:

If to every t of a certain index set T there corresponds a set Et, then the union

of the sets of class

fEtjt 2 Tg

may be also denoted by

[
t 2 T

Et or
[
t

Et:

Especially, when

C ¼ fE1;E2g;

then
S
C is denoted by

E1 [ E2;

and if

C ¼ fE1;E2; . . . ;Eng ðC ¼ fE1;E2; . . .gÞ

then
S
C is denoted by

E1 [ E2 [ . . . [ En or
[n
i¼1

Ei

[1
i¼1

Ei; respectively

 !
:

The set of all those points of X which belong to every set of the class C is

called the intersection of the sets of C. This is denoted by
T
C. Symbols similar

to those used for unions are available, such as
T

t2T Et ðor
T

t EtÞ;
E1 \ E2; E1 \ E2 \ . . . \ En ðor

Tn
i¼1 EiÞ; and

T1
i¼1 Ei: If F is a set, the class

fE \ FjE 2 Cg is denoted by C \ F.

Example 2.5. Let X ¼ fa; b; c; dg;C ¼ ffag; fb; cg; fb; dg; fc; dgg;F ¼ fa; bg.
Then C \ F ¼ ffag; fbg;Øg.

Example 2.6. Let X ¼ ð�1;1Þ; C ¼ f½a; b�j �15a � b51g; F ¼ ½0; 1�.
Then,C \ F ¼ f½a; b�j0 � a � b � 1g, that is, the class of all closed subintervals

of the unit closed interval.
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It is convenient to adopt the conventions that

[
t2T

Et ¼ Ø

and

\
t2T

Et ¼ X

when T is empty.

Proposition 2.1. The following statements are equivalent:

(1) E � F;
(2) E [ F ¼ F;
(3) E \ F ¼ E:

Two sets E and F are called disjoint iff

E \ F ¼ Ø:

A class C is called disjoint iff every two distinct sets of C are disjoint; in this
case we refer to the union of the sets of C as a disjoint union.

IfE is a set, the set of all those points ofX that do not belong toE is called the
complement of E. This is denoted by E.

Proposition 2.2. The set operations union, intersection, and complement have the

following properties:

Involution: E ¼ E

Commutativity: E [ F ¼ F [ E
E \ F ¼ F \ E

Associativity:
S
t2T

S
s2St

Es

 !
¼

S
s2[t2T St

Es

T
t2T

T
s2St

Es

 !
¼

T
s2[t2T St

Es

Distributivity: F \
S
t2T

Et

� �
¼
S
t2T
ðF \ EtÞ

F [
T
t2T

Et

� �
¼
T
t2T
ðF [ EtÞ

Idempotence: E [ E ¼ E

E \ E ¼ E

2.1 Classical Sets 13



Absorption: E [ ðE \ FÞ ¼ E

E \ ðE [ FÞ ¼ E

Absorption of complement: E [ ðE \ FÞ ¼ E [ F

E \ ðE [ FÞ ¼ E \ F

Absorption by X and Ø: E [ X ¼ X

E \Ø ¼ Ø

Identity: E [Ø ¼ E

E \ X ¼ E

Law of contradiction: E \ E ¼ Ø

Law of excluded middle: E [ E ¼ X

DeMorgan’s laws: [
t2T

Et ¼ \
t2T

Et

\
t2T

Et ¼ [
t2T

Et

where St;T are index sets.

From the above a duality is suggestive. In general, we have the following

principle of duality: Any valid identity among sets obtained by unions, inter-

sections, and complements, remains valid if the symbols

\;�; and Ø

are interchanged with

[;�; and X;

respectively (and if the equality and complementation are left unchanged).
If E and F are sets, the set of all those points of E that do not belong to F is

called the difference of E and F. This is denoted by

E� F:

If E � F; the difference E� F is called proper. Clearly,

E� F ¼ E \ F:

The symmetric difference of E and F, in symbols

E � F;
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is defined by

E � F ¼ ðE� FÞ [ ðF� EÞ:

Let fE1;E2; . . .g (or fEng, briefly) be a sequence of sets. The set of all those

points ofX that belong to En for infinitely many values of n is called the superior

limit of fEng, and is denoted by

lim sup
n

En or lim
n

En;

the set of all points ofX that belong to En for all but a finite number of values of
n is called the inferior limit of fEng, and denoted by

lim infEn
n

or lim
n

En:

Proposition 2.3.

lim sup
n

En ¼ \
1

n¼1
[
1

i¼n
Ei;

lim inf
n

En ¼ [
1

n¼1
\
1

i¼n
Ei:

Example 2.7. Let X ¼ fa; bg and let a set sequence fEng be defined as follows:

En ¼
fag if n is even
fbg if n is odd.

�
Then, lim supn En ¼ X and lim infn En ¼ Ø:

Example 2.8. Let X ¼ ð�1; 1Þ and let a set sequence fEng be defined as

follows: E1 ¼ ½0; 1Þ; E2 ¼ ½0; 1=2Þ; E3 ¼ ½1=2; 1Þ; E4 ¼ ½0; 1=4Þ; E5 ¼ ½1=4;
1=2Þ; E6 ¼ ½1=2; 3=4Þ; E7 ¼ ½3=4; 1Þ; E8 ¼ ½0; 1=8Þ; . . . : Then, lim supn En ¼
½0; 1Þ and lim infn En ¼ Ø:

Proposition 2.4. lim infn En � lim supn En:
If

lim sup
n

En ¼ lim inf
n

En

we use the notation

lim
n

En

for this set and say that the limit of fEng exists and that this set is the limit of
fEng. Sometimes we write En ! E when limn En ¼ E:
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Example 2.9. Let X ¼ f1; 2; . . .g and let fEng be a set sequence in which

En ¼ fng; n ¼ 1; 2; . . .. Then, we have

lim sup
n

En ¼ lim inf
n

En ¼ Ø:

Hence, the limit of fEng exists, and limn En ¼ Ø.
We say that fEng is increasing if

En � Enþ1; 8n ¼ 1; 2; . . . ;

and fEng is decreasing if

En � Enþ1; 8n ¼ 1; 2; . . . :

Both increasing and decreasing sequences are called monotone.

Proposition 2.5. For any monotone sequence fEng; limn En exists and equals

[
n

En or
\
n

En

according as fEng is increasing or decreasing, respectively.

Usually, we write En % E when fEng is increasing and limn En ¼ E, whereas

we write En & E when fEng is decreasing and limn En ¼ E.

Example 2.10. Let X ¼ ð�1;1Þ. If fEng is a set sequence in which

En ¼ ½1=n; 1�; n ¼ 1; 2; . . ., then fEng is increasing, and En %
S

n En ¼ ð0; 1�. If
fFng is a set sequence in which Fn ¼ ð�ð1þ 1=nÞ; 1þ 1=nÞ; n ¼ 1; 2; . . ., then
fFng is decreasing, and Fn &

T
n Fn ¼ ½�1; 1�:

The discussion of monotone sequences fEng can be generalized to families of

sets fEtjt 2 Tg, where T is an interval (finite or infinite) of real numbers. If for

any t; t0 2 T;Et � Et0 whenever t � t0, then fEtg is increasing, and

lim
t!t0�

Et ¼
[

t< t0;t2T
Et;

lim
t!t0þ

Et ¼
\

t>t0;t2T
Et;

if for any t; t0 2 T;Et � Et0 whenever t � t0, then fEtg is decreasing, and

lim
t!t0�

Et ¼
\

t< t0;t2T
Et;

lim
t!t0þ

Et ¼
[

t>t0;t2T
Et;
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where symbols limt!t0� and limt!t0þ denote the left limit at t0 and the right limit

at t0, respectively.
The following proposition gives the correspondence between the operations

of sets and the operations of characteristic functions of sets.

Proposition 2.6.

(1) �
E
¼ sup

t2T
�

Et
; where E ¼ [

t2T
Et;

in particular,

�
E[F ¼ maxð�

E
; �

F
Þ;

(2) �
E
¼ inf

t2T
�

Et
; where E ¼ \

t2T
E

t
;

in particular,

�
E\F
¼ minð�

E
; �

F
Þ;

(3) �
E
¼ 1� �

E
;

(4) �
E�F ¼ �E

�minð�
E
; �

F
Þ ¼ minð�

E
; 1� �

F
Þ ¼ maxð0; �

E
� �

F
Þ;

(5) �
E�F
¼ �

E
� �

F
j j;

(6) �
lim sup

n
En
¼ lim sup

n
�

En
;

�
lim inf

n
En
¼ lim inf

n
�

En
;

and if limn En exists, then

�
limn En

¼ lim
n
�

En
:

2.1.3 Classes of Sets

Definition 2.1. The class of all subsets of X is called the power set of X, and is

denoted by

PðXÞ:

Definition 2.2. A nonempty class R is called a ring, iff 8E;F 2 R;

E [ F 2 R and E� F 2 R:

In other words, a ring is a nonempty class that is closed under the formation

of unions and differences. Because of the associativity of the set union a ring is

also closed under the formation of finite unions.
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Proposition 2.7. The empty set Ø belongs to every ring.

Theorem 2.1. Any ring is closed under the formation of symmetric differences and

intersections; and, conversely, a nonempty class that is closed under the formation

of symmetric differences and intersections is a ring.

Proof. From

E�F ¼ ðE� F Þ [ ðF� E Þ

and

E \ F ¼ ðE [ F Þ � ðE�F Þ;

we obtain the first conclusion. The converse conclusion issues from

E [ F ¼ ðE�F Þ � ðF \ F Þ

and

E� F ¼ ðE�F Þ \ E: &

Theorem 2.2.A nonempty class that is closed under the formation of intersections,

proper differences, and disjoint unions is a ring.

Proof. The conclusion follows from

E�F ¼ ½E� ðE \ FÞ� [ ½F� ðE \ FÞ�

and Theorem 2.1. &

Example 2.11. The class of all finite subsets of X is a ring.

Example 2.12. Let X be the real line, that is

X ¼ ð�1;1Þ ¼ fxj �15x51g:

The class of all finite unions of bounded, left closed, and right open intervals,

that is, the class of all sets which have the form

[n
i¼1
fxj �1 < ai � x < bi51g;

is a ring.

Definition 2.3. A nonempty class R is called an algebra iff

(1) 8E;F 2 R;

E [ F 2 R;
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(2) 8E 2 R;

E 2 R:

In other words, an algebra is a nonempty class that is closed under the

formation of unions and complements. Obviously, in this definition, ‘‘[’’ can
be replaced by ‘‘\’’.

Theorem 2.3. An algebra is a ring containing X and, conversely, a ring that

contains X is an algebra.

Proof. Let R be an algebra. Since

E� F ¼ E \ F ¼ ðE [ FÞ;

and, if E 2 R, then

X ¼ E [ E 2 R;

we have the first part of the theorem. Conversely, if R is a ring containing X,

then 8E 2 R,

E ¼ X� E 2 R;

and the second part follows. &

Example 2.13. The class of all finite sets and their complements is an algebra.
The property described by this example can be generalized into the following

proposition.

Proposition 2.8. If R is a ring, then R [ fEjE 2 Rg is an algebra.

Definition 2.4. A nonempty class S is called a semiring iff

(1) 8E; F 2 S;

E \ F 2 S;

(2) 8E; F 2 S satisfying E � F; there exists a finite class fC0;C1; . . . ;Cng of
sets in S, such that

E ¼ C0 � C1 � . . . � Cn ¼ F

and

Di ¼ Ci � Ci�1 2 S for i ¼ 1; 2; . . . ; n:

Every ring is a semiring, and the empty set belongs to any semiring.
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Example 2.14. The class consisting of all singletons of X and the empty set is a

semiring.

Example 2.15. Let X be the real line. The class of all bounded, left closed, and

right open intervals is a semiring.

Definition 2.5. A nonempty class F is called a �-ring iff

(1) 8E; F 2 F;

E� F 2 F;

(2) 8Ei 2 F; i ¼ 1; 2; . . . ;

[1
i¼1

Ei 2 F:

Any �-ring is a ring which is closed under the formation of countable unions.

Proposition 2.9. Any �-ring is closed under the formation of countable intersec-

tions; and, therefore, if F is a �-ring and a set sequence fEng � F, then

lim sup
n

En 2 F and lim inf
n

En 2 F:

Example 2.16. The class of all countable sets is a �-ring.

Definition 2.6. A �-algebra (or say, �-field) is a �-ring that contains X.

Example 2.17. The class of all countable sets and their complements is a

�-algebra.

Proposition 2.10. If F is a �-ring, then F [ fEjE 2 Fg is a �-algebra.

Definition 2.7. A nonempty class M is called a monotone class iff, for every

monotone sequence fEng �M, we have

lim
n

En 2M:

Proposition 2.11. Any �-ring is a monotone class.

Proposition 2.12. If a ring is also a monotone class, then it is a �-ring.

Example 2.18. LetX be the real line. The class of all intervals (the empty set and

singletons may be regarded as intervals: Ø ¼ ða; a�; fag ¼ ½a; a�Þ is a monotone

class.

Definition 2.8.A nonempty class Fp is called a plump class iff 8fEtjt 2 Tg � Fp;

[
t

t 2 Fp and
\
t

Et 2 Fp;

where T is an arbitrary index set.
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Proposition 2.13. Any plump class is a monotone class.

Example 2.19. Let X be the unit closed interval [0,1]. The class of all sets that

have the form [0, a), or the form [0, a], where a 2 ½0; 1�, is a plump class.
The relations among the above-mentioned concepts of classes are illustrated

in Fig. 2.1.

Proposition 2.14. Let E be a fixed set. IfC is a �-ring (respectively, ring, semiring,

monotone class, plump class), then so is C \ E:

Theorem 2.4. Let C be a class. There exists a unique ring R0 such that it is the

smallest ring including C; that is,

R0 � C

and for any ring R,

R � C) R � R0:

R0 is called the ring generated by C and is denoted by R(C).

Fig. 2.1 The ordering of classes of sets
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Proof. P(X) is a ring includingC. The intersection of all rings includingC is also

a ring including C, and it is the desired ring R0. The uniqueness is evident. &

In the same way, we can also give the concepts of �-ring, monotone class, and

plump class generated by C, and use F(C), M(C), and FpðCÞ to denote them,

respectively.

Example 2.20. Let X be an infinite set. If C is the class of all singletons, then

R(C) is the class of all finite sets, and F(C) is the class of all countable sets.

Example 2.21. Let X be the real line. If C is the class of all finite open intervals,

then M(C) is the class of all intervals, and FpðCÞ ¼ PðXÞ.

Proposition 2.15. If C1 � C2; then KðC1Þ � KðC2Þ; where K may be taken as R,

F, M, or Fp.

Theorem 2.5. Let S be a semiring. Then, R(S) is the class of all finite, disjoint

unions of sets in S.

Proof. Denote the class of all finite, disjoint unions of sets in S by R0: Clearly,

R0 � S:

What follows is a proof that R0 is a ring.

(1) R0 is closed under the formation of intersections: 8E; F 2 R0 with

E ¼
[n
i¼1

Ei and F ¼
[m
j¼1

Fj;

where fE1; . . . ;Eng and fF1; . . . ;Fmg are disjoint classes of sets in S, we have

E \ F ¼
[n
i¼1

[m
j¼1

Ei \ Fj

and, moreover, we know that

fEj \ Fjji ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;mg

is a disjoint class. Since S is closed under the formation of intersections,

Ei \ Fj 2 S for any i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m:

Hence, we have

E \ F 2 R0:
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(2) R0 is closed under the formation of proper differences: For any E and F
given in (1), if F � E; the difference E – F may be expressed by a finite,
disjoint union of sets having the form

Ei �
[m
j¼1

Fj:

Each Ei �
Sm
j¼1

Fj may also be expressed by a finite, disjoint union of the sets in S.

Thus, we have

E� F 2 R0:

(3) It is evident that R0 is closed under the formation of disjoint unions. By
Theorem 2.2, we know that R0 is a ring.

Finally, since R is closed under the formation of finite unions, if R is a ring

containing S, it should contain every finite union of sets in S. Hence, R � R0:
This completes the proof. &

Theorem 2.6. FðSÞ ¼ FðRðSÞÞ:

Proof. On the one hand, since S � RðSÞ; by Proposition 2.15, we have

FðSÞ � FðRðSÞÞ:

On the other hand, since FðSÞ � S and F(S) is a ring, we have FðSÞ � RðSÞ:
Furthermore, since F(S) is a �-ring, we have

FðSÞ � FðRðSÞÞ:

Consequently, we have

FðSÞ ¼ FðRðSÞÞ: &

Example 2.22. Let X be the real line and let S be the semiring given in

Example 2.15. Then F(S) is called the Borel field on the real line, and it is

usually denoted by B. The sets in B are called Borel sets. We have seen the

process of constructing R(S) from S by Theorem 2.5, and R(S) is just the ring

given in Example 2.12. But the process for constructing B from R(S) is quite

complex. B is also the �-ring generated by the class of all open intervals, by the

class of all closed intervals, by the class of all left open and right closed intervals,

by the class of all left closed and right open intervals, or by the class of all

intervals, respectively.
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Theorem 2.7. If C is a class, then

FpðCÞ ¼
[
t2T

\
s2St

ESjES 2 C;St and T are arbitrary index sets

( )
:

Proof. Denote the right part of this equality by E.

(1) E � C because St and T may be taken as singletons.
(2) By an application of the associativity of the set union, we know that E is

closed under the formation of arbitrary unions.
(3) Because an arbitrary intersection of arbitrary unions of sets in a classCmay

be expressed by an arbitrary union of arbitrary intersections of sets in that
class C, and because arbitrary intersections are associative, E is closed
under the formation of arbitrary intersections.

Thus,E is a plump class includingC and, therefore,E � FpðCÞ:Conversely, any
plump class including C includes E; hence, FpðCÞ � E: Consequently,

FpðCÞ ¼ E: &

Theorem 2.8. For any class C and any set A,

FðCÞ \ A ¼ FðC \ AÞ:

Similar conclusions about rings, monotone classes, and plump classes are true, as

well.

Proof.

(1) FðCÞ \ A is a �-ring and includes C \ A; so

FðCÞ \ A � FðC \ AÞ :

(2) Let

E ¼ fEjE \ A 2 FðC \ AÞ;E 2 FðCÞg:

E is a �-ring, and E � C: So E � FðCÞ; that is, 8E 2 FðCÞ;

E \ A 2 FðC \ AÞ:

This shows that

FðCÞ \ A � FðC \ AÞ:
Consequently,

FðCÞ \ A ¼ FðC \ AÞ:
The rest may be proved in the same way. &
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Example 2.23. Let B be the Borel field on the real line. B \ ½0; 1� is called the

Borel field on the unit interval. It is the �-ring generated by the class of all

intervals in [0, 1].

Theorem 2.9. If R is a ring, then

MðRÞ ¼ FðRÞ:

Proof. From Proposition 2.11, we know that F(R) is a monotone class. Since

FðRÞ � R; we have

FðRÞ �MðRÞ:

If M(R) is a �-ring, then we have

MðRÞ � FðRÞ;

and, therefore, the proof would be complete.
To complete the proof, we need to prove thatM(R) is a �-ring. For any set F,

letK(F) be the class of all those sets E for which E – F, F – E, and E [ F are all in

M(R). It is easy to see, by the symmetry of the positions of E and F in the

definition of K(F), that

E 2 KðFÞ , F 2 KðE Þ:

If fEng is a monotone sequence of sets in K(F), then we have

lim
n

En � F ¼ lim
n
ðEn � FÞ 2 MðRÞ;

F� lim
n

En ¼ lim
n
ðF� EnÞ 2 MðRÞ;

F [ lim
n

En ¼ lim
n
ðF [ EnÞ 2 MðRÞ;

that is, limn En 2 KðFÞ: So, if K(F) is not empty, then it is a monotone class.

8F 2 R; if E 2 R; then E 2 KðFÞ; that is, R � KðF Þ: It follows that

MðRÞ � KðFÞ; 8F 2 R:

Hence, 8E 2 MðRÞ; 8F 2 R; we have E 2 KðF Þ; therefore, by symmetry,

F 2 KðEÞ; that is,

R � KðEÞ;

for anyE 2MðRÞ. Noting again that K(E) is a monotone class, we have

MðRÞ � KðEÞ; 8E 2 MðRÞ:
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This shows thatM(R) is a ring. From Proposition 2.12, we know thatM(R) is a
�-ring. &

Corollary 2.1. Amonotone class including a ring includes the �-ring generated by
this ring.

2.1.4 Atoms and Holes

Let C be an arbitrary nonempty class of subsets of X.

Definition 2.9.For any point x 2 X, the set
T
fEjx 2 E 2 Cg is called the atom

of C at x, and denoted by A(x/C). If there is no confusion, it will be called the
atom at x, or atom for short, and denoted byA(x). The class of all atoms ofC is
denoted by A [C], that is,

A½C� ¼ fAðx=CÞjx 2 Xg:

Clearly, for every x 2 X; x 2 AðxÞ. So, every atom is nonempty.
When

S
C 6¼ X, then Aðx=CÞ ¼ X for any x =2

S
C. Thus, if we write

A�½C� ¼ fAðx=CÞjx 2
[

Cg;

then we have

A½C� � A�½C� � fXg:

Proposition 2.16. If x 2 E 2 C, then AðxÞ � E:

Example 2.24. Let X ¼ fa; b; cg;C ¼ fA;B;Cg; where A ¼ fag; B ¼ fa; bg;
C ¼ fb; cg. Then, A, {b}, and C are atoms. That is, A ¼ AðaÞ; fbg ¼ AðbÞ;
C ¼ AðcÞ. From this example, we can see that it is not necessary that all sets inC
be atoms of C, and that all atoms of C belong to C. But, if C is closed under the
formation of arbitrary intersections, then we have

A½C� � C;

that is, in this case, 8AðxÞ;

AðxÞ ¼
\
fEjx 2 E 2 Cg 2 C:

Example 2.25. If C=P(X), then A½C� ¼ ffxgjx 2 Xg:

Proposition 2.17.
S
A�½C� ¼

S
C:

Theorem 2.10.Any set inCmay be expressed by a union of atoms ofC; moreover,
any intersection of sets in C may be expressed by a union of atoms of C.
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Proof. It is sufficient to prove the second conclusion.
Let fEtjt 2 Tg be a family of sets in C. We have

\
t2T

Et ¼
[

AðxÞjx 2
\
t2T

Et

( )

In fact, on the one hand, by Proposition 2.16, for any x 2
T

t2T Et; and any

t 2 T,

AðxÞ � Et:

So, for any x 2
T

t2T Et;

AðxÞ �
\
t2T

Et;

and it follows that

[
AðxÞjx 2

\
t2T

Et

( )
�

\
t2T

Et:

On the other hand, since x 2 AðxÞ; we have

\
t2T

Et ¼ xjx 2
\
t2T

Et

( )
�
[

AðxÞjx 2
\
t2T

Et

( )
:

The proof is thus complete. &

Theorem 2.11. Any intersection of atoms may be expressed by a union of atoms.

Proof. Since any atom of C is an intersection of sets in C, by Theorem 2.10 and

the associativity of intersections, we obtain the conclusion. &

Example 2.26. LetX ¼ fa; b; c; dg; C ¼ fA;B;C;Dg;whereA ¼ fa; c; dg; B ¼
fb; c; dg; C ¼ fcg; D ¼ fdg:Then,AðaÞ ¼ A; AðbÞ ¼ B; AðcÞ ¼ C; AðdÞ ¼ D:
We have

AðaÞ \ AðbÞ ¼ AðcÞ [ AðdÞ:

Theorem 2.12. If A0 2 A½C�; x 2 A0; then AðxÞ � A0

Proof. Let

A0 ¼ Aðx0Þ ¼
\
fEjx0 2 E 2 Cg ¼

\
t2T

Et;
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where Et 2 C;T is an index set. Since x 2 A0, we have x 2 Et for all t 2 T.

Therefore, by Proposition 2.16, AðxÞ � Et for all t 2 T. Consequently, we have

AðxÞ � A0: &

Theorem 2.13. Aðx=CÞ ¼ Aðx=A½C�Þ for any x 2 X, and A½C� ¼ A½A½C��:

Proof. 8x 2 X; if x 2 B for some B 2 A½C�, we have, by Theorem 2.12,

Aðx=CÞ � B;

and, therefore,

Aðx=CÞ �
\
fBjx 2 B 2 A½C�g:

Reviewing x 2 Aðx=CÞ 2 A½C�, we have

Aðx=CÞ �
\
fBjx 2 B 2 A½C�g:

Thus,

Aðx=CÞ ¼
\
fBjx 2 B 2 A½C�g ¼ Aðx=A½C�Þ:

Consequently, we have

A½C� ¼ A½A½C��: &

Theorem 2.14. A½C [ A½C�� ¼ A½C�:

Proof. 8x 2 X,

Aðx=C [ A½C�Þ ¼
\
fEjx 2 E 2 C [ A½C�g

¼
\
fEjx 2 E 2 CgÞ \ ð

\
fEjx 2 E 2 A½C�g

� �
¼ Aðx=CÞ \ Aðx=A½C�Þ ¼ Aðx=CÞ

:

Thus,

A½C [ A½C�� ¼ A½C�: &

Theorem 2.15. If C0 ¼ f
S

t2T EtjEt 2 C; t 2 T; T is an arbitrary index setg;
then A½C0� ¼ A½C�:
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Proof.
S
C0 ¼

S
C : 8x 2

S
C; by absorption, we have

Aðx=C0Þ ¼
\
fE j x 2 E 2 C0g

¼
[ [

t2T
Et

�����x 2
[

t2TEt;Et 2 C; t 2 T;T is an arbitrary set

( )

¼
\
fE j x 2 E 2 Cg ¼ Aðx=CÞ

:

Thus, we have

A½C0� ¼ A½C�: &

Theorem 2.16. If C is closed under the formation of difference, then A�½C� is a
partition of

S
C (Definition 2.18).

Proof. Since
S
A�½C� ¼

S
C, we only need to prove that the different atoms in

A�½C� must be disjoint, that is, 8AðxÞ;AðyÞ 2 A�½C�,

AðxÞ 6¼ AðyÞ ) AðxÞ \ AðyÞ ¼ Ø:

If both x 2 AðyÞ and y 2 AðxÞ, then, by Theorem 2.12, we have

AðxÞ ¼ AðyÞ. So, when AðxÞ 6¼ AðyÞ, we can suppose x =2 AðyÞ without any
loss of generality. In this case, if there exists z 2 AðxÞ \ AðyÞ, we have the result
that, from x =2 AðyÞ and z 2 AðyÞ, there exists E 2 C such that x =2 E, but

z 2 E. Thus, if we take F 2 C, satisfying x 2 F and set G ¼ F� E, then

x 2 G 2 C, but z =2 G: This contradicts the fact that z 2 AðxÞ. Therefore, we
have AðxÞ \ AðyÞ ¼ Ø. &

Corollary 2.2. If F is an algebra, then A[F] is a partition of X.

The following theorem provides an expression of FpðCÞ by the atoms of C.

Theorem 2.17. FpðCÞ ¼ f
S

t2T AtjAt 2 A½C�;T is an arbitrary index setg:

Proof. By Theorem 2.7, Theorem 2.10, and the associativity of set unions, the

conclusion immediately follows. &

Theorem 2.18. A½FpðCÞ� ¼ A½C�.

Proof. It follows directly from Theorems 2.13, 2.15, and 2.17. &

Theorem 2.19. FpðCÞ ¼ FpðA½C�Þ.

Proof. From the definition of the atom and Theorem 2.10, the equality is easily

obtained. &

A concept of AU-class is interrelated closely with the concept of the atom.
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Definition 2.10. The AU-class is a nonempty class C with anticlosedness under

the formation of unions, that is, 8C0 � C,

[
C0 2 C)

[
C0 2 C0:

By the convention for operations of union and intersection (introduced in

Section 2.1.2), if C0 is an empty class, then
S
C0 ¼ Ø. Hence, if Ø 2 C, and C is

an AU-class, it should follow that Ø 2 C0. This is a contradiction. So, no AU-

class contains the empty set Ø.

Proposition 2.18. If C is an AU-class, then all nonempty subclasses of C are

AU-classes as well.

Theorem 2.20. A[C] is an AU-class.

Proof. Let fAðxÞjx 2 Dg be a family of atoms of C. Denote

B ¼
[
fAðxÞjx 2 Dg ¼

[
x2D

AðxÞ:

If B 2 A½C�, then 9x0 2 B such that B ¼ Aðx0Þ. From x0 2
S

x2D AðxÞ; we
have x0 2 Aðx00Þ for some x00 2 D. By applying Theorem 2.12, it follows that

Aðx00Þ � Aðx0Þ ¼ B:

The inverse inclusion relation is evident. Consequently, we have

B ¼ Aðx00Þ 2 fAðxÞjx 2 D �
[

Cg:

This shows that A½C� is an AU-class. &

In general, if C is an AU-class, a set in C may not be an atom of C.

Example 2.27.X andC are given as in Example 2.24. It is easy to verify thatC is

an AU-class, but B is not an atom of C.
However, we have the following property.

Theorem 2.21. Let C be an AU-class. If C � A½C�; then we have

C ¼ A½C�:

Proof. If C 6¼ A½C�; then there exists a nonempty set E 2 C; but E =2A½C�. By
Theorem 2.10 there exists a family of atoms fAtj t 2 Tg such that E ¼

S
t2T At:

Since C is an AU-class, 9t0 2 T such that E ¼ At0 2 A½C�. This contradicts
E =2A½C�: &

A dual concept to the ‘‘atom’’ is the ‘‘hole.’’
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Definition 2.11. Let Ĉ ¼ fEjE 2 Cg: For any point x 2 X, the set

[
fEjx 2 E 2 Ĉg

is called the hole ofC at x, denoted byH(x/C), orH(x) for short. The class of all
holes of C is denoted by H[C].

We can also write

Hðx=CÞ ¼
[
fEjx =2 E 2 Cg:

It is evident that, for any x 2 X; x =2Hðx=CÞ: So, X is not a hole.
The relation between hole and atom is given in the following proposition.

Proposition 2.19. Hðx=CÞ ¼ Aðx=ĈÞ:

Example 2.28. We use X and C given in Example 2.24. In this case, A ¼ fb; cg
¼ C;B ¼ fcg; C ¼ fag ¼ A: Consequently, HðaÞ ¼ C; HðbÞ ¼ A; HðcÞ ¼ B.

Example 2.29. If C ¼ PðXÞ, then H½C� ¼ ffxgjx 2 Xg:

Definition 2.12. The AI-class is a nonempty class C with anticlosedness under
the formation of intersections, that is, 8C0 � C;

\
C0 2 C)

\
C0 2 C0:

All properties of the AU-class can be easily converted into analogous proper-
ties of the AI-class by replacing atoms with holes [Liu and Wang 1985, 1987].

2.1.5 S-Compact Space

LetC be a nonempty class of subsets ofX. Usually, we also use the term ‘‘space’’
to mean (X, C). Especially, when C is a �-algebra (or �-ring), denoted by F, we
call (X, F) a measurable space, and the sets in F are called measurable sets. We
say (X, C) or (X, F) is to be finite, countable, or uncountable if X is finite,
countable, or uncountable, respectively.

Definition 2.13. (X,C) is said to be S-precompact iff for any sequence of sets inC
there exists some convergent subsequence, that is, 8fEng � C; 9fEnig � fEng
such that,

lim sup
i

Eni ¼ lim inf
i

Eni ;

(X, C) is said to be S-compact iff it is S-precompact and the limit of the above-
mentioned subsequence belongs to C, that is, 8fEng � C; 9fEnig � fEng such
that limi Eni exists and

lim
i
Eni 2 C:

Obviously, any S-precompact measurable space is S-compact.
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Example 2.30. Any finite space is S-compact. In fact, if (X, C) is a finite space,
thenC is finite too. So, from any sequence of sets inC, we can always pick out a
subsequence in which all sets are identical; therefore, this subsequence con-
verges to the same set as that in the subsequence.

From the above example we can also see that, although X is not finite, (X,C)
is S-compact so long as C is finite.

Example 2.31. IfC is a nest (or, say, a chain; in this case it is fully ordered by the
inclusion relation between sets), then (X, C) is S-precompact. To show this, it is
sufficient to prove the following lemma.

Lemma 2.1. If C is an infinite nest, then there exists a monotone subsequence of
sets in C.

Proof. According to the order given by the inclusion relation, if there exists
D � C that does not have the greatest element, then we can pick out an
increasing sequence of elements (that is, sets) in D (and therefore, in C). Other-
wise, any subset ofC has its greatest element. Thus, we take the greatest element
of C as E1, the greatest element of C� fE1g as E2, the greatest element
of C� fE1;E2g as E3; . . . . Finally, we obtain a decreasing subsequence fEng
of C. &

In the following, we give an example of the non-S-precompact space, in
which the universe of discourse X is an uncountable set.

Example 2.32. Let X0 be a set that contains at least two points,
X ¼ X1 � X2 � . . .� Xn � . . . be an infinite-dimensional product space, where
Xi ¼ X0; i ¼ 1; 2; . . . , and C ¼ PðXÞ. Take a 2 X0 arbitrarily and denote

An ¼ X1 � X2 � . . .� Xn�1 � fag � Xnþ1 � . . . :

An is an nth dimensional cylinder set based on fag. Then, for such a set sequence
fAng there exists no subsequence that is convergent. In fact, for any given
subsequence fAnig � fAng, we take b 2 X0 � fag arbitrarily, and set

xk ¼
a if k ¼ n2i; i ¼ 1; 2; . . .

b else.

�

Denote x ¼ ðx1; x2; . . .Þ; then x 2 An2i ; but x =2An2i�1 ; i ¼ 1; 2; . . . :
So,

x 2 lim sup
i

Ani ;

but

x lim inf
i

Ani :

32 2 Preliminaries



That is, the subsequence fAnig does not converge. Therefore, (X, C) is not
S-precompact.

For a countable space we have an affirmative conclusion.

Theorem 2.22. If X is countable, then (X, C) is S-precompact.

Proof. Denote X ¼ fx1; x2; . . .g. Any subset E of X corresponds uniquely to a
binary number

bðEÞ ¼ 1b� ð1=2Þ þ 2b� ð1=2Þ2 þ . . .þ nb� ð1=2Þn þ . . .

¼ 0:1b2b . . . nb . . .

in [0,1], where

ib ¼
1 if xi 2 E

0 if xi =2 E:

�

We should note that such a correspondence is not one to one; for example, fx1g
corresponds to 0.1, fx1g corresponds to 0.0111. . . , but 0.1 = 0.0111. . . .

For an arbitrarily given set sequence fEng � C; fEng corresponds to a num-
ber sequence fbng � ½0; 1� with En 7!bn. Since fbng is bounded, there exists a
convergent subsequence fbnig. If all bni ; i ¼ 1; 2; . . . , are constant, then the
conclusion of this theorem is obviously true. Otherwise, we can suppose, with
no loss of generality, that fbnig is strictly decreasing, and bni ! b 2 ½0; 1�. If we
adopt the restriction that b is represented by a binary number with infinitely
many zeros after its decimal point, then b corresponds uniquely to a set E by the
converse of the above-mentioned correspondence. It is not difficult to see that E
must be an infinite set. Arbitrarily fixing a bit jb of b, we have jbni ¼ j b when i is
large enough. That is to say, there exist at most finitely many sets in fEnig that
do not contain xj when xj 2 E; and there exist at most finitely many sets in
fEnig that contain xj when xj 2 E. This shows that xj 2 lim infi Eni when
xj 2 E and xj 2 lim infi Eni ¼ lim supi Eni when xj 2 E, namely,

lim inf
i

Eni � E and lim sup
i

Eni � E:

The latter implies that

lim sup
i

Eni � E:

So,

lim sup
i

Eni � E � lim inf
i

Eni :

This means that limi Eni exists.
Thus, we have proved that (X, C) is S-precompact. &

If we consider a measurable space (X, F) withX 2 F, then, by Theorem 2.16,
A[F] is a partition ofX. The quotient space ðXA;FAÞ induced byA[F] from (X, F)
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(Definition 2.19) is called the reduced space of (X, F). FA and F are isomorphic.

So, we can get a further theorem as follows.

Theorem 2.23. If the reduced space of (X, F) is countable, then (X, F) is
S-compact.

Proof. The conclusion of this theorem follows from Theorem 2.22 and the fact
that the S-precompact measurable space is S-compact. &

Theorem 2.24. If F is a �-algebra containing only countably many sets (that is, F is
a countable class), then (X, F) is S-compact.

Proof. Since F is a countable class of sets and F is closed under the formation of
countable intersections, every atom Aðx= F Þ 2 F : So, A[F] is a countable

class, too. This shows that the reduced space ðXA;FAÞ of (X, F) is countable.
Therefore, by Theorem 2.23, (X, F) is S-compact. &

2.1.6 Relations, Posets, and Lattices

Definition 2.14. Let E and F be nonempty sets. A relation R from E to F is a
subset of E� F. If ða; bÞ 2 R, we say ‘‘a is related to b’’ and write aRb; if

ða; bÞ =2R, we say ‘‘a is not related to b’’ and write aR=b. In the special case

when R � E� E, we use ‘‘on E’’ instead of ‘‘from E to E.’’

Example 2.33. Let X ¼ fa; b; cg;E ¼ fa; bg; and B ¼ f0; 1g. The characteristic
function �

E
of E is a relation (denoted by RE) from X to B. We have

aRE1; bRE1; cRE0; aR=E0; bR=E0; cR=E1:

Example 2.34. Let X ¼ ð�1;1Þ: The symbol < with the common meaning
‘‘less than’’ is a relation onX, and it is a subset ofX� X : R ¼ fðx; yÞjx5yg. We

have, for example ð1; 2Þ 2 R; ð�5; 5Þ 2 R; ð2; 1Þ =2 R; and ð1; 1Þ =2 R.

Example 2.35. Let X be a nonempty set. The inclusion of sets � is a relation on

P(X); that is, fðE;FÞjE � Fg is a subset of PðXÞ � PðXÞ.

Example 2.36.LetE be any nonempty set. The identity relation onE, denoted by

�E, is the set of all pairs in E� E with equal elements:

�E ¼ fða; aÞja 2 Eg:

Example 2.37. Let X ¼ f0; 1; 2; . . .g. We can define a relation R3 on X as

follows: aR3b iff a ¼ b (mod 3); that is, a and b have the same remainder
when they are divided by 3.

Definition 2.15. Let R be a relation from E to F. The inverse of R, denoted by
R�1, is the relation from F to E which consists of those ordered pairs (b, a) for

which aRb; that is R�1 ¼ fðb; aÞjða; bÞ 2 Rg.

34 2 Preliminaries



It is easy to see that

aRb, bR�1a

and, therefore, we have the following proposition.

Proposition 2.20. ðR�1Þ�1 ¼ R:

Example 2.38. Let R be the relation given in Example 2.34. Its inverse,

R�1 ¼ fðx; yÞjy5xg ¼ fðx; yÞjx4yg, has the meaning ‘‘greater than’’ and is

denoted by the symbol >.

Definition 2.16. A relation R on a set E is called:

(a) reflexive iff aRa for each a 2 E;
(b) symmetric iff aRb implies bRa for any a; b 2 E;
(c) transitive iff aRb and bRc implies aRc for any a; b; c 2 E.

Definition 2.17. A relation R on a set E is called an equivalence relation iff R is

reflexive, symmetric, and transitive.

Example 2.39. The identity relation �, as defined in Example 2.36, is reflexive,

symmetric, and transitive; hence, it is an equivalence relation.

Example 2.40. The relation defined in Example 2.34 (‘‘less than,’’ <) is neither
reflexive nor symmetric, but it is transitive.

Example 2.41. Let X ¼ ð�1;1Þ. The relation described by the phrase ‘‘less

than or equal to,’’ which is usually denoted by the symbol �, is reflexive and

transitive but it is not symmetric.

Example 2.42. The relation R3 defined in Example 2.37 is reflexive, symmetric,

and transitive; consequently, it is an equivalence relation.

Definition 2.18. A disjoint class fE1;E2; . . . ;Eng of nonempty subsets of E is

called a partition of E iff
S n

i¼1Ei ¼ E:

Example 2.43. Let X ¼ fa; b; c; d; e; f; gg, and let

(1) A1 ¼ fa; c; eg;A2 ¼ fbg;A3 ¼ fd; gg
(2) B1 ¼ fa; e; gg;B2 ¼ fc; dg;B3 ¼ fb; e; fg
(3) C1 ¼ fa; b; e; gg;C2 ¼ fcg;C3 ¼ fd; fg
(4) D1 ¼ X
(5) E1 ¼ fag;E2 ¼ fbg;E3 ¼ fcg;E4 ¼ fdg;E5 ¼ feg;E6 ¼ ffg;E7 ¼ fgg.

Then, classes fC1;C2;C3g; fD1g; and fE1;E2;E3;E4;E5;E6;E7g are partitions
of X, but fA1;A2;A3g and fB1;B2;B3g are not.

Example 2.44. Let X ¼ ½0;1Þ. The class f½n� 1; nÞjn ¼ 1; 2; . . .g is a partition

of X.
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Definition 2.19. Let R be an equivalence relation on E. For each x 2 E, the set

½x� ¼ fyjxRyg is called an equivalence class of E (in fact, it is a subset of E). The

class of all equivalence classes of E induced by R, denoted by E/R, is called the

quotient of E by R, that is, E=R ¼ f½x�jx 2 Eg.

Proposition 2.21. Let R be an equivalence relation on a set E. Then

½x� ¼ ½y� , xRy

for any x; y 2 E, and E/R is a partition of E.

Example 2.45.For the relationR3 defined in Example 2.37, the quotientX=R3 is

formed by the following three distinct equivalence classes:

E0 ¼ f0; 3; 6; 9; . . .g

E1 ¼ f1; 4; 7; 10; . . .g

E2 ¼ f2; 5; 8; 11; . . .g

fE0;E1;E2g is a partition of X ¼ f0; 1; 2; . . .g.

Definition 2.20. A relation R on set E is called antisymmetric iff aRb and bRa

imply a ¼ b for any a; b 2 E.

Example 2.46. The relations given in Example 2.34, 2.35, and 2.41 are

antisymmetric.

Definition 2.21. Let R be a relation on a set E. If R is reflexive, antisymmetric,

and transitive, then R is called a partial ordering on E, and (E, R) is called a

partially ordered set (or, poset).

Example 2.47. Referring to Example 2.35, the pair ðPðXÞ;�Þ is a partially

ordered set.

Example 2.48. Referring to Example 2.41, the pair ðX;�Þ is a partially ordered

set.

Example 2.49. Let F be the set of all generalized real-valued functions on

ð�1;1Þ. We define a relation � on F as follows: f � g iff fðxÞ � gðxÞ for all
x 2 ð�1;1Þ. The relation� is a partial ordering on F and, therefore, ðF;�Þ is
a partially ordered set.

From now on we use ðP;�Þ to denote a partially ordered set.

Definition 2.22.Let ðP;�Þ be a partially ordered set and letE � P. An element a

in P is called an upper bound of E iff x � a for all x 2 E. An upper bound a of E

is called the least upper bound of E (or supremum of E) iff a � b for any upper

bound b ofE. The least upper bound ofE is denoted by supE or_E. An element

a inP is called a lower bound ofE iff a � x for all x 2 E. A lower bound a ofE is
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called the greatest lower bound of E (or infimum of E) iff b � a for any lower
bound b of E. The greatest lower bound of E is denoted by inf E or ^ E.

When E consists of only two elements, say x and y, we may write x _ y
instead of _ fx; yg and x ^ y instead of ^ fx; yg.

Proposition 2.22. If the least upper bound (or the greatest lower bound) of a set
E � P exists, then it is unique.

Definition 2.23. A partially ordered set ðP;�Þ is called an upper semilattice (or
lower semilattice) iff x _ y (or x ^ y, respectively) exists for any x; y 2 P: ðP;�Þ.
is called a lattice iff it is both upper semilattice and lower semilattice.

Example 2.50. The partially ordered set ðPðXÞ;�Þ is a lattice. For any sets
E;F � X;E [ F ¼ supfE;Fg and E \ F ¼ inffE;Fg.

Definition 2.24. A partially ordered set ðP;�Þ is called a fully ordered set or a
chain iff either x � y or y � x for any x; y 2 P.

Example 2.51. The partially ordered set ðX;�Þ of Example 2.41 is a fully
ordered set.

Example 2.52. The partially ordered set ðF;�Þ, of Example 2.49 is not a fully
ordered set.

Example 2.53. The partially ordered set ðPðXÞ;�Þ is not a fully ordered set if X
consists of more than one point.

The fully ordered set ðð�1;1Þ;�Þ has many convenient properties. One of
them, which is often used in this text, is expressed by the following proposition.

Proposition 2.23. Let E be a set of real numbers. If E has an upper bound (or a
lower bound), then sup E (or inf E) exists; furthermore, for any given " > 0, there
exists x ¼ xð"Þ 2 E such that sup E � xþ " ðor x� " � infE; respectively).

2.2 Classical Measures

Let X be a nonempty set, C be a nonempty class of subsets of X, and
� : C! ½0; 1� be a nonnegative, extended real valued set function defined onC.

Definition 2.25.A set E in C is called the null set (with respect to �) iff �ðEÞ ¼ 0:

Definition 2.26. � is additive iff

�ðE [ FÞ ¼ �ðEÞ þ �ðFÞ

whenever

E 2 C;F 2 C;E [ F 2 C; and ;E \ F ¼ Ø:
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Definition 2.27. � is finitely additive iff

�
[n
i¼1

Ei

 !
¼
Xn
i¼1

�ðEiÞ

for any finite, disjoint class fE1;E2; . . . ;Eng of sets inCwhose union is also inC.

Definition 2.28. � is countably additive iff

�
[1
i¼1

Ei

 !
¼
X1
i¼1

�ðEiÞ

for any disjoint sequence fEng of sets in C whose union is also in C.

Definition 2.29. � is subtractive iff

E 2 C;F 2 C;E � F;F� E 2 C; and �ðEÞ51

imply

�ðF� EÞ ¼ �ðFÞ � �ðEÞ:

Theorem 2.25. If � is additive, then it is subtractive.

Definition 2.30. � is called a measure on C iff it is countably additive and there

exists E 2 C such that �ðEÞ51.

Example 2.54. If �ðEÞ ¼ 0; 8E 2 C; then � is a measure on C.

Example 2.55.LetC contain at least one finite set. If �ðEÞ ¼ jEj; 8E 2 C;where
jEj is the number of those points that belong to E, then � is a measure on C.

Theorem 2.26. If � is a measure on C and Ø 2 C; then �ðØÞ ¼ 0. Moreover, � is

finitely additive.

Definition 2.31. Let � be a measure on C. A set E in C is said to have a finite

measure iff �ðEÞ51;E is said to have a �-finite measure iff there exists a

sequence fEng of sets in C such that

E �
[1
n¼1

En and �ðEnÞ51; n ¼ 1; 2; . . . :

� is finite (or �-finite) on C iff every �ðEÞ is finite (or �-finite, respectively) for
every E 2 C.
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Definition 2.32. Let � be a measure on C. � is complete iff

E 2 C;F � E; and �ðEÞ ¼ 0

imply

F 2 C:

In other words, a measure onC is complete if and only if any subset of a null set

belongs to C.

Definition 2.33. � is monotone iff

E 2 C;F 2 C; and;E � F

imply

�ðEÞ � �ðFÞ:

In the following, we take a semiring S, a ring R, and a �-ring F, respectively,
as the class C, and � is always a nonnegative, extended real-valued set function

on this class.

Theorem 2.27. Let S be a semiring. If � is additive on S, then it is finitely additive

and monotone.

Definition 2.34. � is subadditive iff

�ðEÞ � �ðE1Þ þ �ðE2Þ

whenever

E 2 C; E1 2 C; E2 2 C; and E ¼ E1 [ E2:

Definition 2.35. � is finitely subadditive iff

�ðEÞ �
Xn
i¼1

�ðEiÞ

for any finite class fE1;E2; . . . ;Eng of sets in C such that E ¼
Sn

i¼1 Ei 2 C:

Definition 3.36. � is countably subadditive iff

�ðEÞ �
X1
i¼1

�ðEiÞ

for any sequence {Ei} of sets in C such that E ¼
S1

i¼1 Ei 2 C:

Theorem 2.28. If � is countably subadditive and �ðØÞ ¼ 0, then � is finitely

subadditive.
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Definition 2.37. Let E 2 C. � is continuous from below at E iff

fEng � C; E1 � E2 � . . . ; and limn En ¼ E

imply

lim
n
�ðEnÞ ¼ �ðEÞ;

� is continuous from above at E iff

fEng � C; E1 � E2 � . . . ; �ðE1Þ51;

and

lim
n

En ¼ E

imply

lim
n
�ðEnÞ ¼ �ðEÞ:

� is continuous from below (on C) iff it is continuous from below at every set

inC; � is continuous from above (onC) iff it is continuous from above at every set

in C; � is continuous iff it is both continuous from below and continuous from

above.

Theorem 2.29. If � is a measure on a semiring S, then � is countably subadditive

and continuous.

Definition 2.38. LetC1 andC2 be classes of subsets ofX;C1 � C2, and �1 and �2
be set functions on C1 and C2, respectively. �2 is called an extension of �1 iff

�1ðEÞ ¼ �2ðEÞ whenever E 2 C1.
Let S be a semiring,R(S) be the ring generated by S. Since any set inR(S) can

be expressed by a disjoint finite union of sets in S, we have the following

extension theorem for a measure on S.

Theorem 2.30. If � is a measure on S, then there is a unique measure � on R(S)

such that � is an extension of �. If � is finite or �-finite, then so is �.
The extension of � (on S) may also be denoted by � [on R(S)] without any

confusion.

Example 2.56. Let X ¼ ð�1;1Þ. S ¼ f½a; bÞj �15a � b51g is a semiring.

Define a set function � on S by

�ð½a; bÞÞ ¼ b� a:
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� is countably additive, and, therefore, � is a finite measure on S. � can be

extended to a finite measure on R(S), the class of all finite, disjoint unions of

bounded, left closed, and right open intervals. More generally, if g is a finite,

increasing, and left continuous real-valued function of a real variable, then

�gð½a; bÞÞ ¼ gðbÞ � gðaÞ; 8½a; bÞ 2 S

determines a finite measure �g on S, and it can be extended onto R(S).

Example 2.57. Let the ring R consist of all finite subsets of X and f be an

extended real-valued, nonnegative function on X. If we define � by

�ðfx1; x2; . . . ; xngÞ ¼
Xn
i¼1

fðxiÞ for any fx1; x2; . . . ; xmg 2 R and �ðØÞ ¼ 0;

then � is a measure onR. In fact, the class S consisting of all singletons ofX and

the empty set Ø is a semiring. If we define � on S by

�ðfxgÞ ¼ fðxÞ for any x 2 X and �ðØÞ ¼ 0;

then � is a measure on S, and the above-mentioned measure � on R is just the

extension of this measure on S.

Theorem 2.31. If � is a measure on a ring R, then it is continuous.

Theorem 2.32.Let � be additive on a ringR and �ðØÞ ¼ 0. If � is either continuous
from below, or continuous from above at the empty set Ø and finite, then it is

�-additive on R.
It should be noted that, on a semiring, an analogous conclusion of Theorem

2.32 is not true.

Example 2.58. Let X ¼ fxj0 � x � 1; x is a rational numberg; S ¼ ffxja � x

� b; x is a rational numberg j0�a � b � 1; a and b are rational numbersg.
If we define � on S by

�ðfxja � x � b; x is a rational numbergÞ ¼ b� a;

then � is finitely additive and continuous, but it is not countably additive.

Definition 2.39. A nonempty class C is hereditary iff

F 2 C

whenever

E 2 C and F � E:

2.2 Classical Measures 41



A hereditary class is a �-ring if and only if it is closed under the formation of
countable unions.

Example 2.59. The classes given in Examples 2.11, 2.14, and 2.16 are hereditary,
and the last one is a hereditary �-ring.

The hereditary �-ring generated by a class C, i.e., the smallest hereditary
�-ring containing C, is denoted by H�ðCÞ

Theorem 2.33. H�ðCÞ is the class of all sets that can be covered by countably many
sets in C.

Example 2.60. Let X ¼ ð�1;1Þ and C be the class of all bounded intervals
in X. Then H�ðCÞ ¼ PðXÞ.

If C is a nonempty class closed under the formation of countable unions,
then H�ðCÞ is just the class of all sets that are subsets of some set in C.

Definition 2.40. Let H� be a hereditary �-ring, �	 be an extended, real-valued,
nonnegative set function onH�. �

	 is called an outer measure iff it is monotone,
countably subadditive, and such that �	ðØÞ ¼ 0.

The same terminology concerning finiteness, �-finiteness, and extension is
used for outer measures as for measures.

Example 2.61. Let X be a finite set and X� X be a product space. PðX� XÞ is a
hereditary �-ring. Define �	 on PðX� XÞ by

�	ðEÞ ¼ jProjðEÞj; 8E 2 PðX� XÞ;

where ProjðEÞ ¼ fxjðx; yÞ 2 Eg. Then �	 is a finite outer measure on
PðX� XÞ.

Theorem 2.34. If � is a measure on a ring R, then the set function �	 on H�ðRÞ
defined by

�	ðEÞ ¼ inf
X1
n¼1

�ðEnÞjEn 2 R; n ¼ 1; 2; . . . ;E �
[1
n¼1

En

( )

is an extension of � to an outer measure on H�ðRÞ; if � is �-finite, then so is �	.
This outer measure �	 is called the outer measure induced by the measure �.

Definition 2.41. Let �	 be an outer measure on a hereditary �-ring H�. A set
E 2 H� is �

	-measurable iff

�	ðAÞ ¼ �	ðA \ EÞ þ �	ðA \ EÞ; 8A 2 H�:

Theorem 2.35. If �	 is an outer measure on a hereditary �-ring H� and if F is the
class of all �	 -measurable sets, then F is a �-ring, and the set function � defined for
every E 2 F by �ðEÞ ¼ �	ðEÞ is a complete measure on F:

This measure � is called the measure induced by the outer measure �	.
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Theorem 2.36. Let � be a measure on a ring R, �	 be the outer measure induced
by �. Then every set in R is �	-measurable, and therefore FðRÞ � F

Theorem 2.37. If � is a �-finite measure on a ring R, then so is the measure � on
F(R), and � is the unique extension of � on R to F(R).

Theorem 2.38. If � is a measure on a �-ring F,

F0 ¼ fE�NjE 2 F; N � F for some F 2 F with �ðFÞ ¼ 0g;

then F0 is a �-ring, and set function �0 defined for every E 2 F by �0ðE�NÞ ¼
�ðEÞ is a complete measure on F0.

This measure �0 is called the completion of �.

Theorem 2.39. If � is a �-finite measure on a ring R, then F0= F, and �0 is just
identical with �

Theorem 2.40. If � is a �-finite measure on a ringR, then for every " > 0 and every
set E 2 FðRÞ that has finite measure there exists a set E0 2 R such that

�ðE � E0Þ � ":

Example 2.62. In Example 2.56, a finite measure � on R(S) satisfying
�ð½a; bÞÞ ¼ b� a for any ½a� bÞ 2 S ¼ f½a; bÞj �15a � b51g is obtained.
This measure � can be extended uniquely to a �-finite measure on a �-ring
B ¼ FðRðSÞÞ ¼ FðSÞ, the class of all Borel sets (this class is also a �-field,
so-called Borel field on the real line). The complete measure � on B is called a
Lebesgue measure (the incomplete measure � on B is usually called a Lebesgue
measure as well), and the sets in B are called Lebesgue measurable sets of the
real line. More generally, if g is a finite, increasing, and left continuous real-
valued function of a real variable, the measure �g on R(S) obtained in Example
2.56 can be extended uniquely to a complete measure �g on a �-field Fg contain-
ing the Borel field, and the measure �g is called a Lebesgue-Stieltjes measure
induced by g. In particular, if g is a probability distribution function, then g can
uniquely determine a probability measure on the Borel field B on the real line.
At last, it should be noted that not all subsets of X ¼ ð�1; 1Þ are Lebesgue
measurable.

2.3 Fuzzy Sets

Let X be a nonempty set considered as the universe of discourse. A standard
fuzzy set in X (that is, in fact, a standard fuzzy subset of X) is characterized by a
membership functionm : X! ½0; 1�. A standard fuzzy set is called normalized if

sup
x2X

mðxÞ ¼ 1:

2.3 Fuzzy Sets 43



We use the same symbols, capital lettersA, B, C, . . . , to denote both standard
fuzzy sets and ordinary (crisp) sets in classical set theory.Membership functions
of standard fuzzy sets A, B, C, . . . , are denoted bymA;mB;mC; . . . . IfA denotes
a standard fuzzy set, thenmAðxÞ is called the grade of membership of x inA. The
class of all standard fuzzy sets is denoted by ~P(X). Since any ordinary set E in
P(X) can be defined by its characteristic function �E : X! f0; 1g, it is a special
standard fuzzy set and, therefore, PðXÞ � ~PðXÞ. In this book, only standard
fuzzy sets are considered, and we refer to them from now on as, simply,
fuzzy sets.

Definition 2.42. If mAðxÞ � mBðxÞ for any x 2 X, we say that fuzzy set A is
included in fuzzy set B, and we write A � B or, equivalently, B � A. If A � B
and B � A, we say that A and B are equal (or, A equals B), which we write as
A ¼ B.

Definition 2.43. Let A and B be fuzzy sets. The standard union of A and B,
A [ B, is defined by

mA[BðxÞ ¼ mAðxÞ _mBðxÞ; 8x 2 X;

where _ denotes the maximum operator.

Definition 2.44.LetA and B be fuzzy sets. The standard intersection ofA and B,
A \ B, is defined by

mA\BðxÞ ¼ mAðxÞ ^mBðxÞ; 8x 2 X;

where ^ denotes the minimum operator.
Similar to the way operations on ordinary sets are treated, we can generalize

the standard union and the standard intersection for an arbitrary class of fuzzy
sets: If fAtjt 2 Tg is a class of fuzzy sets, where T is an arbitrary index set, then
[t2TAt is the fuzzy set havingmembership function supt2T mAt

ðxÞ; x 2 X; and
\t2TAt is the fuzzy set having membership function inft2T mAt

ðxÞ; x 2 X:

Definition 2.45. Let A be a fuzzy set. The standard complement of A, A, is
defined by

mAðxÞ ¼ 1�mAðxÞ; 8x 2 X:

Two or more of the three basic operations can also be combined. For
example, the difference A – B of fuzzy sets A and B can be expressed as A \ B,
so that

mA�BðxÞ ¼ min½mAðxÞ; 1�mBðxÞ�

for all x 2 X. Since only standard operations on fuzzy sets are used in this
book, we omit from now on the adjective ‘‘standard’’ if there is no confusion.
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Example 2.63. Let X ¼ fa; b; cg and let fuzzy sets A, B, and C be defined by the

following membership functions

mAðxÞ ¼
0:4 if x ¼ a

0:7 if x ¼ b

0 if x ¼ c;

8<
:

mBðxÞ ¼
0:6 if x ¼ a

1 if x ¼ b

0:2 if x ¼ c;

8<
:

mCðxÞ ¼
0:1 if x ¼ a

0 if x ¼ b

1 if x ¼ c:

8<
:

Then, A � B;

mA[CðxÞ ¼
0:4 if x ¼ a

0:7 if x ¼ b

1 if x ¼ c;

8<
:

mA\CðxÞ ¼
0:1 if x ¼ a

0 if x ¼ b

0 if x ¼ c;

8<
:

and

mBðxÞ ¼
0:4 if x ¼ a

0 if x ¼ b

0:8 if x ¼ c:

8<
:

Example 2.64. Fuzzy sets can be used to represent fuzzy concepts. Let X be a

reasonable age interval of human beings: [0, 100]. Assume that the concept of

‘‘young’’ is represented by a fuzzy set Y whose membership function is

mYðxÞ ¼
1 if x � 25

ð40� xÞ=15 if 25 5 x 5 40

0 if x 
 40

8<
:

and the concept of ‘‘old’’ is represented by a fuzzy set O whose membership

function is
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mOðxÞ ¼
0 if x � 50

ðx� 50Þ=15 if 505 x565

1 if x 
 65:

8<
:

Then, the grade of membership of 28 years of age in Y is 0.8while that of 45

years of age in O is 0. Consider now the complement of Y and O whose

membership functions are

mYðxÞ ¼
0 if x � 25

ðx� 25Þ=15 if 255 x5 40

1 if x 
 40;

8<
:

and

mOðxÞ ¼
1 if x � 50

ð65� xÞ=15 if 505x565

0 if x 
 65:

8<
:

These fuzzy sets represent the concepts of ‘‘not young’’ and ‘‘not old,’’ respec-

tively. Fuzzy set Y \O whose membership function is

mY\OðxÞ ¼

0 if x � 25

ðx� 25Þ=15 if 255x540

1 if 40 � x � 50

ð65� xÞ=15 if 505x565

0 if x 
 65;

8>>>>><
>>>>>:

represents the concept of ‘‘neither young nor old,’’ that is, ‘‘middle-aged’’

(Fig. 2.2a–2.2e). Furthermore, we have O � Y that is, ‘‘old’’ implies ‘‘not

young.’’

Theorem 2.41. The standard operations of union, intersection, and complement of

fuzzy sets have the following properties, where St and T are index sets:

Involution: A ¼ A

Commutativity: A [ B ¼ B [ A
A \ B ¼ B \ A

Associativity:
S
t2T

S
s2St

As

 !
¼

S
s2[t2TSt

As

T
t2T

T
s2St

As

 !
¼

T
s2[t2TSt

As

46 2 Preliminaries



Distributivity: B \
S
t2T

At

� �
¼
S
t2T
ðB \ AtÞ

B [
T
t2T

At

� �
¼
T
t2T
ðB [ AtÞ

Idempotence: A [ A ¼ A

A \ A ¼ A

Absorption: A [ ðA \ BÞ ¼ A

A \ ðA [ BÞ ¼ A

Absorption by X and Ø: A [ X ¼ X

A \Ø ¼ Ø

Fig. 2.2 Membership functions of fuzzy sets defined on the interval [0,100] and representing
linguistic terms pertaining to age of human beings
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Identity: A [Ø ¼ A

A \ X ¼ A

De Morgan’s laws:
S
t2T

At ¼
T
t2T

At

T
t2T

At ¼
S
t2T

At

In comparison with crisp set operations (see Proposition 2.2), the law of

contradiction and the law of excluded middle are not true for fuzzy sets. This is

illustrated by the following example.

Example 2.65.X andA are given in Example 2.63. The complementA ofA has a

membership function

mAðxÞ ¼
0:6 if x ¼ a

0:3 if x ¼ b

1 if x ¼ c:

8<
:

We have

mA\AðxÞ ¼
0:4 if x ¼ a

0:3 if x ¼ b

0 if x ¼ c

8><
>:

6¼ mØðxÞ:

Similarly,

mA[AðxÞ ¼
0:6 if x ¼ a

0:7 if x ¼ b

1 if x ¼ c

8><
>:

6¼ mXðxÞ:

Definition 2.46. Let A 2 ~PðXÞ. The (crisp) set fxjmAðxÞ > 0g is called the

support of A, and denoted by supp A.

Definition 2.47. Let A 2 ~PðXÞ. For any � 2 ½0; 1�, the (crisp) sets fxjmAðxÞ 

�g and fxjmAðxÞ > �g are called the �-cut and the strong �-cut ofA, denoted by
A� and A�þ, respectively.

Obviously, bothA� andA�þ are nonincreasing with respect to �. Clearly, the
classes fA�j� 2 ½0; 1�g and fA�þj� 2 ½0; 1�g are nested.

Example 2.66. The fuzzy set Y is as given in Example 2.64. We have

Y0:2 ¼ ½0; 37� and Y0:6 ¼ ½0; 31�:
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Theorem 2.42. Let fAtjt 2 Tg � ~PðXÞ. Then, for any � 2 ½0; 1�;

[
t2T

At

 !
�þ

¼
[
t2T
ðAtÞ�þ

and

\
t2T

At

 !
�

¼
\
t2T
ðAtÞ�:

Theorem 2.43. Let A 2 ~PðXÞ. Then

A� ¼ ðAð1��ÞþÞ:

If we use a symbol � � E to denote the fuzzy set whose membership function is

mðxÞ ¼
� if x 2 E

0 if x =2E

�

for any � 2 ½0; 1� and any crisp set E 2 PðXÞ, then each fuzzy set can be fully
characterized by its �-cuts, as expressed by the following theorem.

Theorem 2.44. (Decomposition Theorem). For any A 2 ~PðXÞ;

A ¼
[

�2 ½0;1�
� � A�:

Definition 2.48. LetX ¼ ð�1;1Þ. A normalized fuzzy setA 2 ~PðXÞ is called a

fuzzy number if A� is a finite closed interval for each � 2 ð0; 1�:

Definition 2.49.A rectangular fuzzy number is a fuzzy number with membership

function having a form as

mðxÞ ¼ 1 if x 2 ½al; ar�
0 otherwise;

�

where al; ar 2 R with al � ar.
A rectangular fuzzy number is identified with the corresponding vector

hal; ari and is an interval number, essentially. Any crisp real number a can be
regarded as a special rectangular fuzzy number with al ¼ ar ¼ a.

Definition 2.50. A triangular fuzzy number is a fuzzy number with membership
function
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mðxÞ ¼

1 if x ¼ a0
x� al
a0 � al

if x 2 ½al; a0Þ
x� ar
a0 � ar

if x 2 ða0; ar�

0 otherwise;

8>>>>><
>>>>>:

where al; a0; ar 2 R, with al � a0 � ar.
A triangular fuzzy number is identified with the corresponding vector

hal; a0; ari. A triangular fuzzy number is called symmetric if a0 � al ¼ ar � a0.

Any crisp real number a can be regarded as a special triangular fuzzy number

with al ¼ a0 ¼ ar ¼ a.

Example 2.67. Let X ¼ ð�1; 1Þ. Fuzzy sets A and B with

mAðxÞ ¼
0 if x5 6 or x4 12

ðx� 6Þ=3 if 6 � x � 9

ð12� xÞ=3 if 9 5 x � 12;

8><
>:

mBðxÞ ¼
0 if x5 2 or x 4 4

x� 2 if 2 � x � 3

4� x if 3 5 x � 4

8<
:

are triangular fuzzy numbers (Fig. 2.3).

Definition 2.51.A trapezoidal fuzzy number is a fuzzy number with membership

function

Fig. 2.3 Membership
functions of triangular
fuzzy numbers A and B
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mðxÞ ¼

1 if x ¼ ½ab; ac�
x� al
ab � al

if x 2 ½al; abÞ
x� ar
ac � ar

if x 2 ðac; ar�

0 otherwise;

8>>>>>><
>>>>>>:

where al; ab; ac; ar 2 R, with al � ab � ac � ar.
A trapezoidal fuzzy number is identified with the corresponding vector

hal; ab; ac; ari. A trapezoidal fuzzy number is called symmetric if

ab � al ¼ ar � ac. Any rectangular fuzzy number hal; arican be regarded as a

special trapezoidal fuzzy number with al ¼ ab and ac ¼ ar. Similarly, any trian-

gular fuzzy number hal; a0; ari can be regarded as a special trapezoidal fuzzy

number with ab ¼ ac ¼ a0. Of course, any crisp real number a can be regarded

as a special trapezoidal fuzzy number with al ¼ ab ¼ ac ¼ ar ¼ a.

Example 2.68. Fuzzy sets Y, M, and O discussed in Examples 2.64 are trape-

zoidal fuzzy numbers.

Definition 2.52. Let X ¼ ð�1; 1Þ. A fuzzy set A 2 ~PðXÞ is called convex, if

for any x1; x2; x3 2 X;

mAðx2Þ 
 mAðx1Þ ^mAðx3Þ

where x1 � x2 � x3.

Theorem 2.45. Any fuzzy number is a convex fuzzy subset of ð�1;1Þ; and its

membership function is upper semicontinuous.
The following extension principle introduced by Zadeh [1975] is a useful tool

for extending nonfuzzy mathematical concepts to fuzzy sets (to fuzzify classical

mathematical concepts).

Extension Principle. Let X1;X2; . . . ;Xn; and Y be nonempty (crisp) sets,

X ¼ X1 � X2 � � � � � Xn be the product set ofX1;X2 . . . ;Xn; and f be a mapping

fromX toY. Then, for any given n fuzzy setsAi 2 ~PðXiÞ; i ¼ 1; 2; . . . ; n;we can
induce a fuzzy set B 2 ~PðYÞ through f such that

mBðyÞ ¼ sup
y¼f ðx1;x2;...;xnÞ

min½mA1
ðx1Þ;mA2

ðx2Þ; . . . ;mAn
ðxnÞ�;

where we use the convention that

sup
x2Ø
fxjx 2 ½0;1�g ¼ 0

when f�1ðyÞ ¼ Ø:
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As a special case, if 	 is a binary operator on points in the universe of

discourse X, then, by using the extension principle, we can obtain a binary

operator 	 (we use the same symbol) on fuzzy sets in ~P(X):

mA 	BðzÞ ¼ sup
x 	 y¼z

½mAðxÞ ^mBðyÞ�; 8z 2 X;

where A;B 2 ~PðXÞ.
Now, we can use the extension principle to define addition, subtraction,

multiplication, and division operations on fuzzy numbers, which are general-

izations of the corresponding operations on real numbers.

Definition 2.53. Let A and B be fuzzy numbers. Then Aþ B, A� B;A � B and

A/B are defined by

mAþBðzÞ ¼ sup
xþy¼z

½mAðxÞ ^mBðyÞ�;

mA�BðzÞ ¼ sup
x�y¼z

½mAðxÞ ^mBðyÞ�;

mA�BðzÞ ¼ sup
x�y¼z
½mAðxÞ ^mBðyÞ�;

and

mA=BðzÞ ¼ sup
x=y¼z;y 6¼0

½mAðxÞ ^mBðyÞ� ðwhen 0 =2 supp BÞ

for any z 2 X, respectively.

Example 2.69.Fuzzy numbersA andB are given in Example 2.67. Then we have

mAþBðxÞ ¼
0 if x5 8 or x416

ðx� 8Þ=4 if 8 � x � 12

ð16� xÞ=4 if 125x � 16

8><
>:

(Fig. 2.4), and

mA�BðxÞ ¼
0 if x5 2 or x410

ðx� 2Þ=4 if 2 � x � 16

ð10� xÞ=4 if 6 5x � 10

8><
>:

(Fig. 2.5). Viewing the real number 3 as a fuzzy number, we have A ¼ 3 � B and

B ¼ A=3.
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Definition 2.54. A fuzzy partition of X is a class of nonempty fuzzy sets defined

on X, fAiji 2 Ig, such that

X
i2 I

mAi
ðxÞ ¼ 1

for all x 2 X.
Clearly, any fuzzy set on X and its standard complement is a fuzzy partition

of X. The three fuzzy sets that represent the concepts of young, old, and middle-

aged in Example 2.64 form a fuzzy partition of the interval [0, 100].

Notes

2.1. The basic knowledge on sets and classes can be found in numerous books,
including the classic book byHalmos [1950]. For a complete and up-to-date
coverage of classical set theory, we recommend the book by Jech [2003].

Fig. 2.5 Membership
function of A–B

Fig. 2.4 Membership
function of A þ B
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2.2. The concepts of S-precompact and S-compact were introduced by Wang
[1990b].

2.3. The concept of �-algebra can be generalized to fuzzy �-field, which is a class
of fuzzy sets. This issue is discussed by Qiao [1990], as well as in Chapter 14.

2.4. Basic concepts of classical measure theory are introduced in Section 2.2
following the terminology and notation employed in the classic book on
classical measure theory by Halmos [1950].

2.5. Standard fuzzy sets as well as standard operations on fuzzy sets were
introduced in the seminal paper by Zadeh [1965]. Several other types of
fuzzy sets were introduced later [Klir, 2006], but they are not considered in
this book. Set theoretic operations on fuzzy sets are not unique. Intersec-
tions and unions of standard fuzzy sets are mathematically captured by
operations known as triangular norms and conorms (or t-norms and t-
conorms) [Klement et al., 2000, Klir and Yuan, 1995]. Complements of
standard fuzzy sets are captured by monotone nonincreasing functions
c : ½0; 1� ! ½0; 1� such that cð0Þ ¼ 1 and cð1Þ ¼ 0 [Klir and Yuan, 1995].
The standard intersection and union operations are the only cutworthy
operations among the t-norms and t-conorms, which means that they are
preserved in �-cuts for all � 2 ð0; 1� in the classical sense. That is,
ðA \ BÞ� ¼ A� \ B�andðA [ BÞ� ¼ A� [ B�. No complements of fuzzy
sets are cutworthy [Klir and Yuan, 1995].

2.6. In addition to operations of intersection, union, and complementation on
fuzzy sets, it is perfectly meaningful to employ also averaging operations on
fuzzy sets [Klir and Yuan, 1995].

2.7. For the sake of simplicity, we restrict in this book to triangular fuzzy
numbers. A more general concept of a fuzzy number (sometimes called a
fuzzy interval) involves nonlinear functions and its �-cut for � ¼ 1might
be an interval of real numbers [Klir and Yuan, 1995].

2.8. Arithmetic operations on fuzzy numbers introduced in Definition 2.53
form a basis for the so-called standard fuzzy arithmetic, which is based
on the assumption that there are no constraints among the fuzzy numbers
involved. If this assumption is not warranted, the constraints must be
taken into account. Principles of constrained fuzzy arithmetic are discussed
in [Klir, 1997, 2006; Klir and Pan, 1998].

2.9. The literature on fuzzy set theory has been rapidly growing, especially
during the last twenty years or so. Two important handbooks, edited by
Ruspini et al. [1998] and Dubois and Prade [2000], are recommended as
convenient sources of information on virtually any aspect of fuzzy set
theory. From among the growing number of textbooks on fuzzy set theory,
any of the following general textbooks is recommended for further study:
[Klir and Yuan, 1995a], [Lin and Lee, 1996], [Nguyen and Walker, 1997],
[Pedrycz and Gomide, 1998], and Zimmermann [1996]. Another valuable
resource is the following pair of books that contain classical papers on
fuzzy set theory by Lotfi A. Zadeh, the founder of fuzzy set theory: [Yager
et al., 1987] and [Klir and Yuan, 1996].
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Exercises

2.1. Let X ¼ ð�1; 1Þ. Explain the following sets and classes in natural
language:

(a) fXj0 � x � 1g;
(b) fXjx50g;
(c) ffxgjx 2 Xg;
(d) fEjE � Xg:

2.2. Let X1 ¼ X2 ¼ ð�1;1Þ;X ¼ X1 � X2. Use shading to indicate the
following sets on the Euclidean plane:

(a) fðx1; x2Þjx1 þ x241g;
(b) fðx1; x2Þjx21 � x2g;
(c) fðx1; x2Þjx245g.

2.3. Prove the following equalities:

(a) ðE� GÞ \ ðF� GÞ ¼ ðE \ FÞ � G;
(b) ðE� FÞ � G ¼ E� ðF [ GÞ;
(c) E� ðF� GÞ ¼ ðE� FÞ [ ðE \ GÞ;
(d) ðE� FÞ \ ðG�HÞ ¼ ðE \ GÞ � ðF [HÞ:

2.4. Prove the following equalities:

(a) E�F ¼ F�E;
(b) E� ðF�GÞ ¼ ðE�FÞ�G;
(c) E \ ðF�GÞ ¼ ðE \ FÞ�ðE \ GÞ:

2.5. Prove that lim supn En ¼ lim infn En:
2.6. Indicate the superior limit and the inferior limit of the set sequence fEng

where En is given as follows:

(a) En ¼ ðn; nþ 3=2Þ;
(b) En ¼ ½an; bn� with an ¼ minð0; ð�2ÞnÞ; bn ¼ max ð0; ð�2ÞnÞ;
(c) En ¼ fn; nþ 1; . . .g;
(d) En ¼ fxjnx is a natural numberg;
(e) En ¼ ½1=n; n�.

2.7. Which set sequence in Exercise 2.6 is monotone and for which does the
limit exist?

2.8. Prove:

lim
n
ðE [ FnÞ ¼ E [ lim

n
Fn;

lim
n
ðE� FnÞ ¼ E� lim

n
Fn:

2.9. Prove Proposition 2.6 (4), (5), and (6).
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2.10. Let X ¼ ð�1; 1Þ � ð�1; 1Þ ¼ fðx; yÞj �15x51;�15y51g.
Prove that the class of all sets that have the form

fðx; yÞj �15a1 � x5b151;�15a2 � y5b251g

is a semiring.

2.11. Prove Proposition 2.11.
2.12. Is a monotone class closed under the formation of limit operations of set

sequence? Why or why not?
2.13. Prove that

FpðCÞ ¼
\
t2T

[
s2St

EsjEs 2 C;St and T are arbitrary index sets

( )

2.14. Categorize the class C given in the following descriptions as either a ring,
semiring, algebra, �-ring, �-algebra, monotone class, or a plump class:

(a) X ¼ ð�1;1Þ;C is the class of all bounded, left open, and right
closed intervals

(b) X ¼ f1; 2; . . .g;C ¼ ffn; nþ 1; . . .gjn ¼ 1; 2; . . .g [ fØg
(c) X is a nonempty set,E is a nonempty subset ofX,C ¼ fFjE � F � Xg
(d) X is a nonempty set, E is a nonempty subset of X;E 6¼ X;

C ¼ fFjF � Eg
(e) X is a nonempty set, E is a nonempty subset of X, C ¼ fEg.

2.15 What are the rings (algebras, �-rings, �-algebras, monotone classes, plump
classes, respectively) generated by the classes C given in Exercise 2.14?

2.16. Indicate what A [C] is for each of the following classes C:

(a) X ¼ f1; 2; 3; 4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g; C ¼ f1g;D ¼ f2; 4g; E ¼ Ø

(b) X ¼ f1; 2; 3; 4; 5g;C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g; C ¼ f1g;D ¼ f1; 5g;E ¼ f4; 5g

(c) X ¼ f1; 2; 3; 4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g;C ¼ f1g;D ¼ f1; 5g;E ¼ f1; 2g

(d) X ¼ f1;2;3;4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f4; 5g; B ¼ f3; 5g;
C ¼ f2; 3; 4; 5g;D ¼ f2; 3; 4g;E ¼ f3; 4; 5g

(e) X ¼ ð�1;1Þ;C ¼ fØ;B;B;Xg;where B ¼ ½0;1Þ
(f) X ¼ ð�1;1Þ;C is the class of all open intervals in X
(g) X ¼ ð�1;1Þ;C is the class of all closed intervals in X
(h) X ¼ ð�1;1Þ; C ¼ fAnj n ¼ 1; 2; . . .g; whereAn¼½1� 1=n; n�; n ¼

1; 2; . . . .
(i) X ¼ f1; 2; . . .g; C ¼ fAnj n ¼ 1; 2; . . .g; where An ¼ fn; nþ 1; . . .g;

n ¼ 1; 2; . . . .
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2.17. In Exercise 2.16, which classes are closed under the formation of arbitrary
intersections? Verify that A½C� � C for these classes C.

2.18. In Exercise 2.16, which classes are AU-classes? Referring to Exercise 2.17,
observe that Theorem 2.21 is applicable in some of these cases.

2.19. Prove that

Aðx=C1 [ C2Þ ¼ Aðx=C1Þ \ Aðx=C2Þ for any x 2 X:

May we regard Theorem 2.14 as a special case of this statement?

2.20 Prove that if

C0 ¼
\
t2T

EtjEt 2 C; t 2 T;T is an arbitrary index sets

( )
;

then A½C0� ¼ ½C�: Can you find a class larger than C0 for which this result

still holds?

2.21. Determine the classH½C� based upon each of the classes given in Exercise
2.16.

2.22. Prove that any set inCmay be expressed by an intersection of the holes of
C, moreover, prove that any union of sets in C may be expressed by an
intersection of the holes of C.

2.23. Use one of the classes given in Exercise 2.16 to verify the conclusion given
in Exercise 2.21.

2.24. Prove that

FpðCÞ ¼
\
t2T

HtjHt 2 H½C�;T is an arbitrary index set

( )
:

2.25. Prove that if C is closed under the formation of unions then H½C� � C.
2.26. In Exercise 2.16, which classes are closed under the formation of unions?

Verify that ½H½C� � C for these classes.
2.27. Prove that if C is an AI-class then X =2 C:
2.28. Let C be an AI-class. Prove that if C � H½C� then C ¼ H½C�:
2.29. In Exercise 2.16, which classes are AI-classes? Referring also to Exercise

2.26, verify, for some class(es)C, the statement suggested in Exercise 2.28.
2.30. Let X be the set of all integers and C ¼ PðXÞ: Is ðX;CÞ S-compact?

Take En ¼ fxj0 � ð�1Þn x � n; x 2 Xg; n ¼ 1; 2; . . . . Can you find a con-

vergent subsequence of fEng?

2.31. Prove that, if (X, C) is S-precompact and A � X; then ðA;C \ AÞ is
S-precompact.
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2.32. Prove that if (X, C) is S-precompact and C0 � C; then ðX;C0Þ is
S-precompact.

2.33. Let X ¼ f1; 2; 3; 4g. Consider the following relation on X:
R1 ¼ fð1; 1Þ; ð1; 3Þg
R2 ¼ fð2; 2Þ; ð3; 2Þ; ð4; 1Þg
R3 ¼ fð1; 4Þ; ð2; 3Þg
R4 ¼ fð1; 1Þ; ð4; 4Þg
R5 ¼ fð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þ; ð1; 4Þg
R6 ¼ fð1; 2Þ; ð2; 1Þ; ð2; 3Þ; ð1; 3Þ; ð3; 1Þg
R7 ¼ X� X
R8 ¼ Ø:

Determine whether or not each relation is

(a) reflexive
(b) symmetric
(c) transitive.

2.34. Let X ¼ ð�1;1Þ and ffi be the relation on X� X defined by

ðx1; y1Þ ffi ðx2; y2Þ iff x1 � y1 ¼ x2 � y2:

(a) Prove that ffi is an equivalence relation.
(b) Find the equivalence class of (2,1).
(c) Find the quotient X/ffi.

2.35. Let R be a relation on X. Prove that R � � iff R is both symmetric and
antisymmetric.

2.36. Let X ¼ f0; 1; 2; . . .g: A relation � on X� X is defined as follows:

ðx1; y1Þ � ðx2; y2Þ iff x1 � x2 and y1 � y2:

Prove that ðX� X;�Þ is a lattice. Show that by replacingX� Xwith the
two-dimensional Euclidean space ð�1; 1Þ � ð�1; 1Þ we still obtain
a lattice.

2.37. Let X ¼ ½0; 1� and let C consist of Ø;X;A ¼ ½0; 0:25Þ; B ¼ ½0; 0:5Þ; C ¼
½0; 0:75Þ; and D ¼ ½0:25; 0:75Þ: Consider a set function � defined on C as
follows: �ðØÞ ¼ 0; �ðAÞ ¼ 2; �ðBÞ ¼ 2; �ðCÞ ¼ 4; �ðDÞ ¼ 2; �ðXÞ ¼ 4:

(a) Show that � is additive on C.
(b) Can � be extended to an additive function on the ring generated byC?

2.38. Assuming that a set function � is finitely additive on a ring R, show that

�ðA [ BÞ ¼ �ðAÞ þ �ðBÞ � �ðA \ BÞ

for all A;B 2 R:
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2.39. Let X ¼ fx1; x2; x3g: � is a set function defined for all singleton of X
with �ðfxigÞ ¼ 2�i; i ¼ 1; 2; 3: Extend � to be a measure on the power set
of X.

