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Abstract:  This chapter demonstrates how a neuro-fuzzy approach could produce 
outputs of a further-modified multi-criteria decision-making (MCDM) 
quality function deployment (QFD) model within the required error rate. 
The improved fuzzified MCDM model uses the modified S-curve 
membership function (MF) as stated in an earlier chapter. The smooth and 
flexible logistic membership function (MF) finds out fuzziness patterns in 
disparate level-of-satisfaction for the integrated analytic hierarchy process 
(AHP-QFD model. The key objective of this chapter is to guide decision 
makers in finding out the best candidate-alternative robot with a higher 
degree of satisfaction and with a lesser degree of fuzziness. 
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1. INTRODUCTION

Arriving at the decision to install a robot in a manufacturing firm can be a 
difficult and complicated process. Even after the initial decision to acquire 
a robot is made, the problem of which robot to select from the many that 
are available can confound managers who often lack the time and expertise 
to perform an extensive search and analysis. Furthermore, the current trend 
indicates that the number of robot manufacturers and suppliers are 
increasing as engineers continue to find more applications for robots. The 
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problem of robot selection has become more difficult in recent years due to 
increasing complexity, available features, and facilities offered by different 
robotic products. 

1.1 Concepts on Neuro-Fuzzy Systems 

A fuzzy inference system (FIS) can use human expertise by storing its 
essential components in the rule base and the database and can perform 
fuzzy reasoning to infer the overall output value. The derivation of if then
rules and corresponding membership functions (MFs) depends heavily on 
the a priori knowledge about the system under consideration. However, 
there is no systematic way to transform experiences of knowledge of 
human experts into the knowledge base of an FIS. There is also a need for 
adaptability or some learning algorithms to produce outputs within the 
required error rate. On the other hand, ANN learning mechanism does not 
rely on human expertise. Due to the homogenous structure of ANN, it is 
hard to extract structured knowledge from either the weights or the 
configuration of the an artificial neural network (ANN). The weights of the 
ANN represent the coefficients of the hyperplane that partition the input 
space into two regions with different output values. If we can visualize this 
hyperplane structure from the training data, then the subsequent learning 
procedures in an ANN can be reduced. However, in reality, the a priori 
knowledge is usually obtained from human experts; it is most appropriate 
to express the knowledge as a set of fuzzy if then rules, and it is not 
possible to encode into an ANN 0. Table 1 summarizes the comparison of 
FIS and ANN. 

Table 1. Complementary Features of ANN and FIS 

ANN FIS 
Black box Interpretable
Learning from scratch Making use of linguistic knowledge 

To a large extent, the drawbacks pertaining to these two approaches 
seem complementary. Therefore it is natural to consider building an 
integrated system combining the concepts of FIS and ANN modeling.  
A common way to apply a learning algorithm to a FIS is to represent it  
in a special ANN like architecture 0. However, the conventional ANN 
learning algorithms (gradient descent) cannot be applied directly to such  
a system as the functions used in the inference process are usually 
nondifferentiable. This problem can be tackled by using differentiable 
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functions in the inference system or by not using the standard neural 
learning algorithm. In our simulation, we used an adaptive network based 
fuzzy inference system (ANFIS) (Jang, 1991). 

ANFIS implements a Takagi Sugeno Kang (TSK) fuzzy inference 
system (Jang, 1991) in which the conclusion of a fuzzy rule is constituted 
by a weighted linear combination of the crisp inputs rather than by a fuzzy 
set.

For a first-order TSK model, a common rule set with two fuzzy if then
rules is represented as follows: 

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

where x and y are linguistic variables and A1, A2, B1  and B2 are 
corresponding fuzzy sets and p1, q1, r1 and p2, q2, r2 are linear parameters. 

Figure 1. TSK type fuzzy inference system 

Figure 1 illustrates the TSK fuzzy inference system when two member-
ship functions each are assigned to the two inputs (x and y). The TSK 
fuzzy controller usually needs a smaller number of rules, because their 
output is already a linear function of the inputs rather than a constant fuzzy 
set.

