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Abstract: This chapter addresses the use of Monte Carlo simulation to reflect 
uncertainty as expressed by fuzzy input. Fuzziness is expressed through 
grey-related analysis, using interval fuzzy numbers. The method standardizes 
inputs through norms of interval number vectors. Interval-valued indexes are 
used to apply multiplicative operations over interval numbers. The method 
is demonstrated on a practical problem. Simulation offers a more complete 
understanding of the possible outcomes of alternatives as expressed by 
fuzzy numbers. The focus is on probability rather than on maximizing 
expected or extreme values.  
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1. INTRODUCTION 

This chapter addresses the use of Monte Carlo simulation to reflect 
uncertainty as expressed by fuzzy input. Simulation offers a more 
complete understanding of the possible outcomes of alternatives as 
expressed by fuzzy numbers. The focus is on probability rather than on 
maximizing expected or extreme values. Both weights and alternative 
performance scores are allowed to be fuzzy. Both interval and trapezoidal 
fuzzy input can be considered (see Olson and Wu, 2005, 2006). 

Fuzzy concepts have long been important in multiple criteria analysis 
(Dubois, 1980; Gau and Buehrer, 1993; Pawlak, 1982; Pearl, 1988; 
Pedrycz, 1998). Simulation has been applied to the analytical hierarchy 
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process (AHP) (Levary and Wan, 1998), generating random pair-wise 
comparison input values. The uncertainty and fuzziness inherent in 
decision making makes the use of precise numbers problematic in multi-
attribute models. Decision makers are usually more comfortable providing 
intervals for specific model input parameters. Interval input in multi-
attribute decision making has been a very active field of research. Methods 
applying intervals have included (along with many others, see Zhang et al., 
2005):

1. Use of interval numbers as the basis for ranking alternatives
 Brans and Vincke, 1985;  
 El-Hawary, 1998; 
 Chang and Yeh, 2004;  
 Kahraman et al., 2004. 

2. Error analysis with interval numbers 
 Larichev and Moshkovich, 1991. 

3. Use of linear programming and object programming with feasible 
regions bounded by interval numbers 
 Roy, 1978; 
 Liu et al., 1999; 
 Royes et al., 2003. 

4. Use of interval number ideal alternatives to rank alternatives by their 
nearness to the ideal 
 Wang et al., 2004. 

AHP was presented (Saaty, 1977) as a way to take subjective human 
inputs in a hierarchy and to convert these to a value function. This method 
has proven extremely popular. Salo and Hamalainen (1992) published their 
interval method using linear programming over the constrained space of 
weights and values as a means to incorporate uncertainty in decision-
maker inputs to AHP hierarchies. 

The problem of synthesizing ratio judgments in groups was considered 
very early in AHP (Aczel and Saaty, 1983). Fuzzy AHP was proposed as 
another way to reflect uncertainty in subjective inputs to AHP in the same 
group context (Buckley, 1984; 1985a; 1985b). Simulation has been 
presented as a way to rank order alternatives in the context of AHP values 
and weights (Levary and Wan, 1998). 

Other multiple criteria methods besides AHP have considered fuzzy 
input parameters. ELECTRE (Roy, 1978) and PROMETHEE (Brans and 
Vincke, 1985) have always allowed fuzzy input for weights. A multi-
attribute method involving fuzzy assessment for selection has been given 
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in the airline safety domain (Chang and Yeh, 2004) and for multiple 
criteria selection of employees (Royes et al., 2003). Sensitivity in multi-
attribute models with fuzzy inputs was considered by Aouam et al. (2003) 
and in goal programming by Fan et al. (2004). Rough set applications have 
also been presented (Zaras, 2004). This stream of research has obviously 
been rich and useful in application. It is extended by grey-related analysis. 

2.  GREY-RELATED ANALYSIS 

Grey system theory was developed by Deng (1982) based on the concept 
that information is sometimes incomplete or unknown. The intent is the 
same as with factor analysis, cluster analysis, and discriminant analysis, 
except that those methods often do not work well when sample size is 
small and sample distribution is unknown (Wang et al., 2004). With grey-
related analysis, interval numbers are standardized through norms, which 
allow transformation of index values through product operations. The 
method is simple, practical, and demands less-precise information than 
other methods. Grey-related analysis and TOPSIS (Hwang and Yoon, 
1981; Lai et al., 1994; Yoon and Hwang, 1995) both use the idea of 
minimizing a distance function. However, grey-related analysis reflects a 
form of fuzzification of inputs and uses different calculations, to include a 
different calculation of norms. Feng and Wang (2001) applied grey 
relation analysis to select representative criteria among a large set of 
available choices and then used TOPSIS for outranking (Zhang et al., 
2005)

Grey-related analysis has been used in a number of applications, In our 
discussion, we shall use the concept of the norm of an interval number 
column vector, the distance between intervals, product operations, and 
number-product operations of interval numbers.