2.40. Let (X, F) be a measurable space, � be a measure on F. Show that

�
[n
i¼1

Ei

 !
¼

X
I�f1;...;ng;I6¼Ø

ð�1ÞjIjþ1�
\
i2 I

Ei

 !

and

�
\n
i¼1

Ei

 !
¼

X
I�f1;...;ng;I 6¼Ø

ð�1ÞjIjþ1�
[
i2 I

Ei

 !
;

where fE1;E2; . . . ;Eng is a finite subclass of F.

2.41 Prove Theorem 2.28.
2.42. Prove Theorem 2.31.
2.43. Let (X, F) be a measurable space, and let � be a measure on F. For any

A � X, define set function �0 by �0ðAÞ ¼ inff�ðEÞjA � E � Xg:

Does �0 coincide with �0 on F? Furthermore, is � a measure on P(X)? If

yes, prove it; if not, construct a counterexample.

2.44. Consider the fuzzy sets A, B, and C defined on the set (interval)
X ¼ ½0; 10� by the following membership functions:

mAðxÞ ¼
x2 when x 2 [0,1]

ð2� xÞ2 when x 2 (1,2]

0 otherwise

8<
:

mBðxÞ ¼
x� 2 when x 2 [2, 3]

4� x when x 2 (3, 4]

0 otherwise

8<
:

mCðxÞ ¼ maxf0; 2ðx� 3Þ � ðx� 3Þ2g:

Determine:

(a) plots of the given membership functions and those representing
standard complements of A;B; and C, and C;

(b) the standard intersection and standard union of B and C;
(c) the �-cut representations of A, B, and C.

2.45. Viewing fuzzy sets A, B, C in Exercise 2.44 as fuzzy numbers on R,
determine:
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(a) Aþ Bþ C
(b) A� B� C
(c) ABþ C and AB� C
(d) BC=A:

2.46. Show that under the standard operations fuzzy sets do not satisfy the law
of excluded middle and the law of contradiction.

2.47. Show that under the standard operations fuzzy sets satisfy DeMorgan’s
laws.

2.48. Considering arithmetic operations on triangular fuzzy numbers, show
that their:

(a) additions and subtractions are again triangular fuzzy numbers;
(b) multiplications and divisions may not be triangular fuzzy numbers.

2.49. Show that for any pair of fuzzy sets A and B on X, the concepts of set
inclusion, standard intersection, and standard union are cutworthy (see
Note 2.5).

2.50. Prove Theorem 2.42, which states that the operation of standard inter-
section and standard union on fuzzy sets are cutworthy and strong
cutworthy, respectively.

2.51. Prove Theorem 2.43, which demonstrates that the standard complement
of fuzzy sets is not cutworthy.

2.52. Explain why averaging operations are meaningful for fuzzy sets (even
when they degenerate to crisp sets), while they are not meaningful for
classical sets.
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Chapter 3

Basic Ideas of Generalized Measure Theory

3.1 Generalizing Classical Measures

The principal feature of classical measures is the requirement of countable
additivity. When this requirement is replaced with a set of requirements that,
as a whole, are weaker than countable additivity, we obtain a class of measures
that are more general than classical measures. The various classes of measures
obtained in this way can be ordered, at least partially, by their generalities.
Clearly, the weaker the set of requirements employed the more general is the
class of measures characterized by these requirements.

In generalized measure theory the meaning of the term ‘‘measure’’ is thus
considerably broader than its original meaning in classical measure theory.
Since the subjects of generalized measure theory are various types of measures,
including the classical ones, we need to distinguish each type by adding a
suitable adjective to the term ‘‘measure.’’ Thus, for example, when we want to
refer to measures of classical measure theory, we use either the term ‘‘classical
measures’’ or the term ‘‘additive measures.’’

Within generalized measure theory classical measures are obviously very
special measures. In order to delimit the scope of measures in generalized
measure theory, as understood in this book, we need to characterize the most
general measures that we recognize. This is done in Definition 3.1. First,
however, we need to introduce relevant notation and conventions.

Let X be a nonempty set, C be a nonempty class of subsets of X, and
� : C! ½0;1� be a nonnegative and extended real-valued set function defined
on C. This notation is used throughout the book. However, symbol C usually
signifies a class of subsets of X that is equipped with some mathematical
structure, such as semiring, ring, algebra, �-algebra (or, as a special case,
Borel field), and the like. Similarly, symbol � usually denotes a nonnegative
and extended real-valued set function that possesses some additional
properties, such as monotonicity with respect to set inclusion, continuity,
semicontinuity, and the like. When appropriate, these general symbols are
replaced with special symbols to signify the various special properties involved.
Throughout the whole book, we use the following conventions:

sup
x2Ø
fxjx 2 ½0;1�g ¼ 0;

Z. Wang, G.J. Klir, Generalized Measure Theory,
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inf
x2Ø
fxjx 2 ½0; 1�g ¼ 1;

0�1 ¼ 1� 0 ¼ 0;

1

1 ¼ 0;

1�1 ¼ 0;

X
i2Ø

ai ¼ 0;

where faig is a real number sequence.

Definition 3.1. Set function � : C! ½0;1� is called a general measure on (X, C)

iff �ðØÞ ¼ 0 when Ø 2 C:
The only requirement in Definition 3.1, one which characterizes general

measures, is usually referred to as vanishing at the empty set. General measures

on (X,C) are thus nonnegative and extended real-valued set functions onC that

vanish at the empty set.
We usually consider a monotone class, semiring, ring, algebra, �-ring,

�-algebra, plump class, or power set of X as the class C on which � is defined.

We always call the pair (X, F), where F denotes a �-ring (or �-algebra), a
measurable space. The triple (X;F; �), where � denotes a general measure, is

then called a general measure space.

Example 3.1. Given a measurable space (X, F), function � defined by �ðEÞ ¼ 1

for a particular nonempty set E 2 F and �ðAÞ ¼ 0 for all sets A 2 F that are

distinct from E is a general measure.

Example 3.2. Let X ¼ fa, b, cg and C ¼ PðXÞ: Function � defined by

�ðAÞ ¼
0 when A = Ø or jA j= 2

0:5 when jA j= 1

1 when A = X

8<
:

is a general measure on (X, P(X)).
The two properties required by general measures — nonnegativity and

vanishing at the empty set — are obviously extremely weak requirements. In

most applications various additional properties are needed. Although general

measures are not completely devoid of applications (Note 3.1), their primary

significance in this book is that they provide us with a broad framework under

which all other types of measures, including the classical ones, are subsumed as

special cases. The term generalized measure theory is used in this book for a
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theory that deals not only with additive measures, but also with their various
generalizations, which are nonadditive measures of various types.

3.2 Monotone Measures

In this section, we introduce and examine a very broad class of measures that is
obtained by restricting the class of general measures by the requirement of
monotonicity with respect to set inclusion. Measures in this class are significant
for two reasons: (i) they are quite general in the sense that they subsume all
other types of measures, with the exception of general measures, as special
cases; and (ii) in comparison with general measures the applicability of mono-
tone measures is much greater.

Definition 3.2. Set function � : C! ½0;1� is called a monotone measure on
(X, C) iff it satisfies the following requirements:

(MM1) �ðØÞ ¼ 0 when Ø 2 C ðvanishing atØÞ;
(MM2) E 2 C;F 2 C; and E � F imply �ðEÞ � �ðFÞ ðmonotonicityÞ:

In the context of some applications, it is desirable that monotone measures
also satisfy one or both of the following requirements:

ðCBÞfEng � C;E1 � E2 � � � � ; and
[1
n¼1

En 2 C imply

lim
n

�ðEnÞ ¼ �
[1
n¼1

En

 !
ðcontinuity from belowÞ;

ðCAÞfEng � C;E1 � E2 � � � � ; �ðE1Þ51; and
\1
n¼1

En 2 C imply

lim
n
�ðEnÞ ¼ �

\1
n¼1

En

 !
ðcontinuity from aboveÞ:

Monotone measures that satisfy requirement (CB) are called semicontinuous
from below (or lower-semicontinuous monotone measures), and those that satisfy
requirement (CA) are called semicontinuous from above (or upper-semicontinuous
monotone measures). Monotone measures that satisfy both of the requirements
are called continuous monotone measures.

In some application areas (for example, in the area of imprecise probabil-
ities), it is useful to use monotone measures that are normalized in the following
sense: A monotone measure � on (X, C) is said to be normalized iff X 2 C and
�ðXÞ ¼ 1:

The comments regarding the usual mathematical structure of classC that are
made for general measures in Section 3.1 apply to monotone measures as well.
Moreover, the terminology regarding finiteness, �-finiteness, and extension
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introduced for classical measures in Section 2.2 is applicable to monotone
measures and their semicontinuous or continuous subclasses as well.

We should mention at this point that measures defined by Definition 3.2,
which are called monotone measures in this book, frequently have been dis-
cussed in the literature under the name ‘‘fuzzy measures.’’ In fact, we used this
term in our previous book [Wang and Klir, 1992]. However, we came to the
conclusion that this term is confusing since it suggests that fuzzy sets are in some
way involved in these measures, which, of course, they are not. The feature that
distinguishes these measures from other types of measures is the property of
monotonicity, expressed by the requirement (MM2) in Definition 3.2. The term
‘‘monotonemeasures’’ is thus far more expressive and transparent than the term
‘‘fuzzy measures.’’

Example 3.3. Let � be the Dirac measure on (X, F), i.e., for any E 2 F;

� ðEÞ ¼
1; x0 2 E

0; x0 =2 E,

�

where x0 is a fixed point in X. This set function � is a probability measure and,
of course, it is a normalized monotone measure.

Let us observe that any classical measure on a semiring is, in general, a
monotone measure.

Example 3.4. X ¼ f1; 2; . . . ; ng;C ¼ PðXÞ: If

�ðEÞ ¼ jEj
n

� �2

;

where jEj is the number of those points that belong to E, then � is a normalized
monotone measure. In fact, since the space X is finite, the continuity (from
above and below) is satisfied naturally.

Example 3.5. Let X ¼ f1; 2; . . .g and C ¼ PðXÞ: If

�ðEÞ ¼ jEj �
X
i2E

2�i 8E 2 C;

then � is a continuous monotone measure. In fact, it is clear that � satisfies the
conditions (MM1) and (MM2), and the continuity is guaranteed by the follow-
ing lemma.

Lemma 3.1. If �1 and �2 are continuous, nonnegative, extended, real-valued set
functions on (X, C), and �1 þ �2 and �1 � �2 are defined by

ð�1 þ �2ÞðEÞ ¼ �1ðEÞ þ �2ðEÞ
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and

ð�1 � �2ÞðEÞ ¼ �1ðEÞ � �2ðEÞ
for all E 2 C; respectively, then both �1 þ �2 and �1 � �2 are continuous. If �1
and �2 are finite or �-finite monotone measures (or semicontinuous monotone
measures), then so are �1 þ �2 and �1 � �2:

Example 3.6. Let X0 ¼ f1; 2; . . .g;X ¼ X0 � X0; and C ¼ PðXÞ: For any

E 2 PðXÞ; let

� ðEÞ ¼ jProj Ej;

where

Proj E ¼ fx j ðx; yÞ 2 Eg:

Function � satisfies the requirements (MMl), (MM2), and (CB), but it is not

continuous from above. In fact, if En ¼ f1g � fn; nþ 1; � � �g; then E1 � E2 �
� � � ; and �ðEnÞ ¼ 1 for any n ¼ 1; 2; . . . ; but

T1
n¼1 En ¼ Ø; and �

T1
n¼1

�
EnÞ ¼ 0.

So, the set function � is a lower-semicontinuous monotone measure.

Example 3.7. Let f(x) be a nonnegative, extended real-valued function defined

on X ¼ ð�1;1Þ: If

�ðEÞ ¼ sup
x2E

f ðxÞ 8E 2 PðXÞ;

then � satisfies the conditions (MMl), (MM2), and (CB). But, in general, it is

not continuous from above. So � is a lower-semicontinuous monotone measure

on (X, P(X)).

Example 3.8. Let the measurable space (X, P(X)) be the same as that given in

Example 3.7. if f : X! ½0; 1� is such that infx2X f ðxÞ ¼ 0, then the set function

� which is determined by

�ðEÞ ¼ inf
x =2E

fðxÞ

for every E 2 PðXÞ is a normalized upper-semicontinuous monotone

measure.
For each normalized monotone measure � on (X, C), where C is assumed to

contain both Ø and X and be closed under complementation, we define for all

A 2 C another monotone measure, �; via the equation

�ðAÞ ¼ 1� �ð �AÞ;
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and we call � the dual monotone measure of �: Clearly, any monotone measure

contains the same information as its dual measure, but the two measures

represent the information differently. It is often preferable to work with pairs

of dual measures rather than with single measures. The definition of duality

applies not only to monotone measures, but to any special subclass of mono-

tone measures as well. Observe that the dual of any additive measure is the

measure itself. That is, additive measures are autodual. For any normalized

monotone measure �; its dual measure � is also a normalized monotone
measure. Moreover, the dual measure of any normalized, monotone, and

lower-semicontinuous measure is a normalized, monotone, and upper-contin-

uous measure. Similarly, the dual measure of any normalized, monotone, and

upper-continuous measure is a normalized, monotone, and lower-continuous

measure.
For any monotone measure �; on (X, C), if sets A;B;A \ B; and A [ B are

in C, then

�ðA \ BÞ � min ð�ðAÞ; �ðBÞÞ;

�ðA [ BÞ 	 max ð�ðAÞ; �ðBÞÞ:

These inequalities follow frommonotonicity of � and from the simple facts that

A \ B � A and A \ B � B; and similarly, A [ B � A and A [ B � B:
Observe that monotone measures, as introduced in Definition 3.2, are

actually monotone increasing set functions. It is certainly possible to define

monotone decreasing set functions as well, simply by replacing requirement

(MM2) in Definition 3.2 with the following alternative requirement:

ðMM20Þ E 2 C;F 2 C;E � F imply �ðEÞ 	 � ðF Þ:

A fundamental difference between the two types of set functions is that the one

satisfying requirement (MM2’) is not a measure, as we understand the concept

of a measure in this book, since it obviously cannot satisfy the requirement of

general measures that they vanish at the empty set. Although monotone

decreasing set functions emerge naturally on intuitive grounds in some applica-
tions (Note 3.2), it is possible, in general, to convert each of them to an

associated monotone measure that contains the same information. Assume,

for example, that � is a decreasing set function on (X, C) such that �ðØÞ51:
Then, we can define for all A 2 C an associated monotone measure � by the

formula

�ðAÞ ¼ �ðØÞ � �ðAÞ:

Clearly, set function � contains the same information as set function �. How-

ever, � is a monotone measure while � is not even a general measure and,

consequently, it is outside the scope of generalized measure theory.
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3.3 Superadditive and Subadditive Measures

It is easy to see that additivity and nonnegativity imply monotonicity, but not

the other way around. However, monotone measures can be usefully classified

from the standpoint of additivity into four classes: (i) additive measures;

(ii) superadditive measures; (iii) subadditive measures; and (iv) monotone mea-

sures that do not belong to any of the other three classes. The superadditive and

subadditive measures, which are quite important in generalizedmeasure theory,

are defined as follows.

Definition 3.3. A monotone measure � on ðX;CÞ is superadditive iff

� ðA [ BÞ 	 �ðAÞ þ � ðBÞ

whenever A [ B 2 C; A 2 C; B 2 C; and A \ B ¼ Ø:

Definition 3.4. A monotone measure � on ðX;CÞ is subadditive iff

�ðA [ BÞ � �ðAÞ þ �ðBÞ

whenever A [ B 2 C; A 2 C; and B 2 C:
Observe that superadditive measures are capable of expressing a cooperative

action or synergy between sets in terms of the measured property, while

subadditive measures are capable of expressing inhibitory effects or incompat-

ibility between sets in terms of the measured property. Additive measures, on

the other hand, are not able to express either of these interactive effects. They

are applicable only to situations in which there is no interaction between sets as

far as the measured property is concerned. In additive measures superadditivity

and subadditivity are not distinguished; they both collapse into the property of

additivity.
Inclusion relationship among additive measures and the four classes of

measures introduced in Sections 3.1–3.3 is depicted in Fig. 3.1.

General measures 

Monotone measures 

Superadditive measures 

Additive measures 

Subadditive measures 
Fig. 3.1 Inclusion
relationship among classes
of measures considered
in Sections 3.1–3.3
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3.4 Signed General Measures

The notion of a signed measure refers in classical measure theory to an extended

real-valued and countably additive set function � on a measurable space (X, C)

that assumes at most one of the values þ1 and �1 and for which �ðØÞ ¼ 0

[Halmos, 1950]. Signed measures in classical measure theory are thus genera-

lizations of classical measures. To emphasize that they are additive, it is more

appropriate within the framework of generalized measure theory to call them

signed additive measures.
In the same way as signed additive measures are obtained from additive

measures, we can obtain signed general measures from general measures. Signed

general measures vanish at the empty set, as general measures do, but they are

not required to be nonnegative. Clearly, each additive measure is also a signed

additive measure, but not the other way around. Each additive measure is also a

monotone measure, but signed additive measures are generally not monotone.

It is easy to show that a signed additive measure � on (X,C) is nondecreasing iff

it is an additive measure. This follows from the following two simple facts: (i) if

� is an additive measure, then we know that it is also a monotone measure; and

(ii) if � is a signed additive measure that is not an additive measure, then there

exists a nonempty set A 2 C for which �ðAÞ50 and, considering the

requirement that �ðØÞ ¼ 0; we have �ðAÞ5�ðØÞ and A � Ø; which violates

monotonicity. The same arguments and conclusions apply obviously to signed

general measures and monotone measures as well. Inclusion relationship

among four main subclasses of the class of signed general measures is depicted

in Fig. 3.2.

Example 3.9. Let X ¼ fa; bg. Set function � : PðXÞ ! ð�1;1Þ is defined by

�ðØÞ ¼ 0; �ðfagÞ ¼ 0:5; �ðfbgÞ ¼ �0:2; and �ðXÞ ¼ 1: Then � is a signed gen-

eral measure on (X, P(X)).
We have the following decomposition theorem for signed general measures,

which is similar to the Jordan decomposition theorem established in classical

measure theory for signed measures. The proof of the theorem for signed

Signed general measures 

Signed additive measures 

General measures 

Monotone measures 

Additive measures 

Fig. 3.2 Inclusion
relationship among the four
main subclasses of the
signed general measures
discussed in section 3.4
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general measures is much simpler than that one for signed measures in classical
measure theory.

Theorem 3.1. Let � be a signed general measure on (X, C). Then � can be
expressed as the difference of two general measures, i.e., � ¼ �þ � ��, where
both �þ and �� are general measures on (X, C).

Proof. Define

�þðEÞ ¼ �ðEÞ if � (E) 	 0

0 otherwise

�

and

��ðEÞ ¼ ��ðEÞ if � (E) 5 0

0 otherwise

�

for every E 2 C: Then both �þ and �� are general measures on (X, C) and
�ðEÞ ¼ �þðEÞ � ��ðEÞ for every E 2 C. &

We may also call (�þ; ��) a Jordan decomposition of signed general measure
� if � ¼ �þ � ��, where both �þ and �� are general measures. Unlike the
classical case, the Jordan decomposition of a signed general measure may not
be unique.

Example 3.10. Consider the signed general measure � given in Example 3.9.
According to the proof of Theorem 3.1,

�þðEÞ ¼
1 if E = X

0:5 if E = fag
0 otherwise

8<
:

and

��ðEÞ ¼ 0:2 if E = fbg
0 otherwise

�

for every E 2 PðXÞ: Then � ¼ �þ � �� and (�þ; ��) is a Jordan decomposition
of �. However, if we take

�þðEÞ ¼

2 if E = X

1:5 if E = fag
1 if E = fbg
0 if E = Ø

8>>><
>>>:
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and

��ðEÞ ¼

1 if E = X

1 if E = fag
1:2 if E = fbg
0 if E = Ø,

8>>><
>>>:

then ðvþ; v�Þ satisfies � ¼ �þ � �� and, therefore, it is a Jordan decomposition
of � as well.

Definition 3.5. A Jordan decomposition ð�þ; ��Þ of a signed general measure �
is called the smallest Jordan decomposition of � if, for every E 2 C; �þðEÞ �
vþðEÞ and ��ðEÞ � ��ðEÞ for any other Jordan decomposition ðvþ; v�Þ of �.

The Jordan decomposition ð�þ; ��Þ of � employed in the proof of Theorem 3.1
is the smallest one. This property can be seen easily in Example 3.10.

Notes

3.1. Aumann and Shapley [1974] use set functions that we call signed general
measures for the study of non-atomic cooperative games. The term ‘‘non-
atomic games’’ refers to games that involve very large number of players so
that it is reasonable and convenient to represent them as points on a real
line. These games are called ‘‘cooperative’’ since no individual player can
affect the overall outcome and it is thus essential to cooperate and form
coalitions. According to this interpretation, a general measure � defined on
a measurable space (X, C), where X is the set of players and C is a class of
coalitions of players, is a game. For each A 2 C; the number �ðAÞ is
interpreted as the total payoff that the coalition A, if it forms, can obtain
for its members. Other notable publications connecting generalized mea-
sure theory with the theory of cooperative games include [Shapley, 1953,
1971; Schmeidler, 1972; Owen, 1988; Branzei et al., 2005]. The utility of
signed general measures or general measures in other areas is discussed in
[Murofushi et al., 1994].

3.2. Special monotone decreasing set functions were introduced and discussed
by the British economist George Shackle in several of his publications
[Shackle, 1949, 1955, 1961]. He employed these functions to express
degrees of potential surprise associated with judgments of individual
human beings regarding future possibilities. The following is his own
concise description of the idea of potential surprise:

It is the degree of surprise to which we expose ourselves when we examine an
imagined happening as to its possibility, in general or in the prevailing circum-
stances, and assess the obstacles, tensions and difficulties which arise in ourminds
when we try to imagine it occurring, that provide the indicator of degree of
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possibility. This is the surprise we would feel, if the given thing did happen; it is
potential surprise (Shackle, 1961, p. 68):.

As is shown in [Klir, 2002], each of these functions expressing degrees of
potential surprise can be converted to an associatedmonotonemeasure—a
possibility measure—that contains the same information. Shackle was
aware of the two ways of expressing the same phenomenon. He preferred
to work with set functions expressing potential surprise because they have
a natural psychological interpretation. However, the associated possibility
measures are more suitable for mathematical treatment.

3.3. The concept of monotone measures was first suggested and investigated by
Sugeno [1974, 1977]. However, he introduced these measures under the
name ‘‘fuzzy measures.’’ Although this name is rather misleading, as there
is no fuzziness in monotone measures, it has been quite a popular name in
the literature. Sugeno’s original definition of a fuzzy (i.e., monotone)
measure is based on a measurable space (X, B), where B is a Borel field.
His definition differs from Definition 3.2 in the formulation of continuity.
Sugeno does not distinguish continuity from below and continuity from
above, and defines continuity as follows:
If En 2 B for 1 � n51 and sequence fEng is monotone, then
limn!1 �ðEnÞ ¼ �ðlimn!1 EnÞ:

Exercises

3.1. Show that the measures in Examples 3.1 and 3.2 are not monotone.
3.2. Show that nonnegative monotone decreasing set functions are neither

general measures nor signed general measures.
3.3. Consider a monotone decreasing set function � on ðX;PðXÞÞ where

X ¼ fa; b; cg; which is defined for all A 2 PðXÞ by the formula
�ðAÞ ¼ 1=jAj. Determine an associated monotone measure � that contains
the same information as �.

3.4. Determine whether each of the following set functions is a monotone
measure, lower-semicontinuous monotone measure, upper-semicontinu-
ous monotone measure, or continuous monotone measure.

(a) X ¼ ð�1;1Þ; F is the class of all Borel sets in ð�1;1Þ; and � ðEÞ ¼ c
for any E 2 F; where c is a nonnegative constant.

(b) X is the set of all integers, F ¼ PðXÞ; and �ðEÞ ¼
P

i2E i for any E 2 F:
(c) X is the set of all positive integers, F ¼ PðXÞ; and �ðEÞ ¼

P
i2E i�

ðjEj2=2Þ for any E 2 F:
(d) X is the set of all positive integers, F ¼ PðXÞ; and

�ðEÞ ¼ 1 if E 6=Ø

0 if E =Ø

�

for any E 2 PðXÞ.
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(e) X ¼ fa; b; c; dg;F ¼ PðXÞ; and

�ðEÞ ¼
1 if E = X

0 if E = Ø

1=3 otherwise.

8><
>:

(f) X ¼ ½0; 1Þ \ R;C ¼ R½0;1Þ \ R; where R is the set of all rational num-
bers, R½0;1Þ is the class of all finite unions of left closed right open
intervals in [0, 1), and � is defined on C by

�ðA \ RÞ ¼ mðAÞ

for any A 2 R½0;1Þ; where m is the Lebesgue measure.

3.5. Are there any normalized monotone measures in Exercise 3.4? If the
answer is yes, find their dual monotone measures.

3.6. Determine whether each of the normalized monotone measures in Exercise
3.4 and its dual measure (Exercise 3.5) is superadditive, subadditive, or
both.

3.7. Consider the measurable space ðX;PðXÞÞ; where X ¼ fa; b; cg: Find an
example of a set function � on P(X) for each of the classes of measures or
signed measures whose names are given in Figs. 3.1 and 3.2.

3.8. Prove Lemma 3.1.
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Chapter 4

Special Areas of Generalized Measure Theory

4.1 An Overview

The term ‘‘generalized measure theory,’’ as it is understood in this book, is
delimited by two extremes—the classical theory of additive measures or signed
additive measures at one extreme and the theory of general measures or signed
general measures at the other extreme. There are of course many measure
theories between these two extremes. They are based on measures that do not
require additivity, but that are not fully general as well. Three major types of
measures that are in this category are introduced in Chapter 3. They are
monotone measures and their large subclasses: superadditive and subadditive
measures. The purpose of this chapter is to further refine these large classes of
measures by introducing their various subclasses. We focus on those subclasses
that are well established in the literature.

In Section 4.2, we begin with an important family of measures that are
referred to in the literature as Choquet capacities of various orders. Classes of
measures captured by this family are significant as they are linearly ordered in
terms of their interpretations and methodological capabilities. In some sense
this family of measures is the core of generalized measure theory. Classes of
measures in this family are benchmarks against which other classes of measures
are compared in terms of their roles in generalized measure theory.

After introducing this important family of measures in Section 4.2, we return
to classical measure theory and examine the various ways of how to generalize
it. First, we introduce in Section 4.3 a simple generalization of classical mea-
sures via the so-called l-measures. Next, we show in Section 4.4 that the class of
l-measures is a member of a broader class of measures that we call quasi-
measures. Each member of this broader class of measures is connected to
additive measures via a particular type of reversible transformation. After
examining quasi-measures, we proceed in Section 4.5 to the strongest Choquet
capacities (referred to as capacities of order 1) and their dual measures
(referred to as alternating capacities of order1). These pairs of dual measures,
when normalized, form a basis for a well-developed and highly visible theory of
uncertainty, which is usually referred to in the literature as the Dempster–Shafer
theory. Another important and well-known theory of uncertainty, which is in

Z. Wang, G.J. Klir, Generalized Measure Theory,
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some specific way connected with the Dempster–Shafer theory, is possibility
theory. Nonadditive measures upon which possibility theory is based are intro-
duced and examined in Section 4.6. Finally, some properties of finite monotone
measures are presented in Section 4.7.

4.2 Choquet Capacities

Definition 4.1.Given a particular integer k � 2, aChoquet capacity of order k is a
monotone measure � on a measurable space (X, F) that satisfies the inequalities

�
[k
j¼1

Aj

 !
�
X
K�Nk
K6¼Ø

ð�1ÞjKjþ1�
\
j2K

Aj

 !
(4:1)

for all families of k sets in F, where Nk ¼ f1; 2; . . . ; kg:
Since setsAj in the inequalities (4.1) are not necessarily distinct, every Choquet

capacity of order k is also of order k0 ¼ k� 1; k� 2; . . . ; 2:However, a capacity
of order kmay not be a capacity of any higher order (kþ 1, kþ 2, etc.). Hence,
capacities of order 2, which satisfy the simple inequalities

�ðA1 [ A2Þ � �ðA1Þ þ �ðA2Þ � �ðA1 \ A2Þ (4:2)

for all pairs of sets in F, are the most general capacities. The least general ones
are those of order k for all k � 2: These are calledChoquet capacities of order1
or totally monotone measures. They satisfy the inequalities

�ðA1 [ A2 [ � � � [ AkÞ �
X
i

�ðAiÞ �
X
i5j

�ðAi \ AjÞ þ � � � �

þ ð�1Þkþ1�ðA1 \ A2 \ � � � \ AkÞ
(4:3)

for every k � 2 and every family of k sets in F.
It is trivial to see that the set of inequalities (4.2) contains all the inequalities

required for superadditive measures in Definition 3.3 (when A1 \ A2 ¼ Ø), but
contains additional inequalities (when A1 \ A2 6¼ Ø). Choquet capacities of
order 2—the most general class of Choquet capacities—are thus a subclass of
superadditive measures.

Definition 4.2.Given a particular integer k � 2, an alternating Choquet capacity
of order k is a monotone measure � on a measurable space (X, F) that satisfies
for all families of k sets in F the inequalities

�
\k
j¼1

Aj

 !
�
X
K�Nk
K6¼Ø

ð�1ÞjKjþ1�
[
j2K

Aj

 !
: (4:4)
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It is clear that the requirements for alternating capacities of some order k � 2
are weaker than those of orders kþ 1; kþ 2; . . . :Alternating capacities of order 2,
which are required to satisfy the inequalities

�ðA1 \ A2Þ � �ðA1Þ þ �ðA2Þ � �ðA1 [ A2Þ (4:5)

for all pairs of sets in F, are thus the most general alternating capacities. On the
other hand, alternating Choquet capacities of order1, which are defined by the
inequalities

�ðA1 \ A2 \ � � � \ AkÞ �
X
i

�ðAiÞ �
X
i5j

�ðAi [ AjÞ þ � � � �

þ ð�1Þkþ1�ðA1 [ A2 [ � � � [ AkÞ
(4:6)

for every k � 2 and every family of k sets in F, are the least general ones.
It is obvious that the set of inequalities (4.5) contains all the inequalities

required in Definition 3.4 for subadditive measures (when A1 \ A2 ¼ Ø), but
contains some additional inequalities (when A1 \ A2 6¼ Ø). Alternating Cho-
quet capacities of order 2—the most general class of alternating Choquet
capacities—are thus subadditive measures, but not the other way around.

Choquet capacities of order k are often referred to in the literature as k-
monotone measures and, similarly, alternating Choquet capacities are often
called k-alternating measures. These shorter names are adopted, by and large,
in this book. For convenience, monotonemeasures that are not 2-monotone are
often referred to as 1-monotone measures. Using this terminology the inclusion
relationship among the introduced classes of k-monotone and k-alternating
measures for k � 1is depicted in Fig. 4.1.

Theorem 4.1. Let � be a normalized 2-monotone measure on a measurable space
(X, F). Then the dual measure of �, denoted by ��; is a normalized 2-alternating
measure on (X, F).

Proof.

��ðA1 \ A2Þ ¼ 1� �ðA1 \ A2Þ

¼ 1� �ðA1 [ A2Þ

� 1� �ðA1Þ � �ðA2Þ þ �ðA1 \ A2Þ

¼ 1� �ðA1Þ þ 1� �ðA2Þ � 1þ �ðA1 \ A2Þ

¼ 1� �ðA1Þ þ 1� �ðA2Þ � 1þ �ðA1 [ A2Þ
¼ ��ðA1Þ þ ��ðA2Þ � ��ðA1 [ A2Þ:

&

This theorem can be easily generalized to normalized k-monotone measures
for any k � 2. Observe, however, that the dual measure of a 1-monotone
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measure that is superadditive is not necessarily subadditive, as is shown by the
following counterexample.

Example 4.1. Let X ¼ fa; b; cg;F ¼ PðXÞ, and let � be the 1-monotone measure
on (X, P(X)) defined in Table 4.1. This measure is clearly normalized and
superadditive, but it is not 2-monotone due to the following two violations of
the required inequalities (4.2):

�ðXÞ ¼ 15�ðfa; bgÞ þ �ðfb; cg � �ðfbgÞ ¼ 1:4;

�ðXÞ ¼ 15�ðfa; cgÞ þ �ðfb; cgÞ � �ðfcgÞ ¼ 1:1:

The dual measure of �, denoted in Table 4.1 by ��; is not subadditive due to
the following violation of the inequalities required for subadditive measures in
Definition 3.4:

�ðfa; bgÞ ¼ 0:84�ðfagÞ þ �ðfbgÞ ¼ 0:7;

�ðfa; cgÞ ¼ 14�ðfagÞ þ �ðfcgÞ ¼ 0:6:

Fig. 4.1 Inclusion relationship among k-monotone and k-alternating measures for k � 1
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The whole family of k-monotone and k-alternating classes of measures plays
an important role in generalized measure theory and, particularly, in its appli-
cations dealing with various types of uncertainty. Especially important are
the classes of 2-monotone and 2-alternating measures, which are the most
general classes in this family, and the classes of1-monotone and1-alternating
measures. They represent important benchmarks from mathematical and com-
putational points of view. These issues are discussed later in the book in various
contexts.

Thus far, we have followed a top-down approach: we started by defining
general measures and we proceeded to defining monotone measures, super-
additive and subadditive measures, and, finally, k-monotone and k-alternating
measures. In the rest of this chapter we switch to the complementary, bottom-
up approach: we start with examining in detail some of the simplest general-
izations of classical measures and we proceed then by enlarging the framework
to discuss the various higher-level generalizations.

4.3 l-Measures

Definition 4.3. A monotone measure � satisfies the l-rule (on C) iff there exists

l 2 � 1

sup�
;1

� �
[ f0g;

where sup � ¼ supE2C �ðEÞ, such that

�ðE [ FÞ ¼ �ðEÞ þ �ðF Þ þ l � �ðEÞ � �ðF Þ;

whenever

E 2 C;F 2 C; E [ F 2 C; and E \ F ¼ Ø:

� satisfies the finite l-rule (onC) iff there exists the above-mentioned l such that

Table 4.1 Superadditive measure � and its dual measure �� (Example 4.1)

a b c �ðAÞ ��ðAÞ
A: 0 0 0 0.0 0.0

1 0 0 0.1 0.2

0 1 0 0.0 0.5

0 0 1 0.2 0.4

1 1 0 0.6 0.8

1 0 1 0.5 1.0

0 1 1 0.8 0.9

1 1 1 1.0 1.0
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�
[n
i¼1

Ei

 !
¼

1
l

Qn
i¼1
½1þ l � �ðEiÞ� � 1

� �
; as l 6¼ 0

Pn
i¼1
�ðEiÞ; as l ¼ 0

8>><
>>:

for any finite disjoint class fE1; . . . ;Eng of sets in C whose union is also in C; �
satisfies the �-l-rule (on C) iff there exists the above-mentioned l, such that

�
[1
i¼1

Ei

 !
¼

1
l

Q1
i¼1
½1þ l � �ðEiÞ� � 1

� �
; as l 6=0,

P1
i¼1
�ðEiÞ; as l= 0,

8>><
>>:

for any disjoint sequence fEng of sets in C whose union is also in C.
When l ¼ 0; the l-rule, the finite l-rule, or the �-l-rule is just the additivity,

the finite additivity, or the �-additivity, respectively.

Theorem 4.2. IfC=R is a ring and � satisfies the l-rule, then � satisfies the finite

l-rule.

Proof. The conclusion is obvious when l ¼ 0. Let l 6¼ 0 and fE1; . . . ;Eng be a
disjoint class of sets in R. We use the mathematical induction to prove

�
[n
i¼1

Ei

 !
¼ 1

l

Yn
i¼1
½1þ l � �ðEiÞ� � 1

( )
: (4:7)

From the definition we know directly that (4.7) is true when n ¼ 2. Now,

suppose that (4.7) is true for n ¼ k� 1. We have

�
[k
i¼1

Ei

 !
¼ �

[k�1
i¼1

Ei

 !
[ Ek

 !

¼ �
[k�1
i¼1

Ei

 !
1þ l � �ðEkÞ½ � þ �ðEkÞ

¼ 1

l

Yk�1
i¼1

1þ l � �ðEiÞ½ � � 1

( )
� 1þ l � �ðEkÞ½ � þ �ðEkÞ

¼ 1

l

Yk
i¼1

1þ l � �ðEiÞ½ � � 1þ l � �ðEkÞ½ �
( )

þ �ðEkÞ

¼ 1

l

Yk
i¼1

1þ l � �ðEiÞ½ � � 1þ l � �ðEkÞ½ � þ l � �ðEkÞ
( )

¼ 1

l

Yk
i¼1

1þ l � �ðEiÞ½ � � 1

( )
:
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That is, (4.7) is true for n ¼ k. The proof is complete. &

In fact, Theorem 4.2 holds also when C is only a semiring. This is shown in
Section 4.4, after introducing a new concept called quasi-additivity.

Example 4.2. Let X ¼ fa; bg and C ¼ PðXÞ. If

�ðEÞ ¼

0 E ¼ Ø

0:2 E ¼ fag
0:4 E ¼ fbg
1 E ¼ X;

8>>>><
>>>>:

then � satisfies the l-rule, where l ¼ 5. Since C is a finite ring, � satisfies the

finite l-rule and also the �-l-rule.

Definition 4.4. � is called a l-measure on C iff it satisfies the �-l-rule on C and

there exists at least one set E 2 C such that �ðEÞ51:
Usually the l-measure is denoted by gl: When C is a �-algebra and

glðXÞ ¼ 1, the l-measure gl is also called a Sugeno measure. The set function

given in Example 4.2 is a Sugeno measure.

Example 4.3. Let X ¼ fx1; x2; . . .g be a countable set, C be the semiring con-

sisting of all singletons of X and the empty set Ø, and faig be a sequence of

nonnegative real numbers. Define �ðfxigÞ ¼ ai; i ¼ 1; 2; . . . ; and �ðØÞ ¼ 0.

Then � is a l-measure for any l 2 ð�1= sup�;1Þ [ 0f g, where

sup � ¼ supðfaiji ¼ 1; 2; . . .gÞ.

Theorem 4.3. If gl is a l-measure on a class C containing the empty set Ø, then

glðØÞ ¼ 0, and gl satisfies the finite l-rule.

Proof. From Definition 4.4, there exists E 2 C such that glðEÞ51: When

l ¼ 0; gl is a classical measure and therefore glðØÞ ¼ 0. Otherwise, l 6¼ 0:
Since fE;E2;E3; . . .g; where E2 ¼ E3 ¼ � � � ¼ Ø is a disjoint sequence of sets

in C whose union is E, we have

gl Eð Þ ¼ 1

l

Y1
i¼2
½1þ l � glðEiÞ� � ½1þ l � glðEÞ� � 1

( )
;

where Ei ¼ Ø, and i ¼ 2; 3; . . . That is,

1þ l � glðEÞ ¼ ½1þ l � glðEÞ� �
Y1
i¼2
½1þ l � glðEiÞ�

( )
:

Noting the fact that l 2 ð�1= sup gl;1Þ and glðEÞ51; we know that

051þ l � glðEÞ51:
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Thus, we have

Y1
i¼2
½1þ l � glðEiÞ� ¼ 1

and therefore,

1þ lglðØÞ ¼ 1:

Consequently, we have

glðØÞ ¼ 0:

By using this result, the second conclusion is clear. &

Theorem 4.4. If gl is a l-measure on a semiring S, then gl is monotone.

Proof.When l ¼ 0 we refer the monotonicity of classical measures (Section 2.2).

Now, let l 6¼ 0 and let E 2 S; F 2 S; and E 	 F. Since S is a semiring, F� E ¼
[ni¼1Di; where fDig is a finite disjoint class of sets in S, and we have

1

l

Yn
i¼1
½1þ l � glðD1Þ � 1

( )
� 0

in both cases where l40 and l50: By using Theorem 4.3, gl satisfies the finite

l-rule. So, we have

glðFÞ ¼ glðE [D1 [ � � � [DnÞ

¼ 1

l

Yn
i¼1
½1þ l � glðD1Þ�½1þ l � glðEÞ� � 1

( )

¼ glðEÞ þ
1

l

Yn
i¼1
½1þ l � glðD1Þ� � 1

( )
½1þ l � glðEÞ�

� glðEÞ: &

Though we can prove directly that any l-measure on a semiring possesses the
continuity now, it seems more convenient to show this fact after introducing a

new concept called a quasi-measure. However, from Theorem 4.3, Theorem 4.4,

and the fact that l-measures are continuous, we know that any l-measure on a

semiring is a monotone measure.

Theorem 4.5. Let gl be a l-measure on a semiring S. Then, it is subadditive when

l50; it is superadditive when l40; and it is additive when l ¼ 0:
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Proof. From Theorems 4.3 and 4.4, we know that � satisfies the l-rule and is
monotone. The conclusion of this theorem can be obtained directly from
Definition 4.3. &

By selecting the parameter l appropriately, we can use a l-measure to fit a
given monotone measure approximately.

Theorem 4.6. Let gl be a l-measure on a ring R. Then, for any E 2 R and F 2 R;

(1) glðE� FÞ ¼ glðEÞ � glðE \ FÞ
1þ l � glðE \ FÞ ;

(2) glðE [ FÞ ¼ glðEÞ þ glðFÞ � glðE \ FÞ þ l � glðEÞ � glðFÞ
1þ l � glðE \ FÞ :

Furthermore, if R is an algebra and gl is normalized, then

(3) glð �EÞ ¼
1� glðEÞ

1þ l � glðEÞ
:

Proof. From

glðEÞ ¼ glððE \ FÞ [ ðE� FÞÞ

¼ glðE \ FÞ þ glðE� FÞ½1þ l � glðE \ FÞ�

we obtain (1). As to (2), we have

glðE [ FÞ ¼ glðE [ ½F� ðE \ F�Þ

¼ glðEÞ þ glðF� ðE \ FÞÞ � ½1þ l � glðEÞ�

¼ glðEÞ þ
glðFÞ � glðE \ FÞ
1þ l � glðE \ FÞ � ½1þ l � glðEÞ�

¼ glðEÞ þ glðFÞ � glðE \ FÞ þ l � glðEÞ � glðFÞ
1þ l � glðE \ FÞ

Formula (3) is a direct result of (1) and the normalization of gl: &

How to construct a l-measure on a semiring (or ring, algebra, �-ring, �-
algebra, respectively) is a significant and interesting problem. IfX ¼ fx1; . . . ; xng
is a finite set,C consists of X and all singletons of X, � is defined on C such that
�ðfxigÞ5�ðXÞ51 for i ¼ 1; 2; . . . ; n; and there are at least two points, xi1 and
xi2; satisfying �ðfxijgÞ40; j ¼ 1; 2; then such a set function � is always a
l-measure onC for some parameter l. When �ðXÞ ¼ �n

i¼1�ðfxigÞ; l ¼ 0; other-
wise, l can be determined by the equation

�ðXÞ ¼ 1

l

Yn
i¼1
ð1þ l � �ðfxigÞÞ � 1

" #
: (4:8)

In fact, we have the following theorem.
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Theorem 4.7. Under the condition mentioned above, the equation

1þ l � �ðXÞ ¼
Yn
i¼1
½1þ l � �ðfxigÞ�

determines the parameter l uniquely:

(1) l40 when
Pn
i¼1
�ðfxigÞ5�ðXÞ;

(2) l ¼ 0 when
Pn
i¼1
�ðfxigÞ ¼ �ðXÞ;

(3) � 1
�ðXÞ5l50 when

Pn
i¼1
�ðfxigÞ4�ðXÞ:

Proof. Denote �ðXÞ ¼ a; �ðfxigÞ ¼ ai for i ¼ 1; 2; . . . ; n; and

fkðlÞ ¼
Qk

i¼1 ð1þ ailÞ for k ¼ 2; . . . ; n:There is no loss of generality in assuming

a140 and a240: From the given condition we know that ð1þ aklÞ40 for

k ¼ 1; . . . ; n and any l 2 �1=a;1ð Þ. Since

fkðlÞ ¼ ð1þ aklÞfk�1ðlÞ;

we have

f 0kðlÞ ¼ ak � fk�1ðlÞ þ ð1þ aklÞf 0k�1ðlÞ;

and

f 00k ðlÞ ¼ 2ak � f 0k�1ðlÞ þ ð1þ aklÞ f 00k�1ðlÞ:

It is easy to see that, for any k ¼ 2; . . . ; n and any l 2 ð�1=a;1Þ; if f 0k�1ðlÞ40

and f 00k�140; then so are f 0kðlÞ and f 00kðlÞ: Now, since

f 02ðlÞ ¼ a1ð1þ a2lÞ þ a2ð1þ a1lÞ40

and

f 002ðlÞ ¼ 2a1a240;

we know that f 00kðlÞ40: This means that the function fnðlÞ is concave in

ð�1=a;1Þ: From the derivative of fnðlÞ;

f 0nð0Þ ¼
Xn
i¼1

ai:

Noting liml!1 fnðlÞ ¼ 1; we know that, if
Pn

i¼1 ai5a; the curve of fnðlÞ has
a unique intersection point with the line fðlÞ ¼ 1þ a � l (illustrated in Fig. 4.2a)

on some l40: If
Pn

i¼1 ai ¼ a; then the line f lð Þ ¼ 1þ a � l is just a tangent of
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Fig. 4.2 The uniqueness of parameter l
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fnðlÞ at point l ¼ 0 (illustrated in Fig. 4.2b), and therefore, the curve of fnðlÞ has
no intersection point anywhere else with the line fðlÞ ¼ 1þ a � l: If

Pn
i¼1 ai4a;

since f0nðlÞ40; and fðlÞ ¼ 1þ a � l � 0 when l � �1=a; the curve of fnðlÞmust

have a unique intersection point with the line fðlÞ ¼ 1þ a � l on some
l 2 �1=a; 0ð Þ (illustrated in Fig. 4.2c). Now, the proof is complete. &

If there is some xi such that �ðfxigÞ ¼ �ðXÞ; then Eq. (4.8) has infinitely
many solutions (i.e., � is a l-measure for any l 2 ð�1=�ðXÞ;1ÞÞ only when
�ðfxjgÞ ¼ 0 for all j 6¼ i; otherwise, it has no solution in ð�1=�ðXÞ;1Þ:

After determining the value of l, it is not difficult to extend this l-measure
from C onto the power set P(X) by using the finite l-rule.

Example 4.4. Let X ¼ fa; b; cg; �ðXÞ ¼ 1; �ðfagÞ ¼ �ðfbgÞ ¼ 0:2; �ðfcgÞ ¼ 0:1:
According to Theorem 4.7, � is a l-measure. Now we use (4.8) to determine the
value of the parameter l. From (4.8), we have

1 ¼ ð1þ 0:2lÞð1þ 0:2lÞð1þ 0:1lÞ � 1

l
;

which results in the quadratic equation,

0:004l2 þ 0:08l� 0:5 ¼ 0:

Solving this equation, we have

l ¼ �0:08
 ð0:0064þ 0:008Þ1=2

0:008

¼ �0:08
 0:12

0:008

¼ 5 or � 25

:

Since –25 < –1, the unique feasible solution is l = 5.
Now we turn to consider constructing a normalized l-measure on the Borel

field for a given l 2 ð�1;1Þ. We already know that S ¼ f½ a; bÞj �15 a �
b51g is a semiring. If h(x) is a probability distribution function (left contin-
uous) on ð�1;1Þ; then we can define a set function  on S as follows:

 ð½a; bÞÞ ¼ hðbÞ � hðaÞ
1þ l � hðaÞ:

This set function  is continuous, and we can define

 ðXÞ ¼  ðð�1;1ÞÞ ¼ lim
a!�1;b!1

 ð½a; bÞÞ:

Since limx!1 hðxÞ ¼ 0 and limx!1 hðxÞ ¼ 1; we have

 ðXÞ ¼ 1:
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Moreover, we can verify that such a set function  satisfies the l-rule on S.
In fact, for any ½a; bÞ 2 S and ½b; cÞ 2 S; ½a; bÞ [ ½b; cÞ ¼ ½a; cÞ 2 S and

 ð½a; bÞÞ þ  ð½b; cÞÞ þ l �  ð½a; bÞÞ �  ð½b; cÞÞ

¼  ð½a; bÞÞ þ  ð½b; cÞÞ � ½1þ l �  ða; bÞ�

¼ hðbÞ � hðaÞ
1þ l � hðaÞ þ

hðcÞ � hðbÞ
1þ l � hðbÞ � 1þ l

hðbÞ � hðaÞ
1þ l � hðaÞ

� �

¼ hðbÞ � hðaÞ
1þ l � hðaÞ þ

½hðcÞ � hðbÞ� � ½1þ l � hðbÞ�
½1þ l � hðbÞ� � ½1þ l � hðaÞ�

¼ hðcÞ � hðaÞ
1þ l � hðaÞ

¼  ð½a; cÞÞ:

It is possible, but rather difficult to verify that such a set function  satisfies
the �-l-rule on S and to extend onto the Borel field in a way similar to that used
for classical measures. However, if we use the aid of the concept of a quasi-
measure, which is introduced in the next section, this problem becomes quite easy
to solve.

4.4 Quasi-Measures

Definition 4.5. Let a 2 ð0;1�. An extended real function � : ½0; a� ! ½0;1� is
called a T-function iff it is continuous, strictly increasing, and such that �ð0Þ ¼ 0
and ��1ðf1gÞ ¼ Ø or f1g, according to a being finite or not.

Definition 4.6. � is called quasi-additive iff there exists a T-function �, whose
domain of definition contains the range of �, such that the set function � � �
defined on C by

ð� � �ÞðEÞ ¼ �ð�ðEÞÞ; for any E 2 C ;

is additive;� is called a quasi-measure iff there exists aT-function � such that � � �
is a classical measure on C. The T-function � is called the proper T-function of �.

A normalized quasi-measure is called a quasi-probability.
Clearly, any classical measure is a quasi-measure with the identity function

as its proper T-function.

Example 4.5. The monotone measure given in Example 3.4 is a quasi-measure.
Its proper T-function is �ðyÞ ¼ ffiffiffiffi

y;
p

y 2 ½0; 1�.

Theorem 4.8. Any quasi-measure on a semiring is a quasi-additive monotone measure.

Proof. Let � be a quasi-measure on a semiring S and � be its proper T-function.
Since any classical measure on a semiring is additive, � is quasi-additive.
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Furthermore, �–1 exists, and it is continuous, strictly increasing, and ��1ð0Þ ¼ 0:
So; � ¼ ��1 � ð� � �Þ is continuous, monotone, and �ðØÞ ¼ 0. That is, � is a
monotone measure. &

Theorem 4.9. If � is a classical measure, then, for any T-function � whose range
contains the range of �; ��1 � � is a quasi-measure with � as its proper T-function.

Proof. Since � � ð��1 � �Þ ¼ �, the conclusion of this theorem is clear. &

Theorem 4.10. Let � be quasi-additive on a ring R with �ðØÞ ¼ 0. If � is either
continuous from below on R, or continuous from above at Ø and finite, then � is a
quasi-measure on R.

Proof. Since � is quasi-additive, there exists a T-function � such that � � � is
additive on R. The composition � � � is either continuous from below on R, or
continuous from above at Ø and finite. So � � � is a measure on R (Section 2.2,
Theorem 2.32). That is, � is a quasi-measure on R. &

Corollary 4.1.Any quasi-additive monotone measure on a ring is a quasi-measure.
Now, we return to solve the problems that are raised in Section 4.3.

Theorem 4.11. Let l 6¼ 0. Any l-measure gl is a quasi-measure with

�l yð Þ ¼ lnð1þlyÞ
kl

; y 2 ½0; sup gl�;

as its proper T-function, where k is an arbitrary finite positive real number.
Conversely, if � is a classical measure, then ��1l � � is a l-measure, where

��1l ðxÞ ¼
eklx � 1

l
; x 2 ½0;1�;

and k is an arbitrary finite positive real number.

Proof. �l is a T-function. Let fEng be a disjoint sequence of sets in C whose
union [1n¼1En is also in C. If gl is a l-measure on C then it satisfies the �-l-rule
and there exists E0 2 C such that glðE0Þ51: Therefore, we have

ð�l � glÞ
	[1

n¼1
En



¼ 1

k � l � ln
h
1þ l � gl

	[1
n¼1

En


i

¼ 1

k � l � ln 1þ
Y1
n¼1
½1þ l � glðEnÞ�

" #
� 1

 !

¼ 1

k � l �
X1
n¼1

ln½1þ l � glðEnÞ�

¼
X1
n¼1

ln ½1þ l � glðEnÞ�
k � l

¼
X1
n¼1
ð�l � glÞðEnÞ;
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and ð�l � glÞðE0Þ ¼ �lðglðE0ÞÞ51: So �l � gl is a classical measure on C.

Conversely, if � is a classical measure on C, then it is �-additive, and there

exists E0 2 C such that �ðE0Þ51: Therefore, we have

ð��1l � �Þ
	[1
n¼1

En



¼ ��1l

X1
n¼1

�ðEnÞ
" #

¼
exp kl

X1
n¼1

�ðEnÞ
" #

� 1

l

¼

Q1
n¼1

ekl��ðEnÞ � 1

l

¼ ð1=lÞ
Y1
n¼1
½1þ l � ��1l ð�ðEnÞÞ� � 1

( )

¼ ð1=lÞ
Y1
n¼1
½1þ l � ð��1l � �ÞðEnÞ� � 1

( )
;

that is, ��1l � � satisfies the �-l–rule. Noting thatð��1l � �ÞðE0Þ ¼ ��1l ð�ðE0ÞÞ<1;
we conclude that ��1l � � is a l-measure onC. &

Example 4.6. Let X ¼ fa; bg;F ¼ PðXÞ; gl be defined by

glðEÞ ¼

0 if E ¼ Ø

0:2 if E ¼ fag
0:4 if E ¼ fbg
1 if E ¼ X.

8>>>><
>>>>:

Then gl is a l-measure with a parameter l ¼ 5: If we take

�lðyÞ ¼
lnð1þ lyÞ
lnð1þ lÞ ¼

lnð1þ 5yÞ
ln6

;

then we have

ð�l � glÞðEÞ ¼

0 if E ¼ Ø

0:387 if E ¼ fag
0:613 if E ¼ fbg
1 if E ¼ X:

8>>>><
>>>>:

�l � gl is a probability measure.
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Example 4.7. Let X ¼ fa; bg; F ¼ PðXÞ; and let gl be a l-measure defined by

glðEÞ ¼

0 if E ¼ Ø

0:5 if E ¼ fag
0:8 if E ¼ fbg
1 if E ¼ X:

8>>>><
>>>>:

with l ¼ �0:75: If we take

�lðyÞ ¼
lnð1� 0:75yÞ

ln 0:25
;

then

ð�l � glÞðEÞ ¼

0 if E ¼ Ø

0:34 if E ¼ fag
0:66 if E ¼ fbg
1 if E ¼ X;

8>>>><
>>>>:

which is a probability measure.
In a similar way, we know that under the mapping �l the l-rule and the finite

l-rule become the additivity and the finite additivity, respectively. Conversely,

under the mapping ��1l the additivity and the finite additivity become the l-rule
and the finite l-rule, respectively. Recalling some relevant knowledge in classi-

cal measure theory, we have the following corollaries.

Corollary 4.2. On a semiring, the l-rule is equivalent to the finite l-rule.

Corollary 4.3. Any l-measure on a semiring is continuous.

Corollary 4.4. On a ring, the l-rule together with continuity are equivalent to the

�-l-rule. Thus, on a ring, any monotone measure that satisfies the l-rule is a

l-measure.
Similarly as in classical measure theory, a monotone measure on a semiring

that satisfies the l-rule (or, is quasi-additive) may not satisfy the �-l-rule (or,
may not be a quasi-measure).

Corollary 4.5. If gl is a normalized l-measure on an algebra R, then its dual

measure �, which is defined by

�ðEÞ ¼ 1� glð �EÞ for any E 2 R;

is also a normalized l-measure on R, and the corresponding parameter is l0 ¼
�l=ðlþ 1Þ:
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Proof. Let E 2 R;F 2 R; and E \ F ¼ Ø. By using Theorem 4.6, we have

�ðEÞ þ �ðFÞ � l
lþ 1

�ðEÞ�ðFÞ

¼ 1� glð �EÞ þ 1� glð �FÞ �
l

lþ 1
½1� glð �EÞ�½1� glð �FÞ�

¼ ðlþ 1ÞglðEÞ
1þ lglðEÞ

þ ðlþ 1ÞglðFÞ
1þ lglðFÞ

� l
ðlþ 1ÞglðEÞglðFÞ

½1þ lglðEÞ�½1þ lglðFÞ�

¼ ðlþ 1Þ½glðEÞ þ glðFÞ þ lglðEÞglðFÞ�
½1þ lglðEÞ�½1þ lglðFÞ�

¼ ðlþ 1ÞglðE [ FÞ
1þ lglðE [ FÞ

¼ 1� glðE [ FÞ

¼ �ðE [ FÞ:

:

Since � is continuous, by Corollary 3.4, � satisfies the �-l-rule with a parameter

l0 ¼ �l=ðlþ 1Þ: So, noting that �ðXÞ ¼ 1� glðØÞ ¼ 1, we know that � is a

normalized l-measure on R with a parameter l0 ¼ �l=ðlþ 1Þ: &

As to the problem of constructing a l-measure on the Borel field, we deal
with it in Chapter 6.

4.5 Belief Measures and Plausibility Measures

In Section 4.4, a nonadditive measure is induced from a classical measure by a

transformation of the range of the latter. In this section we attempt to construct

a nonadditive measure in another way.

Definition 4.7. Let P(P(X)) be the power set of P(X). If p is a discrete probability

measure on (P(X), P(P(X))) with pðfØgÞ ¼ 0, then the set function m: P(X)!
[0, 1] determined by

mðEÞ ¼ pðfEgÞfor any E 2 PðXÞ

is called a basic probability assignment on P(X).

Theorem 4.12. A set function m: P(X)! [0, 1] is a basic probability assignment if

and only if

(1) mðØÞ ¼ 0;

(2)
P

E2PðXÞ
mðEÞ ¼ 1:
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Proof. The necessity of these two conditions follows directly from Definition

4.7. As for their sufficiency, if we write

Dn ¼ Ej 1
nþ15mðEÞ � 1

n

n o
; n ¼ 1; 2; . . . ;

then every Dn is a finite class,

D ¼
[1
n¼1

Dn ¼ fEjmðEÞ40g

is a countable class, and Ŝ ¼ ffEjE 2 PðXÞg [ fØg is a semiring. Define

pðfEgÞ ¼
mðEÞ if E 2 D

0 otherwise

�

for any E 2 PðXÞ and pðfØgÞ ¼ 0. Then, p is a probability measure on Ŝ with

pðfØgÞ ¼ 0, which can be extended uniquely to a discrete probability measure

on (P(X), P(P(X))) by the formula

pðEÞ ¼
X
E2E

pðfEgÞ:

for any E 2 PðPðXÞÞ. &

Definition 4.8. If m is a basic probability assignment on P(X), then the set

function Bel: P(X)! [0, 1] determined by the formula

BelðEÞ ¼
X
F	E

mðFÞ 8E 2 PðXÞ (4:9)

is called a belief measure on (X, P(X)), or, more specifically, a belief measure

induced from m.

Lemma 4.1. If E is a nonempty finite set, then

X
F	E
ð�1ÞjFj ¼ 0:

Proof. Let E ¼ fx1; . . . ; xngThen, we have

fjFjjF 	 Eg ¼ f0; 1; . . . ; ng

and

jfFjjFj ¼ igj ¼ n
i

� �
; i ¼ 0; 1; . . . ; n:
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So, we have

X
F	E
ð�1ÞjFj ¼

Xn
i¼0
ð�1Þi n

i

� �
¼ ð1� 1Þn ¼ 0:

&

Lemma 4.2. If E is a finite set, F 	 E and F 6¼ E, then

X
GjF	G	E

ð�1ÞjGj ¼ 0:

Proof. E – F is a nonempty finite set. Using Lemma 4.1, we have

X
GjF	G	E

ð�1ÞjGj ¼
X

D	E�F
ð�1ÞjF[Dj ¼ ð�1ÞjFj

X
D	E�F

ð�1ÞjDj ¼ 0:
&

Lemma 4.3. Let X be finite, and l and � be finite set functions defined on P(X).

Then we have

l Eð Þ ¼
X
F	E

� Fð Þ 8E 2 P Xð Þ (4:10)

if and only if

� Eð Þ ¼
X
F	E
�1ð ÞjE�Fjl Fð Þ 8E 2 P Xð Þ: (4:11)

Proof. If (4.10) is true, then

X
F	E
�1ð ÞjE�Fjl Fð Þ ¼ �1ð ÞjEj

X
F	E
�1ð ÞjFjl Fð Þ

¼ �1ð ÞjEj
X
F	E

�1ð ÞjFj
X
G	F

� Gð Þ
" #

¼ �1ð ÞjEj
X
G	E

� Gð Þ
X

FjG	F	E
�1ð ÞjFj

2
4

3
5

¼ �1ð ÞjEj� Eð Þ �1ð ÞjEj

¼ � Eð Þ:
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Conversely, if (4.11) is true, then we have

X
F	E

� Fð Þ ¼
X
F	E

X
G	F

�1ð ÞjF�Gjl Gð Þ

¼
X
G	E

�1ð ÞjGjl Gð Þ
X

FjG	F	E
�1ð ÞjFj

2
4

3
5

¼ �1ð ÞjEjl Eð Þ �1ð ÞjEj

¼ l Eð Þ: &

Theorem 4.13. If Bel is a belief measure on (X, P(X)), then

(BM1) Bel Øð Þ ¼ 0;
(BM2) Bel(X) = 1;

(BM3) Bel
Sn
i¼1

Ei

� �
�

P
I	f1;...;ng;I 6¼Ø

ð�1ÞjIjþ1 Bel
T
i2I

Ei

� �
;

where fE1; . . . ;Eng is any finite subclass of P(X );

(BM4) Bel is continuous from above.

Proof. From Theorem 4.12 and Definition 4.8, it is easy to see that (BM1) and

(BM2) are true. To show that (BM3) holds, let us consider an arbitrary finite

subclass fE1; . . . ;Eng, and set IðFÞ ¼ fij1 � i � n;F 	 Eig, for any F 2 PðXÞ.
Using Lemma 4.1, we have

X
I	f1;...;ng;I 6¼Ø

ð�1ÞjIjþ1 Bel
\
i2I

Ei

 !
¼

X
I	f1;...;ng;I6¼Ø

ð�1ÞjIjþ1
X

F	\i2IEi

mðFÞ
" #

¼
X

FjIðFÞ6¼Ø
mðFÞ

X
I	IðFÞ;I6¼Ø

ð�1ÞjIjþ1
2
4

3
5

¼
X

FjIðFÞ6¼Ø
mðFÞ 1�

X
I	IðFÞ

ð�1ÞjIj
0
@

1
A

2
4

3
5

¼
X

FjIðFÞ6¼Ø
mðFÞ

¼
X

F	Fi for some i

mðFÞ

�
X

F	[n
i¼1Ei

mðFÞ

¼ Bel
[n
i¼1

Ei

 !
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As to (BM4), let Ei be a decreasing sequence of sets in P(X), and
T1

i¼1 Ei= E. From

Theorem 4.12, we know there exists a countable class fDng 	 PðXÞ, such thatm(F)

=0wheneverF =2fDng, and for any � > 0 there exists n0 such that
P

n4n0
mðDnÞ5".

Then, for each Dn, where n � n0, if Dn 6	 E (that is, Dn � E 6¼ Ø), there exists i(n),

such that Dn 6	 EiðnÞ: Let i0 ¼ maxðið1Þ; . . . ; iðn0ÞÞ. Then, if Dn 6	 E, we have

Dn 6	 Ei0 for any n� n0. Hence,

BelðEÞ ¼
X
F	E

mðFÞ

¼
X
Dn	E

mðDnÞ

�
X

Dn	E;n�n0
mðDnÞ

�
X

Dn	Ei0
;n�n0

mðDnÞ

�
X

Dn	Ei0

mðDnÞ �
X
n4n0

mðDnÞ

4
X
F	Ei0

mðFÞ � "

¼ BelðEi0Þ � ":

Noting that Bel(E) � BelfEig for i = 1, 2,. . ., and fBelðEiÞg is decreasing with

respect to i, we have Bel(E) = lim
i

BelðEiÞ. &

Observe that due to property (BM3), established for belief measures by
Theorem 4.13, belief measures are 1-monotone measures introduced in

Section 4.2.

Theorem 4.14. Any belief measure is monotone and superadditive.

Proof. Let E1 	 X;E2 	 X; and E1 \ E2 ¼ Ø. We have

BelðE1 [ E2Þ � BelðE1Þ þ BelðE2Þ � BelðE1 \ E2Þ

¼ BelðE1Þ þ BelðE2Þ � max fBelðE1Þ; BelðE2Þg:

From this inequality, it is easy to see that Bel is monotone and super-

additive. &

From Theorems 4.13 and 4.14, we know that the belief measure is an
upper semicontinuous monotone measure.
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On a finite space, we can express a basic probability assignment by the belief
measure induced from it.

Theorem 4.15. Let X be finite. If a set function �: P(X ) ! [0, 1] satisfies the
conditions

(1) �ðØÞ ¼ 1;
(2) �ðXÞ ¼ 1;

(3) �
Tn
i¼1

Ei

� �
�

P
I	 1;...nf g;I6¼Ø

ð�1ÞjIjþ1�
T
i2I

Ei

� �
;

where fE1; . . . ;Eng is any finite subclass of P(X ), then the set function m deter-
mined by

mðEÞ ¼
X
F	E
ð�1ÞjE�Fj�ðFÞ 8E 2 PðXÞ; (4:12)

is a basic probability assignment, and � is the belief measure induced from m.
That is,

�ðEÞ ¼ BelðEÞ ¼
X
F	E

mðFÞ:

Proof. First, mðØÞ ¼
P

F	Øð�1ÞjØ�Fj�ðFÞ ¼ �ðØÞ ¼ 0. Next, from (4.12) and
Lemma 4.3, we have

X
E	X

mðEÞ ¼ �ðXÞ ¼ 1:

To prove that m is a basic probability assignment, we should show that
m(E) � 0 for any E 	 X. Indeed, since X is finite, E is also finite, and we
can write E ¼ fx1; . . . ; xng. If we denote Ei ¼ E� fxig, then E ¼

Sn
i¼1 Ei and

mðEÞ ¼
X
F	E
ð�1ÞjE�Fj�ðFÞ

¼ �ðEÞ �
X

I	 1;...;nf g;I6¼Ø
ð�1ÞjIjþ1�

\
i2I

Ei

 !

¼ �
[n
i¼1

Ei

 !
�

X
I	 1;...;nf g;I6¼Ø

ð�1ÞjIjþ1�
\
i2I

Ei

 !

� 0:

The last conclusion in this theorem is a direct result of Lemma 4.3. &
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Definition 4.9. If m is a basic probability assignment on P(X), then the set

function Pl: P(X)! [0, 1] determined by

P1ðEÞ ¼
X

F\E 6¼Ø
mðFÞ 8 E 2 PðXÞ (4:13)

is called a plausibility measure on (X, P(X)), or, more exactly, a plausibility

measure induced from m.

Theorem 4.16. If Bel and Pl are the belief measure and plausibility measure,

respectively, induced from the same basic probability assignment then

BelðEÞ ¼ 1� P1ð �EÞ (4:14)

and

BelðEÞ � P1ðEÞ
for any E 	 X.

Proof.

BelðEÞ ¼
X
F	E

mðFÞ

¼
X
F	X

mðFÞ �
X
F 6	E

mðFÞ

¼ 1�
X

F\ �E 6¼Ø
mðFÞ

¼ 1� P1ð �EÞ:
The second conclusion can be obtained directly from Definitions 4.8 and 4.9.&

Theorem 4.17. If P1 is a plausibility measure on (X, P(X)), then

ðPMIÞ P1ðØÞ ¼ 0;

ðPM2Þ P1ðXÞ ¼ 1;

ðPM3Þ P1
\n
i¼1

Ei

 !
�

X
I	 1;...nf g;I6¼Ø

ð�1ÞjIjþ1 P1
[
i2I

Ei

 !
;

where fE1; . . . ;Eng is any finite subclass of P(X ).

(PM4) P1 is continuous from below.
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Proof. From Theorem 4.13 and Theorem 4.16, we can directly obtain (PM1),

(PM2), and (PM4). As to (PM3), by using Lemma 4.1, we have

P1
\n
i¼1

Ei

 !
¼ 1� Bel

\n
i¼1

Ei

 !

¼ 1� Bel
[n
i¼1

�Ei

 !

� 1�
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1Bel

\
i2I

�Ei

 !

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1 1� Bel

\
i2I

�Ei

 !" #

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1 1� Bel

[
i2I

Ei

 !" #

¼
X

I	f1;...;ng; I 6¼Ø
ð�1ÞjIjþ1Pl

[
i2I

Ei

 !
:

&

Due to the property (PM3), which is established for plausibility measures by
Theorem 4.17, plausibility measures are1-alternating measures introduced in

Section 4.2.

Theorem 4.18. Any plausibility measure is monotone and subadditive.

Proof. E 	 F 	 X, then �F 	 �E 	 X. From Theorem 4.14 and Theorem 4.16, we

have

P1ðEÞ ¼ 1� Belð �EÞ � 1� Belð �FÞ ¼ P1ðFÞ

As to subadditivity, if E1 	 X and E2 	 X, then

0 � P1ðE1 \ E2Þ

� P1ðE1Þ þ P1ðE2Þ � P1ðE1 [ E2Þ:

So P1ðE1 [ E2Þ � P1ðE1Þ þ P1ðE2Þ. &

From Theorem 4.17 and Theorem 4.18, we know that the plausibility mea-
sure is a lower semicontinuous monotone measure.

Theorem 4.19. Any discrete probability measure p on (X, P(X )) is both a belief

measure and a plausibility measure. The corresponding basic probability assign-

ment focuses on the singletons of P(X ). Conversely, if m is a basic probability
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assignment focusing on the singletons of P(X ), then the belief measure and the

plausibility measure induced from m coincide, resulting in a discrete probability

measure on (X, P(X )).

Proof. Since p is a discrete probability measure, there exists a countable set

fx1; x2; � � �g 	 X, such that

X1
i¼1

pðfxigÞ ¼ 1:

Let

mðEÞ ¼ pðEÞ if E ¼ fxig for some i

0 otherwise

�

for any E 2 PðXÞ. Then, m is a basic probability assignment, and

pðEÞ ¼
X
xi2E

pðfxigÞ ¼
X
F	E

mðFÞ ¼
X

F\E 6¼Ø
mðFÞ

for anyE 2 PðXÞ. That is, p is both a belief measure and a plausibility measure.

Conversely, if a basic probability assignmentm focuses only on the singletons of

P(X), then, for any E 2 PðXÞ,

BelðEÞ ¼
X
F	E

mðFÞ ¼
X
x2E

mðfxgÞ ¼
X

F\E 6¼Ø
mðFÞ ¼ P1ðEÞ:

So, Bel and Pl coincide, and it is easy to verify that they are �-additive.
Consequently, they are discrete probability measures on ðX; PðXÞÞ. &

Theorem 4.20. Let Bel and Pl be the belief measure and the plausibility measure,

respectively, induced from a basic probability assignment m. If Bel coincides with

Pl, then m focuses only on singletons.

Proof. If there exists E 2 PðXÞ that is not a singleton of P(X) such that

m(E) > 0, then, for any x 2 E,

BelðfxgÞ ¼ mðfxgÞ5mðfxgÞ þmðEÞ �
X

F\ xf g6¼Ø
mðFÞ ¼ P1ð xf gÞ:

This contradicts the coincidence of Bel and Pl. &

The Sugeno measures defined on the power set P(X) are special examples
of belief measures and plausibility measures when X is countable.

Theorem 4.21. Let X be countable, and glðl 6¼ 0Þ be a Sugeno measure on

(X, P(X )). Then gl is a belief measure when l > 0, and is a plausibility measure

when l < 0.
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Proof. Let X = {x1, x2,. . .}. When l > 0, we define m: P(X)! [0, 1] by

mðEÞ ¼ ljEj�1
Q

xi2E glð xif gÞ if E 6¼ Ø

0 if E ¼ Ø

�

for any E 2 PðXÞ. Obviously,m(E)� 0 for any E 2 PðXÞ. From Definition 4.3,
we have

glðEÞ ¼
1

l

Y
xi2E
ð1þ l � glð xif gÞÞ � 1

" #

¼ 1

l

X
F	E;F6¼Ø

ljFj �
Y
xi2F

glð xif gÞ
" #

¼
X

F	E;F6¼Ø
ljFj�1 �

Y
xi2F

glð xif gÞ
" #

¼
X
F	E

mðFÞ:

Since glðXÞ ¼ 1, we have

X
F	X

mðFÞ ¼ 1:

Therefore,m is a basic probability assignment, and thus, gl is the belief measure
induced from m. When l < 0, we have l0 = –l/(l þ 1) > 0. By using Corollary
4.5 and Theorem 4.16, we know that gl is a plausibility measure. &

4.6 Possibility Measures and Necessity Measures

Definition 4.10. A monotone measure � is called maxitive on C iff

�
[
t2T

Et

 !
¼ sup

t2T
�ðEtÞ (4:15)

for any subclass fEtjt 2 Tg of C whose union is in C, where T is an arbitrary
index set.

If C is a finite class, then the maxitivity of � on C is equivalent to the simpler
requirement that

�ðEi [ E2Þ ¼ �ðE1Þ _ �ðE2Þ (4:16)
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whenever Ei 2 C ;E2 2 C , and E1 [ E2 2 C . Symbol _ denotes the maxi-

mum of �ðE1Þ and �ðE2Þ:

Definition 4.11. A monotone measure � is called a generalized possibility

measure on C iff it is maxitive on C and there exists E 2 C such that �(E)<1.
Usually, a generalized possibility measure is denoted by p.

Definition 4.12. If p is a generalized possibility measure defined on P(X), then

the function f defined on X by

fðxÞ ¼ pðfxgÞ for any x 2 X

is called its possibility profile.

Theorem 4.22. Any generalized possibility measure p (on C) is a lower semicon-

tinuous monotone measure (on C).

Proof. According to the convention, when T ¼ Ø we have [t2TEt ¼ Ø and

supt2T �ðEtÞ ¼ 0. So, if Ø 2 C , then pðØÞ ¼ 0. Furthermore, if E 2 C;
F 2 C , and E 	 F, then, by using maxitivity, we have

pðFÞ ¼ pðE [ FÞ ¼ pðEÞ _ pðFÞ � pðEÞ:

At last, p is continuous from below. In fact, if fEng is an increasing sequence of

sets in C whose union E is also in C, from the definition of the supremum, for

any "40, there exists n0 such that

pðEn0Þ � sup
n

pðEnÞ � " ¼ pðEÞ � ":

Noting that p is monotone, we know that

lim
n

pðEnÞ ¼ pðEÞ:
&

Definition 4.13. When a generalized possibility measure p defined on P(X) is

normalized, it is called a possibility measure.
The following example shows that a possibility measure is not necessarily

continuous from above.

Example 4.8. Let X = (–1,1). A set function p : P(X)! [0, 1] is defined by

pðEÞ ¼ 1 if E 6¼ Ø;

0 if E ¼ Ø

�

for any E 2 P ðXÞ. Clearly, p is maxitive and p(X)=1; therefore it is a

possibility measure on P(X). But it is not continuous from above. In fact, if

we take E=(0,1/n), then fEng is decreasing, and
T1

n¼1 En ¼ Ø. We have

pðEnÞ ¼ 1 for all n=1, 2,. . ., but pðØÞ ¼ 0. So limn pðEnÞ 6¼ pð
T1

n¼1 EnÞ.

4.6 Possibility Measures and Necessity Measures 99



Theorem 4.23. If f is the possibility profile of a possibility measure p, then

sup
x2X

fðxÞ ¼ 1: (4:17)

Conversely, if a function f : X ! [0, 1] satisfies (4.17), then f can determine a

possibility measure p uniquely, and f is the possibility profile of p.

Proof. From (4.15), we have

sup
x2X

fðxÞ ¼ sup
x2X

pð pf gÞ

¼ pð
[
x2X

xf gÞ

¼ pðXÞ

¼ 1:

Conversely, let

pðEÞ ¼ sup
x2E

fðxÞ

for any E 2 PðXÞ, then p is a possibility measure, and

pðfxgÞ ¼ sup
x2fxg

fðxÞ ¼ fðxÞ:
&

A similar result can be easily obtained for generalized possibility measures:
Any function f : X! ½0;1Þ uniquely determines a generalized possibility mea-

sure p on P(X) by

pðEÞ ¼ sup
x2E

fðxÞ for any E 2 PðXÞ:

Definition 4.14. A basic probability assignment is called consonant iff it focuses

on a nest (that is, a class fully ordered by the inclusion relation of sets).

Theorem 4.24. Let X be finite. Then any possibility measure is a plausibility

measure, and the corresponding basic probability assignment is consonant. Con-

versely, the plausibility measure induced by a consonant basic probability assign-

ment is a possibility measure.

Proof. Let X ¼ fx1; . . . ; xng and p be a possibility measure. There is no loss of

generality in assuming

1 ¼ pðfx1gÞ � pðfx2gÞ � � � � � pðfxngÞ:
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Define a set function m on P(X) by

mðEÞ ¼
pðfxigÞ � pðfxiþ1gÞ if E ¼ Fi; i ¼ 1; . . . ; n� 1

pðfxngÞ if E ¼ Fn

0 otherwise,

8<
:

where Fi ¼ fx1; . . . ; xig; i ¼ 1; . . . ; n: Then m is a basic probability assignment

focusing on fF1; . . . ;Fng; which is a nest. The plausibility measure induced from

this basic probability assignmentm is justp. Conversely, letmbe a basic probability

assignment focusingonanestfF1; . . . ;Fkgthat satisfiesF1 	 F2 	 � � � 	 Fk andPl

be theplausibilitymeasure induced fromm.ForanyE1 2 PðXÞ;E2 2 PðXÞ, denote

j0 ¼ minfjjFj \ ðE1 [ E2Þ 6¼ Øg;

and

j0i ¼ minfjjFj \ Ei 6¼ Øg; i ¼ 1; 2:

Then we have

PlðE1 [ E2Þ ¼
X

Fj\ðE1[E2Þ6¼Ø
mðFjÞ

¼
X
j� j

0

mðFjÞ

¼
X
j� j

01

mðFjÞ

2
4

3
5 _ X

j� j
02

mðFjÞ

2
4

3
5

¼
X

Fj\E1 6¼Ø
mðFjÞ

2
4

3
5 _ X

Fj\E2 6¼Ø
mðFjÞ

2
4

3
5

¼ PlðE1Þ _ PlðE2Þ:

That is, Pl satisfies (4.16) on P(X). So, Pl is a possibility measure. &

Example 4.9. LetX ¼ fx1; x2; x3; x4; x5g; p be a possibilitymeasure on (X,P(X))

with a possibility profile fðxÞ ¼ pðfxgÞ; x ¼ x1; . . . ; x5; as follows:

fðx1Þ ¼ 1; fðx2Þ ¼ 0:9; fðx3Þ ¼ 0:5; fðx4Þ ¼ 0:5; fðx5Þ ¼ 0:3:

The corresponding basic probability assignment m focuses on four subsets of

X : F1 ¼ fx1g;F2 ¼ fx1; x2g;F4 ¼ fx1; x2; x3; x4g; and F5 ¼ X; with mðF1Þ ¼
0:1;mðF2Þ ¼ 0:4;mðF4Þ ¼ 0:2; and mðF5Þ ¼ 0:3: This is illustrated in Fig. 4.3.

fF1;F2;F4;F5g forms a nest. In this example, mðF3Þ ¼ mðfx1; x2; x3gÞ ¼ 0:
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When X is not finite, a possibility measure on P(X) may not be a plausibility

measure even when X is countable.

Example 4.10. Let X be the set of all rational numbers in [0, 1] and

fðxÞ ¼ x; 8x 2 X: X is a countable set. Define a set function p onP(X) as follows:

pðEÞ ¼ sup
x2E

fðxÞ; 8E 2 PðXÞ:

Then, p is a possibility measure on P(X), but it is not a plausibility measure.

Definition 4.15. If p is a possibility measure on P(X), then its dual set function v,

which is defined by

�ðEÞ ¼ 1� pð �EÞ for any E 2 PðXÞ

is called a necessity measure (or consonant belief measure) on P(X).

Theorem 4.25.A set function � : PðXÞ ! 0; 1½ � is a necessity measure if and only if

it satisfies

�
\
t2T

Et

 !
¼ inf

t2T
�ðEtÞ;

for any subclass Etjt 2 Tf g of P(X ), where T is an index set, and �ðØÞ ¼ 0.

Proof. From Definitions 4.13 and 4.15, the conclusion is easy to obtain. &

Theorem 4.26. Any necessity measure is an upper semicontinuous monotone

measure. Moreover, if X is finite, then any necessity measure is a special

example of belief measure and the corresponding basic probability assignment

is consonant.

Proof. The conclusion follows directly fromDefinition 4.15, Theorem 4.16, and

Theorem 4.24. &

Fig. 4.3 A possibility profile
on a finite space and the
corresponding basic
probability assignment
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4.7 Properties of Finite Monotone Measures

In this section, we take a �-ring F as the class C.

Theorem 4.27. If � is a finite monotone measure, then we have

lim
n

�ðEnÞ ¼ �ðlim
n

EnÞ

for any sequence Enf g 	 F whose limit exists.

Proof. Let fEng be a sequence of sets in F whose limit exists. Write

E ¼ limn En ¼ lim supn En ¼ lim infn En: By applying the finiteness of �, we have

�ðEÞ ¼ �ðlim sup
n

EnÞ ¼ lim
n
�ð [
1

i¼n
EiÞ ¼ lim sup

n
�ð [
1

i¼n
EiÞ

� lim sup
n

�ðEnÞ � lim inf
n

� ðEnÞ

� lim inf
n

� \
1

i¼n
Ei

� �
¼ �ðlim inf

n
EnÞ ¼ �ðEÞ

Therefore, lim
n
�ðEnÞ exists and

lim
n
�ðEnÞ ¼ �ðEÞ &

Definition 4.16. � is exhaustive iff

lim
n
�ðEnÞ ¼ 0

for any disjoint sequence fEng of sets in F.

Theorem 4.28. If � is a finite upper semicontinuous monotone measure, then it is

exhaustive.

Proof. Let fEng be a disjoint sequence of sets in F. If we write Fn ¼
S1

i¼n Ei, then

fFng is a decreasing sequence of sets in F, and

lim
n

Fn ¼ \
1

n¼1
Fn ¼ lim sup

n
En ¼ Ø:

Since � is a finite upper semicontinuous monotone measure, by using the

finiteness and the continuity from above of �, we have

lim
n
�ðFnÞ ¼ �ðlim

n
FnÞ ¼ �ðØÞ ¼ 0:

Noting that

0 � �ðEnÞ � �ðFnÞ;
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we obtain

lim
n
�ðEnÞ ¼ 0:

So, � is exhaustive. &

Corollary 4.6. Any finite monotone measure on a measurable space is exhaustive.

