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FUZZY OUTRANKING METHODS: RECENT 
DEVELOPMENTS

Institute of Production and Robotics, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

Abstract:  The main objective of this chapter is to account for the most recent 
developments related to fuzzy outranking methods with a particular focus on 
the fuzzy outranking method developed by the authors. The valued 
outranking methods PROMETHEE and ELECTRE III, which are the 
outranking methods the most used for application in real-life multi-criteria 
decision aid problems, are also presented. The description of the general 
outranking approach is provided.  
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1. INTRODUCTION

Outranking methods form one of the main families of methods in multi-
criteria decision aid (MCDA). Other important methods are multi-attribute 
utility theory (MAUT) methods, interactive methods, and the analytic 
hierarchy process (AHP). 

It is worth recalling that the first outranking method called ELECTRE I 
was developed by Bernard Roy and published in 1968. Since then, a series 
of outranking methods were developed mainly during the 1970s and 
1980s. Among them we can quote ELECTRE II (Roy and Bertier, 1973), 
ELECTRE III (Roy, 1978), QUALIFLEX (Paelinck, 1978), ORESTE 
(Roubens, 1982; Pastijn and Leysen, 1989), ELECTRE IV (Roy and 
Hugonnard, 1982), MELCHIOR (Leclercq, 1984), PROMETHEE I and II 
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(Brans and Vincke, 1985), TACTIC (Vansnick, 1986), MAPPACC 
(Matarazzo, 1986), and PRAGMA (Matarazzo, 1986). 

The outranking methods are based on the construction and the 
exploitation of an outranking relation. The underlying idea consists of 
accepting a result less rich than the one yielded by multi-attribute utility 
theory by avoiding the introduction of mathematical hypotheses that are 
too strong and asking the decision maker some questions that are too 
intricate (Vincke, 1992a). The concept of an outranking relation is 
introduced by Bernard Roy who is the founder of outranking methods. 
According to Roy (1974), an outranking relation is a binary relation S
defined on the set of alternatives A such that for any pair of alternatives 
(a,b) A A: aSb if, given what is known about the preferences of the 
decision maker, the quality of the evaluations of the alternatives and the 
nature of the problem under consideration, there are sufficient arguments 
to state that the alternative a is at least as good as the alternative b, while at 
the same time no strong reason exists to refuse this statement. 

In contrast to the other methods, the outranking methods have the 
characteristic of allowing incomparability between alternatives. This 
characteristic is important in situations where some alternatives cannot  
be compared for one or another reason. According to Siskos (1982), 
incomparability between two alternatives can occur because of a lack of 
information, inability of the decision maker to compare the two 
alternatives, or his refusal to compare them (Siskos, 1982). 

In contrast to the valued outranking methods that are well documented 
in the literature and have been intensively used in practice since 1978 with 
the publication of ELECTRE III, the fuzzy outranking methods are very 
recent and are not well documented in the literature, and this is one of the 
motivations for the redaction of this chapter. 

The chapter is structured as follows. The main elements of a general 
outranking approach are described in Section 2.  Section 3 is devoted to 
the presentation of the PROMETHEE and ELECTRE III, which are the 
main valued outranking methods considered in both theory and 
applications. The fuzzy outranking methods are presented in Section 4. 
Some concluding remarks are given in Section 5. 

2. THE OUTRANKING APPROACH 

An outranking method is applicable for MCDA problems where the 
elements of a finite set of alternatives A = {a1, a2, …, an} have to be 
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compared on the basis of the preferences of the decision maker regarding 
their performances with respect to the elements of a finite set of criteria F
= {g1, g2, …, gm}. It is assumed that each alternative ai, i = 1, …, n can be 
evaluated with respect to each criterion gj, j = 1, …, m. The evaluations 
can be quantitative or qualitative. They can also be deterministic or 
nondeterministic. In the nondeterministic case, they can be fuzzy or 
stochastic.

The objective of outranking methods is provide decision aid to decision 
makers in the form of a subset of “best” alternatives or a partial or 
complete ranking of alternatives (Pasche, 1991). 

According to Roy (1991), the preferences in the outranking concept are 
determined at two different levels as follows:

Level of preferences restricted to each criterion. For example, to each 
criterion gj, it is possible to associate a restricted outranking relation Sj
such that for any two alternatives a and b in A:

bgabaS jj  as good asleast at  is , respect to with ,  (1) 

Level of comprehensive preferences where all criteria are taken into 
account.
The meaning of an outranking relation is given in Section 1. However, 

there is a need for a set of conditions to recognize whether a given binary 
relation can be an outranking relation. The following definition is provided 
in (Perny and Roy, 1992) 

A fuzzy relation Sj defined on A2 is said to be a monocriterion 
outranking index for a criterion gj if a real-valued function tj, exists defined 
on 2A , verifying Sj(a, b) = tj(aj, bj) for all a and b in A with aj and bj being 
the crisp scores of a and b on criterion gj such that: 

0j0 y,xt,y
y,xt,x 0j0

1z,zt,z j .

It is worth noticing that the three conditions in this definition are also 
valid for fuzzy outranking relations constructed from fuzzy evaluations on 
criteria and for global outranking relations.

DEFINITION 1.

 is a nondecreasing function of x,
 is a nonincreasing function of y,
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In the literature, confusion abounds regarding valued and fuzzy 
outranking relations, and they are often used interchangeably. Even if the 
valued and fuzzy outranking relations are similar from a mathematical 
point of view, they represent two different situations:

The valued outranking relation represents a crisp situation, and the 
value S (a, b) 0, 1  represents the intensity with which the alternative 
a outranks alternative b and S (a, b) is constructed from crisp 
evaluations of alternatives a and b.
The valued outranking relation represents a fuzzy situation, and the 
value S(a,b) 0, 1  represents the degree with which the alternative a
is R-related to b and S(a,b) is constructed from fuzzy evaluations of 
alternatives a and b.

An outranking method is composed of two main phases that are the 
construction of a global outranking relation and the exploitation of this 
relation.

The construction phase is composed of two main steps: 

Construction of an outranking relation or related relations such as 
concordance and discordance indices with respect to each criterion, 
The aggregation of the single outranking relations into a global 
outranking relation. 

The exploitation phase of a valued/fuzzy outranking method can be 
dealt with in three different ways (Fodor and Roubens, 1994): 

Transformation of the valued/fuzzy outranking relation into another 
valued/fuzzy relation having particular properties such as transitivity 
that are interesting for the ranking of alternatives, 
Determination of a crisp relation closed to the valued/fuzzy outranking 
relation and having specific properties, 
Use of a ranking procedure to obtain a score function as it is the case 
for PROMETHEE and ELECTRE III methods. 

A detailed study of the exploitation phase in the case of crisp relations 
is provided in (Vincke, 1992b). 
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3. VALUED OUTRANKING METHODS 

The outranking methods that are the most used for application in real-life 
MCDA problems are ELECTRE III and PROMETHEE, which are valued 
outranking methods since they are based on the construction and exploitation 
of a valued “outranking relation.” ELECTRE stands for “ELimination Et 
Choix Traduisant la REalité,” and PROMETHEE stands for “Preference 
Ranking Organization METHod for Enrichment Evaluations.” 