Figure 2 depicts the five-layered architecture of ANFIS, and the 
functionality of each layer is as follows: 

Layer-1. Every node in this layer has a node function

)x(O iA
1
i , for i = 1, or 2 
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2

1 yO
iBi , for i = 3,4,…. 

1
iO  is the membership grade of a fuzzy set A ( = A1, A2, B1 or B2), and it 

specifies the degree to which the given input x (or y) satisfies the quantifier 
A. Usually the node function can be any parameterized function.  

,
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A Gaussian membership function is specified by two parameters c
(membership function center) and (membership function width).

2. ADAPTIVE NETWORK-BASED FUZZY 
INFERENCE SYSTEM (ANFIS) 

Figure 2. Architecture of the ANFIS 

Guassian (x, c, ) = 

2
cx

2
1

e
  

.

Parameters in this layer are referred to as premise parameters. 

Layer-2. Every node in this layer multiplies the incoming signals and 
sends the product out. Each node output represents the firing strength of a 
rule.

2,1i),y()x(wO iBiAi
2
i .

In general any T-norm operators perform fuzzy AND can be used as 
the node function in this layer. 
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Layer-3. Every ith node in this layer calculates the ratio of the ith
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Layer-4. Every node i in this layer is with a node function

4
1 ( )i i i i i iO w f w p x q y r ,

where iw is the output of layer-3, and iii r,q,p is the parameter set. 
Parameters in this layer will be referred to as consequent parameters. 

Layer-5. The single node in this layer computes the overall output as 
the summation of all incoming signals:

5
1

i ii
i i

i ii

w f
w

ANFIS makes use of a mixture of backpropagation to learn the premise 
parameters and least mean square estimation to determine the consequent 
parameters. A step in the learning procedure has two parts: In the first part, 
the input patterns are propagated, and the optimal conclusion parameters 
are estimated by an iterative least mean square procedure, whereas the 
antecedent parameters (membership functions) are assumed to be fixed for 
the current cycle through the training set. In the second part, the patterns 
are propagated again, and in this epoch, backpropagation is used to modify 
the antecedent parameters, whereas the conclusion parameters remain 
fixed. This procedure is then iterated (Jang, 1991). 

3. QFD PROCESS 

QFD is a method for structured product planning and development. It 
enables a development team to specify clearly the customer’s requirement. 
It also evaluates each proposed product systematically in terms of its 
impact on meeting those requirements (Hauser and Clausing, 1988; 
Wasserman, 1993). It is also an important tool for concurrent engineering. 
In the era of globalization, the customer’s order decoupling point (CODP) 

O Overall output w f
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rule’s firing strength to the sum of all rule’s firing strength.
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is at make-to-order (MTO) stage (Bhattacharya et al., 2005). From Figure 1 
it is understood where to apply the QFD process. QFD is used at a CODP 
to ensure that the voice of the customer is heard throughout the product 
planning and design stage (Franceschini and Rosetto, 1995). QFD, in fact, 
is a method of continuous product improvement, emphasizing the impact 
of organizational learning on innovation (Govers, 2001). 

Figure 3. Relationship between CODP and MCDM-QFD process
(Bhattacharya et al., 2005) 

In QFD process, a matrix called the house-of-quality (HOQ) (Hauser 
and Clausing, 1988) is used to display the relationship between the voice 
of customers (WHATs) and the quality characteristics (HOWs) (Chuang, 
2001). WHATs and HOWs are nothing but the customer and technical 
requirements, respectively. The HOQ is developed during the QFD 
transformation. Basically the HOQ demonstrates how the technical 
requirements satisfy the customer requirements. The matrix highlights the 
important issues in the planning of a new product or improving an existing 
product. QFD, when combining WHATs and HOWs with competitive 
analysis (WHYs), represents a customer-driven and market-oriented 
process for decision making (Cohen, 1995). 