Notes

4.1. The special nonadditive measures that are now called Choquet capacities
were introduced by Gustave Choquet in the historical context outlined in
Chapter 1. After their introduction [Choquet, 1953–54], they were virtually
ignored for almost twenty years. They became a subject of interest of a
small group of researchers in the early 1970s, primarily in the context of
statistics. Among them, Peter Huber played an important role by recog-
nizing that Choquet capacities are useful in developing robust statistics
[Huber, 1972, 1973, 1981, Huber and Strassen, 1973]. Another researcher
in this group, Anger [1971, 1977], focused more on further study of
mathematical properties of Choquet capacities. It seems that the interest
of these researchers in Choquet capacities was stimulated by an important
earlier work of Dempster on upper and lower probabilities [Dempster,
1967a,b, 1968a,b]. Although Dempster was apparently not aware of Cho-
quet capacities (at least he does not refer to the seminal paper by Choquet
in his papers), the mathematical structure he developed for dealing with
upper and lower probabilities is closely connected with Choquet capacities.
It is well documented that Dempster’s work on upper and lower probabil-
ities also stimulated in the 1970s the development of evidence theory, which
is based on 1-monotone and 1-alternating measures (Note 4.5). Refer-
ences to Choquet capacities in the literature have increased significantly
since the late 1980s, primarily within the emerging areas of imprecise
probabilities [Kyburg, 1987, Chateauneuf and Jaffray, 1989, De Campos
and Bolanos, 1989, Wasserman and Kadane, 1990, 1992, Grabisch et al.,
1995, Kadane and Wasserman, 1996, Walley, 1991].

4.2. The class of l-measures was introduced and investigated by Sugeno [1974,
1977]. The fact that any l-measure can be induced from a classical measure
was shown by Wang [1981]. l-measures were also investigated by Kruse
[1980, 1982ab, 1983], Banon [1981], and Wierzchon [1982, 1983].

4.3. The concept of quasi-measures (often referred to in the literature as pseudo-
additive measures) was introduced and investigated by Wang [1981].
Important examples of quasi-measures are special monotone measures
that are called decomposable measures. These are normalized monotone
measures, �?, on measurable space (X, C) that are semicontinuous from
below and satisfy the property �?ðA [ BÞ ¼ ? �?ðAÞ; �?ðBÞ½ � for all
A;B;A [ B 2 C such that A \ B ¼ Ø. Symbol ? denotes here a function
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from [0,1]2 to [0,1] that qualifies as a triangular conorm (or t-conorm)
[Klement, et al., 2000] and C is usually a �-algebra. Since decomposable
measures are not covered in this book, the following are some useful
references for their study: [Dubois and Prade, 1982, Weber, 1984,
Chateauneuf, 1996, Pap, 1997a,b, 1999, 2002b, Grabisch, 1997d].

4.4. In an early paper, Banon [1981] presents a comprehensive overview of the
various types of monotone measures (defined on finite spaces) and dis-
cusses their classification. Lamata and Moral [1989] continue this discus-
sion by introducing a classification of pairs of dual monotone measures.
This classification is particularly significant in the area of imprecise prob-
abilities, where one of the dual measures represents the lower probability
and the other one the upper probability.

4.5 A theory based upon belief and plausibility measures was originated and
developed by Shafer [1976]. Its emergence was motivated by previous work
on lower and upper probabilities by Dempster [1967a,b, 1968a,b], as well as
by Shafer’s historical reflection upon the concept of probability [Shafer,
1978] and his critical examination of the Bayesian treatment of evidence
[Shafer, 1981]. The theory is now usually referred to as the Dempster–
Shafer theory of evidence (or just evidence theory). Although the seminal
book by Shafer [1976] is still the best introduction to the theory (even
though it is restricted to finite sets), several other books devoted to the
theory, which are more up-to-date, are now available: [Guan and Bell,
1991–92, Kohlas and Monney, 1995, Kramosil, 2001, Yager et al., 1994].
There are too many articles dealing with the theory and its applications to
be listed here, but most of them can be found in reference lists of the
mentioned books and in two special journal issues devoted to the theory:
Intern. J. of Approximate Reasoning, 31(1–2), 2002, pp. 1–154, and Intern.
J. of Intelligent Systems, 18(1), 2003, pp. 1–148. The theory is well covered
from different points of view in articles by Shafer [1979, 1981, 1982, 1990],
Höhle [1982], Dubois and Prade [1985, 1986a], Walley [1987], Smets [1988,
1992, 2002], and Smets and Kennes [1994]. Possible ways of fuzzifying the
theory are suggested by Höhle [1984], Dubois and Prade [1985], and Yen
[1990]. Axiomatic characterizations of comparative belief structures, which
are generalizations of comparative probability structures [Walley and Fine,
1979], were formulated by Wong, Yao, and Bollmann [1992].

4.6. A mathematical theory that is closely connected with Dempster-Shafer
theory, but which is beyond the scope of this book, is the theory of random
sets. Random sets were originally conceived in connection with stochastic
geometry. They were proposed in the 1970s independently by two authors,
Kendall [1973, 1974] and Matheron [1975]. The connection of random sets
with belief measures is examined by Nguyen [1978] and Smets [1992], and it
is also the subject of several articles in a book edited byGoutsias et al. [1997].
A recent book by Molchanov [2005] is currently the most comprehensive
and up-to-date reference for the theory and applications of random sets.
A good introduction to random sets was written by Nguyen [2006].
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4.7. Possibility measures were introduced in several different contexts. In the
late 1940s the British economist George Shackle introduced possibility
measures indirectly, via monotone decreasing set functions that he called
measures of potential surprise [Shackle, 1949]. He argued that these func-
tions are essential in dealing with uncertainty in economics [Shackle 1955,
1961]. As shown by Klir [2002], measures of potential surprise can be
reformulated in terms of monotone increasing measures—possibility mea-
sures. In the late 1970s possibility measures were introduced in two very
different contexts: the context of fuzzy sets [Zadeh, 1978] and the context
of plausibility measures [Shafer, 1976, 1987]. The literature on the theory
based on possibility measures (and their dual necessity measures) is now
very extensive. An early book byDubois and Prade [1988] is a classic in this
area. More recent developments in the theory are covered in a text by
Kruse et al. [1994] and in monographs byWolkenhauer [1998] and Borgelt
and Kruse [2002]. Important sources are also edited books by De Cooman
et al. [1995] and Yager [1982]. A sequence of three papers by De Cooman
[1997] is perhaps the most comprehensive and general treatment of possi-
bility theory. Thorough surveys of possibility theory with extensive bib-
liographies were written by Dubois et al. [1998, 2000].

4.8. An interesting connection betweenmodal logic [Chellas, 1980; Hughes and
Cresswell, 1996] and the various nonadditive measures is suggested in
papers by Resconi et al. [1992, 1993]. Modal logic interpretation of belief
and plausibility measures on finite sets is studied in detail by Harmanec
et al. [1994] and Tsiporkova et al. [1999], and on infinite sets by Harmanec
et al. [1996]. A modal logic interpretation of possibility theory is estab-
lished in a paper by Klir and Harmanec [1994].

Exercises

4.1. Consider the monotone measures �i ði ¼ 1; 2; . . . ; 9Þ on (X, P(X)), where
X ¼ fa; b; cg; which are defined in Table 4.2. Determine for each of these
measures the following:

Table 4.2 Monotone measures in Exercises 4.1. and 4.2

a b c �1ðAÞ �2ðAÞ �3ðAÞ �4ðAÞ �5ðAÞ �6ðAÞ �7ðAÞ �8ðAÞ �9ðAÞ
A: 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0 0 0.0 0.2 0.4 0.2 0.0 1.0 0.2 0.3 0.2

0 1 0 0.0 0.2 0.2 0.3 0.0 1.0 0.0 0.1 0.3

0 0 1 0.0 0.2 0.0 0.4 0.0 1.0 0.0 0.3 0.4

1 1 0 0.7 0.6 0.5 0.6 1.0 1.0 0.5 0.3 0.6

1 0 1 0.8 0.6 0.6 0.6 1.0 1.0 0.2 0.6 0.7

0 1 1 0.9 0.4 0.5 0.7 1.0 1.0 0.0 1.0 0.8

1 1 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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(a) Is the measure superadditive or subadditive?
(b) Is the measure 2-monotone or 2-alternating?
(c) Is the measure a belief measure or a plausibility measure?
(d) Is the measure a possibility measure or a necessity measure?

4.2. Determine the dual measures for each of the measures in Exercise 4.1, and
answer for each of them the questions stated in Exercise 4.1.

4.3. Check for each of the following set functions whether it is a l-measure. If
the answer is affirmative, determine the parameter l.

(a) X ¼ fa; bg;F ¼ PðXÞ; and � is given by �ðØÞ ¼ 0; �ðfagÞ ¼ 1=2;
�ðfbgÞ ¼ 3=4; �ðXÞ ¼ 1:

(b) X ¼ fa; bg;F ¼ PðXÞ; and � is given by �ðØÞ ¼ 0; �ðfagÞ ¼ 1=2;
�ðfbgÞ ¼ 1=3; �ðXÞ ¼ 1:

(c) X ¼ fa; b; cg;F ¼ PðXÞ; and � is given by

�ðEÞ ¼
1 if E = X

0 if E = Ø

1=2 otherwise

8><
>:

for any E 2 F

(d) X ¼ fa; b; cg;F ¼ PðXÞ; and � is given by

�ðEÞ ¼ 1 if E = X

0 otherwise

�

for any E 2 F:

4.4. Is any of the set functions defined in Exercise 4.3 a normalized l-measure?
For each that is a normalized l-measure, determine the dual l-measure as
well as the value of the corresponding parameter l.

4.5. Prove that the �-l-rule is equivalent to the continuity and the l-rule for a
nonnegative set function defined on a ring. Give an example to show that a
similar conclusion need not be true on a semiring.

4.6. Let X ¼ fx1; x2; x3; x4g; and a1 ¼ 0:1; a2 ¼ 0:2; a3 ¼ 0:3; a4 ¼ 0:4: Find
the l-measure, gl, defined on (X, P(X)) and subject to glðfxigÞ ¼ ai; i ¼
1; 2; 3; 4; for each of the following values of parameter l:

(a) l¼ 5;ðbÞ l¼ 2;ðcÞ l¼ 1;ðdÞ l¼ 0;ðeÞ l¼�1;ðfÞ l¼�2;ðgÞ l¼�2:4:

Can you use l ¼ �2:5 or l ¼ �5 to find a l-measure satisfying the above-

mentioned requirement? Justify your answer.
4.7. Prove the following: If � is a Dirac measure on (X, F), then � is a Sugeno

measure for any l 2 ð�1= sup�;1Þ [ f0g; conversely, if X is countable,
F = P(X), and � is a Sugeno measure on (X, F) for two different para-
meters l and l’, then � is a Dirac measure.

4.8. Let X ¼ fa; b; cg and �ðfagÞ ¼ 0:25; �ðfbgÞ ¼ �ðfcgÞ ¼ 0:625; �ðXÞ ¼ 1:
Viewing � as a l-measure, determine the value of the associated parameter l.
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4.9. Let X ¼ fa; bg;F ¼ PðXÞ; and let m be a measure on (X, F) defined by

mðEÞ ¼

1 ifE = X

3=4 ifE = fbg
1=4 ifE = fag
0 ifE = Ø.

8>>><
>>>:

Find a quasi-measure � by using �ðyÞ ¼ ffiffiffi
y
p

; y 2 ½0; 1�, as its proper T-

function. Is there any other T-function (say � 0) such that � ¼ � 0 �m? If

you find any such T-functions, what can you conclude from them?
4.10. LetX ¼ fa1; a2g and � be a nonnegative set function ofP(X). Show that if

0 ¼ �ðØÞ5�ðaiÞ5�ðXÞ51; i ¼ 1; 2; . . ., then � is a quasi-measure.
4.11. Let X ¼ fa; b; c; dg and let mðfagÞ ¼ 0:4;mðfb; cgÞ ¼ 0:1;mðfa; c; dgÞ ¼

0:3;mðXÞ ¼ 0:2 be a basic probability assignment. Determine the corre-
sponding belief measure and plausibility measure.

4.12. Repeat Exercise 4.11 for each of the basic probability assignments given in
Table 4.3, where subsets of X are defined by their characteristic functions.

4.13. Determine which basic probability assignments given in Table 4.3 are
consonant.

4.14. Determine which basic probability assignments given in Table 4.3 induce
a discrete probability measure on (X, P(X)).

4.15. Given X ¼ fa; b; c; dg;
BelðØÞ ¼ BelðfbgÞ ¼ BelðfcgÞ ¼ BelðfdgÞ ¼ Belðfb; dgÞ ¼

Belðfc; dgÞ ¼ 0;
BelðfagÞ¼Belðfa;bgÞ¼Belðfa;cgÞ¼Belðfa;dgÞ¼Belðfa;b;dgÞ¼0:1;

Table 4.3 Basic probability assignments employed in Exercises 4.12–4.14

a b c d m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0.2 0 0 0.2 0.2 0 0.05 0 0 0

0 0 1 0 0 0.4 0 0 0.2 0 0.05 0 0 0

0 0 1 1 0 0 0 0.1 0 0 0.05 0 0 0

0 1 0 0 0 0.5 0 0 0.3 1 0.05 0.2 0 0.9

0 1 0 1 0 0 0 0 0 0 0.05 0 0 0

0 1 1 0 0.3 0 0 0 0 0 0.05 0 0 0

0 1 1 1 0 0 0 0 0 0 0.05 0.5 0 0

1 0 0 0 0.1 0.1 0.2 0 0.3 0 0.05 0 0 0.1

1 0 0 1 0 0 0 0 0 0 0.05 0 0 0

1 0 1 0 0.1 0 0.3 0 0 0 0.05 0 0 0

1 0 1 1 0 0 0 0 0 0 0.1 0 0 0

1 1 0 0 0 0 0 0 0 0 0.1 0 1 0

1 1 0 1 0.2 0 0 0 0 0 0.1 0 0 0

1 1 1 0 0.1 0 0.4 0 0 0 0.1 0 0 0

1 1 1 1 0 0 0.1 0.7 0 0 0.1 0.3 0 0
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Belðfb; cgÞ ¼ Belðfb; c; dgÞ ¼ 0:2;Belðfa; b; cgÞ ¼ 0:3;Belðfa; c; dgÞ ¼ 0:4;
BelðXÞ ¼ 1; determine the corresponding basic probability assignment.

4.16. Let X ¼ fa; b; c; dg:Use each of the possibility profiles given in Table 4.4
to determine the corresponding possibility measures and basic probabil-
ity assignments.

4.17. Determine the dual necessity measure for each possibility measure obtained
in Exercise 4.16.

4.18. Find an example that illustrates that a possibility measure defined on an
infinite space need not be a plausibility measure.

Table 4.4 Possibility profiles employed in Exercises 4.16 and 4.17

f1 f2 f3 f4 f5 f6

a 1 1 0 0.9 1 1

b 0.8 1 1 0 1 1

c 0.4 0.2 0.3 0 1 0

d 0.1 0.6 0.3 1 1 0
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Chapter 5

Extensions

5.1 A General Discussion on Extensions

The extension of set functions is one of the important parts of the theory of set
functions. It is also one of the ways for constructing nonadditive set functions.

Definition 5.1. Let E and F be classes of subsets of a nonempty set X such that
E � F, and let � and � be real-valued set functions defined on E and F,

respectively. then, set function � is called an extension of � from E to F iff
� Eð Þ ¼ � Eð Þ for every E 2 E.

Given a monotone measure � on E, considering how to obtain one of its
extensions on F without any additional requirements is trivial. In fact, define

�ðFÞ ¼ sup
E�F

�ðEÞ;

for every F 2 F. It is easy to verify that � is a monotone measure on F, and �
coincides with � on E. That is, monotone measure � is an extension of � from E

to F. Hence, we restrict our discussion of extensions in this chapter only to
continuous monotone measures with some additional structural requirements.

Extension can be used to construct monotone measures on a �-ring.
However, not all continuous monotone measures defined on a ring R can
be extended onto the �-ring F(R) while keeping the continuity. The follow-
ing is an example of continuous monotone measure for which a required
extension does not exist.

Example 5.1. Let X ¼ 1; 2; . . .f g; R be the class of all finite subsets of X. We
know that

FðRÞ ¼ PðXÞ:

Define a set function � on R as follows:

�ðEÞ ¼
0 if E = Ø

8 E2R.
1 otherwise

(
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� is a finite continuous monotone measure onR. If a nonnegative monotone set

function �0 on F(R) is an extension of �, then �0ðEÞ � 1 for any infinite set E in

F(R) due to the monotonicity of �0. Take

En ¼ fn; nþ 1; . . .g; n ¼ 1; 2; . . . :

If there exists some En0 such that �0ðEn0Þ ¼ 1; then we take

Fi ¼ fn0; n0 þ 1; . . . ; n0 þ i� 1g; i ¼ 1; 2; . . . ;

and we have Fi
%En0 and �

0ðFiÞ ¼ �ðFiÞ ¼ 1 for any i ¼ 1; 2; . . . : This shows
that �0 is not continuous from below. Otherwise, �0ðEnÞ51 for any

n ¼ 1; 2; . . .. From En & Ø; and �0ðEnÞ � 1 for every n ¼ 1; 2; . . . ; we know

that �0 is not continuous from above at Ø. Consequently, �0 is not a continuous
monotone measure on F(R).

From this example we know that it is impossible to establish a unified

extension theorem for continuous monotone measures corresponding to the

extension theorem in classical measure theory. We can only give extension

theorems for some special classes of continuous monotone measures and semi-

continuous monotone measures.

5.2 Extension of Quasi-Measures and l-Measures

In this section an extension theorem of quasi-measures is established, and
thereby the problem that remained in Chapter 4 of constructing a l-measure

on the Borel field from a given probability distribution function is solved

satisfactorily.

Theorem 5.1. Let � be a �-finite quasi-measure on a semiring S with a proper

T-function �. Then � can be uniquely extended to a quasi-measure on F(S)with the

same T-function �.

Proof. � � � is a classical measure on S. Since ��1ðf1gÞ ¼ Ø or f1g, that is,
�ðxÞ <1 if and only if x <1;we know that � � � is �-finite as is �. So, � � � can

be uniquely extended to a classical measure � on F(S). By Theorem 4.8,
�0 ¼ ��1 � � is a quasi-measure on F(S) with the proper T-function �. On S,

since � ¼ � � �; �0 coincides with�, that is,�0 is an extension of�. Uniqueness can

be obtained from the uniqueness of the extension of a classical measure. &

We should note that the restriction ‘‘with the same proper T-function �’’
in the above theorem is necessary. Otherwise, the extension of � may not

be unique. The following example shows that, without such a restriction,
the extensions of a quasi-measure on S, even only to R(S), may not be

unique.
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Example 5.2. Let X ¼ fa; b; cg: S ¼ fØ; fag; fbg; fcgg is a semiring. Define

�ðEÞ ¼
0 if E ¼ Ø

1=3 otherwise

�

for every E 2 S. Then � is a classical measure on S. Of course, it is also a quasi-

measure with proper T-function �ðyÞ ¼ y: The ring generated by S is

RðSÞ ¼ Ø; fag; fbg; fcg; fa; bg; fb; cgfa; cg;Xf g:

If we define

�0ðEÞ ¼
�ðEÞ if E 2 S

1 if E = X

2=3 otherwise

8><
>:

for any E 2 RðSÞ, the �0 is a quasi-measure on R(S) with the proper T-

function �0ðyÞ ¼ �ðyÞ ¼ y, and it is an extension of � from S onto R(S). If we

also define

�00ðEÞ ¼
�ðEÞ if E = S

1 if E = X

1=2 otherwise

8><
>:

for any E 2 RðSÞ; then �00 is an extension of � from S onto R(S), and is also a

quasi-measure on R(S), but with another proper T-function

�00ðyÞ ¼
y if 0 �y �1/3
1þ½1�6ð12�yÞ�

1=2

3 if y > 1/3.

(

�0 and �00 are even both normalized, but they are different.
However, we can prove that, for a finite quasi-measure defined on an algebra

R, even without the restriction ‘‘with the same properT-function,’’ the extension

from R onto F(R) is unique.

Theorem 5.2. Let R be an algebra. If � : R! ½0; 1Þ is a �-finite quasi-measure

on R, then � can be uniquely extended to a quasi-measure on F(R).

Proof. We only need to prove uniqueness. By using amethod that is common in

classical measure theory, we can reduce the �-finite case into a finite case for �.
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Suppose that, on F(R), there are two extensions �0 and �00 of �; then �0 and �00 as
well as � are finite. If we write

M ¼ fEjE 2 FðRÞ; �0ðEÞ ¼ �00ðEÞg;

then, relying on the finiteness of �0 and �00, for any monotone sequence fE1g of
sets in M, we have

�0ðlim
i
EiÞ ¼ lim

i
�0ðEiÞ ¼ lim

i
�00ðEiÞ ¼ �00 ðlim

i

EiÞ;

that is,

lim
i
Ei 2 M:

So, M is a monotone class. Since �0ðEÞ ¼ �00ðEÞ for any E 2 R, then we have

M � R;

and by Corollary 2.1, we have

M � FðRÞ:

Consequently,

�0ðEÞ ¼ �00ðEÞ

for any E 2 FðRÞ. The proof is complete. &

The conclusion in Theorem 5.2 is stronger than the result of the uniqueness
of the extension in classical measure theory. Here we do not give a restriction
‘‘with the same proper T-function,’’ but in classical measure theory there is
actually a restriction ‘‘with the same proper T-function—identity function.’’
This shows that the structure of a quasi-measure on F(R) is fully determined by
its structure on R.

The following example gives a general method to construct a l-measure on a
discrete space (finite or infinitely countable).

Example 5.3. The set function � given in Example 4.3 is a finite l-measure for
any l 2 ð�1= supi ai;1Þ [ f0g on the semiring consisting of all singletons of
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X ¼ fxi; x2; . . .g and the empty set Ø. By Theorems 4.11 and 5.1, � can be

uniquely extended to a l-measure on F(S)=P(X) with the same parameter l. In
fact, according to the �-l-rule, we can define

�ðEÞ ¼
ð1=lÞ

Q
ijxi 2E

ð1þ laiÞ � 1

" #
if l 6=0

P
ijxi 2E

ai if l=0

8>>><
>>>:

for any E 2 PðXÞ: It is easy to show that this set function � is the unique

l-measure on P(X) that satisfies

�ðfxigÞ ¼ ai; i ¼ 1; 2; . . .

Now we return to the construction of Sugeno measures on the Borel field.

Let h(x) be a probability distribution function (continuous from the left). From

h(x), we can get another probability distribution function h0ðxÞ; by

h0 ¼ �l � h;

where �l is just the T-function given in Theorem 4.11 with k ¼ 1nð1þ lÞ=l :

�lðyÞ ¼
1nð1þ lyÞ
1nð1þ lÞ ; y 2 ½0; 1�:

h0ðxÞ determines a probability measure p on the semiring S ¼ f½a; bÞj
�15a � b51g :

Pð½a; bÞÞ ¼ h0ðbÞ � h0ðaÞ;�15a � b51;

and p can be uniquely extended onto the Borel field with pðð�1;1ÞÞ ¼ 1: By
using the second conclusion in Theorem 4.11, we get a Sugeno measure

gl ¼ ��1l � p with the proper T-function �l, where

��1l ðyÞ ¼
ey1nð1þlÞ � 1

l
¼ ð1þ lÞy � 1

l
:

For such a Sugeno measure, on the semiring S, we have

glð½a; bÞÞ ¼ ð��1l � pÞð½a; bÞÞ ¼ ��1l ½h0ðbÞ � h0ðaÞ�

¼ ��1l
ln½1þ l 	 hðbÞ� � ln ½1þ l 	 hðaÞ�

ln ð1þ lÞ

� �
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¼
exp ln

1þ l 	 hðbÞ
1þ l 	 hðaÞ

� �
� 1

l
¼

1þ l 	 hðbÞ
1þ l 	 hðaÞ � 1

l
¼ hðbÞ � hðaÞ

1þ l 	 hðaÞ

This coincides with the set function  defined in Section 4.2. Noting

ð�l �  Þð½a; bÞÞ ¼
ln 1þ l

hðbÞ � hðaÞ
1þ l 	 hðaÞ

� �

ln ð1þ lÞ ¼
ln
1þ l 	 hðbÞ
1þ l 	 hðaÞ
lnð1þ lÞ ¼ h0ðbÞ � h0ðaÞ;

that is, �l �  is a probability measure on S and, therefore, we know that  is a
quasi-measure on S. So, by Theorem 5.1, gl is the unique extension of  from S

onto the Borel field F(S).
Conversely, if gl is a Sugeno measure on the Borel field, then

hðxÞ ¼ glðð�1; xÞÞ

is a probability distribution function (continuous from the left), and, by using
Theorem 4.6(1), we have

glð½a; b�ÞÞ ¼ glðð�1; bÞ � ð�1; aÞÞ ¼
hðbÞ � hðaÞ
1þ l 	 hðaÞ :

h(x) is called the distribution function of gl.
Summing up these discussions, we have actually proved the following

theorem:

Theorem 5.3. Fixed l 2 ð�1;1Þ, the relation

hð	Þ ¼ glðð�1; 	ÞÞ

establishes a one-to-one correspondence between probability distribution func-
tions and Sugeno measures on the Borel field.

This theorem is just a generalization of the relevant results in classical
measure theory.

5.3 Extension of Semicontinuous Monotone Measures

Let R be an algebra of sets in P(X). The class of all those sets that can be
expressed by the limit of an increasing sequence of sets in R is denoted by R�.
Similarly, the notation R� is used to denote the class of all those sets that
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can be expressed by the limit of a decreasing sequence of sets in R. Obviously,
we have

R� ¼ fEjE 2 R�g

and vice versa.
For the sake of simplicity, in this section we assume that the set functions we

discuss are finite.

Definition 5.2. A nondecreasing set function � : C! ½0;1Þ is lower (or upper)
consistent on C iff for any F 2 C and any fEng � C;

En %
[1
n¼1

En � F

implies

lim
n
�ðEnÞ � �ðFÞ

(or

En &
[1
n¼1

En � F

implies

lim
n
�ðEnÞ � �ðFÞ;

respectively).

Lemma 5.1. Let � : C! ½0;1Þ be nondecreasing. If C is closed under the
formation of finite intersections (or finite unions), then, for � on C, lower (or
upper) consistency is equivalent to continuity from below (or from above,
respectively).

Proof. Assume � is continuous from below on C. For any F 2 C and any
fEng � C if

En %
[1
n¼1

En � F;
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then we have

En \ F%F:

By using the monotonicity and the continuity from below of � on C, we have

lim
n
�ðEnÞ � lim

n
�ðEn \ FÞ ¼ �ðFÞ;

that is, � is lower consistent. The converse implication is obvious.
The proof of the upper consistency is similar. &

Theorem 5.4. If � is a lower semicontinuous monotonemeasure onR then �may be

uniquely extended to a lower semicontinuous monotone measure on R�.

Proof. For any E 2 R�, define

�0ðEÞ ¼ lim
n
�ðEnÞ

when fEng � R and En%E: This definition is unambiguous. In fact, if there
exist two sequences fEng and fE0ng in R such that both En%E and E0n%E,

then, for any positive integer n0;En%E � E0n0 ;, and by using Lemma 5.1,

we have

lim
n
�ðEnÞ � �ðE0n0Þ:

Therefore, we have

lim
n
�ðEnÞ � lim

n
�ðE0nÞ:

The converse inequality also holds. So we have

lim
n
�ðEnÞ ¼ lim

n
�ðE0nÞ:

Nowwe prove the monotonicity of �0 on R�: Suppose E 2 R�;F 2 R�;, and
E � F. Then, there exist fEng � R and fFng � R, such that En%E

and Fn%F. For any positive integer n0, since

Fn%F � E � En0 ;

we have

lim
n
�ðFnÞ � �ðEn0Þ;

and therefore,
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�0ðFÞ ¼ lim
n
�ðFnÞ � lim

n
�ðEnÞ ¼ �0ðEÞ:

The continuity from below of �0 may be proved as follows. Suppose

fEnj n ¼ 0; 1; 2; . . .g � R�, and En%E0. By the construction of R�, for every

n ¼ 0; 1; 2; . . ., there exists fEnij i ¼ 1; 2; . . .g � R such that Eni%En.

According to the zigzag diagonal method, write F1 ¼ E11;F2 ¼ E12; F3 ¼ E21;
F4 ¼ E13;F5 ¼ E22;F6 ¼ E31;F7 ¼ E14; . . . ; and denoting F 0n ¼ [ni¼1Fi 2 R,

then F 0n% [1i¼1 En ¼ E0; and therefore,

�0ðE0Þ ¼ lim
n
�ðF 0n Þ:

Observing the fact that, for any positive integer n0, there exists j ¼ jðn0Þ, such
that F 0n0 � Ej, we have, by the monotonicity of �0,

�ðF 0n0Þ ¼ �
0ðF 0n0Þ � �

0ðEjÞ:

Consequently, we have

�0ðE0Þ � lim
j
�0ðEjÞ:

The converse inequality is assured by the monotonicity of �0

Clearly, �0 is an extension of �, because they coincide on R. The uniqueness

of the extension is obvious. &

Theorem 5.5. If � is an upper semicontinuous monotone measure on R, then � may

be uniquely extended to an upper semicontinuous monotone measure on R�.

Proof. If we define a set function � on R by

�ðEÞ ¼ �ðXÞ � �ðEÞ

for every E 2 R; then � is a lower semicontinuous monotone measure, and

�ðXÞ ¼ �ðXÞ: By Theorem 5.4, � can be extended to a lower semicontinuous

monotone measure �0 on R�. It is easy to verify that �0 defined on R� by

�0ðEÞ ¼ �ðXÞ � �0ðEÞ

is an extension of �. The uniqueness of the extension is guaranteed by the

uniqueness in Theorem 5.4. &
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5.4 Absolute Continuity and Extension of Monotone Measures

We assume that R is an algebra, F is a �-algebra containing R, and all set

functions that we discuss in this section are finite.

Definition 5.3. Let � and � be two continuous monotone measures onC. We say

that � is absolutely continuous with respect to �, denoted as �
 �, iff for

any " > 0 there exists � > 0 such that �ðFÞ � �ðEÞ5" whenever E 2 C;
F 2 C;E � F; and �ðFÞ � �ðEÞ5�.

The concept of absolute continuity given in the above definition is a general-

ization of the one in classical measure theory.

Theorem 5.6. Let � be a continuous monotone measure on R. � can be extended

onto R� if there exists a continuous monotone measure � on R�, such that �
 �
onR. The extension is unique, and it preserves the absolute continuitywith respect to �.

Proof.We only need to prove the continuity from above of �0 given in the proof

of Theorem 5.4. Suppose fEng � R� and En&E0 2 R�. Take set sequence

fEniji ¼ 1; 2; . . .g � R , which satisfy Eni%En for every n ¼ 0; 1; 2; . . .. Since
E0 � En for any n ¼ 1; 2; . . ., we may assume that E0i � Eni for any

n ¼ 1; 2; . . ., and i ¼ 1; 2; . . . ; without any loss of generality. As �
 � on R,

for any " > 0 there exists � > 0 such that �ðFÞ5�ðEÞ þ "=2 whenever

E 2 R ;F 2 R ;E � F and �ðFÞ5ðEÞ þ �. By using the continuity of � and

the definition of �0 on R�; there exist N and N0, such that

�ðENÞ5�ðE0Þ þ �=2;

�ðE0Þ5�ðE0N 0 Þ þ �=2;
and

�0ðENÞ5�ðENN 0 Þ þ "=2:

Thus, we have

�ðENN 0 Þ � �ðENÞ5�ðE0N 0 Þ þ �;

and therefore,

�ðENN 0 Þ5�ðE0N 0 Þ þ "=2:

Consequently, we have

�0ðENÞ5�ðE0N 0 Þ þ " � �0ðE0Þ þ ":
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Observing the monotonicity of �0, we obtain

lim
n
�0ðEnÞ ¼ �0ðE0Þ:

Now, we turn to prove that �0 
 � on R�.
For any given " > 0, since �
 � on R, we know that there exists � > 0,

such that �ðF0Þ5�ðE0Þ þ "=2 whenever E0 2 R ;F0 2 R ;E0 � F0; and
�ðF0Þ5�ðE0Þ þ 2�: Now, for any given E 2 R�;F 2 R�, satisfying
E � F and �ðFÞ5�ðEÞ þ �, we take two set sequences fEng � R andfFng � R

such that En%E and Fn%F: There is no loss of generality in assuming En � Fn

for any n ¼ 1; 2; . . . (otherwise, we can take En \ Fn instead of En). By using the
continuity of �0 and � on R�, there exists a positive integer n0 such that

�ðFn0Þ > �0ðFÞ � "=2
and

�ðEn0Þ > �ðEÞ � �:

Since �
 � on R, and

�ðFn0Þ � �ðFÞ5�ðEÞ þ �5�ðEn0Þ þ 2�;

we have

�ðFn0Þ5�ðEn0Þ þ "=2;

and therefore,

�0ðFÞ5�0ðFn0Þ þ "=2 ¼ �ðFn0Þ þ "=25�ðEn0Þ þ " ¼ �0ðEn0Þ þ " � �0ðEÞ þ ":

This means �0 
 � on R�. The uniqueness of the extension has been shown in
Theorem 5.4. &

Since a continuous monotone measure is both continuous from below and
continuous from above, regarding it as a lower semicontinuous monotone
measure, we can obtain an extension from Theorem 5.4, and regarding it as
an upper semicontinuous monotone measure, we can also obtain another
extension from Theorem 5.5. Because of Theorem 5.6, we know that these
two extensions coincide under the condition given in Theorem 5.6.

To extend a continuous monotone measure from an algebra onto a �-algebra
containing this algebra, we need a newconcept, which is calledR�-approachability
of a monotone measure on a �-algebra containing R�.
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Definition 5.4. A continuous monotone measure � on F is R�-approachable iff
for any set E 2 F and " > 0, there exists F 2 R�, such that F � E and
�ðFÞ � �ðEÞ þ ":

Theorem 5.7. A continuous monotone measure � on R may be extended to an R�-
approachable monotone measure on F if there exists an R�-approachable contin-
uous monotone measure � on F such that �
 � onR. The extension is unique and
preserves the absolute continuity with respect to �.

Proof. It is clear byTheorem 5.6 that�may be uniquely extended to a continuous
monotone measure �0 on R�, and �

0 
 � on R�. If we define

�00ðEÞ ¼ inff�0ðFÞjE � F 2 R�g

for any E 2 F, then �00 is nondecreasing, and it coincides with �0 on R�

To prove the continuity from above of �00 on F, we suppose fEng � F

and En&E0 2 F. Since �0 
 � on R�, for any " > 0, there exists � > 0
such that

�0ðFÞ5�0ðEÞ þ "=2

whenever E 2 R�;F 2 R�;E � F; and �ðFÞ5�ðEÞ þ �: By using the continu-
ity of � on F, there exists N such that

�ðENÞ5�ðE0Þ þ �=2:

Noting thatR� is closed under the formation of finite intersections, by using the
R�-approachability of � on F and the definition of �00, we may take
F0 2 R�;FN 2 R�, such that E0 � F0;EN � FN;F0 � FN, and

�0ðF0Þ5�00ðE0Þ þ "=2;

�ðFNÞ5�ðENÞ þ �=2:
Thus, we have

�ðFNÞ5�ðE0Þ þ � � �ðF0Þ þ �

and, therefore,

�0ðFNÞ5�0ðF0Þ þ "=2:

Consequently, we have

�00ðENÞ � �0ðFNÞ5�0ðF0Þ þ ð"=2Þ5�00ðE0Þ þ ":
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That is, �00 is continuous from above on F. The continuity from below of �00 on F
can be proved by a completely analogous method. So �00 is a continuous
monotone measure on F.

Obviously, �00 is R�-approachable, and it is the unique extension possessing
R�-approachability. We can also prove the absolute continuity of �00 with
respect to � in a similar way. &

Since a classical measure on F(R) is R�-approachable, we have the following
corollary.

Corollary 5.1. A continuous monotone measure � on R may be uniquely extended
onto F(R) if there exists a finite measure � on R such that �
 � on R.

Noting that any T-function is continuous, we know that any quasi-measure
is absolutely continuous with respect to a certain classical measure. So,
from Corollary 5.1, we have the following result again, which was obtained
in Section 5.2.

Corollary 5.2. Any quasi-measure on R can be uniquely extended onto F(R).
This shows that the result in Theorem 5.7 is a generalization of the result in

Section 5.2.

5.5 Extension of Possibility Measures and Necessity Measures

In this section we restrict the range of set functions that we discuss to [0, 1].
However, there is no essential difficulty for generalizing most results in this
section to cases where the range of set functions is [0,1].

Definition 5.5. A set function � : C! ½0; 1� is P-consistent on C iff, for any
fEtjt 2 Tg � C and any E 2 C,

E � [
t2T

Et

implies

�ðEÞ � sup
t2T

�ðEtÞ;

where T is an arbitrary index set.
From Definition 5.5, we know that if �: C! ½0; 1� is P-consistent and

Ø 2 C; then �ðØÞ ¼ 0. In fact, since Ø � Ø ¼ [t2Ø Et, we should have
�ðØÞ � supt2Ø �ðEtÞ ¼ 0.

Theorem 5.8. If � : C! ½0; 1� is P-consistent, then it is monotone and maxitive
on C.

Proof. If we take a singleton as the index set T, then the monotonicity of � can
be immediately obtained from the definition of P-consistency. Furthermore,
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when E ¼ [t2T Et, then on the one hand, from the definition of P-consistency,

we have

�ðEÞ � sup
t2T

�ðEtÞ;

and on the other hand, since E � Et for any t 2 T, by monotonicity, we have

�ðEÞ � �ðEtÞ for any t 2 T, so

�ðEÞ � sup
t2T

�ðEtÞ:

Consequently, we have

�ðEÞ ¼ sup
t2T

�ðEtÞ:

That is, � is maxitive on C. &

In general, P-consistency is not equivalent to maxitivity on an arbitrary class

C, as is illustrated in the following example.

Example 5.4. X ¼ fa; b; c; g;C ¼ ffag; fa; b; g; fb; cgg. If � is a set function on

C with

�ðfagÞ ¼ 0:5; �ðfa; bgÞ ¼ 0:7; �ðfb; cgÞ ¼ 0:6;

then � is maxitive on C, but it is not P-consistent. In fact, fag [ fb; cg � fa; bg,
but �ðfagÞ _ �ðfb; cgÞ ¼ 0:650:7 ¼ �ðfa; bgÞ.

However, if � is a nonnegative monotone set function defined on the class C

that is closed under the formation of arbitrary unions, then P-consistency and

maxitivity are equivalent for �.

Theorem 5.9. A set function �: C! ½0; 1� can be extended to a generalized

possibility measure p on P(X) if and only if � is P-consistent on C.

Proof. Necessity: Let � be extendable to a generalized possibility measure p on

P(X). Noting that p is nondecreasing, we know for any fEtjt 2 Tg � C and any

E 2 C, if E � [t2T Et then

�ðEÞ ¼ pðEÞ � pð [
t2T

EtÞ ¼ sup
t2T

pðEtÞ ¼ sup
t2T

�ðEtÞ:

That is, � is P-consistent on C.
Sufficiency: Let � be P-consistent on C. We define a set function

p : PðXÞ ! ½0; 1�

F 7! sup
x2F

inf
Ejx2E2C

�ðEÞ: (5:1)
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p is a generalized possibility measure on P(X). In fact, if we write

fðxÞ ¼ inf
Ejx2E2C

�ðEÞ;

for any x 2 X, then, similarly to the result in Theorem 4.22, f(x) can uniquely

determine a generalized possibility measure. It is just the set function p defined

above. The following shows that this set function p is an extension of � on C,

i.e., for any F 2 C; pðFÞ ¼ �ðFÞ. Take F 2 C arbitrarily. On the one hand,

from (5.1), since F 2 fEjx 2 E 2 Cg when x 2 F, we have

pðFÞ � sup
x2F

�ðFÞ ¼ �ðFÞ:

On the other hand, arbitrarily given " > 0, for any x 2 F there exists Ex 2 C

such that x 2 Ex and

inf
Ejx2E2C

�ðEÞ � �ðExÞ � ":

Since [x2F Ex � F; by using the P-consistency of � on C we have

sup
x2F

�ðExÞ � �ðFÞ;

and therefore,

pðFÞ ¼ sup
x2F

inf
Ejx2E2C

�ðEÞ � sup
x2F
½�ðExÞ � "� � �ðFÞ � ":

Because " may be arbitrarily close to zero, we obtain

pðFÞ � �ðFÞ:

Consequently, we have

pðFÞ ¼ �ðFÞ: &

Example 5.5. X and C are given in Example 5.4. If � is a set function on C with

�ðfagÞ ¼ 0:5; �ðfa; bgÞ ¼ 0:7; �ðfb; cgÞ ¼ 0:7;

then � is P-consistent on C, and therefore, it can be extended to a generalized

possibility measure p on P(X) with

pðfagÞ ¼ 0:5; pðfbgÞ ¼ 0:7; pðfcgÞ ¼ 0:7:
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In general, the above-mentioned extension may not be unique. For instance,

in Example 5.5 the generalized possibility measure p0:

p0ðfagÞ ¼ 0:5; p0ðfbgÞ ¼ 0:7; p0ðfcgÞ ¼ 0:6; p0ðfa; bgÞ ¼ 0:7;

p0ðfb; cgÞ ¼ 0:7; p0ðfa; cgÞ ¼ 0:6; p0ðØÞ ¼ 0; p0ðXÞ ¼ 0:7;

is an extension of � too.
Denote all of generalized possibility measure extensions of the set function

� : C! ½0; 1� byEpð�Þ; then Epð�Þ is nonempty if � is P-consistent on C.
Given two arbitrary set functions �1 : PðXÞ ! ½0; 1� and �2 : PðXÞ ! ½0; 1�,

if we define a relation ‘‘�’’ as follows:

�1 � �2 iff �1ðEÞ � �2ðEÞ for everyE 2 PðXÞ;

then the relation ‘‘�’’ is a partial ordering on Epð�Þ. Furthermore, if we denote

�� ¼ sup f�1; �2g, then

��ðEÞ ¼ �1ðEÞ _ �2ðEÞ

for any E 2 PðXÞ.

Theorem 5.10. ðEpð�Þ;�Þis an upper semilattice, and the extension given by (5.1)

is the greatest element of ðEpð�Þ;�Þ.

Proof. If p1 and p2 are generalized possibility measures then so is their supre-

mum. Furthermore, if both p1 and p2 belong to Epð�Þ then so does their

supremum. Therefore, ðEpð�Þ;�Þ is an upper semilattice. Now we turn to

show the second conclusion of the theorem. Let p be the generalized possibility

measure extension of � which has the expression (5.1). Given an arbitrary

p0 2 Epð�Þ, since

p0ðfxgÞ � p0ðEÞ ¼ �ðEÞ

for any E 2 C and any singleton {x} satisfying x 2 E 2 C, we have

p0ðfxgÞ � inf
Ejx2E2C

�ðEÞ:

Therefore, for any F 2 PðXÞ,

pðFÞ ¼ sup
x2F

inf
Ejx2E2C

�ðEÞ � sup
x2F

p0ðfxgÞ ¼ p0ðFÞ:

That is, p is the greatest element of ðEpð�Þ;�Þ. &
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If p1 2 Epð�Þ; p2 2 Epð�Þ, and p1 � p2, then any generalized possibility

measure p on P(X) that satisfies p1 � p � p2 is an extension of �. So, if Epð�Þ
possesses two or more different elements, then it has a potency not less than the

continuum.
Epð�Þ may be also obtained by solving a certain fuzzy relation equation.
From Theorem 5.9, it is easy to determine whether a set function �:C! [0, 1]

can be extended to a possibility measure on P(X). In this problem, there are

three cases:

1. If X 2 C, and �ðXÞ 6¼ 1, then � cannot be extended to any possibility
measure on P(X).

2. If X 2 C, and �ðXÞ ¼ 1, then � can be extended to a possibility measure on
P(X) when � is P-consistent on C.

3. If X=2C, let C0 ¼ C [ fXg, and define �0 on C0 by

�0ðEÞ ¼ �ðEÞ if E2C
1 if E = X,

�

then � can be extended to a possibility measure on P(X) when �0 is P-

consistent on C0.
The discussion regarding extensions of generalized possibility measures

(Theorem 5.10) is equally applicable to cases 2 and 3.
It is natural to ask under what conditions the above-mentioned extension is

unique. To answer this question, we need the concepts of atom and plump class

defined in Chapter 2.

Lemma 5.2. LetC be an AU-class. If a set function �:C! [0, 1] is nondecreasing,

then it is a generalized possibility measure. Furthermore, ifC is just the class of all

atoms of some class C0, that is, C ¼ A½C0�, then any nondecreasing set function �:
C! [0, 1] is P-consistent on C.

Proof. If fEtjt 2 Tg � C, [t2T Et 2 C, where T is an arbitrary index set, then,

since C is an AU-class, there exists t0 2 T such that Et0 ¼ [t2TEt. So

�ð
[
t2T

EtÞ ¼ �ðEt0Þ � sup
t2T

�ðEtÞ:

Noting that � is nondecreasing, we have the converse inequality:

�ð
[
t2T

EtÞ � sup
t2T

�ðEtÞ:

Consequently, we have

�ð
[
t2T

EtÞ ¼ sup
t2T

�ðEtÞ:
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That is, � is maxitive.
Furthermore, let C ¼ A½C0�. If A ¼ AðxÞ 2 A½C0�,

fAtjt 2 Tg ¼ fAðxtÞjt 2 Tg � A½C0�;

andA � [t2TAt; whereT is an arbitrary index set, then there exists t0 2 T such
that x 2 At0 , and, therefore, by Theorem 2.12, A � At0 . So we have

�ðAÞ � �ðAt0Þ � sup
t2T

�ðAtÞ:

That is, � is P-consistent on A [C0]. &

Theorem 5.11. Any nondecreasing set function � : A½C� ! ½0; 1� is a generalized
possibility measure on A[C], and it can be uniquely extended to a generalized
possibility measure p on FpðCÞ.

Proof. By Lemma 5.2 and Theorem 5.8 we know that � is a generalized
possibility measure on A[C], and by Theorem 5.9 � can be extended to a
generalized possibility measure p on P(X) containing FpðCÞ. So, we only need
to prove that on FpðCÞ the extension is unique. For any E 2 FpðCÞ, through
Theorem 3.17, E can be expressed by

E ¼
[
t2T

At;

where At 2 A½C� and T is an index set. Since p is a generalized possibility
measure, it should hold that

pðEÞ ¼ sup
t2T

�ðAtÞ:

But, the expression of E may not be unique. If there exists another expression

E ¼
[
s2S

A0s;

where A0s 2 A½C� and S is an index set, we must prove that

sup
t2T

�ðAtÞ ¼ sup
s2S

�ðA0sÞ

to show the uniqueness of the extension. In fact, for any At there exists xt 2 At

such that At ¼ AðxtÞ. From xt 2 E ¼ [s2SA0s we know that there exists st 2 S
such that xt 2 A0st . Therefore, by Theorem 3.12, At � A0st . Using the mono-
tonicity of �, we have

�ðAtÞ � �ðA0stÞ � sup
s2S

�ðA0sÞ:
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This inequality holds for any t 2 T. So, we have

sup
t2T

�ðAtÞ � sup
s2S

�ðA0sÞ:

Analogously, the converse inequality holds. Consequently, we have

sup
t2T

�ðAtÞ ¼ sup
s2S

�ðA0sÞ:

&

As to the extension of necessity measures, we have a similar discussion.

Definition 5.6. A set function � : C! ½0; 1� is N-consistent on C iff for any

fEtjt 2 Tg � C and any E 2 C;

E � \
t2T

Et

implies

�ðEÞ � inf
t2T

�ðEtÞ;

where T is an arbitrary index set.

Theorem 5.12. Let Ø 2 C. A set function � : C! ½0; 1� with �ðØÞ ¼ 0 can be

extended to a necessity measure � on P(X ) if and only if � is N-consistent on C.
This extension may be not unique. Denoting all necessity measure exten-

sions of the set function � given in the above theorem byEvð�Þ, then we have the
following theorem.

Theorem 5.13. ðEvð�Þ;�Þ is a lower semilattice, and the set function � given by

� : PðXÞ ! ½0; 1�

F7! inf
x =2F

sup
E j x =2F2C

�ðEÞ

is the smallest element of ðEvð�Þ;�Þ.
Using the concept of the hole, we can address the uniqueness of the

necessity measure extension.
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Notes

5.1. The issue of extensions of possibility and necessity measures was first
addressed by Wang [1985b, 1986, 1987]. It was shown by Wang [1986b]
that these extensions can be obtained by solving appropriate fuzzy relation
equations. It follows from this result that, in general, there are several
(possibly even infinitely many) smallest extensions on P(X) for a given
possibility measure on C. It was shown by Qiao [1989] that the extensions
of possibility and necessity measures can be generalized to monotone sets.

5.2. The work on extensions of quasi-measures (including l-measures as a
special case) was initiated by Wang [1981].

5.3. Extensions of semicontinuous monotone measures as well as some other
kinds of monotone measures were studied by Wang [1990a].

Exercises

5.1. Let X ¼ fx1; x2; x3g. Using the concepts of the quasi-measure and its
proper T-function, determine a l-measure on � on P(X) with a parameter
l ¼ 1 and constrained by �ðfx1gÞ ¼ 1; �ðfx2gÞ ¼ 2; �ðfx3gÞ ¼ 3:

5.2. Given a probability distribution function

hðxÞ ¼
0 if x � �1
1=4 if � 15x � 1

1 if x > 1,

8<
:

determine the corresponding Sugenomeasure gl on the Borel fieldBwith a
parameter l = 2. In particular, list the values of glðf1gÞ; glðf0gÞ; and
glð½�2; 0ÞÞ:

5.3. Repeat Exercise 5.2 for each of the following probability distribution
functions:

(a) hðxÞ ¼
0 if x � �1
1=4 if � 15x � 0
3=4 if 05 x �1
1 if x 41;

8><
>:

(b) hðxÞ ¼
0 if x � �1
ð1þ xÞ=2 if � 15x � 1
1 if x 41;

8<
:

(c) hðxÞ ¼ 0 if x �0
1 if x > 0.

�

5.4. LetX be a nonempty set andR be an algebra of subsets ofX. Prove thatR�

is closed under the formation of countable unions. Assuming that we call
the class that is closed under the formation of countable unions a �-class,
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show that R� is the smallest �-class containing R (we can also refer to
it as �-class generated by R). Similarly, assuming that we call the class
that is closed under the formation of countable intersections a �-class
and denote it by R�, show that R� is the smallest �-class containing R

(�-class generated by R).
5.5. In analogy to the concept of R�-approachability define an appropriate

concept of R�-approachability. What relevant result can be obtained for
this new concept?

5.6. Determine R� and R� for each R specified as follows:

(a) X ¼ fa; b; c; dg;R ¼ fØ; fa; bg; fc; dg;Xg;
(b) Xf1; 2; . . .g;R is the class of all finite sets and their complements in X;
(c) X ¼ ½0; 1�;R is the class of all finite sets and their complements in X.

5.7. Let X ¼ f1; 2; . . .g;R be the class of all finite sets in X, and � be a set
function defined on R as follows:

�ðEÞ ¼ 0 if E = Ø

1 otherwise

�

Extend � as a lower semicontinuous monotone measure on a class, as large

as possible, that contains R.
5.8. Repeat Exercise 5.7 for the following set function:

�ðEÞ ¼ 1� 1

jEj þ 1

5.9. LetM be the class of all monotonemeasures defined on ameasurable space
(X, F). Prove that ‘‘
’’ is a transitive relation on M.

5.10. LetX={a, b, c, d, e}. Determine for each of the following set functions �
defined on given classes C whether it is P-consistent on C:

(a) C ¼ PðXÞ; �ðEÞ ¼ 1 for any E 2 PðXÞ;
(b) C ¼ PðXÞ;

�ðEÞ ¼
0 if E = Ø

1 otherwise;

�

(c) C is the class consisting of all subsets of X that contain at most two
points, and

�ðEÞ ¼ jEj=5

for any E 2 C;
(d) C ¼ ffag; fbg; fa; cg; fb; d; eg; fa; c; d; egg; �ðfagÞ ¼ 0:1; �ðfbgÞ
¼ 0:8; �ðfa; cgÞ ¼ 0:5; �ðfb; d; egÞ ¼ 0:8; �ðfa; c; d; egÞ ¼ 0:6;

Exercises 131



(e) C ¼ ffag; fbg; fa; cg; fb; d; eg; fa; c; d; egg; �ðfagÞ ¼ 0:1; �ðfbgÞ
¼ 0:5; �ðfa; egÞ ¼ 0:5; �ðfb; d; egÞ ¼ 0:8; �ðfa; c; d; egÞ ¼ 0:6;

(f) C¼ffa;bg;fb;cg;fa;b;cg;fa;d;eg;fb;c;dgg;�ðfa;bgÞ¼ 0:2;�ðfb;cgÞ
¼ 0:5;�ðfa;b;cgÞ¼ 0:5;�ðfa;d;egÞ¼ 1;�ðfb;c;dgÞ¼ 0:9;

(g) C ¼ ffa; bÞ; fa; d; eg; fb; dg; fa; b; egg; �ðfa; bgÞ ¼ 0:5; �ðfa; d; egÞ
¼1; �ðfb; dgÞ ¼ 1; �ðfa; b; egÞ ¼ 0:8;

(h) C¼ffa;bg;fa;b;dg;fc;d;eg;fa;b;c;eg;fd;egg;�ðfa;bgÞ¼
0:3;�ðfa;b;dgÞ¼ 0:4;�ðfc;d;egÞ¼ 1;�ðfa;b;c;egÞ¼ 1;�ðfd;egÞ¼ 0:6;

(i) C ¼ ffa; b; cg; fbg; fcg; fb; c; dg; fb; egg; �ðfa; b; cgÞ ¼ 0:5; �ðfbgÞ
¼ 0:1; �ðfcgÞ ¼ 0:2; �ðfb; c; dgÞ ¼ 1; �ðfb; egÞ ¼ 0:6:

5.11. Extend each P-consistent set function � given in Exercise 5.10 onto P(X)
as a generalized possibility measure. Determine whether the extension is
unique. If it is not unique, find the greatest extension. Can you also show
that there are extensions other than the greatest one?

5.12. In Exercise 5.10, determine which classes are AU-classes.
5.13. Using the set functions listed in Exercise 5.10 and the classes on which the

respective set functions are defined, confirm the conclusions given in
Section 5.4.
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Chapter 6

Structural Characteristics for Set Functions

6.1 Null-Additivity

Up to now, we have used some structural characteristics such as nonnegativity,
monotonicity, additivity, subadditivity, l-rule, maxitivity, continuity, and so
on to describe the features of a set function. Since the monotone measures in
general lose additivity, they appear much looser than the classical measures.
Thus, it is quite difficult to develop a general theory of monotone measures
without any additional condition. Before 1981 it was thought that monotone
measures additionally possessed subadditivity (even maxitivity), or satisfied the
l-rule. But these conditions are so strong that the essence of the problem is
concealed in most propositions. Since 1981, many new concepts on structural
characteristics, which monotone measures may possess (e.g., null-additivity,
autocontinuity, and uniform autocontinuity), have been introduced. As we
shall see later, they are substantially weaker than subadditivity or the l-rule,
but can effectively depict most important monotone measures and are powerful
enough to guarantee that many important theorems presented in the following
chapters will be justified. In several theorems, they go so far as to be a necessary
and sufficient condition. In generalized measure theory, these new concepts
replace additivity and thus play important roles.

We assume that F is a �-algebra of sets in P(X), and we define these new
concepts in a wider scope: Set functions � : F ! ½�1; 1 � are considered to
be extended real-valued.

Definition 6.1. � : F ! ½�1; 1 � is null-additive iff

�ðE [ FÞ ¼ �ðEÞ
whenever E 2 F, F 2 F, E \ F = Ø, and �(F) = 0.

Theorem 6.1. If for any nonempty set F 2 F, �(F) 6¼ 0, then � is null-additive.

Proof. If there exists some set F 2 F such that �(F) = 0, then F=Ø. Therefore,
for any E 2 F, we have

�ðE [ FÞ ¼ �ðEÞ &
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Theorem 6.2. If �: F! [0,1] is a nondecreasing set function, then the following

statements are equivalent:

(1) � is null-additive;
(2) �(E \ F ) = �(E ) whenever E 2 F, F 2 F, and �(F ) = 0;
(3) �(E – F ) = �(E) whenever E 2 F, F 2 F, F � E, and �(F ) = 0;
(4) �(E – F) = �(E) whenever E 2 F, F 2 F, and �(F ) = 0;
(5) �(E � F) = �(E) whenever E 2 F, F 2 F, and �(F) = 0.

Proof. (1)) (2): If �(F) = 0, noting 0� � (F – E)� �(F) = 0, (F – E) \ E=Ø,

we have � (E [ F) = �(E [ (F – E)) = �(E);
(2)) (1): Evident;
(1)) (3): It is only necessary to note �(E) = �((E – F) [ F); (3)) (4): Since

�(E – F) = �(E – (F \ E)), and F \ E � E, noting 0 � �(F \ E) � �(F) = 0, we

have the conclusion;
(4)) (1): The conclusion follows from �(E) = �((E [ F) – F) when E \ F=Ø;
(2) and (4)) (5): The conclusion follows from the inequality

�ðE� FÞ � �ðE � FÞ � �ðE [ FÞ;

(5)) (1): We only need to point out that E � F ¼ E [ F when E \ F = Ø. &

One of the simplest monotone measures that is not null-additive is given as

follows.

Example 6.1. X = {a, b}, F = P(X), and

�ðEÞ ¼
1 if E ¼ X

0 if E 6¼ X:

�

Theorem 6.3. Let � be a null-additive, continuous, monotone measure, and E 2 F.

Then, we have

lim
n
�ðE [ FnÞ ¼ �ðEÞ

for any decreasing set sequence {Fn}� F for which limn � (Fn)=0 and there exists

at least one positive integer n0 such that �(E [ Fn0
) <1 as �(E ) <1.

Proof. It is sufficient to prove this theorem for �(E) < 1. If we write

F ¼ \1n¼1Fn, we have �(F) = limn �(Fn) = 0. Since E [ Fn& E [ F, it follows

from the continuity and the null-additivity of � that

lim
n
�ðE [ FnÞ ¼ �ðE [ FÞ ¼ �ðEÞ: &

Theorem 6.4. Let � be a null-additive continuous monotone measure, and E 2 F.

We have

lim
n
�ðE� FnÞ ¼ �ðEÞ

for any decreasing set sequence {Fn} � F for which limn �(Fn) = 0.
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Proof. Since E – Fn% E –ð\1n¼1FnÞ and �ð\1n¼1FnÞ ¼ 0; by Theorem 6.2 and the
continuity of � it follows that

lim
n
�ðE� FnÞ ¼ � E�

\1
n¼1

Fn

 ! !
¼ �ðEÞ: &

The following example shows that the conclusion in Theorem 6.3 is not true
when the finiteness condition is abandoned.

Example 6.2. Let X = {0, 1, 2,...}, F = P(X),

�ðEÞ ¼

P
i2E

2�ðiþ1Þ if 0 62E

1 if 0 2 E and E� f0g 6¼ Ø

1 if E=f0g.

8>><
>>:

It is not too difficult to verify that � is a continuous monotone measure.
By Theorem 6.1 � is null-additive. If we take E = {0}, Fn = {n, n þ 1,...},
n=1, 2,..., then {Fn} is decreasing, and limn �(Fn) = 0, but � (E [ Fn) =1 for
any n = 1, 2,..., and �(E) = 1. So we have

lim
n
�ðE [ FnÞ 6¼ �ðEÞ:

6.2 Autocontinuity

Definition 6.2. �: F! [–1,1] is autocontinuous from above (or from below) iff

lim
n
�ðE [ FnÞ ¼ �ðEÞ ðor lim

n
�ðE� FnÞ ¼ �ðEÞÞ

whenever E 2 F, Fn2 F, E \ Fn = Ø (or Fn� E, respectively), n = 1, 2,..., and
limn �(Fn) = 0; � is autocontinuous iff it is both autocontinuous from above and
autocontinuous from below.

Theorem 6.5. Let �: F! [–1, 1] be an extended real-valued set function. If
there exists " > 0 such that |�(E)| � " for any E 2 F, E 6¼ Ø, then � is
autocontinuous.

Proof. Under the condition of this theorem, if {Fn} � F is such that limn

�(Fn) = 0, then there must be some n0 such that Fn= Ø whenever n � n0,
and, therefore,

lim
n
�ðE [ FnÞ ¼ lim

n
�ðE� FnÞ ¼ lim

n
�ðEÞ ¼ �ðEÞ: &
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Theorem 6.6. If �: F! [–1,1] is autocontinuous from above or autocontinuous

from below then it is null-additive.

Proof. For any E 2 F, F 2 F, E \ F= Ø, and �(F) = 0, taking Fn = F, n = 1,

2,..., we have limn �(Fn) = �(F) = 0. If � is autocontinuous from above, then

�ðE [ FÞ ¼ lim
n
�ðE [ FnÞ ¼ �ðEÞ;

so that � is null-additive; if � is autocontinuous from below, then

�ðE [ FÞ ¼ lim
n
�ððE [ FÞ � FnÞ ¼ �ðEÞ;

and � is null-additive as well. &

Obviously, if �: F! [0,1] is nondecreasing, then the restrictions ‘‘E\ Fn=Ø’’

and ‘‘Fn � E ’’ in the statement of Definition 6.2may be omitted.

Theorem 6.7. Let �: F! [0, 1] be nondecreasing. � is autocontinuous if and

only if

lim
n
�ðE�FnÞ ¼ �ðEÞ

whenever E 2 F, {Fn} � F, and limn �(Fn) = 0.

Proof. Necessity: For any E 2 F, {Fn} � F, with limn �(Fn) = 0, noting

E� Fn � E�Fn � E [ Fn;

by the monotonicity of � we have

�ðE� FnÞ � �ðE�FnÞ � �ðE [ FnÞ:

Since � is both autocontinuous from above and autocontinuous from below, we

have

lim
n
�ðE [ FnÞ ¼ �ðEÞ

and

lim
n
�ðE� FnÞ ¼ �ðEÞ:

Thus, we have

lim
n
�ðE�FnÞ ¼ �ðEÞ:
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Sufficiency: For any E 2 F, {Fn} � F, with limn �(Fn) = 0, we have Fn – E 2 F

and �(Fn – E) � (Fn). So we have

lim
n
�ðFn � EÞ ¼ 0;

and therefore, by the condition given in this theorem, we have

lim
n
�ðE [ FnÞ ¼ lim

n
�ðE�ðFn � EÞÞ ¼ �ðEÞ:

That is, � is autocontinuous from above. Similarly, from

lim
n
�ðFn \ EÞ ¼ 0;

it follows that

lim
n
�ðE� FnÞ ¼ lim

n
�ðE�ðFn \ EÞÞ ¼ �ðEÞ:

That is, � is autocontinuous from below. &

The following two theorems indicate the relation between the autocontinuity

and the continuity of nonnegative set functions.

Theorem 6.8. If �: F! [0,1) is continuous from above at Ø and autocontinuous

from above (or from below), then � is continuous from above (or from below,

respectively).

Proof. If {En} is a decreasing sequence of sets in F, and E ¼ \1n¼1En; then
En – E&Ø. From the finiteness and the continuity from above at Ø of �, we
know

lim
n
�ðEn � EÞ ¼ 0

and, therefore, by using the autocontinuity from above of �, we have

lim
n
�ðEnÞ ¼ lim

n
�ðE [ ðEn � EÞÞ ¼ �ðEÞ:

That is, � is continuous from above. The proof of the continuity from below is

similar. &

Theorem 6.9. If �: F! [0,1] is nondecreasing, continuous from above at Ø, and

autocontinuous from above, then � is continuous from above.

Proof. If {En} is a decreasing sequence of sets in F with �(E1) < 1, we know

from the monotonicity of � that

0 � � E1 �
\1
n¼1

En

 !
� �ðE1Þ51:

Thus, the proof is similar to the proof of Theorem 6.8. &
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When the set function we consider is a continuous monotone measure (or

semicontinuous monotone measure) there are some interesting results on the

autocontinuity from above and the autocontinuity from below.

Lemma 6.1. Let �:F! [0,1] be a lower semicontinuousmonotonemeasure (or upper

semicontinuous monotone measure), {En}� F with limn �(En)= 0. If � is autocontin-

uous from above (or from below and finite), then there exists some sequence {Ek} of

subsequences of {En}, where Ek ¼ fEn
ðkÞ
i

g; k = 1, 2,..., such that

lim
k
�
[1
i¼1

E
n
ðkÞ
i

 !
¼ 0

(or limk �ðA�
[1
i¼1

E
n
ðkÞ
i

Þ ¼ �ðAÞ for any fixed A 2 F, respectively).

Proof. Assume � is autocontinuous from above. For arbitrarily given " > 0,

we take n1 such that �(En1) < "/2. Since � is autocontinuous from above and

limn �(En) = 0, we can take n2 > n1 such that

�ðEn1 [ En2Þ5�ðEn1Þ þ "=4 < 3"=4:

Generally, for [ j
i¼1Eni ; we can take njþ1 > nj such that

�
[jþ1
i¼1

Eni

 !
¼ �

[j
i¼1

Eni

 !
[ Enjþ1

 !
5ð1� 2�ð jþ1ÞÞ"5";

j = 1, 2,.... Consequently, by using the continuity from below of � we get a

subsequence fEnig of {En} such that

�
[1
i¼1

Eni

 !
¼ lim

j
�
[jþ1
i¼1

Eni

 !
� ":

In a similar way, we can also prove the case when � is autocontinuous from

below. &

Theorem 6.10. Let �: F! [0,1] be a lower semicontinuous monotone measure. If

� is autocontinuous from above, then for any {En}� F with limn �(En)= 0, there

exists some subsequence {Eni
} of {En} such that

�ðlim
i

EniÞ ¼ 0:

The inverse proposition is also true when � is a finite null-additive continuous

monotone measure.

Proof. Suppose � is autocontinuous from above. From Lemma 6.1, there exists

a subsequence {E
n
ð1Þ
i

} such that

�
[1
i¼1

E
n
ð1Þ
i

 !
51:
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As limi �(En
ð1Þ
i

) = 0, too, there exists a subsequence {E
n
ð2Þ
i

} of {E
n
ð1Þ
i

} such that

�
[1
i¼1

E
n
ð2Þ
i

 !
51=2:

Generally, there exists a subsequence {E
n
ðk�1Þ
i

} of {E
n
ðk�1Þ
i

} such that

�
[1
i¼1

E
n
ðkÞ
i

 !
51=k:

k=2, 3,.... If we take ni= ni
(i), then {Eni

} is a subsequence of {En} and satisfies

[
1

i¼k
Eni � [

1

i¼1
E
n
ðkÞ
i

for any k = 1, 2,.... Consequently, we have

�ðlim
i
EniÞ ¼ �

\1
k¼1

[1
i¼k

Eni

 !
� �

[1
i¼k

Eni

 !
� �

[1
i¼1

E
n
ðkÞ
i

 !
51=k

for any k = 1, 2,..., and thus we have

�ðlim
i
EniÞ ¼ 0:

Conversely, for any E 2 F, {Fn} � F with limn �(Fn) = 0, there exists a

subsequence {Fnk} of {Fn} such that

lim
i
�ðE [ FnÞ ¼ lim

k
�ðE [ FnkÞ:

Since limn �(Fnk) = 0, too, by the condition in the inverse proposition, there

exists some subsequence {Fnki
} such that

�ðlim
i
Enki
Þ ¼ 0:

Therefore, by the finiteness, monotonicity, and continuity from above of � (see

the proof of Theorem 4.27), we have

lim
n
�ðE [ FnÞ ¼ lim

i
�ðE [ Fnki

Þ � �ðlim
i
ðE [ Fnki

ÞÞ ¼ �ðE [ lim
i

Fnki
Þ:

By applying the null-additivity of �, we have

lim
n
�ðE [ FnÞ ¼ �ðEÞ:
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Noting

�ðEÞ � lim
n
�ðE [ FnÞ � lim

n
�ðE [ FnÞ;

we have

lim
n
�ðE [ FnÞ ¼ �ðEÞ:

That is, � is autocontinuous from above. &

Theorem 6.11. Let �: F! [0,1) be a finite continuous monotone measure. � is

autocontinuous from below if and only if it is null-additive, and for any A 2 F and

any {En} with limn �(En) = 0 there exists some subsequence {Eni
} of {En} such

that

�ðA� lim
i
EniÞ ¼ �ðAÞ:

Proof. Similar to the proof of Theorem 6.10. &

In Theorem 6.10, from limn �(En) = 0, we know that there exists a subse-

quence {Eni} of {En} such that
P1

n¼1 �ðEniÞ51: If � is a classical measure, we

obtain the same conclusion, �ðlimiEniÞ ¼ 0, by the Borel–Cantelli lemma.

Hence, Theorem 6.11may be regarded as a generalization of the Borel–Cantelli

lemma onto monotone measure spaces.

Theorem 6.12. Let �: F! [0, 1] be a continuous monotone measure. If � is

autocontinuous from above, then it is autocontinuous from below. Furthermore,

when � is finite, the autocontinuity from below implies the autocontinuity from

above and, therefore, the autocontinuity, the autocontinuity from above, and the

autocontinuity from below are equivalent.

Proof. Suppose � is autocontinuous from above. For any E 2 F, {Fn} � F with

limn �(Fn) = 0, there exists some subsequence {Fnk
} of {Fn} such that

lim
n
�ðE� FnÞ ¼ lim

k
�ðE� FnkÞ:

Since � is autocontinuous from above, by Theorem 6.10we know that there

exists some subsequence {Fnki
} of {Fnk

} such that

�ðlim
i
Fnki
Þ ¼ 0:

Thus, by applying the null-additivity of � (see Theorem 6.6), we have

�ðEÞ � lim
n
�ðE� FnÞ � lim

n
�ðE� FnÞ ¼ lim

i
�ðE� Fnki

Þ � �ðlim
i
ðE� Fnki

ÞÞ

¼ �ðE� lim
i
Fnki
Þ ¼ �ðEÞ:

140 6 Structural Characteristics for Set Functions



Consequently, we have

lim
n
�ðE� FnÞ ¼ �ðEÞ:

Therefore, � is autocontinuous from below.
Now, we turn to the proof of the second part of the theorem. Assume � is

finite and autocontinuous from below. For any E 2 F, {Fn} � F with

limn �(Fn) = 0, there exists some subsequence {Fnk
} of {Fn} such that

lim
n
�ðE [ FnÞ ¼ lim

k
�ðE [ FnkÞ:

Since � is autocontinuous from below, by Theorem 6.11, for the given E,

there exists a subsequence {Gi
(1)} of {Fnk

} such that

�ðE� lim
i

G
ð1Þ
i Þ ¼ �ðEÞ;

since limi �(Gi
(1)) = 0, for E [ G1

(1), there exists a subsequence {Gi
(2)} of {Gi

(1)}

such that

G
ð2Þ
1 ¼ G

ð1Þ
1 and �ðE [ G

ð1Þ
1 � lim

i
G
ð2Þ
i Þ ¼ �ðE [ G

ð1Þ
1 Þ;

also, by a similar reasoning, for E [ G2
(2) there exists a subsequence {Gi

(3)} of

{Gi
(2)} such that Gj

(3) = Gj
(2), j = 1, 2, and

�ðE [ G
ð2Þ
2 � lim

i
G
ð3Þ
i Þ ¼ �ðE [ G

ð2Þ
2 Þ;

generally, for E [Gn
(n), there exists a subsequence {Gi

(n þ 1)} of {Gi
(n)} such that

Gj
(n þ 1) = Gj

(n), j = 1, 2,..., n, and

�ðE [ GðnÞn � lim
i

G
ðnþ1Þ
i Þ ¼ �ðE [ GðnÞn Þ:

Continuing this process until infinity and writing Gi = Gi
(i) for i = 1, 2,..., we

obtain a subsequence {Gi} of {Fnk
}. Since {Gi} is also a subsequence of {Gi

(n)} for

each n = 1, 2,..., we have

lim
i

Gi � lim
i
G
ðnÞ
i

for each n = 1, 2,.... Hence, by using the monotonicity of �,

�ðE [ GiÞ � �ðE [ Gi � lim
i

GiÞ ¼ �ðE [ G
ðiÞ
i � lim

i
GiÞ

� �ðE [ G
ðiÞ
i � lim

j
G
ðiþ1Þ
j Þ ¼ �ðE [ G

ðiÞ
i Þ ¼ �ðE [ GiÞ;
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that is,

�ðE [ Gi � lim
i

GiÞ ¼ �ðE [ GiÞ

for any i = 1, 2,.... Finally, denoting Gi by Fnki
, i = 1, 2,..., we obtain

�ðE [ Fnki
� lim

i
Fnki
Þ ¼ �ðE [ Fnki

Þ

for any i = 1, 2,.... Thus, noting limi [1l¼iðFnki
� limj Fnkj

Þ ¼ Ø and � is finite,

we have

�ðEÞ � lim
n

�ðE [ FnÞ � lim
n

�ðE [ FnÞ

¼ lim
i
�ðE [ Fnki

Þ ¼ lim
i
�ðE [ Fnki

� lim
j
Fnkj
Þ

� lim
i
� E [ [

1

l¼i
ðFnkl

� lim
j
Fnkj
Þ

� �� �

¼ �ðEÞ:

Consequently we have

lim
n
�ðE [ FnÞ ¼ �ðEÞ:

Therefore, � is autocontinuous from above. &

However, when the continuous monotone measure � is not finite the auto-

continuity from below may not imply the autocontinuity from above.

Example 6.3. We use the continuous monotone measure given in Example 3.5.

X = {1, 2,...}, F = P(X), �(E) = |E| �
P

i2E 2
�i for any E 2 F. For such a set

function � it is easy to see that a set E is finite if and only if �(E) <1. Now, let

us show that � is autocontinuous from below. For any E 2 F, {Fn} � F with

limn �(Fn) = 0, without any loss of generality we may suppose Fn 6¼ Ø for any

n = 1, 2,..., and, therefore, we have

lim
n
ðinffiji 2 FngÞ ¼ 1:

Thus, there are two cases: (1) If �(E) < 1, then there exists n0 such that

E \ Fn = Ø (that is, E – Fn = E) for any n � n0, and thus we have

lim
n

�ðE� FnÞ ¼ �ðEÞ;

(2) If �(E) =1, then E is an infinite set. Since limn �(Fn) = 0, there exists n0
such that �(Fn) <1 (that is, Fn is a finite set) for any n � n0. So E – Fn is an

infinite set. Consequently,
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lim
n
�ðE� FnÞ ¼ 1 ¼ �ðEÞ:

Therefore, � is autocontinuous from below. However, � is not autocontinuous

from above. In fact, if we take E = {1}, Fn = {n}, n = 1, 2,..., then we have

lim
n
�ðFnÞ ¼ lim

n
2�n ¼ 0;

lim
n
�ðE [ FnÞ ¼ lim

n
½2 � ð2�1 þ 2�nÞ� ¼ 1;

but

�ðEÞ ¼ 2�1:

This example also shows that, for monotone measures, the autocontinuity is

really stronger than the null-additivity.

6.3 Uniform Autocontinuity

Definition 6.3. �: F! [–1,1] is uniformly autocontinuous from above (or from

below) iff for any " > 0, there exists �= � (") > 0 such that

�ðEÞ � " � �ðE [ FÞ � �ðEÞ þ " ðor �ðEÞ � " � �ðE� FÞ � �ðEÞ þ "Þ

whenever E 2 F, F2 F, E \ F = Ø (or F � E, respectively), and |�(F)| � �; � is

uniformly autocontinuous iff it is both uniformly autocontinuous from above

and uniformly autocontinuous from below.

Theorem 6.13. If �: F! [–1,1] is uniformly autocontinuous from above (or from

below), then it is autocontinuous from above (or from below, respectively). There-

fore, the uniform autocontinuity implies the autocontinuity.

Proof. It is evident. &

Similar to the case in Section 6.2, if �: F! [0,1] is nondecreasing, then the

restriction ‘‘E \ F=Ø’’ and ‘‘F � E’’ in the statement of Definition 6.3may be

omitted.

Theorem 6.14. If �: F! [0,1] is nondecreasing, then the following statements are

equivalent:

(1) � is uniformly autocontinuous;
(2) � is uniformly autocontinuous from above;
(3) � is uniformly autocontinuous from below;
(4) for any " > 0 there exists �= � (") > 0 such that

�ðEÞ � " � �ðE�FÞ � �ðEÞ þ "

whenever E 2 F, F 2 F, and �(F) � �.
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Proof. (1)) (2): Obvious.
(2)) (3): Since �(E \ F) � �(F) � �, the desired conclusion follows from

�ðEÞ ¼ �ððE� FÞ [ ðE \ FÞÞ � �ðE� FÞ þ "

and the monotonicity of �.
(3)) (4): On the one hand, from �(E \ F) � �(F) � �, we have

�ðE � FÞ ¼ �ððE [ FÞ � ðE \ FÞÞ � �ðE [ FÞ � " � �ðEÞ � ":

On the other hand, since �(F – E) � �(F) � �, we have

�ðEÞ � �ðE� FÞ ¼ �ððE�FÞ � ðF� EÞÞ � �ðE�FÞ � ":

(4)) (1): Obvious. &

The following example shows that not all autocontinuous monotone mea-

sures are uniformly autocontinuous.

Example 5.4. Let X= X– [ Xþ, where X– = {–1, –2,...}, Xþ= {1, 2,...}, and let

F = P(X). A set function �: F! [0,1] is defined as

�ðEÞ ¼ jE �j þ
X

i2E�E �
2i

for any E 2 F, where

E � ¼ fiji 2 E \ X�; jij � supfjj j 2 E \ Xþgg [ fE \ Xþg:

Obviously, E – E*�X–. It is not difficult to verify that such a set function � is a

continuous monotone measure and is autocontinuous. But � is not uniformly

autocontinuous. In fact, for any � > 0 and 0< " < 1 there exist i 2X– and j=–i

2 Xþ such that �({i}) = 2i < � and

�ðfj; igÞ � �ðfjgÞ ¼ 2� 1 ¼ 1 > ":

We should note in this example that the set function � is not finite. WhenX is

countable and � is finite we have a heartening result on the uniform autoconti-

nuity which will be given in Section 6.5.

6.4 Structural Characteristics of Monotone Set Functions

In this section, we summarize the relations among the structural characteristics

when the set function �: F! [0,1] is nondecreasing.

Theorem 6.15. If �: F! [0, 1] is quasi-additive, then it is autocontinu-

ous; furthermore, when � is finite, the quasi-additivity implies the uniform

autocontinuity.
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Proof. Let �: F! [0,1] be quasi-additive with a proper T-function �. For any
E 2 F, {Fn} � F with E \ Fn =Ø, n= 1, 2,..., and limn �(Fn) = 0, applying the
additivity of � 	 � and the continuity of � and �–1 we have

lim
n
�ðE [ FnÞ ¼ lim

n
��1½�ð�ðEÞÞ þ �ð�ðFnÞÞ�

¼ ��1½�ð�ðEÞÞ þ �ðlim
n
�ðFnÞÞ�

¼ ��1½�ð�ðEÞÞ�
¼ �ðEÞ:

That is, � is autocontinuous from above. Similarly, for any E 2 F, {Fn}� Fwith
Fn � E, n = 1, 2,..., and limn �(Fn) = 0, without any loss of generality in
assuming �(Fn) <1, n = 1, 2,..., we have

lim
n
�ðE� FnÞ ¼ lim

n
��1½�ð�ðEÞÞ � �ð�ðFnÞÞ�

¼ ��1½�ð�ðEÞÞ � �ðlim
n
�ðFnÞÞ�

¼ ��1½�ð�ðEÞÞ�
¼ �ðEÞ:

That is, � is autocontinuous from below. Consequently, � is autocontinuous.
Furthermore, if �(X) = a <1 then � is uniformly continuous on [0, a], and

so is � –1 on [0, �(a)]. From

�ðE [ FÞ ¼ ��1½�ð�ðEÞÞ þ �ð�ðFÞÞ�

for any disjoint E, F 2 F, it is easy to see that � is uniformly autocontinuous
from above, and therefore, by Theorem 6.14 and the fact that the quasi-
additivity implies the monotonicity, it is uniformly autocontinuous. &

Corollary 6.1. If �: F! [0, 1] satisfies the l-rule, then it is autocontinuous.
Furthermore, it is uniformly autocontinuous when �(X) <1.

Theorem 6.16. If �: F! [0, 1] is nondecreasing and subadditive, then it is
uniformly autocontinuous.

Proof. From

�ðEÞ � �ðE [ FÞ � �ðEÞ þ �ðFÞ

for any E 2 F, F 2 F, it is easy to obtain the conclusion. &

Corollary 6.2. If �: F! [0,1] is additive, then it is uniformly autocontinuous.

Corollary 6.3. If �: F! [0,1] is f-additive, then it is uniformly autocontinuous.
The scheme shown in Fig. 6.1 illustrates the relations among these structural

characteristics for nonnegative increasing set functions defined on a �-algebra.
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The following result is useful in constructing examples of monotone mea-

sures (or continuous monotone measures) possessing the null-additivity, the

autocontinuity, or the uniform autocontinuity, and in judging which structural

characteristic a monotone measure possesses.

Theorem 6.17. Let both �1: F! [0, 1] and �2: F! [0, 1] be null-additive (or

autocontinuous, or uniformly autocontinuous). If we define �: F! [0,1] by

�ðEÞ ¼ �1ðEÞ þ �2ðEÞ

for any E 2 F, then � is null-additive (or autocontinuous, or uniformly autocontin-

uous, respectively), too.

Proof.We only prove the conclusion for null-additivity. The remaining may be

proved in a similar way.

Fig. 6.1 The relation among structural characteristics of nonnegative set functions
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Let �1 and �2 be null-additive. For any E 2 F, F 2 F with E \ F = Ø, if

�(F) = 0, that is, �1(F) þ �2(F) = 0, then it must hold that �1(F) = �2(F) = 0.

So, we have

�ðE [ FÞ ¼ �1ðE [ FÞ þ �2ðE [ FÞ ¼ �1ðEÞ þ �2ðEÞ ¼ �ð EÞ:

This shows � is null-additive.

6.5 Monotone Measures on S-Compact Space

Theorem 6.18. If (X, F) is S-compact, and �: F! [0, 1] is a finite continuous

monotone measure, then the null-additivity, the autocontinuity, and the uniform

autocontinuity are equivalent for �.

Proof. It is sufficient to prove that the null-additivity implies the uniform

autocontinuity.
Assume � is null-additive. If � is not uniformly autocontinuous, then there

exist {En} � F, {Fn} � F and " > 0 such that

�ðEn [ FnÞ > �ðEnÞ þ ";

n = 1, 2,..., but

lim
n
�ðFnÞ ¼ 0:

Since (X, F) is S-compact, we can choose a subsequence {ni} from {n} such that

lim
i
Eni ¼ lim

i
Eni ¼ lim

i
Eni 2 F

and

lim
i
Fni ¼ lim

i
Fni ¼ lim

i
Fni 2 F

Now, we denote limi Eni = E and limi Fni = F. By Theorem 4.27,

�ðFÞ ¼ lim
i
�ðFniÞ ¼ lim

i
�ðFniÞ ¼ 0:

Noting the finiteness and the null-additivity of �, we have, on one hand,

lim
i
�ðEni [ FniÞ � �ðlim

i
ðEni [ FniÞÞ ¼ �ðlim

i
Eni [ lim

i
FniÞ ¼ �ðE [ FÞ ¼ �ðEÞ;

on the other hand, we have

�ðEni [ FniÞ > �ðEniÞ þ ";

and, therefore, by Theorem 4.27 again, we have
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lim
i
�ðEni [ FniÞ � lim

i
�ðEniÞ þ " ¼ �ðEÞ þ ":

This is a contradiction. &

As a direct result of Theorem 2.22 and Theorem 6.18, we obtain the follow-

ing proposition.