3.1 ELECTRE III 

ELECTRE III is an outranking method proposed by Roy (1978) to deal 
with multi-criteria decision-making situations in which a finite set of 
alternatives should be ranked from the best to the worst. It is composed of 
the following steps: 

The construction of a valued outranking relation; 
The construction of two complete preorders based on descending and 
ascending distillation chains; 
The comparison of the two complete preorders in order to elaborate a 
final ranking of the alternatives. This comparison leads to a partial 
preorder in which it is possible that some alternatives are incomparable.

3.1.1 The Construction Phase of ELECTRE III 

Let A = {a1, a2, …, an} be a finite set of n alternatives and F = {g1, g2, …, 
gm} a set of m criteria on which the alternatives in A will be evaluated. 
Without loss of generality, the criteria can be assumed to be maximizing, 
i.e., the higher the performance of an alternative on a criterion is, the better 
the alternative is. ELECTRE III is based on the definition of a valued 
outranking relation S such that for each ordered pair of alternatives (a,b),
S(a,b)  [0, 1] represents the degree to which alternative a is at least as 
good as alternative b (the degree to which alternative a is not worse than 
alternative b).

3.1.1.1 Single Criterion Relations 
With each criterion gj (j = 1, …, m) are associated four parameters: a 
weight wj, a preference threshold pj, an indifference threshold qj, and a veto  
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threshold vj. It is naturally assumed that for each alternative a: qj(gj(a))
pj(gj(a))  vj(gj(a)).

With each criterion gj (j = 1, …, m) are associated a concordance index 
cj and a discordance index dj as follows which are shown in Figures 1 and 2 
respectively.

1 if ( ) ( ( )) ( ),
( , ) 0  if ( ) ( ( )) ( ), 

( ( )) ( ) ( )
 otherwise  

( ( )) ( ( ))

j j j j

j j j j j

j j j j

j j j j

g a q g a g b
c a b g a p g a g b

p g a g a g b
p g a q g a

 (2) 

* may occur only in the case when qj(gj(a)) pj(gj(a)).

0   ( ) ( ) ( ( )),

( , ) 1   ( ) ( ) ( ( )),
( ) ( ) ( ( ))

 otherwise*
( ( )) ( ( ))

j j j j

j j j j j

j j j j

j j j j

if g b g a p g a
d a b if g b g a v g a

g b g a p g a
v g a p g a

 (3) 

* may occur only in the case when pj(gj(a))  vj(gj(a)).

Figure 1. Concordance index of gj

0

1

cj (a,b)

gj (a) gj (a)+qj (gj(a)) gj (a)+pj (gj(a))
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Figure 2. Discordance index of gj

3.1.1.2 Global Valued Outranking Relation 
For each ordered pair of alternatives (a,b), a concordance index c(a,b) is 
computed in the following way: 

1 1

1( , ) ( , ), where  
m m

j j j
j j

c a b w c a b W w
W

 (4) 

It is worth noticing that c(a,b) = 1 means that there is no criterion for 
which alternative b is better than alternative a and c(a,b) = 0 means that 
alternative a is worse than alternative b for all criteria. 

The valued outranking relation S is constructed from the concordance 
and discordance indices. For each ordered pair of alternatives (a,b) A A,
S(a,b) is defined in the following way: 

( , )

( , ) if ( , ) ( , ),  1,  ...,  
( , ) 1 ( , )

( , )  otherwise
1 ( , )

j

j

j J a b

c a b d a b c a b j m
S a b d a b

c a b
c a b

 (5) 

where J = {j {1, …, m}/dj(a, b) > c(a, b)}.
The degree of outranking is equal to the concordance index when no 

criterion is discordant. When at least one criterion is discordant, the degree 
of outranking is equal to the concordance index multiplied by a factor 
lowering the concordance index in function of the importance of the dis-
cordances. At the extreme, when dj(a,b) = 1 for some criterion gj, S(a,b) = 0. 
Thus, for each ordered pair of alternatives (a,b) A A, 0 S(a,b)  1. S is 
a valued outranking relation.

0

1

dj (a,b)

gj (a) gj (b)gj (a)+pj (gi(a)) gj (a)+vj (gi(a))
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3.1.1.3 The Exploitation Phase of ELECTRE III 
The second step in ELECTRE III consists in defining two complete 
preorders from the descending and the ascending distillation chains.

Let 0 a,b A
max ( , )S a b . At each iteration of the descending or ascending 

distillation chain, a discrimination threshold s( ) and a crisp relation D are 
defined such that: 

1 if  ( , ) ( )
( , )

0 otherwise
S a b S

D a b  (6) 

For each alternative a, a qualification score Q(a) is computed as the 
number of alternatives that are outranked by a (number of alternatives b
such that D(a,b) = 1) minus the number of alternatives, which outrank a
(number of alternatives b such that D(b,a) = 1).

ELECTRE III provides the decision makers with two complete 
preorders. The first preorder is obtained in a descending manner starting 
with the selection of the alternatives with the best qualification score and 
finishing with the selection of the alternatives having the worst qualification 
score. The second preorder is obtained in an ascending manner, first select-
ing the alternatives with the worst qualification score and finishing with the 
assignment of the alternatives that have the worst qualification score. 

3.1.1.4 Descending Distillation Chain 
In the descending procedure, the set of alternatives having the largest 
qualification score constitutes the first distillate and is denoted as D1. If D1

contains only one alternative, the previous procedure is performed in the set 
A\D1. Otherwise it is applied to D1 and a distillate D2 will be obtained. If D2

is a singleton, then the procedure is applied in D1\D2 if it is not empty; 
otherwise the procedure is applied in D2. This procedure is repeated until the 
distillate D1 is completely explored. Then, the procedure starts exploring A\D1

in order to find a new distillate. The procedure is repeated until a complete 
preorder of the alternatives is obtained. This procedure is called the des-
cending distillation chain because it starts with the alternatives having the 
highest qualification and ends with the alternatives having the lowest 
qualification.

The result of the descending procedure is a set of classes 1C , 2C , … , kC
with k n. The alternatives belonging to the same class are considered to 
be ex-æquo (indifferent), and an alternative belonging to a class outranks 
all the alternatives belonging to classes with higher indices. Thus, a first 
complete preorder of the alternatives is obtained. 
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3.1.1.5 Ascending Distillation Chain 
The ascending procedure is the same as the descending procedure except 
that the criterion of selecting the alternatives is based on the principle of 
the lowest qualification. The result of this procedure is a set of classes 1C ,

2C  , …, hC  with h n. These classes are written in such a way that two 
alternatives in the same class are considered to be ex-æquo and an 
alternative belonging to a class outranks all the alternatives belonging to 
classes with lower indices. Thus, a second complete preorder of the 
alternatives is obtained. 

3.1.1.6 Partial Preorder of ELECTRE III 
The result of ELECTRE III is a partial preorder of the alternatives based 
on the comparison of the two complete preorders obtained by means of the 
descending and the ascending distillation chains.

