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PREFACE

Multiple criteria decision making (MCDM) is a modeling and 
methodological tool for dealing with complex engineering problems. 
Decision makers face many problems with incomplete and vague 
information in MCDM problems since the characteristics of these 
problems often require this kind of information. Fuzzy set approaches are 
suitable to use when the modeling of human knowledge is necessary and 
when human evaluations are needed. Fuzzy set theory is recognized as an 
important problem modeling and solution technique.  Fuzzy set theory has 
been studied extensively over the past 40 years. Most of the early interest 
in fuzzy set theory pertained to representing uncertainty in human 
cognitive processes. Fuzzy set theory is now applied to problems in 
engineering, business, medical and related health sciences, and the natural 
sciences. Over the years there have been successful applications and 
implementations of fuzzy set theory in MCDM. MCDM is one of the 
branches in which fuzzy set theory found a wide application area. Many 
curriculums of undergraduate and graduate programs include many 
courses teaching how to use fuzzy sets when you face incomplete and 
vague information. One of these courses is fuzzy MCDM and its 
applications.

This book presents examples of applications of fuzzy sets in MCDM. It 
contains 22 original research and application chapters from different 
perspectives; and covers different areas of fuzzy MCDM. The book 
contains chapters on the two major areas of MCDM to which fuzzy set 

(MODM). MADM approaches can be viewed as alternative methods for 
combining the information in a problem’s decision matrix together with 
additional information from the decision maker to determine a final 
ranking, screening, or selection from among the alternatives. MODM is a 
powerful tool to assist in the process of searching for decisions that best 
satisfy a multitude of conflicting objectives. 

theory contributes. These areas are fuzzy multiple-attribute decision
making (MADM) and fuzzy multiple-objective decision making 



The classification, review and analysis of fuzzy multi-criteria decision-
making methods are summarized in the first two chapters. While the first 
chapter classifies the multi-criteria methods in a general sense, the second 
chapter focuses on intelligent fuzzy multi-criteria decision making.

The rest of the book is divided into two main parts. The first part 
includes chapters on frequently used MADM techniques under fuzziness, 
e.g., fuzzy Analytic Hierarchy Process (AHP), fuzzy TOPSIS, fuzzy 
outranking methods, fuzzy weighting methods, and a few application 
chapters of these techniques. The third chapter includes the most 
frequently used fuzzy AHP methods and their numerical and didactic 
examples. The fourth chapter shows how a fuzzy AHP method can be 
jointly used with another technique. The fifth chapter summarizes fuzzy 
outranking methods, which dichotomize preferred alternatives and 
nonpreferred ones by establishing outranking relationships. The sixth 
chapter presents another commonly used multi-attribute method, fuzzy 
TOPSIS and its application to selection among industrial robotic systems. 
The seventh chapter includes many fuzzy scoring methods and their 
applications. The rest of this part includes the other most frequently used 
fuzzy MADM techniques in the literature: fuzzy information axiom 

neuro-fuzzy approximation. 
The second part of the book includes chapters on MODM techniques 

under fuzziness, e.g., fuzzy multi-objective linear programming, quasi-
concave and non-concave fuzzy multi-objective programming, interactive 
fuzzy stochastic linear programming, fuzzy multi-objective integer goal 
programming, gray fuzzy multi-objective optimization, fuzzy multi-
objective geometric programming and some applications of these tech-
niques. These methods are the most frequently used MODM techniques in 
the fuzzy literature.

The presented methods in this book have been prepared by the authors 
who are the developers of these techniques. I hope that this book will 
provide a useful resource of ideas, techniques, and methods for additional 
research on the applications of fuzzy sets in MCDM.  I am grateful to the 
referees whose valuable and highly appreciated works contributed to select 
the high quality of chapters published in this book. I am also grateful to my 
research assistant, Dr. Ihsan Kaya, for his invaluable effort to edit this 
book.

Cengiz Kahraman 
Istanbul Technical University 
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MULTI-CRITERIA DECISION MAKING 
METHODS AND FUZZY SETS 

Cengiz Kahraman 
Department of Industrial Engineering, Istanbul Technical University, 34367 Maçka 
stanbul Turkey 

Abstract:  Multi-criteria decision making (MCDM) is one of the well-known topics of 
decision making. Fuzzy logic provides a useful way to approach a MCDM 
problem. Very often in MCDM problems, data are imprecise and fuzzy. In a 
real-world decision situation, the application of the classic MCDM method 
may face serious practical constraints, because of the criteria containing 
imprecision or vagueness inherent in the information. For these cases, fuzzy 
multi-attribute decision making (MADM) and fuzzy multi-objective 
decision making (MODM) methods have been developed. In this chapter, 
crisp MADM and MODM methods are first summarized briefly and then 
the diffusion of the fuzzy set theory into these methods is explained. Some 
examples of recently published papers on fuzzy MADM and MODM are 
given.

Key words: Multi-criteria, multi-attribute, multi-objective, decision making, fuzzy sets 

1. INTRODUCTION

In the literature, there are two basic approaches to multiple criteria 

(MADM) and multiple objective decision making (MODM). MADM 
problems are distinguished from MODM problems, which involve the 
design of a “best” alternative by considering the tradeoffs within a set of 
interacting design constraints. MADM refers to making selections among 
some courses of action in the presence of multiple, usually conflicting, 
attributes. In MODM problems, the number of alternatives is effectively 

decision making (MCDM) problems: multiple attribute decision making 
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infinite, and the tradeoffs among design criteria are typically described by 
continuous functions. 

MADM is the most well-known branch of decision making. It is a 
branch of a general class of operations research models that deal with 
decision problems under the presence of a number of decision criteria. The 
MADM approach requires that the choice (selection) be made among 
decision alternatives described by their attributes. MADM problems are 
assumed to have a predetermined, limited number of decision alternatives. 
Solving a MADM problem involves sorting and ranking. 

MADM approaches can be viewed as alternative methods for 
combining the information in a problem’s decision matrix together with 
additional information from the decision maker to determine a final 
ranking, screening, or selection from among the alternatives. Besides the 
information contained in the decision matrix, all but the simplest MADM 
techniques require additional information from the decision maker to 
arrive at a final ranking, screening, or selection. 

In the MODM approach, contrary to the MADM approach, the decision 
alternatives are not given. Instead, MODM provides a mathematical 
framework for designing a set of decision alternatives. Each alternative, 
once identified, is judged by how close it satisfies an objective or multiple 
objectives. In the MODM approach, the number of potential decision 
alternatives may be large. Solving a MODM problem involves selection.

It has been widely recognized that most decisions made in the real 
world take place in an environment in which the goals and constraints, 
because of their complexity, are not known precisely, and thus, the 
problem cannot be exactly defined or precisely represented in a crisp value 
(Bellman and Zadeh, 1970). To deal with the kind of qualitative, imprecise 
information or even ill-structured decision problems, Zadeh (1965) 
suggested employing the fuzzy set theory as a modeling tool for complex 
systems that can be controlled by humans but are hard to define exactly.

Fuzzy logic is a branch of mathematics that allows a computer to model 
the real world the same way that people do. It provides a simple way to 
reason with vague, ambiguous, and imprecise input or knowledge. In 
Boolean logic, every statement is true or false; i.e., it has a truth value 1 or 0. 
Boolean sets impose rigid membership requirements. In contrast, fuzzy 
sets have more flexible membership requirements that allow for partial 
membership in a set. Everything is a matter of degree, and exact reasoning 
is viewed as a limiting case of approximate reasoning. Hence, Boolean 
logic is a subset of Fuzzy logic. Human beings are involved in the decision 
analysis since decision making should take into account human subjectivity, 
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rather than employing only objective probability measures. This makes 
fuzzy decision making necessary. 

This chapter aims at classifying MADM and MODM methods and at 
explaining how the fuzzy sets have diffused into the MCDM methods. 

2. MULTI-ATTRIBUTE DECISION MAKING:  
A CLASSIFICATION OF METHODS 

MADM methods can be classified as to whether if they are non-
compensatory or compensatory. The decision maker may be of the view 
that high performance relative to one attribute can at least partially 
compensate for low performance relative to another attribute, particularly 
if an initial screening analysis has eliminated alternatives that fail to meet 
any minimum performance requirements. Methods that incorporate 
tradeoffs between high and low performance into the analysis are termed 
“compensatory.” Those methods that do not are termed “noncompensatory.”

In their book, Hwang and Yoon (1981) give 14 MADM methods. 
These methods are explained briefly below. Additionally five more 
methods are listed below. 

2.1 Dominance

An alternative is “dominated” if another alternative outperforms it with 
respect to at least one attribute and performs equally with respect to the 
remainder of attributes. With the dominance method, alternatives are 
screened such that all dominated alternatives are discarded. The screening 
power of this method tends to decrease as the number of independent 
attributes becomes larger. 

2.2 Maximin

The principle underlying the maximin method is that “a chain is only as 
strong as its weakest link.” Effectively, the method gives each alternative a 
score equal to the strength of its weakest link, where the “links” are the 
attributes. Thus, it requires that performance with respect to all attributes 
be measured in commensurate units (very rare for MADM problems) or 
else be normalized prior to performing the method. 
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2.3 Maximax

The viewpoint underlying the maximax method is one that assigns total 
importance to the attribute with respect to which each alternative performs 
best. Extending the “chain” analogy used in describing the maximin 
method, maximax performs as if one was comparing alternative chains in 
search of the best link. The score of each chain (alternative) is equal to the 
performance of its strongest link (attribute). Like the maximin method, 
maximax requires that all attributes be commensurate or else pre-
normalized.

2.4 Conjunctive (Satisficing) 

The conjunctive method is purely a screening method. The requirement 
embodied by the conjunctive screening approach is that to be acceptable, 
an alternative must exceed given performance thresholds for all attributes. 
The attributes (and thus the thresholds) need not be measured in 
commensurate units. 

2.5 Disjunctive

The disjunctive method is also purely a screening method. It is the 
complement of the conjunctive method, substituting “or” in place of “and.” 
That is, to pass the disjunctive screening test, an alternative must exceed 
the given performance threshold for at least one attribute. Like the 
conjunctive method, the disjunctive method does not require attributes to 
be measured in commensurate units. 

2.6 Lexicographic

The best-known application of the lexicographic method is, as its name 
implies, alphabetical ordering such as is found in dictionaries. Using this 
method, attributes are rank-ordered in terms of importance. The alternative 
with the best performance on the most important attribute is chosen. If 
there are ties with respect to this attribute, the next most important attribute 
is considered, and so on. Note two important ways in which MADM 
problems typically differ from alphabetizing dictionary words. First, there 
are many fewer alternatives in a MADM problem than words in the 
dictionary. Second, when the decision matrix contains quantitative attribute 
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values, there are effectively an infinite number [rather than 26 (i.e., A-Z)] of 
possible scores with a correspondingly lower probability of ties. 

2.7 Lexicographic Semi-Order 

This is a slight variation on the lexicographic method, where “near-ties” 
are allowed to count as ties without any penalty to the alternative, which 
scores slightly lower within the tolerance (“tie”) window. Counting near-
ties as ties makes the lexicographic method less of a “knife-edged” ranking 
method and more appropriate for MADM problems with quantitative data 
in the decision matrix. However, the method can lead to intransitive 
results, wherein A is preferred to B, B is preferred to C, but C is preferred 
to A. 

2.8 Elimination by Aspects 

This method is a formalization of the well-known heuristic, “process of 
elimination.” Like the lexicographic method, this evaluation proceeds one 
attribute at a time, starting with attributes determined to be most important. 
Then, like the conjunctive method, alternatives not exceeding minimum 
performance requirements—with respect to the single attribute of interest, 
in this case—are eliminated. The process generally proceeds until one 
alternative remains, although adjustment of the performance threshold may 
be required in some cases to achieve a unique solution. 

2.9 Linear Assignment Method 

This method requires, in addition to the decision matrix data, cardinal 
importance weights for each attribute and rankings of the alternatives with 
respect to each attribute. These information requirements are intermediate 
between those of the eight methods described previously, and the five 
methods that follow, in that they require ordinal (but not cardinal) 
preference rankings of the alternatives with respect to each attribute. The 
primary use of the additional information is to enable compensatory rather 
than noncompensatory analysis, that is, allowing good performance on one 
attribute to compensate for low performance on another. 

Note at this point that quantitative attribute values (data in the decision 
matrix) do not constitute cardinal preference rankings. Attribute values are 
generally noncommensurate across attributes, preference is not necessarily 
linearly increasing with attribute values, and preference for attribute values 
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of zero is not generally zero. However, as long as the decision maker can 
specify an ordinal correspondence between attribute values and preference, 
such as “more is better” or “less is better” for each attribute, then the 
ordinal alternative rankings with respect to each attribute that are needed 
by the linear assignment method are specified uniquely. Thus, the 
evaluation/performance rankings required by the linear assignment method 
are easier to derive than the evaluation/performance ratings required by the 
five methods that follow. The cost of using ordinal rankings rather than 
cardinal ratings is that the method is only “semi-compensatory,” in that 
incremental changes in the performance of an alternative will not enter into 
the analysis unless the changes are large enough to alter the rank order of 
the alternatives. 

2.10 Additive Weighting 

The score of an alternative is equal to the weighted sum of its cardinal 
evaluation/preference ratings, where the weights are the importance 
weights associated with each attribute. The resulting cardinal scores for 
each alternative can be used to rank, screen, or choose an alternative. The 
analytical hierarchy process (AHP) is a particular approach to the additive 
weighting method.

2.11 Weighted Product 

The weighted product is similar to the additive weighting method. 
However, instead of calculating “sub-scores” by multiplying performance 
scores times attribute importances, performance scores are raised to the 
power of the attribute importance weight. Then, rather than summing  
the resulting subscores across attributes to yield the total score for the 
alternative, the product of the scores yields the final alternative scores. The 
weighted product method tends to penalize poor performance on one 
attribute more heavily than does the additive weighting method. 

2.12 Nontraditional Capital Investment Criteria 

This method entails pairwise comparisons of the performance gains (over a 
baseline alternative) among attributes, for a given alternative. One attribute 
must be measured in monetary units. These comparisons are combined to 
estimate the (monetary) value attributed to each performance gain, and 
these values are summed to yield the overall implied value of each 
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alternative. These implied values can be used to select an alternative, to 
rank alternatives, or presumably to screen alternatives as well.

2.13 TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution) 

The principle behind TOPSIS is simple: The chosen alternative should be 
as close to the ideal solution as possible and as far from the negative-ideal 
solution as possible. The ideal solution is formed as a composite of the 
best performance values exhibited (in the decision matrix) by any 
alternative for each attribute. The negative-ideal solution is the composite 
of the worst performance values. Proximity to each of these performance 
poles is measured in the Euclidean sense (e.g., square root of the sum of 
the squared distances along each axis in the “attribute space”), with 
optional weighting of each attribute.

2.14 Distance from Target 

This method and its results are also straightforward to describe graphically. 
First, target values for each attribute are chosen, which need not be 
exhibited by any available alternative. Then, the alternative with the 
shortest distance (again in the Euclidean sense) to this target point in 
“attribute space” is selected. Again, weighting of attributes is possible. 
Distance scores can be used to screen, rank, or select a preferred 
alternative.

2.15 Analytic Hierarchy Process (AHP)

The analytical hierarchy process was developed primarily by Saaty (1980). 
AHP is a type of additive weighting method. It has been widely reviewed 
and applied in the literature, and its use is supported by several 
commercially available, user-friendly software packages. Decision makers 
often find it difficult to accurately determine cardinal importance weights 
for a set of attributes simultaneously. As the number of attributes 
increases, better results are obtained when the problem is converted to one 
of making a series of pairwise comparisons. AHP formalizes the 
conversion of the attribute weighting problem into the more tractable 
problem of making a series of pairwise comparisons among competing 
attributes. AHP summarizes the results of pairwise comparisons in a 
“matrix of pairwise comparisons.” For each pair of attributes, the decision 
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maker specifies a judgment about “how much more important one attribute 
is than the other.” 

Each pairwise comparison requires the decision maker to provide an 
answer to the question: “Attribute A is how much more important than 
Attribute B, relative to the overall objective?” 

2.16 Outranking Methods (ELECTRE, PROMETHEE, 
ORESTE)

The basic concept of the ELECTRE (ELimination Et Choix Traduisant la 
Réalité or Elimination and Choice Translating Reality) method is how to 
deal with outranking relation by using pairwise comparisons among 
alternatives under each criteria separately. The outranking relationship of 
two alternatives, denoted as Ai  Aj, describes that even though two 
alternatives i and j do not dominate each other mathematically, the 
decision maker accepts the risk of regarding Ai as almost surely better than 
Aj. An alternative is dominated if another alternative outranks it at least in 
one criterion and equals it in the remaining criteria. The ELECTRE 
method consists of a pairwise comparison of alternatives based on the 
degree to which evaluation of the alternatives and preference weight 
confirms or contradicts the pairwise dominance relationship between the 
alternatives. The decision maker may declare that she/he has a strong, 
weak, or indifferent preference or may even be unable to express his or her 
preference between two compared alternatives. The other two members of 
outranking methods are PROMETHEE and ORESTE.

2.17 Multiple Attribute Utility Models 

Utility theory describes the selection of a satisfactory solution as the 
maximization of satisfaction derived from its selection. The best 
alternative is the one that maximizes utility for the decision maker’s stated 
preference structure. Utility models are of two types additive and 
multiplicative utility models. The main steps in using a multi-attribute 
utility model can be counted as 1) determination of utility functions for 
individual attributes, 2) determination of weighting or scaling factors,  
3) determination of the type of utility model, 4) the measurement of the 
utility values for each alternative with respect to the considered attributes, 
and 5) the selection of the best alternative. 
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2.18 Analytic Network Process 

In some practical decision problems, it seems to be the case where the 
local weights of criteria are different for each alternative. AHP has a 
difficulty in treating in such a case since AHP uses the same local weights 
of criteria for each alternative. To overcome this difficulty, Saaty (1996) 
proposed the analytic network process (ANP). ANP permits the use of 
different weights of criteria for alternatives.  

2.19 Data Envelopment Analysis 

Data envelopment analysis (DEA) is a nonparametric method of measuring 
the efficiency of a decision making unit such as a firm or a public-sector 
agency, which was first introduced into the operations research literature 
by Charnes et al. (1978). DEA is a relative, technical efficiency 
measurement tool, which uses operations research techniques to 
automatically calculate the weights assigned to the inputs and outputs of 
the production units being assessed. The actual input/output data values are 
then multiplied with the calculated weights to determine the efficiency 
scores. DEA is a nonparametric multiple criteria method; no production, 
cost, or profit function is estimated from the data.

2.20 Multi-Attribute Fuzzy Integrals 

When mutual preferential independence among criteria can be assumed, 
consider that the utility function is additive and takes the form of a 
weighted sum. The assumption of mutual preferential independence among 
criteria is, however, rarely verified in practice. To be able to take 
interaction phenomena among criteria into account, it has been proposed to 
substitute a monotone set function on attributes set N called the fuzzy 
measure to the weight vector involved in the calculation of weighted sums. 
Such an approach can be regarded as taking into account not only the 
importance of each criterion but also the importance of each subset of 
criteria. Choquet integral is a natural extension of the weighted arithmetic 
mean (Grabisch, 1992; Sugeno, 1974). 
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3. MULTI-OBJECTIVE DECISION MAKING:  
A CLASSIFICATION OF METHODS 

In multiple objective decision making, application functions are established 
to measure the degree of fulfillment of the decision maker’s requirements 
(achievement of goals, nearness to an ideal point, satisfaction, etc.) on the 
objective functions and are extensively used in the process of finding “good 
compromise” solutions. MODM methodologies can be categorized in a 
variety of ways, such as the form of the model (e.g., linear, nonlinear, or 
stochastic), characteristic of the decision space (e.g., finite or infinite), or 
solution process (e.g., prior specification of preferences or interactive). 
Among MODM methods, we can count multi-objective linear 
programming (MOLP) and its variants such as multi-objective stochastic 
integer linear programming, interactive MOLP, and mixed 0-1 MOLP; 
multi-objective goal programming (MOGoP); multi-objective geometric 
programming (MOGeP); multi-objective nonlinear fractional programming; 
multi-objective dynamic programming; and multi-objective genetic 
programming. The formulations of these programming techniques under 
fuzziness will not be given here since most of them will be explained in 
detail in the subsequent chapters of this book with numerical examples. The 
intelligent fuzzy multi-criteria decision making methods will be explained 
by Waiel F. Abd El-Wahed in Chapter 2.

When a MODM problem is being formulated, the parameters of 
objective functions and constraints are normally assigned by experts.  
In most real situations, the possible values of these parameters are 
imprecisely or ambiguously known to the experts. Therefore, it would be 
more appropriate for these parameters to be represented as fuzzy numerical 
data that can be represented by fuzzy numbers. 

4. DIFFUSION OF FUZZY SETS INTO MULTI-
CRITERIA DECISION MAKING 

The classic MADM methods generally assume that all criteria and their 
respective weights are expressed in crisp values and, thus, that the rating 
and the ranking of the alternatives can be carried out without any problem. 
In a real-world decision situation, the application of the classic MADM 
method may face serious practical constraints from the criteria perhaps 
containing imprecision or vagueness inherent in the information. In many 
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cases, performance of the criteria can only be expressed qualitatively or by 
using linguistic terms, which certainly demands a more appropriate method. 

The most preferable situation for a MADM problem is when all ratings 
of the criteria and their degree of importance are known precisely, which 
makes it possible to arrange them in a crisp ranking. However, many of the 
decision making problems in the real world take place in an environment 
in which the goals, the constraints, and the consequences of possible 
actions are not known precisely (Bellman and Zadeh, 1970). These 
situations imply that a real decision problem is very complicated and thus 
often seems to be little suited to mathematical modeling because there is 
no crisp definition (Zimmermann and Zysno, 1985). Consequently, the 
ideal condition for a classic MADM problem may not be satisfied, in 
particular when the decision situation involves both fuzzy and crisp data. 
In general, the term “fuzzy” commonly refers to a situation in which the 
attribute or goal cannot be defined crisply, because of the absence of well-
defined boundaries of the set of observation to which the description 
applies.

A similar situation is when the available information is not enough to 
judge or when the crisp value is inadequate to model real situations. 
Unfortunately, the classic MADM methods cannot handle such problems 
effectively, because they are only suitable for dealing with problems in 
which all performances of the criteria are assumed to be known and, thus, 
can be represented by crisp numbers. The application of the fuzzy set 
theory in the field of MADM is justified when the intended goals or their 
attainment cannot be defined or judged crisply but only as fuzzy sets 
(Zimmermann, 1987). The presence of fuzziness or imprecision in a 
MADM problem will obviously increase the complexity of the decision 
situation in many ways. Fuzzy or qualitative data are operationally more 
difficult to manipulate than crisp data, and they certainly increase the 
computational requirements in particular during the process of ranking 
when searching for the preferred alternatives (Chen and Hwang, 1992). 

Bellman and Zadeh (1970) and Zimmermann (1978) introduced fuzzy 
sets into the MCDM field. They cleared the way for a new family of 
methods to deal with problems that had been inaccessible to and 
unsolvable with standard MCDM techniques. Bellman and Zadeh (1970) 
introduced the first approach regarding decision making in a fuzzy 
environment. They suggested that fuzzy goals and fuzzy constraints could 
be defined symmetrically as fuzzy sets in the space of alternatives, in 
which the decision was defined as the confluence between the constraints 
to be met and the goals to be satisfied. A maximizing decision was then 
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defined as a point in the space of alternatives at which the membership 
function of a fuzzy decision attained its maximum value. 

Baas and Kwakernaak’s (1977) approach was widely regarded as the 
most classic work on the fuzzy MADM method and was often used as a 
benchmark for other similar fuzzy decision models. Their approach 
consisted of both phases of MADM, the rating of criteria and the ranking 
of multiple aspect alternatives using fuzzy sets.

Yager (1978) defined the fuzzy set of a decision as the intersection 
(conjunction) of all fuzzy goals. The best alternative should possess the 
highest membership values with respect to all criteria, but unfortunately, 
such a situation rarely occurs in the case of a multiple attribute decision- 
making problem. To arrive at the best acceptable alternative, he suggested 
a compromise solution by proposing the combination of max and min 
operators. For the determination of the relative importance of each 
attribute, he suggested the use of the Saaty method through pairwise 
comparison based on the reciprocal matrix. 

Kickert (1978) summarized the fuzzy set theory applications in MADM 
problems. Zimmermann’s (1985, 1987) two books include MADM 
applications. There are a number of very good surveys of fuzzy MCDM 
(Chen and Hwang, 1992; Fodor and Roubens, 1994; Luhandjula, 1989; 
Sakawa, 1993).

Dubois and Prade (1980), Zimmermann (1987), Chen and Hwang 
(1992), and Ribeiro (1996) differentiated the family of fuzzy MADM 
methods into two main phases. The first phase is generally known as the 
rating process, dealing with the measurement of performance ratings or the 
degree of satisfaction with respect to all attributes of each alternative. The 
aggregate rating, indicating the global performance of each alternative, can 
be obtained through the accomplishment of suitable aggregation operations 
of all criteria involved in the decision. The second phase, the ranking of 
alternatives, is carried out by ordering the existing alternatives according 
to the resulted aggregated performance ratings obtained from the first 
phase.

Some titles among recently published papers can show us the latest 
interest areas of MADM and MODM. Ravi and Reddy (1999) rank both 
coking and noncoking coals of India using fuzzy multi-attribute decision 
making. They use Saaty’s AHP and Yager’s (1978) fuzzy MADM 
approach to arrive at the coal field having the best quality coal for 
industrial use. Fan et al. (2002) propose a new approach to solve the 
MADM problem, where the decision maker gives his/her preference on 
alternatives in a fuzzy relation. To reflect the decision maker’s preference 
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information, an optimization model is constructed to assess the attribute 
weights and then to select the most desirable alternatives.

Wang and Parkan (2005) investigate a MADM problem with fuzzy 
preference information on alternatives and propose an eigenvector method 
to rank them. Three optimization models are introduced to assess the 
relative importance weights of attributes in a MADM problem, which 
integrate subjective fuzzy preference relations and objective information in 
different ways. Omero et al. (2005) deal with the problem of assessing the 
performance of a set of production units, simultaneously considering 
different kinds of information, yielded by data envelopment analysis, a 
qualitative data analysis, and an expert assessment. Hua et al. (2005) 
develop a fuzzy multiple attribute decision making (FMADM) method 
with a three-level hierarchical decision making model to evaluate the 
aggregate risk for green manufacturing projects.

Gu and Zhu (2006) construct a fuzzy symmetry matrix by referring to 
the covariance definition of random variables as attribute evaluation space 
based on a fuzzy decision making matrix. They propose a fuzzy AHP 
method by using the approximate fuzzy eigenvector of such a fuzzy 
symmetry matrix. This algorithm reflects the dispersed projection of 
decision information in general. Fan et al. (2004) investigate the multiple 
attribute decision making (MADM) problems with preference information 
on alternatives. A new method is proposed to solve the MADM problem, 
where the decision maker gives his/her preference on alternatives in a 
fuzzy relation. To reflect the decision maker’s subjective preference 
information, a linear goal programming model is constructed to determine 
the weight vector of attributes and then to rank the alternatives.

Ling (2006) presents a fuzzy MADM method in which the attribute 
weights and decision matrix elements (attribute values) are fuzzy 
variables. Fuzzy arithmetic operations and the expected value operator of 
fuzzy variables are used to solve the FMADM problem. Xu and Chen 
(2007) develop an interactive method for multiple attribute group decision 
making in a fuzzy environment. The method can be used in situations 
where the information about attribute weights is partly known, the weights 
of decision makers are expressed in exact numerical values or triangular 
fuzzy numbers, and the attribute values are triangular fuzzy numbers. Chen 
and Larbani (2006) obtain the weights of a MADM problem with a fuzzy 
decision matrix by formulating it as a two-person, zero-sum game with an 
uncertain payoff matrix. Moreover, the equilibrium solution and the 
resolution method for the MADM game are developed. These results are 
validated by a product development example of nano-materials.
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Some recently published papers on fuzzy MODM are given as follows: 
El-Wahed and Abo-Sinna (2001) introduce a solution method based on the 
theory of fuzzy sets and goal programming for MODM problems. The 
solution method, called hybrid fuzzy-goal programming (HFGP), 
combines and extends the attractive features of both fuzzy set theory and 
goal programming for MODM problems. The HFGP approach is 
introduced to determine weights to the objectives under the same priorities 
as using the concept of fuzzy membership functions along with the notion 
of degree of conflict among objectives. Also, HFGP converts a MODM 
problem into a lexicographic goal programming problem by fixing the 
priorities and aspiration levels appropriately. Rasmy et al. (2002) introduce 
an interactive approach for solving MODM problems based on linguistic 
preferences and architecture of a fuzzy expert system. They consider the 
decision maker’s preferences in determining the priorities and aspiration 
levels, in addition to analysis of conflict among the goals. The main 
concept is to convert the MODM problem into its equivalent goal 
programming problem by appropriately setting the priority and aspiration 
level for each objective. The conversion approach is based on the fuzzy 
linguistic preferences of the decision maker. Borges and Antunes (2002) 
study the effects of uncertainty on multiple-objective linear programming 
models by using the concepts of fuzzy set theory. The proposed interactive 
decision support system is based on the interactive exploration of the 
weight space. The comparative analysis of indifference regions on the 
various weight spaces (which vary according to intervals of values of  
the satisfaction degree of objective functions and constraints) enables the 
study of the stability and evolution of the basis that corresponds to the 
calculated efficient solutions with changes of some model parameters. 
Luhandjula (1984) used a linguistic variable approach to present a 
procedure for solving the multiple objective linear fractional programming 
problem (MOLFPP). Dutta et al. (1992) modified the linguistic approach 
of Luhandjula such as to obtain an efficient solution to MOLFPP. Stancu-
Minasian and Pop (2003) points out certain shortcomings in the work of 
Dutta et al. and gives the correct proof of theorem, which validates the 
obtaining of the efficient solutions. We notice that the method presented 
there as a general one does only work efficiently if certain hypotheses 
(restrictive enough and hardly verified) are satisfied. 

Li et al. (2006) improve the fuzzy compromise approach of Guu and 
Wu (1999) by automatically computing proper membership thresholds 
instead of choosing them. Indeed, in practice, choosing membership 
thresholds arbitrarily may result in an infeasible optimization problem. 
Although a minimum satisfaction degree is adjusted to get a fuzzy efficient 
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solution, it sometimes makes the process of interaction more complicated. 
To overcome this drawback, a theoretically and practically more efficient 
two-phase max–min fuzzy compromise approach is proposed. Wu et al. 
(2006) develop a new approximate algorithm for solving fuzzy multiple 
objective linear programming (FMOLP) problems involving fuzzy 
parameters in any form of membership functions in both objective 
functions and constraints. A detailed description and analysis of the 
algorithm are supplied. Abo-Sinna and Abou-El-Enien (2006) extend the 
TOPSIS for solving large scale multiple objective programming problems 
involving fuzzy parameters. These fuzzy parameters are characterized as 
fuzzy numbers. For such problems, the –Pareto optimality is introduced 
by extending the ordinary Pareto optimality on the basis of the –level sets 
of fuzzy numbers. An interactive fuzzy decision-making algorithm for 
generating an –Pareto optimal solution through the TOPSIS approach is 
provided where the decision maker is asked to specify the degree  and 
the relative importance of objectives.

5. CONCLUSIONS

The main difference between the MADM and MODM approaches is that 
MODM concentrates on continuous decision space aimed at the realization 
of the best solution, in which several objective functions are to be achieved 
simultaneously. The decision processes involve searching for the best 
solution, given a set a conflicting objectives, and thus, a MODM problem 
is associated with the problem of design for optimal solutions through 
mathematical programming. In finding the best feasible solution, various 
interactions within the design constraints that best satisfy the goals must be 
considered by way of attaining some acceptable levels of sets of some 
quantifiable objectives. Conversely, MADM refers to making decisions in 
the discrete decision spaces and focuses on how to select or to rank 
different predetermined alternatives. Accordingly, a MADM problem can be 
associated with a problem of choice or ranking of the existing alternatives 
(Zimmermann, 1985).

Having to use crisp values is one of the problematic points in the crisp 
evaluation process. As some criteria are difficult to measure by crisp 
values, they are usually neglected during the evaluation. Another reason is 
about mathematical models that are based on crisp values. These methods 
cannot deal with decision makers’ ambiguities, uncertainties, and 
vagueness that cannot be handled by crisp values. The use of fuzzy set 
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theory allows us to incorporate unquantifiable information, incomplete 
information, non obtainable information, and partially ignorant facts into 
the decision model. When decision data are precisely known, they should 
not be placed into a fuzzy format in the decision analysis. Applications of 
fuzzy sets within the field of decision making have, for the most part, 
consisted of extensions or “fuzzifications” of the classic theories of 
decision making. Decisions to be made in complex contexts, characterized 
by the presence of multiple evaluation aspects, are normally affected by 
uncertainty, which is essentially from the insufficient and/or imprecise 
nature of input data as well as the subjective and evaluative preferences of 
the decision maker. Fuzzy sets have powerful features to be incorporated 
into many optimization techniques. Multiple criteria decision making is 
one of these, and it is certain that more frequently you will see more fuzzy 
MCDM modeling and applications in the literature over the next few 
years.
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INTELLIGENT FUZZY MULTI-CRITERIA 
DECISION MAKING: REVIEW AND ANALYSIS 

Waiel F. Abd El-Wahed 
Operations Researchs and Decisison Support Department, Faculty of Computers 
& Information, Menoufia University, Shiben El-Kom, Egypt 

Abstract:  This chapter highlights the implementation of artificial intelligence techniques 
to solve different problems of fuzzy multi-criteria decision making. The 
reasons behind this implementation are clarified. In additions, the role of each 
technique in handling such problem are studied and analyzed. Then, some of 
the future research work is marked up as a guide for researchers who are 
working in this research area. 

Key words:  Intelligent optimization, fuzzy multi-criteria decision making, research 
directions

1. INTRODUCTION

1.1 Mathematical Model of Fuzzy Multi-Criteria 
Decision Making

Multi-criteria decision making (MCDM) represents an interest area of 
research since most real-life problems have a set of conflict objectives.
MCDM has its roots in late-nineteenth-century welfare economics, in the 
works of Edgeworth and Pareto. A mathematical model of the MCDM can 
be written as follows: 

1 2Min  [ ( ), ( ),..., ( )]T
Ks

Z z x z x z x  (1) 
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where

}0,,{ xRxbAxXxS n

where:
Z(x) = C x is the K-dimensional vector of objective functions and C is 

the vector of cost corresponding to each objective function,
S is the feasible region that is bounded by the given set of constraints, 
A is the matrix of technical coefficients of the left-hand side of 

constraints,
b is the right-hand side of constraints (i.e., the available resources), 
x is the n-dimensional vector of decision variables. 
When the objective functions and constraints are linear, then the model 

is a linear multi-objective optimization problem (LMOOP). But, if any 
objective function and/or constraints are nonlinear, then the problem is 
described as a nonlinear multi-objective optimization problem (NLMOOP). 
Since problem (1) is deterministic, it can be solved by using different 
approaches such as follows: 

1. Utility function approach, 
2. Interactive programming, 
3. Goal programming, and 
4. Fuzzy programming. 

But, in the real world, the input information to model (1) may be vague, 
for example, the technical coefficient matrix (A) and/or the available 
resource values (b) and/or the coefficients of objective functions (C). Also, 
in other situations, the vagueness may exist, such as the aspiration levels of 
goals (zi(x)) and the preference information during the interactive process. 
All of these cases lead to a fuzzy multi-criteria model that can be written 
as follows: 

1 2Min [ ( ), ( ),..., ( )]T
KS

Z z x z x z x  (2) 

where

~ ~ ~
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This fuzzy model is transformed into crisp (deterministic) by imple-
menting an appropriate membership function. So, the model can be 
classified into two classes. If any of the objective functions, constraints, 
and membership functions are linear, then the model will be LFMOOP. 
But, if any of the objective functions and/or constraints and/or membership 
functions are nonlinear, then the model is described as NLFMOOP. 

Different approaches can handle the solution of problem (2). All of 
these approaches depend on transforming problem (2) from fuzzy model to 
crisp model via determining an appropriate membership function that is 
the backbone of fuzzy programming.  

Definition 1.1: Fuzzy set 

Let X denote a universal set. Then a fuzzy subset Ã of X is defined by its 
membership function: 

]1,0[: XA  (3) 

That assigns to each element x X a real number in the interval [0, 1] 
and Ã(x) represents the grade of membership function of x in A.

The main strategy for solving model (2) can be handled according to 
the following scheme: 

Step 1. Examine the type of preference information needed. 
Step 2. If a priori articulation of preference information is available 

use, one of the following programming schemes: 
2.1 Fuzzy goal programming, 
2.2 Fuzzy global criterion, or 
2.3 Another appropriate fuzzy programming technique. 

Otherwise, go to step (3). 
Step 3. If progressive articulation of preference information is 

available, use the following programming scheme: 
3.1 Fuzzy interactive programming, 
3.2 Interactive fuzzy goal programming, or 
3.3 Another appropriate fuzzy interactive programming technique. 

Step 4. End strategy. 

Each programming scheme involved different solution methodologies 
that will be indicated in Section 1.3. 
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1.2 Historical Background of Fuzzy MCDM 

In 1970, Bellman and Zadah highlighted the main pillar of fuzzy decision 
making that can be summarized as follows:

CGD  (4) 

where G is the fuzzy goal, C is the fuzzy constraints, and D is the fuzzy 
decision that is characterized by a suitable membership function as follows: 

))(),(min()( xxx CGD . (5) 

The maximizing decision is then defined as follows: 

))(),((minmax)(max xxx CGXxDXx
. (6) 

For k fuzzy goals and m fuzzy constraints, the fuzzy decision is defined 
as follows:

mk CCCGGGD ...... 2121  (7) 

and the corresponding maximizing decision is written as follows:

))()...,(,),...,((minmax)(max
11

xxxx CmCGGXxDXx k
. (8) 

For more details about this point, see Sakawa (1993). Since this date, 
many research works have been developed. In this section, the light will be 
focused on a sample of research works on FMCDM from the last 25 years 
to extract the main shortcomings that argue for us to direct attention 
toward the intelligent techniques as an alternative methodology for 
overcoming these drawbacks.

In FMCDM problems, the membership function depends on where the 
fuzziness existed. If the fuzziness in the objective functions coefficients, 
the membership function may be represented by 
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where Uk is the worst upper bound and Lk is the best lower bound of the 
objective function k, respectively. They are calculated as follows:

max( ) max ( )

min( ) min ( ), 1, 2,. . .,

k kU Z Z xk x X
k kL Z Z x k Kk x X

 (10) 

If the fuzziness is existed in the right-hand side of the constraints, the 
constraints are transformed into equalities and then the following 
membership function is applied (Lai and Hwang, 1996): 
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where the membership function is assumed to be symmetrically triangular 
functions. The problem solver may assume any other membership function 
based on his/her experience. Besides, some mathematical and statistical 
methods develop a specific membership function. On the other side, the 
intelligent techniques provide the problem solver with a powerful 
techniques to create or estimate these functions as will be indicated later. If 
we assumed that the FMCDM problem has fuzzy objective functions, then 
the deterministic model of the FMCDM is written as follows: 

max
subject to
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0 1,2,..., 1,2,...,
0 1
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 (12) 
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where  is an auxiliary variable and can be worked at a satisfaction level. 
Model (7) can be solved as a single objective linear/nonlinear programming 
problem.

After the Bellman and Zadah paper, several research studies were 
adopted, such as Hannan (1983) and Zimmerman (1987) who handled 
fuzzy linear programming with multiple objectives by assuming a special 
form of the membership function. Hannan assumed discrete membership 
function, and Zimmerman used a continuous membership function. 
Boender (1989), Sakawa (1993), and Baptistella and Ollero (1980) 
implemented the fuzzy set theory in interactive multi-criteria decision 
making. For more historical information, see Sakawa (1993) and Lai and 
Hwang (1996). Also, see Biswal (1992), Bhattacharya et al. (1992), Bit 
(1992), Boender et al. (1989), Buckley (1987), Lothar and Markstrom 
(1990) for more solution methodologies. 

Many real-life problems have been formulated as FMCDM and have 
been solved by using an appropriate technique. Some of these applications 
involved production, manufacturing, location allocation problems, 
environmental management, business, marketing, agriculture economics, 
machine control, engineering applications and regression modeling. A 
good classification with details can be found in Lai and Hwang (1996).  
A new literature review (Zopounidis and Doumpos, 2002) assures the 
same field of applications.

1.3 Shortcomings of the FMCDM Solution Approaches 

The problems that meet either the solution space construction or the model 
development can be classified into three categories as follows: 1) ill-
structured, 2) semi-well structured or, 3) well structured. 

Each category has been characterized by specific criteria to indicate its 
class. Some of these indicator criteria of ill-structured problems are as 
follows:

1. There is no available solution technique to solve the model. 
2. There is no standard mathematical model to represent the problem. 
3. There is no ability to involve the qualitative factors in the model. 
4. There is no available solution space to pick up the optimal solution.
5. There is a difficulty in measuring the quality of the result solution(s). 
6. There is kind of vagueness of the available information that leads to 

complexity in considering it into the model account. 
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If some of these criteria exist, then the problem will belong to the 
second category, which is called semi-ill-structured problems. But, if all of 
these criteria and others do not exist, then the problem will belong to the 
third category, which is called well-structured problems. It is clear that 
there is no problem regarding the third category. Fortunately, the first and 
second categories represent a rich area for investigation, especially in the 
era of information technology where all the sciences are interchanged in a 
complex manner to a degree that one can find difficulty in separating 
between sciences. In other words, biological sciences, sociology, insects’ 
science, and so on attracted researchers to simulate them by using 
computer technology that consequently reflects its positive progress on the 
optimization research work. 

Let us now apply these criteria of ill-structured problems on FMCDM 
problems. For FMCDM model structure, the following problems are 
represented as an optical stone to more progress in this area. Some of these 
problems are as follows: 

1. Incorporating fuzzy preferences in the model still needs new 
methodologies to take the model into account without increasing the 
model complexity. 

2. Right now, the FMCDM models are transformed into crisp models to 
solve it by using the available traditional techniques. This transformation 
reduces both the efficiency and the effectiveness of the fuzzy solution 
methodologies. So, we need to look for a new representation methodo-
logy to increase or at least keep the efficiency of the fuzzy methodology. 

fuzzy programming, and right now, the problem solvers assumed it 
according the experience. As a result, the solution will be different 
according to the selected membership function. This will lead to 
another problem, which is which solution is better or qualifies more for 
the problem under study. In this case, there is an invitation to 
implement the progress in information technology to discover an 
appropriate membership function. 

4. Large-scale FMCDM models still need more research especially when 
incorporating large preference information. 

Regarding the solution methodologies, there are some difficulties in 
enhancing them. Some of them are: 

1. Some of the existing ranking approaches that have been used to solve 
the FMCDM problem are not perfect. 

3. As mentioned above, the membership function is the cornerstone of 
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2. Fuzzy integer programming with multi-criteria can be considered a 
combinatorial optimization problem, and as a result, it needs an 
exponential time algorithm to go with it. 

3. In 0-1 FMCDM problems (whatever small scale or large scale), the 
testing process of the Pareto-optimal solution is considered the NP-hard 
problem.

4. In FMCDM problems, a class of problems exist that are known as the 
global convex problems, where the good solutions in the objective 
space are similar to those in the decision space. So, we need a new 
methodology to perform well with them.

5. In fuzzy and nonfuzzy MCDM problems, there is a difficulty in 
constructing an initial solution that should be close to the Pareto-
optimal solution to reduce the solution time. So, we need powerful 
methodology based information technology to deal with this problem. 

Because of these shortcomings and others, FMCDM attracts the 
attentions of researchers to enhance the field of FMCDM by developing 
more powerful links (bridges) between it and other sciences. In this 
chapter, we will highlight the link between artificial intelligence and 
FMCDM to overcome all or some of the mentioned problems. This link 
leads to a new and interesting area of research called “intelligent 
optimization.” The general strategy for the integration between artificial 
intelligence (AI) techniques and FMCDM problems may be done 
according the following flowchart seen in Figure 2. In the next subsection, 
some of the intelligent techniques will be introduced briefly.

1.4 Some Intelligent Techniques 

AI is the branch of computer technology that simulates the human 
behavior via intelligent machines to perform well and better than humans. 
Computer science researchers are wondering how to extract their ideas 
from the biological systems of human beings such as thinking strategies, 
the nervous system, and genetics. AI also extends to the kingdom of 
insects such as the ant colony. The tree that summarizes the different 
commercial forms of AI techniques is shown in Figure 1. Each AI 

For example, expert systems (ESs) can handle the qualitative factors or 
preferences that can not be included in the mathematical model. Artificial 
neural networks (ANNs) are successfully applied in prediction, classi-
fication, pattern and voice recognition, and so on. Simulated annealing 

technique can perform well in specific situations more so than in others. 



Intelligent Fuzzy MCDM: Review and Analysis 27

(SA), genetic algorithms (GA), and particle swarm optimization (PSO) are 
used as stochastic search methods to deal with multi-criteria combinatorial 
optimization problems. 

The implementation of AI techniques to handle different problems in 
FMCDM depends on the following conditions: 

1. The nature of the problem that FMCDM suffers from, 
2. The availability of the solution techniques and its performance, 
3. The environmental factors that affect the problem under study.

AI techniques can be classified according to their functions as follows: 

1. Symbolic processing, where the knowledge is treated symbolically not 
numerically. In other words, the process is not algorithmical. These 
techniques are ES, fuzzy expert system (FES), and decision support 
system (DSS). 

2. Search methods that are implemented to search and scan the large 
solution space of combinatorial optimization problem. These techniques 
are able to pick an acceptable or preferred solution in less time 
compared with the traditional solution procedures. Examples of these 
search methods are GA, SA, ant colony optimization (ACO), PSO, 
DNA computing, and any hybrid of them.

3. Learning process that is responsible for doing forecasting, 
classifications, and function estimating based on enough historical data 
about the problem under study. These techniques are ANN and neuro-
fuzzy systems. 

Now, we shall classify the intelligent FMCDM problems based upon 
the implemented technique. 

1.4.1 Expert System and FMCDM 

ES is an intelligent computer program that consists of three modules:  
1) inference engine module, 2) knowledge-base module, and 3) user-
interface module. This system can produce one of the following functions: 
1) conclusion, 2) recommendation, and 3) advice. The main feature of the 
ES is its ability to treat the problems symbolically not algorithmically. So, 
it can perform a good job regarding both the decision maker’s preferences 
and the qualitative factors that cannot be included in the mathematical 
model because of its increase in the degree of model complexity. 
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Figure 1. The tree diagram of artificial intelligence techniques 

Generally speaking, ES has been applied to solve different applications 
that can be modeled in MCDM. For example, Lothar and Markstrom 
(1990) developed an expert system for a regional planning system to 
optimize the industrial structure of an area. In this system, AI paradigms 
and numeric multi-criteria optimization techniques are combined to arrive 
at a hybrid approach to discrete alternative selection. These techniques 
include 1) qualitative analysis, 2) various statistical checks and recom-
mendations, 3) robustness and sensitivity analysis, and 4) help for defining 
acceptable regions for analysis. Jones et al. (1998) developed an intelligent 
system called “GPSYS” to deal with linear and integer goal programming. 
The intelligent goal programming system is one that is designed to allow a 
nonspecialist access to, and clear understanding of a goal programming 
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Figure 2. The integration between AI techniques and FMCDM phases 

detection and restoration, normalization, automated lexicographic 
redundancy checking, and an interactive facility. Abd El-Wahed (1993) 
developed a decision support system with a goal programming based ES to 
solve engineering problems. In this research, the statistical analysis and the 
decision maker’s preferences are combined in an ES to assign the 
differential weights of the sub-goals in goal programming problems. Also, 
Rasmy et al. (2001) presented a fuzzy ES to include the qualitative factors 
that could not be involved in the mathematical model of the multi-criteria 
assignment problem in the field of bank processing. The approach depends 
on evaluating the model solution by using the developed fuzzy ES. If the 
solution is coincided with the evaluation criteria, the approach is terminated. 
Otherwise, some modification on the preferences is done in the feedback 
to resolve the model again and so on until getting a solution coincides with 
the evaluation criteria. Little research work regarding FMCDM has been 
done. For example, Rasmy et al. (2002) presented an interactive approach 
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for solving the MCDM problem with fuzzy preferences in both aspiration 
level determination and priority structure by using the framework of the 
fuzzy expert system. The main idea of this approach is to convert the 
MCDM problem into its equivalent goal programming model by setting 
the aspiration levels and priority of each objective function based on fuzzy 
linguistic variables. This conversion makes the implementation of ES easy 
and effective.

Liu and Chen (1995) present an integrated machine troubleshooting 
expert system (IMTES) that enhances the efficiency of the diagnostic 
process. The role of fuzzy multi-attribute decision-making in ES is 
determined to be the most efficient diagnostic process, and it creates a 
“meta knowledge base” to control the diagnosis process.

The results of an update search in some available database sites 
regarding the combination of both ES and FMCDM can be summarized as 
follows:

1. The mutual integration between ES and MCDM/FMCDM is a rich area 
for more research, 

2. The implementation of ES for dealing with the problems of FMCDM 
still needs more research, 

3. The combination of ES and other AI techniques needs more research to 
gain the advantages of both of them in solving the problems of 
FMCDM problems. 

The researchers are invited to investigate the following points where 
they are not covered right now: 

1. Applying ES to guide the determination process of the aspiration levels 
of fuzzy goal programming. 

2. Applying ES to handle the DM’s preferences in solving interactive 
FMCDM to reduce the solution time and the solution efforts. 

3. Implementing the ES in ranking approaches that have been used to 
solve FMCDM problems to include the environmental qualitative 
factors.

4. Handling ES in solving large-scale FMCDM problems. 
5. Combining ES with both parametric analysis and sensitivity analysis to 

pick a more practical solution. 
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1.4.2 ANN and FMCDM Problems 

ANN is a simulation of a human nervous system. The ANN simulator 
depends on the Third Law of Newton: “For any action there is an equal 
reaction with negative direction.” A new branch of computer science is 
opened for research called “neural computing.” Neural computing has 
been viewed as a promising tool to solve problems that involve large 
date/preferences or what is called in optimization large-scale optimization 
problems. Also, the transformation of FMCDM into crisp model needs an 
appropriate membership function. In other situations, ANN is implemented 
to solve the FMCDM problems without the need to defuzzify the 
mathematical model of FMCDM problems. ANN offers an excellent 
methodology for estimating continuous or discrete membership functions/ 
values. To do that, an enormous amount of historical data is needed to train 
and test the ANN as well as to get the right parameters and topology of it 
to solve such a problem. On the other side, the complex combinatorial 
FMCDM problems (NP hard problems) may be not represented in a 
standard mathematical form. As a result, ANN can be used to simulate the 
problem for the purpose of getting an approximate solution based on a 
simulator. The main problem facing those who are working in this area is 
the development of the energy (activation) function, which is the central 
process unit of any ANN. This function should have the inherited 
characteristics of both the objective function and the constraints to train 
and test the network. There are many standard forms of it such as the 
sigmoid function and the hyperbolic function. The problem solver must 
elect a suitable one from them such that can be fitted with the nature of the 
problem under study. For the FMCDM with fuzzy objective functions 
[model (7)], the energy function can be established by using the Lagrange 
multiplier method as follows: 

( , , , ) ( ( ( )) ( )
n

t k t
k ij j i

j 1

E x µ Z x ) a x b  (11) 

where  and  are the Lagrange multipliers.  is the vector of slack 
variables. By taking the partial derivative of an equation with respect to x,

, and , we obtain the following differential equations:
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where  is called a learning parameter. By setting the penalty parameters 
and , the adaptive learning parameters , and initial solution xj(0), then 
we can solve the system (9) to obtain  .

Previous research works use ANN to solve some optimization 
problems as well as FMCDM specifically. These works can be classified 
according to the type of treating method of the FMCDM model as follows: 

1.4.2.1 Treating the Fuzzy Preferences in MCDM Problems 
For example, Wang (1993) presented a feed-forward ANN approach with a 
dynamic training procedure to solve multi-criteria cutting parameter 
optimization in the presence of fuzzy preferences. In this approach, the 
decision maker’s preferences are modeled by using fuzzy preference 
information based on ANN. Wang and Archer (1994) modeled the 
uncertainty of multi-criteria, multi-persons decision making by using fuzzy 
characteristics. They implemented the back propagation learning algorithm 
under monotonic function constraints. Stam et al. (1996) presented two 
approaches of ANNs to process the preference ratings, which resulted from 
analytical, hierarchy process, pair-wise comparison matrices. The first 
approach, implements ANN to determine the eigenvectors of the pair-wise 
comparison matrices. This approach is not capable of generalizing the 
preference information. So, it is not appropriate for approximating  
the preference ratings if the decision maker’s judgments are imprecise. The 
second approach uses the feed-forward ANN to approximate accurately the 
preference ratings. The results show that this approach is working well 
with respect to imprecise pair-wise judgments. Chen and Lin (2003) 
developed the decision neural network (DNN) to use in capturing and 
representing the decision maker’s preferences. Then, with DNN, an 
optimization problem is solved to look for the most desirable solution. 

1.4.2.2 Handling Fuzziness in FMCDM Models
It is clear that ANN is capable of solving the constrained optimization 
problems, especially the applications that require on-line optimization. 
Gen et al. (1998) discussed a two-phase approach to solve MCDM 
problems with fuzziness in both objectives and constraints. The main 
proposed steps to solve the FMCDM model (2) can be summarized as 
follows:
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1. Construct the membership function based on positive ideal and 
negative ideal (worst values) solutions.

2. Apply the concept of -level cut, where  [0,1] to transform the 
model into a crisp model.

3. Develop the crisp linear programming model based on steps (1) and 
(2).

4. According to the augmented Lagrange multiplier method, we can create 
the Lagrangian function to transform the result model in step (3) into an 
unconstrained optimization problem. The Lagrangian function is 
implemented as an energy (activation) function to activate the 
developed ANN. 

5. If the DM accepts the solution, stop. Otherwise, change  and go to the 
step (1). 

The results show that the result solution is close to the best compromise 
solution that has been calculated from the two-phase approach. The 
method has an advantage; if the decision maker is not satisfied with the 
obtained solutions, he/she can get the best solutions by changing the  

-level cut. 

1.4.2.3 Determining the Membership Functions 
Ostermark (1999) proposed a fuzzy ANN to generate the membership 
functions to new data. The learning process is reflected in the shape of the 
membership functions, which allows the dynamic adjustment of the 
functions during the training process. The adopted fuzzy ANN is applied 
successfully to multi-group classification-based multi-criteria analysis in 
the economical field. 

1.4.2.4 Searching the Solution Space of Ill-Structured FMCDM 
Problems 

Gholamian et al. (2005) studied the application of hybrid intelligent system 
based on both fuzzy rule and ANN to: 

Guide the decision maker toward the noninferior solutions.
Support the decision maker in the selection phase after finishing the 
search process to analyze different noninferior points and to select the 
best ones based on the desired goal levels. 

The idea behind developing this system is the ill-structured real-world 
problem in marketing problems where the objective can not be expressed 
in a mathematical form but in the form of a set of historical data. This 
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means that ANN can do well with respect to any other approach. From the 
above analysis, we can deduce that many research points are still 
uncovered. It means that the integration area between ANN and FMCDM 
is very rich for more research. These points are summarized as follows: 

1. Applying the ANN to solve FMCDM problems in its fuzzy environment 
without transforming it into a crisp model to obtain more accurate, 
efficient, and realistic solution(s). 

2. Developing more approaches to enhance the process of generating real 
membership functions. 

3. Studying the effect of using different membership functions on the 
solution quality and performance. 

4. Implementing the ANN to solve more large-scale FMCDM problems 
that represented the real-life case. 

5. Combining both ES and ANN to develop more powerful approaches to 
consider the preference information (whatever quantitative/qualitative) 
in FMCDM problems.

6. Applying the ANN to do both parametric and sensitivity analysis of the 
real-life problems that can be represented by the FMCDM model.

1.4.3 Tabu Search 

A tabu search (TS) was initiated by Glover as an iterative intelligent search 
technique capable of overcoming the local optimality when solving the CO 
problems. The search process is based on a neighborhood mechanism. The 
neighborhood of a solution is defined as a set of all formations that can be 
obtained by a move that is a process for transforming the search from the 
current solution to its neighboring solution. If the move is not listed on the 
TS, the move is called an “admissible move.” If the produced solution at 
any move is better than all enumerated solutions in prior iterations, then 
this solution is saved as the best one. The candidate solutions, at each 
iteration, are checked by using the following tabu conditions: 

1. Frequency memory that is responsible for keeping the knowledge of 
how the same solutions have been determined in the past. 

2. Recency memory that prevents cycles of length less than or equal to a 
predetermined number of iterations. 

TS has an important property that enables it to avoid removing the 
powerful solutions from consideration. This property depends on an 
element called an aspiration mechanism. This element means that if the TS 
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list captured a solution with a value strictly better than the best obtained so 
far, the TS can stop. 

TS is applied to solve some FMCDM problems. For example, Bagis 
(2003) proposed a new approach based on TS to determine the 
membership functions of a fuzzy logic controller. The simulation results 
indicated that the given approach is performed well, and as a result it is 
effective in determining such a membership function. Li et al. (2004) 
presented a TS method as a stochastic global optimization method for 
solving very large combinatorial optimization tasks and for extending a 
continuous-valued function for the fuzzy optimization problems. They 
approved the performance of the proposed method by applying it to an 
elementary fuzzy optimization problem such as the method for fuzzy linear 
programming; fuzzy regression and the training of fuzzy neural networks 
are also presented. Choobineh et al. (2006) proposed an algorithm to deal 
with a sequencing of n-jobs on a single machine with sequence-dependent 
setup times and m-objective functions. The algorithm generates a set of 
solutions that reflects the objectives’ weights and close to the best 
observed values of the objectives. In addition, the authors formulated a 
mixed integer linear program to obtain the optimal solution of a triple-
objective functions problem. Most of the published research works have 
not focused on FMCDM problems. 

1.4.4 Simulated Annealing (SA)  

The SA algorithm is a search technique designed to look for a global 
minimum among many local minima. The algorithm simulates the 
thermodynamic process of annealing metals by slow cooling where at high 
temperatures, molecules in metal move rapidly with respect to each other. 
If the metal is slow cooled sufficiently, then thermal mobility is lost. The 
resulting arrangement of atoms tends to form a pure crystal that is 
completely ordered. This ordered state occurs when the system has 
achieved minimum energy by an annealing process that must be cooled 
sufficiently slowly to reach thermal equilibrium. 

The SA search method is a powerful tool to provide excellent solutions 
of single objective optimization problems to reduce the computational 
cost. Later, this approach was adapted for the multi-objective framework 
by Serafini (1985), Czy ak et al. (1994) and Ulungu et al. (1995). But they 
examined only the notion of the probability in the multi-objective 
framework. Serafini (1985) used simulated annealing on the multi-
objective framework. Czy ak and Jaszkiewicz (1998) and Ulungu et al. 
(1998) designed a complete MOSA algorithm and tested it with a multi-
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objective combinatorial optimization problem. Ulungu et al. (1999) 
presented an interactive version of MOSA to solve an industrial 
application problem. Suppapitnarm et al. (2000) proposed a different 
simulated annealing approach to handle multi-objective problems. Czy ak 
et al. (1994) hybridized both SA and GA to provide efficient solutions of 
multi-objective optimization problems. Loukil et al. (2006) proposed a 
multi-objective SA algorithm to tackle a production scheduling problem in 
a flexible job-shop with particular constraints such as batch production; 
production of several sub-products followed by assembly of the final 
product, and possible overlaps for the processing periods of two successive 
operations of the same job. For more details in this area of research, see 
both Suman (2002) and (2003). 

In the literature, there are some research works regarding MCDM 
problems, and the available fuzzy research works are under the general 
title “fuzzy optimization” not specific FMCDM problems. So, this area of 
research is ripe for more investigations. 

1.4.5 Genetic Algorithms and FMCDM 

The GA is a search algorithm that mimics the processes of natural 
evolution. The problem addressed by GA is searching the solution space is 
to identify the best problems that are combinatorial or large scale or ill-
structured in general. GA encodes the variables of problems in either 
binary or real-valued vectors. Each code is called a chromosome. In binary 
coding there are two decoding functions to convert from real to binary and 
vice versa. In addition, mutation, crossover, and selection are the three  
important operators used for generating a new solution within the solution 
space. For example, the mutation operator introduces new genetic material 
into the population. Crossover recombines individuals to create new 
individuals. The selection process elects the next generation by using  
1) tournament selection, 2) proportional selection, 3) ranking selection,  
4) steady-state selection, and 5) manual selection. An evaluation function 
called the “fitness function” is generated to test the result solution. In the 
case of constrained optimization problems, Lagrange multipliers are used 
to transform the problem into an unconstrained optimization problem to be 
used as a fitness function. The general flowchart of a GA for solving an 
optimization problem is shown in Figure 3. 
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Figure 3. General schema of GA to solve FMCDM problems 

GAs seem desirable for solving MOOPs because they deal 
simultaneously with a set of solutions (the so-called population) that 
allows the problem solver to find several members of the Pareto optimal 
set in a single run of the algorithm, instead of having to perform a series of 
separate runs, such as with the traditional mathematical programming 
techniques. Additionally, GAs are less susceptible to the shape or 
continuity of the Pareto front, whereas these two issues are a real concern 
for mathematical programming techniques. The integration between GA 
and MOOPs can be classified in the following two categories: 

Non-Pareto Techniques 
Under this category, we will consider approaches that do not 
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popular among a certain sector of researchers. These approaches are as 
follows:

1. Aggregating approaches, 
2. Lexicographic ordering, 
3. The -constraint method, and 
4. Target-vector approaches. 

Pareto-Based Techniques 
In this category, the main idea is finding the set of strings in the 

population that are Pareto nondominated by the rest of the population. 
These strings are assigned the highest rank and are eliminated from 
additional considerations. Another set of Pareto nondominated strings are 
determined from the remaining population and are assigned the next 
highest rank. Some of the approaches that implement this idea are: 

1. Pure Pareto ranking, 
2. Multi-objective genetic algorithm (MOGA), 
3. Nondominated sorting genetic algorithm (NSGA), and 
4. Nondominated pareto genetic algorithm (NPGA).

In the context of this chapter, some works have been found and can be 
classified into the following categories: 

1.4.5.1  Interactive FMCDM-Based GA 
Sakawa and others presented a series of papers in this category. The ideas 
of these works can be summarized in the following: 

Kato et al. (1997) introduce an interactive satisfying method using GA 
for getting the satisfying solution for a decision maker from an extended 
Pareto optimal solution set. In this method, for a certain value of -level
cut and reference membership function, the solution of large-scale  
multi-objective 0-1 programming is obtained by adopting a GA with 
decomposition procedures.  
Sakawa and Yauchi (1999) highlight the multi-objective, nonconvex, 
nonlinear programming problems with fuzzy goals and solve it by 
applying an interactive fuzzy satisfying method. In this method, the 
Pareto optimal solution is obtained by solving the augmented mini-max 
problem for which the floating point GA called GENOCOP III is 
applicable.
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Sakawa and Yauchi (2000) proposed an interactive decision-making 
method for solving multi-objective, nonconvex programming problems 
with fuzzy numbers through co-evolutionary GAs. In this paper, the 
authors were trying to overcome the drawbacks of GENCOP III by 
introducing a method to generate an initial feasible point and a 
bisection method. This modification leads to a new GENCOP called 
revised GENCOP III.
Sakawa and Kubota (2000) solved an application in job shop 
scheduling with fuzzy processing time and fuzzy due date by using GA.  
Sakawa and Kato (2002) deal with the general multi-objective 0-1 
programming problems that involve positive and negative coefficients. 
The extended GA with double strings is implemented with a new 
decoding algorithm for individuals. The double strings map each 
individual to a feasible solution based on backtracking and individual 
modification. For more details about the GA and FMCDM, see Sakawa 
(2002).
Basu (2004) applied an interactive fuzzy satisfying method based on an 
evolutionary programming technique for short-term multi-objective 
hydrothermal scheduling. The multi-objective problem is formulated by 
assuming that the decision maker has fuzzy goals for each of the 
objective functions and that the evolutionary programming technique- 
based fuzzy satisfying method is applied for generating a corresponding 
optimal noninferior solution for the decision maker’s goals. 
Wahed et al. (2005) presented a contribution in this area by suggesting 
an interactive approach to determine the preferred compromise solution 
for the MCDM problems in the presence of fuzzy preferences. Here, 
the decision maker evaluates the solution by using a defined set of 
linguistic variables, and consequently, the achievement membership 
function can be constructed for each objective function. The used non-
negative differential weights are determined based on the entropy 
degree of each objective function to support transforming the MCDM 
into a single objective function. 

1.4.5.2  Goal Programming-Based GAs 
Goal programming (GP) is an important technique that is capable of 
solving a problem with multiple goals. The concept of goal programming 
(GP) is extended to solve multi-objective decision-making problems 
because of its ability to transform it into a single-objective programming 
problem with or without priority through putting the objective functions as 
goal constraints with predetermined aspiration levels. Also, FGP is 
extended to solve the complex problems in MCDM/FMCDM problems, 
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especially with implementing GAs. In this case, some research works have 
been enumerated as follows: 

Zheng et al. (1996) discussed the initialization process, fitness function 
structure, and the GA operators in the proposed GA for solving 
nonlinear goal programming (NLGP). 
Gen et al. (1997) developed a GA to solve fuzzy NLGP. They assumed 
that the implemented membership functions are strictly monotone 
decreasing (or increasing) and continuous functions with the set of 
objective functions and certain maximum tolerance limits to the given 
resources.
Hu et al. (2007) suggested a method for generating the solution that is 
consistent with the decision maker’s desires where the goal with high 
priority may have the first level of goal achievement. The method uses 
a co-evolutionary genetic algorithm to solve the nonlinear, nonconvex 
problem that results from the original problem. GENCOPIII package is 
used to handle this problem. 

1.4.5.3  Fuzzy Programming-Based GAs 
Li et al. (1997) presented an improved GA for solving a multi-objective 
solid transportation problem with consideration of the coefficients of 
the objective function as fuzzy numbers. The selection and evaluation 
process in GA are done by incorporating ranking of fuzzy numbers 
with integral value. 
Kim (1998) designed a two-phase genetic algorithm to improve the 
system performance in nonlinear and complex problems. The first 
phase is responsible for generating a fuzzy rule base that covers as 
many of the training examples as possible. The second phase 
constructed fine-tuned membership functions that minimize the system 
error.
Liu and Iwamura (2001) provide a fuzzy simulation-based GA to 
handle both fuzzy objectives and goal constraints as well as other ideas. 
Jimenez et al. (2003) proposed an evolutionary algorithm to solve 
fuzzy nonlinear programming as a first step to solving the general 
nonlinear programming problem. 
Sasaki and Gen (2003) proposed a GA for solving fuzzy multiple 
objective design problems by implementing a new chromosomes 
representation that makes the GA more effective.
Wang et al. (2005) implemented the multi-objective GA to extract 
interpretable fuzzy rule-based knowledge from data where the genes 
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are arranged into control genes and parameter genes. This division 
enables the fuzzy sets and rules to be optimally reduced. 

At the end of this section, we can decide that the implementation of 
GAs in solving the FMCDM problems are occupied a wide interest of the 
research move so than any other AI searches technique. For more 
knowledge, see the following website: http://www.jeo.org/emo/ 
EMOOjournals.html. However, there are still some problems in FMCDM 
problems that have not been studied yet such as: 

1. Large-scale FMCDM problems with fuzzy numbers in the objective 
functions and constraints.

2. Combining both ES and GA to handle the fuzzy preferences in MCDM 
problems to get a more powerful solution method. 

3. Implementing the GA to study both sensitivity and parametric analysis 
of linear and nonlinear FMCDM. 

1.4.6 Ant Colony Optimization 

Ant colony optimization (ACO) is a meta-heuristic approach that emulates 
the foraging behavior of real ants to find the shortest paths between food 
sources and their nest. This approach is proposed by Dorigo (1992). 
During the ant’s walk from food sources and vice versa, ants deposit a 
chemical substance called “Pheromone” on the ground to guide the rest of 
ants to the shortest and safest path they should follow. The artificial ants 
that simulate the real ants perform random walks on a completely 
connected graph G = (S, L), whose vertices are the solution components S
and the connections L. This graph is based on probabilistic model called 
the “Pheromone model.” When a constrained combinatorial optimization 
problem is considered, the constraints are built into the ants to get the 
feasible solution(s) only. ACO methods have been successfully applied to 
diverse combinatorial optimization problems, including traveling 
salesman, quadratic assignment, vehicle routing, telecommunication 
networks, graph coloring, constraint satisfaction, Hamiltonian graphs, and 
scheduling (Cordon et al., 2002). The following chart indicated the 
mechanism of ACO in solving combinatorial optimization (CO). 

The ACO approach is performing well in combinatorial network 
optimization problems where the solution space is difficult to enumerate 
especially in large-scale problems. It has been applied to solve the multi-
objective combinatorial optimization problems. For example, Chan and 
Swarnkar (2006) present a fuzzy goal programming approach to model the
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Figure 4. Mechanism of ACO in solving combinatorial optimization (Blum, 2005) 

machine tool selection and operation allocation problem of flexible 
manufacturing systems. The proposed model is optimized by an ant colony 
algorithm to the computational complexities involved in solving the 
problem. Doerner et al. (2006) applied Pareto ant colony optimization  
(P-ACO) that performs particularly well for integer linear programming. 
The given procedure identifies several efficient portfolio solutions within a 
few seconds and correspondingly initializes the pheromone trails before 
running P-ACO. This extension offers a larger exploration of the search 
space at the beginning of the search with low cost. Marc Gravel et al. 
(2002) applied the ACO for getting the solution of an industrial scheduling 
problem in an aluminum casting center. They present an efficient 
representation scheme of a continuous horizontal casting process that takes 
into account several objectives that are important to the scheduler. 

A little research work has been done in using ACO and MCDM/ 
FMCDM problems. Most of the research work is done in multi-objective 
combinatorial optimization problems (MOCOPs) since the meta-heuristics 
perform much better than the other approaches. So, this area needs more 
and more research especially in combinatorial FMCDM problems.

1.4.7 Particle Swarm Optimization (PSO) 

The basic principles of PSO are represented by a set of moving particles 
that is initially thrown inside the search space. Each particle is 
characterized by the following features: 

1. A position and a velocity, 
2. It knows its position and the objective function value for this position, 

ACO

Probabilistic
solution

construction

Pheromone
value update

Initialization
of pheromone

Solution
components

Pheromone
model

CO problem



Intelligent Fuzzy MCDM: Review and Analysis 43

3. It knows its neighbors, the best previous position, and the objective 
function value,

4. It remembers its best previous position, 
5. It is considered that the neighborhood of a particle includes this particle 

itself.

At each time step, the behavior of a given particle is a compromise 
between three possible choices: 

1. Following its own way, 
2. Going toward its best previous position, 
3. Going toward the best neighbor’s best previous position. 

The basic equations of PSO can be formalized as follows: 
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PSO has been used in solving some real-life applications that involved 
multi-objectives. For example, Parsopoulos and Vrahatis (2002) presented 
the first study on MCDM by using PSO algorithm. The authors highlighted 
some important issues such as:

1. The ability of PSO to obtain the Pareto optimal points as well as the 
shape of the Pareto front.

2. Applying the weighted sum approach with fixed or adaptive weights. 
3. Adopting the well-known GA approach VEGA for MCDM problems to 

the PSO framework to develop multi-swarm PSO to be implemented in 
MCDM problems in an effective manner. 
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The study can be considered the corner stone of applying PSO to solve 
such MCDM problems. Salman et al. (2002) proposed a PSO to task 
assignment. The PSO system combines local search methods (through self-
experience) with global search methods (through neighboring experience), 
attempting to balance exploration and exploitation. A scan of some 
international electronic databases indicated that PSO has not applied yet in 
solving FMCDM problems. 

1.5 Conclusions

From the above analysis, one can conclude that the implementation of AI 
techniques to handle FMCDM problems has occupied a reasonable amount 
of attention from the researchers with respect to some AI techniques such 
as ES, ANN, and GAs. But other techniques have not been opened yet 
such as SA, TS, PSO, DNA, and parallel hybrid techniques for handling 
the problems of FMCDM. However, the AI techniques that have been 
applied proved that they have the following advantages when dealing with 
FMCDM problems: 

1. They have the possibility to consider the qualitative factors in the 
model structure and the solution procedure. 

2. They can handle the decision maker’s preferences, which are 
characterized as fuzzy preferences. 

3. They can deal with a large amount of data that can be used in solving 
FMCDM problems. 

4. The availability to estimate the aspiration levels in FMCDM. 
5. The ability to estimate (determine) the membership functions that can 

be implemented to transform the FMCDM problem into a crisp 
problem to be handled easily. 

6. The possibility to search and scan the search space in fuzzy multi-
criteria combinatorial optimization problems where the search space is 
very large.

7. The AI techniques successes in solving different real-life problems 
such as scheduling, manufacturing, chemical, managerial, and other 
industrial applications. 

1.5.1 Research Directions 

The future research direction in this area is viewed from two angles: 
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1. Improving the performance of intelligent techniques by combining two 
or more of these techniques to get more powerful ones. 

2. Implementing the available techniques to handle the FMCDM 
problems.

We shall talk about each individual case. 

First: Improving the available techniques: 

a) The mathematical background of these techniques needs more 
investigation and analysis. 

b) Extending the AI techniques to handle more problems regarding 
FMCDM.

c) Studying the possibility and validity of combining more than two of 
these techniques to outperform the original ones.

d) Developing a comparative study between the AI techniques 
(metaheuristic techniques) to measure the performance of each one 
with respect to others. On the other side, measuring the performance 
and/or the quality of the solution(s) when changing the parameters of 
each technique. 

e) Lights should be placed on new hybrid techniques as well as on 
parallel hybrid techniques that will be probably perform better than the 
AI techniques themselves. 

Second: Intelligent FMCDM research directions: 
This area of research still needs intensive research such as the 

following directions: 

a) Large-scale FMCDM with mixed integer decision variables needs 
more investigation especially by using parallel hybrid intelligent 
systems to reduce the solution time.

b) Measuring the performance of AI techniques in higher dimensional 
FMCDM problems where the only test of performance is using 
benchmark functions. In addition, the theoretical analysis of measuring 
AI performance needs a look from the researchers. 

c) Developing the theoretical analysis to deal with the FMCDM problems 
in its fuzzy environment without transforming it into crisp model, 
where the resulting solution may be more reasonable than the solution 
results from the transformation process. 

d) Studying the effect of changing the AI techniques parameters on the 
solution behavior of FMCDM problems. In other words, understanding 



46 W.F. Abd El-Wahed

the dynamics of swarm’s dynamics (as in PSO) and the Pheromones 
dynamics (as in ACO) on the behavior of the optimization process. 

e) Until now, no one has tried to open the area on doing both parametric 
and sensitivity analysis of MCDM and/or FMCDM by applying the AI 
techniques. The time is suitable for performing intelligent parametric 
analysis of MCDM and/or FMCDM problems. The results may be 
better than the traditional techniques for both linear and nonlinear 
FMCDM problems. As an idea, conduct the study of intelligent 
parametric analysis based on satisfying Kuhn Tucker conditions or 
look for another easy way to do that.

f) Developing an intelligent system that combined most AI techniques to 
deal with FMCDM problems. For example, ES, ANN, SA, GA, and 
PSO may be combined in the following manner: 

 ES may handle the fuzzy preferences and other qualitative factors 
that have a great impact on the FMCDM problem behavior. This 
phase can be used as an evaluation process of the result solution(s). 

 Applying GA as a second phase to scan the solution space to get a 
satisfactory Pareto optimal solution. 

 Improving the performance of a PSO-based ANN with SA to use 
the GA output as an initial solution to this phase as a trial to obtain 
a better solution than the one in step (b). 

This is a proposed scenario, and the researchers can change this 
scenario in different manners. More attention can be paid to measure the 
performance, and effectiveness should be done to compare the results with 
the existing techniques.