Corollary 6.4. If X is a countable set and � is a finite continuous monotone

measure on (X, F), then the null-additivity is equivalent to the uniform autoconti-

nuity for �.
For a continuous monotone measure, the null-additivity is quite a light

requirement and easy to verify, while the uniform autocontinuity is very power-

ful. Since most spaces we meet in praxis are countable, the result shown in this

section is extremely important.

Notes

6.1. The use of subadditivity and maxitivity of continuous monotone measures

(fuzzy measures) to develop a theory of Sugeno integral was initiated by

Batle and Trillas [1979] and Ralescu and Adams [1980].
6.2. The concepts of null-additivity, autocontinuity, and uniform autocontinuity

were introduced by Wang [1984]. In fact, these concepts and relevant results

on Sugeno integrals (fuzzy integrals) were already reported in 1981, at the

12th European Fuzzy Mathematics Workshop in Hamburg, Germany. The

concept of autocontinuity is further discussed by Sun and Wang [1988] and

Wang [1992].
6.3. In addition to the structural characteristics defined in this chapter, Wang

[1985a] introduced several other structural characteristics for monotone

measures (fuzzy measures), such as converse null-additivity, pseudo-null-

additivity, converse autocontinuity, and pseudo-autocontinuity, and dis-

cussed the relationship among them and their applicability. Pseudo-auto-

continuity was further studied by Sun [1992].
6.4. The concept of S-compact spaces was introduced by Wang [1990b].
6.5. Some concepts and results presented in this chapter were generalized to

continuous monotone measures (fuzzy measures) defined on a fuzzy mea-

surable space by Qiao [1990].

Exercises

6.1. Let � be a monotone measure on (X, F). A set E2F is called a �-null
set iff �(E) = 0; � is called weakly null-additive iff � (E[F )=0

whenever E 2 F, F2 F, �(E) = �(F ) = 0. Prove that the class of all

�-null sets is a �-ring if and only if � is weakly null-additive.
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6.2. Function �: F! [–1,1] is said to be null-subtractive iff �(E – F) = �(E)
whenever E 2 F, F 2 F, E 
 F, and �(F) = 0. Prove that the null-
subtractivity is equivalent to the null-additivity for � if it is nonnegative
and nondecreasing.

6.3. Is the statement ‘‘If �: F! [0,1] is nondecreasing, continuous from above
at Ø, and autocontinuous from below, then � is continuous from below’’
true? (Observe that this statement is similar to Theorem 6.9.)

6.4. Verify that the set function � given in Example 6.4 is a continuous mono-
tone measure and is autocontinuous.

6.5. Let �1 and �2 be monotone measures on (X, F). Further, let � be defined by
�(E) = �1(E)þ �2(E) for any E 2 F and let it be denoted by �1þ �2. Prove
that:

(a) � is a monotone measure on (X, F);
(b) if both �1 and �2 are autocontinuous (uniformly autocontinuous) then so

is �.
6.6. In Exercise 6.5, if we replace �(E)= �1(E)þ �2(E) by �(E)= �1(E) � �2(E),

shall we get a similar result? Justify your answer.
6.7. Let (X, F, �) be a monotone measure space and � be finite, continuous, and

autocontinuous. Prove that

lim
n
�ðAn [ BnÞ ¼ lim

n
�ðAnÞ

whenever {An} � F, {Bn} � F, �(Bn)! 0, and limn �ðAnÞ ¼ �ðlimn AnÞ:
6.8. Let (X, F, �) be a monotone measure space and � be finite, continuous, and

autocontinuous.
Prove that

�ðA [ An [ BnÞ ! �ðAÞ

whenever {An} � F, {Bn} � F, A 2 F, �(An)! 0, �(Bn)! 0.
6.9. Let � be a set function defined on (X, F). A class C of sets in F is called a

chain iff it is fully ordered by set inclusion. A chain C is called �-bounded iff
there exists M > 0 such that |�(C)| �M for any C 2 C. A set function � is
called local-uniformly autocontinuous from above (or from below) iff it is
autocontinuous from above (or from below), and for every �-bounded
chain C � F and every " > 0 there exists �= � (C, ") > 0 such that

�ðEÞ � " � �ðE [ FÞ � �ðEÞ þ "
ðor �ðEÞ � " � �ðE� FÞ � �ðEÞ þ "Þ

whenever E 2 C, F 2 F, E \ F=Ø (or E � F), |�(F)| � �; � is called local-
uniformly autocontinuous iff it is both local-uniformly autocontinuous from
above and from below. Prove that, if � is a monotone measure, then local-
uniform autocontinuity is equivalent to autocontinuity for �.
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6.10. Let X= {1, 2,...} and F= P(X). Construct an autocontinuous monotone
measure on (X, F) that is not uniformly autocontinuous. (Hint: �(E)
= ð

P
i2E 1=iÞ

2 for any E 2 F.)
6.11. By using the concept of quasi-measure, construct an example of a mono-

tone measure on ([0, 1], B \ [0, 1]) which is autocontinuous but not
uniformly autocontinuous.

6.12. Can you construct a finite monotone measure on a countable measurable
space that is autocontinuous but not uniformly autocontinuous? Justify
your answer.
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Chapter 7

Measurable Functions on Monotone

Measure Spaces

7.1 Measurable Functions

In this chapter, let (X, F) be a measurable space, �: F! [0,1] be a monotone
measure (or continuous, semicontinuous monotone measure), and B be the
Borel field on (–1,1).

Definition 7.1. A real-valued function f: X! (–1,1) on X is F-measurable (or
simply ‘‘measurable’’ when there is no confusion) iff

f �1ðBÞ ¼ fxjfðxÞ 2 Bg 2 F

for any Borel set B 2 B. The set of all F-measurable functions is denoted by G.

Theorem 7.1. If f : X! ð�1;1Þ is a real-valued function, then the following
statements are equivalent:

(1) f is measurable;
(2) fxjf ðxÞ � �g 2 F for any � 2 ð�1;1Þ;
(3) fxjf ðxÞ > �g 2 F for any � 2 ð�1;1Þ;
(4) fxjf ðxÞ � �g 2 F for any � 2 ð�1;1Þ;
(5) fxjf ðxÞ5�g 2 F for any � 2 ð�1;1Þ:

Proof. (1)) (2): fxjf ðxÞ � �g ¼ f �1ð½�;1ÞÞ; and ½�;1Þ is a Borel set.
(2)) (1): If fxjf ðxÞ � �g 2 F for any � 2 ð�1;1Þ; then f�1ðBÞ 2 F for any
B 2 f½�;1Þj� 2 ð�1;1Þg: Denoting A ¼ fBjf�1ðBÞ 2 Fg; C ¼ f½�;1Þj� 2
ð�1; 1Þg; we have A � C: Given any B 2 A; it follows that B 2 A; since

f�1ðBÞ ¼ f�1ðBÞ 2 F; that is, A is closed under the formation of complements.

Similarly, given any Bnf g � A, it follows that
S1

n¼1 B 2A since

f�1ð
S1

n¼1 BnÞ ¼
S1

n¼1 f
�1ðBnÞ 2 F, that is, A is closed under the formation of

countable unions. Hence, A is a s-algebra, and consequently, A � FðCÞ ¼ B.
This shows that f is a measurable function.

The proof of the rest is similar. &

Corollary 7.1. If f is a measurable function, then fxjfðxÞ ¼ �g 2 F for any � 2
(–1,1).

Z. Wang, G.J. Klir, Generalized Measure Theory,
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Definition 7.2. Let Rn be the n-dimensional Euclidean space and let

SðnÞ ¼
Yn
i�1
½ai; biÞj �15ai � bi51; i ¼ 1; 2; � � � ; n

( )

The �-algebraBðnÞ ¼ FðSðnÞÞ is called theBorel field onRn and the sets inBðnÞ are
called (n-dimensional) Borel sets. A function f: Rn! R is called an (n-ary) Borel

function iff it is a measurable function on the measurable space ðRn; BðnÞÞ:

Theorem 7.2. Let f1,..., fn be measurable functions. If g: Rn ! R is a Borel

function, then g(f1,..., fn) is a measurable function.

Proof. For any Borel set B � (�1,1),

½gð f1; . . . ; fnÞ��1ðBÞ ¼ fxjgð f1ðxÞ; . . . ; fnðxÞÞ 2 Bg
¼ fxjð f1ðxÞ; . . . ; fnðxÞÞ 2 g�1ðBÞg:

Since, for any E ¼
Qn

i¼1 ½ai; biÞ 2SðnÞ,

fxjð f1ðxÞ; � � � ; fnðxÞÞ 2 Eg ¼
\n
i¼1
fxj fiðxÞ 2 ½ai; biÞg 2F

by applying the method similarly used in the proof of Theorem 7.1, we have

fxjð f1ðxÞ; � � � ; fnðxÞÞ 2 Fg 2 F

for any F 2 BðnÞ. As g is a Borel function, g–1(B) 2 B(n) for any Borel set B �
(–1,1). Thus, we have

fxjð f1ðxÞ; � � � ; fnðxÞÞ 2 g�1ðBÞg 2 F

for any Borel set B � (–1,1). Hence, g(f1,..., fn) is measurable. &

As a special case of Theorem 7.2, if f1 and f2 aremeasurable, and�2 (–1,1)

is a constant, then � fl, f1 þ f2, f1 – f2, |f1|, f1 � f2, |fl|�, f1 _ f2, f1 ^ f2, and the

constant �, all of these are measurable (this can also be proven directly).

Furthermore, we have

fxj f1ðxÞ ¼ f2ðxÞg ¼ fxj f1ðxÞ � f2ðxÞ ¼ 0g 2 F:

Theorem 7.3. If {fn} is a sequence of measurable functions, and

hðxÞ ¼ sup
n
f fnðxÞg;

gðxÞ ¼ inf
n
f fnðxÞg;

for any x 2 X, then h and g are measurable.
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Proof. By using Theorem 7.1, for any � 2 (–1,1),

fxjhðxÞ > �g ¼ fxj sup
n
f fnðxÞg > �g ¼

[1
n¼1
fxj fnðxÞ > �g 2F

and

fxjgðxÞ � �g ¼ fxj inf
n
f fnðxÞg � �g ¼

T1
n¼1
fxj fnðxÞ � �g 2F :

Thus, h and g are measurable. &

Corollary 7.2. If {fn} is a sequence of measurable functions, and

fðxÞ ¼ lim
n

fnðxÞ;

fðxÞ ¼ lim
n

fnðxÞ;

then f and f are measurable. Furthermore, if limn fn exists, then, it is measurable as
well.

Proof. Since

fðxÞ ¼ infm supn�mffnðxÞg and fðxÞ ¼ supm infn�mffnðxÞg;

the conclusions issue from the above theorem. &

In this chapter, we consider only measurable functions that are nonnegative,
and symbols f, f1, f2,..., fn,... are used to indicate nonnegative measurable
functions. The class of all nonnegative measurable functions is denoted by G.
Most results hereafter can be generalized, without any essential difficulty, to the
case in which the measurable functions are extended real-valued.

7.2 ‘‘Almost’’ and ‘‘Pseudo-Almost’’

The definition of a measurable function on a continuous monotone measure (or
semicontinuous monotone measure) space (X, F, �) is identical with classical
measure theory, and, consequently, it does not relate to the set function �;
however, aspects of the set function must be considered when properties of
measurable functions are discussed. For example, if f is a measurable function
on a finite monotone measure space, what is the meaning of the statement ‘‘f is
equal to zero almost everywhere’’?

In probability theory, the statement ‘‘a random variable � is equal to 0with
probability 1’’ is equivalent to the statement ‘‘a random variable � is not equal
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to 0with probability 0,’’ because the probability measures possess additivity;
that is, if p is a probability measure, then

pðEÞ þ pðEÞ ¼ pðE [ EÞ ¼ 1

for any event E. Since the monotone measures generally lose the additivity, the
concept ‘‘almost everywhere’’ splits naturally into two different concepts,
‘‘almost everywhere’’ and ‘‘pseudo-almost everywhere’’ on monotone measure
space, as indicated in the following definition.

Definition 7.3. Let A 2 F, and let P be a proposition with respect to points in A.
If there exists E 2 Fwith �(E) = 0 such that P is true onA – E, then we say ‘‘P is
almost everywhere true on A.’’ If there exists F 2 F with �(A – F) = �(A) such
that P is true on A – F, then we say ‘‘P is pseudo-almost everywhere true on A.’’

We denote ‘‘almost everywhere’’ and ‘‘pseudo-almost everywhere’’ by ‘‘a.e.’’
and ‘‘p.a.e.,’’ respectively, and denote ‘‘{ fn} converges to f a.e.’’ (or ‘‘{ fn}
converges to f p.a.e.’’) by ‘‘fn

a:e:��! f ’’ (or ‘‘fn
p:a:e:��! f ’’, respectively).

Example 7.1. Let X = {0,1}, F= P(X), and

�ðEÞ ¼ 1 if E 6¼ Ø

0 if E ¼ Ø

�

for any E 2 F. If we define a measurable function sequence on (X, F, �) as
follows:

fnðxÞ ¼
1� 1=n if x ¼ 1

1=n if x ¼ 0;

�
n ¼ 1; 2; . . . ;

then both fn
p:a:e:��! 0 and fn

p:a:e:��! 1, but neither fn
a:e:��! 0 nor fn

a:e:��! 1.

Example 7.2. Let X = {0, 1}, F = P(X), and

�ðEÞ ¼
1 if E ¼ X

0 if E 6¼ X

�

for any E 2 F. For the measurable function sequence given in Example 7.1, we
have both fn a:e:��! 0 and fn a:e:��! 1, but neither fn p:a:e:��! 0 nor fn p:a:e:��! 1.

From these examples, we observe that this case is vastly different from that in
the classical measure theory: If both fn a:e:��! f and fn a:e:��! f 0, then f= f 0 a.e. But
now, in Example 7.1 and Example 7.2, the limit functions 1 and 0 are not equal
everywhere, of course—they are neither equal a.e. nor equal p.a.e.

We should note that the situations of the concepts ‘‘a.e.’’ and ‘‘p.a.e.’’ are not
quite symmetric. In fact, if a proposition P is true a.e. on A 2 F, then it is also
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true a.e. on any subset ofA that belongs to F; but such a statement is not always

valid when we replace ‘‘a.e.’’ with ‘‘p.a.e.,’’ as the following example shows.

Example 7.3. Let X = {a,b,c}, F = P(X), � be given by

�ðEÞ ¼
jEj if E 6¼ fa; bg
3 if E ¼ fa; bg

�

for any E 2 F, and

fðxÞ ¼ 0 if x 2 fa; bg
1 if x ¼ c:

�

It is easy to verify that � is a monotone measure, and

�ðfxj fðxÞ ¼ 0; x 2 XgÞ ¼ �ðfa; bgÞ ¼ 3 ¼ �ðXÞ:

So, f = 0 on X p.a.e. But

�ðfxj fðxÞ ¼ 0; x 2 fa; cggÞ ¼ �ðfagÞ ¼ 1 6¼ �ðfa; cgÞ ¼ 2:

So, the statement ‘‘f = 0 on {a, c} p.a.e.’’ is not true.
The other related concepts, such as ‘‘almost uniform convergence’’ and

‘‘convergence in measure’’ for measurable function sequences, split on mono-

tone measure spaces as well.

Definition 7.4. LetA 2 F, f 2 G, {fn}� G. If there exists {Ek}� F with limk � (Ek)

= 0 such that {fn} converges to f onA –Ek uniformly for any fixed k=1, 2,..., then

we say that {fn} converges to f on A almost uniformly and denote it by fn a:u:��! f. If

there exists {Fk} � F with limk �(A – Fk) = �(A) such that {fn} converges to f on

A – Fk uniformly for any fixed k=1, 2,..., then we say that {fn} converges to f onA

pseudo-almost uniformly and denote it by fn p:a:u:��! f.

Definition 7.5. Let A 2 F, f 2 G, and {fn} � G. If

lim
n
�ðfxjjfnðxÞ � fðxÞj � "g \ AÞ ¼ 0

for any given " > 0, then we say that {fn} converges in � (or, converges in

measure if there is no confusion) to f on A, and denote it by fn
��! f on A. If

lim
n
�ðfxjj fnðxÞ � fðxÞj5"g \ AÞ ¼ �ðAÞ

for any given " > 0, then we say {fn} converges pseudo-in � (or, converges

pseudo-in measure) to f on A, and denote it by fn p:���! f on A.
In the above three definitions, when A = X, we can omit ‘‘on A’’ from the

statements.
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Example 7.4. Let X = [0,1), F = Bþ, and � be the Lebesgue measure, where
Bþ is the class of all Borel sets in [0,1). If we take fn(x) = x/n, n=1, 2, . . ., and
f(x) = 0 for any x 2 X, then we have

fn
p:a:u:���! f;

but {fn} does not converge to f on X almost uniformly. Also, we have

fn
p:����! f;

but {fn} does not converge in � to f on X.

7.3 Relation Among Convergences of Measurable

Function Sequence

The new concepts introduced in Section 7.2 complicate the relation among the
several convergences of the measurable function sequence on a continuous
monotone measure space or a semicontinuous monotone measure space. If
only three concepts (a.e. convergence, a.u. convergence, and convergence in
measure) are considered in classical measure theory, we should discuss six
implication relations among them. Three of these relations are described by
Egoroff’s theorem, Lebesgue’s theorem, and Riesz’s theorem. But now, in
monotone measure theory, since each convergence concept splits into two,
there are 30 implication relations we should discuss. Using the structural
characteristics of set function, which are introduced in Chapter 6, we examine
the most important relations in this section.

Theorem 7.4. For any A 2 F and any proposition P with respect to the points in A,
P is true on A p.a.e. whenever P is true on A a.e. if and only if � is null-additive.

Proof. Sufficiency: Let � be null-additive. If P is true on A a.e. then there exists
E 2 F with �(E) = 0 such that P(x) is true for any x 2 A – E. By null-additivity
and Theorem 6.2we have �(A – E) = �(A). So P is true on A p.a.e.

Necessity: For any A 2 F, E 2 F with �(E) = 0, take ‘‘x 2 A – E ’’ as a
proposition P(x). Obviously, P is true on A a.e. If it implies that P is true on A
p.a.e., then there exists F 2 Fwith �(A – F) = �(A) such that P(x) is true for any
x 2 A – F. That is, x 2 A – F implies x 2 A – E and therefore

A� E � A� F:

By the monotonicity of � we have

� ðA� EÞ ¼ � ðAÞ

and from Theorem 6.2we know that � is null-additive. &
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Corollary 7.3. Let A 2 F, f 2 G, {fn} � G, and � be null-additive. If fn
a:e:�! f on A,

then fn
p:a:e:���! f on A.

Theorem 7.5.Let A2 F, f2G, {fn}�G, and � be autocontinuous from below. If fn
a:�:��! f on A, then fn

p:a:e:���! f on A.

Proof. If fn
a:u:��! f on A, then there exists {Ek}� Fwith limk �(Ek)=0 such that

{fn} converges to f on A – Ek uniformly for any k = 1, 2,. . .. Since � is
autocontinuous from below, we have limk �(A – Ek)= �(A) and consequently,

fn
p:a:u:���! f on A. &

Theorem 7.6. For any A 2 F, and for any f 2 G and { fn} � G, fn
p:��! f on A

whenever fn
��! f on A if and only if � is autocontinuous from below.

Proof. Sufficiency: Let � be autocontinuous from below. If fn
��! f on A, then

for any given " > 0, we have

lim
n
�ðfxjjfnðxÞ � fðxÞj � "g \ AÞ ¼ 0:

Since � is autocontinuous from below, we have

lim
n
�ðfxjjfnðxÞ � fðxÞj5"g \ AÞ ¼ lim

n
�ðA� fxjjfnðxÞ � fðxÞj � "g \ AÞÞ

¼ �ðAÞ:

So, fn
p:���! f on A.

Necessity: For any A 2 F and any {Bn} � F with limn �(Bn) = 0, we define a

measurable function sequence {fn} by

fnðxÞ ¼
0 if x 2 Bn

1 if x 2 Bn

�

for any n=1, 2,. . .. It is easy to see that fn
���! 0 onA. If it implies fn

p:����! 0 on

A, then for "= 1 > 0, we have

lim
n
�ðfxjj fnðxÞj51g \ AÞ ¼ �ðAÞ:

As

fxjjfnðxÞj51g \ A ¼ Bn \ A ¼ A� Bn;

so

lim
n
�ðA� BnÞ ¼ �ðAÞ:

This shows that � is autocontinuous from below. &
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The validity of Theorems 7.4–7.6 is independent of the continuity of �.
The following is a generalization of Egoroff’s theorem from classical mea-

sure space to monotone measure space.

Theorem 7.7. Let � be a continuous monotone measure, A 2 F, and �(A) <1. If

fn! f on A everywhere, then both fn
a:u:��! f and fn

p:a:u:���! f on A.

Proof. There is no loss of generality in assuming that A = X and � is finite.
If we denote

Em
n ¼

T1
i¼n
fxjjfiðxÞ � fðxÞj51=mg;

for anym=1, 2, . . . , then E1
m� E2

m� , . . .. The set of all those points that are
such that {fn(x)} converges to f(x) is

T1
m¼1

S1
n¼1

Em
n :

If fn! f everywhere, then
S1

n¼1 E
m
n ¼ X for anym=1, 2, . . .. That is,Em

n %X as

n!1, and, therefore,Em
n&Øas n!1, for any fixedm=1, 2,. . .. Given "> 0

arbitrarily, by using the continuity from above and the finiteness of �, there
exists n1 such that �ðE1

n1
Þ < "=2; for this n1, there exists n2 such that

�ðE1
n1
[ E2

n2
Þ5"=2þ "=22 ¼ 3

4";

and so on. Generally, there exists n1, n2, . . . nk, such that �ð
Sk

i¼1 E
i
ni
Þ <

Pk
i¼1 "=2

i

¼ ð1� 1=2kÞ" < ":Hence, we obtain a number sequence {ni} and a set sequence

fEi
ni
g. By using the continuity from below of �, we know that

�
S1
i¼1

Ei
ni

� �
� ":

Now, we just need to prove that {fn} converges to f on \1i¼1Ei
ni
uniformly. For

any given � > 0, we take i0 > 1/�. If x 2 \1i¼1Ei
ni
, then, since x 2Ei0

ni0
; we have

j fiðxÞ � fðxÞj51=i05�

whenever i � ni0 . Thus, we have proved that fn
a:u:��! f.

In a similar way, we can prove that fn
p:a:u:���! f on A. &

The following example shows that the result in Theorem 7.7may not be true

when �(A) =1.

Example 7.5. Let monotonemeasure space (X, F, �) and functions, f, f1, f2,. . . be the
same as in Example 7.4.We have �(X) =1 and fn! f onX everywhere. However,

as pointed out in Example 7.4, {fn} does not converge to f on X almost uniformly.
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Corollary 7.4. Let � be a continuous monotone measure, A 2 F, �(A)<1, and �
be null-additive. If fn

a:e:���! f on A, then both fn
a:u:��! f and fn

p:a:u:���! f on A.
The following theorem gives an inverse conclusion of Corollary 7.4.

Theorem 7.8. Let A 2 F. If fn a:u:��! f (or fn
p:a:u:��! f ) on A; then fn

a:e:��! f (or fn
p:a:e:��! f,

respectively) on A.

Proof. If fn
a:u:��! f onA, then there exists {Ek}� Fwith limk �(Ek) = 0 such that

{fn} converges to f on A – Ek (even uniformly) for any k = 1, 2,. . .. Take E =
\1k¼1Ek. Since E � Ek for every k, by the monotonicity of �, we have �(E) = 0.

Thus, for any x2A –E, there exists someEk such that x2A –Ek, and therefore,
{fn(x)} converges to f(x). This shows fn

a:e:��! f on A.
The proof that fn

p:a:e:��! f on A is similar. &

The validity of Theorem 7.8 is also independent of the continuity of �.
Now, we give two forms of generalization on semicontinuous monotone

measure spaces for Lebesgue’s theorem in classical measure theory.

Theorem 7.9. Let A 2 F. If fn a:e:��! f on A, � is continuous from above, and �(A)<
1, then fn

���! f on A; if fn
p:a:e:���! f on A and � is continuous from below, then

fn
p:���! f on A.

Proof.We only prove the second conclusion; the proof of the first one is similar.
If fn

p:a:e:���! f on A, then there exists B 2 F with B � A and �(B) = �(A) such
that for any x 2 B, limn fn(x) = f(x). Thus, for any given " > 0 and x 2 B, there
exists N(x) such that

jfnðxÞ � fðxÞj5"

whenever n � N(x). If we write

Ak ¼ fxjNðxÞ � kg \ B;

then

Ak %
S1
k¼1

Ak ¼ B

Since

fxjjfnðxÞ � fðxÞj 5"g \ A � An;

we have

B � fxjjfnðxÞ � fðxÞj5"g \ A \ B � An \ B ¼ An % B
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and, therefore,

lim
n
�ðfxjjfnðxÞ � fðxÞj5"g \ A \ BÞ ¼ �ðBÞ:

Consequently,

�ðAÞ � lim
n
�ðfxjjfnðxÞ � fðxÞj5"g \ AÞ

� lim
n
�ðfxjjfnðxÞ � fðxÞj5"g \ A \ BÞ

¼ �ðBÞ

¼ �ðAÞ:

This shows that fn
p:���! f on A. &

The next theorem gives inverse conclusions to the above theorem. These

conclusions generalize Riesz’s theorem.

Theorem 7.10. Let A 2 F, � be a lower semicontinuous monotone measure that is

autocontinuous from above. If fn
���! f on A, then there exists some subsequence

ffnig of {fn} such that both ffnig a:e:��! f and ffnig p:a:e:���! f on A.

Proof. Wemay assumeA=Xwithout any loss of generality. If fn
���! f, then we

have

lim
n
�ðfxjjfnðxÞ � fðxÞj � 1=kgÞ ¼ 0

for any k = 1, 2,.... So, there exists nk such that

�ðfxjjfnkðxÞ � fðxÞj � 1=kgÞ51=k:

We may assume nkþ1 > nk for any k = 1, 2,.... If we write

Ek ¼ fxjjfnkðxÞ � fðxÞj � 1=kg;

then

lim
k
�ðEkÞ ¼ 0:

Since � is autocontinuous from above, by Theorem 6.10 there exists some

subsequence fEkig of {Ek} such that
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�ðlim
i
�ðEkiÞ ¼ 0:

Now we shall prove that fnki converges to f on X� limi Eki : In fact, for any

x 2 X� limi Eki ; since x 2 [1j¼1 \1i¼j Eki ; there exists j(x) such that x 2 \1i¼jðxÞEki ;
namely,

jfnki ðxÞ � fðxÞj51=ki;

for every i � j(x). Thus, for any given " > 0, taking i0 such that 1/kn0 < ", we
have

jfnki ðxÞ � fðxÞj5 1
ki
� 1

ki0
5"

whenever i � j(x) _i0. This shows that

fnki
a:e:���! f:

As � is null-additive, by Theorem 7.4we have

fnki
p:a:e:����! f

as well. &

Corollary 7.5. Let A 2 F, � be a continuous monotone measure that is autocontin-

uous from below, and �(A) < 1. If fn
���! f on A then there exists some

subsequence ffnig of {fn} such that both fni
a:e:���! f and fni

p:a:e:���! f on A.

Proof. Since the autocontinuity from below is equivalent to the autocontinuity

from above when � is a finite continuous monotone measure, if we regard A as

X, the conclusion follows from Theorem 7.10. &

Theorem 7.11.Let A2 F. If fn a:u:��! f (or fn
p:a:u:���! f) on A, then fn

���! f (or fn
p:���! f,

respectively) on A.

Proof. If fn
a:u:��! f on A, then for any " > 0 and � > 0 there exist E 2 F with �(E)

< � and n0 such that

jfnðxÞ � fðxÞj5"

whenever x 2 A – E and n � n0. So we have

�ðfxjjfnðxÞ � fðxÞj � "g \ AÞ � �ðE \ AÞ � �ðEÞ5�

for any n � n0. This shows that fn
���! f on A.

In a similar way, we can prove that fn
p:a:u:����! f on A implies fn

p:���! f onA.&
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7.4 Convergences of Measurable Function Sequence

on Possibility Measure Spaces

Let p be a possibility measure on a measurable space (X, F), where F = P(X).

We call (X, P(X), p) a possibility measure space. Since p is a finite upper

semicontinuous monotone measure that is uniformly autocontinuous, the pre-

vious discussion in Chapters 6 and 7works for the possibility measure space,

assuming that we replace fn ���! f with fn p��! f. Furthermore, taking advantage

of the maxitivity of possibility measures, we can obtain rather interesting

results.

Theorem 7.12. Let A � X. Then, fn
p��! f on A is equivalent to fn

a:u:���! f on A.

Proof.There is no loss of generality in assuming thatA=X. The fact that fn
a:u:��!

f implies fn
p��! f is guaranteed by Theorem 7.10 since possibility measure p is

continuous from below as well as autocontinuous. Hence, we only need to prove

that fn
p��! f implies fn

a:u:���! f.
If fn

p��! f, then for any positive integer i we have

pðfxjj fnðxÞ � f ðxÞj � 1=igÞ ! 0

as n!1. That is, for any positive integer k, there exists nik such that

pðfxjj fnðxÞ � f ðxÞj � 1=igÞ51=k

as n � nik. Taking

Ek ¼ [
1

i¼1
[

n�nik
fxjjfnðxÞ � fðxÞj � 1=ig;

we have

pðEkÞ ¼ sup
i�1;n�nik

pðfxjjfnðxÞ � fðxÞj � 1=igÞ � 1=k:

Now, we show that {fn} converges to f uniformly on Ek: For any " > 0, take i

such that 1/i< ". If x 62Ek, then x2{x|| fn(x) – f(x)|< 1/i} for any n� nik; that is,

there exists n0 = nik such that

j fnðxÞ � fðxÞj51=i5";

where n � n0. The proof is now complete. &

By using Theorem 7.8we immediately obtain the following corollary.

Corollary 7.6. Let A � X. Then, fn
p�! f on A implies fn

a:e:�! f on A.
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Since, in general, a possibility measure is not continuous from above, we
cannot get the inverse proposition of Corollary 7.6 by using Theorem 7.9. This
is shown by the following counterexample.

Example 7.6. Let X = (0, 1] and let a possibility measure p be defined as

pðEÞ ¼ 1 if E 6¼ Ø

0 if E ¼ Ø:

�

We take

fnðxÞ ¼
0 if x 2 ð1=n; 1�
1 otherwise:

�

Then, fn! 0 everywhere on X, but {fn} does not converge to zero in measure p.
In fact, taking "= 1/2, we have

pðfxjfnðxÞ > 1=2gÞ ¼ pðð0; 1=n�Þ ¼ 1

for any n.

Theorem 7.13. Let A� X. Then, fn
a:u:���! f on A is equivalent to | fn – f| ^ p! 0 on

A uniformly, where p is the possibility profile of p.

Proof. As in the proof of Theorem 7.12, we can assume that A = X.
Suppose fn

a:u:���! f. Then, for any given " > 0, there exists a set E � X with
p(E)< " such that | fn – f |! 0 on E uniformly; that is, there exists n(") such that
| fn (x) – f(x)|< " for any x 62 E whenever n� n("). Since p(E)< " implies p(x)<
" for any x 2 E, we have

j fnðxÞ � fðxÞj ^ pðxÞ < "

whenever n � n("). This shows that

j fn � f j ^ p! 0

uniformly.
Conversely, suppose j fn � fj ^ p! 0 uniformly. Then, for any given posi-

tive integer k there exists nk such that

j fnðxÞ � fðxÞj ^ pðxÞ < 1=k

for any x whenever n > nk. Denoting Ek ¼ [n�nkfxjj fnðxÞ � fðxÞj � 1=kg; we
have p(x) < 1/k for any Ek. If we take Fi = [k�i Ek, then

pðFiÞ ¼ sup
x2Fi

pðxÞ � 1=i:
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Now, we show that fn ! f uniformly on Fi for each i = 1, 2,.... Given an
arbitrary " > 0, take k� i such that 1/k< ". For any x 62 Fi, we have x 62 Ek and,
therefore, x 62 {x|| fn(x) – f(x)| � 1/k} whenever n � nk. That is, |fn(x) – f(x)| <
1/k < " whenever n � nk. The proof is now complete. &

Summing up the results presented in this section, we can characterize the
relations among several convergences of a measurable function sequence on
possibility measure spaces as follows:

fn
p�! f , fn

a:u :����! f , jfn � fj ^ p u:���! 0 ) fn
a:e:���! f;

where the symbol ‘‘ u:��!’’ means ‘‘converge uniformly.’’
The concepts of pseudo-convergences of a function sequence are unimpor-

tant on the possibility measure space.

Notes

7.1. The paper by Wang [1984] contains early discussions on convergences of
measurable function sequences on monotone measure (fuzzy measure)
spaces. After introducing the concept of ‘‘pseudo-almost,’’ Wang [1985a]
derived more results regarding the relationship among several types of
convergences of measurable function sequences on the basis of the con-
cepts of pseudo-autocontinuity and converse autocontinuity.

7.2. Some results presented in this chapter were generalized to fuzzy �-algebra
by Qiao [1990].

7.3. The convergences of measurable function sequences on possibility measure
spaces were studied by Wang [1987].

Exercises

7.1. Let (X, F) be a measurable space and let f1 and f2 be measurable functions.
Without using Theorem 7.2, prove that the following functions are
measurable:

cf1ðc is a constantÞ; f1 � f2; f1 þ f2; f1 _ f2; f1 ^ f2; j f1j; f 21; f1 � f2:

7.2. Let f be a measurable function on (X, F). Prove that

fxjfðxÞ ¼ �g 2 F

for any � 2 (–1,1).
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7.3. Let f be a function defined on (X, F). If {x|f(x) = �}2 F for any � 2 (–1,
1), can you correctly assert that f is measurable? If you can, give a proof;
if you cannot, give an example to justify your conclusion.

7.4. Let {fn} be a sequence of measurable functions on (X, F). Prove that

fxjlim
n
fnðxÞ ¼ lim

n
fnðxÞg 2 F:

7.5. Let G be the class of all nonnegative finite measurable functions on a
monotone measure space (X, F, �). Both a:e:¼ (almost everywhere equality)
and p:a:e:

¼ (pseudo-almost everywhere equality) are binary relations on G.
Prove that these relations are reflexive and symmetric, but not transitive
in general.

7.6. Prove that the relation a:e:¼ is an equivalence relation on G (see Exercise
7.5) if and only if � is weakly null-additive (see Exercise 6.1).

7.7. Can you find a condition such that the statement ‘‘P is true on A p.a.e.’’
implies the statement ‘‘P is true on A a.e.’’?

7.8. Construct an example of a measurable function f defined on a monotone
measure space (X, F �) in which ‘‘f a:e:¼ 0’’ is true, but ‘‘f p:a:e

¼ 0’’ is not true.
7.9. Construct an example of a semicontinuous fuzzy measure space (X, F, �)

and a sequence of measurable functions {fn} such that {fn} converges to
some measurable function f almost everywhere, but does not converge to
f pseudo-almost uniformly.

7.10. LetX= (0, 1], F be the class of all Borel sets inX, and �=m2, wherem is
the Lebesgue measure. Assume we order all rational numbers in X as
follows:

x1 ¼ 1; x2 ¼ 1=2; x3 ¼ 1=3; x4 ¼ 2=3; x5 ¼ 1=4; x6 ¼ 3=4; x7 ¼ 1=5; x8 ¼
2=5; x9 ¼ 3=5; x10 ¼ 4=5; x11 ¼ 1=6; x12 ¼ 5=6; x13 ¼ 1=7; x14 ¼ 2=7; ::::

Furthermore, we define a sequence of measurable functions {fn} on (X, F, �)
by

fnðxÞ ¼ 1 if j x� xnj < 1=ð2 nÞ1=2

0 otherwise

�

for n = 1, 2, .... Prove that:
(a) � is autocontinuous;
(b) fn

����! 0;
(c) fn does not converge to 0 at any point in X.
Can you find a subsequence ffnig of {fn} such that ffnig converges to zero

both almost everywhere and pseudo-almost everywhere?
7.11. Prove that if � is a finite continuous monotone measure and fn ! f

everywhere, then fn
p:a:u:���! f.

7.12. Prove that if � is a finite and null-additive continuous monotonemeasure,
then fn

a:e:���! f implies fn
p:a:u:���! f.
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Chapter 8

Integration

8.1 The Lebesgue Integral

Let (X, F, �) be a measure space. That is,X is a nonempty set, F is a �-algebra of
subsets ofX, and � : F! ½0;1� is a classical measure, which is nonnegative and
�-additive with �ðAÞ51 for at least oneA 2 F.X is called the universal set and
may not be finite. In this chapter we suppose that � is �-finite, that is, there
exists fAig � F, such that �ðAiÞ51 for every i ¼ 1; 2; ::: and [1i¼1Ai ¼ X:

Definition 8.1. Function s : X! ð�1;1Þ having a form
Pm
i¼1

ai�Ai
is called a

simple function, where each ai is a real constant, Ai 2 F, and �Ai
is the char-

acteristic function of Ai, i ¼ 1; 2; :::;m:
Any simple function is measurable since each characteristic function of a

measurable set is measurable and the linear combination of measurable func-
tions is also measurable. For any given nonnegative measurable function
f : X! ½0;1Þ, there exist some nondecreasing sequences of simple functions
whose limit is f. For example, we can take

sj ¼
Xj�2j
i¼1

i� 1

2 j
�Aji

;

whereAji ¼ fxji�12 j � f ðxÞ5 i
2 jg, i ¼ 1; 2; :::; j � 2j, for j ¼ 1; 2; :::: It is not difficult

to verify that fsjg is nondecreasing and lim
j!1

sjðxÞ ¼ f ðxÞ for every x 2 X.

Such sequences are not unique. However, we may use any one of these
sequences to define the Lebesgue integral of f on X with respect to � as
follows.

Definition 8.2. Let f be a nonnegative measurable function on X. The Lebesgue
integral of f with respect to measure � is defined as

ð
f d� ¼ lim

j!1

ð
sj d� ¼ lim

j!1

Xmj

i

aji �ðAjiÞ;
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where each sj ¼
Pmj

i

aji�Aji
is a simple function and fsjg is nondecreasing

sequence with lim
j!1

sj ¼ f.

Such a definition is unambiguous due to the �-additivity of �. That is, for any
two sequences of nondecreasing simple functions, fsjg and ftjg, with

lim
j!1

sj ¼ lim
j!1

tj ¼ f, we have lim
j!1

Ð
sj d� ¼ lim

j!1

Ð
tj d�. So, the Lebesgue integral

is well defined for any nonnegative measurable function.
From Definition 8.2, if function f itself is a simple function expressed asPm

i¼1
ai�Ai

, then
Ð
f d� ¼

Pm
i¼1

ai�ðAiÞ.

For any given measurable setA, replacingAji byAji \ A in Definition 8.2, we

may define the Lebesgue integral of f with respect to � on A, denoted as
Ð
A f d�.

When A = X, we return to
Ð
f d� as given in Definition 8.2. As a special case

whereA is a Borel set on the real line, � is the Lebesgue measure, and f is a Borel

measurable function on A, the integral
Ð
A f d� is called simply the Lebesgue

integral of f on A.

Example 8.1. Let X be the closed unit interval [0, 1], F be the set of all Borel sets

in [0,1], and � be the Lebesgue measure. We have known that the set of all

rational number in [0, 1], denoted by Q0, is a countable set, and, therefore,

�ðQ0Þ ¼ 0. Function f is defined on [0, 1] as

f ðxÞ ¼ 0 if x 2 Q0

1 otherwise.

�

Then, f is a nonnegative measurable function. Function f is not continuous at

any point in [0, 1] and is not integrable on [0, 1] in the Riemann sense, that is,Ð 1
0 f ðxÞdx does not exist. However, its Lebesgue integral exists and it is calcu-

lated as follows:

ð
½0;1�

f d� ¼ 0 � �ð½0; 1� �Q0Þ þ 1 � �ðQ0Þ ¼ 0 � 1þ 1 � 0 ¼ 0:

The Lebesgue integral has also an equivalent definition:

ð
fd�¼sup

(Xm
i¼1

ai�ðAiÞj
Xm
i¼1

ai�Ai
� f;ai 2 ½0;1Þ;Ai 2F; i¼ 1;2; � � � ;m;m� 1

)
:

For any measurable function that may be not nonnegative, let
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f þðxÞ ¼
f ðxÞ if f ðxÞ � 0

0 if f ðxÞ50

�

and

f �ðxÞ ¼
�f ðxÞ if f ðxÞ � 0

0 if f ðxÞ40.

�

Both f þ and f � are nonnegative measurable functions. Then, the Lebesgue
integral of f on X with respect to � is defined by

ð
f d� ¼

ð
f þ d��

ð
f �d�

if not both terms on the right-hand side are infinite. In case �ðXÞ51 and f is

lower bounded, integral
Ð
f d� can be also defined by

ð
f d� ¼

ð
ð f�mÞ d�þm � �ðXÞ;

where m is a lower bound of f, i.e., f ðxÞ �m � 0; 8x 2 X.
Consider any real-valued function f that is measurable on an interval

I ¼ ½a; b� with respect to the Borel field (the class of all Borel sets). If the

Riemann integral
Ð b
a f ðxÞdx exists, then the corresponding Lebesgue integral

exists as well, and

ð
I

f d� ¼
ðb
a

f ðxÞdx;

where � is the Lebesgue measure. That is, the Lebesgue integral is a general-
ization of the Riemann integral.

If set function � : F! ð�1;1Þ is a finite classical signed measure, then �
can be decomposed as � ¼ �þ � ��, where both �þ and �� are finite classical
measures. Thus, the Lebesgue integral of measurable function f with respect to
finite classical signed measure � can be defined as

ð
f d� ¼

ð
f d�þ �

ð
f d��

if not both terms on the right-hand side are infinite.
When � is finite, the Lebesgue integral has another equivalent definition:

ð
f d� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd� (8:1)
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if not both terms on the right-hand side are infinite, where F� ¼ fxjf ðxÞ � �g
for � 2 ð�1;1Þ. Set F� is measurable since function f is measurable. So, �ðF�Þ
is well defined for all � 2 ð�1;1Þ. The integrals on the right-hand side of the
equality are Riemann integrals. By the finiteness of � we know that �ðF�Þ is a
function of � with bounded variation. Hence, these two Riemann integrals are
well defined. When f > 0; Eq. (8.1) is reduced to

ð
f d� ¼

ð1
0

�ðF�Þd�:

This equation is called the transformation theorem of the Lebesgue integral. It

can be proved by showing that each summation
Pmj

i

aji�ðAjiÞ in Definition 8.2 is

just a Darboux’s sum for the Riemann integral
Ð1
0 �ðF�Þd�. In the special case

that X is the real line, this equality has an intuitive geometrical meaning: Both
integrals represent the area between the curve of f and the x-axis.

8.2 Properties of the Lebesgue Integral

Let (X, F, �) be a �-finite measure space. Since � is additive, the concepts of
‘‘almost everywhere’’ and ‘‘pseudo-almost everywhere’’ coincide with each
other. In this case we have the following properties for the Lebesgue integral.
The proof of the theorem is omitted here.

Theorem 8.1. Let f and g be measurable functions on (X, F, �), A and B be
measurable sets, and a be a real constant.

(1)
Ð
A 1 d� ¼ �ðAÞ;

(2)
Ð
A f d� ¼

Ð
f � �Ad�;

(3) if f � g on A, then
Ð
A f d� �

Ð
A g d�;

(4)
Ð
A fj jd� ¼ 0 if and only if �ðfxj f ðxÞ 6¼ 0g \ AÞ ¼ 0, i.e., f ¼ 0 on A almost
everywhere;

(5) ifA � B, then
Ð
A f d� �

Ð
B f d�;

(6)
Ð
A af d� ¼ a

Ð
A f d�;

(7)
Ð
A ð fþ gÞd� ¼

Ð
A f d�þ

Ð
A g d�;

(8) ifA \ B ¼ Ø, then
Ð
A f d�þ

Ð
B f d� ¼

Ð
A[B f d�.

The properties showing in (6) and (7) of Theorems 8.1 are called the linearity
of the Lebesgue integral.

Now, we turn to sequences of Lebesgue integrals. Let f fng be a sequence of
measurable functions and f be a measurable function on measure space (X, F, �).
As is mentioned above, the statement ‘‘ f fng converges to f almost everywhere’’
coincideswith the statement ‘‘ f fng converges to f pseudo-almost everywhere’’ due
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to the additivity of �. Similarly, statement ‘‘ f fng converges to f in measure’’

coincides with statement ‘‘ f fng converges to f pseudo-in measure.’’ So, in this

section we only use the statements ‘‘ f fng converges to f almost everywhere’’ and

‘‘ f fng converges to f in measure,’’ denoted by fn
a:e:��! f and fn

���! f, respectively,

as in classical measure theory.
The principal convergence theorem for the sequence of Lebesgue integrals is

the following bounded convergence theorem.

Theorem 8.2. Let A be a measurable set. If fn
��! f on A and there exists a

nonnegative measurable function g satisfying
Ð
A g d�51 such that fnj j � g on

A almost everywhere for all n = 1, 2,. . ., then

lim
n!1

ð
A

fn d� ¼
ð
A

f d�:

Proof. Without any loss of generality, we may assume that �ðAÞ ¼M51 and

A=X. For any given "40, since
Ð
gd� ¼

Ð1
0 �ðG�Þd�51whereG� ¼ fxjgðxÞ

� �g for � 2 ½0;1Þ, there existsN40 such that
Ð1
N
2
�ðG�Þd�5"

4. From fn
���! f,

by the Riesz theorem we know that there exists a subsequence of f fng, denoted
by f fnig, such that fni

a:e:��! f. Furthermore, from the condition that fnj j � g

almost everywhere for all n ¼ 1; 2; :::, we have fj j � g almost everywhere. Thus,

fn � fj j � 2g for all n ¼ 1; 2; ::: almost everywhere. Since fn
���! f, for "

4M, we

can find n0 such that �ðfxj fnðxÞ � f ðxÞj j � "
4MgÞ � "

4N for all n � n0. Hence

ð
fn d��

ð
f d�

����
���� ¼

ð
ð fn � f Þd�

����
���� �

ð
fn � fj jd� ¼

ð1
0

�ðfxj f nðxÞ � f ðxÞj j � �gÞd�

�
ð "

4M

0

Md�þ
ðN

"
4M

�ðfxj fnðxÞ � f ðxÞj j � �gÞ d�

þ
ð1
N

�ðfxj fnðxÞ � f ðxÞj j � �gÞ d�

� "

4
þ
ðN
0

�ðfxj fnðxÞ � f ðxÞj j � "

4M
gÞd�þ

ð1
N

�ðfxj2gðxÞ � �gÞd�

� "

4
þ
ðN
0

"

4N
d�þ

ð1
N

�ðG�=2Þd�

� "

4
þ "
4
þ 2

ð1
N

�ðG�=2Þdð�=2Þ

� "

4
þ "
4
þ 2

ð1
N
2

�ðGaÞd�

� "

4
þ "
4
þ "
2

¼ "

for every n � n0. This means that lim
n!1

Ð
fnd� ¼

Ð
f d�: &
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In case � is finite, fn
a:e:��! f implies fn

���! f. So, we can obtain the following

corollary where the finiteness of � has been replaced with the �-finiteness by the
traditional stratagem.

Corollary 8.1. Under the same condition assumed in Theorem 8.2, if fn
a:e:��! f and

fnj j � g on A almost everywhere for all n = 0, 1,. . ., then

lim
n!1

ð
A

fn d� ¼
ð
A

g d�:

8.3 Lebesgue Integrals on Finite Sets

Let us consider the case when X is finite, that is, X ¼ fx1; x2; :::; xng, and take
P(X) as F. Denoting �ðfxigÞ by wi for i = 1, 2, . . ., we have

ð
f d� ¼

Xn
i¼1

wi fðxiÞ

since

f ¼
Xn
i¼1

fðxiÞ � �fxig

is a simple function. This is exactly the weighted sum of f fðx1Þ; fðx2Þ; :::; fðxnÞg,
where wi; i ¼ 1; 2; :::; n; are weights (wi may not be in the unit closed interval).

When
Pn
i¼1

wi ¼ 1 and 0 � wi � 1 for each i ¼ 1; 2; :::; n, the right-hand side of

this equality is just the weighted average. Conversely, any weighted sum (includ-
ing the weighted average) can be expressed as a Lebesgue integral. In fact, for

any given weighted sum
Pn
i¼1

wi fðxiÞ, the class of all singletons and the empty

set Ø, S=ffxigjxi 2 Xg[ {Ø}, is a semiring. If we define � : S! ð�1;1Þ by
�ðfxigÞ ¼ wi and �ðØÞ ¼ 0, then set function � is a signed measure on semiring
S. Such a signed measure can be uniquely extended to a signed measure on the
ring generated by S, that is, onP(X). By the additivity of the signedmeasure, the
extension can be presented as

�ðAÞ ¼
X
xi2A

�ðfxigÞ 8A � X:

Thus, we have

ð
f d� ¼

Xn
i¼1

�ðfxigÞ � f ðxiÞ ¼
Xn
i¼1

wi f ðxiÞ:
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Example 8.2. Three workers, x1, x2, and x3, are hired for manufacturing a

certain kind of wooden toys separately. Their individual efficiencies are 5, 6,

and 7 toys per day respectively. This week, they work for 6, 3, and 4 days

respectively. Let X ¼ fx1; x2; x3g and

f ðxÞ ¼
6 if x ¼ x1

3 if x ¼ x2

4 if x ¼ x3.

8<
:

Since these three workers work separately, taking measure � with �ðfx1gÞ ¼ 5,

�ðfx2gÞ ¼ 6, and �ðfx3gÞ ¼ 7, the total amount of the manufactured toys by

them in this week is

ð
f d� ¼

X3
i¼1

�ðfxigÞ � fðxiÞ ¼ 5 � 6þ 6 � 3þ 7 � 4 ¼ 76:

The weighted sum is the simplest and most common aggregation tool in

information fusion. Example 8.2 shows a typical information fusion problem,

whereX ¼ fx1; x2; xng is the set of all information sources, fðxiÞ is the numerical

amount of information received from source xi; and �ðfxigÞ is the importance

of source xi, i ¼ 1, 2, 3, respectively. Such amodel is linear and can be used only

when there is no interaction among the contribution rates from information

sources towards the fusion attribute or the interaction can be ignored, like the

case of Example 8.2, in which the three workers work separately.
The traditional linear models are also widely used in data mining, such as in

multiregressions and classifications. They can be expressed in terms of the

Lebesgue integral as well.

Example 8.3. The traditional linear multiregression has the form

y ¼ a0 þ a1 f ðx1Þ þ a2 f ðx2Þ þ � � � þ an f ðxnÞ þNð0; �2Þ;

where y is the value of the objective attribute Y, fðxiÞ is the observation value of

predictive attribute xi for each i ¼ 1; 2; :::; n, ai (where i ¼ 0; 2; :::; n) are regres-

sion coefficients, and Nð0; �2Þ is a normally distributed random perturbation

with mean zero and standard deviation �. This linear multiregression form can

be rewritten as

y ¼ cþ
ð
f d�þNð0; �2Þ;

where f is a function on X ¼ fx1; x2; :::; xng, � is a signed measure on P(X) with

�ðfxigÞ ¼ ai, i ¼ 1; 2; :::; n, and constant c ¼ a0.
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Example 8.4. We consider a traditional classification problem now. Suppose

that there are two classes of n-dimensional data in classifying space

(n-dimensional Euclidean sample space):

C1 ¼ f f1j ¼ ðt1j1 ; t1j2 ; :::; t1jnÞj j ¼ 1; 2; :::; l1g

and

C2 ¼ f f2j ¼ ðt2j1 ; t2j2 ; :::; t2jnÞj j ¼ 1; 2; :::; l2g:

We want to find a classifying boundary a1t1 þ a2t2 þ � � � þ antn ¼ c in the

n-dimensional Euclidean sample space such that the misclassification rate is

minimized, that is,

min f f1jja1t1j1 þ a2t1j2 þ � � � þ ant1jn4cgj þ f f2jja1t2j1 þ a2t2j2 þ � � � þ ant2jn � cgj�;
�����

where a1; a2; :::; an , and c are unknown parameters, while symbol Aj j denotes the
cardinality of a set A. This minimization problem may have infinitely many

solutions, though they may be very close to each other. Usually, some additional

criteria are employed to obtain the ‘‘best’’ solution among them. Equation

a1t1 þ a2t2 þ � � � þ antn ¼ c presents an (n – 1)-dimensional hyper-plane in the

n-dimensional sample space. It divides the sample space into two subsets that

form a partition of the sample space. Linear function p : Rn ! R with

pðt1; t2:::; tnÞ ¼ a1t1 þ a2t2 þ � � � þ antn

can be understood as a projection that projects each point in the sample space

onto a straight line. Real number c then is the classifying boundary on the

straight line. If we use fðxiÞ to denote ti, i ¼ 1; 2; ::: n, then the projection is just

the Lebesgue integral
Ð
f d� where � is the signed measure determined by

�ðfxigÞ ¼ ai.

8.4 A General View of Integration on Finite Sets

Let (X, P(X)) be a measurable space, where X ¼ fx1; x2; :::; xng, and f be a

function on X. When � is a signed measure on P(X), the Lebesgue integral of f

with respect to � can be expressed by a weighted sum of the values of � as

ð
f d� ¼

Xn
i¼1

fðxiÞ � �ðfxigÞ:
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This expression is not unique. More generally, the Lebesgue integral can be

expressed as

ð
f d� ¼

X
A�X

aA � �ðAÞ;

where the values aA satisfy for all x 2 X the constraint

X
x2A�X

aA ¼ f ðxÞ

due to the additivity of �. Here, faAjA � Xg can be regarded as a decomposi-

tion of function f.
However, when � is not additive, but is a signed general measure, the value ofP

A�X
aA � �ðAÞ depends on the chosen decomposition faAjA � Xg. Each decom-

position of f represents a specified manner of integration. Thus, we may

introduce a general concept of integrals with respect to signed general measures.
Let � be a signed general measure on (X, P(X)) and f be a nonnegative

function on X.

Definition 8.3. A set function p : P(X)�{Ø}! ½0;1Þ is called a partition of f if

f ðxÞ ¼
X

x2A�X
pðAÞ 8x 2 X:

Taking the characteristic function of a crisp set or the membership function

of a fuzzy set as f, it is easy to see that the concept of partition in Definition 8.3 is

a generalization of the classical partition for crisp sets and the fuzzy partition

for fuzzy sets.

Definition 8.4. A type of integral with respect to � is a rule r by which, for any

given f, a partition p of f can be obtained. Regarding both p and � onP(X)�{Ø}

as ð2n � 1Þ-dimensional vectors, the value of the integral of f under rule r,

denoted by ðrÞ
Ð
f d�, is the inner product of p and �, that is, ðrÞ

Ð
f d� ¼

p � � ¼
P
A�X

pðAÞ � �ðAÞ, where (r) is used to indicate the type of integral.

The above definition provides a flexible aggregation tool in information

fusion and data mining. It is generally called an ‘‘r-integral,’’ or simply, ‘‘an

integral’’ when the partitioning rule r has been chosen and there is no

confusion.
Given a signed general measure �, we may induce a signed measure �0 by

assigning �0ðfxigÞ ¼ �ðfxigÞ for all i ¼ 1; 2; :::; n: Thus, the Lebesgue integral

with respect to signed measure �0 can be regarded as one of the various types
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of integral with respect to a signed general measure �. Its corresponding

partitioning rule can be described as follows: decomposing function f in such

a way that set function p vanishes at all sets A�PðX Þ except singletons. Geome-

trically, under this rule, any function is divided vertically, no matter what kind

of signed general measure is given. This is the simplest partition of f.

Example 8.5. We use the data given in Example 8.2. The Lebesgue integral of f

corresponds to a partition illustrated in Fig. 8.1. Geometrically, nonnegative

function f is divided vertically. In this manner the value of the integral of

function f with respect to signed general measure � only depends on the values

of � at singletons. So, if we introduce a classical measure �0 determined by

�0ðfxigÞ ¼ �ðfxigÞ for i = 1, 2, 3, the value of the integral for f under this

vertically partitioning rule, denoted by ðvÞ
Ð
f d�, is just the value of the

Lebesgue integral of f with respect to �0, that is,

ðvÞ
ð
f d� ¼

X3
i¼1

�ðfxigÞ � fðxiÞ ¼
ð
f d�0 ¼

X3
i¼1

�0ðfxigÞ � fðxiÞ ¼ 76:

We have several different types of r-integrals. They are discussed in the next two

chapters. In general, r-integrals are not linear with respect to their integrands.

However, r-integrals possess some properties similar to Lebesgue integrals, as

shown in the next theorem.

Theorem 8.3. Let � be a general measure on (X, P(X )) and f be a nonnegative

function on X. Then,

(1) ðrÞ
Ð
f d� � 0;

(2) ðrÞ
Ð
f d� ¼ 0 if for any set A with �ðAÞ40, there exists x 2 A such that

f ðxÞ ¼ 0.

Proof. (1) follows directly from Definition 8.4. To prove (2), we use a proof by

contradiction as follows. Assume that ðrÞ
Ð
f d�40. Then, from Definition 8.3

there exists at least one term in the summation that is greater than zero, say,

f (x)

x2x1 x3

3

6

4

Fig. 8.1 The partition of f
corresponding to the
Lebesgue integral
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pðAÞ � �ðAÞ40; that is, both pðAÞ40 and �ðAÞ40. From f xð Þ ¼
P

x2A�X
p Að Þ for

every x 2 X, we know that f ðxÞ40 for every x 2 A. This contradicts the fact

that there exists x 2 A such that f ðxÞ ¼ 0. So, the assumption is wrong and we

have ðrÞ
Ð
f d� ¼ 0: &

Notes

8.1. We recommend the excellent books by Chae [1995] and Burk [1998] for
more information on Lebesgue integration, including the history of rele-
vant ideas that led to its development. One of those ideas is the Darboux
sum, which is mentioned in Section 8.1.

8.2. The general view of integration on finite sets, which is discussed in Section
8.4, was first introduced in [Wang et al., 2006a]. For other general views of
integrals with respect to monotone measures, see [Benvenuti et al., 2002]
and [Struk, 2006].

Exercises

8.1. Let (X, F, �) be a measure space and f : X! ½0;1Þ be a measurable
function on X. Verify that fsjg is nondecreasing and lim

j!1
sjðxÞ ¼ f ðxÞ for

every x 2 X, where

sj ¼
Xj�2j
i¼1

i� 1

2j
�Aji

in which

Aji ¼ fxj
i� 1

2j
� f ðxÞ5 i

2j
g; i ¼ 1; 2; :::; j � 2 j

for j ¼ 1; 2; :::.
8.2. Let fsjg and ftjg be two sequences of nondecreasing simple functions on

measure space (X, F, �) with lim
j!1

sj ¼ lim
j!1

tj ¼ f. Prove that
lim
j!1

Ð
sjd� ¼ lim

j!1

Ð
tjd�.

8.3. Let X be the unit closed interval [0, 1], F be the set of all Borel sets in [0, 1],
and � be the Lebesgue measure. Calculate the Lebesgue integral

Ð
f d�

where f ðxÞ ¼ x for x 2 ½0; 1�. Compare the result with the value of the
Riemann integral

Ð 1
0 f ðxÞdx.
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8.4. Let X be the set of all positive integers, F be the power set of X, and
measure � be determined by �ðfxigÞ ¼ 1

2i, i ¼ 1; 2; :::. Calculate the
Lebesgue integral

Ð
g d� where gðxiÞ ¼ 1

2i, i ¼ 1; 2; :::.
8.5. Let � be the Lebesgue measure. Prove that, for any real-valued measur-

able function f on an interval I ¼ ½a; b�, if the Riemann integral
Ð b
a f ðxÞdx

exists, then the corresponding Lebesgue integral
Ð
I f d� exists, too, andÐ

I f d� ¼
Ð b
a f ðxÞdx.

8.6. Prove the properties of the Lebesgue integral listed in Theorem 8.1.
8.7. Use a counterexample to show that the conclusion in Theorem 8.2may

not be true if the condition ‘‘there exists a nonnegative measurable func-
tion g satisfying

Ð
A g d�51 such that fnj j � g on A almost everywhere for

all n ¼ 1; 2; ::: ’’ fails.
8.8. Let (X, F, �) be a measure space and f : X! ½0;1Þ be a measurable

function on X. Prove that
Ð
f d� ¼

Ð1
0 �ðF�Þ d� where F� ¼ fxjf ðxÞ � �g

for � 2 ½0;1Þ. (Hint: Use the Darboux sum for the Riemann integral.)
8.9. Generalize the conclusion in Exercise 8.8 to

ð
fd� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�;

where f is lower bounded, � is finite, and F� ¼ fxjf ðxÞ � �g for
� 2 ð�1;1Þ. (Hint: Use properties (1) and (7) in Theorem 8.1.)

8.10. Give the measure � determined by the data shown in Example 8.2.
8.11. WhenX is countable, under the condition given in Exercise 8.8, show thatÐ

f d� ¼
P
A�X

aA � �ðAÞ, where constants aA satisfy the constraint

X
x2A�X

aA ¼ f ðxÞ 8x 2 X:
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Chapter 9

Sugeno Integrals

9.1 Definition

In this chapter, we assume that (X, F) is a measurable space, where X 2 F, � :

F ! [0, 1] is a continuous monotone measure, and G is the class of all finite

nonnegative measurable functions defined on (X, F). For any given f 2 G, we

write F�= {x|f(x)� �}, F�þ= {x|f(x) > �}, where � 2 [0,1]. Let the sets F�
and F�þ be called an �-level set and a strict �-level set of f, respectively.

Since the range of functions that we consider in this chapter is [0,1), we use

the following convention:

inf
x2Ø

f ðxÞ ¼ 1:

Definition 9.1. Let A 2 F, f 2G. The Sugeno integral of f on A with respect to �,
which is denoted by �

Ð
A f d�; is defined by

�
ð
A

f d� ¼ sup
�2½0;1�

½� ^ �ðA \ F�Þ�:

When A = X, the Sugeno integral may also be denoted by �
Ð
f d�.

Sometimes, the Sugeno integral is also referred to in the literature as the fuzzy

integral.
From now on, we use the convention that the appearance of a symbol�

Ð
A f d�

implies that A 2 F and f 2 G. If X = (–1,1), F is the Borel field B, � is the

Lebesgue measure, and f: X! [0,1) is a unimodal continuous function, then

the geometric significance of �
Ð
f d� is the edge’s length of the largest square

between the curve of f(x) and the x-axis (see Fig. 9.1).

Lemma 9.1. (1) Both F� and F�þ are nonincreasing with respect to �, and F�þ �
F� when � < �.

(2) lim
�!��

F� ¼ lim
�!��

F�þ ¼ F� � F�þ ¼ lim
�!�þ

F� ¼ lim
�!�þ

F�þ:

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_9, � Springer ScienceþBusiness Media, LLC 2009
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Proof. (1) is evident. (2) follows from the following facts:

\
�5�

fxj f ðxÞ � �g ¼
\
�5�

fxj f ðxÞ4�g

¼ fxj f ðxÞ � �g � fxj f ðxÞ4�g

¼
[
�4�

fxj f ðxÞ � �g ¼
[
�4�

fxj f ðxÞ4�g: &

Theorem 9.1.

�
ð
A

f d� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� ¼ sup
�2½0;1�

½� ^ �ðA \ F�þÞ�

¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ� ¼ sup
E2F ðf Þ

½ðinf
x2E

f ðxÞÞ ^ �ðA \ EÞ�

¼ sup
E2F

½ðinf
x2E

f ðxÞÞ ^ �ðA \ EÞ�;

where F( f ) is the �-algebra generated by f, the smallest �-algebra such that f is

measurable.

Proof. (1) Since F� = F�þ= Ø when �=1, equations

�
ð
A

f d� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�Þ�

Fig 9.1 Geometric
interpretation of the
Sugeno integral under
special conditions
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and

sup
�2½0;1�

½� ^ �ðA \ F�þÞ� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�

are evident.
(2) We prove now that

sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�:

On the one hand, by Lemma 9.1 and the monotonicity of �, we have

�ðA \ F�Þ � �ðA \ F�þÞ

for any � 2 [0,1). Hence,

sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� � sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�:

On the other hand, for any " > 0 and � 2 (0,1), taking � 0 2 ((� – ") _ 0, �), we
have

� ^ �ðA \ F�Þ � ð�
0 þ "Þ ^ �ðA [ F�0þÞ;

hence, we have

sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�

� sup
�02ð0;1Þ

½ð�0 þ "Þ ^ �ðA \ F�0þÞ�

� sup
�02ð0;1Þ

½�0 ^ �ðA \ F�0þÞ� þ "

¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ� þ ":

Since " may be close to zero arbitrarily, we obtain

sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� � sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�:
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Consequently, we have

sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�þÞ�:

(3) It remains to prove that

�
ð
A

f d� ¼ sup
E2F ðfÞ

½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ� ¼ sup
E2F
½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ�:

First, for any � 2 [0,1], since infx2F� f (x) � �, noting F� 2 F( f ), we have

½� ^ �ðA \ F�Þ� � sup
E2Fð f Þ

½ð inf
x2E

f ðxÞÞ ^ �ðA \ EÞ�

and, therefore, we have

�
ð
A

f d� ¼ sup
�2½0;1�

½� ^ �ðA \ F�Þ� � sup
E2FðfÞ

½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ�:

Next, since f is F-measurable, we have F ( f ) � F and, therefore, we have

sup
E2F ðfÞ

½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ� � sup
E2F
½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ�:

Finally, for any given E 2 F, if we take �0 ¼ infx2E fðxÞ; then E� F�
0. It follows

that

�ðA \ EÞ � �ðA \ F�0 Þ

by the monotonicity of � and, therefore,

½ inf
x2E

fðxÞ� ^ �ðA \ EÞ � �0 ^ �ðA \ F�0 Þ � sup
�2½0;1�

½� ^ �ðA \ F�Þ� ¼ �
ð
A

f d�

for any E 2 F. Consequently, we have

sup
E2F
½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ� � �
ð
A

f d� &

To simplify the calculation of the Sugeno integral, for a given (X, F, �),
f 2 G and A 2 F, we write

� ¼ f�j� 2 ½0;1�; �ðA \ F�Þ4�ðA \ F�Þ for any �4�g:
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It is easy to see that

�
ð
A

f d� ¼ sup
�2�
½� ^ �ðA \ F�Þ�:

Example 9.1. Consider the monotone measure space given in Example 7.3. Let

fðxÞ ¼
3 if x ¼ a

2:5 if x ¼ b

2 if x ¼ c:

8><
>:

Then

�
ð
f d� ¼ ½3 ^ �ðfagÞ� _ ½2:5 ^ �ðfa; bgÞ� _ ½2 ^ �ðXÞ� ¼ 1 _ 2:5 _ 2 ¼ 2:5:

Example 9.2. LetX= [0,1], F be the class of all Borel sets inX, �=m2, wherem
is the Lebesgue measure, f(x) = x/2. We have

F� ¼ fxj fðxÞ � �g ¼ ½2�; 1�:

Since � = [0, 1/2), we only need to consider � 2 [0, 1/2). So, we have

�
ð
f d� ¼ sup

�2½0;1=2Þ
½� ^ �ðF�Þ� ¼ sup

�2½0;1=2Þ
½� ^ ð1� 2�Þ2�:

In this expression, (1 – 2�)2 is a decreasing continuous function of � when � 2
[0, 1/2). Hence, the supremum will be attained at the point which is one of the
solutions of the equation

� ¼ ð1� 2�Þ2;

that is, at �= 1/4. Consequently, we have

�
ð
f d� ¼ 1=4:

9.2 Properties of the Sugeno Integral

The following theorem gives the most elementary properties of the Sugeno
integral.
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Theorem 9.2.

(1) If � (A) = 0, then �
Ð
A f d� ¼ 0 for any f 2 G;

(2) if� is continuous from below and �
Ð
A f d� ¼ 0, then�ðA \ fxj fðxÞ40gÞ ¼ 0;

(3) if f1 � f2; then �
Ð
A f1d� � �

Ð
A f2d�;

(4) �
Ð
A fd� ¼ �

Ð
f � �Ad�; where �A is the characteristic function of A;

(5) �
Ð
A a d� ¼ a ^ �ðAÞ for any constant a 2 [0,1);

(6) �
Ð
A ðfþ aÞd� � �

Ð
A f d�þ�

Ð
A a d� for any constant a 2 [0,1).

Proof. We only need to prove (2) and (6); the remaining properties can be

obtained directly from the definition of the Sugeno integral.
For (2), we use a proof by contradiction. Assume

�ðA \ fxj fðxÞ40gÞ ¼ c40:

Since

A \ fxj fðxÞ � 1=ng % A \ fxj fðxÞ40g:

by using the continuity from below of �, we have

lim
n
�ðA \ fxj fðxÞ � 1=ngÞ ¼ c:

So, there exists n0 such that

�ðA \ F1=n0Þ ¼ �ðA \ fxjfðxÞ � 1=n0gÞ � c=2:

Consequently, we have

�
ð
A

f d� ¼ sup
�2½0;1�

½� ^ �ðA \ F�Þ� � 1=n0 ^ c=240:

This contradicts �
Ð
A fd� ¼ 0:

For (6), from Theorem 9.1, we have

�
ð
A

ð fþ aÞd� ¼ sup
E2F

½ inf
x2E
ð fðxÞ þ aÞ� ^ �ðA \ EÞ

� �

� sup
E2F

½ðð inf
x2E

fðxÞÞ ^ �ðA \ EÞÞ þ ða ^ �ðA \ EÞÞ�
� �

� sup
E2F

½ðð inf
x2E

fðxÞÞ ^ �ðA \ EÞÞ þ ða ^ �ðAÞÞ�
� �

¼ sup
E2F
½ð inf
x2E

fðxÞÞ ^ �ðA \ EÞ� þ ða ^ �ðAÞÞ

¼ �
ð
A

f d�þ�
ð
A

a d�:

The proof is now complete. &
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Corollary 9.1.

(7) IfA � B; then �
Ð
A f d� � �

Ð
B f d�;

(8) �
Ð
Aðf1 _ f2Þd� � �

Ð
A f1d� _ �

Ð
A f2d�;

(9) �
Ð
Aðf1 ^ f2Þd� � �

Ð
A f1d� ^ �

Ð
A f2d�;

(10) �
Ð
A[B fd� � �

Ð
A f d� _ �

Ð
B fd�;

(11) �
Ð
A\B f d� � �

Ð
A f d� ^ �

Ð
B f d�:

Proof. Property (7) can be obtained from properties (3) and (4) of Theorem 9.2;

properties (8) and (9) come from (3); properties (10) and (11) follow directly

from (7). &

Properties (1)–(4) [and, therefore, (7)–(11)] are similar to those of the classi-

cal Lebesgue integral, but (5) and (6) are somewhat different from the classical

ones.We should note that, in general, the Sugeno integral lacks some important

properties that the Lebesgue integral possesses. For instance, the Lebesgue

integral has linearity, that is,

ð
A

ð f1 þ f2Þ d� ¼
ð
A

f1 d�þ
ð
A

f2 d�

and

ð
A

afd� ¼ a

ð
A

fd�;

but the Sugeno integral does not. We can see this in the following example.

Example 9.3. LetX=[0, 1],F be the class of all Borel sets inX (namely,B\ [0, 1]),
and � be the Lebesgue measure. We take f(x) = x for any x 2 X, and a = 1/2.

Then we have

�
ð
af d� ¼ �

ð
x
2d� ¼ 1=3

and

a�
ð
fd� ¼ 1

2�
ð
x d� ¼ 1

2	 1
2 ¼ 1

4:

Consequently, we have

�
ð
af d� 6¼ a�

ð
f d�

(see Fig. 9.2).
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Lemma 9.2. Let A 2 F, a 2[0,1), f1 2G, and f2 2G,. If |f1 – f2|� a on A, then we

have

�
ð
A

f1 d���
ð
A

f2 d�

����
���� � a:

Proof. Since f1� f2þ a on A, using the properties (3), (5), and (6) of the Sugeno

integral (Theorem 9.2), we have

�
ð
A

f1 d� � �
ð
A

ðf2 þ aÞ d� � �
ð
A

f2 d�þ�
ð
A

a d� ¼�
ð
A

f2 d�þ ½a ^ �ðAÞ�

� �
ð
A

f2 d�þ a:

Similarly, from f2 � f1 þ a on A, we have

�
ð
A

f2 d� � �
ð
A

f1 d�þ a:

Consequently, we have

�
ð
A

f1 d���
ð
A

f2 d�

����
���� � a: &

Fig 9.2 Illustration to
Example 9.3
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Lemma 9.3. �
Ð
A fd� � � _ �ðA \ F�þÞ � � _ �ðA \ F�Þ for any � 2 ½0;1�:

Proof. For any � 2 [0,1], using Theorem 9.1 and Lemma 9.1, we have

�
ð
A

f d� ¼ sup
�02½0;��

½�0 ^ �ðA \ F�0þÞ� _ sup
�02ð�;1�

½�0 ^ �ðA \ F�0þÞ�

� sup
�02½0;��

�0 _ sup
�02ð�;1�

�ðA \ F�0þÞ � � _ �ðA \ F�þÞ � � _ �ðA \ F�Þ:

This completes the proof. &

Lemma 9.4. �
Ð
A fd� ¼ 1 if and only if �(A \ F�) =1 for any � 2 [0,1).

Proof. Necessity: If �
Ð
A fd� ¼ 1; then it follows from Lemma 9.3 that

� _ �ðA \ F�Þ ¼ 1

So, if � 2 [0,1), then

�ðA \ F�Þ ¼ 1

Sufficiency: It follows directly from Definition 9.1. &

Lemma 9.5. For any � 2 [0,1) we have
(1) �

Ð
A fd�� �, �ðA \ F�Þ � � for any � < �( �ðA \ F�Þ � �;
�
Ð
A fd�< �, there exists� <� such that� (A \ F�)< �) �(A \ F�Þ< �)
� (A \ F� þÞ < �.

(2) �
Ð
A fd���,�ðA\F�þ)��( �ðA \ F�Þ � �;
�
Ð
A fdu4�, �ðA \ F�þÞ4�) �ðA \ F�Þ4�:

(3) �
Ð
A fd�= �, for any � < �, �ðA \ F�)� �� �(A \ F�þ)( �ðA \ F�Þ= �.
When �ðAÞ <1, we have

(4) �
Ð
A fd�� �, �ðA \ F�) � �.

(5) �
Ð
A fd�= �, �ðA \ F�) � � � �ðA \ F�þÞ.

Proof. (1) We only need to consider the case when � 2 (0,1). If �(A \ F�) � �
for any � <� , then

�
ð
A

fd� ¼ sup
�2½0;1Þ

½� ^ �ðA \ F�Þ� � sup
�2½0;�Þ

½� ^ �ðA \ F�Þ� � sup
�2½0;�Þ

½� ^ ��

¼ sup
�2½0;�Þ

� ¼ �:

Conversely, if there exists � < � such that � (A \ F�) < �, then, by Lemma 9.3,

�
ð
A

fd� � � _ �ðA \ F�Þ5�:
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Thus, we have proved the equivalence relation in (1). The other implication

relations issue from Lemma 9.1 and the monotonicity of �.
(2) If � (A \ F�þ) � �, by Lemma 9.3,

�
ð
A

fd� � � _ �ðA \ F�þÞ ¼ �:

Conversely, by using Lemma 9.1 and the continuity from below of �, we have

lim
�!�þ

�ðA \ F�Þ ¼ �ðA \ F�þÞ:

If �(A \ F�þ) > �, then there exists �0 > � such that �(A \ F�0
) > �. So, from

Definition 9.1we have

�
ð
A

fd� � �0 ^ �ðA \ F�0
Þ4�:

Thus, the equivalence relations in (2) have been proved; the remaining proper-

ties can be obtained in the same way as in (1).
(3) This property is directly obtained by combining (1) and (2).
(4) When �(A) <1, we have

lim
�!��

�ðA \ F�Þ ¼ �ðA \ F�Þ:

So �(A \ F�) � � if and only if �(A \ F�) � � for any � < �; therefore, (4)
follows directly from (1).
(5) Similarly, this property follows directly from (3). &

In classical measure theory if two measurable functions f1 and f2 are equal

a.e., then their integrals are equal. What about the Sugeno integral on mono-

tone measure space? The answer is negative, as is illustrated by the following

example.

Example 9.4. Let X = {0, 1}, F = P(X),

�ðEÞ ¼
1 if E ¼ X

0 if E 6¼ X:

�

If

f1ðxÞ ¼
1 if x ¼ 1

0 if x ¼ 0;

(

f2ðxÞ ¼ 1;

then f1 = f2 a.e., but �
Ð
f1 d� ¼ 0 and �

Ð
f2 d� ¼ 1:

However, we have an important theorem for Sugeno integrals.
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Theorem 9.3.�
Ð
f1d� ¼�

Ð
f2d� whenever f1 = f2 a.e. if and only if � is null-additive.

Proof. Sufficiency: If � is null-additive, then from

�ðfxjf1ðxÞ 6¼ f2ðxÞgÞ ¼ 0;

we know that

�ðfxjf2ðxÞ � �gÞ � �ðfxjf1ðxÞ � �g [ fxjf1ðxÞ 6¼ f2ðxÞgÞ ¼ �ðfxjf1ðxÞ � �gÞ

for any � 2 [0,1]. The converse inequality holds as well. So, we have

�ðfxj f1ðxÞ � �gÞ ¼ �ðfxj f2ðxÞ � �gÞ

for any � 2 [0,1] and, therefore, from Definition 9.1, we have

�
ð
f1 d� ¼ �

ð
f2 d�:

Necessity: For any E 2 F, F 2 F with �(F) = 0, if �(E) = 1, then, by the
monotonicity of �, �(E [ F) =1= �(E). Now, we assume �(E)<1, and use
a proof by contradiction to show that �(E [ F) = �(E). If this equality is not
true (that is, if �(E [ F) > �(E)), we take a 2 (�(E), �(E [ F)), and

f1ðxÞ ¼
a if x 2 E

0 if x =2 E

�
and f2ðxÞ ¼

a if x 2 E [ F

0 if x =2 E [ F;

�

then �({x|f1(x) 6¼ f2(x)}) = �(F – E) � � (F) = 0, that is,

f1 ¼ f2 a:e:

So, it should hold that

�
ð
f1 d� ¼ �

ð
f2 d�:

But now we have

�
ð
f1 d� ¼ a ^ �ðEÞ ¼ �ðEÞ

and

�
ð
f2 d� ¼ a ^ �ðE [ FÞ ¼ a 6¼ �ðEÞ:

Thus, we get a contradiction. &
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Corollary 9.2. If � is null-additive, then �
Ð
A f1 d� ¼ �

Ð
A f2 d� whenever f1 = f2 a.e.

on A.

Proof. If f1 = f2 a.e. on A, then f1�A = f2�A a.e. From Theorem 9.3 and

Theorem 9.2(4), we get the conclusion. &

Corollary 9.3. If � is null-additive, then for any f 2 G,

�
ð
A[B

f d� ¼ �
ð
A

f d�

whenever A 2 F, B 2 F with �(B) = 0.

Proof. The conclusion follows directly from

f � �A[B ¼ f � �A a:e: &

Analogously, we also can obtain a condition under which �
Ð

f1d� ¼�
Ð

f2 d�
whenever f1 = f2 p.a.e. (see Wang [1985a]).

In Chapter 7, we discuss several convergences of measurable function

sequences on monotone measure spaces. In classical measure theory there are

some concepts of convergence of measurable function sequences that concern

the integral. One of them is the mean convergence. Since the Sugeno integral has

been defined for measurable functions, we can introduce a concept of s-mean

convergence on monotone measure spaces as follows.

Definition 9.2. Let { fn} � G, f 2 G. We say that { fn} s-mean converges to f iff

lim
n
�
ð
j fn � f jd� ¼ 0:

However, the following theorem shows that such a convergence concept is

not necessary.

Theorem 9.4. The s-mean convergence is equivalent to the convergence in measure

on monotone measure spaces.

Proof. if fn�!
�

f; then for any given " > 0, there exists n0 such that

�ðfxjj fnðxÞ � fðxÞj � "=2gÞ5"

whenever n � n0. So, by Lemma 9.5(1) we know

�
ð
j fn � f jd�5":
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This shows that { fn} s-mean converges to f. Conversely, if fn!
�
f does not hold,

then there exist " > 0, � > 0, and a sequence {ni} such that

�ðfxjj fniðxÞ � fðxÞj � "gÞ4�

for any ni, i = 1, 2,. . .. From Definition 9.1, we may directly conclude that

�
ð
j fni � f jd� � " ^ �ðfxjj fniðxÞ � fðxÞj � "gÞ � " ^ �40

for any ni, i = 1, 2,. . .. This shows that {fn} does not s-mean converge to f. &

9.3 Convergence Theorems of the Sugeno Integral Sequence

Under a given condition, if a measurable function sequence converges to some

measurable function in a certain sense, then the corresponding integral

sequence converges to the integral of the limit function. That is, the symbols

of the limit and the integral can be exchanged. This is the convergence theorem.

In classical measure theory there are the monotone convergence theorem, the

uniform convergence theorem, and Lebesgue’s dominated convergence theo-

rem, all of which are well known. For the Sugeno integral sequence there are a

lot of convergence theorems as well. In this section we will give several conver-

gence theorems of Sugeno integral sequence under some conditions as weak as

possible. In these theorems we assume that the monotone measure � is contin-

uous, { fn} � G, and f 2 G. In addition, we use for both function sequences and

number sequences the symbols &, %, and !, respectively, to denote the

concepts of decreasingly converges to, increasingly converges to, and we write

F n
� ¼ fxjfnðxÞ � �g; F n

�þ ¼ fxj fnðxÞ4�g:

Lemma 9.6. If fn & f, then Fn
� &

T1
n¼1 F

n
� ¼ F� and F�þ � Fn

�þ &
T1

n¼1 F
n
�þ

� F�. If fn% f, then Fn
�þ %

S1
n¼1 F

n
�þ ¼ F�þ and F� � Fn

� %
S1

n¼1 F
n
� � F�þ.

Proof.We only prove that F�þ� Fn
�þ &

T1
n¼1 F

n
�þ � F� when fn& f. The rest is

similar. Let fn& f. Since fn � f for any x 2 X,

x 2 F�þ ) f ðxÞ4�) fnðxÞ4�) x 2 F n
�þ:

So F�þ � Fn
�þ: For the same reason, fF n

�þgis nonincreasing with respect to n, so

Fn
�þ &

T1
n¼1 F

n
�þ Finally, we have
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x 2
\1
n¼1

Fn
�þ ) x 2 Fn

�þ for any n

) fnðxÞ4� for any n

) f ðxÞ � �

) f ðxÞ 2 F�:

So \1n¼1 Fn
�þ � F�: &

Theorem 9.5. Let A 2 F. If fn& f on A, and there exists n0 such that

� x fn0ðxÞ4�
ð
A

f d�

����
� �

\ A

� �
51;

or if fn% f, then

lim
n
�
ð
A

fnd� ¼ �
ð
A

fd�:

Proof. We can assume that A = X without any loss of generality. Write

�
Ð
fd� ¼ c; and let fn& f with n0 such that

�ðfxj fn
0
ðxÞ4cgÞ51:

If c=1, by the monotonicity of Sugeno integral (see Theorem 9.2(3)), we have

�
ð

fn d� � �
ð

fd� ¼ 1;

that is, the conclusion of this theorem holds. If c <1, then

�
ð

fn d� � c

for any n = 1, 2,. . ., and, therefore,

lim
n
�
ð

fn d� � c:

Nowwe use reduction to absurdity to prove that the equality holds. If we assume

lim
n
�
ð

fn d�4c
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then there exists c0 > c such that

lim
n
�
ð

fn d�4c
0

and, therefore,

�
ð

fn d�4c
0

for any n. From Lemma 9.5(2) we know that

�ðFn
c Þ4c

0

for any n. Since there exists n0 such that

�ðFn
0

c0 Þ ¼ �ðfxj fn0ðxÞ � c0gÞ � �ðfxj fn0ðxÞ4cgÞ51;

by applying the continuity from above of �, from Lemma 9.6, we get

�ðFc0 Þ ¼ lim
n
�ðFn

c0 Þ � c0:

By Lemma 9.5(1), we know that

�
ð
f d� � c04c:

This contradicts �
Ð
f d� ¼ c: Consequently, we have

lim
n
�
ð

fn d� ¼ c ¼ �
ð
f d�:

When fn% f, the proof is similar to the above. &

Corollary 9.4. Let A 2 F. If fn & f on A, and there exist n0 and a constant

c � �
Ð
A f d� such that

�ðfxjfn0ðxÞ4cg \ AÞ51;

then

�
ð
A

fn d�& �
ð
A

fd�:
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Corollary 9.5. If fn& f and � is finite, then

�
ð
A

fn d�& �
ð
A

fd�:

Corollary 9.6. Let � be null-additive.