3.1.2 Main Features of ELECTRE III 

ELECTRE III has many interesting features among which we can quote: 

Handling imprecise and uncertain information about the evaluation of 
alternatives on criteria by using indifference and preference thresholds, 
Consideration of incomparability between alternatives; when two 
alternatives cannot be compared in terms of preference or indifference, 
they are considered to be incomparable. Indeed, sometimes the 
information available is insufficient to decide whether two alternatives 
are indifferent or one is preferred to the other, 
Use of veto thresholds. This is very important for some problems such 
as those involving environmental and social impacts assessment. 
According to Rogers and Bruen (1998), within an environmental 
assessment, it seems appropriate to define a veto as the point at which 
human reaction to the criterion difference becomes so adverse that it 
places an “environmental stop” on the option in question. The same can 
be said about social impact assessment. 

ELECTRE III is widely used for different real-world applications such as 
environmental impact assessment and selection problems in various 
domains. Examples of these applications can be found in Augusto et al. 
(2005), Beccali et al. (1998), Bufardi et al. (2004), Cote and Waaub (2000), 
Hokkanen and Salminen (1994, 1997), Kangas et al. (2001), Karagiannidis 
and Moussiopoulos (1997), Maystre et al. (1994), Rogers and Bruen (2000), 
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Roy et al. (1986), Teng and Tzeng (1994), and Tzeng and Tsaur (1997). The 
list is not exhaustive and is given just for illustrative purposes to show the 
varied and numerous applications of the ELECTRE III method. 

3.1.3 Illustrative Example 

This illustrative example is taken from Bufardi et al. (2004). The problem 
considered consists of selecting the best compromise end-of-life (EOL) 
alternative to treat a vacuum cleaner at its EOL. Theoretically the number 
of potential EOL alternatives that can be considered is very high. In 
general only a few EOL alternatives are interesting. Users have their own 
ways for defining EOL alternatives depending on activity, objectives, 
experience and constraints from market, legislation, and available 
technology. In this illustrative example, five EOL alternatives are 
considered and described as follows. EOL alternative 1 consists of 
recycling as much as possible and incinerating the rest. EOL alternative 2 
consists of recycling only parts with benefits and incinerating the rest. 
EOL alternative 3 consists of recycling all metals that cannot be incinerated 
and incinerating all the rest. EOL alternative 4 consists of reusing the motor, 
recycling metals, and incinerating the rest. EOL alternative 5 consists of 
landfilling all. The five EOL alternatives are presented in Table 1. The 
criteria used for the evaluation of EOL alternatives are presented in Table 2. 
The detailed description of the environmental criteria presented in Table 2 

Figure 3. Partial and median preorder 

EOL alternative 4

EOL alternative 2

EOL alternative 1 EOL alternative 3

EOL alternative 5

EOL alternative 4

EOL alternative 2

EOL alternative 3

EOL alternative 1

EOL alternative 5

(a) (b)

can be found in Goedkoop and Spriensma (2000). Once the EOL alternatives
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and criteria are selected, each EOL alternative is evaluated with respect to 
each criterion as shown in Table 3. The results of applying ELECTRE III 
can be presented in the form of a partial preorder as shown in Figure 3a or 
a median preorder as shown in Figure 3(b). 

Table 1. The EOL Alternatives 

EOL alternatives No. Component/subassembly 
1 2 3 4 5 

1 Dust bin REC INC INC INC LND
2 2 x Inner Cover REC INC INC INC LND
3 Inner filter asb INC INC INC INC LND
4 Dust bin cover INC INC INC INC LND
5 Lock ring REC INC INC INC LND
6 Spring REC INC REC REC LND
7 Power button cover (+ button) REC INC INC INC LND
8 Spring REC INC REC REC LND
9 Upper VC case REC INC INC INC LND
10 Suction tube REC INC INC INC LND
11 Suction tube sealing INC INC INC INC LND
12 Intermediate tube REC INC INC INC LND
13 Cables REC REC INC INC LND
14 Valve INC INC INC INC LND
15 Intern sealing 1 INC INC INC INC LND
16 Intern sealing 2 INC INC INC INC LND
17 Spring REC INC REC REC LND
18 Middle REC INC INC INC LND
19 Hepa cover REC INC INC INC LND
20 Hepa filter INC INC INC INC LND
21 Cable coil cover REC INC INC INC LND
22 Cable coil INC INC INC INC LND
23 Cable REC REC INC INC LND
24 Motor Lock ring REC INC INC INC LND
25 Motor bottom seal INC INC INC INC LND
26 Motor sealing INC INC INC INC LND
27 Motor foam INC INC INC INC LND
28 Motor REC REC REC REM LND
29 Motor housing half 2 REC INC INC INC LND
30 Motor housing Filter INC INC INC INC LND
31 Motor housing half 1 REC INC INC INC LND
32 32 Motor housing seal INC INC INC INC LND
33 Wheels INC INC INC INC LND
34 Lower VC case REC INC INC INC LND
35 Spring REC INC REC REC LND
*  remanufacturing/reuse (REM), recycling (REC), incineration with energy recovery (INC), 
disposal to landfill (LND) 
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Table 2. List of Criteria 

Category Criterion Unit Direction of preferences 
Economic EOL Treatment Cost (C) [CHF] Minimization 

Human Health (HH) [DALY] Minimization 
Ecosystem Quality (EQ) [PDF*m2yr] Minimization Environmental
Resources (R) [MJ surplus] Minimization 

Table 3. Evaluation of EOL Alternatives 

 Human health
(HH)
[DALY]

Ecosystem
quality (EQ) 
[PDF*m2yr]

Resources
(R)
[MJ surplus] 

EOL treatment cost 
(C)
[CHF]

EOL alternative 1 1.08E-05 0.471 18.1 0.644125 
EOL alternative 2 0.951E-05 0.962 7.49 0.10601
EOL alternative 3 0.724E-05 0.896 6.76 0.01108 
EOL alternative 4 2.90E-05 2.02 36.8 4.86022
EOL alternative 5 0.0271E-05 0.0103 0.0101 0.38101 

3.2 PROMETHEE

PROMETHEE is a MCDA method based on the construction and the 
exploitation of a valued outranking relation  (Brans and Vincke, 1985). 
Two complete preorders can be obtained by ranking the alternatives 
according to their incoming flow and their outgoing flow. The intersection 
of these two preorders yields the partial preorder of PROMETHEE I where 
incomparabilities are allowed. The ranking of the alternatives according to 
their net flow yields the complete preorder of PROMETHEE II. 

3.2.1 The Construction Phase of PROMETHEE 

Let A = {a1, a2, …, an} be a finite set of alternatives and F = {g1, g2, …, 
gm} a finite set of criteria on which the alternatives will be evaluated. With 
each criterion gj, j = 1, 2, …, m, is assigned a weight pj reflecting its 
relative importance. 

For each pair of alternatives (a,b) A A, an outranking degree (a,b)
is computed in the following way: 

1

1( , ) ( , )
m

j j
j

a b p H a b
P

 (7) 

1

m

j
j

P p and Hj(a,b) are numbers between 0 and 1 that are a function 

of gj(a) – gj(b). For the computation of Hj(a,b)’s, the decision maker is 
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given six forms of curves described in Table 1. It is worth noticing that in 
Table 4, the six functions are described for a maximizing criterion where 
H(x) = P(a,b) if x  0 and H(x) = P(b,a) if x  0.