A traditional QFD model uses absolute importance to identify the 
degree of importance for each customer requirement. The psychology of 
customers, in general, is to rate almost everything as equally important, 
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although it is not. As the absolute weighing data tend to be bunched near 
the highest possible scores, the differentiation of customer requirements is 
thus strongly recommended. These data, as they are, do not contribute
much to helping QFD developers in prioritizing technical responses. At 
this juncture, the AHP (Saaty, 1988; 1990; 1994) prioritizes the customer’s 
requirements by putting the relative degree of importance to each 
customer-requirement.

The task of the QFD team is to list the technical requirements (TRs). 
These requirements are most likely to affect the CRs. TR evaluators, in the 
QFD team, evaluate how the competitors’ products compare with that of 
company’s product. This evaluation leads to fixing of technical targets. 
From the QFD matrix, the discrepancies, if any, between the customers’ 
perception and the QFD team’s correlation of CR and TR can be easily 
understood. The vertical part of the QFD matrix shows how the company 
may respond to customer requirements. 

4. DEVELOPMENT OF THE COMBINED  
AHP-QFD METHODOLOGY 

The methodology integrating the MCDM methodology (AHP) and QFD 
for a selection problem comprises the following steps and is shown in 
Figure 4: 

Step 2. Identification of technical requirements. 

=1
=

m

j ij i
i

w R c  (1) 

where
jw  = importance degree of the thj technical requirement 

n  ..., 2, 1,   j ,
ijR  = quantified relationship between the thi customer requirement and 

the thj technical criteria in the central relationship matrix, and 
ic  = importance weighing of the thi  customer requirement. 

Neuro-Fuzzy Approximation of MCDM QFD

Step 1. Identification of customer requirements. 

Step 3. Construction of central relationship matrix using expert 
knowledge of QFD team. 

Step 4. Computation of degree of importance for customer 
requirements by using AHP. 

Step 5. Computation of the degree of importance of technical 
requirements by Eq. (1). 
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Figure 4. Flowchart of the proposed methodology 
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Step 6. Normalization of the degree of importance of technical 
criteria by Eq. (2). 

__

jw  = 

1

×100j
n

j
j

w

w
 (2) 

Step 7. Construction of pair-wise comparison matrices for each 
technical requirement using Saaty’s (1988; 1990) nine-point scale. 

Step 8. Evaluation of score, ijw  , for each technical requirement for 
each candidate-alternative. 

Step 9. Computation of overall score (Chuang, 2001) by using Eq. (3). 

__

1

n

jj ij
j

S w e  (3) 

where,
jS = overall score for the thj candidate-alternative n  ..., 2, 1,   j ,
jw  = normalized importance degree of the thj  technical criteria 

n  ..., 2, 1,   j , and 
ije  = PV value of the thj alternative on the thi technical criteria 

Step 10. Computation of OFM values for each candidate robot by using 
Eq. 4. 

OFM = Objective Factor Measure, 
OFC = Objective Factor Cost, 
SFM = Subjective Factor Measure, 
SI     = Selection Index, 

     = Objective factor decision weight, and 
n = number of candidate-alternatives (n = 4 in for the robot selection 

problem).

OFMi = [ OFCi × ( OFCi
–1  ) ]–1 (4) 

Step 11. Identification of fuzziness patterns and measurement of level-
of- satisfaction of the decision maker using modified S-curve MF. 

Step 12. Re designing the MF if the degree of fuzziness is greater than 
a preferred value. 

Step 13. Maximization of the SI (selection index) value using Eq. 5. 

SIi = [ (  × SFMi ) + ( 1  ) × OFMi ] (5) 

Neuro-Fuzzy Approximation of MCDM QFD
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Step 14. Ranking of all the candidate-alternatives
Step 15. Selection of the best candidate-alternative using the analogy 

the higher the score, the better the selection.