(1) If fn& f a.e., and there exists n0 and a constant c � �
Ð
f d� such that

�ðfxj fn0ðxÞ4cgÞ51;
then

�
ð
fn d�& �

ð
fd�:

(2) If fn% f a.e., then

�
ð
fnd�% �

ð
fd�:

The above theorem may be called the ‘‘convergence theorem of Sugeno

integral sequence for the sequence of monotone measurable functions,’’ or the

monotone convergence theorem, for short.
A result similar to Fatou’s lemma in classical measure theory may be

obtained from Theorem 9.5 as follows.

Theorem 9.6. Let A 2 F. If fðxÞ ¼ lim n fnðxÞ for any x 2 A, then

�
ð
A

f d� � lim
n
�
ð
A

fn d�:

Proof. If we write gn (x) = infi� n fi(x) for all x 2 A, then gn % f on A. By

Theorem 9.5, we obtain

lim
n
�
ð
A

gnd� ¼ �
ð
A

f d�:

Since gn � fn on A, we have

�
ð
A

gnd� � �
ð
A

fnd�;
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and, therefore,

lim
n
�
ð
A

gn d� � lim
n
�
ð
A

fn d�:

Consequently, we have

�
ð
A

f d� � lim
n
�
ð
A

fnd�: &

In Theorem 9.5, when { fn} is a nonincreasing sequence, the condition that

there exists n0 such that

� x fn0ðxÞ4�
ð
A

fd�

����
� �

\ A

� �
51

cannot be abandoned casually; without this condition, the conclusion of this

theorem might not hold. We can see this from the following example.

Example 9.5. Let X = [0, 1), F be the class of all Borel sets that are in X

(namely, F= B \X), and � be the Lebesgue measure. Take fn (x) = x/n for any

x 2X and any n=1, 2,. . .; then fn& f ” 0. Such a measurable function sequence

{ fn} does not satisfy the condition given in Theorem 9.5. In fact, we have

� x fnðxÞ4�
ð
fd�

����
� �� �

¼ �ðfxj fnðxÞ40gÞ ¼ �ðXÞ ¼ 1

for any n ¼ 1, 2,. . .. Consequently, �
Ð

fnd� ¼ 1 for any n = 1, 2,. . ., but
�
Ð

f d� ¼ 0; that is,

lim
n
�
ð
fnd� 6¼ �

ð
f d�:

Making use of the monotone convergence theorem we can give a conver-

gence theorem of the Sugeno integral sequence for the measurable function

sequence, which is convergent everywhere.

Theorem 9.7. Let A 2 F. If fn ! f on A, and there exists n0 and a constant

c � �
Ð
A f d� such that

�ðfxj sup
n�n0

fn4cg \ AÞ51;

then

�
ð
A

fnd�! �
ð
A

f d�:
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Proof. Without any loss of generality, we can assume that A = X. Let
hn ¼ supi�n fi; gn ¼ infi�n fi; then hn and gn, n = 1, 2,. . ., are measurable, and
hn& f, gn% f. Since gn � fn � hn, we have

�
ð
gnd� � �

ð
fnd� � �

ð
hn d�;

and, therefore,

lim
n
�
ð
gn d� � lim

n
�
ð
fnd� � lim

n
�
ð
fnd� � lim

n
�
ð
hnd�:

Noting that

�ðfxjhn0ðxÞ4cgÞ51;

where c � �
Ð

f d�; from Theorem 9.5 and Corollary 9.4, we get

lim
n
�
ð
gnd� ¼ lim

n
�
ð
hnd� ¼ �

ð
f d�:

So

lim
n
�
ð
fn d� ¼ lim

n
�
ð
fn d� ¼ �

ð
f d�: &

This theorem can be called the everywhere convergence theorem.
For a measurable function sequence which is convergent a.e., we have the

following theorem.

Theorem 9.8. �
Ð
A fnd�! �

Ð
A f d� wheneverA 2 F; fn�!

a:e:
f on A and there exists n0

and a constant c � �
Ð
A f d� such that

�ðfxj sup
n�n0

fnðxÞ4cg \ AÞ51;

if and only if � is null-additive.

Proof. It follows directly from Theorem 9.3 and Theorem 9.7. &

Corollary 9.7. Let � be finite and subadditive. If fn �!
a:e:

f, then we have

�
ð
fn d�! �

ð
f d�:
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Theorem 9.8 can be called the a.e. convergence theorem.
A proposition analogous to Lebesgue’s dominated convergence theorem in

classical measure theory does not always hold for the Sugeno integral.

Example 9.6. LetX= [0,1), F= B \X, and � be the Lebesgue measure. Take

fnðxÞ ¼
1 if x4n

0 if x 2 ½0; n�;

�

then fn & f ” 0. Observe that 0 � fn(x) � 1 for any x 2 X and any n = 1, 2,. . .,
and

�
ð
1 d� ¼ 151:

In our case, however,

�
ð
fn d� ¼ 1; n ¼ 1; 2; :::

and

�
ð
f d� ¼ 0:

Consequently, we have

lim
n
�
ð
fn d� 6¼ �

ð
f d�:

In this example, the function sequence { fn} does not satisfy the finiteness
condition on � given in Theorem 9.5.

The most interesting convergence theorem of Sugeno integral sequence is for
the measurable function sequence that converges in measure. Such a theorem is
called the convergence in measure theorem and is given as follows.

Theorem 9.9. �
Ð
A fnd�! �

Ð
A f d� wheneverA 2 F; f fng � G; f 2 G and fn �!

�
f on

A, if and only if � is autocontinuous.
Proof. Sufficiency: Without any loss of generality, we can assumeA=X. Let

� be autocontinuous, fn �!
�

f and let c ¼ �
Ð

f d�:
(1) In the case when c <1, by Lemma 9.5(3), for any given " > 0we have

�(Fc – ") � c and �(Fc þ ") � c. On the one hand, it is easy to see that

Fn
cþ2" � Fcþ" [ fxjj fnðxÞ � fðxÞj � "g:

9.3 Convergence Theorems of the Sugeno Integral Sequence 197



Since fn �!
�

f, we have

�ðfxjj fnðxÞ � fðxÞj � "gÞ ! 0:

An application of autocontinuity from above yields that

�ðFcþ" [ fxjj fnðxÞ � fðxÞj � "gÞ ! �ðFcþ"Þ:

So there exists n0 such that

�ðFn
cþ2"Þ � �ðFcþ" [ fxjj fnðxÞ � fðxÞj � "gÞ � �ðFcþ"Þ þ " � cþ " � cþ 2"

whenever n � n0. It follows, by Lemma 9.5(2), that

�
ð
fn d� � cþ 2"

for any n � n0. On the other hand, to prove a converse inequality we only need

to consider the case when c > 0. For any given " 2 (0, c/2), we have

Fn
c�2" � Fc�" � fxjjfnðxÞ � fðxÞj � "g:

Since fn �!
�

f and � is autocontinuous from below, there exists n00 such that

�ðFn
c�2"Þ � �ðFc�"Þ � " � c� 2"

whenever n � n00. It follows from Lemma 9.5(1) that

�
ð
fn d� � c� 2"

for any n � n00. Hence, limn�
Ð
fn d� exists, and

�
ð
fn d�! c:

(2) Otherwise, c=1. In this case, from Lemma 9.4, �ðF�Þ ¼ 1 for any � 2
[0,1). For any given N > 0, we have

Fn
N � FNþ1 � fxjj fnðxÞ � f ðxÞj � 1g:

Since fn �!
�

f and � is autocontinuous from below, there exists n0 such that

�ðFn
NÞ � �ðFNþ1 � fxjj fnðxÞ � f ðxÞj � 1gÞ � N
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whenever n � n0. It follows from Lemma 9.5(1) that

�
ð
fn d� � N

for any n � n0. This shows that

�
ð
fn d�!1 ¼ c:

Necessity: For any B 2 F and {Bn}� F with �ðBnÞ ! 0we are going to prove

that �(B [ Bn)! �(B). Benefiting from the monotonicity of �, we only need to

consider the case when �(B) <1. Take a >�(B) and

fðxÞ ¼
a if x 2 B

0 if x =2 B;

�

fnðxÞ ¼
a if x 2 B [ Bn

0 if x =2 B [ Bn;

�

for any n = 1, 2,. . .. Then, for any given " > 0we have

fxjj fnðxÞ � fðxÞj � "g � Bn

for any n= 1, 2,. . .. So fn �!
�

f. By the hypothesis of this proposition it should

hold that

�
ð
fn d�! �

ð
f d�:

Since

�
ð
fn d� ¼ a ^ �ðB [ BnÞ;

and

�
ð
f d� ¼ a ^ �ðBÞ ¼ �ðBÞ;

we get

�ðB [ BnÞ ! �ðBÞ:

That is, by Theorem 6.12 � is autocontinuous. &
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Making use of Theorems 9.4 and 9.9, we can immediately get the following

convergence theorem of the Sugeno integral sequence for the measurable func-

tion sequence which s-mean converges (this theorem can be called the s-mean

convergence theorem).

Theorem 9.10. �
Ð

fn d� ! �
Ð

f d� whenever { fn} � G, f 2 G, and { fn} s-mean

converges to f if and only if � is autocontinuous.

Example 9.7. (X, F, �) is given in Example 3.5 and Example 6.3. � is not

autocontinuous from above. Take f(x) = �{1}(x), fn(x) = �{1, n}(x) for x 2 X

and n = 1, 2,.... Then, for any given " 2 (0, 1) we have

�ðfxjjfnðxÞ � fðxÞj � "gÞ ¼ �ðfngÞ ¼ 2�n ! 0;

namely, fn�!
�

f. But�
Ð

f d� ¼ 1=2 and�
Ð

fn d� ¼ 1 for any n=1, 2, . . . .�
Ð

fn d�
does not tend to �

Ð
f d�:

Definition 9.3. Let (X, F, �) be a monotone measure space, f 2 G. f is called

Sugeno integrable (with respect to �) iff �
Ð

f d�51:
If we write
L1(�) = {f | f 2 G, f is Sugeno integrable with respect to �},

then we have the following theorem.

Theorem 9.11. Let A 2 F, � be uniformly autocontinuous. If fn �!
�

f on A, then

(1) �
Ð
A f d� ¼ 1,there exists n0 such that �

Ð
A fn d� ¼ 1 for any n � n0;

(2) �
Ð
A f d�51,there exists n0 such that �

Ð
A fn d�51 for any n � n0.

When A = X, we can rewrite the above propositions as

(10) f =2 L1ð�Þ,there exists n0 such that fn =2 L1ð�Þ for any n � n0;

(2 0) f 2 L1ð�Þ,there exists n0 such that fn 2 L1ð�Þ for any n � n0.

Proof. Without any loss of generality, we can assume A = X.

(1) Since the uniform autocontinuity implies the autocontinuity, from fn�!
�

f, by Theorem 9.9we have

�
ð
fn d�! �

ð
fd�:

So, if there exists n0 such that �
Ð
fn d� ¼ 1 for any n � n0, we get �

Ð
f d� ¼ 1:

Conversely, if �
Ð
f d� ¼ 1; by Lemma 9.4, �(F�þ1) = 1 for any � 2 [0, 1).

Since fn �!
�

f and � is uniformly autocontinuous, there exists n0 such that

�ðF�þ1 � fxjj fnðxÞ � fðxÞj � 1gÞ ¼ 1
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for any � 2 [0,1) whenever n � n0. From

Fn
� � F�þ1 � fxjj fnðxÞ � f ðxÞj � 1g

for any � 2 [0,1), we have

�ðFn
�Þ � �ðF�þ1 � fxjj fnðxÞ � f ðxÞj � 1gÞ ¼ 1

for any � 2 [0,1) whenever n � n0. Consequently, we have

�
ð
fn d� ¼ 1

for any n � n0.

(2) An application of reduction to absurdity can show the implication(.
As to the implication), we can get it from

�
ð
fn d�! �

ð
fd�51: &

At last, we give a convergence theorem of Sugeno integral sequence for the
measurable function sequence that converges uniformly (it can be called the
uniform convergence theorem). The symbol fn �!

u:
f on A will denote that {fn}

converges to f on A uniformly.

Theorem 9.12. Let A 2 F. If fn �!
u:

f on A, then

�
ð
A

fn d�! �
ð
A

fd�:

Proof. For any given " > 0, since fn �!
u:

f on A, there exists n0 such that

j fn � fj � "

on A whenever n �n0. By Lemma 9.2we have

�
ð
A

fn d���
ð
A

fd�

����
���� � "

for any n �n0. This shows

�
ð
A

fn d�! �
ð
A

fd�: &
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9.4 Transformation Theorem for Sugeno Integrals

In this section, we discuss how to transform a Sugeno integral �
Ð
A f d�; which is

defined on a monotone measure space (X, F, �), into another Sugeno integral

�
Ð
g dm defined on the Lebesgue measure space ([0,1], �Bþ, m), where �Bþ is the

class of all Borel sets in [0,1] and m is the Lebesgue measure.

Theorem 9.13. For any A 2 F,

�
ð
A

f d� ¼ �
ð
�ðA \ F�Þdm;

where F� = {x| f(x) � �} and m is the Lebesgue measure.

Proof. Denote g(�) = �(A \ F�). From Lemma 9.1, we know that g(�) is
decreasing with respect to �. For any � 2 [0,1], denote

B� ¼ fEj supE ¼ �;E 2 �Bþg:

Then, {B�|� 2 ½0; 1�} is a partition of �Bþ and supE 2 B� m(E) = �. Thus, from
Theorem 9.1,

�
ð
�ðA \ F�Þ dm ¼ �

ð
g ð�Þ dm ¼ sup

E2 �Bþ

½ inf
�2E

gð�Þ ^mðEÞ�

¼ sup
�2½0;1�

sup
E2B�

½ inf
�2E

gð�Þ ^mðEÞ�:

Since g(�) is decreasing, we have

gð��Þ � inf
�2E

gð�Þ � gð�Þ

for any E 2 B�, where g(� –) = lim�! �– g(�). So, on the one hand, we have

�
ð
�ðA \ F�Þdm � sup

�2½0;1�
½gð�Þ ^ sup

E2B�
mðEÞ� ¼ sup

�2½0;1�
½gð�Þ ^ ��

¼ sup
�2½0;1�

½� ^ �ðA \ F�Þ� ¼ �
ð
A

f d�;
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on the other hand, for any given " > 0,

�
ð
�ðA \ F�Þdm � sup

�2½0;1�
½gð��Þ ^ sup

E2B�
mðEÞ� ¼ sup

�2½0;1�
½gð��Þ ^ ��

� sup
�2½";1�

½� ^ gð��Þ� _ " � sup
�2½";1�

½� ^ gð�� "Þ� _ "

� sup
ð��"Þ2½0;1�

½ð�� "Þ ^ gð�� "Þ� þ "

¼ sup
ð��"Þ2½0;1�

½ð�� "Þ ^ �ðA \ F��"Þ� þ " ¼ �
ð
A

f d�þ ":

Since " may be close to zero arbitrarily, we obtain

�
ð
�ðA \ F�Þ dm ¼ �

ð
A

f d�:

The proof is now complete. &

9.5 Monotone Measures Defined by Sugeno Integrals

In this section we discuss how to define a monotone measure by using the
Sugeno integral of a given measurable function with respect to another given
monotone measure.

Theorem 9.14. Let (X, F, �) be a monotone measure space, f 2 G. Then the set
function � defined by

�ðAÞ ¼ �
ð
A

f d�

for any A 2 F is a monotone measure on (X, F). Furthermore, if � is continuous
then � is continuous from below; in addition, if � is finite, then � is a finite
continuous monotone measure on (X, F).

Proof. From Theorem 9.2, we know that �(Ø)= 0, and � is monotone. Further-
more, we need to prove that � is continuous frombelowwhen� is continuous. Let
{En} be an increasing set sequence in F, En%E 2 F. Then, we have

f � �En
% f � xE

From Theorem 9.5, we have

lim
n
�ðEnÞ ¼ lim

n
�
ð
En

f d� ¼ lim
n
�
ð
f��En

d� ¼ �
ð
f � �Ed� ¼ �

ð
E

f d� ¼ �ðEÞ:
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If � is finite, for any given decreasing set sequence {En} in F with En& E 2 F,
from

f � �En
& f � �E

and Theorem 9.5, we have also

lim
n
�ðEnÞ ¼ �ðEÞ:

That is, � is continuous from above. Consequently, � is a continuous monotone
measure. The finiteness of � follows from

�ðXÞ ¼ �
ð
f d� � �ðXÞ51: &

The following example shows that the set function � may be not continuous
from above when � is not finite even it is continuous.

Example 9.8. Let X = [0,1), F be the class of all Borel sets in [0,1), � be the
Lebesgue measure, f(x) ”1. Taking En = [n,1), n = 1, 2,..., we have En& Ø,
and

�ðEnÞ ¼ �
ð
En

f ðxÞ d� ¼ �
ð
½n;1Þ

1� d� ¼ 1

for n = 1, 2,..., but

�ðØÞ ¼ �
ð
Ø

f ðxÞd� ¼ 0:

So, � is not continuous from above.
It is natural to ask whether � is absolutely continuous with respect to �.

Unfortunately, generally speaking, the answer is negative.We can see this in the
following example.

Example 9.9. LetX={a, b}, F= P(X), and � be a monotone measure on (X, F)
with

�ðEÞ ¼
0 if E ¼ Ø

1 otherwise:

�

Taking

fðxÞ ¼
0 if x ¼ a

1 if x ¼ b;

�
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we get a monotone measure � by the expression

�ðEÞ ¼ �
ð
E

f d�

for any E 2 F. Now, for "=1/2> 0, take F= X, E= {a}. Even though F� E,
and �(F) – �(E) = 0, which is less than any positive number � > 0, we have

�ðFÞ � �ðEÞ ¼ �
ð
f d���

ð
fag

f d� ¼ 1� 0 ¼ 14":

� is not absolutely continuous with respect to �.
However, if we introduce a weaker concept than the concept of absolute

continuity given in Section 5.3, a weak absolute continuity, we will have a
positive answer about the above-mentioned question.

Definition 9.4. Let � and � be two monotone measures on C. We say that � is
weakly absolutely continuouswith respect to �, in symbol � ~
� iff, for any " > 0,
there exists � > 0, such that � (E) < " whenever, E 2 C and � (E) < �.

It is evident that if � and � are two monotone measures on (X, F), then �
�
implies � ~
�.

As well as the absolute continuity given before, the weak absolute continuity
is a generalization of the concept of absolute continuity given in classical
measure theory.

Theorem 9.15. Let (X, F, �) be a finite monotone measure space and f 2 G. If � is
defined by

�ðEÞ ¼ �
ð
E

f d�

for any E 2 F, then � ~
� .

Proof. For any given " > 0, take �= ". Thus, for any E 2 F with �(E) < �= ",
we have

�ðEÞ ¼ �
ð
E

f d� � �ðEÞ5":

That is, � ~
�. &

9.6 More Results on Sugeno Integrals with Respect

to a Monotone Measure

In this section, we consider Sugeno integrals with respect to monotone mea-
sures that may be not continuous. Let �: F![0,1] be a monotone measure.
We have seen that when � is continuous from below, �

Ð
A f d� ¼ 0 implies
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�ðA \ fxjfðxÞ40gÞ ¼ 0 in Theorem 9.2(2). The following is a counterexample

where � is not continuous from below.

Example 9.10. Let X= (0,1], F= B(0,1], where B(0,1] is the class of all Borel sets
in the interval (0,1], and let � be defined on F as follows:

�ðEÞ ¼
1 if E ¼ X

0 otherwise

�

for anyE 2 F. � is nonnegative, monotone, and continuous from above, but not

continuous from below. Take a measurable function f(x) = x, x 2 X. Since
�(F�) = 0 for any � 2 (0, 1], we have

�
ð
f d� ¼ 0:

But, �(X) = 1 6¼ 0.
As for Lemma 9.5, when � is a monotone measure, checking the proof

carefully, we find: conclusion (1) is still valid for �; conclusions (2) and (3) are

valid when � is continuous from below; conclusion (4) is valid when � is
continuous from above; the validity of conclusion (5) needs both the continuity
from above and the continuity from below of �.

For a monotone measure �, instead of Lemma 9.5, we may have the follow-
ing lemma.

Lemma 9.7. For any � 2 ½ 0,1Þ, we have

(1) �
Ð
A f d� � �, �ðA \ F�Þ � � for any �5�( �ðA \ F�Þ � �;
�
Ð
A f d� 5�, there exists � < � such that �ðA \ F�Þ5�) �ðA \ F�Þ
5�) �ðA \ F�þÞ5�;

(2) �
Ð
A f d� � �, �ðA \ F	Þ � � for any 	4�( �ðA \ F�Þ � �;
�
Ð
A f d�4�, there exists 	4� such that �ðA \ F�Þ4�:

(3) �
Ð
A f d� ¼ �, �ðA \ F�Þ � � � �ðA \ F	Þ for any � < � and 	 > �.

Proof.We only need to prove some parts of (2). If �(A \ Fg)� � for any 	 > �,
then

�
ð
A

f d� ¼ sup
	2½0;1�

½	 ^ �ðA \ F	Þ� ¼ sup
	2½0;��

½	 ^ �ðA \ F	Þ� _ sup
	2ð�;1�

½	 ^ �ðA \ F	Þ�

� sup
	2½0;��

	 _ sup
	2ð�;1�

�ðA \ F	Þ � � _ � ¼ �:

Conversely, if there exists 	 > � such that �(A \ Fg) > �, then

�
ð
A

f d� � 	 ^ �ðA \ F	Þ4�: &
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The results given in Section 9.3 are mostly dependent on the continuity of �.
However, if � is a possibility measure defined on (X, P(X)), which we denote by

p, then we have the following convergence theorem.

Theorem 9.16. Let (X, P(X), p) be a possibility measure space. If fn�!
p

f on A,

then

�
ð
A

fn dp! �
ð
A

fdp:

Proof. Since any possibility measure is maxitive (and, therefore, autocontinu-

ous) and continuous from below, part (1) of sufficiency in the proof of Theorem

9.9works (now, c ¼ �
Ð
f dp � 151Þ: &

From Theorem 7.12 and Theorem 9.16, we obtain the following corollary.

Corollary 9.8. Let (X, P(X), p) be a possibility measure space. If fn�!
a:u:

f on A,

then

�
ð
A

fn dp! �
ð
A

f dp:

Unfortunately, since possibility measures do not possess continuity from

above in general, it is impossible to establish an everywhere (or, a.e.) conver-

gence theorem of Sugeno integral sequence on a possibility measure space; that

is, while fn ! f everywhere, �
Ð

fn dp! �
Ð

f dp may not be true.

Example 9.11. Consider the possibility measure space (X, P(X), p) and the

measurable function sequence {fn} given in Example 7.4. We have that fn !
f = 0everywhere on X, and �

Ð
fn dp ¼ 1 for any n = 1, 2,..., but �

Ð
f dp ¼ 0:

Notes

9.1 The concept of a Sugeno integral (fuzzy integral) for a measurable function
f : F ! [0,1] on a normalized monotone measure space (X, F, �) was
introduced by Sugeno [1974], who also discussed some elementary proper-
ties of this integral. Further investigations of the integral were also pursued
by Batle and Trillas [1979], Wierzchon [1982], Dubois and Prade [1980],
Grabisch et al. [1992], and other researchers. A generalization of the
integral, as presented in this chapter, was introduced by Ralescu and
Adams [1980] and Wang [1984].

9.2 As shown by Wang [1984], there is no essential difficulty to define the
Sugeno integral (fuzzy integral) of a nonnegative extended real-valued
measurable function (i.e., measurable function f : F! [0,1]) on monotone
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measure space. In fact, most properties and results presented in this chapter
hold also for such an integral.

9.3 Ralescu and Adams [1980] introduced an equivalent definition of a Sugeno
integral (fuzzy integral) by using simple measurable nonnegative func-
tions—an idea similar to the definition of the Lebesgue integral.

9.4 The earliest monotone convergence theorem of Sugeno integral
sequences was conjectured by Sugeno [1974]. It was proven by Ralescu
and Adams [1980] by using an equivalent definition of a Sugeno integral
(Note 9.3). They also introduced a theorem on convergence in mono-
tone measure. Its proof is based on a rather strong condition of sub-
additivity. Wang [1984] improved this result by using autocontinuity, a
far weaker condition, and proved that this condition is necessary and
sufficient for the convergence by using a new concept of local uniform
autocontinuity. In this chapter we use a brief proof, which is due to
Wang [1984].

9.5 Most of the results given in Sections 9.1–9.3were previously published by
Wang [1984, 1985a].

9.6 Using the concepts of ‘‘pseudo a.e.,’’ pseudo-null-additivity, and pseudo-
autocontinuity, we can also obtain some convergence theorems similar to
those presented in Section 9.3 [Wang, 1985a].

9.7 The transformation theorem of Sugeno integral (fuzzy integral) was pro-
posed by Ralescu and Adams [1980]. The brief and effective proof given in
Section 9.4was obtained by Wang and Qiao [1990].

9.8 The Sugeno integral can also be defined on amonotone measure space with
a fuzzy �-algebra consisting of fuzzy sets. Many important results have
already been obtained for this generalization. [Qiao,1990, 1991; Wang and
Qiao, 1990; Zhang, 1992a, b].

9.9 Suárez and Gill [1986] introduce two families of nonlinear integrals based
on the concepts of t-seminorms and t-semiconorms and show that Sugeno
integral is a special case. Weber [1986] discusses the Sugeno integral in the
context of integrals based on decomposable measures.

Exercises

9.1. Calculate the value of the Sugeno integral�
Ð
f d�;where � and f are given as

follows:

(a) X = {a, b}, F = P(X).

�ðEÞ ¼

0 if E ¼ Ø

0:5 if E ¼ fag
0:7 if E ¼ fbg
1 if E ¼ X;

8>>><
>>>:

f ðxÞ ¼
0:8 if x ¼ a

0:4 if x ¼ b;

�
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(b) (X, F, �) is as given in (a), but

fðxÞ ¼
0:8 if x ¼ a

0:9 if x ¼ b;

�

(c) X={a,b, c, d},F=P(X),� is a l-measure with�({a})= 1/15, �({b})=
1/4, �({c}) = 1/5, l = 1, and

fðxÞ ¼

2=3 if x ¼ a

1=5 if x ¼ b

1=2 if x ¼ c

1 if x ¼ d;

8>>><
>>>:

(d) (X, F, �) is the same as in (c), but

fðxÞ ¼

1=2 if x ¼ a

1=3 if x ¼ b

1=4 if x ¼ c

1=5 if x ¼ d;

8>>><
>>>:

(e) X=[0, 1], F is the class of all Borel sets inX, � is the Lebesguemeasure,
and f(x) = x2;

(f) X = (–1, 1), F is the Borel field, � = m2, where m is the Lebesgue
measure, and f(x) = 1/(1 þ x2).

9.2. Let (X, F, �) be a monotone measure space and let f: F ! [0, 1] be a
nonnegative extended real-valued function. We can define the Sugeno
integral of f with respect to �, just as we do in Definition 9.1, and use the
same symbol �

Ð
f d�: Prove that

�
ð
f d� ¼ sup

�2½0;1Þ
½� ^ �ðF�Þ�:

9.3. Prove the following:

(a) �
Ð
A f d� � �ðAÞ;

(b) �
Ð
Aða ^ f Þd� ¼ � ^ �

Ð
A f d�;where a is a nonnegative constant.

9.4. Let � be maxitive. Prove that

�
ð
A

ð f1 _ f2Þd� ¼ �
ð
A

f1d� _ �
ð
A

f2d�

for any A 2 F and f1 2 G, f2 2 G.
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9.5. Give an example to show that the equality in Exercise 9.4may not be true

when � is not maxitive.
9.6. Give examples to show that the equalities

�
ð
ð f1 þ f2Þd� ¼ �

ð
f1d�þ�

ð
f2d�

and

�
ð
cf d� ¼ c�

ð
f d� ðc is a constantÞ

may be true or may not be true. This means that, in general, the Sugeno

integral is not linear in the classical sense. However, if we use the supre-

mum and the infimum instead of addition and multiplication in the expres-

sion of linearity, respectively, and if we call it a maxitive linearity, then the

Sugeno integral is maxitively linear when � is maxitive (see Exercise 9.3(b)

and 9.4).
9.7. Give an example to show that

�
ð
A

f d� � �) �ðA \ F�Þ � �

may not be true when �(A) =1.
9.8. Prove that

Fn
� & \1n¼1Fn

� ¼ F�

when fn& f, and prove that

Fn
�þ %

[1
n¼1 F

n
�þ ¼ F�þ

and

F� � Fn
� %

[1
n¼1 F

n
� � F�þ

when fn% f, where

Fn
� ¼ fxj fnðxÞ � �g; Fn

�þ ¼ fxj fnðxÞ4�g; F� ¼ fxj fðxÞ � �g;

F�þ ¼ fxj fðxÞ4�g:
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9.9. Prove the following:

(a) �
Ð
A sup

n
fnd� � sup

n
�
Ð
A fnd�;

(b) �
Ð
A inf

n
fnd� � inf

n
�
Ð
A fnd�;

(c) �
Ð
[nAn

fnd� � sup
n
�
Ð
An

fd�;

(d) �
Ð
\nAn

f d� � inf
n
�
Ð
An

f d�:

9.10. Give an example to show that the equality

fxj lim
n

fn � �g ¼ lim
n
ðxj fn � �g

may not be true, where � is a nonnegative constant and { fn} is an
increasing sequence of functions in G.

9.11. Let � and � be two continuous monotone measures on (X, F). Prove that,
if � ~
�, then � (E) = 0whenever E 2 F and �(E) = 0 (this statement can
also be regarded as a generalized form of classical absolute continuity).
Can you give an example to show that the converse proposition is not
true?

9.12. Give an example to show that the weak absolute continuity is really
weaker than the absolute continuity.
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Chapter 10

Pan-Integrals

10.1 Pan-Additions and Pan-Multiplications

Lebesgue’s integral involves two binary operations, common addition and
common multiplication of real numbers, while the Sugeno integral involves
different binary operations, logical addition (maximum) and logical multiplica-
tion (minimum) of real numbers.

A natural idea is to consider an appropriate class of two binary operations in
terms of which a generalized theory of integration could be formulated and
developed, a theory under which both theories based upon Lebesgue’s integral
and the sugeno integral would be subsumed.

Let Rþ = [0, 1), Rþ= [0, 1], Bþ = B \ Rþ, and a, b, c, d, ai, bi, ai 2
Rþ(i = 1, 2, . . . , t 2 T, where T is any given index set).

Definition 10.1. Let � be a binary operation on Rþ. The pair (Rþ; �) is called a
commutative isotonic semigroup and � is called a pan-addition on Rþ iff �
satisfies the following requirements:
(PA1) a � b = b � a;
(PA2) (a � b) � c = a � (b � c);
(PA3) a � b) a � c � b � c for any c;
(PA4) a � 0 = a;
(PA5) limn an and limn bn exist ) limn (an � bn) exists, and limn (an � bn) =
limn an � limn bn.

From (PA1) and (PA3), it follows that

ðPA30Þ a � b and c � d) a� c � b� d:

Because of (PA2), we may write�n
i¼1ai for a a1� a2� � � � � an. We also use a

similar symbol �t2T at, where T is a finite index set. Furthermore, if T is an
infinite index set, we define �t2T at = supT 0�T �t2T 0 at, where T

0 is finite.

Definition 10.2. Let� be a binary operation on Rþ: The triple (Rþ;�,�), where
� is a pan-addition onRþ, is called a commutative isotonic semiringwith respect
to � and � iff:
(PM1) a � b = b � a;
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(PM2) (a � b) � c = a � (b � c);
(PM3) (a � b) � c = (a � c) � (b � c);
(PA4) a � b) a � c � b � c for any c;
(PM5) a 6¼ 0 and b 6¼ 0, a � b 6¼ 0;
(PM6) there exists I 2 Rþ, such that I � a = a, for any a 2 Rþ;
(PM7) limn an and limn bn exist and are finite ) limn (an � bn) = limn an �
limn bn.

The operation � is called a pan-multiplication on Rþ, and the number I is
called the unit element of (Rþ, �, �). From (PM1) and (PM4), we derive
(PM40) a � b and c � d) a � c � b � d.

It is easy to see that (PM5) implies that a � 0 = 0 and 0 � a = 0 for any
a 2 Rþ.

Example 10.1.Rþ with the common addition and the commonmultiplication of
real numbers is a commutative isotonic semiring. It is denoted by (Rþ,þ, �) and
its unit element is 1.

Example 10.2.Rþ with the logical addition _ and the logical multiplication ^ of
real numbers is a commutative isotonic semiring. It is denoted by (Rþ,_,^) and
its unit element is1.

Example 10.3.Rþ with the logical addition _ and the commonmultiplication of
real numbers is a commutative isotonic semiring. It is denoted by (Rþ, _, �) and
its unit element is 1.

Definition 10.3. If (X, F, �) is a continuous monotone measure space, and (Rþ,
�, �) is a commutative isotonic semiring, then (X, F, �, Rþ, �, �) is called a
pan-space.

10.2 Definition of Pan-Integrals

Definition 10.4. Let (X, F, �, Rþ,�,�) be a pan-space and E� X. The function
defined on X given by

�
E
ðxÞ ¼ I if x 2 E

0 otherwise

�

is called the pan-characteristic function of E, where I is the unit element of (Rþ,
�, �)

Definition 10.5. Let (X, F) be a measurable space. A partition {Ei} of X is called
measurable iff Ei 2 F for every i.

Definition 10.6. Let (X, F, �, Rþ,�,�) be a pan-space. A function onX given by

sðxÞ ¼ �
n

i¼1
½ai � �Ei

ðxÞ�
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is called a pan-simple measurable function, where ai2Rþ, i=1, 2, . . . , n, and {Ei

| i = 1, 2, . . . , n} is a measurable partition of X.
In the rest of this chapter we restrict the discussion to a given pan-space (X, F,

�, Rþ, �, �).
The set of all pan-simple measurable functions is denoted by Q. Obviously,

Q � G. For any

sðxÞ ¼ �n
i¼1½ai � �Ei

ðxÞ� 2 Q;

let eS ¼ fðai;EiÞ i ¼ 1; � � � ; ng:j We write

PðeS AÞ ¼j �
n

i¼1
½ai � �ðA \ EiÞ�;

where A 2 F. To simplify the notation, we use Pðs AÞj to replace PðeS Aj Þin the
following discussion if there is no confusion. However, we should remember
that the value of Pðs AÞj depends on the expression of s (i.e., eS).

Given f1, f2 2 G, we write f1 � f2 if f1(x) � f2(x) for every x 2 X.

Definition 10.7.Let f2G andA2 F. The pan-integral of f onAwith respect to �,
which is denoted by ( p)

Ð
x f d�, is given by

ð pÞ
ð
A

f d� ¼ sup
0�s�f;s2Q

PðesjAÞ:

When A = X, we simply write ( p)
Ð
f d� instead of (p)

Ð
X f dm.

Theorem 10.1. Let f 2 G, A 2 F, and let P̂ denote the set of all measurable
partitions of X. Then,

ð pÞ
ð
A

f d� ¼ sup
E2_P

�
E2E
½ðinf
x2E

fðxÞÞ � �ðA \ EÞ�
� �

:

Proof.On the one hand, for any givenE 2 P̂ and any chosen finite part {Ei|i =
1, 2, . . . , n}� E we take

sðxÞ ¼ �
n

i¼1
½ inf
x2Ei

fðxÞ� � þ �Ei
ðxÞ

� �
:

Then, s(x) 2 Q and s � f. So,

�
n

i¼1
ð inf
x2Ei

f ðxÞÞ � �ðA \ EiÞ
� �

� ð pÞ
ð
A

f d�;

and, therefore,

sup
E2_P

�
E2E
½ðinf
x2E

f ðxÞÞ � �ðA \ EÞ�
� �

� ð pÞ
ð
A

f d�:
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If, on the other hand, sðxÞ ¼ � n
i¼1[ai� �Ei

(x)]2Q, then {Ei|i=1, 2, . . . , n}2 P̂:
Moreover, if s � f, then ai � inf x2Ei

f(x). Thus, we have

Pðsj AÞ � �
n

i¼1
½ð inf
x2Ei

f ðxÞÞ � �ðA \ EiÞ� � sup
E2P̂

�
E2E
½ð inf
x2E

f ðxÞÞ � �ðA \ EÞ�
� �

:

From this, it follows that

ð pÞ
ð
A

f d� � sup
E2P̂

�
E2E
½ðinf
x2E

f ðxÞÞ � �ðA \ EÞ�
� �

:

Consequently, we have

ð pÞ
ð
A

f d� ¼ sup
E2P̂

�
E2E
½ðinf
x2E

f ðxÞÞ � �ðA \ EÞ�
� �

:

The proof is now complete. &

Theorem 10.2.When� is the logical addition _ and� is the logical multiplication

^, we have

ð pÞ
ð
A

f d� ¼ �
ð
A

f d�

for any f 2G and A 2 F; that is, the pan-integral and the Sugeno integral coincide.

Proof. Since fE; Eg is a measurable partition ofX for anyE 2 F; the inequality

ð pÞ
ð
A

f d� 	 �
ð
A

f d�

follows from Theorem 9.1 and Theorem 10.1 directly. Conversely, for any given

" > 0 and any E 2 P̂, there exists E0 2 E such that

�
E2E
½ðinf
x2E

f ðxÞÞ � �ðA \ EÞ� ¼ sup
E2E
½ðinf
x2E

f ðxÞÞ ^ �ðA \ EÞ�

� ½ inf
x2E0

f ðxÞ� ^ �ðA \ E0Þ þ " � �
ð
A

f d�þ ":

Thus, we have

ð pÞ
ð
A

f d� � �
ð
A

f d�þ ":

Since " may be arbitrarily close to zero, we have

ð pÞ
ð
A

f d� � �
ð
A

f d�:
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Consequently, we have

ð pÞ
ð
A

f d� ¼ �
ð
A

f d�: &

Theorem 10.3. Let � be �–additive. When � is the common addition and � is the

common multiplication, we have

ð pÞ
ð
A

f d� ¼
ð
A

f d�

for any f 2G and A 2 F; that is, the pan-integral and Lebesgue’s integral coincide.

Proof. When � is þ and � is � , the concept of pan-simple function coincides

with the concept of nonnegative simple function employed in classical measure

theory. From the definition of Lebesgue’s integral,

ð
A

f d� ¼ lim
n

PðsnjAÞ

for any f 2G and A 2 F, where {sn} is a sequence of nondecreasing nonnegative
simple functions whose limit is f. It is easy to see that

ð pÞ
ð
A

f d� 	
ð
A

f d�:

Conversely, we can choose {sn} � Q such that sn � f, n = 1, 2,..., and

lim
n

PðsnjAÞ ¼ ð pÞ
ð
A

f d�:

Taking sn ¼ supi�n si, we have sn 2Q, n= 1, 2, . . . , and sn% f. Since P(s|A) is

nondecreasing with respect to s under the conditions given in the theorem, we

have

lim
n

PðsnjAÞ ¼ ð pÞ
ð
A

f d�:

Owing to the monotonicity of {sn}, we also have

lim
n

PðsnjAÞ ¼
ð
A

f d�:

Hence, we have

ð pÞ
ð
A

f d� ¼
ð
A

f d�: &
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We can also see from Theorem 10.1 that, under the conditions given in

Theorem 10.3, the pan-integral is just Riemann’s integral, provided that the

function f is continuous.

10.3 Properties of Pan-Integral

Some interesting properties, which are similar to those of the Sugeno integral

and the Lebesgue integral, are derived in this section.

Theorem 10.4. For any f 2 G and A 2 F,

ðpÞ
ð
A

f d� ¼ ðpÞ
ð
f� �A d�:

Proof. Taking s0=s��a for any given s 2Q satisfying s� f, we have s0 2Q and

s0 � f��A. By using the commutative law (PM1) and the distributive law (PM3)

of pan-multiplication, we have

s0 ¼ �
n

i¼1
ðai � �A � �Ei

Þ ¼ �
n

i¼1
ðai � �A\Ei

Þ:

This means that

Pðs0jXÞ ¼ �
n

i¼1
½ai � �ðA \ EiÞ�:

Hence, we have

PðsjAÞ ¼ Pðs0jXÞ � ð pÞ
ð
f� �A d�

and, therefore,

ð pÞ
ð
A

f d� � ð pÞ
ð
f� �A d�:

Conversely, for any given s(x)=�n
i¼1 [ai� �Ei

(x)] 2Q satisfying s� f� �A, we
omit, without any loss of generality, those terms in which ai=0 and, therefore,

we may assume that ai > 0, i= 1, 2,. . ., n. From s� f � �A, we deduce Ei� A,

i = 1, 2,. . ., n. Thus,

PðsjXÞ ¼ �
n

i¼1
½ai � �ðEiÞ� ¼ �

n

i¼1
½ai � �ðA \ EiÞ� ¼ PðsjXÞ � ð pÞ

ð
A

f d�:
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So, we have

ð pÞ
ð
A

f d� 	 ð pÞ
ð
f� �A d�:

Finally, we have

ð pÞ
ð
A

f d� ¼ ð pÞ
ð
f� �A d�: &

The properties listed in the following theorem can be easily obtained from

Definition 10.7, Theorem 10.1, and Theorem 10.4.

Theorem 10.5. Let f, g 2 G, A, B 2 F, and a 2 Rþ. Then we have the following:
(1) if f = 0 on A a.e., then (p)

Ð
A f d�= 0;

(2) if �(A) = 0, then (p)
Ð
A f d�= 0;

(3) if f � g on A, then (p)
Ð
A f d� � (p)

Ð
A g d�;

(4) if A � B, then (p)
Ð
A f d� � (p)

Ð
B f d�;

(5) (p)
Ð
A a d� 	 a ��(A).

The following example shows that the equality in (5) of Theorem 10.5 may

not hold.

Example 10.4. Let (X, F, �) be the same monotone measure space as given in

Exercise 9.1 (a). Taking þ and 
 as � and �, respectively, we have

ð pÞ
ð
1d� ¼ 1 � �ðfagÞ þ 1 � �ðfbgÞ ¼ 0:5þ 0:7 ¼ 1:2;

but

1 � �ðXÞ ¼ 1:

Theorem 10.6. Let f 2 G and A 2 F. If (p)
Ð
A f d�= 0, then

�ðA \ fxj f ðxÞ40gÞ ¼ 0

Proof. Denoting Bn = A \ {x | f(x) > 1/n}, we have

Bn %
[1
n¼1

Bn ¼ A \ fxj f ðxÞ > 0g:

By using Theorem 10.5, we obtain

0 ¼ ð pÞ
ð
A

f d� 	 ð pÞ
ð
Bn

f d� 	 ð pÞ
ð
Bn

1

n
d� 	 1

n
� �ðBnÞ 	 0:
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From (PM5), we have

�ðBnÞ ¼ 0; n ¼ 1; 2; . . . ;

therefore,

�ðA \ fx f ðxÞ40gÞ ¼ lim
n
�ðBnÞ ¼ 0: &

���

10.4 A Transformation Theorem

A transformation theorem for the Sugeno integral is presented in Chapter 9.

Now, we consider a similar theorem, wherein the pan-addition is the common

addition and the pan-multiplication is the common multiplication.

Theorem 10.7. On a pan-space (X, F, �, Rþ, þ, 
), if � is superadditive, then

ðpÞ
ð
�ðA \ F�Þdm 	 ðpÞ

ð
A

f d�;

where f 2 G, A 2 F, m is the Lebesgue measure on Rþ, and

F� ¼ fx fðxÞ 	 �g;j

for any � 2 Rþ.

Proof. There is no loss of generality in assuming that A = X. From Theorem

10.1, we infer

ðpÞ
ð
f d� ¼ sup

E2
_
P

�
E2E
ð½ inf
x2E

fðxÞ� � �ðEÞÞ
� �

¼sup
E2P̂

sup
D�E

�
E2D
ð½inf
x2E

fðxÞ� � �ðEÞÞ
� �

;

where D is any finite subclass of E. For any chosen

D ¼ fE1;E2; . . . ;Eng;

taking �i = infx2Ei
f (x), i = 1, 2,. . ., n, and �nþ1 = 0, we may assume that

�1 	 �2 	 � � � 	 �n 	 �nþ1 ¼ 0

(otherwise, we just need to rearrange the order of E1, E2,. . ., En). Let Bi= (�iþ1,
�i], i= 1, 2,. . ., n. Accordingly, we have

mðBiÞ ¼ �i � �iþ1; i ¼ 1; 2; . . . ; n:
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For any � 2 Bi, since � � �i, we may infer

F� �
[
j�i

Ej:

Using the superadditivity of �, one may derive

�ðF�Þ 	
X
j�i

�ðEjÞ:

Therefore, we obtain

inf
�2Bi

�ðF�Þ 	
X
j�i

�ðEjÞ:

Thus, we have

ð pÞ
ð
�ðF�Þdm 	

Xn
i¼1
½ inf
�2Bi

�ðF�Þ �mðBiÞ� 	
Xn
i¼1

X
j�i

�ðEjÞ � ð�i � �iþ1Þ
" #

¼
Xn
i¼1

�i � �ðEiÞ ¼
Xn
i¼1
ð inf
x2Ei

fðxÞÞ � �ðEiÞ:

Finally, we have

ð pÞ
ð
�ðF�Þdm 	 ð pÞ

ð
f d�: &

When � is subadditive, a similar result is expressed by the following theorem.

Theorem 10.8. On a pan-space (X, F, �, Rþ, þ, 
), if � is subadditive, then we
have

ð pÞ
ð
�ðA \ F�Þdm � ð pÞ

ð
A

f d�;

where f 2 F, A 2 F, m is the Lebesgue measure on Rþ, and

F� ¼ fxj fðxÞ 	 �g;

for any � 2 Rþ.

Proof. Assume that A = X. As in the proof of Theorem 10.7, for any finite
subclass of any partition of Rþ, {Ai|i= 1, 2,. . ., k}, we denote �i = sup Ai and
�0 =1, and we may assume that �0 	 �1 	 �2 	 . . . 	 �k.

Let Ei = F�i–F�i�1 ;i = 1, 2, . . ., k; then, {Ei|i = 1, 2, . . ., k}[{
Tk

i¼1 Ei} is a
partition ofX. If there exists some � 2Rþ such that �(F�) =1, then (p)

Ð
d�=

1. In this case the conclusion of the theorem is obviously true. So, we can
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assume that �(F�)<1 for any � 2Rþ. Since F�i=
S

j�i Ej and � is subadditive,

it follows that

inf
�2Ai

�ðF�Þ � �ðF�iÞ �
X
j�i

�ðEjÞ

and

X
j	i

mðAjÞ � �i � inf
x2F�i

fðxÞ � inf
x2Ei

fðxÞ

for i = 1, 2,..., k. Thus, we have

Xk
i¼1
ð inf
�2Ai

�ðF�Þ �mðAiÞÞ �
Xk
i¼1

X
j�i

�ðEjÞ
" #

�mðAiÞ
( )

¼
Xk
i¼1

�ðEiÞ �
X
j	i

mðAjÞ
" #

�
Xk
i¼1
½ inf
x2Ei

fðxÞ � �ðEiÞ�

� ðpÞ
ð
f d�:

Consequently, we have

ðpÞ
ð
�ðF�Þdm � ðpÞ

ð
f d�: &

As a direct corollary of Theorem 10.7 and Theorem 10.8, we obtain the
following result.

Theorem 10.9. In the symbols of Theorem 10.7, if � is additive, then we have

ðpÞ
ð
�ðA \ F�Þdm ¼ ðpÞ

ð
A

f d�:

In the above three theorems, the pan-integral (p)
Ð
�(A \ F�) dm is called the

Choquet integral of f with respect to � on A, denoted by (c)
Ð
A f d�, and

discussed in Chapter 11. Both Theorem 10.7 and Theorem 10.8 show the
relation between the pan-integral and the Choquet integral on a pan-space (X,
F, �, Rþ, þ, 
).

Notes

10.1. The concept of a pan-integral was introduced and its properties discussed
by Qingji Yang in his dissertation in 1983. A revised version was pub-
lished in [Yang, 1985]. Further investigations of pan-integral on
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pan-additive monotone (fuzzy) measure spaces were pursued by Yang
and Song [1985] and Wang et al. [1996c]. See also [Mesiar and Rybárik,
1995].

10.2. Similar to the pan-integral on pan-additive monotone measure spaces,
Weber [1984] and Murofushi and Sugeno [1989, 1991b] developed the
theory of ?-decomposable measures and fuzzy t-conorm integrals.

Exercises

10.1. Calculate the value of the pan-integral for each pair of monotonemeasure
spaces (X, F, �) and measurable functions f given in Exercise 9.1 provided
that the concerned commutative isotonic semiring is (Rþ, þ, 
).

10.2. Repeat Exercise 10.1 for the commutative isotonic semiring (Rþ, _, 
)
10.3. Using Theorem 10.1 directly, show that the pan-integral is a general-

ization of Riemann’s integral.
10.4. Prove Theorem 10.5.
10.5. Prove the following inequalities for any A, B 2 F and f, g 2 G:

(a) ( p)
Ð
A[B f d� 	 ( p)

Ð
A f d� _ ( p)

Ð
B f d�;

(b) ( p)
Ð
A\B f d� � ( p)

Ð
A f d� ^ ( p)

Ð
B f d�;

(c) ( p)
Ð
A ( f _ g) d� 	 ( p)

Ð
A f d� _ ( p)

Ð
A g d�;

(d) ( p)
Ð
A ( f ^ g) d� � ( p)

Ð
A f d� ^ ( p)

Ð
A g d�.

10.6. Show that ( p)
Ð
A f d�= ( p)

Ð
f d�0, where �0(E) = �(A \ E) for any E 2 F.

10.7. Calculate the value of the Choquet integral for each pair of monotone
measure spaces (X, F, �) and measurable functions f given in Exercise 9.1.
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Chapter 11

Choquet Integrals

11.1 Choquet Integrals for Nonnegative Functions

Let (X, F, �) be a monotone measure space. That is, X is a nonempty set, F is a

�-algebra of subsets of X, and �: F! ½0; 1� is a monotone measure. Also, let

A 2 F and f be a nonnegative measurable function on (X, F). We have seen that

the Lebesgue integral of f with respect to � may not be well defined due to the

nonadditivity of �. Indeed, for two sequences of nondecreasing simple func-

tions fsjg and ftjg with lim
j!1

sj ¼ lim
j!1

tj ¼ f, where sj ¼
PmsðjÞ

i¼1
aji�Aji

and

tj ¼
PmtðjÞ

i¼1
bji�Bji

for each j, it is possible that

lim
j!1

XmsðjÞ

i¼1
aji�ðAjiÞ 6¼ lim

j!1

XmtðjÞ

i¼1
bji�ðBjiÞ:

Fortunately, there are some equivalent definitions of the Lebesgue integral that

may yet be valid with respect to monotone measures. One of them is the

Riemann integral, as is shown in Section 8.1. When it is used in this way, the

integral is usually referred to as a Choquet integral.

Definition 11.1. The Choquet integral of a nonnegative measurable function f

with respect to monotone measure � on measurable set A, denoted by

ðCÞ
Ð
A f d�, is defined by the formula

ðCÞ
ð
A

f d� ¼
ð1
0

�ðF� \ AÞd�;

where F� ¼ fxjfðxÞ � �g for � 2 ½0; 1Þ. When A ¼ X, ðCÞ
Ð
X f d� is usually

written as ðCÞ
Ð
f d�.

Since f in Definition 11.1 is measurable, we know that F� ¼ fxj fðxÞ � �g 2 F
for � 2 ½0; 1Þ and, therefore, F� \ A 2 F. So, �ðF� \ AÞ is well defined for all

� 2 ½0; 1Þ. Furthermore, fF�g is a class of sets that are nonincreasing with

Z. Wang, G.J. Klir, Generalized Measure Theory,
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respect to � and so are sets in fF� \ Ag. Since monotone measure � is a

nondecreasing set function, we know that �ðF� \ AÞ is a nondecreasing func-

tion of � and, therefore, the above Riemann integral makes sense. Thus, the

Choquet integral of a nonnegative measurable function with respect to a

monotone measure on a measurable set is well defined.
The following theorem establishes an equivalent form for the definition of

the Choquet integral with respect to finite monotone measures.

Theorem 11.1. Let �ðAÞ be finite. Then,

ðCÞ
ð
A

f d� ¼
ð1
0

�ðF�þ \ AÞd�;

where F�þ ¼ fxj f ðxÞ4�g for � 2 ½0; 1Þ:

Proof. For any given "40, we have

ðCÞ
ð
A

f d� ¼
ð1
0

�ðF� \ AÞd� ¼
ð1
0

�ðfxj fðxÞ � �g \ AÞd�

�
ð1
0

�ðfxj fðxÞ4�g \ AÞd� �
ð1
0

�ðfxj fðxÞ � �þ "g \ AÞd�

¼
ð1
0

�ðfxj fðxÞ � �þ "g \ AÞdð�þ "Þ¼
ð1
"

�ðfxj fðxÞ � �g \ AÞd�

�
ð1
0

�ðfxj fðxÞ � �g \ AÞd�� " � �ðAÞ

¼ ðCÞ
ð
A

f d�� " � �ðAÞ:

Since �ðAÞ51, letting "! 0, we get

ðCÞ
ð
A

f d� ¼
ð1
0

�ðfxj f ðxÞ4�g \ AÞd� ¼
ð1
0

�ðF�þ \ AÞd�: &

In the special case when the monotone measure is s-additive, the Choquet
integral coincides with the Lebesgue integral since the definition of the Choquet

integral is just an equivalent definition of the Lebesgue integral. So, the

Choquet integral is a real generalization of the Lebesgue integral.

Example 11.1. Let X ¼ ½0; 1�, fðxÞ ¼ x for x 2 X, F be the class of all Borel sets

in ½0; 1�, and �ðBÞ ¼ ½mðBÞ�2 for B 2 F, where m is the Lebesgue measure. We

know that � is a monotone measure on �-algebra F and f is a nonnegative

measurable function on X. According to Definition 11.1, the Choquet integral

of f with respect to � is
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ðCÞ
ð
f d� ¼

ð1
0

�ðfxj f ðxÞ � �gÞd� ¼
ð1
0

�ðfxjx � �gÞd�

¼
ð1
0

�ð½�; 1�Þd� ¼
ð1
0

½mð½�; 1�Þ�2d� ¼
ð1
0

ð1� �Þ2d�

¼
ð1
0

ð1� 2�þ �2Þ d� ¼ �j10 � �2j10 þ
1

3
�3j10

¼ 1� 1þ 1

3
¼ 1

3
:

When the integrand �ðF�Þ of the above Riemann integral cannot be expressed
by an explicit algebraic expression of �, or the expression is too complex, the
value of the Choquet integral has to be approximately calculated by using some
numerical method (e.g., the Simpson method).

11.2 Properties of the Choquet Integral

Unlike the Lebesgue integral, the Choquet integral is generally nonlinear with
respect to its integrand due to the nonadditivity of �. That is, we may have

ðCÞ
ð
ð fþ gÞ d� 6¼ ðCÞ

ð
f d�þðCÞ

ð
g d�

for some nonnegative measurable functions f and g.

Example 11.2. Let X ¼ fa; bg, F = P(X ), and

�ðAÞ ¼ 0 if A ¼ Ø

1 otherwise:

�

In this case, any function on X is measurable. Considering two functions,

fðxÞ ¼ 0 if x ¼ a

1 if x ¼ b

�

and

gðxÞ ¼
0 if x ¼ b

1 if x ¼ a;

�

we have

ðCÞ
ð
f d� ¼

ð1
0

�ðfxj f ðxÞ � �gÞd� ¼
ð1
0

�ðfbgÞd� ¼ 1� 1 ¼ 1
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and

ðCÞ
ð
g d� ¼

ð1
0

�ðfxjgðxÞ � �gÞd� ¼
ð1
0

�ðfagÞd� ¼ 1� 1 ¼ 1:

Since fþ g � 1, we obtain

ðCÞ
ð
ð fþ gÞd� ¼ ðCÞ

ð
1 d� ¼

ð1
0

�ðfxj1 � �gÞd� ¼
ð1
0

1 d� ¼ 1:

Thus, ðCÞ
Ð
ðfþ gÞd� 6¼ ðCÞ

Ð
f d�þðCÞ

Ð
g d�. This shows that the Choquet inte-

gral is not linear with respect to its integrand in general.
However, the Choquet integral has some properties of the Lebesgue integral.

These properties are listed in the following theorems.

Theorem 11.2.Let f and g be nonnegative measurable functions on (X, F, �), A and

B be measurable sets, and a be a nonnegative real constant. Then,

(1) ðCÞ
Ð
A 1 d� ¼ �ðAÞ;

(2) ðCÞ
Ð
A f d� ¼ ðCÞ

Ð
f � �Ad�;

(3) If f � g on A; then ðCÞ
Ð
A f d� � ðCÞ

Ð
A g d�;

(4) If A 	 B then, ðCÞ
Ð
A f d� � ðCÞ

Ð
B f d�;

(5) ðCÞ
Ð
A af d� ¼ a � ðCÞ

Ð
A f d�:

Proof. These results follow directly from Definition 11.1. We leave the detailed

proofs to the reader. &

Theorem 11.3. ðCÞ
Ð
A f d� ¼ 0 if �ðfxj fðxÞ40g \ AÞ ¼ 0; i:e:; f ¼ 0 on A almost

everywhere; conversely, if monotone measure � is continuous from below and

ðCÞ
Ð
A f d� ¼ 0, then �ðfxj f ðxÞ40g \ AÞ ¼ 0:

Proof. For the first conclusion, from �ðfxj f ðxÞ40g \ AÞ ¼ 0 we know that

�ðfxj f ðxÞ � �g \ AÞ � �ðfxj f ðxÞ40g \ AÞ ¼ 0

for every �40. Since � is nonnegative we have

�ðfxj f ðxÞ � �g \ AÞ ¼ 0

for every �40. Thus,

ðCÞ
ð
A

f d� ¼
ð1
0

�ðF� \ AÞd� ¼
ð1
0

�ðfxj f ðxÞ � �g \ AÞd� ¼ 0:

Now we turn to prove the second conclusion. We first use a proof by contra-

diction to show that �ðfxj f ðxÞ � �g \ AÞ ¼ 0 for any �40 if ðCÞ
Ð
A f d� ¼ 0.
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In fact, �ðfxj f ðxÞ � �g \ AÞ ¼ c40 for some �040 implies �ðfxj f ðxÞ � �g
\AÞ ¼ c for all � 2 ð0; �0� since � is nondecreasing. Thus,

ðCÞ
ð
A

f d� ¼
ð1
0

�ðfxj f ðxÞ � �g \ AÞd� �
ð�0

0

�ðfxj f ðxÞ � �g \ AÞd�

�
ð�0

0

c d� ¼ c � �040:

This contradicts ðCÞ
Ð
A f d� ¼ 0. Secondly,

fxjfðxÞ40g \ A ¼
[1
j¼1

x f ðxÞ � 1

j

����
�
\ A

� �
:

�

That is, fxj f ðxÞ40g \ A is the limit of nondecreasing set sequence

ffxj f ðxÞ � 1
jg \ Ag. By using the continuity from below of �, we have

�ðfxj f ðxÞ40g \ AÞ ¼ lim
j!1

� x f ðxÞ � 1

j

����
�
\ A

� �
¼ 0: &

�

The property given in the next theorem is called the translatability of the

Choquet integral. It is important for defining the Choquet integral with real-

valued integrand shown in Section 11.3.

Theorem 11.4. For any constant c satisfying fþ c � 0, we have

ðCÞ
ð
A

ð fþ cÞd� ¼ ðCÞ
ð
A

f d�þ c � �ðAÞ:

Proof. From the definition of the Choquet integral directly, noticing that

f ðxÞ þ c � � for every x 2 X when � is between 0 and c, we have

ðCÞ
ð
A

ð fþ cÞd� ¼
ð1
0

�ðfxj f ðxÞ þ c � �g \ AÞd�

¼
ð1
c

�ðfxj f ðxÞ þ c � �g \ AÞd�

þ
ðc
0

�ðfxj f ðxÞ þ c � �g \ AÞd�

¼
ð1
c

�ðfxj f ðxÞ � �� cg \ AÞ dð�� cÞ þ
ðc
0

�ðX \ AÞd�

¼
ð1
0

�ðfxj f ðxÞ � �g \ AÞd�þ
ðc
0

�ðAÞd�

¼ ðCÞ
ð
A

f d�þ c � �ðAÞ: &

11.2 Properties of the Choquet Integral 229



11.3 Translatable and Symmetric Choquet Integrals

The definition of the Choquet integral given in Section 11.1 is restricted to
nonnegative measurable functions. In this section, we extend it to real-valued
measurable functions. A direct idea from Section 8.1 for the Lebesgue integral
may be used, that is, decomposing a real-valued measurable function to be the
difference of two nonnegative measurable functions.

Let (X, F, �) be a monotone measure space, A be a measurable set, and f be a
real-valued measurable function on A. To simplify the discussion, without any
loss of generality, we assume that A ¼ X.

Similarly as in Section 8.1, let

f þðxÞ ¼
f ðxÞ if f ðxÞ � 0

0 if f ðxÞ5 0

�

and

f �ðxÞ ¼
�f ðxÞ if f ðxÞ � 0

0 if f ðxÞ4 0:

�

Both fþ and f� are nonnegative measurable functions. Then, we can give a
definition of the Choquet integral for a real-valued measurable function with
respect to a monotone measure.

Definition 11.2. The symmetric Choquet integral of real-valued measurable
function fwith respect tomonotonemeasure �, denoted by ðCsÞ

Ð
f d�, is defined

by the difference

ðCsÞ
ð
f d� ¼ ðCÞ

ð
f þd�� ðCÞ

ð
f � d�;

if not both terms on the right-hand side are infinite.
It is evident that the symmetric Choquet integral is symmetric. That is,

ðCsÞ
ð
ð�f Þd� ¼ �ðCsÞ

ð
f d�

for any real-valued measurable function f. Unfortunately, such an integral loses
an important and very useful property, translatability, which the Choquet
integral with nonnegative integrand has. It means that equality

ðCsÞ
ð
ðfþ cÞd� ¼ ðCsÞ

ð
f d�þ c � �ðXÞ;

where c is a real number, may not be always true.
There is an alternative way to extend the Choquet integral for real-valued

measurable functions, in which, the translatability is used directly. First, we define
the translatable Choquet integral for lower-bounded measurable functions.
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Definition 11.3.Let �ðX Þ51 and f be ameasurable function on (X, F, �) with a
lower bound b; that is, fðxÞ � b for all x 2 X. The translatable Choquet integral

of f with respect to �, denoted by ðCtÞ
Ð
f d�, is

ðCtÞ
ð
f d� ¼ ðCtÞ

ð
ð f� bÞd�þ b � �ðXÞ: (11:1)

This definition is unambiguous. That is,

ðCtÞ
ð
ð f� b1Þd�þ b1 � �ðXÞ ¼ ðCtÞ

ð
ð f� b2Þd�þ b2 � �ðXÞ

if both b1 and b2 are lower bounds of function f.

Theorem 11.5. The translatable Choquet integral with lower-bounded integrand is

nondecreasing with respect to its integrand. That is, for two lower-bounded

measurable function f and g,

ðCtÞ
ð
f d� � ðCtÞ

ð
g d�

if f � g:

Proof.Let b � f � g. Then 0 � f� b � g� b. By using the result shown in (3) of

Theorem 11.2, we know that

ðCtÞ
ð
ð f� bÞd� � ðCtÞ

ð
ðg� bÞd�:

Hence, from the definition of the translatable Choquet integral for nonnegative

measurable functions, we have

ðCtÞ
ð
f d� ¼ ðCtÞ

ð
ð f� bÞd�þ b � �ðXÞ � ðCtÞ

ð
ðg� bÞd�þ b � �ðXÞ

¼ ðCtÞ
ð
g d�: &

Now, by using the translatable Choquet integral with lower-bounded

integrand, we can define the translatable Choquet integral for real-valued

measurable functions that are not necessarily lower bounded.

Definition 11.4. Let �ðXÞ51 and f be a real-valued measurable function on (X,

F, �). The translatable Choquet integral of f with respect to �, denoted by

ðCtÞ
Ð
f d�, is

ðCtÞ
ð
f d� ¼ lim

b!�1
ðCtÞ

ð
fbd�;
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where function fb is defined as

fbðxÞ ¼
f ðxÞ if f ðxÞ � b

b otherwise

�
; 8b 2 ð�1; 0�

The limit in Definition 11.4 exists (including negative or positive infinities)

due to Theorem 11.5 and the fact that f fbg is nondecreasing with respect to b.

Furthermore, it is not difficult to show that the translatable Choquet integral

with real-valued integrand is also nondecreasing, that is, for any two real-

valued measurable function f and g satisfying f � g, we have

ðCtÞ
ð
f d� � ðCtÞ

ð
g d�:

Theorem 11.6. Let f be a measurable function on (X, F, �). Then,

ðCtÞ
ð
ð fþ cÞd� ¼ ðCtÞ

ð
f d�þ c � �ðXÞ

for any real number c.

Proof. Let g ¼ fþ c and

gbðxÞ ¼
gðxÞ if gðxÞ � b

b otherwise

�
; 8b 2 ð�1; 0�

We have gb ¼ fb�c þ c. Thus,

ðCtÞ
ð
ð fþ cÞd� ¼ ðCtÞ

ð
g d�

¼ lim
b!�1

ðCtÞ
ð
gbd�

¼ lim
b!�1

ðCtÞ
ð
ð fb�c þ cÞd�

¼ lim
b!�1

½ðCtÞ
ð
fb�cd�þ c � �ðX Þ�

¼ lim
b!�1

ðCtÞ
ð
fb�cd�þ c � �ðX Þ

¼ ðCtÞ
ð
f d�þ c � �ðX Þ: &

This theorem shows that the translatable Choquet integral introduced in

Definition 11.4 for real-valued measurable functions keeps the translatability.

232 11 Choquet Integrals



Indeed, an alternative definition of the translatable Choquet integral for real-

valued measurable functions can be also obtained by using the corresponding

equivalent definition of the Lebesgue integral for real-valued measurable func-

tions shown in Section 8.1. That is,

ðCtÞ
ð
f d� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�: (11:2)

The proof of the equivalence of these two definitions for the translatable

Choquet integral is left to the reader as an exercise. Of course, similar to

Theorem 11.1, this equivalent definition for the translatable Choquet integral

can also be expressed as

ðCtÞ
ð
f d� ¼

ð0
�1
½�ðF�þÞ � �ðXÞ�d�þ

ð1
0

�ðF�þÞd�:

However, this form is not symmetric. That is, ðCtÞ
Ð
ð�f Þd� may not be

�ðCtÞ
Ð
f d�. In fact, we have the following theorem.

Theorem 11.7. Let �ðXÞ51 and f be a real-valued measurable function on (X,

F, �). Then

ðCtÞ
ð
ð�f Þd� ¼ �ðCtÞ

ð
f d��

where �� is the dual of � defined by

��ðAÞ ¼ �ðXÞ � �ð �AÞ 8A 2 F:

Proof. We use Theorem 11.1 where an equivalent definition of the Choquet

integral with real-valued integrand is given.

ðCtÞ
ð
ð�f Þd� ¼

ð0
�1
½�ðfxj � fðxÞ � �gÞ��ðXÞ�d�þ

ð1
0

�ðfxj � fðxÞ � �gÞd�

¼
ð0
�1
½�ðfxj � fðxÞ4�gÞ � �ðXÞ�d�þ

ð1
0

�ðfxj � fðxÞ4�gÞd�

¼
ð0
�1
½�ðfxj f ðxÞ5� �gÞ��ðXÞ�d�þ

ð1
0

�ðfxj f ðxÞ5� �gÞd�

¼
ð�1
0

½�ðfxj f ðxÞ5� �gÞ � �ðX Þ�dð��Þ

þ
ð 0

1
�ðfxj f ðxÞ5� �gÞdð��Þ
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¼
ð1
0

½�ðfxj f ðxÞ5�gÞ � �ðXÞ�dð�Þ þ
ð0
�1

�ðfxj f ðxÞ5�gÞdð�Þ

¼
ð1
0

��ðfxj f ðxÞ � �gÞdð�Þþ
ð0
�1
½��ðfxj f ðxÞ � �gÞ� ��ðXÞ�dð�Þ

¼ �ðCtÞ
ð
f d��: &

In comparison with the symmetric Choquet integral, the translatable Choquet

integral is more natural since the symmetric one violates the original translat-

ability, though it has a new property of symmetry. Moreover, the translatable

Choquet integral for real-valued measurable functions is more reasonable than

the symmetric Choquet integral in real problems as we can see in the next

section. Thus, from this point, we simply call it the Choquet integral and omit

the subscript t from the integral’s type indicator ðCtÞ. That is, we use the same

symbol as we did for the Choquet integral with nonnegative integrand intro-

duced in Section 11.1. Also, we use only the translatable one in the applications

discussed in Chapter 15.

11.4 Convergence Theorems

Let the set of all real-valued measurable functions for which the Choquet

integral is well defined be denoted here by G and let its subset consisting of all

measurable functions having finite value of the Choquet integral be denoted by

G0. Furthermore, we assume in this section that monotone measure � on (X, F)

is finite and continuous.
Let f 2 G and f fng 	 G. To investigate the convergence theorems of

sequences of Choquet integrals, besides the convergences discussed in Chapter

7, we also need a convergence concept of measurable function sequence based

on the Choquet integral.

Definition 11.5. f fng is mean convergent (with respect to the Choquet integral)

to f, denoted by fn m:c:��! f, if

ðCÞ
ð

fn � fj jd�! 0:

The new concept of convergence in Definition 11.5 is related to other con-

cepts of convergence introduced in Chapter 7, as expressed in the following

theorem.

Theorem 11.8. Uniform convergence implies mean convergence, while the latter

implies convergence in measure.
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Proof. The first implication follows from (1), (3), and (5) of Theorem 11.2. To

prove the second implication, we use a proof by contradiction. Suppose that

f fng does not converge in measure to f, that is, there exist �040, "40, and a

sequence fnig such that

� fni � f j � �0j Þ � " i ¼ 1; 2; ::: :ð

Since �ðj fni � f j � �Þ is nonincreasing with respect to �,

ð1
0

�ð fni � fj j � �Þd� �
ð �0

0

�ð fni � fj j � �Þd� � �0 � "40

for i = 1, 2, .... We obtain a contradiction with fn m:c:���! f. &

By using an approach similar to the one taken in Theorem 9.6 for the Sugeno

integral, we obtain the following generalization of classical Fatou’s lemma.

Lemma 11.1. Let A 2 F. If there exists g 2 G0 such that fn � g for n = 1, 2, . . . ,
then

ðCÞ
ð
A

ðlim n fnÞd� � lim nðCÞ
ð
A

fnd�:

The condition that � be a continuous monotone measure in Lemma 11.1 can

be reduced to the condition that � be a lower semicontinuous monotone

measure. Furthermore, a generalization of classical bounded convergence the-

orem can be established. We omit the proof here since it is similar to the one

established for Sugeno integral sequences in Theorem 9.7.

Theorem 11.9. Let A 2 F. If fn ! f and there exists g 2 G0 such that j fnj � g, for

n = 1, 2, . . . , on A, then

ðCÞ
ð
A

fnd�! ðCÞ
ð
A

fd�:

Lemma 11.2. Let A 2 F and f, g 2 G. If � is a null-additive and f = g a. e., then

ðCÞ
ð
A

fd� ¼ ðCÞ
ð
A

gd�:

Proof. Since fxj f ðxÞ � �g	 fxjgðxÞ � �g [ fxj f ðxÞ 6¼ gðxÞg and �ðfxj f ðxÞ 6¼
gðxÞgÞ ¼ 0, by the monotonicity and the null-additivity of �, we have

�ðfxj f ðxÞ � �g \ AÞ � �ððfxjgðxÞ � �g \ AÞ [ fxj f ðxÞ 6¼ gðxÞgÞ

¼ �ðfxjgðxÞ � �g \ AÞ:
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From the definition of the Choquet integral, we directly obtain

ðCÞ
ð
A

fd� � ðCÞ
ð
A

gd�:

The inverse inequality can be obtained in a similar way. &

The following theorem is called an almost everywhere convergence theorem.

Theorem 11.10. Let � be a null-additive and A 2 F. If f n �!
a:e:

f and there exists g 2
G0 such that j fnj � g a: e:, for n ¼ 1; 2; . . . ; on A, then

ðCÞ
ð
A

fnd�! ðCÞ
ð
A

fd�:

Proof. The result follows directly from Theorem 11.9, Lemma 11.2, and the fact

that a countable union of �-null sets is still a �-null set when � is a null-additive

monotone measure. &

To formulate and prove an important theorem regarding the convergence for

a sequence of Choquet integrals, we need a lemma and a new concept of equi-

integrability for a sequence of measurable functions as follows.

Lemma 11.3. If � is autocontinuous, then for any class C 	 F that is totally

ordered according to set inclusion and any "4 0, there exists �4 0 such that

�ðA [ BÞ � �ðAÞ þ "

whenever A 2C, B 2 F, and �(B)5 �; similarly, for any totally ordered classC of

sets in F and any "4 0, there exists �4 0 such that

�ðA� BÞ � �ðAÞ � "

whenever A 2 C, B 2 F, and �(B) 5 �.
The proof of Lemma 11.3 is omitted here. The reader may consult [Wang,

1984] for details. The first implication in Lemma 11.3 is called local-uniform

autocontinuity from above of �, while the second one is called local-uniform

autocontinuity from below of �. When � satisfies both these implications, it is

called local-uniformly autocontinuous.

Definition 11.6. Let A 2 F. Sequence f fng is called equi-integrable on A if, for

any given "4 0, there exists Nð"Þ4 0 such that
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ðCÞ
ð
A

fþn d�þðCÞ
ð
A

f�n d���
ðN
0

�ðFn
� \AÞd��

ð 0
�N
½�ðFn

� \AÞ��ðXÞ�d�þ "

for all n ¼ 1; 2; . . . ; where �� is the dual of �.
It is obvious that ffng is equi-integrable if there exists g 2 G0 such that

fnj j � g for all n ¼ 1; 2; . . . :

Theorem 11.11. Let A 2 F; f fng be equi-integrable, and f2 G0. If fn �!
�

f and � is

autocontinuous, then

ðCÞ
ð
A

fnd�! ðCÞ
ð
A

f d�:

Proof. There is no loss of generality in assuming A ¼ X, f � 0, and fn � 0,

n ¼ 1; 2; . . . : Denote �ðXÞ ¼ c. For any given " 4 0, by using the equi-

integrability of ffng, we can find N 4 0 such that

ðCÞ
ð
fn d� �

ðN
0

�ðFn
�Þd�þ "

for any n ¼ 1; 2; . . . : Since fF�j� � 0g is totally ordered according to set inclu-

sion and, by Lemma 11.3, � is local-uniformly autocontinuous from above, we

know from above, we know from

Fn
�þ" 	 F� [ xj fnðxÞ � f ðxÞj j � "f g

and fn �!
�

f that there exists n14 0 for the given " such that

�ðFn
�þ"Þ � �ðF�Þ þ "=N

whenever n4n1 and � � 0. Thus,

ðCÞ
ð
fnd� �

ðN
0

�ðFn
�Þd�þ " �

ðN
"

�ðFn
�Þd�þ c � "þ " ¼

ðN�"
0

�ðFn
�þ"Þd�þ c � "þ "

�
ðN�"
0

½�ðF�Þ þ "=N�d�þ c � "þ " �
ðN�"
0

�ðF�Þd�þ c � "þ 2"

� ðCÞ
ð
fd�þ c � "þ 2"

for any n4n1.
Conversely, for any given "4 0, by using the integrability of f, we can find

N4 0 such that

ðCÞ
ð
fd�� " �

ðN
0

�ðF�Þd�:
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Since � is local-uniformly autocontinuous from below by Lemma 11.3, we

know from

Fn
��" 
 F� � xj fnðxÞ � f ðxÞj j � "f g

and fn �!
�

f that there exists n240 for the given " such that

�ðFn
��"Þ � �ðF�Þ � "=N

whenever n4n2 and � � ". Thus,

ðCÞ
ð
fnd� �

ðN
0

�ðFn
�Þd� �

ðN
"

�ðFn
��"Þd� �

ðN
"

½�ðF�Þ � "=N�d�

�
ðN
0

�ðF�Þd�� c � "� " � ðCÞ
ð
fd�� c � "� 2"

for any n4n2.
Combining these two inequalities, we obtain

ðCÞ
ð
fnd�! ðCÞ

ð
f d�: &

From Theorems 11.8 and 11.11, we obtain the following corollary.

Corollary 11.1. Let A 2 F, f fng be equi-integrable, and f 2 Go. If fn �!
m:c:

f and � is

autocontinuous, then

ðCÞ
ð
A

fnd�! ðCÞ
ð
A

f d�:

The following theorem establishes the inverse result of Theorem 11.11. Thus,

the autocontinuity of finite monotone measure � plays a necessary and suffi-

cient condition for the convergence in monotone measure theorem of the

Choquet integral sequence.

Theorem 11.12. If ðCÞ
Ð
A fnd�! ðCÞ

Ð
A fd�, whenever A 2 F; ffng is equi-

integrable, f 2 G0, and fn �!
�

f, then � is autocontinuous.

Proof. For any given A 2 F and fBng 	 F with �ðBnÞ ! 0, taking f ¼ �A and

fn ¼ �A[Bn
, n ¼ 1; 2; . . . , we have

�ðj fn � f j � "Þ ¼ �ðBnÞ ! 0

for any " 2 ð0; 1Þ. This means that fn �!
�

f. Since

ðCÞ
ð
fd� ¼ ðCÞ

ð
�Ad� ¼ �ðAÞ;

238 11 Choquet Integrals



and

ðCÞ
ð
fnd� ¼ ðCÞ

ð
�A[Bn

d� ¼ �ðA [ BnÞ;

we obtain �ðA [ BnÞ ! �ðAÞ from the assumption that ðCÞ
Ð
fnd�! ðCÞ

Ð
fd�.

This shows that � is autocontinuous. &

The following theorem is called a uniform convergence theorem.

Theorem 11.13. Let A 2 F. If fn �!
u:

f on A, then ðCÞ
Ð
A fnd�! ðCÞ

Ð
A fd�.

Proof. For any given "40, there exists n0 such that

f ðxÞ � " � fnðxÞ � f ðxÞ þ "

for any n4n0 and x 2 A. Using Theorem 11.2.(3) and Theorem 11.4, we have

ðCÞ
ð
A

f d�� " � �ðAÞ � ðCÞ
ð
A

fnd� � ðCÞ
ð
A

f d�þ " � �ðAÞ

for any n4n0: This means that ðCÞ
Ð
A fnd�! ðCÞ

Ð
A f d� since �ðAÞ51. &

11.5 Choquet Integrals on Finite Sets

In any database, the number of attributes is always finite. Let

X ¼ fx1; x2; . . . ; xng denote a finite set of attributes. Then, ðX;PðXÞÞ is a

measurable space. Each record (or, observation) of x1; x2; . . . ; xn, denoted by
fðx1Þ; fðx2Þ; . . . ; fðxnÞ respectively, is just a real-valued function f on X. Since

the power set of X is taken as the s-algebra, any real-valued function on X is

measurable. A monotone measure � defined on PðXÞ is usually used to describe

the joint importance as well as the individual importance of attributes in X

towards a certain target. To obtain a global contribution from f towards the
target, we need an aggregation tool. Due to the nonadditivity of �, as a common

aggregation tool the Lebesgue integral fails. In this case, we saw in Section 11.1

that the Choquet integral can replace the Lebesgue integral.
The Choquet integral of function f with respect to monotone measure � is

defined via a Riemann integral as

ðCÞ
ð
f d� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�:

Since X is a finite set we may develop a simple formula for calculating the value

of ðCÞ
Ð
f d� once f and � are given.
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Let b1 ¼ min
1�i�n

fðxiÞ and b2 ¼ max
1�i�n

fðxiÞ. Since the values of f is between

b1 and b2, we have F� ¼ X when � � b1 and F� ¼ Ø when �4b2. Hence, by

using the translatability of the Choquet integral, we have

ðCÞ
ð
f d� ¼ ðCÞ

ð
ðf� b1Þd�þ b1 � �ðXÞ

¼
ðb2�b1
0

�ðfxj f ðxÞ � b1 � �gÞd�þ b1 � �ðXÞ:

If the values of function f, f fðx1Þ; fðx2Þ; . . . ; fðxnÞg, are rearranged into a
nondecreasing order as,

b1 ¼ f ðx�1Þ � f ðx�2Þ � � � � � f ðx�nÞ ¼ b2

where ðx�1; x�2; . . . ; x�nÞ is a permutation of fx1; x2; . . .; xng, then set
fxj f ðxÞ � b1 � �g is always fx�i ; x�iþ1; . . . ; x�ngwhen � 2 ½ f ðx�i�1Þ � b1; f ðx�i Þ �
b1� for i ¼ 2; 3; . . . ; n. Thus, we have

ðCÞ
ð
f d� ¼

Xn
i¼2

f ðx�i Þ � fðx�i�1Þ
� 	

� � x�i ; x
�
iþ1; . . . ; x�n


 �� 
þ b1 � �ðXÞ

¼
Xn
i¼1

f ðx�i Þ � f ðx�i�1Þ
� 	

� � x�i ; x
�
iþ1; . . . ; x�n


 �� 
(11:3)

with a convention fðx�0Þ ¼ 0:
When � is a general measure, that is, when � is not necessarily nondecreas-

ing, though �ðF�Þ may not be monotonic with respect to �, it is still with
bounded variation. So, the Riemann integrals

Ð 0
�1 ½�ðF�Þ � �ðXÞ�d� andÐ1

0 �ðF�Þd� exist. If these integrals are not both infinite, the Choquet integral
ðCÞ
Ð
f d� is also well defined. The calculation formula given above is also

available for the Choquet integral with respect to general measures.
Recall (see Section 3.4) that any signed general measure � can be decom-

posed as the difference of two general measures: � ¼ �þ � ��, where

�þðAÞ ¼ �ðAÞ if �ðAÞ � 0

0 otherwise

�

and

��ðAÞ ¼ ��ðAÞ if �ðAÞ50

0 otherwise:

�
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Thus, we may define the Choquet integral of function f with respect to signed
general measure � by

ðCÞ
ð
f d� ¼ðCÞ

ð
f d�þ � ðCÞ

ð
f d��:

Hence,

ðCÞ
ð
f d� ¼

ð0
�1
½�þðF�Þ � �þðXÞ�d�þ

ð1
0

�þðF�Þd�
� �

�
ð 0

�1
½��ðF�Þ � ��ðXÞ�d�þ

ð1
0

��ðF�Þd�
� �

¼
ð 0

�1
½ð�þðF�Þ � ��ðF�ÞÞ � ð�þðXÞ � ��ðXÞÞ�d�

þ
ð1
0

½�þðF�Þ � ��ðF�Þ�d�

¼
ð 0

�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�
� �

:

That is, we have the same expression as before. Moreover, the calculation
formula for the Choquet integral with respect to a signed general measure
is the same as the one for the Choquet integral with respect to a general
measure.