1. The ANN (for example) can be used to generate a reasonable 
membership function for solving the FMCDM problems based on the 
desires of the DM and/or the historical data of the problem.

2. Applying the AI techniques to implement the ranking approaches to 
deal with FMCDM problems. 

3. Developing new approaches based on AI techniques to handle the 
fuzzy multi-attribute decision-making problems where a little research 
work has been done in this area. 

4. Implementing AI techniques to solve FMCDM in the presence of 
multiple decision makers with indifference preferences information.

5. Invoking AI techniques in both interactive and goal programming to 
solve FMCDM. For example, developing an ANN to capture and 
represent the decision maker’s preferences to support the search 
process for obtaining the most desirable solution.
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6. The hybridization of fuzzy logic and evolutionary computation in what 
is called genetic fuzzy systems became an important research area 
during the last decade, and the results should be applied to deal with 
FMCDM to solve the problem without transforming it into a crisp 
model.

Last but not least, the implementation of AI techniques to solve the 
different problems of both FMCDM and MCDM will occupy a wide range 
of research in the next 20 years because of their ability to handle many 
complicated problems.

REFERENCES

Abd El-Wahed, W.F., 2002, A fuzzy approach based goal programming to generate priority 
vector in the analytic hierarchy process, The Journal of Fuzzy Mathematics, 10(2): 451–
467.

Abd El-Wahed, W.F., 1993, Development of a DSS with goal programming based expert 
system for engineering applications, Unpublished PhD dissertation, El-Menoufia 
University, Egypt. 

Abd El-Wahed, W.F., El-Hefany, N., El-Sherbiny, M., and Turky, F., 2005, An intelligent 
interactive approach based entropy weights to solve multi-objective problems with 
fuzzy preferences, 8th Int. Conf. on Parametric Optimization and Related Topics, Cairo, 
Egypt.

Bagis, A., 2003, Determining fuzzy membership functions with Tabu search: an application 
to control, Fuzzy Sets and Systems, 139: 209–225. 

Baptistella, L.F.B., and Ollero, A., 1980, Fuzzy methodologies for interactive multi-criteria 
optimization, IEEE Transactions on Systems, Man and Cybernetics, 10: 355–365.

Basu, M., 2004, An interactive fuzzy satisfying method based on evolutionary 
programming technique for multi-objective short-term hydrothermal scheduling, 
Electric Power Systems Research, 69: 277–285.

Bellman, R.E., and Zadeh, L.A., 1970, Decision-making in a fuzzy environment, 
Management Science, 17: 141–164.

Bhattacharya, J.R., Roa, J.R., and Tiwari, R.N., 1992, Fuzzy multi-criteria facility location, 
Fuzzy Sets and Systems, 51: 277–287. 

Biswal, M.P., 1992, Fuzzy programming technique to solve multi-objective geometric 
programming problems, Fuzzy Sets and Systems, 51: 67–71. 

Bit, A.K., Biswal, M.P., and Alam, S.S., 1992, Fuzzy programming approach to multi-
criteria decision making transportation problem, Fuzzy sets and Systems, 50: 135–141. 

Blum, C., 2005, Ant colony optimization: Introduction and recent trends, Physics of Life 
Reviews, 2(4): 353–373. 

Boender, C.G.E., De Graan, J.G., and Lootsman, F.A., 1989, Multi-criteria decision 
analysis with fuzzy pair wise comparisons, Fuzzy Sets and Systems, 29: 133–143. 



48 W.F. Abd El-Wahed

Buckley, J.J., 1987, Fuzzy programming and the multi-criteria decision making, in 
Optimization Models using Fuzzy Sets and Possibility Theory, Kacprzyk, J. and 
Orlovski, S.A. (eds), 226–244. 

Carlsson, C., 1986, Approximate reasoning for solving fuzzy MCDM problems, 
Cybernetics and Systems: An International Journal, 18: 35–48. 

Chan, F.T.S., and Swarnkar, R., 2006, Ant colony optimization approach to a fuzzy goal 
programming model for a machine tool selection and operation allocation problem in an 
FMS, Robotics and Computer-Integrated Manufacturing, 22(4): 353–362. 

Chen, J., and Lin, S., 2003, An interactive neural network-based approach for solving 
multiple criteria decision-making problems, Decision Support Systems, 36: 137–146. 

Choobineh, F.F., Mohebbi, E., and Khoo, H., 2006, A multi-objective tabu search for a 
single-machine scheduling problem with sequence-dependent setup times, European
Journal of Operational Research, 175(1): 318–337.

Cordon, O., Herrera, F., and Stutzle, T., 2002, A review on the ant colony optimization 
metaheuristics: basis, models and new trends, Mathware and Software Computing, 9(2–3):
141–175.

Czy ak, P., and Jaszkiewicz, A., 1998, Pareto simulated annealing—A metaheuristic 
technique for multiple-objective combinatorial optimization, Journal of Multi-criteria 
Decision Analysis, 7(1): 34–47. 

Czy ak, P., Hapke, M., and Jaszkiewicz, A., 1994, Application of the Pareto-simulated 
annealing to the multiple criteria shortest path problem, Technical Report, Politechnika 
Poznanska Instytut Informatyki, Poland.

Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., and Stummer, C., 2006, Pareto ant 
colony optimization with ILP preprocessing in multi-objective project portfolio 
selection, European Journal of Operational Research, 171: 830–841. 

Dorigo, M., 1992, Optimization, learning and natural algorithms, PhD thesis, DEI, Pol 
Milano, Italy. 

Dyson, R.G., 1981, Maxmin programming, fuzzy linear programming and multi-criteria 
decision making, Journal of Operational Research Society, 31: 263–267. 

Gen, M., Ida, K., Kobuchi, R., 1998, Neural network technique for fuzzy multi-objective 
linear programming, Computers and Industrial Engineering, 35(3–4): 543–546. 

Gen, M., Ida, K., Lee, J., and Kim, J., 1997, Fuzzy non-linear goal programming using 
genetic algorithm, Computers and Industrial Engineering, 33(1–2): 39–42. 

Gholamian, M.R., Ghomi, S.M.T., and Ghazanfari, M., 2005, A hybrid systematic design 
for multi-objective market problems: a case study in crude oil markets, Engineering
Applications of Artificial Intelligence, 18(4): 495–509.

Gravel, M., Wilson, L., and Price, C.G., 2002, Scheduling continuous casting of aluminum 
using a multiple objective ant colony optimization metaheuristic, European Journal of 
Operational Research, 143: 218–229. 

Hannan, E.L., 1983, Fuzzy decision making with multiple objectives and discrete 
membership functions, International Journal of Man-Machine Studies, 18: 49–54. 

Hu, C.F., Teng, C.J., and Li, S.Y., 2007, A fuzzy goal programming approach to multi-
objective optimization problem with priorities, European Journal of Operational 
Research, 176(3): 1319–1333. 

Jimenez, F., Cadenas, J.M., Verdegay, J.L., and Sanchez, G., 2003, Solving fuzzy 
optimization problems by evolutionary algorithms, Information Sciences, 152: 303–311. 

Jones, D.F., Tamiz, M., and Mirrazavi, S.K., 1998, Intelligent solution and analysis of goal 
programs: the GPSYS system, Decision Support Systems, 23(4): 329–332. 



Intelligent Fuzzy MCDM: Review and Analysis 49

Kato, K., Sakawa, M., Sunada, H., Shibano, T., 1997, Fuzzy programming for 
multiobjective 0–1 programming problems through revised genetic algorithms, 
European Journal of Operational Research, 97(1): 149–158. 

Kim, D., 1998, Improving the fuzzy system performance by fuzzy system ensemble, Fuzzy
Sets and Systems, 98(1): 43–56. 

Lai, Y.-Y., and Hwang, C.-L., 1996, Fuzzy Multiple objective Decision Making: Methods 
and Applications, Springer-Verlag, Berlin. 

Li, C., Xiaofeng, L., and Juebang, Y., 2004, Tabu search for fuzzy optimization and 
applications, Information Sciences, 158: 3–13. 

Li, Y., Ida, K., and Gen, M., 1997, Improved genetic algorithm for solving multi-objective 
solid transportation problem with fuzzy numbers, Computers and Industrial 
Engineering, 33(3–4): 589–592. 

Liu, B., and Iwamura, K., 2001, Fuzzy programming with fuzzy decisions and fuzzy 
simulation-based genetic algorithm, Fuzzy Sets and Systems, 122(2): 253–262. 

Liu, S.Y., and Chen, J.G., 1995, Development of a machine troubleshooting expert system 
via fuzzy multi-attribute decision-making approach, Expert Systems with Applications,
8(1): 187–201. 

Lothar, W., and Markstrom, S., 1990, Symbolic and numerical methods in hybrid multi-
criteria decision support, Expert Systems with Applications, 1(4): 345–358. 

Loukil, T., Teghem, J., and Fortemps, P., 2006, A multi-objective production scheduling 
case study solved by simulated annealing, European Journal of Operational Research,
179(3): 709–722. 

Ostermark, R., 1999, A fuzzy neural network algorithm for multigroup classification, Fuzzy 
Sets and Systems, 105(1): 113–122. 

Parsopoulos, K.E., and Vrahatis, M.N., 2002, Particle Swarm Optimization Method In 
Multi-Objective Problems, SAC, Madrid, Spain. 

Rasmy, M.H., Abd El-Wahed, W.F., Ragab, A.M., and El-Sherbiny, M.M., 2001, A fuzzy 
expert system to solve multi-objective optimization problems, 11th International 
Conference on Computers: Theory and Applications, ICCTA, Scientific Association of 
Computers, Alexandria, III (25). 

Rasmy, M.H., Sang M.L., Abd El-Wahed, W.F., Ragab, A.M., and El-Sherbiny, M.M., 
2002, An expert system for multi-objective decision making: application of fuzzy 
linguistic preferences and goal programming, Fuzzy Sets and Systems, 127: 209–220. 

Sakawa, M., 1993, Fuzzy sets and Interactive Multi-objective Optimization, Plenum Press, 
New York. 

Sakawa, M., 2002, Genetic Algorithms and fuzzy multi-objective optimization, Kluwer 
Academic Publishers, Dordrecht. 

Sakawa, M., and Kato, K., 2002, An interactive fuzzy satisfying method for general multi-
objective 0-1 programming problems through GAs with double strings based on a 
reference solution, Fuzzy Sets and Systems, 125(3): 289–300. 

Sakawa, M., and Kubota, R., 2000, Fuzzy programming for multi-objective job shop 
scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms, 
European Journal of Operational Research, 120(2): 393–407. 

Sakawa, M., and Yauchi, K., 1999, An interactive fuzzy satisficing method for multi-
objective nonconvex programming problems through floating point genetic algorithms, 
European Journal of Operational Research, 117(1): 113–124.



50 W.F. Abd El-Wahed

Sakawa, M., and Yauchi, K., 2000, Interactive decision making for multi-objective 
nonconvex programming problems with fuzzy numbers through coevolutionary genetic 
algorithms, European Journal of Operational Research, 114(1): 151–165.

Salman, A., Imtiaz, A., and Sabah, A.M., 2002, Particle swarm optimization for task 
assignment problem, Microprocessors and Microsystems, 26: 363–371. 

Sasaki, M., and Gen, M., 2003, Fuzzy multiple objective optimal system design by hybrid 
genetic algorithm, Applied Soft Computing, 2(3): 189–196. 

Serafini, P., 1985, Mathematics of multi-objective optimization, CISM courses and 
lectures, 289: Springer Verlag, Berlin. 

Stam, A., Sun, M., and Haines, M., 1996, Artificial neural network representations for 
hierarchical preference structures, Computers and Operations Research, 23(12): 1191–
1201.

Suman, B., 2002, Multi-objective simulated annealing—a metaheuristic technique for 
multi-objective optimization of a constrained problem, Foundations of Computing and 
Decision Sciences, 27: 171–191. 

Suman, B., 2003, Simulated annealing based multi-objective algorithm and their 
application for system reliability, Engineering Optimization, 35: 391–476. 

Suppapitnarm, A., Seffen, K.A., Parks, G.T., and Clarkson, P.J., 2000, Simulated 
annealing: an alternative approach to true multi-objective optimization, Engineering
Optimization, 33: 59–85. 

Ulungu, L.E., Teghem, J., and Fortemps, P., 1995, Heuristics for multi-objective 
combinatorial optimization problems by simulated annealing, Gu, J., Chen, G., Wei, Q., 
and Wang, S. (Eds.), MCDM: Theory and applications, Beijing: Sciences-Techniques, 
229–238.

Ulungu, L.E., Teghem, J., Fortemps, P.H., and Tuyttens, D., 1999, MOSA method: A tool 
for solving multi-objective combinatorial optimization problems, Journal of Multi-
criteria Decision Analysis, 8: 221–236. 

Ulungu, L.E., Teghem, J., and Ost, C., 1998, Interactive simulated annealing in a multi-
objective framework: application to an industrial problem, Journal of Operational 
Research Society, 49(10): 1044–1050. 

Wang, H., Kwong, S., Jin, Y., Wei, W., and Man, K. F., 2005, Multi-objective hierarchical 
genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets 
and Systems, 149(1): 149–186. 

Wang, J., 1993, A neural network approach to multiple objectives cutting parameter 
optimization based on fuzzy preference information, Computers and Industrial 
Engineering, 25(1–4): 389–392.

Wang, S., and Archer, N.P., 1994, A neural network technique in modeling multiple criteria 
multiple person decision making, Computers & Operations Research, 21(2): 127–142. 

Zheng, D.W., Gen, M., and Ida, K., 1996, Evolution program for nonlinear goal 
programming, Computers and Industrial Engineering, 31(3-4): 907–911.

Zimmerman, H.J., 1987, Fuzzy Sets, Decision Making and Expert Systems, Kluwer 
Academic, Norwell. 

Zopounidis, C., and Doumpos, M., 2002, Multi-criteria classification and sorting methods: 
A literature review, European Journal of Operational Research, 138: 229–246. 



PART I: FUZZY MADM METHODS 
AND APPLICATIONS 



C. Kahraman (ed.), Fuzzy Multi-Criteria Decision Making. 53
© Springer Science + Business Media, LLC 2008 

FUZZY ANALYTIC HIERARCHY PROCESS 
AND ITS APPLICATION

Tufan Demirel1, Nihan Çetin Demirel1, and Cengiz Kahraman2

1Yildiz Technical University, Department of Industrial Engineering, Yildiz-Istanbul Turkey
2Istanbul Technical University, Department of Industrial Engineering, Besiktas-Istanbul
Turkey

Abstract:  The analytic hierarchy process (AHP) is one of the most widely-used multi-
attribute decision-making methods. In this section we overview the fuzzy 
AHP methods existing in the literature. We present the four different 
approaches of fuzzy AHP methods by giving numerical examples. 

Key words:  Multi-attribute decision-making, fuzzy AHP, extent analysis, entropy value 

1. INTRODUCTION

The analytic hierarchy process (AHP) is one of the most widely-used 
multi-attribute decision-making (MADM) methods. In any planning and 
decision-making process, a systematic and logical approach is used to 
arrive at the solution. In the multi-criteria decision analysis, the fuzzy set 
theory might be the most common method in dealing with uncertainty. 

The analytic hierarchy process has been used in many different fields 
as a multi-attribute decision analysis tool with multiple alternatives and 
criteria. AHP uses “pair-wise comparisons” and matrix algebra to weight 
criteria. The decision is made by using the derived weights of the 
evaluative criteria (Saaty, 1980).

Importance is measured on an integer-valued 1 9 scale, with each 
number having the interpretation shown in Table 1. 
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In this chapter, we give the literature review results in the following 
section. Section 2.1 presents an introduction and a definition of fuzzy 
AHP. Sections 2.2, 2.4, 2.6, and 2.9 present Van Laarhoven and Pedrycz’s 
approach, Buckley’s fuzzy AHP, Chang’s extent analysis method, and 
fuzzy AHP with entropy value, with numerical examples, respectively. 
The last section summarizes suggestions for additonal research. 

Table 1. Interpretation of Entities in a Pair-wise Comparison Matrix 

Value of aij Interpretation

1 Objectives i and j have equal importance 
3 Objective i is weakly more important than objective j
5 Experience and judgment indicate that objective i is 

strongly more important than objective j
7 Objective i is very strongly or demonstrably more 

important than objective j
9 Objective i is absolutely more important than objective j
2, 4, 6, 8 Intermediate values 

2. LITERATURE REVIEW 

Many fuzzy AHP methods are proposed by various authors. These 
methods are systematic approaches to the alternative selection and 
justification problem by using the concepts of fuzzy set theory (Zadeh, 
1965) and hierarchical structure analysis. Decision makers usually find 
that it is more confident to give interval judgments than fixed value 
judgments. Because usually he/she cannot be explicit about his/her 
preferences because of the fuzzy nature of the comparison process. 

The earliest work in fuzzy AHP appeared in van Laarhoven and 
Pedrycz (1983), which compared fuzzy ratios described by triangular 
membership functions. Buckley (1985) determines fuzzy priorities of 
comparison ratios membership functions trapezoidal. Stam et al. (1996) 
explore how recently developed artificial intelligence techniques can be 
used to determine or approximate the preference ratings in AHP. They 
conclude that the feed-forward neural network formulation appears to be a 
powerful tool for analyzing discrete alternative multi-criteria decision 
problems with imprecise or fuzzy ratio-scale preference judgments. Chang 
(1996) introduces a new approach for handling fuzzy AHP, with the use of 
triangular fuzzy numbers for pair-wise comparison scale off fuzzy AHP 
and the use of the extent analysis method for the synthetic extent values of 
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the pair-wise comparisons. Cheng (1997) proposes a new algorithm for 
evaluating naval tactical missile systems by the fuzzy analytical hierarchy 
process based on grade value of membership function. Weck et al. (1997) 
present a method to evaluate different production cycle alternatives adding 
the mathematics off fuzzy logic to the classic AHP. Any production cycle 
evaluated in this manner yields a fuzzy set. The outcome of the analysis 
can finally be defuzzified by forming the surface center of gravity of any 
fuzzy set, and the alternative production cycles investigated can be ranked 
in terms of the main objective set. Kahraman et al. (1998) use a fuzzy 
objective and subjective method obtaining the weights from AHP and 
make a fuzzy weighted evaluation. Cheng et al. (1999) propose a new 
method for evaluating weapon systems by analytical hierarchy process 
based on linguistic variable weight. Zhu et al. (1999) make a discussion on 
extent analysis method and applications of fuzzy AHP. Badri (2001) 
proposed a combined AHP-GP model for quality control systems. Creed 
(2001), Jansen et al. (2001) and Martinez-Tome et al. (2000) investigate 
food industry, customer satisfaction and food supply chain. Cebeci (2001) 
and Cebeci and Kahraman (2002) proposed a fuzzy AHP model to 
Measure customer satisfaction of catering service companies. Yu (2002) 
incorporates an absolute term linearization technique and a fuzzy rating 
expression into a GP-AHP model for solving group decision-making fuzzy 
AHP problem. Kahraman et al. (2004) provide an analytical tool to select 
the best Turkish catering firm providing the most customer satisfaction. 
The fuzzy analytic hierarchy process is used to compare three Turkish 
catering firms in their paper. Tolga et al. (2005) aim at creating an 
operating system selection framework for decision makers. Since decision 
makers have to consider both economic and noneconomic aspects of 
technology selection, both factors are considered in their developed 
framework. They develop the economic part of the decision process by 
fuzzy replacement analysis. Noneconomic factors and financial figures are 
combined using a fuzzy analytic hierarchy process approach. Hsiao and 
Chou (2006) propose a gestalt-like perceptual measure method by 
combining gestalt grouping principles and fuzzy entropy. The purpose of 
the proposed method is not to evaluate the grades of alternatives but to 
measure the gestalt-like perceptual degrees for home page design. They 
identify the weights using fuzzy AHP. 
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2.1 Fuzzy AHP 

Inability of AHP to deal with the imprecision and subjectiveness in the 
pair-wise comparison process has been improved in fuzzy AHP. Instead of 
a crisp value, fuzzy AHP uses a range of value to incorporate the decision 
maker’s uncertainty (Kuswandari, 2004). 

2.2 Van Laarhoven and Pedrycz’s Approach (1983) 

Van Laarhoven and Pedrycz (1983) offer an algorithm that is the direct 
extension of Saaty’s AHP method. They identify the weights through the 
AHP operations. In that study, Laarhoven and Pedrycz use the triangular 
fuzzy numbers. The computation steps are the same as those in crisp AHP. 
The Lootsma’s logarithmic least-squares method is used to derive fuzzy 
weights and fuzzy performance scores (Chen et al., 1992).

Laarhoven and Pedrycz’s approach is shown by the following steps: 

Step 1. Consult with the MCDMs and obtain n+1 fuzzy reciprocal 
matrix that takes the following form as shown (1). 
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where ijijPa~  are fuzzy ratios estimated by multiple decision makers. Note 
that ijp  may be 0 when no decision maker expresses his/her comparison 
ratios or greater than 1 when more than one decision maker expresses 
his/her comparison ratios. 
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Step 2. Let iiii u ,m ,lz . Solve the following linear equations: 
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As ijklln  and ijkuln  are lower and upper values of jikijk aa lnln ,
the following must hold true [see Eq. (2)]: 

k. j, i,   ,0lnlnlnln jikijkjikijk uull  (5) 

Thus Eqs. (2) and (4) are linear dependent. The same holds for Eq. (3). 
Generally, a solution for Eqs. (2), (3), and (4) is given as: 

1 2 1,  ,  ,     ii i i iz l t m t u t  (6) 

where 1t  and 2t  can be chosen arbitrarily. 

Step 3. The right sides of the equations above are operated using 
logarithmic operations. Then we obtain the fuzzy weight in Eq. (7): 

1 2 3exp , exp , expi i i iw l m u  (7) 

where

1 1 1

1 2 3
1 1 1

exp exp exp
n n n

i i i
i i i

u m l
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Equation (7) can also be used to determine the performance score ijr .

Step 4. Steps 1 3 are repeated several times until all reciprocal 
matrices are solved. With the fuzzy weights and performance scores, we 
can calculate the fuzzy utility for alternative iA  as 

n

j
ijji rwu

1
 (8) 

2.3 A Numerical Example 

A company is looking for a sales manager. There are four applicants for 
this position. The company is also looking for four attributes from these 
applicants. These attributes are leadership, mathematic creativity,
communication skill, and experimentation. Figure 1 shows the hierarchy of 
sales manager selection problem. Three decision makers will be graded for 
the four attributes. 

Figure 1. The hierarchy of the sales manager selection 

The three decision makers’ opinions about the relative importance of a 
pair of attributes are shown in Tables 2 to 6.
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Table 2. Pair-Wise Comparisons of Applicants for Leadership 

A1 A2 A3 A4

A1 (1, 1, 1) 
(2/5, 1/2, 2/3) 
(2/5, 1/2, 2/3) (2/3, 1, 3/2) 

(2/9, 1/4, 2/7) 
(2/9, 1/4, 2/7) 
(2/7, 1/3, 2/5) 

A2

 (3/2, 2, 5/2) 
(3/2, 2, 5/2) (1, 1, 1) (5/2, 3, 7/2) 

(3/2, 2, 5/2) 

(2/5, 1/2, 2/3) 
(2/3, 1, 3/2) 
(2/3, 1, 3/2) 

A3 (2/3, 1, 3/2) (2/7, 1/3, 2/5) 
(2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) 

(2/3, 1, 3/2) 

A4

 (7/2, 4, 9/2) 
(7/2, 4, 9/2) 
(5/2, 3, 7/2) 

(3/2, 2, 5/2) 
(2/3, 1, 3/2) 
(2/3, 1, 3/2) 

(3/2, 2, 5/2) 
(2/3, 1, 3/2) (1, 1, 1) 

Table 3. Pair-Wise Comparisons of Applicants for Mathematic Creativity 

  A1 A2 A3 A4

A1 (1, 1, 1) (3/2, 2, 5/2) 
(3/2, 2, 5/2) 

(2/7, 1/3, 2/5) 
(2/9, 1/4, 2/7) 
(2/9, 1/4, 2/7) 

(2/3, 1, 3/2) 

A2
 (2/5, 1/2, 2/3) 

(2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) 
(2/3, 1, 3/2) 

A3

 (5/2, 3, 7/2) 
(7/2, 4, 9/2) 
(7/2, 4, 9/2) 

(3/2, 2, 5/2) (1, 1, 1) 
(5/2, 3, 7/2) 
(5/2, 3, 7/2) 
(3/2, 2, 5/2) 

A4 (2/3, 1, 3/2) (3/2, 2, 5/2) 
(2/3, 1, 3/2) 

(2/7, 1/3, 2/5) 
(2/7, 1/3, 2/5) 
(2/5, 1/2, 2/3) 

(1, 1, 1) 

Table 4. Pair-Wise Comparisons of Applicants for Communication Skill 

  A1 A2 A3 A4

A1 (1, 1, 1) (5/2, 3, 7/2) 
(5/2, 3, 7/2) (5/2, 3, 7/2) (2/3, 1, 3/2) 

A2
(2/7, 1/3, 2/5) 
(2/7, 1/3, 2/5) (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) 

(3/2, 2, 5/2) 
A3  (2/7, 1/3, 2/5) (2/3, 1, 3/2) (1, 1, 1) (2/7, 1/3, 2/5)  

A4 (2/3, 1, 3/2) (2/5, 1/2, 2/3) 
(2/5, 1/2, 2/3) (5/2, 3, 7/2) (1, 1, 1) 



60 T. Demirel et al.

Table 5. Pair-Wise Comparisons of Applicants for Experimentation 

  A1 A2 A3 A4

A1 (1, 1, 1) (2/3, 1, 3/2) (7/2, 4, 9/2) 
(5/2, 3, 7/2) (2/5, 1/2, 2/3) 

A2 (2/3, 1, 3/2) (1, 1, 1) 
(3/2, 2, 5/2) 
(5/2, 3, 7/2) 
(5/2, 3, 7/2) 

(2/3, 1, 3/2) 

A3
(2/9, 1/4, 2/7) 
(2/7, 1/3, 2/5) 

(2/5, 1/2, 2/3) 
(2/7, 1/3, 2/5) 
(2/7, 1/3, 2/5) 

(1, 1, 1) (2/7, 1/3, 2/5) 

A4  (3/2, 2, 5/2) (2/3, 1, 3/2) (5/2, 3, 7/2) (1, 1, 1)  

Table 6. Pair-Wise Comparisons of Attributes 

  X1 X2 X3 X4

X1 (1, 1, 1) 
(3/2, 2, 5/2) 
(3/2, 2, 5/2) 
(2/3, 1, 3/2) 

(7/2, 4, 9/2) (2/3, 1, 3/2) 

X2

 (2/5, 1/2, 2/3) 
(2/5, 1/2, 2/3) 
(2/3, 1, 3/2) 

(1, 1, 1) (3/2, 2, 5/2) (2/5, 1/2, 2/3) 
(2/3, 1, 3/2) 

X3  (2/9, 1/4, 2/7) (2/5, 1/2, 2/3) (1, 1, 1) (2/9, 1/4, 2/7)  

X4 (2/3, 1, 3/2) (3/2, 2, 5/2) 
(2/3, 1, 3/2) (7/2, 4, 9/2) (1, 1, 1) 

The following phases are taken to solve the problem:
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where

P12 = 2 (two decision makers) 
P13 = 1 (one decision maker) 
P14 = 3 (three decision makers) 
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P21 = 2 (two decision makers) 
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P24 = 3 (three decision makers) 

ln(2/3)ln(2/3)ln(2/5)
ln(3/2)ln(5/2)ln(3/2)ln(3/2)

3227 4312 uuul

By a similar process, obtained linear equations can be represented as 

6l1 – 2u2 – 1u3 – 3u4 = 6.4989
7l2 – 2u1 – 2u3 – 3u4 = 0.4054 
5l3 – 1u1 – 2u2 – 2u4 = 3.8962
8l4 – 3u1 – 3u2 – 2u3 = 3.0163 
6m1 – 2m2 – 1m3 – 3m4 = 5.2574
7m2 – 2m1 – 2m3 – 3m4 = 0.4054 
5m3 – 1m1 – 2m2 – 2m4 = 3.8962
8m4 – 3m1 – 3m2 – 2m3 = 3.0163 
6u1 – 2l2 – 1l3 – 3l4 = 3.8272
7u2 – 2l1 – 2l3 – 3l4 = 4.4071 
5u3 – 1l1 – 2l2 – 2l4 = 0.9162
8u4 – 3l1 – 3l2 – 2l3 = 7.3098 
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The solutions to these equations are given in Table 7: 

Table 7. The Solutions to the Equations 

I li mi ui

1 0 0 0.1443 
2 0.7870 0.8919 1.1028 
3 0.1936 0.2849 0.5216 
4 0.9751 1.0629 1.2572 

The exponentials of li, mi, and ui are given in Table 8: 

Table 8. The Exponentials of li, mi, and ui

I exp(li) exp(mi) exp(ui)
1 1.0000 1.0000 1.1552 
2 2.1967 2.4397 3.0125 
3 1.2136 1.3296 1.6847 
4 2.6514 2.8947 3.5155 

We can calculate the fuzzy performance score r11 using Eq. (7) with the 
exponential numbers. 

r11 = ( 1exp(l1), 2exp(m1), 3exp(u1))

The terms 1, 2, and 3 are computed as 
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The fuzzy performance scores r1j , j:1,2,3,4, can be summarized as 

r11 = (0.1076, 0.1304, 0.1635) 
r12 = (0.2343, 0.3181, 0.4265) 
r13 = (0.1294, 0.1733, 0.2385) 
r14 = (0.2829, 0.3774, 0.4977). 
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Steps 1 through 3 are applied to Tables 3, 4, 5, and 6. All results are 
given in Table 9. 

Table 9. All Results 

  X1 X2 X3 X4

A1  (0.1067, 0.1304, 0.1635) (0.1434, 0.1793, 0.2225) (0.3498, 0.4363, 0.5362) (0.2018, 0.2729, 0.3730)  

A2  (0.2343, 0.3181, 0.4265) (0.1035, 0.1288, 0.1680) (0.1708, 0.2190, 0.2787) (0.1868, 0.2760, 0.4037)  
A3  (0.1295, 0.1733, 0.2385) (0.4457, 0.5049, 0.5568) (0.1042, 0.1313, 0.1685) (0.0855, 0.0974, 0.1139)  
A4  (0.2829, 0.3774, 0.4977) (0.1413, 0.1868, 0.2495) (0.1641, 0.2130, 0.2827) (0.2556, 0.3530, 0.4772)  

W = [(0.2579, 0.3509, 0.4703), (0.1609, 0.2199, 0.3054), (0.0812, 
0.0932, 0.1101), (0.2418, 0.3354, 0.4612)] 

We can calculate fuzzy utilities U1, U2, U3, and U4 by Eq. (8) as: 

U1 = (0.1277, 0.2173, 0.3759) 
U2 = (0.1361, 0.2529, 0.4687) 
U3 = (0.1342, 0.2167, 0.3532) 
U4 = (0.1708, 0.3117, 0.5614). 

The fuzzy utilities can be ranked by any appropriate fuzzy ranking 
method.

2.4 Buckley’s (1985) Fuzzy AHP 

Buckley also extended Saaty’s AHP method to incorporate fuzzy 
comparison ratios ija . He pointed out that Van Laarhoven and Pedrycz’s 
(1983) method was subject to two problems. First, the linear equations of 
obtained equations do not always have a unique solution. Second, they 
insist on obtaining triangular fuzzy numbers for their weights.

Buckley’s (1985) approach is shown in the following steps.

Step 1. Consult the decision maker, and obtain the comparison matrix 
A whose elements are ),,,(~

ijijijijij dcbat , where all i and j are trapezoidal 
fuzzy numbers. 

Step 2. The fuzzy weights wi can be calculated as follows. The 
geometric mean for each row is determined as 
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In the following discussion, we will detail the derivation of fuzzy 
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Similarly, we can define ib and b, ic and c, and id and d. The fuzzy 
weight iw is determined as 
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where the membership function xiw  is defined as follows: Let x be a 
real number on the horizontal axis. The xiw  can be summarized as in 
Table 10. 

Table 10. Interpretation of Entities in a Pair-wise Comparison Matrix 
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Step 2 is repeated for all the fuzzy performance scores. 

Step 3. The fuzzy weights and fuzzy performance scores are 
aggregated. The fuzzy utilities Ui, i, are obtained based on 
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2.5 A Numerical Example 

A ceramic factory is looking for a general manager. There are three 
applicants for this position. The company is also looking for four attributes 
from these applicants. These attributes are leadership, problem-solving
skill, communication skill, and experimentation. An expert will be graded 
for the four attributes. The expert opinions about the relative importance of 
a pair of attributes are shown in Tables 11 to 15. 

Table 11. Pair-Wise Comparison of Applicants for Leadership 

  A1 A2 A3  
A1  (1, 1, 1, 1) (1, 2, 2, 3) (2, 2, 4, 4)  
A2  (1/3, 1/2, 1/2, 1) (1, 1, 1, 1) (1, 2, 2, 3)  
A3  (1/4, 1/4, 1/2, 1/2) (1/3, 1/2, 1/2, 1) (1, 1, 1, 1)  

Table 12. Pair-Wise Comparison of Applicants for Leadership 

  A1 A2 A3  
A1  (1, 1, 1, 1) (1/4, 1/3, 1/3, 1/2) (1, 1, 2, 2)  
A2  (2, 3, 3, 4) (1, 1, 1, 1) (3, 3, 4, 4)  
A3  (1/2, 1/2, 1, 1) (1/4, 1/4, 1/3, 1/3) (1, 1, 1, 1)  

Table 13. Pair-Wise Comparison of Applicants for Leadership 

  A1 A2 A3  
A1  (1, 1, 1, 1) (6, 6, 7, 7) (3, 3, 4, 4)  
A2  (1/7, 1/7, 1/6, 1/6) (1, 1, 1, 1) (1/2, 1/2, 1, 1)  
A3  (1/4, 1/4, 1/3, 1/3) (1, 1, 2, 2) (1, 1, 1, 1)  

Table 14. Pair-Wise Comparison of Applicants for Leadership 

  A1 A2 A3  
A1  (1, 1, 1, 1) (1/7, 1/6, 1/6, 1/5) (1, 1, 2, 2)  
A2  (5, 6, 6, 7) (1, 1, 1, 1) (1, 2, 2, 3)  
A3  (1/2, 1/2, 1, 1) (1/4, 1/4, 1/3, 1/3) (1, 1, 1, 1)  

Table 15. Pair-Wise Comparison of Attributes 

  X1 X2 X3 X4 

X1  (1, 1, 1, 1) (1, 2, 2, 3) (2, 2, 3, 3) (1/3, 1/3, 1/3, 1/3)  
X2  (1/3, 1/2, 1/2, 1) (1, 1, 1, 1) (1, 1, 2, 2) (1/2, 1/3, 1/3, 1/2)  
X3  (1/3, 1/3, 1/2, 1/2) (1/2, 1/2, 1, 1)  (1, 1, 1, 1) (1/2, 1/2, 1/2, 1/2)  
X4  (3, 3, 3, 3) (2, 3, 3, 4) (2, 2, 2, 2) (1, 1, 1, 1)  
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The following phases are taken to solve the problem: For the first 
reciprocal matrix, the geometric mean is 

2599.1211a a 3/1
131211

3/1
3

1
11 aaa

j
j

6933.0113/1aa 3/1
232221

3/1
3

1
22 aaa

j
j

4367.013/14/1a a 3/1
333231

3/1
3

1
33 aaa

j
j

Hence,
3

1
3899.24367.06933.02599.1

i
iaa .

Similarly, we can get bi and b, ci and c, and di and d. They are 
summarized as in Table 16. 

Table 16. Geometric Means 

I 1 2 3 Sum of the k th row 
ai 1.2599 0.6933 0.4367  ai = 2.3899 
bi 1.5874 1 0.5  bi = 3.0874 
ci 2 1 0.6299  ci = 3.6299 
di 2.2894 1.4422 0.7937  di = 4.5253 

Thus, (a, b, c, d) = (2.3899, 3.0874, 3.6299, 4.5253). 

The performance scores 1, j 1, 2, and 3jr  can be obtained as 

9579.0 ,6477.0 ,4373.0 ,2784.0,,, 1111
11 a

d
b
c

c
b

d
ar

6034.0 ,3238.0 ,2754.0 ,1532.0,,, 2222
21 a

d
b
c

c
b

d
ar
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3321.0 ,2040.0 ,1377.0 ,0965.0,,, 3333
31 a

d
b
c

c
b

d
ar

The performance scores 2 3 i,   , and j jr r w can be obtained as 

r12 = (0.1495, 0.1797, 0.2668, 0.3333) 
r22 = (0.4312, 0.5393, 0.6994, 0.8550) 
r32 = (0.1186, 0.1296, 0.2118, 0.2352) 
r13 = (0.5875, 0.5875, 0.8283, 0.8283) 
r23 = (0.0930, 0.0930, 0.1501, 0.1501) 
r33 = (0.1412, 0.1412, 0.2383, 0.2383) 
r14 = (0.1170, 0.1288, 0.1888, 0.2111) 
r24 = (0.5521, 0.6136, 0.7857, 0.8703) 
r34 = (0.1119, 0.1170, 0.1888, 0.1987) 
w1 = (0.1725, 0.2278, 0.2758, 0.3427) 
w2 = (0.1025, 0.1354, 0.1762, 0.2604) 
w3 = (0.1025, 0.1139, 0.1640, 0.1841) 
w4 = (0.3554, 0.4367, 0.4778, 0.5765) 

1 11 1 2 1 2 1 2 1 2 1 2 1 2* ,  ,  ,  ,  ,  ,  w r a a L L b b c c d d R R

r11 = (a1, b1, c1, d1) ,     w1 = (a2, b2, c2, d2)
L1 = (b1 a1)(b2 a2),     L2 = a2(b1 a1) + a1(b2 a2)
R1 = (d1 c1)(d2 c2),     R2 = [d2(d1 c1) + d1(d2 c2)]

Table 17. The Values of wjr1j

J wjr1j

1 {0.0480[0.00878, 0.0427], 0.0996, 0.1786, 0.3282[0.0207, 0.170]}
2 {0.0153[0.00099, 0.00799], 0.0243, 0.0470, 0.0883[0.0061, 0.0473]}
3 {0.0602[0, 0.0066], 0.0669, 0.1358, 0.1524[0, 0.0166]}
4 {0.0415, [0.00095, 0.0136], 0.0562, 0.0902, 0.1216[0.0022, 0.0336]}

U1 = {0.165, [0.01072, 0.13119], 0.3159, 0.4516, 0.6905[0.029, 0.2678]}

u1According to Table 17, the membership function value of 
summarized as in Table 18. 

(x) may be



Fuzzy  AHP and Its Application 69

Table 18. The Membership Function Value of u1(x)

X u1(x)
 0.165 0
 0.6905 0

0.3159  x  0.4516 1
0.165  x  0.3159 [0,1]
0.4516  x  0.6905 [0,1]

When x  [0.165, 0.3159], it is defined as: 

x = (0.01072) 2 + (0.13119)  + 0.165 
and when x  [0.4516, 0.6905], it is defined as: 

x = (0.029) 2 + (–0.2678)  + 0.6905. 
The fuzzy utilities U2, and U3 can be obtained in a similar manner. 

They are also presented in Figure 2. 

Figure 2. The fuzzy utilities 

2.6 Chang’s (1992) Extent Analysis Method

First, the outlines of the extent analysis method on fuzzy AHP are given 
and then the method is applied to a catering firm selection problem. Let  

n21 x,..., x,xX  be an object set and muuuU ,...,, 21  be a goal set. 
According to the method of Chang’s (1992) extent analysis, each object is 
taken and extent analysis for each goal, ig , is performed, respectively. 
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Therefore, m  extent analysis values for each object can be obtained, with 
the following signs: 

1 2, , ..., ,                i 1,2,...,nm
gi gi giM M M

where all the mjM j
gi ,...,2,1  are TFNs. 

The steps of Chang’s extent analysis can be given as in the following: 

Step 1. The value of fuzzy synthetic extent with respect to ith object is 
defined as 

1

111

m

j

j
gi

n

i

m

j

j
gii MMS  (18) 

To obtain 
m

ij
j

giM , perform the fuzzy addition operation of m extent 

analysis values for a particular matrix such that 

m
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j
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j
i

m

j
i

j
gi umlM

1 111
,,  (19) 

and to obtain 
1

1 1

n

i

m

j
j

giM , perform the fuzzy addition operation of 

m,...,,jM j
gi 21   values such that 

n
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i
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i
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i
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j
uml

1 1111
,,  (20) 

and then compute the inverse of the vector in Eq. (20) such that 

n

i i
n

i i
n

i i

n

i

m

j

j
gi

lmu
M

111

1

1 1

1,1,1  (21) 
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Step 2. The degree of possibility of

11112222 ,,,, umlMumlM  is defined as

yxMMV MM
xy

2112 ,minsup  (22) 

and can be equivalently expressed as follows: 

otherwise   ,

l if                                ,0
m if                                 ,1

                                   

1122

21

21

12

2

2112

lmum
ul

u
m

d

MMhgtMMV

M

 (23) 

where d is the ordinate of highest intersection point D between 1M and
2M  (see Figure 3). 

To compare 1M  and 2M , we need both the values of 

21 MMV and 12 MMV .

Step 3. The degree of possibility for a convex fuzzy number to be greater 
than k convex fuzzy numbers kiM i ,...,2 ,1  can be defined by 

k1,2,...,i          ,min
and ...and    

,...,,

21

21

i

k

k

MMV
MMMMandMMV

MMMMV
 (24) 

Assume that 

kii SSVAd  min  (25) 
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Figure 3. The intersection between M1 and M2 

For ik;n,...,,k 21 . Then the weight vector is given by 

T
nAdAdAdW ,...,, 21  (26) 

where niAi ,...,2,1  are n elements. 

Step 4. Via normalization, the normalized weight vectors are 

T
nAdAdAdW ,...,, 21  (27) 

where W is a nonfuzzy number. 

scale in fuzzy AHP can be found in the literature as in Abdel-Kader and 
Dugdale’s (2001) study. 

Linguistic scale Triangular fuzzy scale Triangular fuzzy reciprocal 
scale

Just equal (1, 1, 1) (1, 1, 1) 
Equally important (1/2, 1, 3/2) (2/3, 1, 2) 
Weakly important (1, 3/2, 2) (1/2, 2/3, 1) 
Strongly more important (3/2, 2, 5/2) (2/5, 1/2, 2/3) 
Very strong more important (2, 5/2, 3) (1/3, 2/5, 1/2) 
Absolutely more important (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

l2 m2

M2

M2 M1

M1

m1u2 u1l1 d

1

V( )

Table 19. Triangular Fuzzy Conversion Scale 

In this method, the fuzzy conversion scale is as in Table 19. A different 
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2.7 A Numerical Example (Kahraman et al., 2004) 

A big company wants to contract with a catering firm. Alternative catering 
firms are Firm1, Firm2, and Firm3. The goal is to select the best catering 
among the alternatives. The selection hierarchy of the best catering firm is 
shown in Figure 4.

Figure 4. Selection of the best catering firm 

The following phases are taken to solve the problem:

SH = (3.17, 4.00, 5.00)  (1/12.34, 1/10.00, 1/8.14) = (0.26, 0.40, 0.61) 

SQM = (2.90, 3.50, 4.17)  (1/12.34, 1/10.00, 1/8.14) = (0.24, 0.35, 
0.51)

SQS = (2.07, 2.50, 3.17)  (1/12.34, 1/10.00, 1/8.14) = (0.17, 0.21, 0.39) 
are obtained. 

  H QM QS  
H  (1, 1, 1) (3/2, 2, 5/2) (2/3,1, 3/2)  
QM  (2/5, 1/2, 2/3) (1, 1, 1) (3/2, 2, 5/2)  
QS  (2/3, 1, 3/2) (2/5, 1/2, 2/3) (1, 1, 1)  

From Table 20, 

Table 20. The Fuzzy Evaluation Matrix with Respect to the Goal 
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Using these vectors,
V (SH  SQM) =1.00, V (SH  SQS) =1.00, V (SQM  SH) =0.84 
V (SQM  SQS) =1.00, V (SQS  SH) =0.47, and V (SQS  SM) = 0.61  

are obtained. 
Thus, the weight vector from Table 19 is calculated as WG = (0.43, 0.37, 
0.20)T.

SHM = (0.32, 0.50, 0.74), SHSP = (0.17, 0.25, 0.39), SHSV = (0.17, 0.25, 0.39) 
V (SHM  SHSP) = 1.00, V (SHM  SHSV) = 1.00, V (SHSP  SHM) = 0.21 
V (SHSP  SHSV) = 1.00, V (SHSV  SHM) = 0.21, and V (SHSV  SHSP) = 1.00 
are obtained and the weight vector from Table 20 is calculated as  

WH = (0.70, 0.15, 0.15)T.

  HM HSP HSV  
HM  (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2)  
HSP  (2/5, 1/2, 2/3) (1, 1, 1) (2/3, 1, 3/2)  
HSV  (2/5, 1/2, 2/3) (2/3, 1, 3/2) (1, 1, 1)  

QM = (0.19, 0.04, 
0.77, 0.00)T.

  VM CoM CaM TM  
VM  (1, 1, 1) (3/2, 2, 5/2) (2/7, 1/3, 2/5) (5/2, 3, 7/2)  
CoM  (2/5, 1/2, 2/3) (1, 1, 1) (2/7, 1/3, 2/5) (7/2, 4, 9/2)  
CaM  (5/2, 3, 7/2) (5/2, 3, 7/2) (1, 1, 1) (5/2, 3, 7/2)  
TM  (2/7, 1/3, 2/5) (2/9, 1/4, 2/7) (2/7, 1/3, 2/5) (1, 1, 1)  

QS = (0.00, 0.05, 
0.00, 0.95)T.

  BSP ST CP PS  
BSP  (1, 1, 1) (2/7, 1/3, 2/5) (7/2, 4, 9/2) (2/9, 1/4, 2/7)  
ST  (5/2, 3, 7/2) (1, 1, 1) (5/2, 3, 7/2) (2/7, 1/3, 2/5)  
CP  (2/9, 1/4, 2/7) (2/7, 1/3, 2/5) (1, 1, 1) (2/9, 1/4, 2/7)  
PS  (7/2, 4, 9/2) (5/2, 3, 7/2) (7/2, 4, 9/2) (1, 1, 1)  

HM = (0.66, 0.00, 
0.34)T.

From Table 21,

Table 21. Evaluation of the Sub-Attributes with Respect to Hygiene (H) 

The weight vector from Table 22 is calculated as W

Table 22. Evaluation of the Sub-Attributes with Respect to Quality of Meal (QM) 

Table 23. Evaluation of the Sub-Attributes with Respect to Quality of Service (QS) 

The weight vector from Table 23 is calculated as W

The weight vector from Table 24 is calculated as W
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  Firm1 Firm2 Firm3  
Firm1  (1, 1, 1) (5/2, 3, 7/2) (3/2, 2, 5/2)  
Firm2  (2/7, 1/3, 2/5) (1, 1, 1) (2/7, 1/3, 2/5)  
Firm3  (2/5, 1/2, 2/3) (5/2, 3, 7/2) (1, 1, 1)  

HSP = (0, 0, 1)T.

  Firm1 Firm2 Firm3  
Firm1  (1, 1, 1) (2/3, 1, 3/2) (2/9, 1/4, 2/7)  
Firm2  (2/3, 1, 3/2 ) (1, 1, 1) (2/5, 1/2, 2/3)  
Firm3  (7/2, 4, 9/2) (3/2, 2, 5/2) (1, 1, 1)  

HSV = (0, 0, 1)T.

  Firm1 Firm2 Firm3  
Firm1  (1, 1, 1) (2/3,1, 3/2) (2/7, 1/3, 2/5)  
Firm2  (2/3, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3)  
Firm3  (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 1, 1)  

VM = (0, 0, 1)T.

  Firm1 Firm2 Firm3  
Firm1  (1, 1, 1) (2/7, 1/3, 2/5) (2/3, 1, 3/2)  
Firm2  (5/2, 3, 7/2) (1, 1, 1) (1, 1, 1)  
Firm3  (2/3, 1, 3/2) (1, 1, 1)  (1, 1, 1)  

CoM = (0.87, 0.00, 
0.13)T.

(CoM)

  Firm1 Firm2 Firm3  
Firm1  (1, 1, 1) (5/2, 3, 7/2) (2/3, 1, 3/2)  
Firm2  (2/7, 1/3, 2/5) (1, 1, 1) (1, 1, 1)  
Firm3  (2/3, 1, 3/2) (1, 1, 1)  (1, 1, 1)  

Table 24. Evaluation of the Catering Firms with Respect to Hygiene of Meal (HM) 

The weight vector from Table 25 is calculated as W

Table 25. Evaluation of the Catering Firms with Respect to Hygiene of Service Personnel (HSP) 

The weight vector from Table 26 is calculated as W

Table 26. Evaluation of the Catering Firms with Respect to Hygiene of Service Vehicles (HSV) 

The weight vector from Table 27 is calculated as W

Table 27. Evaluation of the Catering Firms with Respect to Variety of Meal (VM) 

The weight vector from Table 28 is calculated as W

Table 28. Evaluation of the Catering Firms with Respect to Complementary Meals in a Day 
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Using the similar calculations, the weight vectors of the catering firms 
with respect to

Calorie of meal (CaM) is obtained as WCaM = (0.00, 0.31, 0.69)T.
Taste of meal (TM) is obtained as WTM = (0.27, 0.18, 0.55)T.
Behavior of service personnel (BSP) is obtained as WBSP = (1, 0, 0)T.
Service time (ST) is obtained as WST = (0.05, 0.64, 0.31)T.
Communication on phone (CP) is obtained as WCP = (0.72, 0.00, 0.28)T.
Problem solving ability (PS) is obtained as WPS = (0, 0, 1)T.

Sub-attributes of hygiene 
 HM HSP HSV Alternative 

priority
weight

Weight 0.70 0.15 0.15  
Alternative
Firm1 0.66 0 0 0.46 
Firm2 0 0 0 0.00 
Firm3 0.34 1 1 0.54 
Sub-attributes of quality of meal 
 VM CoM CaM TM  
Weight 0.19 0.04 0.77 0.00  
Alternative
Firm1 0 0.87 0 0.27 0.03 
Firm2 0 0 0.31 0.18 0.24 
Firm3 1 0.13 0.69 0.55 0.73 
Sub-attributes of quality of service 
 BSP ST CP PS  
Weight 0.00 0.05 0.00 0.95  
Alternative
Firm1 1 0.05 0.72 0 0.003 
Firm2 0 0.64 0 0 0.032 
Firm3 0 0.31 0.28 1 0.965 
Main attributes of the goal 
 H QM QS  
Weight 0.43 0.37 0.20  
Alternative
Firm1 0.46 0.03 0.003 0.21 
Firm2 0 0.24 0.032 0.10 
Firm3 0.54 0.73 0.965 0.69 

The combination of priority weights for sub-attributes, attributes, and 
alternatives to determine priority weights for the best catering firm are 

Table 29. Obtained Results 
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selected.

2.8 Cheng’s (1996) Entropy-Based Fuzzy AHP 

The Shannon entropy, H, which is applicable only to probability measures, 
assumes the following form in evidence theory (Klir and Yan, 1995): 

n

j
xmxmmH

1
2log . (28)

This function, which forms the basis of classic information theory, 
measures the average uncertainty associated with the prediction of 
outcomes in a random experiment. Its range is

Clearly, 0.H m
X2log ,0 .

when 1xm  for some Xx ; XmH 2log  when m defines the 

uniform probabilities distribution on i.e.,  1/  ,  x XX m x X .

The principle of maximum uncertainty is well developed and broadly 
utilized within classic information theory, where it is called the principle 
of maximum entropy. 

Cheng’s [1996] evaluation model can be described as given below: 

Step 1. Construct a hierarchy structure for any problem. 
Step 2. Build membership function of judgment criteria. 
Step 3. Compute the performance score. 
Step 4. Utilize fuzzy AHP method and entropy concepts to calculate 

aggregate weights. 
The computational procedure of this decision-making methodology is 

summarized as follows. 
To compare the performance scores, we can use symmetric triangular 

fuzzy numbers 9~ ,7~ ,5~ ,3~ ,1~ to indicate the relative strength of the 
elements in the hierarchy matrix. 

shown in Table 29. With respect to the results, firm3 is the catering firm 
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To assemble the total fuzzy judgement matrix A~ , we can multiply the 
fuzzy subjective weight vector W~ with the corresponding column of fuzzy 
judgement matrix X~ . Thus, we get 