5. ROBOT SELECTION PROBLEM 

An illustrative example of a process industry dealing with an enormous 
volume of manufactured product was illustrated by Bhattacharya et al. 
(2005). Out of four robots, the best-suited robot was purchased for the 
desired job for a very specific manufacturing process using the methodology 
of combined AHP-QFD as depicted by Bhattacharya et al. (2005). But 
what is lacking in the said proposed model of Bhattacharya et al. (2005) is 
the evaluation of the fuzzy parameters in their multi-criteria selection 
model. When fuzzy parameters like human expertise and linguistic 
knowledge get involved with the model, there is always a need for the 
model to approximate the outputs within the required error rate. Thus, the 
ANFIS (Jang, 1991) is found suitable in dealing with this complex 
problem of multi-criteria decision making. Considering the robot selection 
data of Bhattacharya et al. (2005) we begin with fitting the modified  
S-curve MF (Eq. 6) in their methodology. Step 11 onward of the 
methodology have been proposed herein with the fuzzy S-curve MF.

1
0.99

1
0.001
0

a

a

a b
yx

b

b

x x
x x

Bx x x x
Ce

x x
x x

 (6) 

We use the previously identified customer requirements (CRs) viz., 
payload, accuracy, life-expectancy, velocity, programming flexibility and 
total cost of robot, and seven TRs, viz., drive system, geometrical 
dexterity, path measuring system, size, material, weight and initial 
operating cost of robot. As in the case of Bhattacharya et al. (2005) the job 
is to select the best one of the four robots. The additional purposes of the 
current model are to view the fuzziness patterns as well as the level-of-
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satisfaction of the decision maker, and to approximate the model with a 
predetermined allowable error rate. 

For measuring the relative degree of importance for each customer 
requirement, based on the proposed methodology, a (6 × 6) decision matrix 
is constructed and shown in Figure 5. 

1 7 3 4 5 9
1/ 7 1 1/ 3 1/ 2 2 3
1/ 3 3 1 3 6 2
1/ 4 2 1/ 3 1 3 4
1/ 5 1/ 2 1/ 6 1/ 3 1 1/ 7
1/ 9 1/ 3 1/ 2 1/ 4 7 1

D =

=
1 7 3 4 5 9
0.143 1 0.333 0.500 2 3
0.333 3 1 3 6 2
0.250 2 0.333 1 3 4
0.200 0.500 0.167 0.333 1 0.143
0.111 0.333 0.500 0.250 7 1

Figure 5. Decision matrix 

The PV values of this decision matrix are found and 
max , I.I., R.I., and I.R.  are calculated. If the level of inconsistency 

present in the information stored in the “D” matrix is satisfactory, the QFD 
team, then, puts the PV values in the transformation matrix. The next job 
of the QFD team is to find out the ranking of the given four robots based 
on the seven conflicting TRs. Seven pair-wise comparison matrices were 
built up based on the information on each TR. 

Table 2. Overall Scores of the Four Robots 

Importance weight for robots Technical
Requirements

Weight 
R1  R2 R3 R4

I.I. I.R. Inconsistency 
(%)

1. Drive 
system 31.54 0.529 0.094 0.314 0.063 0.0249 0.0252 2.52 

2.Geometrical
dexterity 8.64 0.147 0.281 0.514 0.059 0.0116 0.0117 1.17 

3. Path 
measuring
system

9.47 0.074 0.520 0.105 0.300 0.0842 0.0851 8.51 

4. Robot size 9.36 0.267 0.550 0.054 0.128 0.0644 0.0651 6.51 
5. Material of 

robot 9.05 0.319 0.532 0.092 0.057 0.0866 0.0875 8.75 

6. Weight of 
robot 26.46 0.523 0.089 0.326 0.062 0.0369 0.0373 3.73 

7. Initial 
operating
cost

5.48 0.483 0.086 0.355 0.077 0.0748 0.0756 7.56 

Overall score  40.53 23.11 27.25 9.11    

Neuro-Fuzzy Approximation of MCDM QFD
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Table 2 suggests R1 » R3 » R2» R4; i.e., R1 gets precedence over R3,
which gets more importance over R2 and R4. Thus, the robot R1 is selected 
as it has the highest overall score compared with others.