Now, we can also see that using the translatable Choquet integral for real-
valued functions is rather convenient for generalizing it and its calculation.

Example 11.3. Recall Example 8.2 where three workers, x1, x2, and x3, work
separately for 6, 3, and 4 days, respectively. If they work together sometimes, we
must consider their joint efficiencies to calculate the total number of the
manufactured toys in the given period of time. We may use �ðfx1; x2gÞ to
denote the joint efficiency of x1 and x2. Similarly, �ðfx1;x3gÞ, �ðfx2; x3gÞ,
and �ðXÞ are joint efficiencies of x1 and x3, x2, and x3, all respectively. Assume
that �ðfx1; x2gÞ ¼ 14; �ðfx1; x3gÞ ¼ 13, �ðfx2; x3gÞ ¼ 9, and �ðXÞ ¼ 17. Then,
with �ðfx1gÞ ¼ 5, �ðfx2gÞ ¼ 6, �ðfx3gÞ ¼ 7, and �ðØÞ ¼ 0 in Example 8.2,
� : PðXÞ ! ð�1;1Þ is a signed general measure (indeed, is a general measure,
since it is nonnegative). It is nonadditive. For instance, �ðfx1; x2gÞ4
�ðfx1gÞ þ �ðfx2gÞ. This inequality means that workers x1 and x2 cooperate
well. The nonadditivity of � describes the interaction among the contribution
rates of these three workers towards the total amount of their manufactured
toys. Thus, the total number of manufactured toys by these three workers in the
given period depends on their cooperation. Assume that they work in such a
manner: they start the work together on the first day of the week and continue
their work until their respective terminal day. That is, all of them work together
for the first 3 days; then x1 and x3 work together for one more day; finally x1
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works alone for two other days. Thus, the total amount of toys manufactured

by these three workers in this week is

3� 17þ 1� 13þ 2� 5 ¼ 74:

Regarding their efficiencies as a signed general measure � and the number of

working days as a function f on the set of these three workers, the above total

amount of the manufactured toys is exactly the value of the Choquet integral of
f with respect to �. In fact, from fðx1Þ ¼ 6, fðx2Þ ¼ 3, and fðx3Þ ¼ 4, we have

x�1 ¼ x2, x
�
2 ¼ x3, and x�3 ¼ x1. According to the calculation formula of the

Choquet integral, we have

ðCÞ
ð
f d� ¼

X3
i¼1

fðx�i Þ � fðx�i�1Þ
� 	

� � x�i ; x
�
iþ1; . . . ; x�n


 �� 

¼ ½ fðx2Þ � 0� � �ðXÞ þ ½ fðx3Þ � fðx2Þ� � �ðfx3; x1gÞ

þ ½ fðx1Þ � fðx3Þ� � �ðfx1gÞ

¼ ð3� 0Þ � 17þ ð4� 3Þ � 13þ ð6� 4Þ � 5

¼ 74:

We obtain the same total number of manufactured toys.
According to the general view of integration on finite sets expressed in

Section 8.4, the Choquet integral with nonnegative integrand with respect to a
signed monotone measure on a finite set facilitates a special type of integration.

The partitioning rule corresponding to the Choquet integral can be described as

follows: for any given nonnegative function f : X! ½0;1Þ, partition
p : PðXÞ � fØg ! ½0;1Þ is obtained by

pðAÞ ¼ f ðx �i Þ � f ðx �i�1Þ if A ¼ fx�i ; x�iþ1; . . . ; x�ng for some i ¼ 1; 2; . . . ; n

0 otherwise

�

for every A 2 PðXÞ � fØg; where ðx�1; x�2; . . . ; x�nÞ is a permutation of

fx1; x2; . . . ; xng such that f ðx�1Þ � f ðx�2Þ � � � � � f ðx�nÞ and f ðx�0Þ ¼ 0 as the
convention made above. It is easy to verify that

X
A:x2A	X

pðAÞ ¼ f ðxÞ 8x 2 X:

So, p is a partition of f: In such a partition there are only at most n sets A

with pðAÞ40. Regarding both set functions � and p as ð2n � 1Þ-
dimensional vectors, we have ðCÞ

Ð
f d� ¼ p � �.

Example 11.4. Let us consider again the data specified in Example 11.3. The
partition of f corresponding to the Choquet integral is illustrated in Fig. 11.1

where the black part, grey part, and the light part show pðXÞ ¼ 3,
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pðfx1; x3gÞ ¼ 1, and pðfx1gÞ ¼ 2, respectively. The values of p at other sets are
zeros. Geometrically, this partitioning rule divides function f horizontally.

In comparison with the Lebesgue integral, the horizontal partitioning rule
corresponding to the Choquet integral takes the coordination of the attributes
into account maximally, that is, the manner of the partition is to make the
coordination among the attributes as much as possible, while the vertical
partitioning rule corresponding to the latter takes the coordination into account
minimally (zero coordination). These are two extreme cases regarding the
coordination among the attributes.

11.6 An Alternative Calculation Formula

In data mining, a learning data set is given while the values of signed general
measure � need to be optimally estimated. This is an inverse problem of the
information fusion. In such a problem, the calculation formula shown in the last
section is not convenient since the value of the Choquet integral is not expressed
as an explicit linear function of the values of �. Fortunately, the Choquet
integral of real-valued function f with respect to a signed general measure �
can be expressed by the alternative formula

ðCÞ
ð
fd� ¼

X2 n�1

j¼1
zj �j; (11:4)

where �j ¼ �ð
S
ji¼1
fxigÞ if j is expressed in terms of binary digits jn jn�1 � � � j1 for

every j ¼ 1; 2; . . . ; 2n � 1 and

zj ¼
min

i:frcð j=2iÞ E½1=2; 1Þ
f ðxiÞ � max

i:frcðj=2iÞE½0; 1=2Þ
f ðxiÞ; if it is40 or j ¼ 2n � 1

0; otherwise

(
(11:5)

for j ¼ 1; 2; . . . ; 2n � 1.

f(x)

x2x1 x3

3

6

4

Fig. 11.1 The partition of
f corresponding to the
Choquet integral
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In the last formula,frcð j=2iÞdenotes the fractional part of j=2i, and we need the

convention that the maximum taken on the empty set is zero. The formula can

also be written in a simpler form via the replacement fi j frcð j=2iÞ 2 ½1=2; 1Þg ¼
fi j ji ¼ 1g and fi j frcð j=2iÞ 2 ½0; 1=2Þg ¼ fi j ji ¼ 0g. The significance of this
alternative formula is that the value of the Choquet integral is now expressed as

a linear function of the values of �. Hence, when the data set of the values of the

integrand f and the corresponding value of the integral are available, an alge-

braic method can be used to estimate the optimal values of �. So, in data

mining, such as in nonlinear multiregressions, this new calculation formula is

more convenient than formula (11.3) shown in the last section, though the latter

is convenient in information fusion.
As for the validation of this new formula, rewriting the old formula as

ðCÞ
ð
f d� ¼

Xn
i¼1
½ f ðx�i Þ � f ðx�i�1Þ� � �ðfx�i ; x�iþ1; . . . ; x�ngÞ ¼

X2 n�1

j¼1
aAj
� �ðAjÞ;

where

Aj ¼
[
ji¼1
fxig

and

aAj
¼ f ðx�i Þ � f ðx�i�1Þ if Aj ¼ fx�i ; x�iþ1; . . . ; x�ng for some i ¼ 1; 2; . . . ; n

0 otherwise

�

¼
min
x2Aj

f ðxÞ �max
x =2Aj

f ðxÞ; if Aj ¼ fx�i ; x�iþ1; . . . ; x�ng for some i ¼ 1; 2; . . . ; n

0; otherwise

(

¼
min
x2Aj

f ðxÞ �max
x =2Aj

f ðxÞ; if Aj ¼ fx�i ; x�iþ1; . . . ; x�ng for some i ¼ 1; 2; . . . ; n

0; min
x2Aj

f ðxÞ �max
x =2Aj

f ðxÞ � 0

8<
:

for j ¼ 1; 2; . . . ; 2n�1, and noticing that ji ¼ 1 if and only if xi 2 Aj, we can see

that the new formula is equivalent to the old one. In the above expression for

aAj
, we need the convention that

max
x =2X

f ðxÞ ¼ max
Ø

f ðxÞ ¼ 0:

Also we should note that in the above expression the function is defined in two

parts. They overlap when x�i�1 ¼ x�i for some i ¼ 1; 2; . . . ; n. Fortunately, they
are both zero at the overlapped j and, therefore, these two parts are consistent.
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Notes

11.1. It seems that the name ‘‘Choquet integral’’ was coined by Schmeidler
[1986] to give credit to Gustave Choquet, who introduced the integral in
his seminal work [Choquet, 1953–54]. It turns out, however, that the
integral was introduced first by Giuseppe Vitali in a paper published in
Italian in 1925, which was only recently translated into English [Vitali,
1997]. Since the late 1980s, the Choquet integral has been discussed in
the literature quite extensively. A few representative references are
[Benvenuti andMesiar, 2000; De Campos and Bolaños, 1992; Denneberg,
1994a, 2000a; Grabisch et al., 2000; Grabisch and Labreuche, 2005;
Krätschmer, 2003a; Morufushi and Sugeno, 1989, 1991a,b, 1993; Pap,
1995; Wang et al., 1996b, 2000b; Wang, 1997; Wang and Klir, 1997a].

11.2. The symmetric Choquet integral was introduced by Šipoš [1979a,b] and is
often referred to in the literature as the Šipoš integral. Properties of this
integral are thoroughly examined by Denneberg [1994a], Mesiar and
Šipoš [1994], and Pap [1995].

11.3. The Choquet integral is usually discussed in the context of monotone
measures. Murofushi et al. [1994] discuss the meaning of the Choquet
integral with respect to general measures.Wang andHa [2006] investigate
Choquet integrals of fuzzy-valued functions, and Wang et al. [2006a]
investigate Choquet integrals with respect to monotone measures defined
on L-fuzzy sets.

Exercises

11.1. Let X ¼ ½0; 1�, fðxÞ ¼ x for x 2 X, F be the class of all Borel sets in ½0; 1�,
and �ðBÞ ¼ ½mðBÞ�1=2 for B 2 F, where m is the Lebesgue measure.
Calculate ðCÞ

Ð
f d�.

11.2. Prove Theorem 11.2.
11.3. Let (X, F, �) be a monotone measure space, and let f and g be real-valued

measurable functions. Prove that ðCsÞ
Ð
f d� � ðCsÞ

Ð
g d� if f � g.

11.4. Find a counterexample to show that the symmetric Choquet integral with
real-valued integrand is not translatable in general.

11.5. Prove the unambiguity of Definition 11.3, that is, when � is a finite
monotone measure,

ðCtÞ
ð
ð f� b1Þd�þ b1 � �ðXÞ ¼ ðCtÞ

ð
ð f� b2Þd�þ b2 � �ðXÞ

if both b1 and b2 are lower bounds of function f.
11.6. If we use

ðCtÞ
ð
f d� ¼

ð 0

�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�
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to define the Choquet integral with real-valued integrand, show that it is
translatable and, therefore, this definition is equivalent to Definitions
11.3 and 11.4.

11.7. The way to express a signed general measure as the difference of two
general measures is not unique. Show that if a signed general measure �
can also be expressed as � ¼ �1 � �2, where both �1 and �2 are general
measure, then

ðCÞ
ð
f d� ¼ðCÞ

ð
f d�þ � ðCÞ

ð
f d�� ¼ ðCÞ

ð
f d�1 � ðCÞ

ð
f d�2:

11.8. Let X ¼ fx1; x2; . . . ; x5g. The values of � and f are shown in Table 11.1.
Find the value of ðCÞ

Ð
f d�.

Table 11.1. Given functions in Exercise 11.8

Set A �ðAÞ Set A �ðAÞ xi f ðxiÞ
Ø 0 fx5g 4 x1 3

fx1g 2 fx1; x5g 7 x2 7

fx2g 3 fx2; x5g 3 x3 5

fx1; x2g 4 fx1; x2; x5g 6 x4 2

fx3g 1 fx3; x5g 6 x5 1

fx1; x3g 5 fx1; x3; x5g 8

fx2; x3g 4 fx2; x3; x5g 5

fx1; x2;x3g 6 fx1; x2; x3;x5g 9

fx4g 5 fx4; x5g 7

fx1; x4g 3 fx1; x4; x5g 7

fx2; x4g 4 fx2; x4; x5g 6

fx1; x2;x4g 7 fx1; x2; x4;x5g 8

fx3; x4g 6 fx3; x4; x5g 5

fx1; x3;x4g 8 fx1; x3; x4;x5g 6

fx2; x3;x4g 8 fx2; x3; x4;x5g 9

fx1; x2;x3;x4g 9 X 8

11.9. The properties of the Choquet integral presented in Section 11.2 are given
under the assumption that the involved set function � is a monotone
measure. When the set function is a general measure or a signed general
measure, identify those properties which no longer hold.
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Chapter 12

Upper and Lower Integrals

12.1 Definitions

Throughout this chapter, unless specified otherwise, we assume that (X, F, �) is
a general measure space. That is,X is a nonempty set, F is a �-algebra of subsets
of X, and � : F! ½0; 1Þ is a general measure.

Definition 12.1. Given a measurable function f : X! ½0; 1Þ and a set A 2 F,
the upper integral of fwith respect to � on A, in symbol ðUÞ

Ð
A f d�, is defined as

ðUÞ
ð
A

f d� ¼ lim
"!0þ

U";

where

U" ¼ sup
X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej

�����
(

� f� ";Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

) (12:1)

for " > 0; where �Ej
denotes the characteristic function of Ej and F \ A ¼

fB \ AjB 2 Fg. Similarly, the lower integral of f with respect to � on A,
ðLÞ
Ð
A f d� , is defined as

ðLÞ
ð
A

f d� ¼ lim
"!0þ

L";

where

L" ¼ inf
X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej

�����
(

� fþ ";Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

) (12:2)

for " > 0.

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_12, � Springer ScienceþBusiness Media, LLC 2009
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In the above definition, functions expressed in the form
P1
j¼i

lj � �Ej
, where

Ej 2 F and lj � 0 for j ¼ 1; 2; . . . , are called elementary functions. In

Eq. (12.1) and Eq. (12.2), the requirement of the measurability of function f is

necessary to guarantee the existence of some elementary functions (but not

simple functions since fmay not be upper bounded!) between f and fþ ". When

the given function is allowed to be non-measurable, we may use simple func-

tions to give relatively looser concepts of widened-upper integral and widened-

lower integral as follows.

Definition 12.2. Let f be a nonnegative function on X and set A 2 F. The

widened-upper integral, denoted by ðWÞ
Ð
A f d�, is defined as

ðWÞ
ð
A

f d� ¼ sup
Xk
j¼1

lj � �ðEjÞ f �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A;

�����
(

lj� 0; j ¼ 1; 2; . . . ; k

)
;

while the widened-lower integral of fwith respect to �, denoted by ðWÞ
Ð
A f d�, is

defined as

ðWÞ
ð
A

f d� ¼ lim
N!1

ðWÞ
ð
A

fN d�;

where fN ¼ minðN; f Þ and

ðWÞ
ð
A

fN d� ¼ inf
Xk
j¼1

lj � �ðEjÞ fN �
Xk
j¼1

lj � �Ej
;

�����
(

k� 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

)
:

When f is bounded, wemay use f to replace fN in the above definition. Similar

to the Lebesgue integral and the Choquet integral, we omit the subscript A in

the symbol of the integral when A= X.When X contains only a few attributes,

such as 2 or 3, it is not difficult to find the maximum and the minimum in above

definitions by hand.

Example 12.1. We use the data given in Example 11.3 for three workers,

x1; x2; and x3, who manufacture toys. Assume that the workers’ individual and

group efficiencies are expressed by the following general measure: �ðfx1gÞ ¼ 5;
�ðfx2gÞ ¼ 6; �ðfx3gÞ ¼ 7; �ðfx1; x2gÞ ¼ 14; �ðfx1; x3gÞ ¼ 13; �ðfx2; x3gÞ ¼ 9;
�ðfx1; x2; x3gÞ ¼ 17. Assume also that their working days in a specified week are

expressed by the function
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fðxÞ ¼
6 if x ¼ x1

3 if x ¼ x2:

4 if x ¼ x3

8<
:

From Definitions 12.1 and 12.2, we have ðUÞ
Ð
f d� ¼ ðWÞ

Ð
f d� ¼ 88 and

ðLÞ
Ð
f d� ¼ ðWÞ

Ð
f d� ¼ 64. This means that these three workers, in any coop-

erative manner, can manufacture at most 88 but not less than 64 toys in the
considered week.

A general method for calculating the value of the upper integral and the
lower integral (as well as the widened-upper integral and the widened-lower
integral) on finite sets is given in Section 12.5.

12.2 Properties

In general, either the upper integral or the lower integral is not linear. In fact, we
may even have both

ðUÞ
ð
ðfþ gÞ d� 6¼ ðUÞ

ð
f d�þðUÞ

ð
g d�

and

ðLÞ
ð
ðfþ gÞ d� 6¼ ðLÞ

ð
f d�þðLÞ

ð
g d�

for some monotone measure � and nonnegative measurable functions f and
g. Similar to the Choquet integral, the nonlinearity of the upper integral
and the lower integral comes from the nonadditivity of the monotone
measure.

Example 12.2. Let X ¼ fx1; x2; x3g and F = P(X). Monotone measure � is
defined as follows: �ðfx1gÞ ¼ 3; �ðfx2gÞ ¼ 3; �ðfx3gÞ ¼ 1; �ðfx1; x2gÞ ¼ 5;
�ðfx1; x3gÞ ¼ 5; �ðfx2; x3gÞ ¼ 5; �ðfx1; x2;x3gÞ ¼ 5. Considering functions

fðxÞ ¼
1 if x ¼ x1

1 if x ¼ x2

0 if x ¼ x3

8<
:

and

gðxÞ ¼
0 if x ¼ x1

0 if x ¼ x2

1 if x ¼ x3

8<
: ;
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we obtain

ðUÞ
ð
f d� ¼ 1 � �ðx1Þ þ 1 � �ðx2Þ ¼ 1� 3þ 1� 3 ¼ 6;

ðUÞ
ð
g d� ¼ 1 � �ðx3Þ ¼ 1� 1 ¼ 1;

and

ðUÞ
ð
ð fþ gÞ d� ¼ 1 � �ðx1Þ þ 1 � �ðfx2; x3gÞ ¼ 1� 3þ 1� 5 ¼ 8:

That is, we have

ðUÞ
ð
ð fþ gÞ d� > ðUÞ

ð
f d�þðUÞ

ð
g d�:

Similarly,

ðLÞ
ð
f d� ¼ 1 � �ðfx1; x2gÞ ¼ 1� 5 ¼ 5;

ðLÞ
ð
g d� ¼ 1 � �ðx3Þ ¼ 1� 1 ¼ 1;

and

ðLÞ
ð
ð fþ gÞ d� ¼ 1 � �ðfx1; x2; x3gÞ ¼ 1� 5 ¼ 5:

That is,

ðLÞ
ð
ð fþ gÞ d� < ðLÞ

ð
f d�þðLÞ

ð
g d�:

These results suggest the following general inequalities of the upper and lower
integrals.

Theorem 12.1. Let f and g be nonnegative measurable functions on (X, F). Then,

ðUÞ
ð
ð fþ gÞ d� � ðUÞ

ð
f d�þðUÞ

ð
g d�

and

ðLÞ
ð
ð fþ gÞ d� � ðLÞ

ð
f d�þðLÞ

ð
g d�:
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Proof. We only prove the first inequality since the proof for the second one is

similar. For any given " > 0, let

U
ð f Þ
"=2 ¼ sup

X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej
� f� "=2;Ej 2 F \ A; lj

�����
(

� 0; j ¼ 1; 2; . . .

)
;

U
ðgÞ
"=2 ¼ sup

X1
j¼1

lj � �ðEjÞ g �
X1
j¼1

lj � �Ej
� g� "=2;Ej 2 F \ A; lj

�����
(

� 0; j ¼ 1; 2; . . .

)
;

and

U ð fþgÞ" ¼ sup
X1
j¼1

lj � �ðEjÞ fþ g �
X1
j¼1

lj � �Ej
� fþ g� ";Ej 2 F \ A; lj

�����
(

� 0; j ¼ 1; 2; . . .

)
:

Then, for any

X1
j¼1

l0j � �E 0
j
2 f �

X1
j¼1

l0j � �E 0
j
� f� "=2;E 0j 2 F \ A; l0j � 0; j ¼ 1; 2; . . .

( )

and

X1
j¼1

l}j � �E}j 2 g�
X1
j¼1

l}j � �E}j� g� "=2;E}j 2 F \ A; l}j� 0; j ¼ 1; 2; . . .

( )
;

we have

X1
j¼1

l0j � �E 0j
þ
X1
j¼1

l}j � �E }j 2½ fþ g� "; fþ g�:

This means that

Uð fþgÞ" �
X1
j¼1

l0j � �ðE 0jÞ þ
X1
j¼1

l}j � �ðE}jÞ
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and, therefore,

U ð fþgÞ" � U
ð f Þ
"=2 þU

ð f Þ
"=2:

Letting "! 0, we obtain

ðUÞ
ð
ð fþ gÞ d� � ðUÞ

ð
f d�þðUÞ

ð
g d�: &

A property similar to that of Theorem 11.2(1) does not exist for the upper

and lower integrals. We can see it from the following example.

Example 12.3. Let X ¼ fx1; x2g and F = P(X). Set function � is defined as

�ðAÞ ¼ 0 if A ¼ Ø

1 otherwise .

�

Clearly, � is a monotone measure. We have

ðUÞ
ð
1 d� ¼ 1 � �ðfx1gÞ þ 1 � �ðfx2gÞ ¼ 1� 1þ 1� 1 ¼ 2 6¼ �ðXÞ:

Finding a similar counterexample for the lower integral is left to the reader.

Though the equalities do not hold, we still have the inequalities expressed in the

following theorem.

Theorem 12.2. 0 � ðLÞ
Ð
A 1 d� � �ðAÞ � ðUÞ

Ð
A 1 d�.

Proof. These inequalities follow directly from Definition 12.1. Details of the

proof are left to the reader as an exercise. &

In addition to the above inequalities, the upper and lower integrals possess

most of the common properties of the Lebesgue integral and the Choquet

integral.

Theorem 12.3.Let f and g be nonnegative measurable functions on (X, F, �), A and

B be measurable sets, and a be a nonnegative real constant. Then,

(1) ðUÞ
Ð
A f d� ¼ ðUÞ

Ð
f � �A d� and ðLÞ

Ð
A f d� ¼ ðLÞ

Ð
f � �A d�;

(2) if f � g on A; then ðUÞ
Ð
A f d� � ðUÞ

Ð
A g d�;

(3) if A�B, then ðUÞ
Ð
A f d� � ðUÞ

Ð
B f d�;

(4) ðUÞ
Ð
A af d� ¼ a � ðUÞ

Ð
A f d� and ðLÞ

Ð
A af d� ¼ a � ðLÞ

Ð
A f d�:

Proof. These properties follow directly fromDefinition 12.1. The proofs are left

to the reader as an exercise. &
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Note that there are no counterparts for the lower integral in (2) and (3) of

Theorem 12.3. These counterparts hold only under additional conditions, as

expressed by the next theorem.

Theorem 12.4. Let f and g be nonnegative measurable functions on monotone

measure space (X, F, �), and let A and B be measurable sets. Then,

(1) if f � g on A; then ðLÞ
Ð
A f d� � ðLÞ

Ð
A g d�;

(2) if A�B, then ðLÞ
Ð
A f d� � ðLÞ

Ð
B f d�.

Proof. We only need to prove (1), since (2) is a direct consequence of (1).

Without any loss of generality, we may assume that A ¼ X. Let f and g be

measurable functions satisfying f � g. For any fixed " > 0, and for any elemen-

tary function hg" with expression hg" ¼
P
j

lj � �Ej
satisfying g � hg" � gþ ",

where Ej 2 F; lj > 0 for all j (finitely or countable-infinitely many, no loss of

generality in assuming that j ¼ 0; 1; 2; . . .) , from f � hg" and the measurability

of f, we know that there exists elementary function hf" with expression

hf" ¼
P
j

P
l

ljl � �Fjl
, where Fjl 2 F; Fjl 	 Ej; ljl � 0; j; l ¼ 0; 1; 2; . . . , and

P
l:Fjl 6¼Ø

ljl � lj for all j such that f � hf" � fþ ". In fact, onE0, wemay construct

elementary function d0 ¼ l0 ^
P
l

"
21
�F0l

, where F0l ¼ fxj l"215fðxÞg \ E0,

l ¼ 0; 1; 2; . . . ; for E1, let d1 ¼ l1 ^
P
l

"
22
�F1l

, where F1l ¼ fxj l"
2
25fðxÞ�

doðxÞg \ E1, l ¼ 0; 1; 2; . . . ; generally, let dj ¼ lj ^
P
l

"
2jþ1�Fjl

, where Fjl ¼

fxj l"
2jþ1

5fðxÞ �
Pj�1
i¼1

diðxÞg \ Ej, l ¼ 0; 1; 2; . . . . Continuing this procedure for j

going to infinity, we obtain the required elementary function hf" ¼
P
j

P
l

ljl � �Fjl
,

where ljl ¼ "
2jþ1, j; l ¼ 0; 1; 2; . . . except l ¼ lj ¼ 2jþ1lj="

� �
, for which

0 � ljlj ¼ lj � lj
"

2jþ1 �
"

2jþ1. From the fact that
P

l�2jþ1lj="
ljl ¼ lj and Fjl ¼ Ø when

l > 2jþ1lj=" for every j, and the monotonicity of �, we have

X
j

X
l

ljl �ðFjlÞ �
X
j

lj�ðEjÞ;

where
P
j

P
l

ljl �ðFjlÞ can be still expressed as a countable summation

P
k

l
k�ðE
kÞ. On the one hand, from the construction of its corresponding

elementary function
P
k

l
k�E

k
, since pairs (ljl;Fjl) are exhaustively defined, we
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may also see that f �
P
k

l
k�E 

k
. On the other hand, we have

P
k

l
k�E 

k
� f �

P1
j¼0

"
2jþ1 ¼ ". Hence,

X
k

l
k�E

k
2

X1
k¼1

lk � �Ek
f �

X1
k¼1

lk � �Ek
� fþ ";Ek 2 F; lk � 0; for all k

�����
)(

and, therefore,

Lf" ¼ inf
X
k¼1

lk � �ðEkÞ f �
X
k¼1

lk � �Ek
� fþ ";Ek 2 F; lk � 0; for all k

�����
( )

�
X
j

lj�ðEjÞ:

From the arbitrariness of hg" and its expression, we have

Lf" � inf
X1
j¼1

lj � �ðEjÞ g �
X1
j¼1

lj � �Ej
� gþ ";Ej 2 F \ A; lj

�����
(

� 0; j ¼ 1; 2; . . .

)
¼ Lg":

Let "! 0. We get

ðLÞ
ð
f d� � ðLÞ

ð
g d�: &

Similarly, for the widened-lower integral, we have the following theorem.

Theorem 12.5. Let f and g be nonnegative measurable functions on monotone

measure space (X, F, �), and let A and B be measurable sets.

(1) If f � g on A; then ðWÞ
Ð
A f d� � ðWÞ

Ð
A g d�.

(2) If A � B, then ðWÞ
Ð
A f d� � ðWÞ

Ð
B f d�.

Proof. If f � g, then fN � gN and, therefore, for any simple function

h 2
Xk
j¼1

lj � �Ej
gN �

Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

�����
( )

;

we have

h 2
Xk
j¼1

lj � �Ej
fN �

Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

�����
( )

;
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where gN ¼ minðN; gÞ and fN ¼ minðN; f Þ for N > 0. This means that

gN �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

( )

� fN �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

( )
:

Hence,

inf gN �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

( )

� inf fN �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

( )
:

That is,

ðWÞ
ð
A

fNd� � ðWÞ
ð
A

gNd�:

Letting N!1, we obtain

ðWÞ
ð
A

f d� � ðWÞ
ð
A

g d�:

The proof of (1) now is complete, and (2) follows directly from (1). &

Due to Theorem 12.7 given in the next section, we need not list the inequal-
ities similar to those in above theorem for widened-upper integral here.

Finally, the following theorem shows that the upper integral and the Lebes-
gue integral share a particular property.

Theorem 12.6. Let f be a nonnegative measurable function and � be a monotone
measure on (X, F). If �ðfxj f ðxÞ > 0g \ AÞ ¼ 0, i.e., f ¼ 0 on A almost every-
where, then ðUÞ

Ð
A f d� ¼ 0. Conversely, if ðUÞ

Ð
A f d� ¼ 0 and � is continuous

from below, then �ðfxj fðxÞ > 0g \ AÞ ¼ 0.

Proof. There is no loss of generality in assuming A = X. First, we prove the
necessary part of the theorem. If �ðfxj fðxÞ > 0gÞ ¼ 0, we know , by the mono-
tonicity of �, that each term lj � �ðEjÞ of the summation in the expression of U"

in Definition 12.1 is zero for every " > 0. So,

ðUÞ
ð
f d� ¼ lim

"!0
U" ¼ 0:

Next, we prove the sufficiency. A proof by contradiction is used here. Assume
that �ðfxj fðxÞ > 0gÞ > 0. From

x fðxÞ > 0jf g ¼ lim
n!1

x fðxÞ � 1

n

����
� �

;
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we know, by the continuity from below of �, that there is a positive integer n0
such that

�ðEn0Þ ¼ �ðfxj fðxÞ �
1

n0
gÞ > 0:

Since �En0
� f, we have

ðUÞ
ð
f d� ¼ ðWÞ

ð
f d� � 1

n0
� �ðEn0Þ > 0:

This contradicts the fact that ðUÞ
Ð
A f d� ¼ 0: &

The condition of the lower continuity of � in the second part of Theorem 12.6

is essential. This is shown by the following counterexample, in which the

condition is violated.

Example 12.4. LetX= (0, 1], F be the class of all Borel sets inX, and monotone

measure � on F be defined as

�ðAÞ ¼ 1 if A ¼ X

0 otherwise
8A 2 F:

�

This monotone measure is clearly not continuous from below. Taking fðxÞ ¼ x

for x 2 X, we have �ðEÞ ¼ 0 for every E 2 F satisfying l � �E � fwith l > 0. So,

ðUÞ
ð
f d� ¼ ðWÞ

ð
f d� ¼ 0:

However,

�ðfxjfðxÞ > 0gÞ ¼ 1 6¼ 0:

12.3 Relations Between Integrals

When function f is measurable, we may compare the four integrals defined in

Section 12.1. The principal results of this comparison are expressed by Theo-

rems 12.7–12.9.

Theorem 12.7. If f : X! ½0; 1Þ is a measurable function on (X, F) and A 2 F,

then

ðWÞ
ð
A

f d� ¼ ðUÞ
ð
A

f d�:

Proof. Since

(X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej
;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

)�����
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�
(X1

j¼1
lj � �ðEjÞ f �

X1
j¼1

lj � �Ej
� f� ";Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

)
;

�����
we have

sup

(Xk
j¼1

lj � �ðEjÞ f �
Xk
j¼1

lj � �Ej
; k � 0;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k

)�����

¼ sup

(X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej
;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

)�����

� sup

(X1
j¼1

lj � �ðEjÞ f �
X1
j¼1

lj � �Ej
� f� ";Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . .

)�����

¼ U"

for any " > 0. Hence,

ðWÞ
ð
A

f d� � lim
"!0þ

U" ¼ ðUÞ
ð
A

f d�:

To show the inverse inequality, consider any given function having a form

g ¼
Xk
j¼1

lj � �Ej

and satisfying g � f, where k � 1;Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . ; k. Since f� g

is measurable, for any given " > 0, there exists function

h ¼
X1
j¼kþ1

lj � �Ej
;

where Ej 2 F \ A; lj � 0; j ¼ kþ 1; kþ 2; . . . (some or all lj may be zeros),
such that f� g � h � f� g� ". Thus,

gþ h 2 f
X1
j¼1

lj � �Ej
jf �

X1
j¼1

lj � �Ej
� f� ";Ej 2 F \ A; lj � 0; j ¼ 1; 2; . . . g

and U" �
P1
j¼1

lj � �ðEjÞ �
Pk
j¼1

lj � �ðEjÞ. Letting " go to zero, we get

ðUÞ
ð
A

f d� �
Xk
j¼1

lj � �ðEjÞ:
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Consequently,

ðUÞ
ð
A

f d� � sup
Xk
j¼1

lj � �ðEjÞ f �
Xk
j¼1

lj � �Ej
; k � 1;Ej 2 F \ A; lj � 0;

�����
(

j ¼ 1; 2; . . . ; k

)

¼ ðWÞ
ð
A

f d�: &

From the proof of Theorem 12.7, we know that U" is independent of ". It
should be noted that there is no similar good property for L". Furthermore,

between ðWÞ
Ð
A f d� and ðLÞ

Ð
A f d�, there is no similar equality (or even only

inequality) as the one shown in Theorem 12.7 for ðWÞ
Ð
A f d� and ðUÞ

Ð
A f d�. We

can see this from the following counterexamples.

Example 12.5. Let X ¼ fa; bg, F = P(X), function f ¼ �fag, and

�ðAÞ ¼ Aj jðmod 2Þ for 8A 2 F, where Aj j is the cardinality of A. For " � 1,

we have L" ¼ 0, with k ¼ 1, l1 ¼ 1 and E1 ¼ X reaching the infimum; while

when 0 < " < 1, we have L" ¼ 1� " with k ¼ 2, l1 ¼ 1� ", l2 ¼ ", E1 ¼ fag,
and E2 ¼ X reaching the infimum. So, we have ðLÞ

Ð
f d� ¼ 1. However, in this

example, ðWÞ
Ð
f d� ¼ 0 with k ¼ 1, l1 ¼ 1 (or larger), and E1 ¼ X reaching the

infimum. This shows that ðWÞ
Ð
f d� � ðLÞ

Ð
f d� may not be true, though func-

tion f is measurable.

Example 12.6. Let X ¼ f1; 2; . . .g, F = P(X), and

�ðAÞ ¼ 1 if jAj = 1
0 otherwise.

�

Clearly, � is a monotone measure. For function f ¼ �X ¼ 1, we have

ðWÞ
ð
f d� ¼ 1:

However, for any " > 0, L" ¼ 0 with expression f ¼
P1
j¼1
�fjg reaching the infi-

mum and, therefore,

ðLÞ
ð
f d� ¼ 0:

This shows that ðWÞ
Ð
f d� � ðLÞ

Ð
f d� may not be true, though function f is

measurable.
However, when � is a monotne measure, we have a result for the lower

integral and the widened-lower integral that is similar to, but weaker than, the

one stated in Theorem 12.7 for the upper integral and widened-upper integral.

258 12 Upper and Lower Integrals



Theorem 12.8. Let � be a monotone measure. If f : X! ½0; 1Þ is a measurable

function on (X, F) and A 2 F, then

lim
N!1
ðLÞ
ð
A

fN d� � ðWÞ
ð
A

f d�;

where fN ¼ minðN; f Þ for N > 0.

Proof. Similarly as in Theorem 12.7, we assume that A ¼ X. For any given

N > 0 and " > 0, and for any given simple function g satisfying the inequality

g ¼
Xk
j¼1

lj � �Ej
� fN;

where k � 1;Ej 2 F; lj � 0; j ¼ 1; 2; . . . ; k, there exists simple function

h ¼
Xk
j¼1

Xkj
l¼1

ljl � �Fjl
;

where kj � 1;Fjl 2 F; ljl � 0; l ¼ 1; 2; . . . ; kj;Ej � Fj1 � Fj2 � . . . � Fjkj with

Pkj
l¼1

ljl � lj for j ¼ 1; 2; . . . ; k, that satisfies the inequality

fN � h � minð fN þ "; gÞ:

In fact, for function

g1 ¼ fN �
Xk
j¼2

lj � �Ej
;

its positive part,

gþ1 ¼
g1 if g1 � 0

0 otherwise.

�

is a measurable function satisfying gþ1 � l1 � �E1
. Let k1 be a positive integer

large enough so that l1
k1
� ". Denote l1

k1
by "1, and take

F1l ¼ fxjgþ1 > ðl� 1Þ"1; x 2 Xg

and l1l ¼ "1 for l ¼ 1; 2; . . . ; k1. We know that F1l 2 F for l ¼ 1; 2; . . . ; k1 and

E1 � F11 � F12 � . . . � F1k1 :
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Therefore,

gþ1 �
Xk1
l¼1

l1l � �F1l
� minðgþ1 þ "; l1 � �E1

Þ:

Similarly, for measurable function

g2 ¼ fN �
Xk1
l¼1

l1l � �F1l
�
Xk
j¼3

lj � �Ej
;

take k2 large enough so that "2 ¼ l2
k2
� ". We can find

F2l ¼ fxjgþ2 > ðl� 1Þ"2; x 2 Xg;

satisfying F2l 2 F for l ¼ 1; 2; . . . ; k2 and

E2 � F21 � F22 � . . . � F2k2 ;

and corresponding l2l ¼ "2 for l ¼ 1; 2; . . . ; k2 such that

gþ2 �
Xk2
l¼1

l2l � �F2l
� minðgþ2 þ "; l2 � �E2

Þ;

where gþ2 is the positive part of g2. Recursively, for function

gs ¼ fN �
Xs�1
j¼1

Xkj
l¼1

ljl � �Fjl
�
Xk
j¼sþ1

lj � �Ej
;

s ¼ 3; 4; . . . ; k, we can find

Fsl ¼ fxjgþs > ðl� 1Þ"s; x 2 Xg;

satisfying Fsl 2 F for l ¼ 1; 2; . . . ; ks and

Es � Fs1 � Fs2 � . . . � Fsks ;

and corresponding lsl ¼ "s � " for l ¼ 1; 2; . . . ; ks ¼ ls
"s
such that

gþs �
Xks
l¼1

lsl � �Fsl
� minðgþs þ "; ls � �Es

Þ;
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where gþs is the positive part of gs. Now, we take

h ¼
Xk
j¼1

Xkj
l¼1

ljl � �Fjl
:

From

fN �
Xk�1
j¼1

Xkj
l¼1

ljl � �Fjl
¼ gk � gþk �

Xkk
l¼1

lkl � �Fkl
;

we know, on the one hand, that

fN �
Xkk
l¼1

lkl � �Fkl
þ
Xk�1
j¼1

Xkj
l¼1

ljl � �Fjl
¼
Xk
j¼1

Xkj
l¼1

ljl � �Fjl
¼ h:

On the other hand, for any given x 2 X, if gsðxÞ ¼ 0 for all s ¼ 1; 2; . . . ; k, then
x =2 Fs1 for s ¼ 1; 2; . . . ; k and, therefore,

hðxÞ ¼ 0 � fNðxÞ þ ";

otherwise, let

sðxÞ ¼ maxfsjgsðxÞ > 0g:

From

XksðxÞ
l¼1

lsðxÞl � �FsðxÞlðxÞ � gþsðxÞðxÞ þ " ¼ gsðxÞðxÞ þ ";

gsðxÞðxÞ ¼ fNðxÞ �
XsðxÞ�1
j¼1

Xkj
l¼1

ljl � �Fjl
ðxÞ �

Xk
j¼sðxÞþ1

lj � �Ej
ðxÞ

� fNðxÞ �
XsðxÞ�1
j¼1

Xkj
l¼1

ljl � �Fjl
ðxÞ;

and x =2 Fjl for all j > sðxÞ and all l ¼ 1; 2; . . . ; kj, we have

hðxÞ ¼
XsðxÞ�1
j¼1

Xkj
l¼1

ljl � �Fjl
ðxÞ þ

XksðxÞ
l¼1

ljl � �Fjl
ðxÞ þ

Xk
j¼sðxÞþ1

Xkj
l¼1

ljl � �Fjl
ðxÞ

¼
XsðxÞ�1
j¼1

Xkj
l¼1

ljl � �Fjl
ðxÞ þ

XksðxÞ
l¼1

ljl � �Fjl
ðxÞ

� fNðxÞ þ ":
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From the construction of h directly, we also know that h � g. So, we have
fN � h � minð fN þ "; gÞ. Thus, by using the nonnegativity and the monotoni-
city of �, it is not difficult to show that

Xk
j¼1

Xkj
l¼1

ljl � �ðFjlÞ �
Xk
j¼1

lj � �ðEjÞ:

This means that

LðFNÞ" �
Xk
j¼1

lj � �ðEjÞ;

where

LðFNÞ" ¼ inf
Xk
j¼1

lj � �ðEjÞ fN �
Xk
j¼1

lj � �Ej
� fN þ "; k � 1;

�����
(

Ej 2 F; lj � 0; j ¼ 1; 2; . . . ; k

)
:

Denoting

LðNÞ" ¼ inf
X1
j¼1

lj � �ðEjÞ fN �
X1
j¼1

lj � �Ej
� fN þ ";Ej 2 F;lj � 0; j ¼ 1;2; . . .

)
;

�����
(

we have

LðNÞ" � LðFNÞ"

for every N > 0 and " > 0 because some (even infinitely many) lj in the expres-
sion of L

ðNÞ
" are allowed to be zero. Since " may be any small positive number,

we have

ðLÞ
ð
fNd� ¼ lim

"!þ0
LðNÞ" � lim

"!þ0
LðFNÞ" �

Xk
j¼1

lj � �ðEjÞ

and, therefore,

ðLÞ
ð
fNd� � inf

Xk
j¼1

lj � �ðEjÞ fN �
Xk
j¼1

lj � �Ej
; k � 1;

�����
(

Ej 2 F; lj � 0; j ¼ 1; 2; . . . ; k

)

¼ ðWÞ
ð
fNd�:
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Guaranteed by the monotonicity of ðLÞ
Ð
fN d� with respect to N shown in

Theorem 12.4, lim
N!1
ðLÞ
Ð
fN d� exists. Letting N!1, we obtain

lim
N!1
ðLÞ
ð
fN d� � ðWÞ

ð
f d�:

The proof of this theorem is now complete. h

When f : X! ½0; 1Þ is upper-bounded, we may readily obtain the follow-

ing corollary of Theorem 12.8 since lim
N!1
ðLÞ
Ð
A fN d� ¼ðLÞ

Ð
A f d�.

Corollary 12.1. Let � be a monotone measure. if f : X! ½0; 1Þ is an upper-

bounded measurable function on (X, F) and A 2 F, then

ðLÞ
ð
A

f d� � ðWÞ
ð
A

f d�:

Comparing the lower integral, the upper integral, and the Choquet integral

discussed in Chapter 11, we have the following result.

Theorem 12.9. Let � be a general measure. For any given measurable function

f : X! ½0; 1Þ and any set A 2 F,

ðLÞ
ð
A

f d� � ðCÞ
ð
A

f d� � ðUÞ
ð
A

f d�;

provided the involved Choquet integral exists.

Proof. Without any loss of generality, we may assume that A ¼ X:
(1) When ðCÞ

Ð
f d� ¼ 1 , based on the result in Theorem 12.7, we just need to

show that

ðWÞ
ð
f d� ¼ 1:

In fact, from the definition of the Choquet integral (as a Riemann integral),

we know that for any given large number N > 0, there exists �ðNÞ > 0 such

that

�ðNÞ
X1
i¼1

�ðFi�ðNÞÞ > 2N;

where Fi�ðNÞ ¼ fxj fðxÞ � i�ðNÞg for i ¼ 1; 2; . . . . So, there exists a positive

integer k such that

�ðNÞ
Xk
i¼1

�ðFi�ðNÞÞ > N:
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Since f is a measurable function and, therefore,

�ðNÞ
Xk
i¼1

�Fi�ðNÞ 2
Xk
j¼1

lj � �Ej
f �

Xk
j¼1

lj � �Ej
; k � 1;

�����
(

Ej 2 F; lj � 0; j ¼ 1; 2; . . . k

)
;

we have

ðWÞ
ð
f d� � �ðNÞ

Xk
i¼1

�ðFi�ðNÞÞ > N:

This means that ðWÞ
Ð
f d� ¼ 1.

(2) When ðCÞ
Ð
f d� <1, we may use a similar idea as above. For any given

" > 0, by using the measurability of f, there exists �ð"Þ 2 ð0; "� such that

f� " � f� �ð"Þ � �ð"Þ
X1
i¼1

�Fi�ð"Þ � f � �ð"Þ
X1
i¼0

�Fi�ð"Þ � fþ �ð"Þ � fþ "

with

ðCÞ
ð
f d�� " � �ð"Þ

X1
i¼1

�ðFi�ð"ÞÞ � �ð"Þ
X1
i¼0

�ðFi�ð"ÞÞ � ðCÞ
ð
f d�þ ":

Thus,

ðLÞ
ð
f d� � ðCÞ

ð
f d�þ "

and

ðUÞ
ð
f d� � ðCÞ

ð
f d�� ":

By the arbitrariness of ", we obtain that

ðLÞ
ð
f d� � ðCÞ

ð
f d� � ðUÞ

ð
f d�: &

Example 12.7. Recall Examples 11.3 and 12.1, where ðCÞ
Ð
f d� ¼ 74,

ðUÞ
Ð
f d� ¼ 88, and ðLÞ

Ð
f d� ¼ 64. This exemplifies the inequalities in

Theorem 12.9.
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12.4 Lower and Upper Integrals on Finite Sets

In this section we restrict our discussion to a finite setX ¼ fx1; x2; . . . ; xng. We
also assume that f is a nonnegative function onX, and � is a general measure on
P(X ). Recalling the concept of r-integral introduced in Section 8.4, we may
regard the upper and lower integrals on finite sets as special r-integrals. They are
a pair of extreme cases in regard to the integration value. In fact, sinceX is finite,
the supremum and the infimum in Definition 12.1 are accessible. Hence, the
upper integral of f with respect to �, ðUÞ

Ð
f d�, can be expressed as

ðUÞ
ð
f d� ¼ sup

�X2n�1
j¼1

lj � �ðAjÞ
X2n�1
j¼1

lj�Aj
¼ f

�
;

�����
where lj � 0 andAj ¼

S
i:ji¼1
fxig if j is expressed in binary digits as jn jn�1 � � � j1 for

every j ¼ 1; 2; . . . ; 2n � 1. The value of ðUÞ
Ð
f d� then is just the solution of the

following linear programming problem, where l1; l2; . . . ; l2n�1 are unknown
parameters:

maximize z ¼
X2n�1
j¼1

lj � �j

subject to
X2n�1
j¼1

lj�Aj
ðxiÞ ¼ fðxiÞ; i ¼ 1; 2; . . . ; n

lj � 0; j ¼ 1; 2; . . . ; 2n � 1;

where �j ¼ �ðAjÞ for j ¼ 1; 2; . . . ; 2n � 1. The above n constraints can be also
rewritten as

X
j:x2Aj	X

lj ¼ fðxÞ 8x 2 X:

Defining set function l :P(X)! ½0; 1Þ by lðAjÞ ¼ lj for j ¼ 1; 2; . . . ; 2n � 1,
we may see that l is a partition of f. So, the upper integral is just a special
r-integral. Its corresponding partitioning rule is ‘‘dividing integrand such that
the integration value is maximized.’’

By a knowledge on the linear programming, the above maximum can be
accessed by at most n nonzero-valued lj, that is, the solution can be expressed as

Xn
i¼1

lji�ji ;

where f j1; j2; . . . ; jng is a subset of f1; 2; . . . ; 2n � 1g.
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Example 12.8. We still use the data given in Example 11.3. Now the question is:

how to arrange these workers such that the total amount of the manufactured

toys during this week is as large as possible. This is just a linear programming

problem:

maximize z ¼ 5l1 þ 6l2 þ 14l3 þ 7l4 þ 13l5 þ 9l6 þ 17l7

subject to l1 þ l3 þ l5 þ l7 ¼ 6

l2 þ l3 þ l6 þ l7 ¼ 3

l4 þ l5 þ l6 þ l7 ¼ 4

lj � 0; j ¼ 1; 2; . . . ; 7

Using the simplex method, a solution of this linear programming problem can

be obtained as l3 ¼ 3, l4 ¼ 1, and l5 ¼ 3 with z ¼ 88. That is, we should

arrange x1 and x2 to work together for 3 days, x1 and x3 to work together for

3 days, and x3 works alone for one day. Then, the total number of manufac-

tured toys will be maximized. This maximum solution is illustrated in Fig. 12.1.

From it, we can see that function f is partitioned into three parts, where 3 is just

the number of workers. The maximized value z = 88 is just the upper integral

ðUÞ
Ð
f d�:

Similarly, we can express the lower integral of f with respect to �; ðUÞ
Ð
f d�,

as

ðLÞ
ð
f d� ¼ inf

(X2n�1
j¼1

lj � �ðAjÞ
X2n�1
j¼1

lj�Aj
¼ f

)
;

�����
where lj � 0 andAj ¼

S
i:ji¼1
fxig if j is expressed in binary digits as jn jn�1 � � � j1 for

every j ¼ 1; 2; . . . ; 2n � 1. The value of ðLÞ
Ð
f d� then is the solution of the

linear programming problem

f (x)

x2x1 x3

3

6

4

Fig. 12.1 The partition of f
corresponding to the upper
integral
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minimize z ¼
X2n�1
j¼1

lj � �j

subject to
X2n�1
j¼1

lj�Aj
ðxiÞ ¼ fðxiÞ; i ¼ 1; 2; . . . ; n

lj � 0; j ¼ 1; 2; . . . ; 2n � 1;

where �j ¼ �ðAjÞ for j ¼ 1; 2; . . . ; 2n � 1, and l1; l2; . . . ; l2n�1 are unknown
parameters. The corresponding partitioning rule to the lower integral is ‘‘divid-

ing integrand such that the integration value is minimized.’’ The above mini-

mum can be accessed by at most n nonzero-valued aj as well.

Example 12.9. Continuing Example 12.8, now the question is: What is the most

conservative estimation for the total number of the toys that can be produced by

these workers in this week? This is another linear programming problem:

minimize z ¼ 5l1 þ 6l2 þ 14l3 þ 7l4 þ 13l5 þ 9l6 þ 17l7

subject to l1 þ l3 þ l5 þ l7 ¼ 6

l2 þ l3 þ l6 þ l7 ¼ 3

l4 þ l5 þ l6 þ l7 ¼ 4

lj � 0; j ¼ 1; 2; . . . ; 7

The solution of this linear programming problem is l1 ¼ 6, l4 ¼ 1, and l6 ¼ 3

with z ¼ 64. That is, when x2 and x3 work together for 3 days, x1 works alone

for 6 days, and x3 works alone for one day, the total amount of manufactured

toys will be at least 64. It is just the lower integral ðLÞ
Ð
f d�. This minimum

solution is illustrated in Fig. 12.2.

f (x)

x2x1 x3

3

6

4

Fig. 12.2 The partition of f
corresponding to the lower
integral
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Now, as is shown in the next theorem, we can strengthen the property of the

upper integral established in Theorem 12.9.

Theorem 12.10. Let f be a nonnegative function on X, and let � be a monotone

measure on P(X). Then, ðUÞ
Ð
f d� ¼ 0 if and only if for every set A with �ðAÞ > 0

there exists x 2 A such that fðxÞ ¼ 0.

Proof. First, we prove the ‘‘if ’’ part. Suppose that for every setAwith �ðAÞ > 0,

there exists x 2 A such that fðxÞ ¼ 0. Thus, for each Aj with �ðAjÞ > 0, there

exists some xiðjÞ 2 Aj such that fðxiðjÞÞ ¼ 0. So, we have lj ¼ 0 since

0 � lj ¼ lj � �Aj
ðxiðjÞÞ � fðxiðjÞÞ ¼ 0. Hence,

X2n�1
j¼1

lj � �ðAjÞ ¼ 0

for any lj and Aj, j ¼ 1; 2; . . . ; 2n � 1, satisfying
P2n�1
j¼1

lj�Aj
¼ f. Consequently,

according to the definition ðUÞ
Ð
f d� ¼ 0.

Next, we prove the ‘‘only if ’’ part. A proof by contradiction is used. Suppose

that there exists some Aj with �ðAjÞ > 0 such that no x in Aj has fðxÞ ¼ 0.

Denote min
x2Aj

fðxÞ by lj. Then lj > 0 and, therefore, lj � �ðAjÞ > 0. Since inequa-

lity lj � �Aj
� f holds, we know that ðUÞ

Ð
f d� � lj � �ðAjÞ > 0. This contradicts

to the fact ðUÞ
Ð
f d� ¼ 0: &

Theorem 12.10 can be expressed in an alternative but equivalent way as

follows.

Theorem 12.100. Let f be a nonnegative function on X, and let � be a monotone

measure on P(X). Then, ðUÞ
Ð
f d� ¼ 0 if and only if �ðfxj fðxÞ > 0gÞ ¼ 0.

For comparing Lebesque integrals to Choquet integrals, or more generally,

to r-integrals, we have the following theorem.

Theorem 12.11. Let f be a nonnegative function on X, and let � be a monotone

measure on P(X). Then, 0 � ðLÞ
Ð
f d� � ðrÞ

Ð
f d� � ðUÞ

Ð
f d� for any partition-

ing rule r.

Proof. This is a direct result of the definitions of these integrals. &

Theorem 12.11 shows that the upper and lower integrals are two extreme

cases of the various types of integrals defined on finite sets via the common

addition and the common multiplication.

Example 12.10. From Examples 8.2, 8.5, 11.3, 11.4, 12.8, and 12.9, we have seen

that for the given nonnegative function f andmonotonemeasure �, the values of
the Lebesgue integral (with respect to �0) and the Choquet integral are between

the values of the lower integral and the upper integral. In fact, we haveÐ
f d�0 ¼ 76, ðCÞ

Ð
f d� ¼ 74, ðUÞ

Ð
f d� ¼ 88, and ðLÞ

Ð
f d� ¼ 64. These results

verify the inequalities
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ðLÞ
ð
f d� �

ð
f d�0 � ðUÞ

ð
f d�

and

ðLÞ
ð
f d� �ðCÞ

ð
f d� � ðUÞ

ð
f d�

assessed in Theorem 12.11.

Theorem 12.12. Let m be monotone measures on P(X). Then, ðUÞ
Ð
1 d� �

n � �ðXÞ.

Proof. Consider each
P2n�1
j¼1

lj � �ðAjÞ satisfying
P2n�1
j¼1

lj�Aj
ðxÞ ¼ 1 for every x 2 X.

Since
P2n�1
j¼1

lj�Aj
ðxÞ ¼ 1 means

P
xi2Aj

lj ¼ 1 for every xi, i ¼ 1; 2; . . . ; n, we have

X2n�1
j¼1

lj � �ðAjÞ �
X2n�1
j¼1

lj � �ðXÞ ¼�ðXÞ �
X2n�1
j¼1

lj � �ðXÞ �
Xn
i¼1
ð
X
xi2Aj

ljÞ

¼�ðXÞ �
Xn
i¼1

1 ¼ n � �ðXÞ:

Hence,

ðUÞ
ð
1 d� ¼ sup

(X2n�1
j¼1

lj � �ðAjÞj
X2n�1
j¼1

lj�Aj
¼ 1

)
� n � �ðXÞ: &

12.5 Uncertainty Carried by Monotone Measures

Let X ¼ fx1; x2; . . . ; xng. In this section, we assume that set function � is a
nontrivial monotone measure on (X, P(X)). Here, the word ‘‘nontrivial’’ means
that there exists at least one set A � X such that �ðAÞ > 0. We have seen that,
due to the nonadditivity of �, for a given nonnegative function f, different types
of integrals may result in different integration values. This may be viewed as the
uncertainty carried by monotone measure �. Since the upper integral and the
lower integral are too extremes in regard to the integration value, we may
estimate the uncertainty by their difference.

Definition 12.3. Given a monotone measure � on (X, P(X)), the degree of the
uncertainty carried by � is defined by

�� ¼
ðUÞ

Ð
1 d� � ðLÞ

Ð
1 d�

�ðXÞ :

It is evident that when � is a classical measure, the upper integral coincides with
the lower integral and, therefore, �� ¼ 0.
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Theorem 12.13. For any monotone measure � on (X, P(X)), 0 � �� � n.

Proof. On the one hand, from

ðUÞ
ð
1 d� � ðLÞ

ð
1 d�;

we obtain

�� ¼
ðUÞ

Ð
1 d� � ðLÞ

Ð
1 d�

�ðXÞ � 0:

On the other hand, from Theorem 12.12 and Definition 12.3, since ðLÞ
Ð
1 d� � 0,

we have

�� ¼
ðUÞ

Ð
1 d� � ðLÞ

Ð
1 d�

�ðXÞ � ðUÞ
Ð
1 d�

�ðXÞ � n � �ðXÞ
�ðXÞ

¼ n &

To present an estimate formula for the difference between the upper integral
and the lower integral of a given nonnegative function, we need the following
lemma.

Lemma 12.1. For any given monotone measure � and a bounded nonnegative
function f,

ðUÞ
ð
f d� � ðLÞ

ð
f d� � ðUÞ

ð
c d� � ðLÞ

ð
c d�;

where c may be any upper bound of f.

Proof. From the expressions of the upper integral and the lower integral on a
finite set given in Section 12.4, we know that there are lj � 0 and �j � 0,

j ¼ 1; 2; . . . ; 2n � 1, satisfying
P

j:x2Aj�X
lj ¼ fðxÞ and

P
j:x2Aj�X

�j ¼ fðxÞ for every

x 2 X, such that

ðUÞ
ð
f d� ¼

X2n�1
j¼1

lj � �ðAjÞ

and

ðLÞ
ð
f d� ¼

X2n�1
j¼1

�j � �ðAjÞ:

For the nonnegative function c� f, we can find l0j � 0 and �0j � 0,

j ¼ 1; 2; . . . ; 2n � 1, satisfying
P

j:x2Aj�X
l0j ¼ c� fðxÞ and

P
j:x2Aj�X

�j
0 ¼ c� fðxÞ

for every x 2 X, such that
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ðUÞ
ð
ðc� fÞ d� ¼

X2n�1
j¼1

l0j � �ðAjÞ

and

ðUÞ
ð
ðc� fÞ d� ¼

X2n�1
j¼1

�0j � �ðAjÞ:

Since

X
j:x2Aj�X

lj þ
X

j:x2Aj�X
l0j ¼

X
j:x2Aj�X

ðlj þ l0jÞ ¼ c

and

X
j:x2Aj�X

�j þ
X

j:x2Aj�X
�0j ¼

X
j:x2Aj�X

ð�j þ �0jÞ ¼ c;

we have

X2n�1
j¼1
ðlj þ l0jÞ � �ðAjÞ � ðUÞ

ð
c d�

and

X2n�1
j¼1
ð�j þ �0jÞ � �ðAjÞ � ðLÞ

ð
c d�:

Thus, from

ðLÞ
ð
ðc� f Þ d� � ðUÞ

ð
ðc� f Þ d�;

we obtain

ðUÞ
ð
f d��ðLÞ

ð
f d� ¼

X2n�1
j¼1

lj � �ðAjÞ �
X2n�1
j¼1

�j � �ðAjÞ �
X2n�1
j¼1

lj � �ðAjÞ

þ
X2n�1
j¼1

l0j � �ðAjÞ �
X2n�1
j¼1

�j � �ðAjÞ �
X2n�1
j¼1

�0j � �ðAjÞ

¼
X2n�1
j¼1
ðlj þ l0jÞ � �ðAjÞ �

X2n�1
j¼1
ð�j þ �0jÞ � �ðAjÞ

� ðUÞ
ð
c d��ðLÞ

ð
c d�: &
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Theorem 12.14. Given a monotone measure � on (X, P(X)) and any nonnegative

function f on X, we have

0 � ðUÞ
ð
f d� � ðLÞ

ð
f d� � �� � �ðXÞ �max

x2X
fðxÞ:

Proof. Let c ¼ max
x2X

fðxÞ. From the definition of ��, Corollary 12.1 , Theorem

12.3(4), and Lemma 12.1, we have

0 �ðUÞ
ð
f d� � ðLÞ

ð
f d� � ðUÞ

ð
c d� � ðLÞ

ð
c d�

�c � ½ðUÞ
ð
1 d� � ðLÞ

ð
1 d�� ¼ �� � �ðXÞ �max

x2X
fðxÞ:

&

Example 12.11. The data and some results in Examples 12.1, 12.8, and 12.9 are

used here. Since ðUÞ
Ð
1 d� ¼ 21 and ðLÞ

Ð
1 d� ¼ 14, we have

�� ¼
21� 14

17
¼ 7

17
:

From ðUÞ
Ð
f d��ðUÞ

Ð
f d� ¼ 88� 64 ¼ 22, max

x2X
fðxÞ ¼ 6, and �ðXÞ ¼ 17, The-

orem 12.14 is verified: 22 � 7
17� 6� 17 ¼ 42.

Theorem 12.14 can be used to estimate the uncertainty carried by the

monotone measure in an aggregation process if the coordination manner is

unknown.

Notes

12.1. The concept of an upper integral on a finite set and an algorithm for its
computation were first introduced in [Wang and Xu, 1998] and further
discussed in [Wang et al., 2000a]. This concept is similar to the concept of
natural extension in [Walley, 1991], but it is more restricted.

12.2. A general form of integrals on finite sets with respect to signed general
measures is discussed in [Wang et al., 2006a]. In this context, the two
extreme types of integrals — the upper and lower integrals — were
introduced.

12.3. The uncertainty carried by monotone measures was first introduced in
[Wang and Klir, 2007].
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Exercises

12.1. We use monotone measure space (X, F, �) and function f given in
Example 11.1. That is, X ¼ ½0; 1�, fðxÞ ¼ x for x 2 X, F is the class of

all Borel sets in ½0; 1�, and �ðBÞ ¼ ½mðBÞ�2 for B 2 F, where m is the

Lebesgue measure. Calculate ðUÞ
Ð
f d� and ðLÞ

Ð
f d�. Compare this result

with ðCÞ
Ð
f d� obtained in Example 11.1 to verify Theorem 12.9.

12.2. In Exercise 12.1, replacing �ðBÞ ¼ ½mðBÞ�2 by �ðBÞ ¼ ½mðBÞ�1=2, find

ðUÞ
Ð
f d� and ðLÞ

Ð
f d�. Compare this result with ðCÞ

Ð
f d� obtained in

Exercise 11.1 to verify Theorem 12.9.
12.3. Prove Theorem 12.3.
12.4. Find a counterexample to show that the conclusion in Theorem 12.4may

not be true if set function � is a general measure.
12.5. Find a counterexample to show that, when � is a general measure, the first

part of Theorem 12.6may not be true. That is, show that

�ðfxj fðxÞ > 0g \ AÞ ¼ 0¼)ðUÞ
ð
A

f d� ¼ 0

may not be true.
12.6. Cite a counterexample to show that, when � is a monotone measure that

is not continuous from below, the second part of Theorem 12.6may not
be true, that is,

ðUÞ
ð
A

f d� ¼ 0 ¼) �ðfxj fðxÞ > 0g \ AÞ ¼ 0

may not be true.
12.7. Three workers x1; x2; and x3 manufacture toys. Their efficiencies � can

be regarded as a general measure:

Set Value of �

fx1g 9

fx2g 6

fx1; x2g 5

fx3g 7

fx1; x3g 13

fx2; x3g 19

fx1; x2; x3g 16
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The numbers of their working days in this week is a function

fðxÞ ¼
5 if x ¼ x1

3 if x ¼ x2

2 if x ¼ x3.

8<
:

Find ðUÞ
Ð
f d�, ðLÞ

Ð
f d�, ðCÞ

Ð
f d�, and the Lebesgue integral

Ð
f d�0,

where �0 is a classical measure satisfying �0ðfxigÞ ¼ �ðfxigÞ; i ¼ 1; 2; 3:
12.8. Find the degree of uncertainty of the general measure � given in

Exercise 12.7.
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Chapter 13

Constructing General Measures

13.1 An Overview

The problem of constructing general measures in various application contexts is
not one of generalized measure theory per se. It is rather a problem of knowl-
edge acquisition. Generalized measure theory provides in this case a framework
within which the process of knowledge acquisition takes place and in which the
elicited knowledge is represented (Fig. 13.1). Developing methods for knowl-
edge acquisition have been the subject of knowledge engineering, an area of
engineering that emerged in the 1970s. Although these methods are beyond the
scope of this book, we want to illustrate in this chapter some of the main issues
involved in constructing general measures.

General measures are considerably more expressive than classical measures,
and this added expressiveness is essential in some applications. However, con-
structing general measures is a more difficult problem than constructing classi-
cal measures. There are two primary reasons for this increased difficulty. One of
them is the substantially larger number of parameters that must be determined.
While each classical measure is fully characterized by its values on singletons, a
general measure on a measurable space (X;F) is fully characterized by its values
on all sets in F. This implies an exponential increase in computational complex-
ity. The second reason is that inmost applications it is required that themeasure
involved be monotone. This requirement must be checked during the construc-
tion process, which further increases computational complexity.

To construct a general measure on a given a measurable space (X;F)
requires, in general, that jFj � 1 unknown parameter be determined, provided
that F contains a finite number of sets and themeasure is normalized.When this
requirement leads to prohibitively high computational complexity, it is often
desirable to consider only some special class of general measures, which are
characterized by a smaller number of unknown parameters. By considering
only measures of a special type, we inevitably lose some expressiveness, but the
construction process becomes more tractable. This may be in some applications
a reasonable trade-off. Classes of lambdameasures and possibility measures are
examples of special classes of measures that are suitable for this purpose. When
X is finite, each lambda measure is uniquely characterized by determining jXj

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_13, � Springer ScienceþBusiness Media, LLC 2009
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parameters, and each possibility measure is uniquely characterized by deter-

mining jXj � 1 parameters.
When constructing general measures, additional properties may be required.

Monotonicity, for example, is usually required, but some stronger properties

such as maxitivity, superadditivity, 2-monotonicity, and the like are often

required as well. When dealing with infinite sets, it is almost always required

that the measure be continuous or semicontinuous.
Measures that satisfy some required properties are sometimes conveniently

constructed from given measures. This can be done, for example, by integrating

some nonnegative measurable function with respect to the given measure. This

method is discussed for the Sugeno and Choquet integrals in Section 13.2. New

measures can also be constructed from given measures by suitable transforma-

tions, as is discussed in Section 13.3. Construction methods whose goal is to

determine a measure of a specified type that is as close as possible to a given

measure are usually referred to as identification methods. These methods, which

are sometimes combined with extensions, are discussed in Section 13.4.
Constructing measures of specified types from data or eliciting them from

experts by knowledge-engineering methods represent perhaps the most important

constructionmethods in many applications. Data-drivenmethods are surveyed in

Section 13.5, but the many knowledge-engineering methods, notwithstanding

their significance, are far beyond the scope of this book. A few additional

methods for constructing measures of various types are examined in Section 13.6.

13.2 Constructing New Measures via Integration

As already mentioned, jFj � 1 unknown parameter must be determined to con-

struct a general measure on (X;F) when F is finite. Since 2 � jFj � 2jXj, it is clear
that the problem of constructing general measures is computationally highly

demanding, especially when jFj is close to its upper bound.

KNOWLEDGE
ACQUISITION

METHODOLOGY

GENERALIZED
MEASURE
THEORY

DATA

EXPERT

GENERAL
MEASURE

Fig. 13.1 Knowledge acquisition problem within generalized measure theory
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In some applications we can utilize a given general measure on (X;F) to
reduce the number of parameters to be determined to construct a measure with
desirable properties. To explain this possibility, we let � denote a given general
measure on (X;F). Then, by choosing a nonnegative measurable function f on
X, a new measure � on (X;F) can be obtained for all A 2 F by

�ðAÞ ¼
ð
A

f d�;

where the integrationmay be done via the Sugeno integral, Choquet integral, or
an integral of some other type. That is, given � and some properties that � is
required to posses, we can construct an acceptable measure � by determining an
appropriate function f. Since the number of unknown parameters of f is jXj, this
indirect way of determining � is simpler than a direct way whenever
jXj5jFj � 1.

There are various methods for determining the function f in this problem.
Whether a particular method is applicable or not depends on the requirements
imposed on the constructed measure �. In some applications the function f
is determined from given data by methods analogous to those discussed in
Section 13.5.

The choice of the type of integral to be used in this problem (only the Sugeno
and Choquet integrals are considered here) depends, by and large, on the
structural properties of � that it is required � preserve. The following properties
are particularly important: monotonicity, continuity from below and from
above, subadditivity and superadditivity, null-additivity and converse null-
additivity, autocontinuity and converse autocontinuity from below and from
above, uniform autocontinuity and uniform converse autocontinuity, andmax-
itivity. It is known that the Choquet integral preserves all these properties
except maxitivity. The Sugeno integral preserves maxitivity, but does not pre-
serve superadditivity, converse null-additivity, converse autocontinuity from
below and from above, and uniform converse autocontinuity. The Choquet
integral is thus generally preferable. Only whenmaxitivity of � is required do we
need to use the Sugeno integral.

13.3 Constructing New Measures by Transformations

Another way of constructing new measures from given ones is to use suitable
transformations. These are generalizations of transformations introduced in
Section 4.4 for constructing quasi-measures from classical measures.
Constructing measures by transformations has the advantage that the number
of parameters to be determined is very small, usually one or two.

A transformation employed in constructing a new normalized measure from
a given one is a function of the form � : ½0; 1� ! ½0; 1� that is continuous, strictly
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monotone, and such that �ð0Þ ¼ 0 and �ð1Þ ¼ 1. Applying a chosen transfor-
mation � to any given measure � on a measurable space (X;F) results in a new
measure �, which is obtained by composing � with �. That is,

�ðAÞ ¼ �ð�ðAÞÞ

for all A 2 F. It is known that any measure � obtained from measure � by
transformation � preserves all the structural properties of � that are listed in
Section 13.2, except subadditivity and superadditivity. Moreover, � and � are
order-isomorphic in the sense that

�ðAÞ5�ðBÞ , �ðAÞ5�ðBÞ

for all A;B 2 F, which is a desirable property in most applications. Moreover,
given any pair �1 and �2 of general measures on (X;F), these measures are
order-isomorphic if and only if there exists a transformation � such that
�2ðAÞ ¼ �ð�1ðAÞÞ for all A 2 F.

Using transformations to obtain newmeasures from givenmeasures is one of
the most effective ways of constructing measures. The advantage of transfor-
mations is that they preserve order and virtually all the desirable structural
characteristics of the given measures, with the exception of subadditivity and
superadditivity. It makes them suitable for revising given measures in face of
new evidence. The two exceptions are not necessarily a disadvantage of trans-
formations. They allow us, in some cases, to use an appropriate transformation
to obtain a desired superadditive measure from a given subadditive measure,
and vice versa.

Some common types of transformations with one or two parameters,
which have been introduced and investigated in the literature, are defined
in Table 13.1. To guarantee that measures obtained by the listed transfor-
mations are monotone, which is almost always required in applications, the
parameters involved in each of these transformations must satisfy certain
specific restrictions, as shown in the table.

13.4 Constructing New Measures by Identification and Extension

Identification is a problem of converting a given monotone measure on a finite
class of sets to a monotone measure of a specified type, such as l-measure or
belief measure. Generally, the identification problem can be described as fol-
lows. Let X be a finite set and � : PðXÞ ! ½0;1Þ be a given monotone measure.
We want to find a monotone measure � : PðXÞ ! ½0;1Þ with the specified type
such that

P
A�X
ð�ðAÞ � �ðAÞÞ2 is minimized. Mathematically, this is an
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optimization problem, which can be solved by using a suitable analytical or
numerical method.

When the domain of � in the identification problem is smaller than PðXÞ, a
similar problem is called an extension for the specified type of monotone
measure. It is a generalization (but restricted to the case of a finite universal
set) of the extension problem discussed in Chapter 5. It can be solved in a similar
way as the identification problem.

The use of genetic algorithms has been proven particularly suitable for
dealing with these optimization problems. See Note 13.4 for an overview of
relevant literature.

13.5 Data-Driven Construction Methods

Constructing monotone measures from data is perhaps the most important way
of obtaining desired monotone measures in practical applications. Methods for
constructing monotone measures from data are usually referred to as data-
driven methods. Unlike methods discussed in the Section 13.4, where a given set
function is converted in an optimal way to another set function of a desired
type, the data-driven methods construct a set function of a desired type from
given input-output data under the assumption that each output value is
obtained by aggregating associated input values by a nonlinear integral of
some specific type. It is thus an inverse problem of information fusion, which
is discussed in Section 15.5. From a set of observed input data and the asso-
ciated output observations, each of which is assumed to be obtained by aggre-
gating the input values by a nonlinear integral of a particular type with respect

Table 13.1 Some common transformations of measures

�ðxÞ Parameter(s) Restrictions on parameters

Quadratic

transformations
axþ ð1� aÞx2 a 0 � a � 2

Cubic

transformations ð1� a� bÞxþ ax2 þ bx3 a, b
aþ b � 1; 1þ aþ 2b40; and

�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 3bþ 3abþ 3b3
p

3b
=2 ð0; 1Þ

unless a2 � 3bþ 3abþ 3b3 ¼ 0

Simple rational

transformations
ð1þ aÞx
1þ ax

a a4� 1

Quadratic/linear

transformations
xþ ax2

bþ ð1þ a� bÞx a, b
a5� 1; 05b � 1; or

a ¼ �1; b ¼ 1; or

�15a50; b � �a; or
a � 0; b40

Linear/quadratic

transformations

x

1� a� bþ axþ bx2
a, b

b � 0; a51� b; or

b40; a � 2b
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to an unknown measure of some type, we want to determine the measure. The
following is a more specific description of this inverse problem.

Given a set of attributes, X ¼ fx1; x2; . . . ; xng, consider an input-output
system whose inputs are values of the attributes and whose output y for
each observation is the fused value of the input values, which is assumed to
be obtained by a nonlinear integral of some type. Then, considering the
observation of attributes x1; x2; . . . ; xn as a function defined on
X; f : X! ð�1;1Þ, the input-output relation of the system can be
expressed as y ¼ ð�Þ

Ð
f d�, where ð�Þ indicates the assumed type of the

integral and � is an unknown monotone measure (or a signed general
measure) defined on PðXÞ. The problem is to determine � on the basis of
l input-output observations, as illustrated in general terms in Table 13.2a.
The jth row in this table (j ¼ 1; 2; . . . ; l ) denotes the jth observation of the
inputs (attributes x1; x2; . . . ; xnÞ and the aggregated output. The positive
integer l characterizes the number of observations in the given data, and it
is usually much larger than the number of attributes. We write
fji ¼ fjðxiÞ; i ¼ 1; 2; . . . ; n for j ¼ 1; 2; . . . ; l, to denote conveniently the jth
observation of attribute xiði ¼ 1; 2; . . . ; n; and j ¼ 1; 2; . . . ; lÞ. Using the
data, our aim is to determine a monotone measure (or a signed general
measure) � (if it exists) so that yj ¼ ð�Þ

Ð
fj d�; j ¼ 1; 2; . . . ; l, for some speci-

fied type of integral. Except for some contradictory cases, such a monotone
measure (or signed general measure) usually exists when l � 2n� 1. If the
specified type of integral is the Choquet integral, an algebraic method can
be applied to obtain the values of � since the value of the Choquet integral
is a linear function of �’s values as shown in Section 11.6. The method is
illustrated by the following example.

Table 13.2 Input-output observations
(a) general scheme

x1 x2 . . . xn y

f11 f12 . . . f1n y1
f21 f22 . . . f2n y2
..
.

fl1 fl2 . . . fln yl

(b) observations in Example 13.1

x1 x2 x3 y

week 1 5 3 1 55

week 2 3 5 2 60

week 3 4 1 5 63

week 4 2 4 4 52

week 5 1 2 3 33

week 6 5 4 3 70

week 7 2 5 4 38
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Example 13.1. Let X ¼ fx1; x2; x3g be a set of three workers. They are hired for

producing toys and work together each week in the manner described in

Example 11.3. Now, we only have the data consisting of the record of their

attendance (days) and the total numbers of manufactured toys each week for

seven weeks, as shown in Table 13.2b. The individual and joint efficiencies of

these workers are not known. We want to use the data to determine the

efficiencies. If the data in the ith row are denoted by fj and yj; j ¼ 1; 2; . . . ; 7;
then the relation among efficiencies �; fj, and yj can be expressed, assuming

that the inputs are aggregated by the Choquet integral, as

yj ¼ ðCÞ
ð
fj d�; j ¼ 1; 2; . . . ; 7:

Thus, by using the calculation formula of the Choquet integral, we obtain a

system of linear algebraic equations with unknown variables �j ðj ¼ 1;
2; . . . ; 7; Þ, where �1 ¼ �ðfx1gÞ, �2 ¼ �ðfx2gÞ, �3 ¼ �ðfx1; x2gÞ, �4 ¼ �ðfx3gÞ,
�5 ¼ �ðfx1; x3gÞ, �6 ¼ �ðfx2; x3gÞ, and �7 ¼ �ðfx1; x2; x3gÞ, as follows:

2�1 þ 2�3 þ �7 ¼ 55

2�2 þ �3 þ 2�7 ¼ 60

�4 þ 3�5 þ �7 ¼ 63

2�6 þ 2�7 ¼ 52

�4 þ �6 þ �7 ¼ 33

�1 þ �3 þ 3�7 ¼ 70

�2 þ 2�6 þ 2�7 ¼ 58

(13:1)

Solving system (13.1), we obtain the following unique solution: �1 ¼ 5, �2 ¼ 6,

�3 ¼ 14, �4 ¼ 7, �5 ¼ 13, �6 ¼ 9, and �7 ¼ 17.
The data size l is often much larger than 2n � 1, where n is the number of

attributes. In such cases, systems consisting of l linear equations have generally

no precise solutions. However, an optimal approximate solution can be found

by minimizing the total squared error

e2 ¼
Xl
j¼1
ðyj � ðCÞ

ð
fjd�Þ2:

When integrals of the other types are considered, such as Sugeno integrals,

upper integrals, or lower integrals, the algebraic method may fail. However,

based on the observed input-output data of the system, some soft computing
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techniques, such as genetic algorithms or neural networks, can be used to search
the above-mentioned optimal approximate solution and obtain an estimation
of the values of �.

13.6 Other Construction Methods

Methods for constructing general measures that are discussed in Sections
13.2–13.5 do not cover all conceivable types of methods for this purpose.
Although our aim in this chapter is not to give a comprehensive overview of
all types of construction methods, we consider it desirable to introduce in this
section two additional types of construction methods: (i) methods based on the
usual semantics of propositional modal logic; and (ii) methods based on suita-
ble uncertainty principles. These types of construction methods are concep-
tually quite interesting and have a great potential utility. However, they are not
fully developed as yet. Moreover, their full description would require in each
case to introduce fairly extensive relevant preliminaries. For these reasons, we
describe them only conceptually, focusing on basic ideas upon which they are
based, and provide the reader with relevant references in Note 13.6.

13.6.1 Methods Based on Modal Logic

Propositional modal logic (or, simply, ‘‘modal logic’’) is an extension of classical
propositional logic that adds to the propositional logic two unary modal

operators, an operator of necessity, &, and an operator of possibility, 	.
Given a proposition p, &p represents the proposition ‘‘it is necessary that p’’,

while	p stands for the proposition ‘‘it is possible that p.’’ Given a universal set
X, the set Q of atomic propositions for our purpose consists of all propositions
of the form

eA : ‘‘e is inA;’’

where e 2 X and A is a subset of X. The proposition eA means that a given,
incompletely characterized element e of X lies within se A.

Modal logic representations of some classes of general measures, including
belief and plausibility measures, possibility and necessity measures, lambda
measures, and additive measures, have recently been established. These repre-
sentations are based on different models M of modal logic. Each model is a
triple

M ¼ ðW;R;VÞ;
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whereW,R,V denote, respectively, a set of possible worlds, a binary relation on
W, and a value assignment function. Relation R describes accessibility between
the possible worlds: ðw;w0Þ 2 R means that world w0 is accessible to world w.
This relation is usually assumed to be reflexive, which means that each world is
accessible to itself. Function V assigns truth (T) or falsity (F) to each atomic
proposition in each possible world. That is,

V : W
Q! fT;Fg;

whereQ denotes the set of all atomic propositions. Once defined for proposition
inQ, functionV is inductively extended to all relevant propositions. This is done
in the usual way for each propositional connective and each possible world.
A proposition of the form&p is true in a possible worldw (i.e.,Vðw;&pÞ ¼ T ) if
the proposition p is true in all possible words that are accessible to w. Similarly,
a proposition of the form	p is true in a possible world w if there is at least one
world accessible to w in which the proposition p is true.

The established modal logic representations of some classes of general
measures can be utilized for constructing measures in these classes. Let us
illustrate this utility by the following example.

Assume that the set of possible worlds W represents a group of experts in
some field. Universal set X represents all possible answers to a question related
to this field. Each expert is assumed to have his or her own opinion regarding
the correct answer to each question of interest. The accessibility relation Rmay
be interpreted in this context in the following way: (w;w0Þ 2 Rmeans that expert
w takes into consideration the opinion (the valuations of relevant propositions)
of expert w0. Naturally, every expert takes into consideration his or her own
opinion, and, therefore, R is assumed to be reflexive. Assuming, for example,
that W is a finite set with n possible worlds, X is a finite set, and R is an
equivalence relation, it was proven that belief and plausibility measures are
represented for all A 2 PðXÞ by the formulas

BelðAÞ ¼ T½&eA�=n; PlðAÞ ¼ T½	eA�=n;
where T½ p� denotes for any relevant proposition p the number of worlds in
which p is true. This result has also been generalized in different ways, including
the case of infinite sets. For representing and constructing other types of dual
measures, we need to use appropriate types of accessibility relations.

13.6.2 Methods Based on Uncertainty Principles

New possibilities for constructing measures of various types open when the
measures are used for representing uncertainty. In this case we may utilize four
epistemological principles for coping with uncertainty. These principles are: a
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principle of minimum uncertainty, a principle of maximum uncertainty, a
principle of uncertainty invariance, and a principle of requisite generalization.
These four principles are applicable to four distinct classes of problems, all
involving representation of uncertainty by general measures of appropriate
types. Each of these principles provides guidance for dealing with the respective
problems in specific ways that are epistemologically sound. When applying any
of these principles, we always construct a new measure from a given measure.
This new measure is an epistemological sound solution to a given problem,
which is obtained by following the uncertainty principle pertaining to the
problem. Depending on the problem involved, the new measure is required by
the relevant principle to maximize, minimize, or preserve relevant uncertainty
(measured in a justifiable way) within the constraints of the given problem.

Notes

13.1. An overview of methods for constructing measures of various types in the
context of expert systems is presented in [Klir et al., 1997].

13.2. The preservation of the various structural properties of monotone mea-
sures by integrals are investigated in detail in [Wang et al., 1995a] for the
Sugeno integral and in [Wang et al., 1996b] for the Choquet integral.

13.3. Constructions of new measures from given ones by transformations that
are listed in Table 13.1 are investigated in papers by Klir et al. [1996] and
Wang et al. [1996].

13.4. An analytical method for identifying a l-measure on a finite universal set
is presented in [Wierzchon, 1993]. The method for identifying general
measures of various types by genetic algorithms is explored in papers by
Wang and Wang [1996], Chen et al. [2000], and Wang and Chen [2005].