nnnnn
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nn

xwxwxw

xwxwxw
xwxwxw

A

~~~~~~

~~~~~~
~~~~~~

~

2211

2222211

1122111

. (29) 

Now fuzzy number multiplications and additions using the interval 
arithmetic and  cuts are made, and Eq. (30) is obtained.
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where ijuiuijuijlilijl xwaxwa  , , for 0 <  1 and all i, j.

Now the degree of satisfaction of the judgment Â will be estimated. 
When  is fixed, we will set the index of optimism  by the degree of the 
optimism of a decision maker. A larger  indicates a higher degree of 
optimism. The index of optimism is a linear convex combination it is 
explained by 

ˆij ijl iju

Thus we have 
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where Â  is a precise judgment matrix. 

a a1 ,a 0,  1 . (31) 
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The entropy must be first calculated by using the relative frequency of 
Eq. (33) and the entropy formula of Eq. (34), i.e., 
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where

n

j kjk as
1

.

We can use this equation to caloculate the entropy, i.e., 
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where iH is ith entropy value. 
The entropy weights can be determined by using Eq. (35). 

ni
H

HH n

j
j

i
i ,...,2 ,1     , 

1

 (35) 

2.9 A Numerical Example 

A company wants to choose one supplier among four suppliers. They 
determine five attributes: capacity, quality, cost, distance, and delivery 
time. By the help of the experts, they determine all the suppliers, and they 

best supplier for the company. 

are given in Table 30. Also for the company they give fuzzy weights of the 
criteria and they are given in Table 31. This work is done for choosing the 
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  X1 X2 X3 X4 X5  
A1  (1, 3, 5) (5, 7, 9) (3, 5, 7) (1, 3, 5) (1, 1, 3)  
A2  (7, 9, 9) (1, 1, 3) (1, 3, 5) (1, 3, 5) (3, 5, 7)  
A3  (1, 1, 3) (1, 3, 5) (1, 3, 5) (3, 5, 7) (1, 3, 5)  
A4  (3, 5, 7) (5, 7, 9) (1, 1, 3) (1, 1, 3) (1, 3, 5)  

  X1 X2 X3 X4 X5  
W  (1, 3, 5) (7, 9, 9) (5, 7, 9) (1, 3, 5) (1, 1,  3)  

The following phases are taken to solve the problem:

To assemble the total fuzzy judgment matrix A~ , we can multiply the 
fuzzy subjective weight vector W~ by the corresponding column. 

A~

323112R   ,a ,~     ,1 ,0 aaaaaaaA L

Set  = 0.8 and  = 0.5 for a moderate decision maker. 
â11 = [(3  1) × 0.8 + 1,  (5  3) × 0.8 + 5]  [(3  1) × 0.8 + 1,  (5  3) 

× 0.8 + 5] 
â11 = [6.76, 11.56] 
All the results are given below.

8.0
~A

  X1 X2 X3 X4 X5  

A1 (1, 3, 5)  (1, 3, 5) (7, 9, 9)  (5, 7, 9) (5, 7, 9)  (3, 5, 7) (1, 3, 5)  (1, 3, 5) (1, 1, 3)  (1, 1, 3) 

A2 (1, 3, 5)  (7, 9, 9) (7, 9, 9)  (1, 1, 3) (5, 7, 9)  (1, 3, 5) (1, 3, 5)  (1, 3, 5) (1, 1, 3)  (3, 5, 7) 

A3 (1, 3, 5)  (1, 1, 3) (7, 9, 9)  (1, 3, 5) (5, 7, 9)  (1, 3, 5) (1, 3, 5)  (3, 5, 7) (1, 1, 3)  (1, 3, 5) 
A4 (1, 3, 5)  (3, 5, 7) (7, 9, 9)  (5, 7, 9) (5, 7, 9)  (1, 1, 3) (1, 3, 5)  (1, 1, 3) (1, 1, 3)  (1, 3, 5) 

  X1 X2 X3 X4 X5  
A1 [6.76, 11.56] [56.76, 66.6] [30.36, 39.96] [6.76, 11.56] [1, 1.96] 

A2 [22.36, 30.6] [8.6, 12.6] [17.16, 25.16] [6.76, 11.56] [4.6, 7.56] 

A3 [2.6, 4.76] [22.36, 30.6] [17.16, 25.16] [11.96, 18.36] [2.6, 4.76] 

A4 [11.96, 18.36] [56.76, 66.6] [6.6, 10.36] [2.6, 4.76] [2.6, 4.76] 

Table 30. Fuzzy Judgment Matrix 

Table 31. Fuzzy Subjective Weight Vector 
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where  = 0.8. 
We compute to 11â  by using Eq. (31) as 

16.956.115.076.65.01ˆ11a

All the results are given below. 
Â

where  = 0.5. 
We calculate relative frequencies by Eq. (33). 
f

Then, we compute entropy values by using the relative frequencies and 
the entropy formula Eq. (34). The resultant aggregate weights can be 
determined by normalizing entropy values. 

From the last table, supplier A2 is the best choice when  = 0.8 and 
 = 0.5. 

3. CONCLUSION

Decisions are made today in increasingly complex environments. The 
fuzzy AHP provides a systematic method for comparison and weighting of 
the multiple criteria and alternatives to decision makers in the case of 
incomplete information. Many alternative fuzzy AHP methods exist in the 

  X1 X2 X3 X4 X5  
A1  9.16 61.68 35.16 9.16 1.48  
A2  26.48 10.6 21.16 9.16 6.08  
A3  3.68 26.48 21.16 15.16 3.68  
A4  15.16 61.68 8.48 3.68 3.68  

  X1 X2 X3 X4 X5  
A1  0.0785 0.5288 0.3014 0.0785 0.0126  
A2  0.3603 0.1442 0.2879 0.1246 0.0827  
A3  0.0524 0.3774 0.3015 0.2160 0.0524  
A4  0.1635 0.6655 0.0914 0.0397 0.0397  

 Entropy 
Value

Entropy
Weight

A1 H1 = 1.6635 0.2289 
A2 H2 = 2.1225 0.2921 
A3 H3 = 1.9754 0.2719 
A4 H4 = 1.5053 0.2069 



82 T. Demirel et al.

literature, whereas only a crisp does. The problem that one is superior to 
any other has not yet been solved. Besides it is possible to meet new 
alternative fuzzy AHP methods in the near future. These new methods 
should try to follow the fundamentals of the crisp AHP. Otherwise, these 
methods could not be called AHP-based multi-criteria decision-making 
methods.
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Abstract:  E-government refers to the delivery of information and services online via 
the Internet. Many governmental units across the world have embraced the 
digital revolution and placed a wide range of materials on the web, from 
publications to databases. The purpose of this study is to evaluate and to 
determine the alternative strategies for e-government applications in Turkey. 
We use the strengths, weaknesses, opportunities, and threats (SWOT) 
approach in combination with the crisp and fuzzy analytic hierarchy process 
(AHP) to achieve this task. The strategies have been prioritized by using 
both methods comparatively and sensitivity analyses of the obtained results 
have been presented. 

Key words: Outranking, fuzzy outranking relation, pair-wise comparison, e-government, 
SWOT, analytic hierarchy process, strategic planning, sensitivity analysis 

1. INTRODUCTION

Digital technologies serve as a basic source of transformation in 
economies, communities, and government functions all over the world. 
The occurrence of technological change of the late 1990s, the result of 
which was the enabling of the delivery of services over the internet, caused 
major and rapid transformation of how governments function. Development 
of e-commerce and the evolution projected for the near future has 
encouraged consumers to demand more and more customized, rapid, and 
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communication technologies is having far-reaching effects on all aspects 
of modern life,  including government.

Academics have suggested various definitions for e-government. 
According to Kaylor et al. (2001), e-government is taken to be the ability 
for citizens to communicate and/or interact with the city via the Internet in 
any way more sophisticated than a simple e-mail letter to the generic city 
(or webmaster) or e-mail address provided at the site. The United Nations 
and the American Society for Public Administration (2002) defined e-
government as “utilizing the internet and the World-Wide-Web for 
delivering government information and services to citizens.” More 
recently, e-government is defined by the OECD (2003) as “the use of 
Information and Communications Technologies (ICT), and particularly the 
Internet, as a tool to achieve better government.” 

Many works on e-government have been published. Most of these 
works are on strategy evaluation, future development programs, and 
scenario planning. Layne and Lee (2001) described different stages of e-
government development. The stages of development outline the structural 
transformations of government as they progress toward electronically 
enabled government. And they also described how the Internet-based 

public administration, implying fundamental changes in the form of 
government. They developed a four-stage growth model with themselves 
providing observation. Chen and Gant (2001) examined the potential of 
application service providers to transform electronic government services 
at the local level. Gupta and Jana (2003) suggested a flexible framework to 
choose an appropriate strategy to measure the tangible and intangible 
benefits of e-government. Reddick (2004) explored the current stages of 
development and prospect for future development in e-government 
growth in the U.S. cities. Akman et al. (2005) reviewed and discussed  
e-government issues in general, its global perspective, and then reported 
the findings of a survey concerning impact of gender and education 
among the e-government users in Turkey. Gil-Garcia and Pardo (2005) 
examined the extent to which information systems (IS) research informs 
the development of practitioner tools for government information 
technology (IT) decision makers.

SWOT, the acronym standing for strengths, weaknesses, opportunities 
and threats analysis, is a commonly used tool for analyzing internal and 
external environments to attain a systematic approach and support for a  

at-home services. The  rapid  development  of  modern information and

government emerged with traditional models amalgamated with traditional 
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decision situation. The internal and external factors most important to the 
enterprise’s future are referred to as strategic factors, and they are 
summarized within the SWOT analysis. The final goal of a strategic 
planning process, of which SWOT is an early stage, is to develop and 
adopt a strategy resulting in a good fit between internal and external 
factors. SWOT can also be used when strategy alternative emerges 
suddenly and when the decision context relevant to it has to be analyzed. 
This chapter proposes a multi-attribute decision-making-based SWOT 
analysis for the evaluation of alternative e-government strategies for 
Turkey. After a wide literature review, it is found that the application of 
this methodology to e-government area is described for the first time in 
this chapter. 

In this chapter, we applied a SWOT analysis using the crisp and the 
fuzzy approaches of a multi-attribute evaluation method that is called the 
analytic hierarchy process (AHP) to the e-government process of Turkey. 
E-government strategy selection with SWOT analysis is a complex 
problem in which many qualitative aspects must be considered. These 
kinds of aspects make the evaluation process hard and vague. The 
judgments from experts are always vague and linguistic rather than exact 
values. Thus, it is suitable and flexible to express the judgments of experts 
in fuzzy quantities instead of in crisp quantities. Additionally, the 
hierarchical structure is a good approach to describe these kinds of 
complicated evaluation problems. Fuzzy AHP has the capability of taking 
these situations into account with a hierarchical structure. To be able to 
compare with the crisp case, we also implemented the crisp AHP. We first 
determined the factors in the SWOT groups and alternatives strategies for 
e-government application in Turkey. Then we computed the importance 
weights of these factors and the scores of the strategies. The aim of this 
study is to determine the priorities of the e-government strategies for the 
case of Turkey. 

The remainder of this chapter is organized as follows. Section 2 
presents Turkey’s position among the other countries and e-government 
projects and services in Turkey. Section 3 introduces some terminology 
from SWOT analysis and the analytic hierarchy process (crisp and fuzzy 
cases). The method for utilizing AHP in SWOT analysis is also defined in 
the third section. SWOT analysis for e-government in Turkey is presented 
in Section 4. Sections 5 and 6 define possible e-government strategies and 
the evaluation of e-government strategies in Turkey. The last section 
summarizes the findings and makes suggestions for further research. 
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2. E-GOVERNMENT IN TURKEY 

2.1 Turkey’s Position Among the Other Countries 

The e-government agenda is being pursued throughout the world to one 
degree or another, but it has added significance in Central Europe. The 
region is just beginning to emerge from a period of far-reaching political and 
economic transformation after the collapse of repressive communist 
systems. For these countries, e-government is more than simply a new 
channel of delivering services; it offers an opportunity to achieve a quantum 
leap in transparency and efficiency of administration, which the region’s 
leaders have promised their citizens since the early 1990s. In order to gauge 
their capacity to implement such change as well as their progress to date, the 
Economist Intelligence Unit (EIU), sponsored by Oracle, conducted a wide-
ranging analysis of the e-government experience in the Central Europe 
region. EUI considered seven criteria with different weightings: connectivity 
and technology infrastructure (CTI) (20% weight), business and legal 
environment (BLE) (10% weight), e-democracy (E-D) (15%), education and 
skills (ES) (10%), online public services for citizens (OPSC) (15%), online 
public service for businesses (OPSB) (15%), and government policy and 
vision (GPV) (15%). Table 1 expresses the results of this analysis in 
comparative fashion. Scores are on a scale of 1 to 10 (Source: Economist 
Intelligence Unit). The rankings cover the ten new and candidate EU 
members from Central Europe, as well as another prospective member, 
Turkey.

Table 1. Economist Intelligence Unit Central Europe e-government rankings 

 Overall 
score

CTI BLE ES GPV E-D OPSC OPSB 

Category weight  0.20 0.10 0.10 0.15 0.15 0.15 0.15 
Estonia 5.87 3.37 6.80 7.67 6.50 4.60 6.38 7.52 
Czech Rep. 5.67 3.98 6.95 7.33 6.10 3.60 5.68 7.57 
Slovenia 5.33 3.68 6.60 7.33 5.00 2.90 6.73 6.68 
Poland 4.74 2.43 6.60 6.67 5.30 2.90 5.98 5.33 
Hungary 4.69 3.15 6.66 7.00 5.50 3.30 5.00 4.19 
Turkey 4.64 2.67 4.23 5.67 4.90 4.20 5.70 6.00 
Lithuania 4.62 2.21 6.36 6.33 4.70 2.60 5.00 7.08 
Latvia 4.58 2.34 6.32 6.67 5.00 2.60 4.79 6.35 
Slovakia 4.44 2.80 6.28 6.67 3.80 2.90 4.46 6.08 
Romania 3.99 1.43 5.42 5.33 4.70 2.60 4.08 6.16 
Bulgaria 3.71 1.92 5.50 5.67 3.10 2.60 3.95 5.08 
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2.2 Process of Turkey’s Development in e-Government 

Since the beginning of the 1990s, there has been an increase in the effort 
by most countries to transform into an information society. Essentially, 
economic and social necessities bring about these efforts. The Turkish 
Government initiated the Urgent Action Plan in December 2002 to remedy 
long-lasting economic problems and to improve the social well-being of 
the country. One basic component of this plan is the “e-Transformation 
Turkey Project,” which aims to turn Turkey into an information society. 
Some objectives of this project are to facilitate the participation of citizens 
to the decision-making process; to enhance transparency and accountability 
for the public management; to promote ICT diffusion; and to coordinate e-
government investments by means of information and communication 
technologies. The Minister of State and Deputy Prime Minister has the 
high level responsibility of the project, and the project is coordinated by 
the State Planning Organization (SPO).

In order to realize the objectives of this project and to ensure the 
success of the project, a new coordination unit, the Information Society 
Department, within SPO was established. This department is responsible 
for the overall coordination of the project. Before this project was 
launched, lack of efficient coordination between institutions made the 
progress slow and ineffective. For the first time in Turkey, a dedicated 
department, which is believed to be a crucial element for success, has been 
named as the coordinator of information society activities. To increase  
the participation and the level of success, an Advisory Committee with  
41 members has been established. This consulting body consists of the 
representatives of public institutions, nonprofit organizations, and 
universities (Akman et al., 2005)

In line with the government’s schedule, the initial focal point in this 
project was the Short Term Action Plan (STAP), which covered 
2003 2004, for implementing specific tasks. The first action of STAP was 
the determination of an “Information Society Strategy,” which encompassed 
every part of society and maximized national benefits and value added. As 
in the preparation phase, the implementation of STAP and all other related 
activities was coordinated by the SPO-Information Society Department 
and was open to every contribution in order to successfully achieve the 
ultimate goal: to transform Turkey into an information society.

The e-Transformation Turkey Executive Board was also established 
with the same circular that validates STAP. The Board is composed of the 
Minister of State and Deputy Prime Minister (e-minister), Minister of 
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Industry and Trade, Minister of Transport, Undersecretary of SPO, and 
Chief Advisor to the Prime Minister. The Board was given the 
responsibility of supervision of the e-Transformation Turkey Project.

2.3 E-Government Projects and Services In Turkey 

Akman et al. (2002) classify and report a list of current e-government 
projects. A classification based on the project characteristics is given as 
follows: Projects related to national IS and services; projects related to 
education, culture, youth, and sports; projects related to health, family, 
labor, and social affairs; projects related to finance and economics; projects 
related to interior affairs; projects related to justice affairs; projects related 
to agriculture, forestry, village, and environmental affairs; projects related 
to industry, technology, energy, and natural resources; projects related to 
communications, public work, tourism, and development and housing; and 
projects related to foreign affairs. From the details of the report, one can 
observe that most of the projects are for processing information and hence 
devoted to services. However, a considerable number of these systems is 
being developed for government-to-government (G2G) communications. 
Although these systems do not adopt the government-to-citizens (G2C) 
approach entirely, the above classification provides evidence that these 
will constitute a sufficient base for G2C communication in the future in 
almost all areas of public affairs. Currently available e-government 
services in Turkey are classified into three groups. G2G services are the 
ones enjoyed among public organizations electronically. G2C services are 
given by government organizations to citizens electronically. Government-
to-business (G2B) services are given by government organizations to 
private sector.

3. SWOT-AHP ANALYSIS FOR E-GOVERNMENT  

In the following discussion, the fundamentals of SWOT analysis and AHP 
are given. Later, these techniques are combined to prioritize the  
e-government strategies. 

3.1 SWOT Analysis 

A scan of the internal and external environment is an important part of  
the strategic planning process. Environmental factors internal to the 
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organization usually can be classified as strengths (S) or weaknesses (W), 
and those external to the organization can be classified as opportunities (O) 
or threats (T). Such an analysis of the strategic environment is called to as 
a SWOT analysis. The SWOT approach involves systematic thinking and 
comprehensive diagnosis of factors relating to a new product, technology, 
management, or planning (Weihrich, 1982). Figure 1 shows how SWOT 
analysis fits into an environment scan. 

Figure 1. SWOT analysis framework 

3.2 A Multi-Attribute Evaluation Method: AHP

The analytic hierarchy process has been used in many different fields as a 
multi-attribute decision analysis tool with multiple alternatives and criteria. 
An extensive literature review on AHP can be found in Vaidya and 
Kumar’s (2006) study. AHP uses “pair-wise comparisons” and matrix 
algebra to weigh criteria. The decision is made by using the derived 
weights of the evaluative criteria (Saaty, 1980).

After the hierarchy of the problem is constructed, the matrices of pair-
wise comparisons are obtained. In this matrix, the element aij = 1/aij, and 
thus, when i = j, aij = 1. The value of wi may vary from 1 to 9, and 1/1 
indicates equal importance, whereas 9/1 indicates extreme or absolute 
importance. The scale is shown in the Table 2. 

Table 2. Evaluation Scale 

Num Value Verbal Scale 
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance 
9 Extreme or absolute importance 
2, 4, 6, 8 Intermediate values 

Environment Scan

Internal Analysis External Analysis

WeaknessesStrengths Opportunities Threats

SWOT Matrix
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In the comparisons, some inconsistencies can be expected and 
accepted. When A contains inconsistencies, the estimated priorities can be 
obtained by using the A matrix as the input using the eigenvalue technique. 

0q)IA( max  (2) 

where max is the largest eigenfactor of matrix A of size n, q is its correct 
eigenfactor and I is the identity matrix of size n. The correct eigenfactor, q,
constitutes the estimation of relative priorities. Each eigenfactor is scaled 
to sum up to one to obtain the priorities. Saaty (1977) demonstrated that 

max = n is a necessary and sufficient condition for consistency. 
Inconsistency may occur when max deviates from n due to inconsistent 
responses in pair-wise comparisons. Therefore, the matrix A should be 
tested for consistency using index, CI, which has been constructed. 

)1n/()n( maxCI  (3) 

CI estimates the level of consistency with respect to a comparison 
matrix. Then, because CI is dependent on n, a consistency ratio CR is 
calculated, which is dependent of n as shown below. 

RI / CICR  (4) 

where CI is the consistency index, RI is random index (RI) generated for a 
random matrix of order n, and CR is the consistency ratio (Saaty, 1993). 
The general rule is that CR  0.1 should be maintained for the matrix to be 
consistent. Otherwise, all or some comparisons must be repeated in order 
to resolve the inconsistencies of the pair-wise comparisons. 

3.3 The Fuzzy AHP 

To deal with vagueness of human thought, Zadeh (1965) first introduced 
the fuzzy set theory, which was oriented to the rationality of uncertainty 
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due to imprecision or vagueness. A major contribution of fuzzy set theory 
is its capability of representing vague data. The theory also allows 
mathematical operators and programming to apply to the fuzzy domain. A 
fuzzy set is a class of objects with a continuum of grades of membership. 
Such a set is characterized by a membership (characteristic) function, 
which assigns to each object a grade of membership ranging between zero 
and one. 

A tilde “ ” will be placed above a symbol if the symbol represents a 
fuzzy set. A triangular fuzzy number (TFN), M~  is shown in Figure 2. A 
TFN is denoted simply as )/,/( umml  or ( uml ,, ). The parameters l, m, and 
u respectively, denote the smallest possible value, the most promising 
value, and the largest possible value that describe a fuzzy event. 

Figure 2. A Triangular Fuzzy Number, ~M

Each TFN has linear representations on its left and right side such that 
its membership function can be defined as 

0,                       
( ) /( ),    
( ) /( ),   

x l
x M x l m l l x m

u x u m x l
 (5) 

A fuzzy number can always be given by its corresponding left and right 
representation of each degree of membership: 

1,0,,(~ )()( yyumuylmlMMM yryl  (6) 

 l m u

1.0

0.0

Ml(y) Mr(y)
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where l(y) and r(y) denote the left side representation and the right side 
representation of a fuzzy number, respectively. Many ranking methods for 
fuzzy numbers have been developed in the literature. These methods may 
give different ranking results, and most methods are tedious in graphic 
manipulation requiring complex mathematical calculation. The algebraic 
operations with fuzzy numbers can be found in Zimmermann (1994). 

A basic literature review on fuzzy AHP can be found in Kahraman  
et al.’s (2004) study. In this chapter, we prefer Chang’s (1992, 1996) 
extent analysis method since the steps of this approach are relatively easier 
than the other fuzzy AHP approaches and similar to the conventional AHP. 
This method can be found with its details in Chapter 3, Section 3.2.6. 

3.4 The Method for Using AHP in SWOT Analysis 

The idea in using AHP within a SWOT framework is to systematically 
evaluate SWOT factors and commensurate their intensities. If it is used in 
combination with the analytic hierarcy process, the SWOT approach can 
provide a quantitative measure of importance of each factor on decision 
making (Saaty and Vargas, 2001). The method introduced proceeds as 
follows (Kurttila et al., 2000): 

Step 1. SWOT analysis is carried out. 
The relevant factors of the external and internal environments are 

identified and included in SWOT analysis. When standard AHP is applied, 
it is recommended that the number of factors within a SWOT group should 
not exceed 10 because the number of pair-wise comparisons needed in the 
analysis increases rapidly (Saaty, 1980). Thus, the result of the comparisons 
is quantitative values expressing the priorities of the factors included in 
SWOT analysis.

Step 2. Pair-wise comparisons between SWOT factors are carried out 
within every SWOT group.

When making the comparisons, the questions at stake are as follows: 
(1) which of the two factors compared is a greater strength (opportunity, 
weakness, or threat); and (2) how much greater. With these comparisons as 
the input, the relative local priorities of the factors are computed using the 
eigenvalue method. These priorities reflect the decision maker’s perception 
of the relative importance of the factors. 

Step 3. Pair-wise comparisons are made among the four SWOT groups. 
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The factor with the highest local priority is chosen from each group to 
present the group. These four factors are then compared as in Step 2. These 
are the scaling factors of the four SWOT groups, and they are used to 
calculate the global priorities of the independent factors within them. This 
is done by multiplying the factors’ local priorities (defined in Step 2) by 
the value of the corresponding scaling factor of the SWOT group. The 
global priorities of all factors sum up to one. 

Step 4. The results are used in the strategy formulation and evaluation 
process.

The contribution to the strategic planning process comes in the form of 
numerical values for the factors. New goals may be set, strategies may be 
defined, and such implementations may be planned as take into close 
consideration the foremost factors. 

4. SWOT ANALYSIS FOR E-GOVERNMENT  
IN TURKEY 

In the following discussion, we determine the subfactors of the strengths, 
weaknesses, opportunities, and threats for e-government in Turkey. These 
subfactors are used in the prioritization of the e-government strategies.

4.1 Strengths

The three main strengths are determined as follows. 

4.1.1 Formation of Supervisory and Executive Committees 

The Prime Minister of Turkey made a declaration that was published in the 
October 4, 2003, issue of the Official Gazette for the realization of the 
STAP covering the years 2003 and 2004 for the e-Transformation project. 
The declaration specified the tasks along with their priorities, the 
formation of the supervisory and executive committees, and the 
responsible organizations in charge of implementation. The Supervisory 
committee is headed by the Deputy Prime Minister and includes members 
from top level management of the public and private sectors and the NGO 
representatives. The members of the Executive Committee are Deputy 
Prime Minister (Chair), Minister of Industry and Trade, Minister of 
Transportation, Undersecretary of the SPO, and Head Advisor of the Prime 
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Minister. The representatives of nongovernmental organizations, Trade 
Chambers Union, Informatics Association of Turkey, Turkish Informatics 
Foundation, The Association of Turkish IT Industrialists, the head of the 
Telecommunications Authority, and the general manager of Turkish 
Telecom are also members of this Committee. Some of the major 
achievements realized by the committee have been the settlement of three 
laws, namely, the e-Signature law, Knowledge Acquisition law, and 
Privacy law (Akman et al., 2005). 

4.1.2 e-Transformation Projects 

The Turkish Government has started many e-government projects as 
indicated in Section 4.2.4. These projects are G2G, G2C, and G2B services. 
They are the main locomotives of e-government in Turkey.

4.1.3 Support from Top–Level Management of the Public  
and Private Sectors

Both public and private sectors support the e-government projects. Many 
ministers from the government and many associations and foundations are 
the members of the e-government committees.

4.2 Weaknesses

The four main weaknesses are determined as follows. 

4.2.1 Lack of Access to Internet Among Certain Sections of The 
Population

It is a particular problem for public sector organizations, as they cannot 
choose their customers. Indeed many public services are provided 
specifically for vulnerable or low-income groups who are the least likely to 
have access to the technology. The main consequence is that public sector 
organizations will have to continue to provide services through multiple 
channels at least in the short term to prevent excluding those who do not 
have access to the Internet (Akman et al., 2005).
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4.2.2 Lack of Finance for Capital Investment in New Technologies 

The reason is that IT was often not viewed as a priority when competing 
for scare resources against other claims for capital investment, for 
example, new schools, roads, and so on.

4.2.3 Need To Change Individual Attitudes and Organizational 
Cultures 

It is part of an organizational change issue. Another problem is with 
security and authentication that prevented the development of electronic 
transaction services. It is a specific problem with public sector organi-
zations as the public generally saw them as being in a position of trust.

4.2.4 Poor Economic Power of Citizens and Businesses 

Although gross national product per person was US$3,412 in 2003, it was 
US$4,172 in 2004. This increase means US$348 per month for one person. 
It is clear that citizens having this level of economic power cannot buy a 
computer and other software and hardware. 

4.3 Opportunities

Nine subfactors of opportunities for e-government in Turkey are 
determined. The first three subfactors are selected by the experts for the 
SWOT analysis since these are evaluated as the most important issues of  
e-government in Turkey. 

4.3.1 A Candidate Country from the European Union’s 
Information Society Perspective 

Turkey has been a candidate country according to the European Union 
(EU) for a long time. Being a member of the EU will force Turkey to 
implement e-government conditions. So we accept it as an opportunity for 
Turkey.

4.3.2 Efficiency

As with many information technology-related projects, one of the 
anticipated benefits is improved efficiency. In e-government projects, this 
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efficiency can take many forms. Some projects seek to reduce errors and 
improve consistency of outcomes by automating standardized tasks. A 
related efficiency goal of many e-government initiatives is to reduce costs 
and layers of organizational processes by re-engineering and streamlining 
operating procedures. 

4.3.3 New and Improved Services 

Another opportunity promoted by e-government supporters is the potential 
to improve the quality, range, and accessibility of services. Some observers 
suggest that, in addition to enhanced efficiency, the quality of services may 
be improved through quicker transactions, improved accountability, and 
better processes. The evolution of e-government also creates the potential 
for new services.

4.3.4 Increased Citizen Participation 

A third benefit anticipated by some e-government advocates is increased 
citizen participation in government. One way this could occur is by 
connecting people who live in remote areas of the country so that they can 
send and receive information more easily. A second way suggested by 
some observers is through increased participation in government by 
younger adults. 

4.3.5 Improved National Information Infrastructure 

A fourth possible benefit of the drive to implement e-government initiatives 
is the improvement of the national information infrastructure. 

4.3.6 Potential Challenges to e-Government 

On the other hand, despite the potential opportunities for the implementation 
of e-government initiatives, several challenges that could prevent the 
realization of these anticipated benefits. Some of the challenges, such as 
disparities in computer access (digital divide—the lack of equal access to 
computers, whether due to a lack of financial resources or necessary 
skills), are preexisting conditions that are connected to larger issues.
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4.3.7 Privacy

Related to computer security, privacy also presents a challenge to the 
implementation and acceptance of e-government initiatives. Concerns 
about the use of “cookies,” sharing information between agencies 
(computer matching), and the disclosure or mishandling of private 
information are frequent subjects of debate. Addressing the issue of 
privacy in the context of e-government may require both technical and 
policy responses.

4.3.8 Disparities in Computer Access 

Another challenge for e-government are disparities in computer access. 
This challenge includes two policy issues: the often described “digital 
divide” and accessibility for people with disabilities. In the case of the 
digital divide, not all citizens currently have equal access to computers, 
whether due to a lack of financial resources or necessary skills. Although 
the placement of Internet-enabled computers in schools and public libraries 
is helping address this issue, these efforts are still progressing.

4.3.9 Government Information Technology Management  
and Funding 

A multilayered challenge for the development of e-government is 
government information technology management and funding, which 
includes issues such as government information technology worker 

4.4 Threats

The four main threats are determined as follows. 

A. Decentralized Internet Governance 

Various bodies and companies assert control over parts of the Internet and 
try to exercise it through technical and political means. This threatens the 
Internet’s stability and usability. 

state, and federal governments.
recruitment, retention, and compensation and cooperation between local, 



100 C. Kahraman et al.

B. Copyright Lawsuits 

Some people use the Internet to trade copyrighted works, particularly 
music, video, and software. Copyright owners object to this practice and 
attempt to discourage the practice through highly public legal action 
against participants. 

C. Inadequate Government IT Security 

Poor safeguarding of personal information could damage the uptake of 
government services online. For example, on rare occasions, personal 
records have been found at landfill sites, which have caused concern. If 
people are concerned about government security and about Internet 
security, they are doubly unlikely to use e-government services.

D. Inadequate Government IT Security 

Concerns are sometimes raised about the availability of “dangerous” 
information, such as bomb-making recipes, on the Internet, and about 
disinformation or opinion being presented as fact. 

4.5 SWOT-AHP Analysis 

Evaluations are made by four experts in a group meeting and they are 
asked to make a collective group decision both on an evaluation score 
(Table 2) and on a linguistic term describing the comparison of SWOT 
factors and subfactors. 

4.5.1 Crisp SWOT-AHP Analysis 

When the analysis has been completed, a SWOT matrix can be generated 
and used as a basis for goal setting, strategy formulation, and imple-
mentation. The subfactors of SWOT analysis are placed in a SWOT matrix 
as shown in Figure 3. 
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STRENGTHS OPPORTUNITIES 
S1: Settlement of three laws, namely, 
e-Signature law, Knowledge 
Acquisition law, and Privacy law. 
S2: e-Transformation projects. 
S3: Supports from top level
managements of public and private 
sectors and the NGO representative. 

O1: A candidate country from the 
European Union’s information society 
perspective.
O2: Efficiency by reducing costs and 
layers of organizational processes by 
re-engineering.
O3: New and improved services. 

WEAKNESSES THREATS 
W1: Lack of access to Internet 
among certain sections of the 
population.
W2: Lack of finance for capital 
investment in new technologies. 
W3: Need to change individual 
attitudes and organizational cultures. 
W4: Poor economic power of 
citizens and businesses. 

T1: Decentralized internet 
governance.
T2: Inadequate government IT 
security.
T3: Copyright lawsuits. 
T4: Availability of “Dangerous” 
Information.

Figure 3. SWOT Matrix 

In the following discussion, the pair-wise comparison matrix among 
SWOT groups and an instance of the comparison matrices of the 

for each level of the hierarchy are given in the Appendix. 

Table 3. Pair-wise Comparison Matrix of the SWOT Groups

With respect to 
the goal 

Strengths Weaknesses Opportunities Threats 

Strengths 1 1/3 1/7 5 
Weaknesses 3 1 1/4 7 
Opportunities 7 4 1 9
Threats 1/5 1/7 1/9 1 

Table 4. Pair-wise Comparison Matrix of the Strengths Criteria 

With respect to 
strengths group 

S1 S2 S3 

S1 1 1/7 1/3 
S2 7 1 5 
S3 3 1/5 1 

subfactors are given (Tables 4 and 5). The sample pair-wise comparisons 
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Using the pair-wise comparison matrices given above and the Expert 
Choice software package, the priorities of the SWOT groups and the 

Table 5. Priorities and Consistency Ratios of Comparisons of the Swot Groups and Sub 
Factors

SWOT group Priority of 
the group 

SWOT factors Inconsistency
ratio

Priority of the 
factor within 
the group 

Overall 
priority of 
the factor 

Strengths 0.109 

S1. Formation of supervisory 
and executive committees 
S2. e-Transformation projects 
S3. Support from top level
management of the public and 
private sectors 

0.06

0.081

0.731
0.188

0.009

0.077
0.020

Weaknesses 0.230 

W1. Lack of access to Internet 
among certain sections of the 
population
W2. Lack of finance for capital 
investment in new technologies
W3. Need to change individual 
attitudes and organizational 
cultures, 
W4. Poor economic power of 
citizens and businesses 

0.10

0.088

0.636

0.041

0.235

0.022

0.162

0.010

0.060

Opportunities 0.623 

O1. A candidate country for 
the European Union’s 
information society
perspective,
O2. Efficiency by reducing 
costs and layers of 
organizational
processes by re-engineering 
O3. New and improved 
services.

0.06

0.731

0.081

0.188

0.438

0.049

0.113

Threats 0.038 

T1. Decentralized Internet 
governance,
T2. Inadequate government IT 
security
T3. Copyright lawsuits 
T4. Availability of 
“Dangerous” Information

0.05

0.048

0.658

0.083
0.212

0.002

0.027

0.003
0.009

Figure 4 illustrates the priority weights of the categorized subfactors 
whose numerical values are given in Table 6.

subfactors, which are shown in Table 6 have been obtained.
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Figure 4. The priority weights of the categorized subfactors with crisp AHP 

Table 6. The Fuzzy Pair-wise Comparison Matrix of the SWOT Groups 

GOAL S W O T

S (1, 1, 1) (1/2, 2/3, 1) (2/5, 1/2, 2/3) (1, 3/2, 2) 
W (1, 3/2, 2) (1, 1, 1) (2/5, 1/2, 2/3) (1, 3/2, 2) 
O (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) (3/2, 2, 5/2) 
T (1/2, 2/3, 1) (1/2, 2/3, 1) (2/5, 1/2, 2/3) (1, 1, 1) 

Figure 5 illustrates the graphical interpretation of the results of pair-wise 
comparisons for SWOT groups and factors. The whole situation is easily 
observed by referring to Figure 5. The lengths of the lines in the different 
sectors point out that the weaknesses and opportunities predominate and 
that currently no specific strengths and threats could ruin the new strategy.

Figures 6 and 7 show the results of the sensitivity analysis with respect 
to the goal. 

From Figure 6, we see the overall weights on the right side of the 
figure, indicating that S2 (e-Transformation projects) is the most important 
subfactor of all. When we increase the weight of the strengths group to 
make it the largest of all the groups, as illustrated on the strengths line, the 
rank order is S2-T2-W2-S3-O1-T4-W4-S1-T3-O3-W1-T1-O2-W3. From 
Figure 7, we see the overall weights on the right side of the figure, 
indicating that W2 (Lack of finance for capital investment in new 
technologies) is the most important subfactor of all. When we increase the 
weight of the weaknesses group to make it the largest of all the groups, as 
illustrated on weaknesses line, the rank order is W2-O1-W4-O3-W1-S2-O2-
W3-T2-S3-T4-S1-T3-T1.

0
0,05

0,1

0,15
0,2

0,25

0,3
0,35

0,4

0,45

Factor
weights

S W O T

SWOT Groups
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T1-T3-T4-T2
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Figure 5. Graphical interpretation of the results of pair-wise comparisons of SWOT groups 
and factors 

Figure 6. Sensitivity with respect to the goal: SWOT groups 

STRENGTHS OPPORTUNITIES

WEAKNESSES THREATS

S1
S3

S2

O2

O3

W3
W1

W4

W2

T1
T3

T4
T2

Weigths

Weights
0.4380.0770.162 0.027

O1
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Figure 7. Sensitivity with respect to the goal: SWOT groups 

4.5.2 Fuzzy SWOT-AHP Analysis 

Using Chang’s (1992) extent analysis, we obtained one eigenvector for the 
SWOT factors and four eigenvectors for the subfactors of SWOT. In the 
following discussion, the pair-wise comparison matrix among SWOT 
groups and one sample of the pair-wise comparisons for subfactors of 
SWOT groups are given (Tables 8 and 9). Some of the pair-wise 
comparisons are given in the appendix. The eigenvectors of all pair-wise 
comparisons among SWOT groups and subfactors of SWOT can be seen 
in Table 7. 

From Table 7, 

)329.0,204.0,129.0()20.141,181,50.22/1(67,4,67.3,90.2SS
)399.0,250.0,151.0()20.141,181,50.22/1(67.5,50.4,40.3WS
)599.0,389.0,244.0()20.141,181,50.22/1(50.8,00.7,50.5OS

and
)258.0,157.0,107.0()20.141,181,50.22/1(67.3,83.2,40.2TS

are obtained. Using these vectors, 00.1SW SSV  and other V  values 
are obtained as 1.00, 1.00, 0.74, 0.79, 1.00, 1.00, 0.54, 0.31, 0.53, 1.00, 
and 0.06, respectively. Thus, the weight vector from Table 8 is calculated 
as T

GW 030.0,528.0,278.0,165.0 .
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Table 7. The Fuzzy Pair-wise Comparison Matrix of the Weakness Criteria 

W W1 W2 W3 W4 
W1 (1, 1, 1) (2/5, 1/2, 2/3) (1/2, 1, 3/2) (2/5, 1/2, 2/3) 
W2 (3/2, 2, 5/2) (1, 1, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) 
W3 (2/3, 1, 2) (2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) 
W4 (3/2, 2, 5/2) (2/5, 1/2, 2/3) (3/2, 2, 5/2) (1, 1, 1) 

Table 8. The priority weights of SWOT groups and factors 

SWOT group Priority 
of the 
group

SWOT factors Priority of 
the factor 
within the 
group

Overall
priority
of
the
factor

Strengths 0.165 

S1. Formation of supervisory and 
executive committees 
S2. e-Transformation projects 
S3. Support from top-level 
management of public and 
private sectors 

0.083

0.764
0.153

0.0137

0.1261
0.0252

Weaknesses 0.278 

W1. Lack of access to Internet 
among certain sections of the 
population
W2. Lack of finance for capital 
investment in new technologies 
W3. Need to change individual 
attitudes and organizational 
cultures. 
W4. Poor economic power of 
citizens and businesses 

0.052

0.487

0.105

0.356

0.0145

0.1354

0.0292

0.0990

Opportunities 0.528 

O1. A candidate country from  the 
European Union’s information 
society perspective
O2. Efficiency by reducing costs 
and layers of organizational 
processes by re-engineering 
O3. New and improved services,

0.771

0.038

0.191

0.4071

0.0201

0.1008

Threats 0.03 

T1. Decentralized Internet 
governance,
T2. Inadequate government IT 
security
T3. Copyright lawsuits 
T4. Availability of “dangerous” 
information

0.061

0.565

0.079
0.295

0.0018

0.0170

0.0024
0.0089
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The weight vector from Table 9 is calculated as 
T

WW 36.0,11.0,49.0,05.0 .

Table 9. The priority weights of SWOT groups and factors 

With respect 
to S1 

A1 A2 A3 A4 Inconsistency 
ratio

Priorities of alternatives 
with respect to S1 

A1 1  1/5  6  5  0.352 
A2 5  1  8  9  1.000
A3 1/6 1/8 1 1 0.084 
A4 1/5 1/9 1 1 

0.07
0.083

With respect 
to S2 

A1 A2 A3 A4 Inconsistency 
ratio

Priorities of alternatives 
with respect to S2 

A1 1 3 1/6 3 0.303 
A2 1/3 1 1/4 3 0.188 
A3 6 4 1 8 1.000
A4 1/3 1/3 1/8 1 

0.10
0.088

With respect 
to S3 

A1 A2 A3 A4 Inconsistency 
ratio

Priorities of alternatives 
with respect to S3 

A1 1 1/3 6 8 0.579
A2 3 1 5 9 1.000
A3 1/6 1/5 1 2 0.144 
A4 1/8 1/9 1/2 1 

0.07
0.080

Figure 8 illustrates the priority weights of the categorized subfactors 
whose numerical values are given in Table 10.

Figure 8. The priority weights of the categorized subfactors 
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5. POSSIBLE E-GOVERNMENT STRATEGIES 

Possible e-government strategies of Turkey are the alternatives for the 
AHP problem above. The e-government initiatives will deliver more and 
better services to citizens through more effective inter- and intra-
governmental teamwork. The government will deliver these services at a 
lower cost through the reduction of redundant systems and applications. 
The Office of E-Government and IT will pursue the following strategies to 
accomplish the goal: 

(A1) Simplify work processes to improve service to citizens. The 
individual e-government projects will be driving the migration of 
systems, data, and processes to a common solution that better meets 
citizen needs. Agencies will be setting up solutions that cross 
traditional organization “silos,” based on e-business principles of 
“buy once, use many” and “collect once, use many.” 

(A2) Use the annual budget process and other requirements to support 
e-government implementation. There will be a continued 
consolidation of work plans and investments in technologies 
acquired by different agencies for like purposes and external-facing 
transactions platforms. Agencies will continue to reduce redundant 
spending and improve the return on IT investments through the use 
of business cases, capital planning, investment and control process, 
and through other means, such as enterprise licensing. 

(A3) Improve project delivery through development, recruitment, and 
retention of a qualified IT workforce. The Turkish Government 
will support the efforts to analyze information resource management 
and personnel needs and assess and upgrade current IT training 
programs.

(A4) Continue to modernize agency IT management around citizen-
centered lines of business. The next series of e-government 
initiatives will drive improvement in the way the Turkish Government 
makes and monitors IT investments. The Administration has defined 
an annual cycle for identifying, analyzing, and deploying 
opportunities to integrate and consolidate activities along business 
lines that cross agency boundaries. The policy of the Administration 
is that IT transformation will be based on consolidation along lines 
of business and citizen needs: Agencies will have to make the 
business case for developing a unique solution. 
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6. EVALUATION OF E-GOVERNMENT 
STRATEGIES IN TURKEY 

In this section the importance weights of the e-government strategies are 
determined to find the strategy with the largest weight that should be 
implemented first. 

6.1 Crisp AHP 

Table 9 gives the pair-wise comparison matrices of alternative strategies 
with respect to strengths together with the inconsistency ratios. Some other 
pair-wise comparison matrices of alternative strategies with respect to 
weaknesses, opportunities, and threats are given in the Appendix. 

Using the Expert Choice software, we obtained the results shown in 
Figure 9. The rank order of the e-government strategies is A1-A2-A3-A4.

In Figures 10 and 11, a sensitivity analysis is given for SWOT groups 
and strategy alternatives 

Figure 9. Priorities of e-government strategies 
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Figure 10. Sensitivity analysis for SWOT groups and strategy alternatives 

Figure 11. Sensitivity analysis for SWOT groups and strategy alternatives 

From Figure 10, we see the overall weights on the right side of the 
figure, which indicate that A2 (Use the annual budget process and other 
requirements to support e-government implementation) is the most  
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important strategy of all. When we increase the weight of the threats group
to make it the largest of all the groups, as illustrated on the threats line, the 
rank order is A2-A3-A1-A4. From Figure 11, we see the overall weights on 
the right side of the figure, which indicate that A3 (Improve project 
delivery through development, recruitment and retention of a qualified IT 
workforce) is the most important strategy of all. When we increase the 
weight of the strengths group to make it the largest of all the groups, as 
illustrated on the strengths line, the rank order is A3-A2-A1-A4.

6.2 Fuzzy AHP 

A sample pair-wise comparison matrix of alternative strategies with 
respect to subfactors is given in Tables 10 and 11. Based on Chang’s 
(1992) extent analysis, 14 eigenvectors for the e-government strategies 

Table 10. The Fuzzy Evaluation of Alternatives with Respect to the Sub-Attribute O1 

O1 A1 A2 A3 A4 

A1 (1, 1, 1) (1, 3/2, 2) (3/2, 2, 5/2) (2, 5/2, 3) 

A2 (1/2, 2/3, 1) (1, 1, 1) (1, 3/2, 2) (1, 3/2, 2) 

A3 (2/5, 1/2, 2/3) (1/2, 2/3, 1) (1, 1, 1) (1, 3/2, 2) 

A4 (1/3, 2/5, 1/2) (1/2, 2/3, 1) (1/2, 2/3, 1) (1, 1, 1) 

Table 11. Weights of Attributes and Scores of Alternatives—Summary 

 S W O T
0.165 0.278 0.528 0.030 

 S1 S2 S3 W1 W2 W3 W4 O1 O2 O3 T1 T2 T3 T4 
 0.083 0.764 0.153 0.052 0.487 0.105 0.356 0.771 0.038 0.191 0.061 0.565 0.079 0.295 

A1 0.32 0.16 0.24 0.42 0.25 0.00 0.00 0.52 0.56 0.00 0.56 0.00 0.03 0.15 
A2 0.68 0.17 0.71 0.13 0.68 0.05 0.61 0.30 0.05 0.00 0.34 0.64 0.15 0.00 
A3 0.00 0.54 0.05 0.09 0.00 0.39 0.00 0.17 0.00 0.61 0.04 0.36 0.71 0.52 
A4 0.00 0.12 0.00 0.36 0.07 0.56 0.39 0.01 0.39 0.39 0.06 0.00 0.11 0.32 

The weight vector from Table 12 is calculated as 
T

AOW 01.0,17.0,30.0,52.01 .

with respect to the subfactors are obtained and given in Table 11 and the 
overall result is given in Table 12. 
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Table 12. Results of Fuzzy AHP 

Priority Weights 
A2 0.341
A1 0.298
A3 0.223
A4 0.139

7. CONCLUSION

Electronic government is no longer just an option but a necessity for 
countries aiming for better governance. People and policies play the 
primary role in making e-government a success. The framework explained 
in this chapter provides a direction for consideration of the evaluation of e-
government strategies. The case study of Turkey provides an illustrative 
reference for the strategy evaluation. This model would be beneficial for 
evaluating any other e-government strategies in the country and for 
comparing its priority with the other e-government strategies. The 
selection of various SWOT factors depends on the system profile, the type 
of services being offered, and the profile of the citizen being served. The 
qualitative analysis of these factors and strategies is highly subjective and 
may differ from one expert to another.

Two different SWOT-AHP approaches (the crisp and the fuzzy cases) 
to the e-government strategy selection produced different rankings but 
close priority weights. That was caused by the type of information 
gathered from the experts. In the first method, they are asked to agree on 
precise values about alternative strategies, SWOT factors, and subfactors, 
whereas in the second what they needed to do was to agree on linguistic 
terms, which express their perceptions on alternative strategies, SWOT 
factors, and subfactors. The strategies “simplify work processes to improve 
services to citizens” and “use the annual budget process and other 
requirements to support E-Government implementation” have been found 
to be the two most important strategies for e-government in Turkey by 
both methods. New strategies may be proposed and added to the SWOT-
AHP analysis. For additional research, the combination of SWOT and 
AHP may be changed to compare the results of this work with the ones of 
SWOT-TOPSIS, SWOT-Scoring, or SWOT-ELECTRE. 
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APPENDIX

Some sample pair-wise comparison matrices for each level of the hierarchy 
are given as follows: 

Table A.1. Crisp Pair-wise Comparison Matrix of the Opportunities 

With respect to opportunities group O1 O2 O3 

O1 1 7 5
O2 1/7 1 1/3
O3 1/5 3 1

Table A.2. Crisp Pair-wise Comparison Matrix of the Threats 

With respect to threats group T1 T2 T3 T4 

T1 1 1/9 1/2 1/6
T2 9 1 7 5 
T3 2 1/7 1 1/3 
T4 6 1/5 3 1 

Table A.3. The Fuzzy Pair-wise Comparison Matrix of the Opportunities 

With respect to GOAL O1 O2 O3

O1 (1, 1, 1) (2, 5/2, 3) (3/2, 2, 5/2) 

O2 (1/3, 2/5, 1/2) (1, 1, 1) (1/2, 1, 3/2) 

O3 (2/5, 1/2, 2/3) (2/3, 1, 2) (1, 1, 1) 

Table A.4. The Fuzzy Pair-wise Comparison Matrix of the Threats 

With respect to GOAL T1 T2 T3 T4 

T1 (1, 1, 1) (2/5, 1/2, 2/3) (1/2, 1, 3/2) (1/2, 2/3, 1) 

T2 (3/2, 2, 5/2) (1, 1, 1) (3/2, 2, 5/2) (2, 5/2, 3) 

T3 (2/3, 1, 2) (2/5, 1/2, 2/3) (1, 1, 1) (2/5, 1/2, 2/3) 

T4 (1, 3/2, 2) (1/3, 2/5, 1/2) (3/2, 2, 5/2) (1, 1, 1) 
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With respect to O1 A1 A2 A3 A4 Inconsistency 
ratio

Normalized
priorities of 
alternatives with 
respect to O1 

A1 1 2 3 4 1.000 
A2 1/2 1 1 3 0.500 
A3 1/3 1 1 2 0.408 
A4 1/4 1/3 1/2 1

0.02

0.204
With respect to O2 A1 A2 A3 A4 Inconsistency 

ratio
Normalized
priorities of 
alternatives with 

A1 1 8 5 2 1.000 
A2 1/8 1 2 1/7 0.145 
A3 1/5 1/2 1 1/7 0.118 
A4 1/2 7 7 1

0.08

0.729
With respect to O3 A1 A2 A3 A4 Inconsistency 

ratio
Normalized
priorities of 
alternatives with 

A1 1 1 1/7 1/7 0.122 
A2 1 1 1/6 1/7 0.128 
A3 7 6 1 2 1.000 
A4 7 7 1/2 1

0.03

0.730

With respect to T1 A1 A2 A3 A4 Inconsistency 
ratio

Normalized
priorities of 
alternatives with 
respect to T1 

A1 1 2 3 4 1.000 
A2 1/2 1 2 4 0.647 
A3 1/3 1/2 1 1 0.288 
A4 1/4 1/4 1 1

0.03

0.228
With respect to T2 A1 A2 A3 A4 Inconsistency 

ratio
Normalized
priorities of 
alternatives with 
respect to T2 

A1 1 1/9 1/7 1 0.106 
A2 9 1 2 7 1.000 
A3 7 1/2 1 5 0.611 
A4 1 1/7 1/5 1

0.01

0.122

Table A.5. The Pair-wise Comparisons of Alternative Strategies with Respect
to the Opportunities 

respect to O2 

respect to O3 

Table A.6. The Pair-wise Comparisons of Alternative Strategies with Respect to Threats 
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With respect to  T3 A1 A2 A3 A4 Inconsistency 
ratio

Normalized
priorities of 
alternatives with 
respect to T3

A1 1 1/2 1/5 1/2 0.151 
A2 2 1 1/4 2 0.317 
A3 5 4 1 5 1.000 
A4 2 1/2 1/5 1

0.03

0.214
With respect to T4 A1 A2 A3 A4 Inconsistency 

ratio
Normalized
priorities of 
alternatives with 
respect to T4 

A1 1 3 1/6 1/2 0.222 
A2 1/3 1 1/5 1/6 0.108 
A3 6 5 1 3 1.000 
A4 2 6 1/3 1

0.08

0.445

Table A.7. The Fuzzy Pair-wise Comparisons of Alternatives with Respect to Opportunities 

With respect to O2 A1 A2 A3 A4 
A1 (1, 1, 1) (2, 5/2, 3) (2, 5/2, 3) (1, 3/2, 2) 

A2 (1/3, 2/5, 1/2) (1, 1, 1) (2/3, 1, 2) (2/5, 1/2, 2/3) 

A3 (1/3, 2/5, 1/2) (1/2, 1, 3/2) (1, 1, 1) (2/5, 1/2, 2/3) 

A4 (1/2, 2/3, 1) (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) 

With respect to O3 A1 A2 A3 A4 
A1 (1, 1, 1) (1, 1, 1) (1/2, 2/3, 1) (2/5, 1/2, 2/3) 

A2 (1, 1, 1) (1, 1, 1) (1/2, 2/3, 1) (2/5, 1/2, 2/3) 

A3 (2, 5/2, 3) (2, 5/2, 3) (1, 1, 1) (1, 3/2, 2) 

A4 (3/2, 2, 5/2) (3/2, 2, 5/2) (1/2, 2/3, 1) (1, 1, 1) 

Table A.8. The Fuzzy Pair-wise Comparisons of Alternatives with Respect to Threats 

With respect to T1 A1 A2 A3 A4
A1 (1, 1, 1) (1, 3/2, 2) (2, 5/2, 3) (2, 5/2, 3) 

A2 (1/2, 2/3, 1) (1, 1, 1) (1, 3/2, 2) (3/2, 2, 5/2) 

A3 (1/3, 2/5, 1/2) (1/2, 2/3, 1) (1, 1, 1) (1/2, 1, 3/2) 

A4 (1/3, 2/5, 1/2) (2/5, 1/2, 2/3) (2/3, 1, 2) (1, 1, 1) 

With respect to T2 A1 A2 A3 A4
A1 (1, 1, 1) (2/7, 1/3, 2/5) (1/3, 2/5, 1/2) (2/3, 1, 2) 

A2 (5/2, 3, 7/2) (1, 1, 1) (3/2, 2, 5/2) (5/2, 3, 7/2) 

A3 (2, 5/2, 3) (2/5, 1/2, 2/3) (1, 1, 1) (2, 5/2, 3) 

A4 (1/2, 1, 3/2) (2/7, 1/3, 2/5) (1/3, 2/5, 1/2) (1, 1, 1) 
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With respect to T3 A1 A2 A3 A4
A1 (1, 1, 1) (1/2, 2/3, 1) (2/7, 1/3, 2/5) (2/3, 1, 2) 

A2 (1, 3/2, 2) (1, 1, 1) (2/5, 1/2, 2/3) (1/2, 1, 3/2) 

A3 (5/2, 3, 7/2) (3/2, 2, 5/2) (1, 1, 1) (2, 5/2, 3) 

A4 (1/2, 1, 3/2) (2/3, 1, 2) (1/3, 2/5, 1/2) (1, 1, 1) 

With respect to T4 A1 A2 A3 A4

A1 (1, 1, 1) (1, 3/2, 2) (2/5, 1/2, 2/3) (1/2, 2/3, 1) 

A2 (1/2, 2/3, 1) (1, 1, 1) (2/5, 1/2, 2/3) (2/5, 1/2, 2/3) 

A3 (3/2, 2, 5/2) (3/2, 2, 5/2) (1, 1, 1) (3/2, 2, 5/2) 

A4 (1, 3/2, 2) (3/2, 2, 5/2) (2/5, 1/2, 2/3) (1, 1, 1) 
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FUZZY OUTRANKING METHODS: RECENT 
DEVELOPMENTS

Institute of Production and Robotics, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

Abstract:  The main objective of this chapter is to account for the most recent 
developments related to fuzzy outranking methods with a particular focus on 
the fuzzy outranking method developed by the authors. The valued 
outranking methods PROMETHEE and ELECTRE III, which are the 
outranking methods the most used for application in real-life multi-criteria 
decision aid problems, are also presented. The description of the general 
outranking approach is provided.  

Key words: Outranking method, fuzzy outranking relation, pair-wise comparison, 
multicriteria decision aid

1. INTRODUCTION

Outranking methods form one of the main families of methods in multi-
criteria decision aid (MCDA). Other important methods are multi-attribute 
utility theory (MAUT) methods, interactive methods, and the analytic 
hierarchy process (AHP). 

It is worth recalling that the first outranking method called ELECTRE I 
was developed by Bernard Roy and published in 1968. Since then, a series 
of outranking methods were developed mainly during the 1970s and 
1980s. Among them we can quote ELECTRE II (Roy and Bertier, 1973), 
ELECTRE III (Roy, 1978), QUALIFLEX (Paelinck, 1978), ORESTE 
(Roubens, 1982; Pastijn and Leysen, 1989), ELECTRE IV (Roy and 
Hugonnard, 1982), MELCHIOR (Leclercq, 1984), PROMETHEE I and II 
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(Brans and Vincke, 1985), TACTIC (Vansnick, 1986), MAPPACC 
(Matarazzo, 1986), and PRAGMA (Matarazzo, 1986). 

The outranking methods are based on the construction and the 
exploitation of an outranking relation. The underlying idea consists of 
accepting a result less rich than the one yielded by multi-attribute utility 
theory by avoiding the introduction of mathematical hypotheses that are 
too strong and asking the decision maker some questions that are too 
intricate (Vincke, 1992a). The concept of an outranking relation is 
introduced by Bernard Roy who is the founder of outranking methods. 
According to Roy (1974), an outranking relation is a binary relation S
defined on the set of alternatives A such that for any pair of alternatives 
(a,b) A A: aSb if, given what is known about the preferences of the 
decision maker, the quality of the evaluations of the alternatives and the 
nature of the problem under consideration, there are sufficient arguments 
to state that the alternative a is at least as good as the alternative b, while at 
the same time no strong reason exists to refuse this statement. 

In contrast to the other methods, the outranking methods have the 
characteristic of allowing incomparability between alternatives. This 
characteristic is important in situations where some alternatives cannot  
be compared for one or another reason. According to Siskos (1982), 
incomparability between two alternatives can occur because of a lack of 
information, inability of the decision maker to compare the two 
alternatives, or his refusal to compare them (Siskos, 1982). 

In contrast to the valued outranking methods that are well documented 
in the literature and have been intensively used in practice since 1978 with 
the publication of ELECTRE III, the fuzzy outranking methods are very 
recent and are not well documented in the literature, and this is one of the 
motivations for the redaction of this chapter. 

The chapter is structured as follows. The main elements of a general 
outranking approach are described in Section 2.  Section 3 is devoted to 
the presentation of the PROMETHEE and ELECTRE III, which are the 
main valued outranking methods considered in both theory and 
applications. The fuzzy outranking methods are presented in Section 4. 
Some concluding remarks are given in Section 5. 

2. THE OUTRANKING APPROACH 

An outranking method is applicable for MCDA problems where the 
elements of a finite set of alternatives A = {a1, a2, …, an} have to be 
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compared on the basis of the preferences of the decision maker regarding 
their performances with respect to the elements of a finite set of criteria F
= {g1, g2, …, gm}. It is assumed that each alternative ai, i = 1, …, n can be 
evaluated with respect to each criterion gj, j = 1, …, m. The evaluations 
can be quantitative or qualitative. They can also be deterministic or 
nondeterministic. In the nondeterministic case, they can be fuzzy or 
stochastic.

The objective of outranking methods is provide decision aid to decision 
makers in the form of a subset of “best” alternatives or a partial or 
complete ranking of alternatives (Pasche, 1991). 

According to Roy (1991), the preferences in the outranking concept are 
determined at two different levels as follows:

Level of preferences restricted to each criterion. For example, to each 
criterion gj, it is possible to associate a restricted outranking relation Sj
such that for any two alternatives a and b in A:

bgabaS jj  as good asleast at  is , respect to with ,  (1) 

Level of comprehensive preferences where all criteria are taken into 
account.
The meaning of an outranking relation is given in Section 1. However, 

there is a need for a set of conditions to recognize whether a given binary 
relation can be an outranking relation. The following definition is provided 
in (Perny and Roy, 1992) 

A fuzzy relation Sj defined on A2 is said to be a monocriterion 
outranking index for a criterion gj if a real-valued function tj, exists defined 
on 2A , verifying Sj(a, b) = tj(aj, bj) for all a and b in A with aj and bj being 
the crisp scores of a and b on criterion gj such that: 

0j0 y,xt,y
y,xt,x 0j0

1z,zt,z j .

It is worth noticing that the three conditions in this definition are also 
valid for fuzzy outranking relations constructed from fuzzy evaluations on 
criteria and for global outranking relations.

DEFINITION 1.

 is a nondecreasing function of x,
 is a nonincreasing function of y,
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In the literature, confusion abounds regarding valued and fuzzy 
outranking relations, and they are often used interchangeably. Even if the 
valued and fuzzy outranking relations are similar from a mathematical 
point of view, they represent two different situations:

The valued outranking relation represents a crisp situation, and the 
value S (a, b) 0, 1  represents the intensity with which the alternative 
a outranks alternative b and S (a, b) is constructed from crisp 
evaluations of alternatives a and b.
The valued outranking relation represents a fuzzy situation, and the 
value S(a,b) 0, 1  represents the degree with which the alternative a
is R-related to b and S(a,b) is constructed from fuzzy evaluations of 
alternatives a and b.

An outranking method is composed of two main phases that are the 
construction of a global outranking relation and the exploitation of this 
relation.

The construction phase is composed of two main steps: 

Construction of an outranking relation or related relations such as 
concordance and discordance indices with respect to each criterion, 
The aggregation of the single outranking relations into a global 
outranking relation. 

The exploitation phase of a valued/fuzzy outranking method can be 
dealt with in three different ways (Fodor and Roubens, 1994): 

Transformation of the valued/fuzzy outranking relation into another 
valued/fuzzy relation having particular properties such as transitivity 
that are interesting for the ranking of alternatives, 
Determination of a crisp relation closed to the valued/fuzzy outranking 
relation and having specific properties, 
Use of a ranking procedure to obtain a score function as it is the case 
for PROMETHEE and ELECTRE III methods. 

A detailed study of the exploitation phase in the case of crisp relations 
is provided in (Vincke, 1992b). 
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3. VALUED OUTRANKING METHODS 

The outranking methods that are the most used for application in real-life 
MCDA problems are ELECTRE III and PROMETHEE, which are valued 
outranking methods since they are based on the construction and exploitation 
of a valued “outranking relation.” ELECTRE stands for “ELimination Et 
Choix Traduisant la REalité,” and PROMETHEE stands for “Preference 
Ranking Organization METHod for Enrichment Evaluations.” 

3.1 ELECTRE III 

ELECTRE III is an outranking method proposed by Roy (1978) to deal 
with multi-criteria decision-making situations in which a finite set of 
alternatives should be ranked from the best to the worst. It is composed of 
the following steps: 

The construction of a valued outranking relation; 
The construction of two complete preorders based on descending and 
ascending distillation chains; 
The comparison of the two complete preorders in order to elaborate a 
final ranking of the alternatives. This comparison leads to a partial 
preorder in which it is possible that some alternatives are incomparable.

3.1.1 The Construction Phase of ELECTRE III 

Let A = {a1, a2, …, an} be a finite set of n alternatives and F = {g1, g2, …, 
gm} a set of m criteria on which the alternatives in A will be evaluated. 
Without loss of generality, the criteria can be assumed to be maximizing, 
i.e., the higher the performance of an alternative on a criterion is, the better 
the alternative is. ELECTRE III is based on the definition of a valued 
outranking relation S such that for each ordered pair of alternatives (a,b),
S(a,b)  [0, 1] represents the degree to which alternative a is at least as 
good as alternative b (the degree to which alternative a is not worse than 
alternative b).

3.1.1.1 Single Criterion Relations 
With each criterion gj (j = 1, …, m) are associated four parameters: a 
weight wj, a preference threshold pj, an indifference threshold qj, and a veto  
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threshold vj. It is naturally assumed that for each alternative a: qj(gj(a))
pj(gj(a))  vj(gj(a)).

With each criterion gj (j = 1, …, m) are associated a concordance index 
cj and a discordance index dj as follows which are shown in Figures 1 and 2 
respectively.

1 if ( ) ( ( )) ( ),
( , ) 0  if ( ) ( ( )) ( ), 

( ( )) ( ) ( )
 otherwise  

( ( )) ( ( ))

j j j j

j j j j j

j j j j

j j j j

g a q g a g b
c a b g a p g a g b

p g a g a g b
p g a q g a

 (2) 

* may occur only in the case when qj(gj(a)) pj(gj(a)).

0   ( ) ( ) ( ( )),

( , ) 1   ( ) ( ) ( ( )),
( ) ( ) ( ( ))

 otherwise*
( ( )) ( ( ))

j j j j

j j j j j

j j j j

j j j j

if g b g a p g a
d a b if g b g a v g a

g b g a p g a
v g a p g a

 (3) 

* may occur only in the case when pj(gj(a))  vj(gj(a)).

Figure 1. Concordance index of gj

0

1

cj (a,b)

gj (a) gj (a)+qj (gj(a)) gj (a)+pj (gj(a))
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Figure 2. Discordance index of gj

3.1.1.2 Global Valued Outranking Relation 
For each ordered pair of alternatives (a,b), a concordance index c(a,b) is 
computed in the following way: 

1 1

1( , ) ( , ), where  
m m

j j j
j j

c a b w c a b W w
W

 (4) 

It is worth noticing that c(a,b) = 1 means that there is no criterion for 
which alternative b is better than alternative a and c(a,b) = 0 means that 
alternative a is worse than alternative b for all criteria. 

The valued outranking relation S is constructed from the concordance 
and discordance indices. For each ordered pair of alternatives (a,b) A A,
S(a,b) is defined in the following way: 

( , )

( , ) if ( , ) ( , ),  1,  ...,  
( , ) 1 ( , )

( , )  otherwise
1 ( , )

j

j

j J a b

c a b d a b c a b j m
S a b d a b

c a b
c a b

 (5) 

where J = {j {1, …, m}/dj(a, b) > c(a, b)}.
The degree of outranking is equal to the concordance index when no 

criterion is discordant. When at least one criterion is discordant, the degree 
of outranking is equal to the concordance index multiplied by a factor 
lowering the concordance index in function of the importance of the dis-
cordances. At the extreme, when dj(a,b) = 1 for some criterion gj, S(a,b) = 0. 
Thus, for each ordered pair of alternatives (a,b) A A, 0 S(a,b)  1. S is 
a valued outranking relation.

0

1

dj (a,b)

gj (a) gj (b)gj (a)+pj (gi(a)) gj (a)+vj (gi(a))
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3.1.1.3 The Exploitation Phase of ELECTRE III 
The second step in ELECTRE III consists in defining two complete 
preorders from the descending and the ascending distillation chains.

Let 0 a,b A
max ( , )S a b . At each iteration of the descending or ascending 

distillation chain, a discrimination threshold s( ) and a crisp relation D are 
defined such that: 

1 if  ( , ) ( )
( , )

0 otherwise
S a b S

D a b  (6) 

For each alternative a, a qualification score Q(a) is computed as the 
number of alternatives that are outranked by a (number of alternatives b
such that D(a,b) = 1) minus the number of alternatives, which outrank a
(number of alternatives b such that D(b,a) = 1).

ELECTRE III provides the decision makers with two complete 
preorders. The first preorder is obtained in a descending manner starting 
with the selection of the alternatives with the best qualification score and 
finishing with the selection of the alternatives having the worst qualification 
score. The second preorder is obtained in an ascending manner, first select-
ing the alternatives with the worst qualification score and finishing with the 
assignment of the alternatives that have the worst qualification score. 

3.1.1.4 Descending Distillation Chain 
In the descending procedure, the set of alternatives having the largest 
qualification score constitutes the first distillate and is denoted as D1. If D1

contains only one alternative, the previous procedure is performed in the set 
A\D1. Otherwise it is applied to D1 and a distillate D2 will be obtained. If D2

is a singleton, then the procedure is applied in D1\D2 if it is not empty; 
otherwise the procedure is applied in D2. This procedure is repeated until the 
distillate D1 is completely explored. Then, the procedure starts exploring A\D1

in order to find a new distillate. The procedure is repeated until a complete 
preorder of the alternatives is obtained. This procedure is called the des-
cending distillation chain because it starts with the alternatives having the 
highest qualification and ends with the alternatives having the lowest 
qualification.

The result of the descending procedure is a set of classes 1C , 2C , … , kC
with k n. The alternatives belonging to the same class are considered to 
be ex-æquo (indifferent), and an alternative belonging to a class outranks 
all the alternatives belonging to classes with higher indices. Thus, a first 
complete preorder of the alternatives is obtained. 
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3.1.1.5 Ascending Distillation Chain 
The ascending procedure is the same as the descending procedure except 
that the criterion of selecting the alternatives is based on the principle of 
the lowest qualification. The result of this procedure is a set of classes 1C ,

2C  , …, hC  with h n. These classes are written in such a way that two 
alternatives in the same class are considered to be ex-æquo and an 
alternative belonging to a class outranks all the alternatives belonging to 
classes with lower indices. Thus, a second complete preorder of the 
alternatives is obtained. 

3.1.1.6 Partial Preorder of ELECTRE III 
The result of ELECTRE III is a partial preorder of the alternatives based 
on the comparison of the two complete preorders obtained by means of the 
descending and the ascending distillation chains.

3.1.2 Main Features of ELECTRE III 

ELECTRE III has many interesting features among which we can quote: 

Handling imprecise and uncertain information about the evaluation of 
alternatives on criteria by using indifference and preference thresholds, 
Consideration of incomparability between alternatives; when two 
alternatives cannot be compared in terms of preference or indifference, 
they are considered to be incomparable. Indeed, sometimes the 
information available is insufficient to decide whether two alternatives 
are indifferent or one is preferred to the other, 
Use of veto thresholds. This is very important for some problems such 
as those involving environmental and social impacts assessment. 
According to Rogers and Bruen (1998), within an environmental 
assessment, it seems appropriate to define a veto as the point at which 
human reaction to the criterion difference becomes so adverse that it 
places an “environmental stop” on the option in question. The same can 
be said about social impact assessment. 

ELECTRE III is widely used for different real-world applications such as 
environmental impact assessment and selection problems in various 
domains. Examples of these applications can be found in Augusto et al. 
(2005), Beccali et al. (1998), Bufardi et al. (2004), Cote and Waaub (2000), 
Hokkanen and Salminen (1994, 1997), Kangas et al. (2001), Karagiannidis 
and Moussiopoulos (1997), Maystre et al. (1994), Rogers and Bruen (2000), 
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Roy et al. (1986), Teng and Tzeng (1994), and Tzeng and Tsaur (1997). The 
list is not exhaustive and is given just for illustrative purposes to show the 
varied and numerous applications of the ELECTRE III method. 

3.1.3 Illustrative Example 

This illustrative example is taken from Bufardi et al. (2004). The problem 
considered consists of selecting the best compromise end-of-life (EOL) 
alternative to treat a vacuum cleaner at its EOL. Theoretically the number 
of potential EOL alternatives that can be considered is very high. In 
general only a few EOL alternatives are interesting. Users have their own 
ways for defining EOL alternatives depending on activity, objectives, 
experience and constraints from market, legislation, and available 
technology. In this illustrative example, five EOL alternatives are 
considered and described as follows. EOL alternative 1 consists of 
recycling as much as possible and incinerating the rest. EOL alternative 2 
consists of recycling only parts with benefits and incinerating the rest. 
EOL alternative 3 consists of recycling all metals that cannot be incinerated 
and incinerating all the rest. EOL alternative 4 consists of reusing the motor, 
recycling metals, and incinerating the rest. EOL alternative 5 consists of 
landfilling all. The five EOL alternatives are presented in Table 1. The 
criteria used for the evaluation of EOL alternatives are presented in Table 2. 
The detailed description of the environmental criteria presented in Table 2 

Figure 3. Partial and median preorder 

EOL alternative 4

EOL alternative 2

EOL alternative 1 EOL alternative 3

EOL alternative 5

EOL alternative 4

EOL alternative 2

EOL alternative 3

EOL alternative 1

EOL alternative 5

(a) (b)

can be found in Goedkoop and Spriensma (2000). Once the EOL alternatives
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and criteria are selected, each EOL alternative is evaluated with respect to 
each criterion as shown in Table 3. The results of applying ELECTRE III 
can be presented in the form of a partial preorder as shown in Figure 3a or 
a median preorder as shown in Figure 3(b). 

Table 1. The EOL Alternatives 

EOL alternatives No. Component/subassembly 
1 2 3 4 5 

1 Dust bin REC INC INC INC LND
2 2 x Inner Cover REC INC INC INC LND
3 Inner filter asb INC INC INC INC LND
4 Dust bin cover INC INC INC INC LND
5 Lock ring REC INC INC INC LND
6 Spring REC INC REC REC LND
7 Power button cover (+ button) REC INC INC INC LND
8 Spring REC INC REC REC LND
9 Upper VC case REC INC INC INC LND
10 Suction tube REC INC INC INC LND
11 Suction tube sealing INC INC INC INC LND
12 Intermediate tube REC INC INC INC LND
13 Cables REC REC INC INC LND
14 Valve INC INC INC INC LND
15 Intern sealing 1 INC INC INC INC LND
16 Intern sealing 2 INC INC INC INC LND
17 Spring REC INC REC REC LND
18 Middle REC INC INC INC LND
19 Hepa cover REC INC INC INC LND
20 Hepa filter INC INC INC INC LND
21 Cable coil cover REC INC INC INC LND
22 Cable coil INC INC INC INC LND
23 Cable REC REC INC INC LND
24 Motor Lock ring REC INC INC INC LND
25 Motor bottom seal INC INC INC INC LND
26 Motor sealing INC INC INC INC LND
27 Motor foam INC INC INC INC LND
28 Motor REC REC REC REM LND
29 Motor housing half 2 REC INC INC INC LND
30 Motor housing Filter INC INC INC INC LND
31 Motor housing half 1 REC INC INC INC LND
32 32 Motor housing seal INC INC INC INC LND
33 Wheels INC INC INC INC LND
34 Lower VC case REC INC INC INC LND
35 Spring REC INC REC REC LND
*  remanufacturing/reuse (REM), recycling (REC), incineration with energy recovery (INC), 
disposal to landfill (LND) 
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Table 2. List of Criteria 

Category Criterion Unit Direction of preferences 
Economic EOL Treatment Cost (C) [CHF] Minimization 

Human Health (HH) [DALY] Minimization 
Ecosystem Quality (EQ) [PDF*m2yr] Minimization Environmental
Resources (R) [MJ surplus] Minimization 

Table 3. Evaluation of EOL Alternatives 

 Human health
(HH)
[DALY]

Ecosystem
quality (EQ) 
[PDF*m2yr]

Resources
(R)
[MJ surplus] 

EOL treatment cost 
(C)
[CHF]

EOL alternative 1 1.08E-05 0.471 18.1 0.644125 
EOL alternative 2 0.951E-05 0.962 7.49 0.10601
EOL alternative 3 0.724E-05 0.896 6.76 0.01108 
EOL alternative 4 2.90E-05 2.02 36.8 4.86022
EOL alternative 5 0.0271E-05 0.0103 0.0101 0.38101 

3.2 PROMETHEE

PROMETHEE is a MCDA method based on the construction and the 
exploitation of a valued outranking relation  (Brans and Vincke, 1985). 
Two complete preorders can be obtained by ranking the alternatives 
according to their incoming flow and their outgoing flow. The intersection 
of these two preorders yields the partial preorder of PROMETHEE I where 
incomparabilities are allowed. The ranking of the alternatives according to 
their net flow yields the complete preorder of PROMETHEE II. 

3.2.1 The Construction Phase of PROMETHEE 

Let A = {a1, a2, …, an} be a finite set of alternatives and F = {g1, g2, …, 
gm} a finite set of criteria on which the alternatives will be evaluated. With 
each criterion gj, j = 1, 2, …, m, is assigned a weight pj reflecting its 
relative importance. 

For each pair of alternatives (a,b) A A, an outranking degree (a,b)
is computed in the following way: 

1

1( , ) ( , )
m

j j
j

a b p H a b
P

 (7) 

1

m

j
j

P p and Hj(a,b) are numbers between 0 and 1 that are a function 

of gj(a) – gj(b). For the computation of Hj(a,b)’s, the decision maker is 
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given six forms of curves described in Table 1. It is worth noticing that in 
Table 4, the six functions are described for a maximizing criterion where 
H(x) = P(a,b) if x  0 and H(x) = P(b,a) if x  0.

Table 4. List of Generalized Criteria 

Type of 
criterion

Analytical definition Shape

1. Usual 
0         0

( )
1         0

if x
H x

if x

2. Quasi 
0         

( )
1        

if x q
H x

otherwise

3. Linear 
preference

/          
( )

1        
x p if x p

H x
otherwise

4. Level 

0               

( ) 0.5     
1               

x q

H x q x p q
x q p

5. Linear 
preference
and
indifference
area

0                      
( ) ( - ) /      

1                   

x q
H x x q p q x q p

otherwise

6. Gaussian 2 2- / 2

0                  0
( )

1-    0x

x
H x

e x

1

x0

H(x)1

x0

H(x)

1

x
0

H(x)

-q q

1

x
0

H(x)

-p p

1

x
0

H(x)

-q q-(p+q) p+q

0.5

1

x
0

H(x)

-q q-(q+p) q+p

1

x
0

H(x)

-
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3.2.2 The Exploitation Phase of PROMETHEE 

With each alternative are associated two values +(a) and (a).
+(a), which is called the outgoing flow and is computed in the 

following way: 

( ) ( , )
b A

a a b  (8) 

(a), which is called the incoming flow and is computed in the 
following way:

( ) ( , )
b A

a b a  (9) 

It is worth noticing that +(a) represents the degree by which 
alternative a outranks the other alternatives and that (a) represents the 
degree by which alternative a is outranked by the other alternatives. 

The higher the outgoing flow and the lower the incoming flow, the 
better the alternative. The two flows induce the following complete 
preorders (ranking of the alternatives with consideration of indifference) 
on the alternatives, where P and I are the preference relation and 
indifference relation, respectively: 

aP b ( )a  > ( )b
aI b ( )a = ( )b
aP b ( )a  < ( )b
aI b ( )a  = ( )b

where P+, I+ refer to the outgoing flows while P , I refer to the incoming 
flows.

By ranking the alternatives in the decreasing order of the numbers 
( )a and in the increasing order of the numbers ( )a , two complete 

preorders can be obtained. Their intersection yields the partial order of 
PROMETHEE I as follows: 

baPbaI
baIbaP
baPbaP

baaSb
 and  or 
 and  or 

  and   if
  outranksstrictly    (10) 
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 (  is indifferent to ) if  and aIb a b aI b aI b  (11) 

 (  and  are incomparable) otherwiseaJb a b  (12) 

i.e., ,  and aSb bSa aIb , where “ ” denotes negation. 
For each alternative a, a net flow (a) can be obtained by subtracting 

the incoming flow (a) from the outgoing flow +(a); i.e., (a) = +(a)  - 
(a). By ranking the alternatives in the decreasing order of , one obtains 

the unique complete preorder of PROMETHEE II. 

3.2.3 Main Features of PROMETHEE 

PROMETHEE has many interesting features among which we can quote: 

It is easy to understand. The mathematical background behind 
PROMETHEE is not complicated and is easy to understand by the 
users. This is important for the transparency of the results, 
It is easy to use. For each criterion, the decision maker has to fix the 
weight of this criterion, and at most two parameters of the function are 
associated with the criterion in order to derive the single-valued 
outranking relation related to this criterion, 
Consideration of incomparability between alternatives through 
PROMETHEE I; when two alternatives cannot be compared in terms of 
preference or indifference, they are considered to be incomparable. 
Indeed, sometimes the information available is insufficient to decide 
whether two alternatives are indifferent or one is preferred to the other. 
PROMETHE is an outranking method easy to understand and to use.

That is why it is widely used for practical MCDA problems in various 
domains; see, e.g., Al-Rashdan et al. (1999), Anagnostopoulos et al. 
(2003), Babic and Plazibat (1998), Elevli and Demirci (2004), Geldermann 
et al. (2000), Gilliams et al. (2005), Goumas and Lygerou (2000), Hababou 
and Martel (1998), Kalogeras et al. (2005), Le Téno and Mareschal (1998), 
Mavrotas et al. (2006), and Petras (1997). The list is not exhaustive and is 
given just for illustrative purposes. 
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4. FUZZY OUTRANKING METHODS 

In these methods, it is assumed that the evaluations of alternatives on 
criteria are fuzzy. 

4.1 Fuzzy Outranking Method of Gheorghe et al.

The fuzzy outranking method presented in this subsection is published in 
Gheorghe et al. (2004, 2005). Full details can be found in Gheorghe 
(2005).

4.1.1 Construction of Monocriterion Fuzzy Outranking Relation 

The construction of the monocriterion fuzzy outranking relation starts by 
analyzing the intervals, in our case, the -cuts of fuzzy performance of two 
alternatives a and b.

Let us consider two normalized and convex fuzzy numbers A and B,
representing the performances of alternatives a and b, respectively (Figure 4). 
Let A and B be the membership functions of A and B, respectively. Each 

i-cut is defined by the interval 1 2( , )i ia a  for A and 1 2( , )i ib b  for B,
respectively, where i = 1, …, N, with N denoting the number of -cuts
considered.

Figure 4. Fuzzy performances of alternatives a and b

The comparison performances of the alternatives a and b at the i-cut
level using the mechanisms shown in Figures 5 and 6 are in accordance 
with common sense and represent two different view points. When the 
interval ia  is entirely on the left of the interval ,ib  there is no doubt that 
a is worse than b and that the degree of trueness of the proposition “a is 
not worse than b” is 0. When starting to translate ia to the right and the 
two intervals overlap, this degree of trueness increases and reaches the 

1
ia 2

ia 2
ib

1
iba1 b1 a2 b2

1

0

ib
ia

A B

i

A, B



Fuzzy Outranking Methods 135

maximum value 1 at the moment when the lower limit (left) of ia  is equal 
with the lower limit (left) of ib (Figure 5). 

Figure 5. The first case of the achievement of a degree of trueness of 1 of the proposition 
“a is not worse than b”

A similar judgment can be performed for the case when the maximum 
degree of trueness is attained at the moment when the upper limit (right) of 

ia is equal with the upper limit (right) of ib (Figure 6). 
Thus the reasoning we have done previously is suitable for the case 

when a higher value of performance is preferred to a lower value, in other 
words, for the case when we want to maximize the performance value with 
respect to a criterion. Similar reasoning can be followed for the case of a 
minimizing criterion. 

Figure 6. The second case of the achievement of a degree of trueness of 1 of the 
proposition “a is not worse than b”
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For each i-cut level, two left i-cut indices are defined for, 
respectively, the case of maximizing and minimizing criteria as the 
functions _ max

i
ls  and, _ min

i
ls  from 1,0II    to , where I  is the set of 

all real intervals: 

2 1

2 1
_ max 1 1 2

2 1

1 1

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

l

a b

a bs a b a b a
a a

a b

 (13) 

2 1

2 1
_ min 1 1 2

2 1

1 1

0,                   

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

l

b a

b as a b b a b
b b

b a

 (14) 

The right i-cut indices can be defined in a similar way as shown in the 
following definition. 

For each i-cut level, two right i-cut indices are defined for, 
respectively, the case of maximizing and minimizing criteria as the 
functions _ max

i
rs  and _ min

i
rs  from 1,0II    to  such that: 

2 1

2 1
_ max 1 2 2

2 1

2 2

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

r

a b

a bs a b b a b
b b

a b

 (15) 

2 1

2 1
_ min 1 2 2

2 1

2 2

0,                  

( , ) ,     

1,                   

i i

i i
i i i i i i

i i

i i

r

b a

b as a b a b a
a a

b a

 (16) 

DEFINITION 2.

DEFINITION 3.
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For each i-cut level, two right i-cut indices are defined for, 
respectively the case of maximizing and minimizing criteria as the 
functions max

is  and, min
is  from 1,0II    to  such that: 

max _ max _ max( , ) (1 ) ( , ) ( , ), ,i i i i i i i i i
l rs a b s a b s a b a b A  (17) 

min _ min _ min( , ) (1 ) ( , ) ( , ), ,i i i i i i i i i
r ls a b s a b s a b a b A  (18) 

The parameter [0,1] represents the degree of optimism of the decision 
maker (Liou and Wang, 1992).  It allows the decision maker to choose 
which side of the interval is more important. When k increases from 0 to 1, 
the degree of optimism increases, whereas the degree of pessimism 
decreases. This type of strategy will be called the horizontal strategy.

In the remaining of this chapter, the notation s or S are used without the 
index min or max and refer to the maximization case; however, the related 
statements are also valid for the minimization case, unless otherwise stated. 

P
The i-cut indices defined in Definition 4 are fuzzy outranking 

relations.
The transition from a fuzzy outranking relation defined at the -cut

level to a single criterion fuzzy outranking relation requires an aggregation 
procedure. Observing the case of fuzzy numbers A and B presented in 
Figure 7, it follows that the upper -cut indices favor B, whereas the lower 
ones favor A. A compensative approach gives a certain discrimination 
power while still using the biggest amount of information contained in the 
fuzzy representation of the performances. This idea was exploited in area 
compensation methods for comparing fuzzy numbers by many authors 
(Chanas, 1987; Fortemps and Roubens, 1996; Matarazzo and Munda, 
2001; Nakamura, 1986). The basic principle is that some nonintersecting 
areas (i.e., upper left and/or right external areas and lower left and/or right 
external areas in Figure 7) compensate each other. If we see the previously 
defined -cut indices as relative intersections, then their aggregation can 
be seen as compensation between relative intersections, which is somehow 
related to the above-mentioned methods. If for linear membership 
functions the areas considered are relatively simple to be determined, for 
nonlinear cases, it becomes more difficult. In our -cut approach besides 

DEFINITION 4.

ROPOSITION 1.
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the fact that we can use inputs stated as a set of -cut intervals (which 
avoids possible necessary re-approximations of the original membership 
function), we prevent the use of integrals for calculating the areas used by 
an area compensation class of methods. 

Figure 7. A complex case of comparison of fuzzy numbers 

The function used to aggregate the -cut indices is the weighted root-
power mean defined for all x as follows (Smolíková and Wachowiak, 2002): 

1

1

1

( )
( )

N

i i
i

N

i
i

x
Fw x  (19) 

Using the aggregation function Fw  to aggregate i-cut indices, i =  
1, …, N, we obtain single criterion fuzzy outranking relation S as follows: 

1

1

1

( ( , ))
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (20) 

The single criterion outranking index defined by the relation (20) 
satisfies the following properties: 

For any convex and normalized fuzzy number B0, S(A, B0) is a non- 
decreasing function of A;

0

1 B

A

BA

PROPOSITION 2.
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For any convex and normalized fuzzy number A0, S(A0, B) is a non- 
increasing function of B;
For any fuzzy convex and normalized fuzzy number: S(C, C) = 1;
hence S is reflexive. 

Since the definitions of i
ls  and i

rs  allow them to take the value “0,” 
at any -cut level, some of the particular cases of the relation (20) are 
excluded:

Geometrical mean for = 1 due to the possible division by zero; 
Product mean for 0, because of the risk of penalty of the result, 
when an -cut level of S is 0.

As our intention is to offer the decision maker a flexible decision 
instrument, cases like min or max are also excluded. They are dictatorial 
aggregators, not allowing for compensation between lower and higher 
values.

Two particular cases are of special interest for the definition of the 
single criterion fuzzy outranking relation: the weighted arithmetic mean 
(21) and the weighted square average mean (22). 

1

1

( , )
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (21) 

1
2

2

1

1

( ( , ))
( , )

i i i

N

i
i

N

i
i

s a b
S A B  (22) 

The consideration of weights for -cut indices makes the final relation 
more flexible and offers to the decision maker the possibility to decide on 
the importance of the -cut levels during the aggregation.

As we have to deal with an enlarged number of weights, equal with the 
number of -cuts (which is N), we look to automatically generate the 
weights. We will search for a method that can give the possibility of 
changing the weighting vector, such that, for different personalities of the 
decision maker, we can build different weighting vectors. For example, in 
the case where the decision maker wants to rely his decisions on -cuts
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with less uncertainty, he might be able to slide the highest weights to the 
highest -cuts. Alternatively, one might want to give equal importance to 
all the -cuts or to assign higher weights to lower -cuts.

Here we will consider the case when the weights i increase in a linear 
manner, so the interpolation of these points is a line. As we want to use the 
information given by all the -cut indices, this kind of linearity looks 
convenient, because with two exceptions (the limit functions from this 
family, which will give 0 for the first -cut, respectively for the last one), 
all the weights will be nonzero. The equation of such a line is:

i i c  (23) 

where  is the  slope of the line and c .
Through a series of calculations, using the three particular cases 

mentioned above and other conditions, the relation (23) becomes 

1 1 1 1( ) 1
2 2i

N Ni i
N N

 (24) 

If we consider i as a continuous parameter, then i transforms into a 

function
N

Nii 1
2

11,  of two variables, which can be 

represented as a surface, as shown in Figure 8. 
Therefore, for the case of a maximizing criterion, we obtain the 

following the single criterion fuzzy outranking relation: 

max
1

1 1( , )
2

N

i

NS A B i
N

_ max _ max[(1 ) ( , ) ( , )]i i i i i i
l rs a b s a b . (25) 

The expression of the single criterion fuzzy outranking relation for the 
case of a minimizing criterion can be obtained in a similar way. 
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Figure 8. The function (i, )

4.1.2 Aggregation of Single Fuzzy Outranking Relations 

Here we are interested in aggregating over the set of criteria g1, …, gn, the 
single criterion fuzzy outranking relations Sk into a global fuzzy outranking 
relation S.

Using an aggregation operator M, the global fuzzy outranking relation 
S is defined for each pair of alternatives (a, b) as follows: 

1 n  (26) 

Obviously, S must have the properties of a fuzzy outranking relation, 
and the following proposition establishes the minimal conditions that an 
aggregator should fulfill in order to satisfy it. 

S(a,b) M S (a,b),  ... ,  S (a,b) .
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Any aggregator that satisfies the properties of idempotency and 
monotonicity with respect to the integrand, used to aggregate single 
criterion fuzzy outranking relations, leads to a global fuzzy relation that is 
a fuzzy outranking relation. 

The Choquet integral (Grabisch, 1999; Marichal, 1999) is an aggre-
gator that satisfies these two properties; consequently, the fuzzy relation 
obtained by aggregating single criterion fuzzy outranking relations through 
the use of a Choquet integral is a fuzzy outranking relation. 

Considering the Choquet integral as the aggregation operator M, S(A, B)
becomes 

( ) {( ),...,( )} {( 1),...,( )}
1

( , ) ( ,  ) [ ]
n

k k n k n
k

S A B S A B  (27) 

4.1.3 Exploitation of the Global Fuzzy Outranking Relation 

The type of exploitation to be undergone by the global fuzzy outranking 
relation depends among others on the type of application for which this 
exploitation is to be used. 

The problem for which this fuzzy outranking method was developed is 
one in which a large number of decisions has to be taken and for whose 
solving an automated decision-making procedure has to be put in place 
(e.g., the selection of the best EOL option for a large number of nodes in a 
disassembly tree of product with a complex assembly structure, the 
ranking of design concepts according to their lifecycle performance, 
including their EOL, etc.; see Gheorghe and Xirouchakis (2006) for a 
detailed description), but its application goes far beyond this context. It 
was shown that the formulation (choice of the best alternative) of the 
exploitation problem (Roy, 1977) is the most suitable.

Roubens (1989) defined four generalized choice functions C1, C2, C3,
and C4 with all of them being in the authors’ opinion, intuitively attractive. 
As it can be seen from their definition, all these choice functions (and in 
general all possible choice functions) refer to the strength of the chosen 
alternative(s) over the rest of alternatives, so they measure somehow the 
domination of selected alternative(s) over the other or the nondomination 
of other alternatives on the selected one(s). The superscript “+” is used to 
denote the choice functions selecting the “best” alternative(s). 

PROPOSITION 3.
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The weak domination of alternative a over all the other alternatives is 
defined as follows: 

1 1
\{ }

( ) ( , )
b a

C a T S a b
A

 (28) 

where T1 is a t-norm and S(a, b) is the degree, between 0 and 1, to which a
is as good as b. To be in accordance with Orlovsky’s (Orlovsky, 1978) 
reasoning and terminology, 1 ( )C a  can be interpreted as the degree of 
weak domination of a over all the other alternatives in A. The choice set is 
given by 

1 1 1( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (29) 

The weak nondomination of a by all the other alternatives is defined as 
follows:

2 1
\{ }

( ) [1 ( , )]
b a

C a T S b a
A

 (30) 

2 ( )C a is interpreted as the degree of weak nondomination of a by all 
the other alternatives  in A. The choice set is given by 

2 2 2( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (31) 

The strict domination of a over all the other alternatives is defined as 
follows:

3 1
\{ }

( ) ( , )
b a

C a T P a b
A

 (32) 

3 ( )C a  represents the degree of strict domination of a over b. P is the 
strict preference relation, and it is defined as P(a, b)=T2[(S(a, b), 1 – S(b,
a)], with T2 being a t-norm. The choice set is given by 

3 3 3( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (33) 
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The strict nondomination of a by all other alternatives is defined as 
follows:

4 1
\{ }

( ) [1 ( , )]
b a

C a T P b a
A

 (34) 

4 ( )C a represents the degree of strict nondomination of all the other 
alternatives on a. The choice set is given by 

4 4 4( , ) | ( ) max ( )
b A

C A S a A C a C b  (35) 

 In contrast to the measurement of the strengths of alternatives, it is 
also interesting to measure their weaknesses. Four weakness-based choice 
functions 5C , 6C , 7C ,  and 8C are presented in the following. 

The weak domination of all alternatives on alternative a, representing 
the degree to which a is weakly dominated by all the other alternatives, 
is defined as follows: 

5 1
\{ }

( ) ( , )
b a

C a T S b a
A

 (36) 

The choice set corresponding to the weak domination (of all 
alternatives on a given alternative) function 5C  is given by 

5 5 5( , ) | ( ) max ( )
b

C S a C a C a
A

A A  (37) 

The weak nondomination of an alternative a over all other alternatives  
representing the degree to which a doesn’t weakly dominate all the 
other alternatives is defined as follows: 

6 1
\{ }

( ) [1 ( , )]
b a

C a T S a b
A

 (38) 

The choice set corresponding to the weak nondomination (of an 
alternative on all others) function 6C  is given by 

6 6 6( , ) | ( ) max ( )
b

C S a C a C a
A

A A  (39) 
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The strict domination of all alternatives on alternative a that gives the 
degree to which a is strictly dominated by all the other alternatives is 
defined as follows: 

7 1
\{ }

( ) ( , )
b a

C a T P b a
A

 (40) 

The choice set corresponding to the strict domination (of all 
alternatives on a given alternative) function 7C  is given by 

7 7 7( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (41) 

The strict nondomination of an alternative a over all other alternatives 
representing the degree to which a doesn’t strictly dominate all the 
other alternatives is defined as follows: 

8 1
\{ }

( ) [1 ( , )]
b a

C a T P a b
A

 (42) 

The choice set corresponding to the strict nondomination (of an 
alternative on all others) function 8C  is given by 

8 8 8( , ) | ( ) max ( )
b

C S a C a C b
A

A A  (43) 

A ranking method can be obtained using the core concept. Once the set 
of best alternatives (Ck+1) is chosen by the choice function C(R, Ak), which 
can be any of the choice functions defined above, it is removed from the 
initial set A, and another core set is found between the remaining 
alternatives (Ak\Ck+1). This reasoning is applied until the current set (Ak) is 
empty. This algorithm was proposed in (Perny, 1992), and it is described 
as follows: 

Set k := 0 and Ak := A
 While Ak  do 
 Begin 

Ck+1 := C(R,Ak)
Ak+1 := Ak\ Ck+1

k := k+1
 End 
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R is one of the relations used to define the first four choice functions 
( 1C  to 4C ), specifically the weak preference S and strict preference P
relations. The resulting preorder R is a complete ranking of sets of single 
or multiple (indifferent) alternatives from best to worst, where R stands for 
S or P. Four rankings can be obtained using the strength concept.

The same algorithm can be used to obtain a second type of preorder but 
this time using the last four functions ( 5C  to 8C ). As they are based on 
the weakness concept, an ascending preorder from worst to the best will be 
constructed, denoted by R. These second type of rankings can be different 
from the previous one. 

The notions of ascending–descending and weak–strict rankings are 
introduced as follows. Similar concepts were used in methods like 
ELECTRE II and III, MAPPACC, and PRAGMA. Methods like 
PROMETHEE I and II use concepts of weakness and strength of 
alternatives but in a different manner. Four different preorders can be 
defined as follows: 

Descending weak preorder is the complete ranking obtained using the 
iterated choice functions 1C  or 2C ,
Descending strict preorder is the complete ranking obtained using the 
iterated choice functions 3C  or 4C ,
Ascending weak preorder is the complete ranking obtained using the 
iterated choice functions 5C  or 6C ,
Ascending strict preorder is the complete ranking obtained using the 
iterated choice functions 7C  or 8C .
Looking at the choice functions considered, we see that in fact, 5C ,

6C , 7C , and 8C  are “dual” of the functions of 1C , 2C , 3C  and 4C
respectively. So each pair 1C 5C , 2C 6C , 3C 7C  and 4C 8C
express the force and the weakness, when used in a ranking procedure. 
At the same time, pairs like 1C 2C  and 3C 4C  respectively, 

5C 6C  and 7C 8C  express another type of “duality” that notions of 
“outgoing” domination–non domination (i.e., of an alternative on all 
the other alternatives), when talking about strength, respectively 
“incoming” domination–non domination (i.e., of all alternatives on the 
alternative under consideration), when considering the weakness. And 
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The eight functions can be used alone to obtain a final ranking (weak or 
strict preorder). Nevertheless, the rankings obtained from two preorders 
(one descending and the other ascending), thus allowing incomparability 
(since an alternative ai may be preferred over another alternative aj in one 
preorder and aj preferred over ai in the other preorder), are richer and more 
interesting, as they take into account concepts that may be opposite, or 
dual, as shown above. Various ranking procedures based on a pair of 
choice functions, together with their characterization from the following 
points of view, can be obtained: 

Type of preference: weak–strict,
Type of the ranking of individual choice functions: ascending
descending,
Concept involved: strength–weakness,
Intuitive meaning of the individual choice functions: incoming
domination, incoming nondomination, outgoing domination, and 
outgoing nondomination.

4.1.4 Illustrative Example 

The example is adapted from (Wang, 2001). Let us consider the seven 
valve types (a1 to a7), and the criteria are cost, maintenance, criteria 
sensitivity, leakage, rangibility, and stability (g1 to g6). The performance 
matrix is given in Table 5. 

Table 5. Performance Matrix for Seven Valve Types (Trapezoidal Fuzzy Numbers) 

Criteria’s weights of importance 
0.217 0.174 0.174 0.217 0.087 0.131 

Performance with respect to criterion gk

Alternatives

g1 g2 g3 g4 g5 g6

A1 (4, 5, 5, 6) (5, 6, 7, 8) (7, 8, 8, 9) (7, 8, 8, 9) (7, 8, 8, 9) (1, 2, 2, 3) 
A2 (7, 8, 8, 9) (8, 9, 10, 10) (7, 8, 8, 9) (2, 3, 4, 5) (8, 9, 10, 10) (7, 8, 8, 9) 
A3 (7, 8, 8, 9) (1, 2, 2, 3) (7, 8, 8, 9) (7, 8, 8, 9) (5, 6, 8, 9) (5, 6, 7, 8) 
A4 (1, 2, 4, 5) (4, 5, 5, 6) (4, 5, 5, 6) (2, 3, 7, 8) (4, 5, 8, 9) (8, 9, 10, 10) 
A5 (7, 8, 8, 9) (5, 6, 7, 8) (5, 6, 7, 8) (8, 9, 10, 10) (1, 2, 2, 3) (1, 2, 2, 3) 
A6 (4, 5, 5, 6) (4, 5, 5, 6) (2, 3, 4, 5) (5, 6, 7, 8) (8, 9, 10, 10) (8, 9, 10, 10) 
A7 (4, 5, 7, 8) (8, 9, 10, 10) (7, 8, 8, 9) (5, 6, 7, 8) (8, 9, 10, 10) (7, 8, 8, 9) 

finally, both “dualities” are present for both weak and strict preference 
relations.
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The single criterion fuzzy outranking relations Sk are first calculated for 
each criterion gk, k = 1…6 using relation (25) for a number of -cuts N =
50. In the second step, Sk are aggregated using the weighted arithmetic (a 
particular case of the Choquet intergral) mean with the criteria weights of 
importance given in Table 5. These steps are repeated for the five 
representative situations given by the pair of parameters ( , ), representing 
the decision maker’s attitude. Figures 9 13 represent the above-mentioned 
situations in terms of the global fuzzy outranking relation S.

Figure 9. S(ai,aj) for  = 0,  = c

(conserv-pessim)
Figure 10. S(ai,aj) for  = 1,  = c

(conserv-optim)

Figure 11. S(ai, aj) for  = 0,  = m

(moderate)
Figure 12. S(ai, aj) for  = 0,  = a

(agress-pessim)

Figure 13. S(ai, aj) for = 1, = a(agress-optim)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.413 0.652 0.869 0.62 0.804 0.63

0.783 1 0.783 0.902 0.783 0.685 0.783

0.773 0.638 1 0.695 0.663 0.618 0.638

0.241 0.356 0.388 1 0.306 0.605 0.257

0.766 0.461 0.635 0.782 1 0.782 0.461

0.512 0.435 0.426 0.853 0.262 1 0.652

0.817 0.808 0.624 0.902 0.591 0.902 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.411 0.652 0.869 0.615 0.802 0.495

0.783 1 0.783 0.776 0.783 0.682 0.783

0.826 0.66 1 0.695 0.658 0.628 0.66

0.354 0.368 0.446 1 0.272 0.77 0.392

0.783 0.478 0.652 0.782 1 0.782 0.478

0.516 0.435 0.446 0.87 0.245 1 0.519

0.837 0.837 0.675 0.899 0.62 0.899 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.404 0.652 0.869 0.598 0.795 0.546

0.783 1 0.783 0.822 0.783 0.671 0.783

0.796 0.633 1 0.695 0.641 0.617 0.633

0.252 0.356 0.402 1 0.261 0.662 0.305

0.761 0.456 0.63 0.782 1 0.782 0.456

0.484 0.435 0.419 0.848 0.24 1 0.577

0.81 0.807 0.617 0.888 0.59 0.888 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.396 0.652 0.869 0.578 0.787 0.613

0.783 1 0.783 0.876 0.783 0.659 0.783

0.759 0.614 1 0.695 0.621 0.61 0.614

0.164 0.35 0.371 1 0.238 0.562 0.214

0.745 0.44 0.614 0.782 1 0.782 0.44

0.452 0.435 0.399 0.832 0.228 1 0.652

0.79 0.788 0.578 0.876 0.571 0.876 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.395 0.652 0.869 0.576 0.786 0.444

0.783 1 0.783 0.734 0.783 0.658 0.783

0.826 0.62 1 0.695 0.619 0.612 0.62

0.248 0.352 0.404 1 0.23 0.712 0.357

0.749 0.444 0.618 0.782 1 0.782 0.444

0.453 0.435 0.404 0.836 0.224 1 0.484

0.795 0.795 0.591 0.875 0.578 0.875 1
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The complete preorders given by the functions 1C ( 4C ), 2C ( 3C ),
5C ( 8C ), and 6C ( 7C ) were determined for each of the five 

representative decision attitudes. Because the fuzzy numbers expressing 
the performances of the considered alternatives interfere very little and in a 
trivial manner, we observed an influence that is not strong enough to 
change the partial preorders when sliding from a conservative to an 
aggressive attitude. Some changes are noticed when varying the other 
parameter ( ). Table 6 shows the complete preorders: 

Table 6. Complete Preorder for the Seven Types of Valves 

No. Choice functions Decision strategy ( , ) Preference 
(0, a), (0, c) 2 > 3 > 1 > 7 > 5 > 6 > 4 1 1C 4C (1, a), (0.5, m), (1, c) 2 > 3 > 7 > 5 > 1 > 6 > 4 
(0, a), (0, c) 3, 5, 7 > 2 > 1 > 6 > 4 2 2C 3C (1, a), (0.5, m), (1, c) 3, 5, 7 > 2 > 1 > 6 > 4 
(0, a), (0, c) 7 > 2 > 5 > 3 > 1 > 6 > 4 3 5C 8C (1, a), (0.5, m), (1, c) 7 > 2 > 5 > 3 > 1 > 6 > 4 
(0, a), (0, c) 7 > 2 > 3 > 1 > 5 > 6 > 4 4 6C 7C (1, a), (0.5, m), (1, c) 7 > 2 > 3 > 5 > 1 > 6 > 4 

For each decision strategy, six partial preorders can be derived from the 
above table by intersecting pairs of choice functions. They are shown in 
Table 7. 

Besides the theoretical foundations of this method, its advantages are 
related to the practical aspects, namely the format of the input data that can 
be used (general, nonanalytical representations of fuzzy numbers) where 
the preference function is described as a vector of -cuts. Six rankings are 
proposed. One, several, or all of them can be used to reinforce the choice 
or the ranking. They enclose different choice ideas, all together offering a 
large “palette” of concepts. It is up to the decision maker which of them is 
to be used in the concrete problem. The concepts that are proposed are 
easy to understand, and they give transparency to the decision process. 
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Table 7. Partial Ranking of the Eight Valve Types 

No. Choice 
functions

Decision
strategy ( , )

Preference

(0, a), (0, c)

1
( 1C 4C )

( 2C 3C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

2
( 1C 4C )

( 5C 8C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

3
( 5C 8C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

4
( 2C 3C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

5
( 1C 4C )

( 6C 7C ) (1, a), (0.5, m),
(1, c)

(0, a), (0, c)

6
( 2C 3C )

( 5C 8C ) (1, a), (0.5, m),
(1, c)

a2 a1 a6 a4

a5

a7 a3

a2

a1 a6 a4

a5a7

a3

a7 a1 a6 a4

a2

a3 a5

a2 a1 a6 a4
a5

a7

a3

a7

a5 a6 a4

a1a3

a 2

a7

a1 a6 a4

a3

a 5a 2

a2

a1 a6 a4

a5

a7 a3

a7

a1 a6 a4

a3

a 5a 2

a3 a5 a6 a4

a7

a2 a1

a3 a1 a6 a4

a7

a2 a5

a5 a1 a6 a4

a2

a7 a3

a5 a1 a6 a4

a2

a7 a3
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4.2 Other Fuzzy Outranking Methods 

All outranking methods briefly described in this subsection consider fuzzy 
evaluations of alternatives on criteria; therefore, they are fuzzy outranking 
methods.

4.2.1 Method of Czy ak and S owi ski (1996) 

This method is an adaptation of ELECTRE III to the case where the 
concordance and discordance indices are determined from the fuzzy 
evaluations of alternatives on criteria through the use of four different 
measures using possibility and necessity concepts from possibility theory 
developed in Dubois and Prade (1988). The aggregation of the possibility 
and necessity measures to drive the concordance and discordance indices 
is realized through the use of a weighted root-power mean. Apart from an 
adjustment of the monocriterion concordance and discordance indices 
through some transformation, the rest of the method is similar to 
ELECTRE III. The method is illustrated through its application to the 
ground water management problem considered in Duckstein et al. (1994). 

4.2.2 Method of Wang (1997) 

This method is based on the consideration of a fuzzy preference relation P
defined each pair of alternatives (a, b) whose respective fuzzy scores on a 
given criterion are A and B as follows: 

( , ) ( ,0)( , )
( , ) ( ,0)

D A B D A BP a b
D A o D B

 (44) 

where D(A,B) represents the areas where A dominates B, D(A B,0)
represents the intersection areas of A and B, D(A,0) represents the area of 
A, and D(B, 0) represents the area of B. It is worth recalling that this fuzzy 
relation is considered by Tseng and Klein (1989) for the problem of 
ranking fuzzy numbers. 

The outranking relation is defined for: 

The case of a pseudo-order preference model where a preference and 
indifference thresholds are associated with criteria, 
The case of a semi-order preference model where only indifference 
thresholds are associated with criteria, 



152 A. Bufardi et al.

The case of a complete-preorder preference model where the 
preference and indifference thresholds are null for each criterion. 

The exploitation phase is based on the consideration of the concepts of 
dominance and non-dominance sets. 

The method is illustrated through its application to the problem of 
evaluating and comparing design concepts in conceptual design. 

Güngör and Arikan (2000) applied a similar method to the problem of 
energy policy planning. 

4.2.3 Method of Wang (1999) 

In this method, the concordance and discordance indices are determined 
from the fuzzy evaluations of alternatives on criteria through the use of 
possibility and necessity measures. More specifically, for two design 
requirements ri and rj, the concordance and discordance indices of criterion 
Ck with the assertion “ri is at least as good as rj” are defined as follows: 

( , ) ( ) (1 ) ( )k i j k i j k i jCI r r POSS r r NESS r r  (45) 

( , ) ( )k i j k j iDI r r NESS r r  (46) 

where  is a preference ratio such that 0  1. 
The global outranking relation is obtained from monocriterion 

concordance and discordance indices through the use of the aggregation 
method developed by Siskos et al. (1984). 

The method is illustrated through its application to the problem of 
prioritizing design requirements in quality function deployment in the case 
of a car design. 

4.2.4 Method of Wang (2001) 

In this method, the construction of the fuzzy outranking relation is similar 
to that of Czy ak and S owi ski (1996) since the concordance and 
discordance indices are determined from the fuzzy evaluations of 
alternatives on criteria through the use of four different measures using 
possibility and necessity concepts. However, the exploitation of the global 
fuzzy outranking relation is different from ELECTRE III since it is based 
on the determination of the set of nondominated alternatives as it is 
considered in Orlovsky (1978). The method is illustrated through its 
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application to the problem of ranking engineering design concepts in 
conceptual design. 

5. CONCLUSION

In this chapter we made a clear distinction between outranking methods 
based on the construction and exploitation of a valued outranking relation 
and outranking methods based on the construction and exploitation of a 
fuzzy outranking relation since they are applicable to two different 
situations. Indeed, the outranking methods with a valued outranking relation 
are applicable to the situation where the evaluations of alternatives on 
criteria are crisp, whereas the outranking methods with a fuzzy outranking 
relation are applicable to the situation where the evaluations of alternatives 
on criteria are fuzzy. The outranking methods with a valued outranking 
relation are called valued outranking methods and the outranking methods 
with a fuzzy outranking relation are called fuzzy outranking methods. In the 
literature the fuzzy and valued outranking methods are often confused and 
the clarification made in this chapter allows avoiding this confusion. 

All fuzzy outranking methods deal with the problem of comparing 
fuzzy numbers; however, they consider different approaches: 

Gheorghe et al. (2004) consider an approach based on -cuts;
Czy ak and S owi ski (1996) and Wang (1999, 2001) consider an 
approach based on possibility and necessity measures; 
Wang (1997) and Güngör and Arikan (2000) consider an approach 
based on the comparison of areas of fuzzy numbers. 

The valued outranking methods ELECTRE III and PROMETHEE are 
widely applied to real-world problems; however, they are not suitable to 
the problems where the evaluations of alternatives on criteria are fuzzy. 
The fuzzy outranking methods presented in this chapter are quite recent 
compared with the valued outranking methods, and even if they were 
applied to specific problems, they can be adapted to any MCDA problem 
where the evaluations of alternatives on criteria are fuzzy. 

In this chapter, we provided two illustrative examples, one for a valued 
outranking method, namely ELECTRE III, and one for a fuzzy outranking 
method, namely the method developed by the authors. The objective is to 
show that outranking methods can be applied to various problems with the 
mention that valued outranking methods are suitable to problems with 
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crisp evaluations (i.e., the case of the treatment of products at their EOL) 
and fuzzy outranking methods are suitable to problems with fuzzy 
evaluations (i.e., the case of design concept selection in conceptual design). 
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Abstract:  Industrial robots have been increasingly used by many manufacturing firms 
in different industries. Although the number of robot manufacturers is also 
increasing with many alternative ranges of robots, potential end users are 
faced with many options in both technical and economical factors in the 
evaluation of the industrial robotic systems. Industrial robotic system 
selection is a complex problem, in which many qualitative attributes must be 
considered. These kinds of attributes make the evaluation process hard and 
vague. The hierarchical structure is a good approach to describing a 
complicated system. This chapter proposes a fuzzy hierarchical technique 
for order preference by similarity ideal solution (TOPSIS) model for the 
multi-criteria evaluation of the industrial robotic systems. An application  
is presented with some sensitivity analyses by changing the critical 
parameters.

Key words: Fuzzy sets, TOPSIS, robotic systems, multi-criteria, hierarchy 

1. INTRODUCTION

Robotics is the science and technology of robots, their design, 
manufacturing and application. Robotics requires a working knowledge of 
electronics, mechanics, and software, and it is usually accompanied by a 
large working knowledge of many other subjects. A robot is a mechanical 
or virtual, artificial agent. It is usually an electromechanical system, which, 
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by its appearance or movements, conveys a sense that it has intent or 
agency of its own. The word “robot” can refer to both physical robots and 
virtual software agents, but the latter are usually referred to as “bots” to 
differentiate. While there is still discussion about which machines qualify 
as robots, a typical robot will have several, though not necessarily all of, 
the following properties (Craig, 2005; Tsai, 1999): 

is not “natural” (i.e., artificially created),
can sense its environment and manipulate or interact with things in it,
has some degree of intelligence or ability to make choices based on the 

is programmable,
moves with one or more axes of rotation or translation,
makes dexterous coordinated movements,  
appears to have intent or agency. 

An industrial robot is officially defined by ISO (Anonymous, 2007) as 
an automatically controlled, reprogrammable, multipurpose manipulator 
programmable in three or more axes. The field of robotics may be more 
practically defined as the study, design, and use of robot systems for 
manufacturing (a top-level definition relying on the prior definition of a 
robot). During the last decades, both the ranges of applications and the 
number of available industrial robots have substantially increased. 
Industrial robots are used for many applications, such as assembly, loading 
and unloading, material handling, spray painting, and welding. While 
evaluating industrial robots, potential end users are faced with many 
options in the selection of an appropriate industrial robot to meet their 
requirements. The decision in robot selection is therefore more complex 
because many technical and economical factors affect the performance of 
the industrial robots. Hence, a multi-criteria evaluation approach is required. 
Fuzzy sets and systems methodologies are useful for modeling uncertainty 
and imprecision due to the complexity of contemporary industrial robots, 
which integrate economical and technical evaluation factors. 

Humans are unsuccessful in making quantitative predictions, whereas 
they are comparatively efficient in qualitative forecasting. Furthermore, 
humans are more prone to interfere with biasing tendencies if they are 
forced to provide numerical estimates since the elicitation of numerical 
estimates forces an individual to operate in a mode that requires more 
mental effort than that required for less precise verbal statements 
(Karwowski and Mital, 1986). Since fuzzy linguistic models permit the 
translation of verbal expressions into numerical ones, thereby dealing 

environment, or has an automatic control/preprogrammed sequence
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quantitatively with imprecision in the expression of the importance of each 
criterion, some multi-attribute methods based on fuzzy relations can be 
used. Applications of fuzzy sets within the field of decision making have, 
for the most part, consisted of extensions or fuzzifications of the classic 
theories of decision-making. Although decision making under conditions 
of risk and uncertainty has been modeled by probabilistic decision theories 
and by game theories, the fuzzy decision theory attempts to deal with the 
vagueness or fuzziness inherent in subjective or imprecise determinations 
of preferences, constraints, and goals (Yager, 1982). 

Several models have been suggested for the robot selection in the past. 
They can be classified into five categories: (1) multi-criteria decision 
making (MCDM) models, (2) production system performance optimization 
models, (3) computer assisted models, (4) statistical models, and (5) other 
approaches. MCDM models include multi-attribute decision making 
(MADM) models (Agrawal et al., 1991; Jones et al., 1985; Nnaji and 
Yannacopoulou, 1988) multi-objective decision making (MODM) models 
(Agrawal et al., 1991), and other similar approaches (Huang and 
Ghandforoush, 1984; Nnaji, 1988). In MADM, all objectives of the 
decision maker are unified under a superfunction termed the decision 
maker’s utility, which depends on robot attributes. In MODM, the decision 
maker’s objective, such as optimal utilization of resources and improved 
quality, remain explicit and are assigned weights reflecting their relative 
importance. The main advantage of MCDM models is their ability to 
consider a large number of robot attributes. Using MCDM, the decision 
maker can consider engineering, vendor-related, and cost attributes; 
however, for a problem as complex as robot selection, the data requirements 
these models place on the decision maker may be overwhelming 
(Narasimhan and Vickery, 1988). Production system performance 
optimization models select a robot that optimizes some performance 
measures of the production system, such as quality or throughput, with 
robot attributes treated as decision variables. Computer assisted models 
have been advocated by many researchers to deal with the large number of 
robot attributes and available robots (Boubekri et al., 1991; Fisher and 
Maimon, 1988). In general, the decision maker starts by providing the data 
about the robot application. The data are used by an expert system to 
provide a list of important robot engineering attributes and their desired 
values, which in turn is used to obtain a list of feasible robots from a 
descriptive database of available robots. Statistical models focus on the 
trade-off between robot engineering attributes and identify robots that 
provide the best combination of attribute values. Other approaches to the 
problem include the development of robot time and motion system studies 
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(Nof, 1985), economic cost/benefit analysis (Nof and Lecthman, 1982) and 
data envelopment analysis (Knott and Getto, 1982). 

In this chapter, fuzzy multi-attribute industrial robotic system selection 
problem is handled. A fuzzy hierarchical fuzzy Technique for Order 
Preference by Similarity Ideal Solution (TOPSIS) method is developed to 
solve this multi-attribute selection problem. In the current literature, the 
only method that takes the hierarchy among attributes and alternatives into 
consideration is the analytical hierarchy process (AHP). The developed 
method, fuzzy hierarchical TOPSIS, also has the ability of considering the 
hierarchy among attributes and alternatives. 

This chapter is organized as follows. In Section 2, the criteria for 
evaluation of industrial robotic systems are presented. The fuzzy multi-
criteria hierarchical TOPSIS method for industrial robot selection is 
developed in Section 3. Evaluation of industrial robotic systems is illustrated 
in Section 4. Finally, concluding remarks are given in Section 5. 

2. CRITERIA FOR EVALUATION OF 
INDUSTRIAL ROBOTIC SYSTEMS 

Traditional economic analysis techniques incorporate direct costs (and 
benefits) to which dollar values can be attached. Using these techniques, 
the evaluation of robots may result in an expected loss or negative return. 
Management must accurately assess the value of the intangible benefits 
provided by the investment in automation against the cost figures. If those 
responsible for the decision and the commitment of company resources do 
consider the intangible benefits (precision or accuracy, programmability, 
etc.) to be greater than the cost, then an investment in robots is justified. 
Thus, evaluation of the industrial robotic systems is often specified using 
many parameters that can be categorized into two main groups:

1. Economical Attributes 
Investment Costs (InvC) 
o Purchase Cost (PC): The basic costs of planning and design by 

the user company’s engineering staff to install the robot. 
o Installation Cost (InsC): This includes the labor and materials 

needed to prepare the installation site. 
o Special Tooling Cost (ST): This includes the cost of the the 

fixtures and tools required to operate the work cell. 
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o Maintenance Cost (MaC): This covers the anticipated costs of 
maintenance and repair for the robot cell. 

o Labor Cost (LC): The direct labor costs associated with the 
operation of the robot cell and the indirect labor costs that can 
be directly allocated to the operation of the robot cell. 

o Training Cost (TC): Training is a continuing activity in which 
much of it is required for the installation. 

2. Technical Attributes 
 Repeatability (Rep): This is a measure of the ability of the robot to 

return to its original point. 
 Speed (Sp) 
 Memory capacity (MeC) 
 Precision or accuracy (Pre) 
 Programmability (Pro) 
 Number of axes (NA) 
 Workload (Wl) 

The hierarchy considered in the study is given in Figure 1. 

Figure 1. The hierarchy to evaluate industrial robotic systems 

Selection of the best industrial robotic systems

Economical Technical

InvC OC MeCSp PreRepWl Pro NA

PC InsC ST MaC LC TC

AH1 AH2 AH3

Operating Costs (OC) 
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3. FUZZY MULTI-ATTRIBUTE DECISION-
MAKING METHODS 

Fuzzy sets were introduced by Zadeh in 1965 to represent/manipulate data 
and information possessing nonstatistical uncertainties (Zadeh, 1965). It 
was specifically designed to represent mathematical uncertainty and 
vagueness and to provide formalized tools for dealing with the imprecision 
intrinsic to many problems. Fuzzy logic provides an inference morphology 
that enables approximate human reasoning capabilities to be applied to 
knowledge-based systems. The theory of fuzzy logic provides a 
mathematical strength to capture the uncertainties associated with human 
cognitive processes, such as thinking and reasoning. Some essential 
characteristics of fuzzy logic are related to the following: Exact reasoning 
is viewed as a limiting case of approximate reasoning, everything is a 
matter of degree, knowledge is interpreted a collection of elastic or, 
equivalently, fuzzy constraint on a collection of variables, inference is 
viewed as a process of propagation of elastic constraints, and any logical 
system can be fuzzified. 

Two main characteristics of fuzzy systems give them better performance 
for specific applications: Fuzzy systems are suitable for approximate 
reasoning, especially for the system with a mathematical model that is 
difficult to derive, and fuzzy logic allows decision making with estimated 
values under incomplete or uncertain information. 

Fuzzy multi-criteria decision making (FMCDM) has provoked great 
interest in decision science, systems engineering, management science, and 
operations research. Fuzzy multi-attribute decision making is an important 
component of the FMCDM. Many efficient methods for fuzzy multi-
attribute decision making problems exist with the decision maker’s 
preference information completely known and completely unknown. 

The key to solving fuzzy multi-criteria decision making problems is 
how to obtain preference information of the decision-maker, i.e., criteria 
weights. Many efficient methods have been presented for the fuzzy multi-
criteria decision making problems with the decision maker’s preference 
information completely known and completely unknown, such as, TOPSIS 
method, AHP, average weighted comprehensive method, fuzzy optimum 
seeking method, minimum membership degree method, average weighted 
programming method, fuzzy neural networks comprehensive decision 
making method, fuzzy iteration method, and target decision by entropy 
weight and fuzzy. But, no research exists in fuzzy multi-criteria decision 
making situated between the above extreme circumstances, i.e., the fuzzy 



Evaluation of Industrial Robotic Systems 165

multi-criteria decision making with incomplete information. Therefore, 
research of such problems is of importance to scientific research and real 
applications.

3.1 Fuzzy TOPSIS 

TOPSIS views a MADM problem with m alternatives as a geometric 
system with m points in the n-dimensional space. It was developed by 
Hwang and Yoon (1981). The method is based on the concept that the 
chosen alternative should have the shortest distance from the positive-ideal 
solution and the longest distance from the negative-ideal solution. TOPSIS 
defines an index called similarity (or relative closeness) to the positive-
ideal solution and the remoteness from the negative-ideal solution. Then 
the method chooses an alternative with the maximum similarity to the 
positive-ideal solution. 

Using the vector normalization, the method chooses the alternative with 
the largest value of *

iC  as given in Eq. 1. 

2

1 2

1*

2 2

*

1 12 2

1 1

n
ij

j jm
j

ij
i

i

n n
ij ij

j j j jm m
j j

ij ij
i i

x
w v

x
C

x x
w v w v

x x

 (1) 

or it chooses the alternative with the least value of iC formulated as in  
Eq. 2. 

n

j
jm

i
ij

ij
j

n

j
jm

i
ij

ij
j

n

j
jm

i
ij

ij
j

i

v
x

x
wv

x

x
w

v
x

x
w

C

1

2

1

21

2

*

1

2

1

2

*

1

2
 (2) 



166 C. Kahraman et al.

where i (i = 1 ,…, m) and j (j = 1 ,…, n) are index numbers for the 
alternatives and attributes, respectively; jw is the weight of the jth
attribute; ijx is the attribute rating for ith alternative’s jth attribute; *

jv  is 
the positive-ideal value for jth attribute, where it is a maximum for benefit 
attributes and a minimum for cost attributes; and jv is the negative-ideal 
value for the jth attribute, where it is a minimum for benefit attributes and 
a maximum for cost attributes.

In the last decade, some fuzzy TOPSIS methods were developed in the 
literature: Chen and Hwang (1992) transform Hwang and Yoon’s (1981) 
method into a fuzzy case. Liang (1991) presents a fuzzy multi-criteria 
decision making based on the concepts of ideal and anti-ideal points. The 
concepts of fuzzy set theory and hierarchical structure analysis are used to 
develop a weighted suitability decision matrix to evaluate the weighted 
suitability of different alternatives versus criteria. Triantaphyllou and Lin 
(1996) develop a fuzzy version of the TOPSIS method based on fuzzy 
arithmetic operations, which leads to a fuzzy relative closeness for each 
alternative. This fuzzy TOPSIS method offers a fuzzy relative closeness 
for each alternative; the closeness is badly distorted and over-exaggerated 
because of the reason of fuzzy arithmetic operations. Chen (2000) 
describes the rating of each alternative and the weight of each criterion by 
linguistic terms, which can be expressed in triangular fuzzy numbers. 
Then, a vertex method for TOPSIS is proposed to calculate the distance 
between two triangular fuzzy numbers. Cheng et al. (2002) apply Chen and 
Hwang’s (1992) fuzzy TOPSIS approach for solving the solid waste 
management problem in Regina of Saskatchewan Canada. Additionally, 
they apply four other MCDM methods for the analysis of solid-waste 
management systems, including simple weighted addition (SWA) method, 
weighted product (WP) method, cooperative game theory, and ELECTRE.  
Since all methods result in different rankings of the alternative solutions, 
they use an aggregation approach called the average ranking procedure to 
analyze the results. Zhang and Lu (2003) present an integrated fuzzy group 
decision making method in order to deal with the fuzziness of preferences 
of the decision-makers. 

In this chapter, the weights of the criteria are crisp values gathered by 
pair-wise comparisons where the preferences of the decision makers are 
represented by triangular fuzzy numbers (TFNs). Chen and Tzeng (2004) 
transform a fuzzy MCDM problem into a nonfuzzy MCDM using a fuzzy 
integral. Instead of using distance, they employ a gray relation grade to 
define the relative closeness of each alternative. Abo-Sinna and Abou-El- 
Enien (2005) extend the technique for order preference by similarity ideal 
solution (TOPSIS) for solving large-scale multiple objective programming 
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problems involving fuzzy parameters. Wang and Elhag (2006) present a 
nonlinear programming (NLP) solution procedure using a fuzzy TOPSIS 
method based on alpha level set. They discuss the relationship between the 
fuzzy TOPSIS method and the fuzzy weighted average (FWA). They 
illustrate three examples about bridge risk assessments to compare the 
proposed fuzzy TOPSIS and other procedure. Jahanshahloo et al. (2006) 
study the cases in which determining precisely the exact value of the 
attributes is difficult, and as a result of this, the attribute values should be 
considered as intervals. They aim to extend the TOPSIS method for 
decision making problems with interval data. By extension of the TOPSIS 
method, they present an algorithm to determine the most preferable choice 
among all possible choices, when data are interval. 

Table 1. A Comparison of Fuzzy TOPSIS Methods 

Source Attribute 
Weights

Type of Fuzzy 
Numbers

Ranking Method Normalization 
Method

Chen and 
Hwang
(1992)

Fuzzy
Numbers Trapezoidal

Lee and Li’s (1988) 
generalized mean 
method

Linear
Normalization

Liang (1999) Fuzzy
Numbers Trapezoidal

Chen’s (1985) ranking 
with maximizing set and 
minimizing set

Manhattan
distance

Chen (2000) Fuzzy
Numbers Triangular Chen (2000) proposes 

vertex method 
Linear
Normalization

Chu (2002) Fuzzy
Numbers Triangular

Liou and Wang’s (1992) 
ranking method of total 
integral value with =1/2

Modified
Manhattan
distance

Tsaur et al. 
(2002)

Crisp
Values Triangular

Zhao and Govind’s 
(1991) center of area 
method

Vector
Normalization

Zhang and Lu 
(2003)

Crisp
Values Triangular Chen’s (2000) vertex 

method
Manhattan
distance

Chu and Lin 
(2003)

Fuzzy
Numbers Triangular

Kaufmann and Gupta’s 
(1988) mean of the 
removals method 

Linear
Normalization

Cha and 
Yung (2003) 

Crisp
Values Triangular

Cha and Yung (2003) 
propose a fuzzy distance 
operator

Linear
Normalization

Yang and 
Hung (2005) 

Fuzzy
Numbers Triangular Chen’s (2000) vertex 

method

Normalized
fuzzy linguistic 
ratings are used 

Wang and 
Elhag (2006) 

Fuzzy
Number Triangular Chen’s (2000) vertex 

method
Linear
Normalization

Jahanshahloo
et al. (2006) 

Crisp
Values Interval data Jahanshahloo et al. (2006) propose a new 

normalization & ranking method 
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A comparison of the fuzzy TOPSIS methods in the literature is given in 
Table 1. The comparison includes the computational differences among 
the methods. In this chapter, we prefer Chen and Hwang’s (1992) fuzzy 
TOPSIS method since the other fuzzy TOPSIS methods are derived from 
this method with minor differences.

In the following discussion, the steps of fuzzy TOPSIS developed by 
Chen and Hwang (1992) are given. First, a decision matrix, D, of m n
dimension is defined as in Eq. 3. 

nj1

mnmj1m

inij1i

n1j111
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where ijx , i , j may be crisp or fuzzy. If ijx is fuzzy, it is represented by a 
trapezoidal number as ijijijijij d,c,b,ax  shown in Figure 2. The fuzzy 
weights can be described by Eq. 4. 

ijijijijj ,,,w  (4) 

Figure 2. Trapezoidal fuzzy numbers 
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The problem is solved using the following steps. 
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Step 1. Normalize the Decision Matrix. The decision matrix must first 
be normalized so that the elements are unit-free. To avoid the complicated 
normalization formula used in classic TOPSIS, we use linear scale 
transformation as follows: 

attributecost  a is 
attributebenefit  a is 

jx,j,ijxjx
jx,j,xijx

ijr
*j

 (5) 

By applying Eq. 5, we can rewrite the decision matrix in Eq. 3 as in  
Eq. 6. 
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When xij is crisp, its corresponding rij must be crisp; when xij is fuzzy, 
its corresponding rij must be fuzzy. Eq. 5 is then replaced by the following 
fuzzy operations: Let ijijijijij d,c,b,ax  and *

j
*

j
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j d,c,b,ax , we 
have:
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Step 2. Obtain the Weighted Normalized Decision Matrix. This matrix 
is obtained using 

j,,wrv jjijij  (8) 

When both ijr and ijw  are crisp, vij is crisp. When either ijr or ijw  (or 
both) are fuzzy, Eq. 8 may be replaced by the following fuzzy operations: 
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Eq. 9 is used when the jth attribute is a benefit attribute. Eq. 10 is used 
when the jth attribute is a cost attribute. The result of Eqs. 9 and 10 can be 
summarized as in Eq. 11. 
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Step 3. Obtain the Positive Ideal Solution (PIS), ,*A  and the Negative 
Ideal Solution (NIS), A . PIS and NIS are defined as 

**
1

* ,, nvvA …  (12) 

nvvA ,,1 …  (13) 

where ijv
i

*jv max  and ijv
ij v min .

For crisp data, *
jv and jv are obtained in a straight forward manner. In 

the case of fuzzy data, *
jv and jv may be obtained through some ranking 

procedures. Chen and Hwang use Lee and Li’s ranking method for 
comparison of fuzzy numbers. The *

jv  and jv are the fuzzy numbers with 
the largest generalized mean and the smallest generalized mean, respec-
tively. The generalized mean for fuzzy number ,,, jiijv  is defined as 
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For each column j, we find a ijv whose greatest mean is *jv and whose 
lowest mean is jv .

Step 4. Obtain the Separation Measures Si
* and Si-. In the classic case, 

seperation measures are defined as: 

    m1,...,i   ,D
1

**
n

j
ijiS  (15) 

and,

ij
1

D ,   i 1,...,m
n

i
j

S . (16) 

For crisp data, the difference measures *
ijD  and ijD  are given as 

**
jijij vvD  (17) 

jijij vvD . (18) 

The computation is straightforward. For fuzzy data, the difference 
between two fuzzy numbers )(xijv and )(* x

jv  (based on Zadeh (1965)’s 
study) is explained as given in Eq. 19. 

jiLxxD ijvvxij jij ,,1)(^)(sup1 **  (19) 

where ijL is the highest degree of similarity of ijv and *
jv . The value of 

ijL  is best depicted in Figure 3. 

Similarly, the difference between )(xijv and )(x
jv  is defined as 

  ,,1)(^)(sup1 jiLxxD ijvvxij jij . (20) 

Note that both *
ijD , ijD  are crisp numbers. 
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Step 5. Compute the Relative Closeness to Ideals. This index is used to 
combine *

iS and iS indices calculated in Step 4. Since *
iS and iS are crisp 

numbers, they can be combined: 

iiii SSSC *  (21) 

The alternatives are ranked in descending order of the iC  index. 

Figure 3. The derivation of ijL

3.3 Fuzzy Hierarchical TOPSIS 

In the literature, one of the most known and widely used multi-attribute 
decision making methods is fuzzy AHP. There are two main differences 
between AHP and TOPSIS. (1) Pair-wise comparisons for attributes and 
alternatives are made in AHP, although there is no pair-wise comparison in 
TOPSIS. (2) AHP uses a hierarchy of attributes and alternatives, whereas 
TOPSIS does not. The consideration of the hierarchies in the multi-
attribute problems provides a great superiority to AHP. The developed 
fuzzy TOPSIS methods today do not take the hierarchies in the multi-
attribute problems into consideration. In the following discussion, we 
develop a fuzzy hierarchical TOPSIS to solve multi-attribute hierarchical 
problems. The fuzzy TOPSIS algorithm considering a hierarchy is 
developed below. The hierarchy given in Figure 4 will be considered. 
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Figure 4. The hierarchy considered in fuzzy TOPSIS algorithm 

Assume that we have n main attributes, m sub-attributes, k alternatives, 
and s respondents. Each main attribute has ir sub-attributes where the total 
number of sub-attributes m is equal to the sum of ir , i = 1,2,3,…n.

The first matrix ( MAI~ ), given by Eq. 22, is constructed from the 
weights of the main attributes with respect to the goal. 
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where pw~  is the arithmetic mean of the weights assigned by the 
respondents and is calculated by Eq. 23 
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attributes. The weights vector obtained from MAI~  is written above this SAI~

as illustrated in Eq. 24. 
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where plw~  is the arithmetic mean of the weights assigned by the 
respondents and is calculated by Eq. 25. 
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where pliw~ is the weight of the lth sub-attribute with respect to the pth main
attribute assessed by the ith respondent. The third matrix ( AI~ ) is formed by 
the scores of the alternatives with respect to the sub-attributes. The weights 
vector obtained from SAI~  are written above this AI~  as in Eq. 26. 

where piw~ denotes the fuzzy evaluation score of the pth main attribute with 
respect to the goal assessed by the ith respondent. The second matrix ( SAI~ )
represents the weights of the sub-attributes with respect to the main 
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where

n

j
pjppl wwW

1