Let },,,|{],[ Raaaaaxaxaaa .

We call [ , ]a a a  an interval number. If 0 ,a a we call 
interval number [ , ]a a a  a positive interval number.

Let T
nn aaaaaaX ]),[],...,,[],,([ 2211  be an n -dimension interval 

number column vector. 
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If T
nn aaaaaaX ]),[],...,,[],,([ 2211  is an arbitrary interval 

number column vector, the norm of X is defined here as

1 1 2 2|| || max(max(| |,| |), max(| |,| |),..., max(| |,| |))n nX a a a a a a  (1) 

If [ , ]a a a  and [ , ]b b b  are two arbitrary interval numbers, 
the distance from [ , ]a a a  to [ , ]b b b , is defined as 

| | max(| |,| |)a b a b a b  (2) 

If k is an arbitrary positive real number, and [ , ]a a a  is an 
arbitrary interval number, then [ , ] [ , ]k a a ka ka  will be called the 
number-product between k and [ , ]a a a .

If [ , ]a a a  is an arbitrary interval number, and [ , ]b b b  are 
arbitrary interval numbers, we shall define the interval number product 
[ , ] [ , ]a a b b  as follows: 

when 0b [ , ] [ , ] [ , ]a a b b a b a b  (3) 

when 0b [ , ] [ , ] [ , ]a a b b a b a b  (4) 

If b+ = 0, the interval reverts to a point, and thus, we would return to 
the basic crisp model. 

2.1 Steps of Grey-Related Analysis 

The principle and steps of the Grey-related analysis method are as follows: 
Step 1. Construct decision matrix A  with an index number of interval 

numbers. If the index value of the jth index jG  of feasible plan iX  is an 
interval number [ , ]ij ija a , 1,2,...,i m , 1,2,...,j n , decision matrix A
with index number of interval numbers is defined as the follows: 

DEFINITION 1.

DEFINITION 2.

DEFINITION 3.

DEFINITION 4.
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11 11 12 12 1 1
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1 1 2 2
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[ , ]   [ , ]  ...   [ , ]

n n

n n

m m m m mn mn

a a a a a a
a a a a a a

A

a a a a a a

(5)

Step 2. Transform the “contrary index” into a positive index .The index 
is called a positive index if a greater index value is better. The index is 
called a contrary index if a smaller index value is better. We may 
transform a contrary index into a positive index if the jth index jG  is a 
contrary index 

],[],[ ijijijij aabb mi ,...,2,1 . (6)

Without loss of generality, in the following discussion, we supposed 
that all the indexes are “positive indices.” 

Step 3. Standardize decision matrix A  with an index number of 
interval numbers, obtaining standardizing decision matrix ]r,r[R ijij . If 
we mark the column vectors of decision matrix A  with interval-valued 
indexes with n21 A,...,A,A , the element of standardizing decision 
matrix ]r,r[R ijij  is defined as 

||||
],[

],[
j

ijij
ijij A

aa
rr mi ,...,2,1 nj ,...,2,1 . (7) 

Step 4. Calculate interval number weighted matrix nmijij ])c,c([C   .
The formula for the element of interval number weighted matrix C is 

nmijij ])c,c([C   

where

],[],[],[ ijijjjijij rrdccc mi ,...,2,1 nj ,...,2,1 .  (8) 

Step 5. Determine reference number sequence. The element of 
reference number sequence is composed of the optimal weighted interval 
number index value for every alternative.  
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)])(  ,  )([  ,  ...  ,  )]2(  ,  )2([  ,  )]1(  ,  )1(([ 0000000 nunuuuuuU
is a reference number sequence if 0 1

( ) max iji m
u j c , 0 1

( ) max iji m
u j c ,

1, 2,...,j n .