The total cost of the robotic system described in Bhattacharya et al. 
(2005) were broken down (refer to Table 3). 

Table 3. Cost Factor Components and Their Units 

Cost factor components Range of attribute values 
1. Acquisition cost of robot US $ 4500 –  7000/unit 
2. Cost of robot gripper mechanisms US $ 2500 –  3000 
3. Cost of sensors US $ 900 – 1200 
4. Total cost of layout necessary for 

installation of robot 
US $ 3500 – 4000 

5. Cost of feeders US $ 400 – 900/unit 
6. Maintenance cost US $ 500 – 650/week 
7. Cost of energy US $ 6 – 10/Unit of electrical energy 

The cost factors in Table 3 involve two types of costs, both a fixed and a 
recurring type. For four different robots, of which each can perform the very 
specified job, the attributes of the cost components are tabulated in Table 4. 

Table 4. Attributes of Cost Factor Component 

Robots

Cost components 
R1 R2 R3 R4

1. Acquisition cost of robot 6500 5000 7000 4500 
2. Cost of robot gripper mechanisms 2750 2500 3000 2900 
3. Cost of sensors 1200 950 1100 1000 
4. Total cost of layout 3650 4000 3875 3500 
5. Cost of feeders 900 765 400 860 
6. Maintenance cost 480 900 730 400 
7. Cost of energy 7 8 10 6 
Total (OFC) (US$) 15487 14123 16115 13166 

A mathematical model was proposed by Bhattacharya et al. (2005) to 
combine cost factor components with the importance weightings found 

SIi = [ (  × SFMi ) + ( 1  ) × OFMi ] (7)

where,

from AHP. The governing equation of the said model is 
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. (8) 

5.1 Computation of Level-of-Satisfaction,
Degree of Fuzziness 

We confine our efforts assuming that differences in judgmental values are 
only 5%. Therefore, the upper bound and lower bound of SFMi as well as 
SIi indices are to be computed within a range of 5% of the original value 
reported by Bhattacharya et al. (2005). In order to avoid complexity in 
delineating the technique proposed herein, we have considered, 5% 
measurement. One can fuzzify the SFMi values from the very beginning of 
the AHP-QFD model by introducing a modified S-curve MF in AHP, and 
the corresponding fuzzification of SIi indices can also be carried out using 
their holistic approach.

Figures 5a, b and c show three different plots depicting a relation 
among the level-of-satisfaction and SI indices for three different vagueness 
values. It should always be noted that higher the fuzziness, , values, the 
lesser will be the degree of vagueness inherent in the decision. Therefore, 
it is understood that the higher level of outcome of the decision variable, 
SI, for a particular level-of-satisfaction point, results in a lesser degree of 
fuzziness inherent in the said decision variable.

A relationship between the degree of fuzziness, , and the level-of-
satisfaction  has been depicted by Figure 6. This is a clear indication that 
the decision variables, as defined in Eqs. (6) and (7), allows the MCDM 
model to achieve a higher level-of-satisfaction with a lesser degree of 
fuzziness.

Figures 7 and 8 delineate SI indices versus level-of-satisfaction  and 
SI indices versus degree of fuzziness , respectively. Now, let us examine 
the fuzziness inherent in each candidate-alternative.

There is a need to calculate both the upper bound and the lower bound 
solution of SI indices having a different level-of-satisfaction ( ). The 

Neuro-Fuzzy Approximation of MCDM QFD

In the following chapters, we have discussed the implications of Eq. (8)
as well as the modified S-curve MF with reference to the targeted MCDM
modeling. Therefore, we refrain to discuss on these basic equations. 