~~~
. (27) 

Since 0pjw  for lj , we can use Eq. 28 instead of Eq. 27 

plppl wwW ~~~
. (28) 

In AI~ , qplc~  is the arithmetic mean of the scores assigned by the 
respondents, and it is calculated by Eq. 29 
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where qplic~ is the fuzzy evaluation score of the qth alternative with respect 
to the lth sub-attribute under the pth main attribute assessed by the ith
respondent. To determine the importance degree of each main attribute 
with respect to the goal and each sub-attribute with respect to the main-
attributes, Table 2 is used. The linguistic terms represented by TFNs for 
scoring the alternatives under the sub-attributes are given in Table 3.

Table 2. The Importance Degrees 

Very low  (0, 0, 0.2) 
Low  (0, 0.2, 0.4) 
Medium  (0.3, 0.5, 0.7) 
High  (0.6, 0.8, 1) 
Very High  (0.8, 1, 1) 
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Table 3. The Scores 

Very low (0, 0, 20) 
Low (0, 20, 40) 
Medium (30, 50, 70) 
High (60, 80, 100) 
Very High (80, 100, 100) 

4. EVALUATION OF INDUSTRIAL ROBOTIC 
SYSTEMS

Three different industrial robotic systems are evaluated using the multi-
attribute decision making technique given above. Taking the hierarchy 
given in Figure 1 into consideration, a questionnaire for fuzzy TOPSIS 
was prepared to receive the weights of main, sub, and sub-sub-attributes 
from the experts. A part of this questionnaire is given in Appendix A. The 
questionnaire is applied to a big automotive company in Turkey. Twenty-
four professionals in a company where 4 of them are top managers, 8 of 
them are division managers of related departments, and 12 of them are 
engineers, were interviewed. The response rate was 100% with a high 
support of top management. 

First, equations in the fuzzy TOPSIS algorithm using trapezoidal fuzzy 
numbers given in Section 3.1 are rewritten for TFNs that are considered in 
this application. Since a TFN (a, b, c) can be represented in trapezoidal 
form as (a, b, b, c), it can be easily seen that Eq. 7 can be expressed as 
follows:
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Then, Eq. 14 is reduced to Eq. 31. 
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where ),,( **** cbav j  and ),,( cbav j  are the fuzzy numbers with the 
largest generalized mean and the smallest generalized mean, respectively. 

Then, the steps of the hierarchical fuzzy TOPSIS algorithm are 
executed. Our model has two main attributes, nine sub-attributes, six sub-
sub-attributes, and three alternatives. Evaluations from all 24 respondents 
are taken, and MAI~ , SAI~ , and AI~ are obtained and given in Tables 4–7. 

Table 4. MAI~

GOAL
EA (0.54, 0.83, 0.91) 
TA (0.32, 0.71, 0.86) 

Table 5. SAI~

EA TA 
InvC (0.27, 0.69, 0.87) 0 
OC (0.32, 0.61, 0.83) 0 
SP 0 (0.54, 0.76, 0.81) 
Wl 0 (0.63, 0.78, 0.86) 
Pro 0 (0.45, 0.53, 0.74) 
NA 0 (0.16, 0.41, 0.56) 
Rep 0 (0.21, 0.56, 0.71) 
Pre 0 (0.35, 0.78, 0.86) 
MeC 0 (0.41, 0.68, 0.87) 

*
ijD  and ijD  are calculated by the Eqs. 32 and 33, respectively. 
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Table 6. SSAI~

Inv OC 
PC (0.53, 0.78, 0.87) 0 
InsC (0.45, 0.53, 0.74) 0 
ST (0.35, 0.42, 0.69) 0 
Mac 0 (0.63, 0.78, 0.86) 
LC 0 (0.61, 0.88, 0.93) 
TC 0 (0.21, 0.56, 0.71) 

Table 7. AI~

AH-1 AH-2 AH-3 
PC (17, 39, 56) (45, 78, 89) (21, 28, 46) 
InsC (45, 78, 89) (32, 45, 76) (13, 26, 57) 
STF (23, 38, 48) (38, 44, 49) (41, 53, 62) 
Mac (10, 21, 36) (29, 39, 52) (41, 53, 62) 
LC (34, 51, 63) (25, 33, 37) (9, 17, 33) 
TC (13, 42, 67) (32, 45, 76) (6, 22, 46) 
SP (24, 54, 81) (13, 34, 56) (29, 36, 48) 
Wl (16, 31, 46) (23, 35, 56) (32, 45, 76) 
Pro (46, 69, 81) (47, 61, 76) (29, 36, 48) 
NA (15, 32, 43) (9, 21, 39) (39, 63, 81) 
Rep (32, 44, 53) (27, 34, 55) (15, 32, 43) 
Pre (13, 45, 72) (21, 56, 78) (36, 67, 85) 
MeC (56, 65, 78) (17, 32, 29) (44, 72, 87) 
Wl (16, 31, 46) (23, 35, 56) (32, 45, 76) 

The tables to obtain ijr , ijv , )( ijvM , *ijD , and ijD are given in 
Appendix B. Table 8 shows the distances from the ideal solution for each 
AH and the normalized values which makes the results’ interpretation 
easier.

Table 8. Distances from the Ideal Solution 

 Si* Si- Ci Normalized Ci

AH-1 1.184733 1.791474 0.601932 0.39 
AH-2 1.644703 1.320108 0.445259 0.29 
AH-3 1.508918 1.440309 0.488368 0.32 

The results in Table 8 indicate that AH-1 achieves the highest 
performance, whereas AH-2 has the lowest. 

To analyze the attitude of the alternatives under different main attribute 
weights, a sensitivity analysis is made. The results of sensitivity analyses 
are given in Table 9 and Figure 5. In Table 9, the states where one of the 
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main attributes has the maximum weight, whereas the other that has less 
values given in Table 2 are examined. For each state, Normalized Relative 
Closeness to Ideals (Ci) is computed. Figures 5 and 6 illustrate the 
graphical representation of these results.

Table 9. The Results of Sensitivity Analyses 

Normalized Ci 
EA TA States AH-1 AH-2 AH-3 
0.8, 1, 1 0.8, 1, 1 1 0.39 0.28 0.32 
0.8, 1, 1 0.6, 0.8, 1 2 0.39 0.29 0.31 
0.8, 1, 1 0.3, 0.5, 0.7 3 0.38 0.30 0.30 
0.8, 1, 1 0, 0.2, 0.4 4 0.38 0.32 0.29 
0.8, 1, 1 0, 0, 0.2 5 0.35 0.44 0.19 
EA TA States AH-1 AH-2 AH-3 
0.8, 1, 1 0.8, 1, 1 1 0.39 0.28 0.32 
0.6, 0.8, 1 0.8, 1, 1 2 0.39 0.26 0.33 
0.3, 0.5, 0.7 0.8, 1, 1 3 0.40 0.26 0.33 
0, 0.2, 0.4 0.8, 1, 1 4 0.40 0.23 0.35 
0, 0, 0.2 0.8, 1, 1 5 0.42 0.14 0.42 

Figure 5. Sensitivity analysis for the case where EA has the highest weight 

As shown in Figure 5, the importance of technological attributes 
decreases, whereas the score of AH-2 increases dramatically and the score 
of AH-1 decreases. This means AH-2 has superior economical properties. 
Figure 6 shows that AH-1 gets more superior to the others as importance 
of economical attributes decreases. This is because AH-1 has better scores 
than the others on the technical attributes.
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Figure 6. Sensitivity analysis for the case where TA has the highest weight 

5. CONCLUSION

In this chapter, a model for evaluating and selecting among industrial 
robotic systems has been presented. The model is based on the premise 
that industrial robotic systems selection should be viewed as a product of 
economical and technical attributes. Economical attributes consist of 
investment costs and operating costs, whereas technical attributes consist 
of memory capacity, speed, and number of axes, precision, programmability, 
repeatability, and workload. In addition, purchasing costs, installation costs, 
and special tooling are the sub-attributes of investment costs and 
maintenance. Labor and training costs are the sub-attributes of operating 
costs. Industrial robotic system selection is a complex problem in which 
many qualitative attributes must be considered. These kinds of attributes 
make the evaluation process hard and vague. The hierarchical structure is a 
good approach to describe a complicated system. The judgments from 
experts are always vague rather than crisp. It is suitable and flexible to 
express the judgments of experts in fuzzy numbers instead of in crisp 
numbers. Fuzzy AHP has the capability of taking pair-wise comparisons of 
these attributes into account with a hierarchical structure. Many fuzzy 
TOPSIS methods have been proposed without considering these pair-wise 
comparisons between attributes and a hierarchical structure by today. To 
be able to benefit from the superiority of a hierarchical structure, a 
hierarchical fuzzy TOPSIS method has been developed. It is clear that the 
selection of an industrial robotic system is a difficult and sensitive issue 
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that has quantitative and qualitative aspects, complexity, and imprecision. 
However, the developed fuzzy method seems to be usable for the solution 
of this problem. For additional research, a hierarchical fuzzy TOPSIS 
method that can take pair-wise comparisons between main and sub-
attributes into account in a different manner from AHP may be developed. 
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APPENDIX A: QUESTIONNAIRE FOR FUZZY TOPSIS 
With respect to the overall goal “Selection of the best industrial robotic systems” 

Q1. What degree of importance do you assign to the main attribute Economic 
Attributes?

Q2. What degree of importance do you assign to the main attribute Technical 
Attributes?

With respect to: 
Overall goal Importance of one attribute with respect to overall goal 
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Figure A.1. Questionnaire form used to facilitate importance of main attributes with respect 
to the overall goal

With respect to the main attribute Economic Attributes 
Q3. What degree of importance do you assign to the sub-attribute Investment Costs 

(InvC)?
Q4. What degree of importance do you assign to the sub-attribute Operating Costs 

(OC)?

With respect to: 
Economic Attributes 
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Figure A. 2. Questionnaire forms used to facilitate importance of sub-attributes with respect 
to main attributes

With respect to the sub-attribute Investment Costs (InvC) 
Q5. What degree of importance do you assign to the sub-attribute Special Tooling (ST)? 
Q6. What degree of importance do you assign to the sub-attribute Installation costs 

(InsC)?
Q7. What degree of importance do you assign to the sub-attribute Purchase cost (PC)? 
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With respect to: 
Service 

Importance of one sub-attribute with respect to main attribute Service 
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Figure A.3. Questionnaire forms used to facilitate importance of sub-sub-attributes with 
respect to sub-attributes

Scoring of Alternatives with respect to sub-sub-attributes 
Q8. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Installation costs (InsC)? 
Q9. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Special Tooling (ST)? 
Q10. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Purchase cost (PC)? 
Q11. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Maintenance Costs (MaC)? 
Q12. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Labor Costs (LC)? 
Q13. What scores do you assign to each Industrial Robotic System with respect to the 

sub-sub-attribute Training Costs (TC)? 
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Figure A.4. Questionnaire form used to facilitate scores of alternatives with respect to sub-
and sub-sub-attributes 
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APPENDIX B
Table B.1. ijr

AH-1 AH-2 AH-3 

PC (0.191, 0.5, 1.244) (0.506, 1, 1.978) (0.236, 0.359, 1.022) 

InsC (0.506, 1, 1.978) (0.36, 0.577, 1.689) (0.146, 0.333, 1.267) 

STF (0.371, 0.717, 1.171) (0.613, 0.83, 1.195) (0.661, 1, 1.512) 

Mac (0.161, 0.396, 0.878) (0.468, 0.736, 1.268) (0.661, 1, 1.512) 

LC (0.54, 1, 1.853) (0.397, 0.647, 1.088) (0.143, 0.333, 0.971) 

TC (0.171, 0.933, 2.094) (0.421, 1, 2.375) (0.079, 0.489, 1.438) 

SP (0.296, 1, 2.793) (0.16, 0.63, 1.931) (0.358, 0.667, 1.655) 

Wl (0.211, 0.689, 1.438) (0.303, 0.778, 1.75) (0.421, 1, 2.375) 

Pro (0.568, 1, 1.723) (0.58, 0.884, 1.617) (0.358, 0.522, 1.021) 

NA (0.185, 0.508, 1.103) (0.111, 0.333, 1) (0.481, 1, 2.077) 

Rep (0.582, 1, 1.656) (0.491, 0.773, 1.719) (0.273, 0.727, 1.344) 

Pre (0.153, 0.672, 2) (0.247, 0.836, 2.167) (0.424, 1, 2.361) 

MeC (0.644, 0.903, 1.393) (0.195, 0.444, 0.518) (0.506, 1, 1.554) 

Table B.2. ijv

AH-1 AH-2 AH-3 
PC (0.015, 0.223, 0.857) (0.039, 0.447, 1.362) (0.018, 0.16, 0.704) 

InsC (0.033, 0.304, 1.159) (0.024, 0.175, 0.989) (0.01, 0.101, 0.742) 

STF (0.019, 0.172, 0.64) (0.031, 0.2, 0.653) (0.034, 0.241, 0.826) 

Mac (0.018, 0.156, 0.57) (0.051, 0.291, 0.824) (0.072, 0.395, 0.982) 

LC (0.057, 0.446, 1.302) (0.042, 0.288, 0.764) (0.015, 0.149, 0.682) 

TC (0.006, 0.265, 1.123) (0.015, 0.284, 1.274) (0.003, 0.139, 0.771) 

SP (0.051, 0.54, 1.946) (0.028, 0.34, 1.345) (0.062, 0.36, 1.153) 

Wl (0.042, 0.382, 1.063) (0.061, 0.431, 1.294) (0.085, 0.554, 1.757) 

Pro (0.082, 0.376, 1.097) (0.084, 0.333, 1.029) (0.052, 0.196, 0.65) 

NA (0.009, 0.148, 0.531) (0.006, 0.097, 0.482) (0.025, 0.291, 1) 

Rep (0.039, 0.398, 1.011) (0.033, 0.307, 1.049) (0.018, 0.289, 0.82) 

Pre (0.017, 0.372, 1.479) (0.028, 0.463, 1.602) (0.047, 0.554, 1.746) 

MeC (0.084, 0.436, 1.042) (0.026, 0.215, 0.387) (0.066, 0.483, 1.162) 
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Table B.3. )( ijvM

AH-1 AH-2 AH-3 

PC 0.365 0.616 0.294 

InsC 0.498 0.396 0.284 

STF 0.276 0.294 0.366 

Mac 0.248 0.388 0.483 

LC 0.601 0.364 0.281 

TC 0.464 0.524 0.304 

SP 0.845 0.570 0.524 

Wl 0.495 0.595 0.798 

Pro 0.518 0.481 0.299 

NA 0.229 0.194 0.438 

Rep 0.482 0.463 0.375 

Pre 0.622 0.697 0.782 

MeC 0.5208158 0.209 0.570 

Table B.4. *ijD

AH-1 AH-2 AH-3 

PC 0.214 0.000 0.300 

InsC 0.000 0.118 0.222 

STF 0.101 0.061 0.000 

Mac 0.323 0.121 0.000 

LC 0.000 0.181 0.322 

TC 0.0167 0.000 0.160 

SP 0.000 0.133 0.140 

Wl 0.149 0.092 0.000 

Pro 0.000 0.044 0.240 

NA 0.220 0.298 0.000 

Rep 0.000 0.082 0.121 

Pre 0.112 0.055 0.000 

MeC 0.045 0.455 0.000 
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FUZZY MULTI-ATTRIBUTE SCORING 
METHODS WITH APPLICATIONS

Cengiz Kahraman1, Semra Birgün2, and Vedat Zeki Yenen2

1Istanbul Technical University, Department of Industrial Engineering, Maçka, stanbul
2Istanbul Commerce University, Department of Industrial Engineering, Üsküdar, stanbul

Abstract:  The multi-attribute scoring methods are widely used while comparing the 
alternatives because of their simplicity. In the case of incomplete information 
and vagueness, these multi-attribute scoring methods have been extended to 
obtain the fuzzy versions.  In this chapter, fuzzy simple additive weighting 
methods and fuzzy multiplicative weighting methods are explained with 
numerical examples. 

Key words: Scoring, simple additive weighting, multiplicative weighting, multi-attribute 

1. INTRODUCTION

An index formulation of a system when the decision maker has a thorough 
understanding of the functional relationships among its components, or 
when he or she possesses sufficient data to regress a statistical relationship, 
can be used in modeling a multi-attribute problem. Since it often cannot be 
expected that any of these conditions will be met easily in a normal 
decision-making environment, this chapter presents two scoring techniques: 
the Simple Additive Weighting method, which obtains an index by adding 
contributions from each attribute, and the Weighted Product method, 
which obtains the index by multiplying contributions from attributes. 

1.1 Crisp Simple Additive Weighting (CSAW) Method 

The SAW method is probably the best known and most widely used 
multiple attribute decision-making (MADM) method. A score in the SAW 
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method is obtained by adding contributions from each attribute. Since two 
items with different measurement units cannot be added, a common 
numerical scaling system such as normalization is required to permit 
addition among attribute values. The total score for each alternative then can 
be computed by multiplying the comparable rating for each attribute by the 
importance weight assigned to the attribute and then summing these 
products over all attributes (Yoo and Hwang, 1995). 

Formally the value of an alternative in the SAW method can be 
expressed as 

1

, 1,2,...,
n

i i j j ij
j

V A V w v x i m  (1) 

where V(Ai) is the value function of alternative Ai and wj and vj (.) are 
weight and value functions of attribute Xj, respectively. Or the 
performance of alternative iA  is calculated by 

n

1j
j

n

1j
ijj

i

w

rw
AV  (2) 

where ijr  is the rating of the ith alternative under the jth attribute with a 
numerically comparable scale. 

Through the normalization process, each incommensurable attribute 
becomes a pseudo-value function, which allows direct addition among 
attributes. The value of alternative Ai can be rewritten as 

n

j
ijji mirwV

1
,...,2,1,  (3) 

where rij is the comparable scale of xij, which can be obtained by a 
normalization process. The underlying assumption of the SAW method is 
that attributes are preferentially independent. Less formally, this means 
that the contribution of an individual attribute to the total (multiattribute) 
score is independent of other attribute values. Therefore, the decision 
maker’s preference (or feelings) regarding the value of one attribute are 
not influenced in any way by the values of the other attributes (Fishburn, 
1976). Fortunately, studies (Edwards, 1977; Farmer, 1987) show that the 
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SAW method yields extremely close approximations to “true” value 
functions even when independence among attributes does not exactly hold. 

In addition to the preference independence assumption, the SAW has a 
required characteristic for weights. That is, the SAW presumes that 
weights are proportional to the relative value of a unit change in each 
attribute’s value function (Hobbs, 1980). For instance, let us consider a 
value function with two attributes: V w1v1 + w2v2. By setting the amount 
of V constant, we can derive the relationship of w1/w2 v2/ v1. This 
relationship indicates that if w1  0.33 and w2  0.66, the decision maker 
must be indifferent to the trade between two units of v1 and one unit of v2.

1.2 Crisp Weighted Product (CWP) Method 

In the SAW method, addition among attribute values was allowed only 
after the different measurement units were transformed into a dimen-
sionless scale by a normalization process. However, this transformation is 
not necessary if attributes are connected by multiplication. When we use 
multiplication among attribute values, the weights become exponents 
associated with each attribute value, a positive power for benefit attributes, 
and a negative power for cost attributes. Formally, the value of alternative 
Ai is given by (Yoo and Hwang, 1995) 

1
, 1, 2 , ...,j

n
w

i i ij
j

V A V x i m  (4) 

Because of the exponent property, this method requires that all ratings 
be greater than 1. For instance, when an attribute has fractional ratings, all 
ratings in that attribute are multiplied by 10m to meet this requirement. 
Alternative values obtained by the multiplicative method do not have a 
numerical upper bound. The decision maker may also not find any true 
meaning in those values. Hence, it may be convenient to compare each 
alternative value with the standard value. If we use the ideal alternative A*

for the comparison purpose, the ratio between an alternative and the ideal 
alternative is given by 

1
*

*

1

, 1, 2 , ...,

j

j

n
w
ij

ji
i n w

j
j

x
V A

R i m
V A x

 (5) 
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where xi
* is the most favorable value for the jth attribute. It is clear that  

0 Ri  1 and the preference of Ai increases when Ri approaches. 

2. FUZZY SETS AND FUZZY NUMBERS 

To deal with vagueness of human thought, Zadeh [1] first introduced the 
fuzzy set theory, which was based on the rationality of uncertainty due to 
imprecision or vagueness. A major contribution of fuzzy set theory is its 
capability of representing vague knowledge. The theory also allows 
mathematical operators and programming to apply to the fuzzy domain. 

A fuzzy number is a normal and convex fuzzy set with membership 
function )x(A , which both satisfies normality: )x(A =1, for at least one 
x R , and convexity:

)2x(A)1x(A)x(A

where ]1,0[)x(A  and ]2x,1x[x . “ ” stands for the minimization 
operator.

The definition of a triangular fuzzy number has been given in Chapter 4. 
A flat fuzzy number (FFN) is shown in Figure 1. The membership function 
of a FFN, ~V is defined by 

)m),V~y(f/m,m/)V~y(f,m()V~x( 423211  (6) 

where 4321 mmmm , )V~y(f1  is a continuous monotone increasing 
function of y for 1y0  with 11 m)V~0(f and 21 m)V~1(f and

)V~y(f2 is a continuous monotone decreasing function of y for 1y0
with 32 m)V~1(f and 42 m)V~0(f . )V~y(  is denoted simply as 

)m/m,m/m( 4321 .

Figure 1. A flat fuzzy number, V

 y

1.0

0.0 x

~
( )1 Vyf ~

( )2 Vyf

m1 m2 m3 m4
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3. FUZZY SCORING METHODS 

Zhang et al. (2001) applied fuzzy logic to compute proximity between an 
intellectual property query and a specification, which are tree-structured 
models constructed from their respective Extensible Markup Language 
representation. Bector et al. (2002) derived a formula for fuzzy scoring 
model assuming that both the weights and the ratings were fuzzy and 
demonstrated the use of the main formula with a numerical example. Lo 
(2002) proposed an operating mechanism based on fuzzy theory to 
integrate fuzzy composite scores of multiple assessments and applied 
simulation to test this fuzzy scoring frame. Mitra et al. (2002) described a 
fuzzy knowledge-based network based on the linguistic rules using the 
principle of a fuzzy decision tree. They demonstrated the effectiveness of 
the system on three sets of real-life data. 

Kwong et al. (2002) introduced a scoring method combined with a 
fuzzy expert system in supplier assessment and evaluated their system for 
the supplier assessment of electrical appliance products. Belacel and 
Boulassel (2004) proposed a new multi-criteria fuzzy classification 
procedure called PROCFTN, and they also tested this method with an 
experimental set of 250 cases of astrocytic tumors. Ohdar and Kumar 
(2004) proposed a fuzzy system to evaluate the suppliers’ performance. 
They developed a Genetic Algorithm-based methodology to evolve the 
optimal set of a fuzzy rule-based system and used a fuzzy inference system 
of the MATLAB fuzzy logic toolbox to assess the suppliers’ performance. 
Zhang (2004) presented the necessity to use fuzzy data for a handover 
decision in heterogonous networks and provided new handover criteria 
along with a new handover decision strategy. Graf (2005) proposed a game 
scoring system with the score submission and ranking component, and 
when compared with statistical approach showed that the fuzzy logic 
approach was more adequate to build into scorings. 

3.1 Fuzzy Simple Additive Weighting Methods
with Numerical Examples 

The crisp simple additive weighting method explained above can be 
transformed to the fuzzy case as follows: 

When both jw and ijr  are fuzzy sets 

j,y,yw jjwjj  (7) 
and
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j,i,x,xr ijijrijij  (8) 

where jy and ijx  take their numbers on the real line  and jjw y  and 
ijijr x  take values in [0, 1]. The utility of alternative iA ,

iiuii u,uu , can be calculated as follows: 

The variable iu  takes its value on the real line  and can be obtained 
using

n

1j
j

ij
n

1j
j

i

y

xy
u  (9) 

The membership function iiu u  can be calculated using 

ijijr
n

1j
jjw

n

1j
iiu xyu sup  (10) 

where in1in1 x,...,x,y,...,y
The membership function iiu u  is not directly obtainable when 

jjw y  and ijijr x  are piecewise continuously differentiable functions. 
To resolve this difficulty and preserve the simplicity of the simple additive 
weighting method, several approaches have been proposed (Chen et al., 
1992). Some of them are explained in the following discussion. The first 
four approaches use the cut  to approximate the iiu u . The fifth one, 
Bonissone’s approach, assumes that all piecewise continuously 
differentiable fuzzy numbers can be approximated by L-R-type trapezoidal 
numbers.  

3.1.1 Baas and Kwakernaak’s Approach 

It is assumed that jjw y  and ijijr x  are normalized membership 
functions. The approximate fuzzy utility iU for alternative iA is determined 
using the following steps: 

Step 1. Set an 0 level for iiu u .
Step 2. Identify the yj and xij values that satisfy 
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j,i,xy 0ijijrjjw  (11) 

Step 3. There are many iu values such that 0iiu u and the extreme 
ones, miniu and maxiu , must be determined.  Given a set of real numbers 

in1in1 x̂,,x̂,ŷ,,ŷ  such that ijr x
i

ˆ  and j,i,ux̂ŷ iijjjw ,
where

ijijirijir dxxdx  (12) 

and

jjjwjjw dyydy  (13) 

have the same sign. The resulting iu will be either maxiu or miniu .

A Numerical Example 

Assume that we have a decision matrix as follows. 

2X1X

2A
1A

goodgood
fairexcellent

where fairexcellent,1211 r,r  and goodgood,2221 r,r . Let the weight 
set be importantveryimportant,21 w,w . Figure 2 represents these 
linguistic terms. 

Figure 2. Fuzzy representation of linguistic terms 

r12 r21
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Step 1. Let’s set 80.00 .

2122211211 ŷ,ŷ,x̂,x̂,x̂,x̂  values such that 
ŷŷx̂x̂ 22w11w2121r1212r

Table 1. cut Values While 80.00

12x̂ 11x̂ 21x̂ 22x̂ 1ŷ 2ŷ
0.62 0.82 0.72 0.72 0.82 0.92 
0.58 0.78 0.68 0.68 0.78 0.88 

4 = 16 possible combinations of 
211211 ŷ,ŷ,x̂,x̂ and 212221 ŷ,ŷ,x̂,x̂ . Using Eq. (9) on all ijx  and 

jy combinations, we obtain 16 1u values.  The 1u  values are given in 
Table 2.

From Table 2, 0.71647111U u  = 0.80 and 0.67176511U u  = 0.80. To 
calculate u2 values for 0

following Table 3 is obtained:

Table 2. Possible Combinations of xij and yj and Their Corresponding u1 Values 

x11 x12 y1 y2 u1

0.82 0.62 0.82 0.92 0.714253  
0.82 0.62 0.82 0.88 0.716471 MAX. 
0.82 0.62 0.78 0.92 0.711765  
0.82 0.62 0.78 0.88 0.713976  
0.82 0.58 0.82 0.92 0.693103  
0.82 0.58 0.82 0.88 0.695765  
0.82 0.58 0.78 0.92 0.690118  
0.82 0.58 0.78 0.88 0.692771  
0.78 0.62 0.82 0.92 0.695402  
0.78 0.62 0.82 0.88 0.697176  
0.78 0.62 0.78 0.92 0.693412  
0.78 0.62 0.78 0.88 0.695181  
0.78 0.58 0.82 0.92 0.674253  
0.78 0.58 0.82 0.88 0.676471  
0.78 0.58 0.78 0.92 0.671765 MIN. 
0.78 0.58 0.78 0.88 0.673976  

0.80 , the similar operations are made and the 

Let’s identify Step 2. x̂1111r

0.80 . The values providing this

Step 3. There are a total of 2

equality are given in the Table 1. 
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Table 3. Possible Combinations of xij and yj and Their Corresponding u2 Values 

x21 x22 y1 y2 u2

0.72 0.72 0.82 0.92 0.720000 MAX. 
0.72 0.72 0.82 0.88 0.720000 MAX. 
0.72 0.72 0.78 0.92 0.720000 MAX. 
0.72 0.72 0.78 0.88 0.720000 MAX. 
0.72 0.68 0.82 0.92 0.698851  
0.72 0.68 0.82 0.88 0.699294  
0.72 0.68 0.78 0.92 0.698353  
0.72 0.68 0.78 0.88 0.698795  
0.68 0.72 0.82 0.92 0.701149  
0.68 0.72 0.82 0.88 0.700706  
0.68 0.72 0.78 0.92 0.701647  
0.68 0.72 0.78 0.88 0.701205  
0.68 0.68 0.82 0.92 0.680000 MIN. 
0.68 0.68 0.82 0.88 0.680000 MIN. 
0.68 0.68 0.78 0.92 0.680000 MIN. 
0.68 0.68 0.78 0.88 0.680000 MIN. 

For 0 0.0; 0.50; and 1.00

Table 4. cut Values While 0 0 .00

12x̂ 11x̂ 21x̂ 22x̂ 1ŷ 2ŷ
0.70 0.50 0.60 0.60 0.70 0.80 
0.90 0.70 0.80 0.80 0.90 1.00 

Table  5. cut Values While 0 0.50

12x̂ 11x̂ 21x̂ 22x̂ 1ŷ 2ŷ
0.75 0.55 0.65 0.65 0.75 0.85 
0.85 0.65 0.75 0.75 0.85 0.95 

Table 6. cut Values While 0 1.00

12x̂ 11x̂ 21x̂ 22x̂ 1ŷ 2ŷ
0.80 0.60 0.70 0.70 0.80 0.90 
0.80 0.60 0.70 0.70 0.80 0.90 

The final utility results are found for u1 as follows: 

Table 7. The Utility Values of u1

011u u  0 0.50 0.80 011u u
u1max. 0.805882 0.744444 0.716471 0.694118 
u1min                                   0.582353 0.638235 0.671765 0.694118 

values, Tables 4–6 is obtained. 
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The final utility results are found for u2 as follows: 

Table 8. The Utility Values of u2

011u u  0 0.50 0.80 011u u
u1max. 0.80 0.75 0.72 0.70 
u1min                                   0.60 0.65 0.68 0.70 

The results in Tables 7 and 8 can be represented in Figure 3: 

Figure 3. The alternatives’ fuzzy utilities using Baas and Kwakernaak’s approach (1977) 

The ranking of u1 and u2 can be made by using a proper ranking 
method.  Here, it is clear that 12 uu .

3.1.2 Kwakernaak’s Approach (1979) 

This approach is a modification of Baas and Kwakernaak’s (1977) 
approach. This approach proposes an improved algorithm to find the 
maximum and minimum ui values instead of selecting them among all the 
possible values. For more details, see Chen et al. (1992). 

3.1.3 Dubois and Prade’s Approach (1982) 

Dubois and Prade (1982) proposed a more efficient search procedure to 
obtain ui values. This approach assumes that all fuzzy weights wj and fuzzy
rij are normalized fuzzy numbers. The –level sets are used to derive fuzzy 
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utilities based on the classic SAW method. The steps of this approach are 
given in the following: 

Step 1. Set an  level and determine – level sets for jw  and ijr  to be 

jy,yw *jjj  (14) 

j,ix,xr *ijijij  (15) 

Step 2. Compute the normalized fuzzy weights, j,Pj . When the  
–level sets of jw  are known, n – level sets of the normalized fuzzy 

weights jP , j , can be obtained: 

jk
k*j*j*j yyyP  (16) 

and

jk

*kjjj yyyP  (17) 

Let jp,pq *jjj . Then 1q
n

1j
j .

Step 3. For alternative ,iA the rating ijr  may be represented by an –
level set as in Eq. (15). To order ijx  and *

ijx , j as

n21 m...mm  (18) 

in which ijj1 xminm  and ijj
n xmaxm  and 

*
n

*
2

*
1 m...mm  (19) 

in which *
ij

j

*
1 xminm  and *ij

j
*n xmaxm .

Step 4. The smallest upper and the largest lower bound of ui are 
computed as 
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n

1dj
jjd

n

1dj
j

1d

1j

*j
1d

1j
j*jmini mpmpp1mpu  (20) 

n

1ej

*j*j*e
n

1ej

*j
1e

1j
j

1e

1j

*jjmaxi mpmpp1mpu  (21) 

The unknown parameters in Eqs. (20) and (21) are d and e. The 
parameter d is determined when the following equality is satisfied: 

1
* *

1 1

1 ,
d n

j j d d d
j j d

p p z p p  (22) 

Similarly, the parameter e is determined when the following equality is 
satisfied:

1
* *

1 1

1 ,
e n

j j e e e
j j e

p p z p p  (23) 

Step 5. The fuzzy utility iu  can be represented by the interval 
maximini u,u  at any  level. The decision maker can set several levels 

and repeat the algorithm several times to derive an approximated fuzzy 
utility iu .

3.1.4 Cheng and McInnis’s (1980) Approach 

Cheng and McInnis (1980) pointed out that continuous membership 
functions of ijr  and jw  are the cause of the complexity of obtaining fuzzy 
utilities. To avoid such difficulty, they suggested first to convert the 
continuous membership function to discrete ones and then compute the 
fuzzy utilities using the following algorithm: 

Step 1. The continuous membership function is converted to a discrete 
one. This is done by having the decision maker specify the number of 
levels that he/she wants to use. The width of intervals is determined 
according to the decision maker’s preference. The decision maker may 
specify different numbers of  levels and widths of intervals for different 
membership functions in a MCDM problem.
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Step 2. For each level, the steps 3 and 4 are performed. The first 
level to be considered is the largest one among all the jw ’s and ijr ’s.

Step 3. Given 0 , the level set for each ijr  and jw  can be obtained as:

jixxr ijijij ,,, *

0
 (24) 

and

jyyw jjj ,, *

0
 (25) 

Step 4. Given the upper and lower bounds of ijr  and jw at the 0

the upper and lower bounds of the fuzzy utility at 0 , maximini0i u,uu ,
can be computed by following the sub-steps: 

Step 4.1. Compute maxiu  using the upper bound of ijr , j , i.e., *
ijx :

j
j

j
ijj

i y

xy
u  (26) 

To maximize iu , it must be decided whether jy  or *
jy  should be used. 

Step 4.2. After finding ,u maxi miniu can be easily identified. First, ijx is
used for all .rij  Second, for those jw  whose upper bounds were used for 
deriving maxiu , their lower bounds in computing miniu will be used and vice 
versa.

Steps 3 and 4 are used for the next largest level until all  levels 
are exhausted. 

3.1.5 Bonissone’s (1982) Approach 

Bonissone (1982) assume that fuzzy/crisp information in decision 
problems can be approximated by a parameter-based representation. It is 
called the L-R-type trapezoidal number (see Figure 4). Fuzzy arithmetic 
operations with L-R type trapezoidal numbers are given in the following 
discussion. Let ,,b,aM~  and ,,d,cN~  be positive trapezoidal 
fuzzy numbers: 

,,,~~ dbcaNM  (27) 

,,,~~ cbdaNM  (28) 

–level, 
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Figure 4. L-R-Type trapezoidal fuzzy number, ,,b,aM
~

dbcabdacNM ,,,~~
 (29) 

cc
cb

dd
da

c
b

d
aNM ,,,~~

. (30) 

Using the algebraic operations above, one can easily compute the 
performance of an alternative with respect to the attributes by using: 

n

j
ijji rwu

1

 (31) 

where wj and rij may be crisp or fuzzy numbers represented in the L-R
trapezoidal number format. 

A Numerical Example 

Three alternatives of advanced manufacturing systems, FMS-1, FMS-2, 
and FMS-3, will be evaluated with respect to four attributes: engineering 
effort (X1), flexibility (X2), net present worth (X3), and integration ability 
(X4). The decision matrix is given as 

   X1 X2 X3 X4

  FMS1 fair good fair good 

D = FMS2 fair very good bad good 

  FMS3 very bad very good very good very bad 

a b

1.0

x

M~
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The weight vector is given as 
important very t,unimportan important, lessor  more important,w~ ; where 

very unimportant: (0, 0.2, 0, 0.1); unimportant: (0.3, 0.3, 0.1, 0.1); more or 
less unimportant: (0.4, 0.4, 0.1, 0.1); indifferent: (0.5, 0.5, 0.1, 0.1); more 
or less important: (0.6, 0.6, 0.1, 0.1); important: (0.7, 0.7, 0.1, 0.1); very 
important: (0.8, 0.8, 0.1, 0.2). 

The fuzzy set associated with each linguistic term is as follows: very 
bad: (0, 0.2, 0, 0.1); bad: (0.3, 0.3, 0.1, 0.1); more or less bad: (0.4, 0.4, 
0.1, 0.1); fair: (0.5, 0.5, 0.1, 0.1); more or less good: (0.6, 0.6, 0.1, 0.1); 
good: (0.7, 0.7, 0.1, 0.1); very good: (0.8, 0.8, 0.1, 0.2). 

Then, the fuzzy utilities for the alternatives are computed as follows: 
4

1 1
1

(0.7, 0.7, 0.1,0. 1) 0.5,0.5,0.1,0.1 0.6,0.6,0.1,0.1

0.7,0.7,0.1,0.1 0.3,0.3,0.1,0.1 0.5,0.5,0.1,0.1

0.8,0.8,0.1,0.2 0.7,0.7,0.1,0.1

1.48, 1.48, 0.44, 0.52

j j
j

U w x

4

2 2
1

(0.7, 0.7, 0.1, 0.1) 0.5,0.5,0.1,0.1 0.6,0.6,0.1,0.1

0.8,0.8,0.1,0.2 0.3,0.3,0.1,0.1 0.3,0.3,0.1,0.1

0.8,0.8,0.1,0.2 0.7,0.7,0.1,0.1

1.48, 1.48, 0.43, 0.66

j j
j

U w x

4

3 3
1

(0.7, 0.7, 0.1, 0.1) 0,0.2,0,0.1 0.6,0.6,0.1,0.1

0.8,0.8,0.1,0.2 0.3,0.3,0.1,0.1 0.8,0.8,0.1,0.2

0.8,0.8,0.1,0.2 0,0.2,0,0.1

0.72, 1.02, 0.25, 0.62

j j
j

U w x

The obtained fuzzy utilities are illustrated in Figure 5. 
The ranking of 321 U,U,U  and can be made by using any ranking 

method. In this example, it is clear that 2U  is the largest fuzzy number. 
Thus, FMS2 is selected. 
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Figure 5. The fuzzy utilities of the example problem 

3.1.6 Bector et al.’s Approach (2002) 

Bector et al.’s approach (2002) is a direct treatment with fuzzy numbers to 
the crisp case. In this approach, each wi is represented by a triangular fuzzy 
number given as 3i2i1ii w,w,ww , i = 1, 2, . . . , m, whose – cut is 
given by 

233121 , iiiiiii wwwwwww  (32) 

and each vij is represented by a triangular fuzzy number given as 
3ij2ij1ijij v,v,vv

ij

m

i vwV
1

 (33) 

m

i
iji

m

i
iji

m

i
ijii vwvwvwV

1
33

1
22

1
11 ,, . (34) 

x

0.47 0.72 1.02 1.64

U3

1.48 41.250.1

U2

2.00

U3

x

, j=1,2,…, n, whose – cut is given by
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A Numerical Example (Bector et al., 2002) 

Discount Saving Bonds (DSB). Bector et al. (2002) assumed that the fuzzy 
ratings and the fuzzy weights for the DSB are given in the form of TFNs in 

Table 9. Computation of Fuzzy Score for Discount Saving Bonds (DSB) 

 Score =Weight

Terms & 
availability

4,2 6,4 22 1024,68

Quality of the 
bonds

7,5 9,7 22 1663,1235

Backed by support 8,6 10,8 22 1880,1448

Liquidity 7,5 7,5 22 1449,1025

Income frequency 
from the bonds

8,6 6,4 22 1448,1024

Trade
denominations

3,1 8,6 22 1124,76

Taxation 5,3 6,4 22 1130,712

Other
characteristics

4,2 6,4 22 1024,68

Recommended for 
investment

5,3 5,3 22 1025,69

Total fuzzy score ( ) 22 9114367,978175

Shown in Table 9, the total fuzzy score ( ) of a DSB is a parabolic 
fuzzy number. This parabolic fuzzy number can be approximately 

Criterion Weight  Rating 
Rating

Table 9 along with their – cuts.

respectively: (175, 262, 367). 
represented with a triangular fuzzy number by taking 0,1, and 0,
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3.1.7 Vanegas and Labib’s (2001) Approach 

Vanegas and Labib (2001) propose a novel method of operating on fuzzy 
numbers to obtain a fuzzy weighted average of desirability levels during 
engineering design evaluation. The method produces overall desirability 
levels less imprecise and more realistic than those of the conventional 
fuzzy weighted average (FWA).