Step 6. Calculate connections between alternatives. First, calculate the 
connection coefficient )k(i  between the sequence composed of weight 
interval number standardized index values for every alternative 

1 1 2 2([  ,  ], [  ,  ],  ... ,  [  ,  ] )i i i i i in inU c c c c c c  and the reference number 
sequence 0 0 0 0 0 0 0([ (1),   (1)],  [ (2),   (2)],   ...,   [ ( ),   ( )]).U u u u u u n u n

The formula for )(ki  is

|],[)](),([|maxmax|],[)](),([|

|],[)](),([|maxmax|],[)](),([|minmin
)(

0000

0000

ikikkiikik

ikikkiikikki
i cckukucckuku

cckukucckuku
k  (9) 

Here ),0( , and  is a resolving coefficient. The smaller  is, 
the greater its resolving power. In general, [0, 1] .The value of 
may be changed to reflect the desired degree of resolution. 

After calculating )(ki , the connection between the i-th plan and the 
reference number sequence is calculated by the following formula: 

1

1 , 1, 2,...
n

i i
k

r k i m
n

(10)

Step 7. Determine optimal plan. The feasible plan tX  is optimal if 
i

mi1
t rmaxr .

3. MONTE CARLO SIMULATION 

Fuzzy inputs can easily be simulated using Monte Carlo simulation 
models. Interval random numbers over the interval 0 1 can be generated in 
Monte Carlo simulation directly, and these can be converted to any other 
uniform range. Simulations can be easier to analyze if they are controlled, 
using unique seed values to ensure that the difference in simulation output 
due to random variation was the same for each alternative.
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3.1 Trapezoidal Distributed Fuzzy Numbers 

The trapezoidal fuzzy input dataset can also be simulated.
X is random number (0 < rn < 1). 

Definition of trapezoida1 is left 0 in Figure 1; a2 is left 1; a3 is right 1; 
and a4 is right 0. 

Figure 1. A trapezoidal fuzzy number 

J is area of left triangle contingent calculation:  
K is area of rectangle 
L is area of right triangle 
Fuzzy sum = left triangle + rectangle + right triangle = 1 
M is the area of the left triangle plus the rectangle (for calculation of X

value)
X is the random number drawn (which is the area) 
If X J:

LJ
aaaaaaXaX 1234121  (11) 

If J  X J+K:

232 aaK
JXaX  (12) 

If J+K X:

LJ
aaaaaaXaX 12343414  (13) 

0

1.0

a1 a2 a3 a4
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Our calculation is based on drawing a random number reflecting the 
area (starting on the left (a1) as 0, ending on the right (a4) as 1), and 
calculating the distance on the X-axis. The simulation software Crystal 
Ball was used to replicate each model 1000 times for each random number 
seed. The software enabled counting the number of times each alternative 
won.

3.2 Grey-Related Decision Tree Models 

Grey-related analysis is expected to provide improvement over crisp 
models by better reflecting the uncertainty inherent in many human 
analysts’ minds. Data mining models based on such data are expected to be 
less accurate, but hopefully not by very much (Hu et al., 2003). However, 
grey-related model input would be expected to be more stable under 
conditions of uncertainty where the degree of change in input data 
increased.

We applied decision tree analysis to a small set (1000 observations 
total) of credit card data. Originally, there was one output variable 
(whether or not the account defaulted, a binary variable with 1 representing 
default, 0 representing no default) and 65 available explanatory variables. 
These variables were analyzed, and 26 were selected as representing ideas 
that might be important to predicting the outcome. The original data set 
was imbalanced, with 140 default cases and 860 not defaulting. Initial 
decision tree models were almost all degenerate, classifying all cases as 
not defaulting. When differential costs were applied, the reverse 
degenerate model was obtained (all cases predicted to default). Therefore, 
a new dataset containing all 140 default cases and 160 randomly selected 
not default cases was generated, where 200 cases were randomly selected 
as a training set, with the remaining 100 cases used as a test set. 

The explanatory variables included five binary variables and one 
categorical variable, with the remaining 20 being continuous. To reflect 
fuzzy input, each variable (except for binary variables) was categorized 
into three categories based on analysis of the data, using natural cutoff 
points to divide each variable into roughly equal groups. 

Decision tree models were generated using the data mining software 
PolyAnalyst. That software allows setting minimum support level (the 
number of cases necessary to retain a branch on the decision tree), and a 
slider setting to optimistically or pessimistically split criteria. Lower 
support levels allow more branches, as does the optimistic setting. Every 
time the model was run, a different decision tree was able to be obtained. 
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But nine settings were applied, yielding many overlapping models. Three 
unique decision trees were obtained, which are reflected in the output to 
follow. A total of eight explanatory variables were used in these three 
decision trees. The same runs were made for the categorical data reflecting 
grey-related input. Four unique decision trees were obtained, with 
formulas again given below. A total of seven explanatory variables were 
used in these four categorical decision trees. All seven models and their fit 
on test data are given in the Appendix. 