Table 4. List of Generalized Criteria 

Type of 
criterion

Analytical definition Shape

1. Usual 
0         0

( )
1         0

if x
H x

if x

2. Quasi 
0         

( )
1        

if x q
H x

otherwise

3. Linear 
preference

/          
( )

1        
x p if x p

H x
otherwise

4. Level 

0               

( ) 0.5     
1               

x q

H x q x p q
x q p

5. Linear 
preference
and
indifference
area

0                      
( ) ( - ) /      

1                   

x q
H x x q p q x q p

otherwise

6. Gaussian 2 2- / 2

0                  0
( )

1-    0x

x
H x

e x

1

x0

H(x)1

x0

H(x)

1

x
0

H(x)

-q q

1

x
0

H(x)

-p p

1

x
0

H(x)

-q q-(p+q) p+q

0.5

1

x
0

H(x)

-q q-(q+p) q+p

1

x
0

H(x)

-
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3.2.2 The Exploitation Phase of PROMETHEE 

With each alternative are associated two values +(a) and (a).
+(a), which is called the outgoing flow and is computed in the 

following way: 

( ) ( , )
b A

a a b  (8) 

(a), which is called the incoming flow and is computed in the 
following way:

( ) ( , )
b A

a b a  (9) 

It is worth noticing that +(a) represents the degree by which 
alternative a outranks the other alternatives and that (a) represents the 
degree by which alternative a is outranked by the other alternatives. 

The higher the outgoing flow and the lower the incoming flow, the 
better the alternative. The two flows induce the following complete 
preorders (ranking of the alternatives with consideration of indifference) 
on the alternatives, where P and I are the preference relation and 
indifference relation, respectively: 

aP b ( )a  > ( )b
aI b ( )a = ( )b
aP b ( )a  < ( )b
aI b ( )a  = ( )b

where P+, I+ refer to the outgoing flows while P , I refer to the incoming 
flows.

By ranking the alternatives in the decreasing order of the numbers 
( )a and in the increasing order of the numbers ( )a , two complete 

preorders can be obtained. Their intersection yields the partial order of 
PROMETHEE I as follows: 

baPbaI
baIbaP
baPbaP

baaSb
 and  or 
 and  or 

  and   if
  outranksstrictly    (10) 
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 (  is indifferent to ) if  and aIb a b aI b aI b  (11) 

 (  and  are incomparable) otherwiseaJb a b  (12) 

i.e., ,  and aSb bSa aIb , where “ ” denotes negation. 
For each alternative a, a net flow (a) can be obtained by subtracting 

the incoming flow (a) from the outgoing flow +(a); i.e., (a) = +(a)  - 
(a). By ranking the alternatives in the decreasing order of , one obtains 

the unique complete preorder of PROMETHEE II. 

3.2.3 Main Features of PROMETHEE 

PROMETHEE has many interesting features among which we can quote: 

It is easy to understand. The mathematical background behind 
PROMETHEE is not complicated and is easy to understand by the 
users. This is important for the transparency of the results, 
It is easy to use. For each criterion, the decision maker has to fix the 
weight of this criterion, and at most two parameters of the function are 
associated with the criterion in order to derive the single-valued 
outranking relation related to this criterion, 
Consideration of incomparability between alternatives through 
PROMETHEE I; when two alternatives cannot be compared in terms of 
preference or indifference, they are considered to be incomparable. 
Indeed, sometimes the information available is insufficient to decide 
whether two alternatives are indifferent or one is preferred to the other. 
PROMETHE is an outranking method easy to understand and to use.

That is why it is widely used for practical MCDA problems in various 
domains; see, e.g., Al-Rashdan et al. (1999), Anagnostopoulos et al. 
(2003), Babic and Plazibat (1998), Elevli and Demirci (2004), Geldermann 
et al. (2000), Gilliams et al. (2005), Goumas and Lygerou (2000), Hababou 
and Martel (1998), Kalogeras et al. (2005), Le Téno and Mareschal (1998), 
Mavrotas et al. (2006), and Petras (1997). The list is not exhaustive and is 
given just for illustrative purposes. 
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4. FUZZY OUTRANKING METHODS 

In these methods, it is assumed that the evaluations of alternatives on 
criteria are fuzzy. 

4.1 Fuzzy Outranking Method of Gheorghe et al.

The fuzzy outranking method presented in this subsection is published in 
Gheorghe et al. (2004, 2005). Full details can be found in Gheorghe 
(2005).

4.1.1 Construction of Monocriterion Fuzzy Outranking Relation 

The construction of the monocriterion fuzzy outranking relation starts by 
analyzing the intervals, in our case, the -cuts of fuzzy performance of two 
alternatives a and b.

Let us consider two normalized and convex fuzzy numbers A and B,
representing the performances of alternatives a and b, respectively (Figure 4). 
Let A and B be the membership functions of A and B, respectively. Each 

i-cut is defined by the interval 1 2( , )i ia a  for A and 1 2( , )i ib b  for B,
respectively, where i = 1, …, N, with N denoting the number of -cuts
considered.

Figure 4. Fuzzy performances of alternatives a and b

The comparison performances of the alternatives a and b at the i-cut
level using the mechanisms shown in Figures 5 and 6 are in accordance 
with common sense and represent two different view points. When the 
interval ia  is entirely on the left of the interval ,ib  there is no doubt that 
a is worse than b and that the degree of trueness of the proposition “a is 
not worse than b” is 0. When starting to translate ia to the right and the 
two intervals overlap, this degree of trueness increases and reaches the 
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maximum value 1 at the moment when the lower limit (left) of ia  is equal 
with the lower limit (left) of ib (Figure 5). 

Figure 5. The first case of the achievement of a degree of trueness of 1 of the proposition 
“a is not worse than b”

A similar judgment can be performed for the case when the maximum 
degree of trueness is attained at the moment when the upper limit (right) of 

ia is equal with the upper limit (right) of ib (Figure 6). 
Thus the reasoning we have done previously is suitable for the case 

when a higher value of performance is preferred to a lower value, in other 
words, for the case when we want to maximize the performance value with 
respect to a criterion. Similar reasoning can be followed for the case of a 
minimizing criterion. 

Figure 6. The second case of the achievement of a degree of trueness of 1 of the 
proposition “a is not worse than b”
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For each i-cut level, two left i-cut indices are defined for, 
respectively, the case of maximizing and minimizing criteria as the 
functions _ max

i
ls  and, _ min

i
ls  from 1,0II    to , where I  is the set of 

all real intervals: 

2 1

2 1
_ max 1 1 2

2 1

1 1

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

l

a b

a bs a b a b a
a a

a b

 (13) 

2 1

2 1
_ min 1 1 2

2 1

1 1

0,                   

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

l

b a

b as a b b a b
b b

b a

 (14) 

The right i-cut indices can be defined in a similar way as shown in the 
following definition. 

For each i-cut level, two right i-cut indices are defined for, 
respectively, the case of maximizing and minimizing criteria as the 
functions _ max

i
rs  and _ min

i
rs  from 1,0II    to  such that: 

2 1

2 1
_ max 1 2 2

2 1

2 2

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

r

a b

a bs a b b a b
b b

a b

 (15) 

2 1

2 1
_ min 1 2 2

2 1

2 2

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

r

b a

b as a b a b a
a a

b a

 (16) 

DEFINITION 2.