The
through the new FWA for n desirability levels represented by the fuzzy 
numbers ,D,,D,D n21  with weights (fuzzy numbers) n21 W,,W,W , is 
given by 

ba DDD ,  (35) 

where

n

i
i

n

i
iai

a

w

wD
D

1

1min  (36) 

and

n

i
i

n

i
ibi

b

w

wD
D

1

1max  (37) 

where biaii W,Ww , for all n,...,2,1i and all 1,0 .
aD and bD represent the lower and upper limits, respectively, of the 

– cut iD ; and aiD and biD  represent the lower and upper limits, 
respectively, of the – cut iD ; and aiW  and biW  represent the lower 
and upper limits, respectively, of the – cut iW . The “min” and “max” 
operators take the minimum and maximum values, respectively, that can 
be calculated through the combination of the iw  in all the possible ways. 
The set of iw  that is used in the numerator has to be the same as the one in 
the denominator.

– cut of the overall desirability of an alternative D, calculated 
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3.2 Fuzzy Multiplicative Weighting Method 

In the fuzzy case, we can use the fuzzy numbers instead of the crisp ones 
in Eq. (4). Thus, we have 

n

j

n

j

n

j

uiw

uij
miw

mij
liw

liji xxxAV
1 1 1

,,~
 (38) 

where kiw
kijx  is the score or value of the kth parameter (k = l, m, and u) of 

the criterion j of the alternative i, weighted by the fuzzy weight of the same 
criterion. The ranking of AV~ s can be made by using any ranking 
method.

A Numerical Example 

Two FMS alternatives will be evaluated using the criteria engineering
effort (X1), flexibility (X2), net present worth (X3), and integration ability
(X4). The criteria weights and the alternative scores with respect to each 
alternative are given in Table 10. The results of the problem are illustrated 
in Figure 6. It is clearly seen that FMS-1 should be selected. 

Table 10. Data for the Numerical Example 

Criteria Criteria Weights FMS-1 FMS-2 
engineering effort (X1) (0.15, 0.18, 0.24) (3, 4, 6) (5, 6, 7) 
flexibility (X2) (0.32, 0.38, 0.46) (6, 8, 10) (4, 4, 5) 
net present worth (X3) (0.30, 0.32, 0.38) (28, 32, 44) (38, 45, 52) 
integration ability (X4) (0.10, 0.12, 0.18) (6, 8, 9) (3, 4, 5) 

0.15 0.32 0.30 0.10 0.18 0.38 0.32 0.12

0.24 0.46 0.38 0.18

4 4 41 1 1, ,1 1 111 1 1

3 6 28 6 , 4 8 32 8 ,

6 10 44 9

6.8005, 11.0043 , 27.7352

w w wl m uV FMS x x xm j u jl jj j j
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0.15 0.32 0.30 0.10 0.18 0.38 0.32 0.12

0.24 0.46 0.38 0.18

4 4 42 2 2, ,2 2 221 1 1

5 4 38 3 , 6 4 45 4 ,

7 5 52 5

6.5940, 9.3352, 20.0560

w w wl m uV FMS x x xm j u jl jj j j

What would your selection be if you had used the fuzzy SAW method 
(Bector et al., 2002) instead of fuzzy multiplicative weighting method? If 
you had, you would obtain the following results which indicate that FMS2
should be selected this time: 

Figure 6. Fuzzy multiplicative scores of FMS alternatives 

38.24,96.14,37.11V~ 1FMS

64.24,48.17,73.13V~ 2FMS

The reason for this change in the ranking is that the multiplicative 
model gives a smaller value with wx , 1w0 , than the result with 

1w0,wx .

x

x
V
~

6.8

1.0

11.0 27.76.6 9.3 20.0

A2

A1
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4. CONCLUSIONS

According to the data type of the alternative’s performance, fuzzy multi-
attribute decision-making methods can be categorized into three groups: 
(1) data are all fuzzy, (2) all crisp, and (3) either crisp or fuzzy. The 
methods in the third group are either too cumbersome to use or only 
suitable for the purpose of screening out unsuitable alternatives. The fuzzy 
MADM methods with data type is all fuzzy require transforming crisp data 
to fuzzy numbers, despite that the data are crisp in nature, which not only 
violates the intention of fuzzy set theory, but also increases the decision 
complexity.

The fuzzy weighted scoring models are widely used in the literature. 
Simple Additive Weighting Method is probably the best known and widely 
used method. The overall score of an alternative is computed as the 
weighted sum of all the attribute values. It is simple and easy to understand. 
Multiplicative weighting methods are superior to SAW methods because 
they do not need the data to be normalized. The data with different units 
can be directly used in multiplicative methods. 

REFERENCES

Baas, S.M., and Kwakernaak, H., 1977, Rating and ranking of multiple aspect alternative 
using fuzzy sets, Automatica, 13: 47 58.

Bector, C.R., Appadoo, S.S., and Chandra, S., 2002, Weighted factors scoring model under 
fuzzy data, Proceeding of the Annual Conference of the Administrative Sciences 
Association of Canada Management Science Division, ed. Kumar, U., 95 105,
Winnipeg, Manitoba. 

Belacel, N., and Boulassel, M.R., 2004, Multicriteria fuzzy classification procedure procftn: 
methodology and medical application, Fuzzy Sets and Systems, 141(2): 203 217.

Bonissone, P.P., 1982, A fuzzy set based linguistic approach: Theory and applications, in 
Approximate Reasoning in Decision Analysis, Gupta, M.M., and Sanchez, E., eds., pp: 
329 339, Elsevier. 

Chang, Y.M., and McInnis, B., 1980, An algorithm for multiple attribute, multiple 
alternative decision problem based on fuzzy sets with application to medical diagnosis, 
IEEE Transactions on System, Man, and Cybernetics, SMC-10: 645 650.

Chen, S-J., Hwang, C-L., and Hwang, F.P., 1992, Fuzzy Multiple Attribute Decision-
Making: Methods And Applications, Springer Verlag, Heidelberg. 

Dubois, D., and Prade, H., 1982, The use of fuzzy numbers in decision analysis, in Fuzzy
Information and Decision Processes, Gupta, M.M., and Sanchez, E., eds., 309 321,
North-Holland, Amsterdam. 



208 C. Kahraman et al.

Farmer, T.A., 1987, Testing the robustness of multi-attribute utility theory in an applied 
setting, Decision Sciences, 18(2): 178–193.

Fishburn, P.C., 1976, Noncompensatory preferences. Synthese, 33: 393–403. 
Graf, A., 2005, Fuzzy logic approach for modelling multiplayer game scoring system, 8th

International Conference on Telecommunications ConTEL 2005, pp: 347 352, Zagreb, 
Croatia.

Hobbs, B.F., 1980, A comparison of weighting methods in power plant siting, Decision
Sciences, 11: 725–737. 

Kwong, C.K., Ip, W.H., and Chan, J.W.K., 2002, Combining scoring method and fuzzy 
expert systems approach to supplier assessment: a case study, Integrated Manufacturing 
Systems, 13(7): 512 519.

Kwakernaak, H., 1979, An algorithm for rating multiple-aspect alternatives using fuzzy 
sets, Automatica, 15: 615 616.

Lo, H.C., 2002, A preliminary study of development of fuzzy composite score for multiple 
assessments, Chinese Journal of Science Education, 10(4): 407 421.

Mitra, S., Konwar, K.M., and Pal, S.K., 2002, Fuzzy Decision Three, Linguistic Rules and 
Fuzzy Knowledge-Based Network: Generation and Evaluation, IEEE Transactions on 
Systems, Man, and Cybernetic Part C: Applications and Reviews, 32(4): 328 339.

Ohdar, R., and Kumar, P.R., 2004, Performance measurement and evaluation of suppliers 
in supply chain: an evolutionary fuzzy-based approach, Journal of Manufacturing 
Technology, Management, 15(8): 723 734.

Vanegas, L.V., and Labib, A.W., 2001, Application of new fuzzy-weighted average 
(NFWA) method to engineering design evaluation, International Journal of Production 
Research, 36(6): 1147 1162.

Yoo, K.P., and Hwang, C-L., 1995, Multiple Attribute Decision-Making: An Introduction,
Sage University Publications, California. 

Zhang, T., Benini, L., and De Micheli, G., 2001, Component selection and matching for ip-
based design, Proceedings of the Design and Test in Europe, March: 40 46.

Zhang, W., 2004, Handover Decision Using Fuzzy MADM in Heterogeneous Networks, 
WCNC 2004, IEEE Communications Society, 653–658. 

Zadeh, L., 1965, Fuzzy sets, Information Control, 8: 338–353.

Edwards, W., 1977, How to use multiattribute utility measurement for social decision 
making, IEEE Transactions on Systems, Man and Cybernetics, SMC-7: 326–340. 



C. Kahraman (ed.), Fuzzy Multi-Criteria Decision Making. 209
© Springer Science + Business Media, LLC 2008 

FUZZY MULTI-ATTRIBUTE DECISION 

Cengiz Kahraman1 and Osman Kulak2

1Istanbul Technical University, Industrial Engineering Department, Macka, Istanbul, Turkey
2Pamukkale University, Industrial Engineering Department, Denizli, Turkey 

Abstract:  Axiomatic design (AD) provides a framework to describe design objects and 
a set of axioms to evaluate relations between intended functions and the 
means by which they are achieved. Since AD has the characteristics of 
multi-attribute evaluation, it is proposed for multi-attribute comparison of 
some alternatives. The comparison of these alternatives is made for the 
cases of both complete and incomplete information. The crisp AD approach 
for complete information and the fuzzy AD approach for incomplete 
information are developed. In this chapter, the numeric applications of both 
crisp and fuzzy AD approaches for the comparison of flexible-
manufacturing systems are  given.

Key words: Axiomatic design, multi-attribute, information axiom, flexible manufacturing 

1. INTRODUCTION

Approaches that include more than one measure of performance in the 
evaluation process are termed multi-attribute or multi-criteria decision 
methods. The advantage of these methods is that they can account for both 
financial and nonfinancial impacts. Among these methods, the most 
popular ones are scoring models (Nelson, 1986), analytic hierarchy process 
(AHP) (Kahraman et al., 2004), analytic network process (ANP) 
(Büyüközkan et al., 2004), utility models (Suh, 1995), order preference by 
similarity ideal solution (TOPSIS) (Deng et al., 2000), and outranking 
methods (De Boer et al., 1998). Axiomatic design principles, including the 

AXIOM-BASED APPROACH 
MAKING USING AN INFORMATION
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information axiom also, present an opportunity for multi-attribute 
evaluation.

The axiomatic design process is described by the mapping process from 
functional requirements (FRs) to design parameters (DPs). The goal in 
axiomatic design is to satisfy the goals of the customer domain through 
accomplishment in the subsequent domains, which requires mapping from 
one space to the next. In the mapping (design) process, Suh (1990) 
imposes two axioms that must be followed in order to create the “best” 
design. The information axiom (IA), which is the second axiom of AD, 
proposes the selection of the proper alternative that has minimum 
information content.

Having to use crisp values is one of the problematic points in the crisp 
evaluation process. As some criteria are difficult to measure by crisp 
values, they are usually neglected during the evaluation. Another reason is 
about mathematical models that are based on crisp values. These methods 
cannot deal with decision makers’ ambiguities, uncertainties, and 
vagueness, which cannot be handled by crisp values. The use of fuzzy set 
theory (Zadeh, 1965) allows the decision makers to incorporate unquanti-
fiable information, incomplete information, nonobtainable information, 
and partially ignorant facts into the decision model. 

A model based on IA enables decision makers to evaluate both 
qualitative and quantitative criteria together.  In this chapter, a crisp multi-
attribute information axiom (IA) approach and then a fuzzy multi-attribute 
IA approach for multi-attribute decision-making problems will be developed 
and the implementation process will be shown by the real-world examples. 

2. PRINCIPLES OF AXIOMATIC DESIGN 

The most important concept in axiomatic design is the existence of the 
design axioms. The first design axiom is known as the independence 
axiom, and the second axiom is known as the information axiom. They are 
stated as follows (Suh, 1990). 

Axiom 1. The Independence Axiom: Maintain the independence of 
functional requirements. 

Axiom 2. The Information Axiom: Minimize the information content. 

The independence axiom states that the independence of FRs must 
always be maintained where FRs are defined as the minimum set of 
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independent requirements that characterize the design goals. The 
information axiom states that the design with the smallest information 
content among those satisfying the first axiom is the best design (Suh, 
2001).

2.1 Crisp Information Axiom 

Information is defined in terms of the information content, I, that is related 
in its simplest form to the probability of satisfying the given FRs. 
Information content I i  for a given FR i  is defined as follows: 

I i  = log 2
ip

1
 (1) 

where p i is the probability of achieving the functional requirement FR i

and log is the logarithm in base 2 (with the unit of bits). This definition of 
information follows the definition of Shannon (1948), although there are 
operational differences. Because there are n FRs, the total information 
content is the sum of all these probabilities. If Ii approaches infinity, the 
system will never work. When all probabilities are one, the information 
content is zero, and conversely, the information required is infinite when 
one or more probabilities are equal to zero (Suh, 1995). 

In any design situation, the probability of success is given by what the 
designer wishes to achieve in terms of tolerance (i.e., design range) and 
what the system is capable of delivering (i.e., system range). As shown in 
Figure 1, the overlap between the designer-specified “design range” and 
the system capability range “system range” is the region where the 
acceptable solution exists. Therefore, in the case of a uniform probability 
distribution function, p i may be written as 

p i  = 
rangeSystem
rangeCommon

. (2) 

Therefore, the information content is equal to 

I i  = log 2 rangeCommon
rangeSystem

. (3) 
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The probability of achieving FR i  in the design range may be 
expressed, if FR i  is a continuous random variable, as 

p i  = 
udr

dr
s dp

1
FR).FR(  (4) 

Figure 1. Design range, system range, common range, and probability density function 
(pdf) of an FR 

where sp (FR) is the system pdf (probability density function) for FR. Eq. 
(4) gives the probability of success by integrating the system pdf over  
the entire design range. (i.e., the lower bound of design range, 1dr , to the 
upper bound of the design range, udr ). In Figure 2, the area of the 
common range ( crA ) is equal to the probability of success P (Suh, 1990).

Therefore, the information content is equal to 

crAI
1

log2 . (5) 

The information content in Eq. (1) is a kind of entropy that measures 
uncertainty. There are some other measures of information in terms of 
uncertainty. Prior to the theory of fuzzy sets, two principal measures of 
uncertainty were recognized. One of them, proposed by Hartley (1928), is 
based solely on the classic set theory. The other, introduced by Shannon 
(1948), is formulated in terms of probability theory. Both of these 
measures pertain to some aspects of ambiguity, as opposed to vagueness or 
fuzziness. Both Hartley and Shannon introduced their measures for the 
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purpose of measuring information in terms of uncertainty. Therefore, these 
measures are often referred to as measures of information. The measure 
invented by Shannon is referred to as the Shannon entropy. 

The Shannon entropy, which is a measure of uncertainty and information 
formulated in terms of probability theory, is expressed by the function 

Figure 2. Design range, system range, common range, and pdf of a FR 

Xx
xpxpXxxpH 2log/  (6) 

where Xx/xp  is a probability distribution on a finite set X.
Suh’s entropy in axiomatic design does not require that the total of the 

probabilities be equal to 1.0, whereas Shannon entropy does. Because of 
this property, Shannon entropy should not be used as an entropy measure 
while evaluating independent functional requirements in axiomatic design.

2.2 Fuzzy Information Axiom Approach

The multi-attribute crisp information axiom approach mentioned before 
can be used for the solution of decision-making problems under certainty. 
This approach cannot be used with incomplete information, since the 
expression of decision variables by crisp numbers would be ill defined. For 
this reason, the multi-attribute fuzzy information axiom is developed in 
this study. At the same time, a problem including both crisp and fuzzy 
criteria can be solved by integrating crisp and fuzzy information axiom 
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approaches. This feature is an important advantage that can not be found in 
other multi-attribute approaches. The definition and formulation of the 
developed fuzzy approach are given in the following discussion. 

Figure 3. The numerical approximation system for intangible factors 

The data relevant to the criteria under incomplete information can be 
expressed as fuzzy data. The fuzzy data can be linguistic terms, fuzzy sets, or 
fuzzy numbers. If the fuzzy data are linguistic terms, they are transformed 
into fuzzy numbers first. Then all the fuzzy numbers (or fuzzy sets) are 
assigned crisp scores. The following numerical approximation systems are 
proposed to systematically convert linguistic terms into their corresponding 
fuzzy numbers. The system contains five conversion scales (Figures 3 and 4). 

Figure 4. The numerical approximation system for tangible factors 

In the fuzzy case, we have incomplete information about the system 
and design ranges. The system and design range for a certain criterion will 
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be expressed by using “over a number,” “around a number,” or “between 
two numbers.” Triangular or trapezoidal fuzzy numbers can represent 
these kinds of expressions. We now have a membership function of a 
triangular or trapezoidal fuzzy number, whereas we have a probability 
density function in the crisp case. So, the common area is the intersection 
area of triangular or trapezoidal fuzzy numbers. The common area between 
design range and system range is shown in Figure 5. 

Figure 5. The common area of system and design ranges 

Therefore, information content is equal to

AreaCommon
DesignSystemofTFN

log2I . (7) 

In the following section, the numerical application of these approaches 
for solving multi-attribute decision-making problems is given. 

3. MULTI-ATTRIBUTE COMPARISON OF 
ADVANCED MANUFACTURING SYSTEMS  

The term “advanced manufacturing systems” (AMS) is broadly defined to 
include any automated (usually computer oriented) technology used in 
design, manufacturing/service, and decision support. Components of AMS 
include computer-aided engineering, factory management and control 
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systems, computer-integrated manufacturing processes, and information 
integration. Many factories reach an intermediate stage, often-called 
flexible manufacturing systems (FMS). At this stage some machine tools, 
material-handling equipment, and other programmable devices are under 
the integrated control of a computer. FMS can manufacture a wide range 
of products in batch sizes from one to thousands. They provide many 
important benefits such as greater manufacturing flexibility, reduced 
inventory, reduced floor space, faster response to shifts in market demand, 
lower lead times, and a longer useful life of equipment over successive 
generations of products. Like many real-world problems, the decision of 
investing in advanced manufacturing technology frequently involves 
multiple and conflicting objectives, e.g., minimizing costs, maximizing 
flexibility, minimizing machine downtimes, or maximizing efficiency 
(Kulak and Kahraman, 2005). 

3.1 A Numerical Application of Crisp Information 
Axiom

A company manufacturing tractor components wants to renew the 
manufacturing system. In order to produce a group of products, the company 
must decide to select the most appropriate one among the different 
alternative flexible manufacturing systems. With respect to the 
characteristics of the product group manufactured by a company, the 
functional requirements that should be satisfied by a flexible 
manufacturing system are given below.  Since FR1 is a monetary criterion, 
it is a different criterion from the others. The other criteria are graded 
between 1 and 20. This grading is arranged to show that the interval 17 20
is excellent, 13 16 is very good, 9 12 is good, 5 8 is fair, and 1 4 is poor. 

FR1= Annual Depreciation and Maintenance Cost (ADMC) must be in the 
range of $100,000 to $200,000,
FR2= Quality of Results (QR) must be over 9, 
FR3= Ease of use (EU) must be over 13, 
FR4= Competitive (C) must be in the range of 15 to 18, 
FR5= Adaptability (A) must be over 15, 
FR6= Expandability (E) must be in the range of 12 to 16. 

Alternative flexible-manufacturing systems’ annual depreciation and 
maintenance costs and performance scores evaluated by the experts with 



Fuzzy MADM Using Information Axiom 217

are arranged to include the minimum and maximum performance values 
supplied by the system. 

Table 1. The System Range Data for Advanced Manufacturing Systems 

AMSs ADMC (*$1000) QR EU C A E 
FMS-I 210 to 240 18 to 20 13 to 18 16 to 20 12 to 18 12 to 16 
FMS-II 80 to 120 12 to 17 9 to 14 12 to 17 15 to 17 14 to 18 
FMS-III 180 to 220 8 to 12 10 to 14 13 to 18 19 to 20 9 to 14 
FMS-IV 140 to 170 7 to 10 8 to 14 13 to 17 12 to 16 11 to 13 

The data in Table 1, related to annual depreciation and maintenance 
costs, reflect only the minimum and maximum cost values. The ADMC 
costs of the alternatives in Table 1 have the probability density functions 
as shown in Table 2. 

Table 2. The Probability Density Functions of ADMC 

AMS The Probability Density Functions 
of  ADMC 

Range ($100,000) 

FMS-I 2.02697.0 xxf  4.21.2 x
FMS-II 3404.2 xxf  2.18.0 x
FMS-III 4.02723.0 xxf  2.28.1 x
FMS-IV 5.02591.1 xxf 7.14.1 x

Using these design and system ranges, the information content for each 
FR in each FMS may be computed using Equations (3) and (5). Some 
sample calculations to obtain the information contents of ADMC and QR 
are presented below. 

Annual Depreciation and Maintenance Cost 

For FMS-I: 

crA = 0 

ADMC 1 2
1log
cr

I
A

=  (8) 

respect to certain criteria are given in Table 1. The data given in the Table 1 



218 C. Kahraman and O. Kulak

For FMS-II: 

1.2
3

1

2.404 0.645crA x dx ADMC 2 2
cr

1I log
A

= 0.633 (9) 

The design and system ranges of ADMC for FMS-I and FMS-II are 
shown in Figures 6 and 7, respectively. And the design and systems ranges 
of QR for FMS are also shown in Figures 8–13. 

Figure 6. Design and system ranges of ADMC for FMS-I 

For FMS-III: 

2
2

1.8

20.723 0.442
5crA x dx ADMC 3 2

1log
cr

I
A

=1.178 (10) 

For FMS-IV: 

1.7
2

1.4

11.591 1
2crA x dx ADMC 4 2

1log
cr

I
A

= 0 (11) 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.5

1

1.5

2

2.5

3

3.5

4

x ($100000)

f(
x)

Design Range System Range 

f1(x)



Fuzzy MADM Using Information Axiom 219

Figure 7. Design and system ranges of ADMC for FMS-II 
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QR 1 2 2
20 18log log 1 0
20 18

I  (12) 

Figure 8. Design and system ranges of ADMC for FMS-III 
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Figure 9. Design and system ranges of ADMC for FMS-IV 

For FMS-II: 

QR 2 2 2
17 12log log 1 0
17 12

I  (13) 

Figure 10. Design and system ranges of QR for FMS-I 
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Figure 11. Design and system ranges of QR for FMS-II 

For FMS-III: 

QR 3 2 2
12 8 4log log 0, 415
12 9 3

I  (14) 

Figure 12. Design and system ranges of QR for FMS-III 

For FMS-IV: 

QR 4 2 2
10 7log log 3 1,585
10 9

I  (15) 
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Figure 13. Design and system ranges of QR for FMS-IV 

The information contents for the other criteria with respect to the 
alternatives are given in Table 3. As the system with minimum information 
content is the best one, FMS-II is selected.

Table 3. Suh’s Information Content for Advanced Manufacturing Systems 

AMSs IADMC IQR IEU IC IA IE Ii

FMS-I Infinite 0.000 0.000 0.415 1.000 0.000 Infinite 
FMS-II 0.633 0.000 2.322 1.322 0.000 1.000 5.277* 
FMS-III 1.178 0.415 2.000 0.737 0.000 1.322 5.652 
FMS-IV 0.000 1.585 2.585 1.000 2.000 1.000 8.170 

3.2 A Numerical Application of Fuzzy Information 
Axiom

The same company in Section 3.1 has the following fuzzy functional 
requirements:

FR1 = ADMC must be low, 
FR2 = QR must be very good, 
FR3 = EU must be very good, 
FR4 = C must be excellent, 
FR5 = A must be excellent, 
FR6 = E must be very good. 



Fuzzy MADM Using Information Axiom 223

Table 4. The System Range Data for Advanced Manufacturing Systems 

AMS  ADMC  QR EU C A E
FMS-I High Excellent Very good Excellent Very good Very good 
FMS-II Very Low Very good Good Very good Very good Very good 
FMS-III Medium Good Good Very good Excellent Good 
FMS-IV Low Fair Good Very good Very good Good 

The conversation scales for intangibles are given in Figure 14 whereas 
the ones for ADMC are given in Figure 15. 

In order to obtain the information content for ADMC and QR two 
sample calculations are given in the following. 

Annual Depreciation and Maintenance Cost 

For FMS-III: 
Common Area = (180  170) × 0.2 / 2 = 1 
System Area = (210  170) × 1 / 2 = 20 

ADMC 2 2
System Area 20log Log 4.322

Common Area 1
I  (16) 

Figure 14. TFNs for intangible factors 

The experts produce the system range data and use the linguistic 
expressions as in Table 4. 
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Figure 15. TFNs for tangible factors 

Quality of results 

For FMS-III: 
Common Area = (14  12) × 0.333 / 2 = 0.333 
System Area = (14  8) × 1 / 2 = 3 

QR 2 2
System Area 3log log 3.171

Common Area 0.333
I  (17) 

Figure 16. Design and system ranges of ADMC in case of fuzziness 
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Figure 17. Design and system ranges of QR in case of fuzziness 

The information contents for the other criteria with respect to the 
alternatives are given in Table 5. The alternative with minimum 
information content is FMS-II. 

Table 5. The information content for advanced manufacturing systems 

AMSs IADMC IQR IEU IC IA IE Ii

FMS-I Infinite 2.806 0.000 0.000 3.391 0.000 Infinite 
FMS-II 5.322 0.000 3.171 3.391 3.391 0.001 15.275* 
FMS-III 4.322 3.171 3.171 3.391 0.000 3.171 17.000 
FMS-IV 0.000 Infinite 3.171 3.391 3.391 3.171 Infinite 

The rankings obtained by using the crisp and fuzzy approaches are the 
same. When the attribute ADMC is excluded in the evaluation above, 
FMS-I will be the best alternative. Although FMS-I is the best alternative 
having the minimum information content in total for all the criteria except 
ADMC, FMS-I is not selected since the ADMC system and design ranges 
are not overlapped.

4. MULTI-ATTRIBUTE EQUIPMENT SELECTION 

The satisfaction of customer requirements forces companies to become 
more sensitive and to make deep analyses in selecting equipment. The 
selection of oversized equipment can disturb the company’s cash flow and 
also the problems such as excessive inventory and idle equipment can  
be met. On the contrary, the selection of under-sizing equipment cannot 
fulfill requested quality levels and capacity requirements by customers. 
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Equipment selection is also an important decision-making problem for the 
design of a flexible manufacturing system (Kulak et al., 2005) 

An international company needs a few punching machines to
manufacture its products, racks, and sub-racks in which electronic 
materials are located.  The company determined six possible punching 
machines with respect to the manufacturing requirements. The criteria 
considered in the selection process are categorized into the groups of costs 
and technical characteristics. The group of costs includes fixed costs per 
hour, variable costs per hour, and equivalent costs of standard tools per 
hour. The group of technical characteristics includes length of sheet size, 
thickness of sheet metal, number of strokes for 25-mm pitchsize sheet 
 metal, simultaneous axis speed, tool rotation speed, and sufficiency of 
service. Some criteria including positioning the work piece precisely and
width of sheet metal are excluded since the values of these criteria are the 
same for each candidate. 

The criteria in the group of costs are linguistic variables. The 
sufficiency of service in the group of technical characteristics is also a 
linguistic variable. The company’s design ranges, which means that what a 
designer wants to achieve for the above criteria are as follows: 

FRFC = Fixed costs per hour (FC) must be medium,
FRVC = Variable costs per hour (VC) must be low, 
FRST = Equivalent costs of standard tools per hour (ST) must be low,  
FRL = Length of sheet size (L) must be in the range of 1200 to 2540, 
FRT = Thickness of sheet metal (T) must be in the range of 3 to 8, 
FRNS = Number of strokes for 25 mm pitchsize sheet metal (NS) must be  
in the range of 190 to 445, 
FRXY = Simultaneous axis speed (XY) must be in the range of 70 to 110, 
FRSR = Tool rotation speed (SR) must be in the range of 50 to 180, 
FRSS = Sufficiency of service (SS) must be excellent. 

Alternative punching machines’ costs and performance scores 
evaluated by the company’s managers with respect to criteria are given in 
Tables 6 and 7. The data for design ranges and the data for system ranges 
are entered into the software-MAXD. The calculated results below are 
obtained by MAXD. The data given in Table 7, except sufficiency of 
service, are arranged to include the minimum and maximum performance 
values supplied by the punching machines. The managers produce the 
system range data and use the linguistic expressions about costs and 
sufficiency of service as in Tables 6 and 7.
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Figures 18, 19, and 20 show the membership functions of the linguistic 
expressions about fixed costs per hour, variable costs per hour, and 
equivalent costs of standard tools per hour, respectively. Figure 21 also 
shows the membership functions of the linguistic expressions about 
sufficiency of service. For example, in Figure 18, the decision maker 
subjectively evaluates the alternatives with the linguistic term “very low” if 
it is assigned a score of (8, 8, 10); “low” with a score of (8, 10, 12); 
“medium” with a score of (10, 12, 14); “high” with a score of (12, 14, 16); 
and “very high” with a score of (14, 16, 16).

Table 6. The System Range Data for Costs 

Punch Equipments Fixed costs per hour 
(Euro/hour)

Variable costs per 
hour (Euro/hour) 

Equivalent costs of 
standard tools per 
hour (Euro/hour) 

Punch-A Low Very Low Low 
Punch-B Medium Medium Low 
Punch-C High Medium Low 
Punch-D Very high High Low 
Punch-E Medium Medium High 
Punch-F Low Low Medium 

Table 7. The System Range Data for Technical Characteristics 

Alternative Criteria 
Punching
Machines

Length of 
sheet size 
(mm)

Thickness
of sheet 
metal (mm)

Number of 
strokes for 
25 mm
pitchsize
sheet metal 

Simultaneous
axis speed 
(m/min.)

Tool
rotation
speed (rpm)

Sufficiency
of service 

Punch-A 0 to 1270 0 to 6,4 0 to 420 0 to 108 0 to 180 Excellent 
Punch-B 0 to 2070 0 to 6,4 0 to 220 0 to 97 0 to 60 Excellent 
Punch-C 0 to 2540 0 to 6,4 0 to 445 0 to 108 0 to 180 Excellent 
Punch-D 0 to 2535 0 to 8,0 0 to 445 0 to 108 0 to 60 Excellent 
Punch-E 0 to 2500 0 to 6,4 0 to 400 0 to 110 0 to 60 Very Good 
Punch-F 0 to 1270 0 to 6,4 0 to 200 0 to 82 0 to 60 Very Good 

Alternative  Criteria 
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Figure 18. TFNs for tangible factors (fixed costs) 

Figure 19. TFNs for tangible factors (variable costs) 

Figure 20. TFNs for tangible factors (equivalent costs of standard tools per hour) 
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Figure 21. TFNs for intangible factors (sufficiency of service) 

In the following section, unweighted and weighted multi-attribute IA 
approaches will be applied to the equipment selection problem above.

4.1 Unweighted Multi-Attribute IA Approach 

The information content for Punch-B can be computed using Eq. (3) with 
the system range in Table 7 and the design range for the length of metal-
sheet (L) above. 

For Punch-B : 
Common Area = (2070  1200) × 1 = 870 
System Area= (2070  0) × 1 = 2070 

2 2
System Area 2070log log 1.250

Common Area 870LI  (18) 

The information content for Punch-A can be computed using Eq. (7) 
with the system range in Table 6 and the design range for the fixed costs 
(FC).

For Punch-A : 
Common Area= (12  10) × 0.5 / 2 = 0.5 
System Area= (12  8) × 1 / 2 = 2 

2 2
System Area 2log log 2.000

Common Area 0.5FCI  (19) 
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For this approach, the results in Table 8 are obtained in a similar way 
that the sample numerical results are calculated. 

Table 8. The Results of Suh’s Information Content for Punching Machines 

Punching
Machines

IFC IVC IST IL IT INS IXY ISR ISS I

A 2.000 1.000 0.000 4.181 0.912 0.869 1.507 0.470 0.000 10.939 
B 0.000 2.000 0.000 1.250 0.912 2.874 1.845 2.585 0.000 11.467 
C 2.000 2.000 0.000 0.923 0.912 0.803 1.507 0.470 0.000 8.615* 
D Infinite Infinite 0.000 0.925 0.678 0.803 1.507 2.585 0.000 Infinite 
E 0.000 2.000 Infinite 0.943 0.912 0.930 1.459 2.585 3.391 Infinite 
F 2.000 0.000 2.000 4.181 0.912 4.322 2.773 2.585 3.391 22.164 

The information contents for the criteria with respect to the alternatives 
are given in Table 8. As the punching machine with minimum information 
content is the most suitable alternative with respect to the designer’s 
requirements, Punch-C is selected.

In Table 9, the information contents for costs and technical 
characteristics are given separately since a decision maker may require 
seeing the effect of any main criterion (costs or technical characteristics). 
Punch-B is the most suitable alternative with respect to the designer’s 
requirements when the main criteria costs are only taken into account. 
Punch-C is the most suitable alternative with respect to the designer’s 
requirements when the main criteria technical characteristics are only 
taken into account. 

Table 9. The Results of Suh’s Information Content For Costs And Technical Characteristics 

 Costs Technical CharacteristicsPunch.Mach.
IFC IVC IST IL IT I INS IXY ISR ISS I

A 2.000 1.000 0.000 3.000 4.181 0.912 0.869 1.507 0.470 0.000 7.939 
B 0.000 2.000 0.000 2.000* 1.250 0.912 2.874 1.845 2.585 0.000 9.467 
C 2.000 2.000 0.000 4.000 0.923 0.912 0.803 1.507 0.470 0.000 4.615* 
D Infinite Infinite 0.000 Infinite 0.925 0.678 0.803 1.507 2.585 0.000 6.498 
E 0.000 2.000 Infinite Infinite 0.943 0.912 0.930 1.459 2.585 3.391 10.221 
F 2.000 0.000 2.000 4.000 4.181 0.912 4.322 2.773 2.585 3.391 18.164 

Since each main criterion involves different numbers of subcriteria, the 
effect of each main criterion on the sum of information contents in Table 8 
will possibly be different. In order to remove this effect, the decision 
maker may use unit indexes for unweighted information content given in 
Table 10, which are calculated by dividing the total information contents 
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in Table 9 by the number of subcriteria of each main criterion. The column 
of total unit index in Table 10 is calculated by summing the unit indexes 
for costs and technical characteristics.

Table 10. Unit Indexes for Unweighted Information Contents 

Punching Machines Index for Costs Index for Tech. 
Characteristics

Total Unit Index 

A 1.000 1.323 2.323 
B 0.667 1.578 2.245 
C 1.333 0.769 2.103* 
D Infinite 1.083 Infinite 
E Infinite 1.703 Infinite 
F 1.333 3.027 4.361 

With respect to the total unit indexes, Punch-C is the selected 
alternative. Although the same alternative is selected in Table 8 and in 
Table 10, different alternatives might have been selected. The effect of this 
approach will be seen in the following section when the weighted multi-
attribute IA approach is used. 

4.2 Weighted Multi-Attribute IA Approach 

In the method in subsection 4.1., the weights for all subcriteria are equal. If 
the decision maker wants to assign a different weight for each criterion, the 
following weighted multi-attribute IA approach can be used. 

Eq. 20 is proposed for the weighted multi-attribute IA approach:

1ijI,jw

1ijI,
jw

ijp
1

2log

1ijI0,
jw

1

ijp
1

2log

ijI

 (20) 

For this approach, the results in Table 11 are obtained by applying  
Eq. 20 to the data in Table 8. The weights for the main criteria costs and 
technical requirements are determined as 0.80 and 0.20, respectively, since 
the customers of this company give higher importance to the product 
prices than to the technical characteristics.
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Table 11. The Weighted Results for Cost and Technical Characteristics 

 Costs Technical Characteristics 
Punch
Mach.

IFC IVC IST IL IT I INS IXY ISR ISS I

A 1.741 1.000 0.000 2.741 1.331 0.632 0.495 1.085 0.023 0.000 3.566 
B 0.000 1.741 0.000 1.741 1.046 0.632 1.235 1.130 1.209 0.000 5.252 
C 1.741 1.741 0.000 3.482 0.670 0.632 0.334 1.085 0.023 0.000 2.744 
D Infinite Infinite 0.000 Infinite 0.678 0.143 0.334 1.085 1.209 0.000 3.450 
E 0.000 1.741 Infinite Infinite 0.747 0.632 0.695 1.079 1.209 1.277 5.638 
F 1.741 0.000 1.741 3.482 1.331 0.632 1.340 1.226 1.209 1.277 7.015 

Punch-B is selected when unit indexes for weighted information 
contents in Table 11 are used. Table 12 gives unit indexes for weighted 
information contents. The ranking order when the unweighted approach is 
used changes as in Table 12 in favor of Punch-B, since the weighted 
approach reflects the high importance of costs to the results. 

Table 12. Unit Indexes for Weighted Information Contents 

Punching Machines Index for Costs Index for Tech. Characteristics Total Unit Index 

A 0.914 0.594 1.508 
B 0.580 0.875 1.456* 
C 1.161 0.457 1.618 
D Infinite 0.575 Infinite 
E Infinite 0.940 Infinite 
F 1.161 1.169 2.330 

5. CONCLUSION

Crisp multi-attribute decision making (MADM) methods solve problems 
in which all decision data are assumed to be known and must be 
represented by crisp numbers. The methods are to effectively aggregate 
performance scores. Fuzzy MADM methods have difficulty in judging the 
preferred alternatives because all aggregated scores are fuzzy data. We 
propose a crisp multi-attribute IA approach when all decision data are 
known, whereas we propose fuzzy multi-attribute IA approach when 
unquantifiable or incomplete information exists. The proposed crisp and 
fuzzy IA approaches use the design ranges determined by the decision 
makers to select the best alternative. However, these approaches that 
depend on the minimum information axiom do not let an alternative be 
selected even if that alternative meets the design ranges of all other criteria 
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successfully but not any of these ranges. However, the decision maker can 
assign a numerical value instead of an “infinitive” in order to make the 
selection of an alternative possible which meets all other criteria 
successfully, except the criterion having an “infinitive” value. 
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Abstract: The earliest definitions of decision support systems (DSS) identify DSS as 
systems to support managerial decision makers in unstructured or semi-
unstructured decision situations. They are also defined as a computer-based 
information systems used to support decision-making activities in situations 
where it is not possible or not desirable to have an automated system 
perform the entire decision process. This chapter aims to delineate measure-
ment of level-of-satisfaction during decision making under an intelligent 
fuzzy environment. Before proceeding with the multi-criteria decision 
making model (MCDM), authors try to build a co-relation among DSS, 
decision theories, and fuzziness of information. The co-relation shows the 
necessity of incorporating decision makers’ level-of-satisfaction in MCDM 
models. Later, the authors introduce an MCDM model incorporating 
different cost factor components and the said level-of-satisfaction 
parameter. In a later chapter, the authors elucidate an application as well as 
validation of the devised model. The strength of the proposed MCDM 
methodology lies in combining both cardinal and ordinal information to get 
eclectic results from a complex, multi-person and multi-period problem 
hierarchically.
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1. INTRODUCTION

Nomenclature
D    Decision matrix 
A    Pair-wise comparison matrix among criteria (m × n) 
m    Number of criteria 
n    Number of alternatives of the pair-wise comparison matrix 

max   Principal eigen value of “A” matrix 
PV   Priority vector 
I.I.   Inconsistency index of “A” matrix 
R.I.   Random inconsistency index of “A” matrix 
I.R.   Inconsistency ratio of “A” matrix 

    Level of satisfaction of decision maker 
OFM  Objective factor measure 
SFM  Subjective factor measure 
OFC  Objective factor cost 
SI   Selection index 

   Fuzzy parameter that measures the degree of vagueness; = 0 
    indicates crisp.

1.1 DSS and Their Components 

Decision support systems (DSS) can be defined as computer-based 

semi-structured problems. Numerous definitions to DSS exist. The earliest 
definitions of DSS (Gorry and Morton, 1977) identify DSS as systems to 
support managerial decision makers in unstructured or semi-unstructured 
decision situations. Ginzberg and Stohr (1981) propose DSS as “a 
computer-based information system used to support decision making 
activities in situations where it is not possible or not desirable to have an 
automated system performs the entire decision process.” However, the 
most apt working definition is provided by Turban (1990). According to 
Turban (1990) “a DSS is an interactive, flexible, and adaptable computer 
based information system that utilizes decision rules, models, and model 
base coupled with a comprehensive database and the decision maker’s own 
insights, leading to specific, implementable decisions in solving problems 
that would not be amenable to management science models per se. Thus, a 
DSS supports complex decision making and increases its effectiveness.” 
Alter (2004) explores the assumption that stripping the word system from 
DSS, focusing on decision support, and using ideas related to the work 

information systems that aid a decision maker in making decisions for
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system method might generate some interesting directions for research and 
practice. Some of these directions fit under the DSS umbrella, and some 
seem to be excluded because they are not directly related to a technical 
artifact called a DSS. Alter (2004) suggests that “decision support is the 
use of any plausible computerized or non-computerized means for 
improving sense making and/or decision making in a particular repetitive 
or non-repetitive business situation in a particular organization.” 

However, the main objectives of DSS can be stated as follows: 

structured,
2. To identify plans and potential actions to resolve problems, 
3. To rank the solutions identified that can be implemented and provide a 

list of viable alternatives. 
DSS attempts to bring together and focus several independent 

disciplines. These are as follows: 

1. Operations research (OR), 
2. Management science (MS), 
3. Database technology, 
4. Artificial intelligence (AI), 
5. Systems engineering, 
6. Decision analysis. 

Artificial intelligence is a field of study that attempts to build software 
systems exhibiting near-human “intellectual” capabilities. Modern works 
on AI are focused on fuzzy logic, artificial neural networks (ANNs), and 
genetic algorithms (GAs). These works, when integrated with DSS, 
enhance the performance of making decisions. AI systems are used in 
creating intelligent models, analyzing models intelligently, interpreting 
results found from models intelligently, and choosing models appropriately 
for specific applications. 

Decision analysis may be divided into two major areas. The first, 
descriptive analysis, is concerned with understanding how people actually 
make decisions. The second, normative analysis, attempts to prescribe how 
people should make decisions. Both are issues of concern to DSS. The 
central aim of decision analysis is improving decision making processes.

Decisions, in general, are classified into three major categories: 

Structured decisions, 
Unstructured decisions,
Semi-structured decisions. 

1. To provide assistance to decision makers in situations that are semi-
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Structured decisions are those decisions where all steps of decision 
making are well structured. Computer code generation is comparatively 
easy for these types of decisions. 

In unstructured decisions, none of the steps of decision making is 
structured. AI systems are being built up to solve the problems of unstruc-
tured decisions. 

Semi-structured decisions comprise characteristics of structured and 
unstructured decisions. 

The DSS framework contains two types of components, which may be 
used either individually or in tandem. The first component is a multi-
objective programming (MOP) model, which employs mathematical 
programming to generate alternative mitigation plans. Typically, an MOP 
model must be formulated for the specific problem at hand, but once 
formulated, it can be solved on a computer using commercially available 
software. The second component is a multi-criteria decision making 
(MCDM) model, used for evaluating decision alternatives that have been 
generated either by the MOP model or by some other method. MCDM 
models are typically “shells” that can be applied to a wide range of 
problem types. A variety of MCDM methodologies exist, some of which 
are available in the form of commercial software. A manufacturing 
information system can also be used in conjunction with the DSS, for both 
managing data and for compiling decisions of alternative plans generated 
by the DSS. 

1.2 Decision-Making Processes 

Strategic, tactical, and operative decisions are made on the various aspects 
of business operations. The vision of an industrial enterprise must take into 
consideration the possible changes in its operational environment, 
strategies, and the leadership practices. Decision making is supported by 
analyses, models, and computer-aided tools. Technological advances have 
an impact on the business of industrial enterprises and on their uses of new 
innovations. Industrial innovations contribute to increased productivity and 
the diversification of production and products; they help to create better, 
more challenging jobs and to minimize risks.  

Long-term decisions have an impact on process changes, functional 
procedures and maintenance and also on safety, performance, costs, human 
factors and organisations. Short-term decisions deal with daily actions and 
their risks. Decision-making is facilitated by an analysis that incorporates a 
classification of one’s own views, calculating numerical values, translating 



Intelligent Fuzzy-MCDM Theory 239

the results of analysis into concrete properties and a numerical evaluation 
of the properties. One method applied for this purpose is the Analytic 
Hierarchy Process (AHP) model (Saaty, 1990). This model, which has 
many features in common with the other MCDMs applied in the current 
research work, is suited for manufacturing decision making processes that 
aim at making the correct choices in both the short and the long term. 

1.3 MCDM

According to Agrell (1995) MCDM offers the methodology for decision 
making analysis when dealing with multiple objectives. This may be the 
case when the success of the application depends on the properties of the 
system, the decision maker, and the problem. Problems with engineering 
design involve multiple criteria: the transformation of resources into 
artifacts, a desire to maximize performance, and the need to comply with 
specifications.

The MCDM methodology can be used to increase performance and to 
decrease manufacturing costs and delays of enterprises. The Multiple-
Criteria Decision Support System (MC-DSS) uses the MCDM 
methodology and ensures mathematical efficiency. The system employs 
graphical presentations and can be integrated with other design tools. 
Modeling and analyzing complex systems always involve an array of 
computational and conceptual difficulties, whereas a traditional modeling 
approach is based primarily on simulation and concepts taken from control 
theory.

The strength of the MCDM lies in the systematic and quantitative 
framework it offers to support decision making. Comprehensive tuning or 
parametric design of a complex system requires elaboration on using the 
modeling facilities of system dynamics and on the interactive decision 
making support of the MCDM. 

Most experienced decision makers do not rely on a theory to make their 
decisions because of cumbersome techniques involved in the process of 
making decisions. But analytic decision making is of tremendous value 
when the said analytic process involves simple procedures and is 
accessible to the lay user as well as it possesses meaningful scientific 
justification of the highest order (Saaty, 1994).
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The benefits of descriptive analytical approaches for decision making 
are as follows (Saaty, 1994): 

1. To permit decision makers to use information relating to decision 
making in a morphological way of thoroughly modeling the decision 
and to make explicit decision makers’ tactical knowledge; 

2. To permit decision makers to use judgments and observations in order 
to surmise relations and strengths of relations in the flow of interacting 
forces moving from the general to the particular and to make 
predictions of most likely outcomes; 

3. To enable decision makers to incorporate and trade off attribute values; 
4. To enable decision makers to include judgments that result from 

intuition, day-to-day experiences, as well as those that result from 
logic;

5. To allow decision makers to make gradual and more thorough revisions 
and to combine the conclusions of different people studying the same 
problem in different places.

1.4 Information vis-à-vis MCDM Theories 

Information is a system of knowledge that has been transformed from raw 
“data” into some meaningful form. Data are the raw materials for 
information. Data are also expressions of “events.” Information has value 
in current or prospective decision making at a specified time and place for 
taking appropriate “action” resulting in evaluation of “performance.” In this 
context attention is drawn to Figure 1. The terms “data” and “information” 
are often used interchangeably, but there is a distinction in that. Data are 
processed to provide information, and the information is related to decision 
making (Davis, 1974). A schematic diagram illustrating relationship 
between data and information is shown in Figure 2. If there is no need for 
making decisions, information would be unnecessary. 

Information is the currency of the new economy. Yet most real-world 
cases lack the means to effectively organize and distribute the information 
their employees need to make quick, smart business decisions. A structured, 
personalized, self-serve way to access information and collaborate across 
departmental and geographical boundaries provides the basic needs for 
making a good decision. 
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Figure 1. Generation and utilization of information 

Figure 2. Converting raw data by an information system into useful information 

1.5 Hidden Parameters in Information 

1.5.1 Uncertainty in Information 

Uncertainty permeates understanding of the real world. The purpose of 
information systems is to model the real world. Hence, information 
systems must be able to deal with uncertainty. 

Many information systems include capabilities for dealing with some 
kinds of uncertainty. For example, database systems can represent missing 
values, information retrieval systems can match information to requests 
using a “weak” matching algorithm, and expert systems can represent rules 
that are known to be true only for “most” or “some” of the time. By and 
large, commercial information systems (e.g., database systems, information 
retrieval systems, or expert systems) have been slow to incorporate 
capabilities for dealing with uncertainty. 

Uncertainty also has a long history of being associated with decision 
making research as Harris (1998) notes: 

Decision making is the process of sufficiently reducing uncertainty 
and doubt about alternatives to allow a reasonable choice to be 

Data ProcessingData Information



242 P. Vasant et al.

made from among them. This definition stresses the information 
gathering function of decision making. It should be noted here that 
uncertainty is reduced rather than eliminated. Very few decisions 
are made with absolute certainty because complete knowledge 
about all the alternatives is seldom possible. 
Researchers in various fields have also been concerned with the 

relationship between uncertainty and information seeking. In information 
science, the idea of uncertainty underlies all aspects of information seeking 
and searching. Kuhlthau (1993) has proposed uncertainty as a basic 
principle for information seeking, defining uncertainty as “a cognitive state 
which commonly causes affective symptoms of anxiety and lack of 
confidence.” And, drawing on her research, she notes that, “Uncertainty 
and anxiety can be expected in the early stages of the information search 
process.… Uncertainty due to a lack of understanding, a gap in meaning, 
or a limited construct initiates the process of information seeking.” 

One of the biggest challenges for a manufacturing decision maker is the 
degree of uncertainty in the information that he or she has to process. In 
making some decisions, this is especially obvious when experts in the 
same area provide conflicting opinions on the attributes meant for making 
decisions. Disagreement among experts making decisions results in 
conflicting effects information. The decision maker is likely to place 
increased importance on the source of the information. This in itself is not 
surprising, but the battle of the credentials that follows perhaps is. There 
seems to be a danger that the may come to rely on the reputation of an 
expert, rather than on ensuring thorough scrutiny of the information that he 
or she has provided.

Actors in the decision making process may use uncertainty in the 
effects, and information as a means to promote their attributes. A 
proponent can try to downplay the effects of a development because they 
may not occur, whereas those in opposition may attempt to stall a project 
claiming that the disputed effects are likely to happen and are serious in 
nature. The decision maker is then left with the difficult task of navigating 
these disparities to come to a decision. In particular in the face of 
uncertainty, there seems to be a human tendency to make personal 
observations the deciding factor. 

1.5.1.1 Sources of Uncertainty 
Uncertainties are solely due to the unavailability of “perfect” information. 
Uncertainty might result from using unreliable information sources, for 
example, faulty reading instruments, or input forms that have been filled 
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is a result of system errors, including input errors, transmission “noise,” 
delays in processing update transactions, imperfections of the system 
software, and corrupted data owing to failure or sabotage. At times, 
uncertainty is the unavoidable result of information gathering methods that 
require estimation or judgment.

In other cases, uncertainty is the result of restrictions imposed by the 
model. For example, if the database schema permits storing at most two 
occupations per employee, descriptions of occupation would exhibit 
uncertainty. Similarly, the sheer volume of information that is necessary to 
describe a real-world object might force the modeler to turn to 
approximation and sampling techniques. 

1.5.1.2 Degree of Uncertainty 
The relevant information that is available in the absence of certain 
information may take different forms, each exhibiting a different level of 
uncertainty. Uncertainty is highest when the mere existence of some  
real-world object is in doubt. The simplest solution is to ignore such 
objects altogether. This solution, however, is unacceptable if the model 
claims to be closed world (i.e., objects not modeled do not exist). 

Uncertainty is reduced somewhat when each element is assigned a 
value in a prescribed range, to indicate the certainty that the modeled 
object exists. When the element is a fact, this value can be interpreted as 
the confidence that the fact holds; when it is a rule, this value can be 
interpreted as the strength of the rule (percent of cases where the rule 
applies).

Now it is assumed that “existence” is assured, but some or all of the 
information with which the model describes an object is unknown. Such 
information has also been referred to as incomplete, missing, or unavailable. 

Uncertainty is reduced when the information that describes an object is 
known to come from a limited set of alternatives (possibly a range of 
values). This uncertainty is referred to as disjunctive information. Note 
that when the set of alternatives is simply the entire “universe,” this case 
reverts to the previous (less informative) case. 

Uncertainty is reduced even more when each alternative is 
accompanied by a number describing the probability that it is indeed the 
true description (and the sum of these numbers for the entire set is 1). In 
this case, the uncertain information is probabilistic. Again, when the 
probabilities are unavailable, probabilistic information becomes disjunctive 
information.

out incorrectly (intentionally or inadvertently). In other cases, uncertainty 
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Occasionally, the information available to describe an object is 
descriptive rather than quantitative. Such information is often referred to as 
fuzzy or vague information. 

1.5.1.3 Vagueness in Information 
Russell (1923) attributes vagueness to being mostly a problem of language. 
Of course, language is part of the problem, but it is not the main problem. 
There would still be vagueness even if we had a very precise, logically 
structured, language. The principal source of vagueness seems to be in 
making discreet statements about continuous phenomenon. According to 
Russell (1923), “Vagueness in a cognitive occurrence is a characteristic of 
its relation to that which is known, not a characteristic of the occurrence in 
itself.” Russell (1923) adds, “Vagueness, though it applies primarily to 
what is cognitive, is a conception applicable to every kind of 
representation.”

Surprisingly, Wells (1908) was among the first to suggest the concept 
of vagueness:

Every species is vague, every term goes cloudy at its edges, and so 
in my way of thinking, relentless logic is only another name for 
stupidity for a sort of intellectual pigheadedness. If you push a 
philosophical or metaphysical enquiry through a series of valid 
syllogisms never committing any generally recognized fallacy you 
nevertheless leave behind you at each step a certain rubbing and 
marginal loss of objective truth and you get deflections that are 
difficult to trace, at each phase in the process. Every species 
waggles about in its definition, every tool is a little loose in its 
handle, every scale has its individual.
In real-world problems there is always a chance of getting introduced 

to the vagueness factor when information deals in combination with both 
cardinal and ordinal measures. It should always be remembered that 
reduction of vagueness is to be addressed in a situation where decision 
alternatives are well inter-related and have both cardinal and ordinal 
criteria for selection.

1.5.1.4 Sources of Vagueness 
Linguistic expressions in classic decision making processes incorporate 
unquantifiable, imperfect, nonobtainable information and partially ignorant 
facts. Data combining both ordinal and cardinal preferences in real-world 
decision making problems are highly unreliable and both contain a certain 
degree of vagueness. Crisp data often contains some amount of vagueness 
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and, therefore, need the attention of decision makers in order to achieve a 
lesser degree of vagueness inherent.

The purpose of decision making processes is best served when 
imprecision is communicated as precisely as possible but no more 
precisely than warranted. 

2. PRIOR WORKS ON FUZZY-MCDM  
FOR SELECTING BEST CANDIDATE-
ALTERNATIVE 

The available literature on MCDM tackling fuzziness is as broad as it is 
diverse. Literature contains several proposals on how to incorporate the 
inherent uncertainty as well as the vagueness associated with the decision 
maker’s knowledge into the model (Arbel, 1989; Arbel and Vargas, 1990; 
Banuelas and Antony, 2004; Saaty and Vargas, 1987). The analytic 
hierarchy process (AHP) (Saaty, 1980 and 1990) literature, in this regard, 
is also vast. 

There has been a great deal of interest in the application of fuzzy sets to 
the representation of fuzziness and uncertainty in management decision 
models (Buckley, 1988; Chen and Hwang, 1982; Ghotb and Warren, 1995; 
Gogus and Boucher, 1997; Van Laarhoven and Pedrycz, 1983; Liang and 
Wang, 1994; Lai and Hwang, 1994; Zimmerman, 1976, 1987). Some 
approaches were made to handle the uncertainties of MCDM problems. 
Bellman and Zadeh (1970) have shown fuzzy set theory’s applicability to 
the MCDM study. Yager and Basson (1975) and Bass and Kwakernaak 
(1977) have introduced maximin and simple additive weighing model 
using the membership function (MF) of the fuzzy set. Most of the recent 
literature is filled with mathematical proofs.

A decision maker needs an MCDM assessment technique in regard to 
its fuzziness that can be easily used in practice. An approach was taken 
earlier by Marcelloni and Aksit (2001). Their aim was to model 
inconsistencies through the application of fuzzy logic-based techniques. 
Boucher and Gogus (2002) examined certain characteristics of judgment 
elicitation instruments appropriate to fuzzy MCDM. In their work the 
fuzziness was measured using a gamma function.

By defining a decision maker’s preference structure in fuzzy linear 
constraint (FLC) with soft inequality, one can operate the concerned fuzzy 
optimization model with a modified S-curve smooth MF to achieve the 
desired solution (Watada, 1997). One form of logistic MF to overcome 
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difficulties in using a linear membership function in solving a fuzzy 
decision making problem was proposed by Watada (1997). However, it is 
expected that a new form of logistic membership function based on 
nonlinear properties can be derived, and its flexibility in fitting real-life 
problem parameters can be investigated. Such a formulation of a nonlinear 
logistic MF was presented in this work, and its flexibility in taking up the 
fuzziness of the parameter in a real-life problem was demonstrated. 

Carlsson and Korhonen (1986) have illustrated, through an example, 
the usefulness of a formulated MF, viz., an exponential logistic function. 
Their illustrated example was adopted to test and compare a nonlinear MF 
(Lootsma, 1997). Such an attempt using the said validated nonlinear MF 
and comparing the results was made by Vasant et al. (2005). Compre-
hensive tests based on a real-life industrial problem have to be undertaken 
on the newly developed membership function in order to prove further its 
applicability in fuzzy decision making (Vasant, 2003; Vasant et al., 2002; 
2005). To test the newly formulated MF in problems as stated above, a 
software platform is essential. In this work MATLAB has been chosen as 
the software platform using its M-file for greater flexibility. 

In the past, studies on decision making problems were considered on 
the bipartite relationship of the decision maker and analyst (Tabucanon, 
1996). This is with the assumption that the implementers are a group of 
robots that are programmed to follow instructions from the decision maker. 
This notion is now outdated. Now a tripartite relationship is to be 
considered, as shown on Figure 3, where the decision maker, the analyst, 
and the implementer will interact in finding a fuzzy satisfactory solution in 
any given fuzzy system. This is because the implementers are human 
beings, and they have to accept the solutions given by the decision maker 
to be implemented under a turbulent environment. 

In case of tripartite fuzzy systems, the decision maker will 
communicate and describe the fuzzy problem with an analyst. Based on 

Figure 3. Tripartite relationship for MCDM problems 



Intelligent Fuzzy-MCDM Theory 247

MFs, solve the fuzzy problems, and provide the solution back to the 
decision-maker. After that, the decision maker will provide the fuzzy 
solution with a trade off to the implementer for implementation. An 
implementer has to interact with decision maker to obtain an efficient and 
highly productive fuzzy solution with a certain degree of satisfaction. This 
fuzzy system will eventually be called a high productive fuzzy system 
(Rommelfanger, 1996). A tripartite relationship, decision maker analyst
implementer, is essential to solve any industrial problem.

The following criticisms of the existing literatures, in general, are made 
after a study of the existing vast literature on the use of various types of 
MFs in finding out fuzziness patterns of MCDM methodologies: 

1. Data combining both ordinal and cardinal preferences contain non-
obtainable information and partially ignorant facts. Both ordinal and 
cardinal preferences contain a certain degree of fuzziness and are 
highly unreliable, unquantifiable and imperfect. 

2. Simplified fuzzy MFs, viz., trapezoidal and triangular and even gamma 
functions, are not able to bring out real-world fuzziness patterns in 
order to elucidate a degree of fuzziness inherent in the MCDM model. 

3. Level-of-satisfaction of the decision makers should be judged through a 
simple procedure while making decisions through MCDM models. 

4. An intelligent tripartite relationship among the decision maker, analyst 
and implementer is essential, in conjunction to a more flexible MF 
design, to solve any real-world MCDM problem. 

Among many diversified objectives of the current work, one objective 
is to find out fuzziness patterns of the candidate-alternatives having 
disparate level-of-satisfaction in MCDM model. Relationships among the 
degree of fuzziness, level-of-satisfaction and the selection-indices of the 
MCDM model guide decision makers under a tripartite fuzzy environment 
in obtaining their choice tradeoff with a predetermined allowable 
imprecision.

Another objective of the current work is to provide a robust, quantified 
monitor of the level-of-satisfaction among decision makers and to calibrate 
these levels of satisfaction against decision makers’ expectations. Yet 
another objective is to provide a practical tool for further assessing the 
impact of different options and available courses of action. 

the data that are provided by the decision maker, the analyst will formulate 
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3. COMPONENTS OF THE MCDM MODEL 

The proposed MCDM model considers a fuzziness pattern in disparate 
level-of-satisfaction of the decision maker. The model outlines a MF for 
evaluating degree of fuzziness hidden in the Eq. (1). AHP provides the 
decision maker’s with a vector of priorities (PV) to estimate the expected 
utilities of each candidate-FMS. 

A mathematical model was proposed by Bhattacharya et al. (2004, 
2005) to combine cost factor components with the importance weightings 
found from AHP. The governing Eq. of the said model is:

OFM = Objective factor measure, 
OFC = Objective factor cost, 
SFM = Subjective factor measure, 
SI = Selection index, 

= Objective factor decision weight,
n = Finite number of candidate-alternative.

iii 1 OFMSFMSI  (1) 

where

n

1l

l
l

l
1

OFCOFC
OFM  (2) 

In the said model, AHP plays a crucial role. AHP is an MCDM method, 
and it refers to making decisions in the presence of multiple, usually 
conflicting, criteria. A criterion is a measure of effectiveness. It is the basis 
for evaluation. Criteria emerge as a form of attributes or objectives in the 
actual problem setting. In reality, multiple criteria usually conflict with 
each other. Each objective/attribute has a different unit of measurement. 
Solutions to the problems by AHP are either to design the best alternative 
or to select the best one among the previously specified finite alternatives. 

For assigning the weights to each of the attributes as well as to the 
alternative processes for constructing the decision matrix and pair-wise 
comparison matrices, the phrase like “much more important” is used to 
extract the decision maker’s preferences. Saaty (1990) gives an intensity 
scale of importance (refer to Table 1) and has broken down the importance 
ranks.
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Table 1. The Nine-Point Scale of Pair-Wise Comparison 

Intensity scale Interpretation
1 Equally important
3 Moderately preferred
5 Essentially preferred
7 Very strongly preferred 
9 Extremely preferred
2, 4, 6, 8 Intermediate importance between two adjacent judgments 

In AHP the decision matrix is always a square matrix. Using the 
advantage of properties of eigenvalues and eigenvectors of a square 
matrix, the level of inconsistency of the judgmental values assigned to 
each elements of the matrix is checked. 

In this chapter the proposed methodology is applied to calculate the 
priority weights for functional, design factors and other important 
attributes by eigenvector method for each pair-wise comparison matrix. 
Next, global priorities of various attributes rating are found by using AHP. 
These global priority values are used as SFM in Eq. (1). The pair-wise 
comparison matrices for five different factors are constructed on the basis 
of Saaty’s nine-point scale (refer to Table 1). The objective factors, i.e., 
OFM, and OFC are calculated separately by using cost factor components.

In the mathematical modeling for finding the SFMi values, decomposi-
tion of the total problem (factor-wise) into smaller sub-problems has been 
done. This is done so that each sub-problem can be analyzed and 
appropriately handled with practical perspectives in terms of data and 
information. The objective of decomposition of the total problem for 
finding out the SFM values is to enable a pair-wise comparison of all the 
elements on a given level with respect to the related elements in the level 
just above. 

The proposed algorithm consists of a few steps of calculations. Prior to 
the calculation part, listing of the set of candidate-alternatives is carried 
out. Next, the cost components of the candidate-alternatives are quantified. 
Factors, on which the decision making is based, are identified as intrinsic 
and extrinsic. A graphical representation depicting the hierarchy of the 
problem in terms of overall objective, factors, and number of alternatives 
is to be developed. Next follows the assigning of the judgmental values to 
the factors as well as to the candidate-alternatives to construct the decision 
matrix and pair-wise comparison matrices, respectively. 

A decision matrix is constructed by assigning weights to each factor 
based on the relative importance of its contribution according to a nine-
point scale (refer to Table 1). Assigning the weights to each candidate-
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alternative for each factor follows the same logic as that of the decision 
matrix. This matrix is known as a pair-wise comparison matrix. The PV 
values are determined then for both the decision and the pair-wise 
comparison matrices. The max for each matrix may be found by 
multiplication of the sum of each column with the corresponding PV value 
and subsequent summation of these products. 

There is a “check” in the judgmental values given to the decision and 
pair-wise comparison matrices for revising and improving the judgments. 
If I.R. is greater than 10%, the values assigned to each element of the 
decision and pair-wise comparison matrices are said to be inconsistent. For 
I.R. < 10%, the level of inconsistency is acceptable. Otherwise the level of 
inconsistency in the matrices is high and the decision maker is advised to 
revise the judgmental values of the matrices to produce more consistent 
matrices. It is expected that all the comparison matrices should be 
consistent. But the very root of the judgment in constructing these matrices 
is the human being. So, some degree of inconsistency of the judgments of 
these matrices is fixed at 10%. Calculation of I.R. involves I.I., R.I., and 
I.R. These matrices are evaluated from Eqs. (3), (4) and (5) respectively.

max(    )I.I. = 
(     1)

n
n

 (3) 

[1.98  (   2)]R.I. = n
n

 (4) 

I.I.I.R. = 
R.I.

 (5) 

The OFMi values are determined by Eq (6). 

1
i i

1 i

1OFM  [OFC   ]
OFC

n

i

 (6) 

The SFMi values are the global priorities for each candidate-alternative. 
SFMi may be found by multiplying each of the decision matrix PV values 
to each of the PV value of each candidate-alternative for each factor. Each 
product is then summed up for each alternative to get SFMi.

For an easy demonstration of the proposed fuzzified MCDM model, 
efforts for additional fuzzification are confined assuming that differences 
in judgmental values are only 5%. Therefore, the upper bound and lower 
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bound of SFMi as well as SIi indices are to be computed within a range of 
5% of the original values. In order to avoid complexity in delineating the 
technique proposed hereinbefore, we have considered the 5% measurement. 
One can fuzzify the SFMi values from the very beginning of the model by 
introducing a modified S-curve MF in AHP, and the corresponding 
fuzzification of SIi indices can also be carried out using the holistic 
approach used in Eq. (1). The set of candidate-alternatives are then ranked 
according to the descending order of SIi indices (refer to Eq. 7). 

 (7) 

In this work, a monotonically nonincreasing logistic function has been 
used as a membership function:

 (8) 

where  is the level-of-satisfaction of the decision maker; B and C are 
scalar constants; and , 0< <  is a fuzzy parameter that measures the 
degree of vagueness (fuzziness), wherein = 0 indicates crisp. Fuzziness 
becomes highest when .

The generalized logistic membership function is defined as 

 (9) 

To fit into the MCDM model in order to sense its degree of fuzziness, 
the Eq. (9) is modified and redefined as follows: 
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In Eq. (10) the membership function is redefined as 0.001 (x)
0.999. This range is selected because in real-world situations the 
workforce need not be always 100% of the requirement. At the same time 
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the workforce will not be 0%. Therefore, there is a range between x0 and x1

with 0.001 ( )x  0.999. This concept of range of ( )x is used in this 
chapter.

Choice of the level-of-satisfaction of the decision maker, i.e., , is an 
important issue. It is the outcome of the aggregate decision by the design 
engineer, production engineer, maintenance engineer, and capital investor 
of a manufacturing organization. However, the selection of a candidate-
alternative may give different sets of results for different values of  for 
the same attributes and cost factor components. That’s why the proposed 
model includes fuzzy-sensitivity plots to analyse the effect of  as well as 
the degree of fuzziness, , in the candidate-alternative selection problem. 

4. FORMULATION OF THE INTELLIGENT 
FUZZIFIED MCDM MODEL 

4.1 Membership Function

There are 11 in-built membership functions in the MATLAB fuzzy 
toolbox. In the current study, a modified version of No. 7 MF has been 
used. All the built-in MF includes 0 and 1. In the current work, 0 and 1 
have been excluded and the S-shaped membership function has been 
extensively modified accordingly.

As mentioned by Watada (1997), a trapezoidal MF will have some 
difficulties such as degeneration, i.e., some sort of deterioration of 
solution, while introducing fuzzy problems. In order to solve the issue of 
degeneration, we should employ a non linear logistic function such as a 
tangent hyperbolic that has asymptotes at 1 and 0.  

In the current work, we employ the logistic function for the nonlinear 
membership function as given by

( )
1 x

Bf x
Ce

 (11) 

where B and C are scalar constants and , 0 <  <  is a fuzzy 
parameter that measures the degree of vagueness, wherein  = 0 indicates 
crisp. Fuzziness becomes highest when .

Eq. (11) will be of the form as indicated by Figure 4 when 0 <  < .
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Figure 4. Variation of logistic MF with respect to fuzzy parameter,  (where m2 > m1)

The reason why we use this function is that the logistic MF has a similar 
shape as that of the tangent hyperbolic function employed by Leberling 
(1981) but it is more flexible (Bells, 1999) than the tangent hyperbola. It is 
also known that a trapezoidal MF is an approximation to a logistic function. 
Therefore, the logistic function is very much considered an appropriate 
function to represent a vague goal level. This function is found to be very 
useful in making decisions and in implementation by the decision maker 
and implementer (Lootsma, 1997; Zimmerman, 1985; 1987).  

especially in industrial engineering problems, a non linear function such as 
modified MF can be used. This MF is used when the problems and its 
solutions are independent (Varela and Riberio, 2003). It should be 
emphasized that some nonlinear MFs such as S-curve MFs are much more 
desirable for real-life application problems than that of linear MFs. 

The logistic function, Eq. (11), is a monotonically nonincreasing 
function, which will be employed as a fuzzy MF. This is very important 
because, due to an uncertain environment the availability of the variables 
are represented by the degree of fuzziness.

The said MF can be shown to be non increasing as

2(1 )

x

x

df BC e
dx Ce

 (12) 

Moreover, to avoid linearity in the real-life application problems, 
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An MF is flexible when it has vertical tangency, an inflexion point, and 

asymptotes. Since B, C, , and x are all greater than zero, 0df
dx

.

Furthermore it can be shown that Eq. (11) has asymptotes at f(x) = 0 and 
f(x) = 1 at appropriate values of B and C. This implies: 

– lim 0
x

df
dx

 and 
0

lim 0
x

df
dx

These asymptotes can be proved as follows. 

From Eq. (12), one gets 

lim
x

df
dx

.

Therefore, using L’hopital’s rule, one obtains 

lim lim
2(1 )xx x

df B
dx Ce

= 0 (13)

As 0x , the situation is less vague and hence 0 .
From Eq. (12), one gets  

20
lim 0

(1 )x

df BC
dx C

, when 0  (14) 

In addition to the above equation, it can be shown that the logistic 
0 0 0

Furthermore it can also be shown that the said logistic function has a 
point of inflexion at x = x0, such that 0

'' ( )f x , with '' ( )f x being the 
second derivative of f(x) with respect to x. An MF of S-curve nature, in 
contrast to linear function, exhibits the real-life problem. 

The generalized logistic MF is defined as 

function Eq. (11) has a vertical tangent at x = x , x  is the point where f(x ) = 0.5. 
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(15)

The S-curve MF is a particular case of the logistic function defined in 
Eq. (15). The said S-curve MF has specific values of B, C and . The 
logistic function as defined in Eq. (11) was indicated as an S-curve MF by 
Zadeh (1971; 1975).

4.2 Design of Modified, Flexible S-curve MF

To fit into the MCDM model in order to sense its degree of fuzziness,  
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 (16) 

Figure 5. Modified S-curve membership function 
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Eq. (15) is modified and redefined as follows and illustrated in Figure 5. 



256 P. Vasant et al.

We rescale the x-axis as xa = 0 and xb = 1 in order to find the values of 
B, C, and . Nowakowska (1977) has performed such a rescaling in his 
work on the social sciences.

The values of B, C, and  are obtained from Eq. (16) as

B = 0.999 (1 + C) (17)

0.001.
1 y

B
Ce

 (18) 

By substituting Eq. (17) into Eq. (18), one gets 

0.999 1
0.001.

1 y

C
Ce

(19)

Rearranging Eq. (19), one gets 

1 0.998ln 0.999 .
0.001 C

 (20) 

Since B and depend on C, one requires one more condition to get the 
.

Let, when 0 2

a bx xx , (x0) = 0.5.

Therefore,

2

0.5
1

B

Ce
, (21)

and hence

2 12ln .B
C

 (22) 

values for B, C, and 
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Substituting Eq. (20) and Eq. (21) into Eq. (22), we obtain 

2(0.999)(1 ) 1 1 0.9982 ln ln 0.999
0.001

C
C C

   (23) 

20.998 1.998 998 999C C C  which in turn yields (24) 

Eq. (24) is solved and it is found that

–994.011992 988059.8402 3964.127776
1990.015992

C   (25) 

Since C has to be positive, Eq. (22) gives 001001001.0C , and 
from Eqs. (17) and (22), one gets B = 1 and  = 13.81350956.

Thus, it is evident from the preceding sections that the flexible, 
modified S-curve MF can be more easily handled than other nonlinear MFs 
such as the tangent hyperbola. The linear MF such as the trapezoidal MF is 
an approximation from a logistic MF and is based on many idealistic 
assumptions. These assumptions contradict the realistic real-world 
problems.

Therefore, the S-curve MF is considered to have more suitability in 
sensing the degree of fuzziness in the fuzzy-uncertain judgmental values of 
a decision maker. The modified S-curve MF changes its shape according to 
the fuzzy judgmental values of a decision maker and therefore, a decision 
maker finds it suitable to apply his/her strategy to MCDM problems using 
these judgmental values. 

Thus the proposed S-shaped membership function is flexible due to its 
following characteristics: 

(i) (x) is continuous and strictly monotonously nonincreasing; 
(ii) (x) has lower and upper asymptotes at (x) = 0 and (x) = 1 

as x  and x  0, respectively; 
(iii) (x) has inflection point at 

0
1 1ln 2 with 1x A C

C
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The fuzzy intelligence of the proposed MCDM model is incorporated 
under a tripartite environment. A fuzzy rule-based decision (if then rule) 
is incorporated in the algorithm to sense the fuzziness patterns under a 
disparate level-of-satisfaction of the decision maker. The aim is to produce 
a rule that works well on previously unseen data. 

In the next chapter it will be demonstrated how to compute the degree 
of fuzziness and level-of-satisfaction, and a correlation among degree of 
fuzziness having a disparate level-of-satisfaction and the selection indices 
will also be elucidated to guide the decision maker in selecting the best 
candidate-alternative under an unstructured environment. 

5. CONCLUSION

The proposed MCDM model shows how to measure a parameter called 
“level-of-satisfaction” of the decision maker while making any kind of 
decision. “Level-of-satisfaction” is a much-quoted terminology in classic 
as well as modern economics. To date, we are not aware of any reported 
research work in which level-of-satisfaction has been measured with a 
rigorous mathematical logic. The proposed model is a one-of-a-kind 
solution to incorporate the “level-of-satisfaction” of decision maker. 
Another solution can also be made with many sophisticated tools, like 
some approximation tool using neuro-fuzzy hybrid models.

The strength of the proposed MCDM methodology lies in combining 
both cardinal and ordinal information to get eclectic results from a 
complex, multi-person, and multi-period problem hierarchically. The 
methodology proposed in this chapter is very useful in quantifying the 
intangible factors in a good manner and in finding out the best among the 
alternatives depending on their cost factors. Contrary to the traditional way 
of selection using discounted cash flow (DCF), this methodology is a 
sound alternative to apply under an unstructured environment. 