These models were then entered into a Monte Carlo simulation 
(supported by Crystal Ball software). A perturbation of each input variable 
was generated, set at five different levels of perturbation. The intent was to 
measure the loss of accuracy for crisp and grey-related models. 

The model results are given in the seven model reports in the appendix. 
Since different variables were included in different models, it is not 
possible to directly compare relative accuracy as measured by fitting test 
data. However, the means for the accuracy on test data for each model 
given in Table 1 show that the crisp models declined in accuracy more 
than the categorical models. The column headings in Table 1 reflect the 
degree of perturbation simulated. 

Table 1. Mean Model Accuracy 

Model Crisp 0.25 0.50 1.00 2.00 3.00 4.00 
Cont. 1 0.70 0.70 0.70 0.68 0.67 0.66 0.65 
Cont. 2 0.67 0.67 0.67 0.67 0.67 0.66 0.66 
Cont. 3 0.71 0.71 0.70 0.69 0.67 0.67 0.66 
Cont.   0.693   0.693   0.690   0.680   0.670   0.667   0.657 
Cat. 1 0.70 0.70 0.68 0.67 0.66 0.66 0.65 
Cat. 2 0.70 0.70 0.70 0.69 0.68 0.67 0.67 
Cat. 3 0.70 0.70 0.70 0.69 0.69 0.68 0.67 
Cat. 4 0.70 0.70 0.70 0.69 0.68 0.67 0.67 
Cat.   0.700   0.700   0.695   0.688   0.678   0.670   0.665 

The fuzzy models were expected to be less accurate, but here they 
actually average slightly better accuracy. This, however, can simply be 
attributed to different variables being used in each model. The one 
exception is that models Continuous 2 and Categorical 3 were based on 
one variable, V64, the balance-to-payment ratio. The cutoff generated by 
model Continuous 2 was 6.44 (if V64 was < 6.44, prediction 0), whereas 
the cutoff for Categorical 3 was 4.836 (if V64 was > 4.835, the category 
was “high,” and the decision tree model was that if V64 = “high,” 
prediction 1, else prediction 0). The fuzzy model here was actually better 
in fitting the test data (although slightly worse in fitting the training data). 
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The important point of the numbers in Table 1 is that there clearly was 
greater degradation in model accuracy for the continuous models than for 
the categorical (grey-related) models. This point is demonstrated further by 
the wider dispersion of the graphs in the Appendix. 

4. CONCLUSIONS 

This chapter has discussed the integration of grey-related analysis and 
decision making with uncertainty through simulation. Simulation provides 
a means to better visualize model results and a flexible way to include any 
level of uncertainty and complexity. Results based on Monte Carlo 
simulation as a data-mining technique offer more insights to assist our 
decision making in fuzzy environments by incorporating probability 
interpretation.  Analysis of decision tree models through simulation shows 
that there does appear to be less degradation in model fit for grey-related 
(categorical) data than for decision tree models generated from raw 
continuous data. It must be admitted that this is a preliminary result, based 
on a relatively small dataset of only one type of data. However, it is 
intended to demonstrate a point meriting future research. This decision-
making approach can be applied to large-scale datasets, expanding our 
ability to implement data mining and large-scale computing. 

The easiest way to apply fuzzy concepts to data mining is to categorize 
data. This creates the problem of where to set limits between categories. 
However, reliance on expert judgment can often provide useful limits. If 
data-mining data are represented through fuzzy concepts, simulation can 
be applied. Since fuzzy data are probabilistic, simulation seems 
appropriate. Simulation does involve a lot more work than closed-form 
(crisp) datasets. However, fuzzy data are often a better representation of 
real domains. 
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APPENDIX: MODELS AND THEIR RESULTS 

Continuous Model 1: 

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgPay<3.91,N,Y)))

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 43 16  
Actual 1 14 27 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation   [ 0.25,0.25]  0.67 0.73
perturbation   [ 0.50,0.50]  0.65 0.74
perturbation   [ 1,1]    0.62 0.75
perturbation   [ 2,2]    0.58 0.74
perturbation   [ 3,3]    0.57 0.74

  .55     .6     .65     .7     .75     
                     
                  
              