DEFINITION 3.
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For each i-cut level, two right i-cut indices are defined for, 
respectively the case of maximizing and minimizing criteria as the 
functions max

is  and, min
is  from 1,0II    to  such that: 

max _ max _ max( , ) (1 ) ( , ) ( , ), ,i i i i i i i i i
l rs a b s a b s a b a b A  (17) 

min _ min _ min( , ) (1 ) ( , ) ( , ), ,i i i i i i i i i
r ls a b s a b s a b a b A  (18) 

The parameter [0,1] represents the degree of optimism of the decision 
maker (Liou and Wang, 1992).  It allows the decision maker to choose 
which side of the interval is more important. When k increases from 0 to 1, 
the degree of optimism increases, whereas the degree of pessimism 
decreases. This type of strategy will be called the horizontal strategy.

In the remaining of this chapter, the notation s or S are used without the 
index min or max and refer to the maximization case; however, the related 
statements are also valid for the minimization case, unless otherwise stated. 

P
The i-cut indices defined in Definition 4 are fuzzy outranking 

relations.
The transition from a fuzzy outranking relation defined at the -cut

level to a single criterion fuzzy outranking relation requires an aggregation 
procedure. Observing the case of fuzzy numbers A and B presented in 
Figure 7, it follows that the upper -cut indices favor B, whereas the lower 
ones favor A. A compensative approach gives a certain discrimination 
power while still using the biggest amount of information contained in the 
fuzzy representation of the performances. This idea was exploited in area 
compensation methods for comparing fuzzy numbers by many authors 
(Chanas, 1987; Fortemps and Roubens, 1996; Matarazzo and Munda, 
2001; Nakamura, 1986). The basic principle is that some nonintersecting 
areas (i.e., upper left and/or right external areas and lower left and/or right 
external areas in Figure 7) compensate each other. If we see the previously 
defined -cut indices as relative intersections, then their aggregation can 
be seen as compensation between relative intersections, which is somehow 
related to the above-mentioned methods. If for linear membership 
functions the areas considered are relatively simple to be determined, for 
nonlinear cases, it becomes more difficult. In our -cut approach besides 

DEFINITION 4.

ROPOSITION 1.
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the fact that we can use inputs stated as a set of -cut intervals (which 
avoids possible necessary re-approximations of the original membership 
function), we prevent the use of integrals for calculating the areas used by 
an area compensation class of methods. 

Figure 7. A complex case of comparison of fuzzy numbers 

The function used to aggregate the -cut indices is the weighted root-
power mean defined for all x as follows (Smolíková and Wachowiak, 2002): 

1

1

1

( )
( )

N

i i
i

N

i
i

x
Fw x  (19) 

Using the aggregation function Fw  to aggregate i-cut indices, i =  
1, …, N, we obtain single criterion fuzzy outranking relation S as follows: 

1

1

1

( ( , ))
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (20) 

The single criterion outranking index defined by the relation (20) 
satisfies the following properties: 

For any convex and normalized fuzzy number B0, S(A, B0) is a non- 
decreasing function of A;

0

1 B

A

BA

PROPOSITION 2.



Fuzzy Outranking Methods 139

For any convex and normalized fuzzy number A0, S(A0, B) is a non- 
increasing function of B;
For any fuzzy convex and normalized fuzzy number: S(C, C) = 1;
hence S is reflexive. 

Since the definitions of i
ls  and i

rs  allow them to take the value “0,” 
at any -cut level, some of the particular cases of the relation (20) are 
excluded:

Geometrical mean for = 1 due to the possible division by zero; 
Product mean for 0, because of the risk of penalty of the result, 
when an -cut level of S is 0.

As our intention is to offer the decision maker a flexible decision 
instrument, cases like min or max are also excluded. They are dictatorial 
aggregators, not allowing for compensation between lower and higher 
values.

Two particular cases are of special interest for the definition of the 
single criterion fuzzy outranking relation: the weighted arithmetic mean 
(21) and the weighted square average mean (22). 

1

1

( , )
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (21) 

1
2

2

1

1

( ( , ))
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (22) 

The consideration of weights for -cut indices makes the final relation 
more flexible and offers to the decision maker the possibility to decide on 
the importance of the -cut levels during the aggregation.

As we have to deal with an enlarged number of weights, equal with the 
number of -cuts (which is N), we look to automatically generate the 
weights. We will search for a method that can give the possibility of 
changing the weighting vector, such that, for different personalities of the 
decision maker, we can build different weighting vectors. For example, in 
the case where the decision maker wants to rely his decisions on -cuts
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with less uncertainty, he might be able to slide the highest weights to the 
highest -cuts. Alternatively, one might want to give equal importance to 
all the -cuts or to assign higher weights to lower -cuts.

Here we will consider the case when the weights i increase in a linear 
manner, so the interpolation of these points is a line. As we want to use the 
information given by all the -cut indices, this kind of linearity looks 
convenient, because with two exceptions (the limit functions from this 
family, which will give 0 for the first -cut, respectively for the last one), 
all the weights will be nonzero. The equation of such a line is:

i i c  (23) 

where  is the  slope of the line and c .
Through a series of calculations, using the three particular cases 

mentioned above and other conditions, the relation (23) becomes 

1 1 1 1( ) 1
2 2i

N Ni i
N N

 (24) 

If we consider i as a continuous parameter, then i transforms into a 

function
N

Nii 1
2

11,  of two variables, which can be 

represented as a surface, as shown in Figure 8. 
Therefore, for the case of a maximizing criterion, we obtain the 

following the single criterion fuzzy outranking relation: 

max
1

1 1( , )
2

N

i

NS A B i
N

_ max _ max[(1 ) ( , ) ( , )]i i i i i i
l rs a b s a b . (25) 

The expression of the single criterion fuzzy outranking relation for the 
case of a minimizing criterion can be obtained in a similar way. 
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Figure 8. The function (i, )

4.1.2 Aggregation of Single Fuzzy Outranking Relations 

Here we are interested in aggregating over the set of criteria g1, …, gn, the 
single criterion fuzzy outranking relations Sk into a global fuzzy outranking 
relation S.

Using an aggregation operator M, the global fuzzy outranking relation 
S is defined for each pair of alternatives (a, b) as follows: 

1 n  (26) 

Obviously, S must have the properties of a fuzzy outranking relation, 
and the following proposition establishes the minimal conditions that an 
aggregator should fulfill in order to satisfy it. 

S(a,b) M S (a,b),  ... ,  S (a,b) .
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Any aggregator that satisfies the properties of idempotency and 
monotonicity with respect to the integrand, used to aggregate single 
criterion fuzzy outranking relations, leads to a global fuzzy relation that is 
a fuzzy outranking relation. 

The Choquet integral (Grabisch, 1999; Marichal, 1999) is an aggre-
gator that satisfies these two properties; consequently, the fuzzy relation 
obtained by aggregating single criterion fuzzy outranking relations through 
the use of a Choquet integral is a fuzzy outranking relation. 

Considering the Choquet integral as the aggregation operator M, S(A, B)
becomes 

( ) {( ),...,( )} {( 1),...,( )}
1

( , ) ( ,  ) [ ]
n

k k n k n
k

S A B S A B  (27) 

4.1.3 Exploitation of the Global Fuzzy Outranking Relation 

The type of exploitation to be undergone by the global fuzzy outranking 
relation depends among others on the type of application for which this 
exploitation is to be used. 