There may be some weaknesses due to the nonavailability of experts’ 
comments, i.e., judgmental values. Comparison among various similar 
types of systems is the opportunity of the proposed model. An underlying 
threat is associated with the proposed model that a illogical decisions and 
mis-presentation of experts comments may lead to a wrong decision. 

The MCDM methodology proposed in this chapter assumes that the 
decision is made under a fuzzy environment. A comparative study by 
accommodating different measures of uncertainty and risk in the MADM 
methodology may also be made to judge the best-suited measure of 
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uncertainty. A knowledge-based system may be developed based on the 
modified AHP. 
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Abstract: This chapter outlines an intelligent fuzzy multi-criteria decision-making 
(MCDM) model for appropriate selection of a flexible manufacturing system 
(FMS) in a conflicting criteria environment. A holistic methodology has been 
developed for finding out the “optimal FMS” from a set of candidate-FMSs. 
This method of trade-offs among various parameters, viz., design parameters, 
economic considerations, etc., affecting the FMS selection process in an 
MCDM environment. The proposed method calculates the global priority 
values (GP) for functional, design factors and other important attributes by  
an eigenvector method of a pair-wise comparison. These GPs are used as 
subjective factor measures (SFMs) in determining the selection index (SI).  
The proposed fuzzified methodology is equipped with the capability of 
determining changes in the FMS selection process that results from making 
changes in the parameters of the model. The model achieves balancing among 
criteria. Relationships among the degree of fuzziness, level-of-satisfaction and 
the SIs of the MCDM methodology guide decision makers under a tripartite 
fuzzy environment in selecting their choice of trading-off with a predetermined 
allowable fuzziness. The measurement of level-of-satisfaction during making 
the appropriate selection of FMS is carried out. 
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1. INTRODUCTION

A flexible manufacturing system (FMS) is a set of integrated computer-
controlled, automated material handling equipments and numerical-controlled 
machine tools capable of processing a variety of part types. Due to the 
competitive advantages like flexibility, speed of response, quality, reduction 
of lead-time, reduction of labour etc., FMSs are now gaining popularity in 
industries.

Today’s manufacturing strategy is purely a choice of alternatives. The 
better the choice, more will be the productivity as well as the profit 
maintaining quality of product and responsiveness to customers. In this era 
of rapid globalization, the overall objective is to purchase a minimum 
amount of capacity (i.e., capital investment) and utilize it in the most 
effective way. Although FMS is an outgrowth of existing manufacturing 
technologies, its selection is not often studied. It has been a focal point in 
manufacturing related research since the early 1970s. FMS provides a low 
inventory environment with unbalanced operations unique to the 
conventional production environment. The process design of an FMS 
consists of a set of crucial decisions that are to be made carefully. It requires 
decision making, e.g., selection of a CNC machine tool, material handling 
system, or product mix. The selection of a FMS thus requires trading-off 
among the various parameters of the FMS alternatives. The selection 
parameters are conflicting in nature. High-quality management is not enough 
for dealing with the complex and ill-structured factors that are conflicting in 
nature (Buffa, 1993). Therefore, there is a need for sophisticated and 
applicable technique to help the decision makers for selecting the proper 
FMS in a manufacturing organization. 

The authors, thus, propose a DSS methodology, for appropriate FMS 
selection, that trade off among some intangible criteria as well as cost factors 
to get the maximum benefit out of these conflicting-in-nature criteria. There 
have been many contributors to the literature on selection of proper FMS. A 
selective review of some of the relevant works in this area is give here. 
Kaighobadi and Venkatesh (1994) presented an overview and survey of 
research in FMSs. They also presented a definition of FMSs. Chen et al. 
(1998) investigated the relationship between flexibility measurements and 
system performance in the flexible manufacturing systems environment. The 
authors suggested several alternative measures for the assessment of 
machine flexibility and routing flexibility—two of the most important 
flexibility types discussed in the literature. Nagarur (1992) showed that 
computer integration and flexibility of the system were the two critical 
factors of FMS. Eight different types of flexibility were proposed by Browne 
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et al. (1984). Each of these flexibilities contributes to overall flexibility of 
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the system to cope with possible changes in demand structure. In addition to 
machine, process, product, routing, volume, expansion, operation and 
production flexibility as described by Browne et al. (1984). Barad and Sipper 
(1988) introduced another classification, i.e., transfer flexibility. Buzacott 
and Mandelbaum (1985) defined flexibility as the ability of a manufacturing 
system to cope with changing circumstances. High-level flexibility enables a 
manufacturing firm to provide faster response to market changes maintaining 
high product quality standards (Gupta and Goyal, 1989). 

Flexible manufacturing provides an environment where integration 
effects cannot be eliminated (Lenz, 1988). If the inventory is raised,  
the manufacturing environment becomes that of the job shop type. On the 
contrary, if the operations are balanced, the environment becomes that of the 
transfer line. The changes in production are related to both inventory 
changes as well as changes in flow time. Three variables determine the 
amount of integration effects that result in a production process. These are 
inventory level, balanced loading, and flexibility. Inventory level is 
quantified by counting the number of parts that are active in the production 
process. Balanced loading can be quantified by the use of flow time. The use 
of flow time is to measure the balance within a production facility, and it is 
derived from the transfer line. The flow time provides a means to measure 
the balance between station loads in any type of production facility. 
Flexibility can be measured by the variability of the flow time. A process 
with greater degree of flexibility will provide less variability to the flow 
time.

Meredith and Suresh (1986) addressed justification of economic analysis 
and of analytical and strategic approaches in advanced manufacturing 
technologies. Evaluation of FMS alternatives was earlier carried out by 
Miltenburg and Krinsky (1987). They analyzed traditional economic 
evaluation techniques for the evaluation. Nelson (1986) formulated a scoring 
model for FMS project selection. Performance measures, viz., quality and 
flexibility, were also quantified in the scoring model. Use of the analytic 
hierarchy process (AHP) for evaluation of tangible and intangible benefits 
during FMS investment was reported by Wabalickis (1988). Stam and Kuula 
(1991) developed a two-phase decision support procedure using AHP and 
multi-objective mathematical programming for selection of FMS. 
Sambasivarao and Deshmukh (1997) presented a DSS integrating multi-
attribute analysis, economic analysis and risk evaluation analysis. They have 
suggested AHP, TOPSIS (technique for order preference for similarity to 
ideal solution), and a linear additive utility model as an alternative multi-
attribute analysis model. Shang and Sueyoshi (1995) formulated a model of 
simulation and data envelopment analysis (DEA) along with AHP for FMS 
selection. Karsak and Tolga (2001) proposed a fuzzy-MCDM approach for 
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evaluation of advanced manufacturing system investments considering 
economic and strategic selection criteria. Karsak (2002) proposed a robust 
decision-making procedure for evaluating FMS using a distance-based 
fuzzy-MCDM philosophy.

Some researchers (Chen et al., 1998; Evans and Brown, 1989) believe 
that qualitative benefits cannot be considered mathematically unless one uses 
a knowledge-based system. This dissertation outlines a mathematical 
approach based on the judgmental values of a decision maker that can help 
decision makers in selecting the cost-effective FMS. 

Abdel-Malek and Wolf (1991) propose a “measure” for the decision-
making process. The said “measure” ranks different competing FMS designs 
according to their inherent flexibility as they relate to the maximum 
flexibility possible stipulated by the state-of-the-art. In developing the 
proposed “measure,” the attributes governing the flexibility of FMS major 
components are defined. A notion of “strings” representing alternative 
production routes for different products is set forth. The method allows the 
integration of the eight points of flexibility stated by Browne et al. (1984) 
into a single comprehensive flexibility indicator. 

Elango and Meinhart (1994) provide a framework for selection of an 
appropriate FMS using a holistic approach. The selection process considers 
operational and financial aspects. Furthermore, their selection process is 
consistent with industry, market, organizational, and other strategic needs. 

A DSS for dynamic task allocation in a distributed structure for flexible 
manufacturing systems FMS has been developed by Trentesaux et al. (1998). 
An entity of the manufacturing system is considered as an autonomous 
agent, called the integrated management station (IMS), able to cooperate 
with other agents to achieve a global production program. Cooperation is 
performed by exchanging messages among the different agents. The 
characteristics of a DSS that supports multi-criteria algorithms and 
sensitivity tests is presented in Trentesaux et al. (1998). This DSS is 
integrated to each decision system of every IMS. Trentesaux et al.’s (1998) 
research work aims at allocating tasks in a dynamic way by proposing to the 
human operator a selection of possible resources. 

Sarkis and Talluri (1999) disclose a model for evaluating alternative 
FMSs by considering both quantitative and qualitative factors. The 
evaluation process uses a DEA model, which incorporates both ordinal and 
cardinal measures. The model provides pair-wise comparisons of specific 
alternatives for FMSs. The consideration of both tangible and intangible 
factors is achieved in their methodology. The analysis of results provides 
both seller’s and buyer’s perspectives of FMS evaluation. 

The decision-making process for machine-tool selection and operation 
allocation in a FMS usually involves multiple conflicting objectives. Rai et al. 
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(2002) address application of a fuzzy goal-programming concept to model 
the problem of machine-tool selection and operation allocation with explicit 
considerations given to objectives of minimizing the total cost of machining 
operation, material handling, and set up. The constraints pertaining to the 
capacity of machines, tool magazine, and tool life are included in the model. 
A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy 
goal-programming model. 

Advanced computing/communications technology is present in virtually 
all areas of manufacturing. In the near future, a totally computer-controlled 
manufacturing environmental will be a realistic expectation (Haddock and 
Hartshorn, 1989). The integration and enhancement of both computer-aided 
design (CAD) and computer-aided manufacturing (CAM) represents the 
foundations for achieving a totally integrated manufacturing system. 

The requirements for increased responsiveness to market and the 
demands for shorter product introduction times underline the need for a 
coherent formal approach toward equipment selection to support the 
knowledge and experience of the engineers entrusted with this important 

decision making in manufacturing system design, the search for the right 
structure depends on the capability of the designers to compare different 
solutions using common approaches in an integrated decision-making 
environment (Gindy and Ratchev, 1998). 

Thus, machine tool selection has strategic implications that contribute to 
the manufacturing strategy of a manufacturing organization (Yurdakul, 
2004). In such a case, it is important to identify and model the links between 
machine tool alternatives and manufacturing strategy (Yurdakul, 2004). 

Haddock and Hartshorn (1989) present a DSS that assists in the specific 

selection will depend on part characteristics, which are labeled in a part code 
and correlated with machine specifications and qualifications. The choice of 
the optimal machine, versus possible alternates, is made by a planner 
comparing a criterion measure. Some possible criteria for selection as 
suggested by Haddock and Hartshorn (1989) are the relative location of 
machines, machining cost, processing time and availability of a machine. 

Tabucanon et al. (1994) propose an approach to the design and 
development of an intelligent DSS that is intended to help the selection 
process of alternative machines for FMS. The process consists of a series of 
steps starting with an analysis of the information and culminating in a 
conclusion—a selection from several available alternatives and verification 
of the selected alternative to solve the problem. The approach combines the 
AHP technique with the rule-based technique for creating expert systems 
(ESs). This approach determines the architecture of the computer-based 

task (Gindy and Ratchev, 1998). With the increasing complexity of the

selection of a machine required to process specific dimensions of a part. The
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environment necessary for the decision support software system to be 
created. It includes the AHP software package (Expert Choice), Dbase III + 
DBMS, Expert System shell (EXSYS), and Turbo Pascal compiler (for the 
external procedural programs). A prototype DSS for a fixed domain, namely 
a CNC turning center that is required to process a family of rotational parts, 
is developed. Tabucanon et al.’s (1994) methodology helps the user to find 
the most “satisfactory” machine on the basis of several objective as well as 
subjective attributes. 

Flexible manufacturing cells (FMCs) have been used as a tool to 
implement flexible manufacturing processes to increase the competitiveness 

decision makers encounter the machine selection problem, including 
attributes, e.g., machine type, cost, number of machines, floor space, and 
planned expenditures (Wang et al., 2000). Wang et al. (2000) propose a 
fuzzy multiple-attribute decision-making (FMADM) model to assist the 
decision maker to deal with the machine selection problem for an FMC 
realistically and economically. In their work, the membership functions of 
weights for those attributes are determined in accordance with their 
distinguishability and robustness when the ranking is performed. 

AHP is widely used for tackling FMS selection problems due to the 
concept’s simplicity and efficiency (Sambasivarao and Deshmukh, 1997). 
But AHP, as it is, do not take into consideration tangible factors, such as cost 
factors (Saaty, 1980, 1986, 1990). Thus, there is a need to allow cardinal 
factors in AHP to make the model robust and more efficient. In this chapter, 
a robust MCDM procedure is proposed using AHP that incorporates 
qualitative as well as quantitative measures for the FMS selection problem. 
The methodology proposed is very useful first to quantify the intangible 
factors in a strong manner and then to find out the best among member 
alternatives depending on their cost factors. 

Some researchers believe that qualitative benefits cannot be considered 
mathematically unless one uses a knowledge-based system (Chen et al., 
1998; Evans and Brown, 1989). This chapter outlines a fuzzified intelligent 
approach based on the judgmental values of the decision maker in selecting 
the most cost-effective FMS. One objective of this chapter is to find out 
fuzziness patterns of FMS selection decisions having a disparate level-of-
satisfaction of the decision makers. Another objective is to provide a robust, 
quantified monitor of the level of satisfaction among decision makers and to 
calibrate these levels-of-satisfaction against decision makers’ expectations. 

of manufacturing systems (Wang et al., 2000). In implementing an FMC,
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2. FMS SELECTION PROBLEM 

As a first step in testing the MCDM model proposed in the previous chapter, 
the authors have illustrated an example with FMS selection. Six different 
types of objective cost components have been identified for the selection 
problem. The total costs of each alternative are nothing, but the objective 
factor costs (OFCs) of the FMSs (refer to Table 1). The task is to select the 
best candidate-FMS among five candidate-FMSs. 

Table 1. Cost Factor Components 

FMS/OFCs S1 S2 S3 S4 S5

1. Cost of Acquisition 1.500 0.800 1.300 1.00 0.900 
2. Cost of Installation 0.075 0.061 0.063 0.053 0.067 
3. Cost of Commissioning  0.063 0.052 0.055 0.050 0.061 
4. Cost of Training 0.041 0.043 0.046 0.042 0.040 
5. Cost of Operation 0.500 0.405 0.420 0.470 0.430 
6. Cost of Maintenance 0.500 0.405 0.420 0.470 0.430 
Total Cost (OFC) 2.239 1.431 1.949 1.669 1.550 
Objective Factor Measure (OFMi) 0.154 0.241 0.177 0.206 0.222 

The subjective attributes influencing the selection of FMS are shown  
in Table 2. The study consists of five different attributes, viz., flexibility in 
pick-up and delivery, flexibility in the conveying system, flexibility in 
automated storage and retrieval system, life expectancy/payback period, and 
tool magazine changing time. One may consider other attributes appropriate 
to selection of FMS. The attributes influencing the FMS selection problem 
are shown in Table 2. 

Table 2. Attributes Influencing the FMS Selection Problem 

Factor I Factor II Factor III Factor IV Factor V 
Flexibility in 
pick-up and 
delivery

Flexibility in 
conveying
system

Flexibility in 
automated
storage and 
retrieval system 

Life
expectancy/pay 
back period 

Tool
magazine
changing
time

The MATLAB® fuzzy toolbox has been used in this work wherein a 
logical intelligent rule has been coded in M-file suitably using the designed 
MF.
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3. SIMULATION USING MATLB®

The most important task for a decision maker is the selection of the factors. 
Thorough representation of the problem indicating the overall goal, criteria, 
sub-criteria (if any), and alternatives in all levels maintaining the sensitivity 
to change in the elements is a vital issue. The number of criteria or 
alternatives in the proposed methodology should be reasonably small to 
allow consistent pair-wise comparisons.  

Matrix 1 is the decision matrix based on the judgmental values from 
different judges. Matrices 2 to 6 show comparisons of the weightages for each 
attribute. Matrix 7 consolidates the results of the earlier tables in arriving at the 
composite weights, i.e., SFMi values, of each of the alternatives. 

Matrix 1. Decision matrix (I.R. = 4.39%)

Matrix 2. Pair-wise comparison matrix for ‘F1’ (I.R. = 4.48%) 

Matrix 3. Pair-wise comparison matrix  

1 5 3 4 5

1 1 11 1
5 3 2
1 =  3 1 3 5
3
1 12 1 3
4 3
1 1 11 1
5 5 3

D

2

1 7 3 5 6

1 1 1 11
7 4 3 2
1 =  4 1 3 4
3
1 13 1 2
5 3
1 1 12 1
6 4 2

A

1

1 3 2 5 4

1 11 5 2
3 3
1 =  3 1 4 3
2
1 1 1 11
5 5 4 3
1 1 1 3 1
4 2 3

A
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5

11 5 7 4
3

3 1 5 6 4

1 1 1 =  1 2
5 5 2
1 1 1 11
7 6 2 3
1 1 2 3 1
4 4

A

0.471 0.076 0.259 0.131 0.063
0.408 0.512 0.366 0.273 0.305
0.159 0.051 0.104 0.501 0.458

 = 
0.279 0.246 0.338 0.103 0.074
0.050 0.117 0.151 0.075 0.047
0.103 0.075 0.040 0.047 0.116

G

Matrix 4. Pair-wise comparison matrix  for F2 (I.R. = 3.32%) for  
F3 (I.R. = 1.88%) 

Matrix 5. Pair-wise comparison matrix  

Matrix 6. Pair-wise comparison matrix for F4 (I.R. = 6.22%) and for  
F5 (I.R. = 6.87%) 

Matrix 7. Final matrix to find out Global Priority 

In the proposed methodology, the unit of OFC is US$, whereas the 
objective factor measure (OFM) is a non dimensional quantity. Correspon-

3

1 4 1 3 7

1 1 11 5
4 4 2

 =  1 4 1 2 7

1 12 1 3
3 2
1 1 1 1 1
7 5 7 3

A

4

11 5 3 6
3

3 1 5 7 6

1 1 =  1 2 3
5 5
1 1 1 1 2
3 7 2
1 1 1 1 1
6 6 3 2

A
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dingly, the SI is also a non-dimensional quantity. The higher the SI values, 
the better would be the selection. The value of the objective factor decision 
weight ( ) lies between 0 and 1. For  = 0, SI = SFM; i.e., selection is solely 
dependent on subjective factor measure values found from AHP and SFM 
values dominate over OFM values. There is no significance of considering 
the cost factor components for  = 0. For  = 1, SI = OFM; i.e., OFM values 
dominate over the SFM values, and the FMS selection is dependent on OFM 
values only. For  = 1, the cost factors get priority over the other factors. 
Keeping this in mind, the values of  are taken in between 0 and 1. To verify 
the practicality and effectiveness of the final outcome of the proposed 
methodology, sensitivity analysis is done. 

The basic fuzzified equation governing the selection process is recalled 
once again. It is to be remembered that the Eq. (1) (Wabalickis, 1988) uses 
MF as depicted by Eq. (2).  

SFM
LSI

LSI LSI 1LSI LSI ln 1
i

i

U L
i L

A
C

 (1) 

1
0.999

1
0.001
0

a

a

a b
x

b

b

x x
x x

Bx x x x
Ce

x x
x x

 (2) 

The intelligent decision algorithm generates the coefficients of the fuzzy 
constraints in the decision variables. The rule first declares a function Cj and 
assigns the constants in the MF. The aim is to produce a rule that works well 
on previously unseen data, i.e., the decision rule should “generalize” well. 
An example is appended below: 

function [cj] = mpgen(cj0,cj1,gamma,mucj) 
B = (0.998 / ((0.001 × exp(gamma))  0.999)); 
A=0.999 × (1 + B); 
cj=cj0 + ((cj1  cj0) / gamma) × (log((1 / B) × ((A / mucj)  1))); 

The rule supports this work by allowing the call to the function to contain 
a variable, which is automatically set to different values as one may request. 
The logical way in which the intelligent fuzzy-MCDM acts as an agent in the 
entire system includes many if  else rules. 

A. Bhattacharya et al.
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3.1 Fuzzy Sensitivity of the MCDM Model 

In a real-life situation, the decision environments rarely remain static. 
Therefore, it is essential to equip the proposed decision-making model with 
the capability to determine changes in the selection process that results from 
making changes in the parameters of the model. So, the dynamic behavior of 
the optimal selection found from the proposed methodology can be checked 
through the fuzzy-sensitivity plots. 

Among all the FMSs, FMS1 has the highest SI value when the objective 
factor decision weight lies between 0.33 and 1.00. However, FMS2 would be 
preferred to other FMS candidate-alternatives when the value of level-of-
satisfaction lies between 0.00 and 0.33. 

The appropriate value of the level-of-satisfaction is to be selected 
cautiously. The reason behind this is as follows. The higher the  value, the 
dominance of the SFMi values will be higher. The lower the  value, more 
will be the dominance of cost factor components, and subsequently, the 
intangible factors will get less priority. 

Table 3 illustrates the final ranking based on the proposed model. From the 
Table 3 and Figures 16 to 20 ranking of the candidate-alternatives is FMS1
FMS2  FMS3  FMS5  FMS4, i.e., FMS1 is the best alternative at decision 
maker’s level-of-satisfaction  = 0.42. Table 3 is a clear indication of 
accepting the proposed methodology for the selection problem in a 
conflicting-criteria environment. 

Relationship between the degree of fuzziness, , versus level-of-
satisfaction ( ) has been depicted for all candidate-FMSs by Figures 1 to 5. 
This is a clear indication that the decision variables allow the MCDM model 
to achieve a higher level-of-satisfaction with a lesser degree of fuzziness. 
Figures 6 to 10 and 11 to 15 delineate SI indices versus level-of-satisfaction 
( ) and SI indices versus degree of fuzziness ( ), respectively. 
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Figure 1. Fuzziness ( ) vs.  contour plot 
for FMS1

Figure 2. Fuzziness ( ) vs.  contour plot 
for FMS2

273



 Figure 3. Fuzziness ( ) vs.  contour plot 
for FMS3

Figure 4. Fuzziness ( ) vs.  contour plot 
for FMS4

Figure 5. Fuzziness ( ) vs.  contour plot 
for FMS5

Figure 6. SI vs.  contour plot for FMS1

Figure 7. SI  vs.  contour plot for FMS2 Figure 8. SI vs.  contour plot for FMS3
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Figure 9. SI vs.  contour plot for FMS4 Figure 10. SI vs.  contour plot for FMS5

Figure 11. SI vs.  contour plot for FMS1 Figure 12. SI vs.  contour plot for FMS2

Figure 13. SI vs.  contour plot for FMS3 Figure 14. SI vs.  contour plot for FMS4
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Figure 15. SI vs.  contour plot for FMS5 Figure 16. Fuzzy-sensitivity for FMS1

Figure 17. Fuzzy-sensitivity for FMS2 Figure 18. Fuzzy-sensitivity for FMS3

Figure 19. Fuzzy-sensitivity for FMS4                 Figure 20. Fuzzy-sensitivity for FMS5
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Combining the plots as illustrated in Figures 1 15, one gets Figures 
16 20. These figures elucidate 3-D mesh and contour plots. Basically Figures 
16 20 illustrate fuzzy-sensitivity indicating relationships among SI indices, 
and . Furthermore, from these plots, it is seen that the decision variables, as 
defined in Eq. (1), allow the MCDM model to achieve a higher level-of-
satisfaction ( ) with a lesser degree of fuzziness ( ).

Table 3. Ranking of the Systems 

Candidate-FMS SIi Rank # 
FMS1 0.249 #1
FMS2 0.224 #2
FMS3 0.210 #3
FMS4 0.155 #5
FMS5 0.162 #4

According to Table 3, the best alternative is FMS1 with the selection 
index of 0.249. The worst alternative is FMS4 with the selection index of 
0.155.

4. GENERAL DISCUSSIONS AND CONCLUSION 

This chapter outlined an intelligent fuzzy-MCDM model for appropriate 
selection of an FMS in a conflicting criteria environment. The proposed 
method calculates the GP for functional, design factors and other important 
attributes by eigenvector method of pair-wise comparison. These GPs are 
used as SFMs in determining SI. 

In a real-life situation, the decision environments rarely remain static. So, 
the dynamic behavior of the optimal selection found from the proposed 
methodology has been checked through the fuzzy-sensitivity plots. Figures 
16 20 teach an interesting phenomenon that is found in nature. At a lower 
level-of-satisfaction ( ), the chances of getting involved in a higher degree of 
fuzziness ( ) increase. Therefore, a decision maker’s level-of-satisfaction 
should be at least moderate in order to avoid higher degree of fuzziness while 
making any kind of decision using the proposed MCDM model delineated in 
the previous chapter. 

The methodology proposed is very useful first in quantifying the 
intangible factors in a strong manner and then in finding out the best among 
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the alternatives depending upon their cost factors. Contrary to the traditional 
way of selection using discounted cash flow (DCF), this methodology is a 
sound alternative to apply under an unstructured environment. The fuzzy-
sensitivity strengthens the validity of the proposed methodology. It verifies 
the practicability as well as the effectiveness of the proposed DSS method. 

It is not possible for an individual to consider all the factors related to 
FMS as follows: 

FMSs are available in a wide range, 
Performance standards of the systems are not uniform, and 
Expression of capabilities and performance attributes among manufacturers 
are inconsistent and incommensurable.

Thus, a decision-making expert system may help the decision maker in 
selecting the most cost-effective FMS considering the conflicting-in-nature 
factors of the systems. 

The selection problem of FMS is complex due to the high capital costs 
involved and to the presence of multiple conflicting criteria. One can reduce 
investment and maintenance costs, increase equipment utilization, increase 
efficiency, as well as improve facilities layout by selecting the right system 
suitable for the operations to be carried out. 
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Abstract: This chapter addresses the use of Monte Carlo simulation to reflect 
uncertainty as expressed by fuzzy input. Fuzziness is expressed through 
grey-related analysis, using interval fuzzy numbers. The method standardizes 
inputs through norms of interval number vectors. Interval-valued indexes are 
used to apply multiplicative operations over interval numbers. The method 
is demonstrated on a practical problem. Simulation offers a more complete 
understanding of the possible outcomes of alternatives as expressed by 
fuzzy numbers. The focus is on probability rather than on maximizing 
expected or extreme values.  

Key words: Fuzzy sets, Monte Carlo simulation, grey-related analysis, data mining 

1. INTRODUCTION 

This chapter addresses the use of Monte Carlo simulation to reflect 
uncertainty as expressed by fuzzy input. Simulation offers a more 
complete understanding of the possible outcomes of alternatives as 
expressed by fuzzy numbers. The focus is on probability rather than on 
maximizing expected or extreme values. Both weights and alternative 
performance scores are allowed to be fuzzy. Both interval and trapezoidal 
fuzzy input can be considered (see Olson and Wu, 2005, 2006). 

Fuzzy concepts have long been important in multiple criteria analysis 
(Dubois, 1980; Gau and Buehrer, 1993; Pawlak, 1982; Pearl, 1988; 
Pedrycz, 1998). Simulation has been applied to the analytical hierarchy 

Department of Management, University of Nebraska, Lincoln, NE Department of 



282 D.L. Olson and D. Wu

process (AHP) (Levary and Wan, 1998), generating random pair-wise 
comparison input values. The uncertainty and fuzziness inherent in 
decision making makes the use of precise numbers problematic in multi-
attribute models. Decision makers are usually more comfortable providing 
intervals for specific model input parameters. Interval input in multi-
attribute decision making has been a very active field of research. Methods 
applying intervals have included (along with many others, see Zhang et al., 
2005):

1. Use of interval numbers as the basis for ranking alternatives
 Brans and Vincke, 1985;  
 El-Hawary, 1998; 
 Chang and Yeh, 2004;  
 Kahraman et al., 2004. 

2. Error analysis with interval numbers 
 Larichev and Moshkovich, 1991. 

3. Use of linear programming and object programming with feasible 
regions bounded by interval numbers 
 Roy, 1978; 
 Liu et al., 1999; 
 Royes et al., 2003. 

4. Use of interval number ideal alternatives to rank alternatives by their 
nearness to the ideal 
 Wang et al., 2004. 

AHP was presented (Saaty, 1977) as a way to take subjective human 
inputs in a hierarchy and to convert these to a value function. This method 
has proven extremely popular. Salo and Hamalainen (1992) published their 
interval method using linear programming over the constrained space of 
weights and values as a means to incorporate uncertainty in decision-
maker inputs to AHP hierarchies. 

The problem of synthesizing ratio judgments in groups was considered 
very early in AHP (Aczel and Saaty, 1983). Fuzzy AHP was proposed as 
another way to reflect uncertainty in subjective inputs to AHP in the same 
group context (Buckley, 1984; 1985a; 1985b). Simulation has been 
presented as a way to rank order alternatives in the context of AHP values 
and weights (Levary and Wan, 1998). 

Other multiple criteria methods besides AHP have considered fuzzy 
input parameters. ELECTRE (Roy, 1978) and PROMETHEE (Brans and 
Vincke, 1985) have always allowed fuzzy input for weights. A multi-
attribute method involving fuzzy assessment for selection has been given 
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in the airline safety domain (Chang and Yeh, 2004) and for multiple 
criteria selection of employees (Royes et al., 2003). Sensitivity in multi-
attribute models with fuzzy inputs was considered by Aouam et al. (2003) 
and in goal programming by Fan et al. (2004). Rough set applications have 
also been presented (Zaras, 2004). This stream of research has obviously 
been rich and useful in application. It is extended by grey-related analysis. 

2.  GREY-RELATED ANALYSIS 

Grey system theory was developed by Deng (1982) based on the concept 
that information is sometimes incomplete or unknown. The intent is the 
same as with factor analysis, cluster analysis, and discriminant analysis, 
except that those methods often do not work well when sample size is 
small and sample distribution is unknown (Wang et al., 2004). With grey-
related analysis, interval numbers are standardized through norms, which 
allow transformation of index values through product operations. The 
method is simple, practical, and demands less-precise information than 
other methods. Grey-related analysis and TOPSIS (Hwang and Yoon, 
1981; Lai et al., 1994; Yoon and Hwang, 1995) both use the idea of 
minimizing a distance function. However, grey-related analysis reflects a 
form of fuzzification of inputs and uses different calculations, to include a 
different calculation of norms. Feng and Wang (2001) applied grey 
relation analysis to select representative criteria among a large set of 
available choices and then used TOPSIS for outranking (Zhang et al., 
2005)

Grey-related analysis has been used in a number of applications, In our 
discussion, we shall use the concept of the norm of an interval number 
column vector, the distance between intervals, product operations, and 
number-product operations of interval numbers.

Let },,,|{],[ Raaaaaxaxaaa .

We call [ , ]a a a  an interval number. If 0 ,a a we call 
interval number [ , ]a a a  a positive interval number.

Let T
nn aaaaaaX ]),[],...,,[],,([ 2211  be an n -dimension interval 

number column vector. 



284 D.L. Olson and D. Wu

If T
nn aaaaaaX ]),[],...,,[],,([ 2211  is an arbitrary interval 

number column vector, the norm of X is defined here as

1 1 2 2|| || max(max(| |,| |), max(| |,| |),..., max(| |,| |))n nX a a a a a a  (1) 

If [ , ]a a a  and [ , ]b b b  are two arbitrary interval numbers, 
the distance from [ , ]a a a  to [ , ]b b b , is defined as 

| | max(| |,| |)a b a b a b  (2) 

If k is an arbitrary positive real number, and [ , ]a a a  is an 
arbitrary interval number, then [ , ] [ , ]k a a ka ka  will be called the 
number-product between k and [ , ]a a a .

If [ , ]a a a  is an arbitrary interval number, and [ , ]b b b  are 
arbitrary interval numbers, we shall define the interval number product 
[ , ] [ , ]a a b b  as follows: 

when 0b [ , ] [ , ] [ , ]a a b b a b a b  (3) 

when 0b [ , ] [ , ] [ , ]a a b b a b a b  (4) 

If b+ = 0, the interval reverts to a point, and thus, we would return to 
the basic crisp model. 

2.1 Steps of Grey-Related Analysis 

The principle and steps of the Grey-related analysis method are as follows: 
Step 1. Construct decision matrix A  with an index number of interval 

numbers. If the index value of the jth index jG  of feasible plan iX  is an 
interval number [ , ]ij ija a , 1,2,...,i m , 1,2,...,j n , decision matrix A
with index number of interval numbers is defined as the follows: 

DEFINITION 1.

DEFINITION 2.

DEFINITION 3.

DEFINITION 4.
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11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

[ , ]    [ , ]    ...   [ , ]

[ , ]    [ , ]   ...   [ , ]
    ...               ...        ...       ...
[ , ]   [ , ]  ...   [ , ]

n n

n n

m m m m mn mn

a a a a a a
a a a a a a

A

a a a a a a

(5)

Step 2. Transform the “contrary index” into a positive index .The index 
is called a positive index if a greater index value is better. The index is 
called a contrary index if a smaller index value is better. We may 
transform a contrary index into a positive index if the jth index jG  is a 
contrary index 

],[],[ ijijijij aabb mi ,...,2,1 . (6)

Without loss of generality, in the following discussion, we supposed 
that all the indexes are “positive indices.” 

Step 3. Standardize decision matrix A  with an index number of 
interval numbers, obtaining standardizing decision matrix ]r,r[R ijij . If 
we mark the column vectors of decision matrix A  with interval-valued 
indexes with n21 A,...,A,A , the element of standardizing decision 
matrix ]r,r[R ijij  is defined as 

||||
],[

],[
j

ijij
ijij A

aa
rr mi ,...,2,1 nj ,...,2,1 . (7) 

Step 4. Calculate interval number weighted matrix nmijij ])c,c([C   .
The formula for the element of interval number weighted matrix C is 

nmijij ])c,c([C   

where

],[],[],[ ijijjjijij rrdccc mi ,...,2,1 nj ,...,2,1 .  (8) 

Step 5. Determine reference number sequence. The element of 
reference number sequence is composed of the optimal weighted interval 
number index value for every alternative.  
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)])(  ,  )([  ,  ...  ,  )]2(  ,  )2([  ,  )]1(  ,  )1(([ 0000000 nunuuuuuU
is a reference number sequence if 0 1

( ) max iji m
u j c , 0 1

( ) max iji m
u j c ,

1, 2,...,j n .

Step 6. Calculate connections between alternatives. First, calculate the 
connection coefficient )k(i  between the sequence composed of weight 
interval number standardized index values for every alternative 

1 1 2 2([  ,  ], [  ,  ],  ... ,  [  ,  ] )i i i i i in inU c c c c c c  and the reference number 
sequence 0 0 0 0 0 0 0([ (1),   (1)],  [ (2),   (2)],   ...,   [ ( ),   ( )]).U u u u u u n u n

The formula for )(ki  is

|],[)](),([|maxmax|],[)](),([|

|],[)](),([|maxmax|],[)](),([|minmin
)(

0000

0000

ikikkiikik

ikikkiikikki
i cckukucckuku

cckukucckuku
k  (9) 

Here ),0( , and  is a resolving coefficient. The smaller  is, 
the greater its resolving power. In general, [0, 1] .The value of 
may be changed to reflect the desired degree of resolution. 

After calculating )(ki , the connection between the i-th plan and the 
reference number sequence is calculated by the following formula: 

1

1 , 1, 2,...
n

i i
k

r k i m
n

(10)

Step 7. Determine optimal plan. The feasible plan tX  is optimal if 
i

mi1
t rmaxr .

3. MONTE CARLO SIMULATION 

Fuzzy inputs can easily be simulated using Monte Carlo simulation 
models. Interval random numbers over the interval 0 1 can be generated in 
Monte Carlo simulation directly, and these can be converted to any other 
uniform range. Simulations can be easier to analyze if they are controlled, 
using unique seed values to ensure that the difference in simulation output 
due to random variation was the same for each alternative.
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3.1 Trapezoidal Distributed Fuzzy Numbers 

The trapezoidal fuzzy input dataset can also be simulated.
X is random number (0 < rn < 1). 

Definition of trapezoida1 is left 0 in Figure 1; a2 is left 1; a3 is right 1; 
and a4 is right 0. 

Figure 1. A trapezoidal fuzzy number 

J is area of left triangle contingent calculation:  
K is area of rectangle 
L is area of right triangle 
Fuzzy sum = left triangle + rectangle + right triangle = 1 
M is the area of the left triangle plus the rectangle (for calculation of X

value)
X is the random number drawn (which is the area) 
If X J:

LJ
aaaaaaXaX 1234121  (11) 

If J  X J+K:

232 aaK
JXaX  (12) 

If J+K X:

LJ
aaaaaaXaX 12343414  (13) 

0

1.0

a1 a2 a3 a4
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Our calculation is based on drawing a random number reflecting the 
area (starting on the left (a1) as 0, ending on the right (a4) as 1), and 
calculating the distance on the X-axis. The simulation software Crystal 
Ball was used to replicate each model 1000 times for each random number 
seed. The software enabled counting the number of times each alternative 
won.

3.2 Grey-Related Decision Tree Models 

Grey-related analysis is expected to provide improvement over crisp 
models by better reflecting the uncertainty inherent in many human 
analysts’ minds. Data mining models based on such data are expected to be 
less accurate, but hopefully not by very much (Hu et al., 2003). However, 
grey-related model input would be expected to be more stable under 
conditions of uncertainty where the degree of change in input data 
increased.

We applied decision tree analysis to a small set (1000 observations 
total) of credit card data. Originally, there was one output variable 
(whether or not the account defaulted, a binary variable with 1 representing 
default, 0 representing no default) and 65 available explanatory variables. 
These variables were analyzed, and 26 were selected as representing ideas 
that might be important to predicting the outcome. The original data set 
was imbalanced, with 140 default cases and 860 not defaulting. Initial 
decision tree models were almost all degenerate, classifying all cases as 
not defaulting. When differential costs were applied, the reverse 
degenerate model was obtained (all cases predicted to default). Therefore, 
a new dataset containing all 140 default cases and 160 randomly selected 
not default cases was generated, where 200 cases were randomly selected 
as a training set, with the remaining 100 cases used as a test set. 

The explanatory variables included five binary variables and one 
categorical variable, with the remaining 20 being continuous. To reflect 
fuzzy input, each variable (except for binary variables) was categorized 
into three categories based on analysis of the data, using natural cutoff 
points to divide each variable into roughly equal groups. 

Decision tree models were generated using the data mining software 
PolyAnalyst. That software allows setting minimum support level (the 
number of cases necessary to retain a branch on the decision tree), and a 
slider setting to optimistically or pessimistically split criteria. Lower 
support levels allow more branches, as does the optimistic setting. Every 
time the model was run, a different decision tree was able to be obtained. 
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But nine settings were applied, yielding many overlapping models. Three 
unique decision trees were obtained, which are reflected in the output to 
follow. A total of eight explanatory variables were used in these three 
decision trees. The same runs were made for the categorical data reflecting 
grey-related input. Four unique decision trees were obtained, with 
formulas again given below. A total of seven explanatory variables were 
used in these four categorical decision trees. All seven models and their fit 
on test data are given in the Appendix. 

These models were then entered into a Monte Carlo simulation 
(supported by Crystal Ball software). A perturbation of each input variable 
was generated, set at five different levels of perturbation. The intent was to 
measure the loss of accuracy for crisp and grey-related models. 

The model results are given in the seven model reports in the appendix. 
Since different variables were included in different models, it is not 
possible to directly compare relative accuracy as measured by fitting test 
data. However, the means for the accuracy on test data for each model 
given in Table 1 show that the crisp models declined in accuracy more 
than the categorical models. The column headings in Table 1 reflect the 
degree of perturbation simulated. 

Table 1. Mean Model Accuracy 

Model Crisp 0.25 0.50 1.00 2.00 3.00 4.00 
Cont. 1 0.70 0.70 0.70 0.68 0.67 0.66 0.65 
Cont. 2 0.67 0.67 0.67 0.67 0.67 0.66 0.66 
Cont. 3 0.71 0.71 0.70 0.69 0.67 0.67 0.66 
Cont.   0.693   0.693   0.690   0.680   0.670   0.667   0.657 
Cat. 1 0.70 0.70 0.68 0.67 0.66 0.66 0.65 
Cat. 2 0.70 0.70 0.70 0.69 0.68 0.67 0.67 
Cat. 3 0.70 0.70 0.70 0.69 0.69 0.68 0.67 
Cat. 4 0.70 0.70 0.70 0.69 0.68 0.67 0.67 
Cat.   0.700   0.700   0.695   0.688   0.678   0.670   0.665 

The fuzzy models were expected to be less accurate, but here they 
actually average slightly better accuracy. This, however, can simply be 
attributed to different variables being used in each model. The one 
exception is that models Continuous 2 and Categorical 3 were based on 
one variable, V64, the balance-to-payment ratio. The cutoff generated by 
model Continuous 2 was 6.44 (if V64 was < 6.44, prediction 0), whereas 
the cutoff for Categorical 3 was 4.836 (if V64 was > 4.835, the category 
was “high,” and the decision tree model was that if V64 = “high,” 
prediction 1, else prediction 0). The fuzzy model here was actually better 
in fitting the test data (although slightly worse in fitting the training data). 
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The important point of the numbers in Table 1 is that there clearly was 
greater degradation in model accuracy for the continuous models than for 
the categorical (grey-related) models. This point is demonstrated further by 
the wider dispersion of the graphs in the Appendix. 

4. CONCLUSIONS 

This chapter has discussed the integration of grey-related analysis and 
decision making with uncertainty through simulation. Simulation provides 
a means to better visualize model results and a flexible way to include any 
level of uncertainty and complexity. Results based on Monte Carlo 
simulation as a data-mining technique offer more insights to assist our 
decision making in fuzzy environments by incorporating probability 
interpretation.  Analysis of decision tree models through simulation shows 
that there does appear to be less degradation in model fit for grey-related 
(categorical) data than for decision tree models generated from raw 
continuous data. It must be admitted that this is a preliminary result, based 
on a relatively small dataset of only one type of data. However, it is 
intended to demonstrate a point meriting future research. This decision-
making approach can be applied to large-scale datasets, expanding our 
ability to implement data mining and large-scale computing. 

The easiest way to apply fuzzy concepts to data mining is to categorize 
data. This creates the problem of where to set limits between categories. 
However, reliance on expert judgment can often provide useful limits. If 
data-mining data are represented through fuzzy concepts, simulation can 
be applied. Since fuzzy data are probabilistic, simulation seems 
appropriate. Simulation does involve a lot more work than closed-form 
(crisp) datasets. However, fuzzy data are often a better representation of 
real domains. 
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APPENDIX: MODELS AND THEIR RESULTS 

Continuous Model 1: 

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgPay<3.91,N,Y)))

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 43 16  
Actual 1 14 27 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation   [ 0.25,0.25]  0.67 0.73
perturbation   [ 0.50,0.50]  0.65 0.74
perturbation   [ 1,1]    0.62 0.75
perturbation   [ 2,2]    0.58 0.74
perturbation   [ 3,3]    0.57 0.74

  .55     .6     .65     .7     .75     
                     
                  
              
           
          

Frequency Chart

proportion

.000

.094

.187

.281

.374

0

93.5

187

280.5

374

0.68 0.69 0.70 0.72 0.73

1,000 Trials 994 Displayed

Forecast: Cont M1 accuracy
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Continuous Model 2:

IF (Bal/Pay<6.44,N,Y) 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 40 19  
Actual 1 14 27 0.67 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation [ 0.25,0.25]  0.65 0.71
perturbation [ 0.50,0.50]  0.63 0.71
perturbation [ 1,1]    0.60 0.74
perturbation [ 2,2]    0.58 0.75
perturbation [ 3,3]    0.55 0.78

  .55     .6     .65     .7     .75     
                   
               
            
          

Frequency Chart

proportion

.000

.117

.233

.350

.466

0

116.5

233

349.5

466

0.65 0.66 0.67 0.69 0.70

1,000 Trials 991 Displayed

Forecast: Cont M2 accuracy
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Continuous Model 3: 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 44 15  
Actual 1 14 27 0.71 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.76
perturbation  [ 0.50,0.50]  0.63 0.76
perturbation  [ 1,1]    0.59 0.77
perturbation  [ 2,2]    0.54 0.79
perturbation  [ 3,3]    0.53 0.78

  .55     .6     .65     .7     .75     
            
         
      

Frequency Chart

proportion

.000

.059

.119

.178

.237

0

59.25

118.5

177.7

237

0.65 0.68 0.70 0.73 0.75

1,000 Trials 996 Displayed

Forecast: Cont M3 accuracy

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgRevPay<2.28,Y,N)))
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Categorical Model 1: 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 33 26  
Actual 1 5 36 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs     
perturbation  [ 0.25,0.25]  0.66 0.71
perturbation  [ 0.50,0.50]  0.64 0.71
perturbation  [ 1,1]    0.61 0.71
perturbation  [ 2,2]    0.58 0.73
perturbation  [ 3,3]    0.56 0.74

  .55     .6     .65     .7     .75     
                      
                  
                 
            

      

Frequency Chart

 proportion

.000

.104

.208

.312

.416

0

104

208

312

416

0.66 0.67 0.68 0.69 0.70

1,000 Trials 999 Displayed

Forecast: CatM1 accuracy

IF(Bal/Pay<6.44,N,IF(Utilization<1.54,Y,IF(AvgRevPay<2.28,Y,N)))
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Categorical Model 2: 

IF(Bal/Pay=`”high”,IF(CredLine=”low”,
IF(CDL=”mid”,IF(Pur%Bal=”low”,Y,N),
IF(CDL=”low”,N,Y))
 IF(CredLine=”high”,IF(CalcIntRate=”mid”,N,Y),Y),N) 

Test matrix:    
Model 0 Model 1 Accuracy 

Actual 0 42 17  
Actual 1 13 28 0.70 

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.75
perturbation  [ 0.50,0.50]  0.64 0.76
perturbation  [ 1,1]    0.61 0.76
perturbation  [ 2,2]    0.58 0.76
perturbation  [ 3,3]    0.57 0.80

  .55     .6     .65     .7     .75     
                 
         
        
     
    

Frequency Chart

proportion

.000

.056

.111

.167

.222

0

55.5

111

166.5

222

0.65 0.68 0.70 0.73 0.75

1,000 Trials 997 Displayed

Forecast: CatM2 accuracy
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Categorical Model 3: 

IF(Bal/Pay=”high”,Y,N)

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 33 26
Actual 1 4 37 0.70

Simulation accuracy of 100 observations, 1000 simulation runs     
perturbation [ 0.25,0.25]  0.68 0.70
perturbation [ 0.50,0.50]  0.67 0.71
perturbation [ 1,1]    0.66 0.72
perturbation [ 2,2]    0.62 0.73
perturbation [ 3,3]    0.59 0.75

  .55     .6     .65     .7     .75     
                         
                       
                     
                
            

Frequency Chart

proportion

.000

.170

.340

.510

.680

0

170

340

510

680

0.68 0.69 0.69 0.70 0.70

1,000 Trials 982 Displayed

Forecast: CatM3 accuracy
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Categorical Model 4: 

IF(Bal/Pay=”high”,
IF(CredLine=”low”,
IF(CDL=”mid”,IF(Purch%Bal=”low”,Y,N),
IF(CDL=”low”,IF(Residence<.5,Y,N),Y))
  IF(CredLine=”high”,IF(CalcIntRate=”mid”,N,Y),Y) 

Test matrix: 
Model 0 Model 1 Accuracy 

Actual 0 41 18
Actual 1 12 29 0.70

Simulation accuracy of 100 observations, 1000 simulation runs 
perturbation  [ 0.25,0.25]  0.65 0.76
perturbation  [ 0.50,0.50]  0.64 0.77
perturbation  [ 1,1]    0.61 0.77
perturbation  [ 2,2]    0.58 0.77
perturbation  [ 3,3]    0.57 0.77

  .55     .6     .65     .7     .75     
            
         
        
     
    

Frequency Chart

proportion

.000

.059

.118

.177

.236

0

59

118

177

236

0.66 0.69 0.71 0.74 0.76

1,000 Trials 998 Displayed

Forecast: CatM4 accuracy
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Abstract:  This chapter demonstrates how a neuro-fuzzy approach could produce 
outputs of a further-modified multi-criteria decision-making (MCDM) 
quality function deployment (QFD) model within the required error rate. 
The improved fuzzified MCDM model uses the modified S-curve 
membership function (MF) as stated in an earlier chapter. The smooth and 
flexible logistic membership function (MF) finds out fuzziness patterns in 
disparate level-of-satisfaction for the integrated analytic hierarchy process 
(AHP-QFD model. The key objective of this chapter is to guide decision 
makers in finding out the best candidate-alternative robot with a higher 
degree of satisfaction and with a lesser degree of fuzziness. 

Key words: ANFIS, AHP, QFD, fuzziness patterns, decision-making, level-of-satisfaction 

1. INTRODUCTION

Arriving at the decision to install a robot in a manufacturing firm can be a 
difficult and complicated process. Even after the initial decision to acquire 
a robot is made, the problem of which robot to select from the many that 
are available can confound managers who often lack the time and expertise 
to perform an extensive search and analysis. Furthermore, the current trend 
indicates that the number of robot manufacturers and suppliers are 
increasing as engineers continue to find more applications for robots. The 
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problem of robot selection has become more difficult in recent years due to 
increasing complexity, available features, and facilities offered by different 
robotic products. 

1.1 Concepts on Neuro-Fuzzy Systems 

A fuzzy inference system (FIS) can use human expertise by storing its 
essential components in the rule base and the database and can perform 
fuzzy reasoning to infer the overall output value. The derivation of if then
rules and corresponding membership functions (MFs) depends heavily on 
the a priori knowledge about the system under consideration. However, 
there is no systematic way to transform experiences of knowledge of 
human experts into the knowledge base of an FIS. There is also a need for 
adaptability or some learning algorithms to produce outputs within the 
required error rate. On the other hand, ANN learning mechanism does not 
rely on human expertise. Due to the homogenous structure of ANN, it is 
hard to extract structured knowledge from either the weights or the 
configuration of the an artificial neural network (ANN). The weights of the 
ANN represent the coefficients of the hyperplane that partition the input 
space into two regions with different output values. If we can visualize this 
hyperplane structure from the training data, then the subsequent learning 
procedures in an ANN can be reduced. However, in reality, the a priori 
knowledge is usually obtained from human experts; it is most appropriate 
to express the knowledge as a set of fuzzy if then rules, and it is not 
possible to encode into an ANN 0. Table 1 summarizes the comparison of 
FIS and ANN. 

Table 1. Complementary Features of ANN and FIS 

ANN FIS 
Black box Interpretable
Learning from scratch Making use of linguistic knowledge 

To a large extent, the drawbacks pertaining to these two approaches 
seem complementary. Therefore it is natural to consider building an 
integrated system combining the concepts of FIS and ANN modeling.  
A common way to apply a learning algorithm to a FIS is to represent it  
in a special ANN like architecture 0. However, the conventional ANN 
learning algorithms (gradient descent) cannot be applied directly to such  
a system as the functions used in the inference process are usually 
nondifferentiable. This problem can be tackled by using differentiable 
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functions in the inference system or by not using the standard neural 
learning algorithm. In our simulation, we used an adaptive network based 
fuzzy inference system (ANFIS) (Jang, 1991). 

ANFIS implements a Takagi Sugeno Kang (TSK) fuzzy inference 
system (Jang, 1991) in which the conclusion of a fuzzy rule is constituted 
by a weighted linear combination of the crisp inputs rather than by a fuzzy 
set.

For a first-order TSK model, a common rule set with two fuzzy if then
rules is represented as follows: 

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

where x and y are linguistic variables and A1, A2, B1  and B2 are 
corresponding fuzzy sets and p1, q1, r1 and p2, q2, r2 are linear parameters. 

Figure 1. TSK type fuzzy inference system 

Figure 1 illustrates the TSK fuzzy inference system when two member-
ship functions each are assigned to the two inputs (x and y). The TSK 
fuzzy controller usually needs a smaller number of rules, because their 
output is already a linear function of the inputs rather than a constant fuzzy 
set.

Figure 2 depicts the five-layered architecture of ANFIS, and the 
functionality of each layer is as follows: 

Layer-1. Every node in this layer has a node function

)x(O iA
1
i , for i = 1, or 2 

)(
2

1 yO
iBi , for i = 3,4,…. 

1
iO  is the membership grade of a fuzzy set A ( = A1, A2, B1 or B2), and it 

specifies the degree to which the given input x (or y) satisfies the quantifier 
A. Usually the node function can be any parameterized function.  

,
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A Gaussian membership function is specified by two parameters c
(membership function center) and (membership function width).

2. ADAPTIVE NETWORK-BASED FUZZY 
INFERENCE SYSTEM (ANFIS) 

Figure 2. Architecture of the ANFIS 

Guassian (x, c, ) = 

2
cx

2
1

e
  

.

Parameters in this layer are referred to as premise parameters. 

Layer-2. Every node in this layer multiplies the incoming signals and 
sends the product out. Each node output represents the firing strength of a 
rule.

2,1i),y()x(wO iBiAi
2
i .

In general any T-norm operators perform fuzzy AND can be used as 
the node function in this layer. 
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Layer-3. Every ith node in this layer calculates the ratio of the ith

3

1 2

, 1, 2i
i i

wO w i
w w

.

Layer-4. Every node i in this layer is with a node function

4
1 ( )i i i i i iO w f w p x q y r ,

where iw is the output of layer-3, and iii r,q,p is the parameter set. 
Parameters in this layer will be referred to as consequent parameters. 

Layer-5. The single node in this layer computes the overall output as 
the summation of all incoming signals:

5
1

i ii
i i

i ii

w f
w

ANFIS makes use of a mixture of backpropagation to learn the premise 
parameters and least mean square estimation to determine the consequent 
parameters. A step in the learning procedure has two parts: In the first part, 
the input patterns are propagated, and the optimal conclusion parameters 
are estimated by an iterative least mean square procedure, whereas the 
antecedent parameters (membership functions) are assumed to be fixed for 
the current cycle through the training set. In the second part, the patterns 
are propagated again, and in this epoch, backpropagation is used to modify 
the antecedent parameters, whereas the conclusion parameters remain 
fixed. This procedure is then iterated (Jang, 1991). 

3. QFD PROCESS 

QFD is a method for structured product planning and development. It 
enables a development team to specify clearly the customer’s requirement. 
It also evaluates each proposed product systematically in terms of its 
impact on meeting those requirements (Hauser and Clausing, 1988; 
Wasserman, 1993). It is also an important tool for concurrent engineering. 
In the era of globalization, the customer’s order decoupling point (CODP) 

O Overall output w f

Neuro-Fuzzy Approximation of MCDM QFD

rule’s firing strength to the sum of all rule’s firing strength.
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is at make-to-order (MTO) stage (Bhattacharya et al., 2005). From Figure 1 
it is understood where to apply the QFD process. QFD is used at a CODP 
to ensure that the voice of the customer is heard throughout the product 
planning and design stage (Franceschini and Rosetto, 1995). QFD, in fact, 
is a method of continuous product improvement, emphasizing the impact 
of organizational learning on innovation (Govers, 2001). 

Figure 3. Relationship between CODP and MCDM-QFD process
(Bhattacharya et al., 2005) 

In QFD process, a matrix called the house-of-quality (HOQ) (Hauser 
and Clausing, 1988) is used to display the relationship between the voice 
of customers (WHATs) and the quality characteristics (HOWs) (Chuang, 
2001). WHATs and HOWs are nothing but the customer and technical 
requirements, respectively. The HOQ is developed during the QFD 
transformation. Basically the HOQ demonstrates how the technical 
requirements satisfy the customer requirements. The matrix highlights the 
important issues in the planning of a new product or improving an existing 
product. QFD, when combining WHATs and HOWs with competitive 
analysis (WHYs), represents a customer-driven and market-oriented 
process for decision making (Cohen, 1995). 

A traditional QFD model uses absolute importance to identify the 
degree of importance for each customer requirement. The psychology of 
customers, in general, is to rate almost everything as equally important, 
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although it is not. As the absolute weighing data tend to be bunched near 
the highest possible scores, the differentiation of customer requirements is 
thus strongly recommended. These data, as they are, do not contribute
much to helping QFD developers in prioritizing technical responses. At 
this juncture, the AHP (Saaty, 1988; 1990; 1994) prioritizes the customer’s 
requirements by putting the relative degree of importance to each 
customer-requirement.

The task of the QFD team is to list the technical requirements (TRs). 
These requirements are most likely to affect the CRs. TR evaluators, in the 
QFD team, evaluate how the competitors’ products compare with that of 
company’s product. This evaluation leads to fixing of technical targets. 
From the QFD matrix, the discrepancies, if any, between the customers’ 
perception and the QFD team’s correlation of CR and TR can be easily 
understood. The vertical part of the QFD matrix shows how the company 
may respond to customer requirements. 

4. DEVELOPMENT OF THE COMBINED  
AHP-QFD METHODOLOGY 

The methodology integrating the MCDM methodology (AHP) and QFD 
for a selection problem comprises the following steps and is shown in 
Figure 4: 

Step 2. Identification of technical requirements. 

=1
=

m

j ij i
i

w R c  (1) 

where
jw  = importance degree of the thj technical requirement 

n  ..., 2, 1,   j ,
ijR  = quantified relationship between the thi customer requirement and 

the thj technical criteria in the central relationship matrix, and 
ic  = importance weighing of the thi  customer requirement. 

Neuro-Fuzzy Approximation of MCDM QFD

Step 1. Identification of customer requirements. 

Step 3. Construction of central relationship matrix using expert 
knowledge of QFD team. 

Step 4. Computation of degree of importance for customer 
requirements by using AHP. 

Step 5. Computation of the degree of importance of technical 
requirements by Eq. (1). 
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Figure 4. Flowchart of the proposed methodology 
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Step 6. Normalization of the degree of importance of technical 
criteria by Eq. (2). 

__

jw  = 

1

×100j
n

j
j

w

w
 (2) 

Step 7. Construction of pair-wise comparison matrices for each 
technical requirement using Saaty’s (1988; 1990) nine-point scale. 

Step 8. Evaluation of score, ijw  , for each technical requirement for 
each candidate-alternative. 

Step 9. Computation of overall score (Chuang, 2001) by using Eq. (3). 

__

1

n

jj ij
j

S w e  (3) 

where,
jS = overall score for the thj candidate-alternative n  ..., 2, 1,   j ,
jw  = normalized importance degree of the thj  technical criteria 

n  ..., 2, 1,   j , and 
ije  = PV value of the thj alternative on the thi technical criteria 

Step 10. Computation of OFM values for each candidate robot by using 
Eq. 4. 

OFM = Objective Factor Measure, 
OFC = Objective Factor Cost, 
SFM = Subjective Factor Measure, 
SI     = Selection Index, 

     = Objective factor decision weight, and 
n = number of candidate-alternatives (n = 4 in for the robot selection 

problem).

OFMi = [ OFCi × ( OFCi
–1  ) ]–1 (4) 

Step 11. Identification of fuzziness patterns and measurement of level-
of- satisfaction of the decision maker using modified S-curve MF. 

Step 12. Re designing the MF if the degree of fuzziness is greater than 
a preferred value. 

Step 13. Maximization of the SI (selection index) value using Eq. 5. 

SIi = [ (  × SFMi ) + ( 1  ) × OFMi ] (5) 

Neuro-Fuzzy Approximation of MCDM QFD
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Step 14. Ranking of all the candidate-alternatives
Step 15. Selection of the best candidate-alternative using the analogy 

the higher the score, the better the selection.

5. ROBOT SELECTION PROBLEM 

An illustrative example of a process industry dealing with an enormous 
volume of manufactured product was illustrated by Bhattacharya et al. 
(2005). Out of four robots, the best-suited robot was purchased for the 
desired job for a very specific manufacturing process using the methodology 
of combined AHP-QFD as depicted by Bhattacharya et al. (2005). But 
what is lacking in the said proposed model of Bhattacharya et al. (2005) is 
the evaluation of the fuzzy parameters in their multi-criteria selection 
model. When fuzzy parameters like human expertise and linguistic 
knowledge get involved with the model, there is always a need for the 
model to approximate the outputs within the required error rate. Thus, the 
ANFIS (Jang, 1991) is found suitable in dealing with this complex 
problem of multi-criteria decision making. Considering the robot selection 
data of Bhattacharya et al. (2005) we begin with fitting the modified  
S-curve MF (Eq. 6) in their methodology. Step 11 onward of the 
methodology have been proposed herein with the fuzzy S-curve MF.

1
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 (6) 

We use the previously identified customer requirements (CRs) viz., 
payload, accuracy, life-expectancy, velocity, programming flexibility and 
total cost of robot, and seven TRs, viz., drive system, geometrical 
dexterity, path measuring system, size, material, weight and initial 
operating cost of robot. As in the case of Bhattacharya et al. (2005) the job 
is to select the best one of the four robots. The additional purposes of the 
current model are to view the fuzziness patterns as well as the level-of-
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satisfaction of the decision maker, and to approximate the model with a 
predetermined allowable error rate. 

For measuring the relative degree of importance for each customer 
requirement, based on the proposed methodology, a (6 × 6) decision matrix 
is constructed and shown in Figure 5. 

1 7 3 4 5 9
1/ 7 1 1/ 3 1/ 2 2 3
1/ 3 3 1 3 6 2
1/ 4 2 1/ 3 1 3 4
1/ 5 1/ 2 1/ 6 1/ 3 1 1/ 7
1/ 9 1/ 3 1/ 2 1/ 4 7 1

D =

=
1 7 3 4 5 9
0.143 1 0.333 0.500 2 3
0.333 3 1 3 6 2
0.250 2 0.333 1 3 4
0.200 0.500 0.167 0.333 1 0.143
0.111 0.333 0.500 0.250 7 1

Figure 5. Decision matrix 

The PV values of this decision matrix are found and 
max , I.I., R.I., and I.R.  are calculated. If the level of inconsistency 

present in the information stored in the “D” matrix is satisfactory, the QFD 
team, then, puts the PV values in the transformation matrix. The next job 
of the QFD team is to find out the ranking of the given four robots based 
on the seven conflicting TRs. Seven pair-wise comparison matrices were 
built up based on the information on each TR. 

Table 2. Overall Scores of the Four Robots 

Importance weight for robots Technical
Requirements

Weight 
R1  R2 R3 R4

I.I. I.R. Inconsistency 
(%)

1. Drive 
system 31.54 0.529 0.094 0.314 0.063 0.0249 0.0252 2.52 

2.Geometrical
dexterity 8.64 0.147 0.281 0.514 0.059 0.0116 0.0117 1.17 

3. Path 
measuring
system

9.47 0.074 0.520 0.105 0.300 0.0842 0.0851 8.51 

4. Robot size 9.36 0.267 0.550 0.054 0.128 0.0644 0.0651 6.51 
5. Material of 

robot 9.05 0.319 0.532 0.092 0.057 0.0866 0.0875 8.75 

6. Weight of 
robot 26.46 0.523 0.089 0.326 0.062 0.0369 0.0373 3.73 

7. Initial 
operating
cost

5.48 0.483 0.086 0.355 0.077 0.0748 0.0756 7.56 

Overall score  40.53 23.11 27.25 9.11    

Neuro-Fuzzy Approximation of MCDM QFD
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Table 2 suggests R1 » R3 » R2» R4; i.e., R1 gets precedence over R3,
which gets more importance over R2 and R4. Thus, the robot R1 is selected 
as it has the highest overall score compared with others.

The total cost of the robotic system described in Bhattacharya et al. 
(2005) were broken down (refer to Table 3). 

Table 3. Cost Factor Components and Their Units 

Cost factor components Range of attribute values 
1. Acquisition cost of robot US $ 4500 –  7000/unit 
2. Cost of robot gripper mechanisms US $ 2500 –  3000 
3. Cost of sensors US $ 900 – 1200 
4. Total cost of layout necessary for 

installation of robot 
US $ 3500 – 4000 

5. Cost of feeders US $ 400 – 900/unit 
6. Maintenance cost US $ 500 – 650/week 
7. Cost of energy US $ 6 – 10/Unit of electrical energy 

The cost factors in Table 3 involve two types of costs, both a fixed and a 
recurring type. For four different robots, of which each can perform the very 
specified job, the attributes of the cost components are tabulated in Table 4. 

Table 4. Attributes of Cost Factor Component 

Robots

Cost components 
R1 R2 R3 R4

1. Acquisition cost of robot 6500 5000 7000 4500 
2. Cost of robot gripper mechanisms 2750 2500 3000 2900 
3. Cost of sensors 1200 950 1100 1000 
4. Total cost of layout 3650 4000 3875 3500 
5. Cost of feeders 900 765 400 860 
6. Maintenance cost 480 900 730 400 
7. Cost of energy 7 8 10 6 
Total (OFC) (US$) 15487 14123 16115 13166 

A mathematical model was proposed by Bhattacharya et al. (2005) to 
combine cost factor components with the importance weightings found 

SIi = [ (  × SFMi ) + ( 1  ) × OFMi ] (7)

where,

from AHP. The governing equation of the said model is 
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5.1 Computation of Level-of-Satisfaction,
Degree of Fuzziness 

We confine our efforts assuming that differences in judgmental values are 
only 5%. Therefore, the upper bound and lower bound of SFMi as well as 
SIi indices are to be computed within a range of 5% of the original value 
reported by Bhattacharya et al. (2005). In order to avoid complexity in 
delineating the technique proposed herein, we have considered, 5% 
measurement. One can fuzzify the SFMi values from the very beginning of 
the AHP-QFD model by introducing a modified S-curve MF in AHP, and 
the corresponding fuzzification of SIi indices can also be carried out using 
their holistic approach.

Figures 5a, b and c show three different plots depicting a relation 
among the level-of-satisfaction and SI indices for three different vagueness 
values. It should always be noted that higher the fuzziness, , values, the 
lesser will be the degree of vagueness inherent in the decision. Therefore, 
it is understood that the higher level of outcome of the decision variable, 
SI, for a particular level-of-satisfaction point, results in a lesser degree of 
fuzziness inherent in the said decision variable.

A relationship between the degree of fuzziness, , and the level-of-
satisfaction  has been depicted by Figure 6. This is a clear indication that 
the decision variables, as defined in Eqs. (6) and (7), allows the MCDM 
model to achieve a higher level-of-satisfaction with a lesser degree of 
fuzziness.

Figures 7 and 8 delineate SI indices versus level-of-satisfaction  and 
SI indices versus degree of fuzziness , respectively. Now, let us examine 
the fuzziness inherent in each candidate-alternative.

There is a need to calculate both the upper bound and the lower bound 
solution of SI indices having a different level-of-satisfaction ( ). The 

Neuro-Fuzzy Approximation of MCDM QFD

In the following chapters, we have discussed the implications of Eq. (8)
as well as the modified S-curve MF with reference to the targeted MCDM
modeling. Therefore, we refrain to discuss on these basic equations. 

By using the equations above for a modified S-curve MF a relationship 
among the level-of-satisfaction of the decision maker, the degree of vaguenes 
and the SI indices is found. The results are plotted accordingly. 
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following figures have been found using MATLAB® version 7.0. The 
results have been encouraging, and the corresponding results have been 
indicated in Figures 9 to 14. 

Figure 6. Fuzziness vs.  for Robot 1    Figure 7. Fuzziness vs.  for Robot 2 

Figure 8. Fuzziness vs.  for Robot 3   Figure 9. Fuzziness vs.  for Robot 4 

Figure 10. SI vs.  for Robot 1   Figure 11. SI vs.  for Robot 2 
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Figure 12. SI vs.  for Robot 3   Figure 13. SI vs.  for Robot 4 

Neuro-Fuzzy Approximation of MCDM QFD

Figure 14. SI, , and  for Robot 1 Figure 15. SI, , and  for Robot 2 

Figure 16. SI, , and  for Robot 3  Figure 17. SI, , and  for Robot 4 
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Thus, the decision for selecting a candidate-alternative as seen from 
Figures 9 to 13 is tabulated in Table 5. It is noticed from the current 
investigation that this model eliciting the degree of fuzziness corroborates 
the MCDM model without fuzzification presented in Bhattacharya et al. 
(2005). 

5.2 Experiment Results using the ANFIS Model 

performance evaluation. The task is to approximate the values of SI for 
different values of α and γ. In this chapter, we developed fuzzy inference 
systems for varying values of gamma keeping α = 0.001, 0.2, 0.4, 0.6, 0.8, 
and 1.0. Takagi Sugeno fuzzy inference was used with linear consequent 
parameters. We used four Gaussian MFs for the two variables α and γ. 
Sixteen fuzzy if−then rules were created during the neural learning process 
as depicted in Figures 18, 20, 22, 24, 26 and 28. The learned surfaces 
showing the input/output are illustrated in Figures 19, 21, 23, 25, 27 and 
29. Empirical results are depicted in Table 5. 

Table 5. Performance of the Fuzzy Inference Systems 
 

α value Root Mean Squared Error 
0.001 0.0004 
0.2 0.0009 
0.4 0.0004 
0.6 0.002 
0.8 0.002 
1.0 0.004 

The experimental system consists of two stages: network training and 

Figure 18. Developed Takagi Sugeno FIS (α = 0.001) 
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Figure 19. Input/Output surface mapping (α = 0.001) 

Neuro-Fuzzy Approximation of MCDM QFD  

 

 

Figure 20. Developed Takagi Sugeno fuzzy inference system (α = 0.2) 

 

Figure 21. Input/Output surface mapping (α = 0.2) 
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Figure 22. Developed Takagi Sugeno fuzzy inference system (α = 0.4) 

 

Figure 23. Input/Output surface mapping (α = 0.4) 

 

Figure 24. Developed Takagi Sugeno fuzzy inference system (α = 0.6) 
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Figure 25. Input/Output surface mapping (α = 0.6) 

 

Figure 26. Developed Takagi Sugeno fuzzy inference system (α = 0.8) 

 

Figure 27. Input/Output surface mapping (α = 0.8) 
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Figure 28. Developed Takagi Sugeno fuzzy inference system (α = 1.0) 

 

Figure 29. Input/Output surface mapping (α = 1.0) 

6. DISCUSSION AND CONCLUSION 

One underlying assumption of the proposed methodology is that the 
selection is made under certainty of the information data. In reality, the 
information available is highly uncertain and sometimes may be under risk 
also. The fuzzy S-curve MF helps in reducing the level of uncertainty as 
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satisfaction (α) are very low, and the satisfaction level of the decision 
makers are, thus, appreciable as well as within the acceptable level. 
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Abstract:  In this chapter, first a literature review on the fuzzy multi-objective linear 
programming (FMOLP) and then its mathematical modeling with an 
application is given. FMOLP is one of the multi-objective modeling 
techniques most frequently used in the literature. The possible values of the 
parameters in FMOLP are imprecisely or ambiguously known to the 
experts. Therefore, it would be more appropriate for these parameters to be 
represented as fuzzy numerical data that can be represented by fuzzy 
numbers.

Key words: Multiple objectives, linear programming, interactive, approximation
algorithm

1. INTRODUCTION

Multiple objective problems are concerned with the optimization of 
multiple, conflicting, and noncommensurable objective functions subject 
to constraints representing the availability of multiple objective problems 
that are concerned with the optimization of multiple, conflicting, and 
noncommensurable objective functions subject to constraints representing 
the availability of limited resources and requirements. 

Multiple objective linear programming (MOLP) is one of the popular 
methods to deal with  complex and ill-structured decision problems. When 
formulating an MOLP problem, various factors of the real world should be 
reflected in the description of the objective functions and the constraints. 
Naturally, these objective functions and constraints involve many 
parameters in which possible values may be assigned by the experts. 
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Normally, such parameters are set at some values in an experimental or 
subjective manner through the experts’ understanding of the nature for the 
parameters (Sakawa, 1993).  

The MOLP problem is specified by linear functions that are to be 
maximized subject to a set of linear constraints. The standard form of 
MOLP can be written as follows: 

( ) Cxxf =Maximize  (1) 

subject to { }0x,bAxRxXx n ≥≤∈=∈  

where C is an nk ×  objective function matrix, A is an nm× constraint 
matrix, b~ is an m-vector of the right-hand side, and x is an n-vector of 
decision variables. 

With this observation, it is natural to recognize that the possible values 
of these parameters are often imprecisely or ambiguously known to the 
experts. In this case, it may be more appropriate to interpret the experts’ 
understanding of the parameters as fuzzy numerical data that can be 
represented by fuzzy numbers. The fuzzy multiple objective linear 
programming (FMOLP) problems involving fuzzy parameters would be 
viewed as a more realistic version than the conventional one (Sakawa, 
1993). Various kinds of FMOLP models have been proposed to deal with 
different decision-making situations that involve fuzzy values in objective 
function parameters, constraints parameters, or goals. 

Tanaka and Asai (1984) formulated FMOLP with triangular fuzzy 
numbers, and the nonlinear programming problem obtained was solved by 
using a max–min operator. Luhandjula (1987) proposed the concept of  
α-possible feasibility and β-possible efficiency and resolved imprecise 
objectives and constraints with fuzzy numbers by solving an auxiliary 
crisp MODM problem derived by using the extension principle and  α-and 
β-level cuts. Korhonen et al. (1989) propose a general approach to semi-
structured decision making, which makes it possible to consider multiple 
objectives (flexible gloals), “hard” constraints (inflexible: goals), and “soft” 
constraints (fuzzy goals) within the same framework. Rommelfanger et al. 
(1989) present a new method calleld “alpha-level related pair formation” 
for solving linear programming problems with fuzzy parameters in the 
objective function. Lai and Hwang (1992) resolved imprecise objectives 
with triangle fuzzy numbers with maximizing the most possible value, 
minimizing the risk of obtaining lower profit, and maximizing the 
possibilities of obtaining higher profit, and they used a fuzzy ranking 
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concept to resolve imprecise constraints. Slowinski and Tenghem (1993) 
compare the methods fuzzy linear programming (FLIP) and strategy for 
nuclear generation of electricity (STRANGE) developed by themselves, 
respectively. Zimmermann (1993) surveys major models and theories in 
mathematical programming and offers some indication on the expected 
future developments. Turtle et al. (1994) show how fuzzy logic can be 
employed using straightforward LP tools. Julien (1994) investigates the 
application of fuzzy set and possibility theories for the representation of 
imprecise information in water quality  management problems. Fuller and 
Fedrizzi (1994) explore stability analysis in possibilistic programming by 
extending previous research results to possibilistic linear programs with 
multiple objective functions. They use multi-objective possibilistic linear 
programs with continuous fuzzy number coefficients. Nakahara and Gen 
(1994) propose a quantitative formulation of LP problems with fuzzy 
number coefficients, by using the ranking criteria proposed by themselves, 
and show an algorithm for solving the formulated problems in some cases. 
The optimization of an objective function with fuzzy number coefficients 
is formulated as the user-oriented extension of the optimization of an 
objective function with real coefficients by the proposed ranking criteria. 
Carlsson and Fuller (1995) introduce measures of interdependence 
between the objectives in order to provide for a better understanding of the 
decision problems and to find effective and more correct solutions into 
multiple criteria decision-making problems. Sakawa et al. (1995) show that 
large-scale fuzzy LP problems can be reduced to a number of independent 
linear sub-problems (and the overall satisfying solution for the decision 
maker is directly obtained just solving the sub-problems. Herrera and 
Verdegay (1995) study some models for dealing with fuzzy integer LP 
problems that have a certain lack of precision of a vague nature in their 
formulation and present methods to solve them with either fuzzy constraints 
or fuzzy numbers in the objective function or fuzzy numbers defining the 
set of constraints. 

Kahraman et al. (1996) propose a fuzzy multi-objective linear 
programming that considers intangible benefits in AMTs and expands the 
constraints by adding tolerances. The transition from vagueness to 
quantification is performed by applying the fuzzy set theory. The approach 
also considers the vagueness in the objective functions by using the 
membership functions. The main advantage of the fuzzy LP, compared 
with the unfuzzy problem formulation, is the fact that the decision maker is 
not forced into a precise formulation for mathematical reasons.

Downing and Ringuest (1998) implement four multi-objective linear 
programming algorithms on microcomputer software packages and 
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conduct a large field experiment using the implemented algorithms. Two 
new algorithms that incorporate formal models of decision maker behavior 
are tested along with two established algorithms that include no formal 
models of decision-maker behavior.