By using the equations above for a modified S-curve MF a relationship 
among the level-of-satisfaction of the decision maker, the degree of vaguenes 
and the SI indices is found. The results are plotted accordingly. 
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following figures have been found using MATLAB® version 7.0. The 
results have been encouraging, and the corresponding results have been 
indicated in Figures 9 to 14. 

Figure 6. Fuzziness vs.  for Robot 1    Figure 7. Fuzziness vs.  for Robot 2 

Figure 8. Fuzziness vs.  for Robot 3   Figure 9. Fuzziness vs.  for Robot 4 

Figure 10. SI vs.  for Robot 1   Figure 11. SI vs.  for Robot 2 
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Figure 12. SI vs.  for Robot 3   Figure 13. SI vs.  for Robot 4 

Neuro-Fuzzy Approximation of MCDM QFD

Figure 14. SI, , and  for Robot 1 Figure 15. SI, , and  for Robot 2 

Figure 16. SI, , and  for Robot 3  Figure 17. SI, , and  for Robot 4 
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Thus, the decision for selecting a candidate-alternative as seen from 
Figures 9 to 13 is tabulated in Table 5. It is noticed from the current 
investigation that this model eliciting the degree of fuzziness corroborates 
the MCDM model without fuzzification presented in Bhattacharya et al. 
(2005). 

5.2 Experiment Results using the ANFIS Model 

performance evaluation. The task is to approximate the values of SI for 
different values of α and γ. In this chapter, we developed fuzzy inference 
systems for varying values of gamma keeping α = 0.001, 0.2, 0.4, 0.6, 0.8, 
and 1.0. Takagi Sugeno fuzzy inference was used with linear consequent 
parameters. We used four Gaussian MFs for the two variables α and γ. 
Sixteen fuzzy if−then rules were created during the neural learning process 
as depicted in Figures 18, 20, 22, 24, 26 and 28. The learned surfaces 
showing the input/output are illustrated in Figures 19, 21, 23, 25, 27 and 
29. Empirical results are depicted in Table 5. 

Table 5. Performance of the Fuzzy Inference Systems 
 

α value Root Mean Squared Error 
0.001 0.0004 
0.2 0.0009 
0.4 0.0004 
0.6 0.002 
0.8 0.002 
1.0 0.004 

The experimental system consists of two stages: network training and 

Figure 18. Developed Takagi Sugeno FIS (α = 0.001) 
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Figure 19. Input/Output surface mapping (α = 0.001) 

Neuro-Fuzzy Approximation of MCDM QFD  

 

 

Figure 20. Developed Takagi Sugeno fuzzy inference system (α = 0.2) 

 

Figure 21. Input/Output surface mapping (α = 0.2) 
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Figure 22. Developed Takagi Sugeno fuzzy inference system (α = 0.4) 

 

Figure 23. Input/Output surface mapping (α = 0.4) 

 

Figure 24. Developed Takagi Sugeno fuzzy inference system (α = 0.6) 
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Figure 25. Input/Output surface mapping (α = 0.6) 

 

Figure 26. Developed Takagi Sugeno fuzzy inference system (α = 0.8) 

 

Figure 27. Input/Output surface mapping (α = 0.8) 
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Figure 28. Developed Takagi Sugeno fuzzy inference system (α = 1.0) 

 

Figure 29. Input/Output surface mapping (α = 1.0) 

6. DISCUSSION AND CONCLUSION 

One underlying assumption of the proposed methodology is that the 
selection is made under certainty of the information data. In reality, the 
information available is highly uncertain and sometimes may be under risk 
also. The fuzzy S-curve MF helps in reducing the level of uncertainty as 
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satisfaction (α) are very low, and the satisfaction level of the decision 
makers are, thus, appreciable as well as within the acceptable level. 
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