The problem for which this fuzzy outranking method was developed is 
one in which a large number of decisions has to be taken and for whose 
solving an automated decision-making procedure has to be put in place 
(e.g., the selection of the best EOL option for a large number of nodes in a 
disassembly tree of product with a complex assembly structure, the 
ranking of design concepts according to their lifecycle performance, 
including their EOL, etc.; see Gheorghe and Xirouchakis (2006) for a 
detailed description), but its application goes far beyond this context. It 
was shown that the formulation (choice of the best alternative) of the 
exploitation problem (Roy, 1977) is the most suitable.

Roubens (1989) defined four generalized choice functions C1, C2, C3,
and C4 with all of them being in the authors’ opinion, intuitively attractive. 
As it can be seen from their definition, all these choice functions (and in 
general all possible choice functions) refer to the strength of the chosen 
alternative(s) over the rest of alternatives, so they measure somehow the 
domination of selected alternative(s) over the other or the nondomination 
of other alternatives on the selected one(s). The superscript “+” is used to 
denote the choice functions selecting the “best” alternative(s). 

PROPOSITION 3.
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The weak domination of alternative a over all the other alternatives is 
defined as follows: 

1 1
\{ }

( ) ( , )
b a

C a T S a b
A

 (28) 

where T1 is a t-norm and S(a, b) is the degree, between 0 and 1, to which a
is as good as b. To be in accordance with Orlovsky’s (Orlovsky, 1978) 
reasoning and terminology, 1 ( )C a  can be interpreted as the degree of 
weak domination of a over all the other alternatives in A. The choice set is 
given by 

1 1 1( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (29) 

The weak nondomination of a by all the other alternatives is defined as 
follows:

2 1
\{ }

( ) [1 ( , )]
b a

C a T S b a
A

 (30) 

2 ( )C a is interpreted as the degree of weak nondomination of a by all 
the other alternatives  in A. The choice set is given by 

2 2 2( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (31) 

The strict domination of a over all the other alternatives is defined as 
follows:

3 1
\{ }

( ) ( , )
b a

C a T P a b
A

 (32) 

3 ( )C a  represents the degree of strict domination of a over b. P is the 
strict preference relation, and it is defined as P(a, b)=T2[(S(a, b), 1 – S(b,
a)], with T2 being a t-norm. The choice set is given by 

3 3 3( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (33) 
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The strict nondomination of a by all other alternatives is defined as 
follows:

4 1
\{ }

( ) [1 ( , )]
b a

C a T P b a
A

 (34) 

4 ( )C a represents the degree of strict nondomination of all the other 
alternatives on a. The choice set is given by 

4 4 4( , ) | ( ) max ( )
b A

C A S a A C a C b  (35) 

 In contrast to the measurement of the strengths of alternatives, it is 
also interesting to measure their weaknesses. Four weakness-based choice 
functions 5C , 6C , 7C ,  and 8C are presented in the following. 

The weak domination of all alternatives on alternative a, representing 
the degree to which a is weakly dominated by all the other alternatives, 
is defined as follows: 

5 1
\{ }

( ) ( , )
b a

C a T S b a
A

 (36) 

The choice set corresponding to the weak domination (of all 
alternatives on a given alternative) function 5C  is given by 

5 5 5( , ) | ( ) max ( )
b

C S a C a C a
A

A A  (37) 

The weak nondomination of an alternative a over all other alternatives  
representing the degree to which a doesn’t weakly dominate all the 
other alternatives is defined as follows: 

6 1
\{ }

( ) [1 ( , )]
b a

C a T S a b
A

 (38) 

The choice set corresponding to the weak nondomination (of an 
alternative on all others) function 6C  is given by 

6 6 6( , ) | ( ) max ( )
b

C S a C a C a
A

A A  (39) 
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The strict domination of all alternatives on alternative a that gives the 
degree to which a is strictly dominated by all the other alternatives is 
defined as follows: 

7 1
\{ }

( ) ( , )
b a

C a T P b a
A

 (40) 

The choice set corresponding to the strict domination (of all 
alternatives on a given alternative) function 7C  is given by 

7 7 7( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (41) 

The strict nondomination of an alternative a over all other alternatives 
representing the degree to which a doesn’t strictly dominate all the 
other alternatives is defined as follows: 

8 1
\{ }

( ) [1 ( , )]
b a

C a T P a b
A

 (42) 

The choice set corresponding to the strict nondomination (of an 
alternative on all others) function 8C  is given by 

8 8 8( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (43) 

A ranking method can be obtained using the core concept. Once the set 
of best alternatives (Ck+1) is chosen by the choice function C(R, Ak), which 
can be any of the choice functions defined above, it is removed from the 
initial set A, and another core set is found between the remaining 
alternatives (Ak\Ck+1). This reasoning is applied until the current set (Ak) is 
empty. This algorithm was proposed in (Perny, 1992), and it is described 
as follows: 

Set k := 0 and Ak := A
 While Ak  do 
 Begin 

Ck+1 := C(R,Ak)
Ak+1 := Ak\ Ck+1

k := k+1
 End 
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R is one of the relations used to define the first four choice functions 
( 1C  to 4C ), specifically the weak preference S and strict preference P
relations. The resulting preorder R is a complete ranking of sets of single 
or multiple (indifferent) alternatives from best to worst, where R stands for 
S or P. Four rankings can be obtained using the strength concept.

The same algorithm can be used to obtain a second type of preorder but 
this time using the last four functions ( 5C  to 8C ). As they are based on 
the weakness concept, an ascending preorder from worst to the best will be 
constructed, denoted by R. These second type of rankings can be different 
from the previous one. 

The notions of ascending–descending and weak–strict rankings are 
introduced as follows. Similar concepts were used in methods like 
ELECTRE II and III, MAPPACC, and PRAGMA. Methods like 
PROMETHEE I and II use concepts of weakness and strength of 
alternatives but in a different manner. Four different preorders can be 
defined as follows: 

Descending weak preorder is the complete ranking obtained using the 
iterated choice functions 1C  or 2C ,
Descending strict preorder is the complete ranking obtained using the 
iterated choice functions 3C  or 4C ,
Ascending weak preorder is the complete ranking obtained using the 
iterated choice functions 5C  or 6C ,
Ascending strict preorder is the complete ranking obtained using the 
iterated choice functions 7C  or 8C .
Looking at the choice functions considered, we see that in fact, 5C ,

6C , 7C , and 8C  are “dual” of the functions of 1C , 2C , 3C  and 4C
respectively. So each pair 1C 5C , 2C 6C , 3C 7C  and 4C 8C
express the force and the weakness, when used in a ranking procedure. 
At the same time, pairs like 1C 2C  and 3C 4C  respectively, 

5C 6C  and 7C 8C  express another type of “duality” that notions of 
“outgoing” domination–non domination (i.e., of an alternative on all 
the other alternatives), when talking about strength, respectively 
“incoming” domination–non domination (i.e., of all alternatives on the 
alternative under consideration), when considering the weakness. And 
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The eight functions can be used alone to obtain a final ranking (weak or 
strict preorder). Nevertheless, the rankings obtained from two preorders 
(one descending and the other ascending), thus allowing incomparability 
(since an alternative ai may be preferred over another alternative aj in one 
preorder and aj preferred over ai in the other preorder), are richer and more 
interesting, as they take into account concepts that may be opposite, or 
dual, as shown above. Various ranking procedures based on a pair of 
choice functions, together with their characterization from the following 
points of view, can be obtained: 

Type of preference: weak–strict,
Type of the ranking of individual choice functions: ascending
descending,
Concept involved: strength–weakness,
Intuitive meaning of the individual choice functions: incoming
domination, incoming nondomination, outgoing domination, and 
outgoing nondomination.