13.5. Data-driven methods for constructing general measures of various types
are discussed in the literature fairly extensively. Some representative
publications include methods employing genetic or evolutionary algo-
rithms [Wang et al., 1998b; Wang et al., 1999a, b; Wang and Chen, 2005],
neural networks [Wang andWang, 1997;Wang et al., 1998a], and various
other methods [Grabisch, 1995a; Klir et al., 1995; Yuan and Klir, 1996;
Soria-Frisch, 2006].

13.6. A connection between modal logic [Chellas, 1980; Hughes and Cresswell,
1996] and various types of measures has been explored since the early
1990s and opened new ways for constructing measures. Some represen-
tative samples of the growing literature in this domain are [Resconi et al.
1993; Klir, 1994; Klir and Harmanec, 1994; Harmanec et al., 1994, 1996;
Wang et al., 1995b; Tsiporkova et al., 1999]. The methodological
principles of uncertainty mentioned in Section 13.6, which can be
employed for constructing measures, are formulated in [Klir, 2006].
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Chapter 14

Fuzzification of Generalized Measures

and the Choquet Integral

14.1 Conventions

This chapter deals with standard fuzzy sets, which are introduced in Section 2.3.
It is thus convenient to omit the adjective ‘‘standard.’’ Classical sets, which are
viewed in this chapter as special fuzzy sets, are called crisp sets. Fuzzy sets (as
well as crisp sets) are denoted by capital letters printed in italics. When we refer
to operations of intersection, union, and complement of fuzzy sets, it is always
assumed in this chapter that they are the standard operations on fuzzy sets, as
defined in Section 2.3.

14.2 Monotone Measures Defined on Fuzzy �-Algebras

Let X be a universal set that is nonempty but may be not finite. The class of all
fuzzy subsets of X, denoted by ~PðXÞ, is called a fuzzy power set of X.

Definition 14.1. A subset of ~PðXÞ is called a fuzzy �-algebra, denoted by ~F, if it
satisfies the following conditions:

(FSA1) The empty set Ø belongs to ~F;
(FSA2) ~F is closed under the formation of countable unions, i.e.,

S1
i¼1

Ai 2 ~F if
each Ai 2 ~F; i ¼ 1; 2; . . .;

(FSA3) ~F is closed under the formation of complements, i.e., �A 2 ~F if A 2 ~F.

The fuzzy power set ~PðXÞ is a fuzzy �-algebra. The pair ðX; ~FÞ is called a fuzzy
measurable space if ~F is a fuzzy �-algebra of fuzzy subsets of X.

Let ðX;FÞ be a measurable space. The class of all fuzzy sets possessing
F-measurable membership functions, ~FðFÞ ¼ fAjmA is F-measurableg, forms
a fuzzy �-algebra and is called a fuzzy �-algebra generated by F. Such a fuzzy
�-algebra is of our primary interest in this chapter.

For a given fuzzy measurable space ðX; ~FÞ, let F be the class of all crisp
sets in ~F; that is, F ¼ fAjA 2 ~F;A is crispg. Then F is a �-algebra. Using
�-algebra F, a fuzzy �-algebra ~FðFÞ can be formed as mentioned above. It
should be noted that ~FðFÞ may be different from ~F:

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_14, � Springer ScienceþBusiness Media, LLC 2009

285



Example 14.1. Let X ¼ fa; bg and let ~F be the fuzzy �-algebra consisting of all
fuzzy sets whose membership function has a form of

mðxÞ ¼
c1 if x ¼ a

c2 if x ¼ b

�

where c1 2 f0; 1g and c2 2 ½0; 1�. Then the class of all crisp sets in ~F; denoted by
F, is the power set of X. We can see that ~FðFÞ is the fuzzy power set of X, i.e.,
~FðFÞ ¼ ~PðXÞ. So, we have ~F 6¼ ~FðFÞ.

Definition 14.2. Let ~� : ~F! ½0;1�. Function ~� is called a fuzzified monotone
measure on ~F if:

(1) ~�ðØÞ ¼ 0;
(2) ~�ðAÞ � ~�ðBÞ whenever A 2 ~F;B 2 ~F, and A � B.

A fuzzified monotone measure is also simply called monotone measure if
there is no confusion. The triple ðX; ~F; ~�Þ is called a fuzzy monotone measure
space. For any given ðX; ~F; ~�Þ, restricting ~� on �-algebra F ¼ fAjA 2 ~F;A is
crispg as ~�; ðX;F; ~�Þ is a monotone measure space.

Example 14.2. The fuzzy measurable space ðX; ~F; Þ is given in Example 14.1. Let

~�ðAÞ ¼
0:8c2 if c1 ¼ 0

0:5ðc2 þ 1Þ if c1 ¼ 1

�

for fuzzy set A with membership function mðxÞ ¼ c1 if x ¼ a
c2 if x ¼ b

�
: Then ~� is a

fuzzified monotone measure on (X, ~FÞ. Restricting ~� on �-algebra F, � is a
monotone measure on (X, F).

To simplify the notation from now on, ~FðFÞ is simply written as ~F if there is
no confusion.

14.3 The Choquet Extension

Let (X, F) be a measurable space, � be a monotone measure on F, and
f : X! ½0; 1Þ be a nonnegative F-measurable function defined on X. By
using the Choquet integral, which is introduced and studied in Chapter 11, �
can be extended from �-algebra F onto fuzzy �-algebra ~F, generated by F.

Theorem 14.1. For every fuzzy set A 2 ~F, define ~�ðAÞ ¼ ðCÞ
Ð
mAd� ¼Ð 1

0 �ðA�Þd�, where mA is the membership function of A and A� ¼ fxjmAðxÞ �
�g is the �-cut of A. Then ~� is a monotone measure on fuzzy �-algebra ~F:

Proof. Since A 2 ~F, we know that mA is an F-measurable function and, there-
fore, A� 2 F. �ðA�Þ is a monotone function of �. So, ~�ðAÞ is well defined on ~F.
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Furthermore, ~�ðØÞ ¼ ðCÞ
Ð
mØd� ¼ ðCÞ

Ð
0 d� ¼ 0. Finally, by monotonicity of

the Choquet integral, ~�ðAÞ ¼ ðCÞ
Ð
mAd� �ðCÞ

Ð
mBd� ¼ ~�ðBÞwheneverA 2 ~F,

B 2 ~F, and A � B. Hence, ~� is a monotone measure on ~F. &

Since ~�ðAÞ ¼ ðCÞ
Ð
�Ad� ¼ �ðAÞ when A 2 F, i.e., ~� coincides with � on F, ~�

is an extension of � from F onto ~F; and is called a Choquet extension of �.

Example 14.3. Let X ¼ fx1; x2; x3g and a monotone measure � be given
on F ¼ PðXÞ as �ðØÞ ¼ 0, �ðfx1gÞ ¼ 1; �ðfx2gÞ ¼ 2; �ðfx1; x2gÞ ¼ 5;
�ðfx3gÞ ¼ 3; �ðfx1; x3gÞ¼ 8; �ðfx2; x3gÞ¼ 4; �ðfx1; x2; x3gÞ¼10: For fuzzy
set A with membership function

mAðxÞ ¼
0:5 if x ¼ x1

1 if x ¼ x2,

0:25 if x ¼ x3

8<
:

we have

~�ðAÞ ¼ ðCÞ
ð
mAd� ¼ mAðx3Þ � �ðfx1; x2; x3gÞ

þ ½mAðx1Þ �mAðx3Þ� � �ðfx1; x2gÞ þ ½mAðx2Þ �mAðx1Þ� � �ðfx2gÞ

¼ 0:25 � 10þ ð0:5� 0:25Þ � 5þ ð1� 0:5Þ � 2 ¼ 4:75:

14.4 Structural Characteristics of Monotone Measures

on Fuzzy s-Algebras

In this section, we introduce some structural characteristics of monotone mea-
sures on fuzzy �-algebras that are similar to those for monotone measures on
�-algebras in Chapter 6. Throughout this section, let ðX; ~F, ~�Þ be a fuzzy
monotone measure space.

Definition 14.3. Monotone measure ~� is continuous from below iff fAig � ~F

and A1 � A2 � � � � imply lim
i!1

~�ðAiÞ ¼ ~�ð
S1
i¼1

AiÞ; ~� is continuous from above if

fAig � ~F, A1 � A2 � � � �, and ~�ðA1Þ 51 imply lim
i!1

~�ðAiÞ ¼ ~�ð
T1
i¼1

AiÞ; ~� is

continuous if it is both continuous from below and continuous from above.

Definition 14.4. Monotone measure ~� is null-subtractive iff ~�ðA� BÞ ¼ ~�ðAÞ
whenever A 2 ~F, B 2 ~F, and ~�ðBÞ ¼ 0; ~� is null-additive iff ~�ðA [ BÞ ¼ ~�ðAÞ
whenever A 2 ~F, B 2 ~F; and ~�ðBÞ ¼ 0.

Unlike the situation where � is defined on a crisp �-algebra, the null-
subtractivity of ~� is not equivalent to its null-additivity. We can see this from
the following example.
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Example 14.4. Let X ¼ fag, ~F be the fuzzy �-algebra consisting of all fuzzy

subsets of X, and monotone measure ~� be defined as

~�ðAÞ ¼
0 if mAðaÞ � 1=2

1 otherwise:

�

Then, ~� is null-additive. In fact, if B 2 ~F with ~�ðBÞ ¼ 0, then mBðaÞ � 1=2.
Thus, for any A 2 ~F, either mAðaÞ � 1=2 so that mA[BðaÞ ¼ mAðaÞ _mBðaÞ �
1=2 and, therefore, ~�ðA [ BÞ ¼ ~�ðAÞ ¼ 0, or mAðaÞ > 1=2 so that
mA[BðaÞ ¼ mAðaÞ _mBðaÞ > 1=2 and, therefore, ~�ðA [ BÞ ¼ ~�ðAÞ ¼ 1. How-
ever, ~� is not null-subtractive. We can see this as follows. Take A ¼ X

and B 2 ~F with mBðaÞ ¼ 1=2. Then ~�ðAÞ ¼ 1 and ~�ðBÞ ¼ 0. Noting
that mA�BðaÞ ¼ mA\ �BðaÞ ¼ mAðaÞ ^ ð1�mBðaÞÞ ¼ 1 ^ ð1=2Þ ¼ 1=2, we have
~�ðA� BÞ ¼ 0.

Definition 14.5. Monotone measure ~� is autocontinuous from below

iff lim
i!1

~�ðA� BiÞ ¼ ~�ðAÞ whenever A 2 ~F, Bi 2 ~F, i ¼ 1; 2; . . ., and

lim
i!1

~�ðBiÞ ¼ 0; ~� is autocontinuous from above iff lim
i!1

~�ðA [ BiÞ ¼ ~�ðAÞ

whenever A 2 ~F;Bi 2 ~F; i ¼ 1; 2; . . ., and lim
i!1

~�ðBiÞ ¼ 0; ~� is autocontinuous

iff it is both autocontinuous from below and autocontinuous from above.

Definition 14.6.Monotone measure ~� is uniformly autocontinuous from below
iff for any " > 0, there exists � ¼ �ð"Þ > 0 such that ~�ðA� BÞ � ~�ðAÞ � "
whenever A 2 ~F, B 2 ~F, and ~�ðBÞ � �; ~� is uniformly autocontinuous from
above iff for any " > 0, there exists � ¼ �ð"Þ > 0 such that

~�ðA [ BÞ � ~�ðAÞ þ " whenever A 2 ~F, B 2 ~F, and ~�ðBÞ � �; ~� is uniformly

autocontinuous iff it is both uniformly autocontinuous from below and uni-
formly autocontinuous from above.

Notice that, similarly to the situation in Definition 14.4, expression
~�ðA� BÞ � ~�ðAÞ � " cannot be replaced by expression ~�ðA [ BÞ � ~�ðAÞ þ "
when A and B are fuzzy sets. So, we need to define ‘‘uniform autocontinuity

from below’’ and ‘‘uniform autocontinuity from above’’ in Definition 14.6
separately.

Definition 14.7.Monotonemeasure ~� is subadditive iff ~�ðA [ BÞ � ~�ðAÞ þ ~�ðBÞ
whenever A 2 ~F and B 2 ~F; ~� is superadditive iff ~�ðA [ BÞ � ~�ðAÞ þ ~�ðBÞ
whenever A 2 ~F; B 2 ~F, and A \ B ¼ Ø; ~� is additive iff it is both subadditive

and superadditive.
The concepts of structural characteristics introduced by Definitions

14.3–14.7 for monotone measures defined on fuzzy �-algebras are fuzzy coun-
terparts of the concepts for monotone measures defined on crisp �-algebras
shown in Chapter 6, and the former are generalizations of the latter. The

relation among fuzzy counterparts of structural characteristics of monotone
measure on crisp �-algebras is summarized in Fig. 14.1.
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14.5 Hereditability of Structural Characteristics

In this section we investigate the hereditability of the various structural char-

acteristics of monotone measures when the Choquet extension is used to estab-

lish a monotone measure on a fuzzy �-algebra. In the rest of this section, let �
denote a monotone measure on measurable space (X, F) and let ~� denote its

Choquet extension on fuzzy measurable space (X, ~FÞ.

Lemma 14.1. For any A 2 ~F; ~�ðAÞ ¼
Ð 1
0 �ðA�þÞd�.

Proof. First, we have �ðA�þÞ � �ðA�Þ for any � 2 ½0; 1� and, therefore,
ð1
0

�ðA�þÞd� �
ð1
0

�ðA�Þd� ¼ ~�ðAÞ:

Conversely, for any " > 0, since A� � Að��"Þþ and � is monotone we have

�ðA�Þ � �ðAð��"ÞþÞ, and, therefore,

~�ðAÞ ¼
ð1
0

�ðA�Þd� �
ð1
0

�ðAð��"ÞþÞd�

¼
ð1�"
�"

�ðA�þÞd� �
ð1
�"
�ðA�þÞd� � " � �ðXÞ þ

ð1
0

�ðA�þÞd�:

Fig. 14.1 Relation among
structural characteristics of
monotone measures on
fuzzy �-algebra
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Letting "! 0, we obtain ~�ðAÞ �
Ð 1
0 �ðA�þÞd�. Consequently, ~�ðAÞ ¼Ð 1

0 �ðA�þÞd�: h

Theorem 14.2. If � is continuous from below (or from above) on (X, F), then so is
~� on (X, ~FÞ.

Proof. Let fAig � ~F and A1 � A2 � � � �. Then, fðAiÞ�þg � F and ðA1Þ�þ �
ðA2Þ�þ � � � � for any � 2 ½0; 1�. By using the continuity from below of �, we have

lim
i!1

�ððAiÞ�þÞ ¼ �
[1
i¼1
ðAiÞ�þ

 !
:

Thus, applying Lemma 14.1 and the well known bounded convergence theorem

of the definite integral, we have

lim
i!1

~�ðAiÞ ¼ lim
i!1

ð1
0

�ððAiÞ�þd� ¼
ð1
0

lim
i!1

�ððAiÞ�þd�

¼
ð1
0

�ð
[1
i¼1
ðAiÞ�þÞd� ¼

ð1
0

�ð
[1
i¼1
ðAiÞ�þÞd� ¼ ~�ð

[1
i¼1

AiÞ:

Hence, ~� is continuous from below. Similarly, noting that ~�ðA1Þ ¼ 0 implies

�ððA1Þ�Þ ¼ 0 for any � 2 ð0; 1�, we can prove that ~� is continuous from above

by using the equality
T1
i¼1
ðAiÞ� ¼ð

T1
i¼1

AiÞ�. The details are omitted here. h

Combining the two parts in Theorem 14.2, we obtain the following Corollary.

Corollary 14.1. If � is continuous on (X, F), then so is ~� on (X, ~FÞ.

Theorem 14.3. If � is null-additive on (X, F), then so is ~� on (X, ~FÞ.

Proof. Let � be null-additive on (X, F) and B 2 ~F with ~�ðBÞ ¼ 0. From

0 ¼ ~�ðBÞ ¼
Ð 1
0 �ðB�Þd� and the monotonicity of �, we know that �ðB�Þ ¼ 0

for all � > 0. In fact, if there exists �0 > 0 such that �ðB�0
Þ ¼ c > 0, then

�ðB�Þ � �ðB�0
Þ ¼ c for every � 2 ð0; �0� and, therefore,

Ð 1
0 �ðB�Þd� � c�0

> 0. This is a contradiction with equality
Ð 1
0 �ðB�Þd� ¼ 0. Thus, for any A 2 ~F,

~�ðA [ BÞ ¼
ð1
0

�ððA [ BÞ�Þd� ¼
ð1
0

�ðA� [ B�Þd�:

By using the null-additivity of �, we have �ðA� [ B�Þ ¼ �ðA�Þ for every � > 0.

Hence, for any A 2 ~F and any B 2 ~F with ~�ðBÞ ¼ 0,

~�ðA [ BÞ ¼
ð1
0

�ðA� [ B�Þd� ¼
ð1
0

�ðA�Þd� ¼ ~�ðAÞ :

This means that ~� is null-additive on (X, ~FÞ. h
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Theorem 14.4. If � is null-subtractive on (X, F), then so is ~� on (X, ~FÞ.

Proof. Let � be null-subtractive on (X, F) and B 2 ~F with ~�ðBÞ ¼ 0. From the
partial result obtained in the proof of Theorem 14.3 that �ðB�Þ ¼ 0 for all� > 0
and the fact that B�þ � B�, we conclude that �ðB�þÞ ¼ 0 for all � 2 ð0; 1Þ.
Thus, by using the null-subtractivity of �,

~�ðA� BÞ ¼
ð1
0

�ððA� BÞ�Þd� ¼
ð1
0

�ððA \ �BÞ�Þd�

¼
ð1
0

�ðA� \ ð �BÞ�Þd� ¼
ð1
0

�ðA� � Bð1��ÞþÞd�

¼
ð1
0

�ðA�Þd� ¼ ~�ðAÞ: h

In Theorem 14.4, the condition ‘‘� is null-subtractive on (X, F)’’ can be
replaced by ‘‘� is null-additive on (X, F)’’ since they are equivalent (see
Theorem 6.2). A similar situation occurs in the discussion on the uniform
autocontinuity.

Theorem 14.5. If � is autocontinuous from below (or from above) on (X, F ), then
so is ~� on (X, ~FÞ.

Proof. Let A 2 ~F and fBig � ~F with lim
i!1

~�ðBiÞ ¼ 0. First, we know that

lim
i!1

~�ðBiÞ ¼ 0 implies lim
i!1

�ððBiÞ�Þ ¼ 0 for every � 2 ð0; 1�. In fact, if it is not

true, then there exist �0 2 ð0; 1� and sequence fijg such that �ððBijÞ�0
Þ � c > 0

for j ¼ 1; 2; . . .. Hence,

ð1
0

�ððBijÞ�Þd� �
ð�0

0

�ððBijÞ�Þd� �
ð�0

0

c d� ¼ c�0 > 0

for every j ¼ 1; 2; . . .; therefore, lim
i!1

Ð 1
0 �ððBiÞ�Þd� > 0 or does not exist.

This is a contradiction with lim
i!1

Ð 1
0 �ððBiÞ�Þd� ¼ lim

i!1
~�ðBiÞ > 0. Furthermore,

lim
i!1

�ððBiÞð1��ÞþÞ ¼ 0 for every � 2 ð0; 1Þ since 0 � lim
i!1

�ððBiÞð1��ÞþÞ
� lim

i!1
�ððBiÞð1��ÞÞ ¼ 0. Thus,

~�ðA� BiÞ ¼
ð1
0

�ððA� BiÞ�Þd� ¼
ð1
0

�ððA \ �BiÞ�Þd�

¼
ð1
0

�ððA� \ ð �BiÞ�Þd� ¼
ð1
0

�ððA� \ ðBiÞð1��ÞþÞd�

¼
ð1
0

�ððA� � ðBiÞð1��ÞþÞd� :
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By using the autocontinuity from below of � and the bounded convergence

theorem of the definite integral, we have

lim
i!1

~�ðA� BiÞ ¼ lim
i!1

ð1
0

�ððA� � ðBiÞð1��ÞþÞd�

¼
ð1
0

lim
i!1

�ððA� � ðBiÞð1��ÞþÞd� ¼
ð1
0

�ðA�Þd� ¼ ~�ðAÞ :

The proof for the autocontinuity from below of ~� is now complete. Similarly,

by using the autocontinuity from above of �, we obtain

lim
i!1

~�ðA [ BiÞ ¼ lim
i!1

ð1
0

�ððA [ BiÞ�Þd� ¼
ð1
0

lim
i!1

�ððA� [ ðBiÞ�Þd�

¼
ð1
0

�ðA�Þd� ¼ ~�ðAÞ:

This shows that ~� is autocontinuous from above too. h

Corollary 14.2. If � is autocontinuous on (X, F ), then so is ~� on (X, ~FÞ.

Theorem 14.6. If � is uniformly autocontinuous on (X, F ), then ~� is both

uniformly autocontinuous from below and uniformly autocontinuous from above

on (X, ~FÞ.

Proof. Denote �ðXÞ by c. We prove the uniform autocontinuity from above

of ~� first. From the uniform autocontinuity of � on (X, F), for any given " > 0,

there exists � > 0 such that �ðE [ FÞ � �ðEÞ þ "=2 whenever E 2 F, F 2 F,

and �ðFÞ � 2c�=". If B 2 ~F with ~�ðBÞ5�, we know that f�j� ðB�Þ > 2c�="g �
½0; "=2cÞ from

Ð 1
0 �ðB�Þd� ¼ ~�ðBÞ5� and the fact that �ðB�Þ is a nonincreas-

ing function of �. Indeed, if there exists some � � "=2c such that �ðB�Þ > 2c�=",
then

ð1
0

�ðB�Þd� �
ð"=2c
0

�ðB�Þd� �
ð"=2c
0

ð2c�="Þd� ¼ �:

This contradicts the inequality
Ð 1
0 �ðB�Þd�5�. Thus, for any A 2 ~F we have

~�ðA [ BÞ ¼
ð1
0

�ððA [ BÞ�Þd�

¼
ð"=2c
0

�ððA [ BÞ�Þd�þ
ð1
"=2c

�ððA [ BÞ�Þd�

¼
ð"=2c
0

�ððA [ BÞ�Þd�þ
ð1
"=2c

�ðA� [ B�Þd�
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�
ð"=2c
0

c d�þ
ð1
"=2c

½�ðA�Þ þ "=2�d� � "=2þ
ð1
0

½�ðA�Þ þ "=2�d�

¼ "=2þ
ð1
0

�ðA�Þd�þ "=2 ¼
ð1
0

�ðA�Þd�þ " ¼ ~�ðAÞ þ ":

This means that ~� is uniformly autocontinuous from above on (X, ~FÞ. Now, we
use a slightly modified reasoning to prove that ~� is uniformly autocontinuous
from below on (X, ~FÞ. From the uniform autocontinuity of � on (X, F), for any
given " > 0, there exists � > 0 such that �ðE� FÞ � �ðEÞ � "=2 whenever
E 2 F, F 2 F, and �ðFÞ � 2c�=". If B 2 ~F with ~�ðBÞ5�,

Ð 1
0 �ðB�þÞd� ¼

~�ðBÞ5� from Lemma 1, and from the monotonicity of �ðB�þÞ with respect to
�, we know that f�j�ðBð1��ÞþÞ > 2c�="g � ð1� "=2c; 1�. Thus, for any A 2 ~F,
we have

~�ðA� BÞ ¼
ð1
0

�ðA� � Bð1��ÞþÞd�

¼
ð1�"=2c
0

�ðA� � Bð1��ÞþÞd�þ
ð1
1�"=2c

�ðA� � Bð1��ÞþÞd�

�
ð1�"=2c
0

�ðA� � Bð1��ÞþÞd� �
ð1�"=2c
0

ð�ðA�Þ � "=2Þd�

¼
ð1�"=2c
0

�ðA�Þd��
ð1�"=2c
0

ð"=2Þd�

¼
ð1
0

�ðA�Þd��
ð1
1�"=2c

�ðA�Þd��
ð1�"=2c
0

ð"=2Þd�

�
ð1
0

�ðA�Þd��
ð1
1�"=2c

�ðA�Þd��
ð1
0

ð"=2Þd�

�
ð1
0

�ðA�Þd�� c � "=2c� "=2

¼
ð1
0

�ðA�Þd�� "=2� "=2 ¼ ~�ðAÞ � ":

This means that ~� is also uniformly autocontinuous from below on (X, ~FÞ. The
proof of the theorem is now complete. h

Corollary 14.3. If � is uniformly autocontinuous on (X, F), then so is ~� on (X, ~FÞ.

Theorem 14.7. If � is subadditive (or superadditive) on (X, F), then so is ~� on

(X, ~FÞ.
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Proof. Let � be subadditive on (X, F). For any A 2 ~F and B 2 ~F,

~�ðA [ BÞ ¼
ð1
0

�ððA [ BÞ�Þd� ¼
ð1
0

�ðA� [ B�Þd�

�
ð1
0

½�ðA�Þ þ �ðB�Þ�d�

¼
ð1
0

�ðA�Þd�þ
ð1
0

�ðB�Þd� ¼ ~�ðAÞ þ ~�ðBÞ:

This means that ~� is subadditive on (X, ~FÞ. As for the superadditivity, let
A 2 ~F and B 2 ~F be disjoint, i.e., A \ B ¼ Ø. From the superadditivity of
� on (X, F), since A� \ B� ¼ Ø for every � 2 ð0; 1�, we have

~�ðA [ BÞ ¼
ð1
0

�ððA [ BÞ�Þd� ¼
ð1
0

�ðA� [ B�Þd� �
ð1
0

½�ðA�Þ þ �ðB�Þ�d�

¼
ð1
0

�ðA�Þd�þ
ð1
0

�ðB�Þd� ¼ ~�ðAÞ þ ~�ðBÞ: h

Theorems in this section establish the hereditability for most structural
characteristics of monotone measures extended from a �-algebra based on
crisp sets onto its generated fuzzy �-algebra.

14.6 Real-Valued Choquet Integrals with Fuzzy-Valued

Integrands

In this section, we assume that the universal set X is finite, and we use the
convenient notation X ¼ fx1; x2; . . . ; xng. We also assume that f is a fuzzy-
valued function defined on X whose range is a subset of the set of all fuzzy
numbers. Function f can be expressed as ðm1; m2; . . . ;mnÞ, where mi is the
membership function of fuzzy number fðxiÞ; i ¼ 1; 2; . . . ; n.

Example 14.5. Assume that papers submitted to a journal are evaluated by
several criteria and the evaluation range for each criterion is the interval [0, 5],
with 0 and 5 being the worst and best evaluations, respectively. Assume
further that reviewers are asked to evaluate each paper for each specified
criterion qualitatively by using the linguistic terms bad, weak, fair, good,
excellent. The meanings of these four linguistic terms can be adequately cap-
tured by the trapezoidal fuzzy numbers B ¼ h0; 0; 1; 1:5i; W ¼ h1; 1:5; 2; 2:5i;
F ¼ h2; 2:5; 3; 3:5 i; G ¼ h3; 3:5; 4; 4:5i, andE ¼ h4, 4.5, 5, 5.5i, respectively (see
Fig. 14.2). Collection fB; W; F; G; Eg is a fuzzy partition of the interval [0,5].

To consider the Choquet integral with fuzzy-valued integrand, first, we
should discuss the �-level set of fuzzy-valued functions.
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Definition 14.8. For any given � 2 R, the �-level set of fuzzy-valued function
f ¼ ðm1; m2; . . . ;mnÞ, denoted by F�, is a fuzzy subset of X, whose membership
function mF� has degree of membership

mF�ðxiÞ ¼

Ð1
� miðtÞdtÐ1
�1miðtÞdt

if
Ð1
�1miðtÞdt 6¼ 0

max
t��

miðtÞ otherwise

8>>><
>>>:

at attribute xi, i ¼ 1; 2; . . . ; n. Fuzzy set F� can be expressed as an
n-dimensional vector ðmF�ðx1Þ; mF�ðx2Þ; . . . ; mF�ðxnÞÞ.

The concept of the �-level set for a fuzzy-valued function given in Definition
14.8 is a generalization of the �-level set for a real-valued function, that is, it
coincides with the �-level set of a real-valued function when the values of
function f are crisp. Such a generalization is rather intuitive. It just uses the
percentage of the area in the right-hand side of � under the curve of
the membership function of fðxiÞ to define the degree of the membership for
the �-level set of fuzzy-valued function f at point xi. Of course, when the area
under the curve of the membership function of fðxiÞ is zero (i.e., fðxiÞ is a crisp
real number cÞ for some i, the above-mentioned percentage has the form of 0/0.
In this special case, we need to define the value of the membership function at
point xi separately by maxt�� miðtÞ, where

miðtÞ ¼
1 if t ¼ c

0 if t 6¼ c

�

If fðxiÞ is an interval [a, b], the degree of the membership for the �-level set of f
at xi is

mF�ðxiÞ ¼
1 if �5a
b� �
b� a

if � 2 ½a; b�

0 if � > b:

8><
>:

 bad fair good excellent

t

m(t)

1

0 1 2 3 4 5

weak

Fig. 14.2 Membership
functions of fuzzy sets B,W,
F ,G , andE in Example 14.5
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Example 14.6. LetX ¼ fx1; x2; x3g and let fuzzy-valued function f defined onX
be expressed as (mW; mE, mGÞ, where the membership functions of fuzzy
numbers mW; mE, and mG, are given in Example 14.5. Then, for example, we
have F� ¼ ð0:25; 1; 1Þ when � ¼ 2 and F� ¼ ð0; 1; 0:75Þ when � ¼ 3:5: If the
monotone measure � given in Example 14.3 is used, then

�ðF2Þ ¼ ðCÞ
ð
mF2

d� ¼ 0:25 � 10þ ð1� 0:25Þ � 4þ ð1� 1Þ � 3 ¼ 5:5

and

�ðF3:5Þ ¼ ðCÞ
ð
mF3:5

d� ¼ 0 � 10þ ð0:75� 0Þ � 4þ ð1� 0:75Þ � 2 ¼ 3:5:

To simplify the way of finding the membership function of the �-cut of a
fuzzy-valued function, we first deal with only one attribute essentially. Let f be
a fuzzy-valued function on X ¼ fx1; x2; ::; xng having a form as

fðxÞ ¼
A if x ¼ xi0

0 if x 6¼ xi0

�

for some i0 2 f1; 2; . . . ; ng, where A is a trapezoidal fuzzy number
al; ab; ac; arh i. Then, by calculating the quotient of two Riemann integrals
shown in Definition 14.8, the degree of membership of F� at xi0 is

mF�ðxi0Þ ¼

1 when � � al

1� ð�� alÞ2

ðar þ ac � al � abÞðab � alÞ
when � 2 ðal; ab�

ar þ ac � 2�

ar þ ac � al � ab
when � 2 ðab; ac�

ðar � �Þ2

ðar þ ac � al � abÞðar � acÞ
when � 2 ðac; ar�

0 when � > ar,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(see Fig. 14.3) and at any other point x 6¼ xi0 is

mF�ðxÞ ¼
1 when � � 0

0 when � > 0:

�

Example 14.7. Consider a linguistic variable ‘‘the average period T between two
successive pulses of the heart of a patient,’’ denoted by xi0 , whose values are
small, medium, and large. Let the meaning of these values be represented,
respectively, by trapezoidal fuzzy numbers 0; 0; 0:3; 0:4h i, 0:3; 0:4; 0:6; 0:8h i,

296 14 Fuzzification of Generalized Measures and the Choquet Integral



and 0:6; 0:8; 1:3; 1:3h i, and let f have the value large for this variable. Then, for
any given real number �, the fuzzy set F� has a degree of membership

mF�ðxi0Þ ¼

1 when � � 0:6

1� ð�� 0:6Þ2

0:24
when 0:65� � 0:8

1:3� �
0:6

when 0.85� � 1:3

0 when �41:3

8>>>>>><
>>>>>>:

for variable xi0 .
To simplify our discussion, let the co-domain of the fuzzy-valued function

employed be the set of all trapezoidal fuzzy numbers, and let � be a monotone
measure on P(X). As is shown in Section 14.2, monotone measure � can be
extended onto the class of all fuzzy subsets of X by using the Choquet integral.
Thus, wemay still use Eq. (11.2) (Section 11.3) to define the translatable Choquet
integral of fuzzy-valued function f with respect to monotone measure �:

ðCÞ
ð
fd� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�:

Here, F� may be a fuzzy set and it is not guaranteed that �ðF�Þ is nonincreasing
with respect to �. However, as a function of �, �ðF�Þ is of bounded variation (in
fact, it is finitely piecewise monotonic and bounded). So, the above Riemann
integrals exist and, hence, the Choquet integral is well defined in this case.

The co-domain of a fuzzy-valued function may not be fully-ordered, and
therefore the values of the function at various variables cannot be rearranged
in a nondecreasing order. By the same reason, operators min and max may
not be well defined on the co-domain. So, the way for calculating the value
of the Choquet integral given in Section 11.5 is not directly applicable for
computing the Choquet integral with a fuzzy-valued integrand. However, we
may still use it for calculating �ðF�Þ in the above Riemann integrals since the
Choquet integral is used for the extension of �. To simplify the computation,
an important property of the Choquet integral with fuzzy-valued integrand is
stated in the following theorem, which is a counterpart of Theorem 11.6.

a~

al ab ac ar0

1

α

mFα (xi0
)

Fig.14.3 Illustration to
Example 14.6
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Theorem 14.8. Let � be a monotone measure on ~P(X) and f be a fuzzy-valued

function on X. Then,

ðCÞ
ð
f d� ¼ ðCÞ

ð
ðf� cÞd�þ c � �ðXÞ

for any real constant c.

Proof. Let g ¼ f� c. Then g is also a fuzzy-valued function and its �-cut, G�,

satisfies G� ¼ F�þc or, equivalently, G��c ¼ F�, for any real number �. Thus,
denoting �� c by �, we have

ðCÞ
ð
fd� ¼

ð0
�1
½�ðF�Þ � �ðXÞ�d�þ

ð1
0

�ðF�Þd�

¼
ð0
�1
½�ðG��cÞ � �ðXÞ�d�þ

ð1
0

�ðG��cÞd�

¼
ð0
�1
½�ðG��cÞ � �ðXÞ�dð�� cÞ þ

ð1
0

�ðG��cÞdð�� cÞ

¼
ð�c
�1
½�ðG�Þ � �ðXÞ�d� þ

ð1
�c
�ðG�Þd�

¼
ð�c
�1
½�ðG�Þ � �ðXÞ�d� þ

ð0
�c
�ðG�Þd�

þ
ð1
0

�ðG�Þd� �
ð0
�c
�ðXÞd� þ

ð0
�c
�ðXÞd�

¼
ð0
�1
½�ðG�Þ � �ðXÞ�d� þ

ð1
0

�ðG�Þd� þ
ð0
�c
�ðXÞd�

¼ ðCÞ
ð
gd�þ c � �ðXÞ

¼ ðCÞ
ð
ð f� cÞ d�þ c � �ðX Þ: h

In case the lower boundary of the support set of the integrand f at each xi
exists, denoted by ail for i ¼ 1; 2; . . . ; n; we may simplify the calculation of the

Choquet integral by constructing a corresponding nonnegative fuzzy-valued

function g ¼ f� c, where c ¼ min
1�i�n

ail. Due to Theorem 14.8 we can write

ðCÞ
ð
fd� ¼

ð1
0

�ðG�Þd�þ c��ðXÞ;

where G� denotes the �-level set of g.
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Before formulating an algorithm for calculating the crisp value of the Cho-
quet integral of a fuzzy-valued function with respect to a given signed general
measure, we first study a very special case in the following example where the
integrand vanishes at all attributes except one.

Example 14.8. Let f be the fuzzy-valued function that only assigns a nonnega-
tive trapezoidal fuzzy numberA ¼ al; ab; ac; arh i to attribute xi0 and vanishes
at all other attributes. Since F� ¼ X when � � 0, using formula (14.1) shown
after Example 14.6, we have

ðCÞ
ð
fd� ¼

ð1
0

�ðF�Þd� ¼
ð1
0

�ðfxi0gÞ �mF�ðxi0Þd� ¼ �ðfxi0gÞ �
ð1
0

mF�ðxi0Þd�

¼�ðfxi0gÞ � al þ ab � al �
1

3

ð�� alÞ3

ðar þ ac � ab � alÞðab � alÞ

" #�¼ab
�¼al

2
4

� 1

4

ðar þ ac � 2�Þ2

ar þ ac � ab � al

" #�¼ac
�¼ab

� 1

3

ðar � �Þ3

ðar þ ac � ab � alÞðar � acÞ

" #�¼ar
�¼ac

3
5

¼�ðfxi0gÞ ab �
1

3
� ðab � alÞ2

ar þ ac � ab � al

"

� 1

4
� ðar þ ac � 2acÞ2 � ðar þ ac � 2abÞ2

ar þ ac � ab � al

� 1

3
� ðar � acÞ2

ar þ ac � ab � al

#

¼�ðfxi0gÞ
1

3
� a

2
r þ arac þ a2c � a2b � abal � a2l

ar þ ac � ab � al

� �
:

Let us consider two special cases: (1) when A is a triangular fuzzy number
(that is, ab ¼ ac ¼ a0Þ, the above result becomes

ðCÞ
ð
fd� ¼ �ðfxi0gÞ

1

3
� a

2
r þ ara0 � a2l � ala0

ar � al

� �
¼ �ðfxi0gÞ

ar þ a0 þ al
3

h i
;

(2) when A is a rectangular fuzzy number (that is, al ¼ ab and ac ¼ arÞ, which is
actually a crisp interval, we have

ðCÞ
ð
fd� ¼ �ðfxi0gÞ

1

3
� 3ða

2
r � a2l Þ

2ðar � alÞ

� �
¼ �ðfxi0gÞ

ar þ al
2

h i
:

More specifically, if A collapses to a real number a (that is al ¼ ab ¼
ac ¼ ar ¼ aÞ, then
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ðCÞ
ð
fd� ¼ �ðfxi0gÞ � a:

Now, we turn to the general case. Function f may have fuzzy values at

every variable. Expressing f as ð a1l; a1b; a1c; a1rh i; a2l; a2b; a2c; a2rh i; . . . ;
anl; anb; anc; anrh iÞ; for any given � 2 R, the �-level set of f is a fuzzy subset

of X. Its degree of membership at xi is expressed by the formula

mF�ðxiÞ ¼

1 when � � ail

1� ð�� ailÞ2

ðair þ aic � ail � aibÞðaib � ailÞ
when � 2 ðail; aib�

air þ aic � 2�

air þ aic � ail � aib
when � 2 ðaib; aic�

ðair � �Þ2

ðair þ aic � ail � aibÞðair � aicÞ
when � 2 ðaic; air�

0 when � > air

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

for i ¼ 1; 2; . . . ; n:
In this case, it is rather difficult to express �ðF�Þ in an explicit form involving

only fundamental functions of � and to compute the precise value ofÐ1
0 �ðF�Þd�. However, we can numerically calculate its approximate value

through the following algorithm. In Step 4 of the algorithm, the given fuzzy-

valued function is translated to be nonnegative; Step 7 is the stop controller; the

membership function of F� is calculated in Step 8; Step 9 is used to find the value

of �ðF�Þ via the Choquet integral, and the Simpson method is used to calculate

the value of the involved Riemann integral approximately.

Algorithm 14.1. Computing an approximate value of
Ð1
0 �ðF�Þd�.

1. Input: n (the number of variables in XÞ, K (the number of subintervals
required in the Simpson method, with a default value K ¼ 100Þ, values of
function f, fðxiÞ ¼ ail; aib; aic; airh i for i ¼ 1; 2; . . . ; n, and values of a
given signed general measure

�j ¼ �ð
[

i:frcð j
2i
Þ2½12;1Þ

fxigÞ

for j ¼ 1; 2; . . . ; 2n � 1.
2. If ail � aib � aic � air for every i ¼ 1; 2; . . . ; n, then go to Step 3; otherwise,

return a message ‘‘data error: ...’’ to indicate where and what are the errors
and after correcting the data, go to Step 1.

3. Find a ¼ min
1�i�n

ail; b ¼ max
1�i�n

air; and � ¼
b� a

K
.
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4. Replace ail, aib, aic, and air with ail � a, aib � a, aic � a, and air � a, respec-
tively, for i ¼ 1; 2; . . . ; n:

5. Initiate � ¼ 0 and S ¼ �2
n�1
2

.
6. �þ � ! �.
7. If � > b� a, then � � ðS� �S

2 Þ þ a � �2n�1 ! S, output S as an approximate
value of ðCÞ

Ð
fd�; and stop; otherwise, continue.

8. Find

ci ¼

1 when � � ail

1� ð�� ailÞ2

ðair þ aic � ail � aibÞðaib � ailÞ
when � 2 ðail; aib�

air þ aic � 2�

air þ aic � ail � aib
when � 2 ðaib; aic�

ðair � �Þ2

ðair þ aic � ail � aibÞðair � aicÞ
when � 2 ðaic; air�

0 when � > air

8>>>>>>>>>>>><
>>>>>>>>>>>>:

for i ¼ 1; 2; . . . ; n.
9. Viewing h ¼ ðc1; c2; . . . ; cnÞ as a function on X, calculate �S ¼ ðCÞ

Ð
hd�

by the fomula

�S ¼
X2n�1
j¼1

zj � �j

where

zj ¼
min

i:frcð j
2i
Þ2½12;1Þ

ci � max
i:frcð j

2i
Þ2½0;12Þ

ci; if it is> 0

0; otherwise

8<
: for j ¼ 1; 2; . . . ; 2n � 1:

10. Sþ�S! S and go to Step 6.

Example 14.9. In Example 14.5 suppose that the evaluation of submitted papers

is based on three criteria: originality, significance, and presentation. They are

denoted by x1; x2, and x3 respectively. The importance of each individual

criterion and their joint importances are described by a signed general measure

� defined on P(XÞ, where X ¼ fx1; x2; x3g. Also suppose that the values of �
are �1 ¼ 0:2, �2 ¼ 0:3, �3 ¼ 0:8; �4 ¼ 0:1; �5 ¼ 0:4 �6 ¼ 0:4, and �7 ¼ 1.

Now, a paper is evaluated as excellent for originality, fair for significance,

and weak for presentation by a reviewer. This reviewer’s evaluation can be

regarded as a fuzzy-valued function f ¼ ðE; F; WÞ onX ¼ fx1; x2; x3g. Thus, a
global evaluation for the quality of the paper is given by the Choquet integral of
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f with respect to �; ðCÞ
Ð
fd�. Using Algorithm 14.1, a rather precise approx-

imate value of
Ð
fd� can be obtained:

ðCÞ
ð
fd� 	 2:92176 when K ¼ 100;

ðCÞ
ð
fd� 	 2:92222 when K ¼ 1000:

For another paper evaluated as bad for originality, good for significance, and
excellent for presentation, denoted as g ¼ ðB;G;EÞ, we have

ðCÞ
ð
g d� 	1:96618 when k ¼ 100;

ðCÞ
ð
g d� 	1:96611 when k ¼ 1000:

This means that the paper represented by function f is more valuable than the
one represented by function g for publishing in the journal.

Since the procedure of calculating the value of the Choquet integral with
fuzzy integrand is repeated for a large number in multiregression or classifica-
tion problems, we should reduce its running time as much as possible. For most
real problems in decision-making, the precision of the relevant results reaching
three or four decimal digits is sufficient. So, this example also suggests to use
K ¼ 100 as the default value of K.

Notes

14.1. The concept of a �-algebra of fuzzy sets was introduced by Butnariu
[1983], primarily for the study of cooperative games with fuzzy coalitions
[Butnariu, 1985; Butnariu and Klement, 1993]; see also [Aubin, 1981],
[Bronevich, 2005b], and [Branzei et al., 2005].

14.2. The concept of a real-valued Choquet integral with a fuzzy-valued inte-
grand is discussed in [Wang et al., 2006b]. This integral can be employed
as a defuzzification tool for fuzzy data.
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Chapter 15

Applications of Generalized Measure Theory

15.1 General Remarks

It is undeniable that classical measure theory, based on additive measures and
signed additive measures, and the associated Lebesgue theory of integration, is
not only an important area of mathematics, but it has also played an important
role in many application domains. Perhaps its most visible is its crucial role in
probability theory, as rigorously formulated by Kolmogorov. Examples of
other notable applications of classical measure theory are in the areas of
classical geometry as well as fractal geometry, ergodic theory of dynamical
systems, harmonic analysis, potential theory, calculus of variations, and
mathematical economics (see Note 15.1).

Notwithstanding the many demonstrated applications of classical measure
theory, it has increasingly been recognized that a broadening of this area’s
applicability is severely limited by the additivity requirement of classical
measures. Requiring additivity in measuring a property on sets of some kind
is basically the same as assuming that there is no interaction among sets with
respect to the measured property. However, there are many problem areas
involving properties measured on sets that do interact. Measuring such proper-
ties on a measurable space (X, F) by a set function � requires that � be capable
to capture, for each given pair of sets A and B in F such that A \ B ¼ Ø, any of
the following three situations:

(a) A [ B 2 F implies that �ðA [ BÞ > �ðAÞ þ �ðBÞ, which expresses a positive
interaction (synergy, cooperation, coalition, enhancement, amplification)
between A and B in terms of the measured property;

(b) A [ B 2 F implies that �ðA [ BÞ < �ðAÞ þ �ðBÞ, which expresses a negative
interaction (incompatibility, rivalry, inhibition, downgrading, condensation);

(c) A [ B 2 F implies that �ðA [ BÞ ¼ �ðAÞ þ �ðBÞ, which expresses the fact
that there is no interaction between A and B in terms of the measured
property

It is clear that classical measures can capture only situation (c), which means
that they are applicable only to properties that are noninteractive. Properties
that exhibit for each pair of sets in F whose union is also in F either a positive

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_15, � Springer ScienceþBusiness Media, LLC 2009

303



interaction or no interaction can be captured by superadditive measures, and
those that exhibit either a negative interaction or no interaction can be captured
by subadditive measures. Properties that exhibit positive interactions for some
pairs of sets and negative interactions for some other pairs of sets and, possibly,
no interactions for some additional pairs of sets, can be captured by monotone
measures or, if the property violates monotonicity, by general measures,

Properties measured on sets that exhibit some positive or negative interac-
tions are not rare. The following are some examples.

Let X be a set of criteria in multicriteria decision-making and let � be a
measure that is supposed to quantify the importance of any subset of criteria on
the outcome of the decision-making process. Requiring that � be additive
would not be realistic in this case. Indeed, the importance of two or more
criteria taken together on the decision may be higher (or, perhaps, lower)
than the sum of their individual importances.

As another example, assume that X is a set of criteria by which we evaluate
some feature (such as quality, performance, risk, etc.) associated with indivi-
dual objects of some relevant class of objects. The overall evaluation clearly
depends not only on the importance of each individual criterion, but also on the
considered importance, in the context of each application, of various sets of
criteria. Again, requiring that the measure of importance of the criteria be
additive would be very restrictive and highly unrealistic in many application
contexts, as it would totally ignore positive or negative interactions among the
criteria with respect to their importance. Under such a requirement, the evalua-
tion of each object, say the quality qa of object a, would simply be expressed in
terms of the weighted average, qa ¼ �x2X �ðxÞcaðxÞ, where �(x) denotes the
measure of importance of criterion x (assumed to be additive) and ca(x) denotes
the degree (measured or assessed in some specified way) to which object a
satisfies criterion x. Clearly, the use of an appropriate nonadditive measure
(determined in the application context) and the Choquet integral (or some other
nonlinear integral) offers a more flexible and more realistic approach to this
broad class of problems.

In the next example, consider a set of workers in a workshop, X, who are
involved in manufacturing products of a specific type. Assume that the set X is
partitioned into subsets (working groups) G1, G2, . . . ,Gn, and let �(Gi) denote
the number of products made by groupGiwithin a given unit of time. When the
groups work separately, set function � is clearly an additive measure. However,
when some of the groups work together and their cooperation is efficient, the
measure is required to be superadditive. If, on the other hand, their cooperation
is inefficient the measure is required to be subadditive. If some groups that work
together cooperate efficiently while others cooperate inefficiently, then a more
general measure is required, usually a monotone measure, but a general
measure may be required to capture some extreme situations.

There are many more examples of application contexts in which the restric-
tion to additive measure is inhibitory and not realistic. Some of them are
discussed in detail in the remaining sections of this chapter, while some others
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are only surveyed in Notes to this chapter. The chapter is organized as follows.
In Section 15.2 we begin with an overview of the essential role of generalized
measure theory in an area that is referred to in the literature as generalized
information theory (GIT). The objective of GIT is to study the dual concepts of
information-based uncertainty and uncertainty-based information in all their
manifestations. One subarea of GIT, which we cover in somewhat greater detail
in Section 15.3, consists of the various theories of imprecise probabilities, which
deal with dual pairs of nonadditive measures of various types. The utility of
imprecise probabilities is illustrated by simple examples in Section 15.4. In the
remaining sections, we discuss applications of generalized measure theory in
information fusion (Section 15.5), multiregression (Section 15.6), classification
(Section 15.7), and other areas (Section 15.8).

Notes to this chapter are particularly important. In order to keep the size of
this book modest, we are not able to cover the various applications of general-
ized measure theory in sufficient detail. However, we compensate for the lack of
detail by providing the reader with ample references to relevant publications,
which cover the missing details.

15.2 Generalized Information Theory: An Overview

The term ‘‘generalized information theory’’ (GIT) was introduced in the
early 1990s as a research program for studying the interrelated concepts of
information-based uncertainty and uncertainty-based information in all their
conceivable manifestations [Klir, 1991]. In GIT, as in classical information
theory, the primary concept is uncertainty, and information is defined in
terms of uncertainty reduction. While uncertainty in classical information
theory is formalized in terms of probability measures, uncertainty in GIT is
formalized within an expanded framework. The expansion is two-dimensional.
In one dimension classical measure theory, which is the framework for forma-
lizing the concept of probability, is replaced with the much broader framework
of generalized measure theory. In the other dimension the formalized language
of classical set theory, which is employed in both classical measure theory and
generalized measure theory, is replaced with the more expressive formalized
language of fuzzy set theory. As we know, generalized measure theory is a very
broad framework under which theories of various special types of measures are
subsumed, including the theory of classical measures. Similarly, fuzzy set theory
is a very broad framework under which various types of formalized languages
are subsumed, including the one of classical set theory. By combining these two
frameworks we obtain a comprehensive framework for investigating the
concepts information-based uncertainty and uncertainty-based information.

The described framework allows us to recognize many distinct theories of
information (or uncertainty), including the classical information theory. Each
of these theories is characterized by employing measures of some particular
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type and a formalized language of some particular type for formalizing a
particular type of uncertainty and the associated uncertainty-based informa-
tion. In order for us to fully develop any of these theories the following issues
must be adequately addressed at each of the following four levels:

1. Uncertainty functions u of the theory must be characterized via appropriate
axioms. In classical information theory, functions u are probability mea-
sures; in GIT they are monotone measures or some special types of mono-
tone measures, which, in addition may be fuzzified.

2. Calculus must be developed for dealing with functions u. In classical
information theory, it is the well-known calculus of probability theory; in
GIT it is a calculus for dealing with a given type of monotone measures or,
possibly, with its fuzzified version.

3. A justifiable functional Umust be found, which for each particular function
u in the theory measures the amount of uncertainty associated with u. When
a particular unit of measurement is chosen, functional U is required to be
unique. A visible example of this functional is the well-known Shannon
entropy in classical information theory. In GIT, functional U is usually an
aggregate of several coexisting types of uncertainties captured by functions
u, and it is desirable to disaggregate it in a justifiable way into components,
each of which measures the amount of uncertainty of one particular type.

4. Methodological aspects of the theorymust be properly developed for dealing
with applications for which the theory is fit, utilizing properties of uncer-
tainty functions u as well as the functional U and its components.

Clearly, the number of prospective uncertainty theories that emerge from the
expanded framework of GIT grows very rapidly with the number of recognized
types of monotone measures and the number of considered types of formalized
languages. It turns out that the rapidly growing diversity of theories subsumed
under GIT is balanced by their unity, which is manifested by their many
common properties. The diversity of GIT offers an extensive inventory of
distinct uncertainty theories, each characterized by specific assumptions. This
allows us to choose, in any application context, a theory whose assumptions are
in harmony with application of concern. The unity of GIT, on the other hand,
allows us to work within GIT as a whole. That is, it allows us to move from one
theory to another as needed.

Among the many uncertainty theories that are recognized within the
expanded conceptual framework of GIT, only a few of them have been suffi-
ciently developed so far. By and large, these are theories based on various types
of monotone measures defined within the language of classical set theory.
Fuzzifications of some of them have been explored, but only to some extent.
One class of uncertainty theories, perhaps the most visible one at this time,
consists of theories whose aim is to represent and deal with imprecise prob-
abilities. It is this class of uncertainty theories that we cover in greater detail in
Section 15.3.
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15.3 Theories of Imprecise Probabilities

One important insight emanating from research in the area of GIT is that the
tremendous diversity of uncertainty theories that emerge from the expanded

framework is made tractable due to some key properties that are invariant
across the whole spectrum or, at least, within some broad classes of uncertainty
theories. One such class, which is the subject of this section, consists of theories

that can be viewed as theories of imprecise probabilities.
The need for enlarging the framework of classical probability theory by

allowing imprecisions in probabilities has been discussed quite extensively
in the literature, and many arguments for imprecise probabilities have been
put forward. The following are some of the most common of these
arguments:

� Imprecision of probabilities is needed to reflect the amount of information on
which they are based. The imprecision should decrease with the amount of
statistical information.

� Total ignorance can be properly modeled by vacuous probabilities, which are
maximally imprecise (i.e., each covers the whole range [0, 1]), but not by any
precise probabilities.

� Imprecise probabilities are easier to assess and elicit than precise ones.
� We may be unable to assess probabilities precisely in practice, even if that is

possible in principle, because we lack the time or computational ability.
� A precise probability model that is defined on some class of events deter-

mines only imprecise probabilities for events outside the class.
� When several sources of information (sensors, individuals of a group in a

group decision) are combined, the extent to which they are inconsistent can
be expressed by the imprecision of the combined model.

All theories of imprecise probabilities that are based on classical set theory
share some common characteristics. One of them is that evidence within each
theory is fully described by a lower probability function �� or, alternatively, by
an upper probability function ��. These functions are always normalized mono-

tone measures on some measurable space (X, F). Moreover, they are super-
additive and subadditive, respectively, and satisfy the inequalities

X
x2X

�� fxgð Þ � 1;
X
x2X

�� fxgð Þ � 1:

In the various special theories of uncertainty, they possess additional special
properties.

When evidence is expressed (at the most general level) in terms of an arbi-

trary convex polytope C of discrete probability distribution functions p (such a
set is often referred to as a credal set) on a finite set X, functions �� and �

�

associated with C are determined for each A 2 F by the formulas
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��ðAÞ ¼ inf
p2C

X
x2A

pðxÞ; ��ðAÞ ¼ sup
p2C

X
x2A

pðxÞ: (15:1)

Since

X
x2A

pðxÞ þ
X
x=2A

pðxÞ ¼ 1

for each p 2 C and each A 2 F, it follows that

��ðAÞ ¼ 1� �� ð �AÞ: (15:2)

Due to this property, functions �� and �� are called dual (or conjugate). One of
them is sufficient for capturing given evidence; the other one is uniquely
determined by the duality equation. It is common to use the lower probability
function to capture the evidence.

When X is a finite set, it is well known that any given lower probability
function �� is uniquely represented by a set functionm for whichmðØÞ ¼ 0 and
�A2F mðAÞ ¼ 1. This function is called aMöbius representation of �� when it is
obtained for all A 2 F via the Möbius transform

mðAÞ ¼
X

B B�Aj
ð�1Þ A�Bj j��ðBÞ: (15:3)

The inverse transform is defined for all A 2 F by the formula

��ðAÞ ¼
X

B B�Aj
mðBÞ: (15:4)

It follows directly from the duality equation that

��ðAÞ ¼
X

B B\A 6¼;j
mðBÞ: (15:5)

for all A 2 F.

Example 15.1. Let X = {a, b, c, d}. An example of the three set functions
connected via Eqs. (15.2)–(15.5) —m, ��, and �

�—defined on the power set of
X is shown in Table 15.1. Given any one of these functions, the other two are
uniquely determined by the equations. When �� is given, we calculate m by
Eq. (15.3). For example, mðXÞ ¼ ��ðXÞ � ��ðfa; b; cgÞ � ��ðfa; b; dgÞ�
��ðfa; c; dgÞ � ��ðfb; c; dgÞ þ ��ðfa; bgÞ þ ��ðfa; cgÞ þ ��ðfa; dgÞ þ
��ðfb; cgÞ þ ��ðfb; dgÞþ ��ðfc; dgÞ���ðfagÞ���ðfbgÞ � ��ðfcgÞ � ��ðfdgÞ¼
3:2� 3:4 ¼ �0:2:Whenm is given, �� is calculated by Eq. (15.4). For example,
��ðfa; b; cgÞ ¼ mðfa; b; cgÞ þ mðfa; bgÞ þ mðfa; cgÞ þmðfb; cgÞ þmðfagÞþ
mðfbgÞ þmðfcgÞ ¼ 0:8:
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Assume now that evidence is expressed in terms of a given lower probability

function �� or, alternatively, in terms of a given upper probability function ��.
Then, the set of probability distribution functions p that dominate function

��;Cð��Þ is the same as the set of those that are dominated by function

��;Cð��Þ. This set, which is always closed and convex, can thus be character-

ized in either of the following ways:

Cð��Þ ¼ fpj��ðAÞ � �x2A p ðxÞ for all A 2 Fg;

Cð��Þ ¼ fpj��ðAÞ � �x2A p ðxÞ for all A 2 Fg:
(15:6)

A well-defined category of theories of imprecise probabilities is based on

Choquet capacities of various orders. The most general theory in this category

is the theory based on capacities of order 2. Less general theories are then based

on capacities of higher orders. The least general of all these theories is the one

based on Choquet capacities of order 1. This theory is usually referred to as

evidence theory or Dempster–Shafer theory (DST). In this theory, lower and

upper probabilities are referred to as belief and plausibility measures. These

measures are introduced and examined in Section 4.5, where it is also shown

that Sugeno l-measures are special belief measures when l > 0, and they are

special plausibility measures when l < 0. An important feature of DST is that

the Möbius representation of evidence m (usually called a basic probability

assignment function in this theory) is a nonnegative set function ðmðAÞ 2 ½0; 1�Þ:
Special plausibility measures, which are called possibility measures (or

consonant plausibility measures) are introduced and discussed in Section 4.6.

Their dual measures, which are special belief measures, are called necessity

Table 15.1 Set functions in Example 15.1

A m(A) ��(A) ��(A)

Ø 0.0 0.0 0.0

{a} 0.1 0.1 0.3

{b} 0.3 0.3 0.4

{c} 0.3 0.3 0.4

{d} 0.0 0.0 0.2

{a, b} 0.0 0.4 0.7

{a, c} 0.0 0.4 0.7

{a, d} 0.1 0.2 0.4

{b, c} 0.0 0.6 0.8

{b, d} 0.0 0.3 0.6

{c, d} 0.0 0.3 0.6

{a, b, c} 0.1 0.8 1.0

{a, b, d} 0.1 0.6 0.7

{a, c, d} 0.1 0.6 0.7

{b, c, d} 0.1 0.7 0.9

X �0.2 1.0 1.0
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measures (or consonant belied measures). Theory that is based on possibility and

necessity measures is usually called a possibility theory.
In another important theory of imprecise probabilities, which is computa-

tionally more efficient than DST, lower and upper probabilities �� and �� are
determined for all sets ðA 2 FÞ by intervals ½lðxÞ; uðxÞ� of probabilities on

singletons ðx 2 XÞ. Clearly, lðxÞ ¼ P�fðxgÞ 2 ½0; 1� and uðxÞ ¼ P�ðfxgÞ 2 ½0; 1�.
Each given tuple of probability intervals, I ¼ h½lðxÞ; uðxÞ�jx 2 Xi, is associated

with a closed convex set, C(I), of probability distribution functions, p, defined as

follows:

CðI Þ ¼ pðxÞjx 2 X; pðxÞ 2 ½lðxÞ; uðxÞ�;
X
x2X

pðxÞ ¼ 1

( )
: (15:7)

Sets defined in this way are clearly special credal sets. Their special feature is

that they always form an (n�1)-dimensional polyhedron, where n ¼ jXj, whose
number c of extreme points is bounded by the inequalities

n � c � nðn� 1Þ:

Each probability distribution function contained in the set is expressed as a

linear combination of these extreme points.
A given tuple I of probability intervals may be such that some combinations

of values taken from the intervals do not correspond to any probability dis-

tribution function. This indicates that the intervals are unnecessarily broad. To

avoid this deficiency the concept of ‘‘reachability’’ was introduced in the theory.

A given tuple I is called reachable (or feasible) if and only if for each x 2 X and

every value vðxÞ 2 ½lðxÞ; uðyÞ� there exists a probability distribution function p

for which pðxÞ ¼ vðxÞ: The reachability of any given tuple I can be easily

checked: the tuple is reachable if and only if it passes the following tests:

(a)
P
x2X

lðxÞ þ uðyÞ � lðyÞ � 1 for all y 2 X;

(b)
P
x2X

uðxÞ þ lðyÞ � uðyÞ � 1 for all y 2 X:

If I is not reachable it can be easily converted to the tuple

I
0¼ h½l0ðxÞ; u0ðyÞ�jx 2 X i of reachable intervals by the formulas

l 0ðxÞ ¼ maxflðxÞ; 1�
X
y 6¼x

uð yÞg;

u0ðfxgÞ ¼ minfuðxÞ; 1�
X
y 6¼x

l ð yÞg
(15:8)

for all x 2 X:
Given a reachable tuple I of probability intervals, the lower and upper

probabilities are determined for each A 2 F by the formulas
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��ðAÞ ¼ max
X
x2A

lðxÞ; 1�
X
x=2A

uðxÞ

8<
:

9=
;

��ðAÞ ¼ min
X
x2A

uðxÞ; 1�
X
x=2A

lðxÞ

8<
:

9=
;:

(15:9)

It is known that the theory based on reachable probability intervals is not
comparable with DST in terms of their generalities. However, they both are
subsumed under a theory based on Choquet capacities of order 2.

Although Choquet capacities of order 2 do not capture all credal sets, they
are quite general. Their significance is that they are computationally easier to
handle than arbitrary credal sets. In particular, it is easier to compute C(m*)
when �� is a Choquet capacity of order 2.

Let X ¼ fx1; x2; . . . ; xng and let � ¼ ð�ðx1Þ; �ðx2Þ; . . . ; �ðxnÞÞ denote a per-
mutation by which elements of X are reordered. Then, for any given Choquet
capacity of order 2, C(�*) is determined by its extreme points, which are
probability distributions p� computed as follows:

p�ð�ðx1ÞÞ ¼ ��ðf�ðx1ÞgÞ;

p�ð�ðx2ÞÞ ¼ ��ðf�ðx1Þ; �ðx2ÞgÞ � ��ðf�ðx1ÞgÞ

..

.

p�ð�ðxn�1ÞÞ ¼ ��ðf�ðx1Þ; . . . ; �ðxn�1ÞgÞ � ��ðf�ðx1Þ; . . . ; �ðxn�2ÞgÞ;

p�ð�ðxnÞÞ ¼ ��ðf�ðx1Þ; . . . ; �ðxnÞgÞ � ��ðf�ðx1Þ; . . . ; �ðxn�1ÞgÞ:

(15:10)

Each permutation defines an extreme point ofC(�*), but different permutations
can give rise to the same point. The set of distinct probability distributions p� is
often called an interaction representation of �*.

Example 15.2. In order to illustrate the use of Eqs. (15.10), let us consider the
lower probability functions 1�� and

2�� on the power set ofX={a,b,c} that are
specified in Fig. 15.1 (a) and (b), respectively, by their values shown in the
diagram of the Boolean lattice of P(X). We can easily check that both 1�� and
2�� are 2-monotone measures and 2�� is even totally monotone (Choquet
capacity of order1).

Hence, Eq. (15.10) can be used to determine in each case the extreme points
of the convex set of probability distributions that dominate the lower prob-
ability function. Observe that each individual probability obtained by Eq.
(15.10) for a particular permutation of elements in X is represented in the
diagram by the sequence of differences of the lower probability function
along a path in the diagram (defined by the permutation) from the node
representing Ø to the one representing X. Probability distributions obtained
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for functions 1�� and
2�� are shown for all permutations of elements of X in

Table 15.2 (a) and (b), respectively.
For 1�� there are only four distinct probability distributions:

p1 = (0, 0.5, 0.5),
p2 = (0.5, 0, 0.5),
p3 = (0.25, 0.5, 0.25),
p4 = (0.5, 0.25, 0.25).

For 2�� all obtained probabilities are distinct:

p1 = (0, 0.25, 0.75),
p2 = (0, 0.5, 0.5),
p3 = (0.25, 0, 0.75),
p4 = (0.5, 0, 0.5),
p5 = (0.25, 0.5, 0.25).
p6 = (0.5, 0.25, 0.25).

This is clearly the maximum of possible number of extreme points (3! = 6).

{a, b, c}: 1

{a, b}: 0.5 {a, c}: 0.5 {b, c}: 0.5

{a}: 0 {b}: 0 {c}: 0.25

∅ : 0

(a)

{a, b, c}: 1

{a, b}: 0.25 {a, c}: 0.5 {b, c}: 0.5

{a}: 0   {b}: 0           {c}: 0.25

∅ : 0

(b)

Fig. 15.1 Illustration to
Example 15.2
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15.4 Classification of Pairs of Dual Measures

As is discussed earlier in this section, imprecise probabilities on a given
measure space (X, F) can be explicitly defined by pairs of dual measures ��
and ��, which define for each set A 2 F the range ½��ðAÞ; ��ðAÞ� of accep-
table probabilities. Due to the duality of these measures, the probability
range can also be described by using only one of them, either as
½��ðAÞ; 1� ��ðA Þ� or as ½1� ��ðA Þ; ��ðAÞ�.

While imprecise probabilities can always be represented by appropriate pairs
of dual measures, it is by no means guaranteed that every given pair of dual
measures, say pair (�, �), represents imprecise probabilities. In order to under-
stand why some pairs of dual measures do not represent imprecise probabilities,
we present in this section a fairly comprehensive classification of all possible
pairs of dual measures defined on a special measurable space (X,P(X)), whereX
is assumed to be a finite set.

We begin with the most general class of dual pairs of measures, (�, �), for
which it is only required that they qualify as general measures. For further
reference we denote this class as GEN. Some, but not all, of the dual pairs of
measures in this class are monotone measures. Measures that are not monotone
clearly violate Eq. (15.1) and, therefore, they do not represent imprecise prob-
abilities. This means that we need to restrict our consideration to the class of
dual pair of monotone measures. We denote this class as MON.

Observe now that only those dual pairs (�, �) of monotone measures can
represent imprecise probabilities that are ordered in the sense that either
�ðAÞ � �ðAÞ for all A 2 PðXÞ or �ðAÞ � �ðAÞ for all A 2 PðXÞ. The first pair
in Table 15.3 is an example of a pair of dual monotone measures (defined on the

Table 15.2 Interaction representation in Example 15.2
(a) Function 1�*

�(a) �(b) �(c) p�ð�ðaÞÞ p�ð�ðbÞÞ p�ð�ðcÞÞ
a b c 0.00 0.50 0.50

a c b 0.00 0.50 0.50

b a c 0.50 0.00 0.50

b c a 0.50 0.00 0.50

c a b 0.25 0.50 0.25

c b a 0.50 0.25 0.25

(b) Function 2�*

�(a) �(b) �(c) p�ð�ðaÞÞ p�ð�ðbÞÞ p�ð�ðcÞÞ
a b c 0.00 0.25 0.75

a c b 0.00 0.50 0.50

b a c 0.25 0.00 0.75

b c a 0.50 0.00 0.50

c a b 0.25 0.50 0.25

c b a 0.50 0.25 0.25
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power set of X= {a,b,c}) that are not ordered. Clearly, neither of the measures

qualifies as a lower probability function or an upper probability function. This

means that we need to further restrict to the class of dual pairs of monotone

measures that are ordered. We denote this class as ORD. In this class it is

convenient to denote the dual pairs as (��, �
�), where it is understood by

convention that ��ðAÞ � ��ðAÞ for all A 2 PðXÞ.
Considering now a dual pair (��, �

�) of ordered monotone measures, it is still

not guaranteed that the pair represents imprecise probabilities. If it does, then

the measures �� and �
� must be connected with a convex set of probability

distribution functions via Eq. (15.1). Then, for any sets A;B 2 PðXÞ such that

A \ B ¼ Ø, we have

��ðA [ BÞ � ��ðAÞ þ ��ðBÞ;

��ðA [ BÞ � ��ðAÞ þ ��ðBÞ:

This means that �� must be a superadditive measure and �� must be a sub-

additive measure to qualify, respectively, as lower and upper probability func-

tions. The second pair in Table 15.3 is an example of a dual pair of ordered

monotone measures that violates this requirement. Observe that in this exam-

ple, �� is superadditive, but �� is not subadditive. For example,

��ðfa; bgÞ > ��ðfagÞ þ ��ðfbgÞ, which violates the subadditivity of ��. When

�� is a superadditive measure and �� is a subadditive measure, the pair (��, �
�) is

usually referred as an additivity-coherent pair of dual measures. We denote this

class of pairs of dual measures as ACO.
In imprecise probabilities, the pair of dual measures represents bounds on

probability measures. This requires that there exists a probability measure p for

a given dual pair (��, ��) of ordered monotone measures such that

��ðAÞ � pðAÞ � ��ðAÞ for all A 2 PðAÞ. Any dual pair that satisfies this require-

ment is usually referred to as a probability limiting pair, and we denote this class

as PRL. Dual pairs in this class are characterized by the following theorem.

Theorem 15.1. [Huber, 2004] If ð��; ��Þ 2 ORD, then ð��; ��Þ 2 PRL iffP
A�X aA �A � 1 implies

P
A�X aA ��ðAÞ � 1, where, for all A � X; �A is the

characteristic function of A and aA is a nonnegative real number.

Table 15.3 Examples of dual pairs of measures on (X, P(X)), where X = {a, b, c}

A �(A) �ðAÞ ��(A) ��(A) ��(A) ��(A)

Ø 0.0 0.0 0.0 0.0 0.0 0.0

{a} 0.3 0.0 0.1 0.2 0.2 0.8

{b} 0.1 0.4 0.0 0.5 0.2 0.8

{c} 0.3 0.7 0.2 0.4 0.0 0.8

{a, b} 0.3 0.7 0.6 0.8 0.2 1.0

{a, c} 0.6 0.9 0.5 1.0 0.2 0.8

{b, c} 1.0 0.7 0.8 0.9 0.2 0.8

X 1.0 1.0 1.0 1.0 1.0 1.0
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Classes ACO and PRL are not comparable (neither is contained in the other

one), as can be shown by the following two examples. One of them is the third
pair of dual measures in Table 15.3. This pair is a probability limiting pair, as it
represents bounds for a set of probability measures, one of which is defined by
the probability distribution p ({a}) = p ({b}) = 0.4, p ({c}) = 0.2. However, the
pair is not an additivity-coherent pair since �� is not superaddtive and �

� is not
subadditive. Hence, the pair is included in PRL, but not in ACO.

In the second example, adopted from [Lamata andMoral, 1989],X={xi | i=
1, 2, . . . , 9} and the following eight subsets of X are employed in defining a dual
pair (��, �

�) of ordered monotone measures via ��:

A1 ¼ fx1; x3;x6; x9g;A2 ¼ fx1; x4; x7; x8g;

A3 ¼ fx1; x5;x7; x8g;A4 ¼ fx2; x3; x7; x8g;

A5 ¼ fx2; x4;x6; x8g;A6 ¼ fx1; x2; x6; x9g;

A7 ¼ fx2; x5;x6; x7g;A8 ¼ fx3; x4; x5; x9g:

Now, �* is defined for all A 2 PðXÞ by the formula

��ðAÞ ¼
1 when A = X

0:5 when A 6=X when A 	 Ak for some k 2 f 1,2,..., 8g
0 otherwise

8<
:

Then, (��, �
�) is clearly an additivity-coherent pair ofdualmeasures:However;

X7
k¼1

0:25�Ak
þ 0:5�8 ¼ 1

and

X7
k¼1

0:25��ðAkÞ þ 0:5��ðA8Þ ¼ 1:125 > 1;

which violates the implication in Theorem 15.1. Hence, the pair (��, �
�) is in

ACO, but not in PRL. It follows from the two examples that the classes ACO
and PRL are not comparable.

In order to guarantee that a dual pair (��, �
�) of ordered monotone measures

represents imprecise probabilities, it is essential to require that there exist a
nonempty set C of probability measures such that �� and �

� are obtained from

C by Eq. (15.1). Dual pairs that satisfy this requirement are called ‘‘represen-
table,’’ and we denote the class of representable dual pairs by REP. Dual pairs
of ordered monotone measures that are representable are characterized by the
following theorem,
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Theorem 15.2. [Wolf, 1977 ]A dual pair of ordered monotone measures (��, �
�) on

measurable space (X, P(X)), where X is a finite set, is representable iff it satisfies

the following property for all A � X : if �A �
P

B�X aB �B � a, then

��ðAÞ �
P

B�X aB �
�ðBÞ � a; where aB and a are nonnegative real numbers.

It is interesting that the class REP of representable dual pairs is included in

the intersection ACO \ PRL, but it is not equal to it. This is demonstrated by

the following example.

Example 15.3. [Huber, 1981]. Consider the dual pair (��, �
�) of ordered mono-

tone measures given in Table 15.4. It is easy to verify that �� is superadditive
and �� is subadditive. This means that the pair belongs to class ACO. It can also

be verified that there is a unique probability measure p such that

��ðAÞ � pðAÞ � ��ðAÞ. This probability measure is also shown in Table 15.4.

This means that the dual pair is also probability-limiting, and it is thus belongs

to class PRL. This means in turn that the considered dual pair belongs to

ACO \ PRL. However, it is clearly not a representable pair.
It is well known that, in general, there are more than one closed and convex

sets of probability measures that induce the same representable dual pair (��,
��) via Eq. (15.1). The largest one of them is defined by Eq. (15.6), where clearly

C(��) = C(��).
The class REP of all dual pairs of representable measures provides us with

the broadest framework for dealing with imprecise probabilities. Some of its

subclasses are then bases for various special theories of imprecise probabilities.

The following subclasses are introduced and examined at various places in this

book:

Table 15.4 Example of a dual pair (��, �
�) of ordered monotone measures that is additivity-

coherent and probability-limiting, but it is not representable

A ��(A) p(A) ��(A)

Ø 0.0 0.00 0.0

{a} 0.0 0.25 0.5

{b} 0.0 0.25 0.5

{c} 0.0 0.25 0.5

{d} 0.0 0.25 0.5

{a, b} 0.5 0.50 0.5

{a, c} 0.5 0.50 0.5

{a, d} 0.5 0.50 0.5

{b, c} 0.5 0.50 0.5

{b, d} 0.5 0.50 0.5

{c, d} 0.5 0.50 0.5

{a, b, c} 0.5 0.75 1.0

{a, b, d} 0.5 0.75 1.0

{a, c, d} 0.5 0.75 1.0

{b, c, d} 0.5 0.75 1.0

X 1.0 1.00 1.0
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� Dual pairs consisting of Choquet capacities and alternating Choquet capa-
cities of order k, where k� 2 (Section 4.2). Among them, themost general are
those of order 2, and we denote this class by CH2. The least general of them
are those of order1, where the dual pairs are belief and plausibilitymeasures
of the Dempster–Shafer theory (Section 4.5); we denote this class by DST.

� A subclass of DST is the class of dual pairs consisting of necessity and
possibility measures (Section 4.6). The class of these dual pairs is the base
of the theory of graded possibilities, and we denote it by GPO.

� Another subclass of DST is the class of dual pairs of Sugeno l-measures
(Section 4.3), which we denote by LAM.

� A subclass of GPO is the class of dual pairs consisting of crisp necessity and
possibility measures, whose values are restricted to the set {0,1}. We denote
this class by CPO.

� A subclass of LAM is the class of dual pairs consisting of probability
measures (characterized by l = 0. Observe that these pairs are autodual in

Fig. 15.2 Inclusion ordering
of classes of pairs of dual
measures introduced in
Section 15.4

15.4 Classification of Pairs of Dual Measures 317



the sense that �� = ��, which means that they do not capture any
imprecision. We denote this class by PRO.

� A subset of CPO as well as PRO is the class of autodual pairs of Dirac
measures (Section 3.2, Example 3.3), which we denote by DIR. Clearly, DIR
= CPO \ PRO.

� Another important class of representable pairs of dual measures consists of
those that are determined by reachable intervals of probabilities on singletons
(introduced earlier in Section 15.3). We denote this class by REA. It is well
known thatREA is a subsetofCH2,but it is not comparablewith the classDST.

The introduced classes of pairs of dual measures and their inclusion relationship
are summarized in Fig. 15.2. Also indicated in the figure are those of these
classes that represent the various theories of imprecise probabilities and those
that are considered as classical theories of uncertainty.

15.5 Utility of Some Special Theories of Imprecise Probabilities

In order to keep the size of this book reasonable, we decided to illustrate the
utility of imprecise probabilities by using examples formulated in two of the
well-developed theories of imprecise probabilities—Dempster-Shafer theory
and possibility theory—which seem at this time to be the most visible and
popular ones. The utility of other special theories of imprecise probabilities is
only surveyed in Note 15.5.

15.5.1 Dempster–Shafer Theory (DST)

As already mentioned in Note 4.5 and Section 15.3, DST is based on belief and
plausibility measures, which, in turn, are based on nonnegative Möbius repre-
sentations. In the following, we describe several simple examples that illustrate
some typical situations in which the use of DST is fitting.

Example 15.4. Consider two variables, �1; �2, each of which has two possible
states, say 0 and 1. For convenience, let the joint states of the variables, (�1; �2),
be labeled by an index I in the following way: (0,0)! 0, (0,1) !1, (1,0) ! 2,
(1,1) ! 3. Assume now that we have a record of 1000 observations, but only
some of them contain values of both variables. Due to some measurement or
communication constraints (not essential for our discussion), some observa-
tions contain value of only one of the variables. Observing in this example the
value of only one variable may be interpreted in DST as observing a set of two
joint states. For example, observing that �1 ¼ 1 (and not knowing the state of
�2) may be viewed as observing the subset {2, 3} of the four joint states.
Numbers of observations, n(A), of the eight relevant sets of states A (defined
by their characteristic functions) are given in section (a) of Table 15.5, which
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also contains values of the estimated basic assignment m based on frequency
interpretation, as well as the corresponding degrees of belief Bel and plausibility
P1. Belief and plausibility degrees can readily be calculated for any of the
eight remaining subsets of states. For example, Bel({1, 2, 3}) = 0.713 and
P1({1, 2, 3}) = 0.992.

Viewing values Bel(A) and P1(A) as lower and upper probabilities, we obtain
intervals [Bel(A), P1(A)] of estimated probabilities, p(A), of subsets A—for
example, pðf1gÞ 2 ½0:055; 0:418� and pðf0; 2gÞ 2 ½0:446; 0:786�.

Assume now that we have another record of 1000 observations of the same
two variables, which is given in section (b) of Table 15.5. This record contains
substantially more observations that are specific (i.e., they contain values of
both variables). As a consequence, the intervals [Bel(A), P1(A)] of estimated
probabilities p(A) are substantially smaller. For example, the value of p({1}) is
now in the interval [0.252, 0.272] and pðf0; 2gÞ 2 ½0:588; 0:605�.

Thus far, we calculated values m(A) as relative frequencies of observations.
These values describe the available data, and, consequently, the derived belief
and plausibility measures are descriptive. If, however, we want to use values
m(A) as predictive estimators of states yet to be observed, we have to admit that
we have no information regarding the future states. That is, we only know that
any future observation is contained in the universal set X, which consists of the
four states of the variables. If we want to estimate predictive belief and plausi-
bility measures regarding only the next state, we should augment the frequen-
cies given in Table 15.5 by the value n(X ) = 1, which expresses our ignorance
regarding the next state. Then,m(X ) = 0.000999 and the other valuesm(A) are
only slightly adjusted (the number of considered observations is now 1001).
Clearly, the adjustment in values m(A) is very small and may be neglected for
practical purposes. This situation is different, however, when we want to predict
a large sequence of future states. For example, to predict the sequence of 1000
future observations (i.e., 2000 observations in total), m(X) = 0.5 and all values
m(A) in Table 15.5 must be divided by two. The resulting situation is shown in
Table 15.6.

Table 15.5 Belief and plausibility measures derived from incomplete data (Example 15.4)

(a) (b)

i = 0 1 2 3 n(A) m(A) Bel(A) P1(A) n(A) m(A) Bel(A) P1(A)

A: 1 1 0 0 212 0.212 0.373 0.839 5 0.005 0.812 0.835

0 0 1 1 128 0.128 0.161 0.627 12 0.012 0.165 0.188

1 0 1 0 315 0.315 0.446 0.786 8 0.008 0.588 0.605

0 1 0 1 151 0.151 0.214 0.554 15 0.015 0.395 0.412

1 0 0 0 106 0.106 0.106 0.633 555 0.555 0.555 0.568

0 1 0 0 55 0.055 0.055 0.418 252 0.252 0.252 0.272

0 0 1 0 25 0.025 0.025 0.468 25 0.025 0.025 0.045

0 0 0 1 8 0.008 0.008 0.287 128 0.128 0.128 0.155
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Example 15.5. Dong and Wong [1986] describe an example in which a group of

experts give their estimates of possible location of the epicenter of an earthquake.

Suppose that 15 estimates are given as shown in Fig. 15.3. Observe that these

estimates are both nonspecific and conflicting with each other. Using the evi-

dence on hand, what is the likelihood that the epicenter is inside any particular

area of interest (for example, a densely populated area A or B)? Each of the

estimates has a weight of evidence 1/15, provided that we consider all reports as

equally reliable and otherwise equivalent in their value. Then, degrees of belief

and plausibility can be readily calculated: Bel(A) = 2/15 = 0.13, P1(A) =

5/15 = 0.33; Bel(B) = 1/15 = 0.07, P1(B) = 3/15 = 0.2. Hence, we obtain

the following interval-valued estimates of probabilities p(A) and p(B) that the

epicenter is in area A or B, respectively: pðAÞ 2 ½0:13; 0:33�; pðBÞ 2 ½0:07; 0:2�.