           
          

Frequency Chart

proportion

.000

.094

.187

.281

.374

0

93.5

187

280.5

374

0.68 0.69 0.70 0.72 0.73

1,000 Trials 994 Displayed

Forecast: Cont M1 accuracy
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Continuous Model 2:

IF (Bal/Pay<6.44,N,Y) 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 40 19  
Actual 1 14 27 0.67 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation [ 0.25,0.25]  0.65 0.71
perturbation [ 0.50,0.50]  0.63 0.71
perturbation [ 1,1]    0.60 0.74
perturbation [ 2,2]    0.58 0.75
perturbation [ 3,3]    0.55 0.78

  .55     .6     .65     .7     .75     
                   
               
            
          

Frequency Chart

proportion

.000

.117

.233

.350

.466

0

116.5

233

349.5

466

0.65 0.66 0.67 0.69 0.70

1,000 Trials 991 Displayed

Forecast: Cont M2 accuracy
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Continuous Model 3: 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 44 15  
Actual 1 14 27 0.71 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.76
perturbation  [ 0.50,0.50]  0.63 0.76
perturbation  [ 1,1]    0.59 0.77
perturbation  [ 2,2]    0.54 0.79
perturbation  [ 3,3]    0.53 0.78

  .55     .6     .65     .7     .75     
            
         
      

Frequency Chart

proportion

.000

.059

.119

.178

.237

0

59.25

118.5

177.7

237

0.65 0.68 0.70 0.73 0.75

1,000 Trials 996 Displayed

Forecast: Cont M3 accuracy

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgRevPay<2.28,Y,N)))
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Categorical Model 1: 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 33 26  
Actual 1 5 36 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs     
perturbation  [ 0.25,0.25]  0.66 0.71
perturbation  [ 0.50,0.50]  0.64 0.71
perturbation  [ 1,1]    0.61 0.71
perturbation  [ 2,2]    0.58 0.73
perturbation  [ 3,3]    0.56 0.74

  .55     .6     .65     .7     .75     
                      
                  
                 
            

      

Frequency Chart

 proportion

.000

.104

.208

.312

.416

0

104

208

312

416

0.66 0.67 0.68 0.69 0.70

1,000 Trials 999 Displayed

Forecast: CatM1 accuracy

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgRevPay<2.28,Y,N)))
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Categorical Model 2: 

IF(Bal/Pay=`”high”,IF(CredLine=”low”,
IF(CDL=”mid”,IF(Pur%Bal=”low”,Y,N),
IF(CDL=”low”,N,Y))
 IF(CredLine=”high”,IF(CalcIntRate=”mid”,N,Y),Y),N) 

Test matrix:    
Model 0 Model 1 Accuracy 

Actual 0 42 17  
Actual 1 13 28 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.75
perturbation  [ 0.50,0.50]  0.64 0.76
perturbation  [ 1,1]    0.61 0.76
perturbation  [ 2,2]    0.58 0.76
perturbation  [ 3,3]    0.57 0.80

  .55     .6     .65     .7     .75     
                 
         
        
     
    

Frequency Chart

proportion

.000

.056

.111

.167

.222

0

55.5

111

166.5

222

0.65 0.68 0.70 0.73 0.75

1,000 Trials 997 Displayed

Forecast: CatM2 accuracy
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Categorical Model 3: 

IF(Bal/Pay=”high”,Y,N)

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 33 26
Actual 1 4 37 0.70

Simulation accuracy of 100 observations, 1000 simulation runs     
perturbation [ 0.25,0.25]  0.68 0.70
perturbation [ 0.50,0.50]  0.67 0.71
perturbation [ 1,1]    0.66 0.72
perturbation [ 2,2]    0.62 0.73
perturbation [ 3,3]    0.59 0.75
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Categorical Model 4: 

IF(Bal/Pay=”high”,
IF(CredLine=”low”,
IF(CDL=”mid”,IF(Purch%Bal=”low”,Y,N),
IF(CDL=”low”,IF(Residence<.5,Y,N),Y))
  IF(CredLine=”high”,IF(CalcIntRate=”mid”,N,Y),Y) 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 41 18
Actual 1 12 29 0.70

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.76
perturbation  [ 0.50,0.50]  0.64 0.77
perturbation  [ 1,1]    0.61 0.77
perturbation  [ 2,2]    0.58 0.77
perturbation  [ 3,3]    0.57 0.77
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Forecast: CatM4 accuracy