4.1.4 Illustrative Example 

The example is adapted from (Wang, 2001). Let us consider the seven 
valve types (a1 to a7), and the criteria are cost, maintenance, criteria 
sensitivity, leakage, rangibility, and stability (g1 to g6). The performance 
matrix is given in Table 5. 

Table 5. Performance Matrix for Seven Valve Types (Trapezoidal Fuzzy Numbers) 

Criteria’s weights of importance 
0.217 0.174 0.174 0.217 0.087 0.131 

Performance with respect to criterion gk

Alternatives

g1 g2 g3 g4 g5 g6

A1 (4, 5, 5, 6) (5, 6, 7, 8) (7, 8, 8, 9) (7, 8, 8, 9) (7, 8, 8, 9) (1, 2, 2, 3) 
A2 (7, 8, 8, 9) (8, 9, 10, 10) (7, 8, 8, 9) (2, 3, 4, 5) (8, 9, 10, 10) (7, 8, 8, 9) 
A3 (7, 8, 8, 9) (1, 2, 2, 3) (7, 8, 8, 9) (7, 8, 8, 9) (5, 6, 8, 9) (5, 6, 7, 8) 
A4 (1, 2, 4, 5) (4, 5, 5, 6) (4, 5, 5, 6) (2, 3, 7, 8) (4, 5, 8, 9) (8, 9, 10, 10) 
A5 (7, 8, 8, 9) (5, 6, 7, 8) (5, 6, 7, 8) (8, 9, 10, 10) (1, 2, 2, 3) (1, 2, 2, 3) 
A6 (4, 5, 5, 6) (4, 5, 5, 6) (2, 3, 4, 5) (5, 6, 7, 8) (8, 9, 10, 10) (8, 9, 10, 10) 
A7 (4, 5, 7, 8) (8, 9, 10, 10) (7, 8, 8, 9) (5, 6, 7, 8) (8, 9, 10, 10) (7, 8, 8, 9) 

finally, both “dualities” are present for both weak and strict preference 
relations.
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The single criterion fuzzy outranking relations Sk are first calculated for 
each criterion gk, k = 1…6 using relation (25) for a number of -cuts N =
50. In the second step, Sk are aggregated using the weighted arithmetic (a 
particular case of the Choquet intergral) mean with the criteria weights of 
importance given in Table 5. These steps are repeated for the five 
representative situations given by the pair of parameters ( , ), representing 
the decision maker’s attitude. Figures 9 13 represent the above-mentioned 
situations in terms of the global fuzzy outranking relation S.

Figure 9. S(ai,aj) for  = 0,  = c

(conserv-pessim)
Figure 10. S(ai,aj) for  = 1,  = c

(conserv-optim)

Figure 11. S(ai, aj) for  = 0,  = m

(moderate)
Figure 12. S(ai, aj) for  = 0,  = a

(agress-pessim)

Figure 13. S(ai, aj) for = 1, = a(agress-optim)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.413 0.652 0.869 0.62 0.804 0.63

0.783 1 0.783 0.902 0.783 0.685 0.783

0.773 0.638 1 0.695 0.663 0.618 0.638

0.241 0.356 0.388 1 0.306 0.605 0.257

0.766 0.461 0.635 0.782 1 0.782 0.461

0.512 0.435 0.426 0.853 0.262 1 0.652

0.817 0.808 0.624 0.902 0.591 0.902 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.411 0.652 0.869 0.615 0.802 0.495

0.783 1 0.783 0.776 0.783 0.682 0.783

0.826 0.66 1 0.695 0.658 0.628 0.66

0.354 0.368 0.446 1 0.272 0.77 0.392

0.783 0.478 0.652 0.782 1 0.782 0.478

0.516 0.435 0.446 0.87 0.245 1 0.519

0.837 0.837 0.675 0.899 0.62 0.899 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.404 0.652 0.869 0.598 0.795 0.546

0.783 1 0.783 0.822 0.783 0.671 0.783

0.796 0.633 1 0.695 0.641 0.617 0.633

0.252 0.356 0.402 1 0.261 0.662 0.305

0.761 0.456 0.63 0.782 1 0.782 0.456

0.484 0.435 0.419 0.848 0.24 1 0.577

0.81 0.807 0.617 0.888 0.59 0.888 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.396 0.652 0.869 0.578 0.787 0.613

0.783 1 0.783 0.876 0.783 0.659 0.783

0.759 0.614 1 0.695 0.621 0.61 0.614

0.164 0.35 0.371 1 0.238 0.562 0.214

0.745 0.44 0.614 0.782 1 0.782 0.44

0.452 0.435 0.399 0.832 0.228 1 0.652

0.79 0.788 0.578 0.876 0.571 0.876 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.395 0.652 0.869 0.576 0.786 0.444

0.783 1 0.783 0.734 0.783 0.658 0.783

0.826 0.62 1 0.695 0.619 0.612 0.62

0.248 0.352 0.404 1 0.23 0.712 0.357

0.749 0.444 0.618 0.782 1 0.782 0.444

0.453 0.435 0.404 0.836 0.224 1 0.484

0.795 0.795 0.591 0.875 0.578 0.875 1
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The complete preorders given by the functions 1C ( 4C ), 2C ( 3C ),
5C ( 8C ), and 6C ( 7C ) were determined for each of the five 

representative decision attitudes. Because the fuzzy numbers expressing 
the performances of the considered alternatives interfere very little and in a 
trivial manner, we observed an influence that is not strong enough to 
change the partial preorders when sliding from a conservative to an 
aggressive attitude. Some changes are noticed when varying the other 
parameter ( ). Table 6 shows the complete preorders: 

Table 6. Complete Preorder for the Seven Types of Valves 

No. Choice functions Decision strategy ( , ) Preference 
(0, a), (0, c) 2 > 3 > 1 > 7 > 5 > 6 > 4 1 1C 4C (1, a), (0.5, m), (1, c) 2 > 3 > 7 > 5 > 1 > 6 > 4 
(0, a), (0, c) 3, 5, 7 > 2 > 1 > 6 > 4 2 2C 3C (1, a), (0.5, m), (1, c) 3, 5, 7 > 2 > 1 > 6 > 4 
(0, a), (0, c) 7 > 2 > 5 > 3 > 1 > 6 > 4 3 5C 8C (1, a), (0.5, m), (1, c) 7 > 2 > 5 > 3 > 1 > 6 > 4 
(0, a), (0, c) 7 > 2 > 3 > 1 > 5 > 6 > 4 4 6C 7C (1, a), (0.5, m), (1, c) 7 > 2 > 3 > 5 > 1 > 6 > 4 

For each decision strategy, six partial preorders can be derived from the 
above table by intersecting pairs of choice functions. They are shown in 
Table 7. 