Example 15.6. Bogler [1987] describes how DST can be utilized in dealing with

the followingmultiple sensor target identification inwhich intelligent reports are

also employed as a source of information. It is assumed, based on an intelligent

report, that there 100 possible target types. Let X = fx1; x2; . . . ; x100g denote

Table 15.6 Predictive belief and plausibility measures (Example 15.4)

(a) (b)

i = 0 1 2 3 n(A) m(A) Bel(A) P1(A) n(A) m(A) Bel(A) P1(A)

A: 1 1 0 0 212 0.1060 0.1865 0.9195 5 0.0025 0.4060 0.9175

0 0 1 1 128 0.0640 0.0805 0.8135 12 0.0060 0.0825 0.5940

1 0 1 0 315 0.1575 0.2230 0.8930 8 0.0040 0.2940 0.8025

0 1 0 1 151 0.0755 0.1070 0.7770 15 0.0075 0.1975 0.7060

1 0 0 0 106 0.0530 0.0530 0.8165 555 0.2775 0.2775 0.7840

0 1 0 0 55 0.0275 0.0275 0.7090 252 0.1260 0.1260 0.6360

0 0 1 0 25 0.0125 0.0125 0.7340 25 0.0125 0.0125 0.5225

0 0 0 1 8 0.0040 0.0040 0.6435 128 0.0640 0.0640 0.5775

1 1 1 1 1000 0.5000 1.0000 1.0000 1000 0.5000 1.0000 1.0000

Fig. 15.3 Estimates of 15 experts regarding the location of the epicenter of an earthquake
(Example 15.5)
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the set of these target types. It is also known, from another intelligence report
that only targets of type x1 entered the relevant tactical area, but the reporting
agent had access only to records pertaining to 40% of the targets entering the
tactical area. Thus, according to this evidence, e1, we have m1ðfx1gÞ ¼
0:4 and m1ðXÞ ¼ 0:6: We have also evidence from sensors that only targets of
types x1; x2; . . . ; x11 have been observed in the population of the incoming
targets. According to this evidence, e2; we have m2ðfx1; x2; . . . ; x11gÞ ¼ 1:
Now, we need to combine evidence from the two sources. The standard way of
combining evidence in Dempster–Shafer theory is expressed by the formula

m12ðAÞ ¼

P
B\C¼A

m1ðBÞ 
m1ðCÞ

1� c
for A 6¼ Ø, where

c ¼
X

B\C¼Ø
m1ðBÞ 
m2ðCÞ;

andm12(Ø)= 0. This formula is called aDempster rule of combination. This rule
has been the subject of an ongoing debate in the literature. On the one hand, the
uniqueness of the rule can be proven under the usual axioms of Dempster–
Shafer theory and under the assumption that the two sources of information are
independent of each other (observations made by one source do not constrain
observations made by the other source) [Dubois and Prade, 1986]. On the other
hand, the requirement thatm12(Ø)= 0, which leads to the normalization factor
1 – c, is considered unnecessarily restrictive and leading, in some cases, to
counterintuitive results. The latter position is, in fact, critical not only of the
Dempster rule, but also of one of the axioms of Dempster–Shafer theory, the
axiom that m(Ø) = 0. Allowing m12(Ø) > 0, the value m12(Ø) may be inter-
preted as evidence pointing to a hypothesis that is outside the universal set
under consideration. That is, whenm(Ø)= 0 is required, it is implicitly assumed
that all relevant hypotheses in a given context are included in the accepted
universal set (closed-world position); on the other hand, when m(Ø) > 0 is
allowed, it is recognized that our universal set may not be complete in a given
context (open-world position). When m12ðØÞ > 0 and we want to take the
closed-world position, the following alternative rule of combination is more
appropriate:

m1;2 ðAÞ ¼

P
B\C¼A

m1ðBÞ:m2ðCÞ when A 6=Ø and A 6=X

m1ðXÞ:m2ðXÞ þ
P

B\C¼Ø
m1ðBÞ:m2ðCÞ when A = X

0 when A = Ø

8>><
>>:

According to this alternative rule of combination,m12 is normalized by moving
the value c to m12(X). This means that the conflict between the two sources of
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evidence is not hidden, but it is explicitly recognized as a contributor to our
ignorance. The alternative rule is thus better justified on epistemological
ground when c > 0.

Combining m1 and m2 in our example by the Dempster rule results in
m12ðfx1gÞ ¼ 0:4 and m12ðfx1; x2; . . . ; x11gÞ ¼ 0:6: Since c = 0 in this case, the
alternative rule gives the same result. From the two focal elements of m12, we
can calculate Bel12 and Pl12 for any subset of X and determine thus the lower
and upper probability that targets of the types in the subset have entered the
relevant tactical area.

Example 15.7. Let us discuss another example in the area of multiple sensor
target identification described by Bogler [1987]. Assume that the universal setX
is again the set of 100 possible target types, but only two targets are involved in
this example, a fighter and a bomber, denoted by f and b, respectively. Evidence
comes in this case from two sensors. A short-range sensor provides a support of
0.6 that the target is a fighter, while the radar-warning receiver gives a support
of 0.95 that the detected target is a bomber. In this case, clearly, the two sources
provide us with conflicting evident and c=0.57. The outcome of the Dempster
rule is:m12ðf f gÞ ¼ 0:07; m12ðfbgÞ ¼ 0:88; and m12ðX Þ¼0:05:Due to the large
conflict between the two sources of evidence, the outcome of the alternative
combination rule is very different and considerably more reasonable:
m12ðf f gÞ ¼ 0:03; m12ðfbgÞ ¼ 0:38; and m12ðXÞ ¼ 0:59.

Example 15.8. Consider two packs of bridge cards. Assume that we distinguish
the cards from each other only by their colors, red (r) and black (b). We know
that all cards in Pack 1 are red and we know nothing about the properties of red
and black cards in Pack 2. We also know that a card is drawn from Pack 1with
probability 0.8 and from Pack 2with probability 0.2. A natural way of for-
malizing this knowledge is to express it in terms of the basic probabilistic
assignment, m({r}) = 0.8 and m({r, b}) = 0.2, over the universal set X =
{r, b}. This results in Bel({r}) = 0.8, P1({r}) = 1, Bel({b}) = 0, and P1({b}) =
0.2. Hence, the estimated ranges of probabilities of drawing a red card or a
black card are, respectively, p(r) 2 [0.8, 1] and p(b) 2 [0, 0.2].

Observe that the information available in this case does not allow us to
estimate the probabilities more specifically than by these intervals. When
using probability theory, however, we would obtain fully specific estimates,
p(r) = 0.9 and p(b) = 0.1, which claim more than the given information
warrants.

Example 15.9. Let us modify a hydrological example proposed by Kong [1986].
Consider water permeation among three sites. We know that water can perme-
ate, unless the permeation is for some reason blocked, only from site 1 to sites 2
and 3, and from site 2 to site 3. No information is available about the locations
of water sources. They may be directly at some of the sites, but they may equally
well be at other places we are not aware of, fromwhich water permeates to some
of the sites. We are primarily interested in whether the sites are dry or wet.
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Let si = 0 or si = 1 denote that site i (i= 1, 2, 3) is dry or wet, respectively,

and let p12, p13, p23 denote the probabilities that the water permeation between

the respective sites is not blocked. The eight states of variables s1, s2, s3, are

labeled by an index i as shown in Table 15.7a. Assume now that three indepen-

dent pieces of evidence are available, each of which provides us with the

estimate of one of the probabilities p12, p13, p23. Basic assignments expressing

these pieces of evidence, which are given in Table 15.7b, are readily obtained.

For example, when water permeation from site 1 to site 2 is not blocked, then

water at site 1 implies water at site 2. This corresponds to the set of states {(0, 0),

(0, 1), (1, 1)} � {0, 1}, and these, according to the evidence, are supported with

probability p12. Hence, we have

m12ðfð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ; ð0; 1; 1Þ; ð1; 1; 0Þ; ð1; 1; 1ÞgÞ ¼ p12:

When the percolation is blocked, there is no known relationship between the

two sides and, hence, the probability 1 – p12 is allocated to the universal set

{0, 1}3 ; that is,

Table 15.7 Hydrological application (Example 15.9)
(a)

s1 s2 s3 i

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

(b)

i = 0 1 2 3 4 5 6 7 m12 m13 m23

A: 1 1 1 1 0 0 1 1 p12 0 0

1 1 1 1 0 1 0 1 0 p13 0

1 1 0 1 1 1 0 1 0 0 p23
1 1 1 1 1 1 1 1 1– p12 1– p13 1– p23

(c)

i = 0 1 2 3 4 5 6 7 m123 m123 Bel123

A: 1 1 0 1 0 0 0 1 p12 p13 p23 +p12 p23(1 – p13) 0.560 0.560

1 1 1 1 0 0 0 1 p12 p13(1 � p23) 0.144 0.704

1 1 0 1 0 1 0 1 p13 p23(1 �p12) 0.084 0.644

1 1 1 1 0 0 1 1 p12(1 � p13)(1 � p23) 0.096 0.800

1 1 1 1 0 1 0 1 p13(1 � p12)(1 � p23) 0.036 0.791

1 1 0 1 1 1 0 1 p23(1 � p12)(1 – p13) 0.056 0.700

1 1 1 1 1 1 1 1 (1 �p12)(1 �p13)(1 �p23) 0.024 1.000
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m12ðf0; 1g3Þ ¼ 1� p12:

Basic assignments m13 and m23 are determined similarly.
Using now the Dempster rule of combination twice, we obtain the combined

body of evidence given in Table 15.7c in terms of all focal elements and

expressions specifying respective values of the combined basic assignment

m123. Also shown in the table are numerical values of m123 for p12 = 0.8,

p13 = 0.6, and p23 = 0.7, as well as values of the associated belief measure,

Bel123, for the focal elements.

15.5.2 Possibility Theory

A theory based upon both possibility measures and necessity measures is

usually referred to as possibility theory. There are two dominant views about

possibility theory. According to one view, possibility theory is obtained by

restricting the Dempster–Shafer theory to bodies of evidence that are nested

[Shafer, 1987]. According to the other view, it is formulated in terms of fuzzy

sets [Zadeh, 1978].
Fuzzy sets and possibility measures are connected in the following way. Let F

be a normal fuzzy set defined on X and let v be a variable that takes values in X.

Then, the fuzzy proposition ‘‘v is F ’’ induces a possibility profile function

rv;F : X! ½0; 1�

defined for all x 2 X by the equation

rv;FðxÞ ¼ �FðxÞ;

where rv,F (x) is viewed as the degree of possibility that the value of v is x. When

F is a subnormal fuzzy set with height hF, this equation must be replaced with

the equation

r�;FðxÞ ¼ �FðxÞ þ 1� hF;

as is shown in [Klir, 1999]. Possibility measure, pv,F, based upon rv,F is then

defined for each A 2 P(X) by the formula

pv;FðAÞ ¼ sup
x2A

rv;FðxÞ:

Here, pv,F (A) is the (degree of) possibility that the value of v belongs to the crisp

set A. The corresponding necessity measure, vv,F, is then obtained by the

equations vv;FðAÞ ¼ 1� pv;Fð �AÞ:
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The two views of possibility theory are formally equivalent. Focal subsets in

Dempster–Shafer theory correspond to distinct a-cuts of the associated fuzzy

set. For each element of a focal subset, the value a of the corresponding a-cut is
equal to the value of plausibility of that element. For a finite X the correspon-

dence between a possibility profile on X and the associated basic probability

assignment is introduced in the proof of Theorem 4.24.
The connection of possibility theory with fuzzy sets gives the former a very

broad applicability. In general, possibility theory is applicable to problem areas

in which the use of fuzzy sets is significant. These are particularly problem areas

in which the role of natural language is essential. The use of fuzzy sets to capture

vague concepts, for which natural languages are notorious, is of great

advantage.
It is beyond the scope of this book to cover the many applications of

possibility theory, which are surveyed in Note 15.5. Let us only illustrate the

utility of extensions of possibility measures investigated in Chapter 5. In parti-

cular, let us describe how extensions of possibility measures can be utilized for

constructing membership grade functions of fuzzy sets.

Example 15.10. The living region of elephants in a primeval forest may be

viewed as a fuzzy subset, denoted by E, of the whole primeval forest, which is

regarded as the universe of discourse and denoted by X.
Suppose we have received several reports, from which we can infer (for each

set A 2 C, where C is a relevant class of crisp subsets of X), the possibility p(A)
that some elephants live in set (area) A. The sets in C may overlap with each

other arbitrarily. Using this information we want to estimate the membership

function �E of E.
Since the membership function of a fuzzy subset of X can be regarded as a

generalized possibility profile on X, we can use the extension theory of general-

ized possibility measures (Chapter 5) to estimate the membership function as

follows:

�E : X! ½0; 1�

x 7! inf
Ajx2A2C

pðAÞ:

This is the most optimistic estimate. When p is P-consistent on C, we have

sup
x2A

�EðxÞ ¼ pðAÞ for all A 2 C:

In general, if p is not P-consistent on C, then

sup
x2A

�EðxÞ � pðAÞ for all A 2 C:
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15.6 Information Fusion

Let X ¼ fx1; x2; . . . ;xng denote a set of information sources. Assume that in
each experiment (or observation) we obtain numerical information from each
source, xi denoted by fðxiÞ, i ¼ 1; 2; . . . ; n. Function f is regarded as a real-
valued function defined on X. That is, f : X! ð�1;1Þ. If we want to make a
proper decision based on the information obtained by doing the experiment (or
observation) once, an aggregation tool is needed to fuse the obtained numerical
information from n information sources to a single real number. The aggrega-
tion tool is essentially a projection from the n-dimensional Euclidean space onto
the one-dimensional Euclidean space. The most common and elementary
aggregation tool is theweighted average. That is, the aggregation is expressed by

y ¼
Xn
i¼1

wi fðxiÞ (15:11)

where wi � 0, i ¼ 1; 2; . . . ; n, and
Pn
i¼1

wi ¼ 1 . If weights wi are allowed to take

negative values and the restriction
Pn
i¼1

wi ¼ 1 is deleted, y obtained by

Eq. (15.11) is called a weighted sum. The weighted average (or the weighted
sum) can be regarded as the Lebesgue integral of function f with respect to a
classical additive measure � on P(X) determined by �ðxiÞ ¼ wi for all
i ¼ 1; 2; . . . ; n , that is

y ¼
ð
f d�:

To use weighted average (or the weighted sum) for information fusion, a
basic assumption is needed: there is no interaction among the contribution rates
from various attributes towards the fusion result with the effect that the joint
contribution from any set of attributes towards the fusion result is just the
simple sum of the contributions from each individual attribute in this set. Such
kind of interaction is totally different from the statistical correlation that
describes the relation among the appearing values of function f at various
attributes.

However, in most real-world problems, the above-mentioned interaction
cannot be ignored. Direct tools for describing the interaction are monotone
measures (or, in some cases, general measures, or signed general measures). In
Example 11.3, set function � is a monotone measure representing the individual
and joint efficiencies of three workers. It is not additive. The nonadditivity of �
describes the interaction among the contribution rates of these three workers
towards the total amount of manufactured toys. As is discussed in previous
chapters, the linear Lebesgue integral fails when a nonadditive monotone
measure is used. In this case, a nonlinear integral with respect to a monotone
measure (or a signed general measure) should be applied as an aggregation tool
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in information fusion. Example 11.3 is, in fact, an example of the Choquet
integral used for information fusion. Of course, in various situations of infor-
mation fusion, different types of nonlinear integrals (with the linear Lebesgue
integral as a special example), such as the upper and the lower integral and the
Sugeno integral, can be chosen as the aggregation tool.

To illustrate the use of generalized measure theory in synthetic evaluation of
objects, let an object be given that we want to evaluate and let X = {x1,
x2, . . . , xn} be the set of all quality factors regarding the objects of interest.
For convenience, let X be called a factor space of the object.

Assume now that our goal is to get a numerical synthetic evaluation of the
quality of the given object in terms of evaluations obtained for each individual
quality factor. A classical and common way to solve this problem is to use the
method of a weighted mean. This method is based on the assumption that the
effects (weighted evaluations) of individual quality factors are independent of
one another and, consequently, are additive. But, in most real problems these
effects are interactive, as illustrated by an example given later. In such cases, we
need a method that can describe the interaction involved. In the following we
show how monotone measures and Sugeno integrals can be used for this
purpose.

Assume that each subset E of the factor space X is associated with a real
number m(E) between 0 and 1 that indicates the importance of E. Such a real
number should be the maximum possible score that the object can gain relying
only on the quality factors in E. Obviously, the empty set Ø (the set which does
not include any quality factor we are interested in) has theminimum importance
0, and the whole factor space X has the maximum importance 1. Moreover, if
each factor in a factor set E belongs to another factor set F, then E is at most as
important as F. Hence, the set function �must satisfy the following conditions:

(1) � (Ø) = 0 and �(X) = 1;
(2) If E � F � X; then �ðEÞ ¼ �ðFÞ.

Since the number of quality factors in which we are interested for the given
object is always finite (that is, X is a finite space), the continuity of � holds
naturally. Therefore, � is a normalized monotone measure on a measurable
space (X, P(X)). We call � an importance measure on X. This measure is
similar to the weights in the method of weighted mean. It is an aggregated
summary of experts’ opinions, which can be obtained by consultations or
questionnaires. That is, the importance measure is regarded as a universally
accepted criterion employed in the evaluation, which is given before the
evaluation begins.

Example 15.11. Consider the problem of evaluating a dish of Chinese cuisine.
Assume that the quality factors we consider are the taste, smell, and appearance
(including, e.g., the color, shape and general arrangement of the dish). We
denote these factors by T, S, andA, respectively; hence, X={T, S,A}. Assume
further that the following set function � is employed as an importance measure:
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�ðfTgÞ ¼ 0:7; �ðfSgÞ ¼ 0:1; �ðfAgÞ ¼ 0; �ðfT;SgÞ ¼ 0:9; �ðfT;AgÞ ¼ 0:8;
�ðfS;AgÞ ¼ 0:3; �ðXÞ ¼ 1, and �ðØÞ ¼ 0. Observe that this importance mea-

sure, which is intuitively quite reasonable, is not additive. For instance,

�ðfT;SgÞ 6¼ �ðfTgÞ þ �ðfSgÞ or �ðfS;AgÞ 6¼ �ðfSgÞ þ �ðfAgÞ.
It is often convenient, especially when the number of quality factors is large,

to use some special kinds of monotone measures, such as possibility measures,

Sugeno measures, or belief measures, as the importance measures. The exten-

sion method of monotone measures can then be used to establish the impor-

tance measure involved.
Given a particular object to be evaluated, a factor space of the object, and an

importance measure, the object is evaluated by an adjudicator for each indivi-

dual quality factor x1, x2, . . . , xn, and we obtain scores f(x1), f(x2), . . . , f(xn).
Function fmay be regarded as a measurable function defined on (X, P(X)) such

that fðxiÞ 2 ½0; 1� for each xi 2 X. Now, it is natural to use the Sugeno integral

(�
Ð
f d�) of the scores f(xi) with respect to the importance measure � to obtain a

synthetic evaluation of the quality of the given object. Let the quality evaluation

be denoted by q.

Example 15.12. Let us return to the problem of evaluating the Chinese cuisine.

The quality factors and importance measure are given in Example 15.11. An

expert is invited as an adjudicator to judge each quality factor of a particular

dish, and he scores the quality factors as follows: f(T) = 0.9, f(S) = 0.6,

f(A) = 0.8. The synthetic evaluation of the quality of this dish, q, is then

calculated as follows:

q ¼ �
ð
fd� ¼ ½0:6 ^ �ðF0:6Þ� _ ½0:8 ^ �ðF0:8Þ� _ ½0:9 ^ �ðF0:9Þ�

¼ ½0:6 ^ �ðXÞ� _ ½0:8 ^ �ðfT;AgÞ� _ ½0:9 ^ �ðfTgÞ�

¼ 0:6 _ ð0:8 ^ 0:8Þ _ ð0:9 ^ 0:7Þ

¼ 0:8:

Consider now a different dish with f(T) = 1, f(S) = f(A) = 0; then, we have

q ¼ ½1 ^ �ðfTgÞ� _ 0 ¼ �ðfTgÞ ¼ 0:7:

Considering two additional dishes, one with f(T) = f(S) = 1, f(A) = 0, and the

other with f(T) = f(S) = f(A) = 1, we obtain, respectively,

q ¼ ½1 ^ �ðfT;SgÞ� _ 0 ¼ �ðfT;SgÞ ¼ 0:9:

and

q ¼ ½1 ^ �ðXÞ� ¼ �ðXÞ ¼ 1:
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These results confirm the requirement (stated earlier in this section) that �(F)
should be the maximum possible score that the object can gain relying only on

the quality factors in F.
An evaluation undertaken by a single adjudicator is always influenced by his

or her subjectivity. We can imagine, however, that each quality factor xi of a

given object has also its inherent quality index gðxiÞ 2 ½0; 1�; i ¼ 1; 2; . . . ; n. That
is, we assume the existence of an objective evaluation function g:X! [0, 1]. The

most ideal evaluation q0 for the quality of the object is the Sugeno integral

q0 ¼ �
Ð
g d� of this function g with respect to the importance measure �, which

we call the objective synthetic evaluation. Since the scores produced by each

individual adjudicator are not fully consistent and involve some randomness

(even if the same adjudicator judges the same quality factor of the same object at
two different times, the scores are likely to be different), the score f(xi) is often

not exactly equal to g(xi) and, consequently, the subjective evaluation q deviates

from the objective evaluation q0.
To reduce the influence of subjective biases of the individual adjudicators

and get a more reasonable evaluation, we can use an arithmetic average of

scores given by a number of adjudicators. Assume we invite several adjudicators

(say, m adjudicators) to judge all quality factors (say, n factors) in X, and they

give independently (without any discussion) scores fj(xi), j = 1, 2, . . . , m, for

each quality factor xi, i = 1, 2, . . . , n. We can imagine that, for some fixed I, all

scores for Ii given independently by an infinite number of adjudicators form a

general population GI with a mathematical expectation g(xi). Then, { f1(xi),

f2(xi), . . . , fm(xi)} may be viewed as a simple random sample of this general
population Gi . f1(xi), f2(xi}, . . . , fm(xi) are independent random variables with

the same distribution (and, therefore, the same mathematical expectation gðxiÞ).
By Kolmogorov’s strong law of large numbers (see Halmos [1950]), we have

lim
m

1

m

Xm
j¼1

fj ðxiÞ ¼ gðxiÞ

with probability 1 for each i ¼ 1; 2; . . . ; n. Since the number n of quality factors

is finite, we have

lim
m

1

m

Xm
j¼1

fj ðxiÞ ¼ gðxiÞ for all i ¼ 1; 2; . . .; n

with probability 1. Noting that the importance measure is finite, and using

Theorem 9.7, we get

lim
m
�
ð
1

m

Xm
j¼1

fj d� ¼ �
ð
g d� ¼ q0
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with probability 1. This implies

�
ð

1

m

Xm
j¼1

fj d�! q0

in probability. This means, in general, that the synthetic evaluation given by

qm ¼ �
ð

1

m

Xm
j¼1

fj d�

is always very close to the objective synthetic evaluation q0 provided that m is

large enough. The greater the number of attending adjudicators, the closer to q0
is the evaluation qm. Let qm be called an approximate objective synthetic evalua-

tion of the given object.

Example 15.13. Consider the same object, quality factors, and importance

measure as in Example 15.11. Assume that four experts, labeled as 1, 2, 3, 4,

were invited as adjudicators to judge the factors T, S, and A. Their scores are

given in Table 15.8.
First, we calculate the average of scores for each factor:

1

4

X4
j¼1

fj ðxiÞ ¼
0:75 if i ¼ 1

0:80 if i ¼ 2

0:70 if i ¼ 3:

8<
:

Then, we have

qm ¼ �
ð

1

4

X4
j¼1

fj d�¼ 0:75:

This approximate objective synthetic evaluation, qm =0.75, is more reasonable

than that obtained in Example 15.12.
Let us discuss now in more detail the motivation for using monotone

measures in synthetic evaluations. Let X = {x1; x2; . . . xn} denote again the

factor space of an object that we want to evaluate. The method of weighted

Table 15.8 Scores given by four experts in Example 15.13

i

1(T) 2(S) 3(A)

j

1 0.9 0.6 0.8
2 0.7 0.8 0.8

3 0.8 0.9 0.6

4 0.6 0.9 0.6
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mean requires that the weights corresponding to the individual factors be given
before the evaluation is made. Let w1;w2; . . . ;wn, where 0 � wi � 1,
i ¼ 1; 2; . . . ; n, and w1 þ w2 þ . . .þ wn = 1, denote the weights. For any set of
scores { f(xi) | i ¼ 1; 2; . . . n} given by an adjudicator, the method of weighted
mean yields the evaluation

qw ¼
Xn
i¼1

wi fðxiÞ:

As illustrated by the following example, this method is not always
reasonable.

Example 15.14. We intend to evaluate three TV sets. For the sake of simplicity,
we consider only two quality factors: ‘‘picture’’ and ‘‘sound.’’ These are denoted
by x1 and x2, respectively, and the corresponding weights arew1= 0.7 andw2=
0.3. Now, an adjudicator gives the following scores for each factor and each
TV set:

TV Set No. x1 (picture) x2 (sound)

1 1 0

2 0 1

3 0.45 0.45

Using the method of weighted mean, we get these synthetic evaluations of the
three TV sets:

qw1 ¼ w1 � 1þ w2 � 0 ¼ 0:7;

qw2 ¼ w1 � 0þ w2 � 1 ¼ 0:3;

qw3 ¼ w1 � 0:45þ w2 � 0:45 ¼ 0:45:

According to these results, the first TV set is the best. Such a result is hardly
acceptable since it does not agree with our intuition: A TV set without any
sound is not practical at all, even though it has an excellent picture. It is
significant to realize that the cause of this counterintuitive result is not an
improper choice of the weights. For example, if we chose w1 = 0.4 and w2 =
0.6, we would have obtained qw1 = 0.4, qw2 = 0.6, and qw3 = 0.45. Now, the
second TV set is identified as the best one, which is also counterintuitive: A TV
set with good sound but no picture is not a real TV set, but just a radio. We may
conclude that, according to our intuition, the third TV set should be identified
as the best one: among the three TV sets, only the third one is really practical,
even though neither picture nor sound are perfect. Unfortunately, when using
the method of weighted mean, no choice of the weights would lead to this
expected result under the given scores.
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The crux of this problem is that the method of weighted mean is based on an

implicit assumption that the factors x1, x2, . . . , xn are ‘‘independent’’ of one

another. That is, their effects are viewed as additive. This, however, is not

justifiable in this example, where the importance of the combination of picture

and sound is much higher than the sum of importances associated with picture

and sound alone. If we adopt a nonadditive set function (a monotone measure)

to characterize the importances of the two factors and, relevantly, use the

Sugeno integral as a synthetic evaluator of the quality of the three TV sets, a

satisfactory result may be obtained. For instance, given the importancemeasure

�({x1) = 0.3, �({x2}) = 0.1, �(X) = 1, and �(Ø) = 0, and using the Sugeno

integral, we obtain the following synthetic evaluations:

q1 ¼ �
ð

f1d� ¼ ð1 ^ 0:3Þ _ ð0 ^ 1Þ ¼ 0:3;

q2 ¼ �
ð

f2d� ¼ ð1 ^ 0:1Þ _ ð0 ^ 1Þ ¼ 0:1;

q3 ¼ �
ð

f3d� ¼ 0:45 ^ 1 ¼ 0:45;

here, f1, f2, and f3 characterize the scores given for the three TV sets: f1(x1) = 1,

f1(x2) = 0, f2(x2) = 0, f2(x2) = 1, and f3(x1) = f3(x2) = 0.45. Hence, we get a

reasonable conclusion—‘‘the third TV set is the best’’—which agrees with our

intuition.
When using the same monotone measure but employing the Choquet inte-

gral instead of the Sugeno integral, we obtain

qc1 ¼ ðCÞ
ð
f1d� ¼

ð
�ðF ð1Þ� Þdm ¼ 1� 0þ 0:3� 1 ¼ 0:3;

qc2 ¼ ðCÞ
ð
f2d� ¼

ð
�ðF ð2Þ� Þdm ¼ 1� 0þ 0:1� 1 ¼ 0:1;

qc3 ¼ ðCÞ
ð
f3d� ¼

ð
�ðF ð3Þ� Þdm ¼ 1� 0:45þ 0� 0:55 ¼ 0:45;

where

F ð1Þ� ¼
X if � = 0

fx1g if 0 < � �1,

�

F ð2Þ� ¼
X if � = 0

fx2g if 0 < � �1,

�

F ð3Þ� ¼
X if 0 � � � 0.45

Ø if 0 .45 < � �1.

�

332 15 Applications of Generalized Measure Theory



Consequently, the result is again satisfactory: The third TV set is the best.
When using the pan-integral to evaluate the quality of the three TV sets, and

choosing the common addition and multiplication as operations in the pan-
integral, a similar result is obtained. Hence, the crux in this example is to choose
a proper monotone importance measure.

15.7 Multiregression

Given a database involving some attributes, we often want to know how a
specified objective attribute depends on other attributes. This is one of the most
common problems in data mining, a problem usually referred to asmultiregres-
sion. A traditional model of multiregression is the linear multiregression that
has the form

y ¼ a1x1 þ a2x2 þ . . .þ anxn þNða0; �2Þ;

where y is the objective attribute (dependent variable), x1; x2; . . . ; xn are n
feature attributes (independent variables), and Nða0; � 2) is a normally distrib-
uted random variable with mean a0 and variance � 2. This linear model can be
viewed as the Lebesgue integral

y ¼
ð
f d�þNða0; �2Þ

where the integrand f represents the observations of feature attributes
x1; x2; . . . ; xn, and � is an additive signed measure determined by �ðfxigÞ ¼ ai,
i ¼ 1; 2; . . . ; n. Using this linear model makes sense under the assumption that
there is no interaction among feature attributes towards the objective attribute
such that the global contribution from feature attributes towards the objective
attribute is just the simple sum of their individual contributions. However, the
interaction cannot be ignored in many real-world problems, ones in which the
linear model fails, as seen in the last section. Some nonlinear transformations,
such as quadratic functions and splines, have been tried to deal with such
problems, but their efficiency is limited. A proper idea for improving the
classical linear model is to adopt the signed general measure to describe the
above-mentioned interaction, as has been done for information fusion. Of
course, in this case, the Lebesgue integral fails and then a nonlinear integral
with respect to the signed general measure should be used as an appropriate
aggregation tool. An initial nonlinear multiregression model may have the
following form:

y ¼ cþ ðCÞ
ð
f d�þNð0;�2Þ;
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where c is a constant, ðCÞ
Ð
f d� is the Choquet integral of function f with respect

to signed general measure �, and N(0, � 2) is a normally distributed random
perturbation with mean 0 and variance � 2 . In this model, constant c as well as
the values of� are regression coefficients. This nonlinearmultiregression problem
is just a generalization of the method for constructing signed general measures
based on data, which is discussed in Section 13.5. Once the data set

x1 x2 . . . xn y

f11 f12 . . . f1n y1
f21 f22 . . . f2n y2
..
.

fl1 fl2 . . . fln yl

is available, the regression coefficients can be determined by minimizing the
squared error

e2 ¼
Xl
j¼1
½yj � c� ðCÞ

ð
fj d��2;

where function fj is the j-th observation of attributes x1; x2; . . . ;xn, i.e.,
fjðxiÞ ¼ fji, i ¼ 1; 2; . . . ; n, for j ¼ 1; 2; . . . ; l. The algebraic least square method
can be used for solving this minimization problem since the Choquet integral
can be expressed as a linear function of unknown regression coefficients. Such
a model is nonlinear with respect to the observation f since the Choquet integral
is nonlinear. It is a real generalization of classical linear multiregression and
can be regarded as the inverse problem of information fusion discussed in
Section 15.6.

To deal with the data with some categorical attributes, a numericalization
method is developed by using another relevant genetic algorithm. In this method,
based on the given data the algorithm searches the optimal value for each state of
all categorical attributes. Furthermore, an n-dimensional vector of weights,
w ¼ ðw1; w2; . . . ;wnÞ, is added on the observations f to balance the various
scales of the feature attributes. Thus, the multiregression model becomes

y ¼ cþ ðCÞ
ð
wf d�þNð0;� 2Þ

and we should minimize

e2 ¼
Xl
j¼1
½yj � c� ðCÞ

ð
wfj d��2

to get the optimal estimation for the regression coefficients. In such a model the
unknown parameters (including w) are not in a linear form so that using only
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the least square method is not sufficient to obtain the optimal estimation for the

unknown regression coefficients. In this case, we use a hybrid optimization

method where the weights are determined through a genetic algorithm and the

other regression coefficients are still determined via the least square method. To

improve the multiregression model again, finally, an n-dimensional vector

a ¼ ða1; a2; . . . ; anÞ is introduced and then w is replaced by n-dimensional vector

b ¼ ðb1; b2; . . . ; bnÞ in the model. Then it becomes

y ¼ cþ ðCÞ
ð
ðaþ bf Þ d�þNð0; � 2Þ;

where a represents the phase of an attribute when it interacts with the others.

Vectors a and b should satisfy the following constraints:

ai � 0 for i ¼ 1; 2; . . . ; n;with min
1�i�n

ai ¼ 0;

� 1 � bi � 1 for i ¼ 1; 2; . . . ; n;with max
1�i�n

bij j ¼ 1:

In the final model, constant c, vectors a and b, and the values of � are regression

coefficients. Once the above-mentioned data are available, these regression

coefficients can be determined by minimizing the squared error

e2 ¼
Xl
j¼1
½ yj � c� ðCÞ

ð
ðaþ bfjÞd��2:

The genetic algorithm is a global search method. Its advantage is that it ignores

any local extremum of the objective function in the optimization problem since

there is no risk of falling into a local extremum in the search process. However,

the genetic algorithm is time-consuming and has a risk of being premature. To

speed the running of the algorithm, some strategies, such as diversity and self-

adaptivity, can be adopted in the algorithm.
While the Choquet integral has been found useful in dealing with the pro-

blem of multiregression, it is not the only one that is applicable in this problem

area. For example, the upper and the lower integrals, or even the integrals

described by rule r shown in Section 8.4, can be also used to form a nonlinear

multiregression model.

15.8 Classification

Recall that in multiregression, as discussed in Section 15.7, some feature attri-

butes are allowed to be categorical. In this section, we consider the case that the

objective attribute is categorical. Thus, we deal here with the problem of
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classification, which, in turn, is essentially a pattern recognition problem. It is
one of the common problems in data mining.

Let a data set

x1 x2 . . . xn y

f11 f12 . . . f1n y1
f21 f22 . . . f2n y2
..
.

fl1 fl2 . . . fln yl

be available, where x1, x2, . . . , xn are feature attributes and y is the classifying
attribute. The range of feature attributes x1, x2, . . . , xn is called the feature
space. It is a subset of n-dimensional Euclidean space. Unlike in the multi-
regression problem, y is now categorical and has only a finite number of
possible states. Usually, attribute y has only a few possible states, denoted by
s1; s2; . . . ; sk. Set S ¼ fs1; s2; . . . ; skg is called the state set of attribute y. Each
row fj1, fj2, . . . , fjn in the data set is the feature of the j-th sample and yj is the
corresponding state that indicates a specified class. The aim of a classification
problem is to find a classification model that divides the feature space into k
disjoint pieces, each of which corresponds to a class based on the given data set,
so that we may determine the corresponding class to which any new sample
belongs by using the model. The classification model is usually called a classi-
fier. Since any classification problem can be decomposed as k � 1 classification
problems, each of which has only two possible states for classifying attribute y,
we only consider 2-class classification problems in this section.

The simplest classification model is linear, that is, the two pieces of the
feature space corresponding to two classes is divided by an (n� 1) -dimensional
hyper-plane that can be expressed by a linear equation of n variable x1, x2, . . . ,
xn:

a1x1 þ a2x2 þ 
 
 
 þ anxn ¼ c;

where ai, i ¼ 1; 2; . . . ; n, and c are unknown parameters that we want to deter-
mine based on the given data. This (n� 1) -dimensional hyperplane is called the
classifying boundary. Essentially, a linear classification model is just a linear
projection y ¼ a1x1 þ a2x2 þ 
 
 
 þ anxn from the n-dimensional feature space
onto a one-dimensional real line, on which a point c is selected as the critical
value for optimally separating the projections of the samples in two classes in
the data set. Point c corresponds the classifying boundary. In fact, the projection
of the classifying boundary onto that one-dimensional real line is just the critical
point c. In most linear models the criterion of the optimization is to minimize
the misclassification rate when some (all or a part of ) samples in the data set are
used as the training set. Sometimes, the optimization criterion can also be
formed by a certain function of the distance from sample points to the boundary
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in the feature space. The values of the parameters ai, i ¼ 1; 2; . . . ; n, and c of the

optimal classifying boundary can be calculated via an algebraic method pre-
cisely or be found via a numerical method approximately.

Similar to the multiregression problems, to use the above-mentioned linear

classification model we need a basic assumption that the interaction among the
feature attributes towards the classification can be ignored. However, in many

real-world classification problems, the samples in the data are not linearly
separable, that is, the optimal classifying boundary is not approximately linear,

since the above-mentioned interaction cannot be ignored. In this case, similar to
the multiregression, we should adopt a nonlinear integral, such as the Choquet

integral with respect to a signed general measure �, to express the classifying
boundary, that is, the classifying boundary is identified by equation

ðCÞ
ð
ðaþ bf Þ d� ¼ c

where a, b, and f have the samemeaning as in Section 15.7. The nonadditivity of
signed general measure � describes the interaction among the contribution rate

from feature attributes towards the classification. Thus, when the Choquet
integral is used, the classifying boundary is not an (n � 1)-dimensional hyper-

plane generally, but an (n�1)-dimensional broken hyperplane. The parameters,
a, b, and c, as well as signed general measure �, can be optimally determined by

the training samples in the given data set via a soft computing technique such as
the genetic algorithm, approximately. Such a nonlinear classification model is a

real generalization of the classical linear classification model.
After determining the parameters, a, b, c, and � based on the training data, if

a new individual f is obtained, we only need to calculate the value of
yð f Þ ¼ ðCÞ

Ð
ðaþ bf Þd� . Then, we can classify f into one of the two classes

according to whether yð f Þ � c.

15.9 Other Applications: An Overview

In this section, we briefly introduce some additional areas within which appli-
cations of generalized measure theory have been described in the literature. To

cover these applications in detail would require that relevant knowledge regard-
ing each application domain be introduced. However, such extensive coverage

is beyond the scope of this book. Therefore, the use of generalized measure
theory in each area is described in this section only in general, easy to under-

stand terms. For readers interested in full coverage, each area is associated with
a particular Note in which relevant literature is surveyed.

Let us begin with the area of decision-making, which is perhaps one of the

most visible application areas of generalized measure theory. Although numer-
ous applications of generalized measure theory has been recognized within this
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very large area, it seems useful to classify them into the following two broad
categories:

1. Applications of the various types of imprecise probabilities to capture
uncertainty regarding the states of the world. It was traditionally assumed
that this uncertainty could be captured by a single probability measure, but it
has increasingly been recognized this assumption is not realistic in the
context of many decision-making problems, especially those emerging in
recent years.

2. Applications of nonadditive measures to capture the importance of various
subsets of given criteria in multicriteria decision-making, the importance of
various coalitions in multiperson decision-making or, more generally, the
importance of coalitions within the framework of cooperative game theory.
The rather extensive literature in this area is surveyed in Note 15.7.

To our knowledge, there are several other areas in which nonadditive mea-
sures and nonlinear integrals have been found useful. They include economics,
image processing and computer vision, and pattern recognition. Some refer-
ences pertaining to these areas are given in Note 15.8.

Notes

15.1. The significance of classical measure theory to formalizing the concept of
probability, which was established by Kolmogorov [1950], is well known
(see also Note 1.6). There are many books that cover the connection of
classical measure theory and probability theory. A few excellent repre-
sentatives are the books by Billingsley [1986], Halmos [1950], Kingman
and Taylor [1966], Parthasarathy [2005], and Pollard [2002]. Good over-
views of the use of classical measure theory in classical as well as fractal
geometries are the book byMorgan [1988] and Chapters 24 and 25 in Pap
[2002a]. Literature on the role of classical measures in ergodic theory
(a theory dealing with problems regarding long-term behaviors of
dynamic systems that are formalized in terms of measure-preserving
transformations on measure spaces of systems states) is fairly extensive.
A few representative publications include Chapter 29 in Pap [2002a] and
books by Aaronson [1997], Billingsley [1965], Halmos [1956], Petersen
[1983], and Walters [1982]. The role of classical measure theory in eco-
nomics and other social sciences is thoroughly discussed in the book by
Faden [1977]. Among other application areas of classical measure theory
are harmonic analysis [Pitt, 1985], potential theory [Helms, 1963; Du
Plessis, 1970; Dellacherie and Meyer, 1978], and calculus of variations
(Chapter 24 in [Pap, 2002a]).

15.2. Generalized information theory (GIT) emerged in the late 1980)s and was
formally proposed as a long-term research program by Klir [1991]. The
basic tenet of GIT, that the concept of uncertainty is broader than the
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concept of probability, has been debated in the literature since the late
1980s. An overview of the various published debates can be found in Klir
[2001]. As a result of these debates, as well as convincing advances in
GIT, limitations of classical probability theory to deal with uncertainty
and uncertainty-based information have increasingly been recognized.
A comprehensive coverage of results obtained by research within GIT
prior to 2006 is the subject of a recent book [Klir, 2006].

15.3. The first thorough investigation of imprecise probabilities was carried out
by Dempster [1967a,b]. Although his papers stimulated interest in impre-
cise probabilities, as manifested by the literature at that time, most early
publications (in the 1970s and 1980s) in this area were oriented to special
types of imprecise probabilities. Some notable exceptions were papers by
Walley and Fine [1979] and Kyburg [1987]. Since the early 1990s, coin-
ciding with the emergence of GIT, a greater emphasis can be observed in
the literature on studying imprecise probabilities within broader frame-
works. It is likely that this trend was influenced by the publication of an
important book by Walley [1991]. Employing simple, but very funda-
mental, principles of avoiding sure loss, coherence, and natural extension,
Walley presented in this book a highly general theory of imprecise prob-
abilities and discussed successfully its importance from philosophical,
mathematical, and practical points of view. Short versions of the material
covered in this rather large book (706 pages) and some additional ideas
are presented in [Walley, 1996, 2000]. Viewing imprecise probabilities
from the standpoint of general lower and upper probability functions
and the associated convex sets of probability measures, as is only briefly
outlined in Section 15.3, shows the crucial role of generalized measure
theory in formalizing imprecise probabilities. Further details, which are
beyond the scope of this book, can be found in [Klir, 2006] as well as in the
principal papers that contributed to the development of this broad view,
including papers by Chateauneuf and Jaffray [1989], De Campos and
Bolanos [1989], De Campos and Huete [1993], De Campos et al.
[1990a,b], Grabisch [1997 a–c], Lamata and Moral [1989], and Miranda
et al. [2003].

15.4. The classification of dual pairs of measures, which is summarized in Fig.
15.1, was inspired by [Lamata and Moral, 1989]. We do not cover the
class of dual pairs of decomposable measures since this class is not
contained in the class of dual pairs of ordered monotone measures and,
therefore, it does not qualify, as a whole, for a theory of imprecise
probabilities. While some of its subclasses do qualify, this area is still
not sufficiently developed and it is beyond the scope of this book.

15.5. Among the various theories of imprecise probabilities, the most visible
ones in terms of applications have been the Dempster–Shafer theory
(DST), possibility theory, and the theory based on reachable probability
intervals (RPI). Some representative publications that describe applica-
tions of these theories are: [Kong, 1986; Strat, 1990; Inagaki, 1991;
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Caselton and Luo, 1992; Yager et al., 1994; Schubert, 1994; Kohlas and
Monney, 1995; Resconi et al., 1998; Bell et al. 1998; Tanaka and Klir,
1999; Kriegler andHeld, 2005; Helton et al., 2006] for DST; [Yager, 1982;
Prade and Testemale, 1987; Tanaka and Hayashi, 1989; Wang and Li,
1990; De Cooman et al., 1995; Cai, 1996; Klir, 2002; Wolkenhauer, 1998;
Delmotte, 2007] for possibility theory; and [Weichselberger and
Pöhlman, 1990; Weichselberger, 2000; Pan and Klir, 1997] for RPI.

15.6. Applications of monotone measures and nonlinear integrals in data
mining involving the problems of information fusion, multiregression,
and classification are overviewed in [Wang et al., 2005]. Some additional
references are: [Ishi and Sugeno, 1985], [Keller and Osborn, 1996], [Leung
and Wang, 1998], [Wang et al., 1999a,b], [Liginlal et al., 2006], and
[Näther and Wälder, 2007] for information fusion; [Xu et al., 2000,
2001b] and [Wang, 2002, 2003] for multiregression; and [Grabisch and
Nicolas, 1994] and [Xu et al., 2001a, 2003] for classification.

15.7. Useful overview articles of applications of monotonemeasures in the area
of decision-making were written by Grabisch [1995b, 1997b]. These
applications are also covered well in [Grabisch et al., 1995]. A broad
framework for decision-making is cooperative game theory, in which
generalized measure theory plays a crucial role; the following are some
representative references: [Aubin, 1981], [Shapley, 1953, 1971], [Aumann
and Shapley, 1974], [Delbaen, 1974], [Owen, 1988], [Butnariu, 1985],
[Butnariu and Klement, 1993], and [Branzei, et al., 2005]. For decision-
making based on imprecise probabilities, see [Wolfenson and Fine, 1982],
[Walley, 1991], [Yager and Kreinovich, 1999], and [Troffaes, 2007].
Further information can be found in [Grabisch et al., 2000, Part 2].

15.8. The following are references to applications of generalized measure the-
ory in some other areas: [Billot, 1992] in economics; [Keller et al., 1986],
[Tahani andKeller, 1990], [Keller et al., 2000], and [Hocaoglu andGader,
2003] in image processing and computer vision; [Keller et al., 1994],
[Grabisch, 1995a], [Gader et al., 1996], and [Stanley et al., 2001], in
pattern recognition; and [Tanaka and Sugeno, 1991] in subjective evalua-
tion of printed color images.

Exercises

15.1. Show that all pairs of lower and upper probabilities in Table 15.9 are
based on reachable interval-valued probability distributions. Show also
that 1�� and

2�� are 2-monotone.
15.2. For the lower probability functions defined in Fig. 15.1, 1�� and

2��,
determine the dual upper probability functions, 1�� and 2��, and repeat
Example 15.2 for these dual measures.
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15.3. Let X = {a, b,c, d }. Consider a convex set of probability distributions
on X,

C ¼ fp ¼ ðpðaÞ; pðbÞ; pðcÞ; pðcÞÞg;

that is represented by the convex hull of the following four extreme

points:

p1 = (0.25, 0.25, 0.25, 0.25),
p2 = (0, 0, 0.5, 0.5),
p3 = (0, 0.5, 0, 0.5),
p4 = (0, 0, 0, 1).

Determine the lower and upper probability functions and the Möbius

function associated with C.
15.4. Convert the two lower probability functions defined in Fig. 15.1 to their

Möbius representations and determine whether the given functions are
Choquet capacities of order 2 or some higher order.

15.5. Determine for the two lower probability functions defined in Table 15.3
whether they are Choquet capacities of order 2.

15.6. Determine values of the belief and plausibility measures, which are
defined only for some subsets of the universal set in Table 15.5, for all
the remaining subsets.

15.7. Is the lower probability function defined in Table 15.4a Choquet capa-
city of order 2? Is it a superadditive measure?

15.8. LetX={a, b,c}. Consider the following probability intervals defined on
X: p(a) 2 [0.3, 0.4], p(b) 2 [0.3, 0.5], and p(c) 2 [0.3, 0.5]. If these intervals
are not reachable, convert them to the corresponding reachable ones
and calculate values of the associated lower and upper probability
functions for all subsets of X.

15.9. What are some advantages and disadvantages of the uncertainty theory
based on reachable probability intervals when compared with
Dempster–Shafer theory?

Table 15.9 Lower and upper probabilities in Exercise 15.1

A 1��ðAÞ 1��ðAÞ 1mðAÞ 2��ðAÞ 2��ðAÞ 2mðAÞ 3��ðAÞ 3��ðAÞ 3mðAÞ
Ø 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00

{a} 0.0 0.5 0.0 0.00 0.50 0.00 0.00 0.50 0.00

{b} 0.0 0.5 0.0 0.00 0.50 0.00 0.00 0.50 0.00

{c} 0.0 0.5 0.0 0.25 0.50 0.25 0.25 0.75 0.25

{a,b} 0.5 1.0 0.5 0.50 0.75 0.50 0.25 0.75 0.25

{a,c} 0.5 1.0 0.5 0.50 1.00 0.25 0.50 1.00 0.25

{b,c} 0.5 1.0 0.5 0.50 1.00 0.25 0.50 1.00 0.25

X 1.0 1.0 �0.5 1.00 1.00 �0.25 1.00 1.00 0.00
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15.10. Show that the Dempster rule of combination is associative so that the
combined evidence does not depend on the order in which the sources
are used.

15.11. Show that the alternative rule of combination in Dempster–Shafer
theory is not associative so that the combined result depends on the
order in which the sources are used. Can the alternative rule be general-
ized to more than two sources to be independent of the order in which
the sources are used?

15.12. Repeat Example 15.9 by using the alternative rule of combination.
15.13. Repeat Example 15.14 for another TV set whose scores for x1 and x2 are

0.5 and 0.6, respectively.
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Appendix A

Glossary of Key Concepts

1-alternating measure. The same concept as monotone measure, but which is

subadditive.

1-monotone measure. The same concept as monotone measure, but which is

superadditive.

l-rule. A set function � : C! [0,1] satisfies the l-rule iff there exists

l 2 � 1

sup�
;1

� �
[ f0g;

where sup �=supE2C �(E), such that �(E [ F)¼ �(E)þ �(F)þ l � � (E) � �(F)
whenever E, F, E [ F 2 C, and E \ F = Ø.

s-algebra. A �-ring that contains X.

s-ring. A nonempty class F such that E – F 2 F for all E, F 2 F and
S1

i¼1 Ei 2 F

for all Ei 2 F, i = 1, 2,. . . .

Absolute Continuity. Given a pair of continuous monotone measures on C, �
and �, � is said to be absolutely continuous with respect to � iff for any " > 0

there exists � > 0 such that �ðFÞ � �ðEÞ5" whenever E 2 C , F 2 C, E � F ,

and �ðFÞ � �ðEÞ5�.

Additivity. A set function � : C ! [0, 1], where C is a nonempty class of

X, is additive iff �(E [ F) = �(E) þ �(F) whenever E, F, E [ F 2 C and E

\ F = Ø.

AI-class.Anonempty classC such that \C0 2C implies \C0 2 C0 for allC0 � C:

Algebra. A nonempty class R such that E [ F 2 R and �E 2 R for all E, F 2 R.

Alternating Choquet capacities of order k. For each particular integer k � 2, a

monotone measure � on a measurable space (X, F) that satisfies the inequalities
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�ð
\k
j¼1

AjÞ �
X
K�Nk

K 6¼Ø

ð�1Þ Kj jþ1�ð
[
j2K

AjÞ

for all families of k sets in F.

Antisymmetric relation on E.A relationR� E� E such that aRb and bRa imply
a = b for each pair a, b 2 E.

Atom. For any point x 2 X, the atom of C at x, A(x/C), is the setT
fEjx 2 E 2 Cg.

AU-class. A nonempty class C such that
S
C 0 2 C implies

S
C0 2 C0 for all

C0 � C:

Autocontinuity. A set function �: F ! [–1, 1] is autocontinuous iff it is
autocontinuous from both above and below.

Autocontinuity from above (or from below). A set function � : F ! [–1, 1],
where F denotes a �-algebra of sets in P(X), is autocontinuous from above (or
from below) iff limn �(E [ Fn) = �(E) [or limn �(E – Fn) = �(E)] whenever E, Fn

2 F, limn �(Fn) = 0, and E \ Fn = Ø (or Fn � E, respectively), n = 1, 2,. . . .

Basic probability assignment. A set functionm:P(X)! [0, 1] such thatm(Ø)= 0
and �E2P(X) m(E) = 1.

Belief measure. A set function Bel: P(X)! [0, 1] such that Bel(E) = �F�E m(F)
for each E 2 P(X), where m is a basic probability assignment.

Borel field. The �-algebra generated by the class of all bounded, left closed, and
right open intervals of the real line.

Choquet capacity of order k. For each particular integer k � 2 , a monotone
measure � on a measurable space (X, F) that satisfies the inequalities

�ð
[k
j¼1

AjÞ �
X
K�Nk

K 6¼Ø

ð�1Þ Kj jþ1�ð
\
j2K

AjÞ

for all families of k sets in F.

Choquet integral. Given a measurable space (X, F), a monotone set function �:
F! [0,1], a nonnegative finite measurable function f on (X, F) and A 2 F, the
Choquet integral of f with respect to � on A is defined by

ðCÞ
ð
A

f d� ¼
ð1

0

�ðA \ F�Þd�;
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where the integral on the right side is the Riemann integral and

F� ¼ fxjfðxÞ � �g; �E½0;1Þ:

Commutative isotonic semigroup. Given a binary operation � on �Rþ = [0,1],
the pair ( �Rþ, �) is called a commutative isotonic semigroup iff � is commu-
tative, associative, and such that a� b implies a� c� b� c for every c, a� 0=
a, the existence of limn an and limn bn implies the existence of limn (an� bn), and

lim
n
ðan � bnÞ ¼ lim

n
an � lim

n
bn:

Commutative isotonic semiring. Given two binary operations,� and	, on �Rþ=
[0,1], a triple ( �Rþ,�,	) is called a commutative isotonic semiring iff� has the
same meaning as in the commutative isotonic semigroup and	 is commutative,
associative, and distributive with respect to�, and such that a� b implies a	 c
� b	 c for every c, a 6¼ 0 and b 6¼ 0 iff a	 b 6¼ 0, there exists I 2 �Rþ such that I	
a = a for every a 2 �Rþ, and the existence of a finite limn an and a finite limn bn
implies the equality

lim
n
ðan 	 bnÞ¼ lim

n
an 	 lim

n
bn:

Continuous monotone measure. A set function � : C ! [0, 1] on space (X, C)
that satisfies the requirements of both lower and upper-semicontinuous mono-
tone measures (vanishing at Ø, monotonicity, and semicontinuity from both
below and above).

Decreasing sequence {En}. A set sequence {En} for whichEn
Enþ1 for all n=1,
2,. . . .

Dual monotone measure. Given a normalized monotone measure � on (X, C),
the dual monotone measure, �, is defined for all A 2 C by the equation

�ðAÞ ¼ 1� �ðAÞ:

Equivalence class. Given an equivalence relationR� E� E and some x 2 E, the
set fyjxRyg.

Equivalence relation on E. A relationR� E� E that is reflexive, symmetric, and
transitive.

Fuzzy power set of X. The set of all fuzzy subsets of X.

General measure. A set function � : C! ½0;1� on (X, C) for which �ðØÞ ¼ 0
when Ø 2 C:

Generalized possibility measure. Maxitive measure on (X, C) such that there
exists E 2 C for which �(E) <1.

Hole. For any point x 2 X, the hole of C at x, H(x/C), is the set

Appendix A 345



[
fEjx 2 �E 2 Ĉg;

where Ĉ ¼ f �EjE 2 Cg:

Increasing sequence {En}. A set sequence {En} for which En � Enþ1 for all
n = 1, 2. . . .

Inferior limit of {En}. The set of all points of X that belong to En for all but a
finite number of values of n.

Inverse relation. Given a relation R � E � F, its inverse relation, R–1, is the set
R–1 = fðb; aÞjða; bÞ 2 Rg:

k-alternating measure (k� 2). The same concept as alternating Choquet capa-
city of order k.

k-monotone measure (k�2). The same concept as Choquet capacity of order k.

Limit of {En}. The set representing both superior and inferior limits of {En},
provided that they are equal.

Lower-semicontinuous monotone measure. A function � : C ! [0, 1] on space
(X, C) that satisfies the following three requirements:

1. �(Ø) = 0when Ø 2 C (vanishing at Ø);

2. For any E, F 2 C, E � F implies �(E) � �(F) (monotonicity);

3. For every increasing sequence {En},
S1

n¼1 En 2 C implies limn�ðEnÞ ¼
�ð
S1

n¼1 EnÞ) (continuity from below).

Maxitive measure. A set function � : C ![0, 1] on space (X, C) such that
�ð
S

t2TEtÞ ¼ supt2T�ðEtÞ for any subclass fEtjt 2 Tg of C whose union is in C,
where T is an arbitrary index set.

Measurable function. Given a measurable space (X, F), a real-valued function f :
X!(–1,1) such that f�1ðBÞ ¼ fxjfðxÞ 2 B 2 Fg for any Borel set B 2 B.

Measurable partition. Given a measurable space (X, F), a partition {Ei} of X
such that Ei 2 F for every i.

Measurable space. The pair (X, F), where F is a � -ring (or �-algebra) onX. (Sets
in F are called measurable sets.)

Monotone class. A nonempty class M for which limn En 2M for every mono-
tone sequence fEng �M:

Monotone measure. A set function � : C! ½0;1� on (X, C) that satisfies the
following requirements:

1. �ðØÞ ¼ 0 when Ø 2 C;

2. E 2 C;F 2 C; and E � F imply �ðEÞ � �ðFÞ.

346 Appendix A



Monotone measure space. A triple (X, F, �), where � is a monotonemeasure on a
measurable space (X, F).

Monotone sequence {En}. A sequence that is either increasing or decreasing.

Necessity measure. A set function v :P(X)! [0, 1] such that �ðEÞ ¼ 1� pð �EÞ for
each E 2 P(X), where p denotes a possibility measure.

Normalized monotone measure.Amonotonemeasure on (X,C) for whichX 2 C

and �ðXÞ ¼ 1:

Null-additivity. A set function � : F![–1,1], where F denotes a �-algebra of
sets in P(X), is null-additive iff �(E [ F) = �(E) whenever E, F 2 F, E \ F=Ø,
and �(F) = 0.

Pan-addition. A binary operation� on �Rþ ¼ ½0;1� employed in a commutative
isotonic semigroup.

Pan-characteristic function. Given a pan-space (X, F, �, �Rþ,�,	) and E� X, a
function �E: X! {0, I} such that

�EðxÞ ¼
I when x 2 E

0 otherwise;

�

where I is the unit element of the commutative isotonic semiring ð �Rþ;�;	Þ:

Pan-integral. Given a measurable space (X, F), a finite nonnegative measurable
function f defined on (X, F), and a set A 2 F, the pan-integral of f on A with
respect to a monotone measure � is defined by

sup
0�s�f; s2Q

�
n

i¼1
½ai 	 �ðA \ EiÞ�;

where Q denotes the set of all pan-simple measurable functions and
sðxÞ ¼ �n

i¼1½ai 	 �Ei
ðxÞ� 2 Q:

Pan-multiplication. A binary operation 	 on �Rþ ¼ ½0;1� employed in a com-
mutative isotonic semiring.

Pan-simple measurable function. Given a pan-space (X, F, �, �Rþ, �, 	), a
function s on X defined by

sðxÞ ¼ �
n

i¼1
½ai 	 �Ei

ðxÞ�;

where ai 2 �Rþ, i = 1, 2, ..., n, and fEiji ¼ 1; 2; :::; ng is a measurable partition
of X.

Pan-space. The sixtuple (X, F, �, �Rþ, �, 	), where (X, F, �) is a monotone
measure space and ( �Rþ, �, 	) is a commutative isotonic semiring.
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Partial ordering on E. A relationR� E� E that is reflexive, antisymmetric, and
transitive.

Partition of X. A disjoint class {E1, E2,. . ., En} of non-empty subsets of X such
that

Sn
i¼1 Ei ¼ X:

Plausibility measure. A set function P1 :P(X)! [0, 1] such thatP1ðEÞ ¼
P

mðFÞ
F\E 6¼Øfor each E 2 PðXÞ, where m is a basic probability assignment.

Plump class. A nonempty class Fp such that
S

tEt 2 Fp and
T

tEt 2 Fp for all
fEtjt 2 Tg � Fp; where T is an arbitrary index set.

Poset (partially ordered set). The pair (E, R), where E is a set and R is a partial
ordering on E.

Possibility measure. A generalized possibility measure defined on P(X) that is
normalized.

Quasi-measure. A set function � :C! [0,1] for which there exists a T-function
� such that � � � is a classical (additive) measure on C.

Quasi-probability. A quasi-measure that is normalized.

Quotient of E by R. The class of all equivalence classes of E induced by an
equivalence relation R.

Power set. The class of all subsets of X.

Reflexive relation on E. A relation R � E � E such that aRa for each a 2 E.

Relation from E to F. A subset of E � F.

Relation on E. A subset of E � E.

Ring. A nonempty class R such that E [ F 2 R and E� F 2 R for all E;F 2 R.

S-compact space. A measurable space (X, C) such that for any sequence of sets
in C there exists some subsequence that has a limit and this limit belongs to C.

Semiring. A nonempty class S that satisfies the following two requirements:

1. For all E, F 2 S, E \ F 2 S;

2. For all E, F 2 S such that E � F, there exists a finite class fC0;C1; . . . ;Cng
of sets inS such thatE ¼ C0 � C1 � . . . � Cn ¼ F andCi –Ci–12S for all i=
1, 2, ..., n.

Signed additive measure. An extended real-valued and countably additive set
function � on a measurable space (X, C) that assumes at most one of the values
þ1 and �1 , and for which �ðØÞ ¼ 0:

Signed general measure.An extended real-valued set function � on ameasurable
space (X,C) that assumes at most one of the valuesþ1 and�1 , and for which
�ðØÞ ¼ 0:
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Simple function. A function s : X! ð�1;1Þ expressed in the form

Xm
i¼1

ai�Ai
;

where each ai is a real constant, Ai 2 F, and �Ai
is the characteristic function of

Ai (i = 1, 2, ::: , m).

Space. The pair (X, C), where C is a nonempty class of subsets of X.

S-precompact space. A space (X,C) such that for any sequence of sets inC there

exists some subsequence that has a limit.

Subadditive measure. A set function � : C ! [0, 1] on space (X, C) such that

�ðEÞ � �ðE1Þ þ �ðE2Þ whenever E;E1;E2 2 C and E ¼ E1 [ E2.

Sugeno integral. Given a monotone measure space (X, F, �) with X 2 F, a

finite nonnegative measurable function f defined on (X, F), and a set A 2 F,

the Sugeno integral of f on A with respect to � is defined by sup�2[0, 1]

[� ^ �(A \ F�)], where F� = {x|f(x) � �} and ^ denotes the minimum

operator.

Sugeno measure. A normalized l-measure defined on a �-algebra.

Superadditive measure. A set function �: C! [0,1] on space (X, C) such that

�(E)� � (E1) þ �(E2) whenever E, E1, E2 2 C, E1 \ E2 = Ø, and E= E1 [ E2.

Superior limit of {En}. The set of all points of X that belong to En for infinitely

many values of n.

Symmetric relation on E. A relation R � E � E such that aRb implies bRa for

each pair a, b 2 E.

T-function. A real function � : [0, a] ! [0, 1] that is continuous, strictly

increasing, and such that � (0) = 0, �–1({1}) = Ø when a is finite and

�–1 ({1}) = {1} otherwise.

Transitive relation on E. A relationR� E� E such that aRb and bRc imply aRc

for any a, b, c 2 E.

Uniform autocontinuity. A set function � : F! [–1,1], where F is a �-algebra
of sets in P(X), is uniformly autocontinuous iff it is uniformly autocontinuous

from both above and below.

Uniform autocontinuity from above (or from below). A function � : F! [–1,1],

where F denotes a �-algebra of sets in P(X), is uniformly autocontinuous from

above (or from below) iff for any " > 0 there exists �= �(")> 0 such that �(E) –
"� � (E [ F)� �(E)þ " [or �(E) –"� �(E – F)� � (E)þ "] whenever E, F2 F,

|� (F)| � � and E \ F = Ø (or F � E, respectively).
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Upper-semicontinuous monotone measure. A set function �:C! [0,1] on space
(X, C) that satisfies the following three requirements:

1. �(Ø) = 0when Ø 2 C (vanishing at Ø);
2. For any E, F 2 C, E � F implies �(E) � � (F) (monotonicity);
3. For every decreasing sequence {En}� C such that �(E1) <1,

T1
n¼1 En 2 C

implies limn�ðEnÞ ¼ �ð
T1

n¼1EnÞ (continuity from above).
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Appendix B

Glossary of Symbols

", � Positive real numbers

�E Identity relation on set E

� T-function

�–1 The inverse function of �

� Set function

v Necessity measure (or general measure that is distinct from measure �)

p Possibility measure

p(x) Proposition concerning x

�E Characteristic function of E

� Product

� Summation

Ø Empty set

) Implication

( Inverse implication

, Logical equivalence

� Partial ordering

 To be absolutely continuous to

� Identically equal

! Mapping into

7! Mapping to

� Pan-addition

	 Pan-multiplication

_ Logical ‘‘or’’ or maximum operator

^ Logical ‘‘and’’ or minimum operator

8 Universal quantifier ‘‘for all’’

9 Existential quantifier ‘‘there exists at least one’’

�
Ð
f d� Sugeno integral of f on X with respect to �

�
Ð
A f d� Sugeno integral of f on A with respect to �

ðpÞ
R
A f d� Pan-integral of f on A with respect to �

ðCÞ
R
A f d� Choquet integral of f on A with respect to �

ðLÞ
R
A f d� Lower integral of f on A with respect to �
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(continued)

ðUÞ
R
A f d� Upper integral of f on A with respect to �

ðWÞ
R
A f d� Widened-lower integral of f on A with respect to �

ðWÞ
R
A f d� Widened-upper integral of f on A with respect to �S

C Union of sets in class CT
C Intersection of sets in class C

[a, b] Closed interval of real numbers from a to b
[a, b) Interval of real numbers closed at a and open at b
(a, b] Interval of real numbers open at a and closed at b
(a, b) Open interval of real numbers from a to b
a.e. Almost everywhere
fn%f Limit of an increasing sequence {fn} is f
fn&f Limit of a decreasing sequence {fn} is f
fn �!

a:e:
f {fn} converges to f almost everywhere

fn �!
a:u:

f {fn} converges to f almost uniformly
fn �!

p:a:e:
f {fn} converges to f pseudo-almost everywhere

fn �!
p:a:u:

f {fn} converges to f pseudo-almost uniformly
fn �!

p:�
f {fn} converges to f pseudo-in � (in measure)

fn �!
�

f {fn} converges to f in � (in measure)
f � g Composition of functions f and g
f, g, h Functions defined on X
gl l-measure
iff If and only if
inf Infimum
lim
n

En Limit of {En}

lim
n

En Superior limit of {En}

lim
n

En Inferior limit of {En}

lim sup
n

En Superior limit of {En}

lim inf
n

En Inferior limit of {En}

lim
	!��

Limit as 	 approaches to � from the left

lim
	!�þ

Limit as 	 approaches to � from the right

m Basic probability assignment
mA Membership function of fuzzy set A
max Maximum
min Minimum
n! n factorial

n
i

� �
Number of combinations of n things taken i at a time: n!

ðn�iÞ!i!

p Probability measure
p.a.e. Pseudo-almost everywhere
proj Projection of
s Pan-simple measurable function
sup Supremum
[x] The equivalence class containing x
{x, y,. . .} Set of elements x, y,. . .
{x|p(x)} Set determined by proposition p
xRy There is the relation R from x to y
xR=y There is no relation R from x to y
x 2 E x is a member of set E
x =2 E x is not a member of set E
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(continued)

A(x/C) Atom of C at x
Bel Belief measure
�E Complement of set E
|E| Number of elements in a finite set E
{En} Sequence of sets: {E1, E2, . . .}
En% E Limit of a increasing sequence {En} is E
En& E Limit of a decreasing sequence {En} is E
En! E Limit of {En} is E
E, F,. . . Subsets of X
E [ F Union of sets E and F
E \ F Intersection of sets E and F
E – F Difference of sets E and F: E \ �F
E � F Symmetric difference of sets E and F: (E – F) [ (F – E)
E � F Product of sets E and F
E � F E is a subset of F
E = F Sets E and F are equal (E � F and F � E)
E/R The quotient of set E by an equivalence relation R
F� The �-level set of f
F�+ The strict �-level set of f
h Probability distribution function
H(x/C) Hole of C at x
Pl Plausibility measure
(P, �) Partially ordered set
R The interval (–1,1)
�R The interval [–1,1]
R+ The interval [0,1)
�Rþ The interval [0,1]
Rn n-dimensional Euclidean space
T Arbitrary index set
X Universe of discourse (universal set)
A[C] The class of all atoms of C
B Borel field
B
(n) Borel field on Rn

C Class of subsets of X (a set of subsets of X)
E Measurable partition of X
Ep(�) The set of all generalized possibility measure extensions of �
Ev(�) The set of all necessity measure extensions of �
F � - ring
~F Fuzzy �� algebra
F(C) � - ring generated by C

Fp Plump class
Fp(C) Plump class generated by C

G The class of all finite nonnegative measurable functions on (X, F)
H[C] The class of all holes of C
M Monotone class
M(C) Monotone class generated by C

P̂ The set of all measurable partitions of X
P(X) Power set of X
~PðXÞ Fuzzy power set of X
Q The class of all pan-simple measurable functions
R Ring
R(C) Ring generated by C
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(continued)

R� The class of all sets each of which is expressed by the limit of an increasing
sequence of sets in an algebra R

R� The class of all sets each of which is expressed by the limit of a decreasing
sequence of sets in an algebra R

S Semiring
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integration, pp. 211–236; II. Choquet integral, pp. 237–259. Fuzzy Sets and Systems,
151(2).

Grabisch, M., Murofushi, T., and Sugeno, M., eds. [1992]. Fuzzy measure of fuzzy events
defined by fuzzy integrals. Fuzzy Sets and Systems, 50(3), pp. 293–313.

Grabisch, M., Murofushi, T. and Sugeno, M., eds. [2000]. Fuzzy Measures and Integrals:
Theory and Applications. Springer-Verlag, New York.

Grabisch, M. and Nicolas, J.M. [1994]. Classification by fuzzy integral: Performance and
tests. Fuzzy Sets and Systems, 65(2/3), pp. 255–271.

Grabisch, M., Nguyen, T. and Walker, E.A. [1995]. Fundamentals of Uncertainty Calculi with
Applications to Fuzzy Inference. Kluwer, Dordrecht and Boston.

Guan, J.W. and Bell, D.A. [1991–92]. Evidence Theory and Its Applications: Vol. 1 (1991),
Vol. 2 (1992). North-Holland, New York.

360 Bibliography



Guth, M.A.S. [1988]. Uncertainty analysis of rule-based expert systems with Dempster–
Shafer mass assignment. Intern. J. of Intelligent Systems, 3(2), pp. 123–139.

Hacking, I. [1975]. The Emergence of Probability. Cambridge University Press, Cambridge.
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Suárez, F. and Gill, P. [1986]. Two families of fuzzy integrals. Fuzzy Sets and Systems, 18(1),

pp. 67–81.
Sugeno, M. [1974]. Theory of Fuzzy Integrals and its Applications. Ph.D. dissertation, Tokyo

Institute of Technology.
Sugeno,M. [1977]. Fuzzymeasures and fuzzy integrals:A survey. In:M.M.Gupta,G.N. Saridis,

and B.R. Gaines (eds.), Fuzzy Automata and Decision Processes, North-Holland, NewYork,
pp. 89–102.

Sugeno, M. and Murofushi, T. [1987]. Pseudo-additive measures and integrals. J. of Mathe-
matical Analysis and Applications, 122, pp. 197–222.

Sun, Q. [1992]. On the pseudo-autocontinuity of fuzzy measures. Fuzzy Sets and Systems,
45(1), pp. 59–68.

Sun, Q. and Wang, Z. [1988]. On the autocontinuity of fuzzy measures. In: R. Trappl (eds),
Cybernetics and Systems ’88, Kluwer, Boston, pp. 717–721.

Suzuki, H. [1988]. On fuzzy measures defined by fuzzy integrals. J. of Mathematical Analysis
and Applications, 132, pp. 87–101.

Suzuki, H. [1991]. Atoms of fuzzy measures and fuzzy integrals. Fuzzy Sets and Systems,
41(3), pp. 329–342.

Tahani, H. and Keller, J.M. [1990]. Information fusion in computer vision using the fuzzy
integral. IEEE Trans. on Systems, Man and Cybernetics, 20, pp. 733–741.

Bibliography 367



Tanaka, H. and Hayashi, I. [1989]. Possibilistic linear regression analysis for fuzzy data.
European J. of Operations Research, 40, pp. 389–396.

Tanaka, H. and Sugeno, M. [1991]. A study of subjective evaluation of printed color images.
Intern. J. of Approximate Reasoning, 5(3), pp. 213–222.

Tanaka, H., Sugihara, K. and Maeda, Y. [2004]. Non-additive measures by interval prob-
ability functions. Information Sciences, 164, pp. 209–227.

Tanaka, K. and Klir, G.J. [1999]. A design condition for incorporating human judgment into
monitoring systems. Reliability Engineering and System Safety, 65, pp. 251–258.

Temple, G. [1971]. The Structure of Lebesgue Integration Theory. Oxford University Press,
London.

Terán, P. [2007]. Probabilistic foundations for measurement modeling with fuzzy random
variables. Fuzzy Sets and Systems, 158(9), pp. 973–986.

Torra, V. andNarukawa, Y. [2006]. The interpretation of fuzzy integrals and their application
to fuzzy systems. Intern. J. of Approximate Reasoning, 41(1), pp. 43–58.

Troffaes, M.C.M. [2007]. Decisionmaking under uncertainty using imprecise probabilities.
Intern. J. of Approximate Reasoning, 45(1), pp. 17–29.

Tsiporkova, E., Boeva, V. and De Baets, B. [1999]. Evidence measures induced by Kripke’s
accessibility relations. Intern. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems,
7(6), pp. 589–613.

Vicig, P. [2000]. Epistemic independence for imprecise probabilities. Intern. J. of Approximate
Reasoning, 24(2–3), pp. 235–250.

Viertl, R. [1987]. Is it necessary to develop a fuzzy Bayesian inference? In: R. Viertl (eds),
Probability and Bayesian Statistics, Plenum Press, New York, pp. 471–475.

Viertl, R. [1996]. Statistical Methods for Non-Precise Data. CRC Press, Boca Raton, Florida.
Vitali, G. [1997]. On the definition of integral of functions of one variable. Rivista di

matematica per le scienze economiche e sociali, 20(2), pp. 159–168. [Originally published
in Italian in 1925.]

Wagner, C.G. [1989]. Consensus for belief functions and related uncertaintymeasures.Theory
and Decision, 26, pp. 295–304.

Wakker, P. [1990]. A behavioral foundation for fuzzy measures. Fuzzy Sets and Systems,
37(3), pp. 327–350.

Walley, P. [1987]. Belief function representations of statistical evience.Annals of Statistics, 15,
pp. 1439–1456.

Walley, P. [1991]. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London.

Walley, P. [1996].Measures of uncertainty in expert systems.Artificial Intelligence, 83, pp. 1–58.
Walley, P. [2000]. Towards a unified theory of imprecise probability. Intern. J. of Approximate

Reasoning, 24(2–3), pp. 125–148.
Walley, P. and De Cooman, G. [1999]. Coherence of rules for defining conditional prob-

ability. Intern. J. of Approximate Reasoning, 21(1), pp. 63–107.
Walley, P. and Fine, T.L. [1979]. Varieties of model (classificatory) and comparative prob-

ability. Synthese, 41, pp. 321–374.
Wallner, A. [2007]. Extreme points of coherent probabilities in finite spaces. Intern. J. of

Approximate Reasoning, 44(3), pp. 339–357.
Walters, P. [1982]. An Introduction to Ergodic Theory. Springer-Verlag, New York.
Wang, J.C. and Chen, T.Y. [2005]. Experimental analysis of l-fuzzy measure identification by

evolutionary algorithms. Intern. J. of Fuzzy Systems, 7(1), pp. 1–10.
Wang, J. and Wang, Z. [1997]. Using neural networks to determine Sugeno measures by

statistics. Neural Networks, 10(1), pp. 183–195.
Wang, R. and Ha, M. [2006]. On Choquet integrals of fuzzy-valued functions. Journal of

Fuzzy Mathematics, 14(1), pp. 89–102.
Wang, R., Wang, L. and Ha, M. [2006]. Choquet integrals on L-fuzzy sets. J. of Fuzzy

Mathematics, 14(1), pp. 151–163.

368 Bibliography



Wang, W. Klir, G.J. and Wang, Z. [1996]. Constructing fuzzy measures by rational transfor-
mations. J. of Fuzzy Mathematics, 4(3), pp. 665–675.

Wang, W., Wang, Z. and Klir, G.J. [1998b]. Genetic algorithms for determining fuzzy
measures from data. J. of Intelligent and Fuzzy Systems, 6(2), pp. 171–183.

Wang, Z. [1981]. Une class de mesures floues–-les quasi-mesures. BUSEFAL, 6, pp. 28–37.
Wang, Z. [1984]. The autocontinuity of set function and the fuzzy integral. J. ofMathematical

Analysis and Applications, 99, pp. 195–218.
Wang, Z. [1985a]. Asymptotic structural characteristics of fuzzy measure and their applica-

tions. Fuzzy Sets and Systems, 16(3), pp. 277–290.
Wang, Z. [1985b]. Semi-lattice structure of all extensions of possibility measure and conso-

nant belief function. In: D. Feng and X. Liu (eds.), Fuzzy Mathematics in Earthquake
Researches, Seismological Press, Beijing, pp. 332–336.

Wang, Z. [1986]. Semi-lattice isomorphism of the extensions of possibility measure and the
solutions of fuzzy relation equation. In: R. Trappl (ed.) Cybernetics and Systems ’86,
Kluwer, Boston, pp. 581–583.

Wang, Z. [1987]. Some recent advances on the possibility measure theory. In: B. Bouchon and
R.R. Yager (eds.), Uncertainty and Knowledge-Based Systems, Springer-Verlag, New York,
pp. 173–175.

Wang, Z. [1990a]. Absolute continuity and extension of fuzzy measures. Fuzzy Sets and
Systems, 36(3), pp. 395–399.

Wang, Z. [1990b]. Structural characteristics of fuzzy measure on S-compact spaces. Intern. J.
of General Systems, 17(4), pp. 309–316.

Wang, Z. [1992]. On the null-additivity and the autocontinuity of fuzzy measure. Fuzzy Sets
and Systems, 45(2), pp. 223–226.

Wang, Z. [1996]. Constructing nonadditive set functions in systems. Journal of Hebei Uni-
versity, 16(3), pp. 44–47.

Wang, Z. [1997]. Convergence theorems for sequences of Choquet integrals. Intern . J. of
General Systems, 26(1–2), pp. 133–143.

Wang, Z. [2002]. A new model of nonlinear multiregression by projection pursuit based on
generalized Choquet integrals. Proc. of FUZZ-IEEE ’02, pp. 1240–1244.

Wang, Z. [2003]. A new genetic algorithm for nonlinear multiregression based on generalized
Choquet integrals. Proc. of FUZZ-IEEE ’03, pp. 819–821.

Wang, Z. and Klir, G.J. [1992]. Fuzzy Measure Theory, Plenum Press, New York.
Wang, Z. and Klir, G.J. [1997a]. Choquet integrals and natural extensions of lower prob-

abilities. Intern. J. of Approximate Reasoning, 16(2), pp. 137–147.
Wang, Z. and Klir, G.J. [1997b]. PFB-integrals and PFA-integrals with respect to mono-

tone set functions. Intern. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 5(2),
pp. 163–175.

Wang, Z. and Klir, G.J. [2007]. Coordination uncertainty of belief measures in infomation
fusion, Proc.12th IFSA World Congress, Cancun, Mexico.

Wang, Z. and Leung, K.S. [2006]. Uncertainty carried by fuzzymeasures in aggregation.Proc.
IPMU ‘2006, pp. 105–112.

Wang, Z. and Li, S.M. [1990]. Fuzzy linear regression analysis of fuzzy valued variables. Fuzzy
Sets and Systems, 36(1), pp. 125–136.

Wang, Z. and Qiao, Z. [1990]. Transformation theorems for fuzzy integrals on fuzzy sets.
Fuzzy Sets and Systems, 34(3), 355–364.

Wang, Z. and Wang, J. [1996]. Using genetic algorithms for l-measure fitting and extension.
Proc. FUZZ-IEEE ’96, New Orleans, pp. 1871–1874.

Wang, Z. and Xu, K. [1998]. A brief discussion of a new type of nonlinear integrals with
respect to nonadditive set functions. In: Proc. of 1998 Conf. of the Chinese Fuzzy Mathe-
matics and Fuzzy Systems Association, pp. 95–103.

Wang, Z. et al. [1995a]. The preservation of structural characteristics of monotone set
functions defined by fuzzy integral. J. of Fuzzy Mathematics, 3(1), pp. 229–240.

Bibliography 369



Wang, Z. et al. [1995b]. Expressing fuzzy measure by a model of modal logic: A discrete case.
In: Z. Bien and K.C. Min (eds.), Fuzzy Logic and Its Applications to Engineering, Informa-
tion Sciences, and Intelligent Systems, Kluwer, Boston, pp. 3–13.

Wang, Z. et al. [1996a]. Fuzzy measures defined by fuzzy integral and their absolute con-
tinuity. J. of Mathematical Analysis and Applications, 203(1), pp. 150–165.

Wang, Z. et al. [1996b]. Monotone set functions defined by Choquet integral. Fuzzy Sets and
Systems, 81(2), pp. 241–250.

Wang, Z. et al. [1996c]. Pan-integrals with respect to imprecise probabilities. Intern. J. of
General Systems, 25(3), pp. 229–243.

Wang, Z. et al. [1998a]. Neural networks used for determining belief measures and plausibility
measures. Intelligent Automation and Soft Computing, 4(4), pp. 313–324.

Wang, Z. et al. [1999a]. A genetic algorithm for determining nonadditive set functions in
information fusion. Fuzzy Sets and Systems, 102(3), pp. 463–469.

Wang, Z. et al. [1999b]. Using genetic algorithms to determine nonnegative monotone set
functions for information fusion in environments with random perturbation. Intern. J. of
Intelligent Sytems, 14(10), pp. 949–962.

Wang, Z. et al. [2000a]. A new type of nonlinear integrals and the computational algorithm.
Fuzzy Sets and Systems, 112(2), pp. 223–231.

Wang, Z. et al. [2000b]. Nonlinear nonnegative multiregression based on Choquet integrals.
Intern. J. of Approximate Reasoning, 25(2), pp. 71–87.

Wang, Z. et al. [2000c]. Determining nonnegative monotone set functions based on Sugeno’s
integral: An application of genetic algorithms. Fuzzy Sets and Systems, 112(1), pp. 155–164.

Wang, Z. et al. [2003]. Interdeterminate integrals with respect to nonadditive measures. Fuzzy
Sets and Systems, 138(3), pp. 485–495.

Wang, Z. et al. [2005]. Applying fuzzy measures and nonlinear integrals in data mining. Fuzzy
Sets and Systems, 156(3), pp. 371–380.

Wang, Z. et al. [2006a]. Integration on finite sets. Intern. J. of Intelligent Systems, 21(10),
pp. 1073–1092.

Wang, Z. et al. [2006b]. Real-valued Choquet integrals with fuzzy-valued integrand. Fuzzy
Sets and Systems, 157(2), pp. 256–269.

Wang, Z. et al. [2008a]. Lower integrals and upper integrals with respect to nonadditive set
functions. Fuzzy Sets and Systems 159(6), pp. 646–660.

Wang, Z. et al. [2008b]. The Choquet integral with respect to fuzzy-valued signed efficiency
measures. Proc. of WCCI 2008. pp. 2143–2148.

Wasserman, L.A. and Kadane, J. [1990]. Bayes’ theorem for Choquet capacities. Annals of
Statistics, 18(3), pp. 1328–1339.

Wasserman, L.A. and Kadane, J. [1992]. Symmetric upper probabilities. Annals of Statistics,
20(4), pp. 1720–1736.

Weber, S. [1984]. ^-decomposable measures and integrals for Archimedean t-conorms. J. of
Mathematical Analysis and Applications, 101, pp. 114–138.

Weber, S. [1986]. Two integrals and some modified versions – critical remarks. Fuzzy Sets and
Systems, 20(1), pp. 97–105.

Weber, S. [1991]. Conditional measures and their applications to fuzzy sets. Fuzzy Sets and
Systems, 42(1), pp. 73–85.

Weichselberger, K. [2000]. The theory of interval-probability as a unifying concept for
uncertainty. Intern. J. of Approximate Reasoning, 24(2–3), pp. 149–170.
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