Borges and Antunes (2002) study the effects of uncertainty on multiple 
objective linear programming models using the concepts of fuzzy set 
theory. The proposed interactive decision support system is based on the 
interactive exploration of the weight space. The comparative analysis of 
indifference regions on the various weight spaces (which vary according to 
intervals of values of the satisfaction degree of objective functions and 
constraints) enables study of the stability and evolution of the basis that 
correspond to the calculated efficient solutions with changes of some 
model parameters. 

Wang and Liang (2004) develop an FMOLP model for solving the 
multi-product aggregate production planning (APP) decision problem in a 
fuzzy environment. The proposed model attempts to minimize total 
production costs, carrying and backordering costs, and rates of changes in 
labor levels considering inventory level, labor levels, capacity, warehouse 
space, and the time value of money.

Jana and Chattopadhyay (2004) design a model of energy utilization by 
developing a decision support frame for an optimized solution to the 
problem, taking into consideration four sources and six devices suitable for 
the study area, namely Narayangarh Block of Midnapore District in India. 
Since the data available from rural and unorganized sectors are often ill-
defined and subjective in nature, many coefficients are fuzzy numbers, and 
hence several constraints appear to be fuzzy expressions. In this study, the 
energy allocation model is initiated with three separate objectives for 
optimization, namely minimizing the total cost, minimizing the use of non-
local sources of energy, and maximizing the overall efficiency of the 
system. Since each of the above objective-based solutions has relevance to 
the needs of the society and economy, it is necessary to build a model that 
makes a compromise among the three individual solutions. 

El-Ela et al. (2005) present a proposed procedure that depends on the 
multi-objective fuzzy linear programming (MFLP) technique to obtain the 
optimal preventive control actions, for power generation and transmission 
line flows, to overcome any emergency conditions. The proposed multi-
objective functions are minimizing the generation cost function, maximizing 
the generation reserve at certain generator, maximizing the generation 
reserve for all generation system, and maximizing the preventive action for 
one or more critical transmission line.
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Jana and Roy (2005) present the solution procedure for a multi-
objective fuzzy linear programming problem (MOFLPP) with mixed 
constraints and its application in solid transportation problem. There are 
two parts in this paper. In the first part, a multi-objective linear 
programming problem with fuzzy coefficients occurring in constraints and 
objective functions and fuzzy constraint goals is considered. Fuzzy 
constraint goals and coefficients of objective and constraint functions are 
characterized by triangular fuzzy numbers (TFNs). Using Bellman and 
Zadeh’s (1970) multi-criteria fuzzy decision-making process, the very 
problem is converted to a crisp non linear programming problem. Then it 
is solved using a fuzzy decisive set method. In the other part, a linear 
multi-objective solid transportation problem with mixed constraint as well 
as an additional restriction in a fuzzy environment is considered. In this 
transportation problem, the cost coefficients of objective functions and the 
additional restriction function as well as the supply, demand, and 
conveyance capacity are expressed as TFNs. This MOFLPP is solved by 
the fuzzy decisive set method as in the first part.

Wu et al. (2006) develop a new approximate algorithm for solving 
FMOLP problems involving fuzzy parameters in any form of membership 
functions in both objective functions and constraints. Liang (2006) 
develops an interactive fuzzy multi-objective linear programming  
(i-FMOLP) method for solving the fuzzy multi-objective transportation 
problems with a piece-wise linear membership function.

The interactive FMOLP method includes the following steps (Liang, 
2006):

Step 1. Formulate the original fuzzy MOLP model for the considered 
problem.

Step 2. Given the minimum acceptable membership level, , and then 
convert the fuzzy inequality constraints with fuzzy available resources (the 
right-hand side) into crisp ones using the weighted average method. 

Step 3. Specify the degree of membership for several values of each 
objective function. 

Step 4. Draw the piece-wise linear membership functions for each 
objective function.

Step 5. Formulate the piece-wise linear equations for each membership 
function.

Step 6. Introduce an auxiliary variable, thus enabling the original fuzzy 
multi-objective problem to be aggregated into an equivalent ordinary LP 
form using the minimum operator. 
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Step 7. Solve the ordinary LP problem, and execute the interactive 
decision process. If the decision maker is dissatisfied with the initial 
solutions, the model must be adjusted until a set of satisfactory solutions is 
derived.

Li et al. (2006) improve the fuzzy compromise approach of Guu and 
Wu (1999) by automatically computing proper membership thresholds 
instead of choosing them. In practice, choosing membership thresholds 
arbitrarily may result in an infeasible optimization problem. Although they 
can adjust minimum satisfaction degree to get a fuzzy efficient solution, it 
sometimes makes the process of interaction more complicated. In order to 
overcome this drawback, a theoretically and practically more efficient two-
phase max–min fuzzy compromise approach is proposed.

2. FUZZY MULTI-OBJECTIVE LINEAR 
PROGRAMMING  

When all coefficients of the objective functions and the constraints are 
fuzzy number parameters represented in any form of membership 
functions, such FMOLP problems can be formulated as follows: 

xC~xf~Maximize  (2) 

subject to 0x,b~xA~RxXx n

where C~ is an nk  matrix, each element of which ijc~ is a fuzzy 
number x

ijc~ , represented by membership function xijc~ ; A~  is an 
nm matrix, each element of which ija~  is a fuzzy number represented by 

membership function xija~ ; b~ is an m-vector, each element of which 
ib~ is a fuzzy number represented by membership function xib~ ; and x is 

an n-vector of decision variables, nRx .
Associated with the FMOLP problems (Eq. 2), the following MOLP

problems can be written as (Wu et al., 2006): 
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Maximize , 0,1

subject to

, , 0, 0,1

LC x

RC x

n L L R Rx X x R A x b A x b x

 (3)  

where

11 12 1

21 22 2

1 2

L L Lc c c n
L L Lc c cL nC

L L Lc c ck k kn

11 12 1

21 22 2

1 2

R R Rc c c n
R R Rc c cR nC

R R Rc c ck k kn

11 12 1

21 22 2

1 2

L L La a a n
L L La a aL nA

L L La a am m mn

11 12 1

21 22 2

1 2

R R Ra a a n
R R Ra a aR nA

R R Ra a am m mn
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R
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R
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Wu et al. (2006) propose an approximation algorithm as follows for 
solving MOLP  problem, the solution of which is equally the solution of 
FMOLP problem. 

Maximize  (4) 

subject to 

minmax

min

L
ji

L
ji

L
ji

L
ji

ff

fxc
,

minmax

min

R
ji

R
ji

R
ji

R
ji

ff

fxc

L
js

L
js bxa , R

js
R

js bxa

where

max * , 1, 2,..., ; 0,1,..., ,
j j j

L L L
i i if c x i k j l

maxR * , 1, 2,..., ; 0,1,..., ,
j j j

R R
i i if c x i k j l

*R
ts

L
ji

*L
ts

L
ji

jt,is
l,...,1t
k,...,1sji xc,xcf minL

*R
ts

R
ji

*L
ts

R
ji

jt,is
l,...,1,0t

k,...,1sji xc,xcf minR

and x* is said to be an optimal solution.

2.1 A Numerical Example 

Assume that you have two fuzzy linear objective functions and four fuzzy 
linear constraints as follows. 

min

min
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1 11 1 12 2

2 21 1 22 2

Max max
f x c x c x

f x
f x c x c x

subject to 

,
11 1 12 2 1

a x a x b
21 1 22 2 2

a x a x b

0, 5
2 25 24, 5 7

1, 7 9
11

2100 19, 9 10

0, 10

x

x x

xc
x x

x

0, 2

2 5, 2 7

1, 7 12
2196 52, 12 14

0, 14

x

x x

xc
x x

x

0, 14
2 196 188, 14 18

1, 18 22
2576 92, 22 24

0, 24

x

x x

xc
x x

x

12

21

333



0, 30
2 900 325, 30 35

1, 35 40
22025 425 40 45

0, 45

x

x x

xc
x x

x

0, 0
2 , 0 0.5
1, 0.5 2

25 5 15, 2 5

0, 5

x
x x

xa
x x

x

0, 0
5 , 0 0.2
1, 0.2 1

9 3 6, 1 3

0, 3

x
x x

xa
x x

x

0, 0
4 , 0 0.25
1, 0.25 5

64 8 24, 5 8
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x
x x
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x x

x

22
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12
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0, 5

2 10 2, 5 6

1, 6 7

64 8 8, 7 8

0, 8

x

x x

xa
x x

x

0, 12

12 3, 12 15

1, 15 18
1

42 2 6, 18 21

0, 21

x

x x

b x

x x

x

0, 56

2 112 24, 56 68

1, 68 74
2

258 3 36, 74 86

0, 86

x

x x

b x

x x

x

This fuzzy MOLP problem can be solved by the normal Simplex 
algorithm.

3. CONCLUSIONS

Multiple objective problems are concerned with the optimization of 
multiple, conflicting, and noncommensurable objective functions subject 
to constraints representing the availability of limited resources and 
requirements. In this chapter an example of FMOLP is provided in which 
all coefficients are the objective functions and the constraints are fuzzy 
number parameters represented in any form of membership functions. The 
fuzzy multi-objective LP provides great flexibility to make the estimates of 
the problem parameters. The main advantage of the fuzzy LP, compared 
with the unfuzzy problem formulation, is the fact that the decision maker is 
not forced into a precise formulation because of mathematical reasons. 

22
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QUASI-CONCAVE AND NONCONCAVE 
FMODM PROBLEMS 

Chian-Son Yu1 and Han-Lin Li 2
1Graduate Institute of Business Administration, Department of Information Management, 
Shih Chien University, Taipei, Taiwan 2School of Management, Institute of Information 
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Abstract:  A membership function may be concave-shaped or convex-shaped. In this 
chapter, first, concave and convex membership values are analyzed and, in 
practice, commonly used approaches for solving an fuzzy multi-objective 
decision-making (FMODM) problem are briefly reviewed. Then, some 
proposition and remarks are presented to solve a quasi-concave FMODM 
problem. The proposed method can directly solve a quasi-concave FMODM 
problem by using standard LP techniques. 

Key words: Quasi-concave, nonconcave, LP 

1. INTRODUCTION

Decision making (DM) is part of people lives, and the history of DM even 
dates back to before the dawn of history, but the scientific research of a 
systematic procedure of describing the human DM process appeared in the 
early 1960s (Simon, 1960). Although the DM theory proposed by Simon has 
received a lot of attention, the DM process described by Simon lies on single 
objective only. In many real decision situations, more than one objective has 
to be considered and different kinds of uncertainty must be handled 
(Abdelaziz et al., 2004), particularly in multi-dimension, multi-criterion, and 
nondominated perspective DM problems. Therefore, multi-objective decision-
making (MODM) programming have long drawn a wide spectrum of 
attention from both academicians and practitioners. Typically, MODM starts 
with determining a set of objectives and ends with finding the best acceptable 
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solution based on the decision-maker preferences. Examples of MODM 
include purchasing a car, recruiting a new manager, choosing the best 
portfolio, appointing a spokesperson, or underwriting an insurance contract. 

Because of human beings’ inherent subjectivity, imprecision, and 
vagueness in expressing judgments, in practice, decision makers may 
frequently express their evaluations in a form of uncertainty rather than 
preciseness. Since fuzzy theory is very helpful in dealing with fuzziness of 
human judgment quantitatively, using fuzzy theory to treat MODM has been 
discussed since the 1970s (Yu, 2001). However, fuzzy multi-objective 
decision making (FMODM) problems have been noticed worldwide since 
the work published by Zimmermann (1981) where Zimmermann introduced 
conventional linear programming and multi-objective linear programming 
into fuzzy set theory. Since then, various methods using linear programming 
(LP) have been developed to solve FMODM problems. 

An FMODM problem is usually formulated to maximize and/or 
minimize several objectives simultaneously subject to a constraint set. 
Accordingly, a general FMODM problem, in which the aggregated goal is 
the minimum operator of individual goals, is formulated as follows: 

FMODM Problem: 

Maximize  (1.1) 
subject to )z( ii , i = 1, 2, ..., n

)z( ii  = | ii g)X(z |, )X(zi F (a feasible set), 

where )z( ii  is the membership function of the ith objective function, ig
denotes the fuzzy goal of the ith objective function, )X(zi  is the ith 
objective function, and X is a vector of decision variables. 

Many studies (Biswal, 1997; Hannan, 1981a, 1981b; Mjelde, 1983; 
Nakamura, 1984; Narasimhan, 1980; Romero, 1994; Yang et al., 1991) 
indicate that most real-world applications in engineering, physical, 
business, social, and management fields are not pure linear, triangular, 
concave, or convex FMODM problems but rather quasi-concave or more 
general nonconcave FMODM problems. Due to one of the most promising 
techniques of linearizing non concave functions is piece-wise linear 
programming. Hence, FMODM problems with piece-wise linear 
membership functions have been studied by Narasimhan (1980), Hannan 
(1981), Nakamura (1984), Inuiguchi et al. (1990), and Yang et al. (1991).

A membership function )z( ii  may be concave-shaped or convex-
shaped, as shown in Figure 1(a) and (b), respectively. The marginal 
possibility with respect to a concave membership function is decreasing, 
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whereas the marginal possibility with respect to a convex membership 
function is increasing. If the marginal possibility increases first, then 
decreases, or decreases first then increases, then the membership function 
becomes a convex–concave or concave convex mixed shape as shown in 
Figure 1(c). In practice, membership functions are not concave or convex 
but the mixed shapes composed by concave and convex curves or even 
more general non concave curves as shown in Figure 1(d). 

2. REVIEW OF FMODM PROGRAMMING 

Commonly used approaches for solving a FMODM problem in Eq. 1 are 
briefly reviewed in this section. In 1980, Narasimham proposed a LP 
approach to solving a FMODM problem with triangular membership 
functions, as expressed below.

FMODM Model 1 (Narasimham Method): 

Maximize
subject to )z( ii , i = 1, 2, ... , n

i

i

i

0                      if g

1        if  b
( )

1         if  b

0                       otherwise

i i

i i
i i i

i
i i

i i
i i i

i

b d
g b g b d

d
z

b g d g b
d

 (1) 

( )iz X F (a feasible set), 
where ( )i iz  is the membership function of the ith objective function, ig
denotes the ith fuzzy goal, ( )iz X  is the ith objective function, X is a 
vector of decision variables, id  is a chosen positive constant for the 
maximum allowable deviation from the aspiration level of the ith goal, and 

ib  is the most desired value of the ith objective function. 
Two primary drawbacks in Narasimham’s method are listed below: 

1. An FMODM problem has to be divided into 2n sub-problems where n
is the number of goals. 

2. All membership functions are restricted in triangular or trapezoidal 
shapes.
Extending triangular or trapezoidal to general concave-shaped 

membership functions, Hannan (1981) presented a method for converting a 
FMODM problem in Eq. 1 into the following model: 
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Figure 1. Membership Functions 
 

FMODM Model 2 (Hannan Method): 

Maximize λ (2) 
subject to  λ ≤ )z( iiµ , i = 1, 2, ..., n      ijijiji gddz =−+ +− ,  

µi(zi)

µi(zi)

µi(zi)

µi(zi)

zi(X)

zi(X)

zi(X)

zi(X)

(a) A concave membership function

(b) A convex membership function

(c) A concave-convex mixed membership function

a1 a2 a3 a4

(d) A more general non-concave membership function
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– +
ij ij,  d 0,  d 0,iz F  j = 1, 2, ..., iN

where ),z( ii a concave typed function, is expressed as 

1

( ) | |
iN

i i ij i ij i i i
j

z z g z r ijijiji dd|gz|  in which 

i i,  ,  an d  rij  are parameters, ijg  are the change points of segments, 
+
ijd and ijd  are deviation variables. 

The serious limitation in Hannan’s method is that all )z( ii  should be 
concave functions. For tackling a quasi-concave FMOP problem, 
Inuiguchi et al. (1990) developed a approach of transforming all quasi-
concave functions into concave functions. Consider the following example 
slightly modified from Inuiguchi et al. (1990). 

Example 1: 

Maximize

subject to 1 1( )z , 2 2( )z ,

z1 = x1 + 2x2, z2 = 2x1 + x2,
x1 + 3x2  21, x1 + 3x2  27, 

4x1 + 3x2  45, 3x1 + x2  30,
1 2,  0x x

)z( 11 =

1

1 1

1 1

1

1 1

1 1

1

0,                     3
0.04 ,             3 2
0.08 0.2,    2 12
1,                     12

0.1 2.2,   12 17 
0.05 0.5, 17 27

0,                     27

z
z z
z z

z
z z

z z
z

)z( 22 =

2

2 2

2 2

2

2 2

2 2

2 2

0,                        7
0 .06 ,               7 17
0 .1 0 .6,         17 21
1,                        21

0 .033 1.7 , 21 27
0 .1 0 .8,      27 30
0.25 0 .5,   30 32

0,                  

z
z z

z z
z

z z
z z

z z

2     32z
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where 1 1( )zµ  and 2 2( )zµ  are specified in Figure 2(a). 

Figure 2. Membership values 

Notably both 1 1( )zµ  and 2 2( )zµ  are quasi-concave functions, as 
depicted in Figure 2(a). Inuiguchi et al. first convert 1 1( )zµ  and 2 2( )zµ  
into two concave functions 1 1( )zµ′  and 2 2( )zµ′ , respectively, as shown in 
Figure 2(b). Example 1 then can be solved by the following LP model: 

FMODM Model 3 (Inuiguchi et al. Method for Example 1): 
 

µ1(z1) µ2(z2)

1.0 

-0.033

0.8 -0.1
0.08 0.1 -0.1

0.6

0.5

0.4 0.06 -0.05 -0.25

0.2         0.04 

-3 2 7

-3 7 3/3 91/3 3212 21 27

12 17 21 323027

(a) µ1(z1) and µ2(z2) in Example 1

(b) Two converted µ′1(z1) and µ′2(z2) in Inuiguchi et al. Model

1.0 

0.8 

0.769 

0.5 

0.385 

µ′1(z1) µ′2(z2)
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Maximize
subject to 1 1( )z , 2 2( )z

1 1 22 ,z x x 2 1 22z x x
1 23 21x x , 1 23 27x x

1 24 3 45x x , 1 23 30x x , 1 2,  x 0x

)z( 11 =
1

1 1 1

1

1 1

0 ,                                             3
1 3 3 2 9m i n ,  ,  3 1 2

1 3 1 3 6 5 6 5
1 ,                                             z 1 2

1 9 ,              1 2 2 7
1 5 5

0 ,          

z

z z z

z z

1                 2 7z

)z( 22 =
2

2 2 2

2

0 ,                                 7
3 2 1 3 1 1m in ,  ,                     7 1 7

2 6 2 6 5 2 5 2
1,                                  2

z

z z z

z

2 2 2 2

2

1
1 3 2 1 8 1 5 3m in , , ,  2 1 3 2
5 3 1 5 3 4 5 4 5

0 ,                                                                   3 2 .

z z z z

z

Although Inuiguchi et al.’s idea is very useful in formulating quasi-
concave functions into concave functions, there are three shortcomings in 
Inuiguchi et al. method as described below: 

If the number of break points is large, then it causes a tedious 
computational burden to convert these membership functions into concave 
functions.

That transforming procedure is complicated and cannot effectively deal 
with an FMODM problem with more general nonconcave functions. 

That method still requires zero-one variables to treat converted concave 
functions [i.e., 1 1( )z  and 2 2( )z ].

Take Example 1, for instance: Five break points are required to do 
transforming computing. Suppose there are n objective functions and each 
of these functions having mi break points, then the number of transforming 
computing is

1

n

i
i

m

The situation would become more complicated for treating more 
general nonconcave FMODM problems. Consequently, Yang et al. (1991) 
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presented another method for treating a quasi-concave FMODM problem. 
Take Example 1, for instance. Yang et al.’s method could formulate 
Example 1 as following a zero-one programming model [as depicted in 
Figure 3(a) and 3(b)]: 

FMOP Model 4 (Yang et al.’s method for Example 1) 
Maximize

subject to 4 1
1 2

1

1 (1 )a z M M
d

1
1 2

2

121 z M M
d

, 3 1
1 2

3

1 a z M M
d

1
2 1

4

271 (1 )z M M
d

, 6 2
3

5

1 (1 )a z M
d

2
3

6

211 z M
d

, 10 2
3

7

1 a z M
d

, 9 2
3

8

1 a z M
d

2
3

9

321 z M
d

, 1 1 22z x x

2 1 22z x x , 1 23 21x x

1 23 27x x , 1 24 3 45x x

1 23 30x x , 1 2,  x 0x

where 1 , 2 , and 3  are zero one variables; M is a big number; and a1, a2,
…, a10 are approximated end-point values as depicted in Figure 3(a) and 3(b). 

A major disadvantage in Yang et al.’s method (1991) is that it involves 
too many zero-one variables for treating quasi-concave FMODM problems. 
The number of zero-one variables equals the number of intersections 
between convex and concave functions. In addition, many end-point approxi-
mations are required before formulating a quasi-concave FMODM program.

Take Example 1, for instance, )z( ii  contains two convex concave 
intersections and )z( 22  contains one convex concave intersection. 
Therefore, three zero one variables (i.e., 1 , 2 , or 3 ) are added in the 
solution process. In addition, ten times end-point approximations (i.e., a1,
a2, …, a10) are required in formulating FMODM model 2. A detailed 
discussion is given in Li and Yu (1999). 

Considering )z( ii  in Problem (1.1) could be concave, convex, or 
concave-convex mixed type functions, Nakamura developed a method to  
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Figure 3. Membership Values 

expres a general piece wise membership function (1984). He reformulates 
Problem (1.1) as follow: 

FMODM Model 5 (Nakamura Method): 

1 1( )z

1.0

0.5

0.2
z X1( )

a1 a2 a3 a4

d2 d3

d4

d1

2 2( )z

1.0

0.6

0.5

0 7 17 a6a7a5

d5

d6

d9

d7

d8

a9 a1027 a8 30 32

(b) 2 2( )z in Yang et al. Model

3 2 12 17 27

(a) 1(z1) in Yang et al. Model
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Maximize

subject to )z( iD~  for i = 1, 2, ..., n

where 0]1)}z({)}z())z([{()z( ij
mi

1j
ij

mi

1j
ij

mi

1j
iD~ in which j

= 1, 2, ..., mi  are the change points over the convex part of each )z( ii , j
= 1, 2, ..., mi  are the number of linear functions for separating concave or 
convex parts over each )z( ii , j = 1, 2, ..., mi  are the change points over 
concave part of each )z( ii , and )z( ii  are linear functions representing 
part of )z( ii .

Nakamura’s method encounters two major difficulties: 
Expression of piece-wise membership functions is intricate; it requires 

repetitive use of an LP computation for solving an FMOP problem. 

That method divides an FMOP problem into 
1

2
n

i
i

k  sub-problems and 

requires 2
n

1i
ik  constraints, where ik  is the number of segments for each 

)z( ii .

functions, depicted in Figure 4(a) and 4(b), as follows: 

0]1)}z()z({)}z({)}z()z([{)z( 141311121111

0]1)z()z()z()z()}z()z([{)z( 29282722262522

where stands for maximum,  stands for minimum, )}z()z({ 1211 ,
)}z()z({ 1413 , and )}z()z({ 2625  are the sets of the convex 

parts.

Nakamura’s method then divides Example 1 into eight sub-problems. 
Some of these sub-problems are expressed as follows: 

FMODM Model 6 (Nakamura Method for Example 1): 

Sub-problem 1: 
Maximize

subject to 1 1 1 3 1( ) ( ) ( )iz z z
5 2 2 2 7 2 8 2 9 2( ) ( ) ( ) ( ) ( )z z z z z

C.-S. Yu and H.-L. Li

Take Example 1, for instance, Nakamura expresses the membership 
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Sub-problem 2: 

Maximize   
subject to 2 1 1 3 1( ) ( ) ( )iz z z

5 2 2 2 7 2 8 2 9 2( ) ( ) ( ) ( ) ( )z z z z z

Figure 4. Membership functions 

1 1( )z

1.0

)(Z12 )(Z13

)(Z11

)(Z14

)Z( 11

0.4

0.2

z X1( )

(a) 1 1( )z in Nakamura’s Model

2 2( )z

1.0

(Z2)7

(Z2)5

(Z2)9

(Z2)8

0.8 (Z2)6

0.6

0.5 (Z2)2

z X2( )

(b) 2 2( )z in Nakamura’s Model

3 2

0 7 12 17 21 27 30 32

12 17 27
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Sub-problem 6: 

Maximize   

subject to 2 1 1 3 1( ) ( ) ( )iz z z

6 2 2 2 7 2 8 2 9 2( ) ( ) ( ) ( ) ( )z z z z z :

After using LP computation repeatedly, Nakamura’s method finds the 
optimal solution in Sub-problem 6. To solving Example 1, Nakamura’s 
method involves eight sub-problems and finds the optimal solution in 
Subproblem 6 after using the LP computation repeatedly. As a result, 
Nakamura‘s method encounters two major difficulties: 

Expression of piece-wise membership functions is intricate; it requires 
repetitive use of the LP computation for solving an FMOP problem. 

Nakamura’s method has to divide an FMOP problem into 
1

2
n

i
i

k  sub-

problems and requires 2
n

1i
ik  constraints, where ik  is the number of 

segments for each )z( ii .

3. PROPOSED METHOD 

Building on the above discussion, this section first presents a convenient 
way to interpret a piece-wise linear membership function. The proposed 
expression is simpler than Nakamura’s method (1984). An FMODM 
problem in Equation (1) with piece-wise quasi-concave functions is termed 
a quasi-concave FMODM problem. Some propositions and remarks, 
presented by Yu and Li (2000), for solving a quasi-concave FMODM 
problem are described as follows. 

P
Let )z( ii  be a piece-wise linear membership function of )X(zi , as 

depicted in Figure 5(a), where ka , k = 1, 2, ..., m are the break points of 
)z( ii , ks , k = 1, 2, ..., m-1 are the slopes of line segments between ka  and 

1ka , and 

1

1

( ) ( )i k i k
k

k k

a as
a a

)z( ii  can then be expressed as: 

C.-S. Yu and H.-L. Li
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( )i iz = 1( )i a +s1 ( 1( )iz X a ) +
1

1

2

(| ( ) | ( ) )
2

m
k k

i k i k
k

s s z X a z X a (3)

where |o| is the absolute value of 0. 

Figure 5. Membership functions 

This proposition can be examined as follows: (Proof)   

(i) If ( )iz X a2, then

( )i iz  = 1( )i a + 2 1
1

2 1

( ) ( ) ( ( ) )i i
i

a a z X a
a a

= 1 1 1( ( ) )ia s z X a

(ii) If ( )iz X a3, then

( )i iz = 1( )i a + 1 2 1 2 2( ) ( ( ) )is a a s z X a

= 1( )i a + 2 1
1 1 2 2( ( ) ) (| ( ) | ( ) )

2i i i
s ss z X a z X a z X a

(iii) If ( )iz X ka , then 
1

(| ( ) | ( ) ) 0
m

i k i k
k k

z X a z X a  and 

)z( ii  becomes 

1( )i a +
1

1
1 1

2

( ( ) ) (| ( ) | ( ) )
2

k
k k

i i k i k
k

s ss z X a z X a z X a

i(zi)

…………. am

zi

a5a4a3

s3

s2

s4

s5
s6

s1

a2a10 am+1

sm 1
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Take )z( 11  and )z( 22  in Example 1 [as depicted in Figure 2(a)] for 
instance, )z( 11 and )z( 22  can be represented by Proposition 1 as 

1 1 1

1 1

1 1 1 1

0.08 0.040.04 3 | 2 | 2
2

( )
0.1 0.08 0.05 0.1| 12 | 12 | 17 | 17

2 2

z z z

z

z z z z

  (4) 

2 2 2

2
2 2 2 2

2

2 2

0.1 0.060.06 7 | 17 | 17
2

| 21 |0.033 0.1 0.1 0.033 | 27 | 27
212 2

0.25 0.1 | 30 | 30
2

z z z

z
z z z

z

z z

 (5) 

An advantage of expressing a quasi-concave membership function by 
Eq. (3) is the convenience of knowing the intervals of convexity and 
concavity for )z( ii , as described below: 

Remark 1  (Define a convex-type break point). For a )z( ii

expressed by Eq. (3), if ,ss k1k  then )z( ii  is a convex function for 
1ka )X(zi 1ka  and ak is called a convex-type break point of zi. Take 

Eq. (4) for instance, it is convenient to check that )z( 11  is concave when 
2 )X(z1  17 and that )z( 11  is convex when 3 )X(z1  12 and 12 

)X(z1  27. Therefore, the point 2)X(z1  and 17)X(z1  are convex-
type break points of zi. Similarly for Equation (6), )z( 22  is convex for 7 

)X(z2  21 and concave for 17 )X(z2  32. 17)X(z2  is a convex-
type break point of z2.

Remark 2  (Define a concave-type break point). For a )z( ii

expressed by Eq. (3) if k1k ss  then )z( ii  is a concave function for 
1ka )X(zi 1ka  and ak is called a concave-type break point of zI.

Remark 3  (Define a mapping point). For )z( 11  and )z( 22

shown in Figure 6(b) and 6(c), respectively, we can find a convex-type 
break point bj in z2 by using Remark 1. Then a corresponding point of bj
can be found in z1 which has the same value of membership functions as bj.
Such a point is called a mapping point of bj, denoted as jb , which is 
mapped from z2 to z1 and is calculated by jb = ))b(( j2

1
1 .
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Figure 6. Concave and convex functions 

Remark 4 (Specify a converted concave function). Now let us con-
sider two piece-wise linear functions 1  and 2  specified in Figure 6(a). 

)a)X(f|a)X(f(|
2

ss)a)X(f(s)a())X(f( 22
12

11111  (6) 

)b)X(f|b)X(f(|
2

tt)b)X(f(t)b())X(f( 22
12

11122  (7) 

where s1 > s2 > 0, t2 > t1 >0, a1 = b1, and a3 = b3. Then two converted concave 
functions 1  and 2 , shown in Figure 6(b), can be specified as follows: 

)a)X(f|a)X(f(|
2

ss)b)X(f

|b)X(f(|
2

ss)a)X(f(s)a(
)X(f

22
45

2

2
34

1311'
1  (8) 

)1b)X(f(3t)1b(2))X(f(2  (9) 

where a1 = b1, a3 = b3, t3 >0, s3 > s4 > s5 > 0, (10)

( ) ( ) 0,  ( ) ( ) 11 1 1 1 1 3 1 3
( ) ( ) 0,  ( ) ( ) 12 1 2 1 2 3 2 3

a a a a

b b b b
 (11) 

( ) ( )1 2 1 2 1
( ) ( )2 2 2 2

b b

b b
 (12) 

1 1( )z 2 2( )z

ai-1 bj+1ai+1 bj 1

z1(X) z2(X)

ai bj

jb = ))(b( j2
1

1

(a) a concave function 1 1( )z (b) a convex function 2 2( )z
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and 1[ ( )]2 1 2 2b b . (13) 

Figure 7. Membership functions 

Next, Proposition 2 is presented below: 

Function 1  specified in Eqs. (9) (13) is a concave function.
Proof: Due to s3 > s4 > s5, based on Remark 2, 2b  and a2 become 

concave-type points on 1 . Consequently, 1  is a concave function. 
Consider the following example: 

Example 2: 
Maximize
Subject to: 1 1( )z , 2 2( )z ,
z1 = x1 + 2x2, z2 =2x1 + x2, x1 + 3x2  6, x1 + 3x2  12, 4x1 + 3x2 30,
3x1+x2 15, 0,x1 2 x
where )z( 11  and )z( 22  are depicted in Figure 8(a). 

1 , 2 1 , 2

1

1

s2 s5

s4

t2 t3

s1 s3

t1 2 2

a1 f(X) a1 a2 f(X)

b1 b2

a2 a3 a3

b3 b2 b3b1

2b = ))(b( 22
1

1 2b = ))(b( 22
1

1

(a) Two piecewise linear (b) Two piecewise linear

membership functions 1 and 2 membership functions 1 and 2
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Referring to Remark 1, we know )8z( 11  is a convex-type point in 
1z  and )5z( 22  is a convex-type point in 2z . Then, based on Remark 3, 

the mapping points can be computed by ))5z((b 22
1

11 = 2.67 and 
))8z((b 11

1
22  = 7. 

In reference to Remark 4, we have two converted functions below: [as 
shown in Figure 8(b)] 

Figure 8. Membership functions 

)z( 11  = s1(z1  0) + 2
ss 12 (|z1  2.67| + z1  2.67)

                + 
2

12 ss
(|z1  6.4| + z1  6.4) (14)

)z( 22 =t1(z2  3) + 2
tt 12 (|z2  6.4| + z2  6.4) 

               + 
2

12 ss
(|z2  7|| + z2  7) (15)

1 , 2

Z2 Z1

1.0

0.2 0.2

0.6

0.075

0.2 0.1

0 1 2 3 4 5 6 8 9 10

2.67= 1b 6.4 7= 2b
(a) Two functions 1 and 2 in Example 2.

1 , 2

1.0 t3 Z2 Z1

0.842104 t2 s 3

0.7157907

s2

0.4210536t t1

s1

0 1 2 3 4 5 6 7 8 9 10

2.67 6.4

(b) Two functions 1 and 2 in Example 2.
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where 1 1(0) (0) 0 , 1 1(10) (10) = 2.67s1 + 3.73s2 + 3.6s3 = 1, 

2 2(3) (3) 0 , 2 2(9) (9) =3.4t1 + 0.6t2 + 2t3 = 1, 

1 1 1

2 2 1

(2.67) (2.67) 2.67
(5) (5) 2

s
t

 = 1 

1 1 1 2

2 2 1

(6.4) (6.4) 2.67 3.73
(6.4) (6.4) 3.4

s s
t

 = 1 

1 2 31 1

2 2 1 2

2.67 3.73 1.6(8) (8)
(7) (7) 3.4 0.6

s s s
t t

 = 1 

s1>s2>s3>0, and t1>t2>t3>0.

After computed, the slopes of two converted concave functions are  
s1 = 0.157698, s2 = 0.079018, s3 = 0.078947, t1 = 0.210526, t2 = 0.210526, 
and t3 = 0.078947. Hence, Example 2 can be transformed into 

Example 2: 
Maximize
subject to ' )z( 11 , )z( 22 , z1 = x1 + 2x2, z2 = 2x1 + x2,

x1 + 3x2 6, x1+3x2 12,     4x1 + 3x2 30,     3x1 + x2 15, 0,x1 2

where )z( 11  and )z( 22  are expressed in Eqs. (15) and (16), 
respectively.

)z( 11 = 0.157698z1
0.07968

2
(|z1  2.67| + z1  2.67) + 0.000071

2
(|z1  6.4| + z1  6.4) (16)

)z( 22 = 0.210526(z2  3) + 
2
0 (|z2  6.4| + z2  6.4) + 

2
131579.0

(|z2  7|| + z2  7) (17)

Assume that R is the universal set of real numbers, D is an arbitrary 
domain, and Rn denotes n-dimensional Euclidean space. For any real-
valued function u: D->R, the image of D by u is denoted by u(D); i.e., 
u(D)={u(d)| d D}. Then Inuiguchi et al. (1990) proved that there exists a 

x
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strictly increasing and objective function g: u(D)->u'(D) such that u'(d) = 
g(u(d)) for any d belonging to D, where u:D->R and u':D->R.

Define an r-level set of u:D->R by [u]r = {d D | f(d) r} where r R.
Inuiguchi et al. (1990) proved that the solution maximizing a function u is 
equal to the solution maximizing a function u' in any restricted domain 
when {[u]r | r u(D)}={[u']r' | r' u'(D)} and [u'] r' is a objective function of 
[u]r. Accordingly, we have the following proposition. 

The optimal solution of P1 is the same as that of P2; P1 and P2 are
given below in which 21  and   ,,, 21  are specified in Eqs. (3) (13):

P1
Maximize
Subject to 1 ( f(X))
       2 (f(X))
       a1 = b1 f(X)  a3 =b3

       f(X) F (F is a feasible set).

P2
Maximize
Subject to 1 ( f(X))
      2 ( f(X))
      a1 = b1 f(X)  a3 =b3

      f(X) F (F is a feasible set). 

For an f(X) in the restricted domain [a1, a3] or [b1, b3], we have 

1(a1) = 1 (a1), 1 3 1 3( ) ( )a a , 2 1 2 1( ) ( )b b , 2 3 2 3( ) ( )b b

1 2 1 2

2 2 2 2

( ) ( )
( ) ( )
b b
b b

 , 1 2 1 2

2 2 2 2

( ) ( )
( ) ( )
a a
a a

, 1 2 1 2

2 2 2 2

( ) ( )
( ) ( )
b b
b b

,

and t3 > 0, s3 > s4 > s5 > 0. 

Since { 1 (f(X)), 2 (f(X))} is the strictly increasing and bijective 
function of { 1 (f(X)), 2 (f(X))}, )),X(f(min{max 1

)X(f
))}X(f(2  is 

equivalent to min{max
)X(f

))X(f(1 , ))X(f(2 }. Therefore, the optimal 

solution of P1 is the same as the optimal solution of P2. 

Take Example 2, for instance. Solve Example 2 by using Proposition 4, 
discussed in next paragraph, the obtained solution z1 = 3.525553, z2 =
5.321128, x1 = 1.423341, x2 = 2.474447. The optimal solution of Example 
2 is the same as the optimal solution of Example 2.         

PROPOSITION 3.

Proof. 
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By referring to Proposition 1, consider an FMODM problem as 
follows:

Maximize
subject to )z( ii , X F (a feasible set), 

where

)z( ii = )a( 1i +s1( 1i a)X(z )+
1m

2k
kiki

1kk )a)X(z|a)X(z(|
2
ss is

a concave function (i.e., 01kk ss  for k = 2, 3, ..., m-1).

This FMOP problem can then be reformulated as follows: 

Maximize  (17) 
subject to )z( ii

)z( ii = )a( 1i  + s1( 1i a)X(z ) + 
1m

2k

1k

1
ki1kk )da)X(z)(ss(

0da)X(z
1m

2
11mi , 11 aad0  for all ,  = 2, 3, ..., m-1,

X  F (a feasible set). 

By referring to Li (1996), a GP problem Maximize w = 
1m

2k
ki |a)X(z(| +zi(X) ak) subject to: zi(X)  0 and 0 < a2 < a3 < … < 

am-1.  is equivalent to

Maximize w = 2
1m

2k
1kki )ra)X(z(  subject to: zi(X) - ak + rk-1  0 

for k = 2, 3, ... , m-1, rk-1  0, xi  0, where rk-1 are deviation 
variables  (18) 

Eq. (20) implies if zi(X) < ak then at optimal solution rk-1 = ak zi(X); if 

zi(X) ak then at optimal solution rk-1 = 0. Substitute rk-1 by 
1k

1
d , where 

d  is within the bounds as ,aad0 1  Equation (20) then becomes 

C.-S. Yu and H.-L. Li
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Maximize

w = 2 )da)X(z(
1m

2k

1k

1
ki  (19) 

subject to zi(X) + d1            a2

zi(X) + d1 + d2     a3

      

zi(X) + d1 + d2 + ... + 2md 1ma

aad0 1  for  = 1, 2, …, m 2  and zi(X)  0. 

Since daa 1  for all , it is clear that

zi(X)
2m

1
1m da

3m

1
2m da  … 213 dda 0da 12 .

The first (m-3) constraints in Model (21) therefore are covered by the 
(m-2)-th constraint in Model (21). Proposition 4 is then proven. 

Consider the following example as depicted in Figure 9(c): 

Example 3: 

Maximize

z = 1.5x 3
5.0 (|x  2| + x  2) 2

75.0 (|x 3| + x-3)

subject to x  2.5. 

Figure 9. Z function 

Z

5                     0.25 

4           1 

3 

2   1.5 

1      d1    d2

0    1    2    3    4    5    6    7    8     x
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Example 3: 
Maximize z = 1.5x  0.5(x  2 + d1)  0.75(x  3 + d1 + d2)
subject to  x + d1 + d2 3, 0 d1  2, 0 d2  1, and x  2.5. 
After running on LINGO, we obtained z = 3.5, x = 2.5, d1 =0, and d2 = 0.5. 

4. SOLUTION ALGORITHMS  

From the basis of Proposition 1 to Proposition 4, we propose Algorithm 1 
for treating a quasi-concave FMODM problem. From the basis of 
Algorithm 1, Algorithm 2 is developed for solving an FMODM problem 

Algorithm 1 (Solve a quasi-concave FMOP problem): 

1 1 1

( ) 1
1

2

( ) ( ( ) )
( )

(| ( ) | ( ) )
2

i i i i i

i i
M i

ik ik
i ik i ik

k

a s z X a
z

s s z X a z X a

where ika , k = 1, 2, ..., m are the break points of )z( ii , iks , k = 1, 2, ..., m-
1, are the slopes of line segments between ika  and 1k,ia , and i =1, 2, ..,n.

Step 2. Use Remark 1 to find the convex-type break points and Remark 
3 to obtain the corresponding mapping points. 

functions.

Step 5. Use Proposition 4 to linearize the converted functions and then 
solve it by LP techniques. 

Based on the above discussion, for tackling more general non concave 
FMODM problems the following remark is presented. 

Remark 5 (Model the union of some quasi-concave membership 
functions). Any piece-wise membership function can be regarded as the 

C.-S. Yu and H.-L. Li

Referring to Proposition 4, Example 3 can be linearized as 

with more general nonconcave membership functions. 
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Step 3. Use Remark 4 to specify the converted concave membership 

Step 4. Use Equations (11) (13) to compute the slopes of the converted
concave membership functions. 

Step 1.  Use Proposition 1 to express each piece-wise membership 
function as



Quasi-Concave and Nonconcave FMODM Problem 

union of some quasi-concave membership functions. Take Figure 1(d) for 
instance, )z( ii  can be regarded as the union of three quasi-concave 
functions )aza( 2i11i , )aza( 3i22i , and )aza( 4i33i .

The program of  

Maximize
subject to )z( ii  for i = 1, 2, …, n

can be rewritten as the following program by referring to Li & Yu 
(1991).

Maximize
Subject to 1i1i M)z( , 2i2i M)z(

,M)z( 3i3i 1321 ,
where M is a big number and 32   ,,1  are zero-one variables. 

From the basis of Remark 5, Algorithm 2 for solving a general non 
concave FMOP problem is described as follows. 

Algorithm 2 (Solve a general nonconcave FMOP problem): 

Step 0. Convert the piece-wise membership functions into the union of 
some quasi-concave membership functions by adding some zero one
variables.

Steps 1 5 are the same as in Algorithm 1. 

5. NUMERICAL EXAMPLES 

How to solve Example 1 using Algorithm 1 is illustrated below: 

Step 1 . Use Proposition 1 to represent )z( 11  and )z( 22  as 
following Equations [as depicted in Figure 2(a)]. 

1 1 1 1
1 1

1 1 1

0.04( 3) 0.02(| 2 | 2) 0.1(| 12 |
( )

12) 0.04(| 17 | 17)
z z z z

z
z z z

2 2 2 2
2 2

2 2 2 2 2

0.06( 7) 0.02(| 17 | 17) 0.0665(| 21 |
( )

21) 0.03335(| 27 | 27) 0.075(| 30 | 30)
z z z z

z
z z z z z
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Step 2. Use Remark 1 to find convex-type points and Remark 3 to 
calculate their corresponding mapping points as follows [as depicted in 
Figure 10(a)]: 

1
11 1 2[ (17)] 7b , 1

21 2 1
31[ (2)]
3

b

and 1
22 2 1

91[ (17)]
3

b .

Figure 10. Membership functions 

1 1( )z 2 2( )z

1.0

0.8

0.6

0.5

0.2

11b 21b 22b

(a) Two quasi-concave membership functions in Example 1.

1 1( )z 2 2( )z

1.0

t3

t2

t4

s2

s1
s3 t3

0.8

0.769

0.5

0.385

t1

11b =7 21b =31/3 22b =91/3

(b) Two converted concave membership functions in Algorithm 1.

0 7 12 21 27 323

0 7 12 2117 27 32303 2

0.4

t5
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Step 3. Use Remark 4 to specify the converted concave membership 
functions )z( 11  and )z( 22 , as shown in Figure 10(b). 

2 1
1 1 1 1

1 1
3 2

1 1

( 3) (| 7 | 7)
2( )

(| 12 | 12)
2

s ss z z z
z

s s z z
 (20) 

3 22 1
1 2 2 2 2

4 3 5 4
2 2 2 2 2 2

6 5
2 2 2

31 31( 7) (| | ) (| 21|
2 3 3 2

( ) 21) (| 27 | 27) (| 30 |
2 2

91 9130) (| | )
2 3 3

t tt tt z z z z

t t t tz z z z z

t tz z z

 (21) 

Step 4. Use Eqs. (11) (13) to compute the slopes is  and jt , i = 1, 2, 3 
and j = 1, 2, ..., 6 in (20) and (21). Then 

1 1 1 2(12) (12) 10 5 1s s

1 1 1 2 3(27) (27) 10 5 15 0s s s

2 2 1 2
26 16(21) (21) 1
3 3

t t

2 2 1 2 3 4 5 6
10 32 1 5(32) (32) 6 3 0
3 3 3 3

t t t t t t

1 1 1

2 2 1

(2) (2) 5 131 31 10( ) ( )
3 3 3

s

t

1 1 1

2 2
1 2

(7) (7) 10 110 20(17) (17)
3 3

s

t t
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1 2 31 1

2 2
1 2 3

10 5 2(14) (14) 110 32(27) (27) 6
3 3

s s s

t t t

1 2 31 1

2 2
1 2 3 4

10 5 4(16) (16) 110 32(30) (30) 6 3
3 3

s s s

t t t t

1 2 31 1

2 2 1 2 3 4 5

10 5 5(17) (17) 191 91 10 32 1( ) ( ) 6 3
3 3 3 3 3

s s s

t t t t t

s1 >s2 >s3, t1 >t2 >t3 >t4 >t5 > t6

After running on the LINGO (2005), the found solutions are s1 = 0.077, 
s2 = 0.046, s3 = 0.067, t1 = 0.11539, t2 = 0.058, t3 = 0.022, t4 = –0.044,  
t5 = 0.2, and t6 = 0.4. Therefore, we have 

1 1 1 1 1 1 1( ) 0.077( 3) 0.015(| 7 | 7) 0.056(| 12 | 12)z z z z z z

2 2 2 2

2 2 2 2 2 2 2

2 2

31 310.115( 7) 0.029(| | ) 0.0399(| 21|
3 3

( ) 21) 0.011(| 27 | 27) 0.078(| 30| 30)
91 910.1(| | )
3 3

z z z z

z z z z z z

z z

Step 5. Use Proposition 4 to linearize the converted functions and then 
solve it by linear programming techniques. 

Based on Proposition 4, the linearized program is described below: 

FMODM Model 7 (Yu and Li Method for Example 1) 
Maximize

subject to 1 1 1 1 2( ) 0.067 0.031 0.113 1.804Z Z d d
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2 3 4 5
2 2

6 7

0.4 0.058 0.0798 0.022
( )

0.156 0.2 12.808
Z d d d

Z
d d

1 17 0,z d 1 212 0,z d 2 3
31 0
3

z d

2 421 0,z d 2 527 0,z d 2 630 0z d

2 7
91 0,
3

z d 1 1 22 ,z x x 2 1 22 ,z x x 1 23 21x x

1 23 27,x x 1 24 3 45x x , 1 23 30,x x 1 2,  x  0x

1 2 1

2

Table 1. Efficiency Comparison for Solving Example 1 

FMOP Models Required 
zero one
variables

Required extra 
constraints

Required
subproblems

Required LP 
computation

Required
point
calculation

Narasimhan’s and 
Hannan’s
methods

Cannot treat Example 1 

FMODM Model 3 
(Inuiguchi et al. 
Method)

3 2 0 1 5 

FMODM Model 4 
(Yang et al. 
Method)

3 9 0 1 10 

FMODM Model 6 
(Nakamura
Method)

0 9 8 8 0 

FMODM Model 7 
(Yu and Li 
Method)

0 2 0 1 3 

Now let us consider the following piece-wise nonconcave FMODM 
problem.

 = 8.64, By solving on the LINGO, we obtained x  = 5.62, x  = 7.13, z
and z  = 18.36 in which is exactly the optimal solution of Example 1.
Table 1 summarizes the efficiency comparison between Algorithm 1 and 
conventional FMODM methods for solving Example 1. 
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Example 4  
Maximize

subject to )z( i1

=
1 1 1 1 1

1 1 1 1

2 2

0.04( 3) 0.02(| 2 | 2) 0.1(| 12 | 12)
0.04(| 17 | 17) 0.04(| 27 | 27)
0.02(| 42 | 42)

z z z z z
z z z z
z z

)z( 22 =

2 2 2 2

2 2 2 2

2 2 2 2 2

0.06( 7) 0.02(| 17 | 17) 0.0665(| 21 |
21) 0.03335(| 27 | 27) 0.075(| 30 |
30) 0.145(| 32 | 32) 0.03(| 37 | 37)

z z z z
z z z z
z z z z z

where )z( i1  and )z( 22  are non concave functions as depicted in Figure 
11(a).

Figure 11. Membership Function 

By referring to Algorithm 2, the following steps are illustrated to solve 
Example 4. 

1.0 1 1( )z 2 2( )z

0.6

0.5

0.4

11b 21b 22b 12b 23b

(a) Two non-concave membership functions in Example 4
1.0 1 1( )z 2 2( )z t8

s2

t2
t7

t5
t7t6s4

s5
t4

t3

t1

s3

s1

0 3 2 7 12 17 21 27 30 32 37 45 47

(b) Two converted concave membership functions in Algorithm 2

0.8

0.2

0 2 7 12 17 21 27 30 32 37 42 45 173

0.769

0.385

1 , 2

1, 2

z1, z2

z1, z2
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Step 0. Here )z( 11  can be regarded as the union of two 
quasi concave functions )27z3( 111  and )47z27( 112 .

)z( 22  can be regarded as the union of two quasi concave functions 
)32z7( 221  and )45z32( 222 .

In reference to Remark 1, Example 2 can reformulated as 

Maximize  (23) 

subject to 11 1 1( 3 27)z M

12 1 1(27 47) (1 )z M

21 2 2(7 32)z M

22 2 2(32 45) (1 )z M

where M is a big number and 2,1  are 0-1 variables. 

Step 1.  Employ Proposition 1 to represent 11 1( 3 27)z ,
12 1(27 47)z , 21 2(7 32)z  and 22 2(32 45)z  as follows: 

1 1 1
11 1

1 1 1 1

0.04( 3) 0.02(| 2 | 2)
( 3 27)

0.1(| 12 | 12) 0.04(| 17 | 17)
z z z

z
z z z z

12 1 1 1 1(27 47) 0.04( 27) 0.02(| 42 | 42)z z z z

2 2 2

21 2 2 2 2 2

2 2

0.06( 7) 0.02(| 17| 17)
(7 32) 0.0665(| 21| 21) 0.03335(| 27| 27)

0.075(| 30| 30)

z z z
z z z z z

z z
)37z|37z(|03.0)32z(04.0)45z32( 222222

Step 2. Based on Remarks 1 and 3, after finding the convex-type point, 
then the mapping points can be obtained by following equations: 

1
11 1 2[ (17)] 7b , 1

12 1 2[ (37)] 32b
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1
21 2 1

31[ (2)]
3

b , 1
22 2 1

91[ (17)]
3

b

and 1
23 2 1[ (42)] 41b .

Step 3. Using Remark 4 to specify the converted functions

),z( 111 ),z( 112 ),z( 221 and )z( 222  as shown in Figure 11(b), 
respectively:

2 1
1 1 1 1

11 1
3 2

1 1

( 3) (| 7 | 7)
2( )

(| 12 | 12)
2

s ss z z z
z

s s z z
 (24) 

5 4
12 1 4 1 1 1( ) ( 27) (| 32 | 32)

2
s sz s z z z  (25) 

3 22 1
1 2 2 2 2

4 3 5 4
21 2 2 2 2 2

6 5
2 2 2

31 31( 7) (| | ) (| 21|
2 3 3 2

( ) 21) (| 27 | 27) (| 30 |
2 2

91 9130) (| | )
2 3 3

t tt tt z z z z

t t t tz z z z z

t tz z z

 (26) 

8 7
22 2 7 2 2 2( ) ( 32) (| 41| 41)

2
t tz t z z z  (27) 

Step 4. In reference to Eqs. (10) 12), the slopes is  and jt , i = 1, 2, .., 5 
and j = 1, 2, ..., 8, in Eqs. (24) (27) can be computed by solving the 
following equations: 

s1>s2>s3, s4>s5, t1>t2>t3>t4>t5>t6, t7>t8

11 11 1 2(12) (12) 10 5 1s s

11 11 1 2 3(27) (27) 10 5 15 0s s s
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12 12 4 5(47) (47) 5 15 1s s

21 21 1 2
26 16(21) (21) 1
3 3

t t

21 21 1 2 3 4 5 6
10 32 1 5(32) (32) 6 3 0
3 3 3 3

t t t t t t

22 22 7 8(45) (45) 9 4 1t t

11 11 1

121 21

(2) (2) 5 11031 31
33 3

s

t

11 11 1

21 21
1 2

(7) (7) 10 110 20(17) (17)
3 3

s

t t

1 2 311 11

21 21
1 2 3

10 5 2(14) (14) 110 32(27) (27) 6
3 3

s s s

t t t

1 2 311 11

21 21
1 2 3 4

10 5 4(16) (16) 110 32(30) (30) 6 3
3 3

s s s

t t t t

1 2 311 11

1 2 3 4 521 21

10 5 5(17) (17) 110 32 191 91 6 3
3 3 33 3

s s s

t t t t t

1 2 3 412 12

22 22
1 2 3 4 5 6 7

10 5 15 5(32) (32) 110 32 1 5(37) (37) 6 3 5
3 3 3 3

s s s s

t t t t t t t

1 2 3 4 512 12

22 22
1 2 3 4 5 6 7

10 5 15 5 10(42) (42) 110 32 1 5(41) (41) 6 3 9
3 3 3 3

s s s s s

t t t t t t t
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After computing on the LINGO, the found solutions are s1 = 0.077,  
s2 = 0.046, s3 = 0.067, s4 = 0.091, s5 = 0.0364, t1 = 0.11539, t2 = 0.058,  
t3 = 0.022, t4 = 0.044, t5 = 0.2, t6 = –0.4, t7 = 0.091, and t8 = 0.0455. 

Therefore, the program (23) becomes 

Maximize

subject to 1 1 1

1 1 1

0.077( 3) 0.0154(| 7 | 7)
0.056576(| 12 | 12)

Z Z Z
Z Z M

1 1 1 10.158( 27) 0.0273(| 42 | 42) (1 )Z Z Z M

2 2 2 2

2 2 2 2 2

2 2 2

31 310.11539( 7) 0.029(| | ) 0.0399(| 21|
3 3

21) 0.011(| 27 | 27) 0.078(| 30 | 30)
91 910.1(| | )
3 3

Z Z Z Z

Z Z Z Z Z

Z Z M

2 2 2 20.49( 32) 0.023(| 41| 41) (1 )Z Z Z M ,

where M is a big number and 2,1  are zero one variables. 
Step 5. Employing Proposition 4, the above problem can then be 

linearized below: 

Maximize ’
Subject to ’  0.067Z1  0.031d1  0.113d2 + 1.804 + M 1,

’  0.103Z1  0.0556d3  1.973 + M(1 1),
’  0.4Z2  0.058d4  0.0798d5  0.022d6  0.156d7  0.2d8 + 12.808 + 

M 2,
’  0.444Z2  0.046d9  13.794 + M(1 2),

1 17 0,z d 1 212 0,z d 1 342 0z d

2 4(31/ 3) 0z d ,   2 521 0,z d 2 627 0z d

2 730 0,z d 2 8(91/ 3) 0,z d 2 941 0z d
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1 1 22 ,z x x 2 1 22 ,z x x 1 23 21,x x 1 23 27x x

1 24 3 45x x , 1 23 30,x x 1 2,   0x

After running on LINGO, the obtained solutions are 1x = 5.62, 2x =
7.13, 1z = 8.64 and 2z = 18.36. This is exactly the optimal solution of 
Example 2. Table 2 displays the comparisons between traditional FMODM 
methods and Algorithm 2. 

Table 2. Efficiency Comparison for Solving Example 2 

FMODM
models

Required zero-
one variables 

Required extra 
constraints 

Required
subproblems 

Required LP 
computation 

Required  point 
calculation 

Narasimhan’s, 
Hannan’s  and 
Inuiguchi
et al. methods 

Cannot treat Example 2. 

Yang et al. 
Method

9 26 0 1 14 

Nakamura
Method

0 26 26 26 0 

Yu and Li 
Method

2 4 0 1 5 

6. CONCLUDING REMARKS 

With the remarkable advance of computer technology in the last two 
decades, how to solve real-world FMODM problems to obtain the best 
acceptable solution with an efficient algorithm has received considerable 
attention among scientists, engineers, and managers. Since the powerful 
advantage of a computerized system strongly depends on the availability 
and effectiveness of a mathematical formulation, in reality decision makers 
widely use either stochastic or fuzzy programming to treat uncertain 
MODM problems. Stochastic uncertainty is related to environment data 
such as consumer demand and inflows, whereas fuzzy uncertainty 
concerns the use of approximate values by the decision maker when setting 
objective values (Abdelaziz et al., 2004). Consequently, after Zimmermann 
first introduced conventional LP and multi-objective LP into fuzzy set 
theory, various methods using LP were developed to tackle the FMODM 
problems.

x
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However, membership functions, whenever used in LP optimization, as 
reported in literature are generally restricted to linear, triangular, or 
trapezoid functions. This main restriction has excluded many important 
domains of application. Many empirical studies (Biswal, 1997; Hannan, 
1981; Mjelde, 1983; Nakamura, 1984; Narasimhan, 1980; Yang et al., 
1991;) report that real-world membership functions in the engineering, 
physical, business, social, and management fields are not pure linear, 
triangular, concave, or convex shapes but rather than more general non 
concave curves. Therefore, this chapter has been devoted to solving a 
quasi-concave or more general nonconcave FMODM problem. Comparing 
with conventional FMODM methods, the proposed method can directly 
solve a quasi-concave FMODM problem by using standard LP techniques. 
Moreover, there is no requirement to add extra zero one variables or to 
divide the original problem into several sub-problems for solving a quasi-
concave FMODM problem. Without a tiresome solution process, the 
proposed method can be extended to solve more general nonconcave 
FMOP problems by adding less number of zero one variables. Numerical 
examples are employed to illustrate the practicability and applicability of 
the proposed method. 
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INTERACTIVE FUZZY MULTI-OBJECTIVE 
STOCHASTIC LINEAR PROGRAMMING 

Masatoshi Sakawa1 and Kosuke Kato2
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School of Engineering, Hiroshima University

Abstract:  Two major approaches to deal with randomness or ambiguity involved in 
mathematical programming problems have been developed. They are 
stochastic programming approaches and fuzzy programming approaches. In 
this chapter, we focus on multiobjective linear programming problems with 
random variable coefficients in objective functions and/or constraints. Using 
several stochastic models such as an expectation optimization model, a 
variance minimization model, a probability maximization model, and a 
fractile criterion optimization model in chance constrained programming, 
the stochastic programming problems are transformed into deterministic 
ones. As a fusion of stochastic approaches and fuzzy ones, after determining 
the fuzzy goals of the decision maker, several interactive fuzzy satisfying 
methods to derive a satisfying solution for the decision maker by updating 
the reference membership levels are presented. 

Key words:
ing, stochastic programming, interactive programming 

1. INTRODUCTION

In actual decision-making situations, we must often make a decision on the 
basis of vague information or uncertain data. For such decision-making 
problems involving uncertainty, there exist two typical approaches: 
stochastic programming and fuzzy programming. 

Fuzzy mathematical programming, multi-criteria analysis, linear programm-
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Stochastic programming, as an optimization method on the basis of the 
probability theory, has been developing in various ways (Stancu-Minasian, 
1984; 1990), including a two-stage problem by G.B. Dantzig (1955), and 
chance constrained programming by A. Charnes and W.W. Cooper (1959). 
In particular, for multi-objective stochastic linear programming problems, 
I.M. Stancu-Minasian (1984, 1990) considered the minimum risk 
approach, while J.P. Leclercq (1982) and Teghem Jr. et al. (1986) 
proposed interactive methods.

On the other hand, fuzzy mathematical programming representing the 
vagueness in decision-making situations by fuzzy concepts has been 
studied by many researchers (Lai and Hwang, 1992; Rommelfanger, 1996; 
Sakawa, 1993). Fuzzy multiobjective linear programming, first proposed 
by H.-J. Zimmermann (1978), has also been developed by numerous 
researchers, and an increasing number of successful applications have been 
introduced (Delgado et al., 1994; Kacprzyk and Orlovski, 1987; Lai and 
Hwang, 1994; Luhandjula, 1987; Sakawa et al. 1987; Sakawa, 2001; 1993; 
2000; Slowinski, 1998; Slowinski and Teghem, 1990; Verdegay and 
Delgado, 1989; Zimmermann, 1987).

As a hybrid of the stochastic approach and the fuzzy one, Wang et al. 
(Wang and Qiao, 1993) and Luhandjula et al. (Luhandjula, 1996; 
Luhandjula and Gupta, 1996) considered mathematical programming 
problems with fuzzy random variables (Kwakernaak, 1778; Puri, 1986), 
and Liu and Iwamura (1998) discussed chance constrained programming 
involving fuzzy parameters. In particular, Hulsurkar et al. (1997) applied 
fuzzy programming to multi-objective stochastic linear programming 
problems. Unfortunately, however, in their method, since membership 
functions for the objective functions are supposed to be aggregated by a 
minimum operator or a product operator, optimal solutions that sufficiently 
reflect the decision maker’s preference may not be obtained.

Under these circumstances, in this chapter, we focus on multi- 
objective linear programming problems with random variable coefficients 
in objective functions and/or constraints. Through the use of several 
stochastic models, including an expectation optimization model, a variance 
minimization model, a probability maximization model, and a fractile 
criterion optimization model together with chance constrained 
programming techniques, the stochastic programming problems are 
transformed into deterministic ones. Assuming that the decision maker has 
a fuzzy goal for each objective function, having determined the fuzzy 
goals of the decision maker, we present several interactive fuzzy satisfying 
methods to derive a satisfying solution for the decision maker by updating 
the reference membership levels. As an illustrative numerical example, a 
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multi-objective linear programming problem involving random variable 
coefficients for the probability maximization model is provided to 
demonstrate the feasibility of the proposed method.

2. MULTI-OBJECTIVE LINEAR PROGRAMMING 
PROBLEMS WITH RANDOM VARIABLE 
COEFFICIENTS

Throughout this chapter, we deal with multi objective linear programming 
problems where coefficients in objective functions and right-hand side 
constants of constraints are assumed to be random. Such multi-objective 
linear programming problems involving random variable coefficients are 
formally formulated as:

1 1

k k

)

( , ) ( )
( )

0

x c x

x

 (1) 

where x is an n-dimensional decision variable column vector and A is an 
nm  coefficient matrix.
It should be noted that )(lc , kl 1,..., are n-dimensional random 

variable row vectors with finite mean lc and finite covariance matrix 
)])(),((Cov[)( lhlj

l
jhl ccvV , nhnj 1,..., ,1,...,  and )(ib , mi 1,...,

are random variables with finite mean ib , which are independent of each 
other, and the distribution function of each of them is also assumed to be 
continuous and increasing. 

Multi-objective linear programming problems with random variable 
coefficients are said to be multi-objective stochastic linear programming 
ones, which are often seen in actual decision-making situations. For 
example, consider a production planning problem to optimize the gross 
profit and production cost simultaneously under the condition that unit 
profits of the products, unit production costs of them, and the maximal 
amounts of the resources depend on seasonal factors or market prices. 
Such a production planning problem can be formulated as a multi-

Minimize   z (x, ) c x(

Minimize   z
subject to           A x b
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objective programming problem with random variable coefficients 
expressed by Eq. (1). 

Since the formulated problem Eq.(1) contains random variable 
coefficients, definitions and solution methods for ordinary mathematical 
programming problems cannot be directly applied. Consequently, we deal 
with the constraints in Eq. (1) as chance constrained conditions (Charnes 
and Cooper, 1959), which mean that the constraints need to be satisfied 
with a certain probability (satisfying level) and over. Namely, replacing 
the constraints in Eq. (1) by chance constrained conditions with satisfying 
levels m,...,1ii   , , Eq. (1) can be converted as 

1 1

k k

1 1 1

m m m

( , ) ( )

                z ( , ) ( )
     Pr b ( )

Pr b ( )
0

x c x

x c x
a x

a x
x

 (2) 

where ia is the ith row vector of A and )(bi is the ith element of )(b .
Denoting continuous and increasing distribution functions of random 

variables )(ib , mi 1,..., by ])(Pr[)( rbrF ii , the ith constraint in 
Eq.(2) can be rewritten as:

)(1
1)(
)(1

)(Pr1)Pr

i
1

ii

iii
iii

iiiiii

Fxa
xaF

xaF
xab(bxa

 (3) 

Letting )(11
iii Fb̂ , Eq.(2) can be transformed into the following 

equivalent problem:

1 1

k k( , ) ( )
ˆsubject to          A
0

x c x

x b
x

 (4) 

Minimize  z (x, ) c ( )x

Minimize  z

                 zMinimize

Minimize 
subject to 
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where T
mb̂b̂b̂ ),...,( 1 . In the following section, for notational convenience, 

the feasible region of Eq. (4) is denoted by X.
For the multi-objective chance constrained programming problem  

Eq. (4), several stochastic models such as an expectation optimization 
model, a variance minimization model, a probability maximization model, 
and a fractile criterion model have been proposed depending on the 
concern of the decision maker.

3. EXPECTATION OPTIMIZATION MODEL 

In this section, we state the expectation optimization model for multi-
objective chance constrained programming problems (Sakawa and Kato, 
2002; Sakawa et al. 2003b), where the decision maker aims to optimize the 
expectation of each objective function represented as a random variable in 
Eq. (4).

Substituting the objective functions xcx )(),(z ll , kl   1,..., in
Eq. (4) for their expectations, the problem can be converted as

1

k

Minimize      E z ( , )

Minimize     E z ( , )
ˆsubject to     A

0

x

x

x b
x

 (5) 

Letting )](E[ ll cc , )],(E[)( xzxz ll  can be expressed as

.)(z ll xcx  (6) 

Then, Eq. (5) can be reduced to the following ordinary multi-objective 
linear programming problem:

1

k

Minimize    

Minimize    
ˆsubject to   A

0.

c x

c x

x b
x

 (7) 
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In order to consider the imprecise nature of the decision maker’s 
judgments for each objective function  

xcxz ll )(

in Eq. (7), if we introduce the fuzzy goals such as “ )(xlz should be 
substantially less than or equal to a certain value,” Eq. (7) can be rewritten as 

)))((,)),(((Maximize xzxz kk11
Xx

…  (8) 

where )(l  is a membership function to quantify a fuzzy goal for the lth
objective function in Eq. (7). To be more specific, if the decision maker 
feels that )(zl x  should be greater than or equal to at least 0,lz  and that 

)z(z)x(z 0,l1,ll  is satisfactory, the shape of a typical membership 
function is shown in Figure 1.

Figure 1. An example of a membership function ))(( xzll

Since Eq. (8) is regarded as a fuzzy multi-objective decision-making 
problem, there rarely exists a complete optimal solution that 
simultaneously optimizes all objective functions. As a reasonable solution 
concept for the fuzzy multi-objective decision-making problem, M. 
Sakawa et al. (Sakawa and Yano, 1985; 1990; Sakawa et al., 1987; 
Sakawa, 1993) defined M-Pareto optimality on the basis of membership 
function values by directly extending the Pareto optimality in the ordinary 
multi-objective programming problem.
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DEFINITION 1 (M-PARETO OPTIMAL SOLUTION)
X*x is said to be an M-Pareto optimal solution if and only if  

there does not exist another Xx such that *))(z())(z( llll xx for
kl 1,..., and ))(())(( *xzxz jjjj for at least one }k,,1{j … .

Introducing an aggregation function )(D x  for k membership 
functions in Eq. (8), the problem can be rewritten as:

X
D

x
x

   subject to
)(    Minimize  (9) 

The aggregation function )(D x  represents the degree of satisfaction 
or preference of the decision maker for the whole of k fuzzy goals.

Following the conventional fuzzy approaches, as aggregation functions, 
Hulsurkar et al. (1997) adopted the minimum operator of Bellman and 
Zadeh (1970) defined by

1, ,
( ) min { ( ( ))}D l ll k

zx x
…

.

and the product operator of Zimmermann (1978) defined by

k

l
llD xzx

1
))(()( .

However, it should be emphasized here that such approaches are 
preferable only when the decision maker feels that the minimum operator 
or the product operator is appropriate. In other words, in general decision 
situations, the decision maker does not always use the minimum operator 
or the product operator when combining the fuzzy goals. Probably the 
most crucial problem in Eq. (9) is the identification of an appropriate 
aggregation function that well represents the decision maker's fuzzy 
preferences. If )(D x  can be explicitly identified, then Eq. (9) reduces to 
a standard mathematical programming problem. However, this rarely 
happens, and as an alternative, an interaction with the decision maker is 
necessary for finding a satisfying solution to Eq. (9).

In an interactive fuzzy satisfying method, to generate a candidate for a 
satisfying solution that is also M-Pareto optimal, the decision maker is 
asked to specify the aspiration levels of achievement for the membership 
values of all membership functions, called the reference membership 
levels (Sakawa and Yano, 1985; 1989; 1990; Sakawa et al., 1987; Sakawa, 
1993).
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For the decision maker's reference membership levels k,,1l,l … , the 
corresponding M-Pareto optimal solution, which is nearest to the 
requirements in the minimax sense or better than that if the reference 
membership levels are attainable, is obtained by solving the following 
minimax problem: 

Xx

xzlll
kl

    subject to

))}(({max   Minimize
,1,…

. (10) 

By introducing the auxiliary variable v, this problem can be 
equivalently transformed as 

Xx
vxz

vxz

v

kkk ))((

))((    subject to

    Minimize

111 . (11) 

If the value of v is fixed to v*, Eq. (11) can be reduced to a linear 
programming problem. Therefore, we can find an optimal solution 

*)*,( vx  corresponding to v* by the bisection method based on the 
simplex method.

Following the preceding discussions, we can now construct the 
interactive algorithm in order to derive the satisfying solution for the 
decision maker from the M-Pareto optimal solution set. The steps marked 
with an asterisk involve interaction with the decision maker.

Interactive fuzzy satisfying method for expectation optimization model

Step 1. Calculate the individual minimum min
lz and maximum max

lz of
)(z)],(z[ ll xxE , kl 1,..., under the chance constrained conditions 

with satisfying levels i , mi ,1,… by solving the following linear 
programming problems: 

klxcxz ll
Xx

,1,,)(   minimize …  (12) 

klxcxz ll
Xx

,1,,)(   maximize …  (13) 
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Step 2. Ask the decision maker to determine membership functions 
))(z( ll x  for objective functions in Eq. (7).

Step 3. Ask the decision maker to set the initial reference membership 
levels k,,1l,1l … .

Step 4. Solve the following minimax problem

Xx

xzlll
kl

    subject to

))}(({max   Minimize
,1,…

 (14) 

corresponding to the reference membership levels kll ,1,, … . To be 
more specific, after calculating the optimal value v* to the problem

Xx
vxz

vxz

k
1

kk

1
1

1

)()(

)()(    subject to

    Minimize

1

v

 (15) 

by the bisection method and phase one of the two-phase simplex method, 
solve the linear programming problem

Xx
vxz

*vxz

xz

k
1

kk

2
1

2

1

*)()(

) ()(    subject to

)(    Minimize

2  (16) 

where ),(1 xz  is supposed to be the most important to the decision maker.
For the obtained x*, if there are inactive constraints in the first )1k(

constraints, replace l  for inactive constraints with *v*))(z( ll x  and 
resolve the corresponding problem. Furthermore, if the obtained x* is not 
unique, perform the M-Pareto optimality test.

Step 5. The decision maker is supplied with the corresponding M-
Pareto optimal solution and the trade-off rates between the membership 
functions. If the decision maker is satisfied with the current membership 
function values of the M-Pareto optimal solution, stop. Otherwise, ask the 
decision maker to update the reference membership levels k,...,1l,l  by 
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considering the current membership function values *
ll xz  together 

with the trade-off rates k,...,2l,
l

1  and return to step 4. Here, the 

trade-off rates are expressed as 

klxz
xz

xz
xz

ll

1
l

ll

11
,2,,*))((

*))((
))((
))(( 1

…

where kll ,2, , …  are simplex multipliers in Eq. (16). 
Since the trade-off rates kl/ l ,2,,1 … in step 5 indicate the 

decrement of value of a membership function 1  with a unit increment of 
value of a membership function l , they are employed to estimate the 
local shape of )))(z(,*)),(z(( kk11 xx …  around x*.

Here it should be stressed to the decision maker that any improvement 
of one membership function can be achieved only at the expense of at least 
one of the other membership functions.

For further details along this line, the readers might refer to the 
corresponding papers (Sakawa et al., 2000; 2003b).

4. VARIANCE MINIMIZATION MODEL 

Since objective functions regarded as random variables in Eq. (4) are 
reduced to their expectations in the expectation optimization model, the 
requirement of the decision maker for risk is not reflected in the obtained 
solution. From this viewpoint, in this section, we consider the variance 
minimization model for multi-objective chance constrained programming 
problems (Sakawa et al., 2002). In the model, we substitute the 
minimization of variances of objective functions for the minimization of 
objective functions in Eq. (4). Then, the problem can be rewritten as

T
1 1 1

T
k k k

( ) V ar z ( , ) V

z ( ) V ar z ( , ) V
ˆ A
0

x x x x

x x x x

x b
x

 (17) 

Using the variance minimization model, the obtained solution might be 
too bad in the sense of the expectation of objective functions, while it 

 zMinimize

Minimize

subject to
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accomplishes the minimization in the sense of the variance. In order to 
take the requirement of the decision maker for expectations of objective 
functions into account, we consider the following revised variance 
minimization model incorporating constraints that the expectation of each 
objective function, xcxz ll )( must be less than or equal to a certain 
permissible level kll ,1, , … .

T
1 1 1

T
k k k

Minimize   z ( ) Var z ( , ) V

Minimize   z ( ) Var z ( , ) V
ˆsubject to     A

C
0

x x x x

x x x x

x b
x
x

 (18) 

where TT
k

T ccC ),,( 1 …  and T
k1 ),,( … , and we denote the feasible 

region of Eq. (18) by X'.
In order to consider the imprecise nature of the decision maker's 

judgments for each objective function in Eq. (18), if we introduce the 
fuzzy goals such as “ )(xzl should be substantially less than or equal to a 
certain value,” the problem Eq. (18) can be rewritten as

1 1 k kX
Maximize   ( ( z ( )), , ( z ( )))

x
x x…  (19) 

where )(l  is a membership function to quantify a fuzzy goal for the lth
objective function in Eq. (18) shown in Figure 2.

Figure 2. An example of a membership function ))(z( ll x
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In order to derive a satisfying solution for the decision maker from the 
M-Pareto optimal solution set, Sakawa et al. (Sakawa and Yano, 1985; 
1990; Sakawa et al., 1987; Sakawa, 1993) proposed an interactive fuzzy 
satisfying method such that the decision maker interactively updates the 
aspiration levels of achievement for the membership values of all 
membership functions, called the reference membership levels, until he is 
satisfied.

We now summarize the interactive algorithm.

Interactive fuzzy satisfying method for variance minimization model 

Step 1. Ask the decision maker to specify the satisfying levels i ,
mi ,1,… for each of the constraints in Eq. (1).

Step 2. After calculating the individual minimum min
lz  and maximum 

max
lz  of klxzxz ll ,1,),()],(E[ … under the chance constrained 

conditions, ask the decision maker to specify permissible levels l ,
k,,1l …  for objective functions.

Step 3. Calculate the individual minimum min,lz  of k,,1l),(zl …x  in 
Eq. (18) by solving the following quadratic programming problems: 

klxVxxz l
T

l
Xx

,1, ,)(   minimize …  (20) 

Step 4. Ask the decision maker to determine membership functions 
))(z( ll x  for objective functions in (18) on the basis of individual 

minima min,lz .
Step 5. Ask the decision maker to set the initial reference membership 

levels

kll ,1, 1, … .