Besides the theoretical foundations of this method, its advantages are 
related to the practical aspects, namely the format of the input data that can 
be used (general, nonanalytical representations of fuzzy numbers) where 
the preference function is described as a vector of -cuts. Six rankings are 
proposed. One, several, or all of them can be used to reinforce the choice 
or the ranking. They enclose different choice ideas, all together offering a 
large “palette” of concepts. It is up to the decision maker which of them is 
to be used in the concrete problem. The concepts that are proposed are 
easy to understand, and they give transparency to the decision process. 
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Table 7. Partial Ranking of the Eight Valve Types 

No. Choice 
functions

Decision
strategy ( , )

Preference

(0, a), (0, c)

1
( 1C 4C )

( 2C 3C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

2
( 1C 4C )

( 5C 8C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

3
( 5C 8C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

4
( 2C 3C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

5
( 1C 4C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

6
( 2C 3C )

( 5C 8C ) (1, a), (0.5, m),
(1, c)

a2 a1 a6 a4

a5

a7 a3

a2

a1 a6 a4

a5a7

a3

a7 a1 a6 a4

a2

a3 a5

a2 a1 a6 a4
a5

a7

a3

a7

a5 a6 a4

a1a3

a 2

a7

a1 a6 a4

a3

a 5a 2

a2

a1 a6 a4

a5

a7 a3

a7

a1 a6 a4

a3

a 5a 2

a3 a5 a6 a4

a7

a2 a1

a3 a1 a6 a4

a7

a2 a5

a5 a1 a6 a4

a2

a7 a3

a5 a1 a6 a4

a2

a7 a3
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4.2 Other Fuzzy Outranking Methods 

All outranking methods briefly described in this subsection consider fuzzy 
evaluations of alternatives on criteria; therefore, they are fuzzy outranking 
methods.

4.2.1 Method of Czy ak and S owi ski (1996) 

This method is an adaptation of ELECTRE III to the case where the 
concordance and discordance indices are determined from the fuzzy 
evaluations of alternatives on criteria through the use of four different 
measures using possibility and necessity concepts from possibility theory 
developed in Dubois and Prade (1988). The aggregation of the possibility 
and necessity measures to drive the concordance and discordance indices 
is realized through the use of a weighted root-power mean. Apart from an 
adjustment of the monocriterion concordance and discordance indices 
through some transformation, the rest of the method is similar to 
ELECTRE III. The method is illustrated through its application to the 
ground water management problem considered in Duckstein et al. (1994). 

4.2.2 Method of Wang (1997) 

This method is based on the consideration of a fuzzy preference relation P
defined each pair of alternatives (a, b) whose respective fuzzy scores on a 
given criterion are A and B as follows: 

( , ) ( ,0)( , )
( , ) ( ,0)

D A B D A BP a b
D A o D B

 (44) 

where D(A,B) represents the areas where A dominates B, D(A B,0)
represents the intersection areas of A and B, D(A,0) represents the area of 
A, and D(B, 0) represents the area of B. It is worth recalling that this fuzzy 
relation is considered by Tseng and Klein (1989) for the problem of 
ranking fuzzy numbers. 

The outranking relation is defined for: 

The case of a pseudo-order preference model where a preference and 
indifference thresholds are associated with criteria, 
The case of a semi-order preference model where only indifference 
thresholds are associated with criteria, 
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The case of a complete-preorder preference model where the 
preference and indifference thresholds are null for each criterion. 

The exploitation phase is based on the consideration of the concepts of 
dominance and non-dominance sets. 

The method is illustrated through its application to the problem of 
evaluating and comparing design concepts in conceptual design. 

Güngör and Arikan (2000) applied a similar method to the problem of 
energy policy planning. 

4.2.3 Method of Wang (1999) 

In this method, the concordance and discordance indices are determined 
from the fuzzy evaluations of alternatives on criteria through the use of 
possibility and necessity measures. More specifically, for two design 
requirements ri and rj, the concordance and discordance indices of criterion 
Ck with the assertion “ri is at least as good as rj” are defined as follows: 

( , ) ( ) (1 ) ( )k i j k i j k i jCI r r POSS r r NESS r r  (45) 

( , ) ( )k i j k j iDI r r NESS r r  (46) 

where  is a preference ratio such that 0  1. 
The global outranking relation is obtained from monocriterion 

concordance and discordance indices through the use of the aggregation 
method developed by Siskos et al. (1984). 

The method is illustrated through its application to the problem of 
prioritizing design requirements in quality function deployment in the case 
of a car design. 

4.2.4 Method of Wang (2001) 

In this method, the construction of the fuzzy outranking relation is similar 
to that of Czy ak and S owi ski (1996) since the concordance and 
discordance indices are determined from the fuzzy evaluations of 
alternatives on criteria through the use of four different measures using 
possibility and necessity concepts. However, the exploitation of the global 
fuzzy outranking relation is different from ELECTRE III since it is based 
on the determination of the set of nondominated alternatives as it is 
considered in Orlovsky (1978). The method is illustrated through its 



Fuzzy Outranking Methods 153

application to the problem of ranking engineering design concepts in 
conceptual design. 

5. CONCLUSION

In this chapter we made a clear distinction between outranking methods 
based on the construction and exploitation of a valued outranking relation 
and outranking methods based on the construction and exploitation of a 
fuzzy outranking relation since they are applicable to two different 
situations. Indeed, the outranking methods with a valued outranking relation 
are applicable to the situation where the evaluations of alternatives on 
criteria are crisp, whereas the outranking methods with a fuzzy outranking 
relation are applicable to the situation where the evaluations of alternatives 
on criteria are fuzzy. The outranking methods with a valued outranking 
relation are called valued outranking methods and the outranking methods 
with a fuzzy outranking relation are called fuzzy outranking methods. In the 
literature the fuzzy and valued outranking methods are often confused and 
the clarification made in this chapter allows avoiding this confusion. 

All fuzzy outranking methods deal with the problem of comparing 
fuzzy numbers; however, they consider different approaches: 

Gheorghe et al. (2004) consider an approach based on -cuts;
Czy ak and S owi ski (1996) and Wang (1999, 2001) consider an 
approach based on possibility and necessity measures; 
Wang (1997) and Güngör and Arikan (2000) consider an approach 
based on the comparison of areas of fuzzy numbers. 

The valued outranking methods ELECTRE III and PROMETHEE are 
widely applied to real-world problems; however, they are not suitable to 
the problems where the evaluations of alternatives on criteria are fuzzy. 
The fuzzy outranking methods presented in this chapter are quite recent 
compared with the valued outranking methods, and even if they were 
applied to specific problems, they can be adapted to any MCDA problem 
where the evaluations of alternatives on criteria are fuzzy. 

In this chapter, we provided two illustrative examples, one for a valued 
outranking method, namely ELECTRE III, and one for a fuzzy outranking 
method, namely the method developed by the authors. The objective is to 
show that outranking methods can be applied to various problems with the 
mention that valued outranking methods are suitable to problems with 
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crisp evaluations (i.e., the case of the treatment of products at their EOL) 
and fuzzy outranking methods are suitable to problems with fuzzy 
evaluations (i.e., the case of design concept selection in conceptual design). 
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