Step 6. Calculate the optimal solution x* to the augmented minimax 
problem Eq. (21) corresponding to the current reference membership 
levels kll ,1, , … .

ki
iiilll

klXx
xzxz

,1,,1,
)))((())(( max Minimize

……
 (21) 

Here, assuming that each membership functions )(l , k,,1l …  is 
nonincreasing and concave, Eq. (21) is a convex programming problem. 
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Under the assumption, we can solve Eq. (21) by a traditional convex 
programming technique as the sequential quadratic programming method.

Step 7. The decision maker is supplied with the obtained solution x*. If 
the decision maker is satisfied with the current membership function 
values of x*, stop. Otherwise, ask the decision maker to update the 
reference membership levels l , k,,1l … by considering the current 
membership function values *))(z( ll x , and return to step 6.

5. PROBABILITY MAXIMIZATION MODEL 

In this section, we investigate the probability maximization model for a 
multi-objective chance constrained programming problem (Sakawa and 
Kato, 2002; Sakawa et al., 2004), where the decision maker aims to 
maximize the probability that each objective function represented as a 
random variable is less than or equal to a certain permissible level in Eq. (4).  

Substituting the minimization of the objective functions 
xcxz ll )(),( , k,,1l … in Eq. (4) for the maximization of the 

probability that each objective function ),(zl x  is less than or equal to a 
certain permissible level lf , the problem can be converted as

0x
b̂xA

fxzxp

fxzxp

kkk

11

subject to

),(Pr)(   Maximize

),(Pr)(   Maximize 1

 (22) 

In order to consider the imprecise nature of the decision maker's 
judgment for each objective function in Eq. (22), if we introduce the fuzzy 
goals such as “ )(pl x  should be substantially greater than or equal to a 
certain value,” Eq. (22) can be rewritten as 

1 1 ( ( )))k kXx
 (23) 

where )(l  is a membership function to quantify a fuzzy goal for the l th 
objective function in Eq. (22). To be more explicit, if the decision maker 
feels that )(pl x  should be greater than or equal to at least 0,lp  and 

)p(p)x(p 0,l1,ll  is satisfactory, the shape of a typical membership 
function is shown in Figure 3.

p xM aximize ( ( p (x)),… ,
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))(( xll p

In an interactive fuzzy satisfying method, to generate a candidate for 
the satisfying solution that is also M-Pareto optimal, the decision maker is 
asked to specify the aspiration levels of achievement for the membership 
values of all membership functions, called the reference membership 
levels (Sakawa and Yano, 1985; 1989; 1990; Sakawa et al., 1987; Sakawa, 
1993).

For the decision maker’s reference membership levels kll ,1,, … , the 
corresponding M-Pareto optimal solution, which is nearest to the 
requirements in the minimax sense or better than that if the reference 
membership levels are attainable, is obtained by solving the following 
minimax problem: 

.Xx

xplll
kl

  subject to

))}(({max  Minimize
,1,…

. (24) 

By introducing the auxiliary variable v, this problem can be 
equivalently transformed as 

.Xx
vxp

vxp

v

kkk

1

))((

))(( subject to

 Minimize

11 . (25) 

Now, let every membership function )(l  be continuous and strictly 
increasing. Then, (25) is equivalent to the following problem:

Figure 3. An example of a membership function 
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Xx
vxp

vxp

v

k

1

kk

1

11

)()(

)()( subject to

  Minimize

1
. (26) 

Since Eq. (26) is a nonconvex, nonlinear programming problem in 
general, it is difficult to solve it.

Here, in Eq. (1), we assume that k,,1l),(l …c  dimensional random 
variable row vectors expressed by 2

ll
1
ll )(t)( ccc  where )(tl ’s are 

random variables independent of each other, and )(l ’s are random 
variables expressed by 2

ll
1
ll )(t)( , where the corresponding 

distribution function )(Tl  of each of l
and strictly increasing.

Supposing that klxc 2
l

2
l ,1,0, …  for any Xx , from the 

assumption on distribution functions )(Tl of random variables )(tl , we 
can rewrite the objective functions in Eq. (22) as 

1 2 1 2

2 2 1 1
1

1 1

2 2

1 1

2 2

Pr ( , ) Pr ( ( ) ) ( ( ) )

Pr ( ) ( ) ( )

( )Pr ( )
( )

l l l l l l l l l

l l l l l

l l l
l

l l

l l l
l

l l

z f t t f

t f

ft

fT

x c c x

c x c x

c x
c x

c x
c x

Hence, Eq. (22) can be transformed into the following ordinary 
multiobjective programming problem:

1 1
1 1

1 1 2 2
1 1

1 1

2 2

Maximize ( )

Maximize ( )

subject to 

l

k k k
k k

k k

f
p T

f
p T

X

c x
x

c x

c x
x

c x

x

. (27) 

t ( ), s is assumed to be continuous  

.
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In view of 

2
l

2
l

1
l

1
ll

ll
f

T)(p
xc

xc
x

and the continuity and strictly increasing property of the distribution 
function )(Tl , This problem can be equivalently transformed as

1 1
1 11 1 1

1 1 12 2
1 1

1 1
1 1

2 2

Minimize 

subject to ( ( ))

( ( ))k k k
k k k

k k

v
f x T v

x

f x T v
x

X

c
c

c
c

x

.
 (28) 

It is important to note here that, in this formulation, if the value of  
v +is fixed, it can be reduced to a set of linear inequalities. Obtaining  
the optimal solution v* to the above problem is equivalent to determining 
the maximum value of v so that there exists an admissible set satisfying the 
constraints of equations (28). Since v satisfies

min,lk,,1lmaxmax,lk,,1lmax minvmax
……

where

))(p(min)),(p(max,max ll
X

min,lll
X

max,ll
k,,1l

max xx
xx…

we can obtain the minimum value of v by combined use of the bisection 
method and phase one of linear programming technique. 

After calculating v*, the minimum value of v, we solve the following 
linear fractional programming problem in order to uniquely determine x*
corresponding to v*:
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1 1
1 1 1

2 2
1 1

1 1
1 12 2 2

2 2 22 2
2 2

1 1
1 1k k k

k k k2 2
k k

fMinimize 

fsubject to  T ( ( v*))

f T ( ( v*))

X

c x
c x

c x
c x

c x
c x

x

 (29) 

where ),(1 xz  is supposed to be the most important to the decision 
maker.

Using the Charnes Cooper transformation (Charnes and Cooper, 1962) 

0sxsyxcs 2
1

2
1 ,),1/(  (30) 

the linear fractional programming problem Eq. (29) is converted to the 
following linear programming problem  

1 1
1 1 1

2 2 1 1
2 2 2 2 2 2

2 2 1 1
k k k k k k

2 2
1 1

Minimize ( f ) s

subject to ( s ) ( f ) s 0

( s ) ( f ) s 0

ˆA s

s 1

s

s 0

c y

c y c y

c y c y

y b

c y

y

0

0

 (31) 

where *))(( vT l
1

l
1

ll , and  is sufficiently small and positive.
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If the optimal solution ),( *s*y to Eq. (31) is not unique, the Pareto 
optimality of s**y*x  is not guaranteed. The Pareto optimality of x*
can be tested by solving the following linear programming problem.

k

l
l 1

1
1 1 1

1

k
k k k

k
T

1 k

Maximize  w

q ( *)subject to  q ( ) r ( )
r ( *)

   
q ( *)q ( ) r ( )
r ( *)

 X, ( , , ) 0

xx x
x

xx x
x

x …

(32)

where

2
l

2
ll

1
ll1l xcxrxcfxq )(,)( 1

For the optimal solution to Eq. (32), (a) if 0w , i.e., 0l  for 
kl 1,..., , x* is Pareto optimal. On the other hand, (b) w 0 , i.e., 0l

for at least one l, x* is not Pareto optimal. Then, we can find a Pareto 
optimal solution according to the following algorithm.

Step 1. For the optimal solution x  ,  to the problem (32), after 
arbitrarily selecting j such as 0j , solve the following problem:

1 1

2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

Maximize  

subject to  , { | 0}

, { | 0}

j j j

j j

l l l l l l
l

l l l l

l l l l l l
l

l l l l

f

f f l

f f l

X

c x
c x

c x c x
c x c x

c x c x
c x c x

x

 (33) 
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Since the above problem can be converted to a linear programming 
problem by the Charnes and Cooper transformation (Charnes and Cooper, 
1962), we can solve it by the simplex method.

Step 2. To test the Pareto optimality of the optimal solution x̂  to Eq. 
(33), solve the problem Eq. (32) where x̂  is substituted for x*.

Step 3. If 0w , x̂  is Pareto optimal and stop. Otherwise, i.e., if 0w ,
return to step 1 since x̂ is not Pareto optimal.

Repeating this process at least 1k iterations, a Pareto optimal solution 
can be obtained.

The decision maker must either be satisfied with the current Pareto 
optimal solution or act on this solution by updating the reference 
membership levels. In order to help the decision maker express a degree of 
preference, trade-off information between a standing membership function 
and each of the other membership functions is very useful. Such trade-off 
information is easily obtainable since it is closely related to the simplex 
multipliers of Eq. (31). 

To derive the trade-off information, define the Lagrange function L for 
Eq. (31) as follows:

)((

)(}])({

)([)(),,,,(

n

1j
1njj

2m
2
1

2
11m

m

1i
iiil

1
l

1
l

k

2l

2
l

2
lll1

1
1

1
1

sy

s)1syc

b̂syasfyc

sysfycsyL c

 (34) 

where , , and are simplex multipliers.

Then, the partial derivative of ),,,,( syL with respect to l  is given 
as follows.

klsyc
syL 2

l
2
ll

l
,2,  ),(

),,,,(
…  (35) 

393



M. Sakawa and K. Kato

On the other hand, for the optimal solution *)*,( sy  to Eq. (31) and the 
corresponding simplex multipliers *)*,*,( , the following equation 
holds from the Kuhn-Tucker necessity theorem (Sakawa, 1993):

s*f*yc****s*yL 1
1
1

1
1 )(),,,,(  (36) 

If the first )1(k  constraints to Eq. (31) are active, l  is calculated as 
follows:

kl
s**yc

s*f*yc
2
l

2
l

l
1
l

1
l

l ,2, ,
)(

… . (37) 

From Eq. (35), Eq. (36) and Eq. (37), for k,,2l … , we have 

*)s*yc*

s**yc

s*f*yc

*sf*yc 2
l

2
ll

2
l

2
l

l
1
l

1
l

1
1

1
1 (

)(

))(( 1 . (38) 

By substituting x* for y*, s* in Eq. (38), the equation is rewritten as 

k,,2l,
*

*

*

*f

*

*f

2
1

2
1

2
l

2
l*

l

2
l

2
l

1
l

1
ll

2
1

2
1

1
1

1
11

…
xc

xc

xc

xc

xc

xc

. (39) 

Using the chain rule, the following relation holds:

.kl
*xc

*xcf
T

*xc

*xcf
T

*xc

*xc
*

*xc

*xcf
T

*xc

*xcf
T

2
l

2
l

1
l

1
ll

l

2
1

2
1

1
1

1
11

1

2
1

2
1

2
l

2
l

l

2
l

2
l

1
l

1
ll

l

2
1

2
1

1
1

1
11

1

,2,…

. (40) 
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Equivalently,

kl
xp
xp

*xc

*xc
*

xp
xp

l

1
2
1

2
1

2
l

2
l

l
l

1 ,2,,
*)(
*)(

*)(
*)(

… . (41) 

Again, using the chain rule, for k,,2l …  we have

.xp
xp

xp
xp

*xc

*xc
*xp

xp
ll

1

l

1
2
1

2
1

2
l

2
l

ll

11

*))((
*))((

*)(
*)(

*))((
*))(( 1

l  (42) 

It should be stressed here that in order to obtain the trade-off 
information from Eq. (42), the first )1k( constraints in Eq. (31) must be 
active. Therefore, if there are inactive constraints, it is necessary to replace 

l  for inactive constraints with *v*))(p( ll x  and solve the 
corresponding problem to obtain the simplex multipliers.

Following the preceding discussions, we can now construct the 
interactive algorithm in order to derive the satisfying solution for the 
decision maker from the Pareto optimal solution set.

Interactive fuzzy satisfying method for probability maximization 
model

Step 1. Calculating the individual minimum min
lz  and maximum max

lz
of klxzxz ll ,1, ),()],(E[ … under the chance constrained conditions 
with satisfying levels mii ,1,, … .

Step 2. Ask the decision maker to specify permissible levels 
klfl ,1,, …  for objective functions.

Step 3. Calculate the individual minimum min,lp  and maximum max,lp
of k,,1lxpl …),(  in the multi-objective probability maximization 
problem Eq. (27) by solving the following problems: 

k,,1l,
f

T)(p 2
l

2
l

1
l

1
ll

ll
X

…
xc

xc
x

x
 Minimize  (43) 

k,,1l,
f

T)(p 2
l

2
l

1
l

1
ll

ll
X

…
xc

xc
x

x
 Maximize  (44) 
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Then ask the decision maker to determine membership functions 
))(p( ll x  for objective functions in Eq. (27).

Step 4. Ask the decision maker to set the initial reference membership 
levels

k,,1l,1l …

Step 5. In order to obtain the optimal solution x* to the minimax 
problem Eq. (24) corresponding to the reference membership levels 

k,,1l,1l … , after solving Eq. (28) by the bisection method and phase 
one of the two-phase simplex method, solve the linear programming 
problem Eq. (31). For the obtained x*, if there are inactive constraints in 
the first )1k(  constraints, replace l  for inactive constraints with 

*v*))(p( ll x  and resolve the corresponding problem. Furthermore, if 
the obtained x* is not unique, perform the Pareto optimality test.

Step 6. The decision maker is supplied with the corresponding Pareto 
optimal solution and the trade-off rates between the membership functions. 
If the decision maker is satisfied with the current membership function 
values of the Pareto optimal solution, stop. Otherwise, ask the decision 
maker to update the reference membership levels k,,1l,1l …  by 
considering the current membership function values *))(p( ll x  together 
with the trade-off rates l1 / , k,,2l … , and return to step 5.

Since the trade-off rates l1 / , k,,2l …  in Step 6 indicate the 
decrement of value of a membership function 1  with a unit increment of 
value of a membership function l , they are employed to estimate the 
local shape of *)))(p(,*)),(p( kk11 xx …  around x*.

Here, as in the discussion for the expectation optimization model, it 
should be also stressed to the decision maker that any improvement of one 
membership function can be achieved only at the expense of at least one of 
the other membership functions.

6. FRACTILE CRITERION OPTIMIZATION 
MODEL

In this section, we discuss a fractile criterion model for the multi-objective 
chance constrained programming problem (Sakawa et al., 2001), which 
aims to find the minimal value of multiple objective functions such that the 
probability of obtaining such a result is greater than or equal to some given 
thresholds under chance constrained conditions.
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Substituting the minimization of the objective functions ),(xzl ,
k,,1l …  in Eq. (4) for the minimization of values , 1, ,lf l k…  such 

that the probability of obtaining such result is greater than or equal to some 
given thresholds l  under a chance constrained condition, the problem can 
be converted as 

0x

b̂xA

kkfxkc

11fx1c
kf
1f

)(Pr     

)(Pr   subject to

   Minimize

   Minimize

 (45) 

where (1/ 2, 1), 1, ,l l k…  is assumed to guarantee the convexity of 
the finally reduced problem.

In Eq. (45), we assume that k,,1l),(l …c  are Gaussian random 
variable vectors. Then, the constraints

klfxc lll ,1,,])(Pr[ …  (46) 

are transformed as

.l
xlVTx

xlclf

xlVTx

xlcxlc
llfxlc

)(
Pr])(Pr[  (47) 

Since random variables 

k,,1l,
V

)(

l
T

ll …
xx

xcxc
(48)

in the above conditions, are standard Gaussian random variables with 
mean 0 and variance 21 , the conditions Eq. (46) are reduced to the 
following conditions: 
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kll
xlVTx

xlclf ,1,, …

kl,lK
xlVTx

xlclf ,1,…

klxlVTxlKxlclf ,1, , …

where )(  is the distribution function of a standard Gaussian random 
variable and )(inf l

1
lK . Based on the above discussion, Eq. (45) 

can be transformed into the following problem:

Minimize   f1
Minimize   fk

Tsubject to   K V f1 1 11

T  K V fk k kk

ˆA

.

c x x x

c x x x

x b

x 0

(49)

Equivalently, Eq. (49) can be rewritten as

TMinimize   f ( ) K V1 1 11
Tminimize   f ( ) K Vk k kk

ˆsubject to   A
  0

.

x c x x x

x c x x x

x b
x

 (50) 
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Furthermore, each of the objective functions in Eq. (50) is convex since 
each of klK l ,1,, …  is positive from )1,2/1(l . Therefore, Eq. (50) 
is a multiobjective convex programming problem. In the following 
discussion, for notational convenience, the feasible region of Eq. (50) is 
denoted by X.

In order to consider the imprecise nature of the decision maker's 
judgments for each objective function  

xlVTxlKxlcxlf )(

in Eq. (50), if we introduce the fuzzy goals such as “ )(fl x  should be 
substantially less than or equal to a certain value”, (50) can be rewritten as:

)))(kf(k,)),(1f(1(
X

xx
x

… Maximize  (51) 

where )(l  is a membership function to quantify a fuzzy goal for the l th 
objective function in Eq. (50) and it is assumed to be concave. The shape 
of a typical membership function is shown in Figure 4.

Figure 4. An example of a membership function ))x(f( ll

For the decision maker’s reference membership levels k,,1l,l … ,
the corresponding M-Pareto optimal solution, which is nearest to the 
requirements in the minimax sense or better than that if the reference 
membership levels are attainable, is obtained by solving the following 
minimax problem: 

l1, ,
M inimize max  { ( ( ))}

subject to 

l ll k
f

X

x

x
…  (52) 

By introducing the auxiliary variable v, this problem can be 
equivalently transformed as
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Minimize 
subject to ( ( ))1 1 1

( ( ))

.

v
f v

f vk k k

X

x

x

x

 (53) 

If the optimal solution *)v*,( x  to Eq. (53) is not unique, the M-Pareto 
optimality of x* is not guaranteed. In order to avoid the above situation, 
we consider the following augmented minimax problem  

Minimize 

subject to ( ( )) ( ( ( )))1 1 1 1

( ( )) ( ( ( )))
1

v
k

f f vi i ii

k
f f vi i ik k k i

X

x x

x x

x

 (54) 

where  is a sufficiently small positive number. It should be noted that 
the augmented minimax problem (54) is a convex programming problem 
under the assumption that each of the membership functions 

k,,1l),(l …  is nonincreasing and concave.
Following the preceding discussions, we can now construct the 

interactive algorithm in order to derive the satisfying solution for the 
decision maker from the M-Pareto optimal solution set. The steps marked 
with an asterisk involve interaction with the decision maker.

Interactive fuzzy satisfying method for fractile criterion model 

Step 1. Ask the decision maker to specify the probability thresholds 
)1,2/1(l , k,,1l …  and satisfying levels mii ,1,, … for the chance 

constrained condition in Eq. (1).
Step 2. After calculating the individual minimum min,lf  of )(f l x ,

k,,1l … in Eq. (50), ask the decision maker to determine membership 
functions ))(f( ll x  for objective functions in Eq. (50), which are 
nonincreasing and concave.
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Step 3. Ask the decision maker to set the initial reference membership 
levels. If it is difficult for the decision maker to specify them 
appropriately, set 1, 1, ,l l k… .

Step 4. Solve the augmented minimax problem Eq. (54) corresponding 
to the reference membership levels 1, 1, , .l l k…

Step 5. The decision maker is supplied with the corresponding M-
Pareto optimal solution. If the decision maker is satisfied with the current 
membership function values of the M-Pareto optimal solution, stop. 
Otherwise, ask the decision maker to update the reference membership 
levels k,,1l,1l …  by considering the current membership function 
values *))(f( ll x

Here it should be stressed to the decision maker that any improvement 
of one membership function can be achieved only at the expense of at least 
one of the other membership functions.

7. NUMERICAL EXAMPLE 

In this section, being limited by space, we only present an illustrative 
numerical example of an interactive fuzzy satisfying method using the  

1 2 1 2Minimize   ( t ( ) ) ( t ( ) )1 1 1 1 1 1
1 2 1 2Minimize   ( t ( ) ) ( t ( ) )2 2 2 2 2 2
1 2 1 2Minimize   ( t ( ) ) ( t ( ) )3 3 3 3 3 3

subject to   b ( )1 1
b ( )2 2

b ( )3 3
b ( )   4 4
b ( )5 5
b ( )6 6

c c x

c c x

c c x

a x

a x

a x

a x

a x

a x

b ( )7 7
0

a x

x

 (55) 

, and return to Step 4.
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probability maximization model. Concerning numerical examples for other 
models, the interested readers might refer to the corresponding papers 
(Sakawa et al., 2001;2000; 2002; 2004; Sakawa et al., 2003b; Sakawa and 
Kato, 2002). Consider the following multi-objective linear programming 
problem involving random variable coefficients (3 objectives, 10 variables, 
and 7 constraints).

In this problem, )(t 1 , )(t2 , and )(t3  are Gaussian random 
variables 2(4,2 )N , 2(3,3 )N , and 2(3,2 )N , where 2( , )N  stands for 
a Gaussian random variable having mean  and variance 2 .

The right-hand side )(bi , 7,,1i …  are also Gaussian random 
variables 2(164,30 )N , 2( 190, 20 )N , 2( 184,15 )N , 2(99,22 )N ,

2(150,17 )N , 2(154,35 )N  and 2(142,42 )N . On the other hand, 
constant coefficients in (55) are shown in Table 1 and Table 2.

Table 1. Constant Coefficients of Objective Function in Eq. (55) 

1
1c  19 48 21 10 18 35 46 11 24 33 1

1  –18 

2
1c  3 2 2 1 4 3 1 2 4 2 2

1  5 

1
2c  12 –46 –23 –38 –33 –48 12 8 19 20 1

2  –27 

2
2c  1 2 4 2 2 1 2 1 2 1 2

2  6 

1
3c  –18 –26 –22 –28 –15 –29 –10 –19 –17 –28 1

3

2
3c  2 1 3 2 1 2 3 3 2 1 2

3  4 

First, according to Step 1, the decision maker determines the satisfying 
levels 7,,1i,i …  for each of the constraints in Eq. (55). The hypothetical 
decision maker in this example specifies the satisfying levels as 

T
7654321 ),,,,,,( T0.90) 0.80, 0.85, 0.90, 0.80, 0.95, (0.85, .

Second, according to Step 2, the individual minimum min,lz and
maximum max,lz of objective functions ),(zl xE , k,,1l … , are calculated 
under the chance constrained conditions corresponding to the satisfying 
levels. Each value is obtained as 

1819.571min,1z ,  4221.883  max1,z , 2,min 286.617z ,  1380.041  max2,z ,

3,min 1087.249z ,
3,max 919.647z .

 –10 
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Table 2. Constant Coefficients of Constraints in Eq. (55). 

1a  12 2 4 7 13 1 6 6 11 8

2a 2 5 3 16 6 12 12 4 7 10

3a  3 16 4 8 8 2 12 12 4 3

4a 11 6 5 9 1 8 4 6 9 6 

5a 4 7 6 5 13 6 2 5 14 6

6a  5 3 14 3 9 7 4 4 5 9 

7a 3 4 6 9 6 18 11 9 4 7 

Third, according to Step 3, the individual minimum min,lp  and 
maximum max,lp  of k,,1l),(pl …x  in the multi-objective probability 
maximization problem Eq. (27) are calculated as 1,min 0.002p ,

1,max 0.880p , 2,min 0.328p , 2,max 0.783p , 3,min 0.002p , and 
3,max 0.664p .

The decision maker subjectively determines membership functions to 
quantify fuzzy goals for objective functions. Here, the following linear 
membership function is adopted:

,0

,1 ,0

( )
( ( )) l l

l l
l l

p p
p

p p
x

x

In this chapter, parameters 1,lp , 0,lp  in linear membership functions 
)(l , k,,1l …  are determined as 

1,1 1 1,max 1,0 1 ,max2 ,3

2 ,1 2 2 ,max 2 ,0 2 ,max1,3

3,1 3 3,max 3,0 3 ,max1,2

( ) 0.880, min{ ( )} 0.502

( ) 0.783, min{ ( )} 0.060

( ) 0.664, min{ ( )} 0.446

ll

ll

ll

p p p p

p p p p

p p p p

x x

x x

x x

by using Zimmermann’s method (Zimmermann, 1978).
According to Step 4, the decision maker specifies the initial reference 

membership levels ),,( 321  as )00.1,00.1,00.1( .
Next, according to Step 5, in order to find the optimal solution x* to the 

minimax problem (24) for ),,( 321 = (1.00, 1.00, 1.00) , after v* is 
calculated by solving the problem (28) using the bisection method and 
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phase one of the two-phase simplex method, the linear programming 
problem (31) is solved by the simplex method. The obtained solution is 
shown at the second column in Table 3.

Table 3. Process of Interaction 

Interaction 1st 2nd 3rd 

1  1.000 1.000 0.950 

2  1.000 1.000 1.000 

3  1.000 0.900 0.900 

1x  15.590 15.665 15.789 

2x  2.120 2.328 2.389 

3x  0.000 0.000 0.000 

4x  0.254 0.042 0.071 

5x  0.000 0.000 0.000 

6x  6.247 6.282 6.388 

7x  0.207 0.142 0.155 

8x  14.176 14.079 13.998 

9x  1.612 1.301 1.236 

10x  17.932 17.733 17.694 
))(p( 11 x  0.5747 0.6177 0.5948 
))(p( 22 x  0.5732 0.6172 0.6436 
))(p( 33 x  0.5733 0.5170 0.5435 

)(p1 x  0.719 0.736 0.727 
)(p2 x  0.474 0.506 0.525 
)(p3 x  0.571 0.559 0.565 

21 /  0.060 0.060 0.060 

31 /  0.831 0.801 0.816 

According to Step 6, the hypothetical decision maker cannot be 
satisfied with this solution, particular, he wants to improve )(1 , )(2  at 
the sacrifice of )(3 . Thus, the decision maker updates the reference 
membership levels to (1.00, 1.00, 0.90)  and returns to Step 5. The result 
for the updated reference membership levels is shown at the third column 
in Table 3.

The decision maker is still discontented with the value of ))(( xp22 .
Since the sensitivity of ))(( xp11 to ))(( xp22 is higher than that 
of ))(( xp33 from the trade-off information 1 2/ 0.060  and 

1 3/ 0.801, he updates the reference membership levels to 

404



Fuzzy Muti-objective Stochastic Linear Programming 

(0.95, 1.00, 0.90)  to improve ))(( xp22  at the expense of ))(( xp11 . By 
repetition of such interaction with the decision maker, in this example, a 
satisfying solution is obtained at the third interaction.

8. SOME EXTENSIONS 

So far, we have discussed interactive fuzzy satisfying methods for multi-
objective stochastic linear programming problems by making use of 
several stochastic models in chance constrained programming. As an 
alternative approach, the authors have proposed an interactive fuzzy 
satisfying method through a simple recourse model (Sakawa et al., 2001). 
Extensions of the proposed methods to more general cases such as multi-
objective stochastic integer programming problems can be found in our 
papers (Kato et al., 2004a; 2004b; Perkgoz et al., 2003; 2004). For more 
extensions to two-level stochastic linear programming problems, the 
readers might refer to our papers (Kato et al., 2004c; Sakawa et al., 2003a; 
Wang et al., 2004).

9. CONCLUSION

In this chapter, we focused on multi-objective linear programming 
problems involving random variable coefficients. For transforming the 
original stochastic programming into deterministic ones, several stochastic 
models such as an expectation-optimization model, a variance minimization 
model, a probability maximization model, and a fractile criterion 
optimization model for chance constrained conditions are introduced.

As a fusion of stochastic approaches and fuzzy ones, assuming that the 
decision maker has fuzzy goals for each of the objective functions in the 
transformed problems, several interactive fuzzy satisfying methods for 
deriving a satisfying solution for the decision maker from the Pareto 
optimal solution set are presented. Through illustrative numerical 
examples, the feasibility of the proposed methods are demonstrated
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Abstract:  The aim of this chapter is to study the stability of multi-objective dynamic 
programming (MODP) problems with fuzzy parameters in the objective 
functions and in the constraints. These fuzzy parameters are characterized 
by fuzzy numbers. For such problems, the concept and notion of the stability 
set of the first kind in parametric nonlinear programming problems are 
redefined and analyzed qualitatively under the concept of -Pareto
optimality. An interactive fuzzy decision-making algorithm for the 
determination of any subset of the parametric space that has the same 
corresponding -Pareto optimal solution is proposed. A numerical example 
is given to illustrate the method developed in the chapter. 

Key words:

1. INTRODUCTION

Most practical vector optimization problems contain measured or 
estimated values that are represented by the different coefficients of the 
objectives and constraints. Such values may not be accurate enough to the 
errors in measuring, or estimating these values can lead to a false solution 
or a solution far from the exact solution of the considered problem. So, if 

Fuzzy sets, Monte Carlo simulation, grey-related analysis, data mining 

IN FUZZY MULTI-OBJECTIVE DYNAMIC 
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after solving the problem an error is discovered or some factors are 
changed that affect these coefficients, the problem has to be solved again. 

Stability analysis covers this difficulty. It tells us what coefficients 
affect the solution greatly if they are changed and what coefficients have 
negligible effects on the solution. 

In this chapter, we study the stability of multiobjective dynamic 
programming (MODP) problems with fuzzy parameters in the objective 
functions and in the constraints. These fuzzy parameters are characterized 
by fuzzy numbers. For such problems, concept and notion of the stability 
set of the first kind in parametric nonlinear programming problems are 
redefined and analyzed qualitatively under the concept of -Pareto
optimality. An interactive fuzzy decision making algorithm for the 
determination of any subset of the parametric space which has the same 
corresponding -Pareto optimal solution is proposed. A numerical 
example is given to illustrate the method presented. 

2. PROBLEM FORMULATION 

In this chapter, the fuzzy multiobjective dynamic programming (FMODP) 
problem is considered. Fuzzy vector-minimization problem (FVMP) 
involving fuzzy parameters in the objective functions and in the constraints 
(see Abo-Sinna, 1998, 1992, 2004; Bellman, 1957; Bellman and Dreyfus, 
1962; Carraway et al., 1990; Chankong, 1981; Cohon, 1978; Deng Feng 
and Chuntian, 2004; Esogbue, 1983; Henig, 1983; Hussein and Abo Sinna, 
1993; 1995; Larson and Casti, 1978; 1982; Mangasarian, 1969; Osman and 
El-Banna, 1993; Saad, 1995; Su and Hsu, 1991; Tauxe et al., 1979) are 
selected:

FVMP:

1 1 1

Minimize

, ,..., , , 1 ,..., , 2q q qN N NF f x a f x a q Q Q

 (1) 

1 1 1

subject  to

, ,..., , 0 , 1 ,..., ,

, 1 ,..., ,

m m mN N N

n n

G g x b g x b m M

x X n N

 (2) 
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where for each X,N,....,1n  is a subset of nkR ; nx  is a nk  vector, the 
objective functions qF , Q,...,1q  and the constraint functions mG ,

M,...,1m are convex  real valued functions of the class 1c  on NR  and 
mnqn g,f  , Q,...,1q , M,...,1m , N,...,1n  are real valued functions on 

nX , and ,a~,...,a~,a~a qn2211 qn2211 b~,...b~,b~b , Q,...,1q , N,...,1n
represent the vectors of fuzzy parameters in the objective functions 

qnnqn a~,xf  and in the constraint functions qnnmn b~,xg , respectively. 
These fuzzy parameters are assumed to be characterized as the fuzzy 

numbers introduced by Dubois and Prade (1980). It is appropriate to recall 
here that a real fuzzy number p~  is a convex continuous fuzzy subset of the 
real line whose membership function 0pp~  is defined by (see Dubois 
and Prade, 1980; Sakawa and Yano, 1990; Zimmerman, 1985; 1987]): 

1.  A continuous mapping from real set R  to the closed interval [0,1], 
2. 0pp~  for all 1p,p ,
3. strictly increasing on 21 p,p ,
4. 1)p(p~ for all 32 p,pp ,
5. strictly decreasing on 43 p,p
6. 0)p(p~ for all ,pp 4 .

A possible shape of fuzzy number p~  is illustrated in Figure 1. Now, we 
assume that qna~  and qnb~  in the FVMP   are fuzzy numbers whose 
membership functions are )a( qnqna~ and qnqnb~ b  respectively, for 
simplicity are aa~  and bb~ . Here, we assume that the membership 
function pp~  is differentiable on 41 p,p  and the problem ( FVMP ) is 
stable (see Rockafellar, 1967; Sakawa and Yano, 1990). 

numbers )N,...,1n,Q,,...1q(~a~ qnqn (see Dubois and Prade, 1980 ).

Figure 1. Membership function of fuzzy number

0 1p 2p 3p 4p p

pp~

1

and b
Now, we can introduce the definition of -level set or -cut of the fuzzy 
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The -level set of the fuzzy numbers qna~  is defined as the ordinary set 
a~L  for which the degree of all its component membership functions 

exceeds the level 0,1

\ , 1 ,..., , 1 ,...,
qna qnL a a a q Q n N

Similarly, the -level set of the fuzzy numbers qnb~  is defined as the 
ordinary set b~L  for which the degree of all its component membership 
functions exceeds the level 1,0  (see Zimmermann, 1985;1987) 

\ , 1 ,..., , 1 ,...,
qn qnbL b b b q Q n N

Similarly, the -level set of the fuzzy numbers qna~  and qnb~  is defined 
as the ordinary set b~,a~L  for which the degree of all its component 
membership functions exceeds the level 0, 1

( , ) \ , , 1 ,..., ,
, .

1,...,
qn qna qn qnba b a b q Q

L a b
n N

Obviously, we have the following property for the level set: 21  if and 
only if )b~,a~(L)b~,a~(L 21 .

As can be seen from the Definition 1, the -level set b~,a~L  is the set 
of the closed intervals depending on the level 0 , 1 .

For a certain degree of 0,1 , the problem ( FVMP ) can be written 
in the following nonfuzzy parametric multiobjective dynamic 
programming problems (see Dauer and Osman, 1985; Osman and Dauer, 
1983) depending on the parameters ,b~,a~Lb,a as was done by  
Sakawa and Yano (1990): 

:)VMP(

1 1 1

Minimize

, ,..., , , 1 ,..., , 2q q qN N NF f x a f x a q Q Q
 (3) 

DEFINITION 1. ( -LEVEL SET)
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b~,a~Lb,a,N,...,1n,Xx

M...,1m,0b,xg,...,b,xgG

nn

NNmN111mm

  subject to

 (4) 

Since (FVMP) is stable, the problem ( -VMP) is stable. 

parameters ba and  are treated as decision variables rather than as 
constants.

Separability and monotonicity of functions have been used for deriving 
the recursive formula of dynamic programming (see Abo-Sinna and 
Hussein 1994; 1995). Definition of these properties for the problem ( -
VMP ) is given below. 

DEFINITION 2. (SEPARABILITY AND MONOTONICITY)
The objective function qF  is said to be separable if there exist 

functions ,N,...,1n,F n
q  defined on nR  and functions n

qQ , ,N,...,2n
defined on 2R  satisfying,  for ,N,...,2n

nnqn111q
n

q a,xf,...,a,xfF

nnqn1n1n1qn111q
1n

q
n
q a,xf,a,xf,...,a,xfFQ (5)

and

NNqN111qqNNqN111qNq a,xf,...,a,xfFa,xf,...,a,xfF .

Similarly, the constraint function mG  is separable, if there exist 
functions nmG , ,N,...,1n  defined on nR  and functions ,N,...,2n,nm

defined on 2R  satisfying, for N,...,2n

nnmn111mnm b,xg,...,b,xgG

nnmn1n1n1mn111m1nmnm b,xg,b,xg,...,b,xgG

and

NNmN111mmNNmN111mNm b,xg,...,b,xgGb,xg,...,b,xgG

VMP ), the It should be emphasized here that in the problem ( -
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If all objective and constraint functions are separable, we say that the 
problem VMP-  is  separable. Moreover, the functions nq  and nq  are 
called the separating functions of GF and .

Furthermore, the separation of the problem VMP-  is said to be 
monotone if all functions nq  and nq  are strictly increasing with respect to 
the first argument for each fixed second argument. Specifically, for 
each Ry

ssy,sy,s
and

'ssy,sy,s

nmnm

nqnq

iff

iff

For every 1 ,..., 1 ,...,q Q m M  and 2 ,..., .n N
Based on the definition of -level set of the fuzzy numbers (see 

Kacprzyk and Orlovski, 1987; Orlovski, 1984; Zadeh, 1963) the concept of 
-Pareto optimal solution to the problem VMP  is introduced in the 

following definition (see Sakawa and Yano, 1990). 

DEFINITION 3. ( -PARETO OPTIMAL SOLUTION)
A point 0

N
0
1

0 x,...,xx  is said to be an -Pareto optimal solution to 
the problem VMP , if and only if there does not exist another 

,x,...,xx N1 )b~,a~(Lb,a  such that 

0
N

0
NqN0

1
0
11qqNNqN111qq a,xf,...,a,xfFa,xf,...,a,xfF

For all q and

0
N

0
NrN0

1
0
11rrNNrN111rr a,xf,...,a,xfFa,xf,...,a,xfF

For at least one index ,Q,...,2,1r  where the corresponding values of 
parameters b~,a~L)b,a( 00  are called -level optimal parameters.

Assumption 1. The problem VMP  is separable and the separation 
is monotone. 

Assumption 2. For every b~,a~LX,n n  is compact and 
),...,a,x(fF 111qnq )a,x(f nnqn , Q,...,1q  is continuous functions of 

n1n1 a,...,a,x,...,x , and )b,x(g(G 111mnm M,...,1m),)b,x(g,... nnmn  is 
continuous functions of n1 x,...,x  and n1 b,...,b .
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The problem VMP  will be treated using one of the existing 
parametric approaches, i.e., by considering the following nonlinear 
program with scalar objective (see Chankong and Haimes, 1983) 

:VMP

Q

1q
NNqN111qqq a,xf,...,a,xfF

Minimize
 (6) 

M,...,1m,0b,xg,...,b,xgG NNmN111mm

  subject to

b~,a~Lb,a,N,...,1n,Xx,...,)Xx( nn11 ,

for some Q
1q qqQ 0,1\R .

It is easy to see that the stability of the problem VMP  implies the 
stability of  the problem VMP . It is well known that 0x  is an -
Pareto optimal solution of the problem VMP  with the corresponding 

-level  optimal parameters )b,a( 00 b~,a~L  if there exists 
0 0 , 0 0  such that 

0x  is the unique optimal solution of 0VMP

if there exists 0 0 0
1 ,..., 0Q , provided every b~,a~LX n  is 

closed and convex . 
Let us suppose that every qF  is additive, i.e., for 1,..., ,q Q (see

Abo-Sinna, 1998) 

NNQN111qNNqN111qq a,xf...a,xfa,xf,...,a,xfF .

Then the objective function in the problem VMP  becomes 

N

1n

Q

1q
nnqnq a,xf =

N

1n
nnn a,xf  (7) 
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If we define real valued functions z,Bn  for each 1,..., ,n N  each 
1,..., 0Q  and M1 z,...zz  by 

1 1 1
1

1 1 ,

, min , \ , ,..., , ,

1 ,..., , ,..., ( , ) ,

n
n

n i i i m m mn n n m
i

n n

B z f x a G g x b g x b z

m M x X x X a b L a b

Now, we can obtain the recursive relations for 2,..., :n N

nnnn1n1n
b~,a~L)b,a(,Xx

n a,xfz,xz,Bz,B
nn

where .z,xz,...,z,xzz,xz n1n
Mn1n

1n1n

Assuming monotonicity of 1nmnm z,G let  be defined by 

1 , sup ; , , , ,...,

1 ,..., .

n n
m n m mn n n m n nz x z R G g x b z b b L b

m M

THEOREM 1.

Suppose that Assumption 1 and Assumption 2 hold. Let 0
n

0
1 x,...,x  be any 

-Pareto optimal solution of problem z,B 0
n  for some 0 , where 

the corresponding -level optimal parameters
n1n1

0
n

0
1

0
n

0
1 b~,...,b~,a~,...,a~Lb,...,b,a,...,a . Then 0

1n
0
1 x,...,x  is an -

Pareto optimal solution of problem z,xz,B n
1n0

1n , where the 
corresponding -level optimal parameters 

1n11n1
0

1n
0
1

0
1n

0
1 b~,...,b~,a~,...,a~Lb,...,b,a,...,a .

The proof of this theorem is much like that of Theorem 1 in (Mine and 
Fukushima, 1979). 

Using the recursive relations (2) for various values of  we may find a 
set of -Pareto optimal solution of the problem VMP  by 
obtaining 0,B 0

n .

min
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2.1 The Stability Set of the First Kind 

DEFINITION 4.
Suppose that a certain 0  with a corresponding -Pareto optimal 

solution 0x  of the problem VMP , where b~,a~Lb,a 00  are the 
corresponding
first kind of the problem VMP  corresponding to 0x , which is 
denoted by 000 b,a,xS , is defined by: 

0000 x\b,a,xS  is an 
)VMP(  with the corresponding -level optimal parameters 00 b,a .

THEOREM 2.

If the functions F  and G  are convex, and aa~ , bb~  are concave 
functions, then the set 000 b,a,xS , which is the stability set of the first 
kind of the problem VMP  corresponding to the -Pareto optimal 
solution 0x  with the -level optimal parameters b~,a~Lb,a 00 , is 
convex and 000 b,a,xS 0  is closed. Furthermore, if *** b,a,xS  is the 
stability set of the first kind of the problem VMP  corresponding to the 

-Pareto optimal solution *x  with the -level optimal parameters 
b~,a~Lb,a **  and ***000 b,a,xSb,a,xSint , then 000 b,a,xS =

*** b,a,xS .
The proof of this theorem is similar to the one in Osman (see Caplin 

and Kornbluth, 1957). 

REMARK 1. (Osman, 1977) 
It must be noted that the above properties of the stability set of the first 

kind still hold if the continuity and differentiability assumptions that are 
imposed on F and G  are relaxed. 

2.2 Determination of the Stability Set of the First Kind 

Let 0 with an -Pareto optimal solution 0( )x of the problem 
VMP with the corresponding -level optimal parameters 

b~,a~Lb,a 00 , then according to the Kuhn-Tucker necessary optimality 
conditions (see Mangarasian, 1969), for the problem VMP , it follows 
that there exists , 0, , 0MU R U , , , 0, 0q qV R w R V w ,
such that

-level optimal parameters. Then the stability set of the 

-Pareto optimal solution of the problem 
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T 0 0( , )F x a
x

0 0( , ) 0T GU x b
x

 (8) 

T 0 0( , )F x a
a

0( ) 0T aV a
a

 (9) 

0 0 0, 0T T bGU x b W b
b b

 (10) 

0 0, 0G x b , 0 0,a a 0 0b b , 0 0, 0TU G x b

0 0T
aV a , 0 0T

bW b

where T stands for the transpose of the vector . Denote the following 
sets:

0
qb~

0

0
qa~

0

0
N

0
NmN

0
1

0
11mm

00

b\n,qbJ

a\n,qaJ

M,...,1m,0b,xg,...,b,xgG\mb,xA

and

.

Then we have the following three linear independent systems of 
equations:

0 0

0 0 0 0

,

, , 0T m
m

m A x b

Gf x a x b
x x

 (11) 

0 0 0

1

, 0q
Q

aq
q q q

q q q

F
x a V a

a a
 (12) 

0 0, 0qbT m
q q

q q

GU x b W b
b b

 (13) 

0
q

0
q

0
q

0 bJq,0w,bJq,0w;aJq,0V,aJ
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System (11) represents the first group of the Kuhn Tucker conditions 
and it can be rewritten in the following matrix form : 

' ' 0C D  (14) 

where ji
'' cC  is an Qs  matrix, ji

'' dD  is an kh

matrix, KQ R,R 0, 0  and 0, , ,s hU R V R  where 
hs,  are the cardinalities of 00 b,xA  and ,J  respectively .
Suppose ' 0, 1,..., , 1, 2,..., ,i jd j K i I s  where the cardinal 

number of I  is assumed to be equal to ls . Then we ignore for moment 
these rows and consider the remaining system which will have the form 

0C D  (15) 

Here C  and D  are matrices of order Ql  and ,kl  respectively. 
Therefore system (11) together with the condition '

1
0,

Q
i j jj

C i I

gives system (14), which is equivalent to system (11); hence we give the 
following two propositions (see Zeleny , 1973; 1982): 

PROPOSITION 1.

If ,lK then

Q

1j
j

'
ji

j
1T

1
TT

000

Ii,0C,l,...,1j

0)D(C
\b,a,xS   (16) 

where 2121 DD,DDD and  are respectively lklll and  matrices and 
j  is the element in the thj  column of the row vector .

PROPOSITION 2.

If ,lK then
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1
2 1 1 2

10 0 0
1 1

1

\ ( ) 0

, , 1 ,..., , 0

1, ..., , 0,

T T T T T

j

T T T

j

Q

i j j
j

C C D D

S x a b j k l C D

j k C i I

(17)

REMARK 2.

If  is normalized by the condition 
1

1,
Q

qq
 then we can add this 

condition to the set 000 b,a,xS  in any one of its form. 

2.3 An Algorithm

Now, we can construct an algorithm to determine the stability set 
0 0 0, ,S x a b  of the problem )VMP( as follows.

Step 1. Elicit a membership function from the decision maker for each 
of the fuzzy numbers a~ and b~  in the problem FVMP .

Step 2. Ask the decision maker to select the initial values of 
).10(

Step 3. Construct the parametric multi-objective dynamic program 
general, as the vector minimization problem VMP .

Step 4. Ask the decision maker to choose certain 0  and by using 
the recursive relations (2), the decision maker approach can be used to 
obtain an -Pareto optimal solution 0x  of the problem VMP  by 
obtaining ,0 , 1,...,nB n N . Suppose that b~,a~Lb,a 00  is the 
corresponding -level optimal parameters (using any available nonlinear 
programming package, for example, GINO at each stage). 

Step 5. Substitute with 000 b,a,x  in the Kuhn Tucker necessary 
conditions, we obtain system (11), and system (15) can be easily found. 
Also system (12) can be solved by Gauss-elimination. 

Step 6. According to the values of the Lagrange multipliers, we get a) if 
,lkms  then 0t\tb,a,xS 0000 ; b) if lk , then 000 b,a,xS is

given by (16), andc) if lk , then 000 b,a,xS  is given by Eq. (17) 

420



An Interactive Algorithm for Decomposing 

Step 7. If the DM is satisfied with current solutions, stop. Otherwise, 
ask the decision maker to update the degree 1,0)(  and return 
to Step 3. 

2.4 Numerical Example 

Let us consider the following multi-objective dynamic programming 
problem with fuzzy parameters in the objective functions (in fact, this 
problem has three stages and three objectives), namely, the fuzzy vector 
minimization problem is written as follows :)FVMP(

11 a~,xfMinimize 2
3

2
2

2
111 xxa~x

22 a~,xfMinimize
22 2

1 2 22 31 2x x a x

33 a~,xfMinimize 2
1 2 3 332x x x a .

3
1 1 2 3

subject to  

\ 3, 0, 1, 2, 3jM x R x x x x j

Let the fuzzy parameters be characterized by the following fuzzy 
numbers: 

11 22 330,1,3,5 , 0,1,4,6 , 3,5,9,10a a a .

Assume that membership function for each fuzzy number a~  in 
problem )(FVMP is defined by 

.

ap,0

pap,pppa1

pap,1

pap,pppa1

pa,0

)a(a~

4

43
2

343

32

21
2

212

1

Consider the – level sets or – cuts of the fuzzy numbers, which are 
given by 
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36.0a1111a~ ; then we get 6.4a2.0 11

36.0a2222a~ ; then we get 6.5a4.0 22

36.0a3333a~ ; then we get 8.9a4.3 11

(See Figure 1). 

Figure 2. – cuts of the fuzzy numbers.

Figure 3. – cuts of the fuzzy numbers

Figure 4. – cuts of the fuzzy numbers

0 1p 2p 3p 4p a

aa~

1

1p 2p 3p 4p

11~
11

aa

1

0.36

0 0.2 4.61 3 a115

22a

1r 2r 3r 4r

2222
aa

1

0.36

0 1 4 65.60.4
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Figure 5. – cuts of the fuzzy numbers

The nonfuzzy - vector minimization problem )VMP( can be 
written as follows: 

)VMP( :

)a,x(f),a,x(f),a,x(f 332211Minimize

1 2 3 11 22

33 1 2 3

subject to
3 , 0.2 4.6 , 0.4 5.6

3.4 9.8 , , , 0
x x x a a

a x x x
 (18) 

where

2
333

2
2133

2
3

2
222

2
122

2
3

2
2

2
11111

axxx2a,xf

2xax1xa,xf

xxaxa,xf

It is easy to see that )VMP(  satisfies Assumptions 1 and 2. 
Therefore a dynamic programming approach can be applied for 
characterizing the -Pareto optimal solution of the problem VMP .

Using the weighting method (Chankong and Hamines, 1983) then the 
problem VMP  becomes 

)VMP( :
3

1q
qq a,xfMinimize .

Subject to the set of constraints Eq. (18) 

33a

1h 2h 3h 4h

3333
aa

1

0 3 5 9 10

0.36
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i) At 0 1/ 3,1/ 3,1/ 3, , the dynamic programming approach has 
the following steps: 
Step 1.

0,B 0
1 0x,6.4a2.0,3x/a,xf 111

3

1q
11111q

0
q Minimize

2 2
1 11 1 1 1 11 1Minimize   1/3 1/3 1 2/3 3, 0.2 4.6, 0x a x x x a x

by using GINO package, the -Pareto optimal solution to 0,B 0
1  be 

0
11

0
1 a,x 2.0,1.0 .

Step 2.

3
0 0 0 0 0 0

2 1 1 11 2 2 22 1 2 1 2 22
1

, 0 Min , , \ 3 , , 0, 0.4 5.6q q q
q

B f x a f x a x x x x a

22 21 1 1
2 2 22 2 2 22 23 3 3Min 0.34 \ 0.1 3, 0.4 5.6, 0x x a x x a x

Hence the -Pareto optimal solution to 0,B 0
1  is 0

22
0
11

0
2

0
1 a,a,x,x

4.0,2.0,0.0,1.0 .

Step 3.

3
0 0 0 0 0 0 0 0

3 1 1 11 2 2 22 3 3 33 1 2 3
1

, 0 =Minimum , , , \ 3q q q q
q

B f x a f x a f x a x x x

0x,x,x,8.9a4.3 3
0
2

0
133 .

Thus

2 20 21 1 1
3 3 3 3 33 33 3 3, 0 Minimum   0.39333 2 \ 0.1 0.0 3,B x x x a x

,8.9a4.3 33 0x3

and 4.3,4.0,2.0,8.1,0.0,1.0a,a,a,x,x,x 0
33

0
22

0
11

0
3

0
2

0
1  is the -Pareto optimal 

solution to )VMP( and the optimum objective value equals 2.34. 

ii) Determining the stability set of the first kind to the 
problem )VMP( :

Since all functions )4,3,2,1m(Gm in the problem )FVMP(  do not 
appear the fuzzy number b~ , it is easily seen that the set 000 b,a,xS ,
which is the stability set of the first kind of the problem )VMP(
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corresponding to the -Pareto optimal solution )0,0,1.0(x0 with the -
Level optimal parameters )4.3,4.0,2.0(a0  is 00 a,xS . Therefore, in 
what follows, we will determine the set 00 a,xS .

From the Kuhn Tucker necessary optimality conditions (system (19) 
and system (12)) we get:

08.0
028.12.0

22

1321  (19) 

0v2.0
02.34.06.3

21

3321

0v2.3
0v8.0

43

32  (20) 

System (19) will be the same as system (21) and (22), i.e.,  
3kls ; thus 

C
0.2 1.8 2
0 0.8 0

3.6 0.4 3.2
, 1

1 0 0
0 1 0
0 0 1

D D

1
1

0.2 0 3.6 1 0 0 0.2 0 3.6
( ) 1.8 0.8 0.4 0 1 0 1.8 0.8 0.4

2 0 3.2 0 0 1 2 0 3.2

T TC D

1
1 2 3

0.2 0 3.6
( ) , , 1.8 0.8 0.4

2 0 3.2
C D

21 3 2 1 2 30.2 1.8 2 , 0.8 , 3.6 0.4 3.2  . 

We get .1,98,109 321132321 Now we can solve 
system (20) as follows: 

.0v2.3,0v8.0,0v2.0,0v 4332211
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23
1

321 v5 432
10

33
10 vv  we have 15

4
30
8

315
1

2 v,v

and

15
16

30
32

4v . If 2
0
312

0
212

0
11 eae,dad,cac ,

then

1 2 2 1 3 2 4 1 5 2 6 1 3.4) 0 ,0.2 0.2 0.4 0.4 3.4 (V c V c V d V d V e v e

2 1 2 2 2 2i.e. 0.2 , 0.2, 0.4 , 0.4, 3.4 , 3.4.c c d d e e

The stability set of the first kind corresponding to 
4.3,4.0,2.0,8.1,0.0,1.0a,x 00

takes the form:

1 2 3 2 3 1 1 2 3

1 2 1 3 4 1

1 2 1 3 4 1

1 2 1 3 4

, ,

,

,

0.1, 0.0, 1.8, 0.2, 0.4, 3.4

, , , \ 9 10 , 8 9 ,  1

1 4 0 0.2

1 15 0 0.4
17 4 0 3.4

S

p r h

p p p p p p

r r r r r r
h h h h h h

It must be observed here that, if the decision maker is not satisfied with 
the current value of the degree  of the  Pareto optimal solution, it is 
possible for the decision maker to continue the same procedure in this 
manner until the decision maker is satisfied with the current value of the 
degree  of the  Pareto optimal solution. 

3. CONCLUSIONS

In this chapter, the stability of multi-objective dynamic programming 
(MODP) problems with fuzzy parameters in the objective functions and in 
the constraints has been studied. An interactive fuzzy decision-making 
algorithm for the determination of any subset of the parametric space that 
has the same corresponding  Pareto optimal solution has been 
proposed. Interactive algorithms have a significant potential for the fuzzy 
research in the future. 

From
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GOAL PROGRAMMING APPROACHES FOR 
SOLVING FUZZY INTEGER MULTI-CRITERIA 
DECISION-MAKING PROBLEMS 

Omar M. Saad 
Department of Mathematics, College of Science, Qatar University, Doha, Qatar

Abstract: Multicriteria decision making can be divided into two parts: multi-attribute 
decision analysis and multi-criteria optimization. When the number of the 
feasible alternatives is large, we use multi-criteria optimization. On the other 
hand, multi-attribute decision analysis is most often applicable to problems 
with a small number of alternatives in an environment of uncertainty. In this 
chapter, a goal programming approach was analyzed to solve fuzzy integer 
multi-criteria decision-making problems. 

Key words: Goal programming, integer multi-criteria decision-making problem, iterative 
goal programming approach, fuzzy integer multi-criteria decision making 
problem

1. INTRODUCTION

The term “multi-criteria decision making” (MCDM) encompasses a wide 
variety of problems. Multi-criteria decision making is concerned with the 
methods and procedures by which multi-criteria can be formally 
incorporated into the analytical process. 

Multi-criteria decision making has, however, two distinct halves: one 
half, is multi-attribute decision analysis, and the other is multi-criteria 
optimization (multi-objective mathematical programming). 

Multi-attribute decision analysis is most often applicable to problems 
with a small number of alternatives in an environment of uncertainty. 
Multi-criteria optimization is often applied to deterministic problems in 
which the number of feasible alternatives is large. 
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In recent years research has been carried out in solving multi-criteria 
integer programming problems, but whereas some has been classified as 
such, some has appeared in terms such as decision theory. 

Treating integer multi-criteria decision-making problems can be 
classified into three main approaches: vector optimization (multi-objective 
optimization), goal programming, and interactive approaches. Most of the 
current research is directed mainly toward the interacting approaches 
trying to avoid the drawbacks in the other two approaches. Also, the 
current research includes the stochastic and fuzzy cases. 

Most decision problems have multiple objectives that cannot be 
optimized simultaneously due to the inherent conflict between these 
objectives. Such problems involve making trade-off decisions to get the 
“best compromise” solution. Goal programming is a powerful approach 
that has been proposed for the modeling, solution, and analysis of the 
multi-criteria decision-making problems. There are a wide variety of goal 
programming models, including weighted goal programming (Charnes and 
Cooper, 1961; Ignizio, 1983) lexicographic goal programming, i.e., the use 
of the so-called “preemptive priority” concept (Ignizio, 1976; 1983), 
minimax goal programming includes fuzzy programming (Zimmerman, 
1978) and interactive goal programming that is used to generate a subset of 
the nondominated solutions (Ignizio, 1981; Steuer, 1978). 

Since goal programming now encompasses any linear, integer, zero-one, 
or nonlinear multi-objective problem (for which preemptive priorities may 
be established), the field of applications is wide open. The recent increase in 
interest in this area has already led to a large number of and a wide variety of 
actual and proposed applications. For purpose of illustration, we list just a 
few of these below, and the reader is referred to (Ignizio, 1978): 

Aggregate planning and work force (Dauer and Osman, 1981). 
Qualitative programming for selecting decisions (Zahedi, 1987). 
Curve and response surface fitting (Ignizio, 1977). 
Media planning (Chranes et al., 1968). 
Manpower planning (Chanes and Nilhaus, 1968). 
Program selection (Satterfield and Ignizio, 1974). 
Hospital administration (Lee, 1971). 
Academic resource allocation (Schroeder, 1974). 
Municipal economic planning (Lee and Sevebeck, 1971). 
Transportation problems (Lee and Moore, 1973). 
Energy/water resources (Elchak and Raphael, 1977). 
Radar system design (Ignizio and Satterfield, 1977). 
Sonar system design (Wilson and Ignizio, 1977). 
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Planning in wood products (Inoue and Eslick, 1975). 
Portfolio selection (Kumar and Philippatos, 1975) 
Determination of time standards (Mashimo, 1977). 
Development of cost estimating relationship (Ignizio, Inpress). 
Urban renewal planning (Lee and Keown, 1976). 
Merger strategy (Salkin and Jones, 1972). 
Multi-plant/product aggregate production loading (Johnson, 1976). 
BMD systems design (Ignizio and Satterfield, 1977). 
Multi-objective facility location (Harnett and Ignizio, 1972). 
Free flight rockets (Ignizio, 1975a). 
Solar heating and cooling (Ignizio, 1975b). 
Natural gas well sitting (Gochnour, 1976). 
Maintenance level determination (Younis, 1977). 
A Pennsylvania coal model (Kirtland et al., 1977). 

All of these applications have one thing in common: they could be 
forced onto a traditional single-objective model if one so wished. 
However, those investigating these problems believed that they truly 
involved multiple, conflicting objectives and were thus most naturally 
modeled as a goal programming problem (Ignizio, 1978). 

2. INTEGER MULTICRITERIA DECISION- 
MAKING PROBLEM AS A GOAL 
PROGRAMMING MODEL 

The integer multi-criteria decision-making problem (IMCDM) can be 
formulated mathematically as follows: 

(IMCDM):
Maximize
subject to     

where Z: ,n kR R )(x)...,(x),(x),(Z(x) k21 zzz is a vector-valued 
criterion with 1 2iz (x), i  , , ..., k which are real-valued objective 
functions and X is feasible set. This set might be, for example, of the form: 

{ , 0 and integer }nX x R Ax b x

x X
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where A is an )( nm matrix of constraint function coefficients; x is an 
1)(n vector of the integer decision variables; b is an ( 1)m vector of 

constraint right-hand sides, whose components specify the available 
resource; and nR  is the set of all ordered n-tuples of real numbers. It is 
assumed in problem (IMCDM) that the feasible set X is bounded. 

The imperative “maximize” in problem (IMCDM) is understood to 
mean: Find the set of all solutions that have (roughly) the property that 
increasing the value of one objective (x)zk decreases the value of at least 
one other objective function. This set is usually called an efficient (or 
nondominated, noninferior, Pareto-optimal, functional-efficient) set. This 
set is a surrogate for an optimal solution to a usual optimization problem 
with a single objective function. The meaning of an efficient solution is 
given in the following definition. 

DEFINITION 1.
A point Xx* is said to be an efficient solution of problem (IMCDM) 

if there exists no other Xx such that )Z(xZ(x) * and )Z(xZ(x) *  (see 
Chankong and Haims, 1983; Cohon, 1978; Geoffrion, 1968, Hwang and 
Masud, 1979). 

Now, let us express the ith objective function in the form: ,xc(x)z t
ii

where the superscript t denotes the transpose and ic  is an n-vector defined 
as the vector of the coefficients of the ith objective function. 

In goal programming, rather than attempting to optimize the objective 
criteria directly, the decision maker sets to minimize the deviations 
between goals and levels of achievement within the given set of 
constraints. Thus, the objective function becomes the minimization of 
these deviations on the relative importance assigned to them. 

Problem (IMCDM) can be transformed into the following integer linear 
goal programming model (ILGP) consisting of k goals: 

(ILGP):

Find x to achieve: 

kk

22

11

h(x)z
.
.
.

h(x)z

h(x)z

subject to 

Xx
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where k21 h,...,h,h are scalars and represent the desired achievement levels 
of the objective functions that the decision maker wishes to attain provided 
that 1,2, ,*i

*i iz h z , i   ... k.
Note that ** zz   and  provide upper and lower bounds on the objective 

function values and hence are a great source of information for the 
decision maker. These bounds can easily be determined by solving: 

Maximize
subject to

0 and integer.

iz (x)

Ax b,
x

 (1) 

The solution of problem (1), )z,(x *i*i , is known in the literature as the ideal
solution. Let ;)(xzz jiji then

.1,2,...,  ,min
{i}

kjzz ji*i  (2) 

DEFINITION 2.
The goals are ranked as follows: if ji then goal i, ,hxc it

i has a 
higher priority than goal j , ,hxc jt

j ( see preemptive priorities Charnes 
and Cooper, 1961; Lee, 1972). 

3. AN ITERATIVE GOAL PROGRAMMING 
APPROACH FOR SOLVING (IMCDM) 
PROBLEM

In order to solve the integer linear goal program (ILGP) by the iteration 
algorithm developed in Dauer and Krueger (1977) together with the 
Gomory’s fractional cut shown in Klein and Holm (1978, 1979), we first 
solve the integer linear optimization problem associated with the first goal 
viz:
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1

1 1 1

t
1 1 1 1

1 1

P :
minimize
subject to

c x d d h ,

0 0 0 and integer

L d d

Ax b,
d , d ,x ,

where 11 dd and are the underattainment  and the overattainment, 
respectively, of the first goal where .0dd 11

Suppose this problem has integer optimal value *
1

*
1

*1 ddL with at 
least one value *

1d or *
1d nonzero.

Now, the attainment problem for goal 2 is equivalent to the integer 
optimization problem 2P , where 

2

2 2 2

2 2 2 2

1 1 1 1

1 1 1

P :
minimize
subject to

0 0 0 and integer, 1,2.

t

t

*

i i

L d d

c x d d h ,
c x d d h ,
d d L ,
Ax b,
d , d , x , i

Letting *
2

*
2

*2 ddL    to denote the integer optimal value of problem 2P ,
we can proceed to goal 3. 

The general attainment problem jP  for goal j is written as 
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jP :

minimize
subject to

1   

1   1

0 0 0, and integer, 1    

j j j

t
i i i i

*
i i i

i i

L d d

c x d d h , i j
d d L , i j
Ax b,
d , d ,x i j

where id and id  are the underattainment and the overattainment, 
respectively, of the ith goal level and .dd ii 0

The integer optimal objective value of problem jP , ,L*j  is the 
maximum degree of attainment for goal j subject to the maximum 
attainment of goals 1, 2,…, j 1. Notice that 0*jL  if and only if goal j is 
attained.

Let *x be the optimal integer solution of the integer attainment problem 
kP associated with the minimum *

kL ;  then the solution of the ILGP is 
given by .*x

The procedure used to solve the ILGP can be summarized as follows. 

4. SEQUENTIAL INTEGER GOAL ATTAINMENT 
ALGORITHM

Step 1. Formulate the ILGP corresponding to the (IMCDM) problem. 
Step 2. Solve the integer attainment problem 1P  for goal 1 using 

Gomory’s cutting-plane technique (Klein and Holm, 1978; 1979) and 
obtain .L*1

Step 3. Set i = 2.
Step 4. Using ,L,...,L,L * 1i*2*1 solve the integer attainment problems iP

using the same cutting-plane technique used in step 2. 
Let *iL  denote the minimum. 
Step 5. If 1iiki set,  and go to step 4. Otherwise, go to step 6. 
Step 6. Let )x...,,x,x(x *n*2*1* denote the integer solution(s) of the 

attainment problem kP associated with the minimum .L*k

The optimal integer solution(s) of the ILGP is then given by .x*
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5. AN ILLUSTRATIVE EXAMPLE (CRISP CASE) 

In this section, we consider the following integer multi-criteria decision-
making problem with two objective functions: 

Xx

)(x)z(x),z(Z(x) 21

tosubject

Maximize

:(IMCDM)

where

1 2 1 2 1 2 1 25 0 6 2 21 02X x R
and integer
x x , x x , x x , x , x

and

1 1 2

2 1 2

2

2

z (x) x x

z (x) x x .

Suppose that the decision maker specifies the first priority goal to be 
(x)z1 and the second priority goal to be (x).z2 Consequently, an equivalent 

integer linear goal program corresponding to the IMCDM problem can be 
written as follows: 

1 2 1

1 2 2

(ILGP):
Goal 1: Achieve 2

Goal 2: Achieve 2

subject to

x x h

x x h

x X

It is easy to see that the aspiration levels of the objectives 
(x)z(x)z 21 and are ,(x)h(x)h 21 and7 respectively. The integer linear 

attainment problem associated with the first goal is written as 
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1

1 1 1

1 2 1 1

1 2

1 2

1 2

1 1 1 1

P :

minimize

subject to

2 7

5

0

6 2 21

0 and integer

L d d

x x d d

x x

x x

x x

d , d , x , x

This problem can be solved using the following Gomory cuts, (see Klei 
and Holm, 1978;1979): 

1 2

1 2

1

2 7

4

3

x x

x x

x

and the maximum degree of attainment of problem 1P  is 0,*
1L with an 

optimal integer solution 0.and0where)13,( 21
1 ddx

The attainment problem for goal 2 is equivalent to the integer 
optimization problem 2P , where 

2

2 2 2

1 2 2 2

1 2 1 1

1 1

1 2

1 2

1 2

1 2

P :
minimize
subject to

2 6
2 7

0
5

0
6 2 21

0 and integer,
1, 2

i i

L d d

x x d d
x x d d

d d
x x

x x
x x

d , d , x , x
i

The initial solution 0and0,)13,( 21
1 ddx  yields a goal 2 value 

1 22 5.x x
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The maximum degree of attainment of goal 2 is 2 1*L  with an 
optimal integer solution 0.and1where),13,( 22

2 ddx  Therefore, 
the optimal integer solution of the ILGP is given by 

1 1 1

2 2 2

( 3, 1)
0, with 0 0
1, with 1 0

*

*

*

x
L d , d
L d , d

6. FUZZY INTEGER MULTI-CRITERIA 
DECISION-MAKING PROBEM (FIMCDM) 

In this section, we begin by introducing the following fuzzy integer multi-
criteria decision-making problem with fuzzy parameters in the right-hand 
side of the constraints as 

)( FIMCDM :    Maximize Z(x)      

                   subject to x )(X        

where

( ) / ( ) , ( 1, 2, ...., ), 0 and integernX x R g x r m xr r

and kn RR:Z , Z(x) = (z1(x), z2(x),…, zk(x)) is a vector-valued criterion 
with zi(x), (i=1,2,..,k) are real-valued linear objective functions, 

t
m21 ),...,,( is a vector of fuzzy parameters, and Rn is the set of all 

ordered n-tuples of real numbers. Furthermore, the constraints functions 
gr(x), (r =1, 2,…, m) are assumed to be linear. 

Now, going back to problem )( FIMCDM , we can write an associated 
fuzzy integer linear goal programming model (FILGP)  consisting of k
goals and having mR  a vector of fuzzy parameters in the right-hand side 
of the constraints. This model may  be expressed as 
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)(FILGP :   

Achieve: z1(x) = h1,       

z2(x) = h2

zk(x) = hk

and the constraints are given by 

gr(x) r , (r = 1, 2, …, m)    

            x  0 and integer     

where h1, h2,…,hk are scalars and represent the aspiration levels associated 
with the objectives z1(x), z2(x),…, zk(x), respectively. 

7. FUZZY CONCEPTS 

The fuzzy theory has been advanced by L.A. Zadeh at the University of 
California in 1965. This theory proposes a mathematical technique for 
dealing with imprecise concepts and problems that have many possible 
solutions. The concept of fuzzy mathematical programming on a general 
level was first proposed by Tanaka et al. (1974) in the framework of the 
fuzzy decision of  Zadeh and Bellman (Zadeh, 1970).

For the development that follows, we introduce some defintions 
concerning trapeziodal fuzzy numbers and their membership functions, 
which come from (Dubois and Prade, 1980) ,and that will be used 
throughout this part. It should be noted that an equivalent approach can be 
used in the triangular fuzzy numbers case. 

DEFINITION 3.
A real fuzzy number a  is a fuzzy subset from the real line R with 

membership function 
a

(a) that satisfies the following assumptions: 

1. aa~  is a continuous mapping from R to the closed interval [0, 1], 
2. aa~  = 0                  a  ( , a1 ], 
3. aa~  is strictly increasing and continuous on [a1, a2],
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4. aa~  = 1 a [a2, a3],
5. aa~  is strictly decreasing and continuous on [ a3, a4],
6. aa~  = 0 a [ a4, + ).

where a1, a2, a3, a4 are real numbers and the fuzzy number a  is denoted by 
a~ = [a1, a2, a3, a4].

DEFINITION 4.
The fuzzy number a~  is a trapezoidal number, denoted by [a1, a2, a3,

a4], and its membership function aa~

1
2

2
1 2

1 2

2 3
2

3
3 4

4 3

0 ,

1  ,

1 ,

1  ,

0 , otherwise.

a

a a

a a
a a a

a a

a a a

a a
a a a

a a

a

Figure 1. Membership function of a fuzzy number a~

DEFINITION 5.
The -level set of the fuzzy number a~  is defined as the ordinary set 

)a~(L  for which the degree of their membership function exceeds the 
level  [0, 1]: 

a
(a)

aa4a3a2a10

1

is given by (see Figure 1). 
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)a(Ra)a~(L
a

.

For a certain degree *  [0, 1] with the corresponding -level set of the 
fuzzy numbers rv~ , problem v~)(FILGP can be understood as the following 
nonfuzzy integer linear goal programming model written as: 

FILGP)( :   

Achieve: z1(x) = h1       

z2(x) = h2

           

zk(x) = hk

subject to  

gr(x) r ,       (r = 1, 2, …, m)     

r )v~(L r , (r = 1, 2,…, m)      

x  0 and integer      

where )v~(L r  is the - level set of the fuzzy parameters rv~ , (r = 1, 2, 
…, m).

We now rewrite problem FILGP)( above in the following equivalent 
form:

)ILGP( :   

Achieve: z1(x) = h1       

z2(x) = h2

         

zk(x) = hk

            subject to  
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gr(x) r ,       (r = 1, 2, …, m)

)0(
rr

)0(
r Nn , (r = 1, 2,…, m)

x  0 and integer 

It should be noted that the constraint rv )v~(L r , (r = 1, 2,…, m), has 
been replaced by the equivalent constraint )0(

rr
)0(

r Nn , (r = 1, 2,…, m),
where )0(

r
)0(

r Nn and  are lower and upper bounds on r .
Taking into account restrictions gr(x) r , (r = 1, 2, …, m) and for  the 

purpose of solving the integer linear goal program )ILGP( at
(0)

r r rN , (r = 1,2,…,m) for a certain  degree  = *  [0, 1], we 
use the iterative approach developed in Dauer and Rrueger (1977) together 
with the Gromory cuts shown in Klein and Holm (1978, 1979). First, we 
solve the following integer linear optimization problem associated with the 
first goal, viz: 

1( )rP :    

Minimize L1= d1 + d1        

subject to 

      z1(x) + d1 d1 = h1       

                  gr(x) r , (r = 1, 2, …, m)     

          0d 1 , 0d1 , x  0 and integer    

where d1 and d1  are the underattainment and the overattainment, 
respectively, of the first goal where d1 d1 = 0. 

Suppose this problem has integer optimal value 1
*L = d1 + d1  with at 

least one value d1  or d1  nonzero. 
Now, the attainment problem for goal 2 is equivalent to the integer 

optimization )(P r2 , where

2 ( )rP :     

Minimize   L2= d 2 + d 2        

subject to 

z2(x) + d2 d2 = h2       
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z1(x) + d1 d1 = h1       

d1 + d1 = *
1L

gr(x) r , (r = 1, 2, …, m)     

0d i , 0d i , x  0 and integer, (i = 1,2) 

Letting *
2L = d 2 + d 2 denotes the integer optimal value of )(P r2 , we 

can proceed to goal 3. 
The general attainment problem )(P rj for goal j is written as 

)(P rj :    

Minimize      Lj = d j + d j        

subject to 

  zi(x) + d i d i = hi, (1 i j)

                           d i + d i = *
iL , (1 i j-1)     

gr(x) r , (r = 1, 2, …, m)     

0d i , 0d i , x  0 and integer, (1 i j)

where d i and d i  are the underattainment and the overattainment, 
respectively, of the ith goal level and d i d i = 0. 

The integer objective value of )(P rj , *
jL , is the maximum degree of 

attainment for goal j subject to the maximum attainment of goals 1, 2,…, j 1.
Notice that *

jL  = 0 if and only if goal j is attained. 
Let x* be the optimal integer solution of the integer attainment problem 

)(P rj  associated with the minimum *
jL , then the solution of the integer 

goal program )ILGP(  is given by x* with  = *  [0, 1]. 
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8. AN ITERATIVE GOAL PROGRAMMING 
APPROACH FOR SOLVING FIMCDM 

Now, we develop a solution algorithm to solve the fuzzy integer linear goal 
program )(FILGP .The outline of this algorithm is as follows (Alg-II):

Step 0. Set  = *= 0.
Step 1. Determine the points (a1, a2, a3, a4) for each fuzzy 

parameter r , (r = 1, 2, …, m) in program v~)(FILGP with the 
corresponding membership function v~a~

* for the vector of fuzzy 
parameters t

m21 ),...,,( .
Step 2. Convert program v~)(FILGP  into the nonfuzzy integer linear 

goal program )ILGP( .
Step 3. Choose (0)

rrr N , (r = 1, 2,…, m) and solve 
problem )(P r1  using Gomory’s cutting- plane method (Klein and Holm, 
1978, 1979) and obtain *

1L .
Step 4. Set j =2.
Step 5. Using *

1L , *
2L ,…, *

1jL , solve )(P rj  using the same 
Gomory’s cutting-plane method used in step 3. 

Let *
jL  denotes the minimum. 

Step 6. If j k, set j = j +1 and go to step 5. Otherwise, go to Step 7.
Step 7. Let x* denotes the optimal integer solution of problem )(P rj

associated with the minimum *
jL .

Step 8. Set  = ( *+ step)  [0, 1], and go to Step 1.
Step 9. Repeat again the above procedure until the interval [0, 1] is 

fully exhausted. Then stop. 

9. AN ILLUSTRATIVE EXAMPLE (FUZZY CASE)  

Consider the following integer linear goal program involving fuzzy 
parameters )v~,v~,v~( 321  in the right-hand side of the constraints: 
(FILGP) :    

goal 1:  Achieve     2x1 + x2 = h1

    goal 2:  Achieve     x1 + 2x2 = h2

 subject to 

         x1 + x2 1v~

                         x1 + x2 2v~
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            6x1 + 2x2 3v~

              x1  0, x2  0 and integers. 

Assume that the membership function corresponding to the fuzzy 
parameters is in the form: 

a
(a) =

1
2

2
1 2

1 2

2 3
2

3
3 4

4 3

4

0 ,

1  ,

1 ,

1  ,

0 , a

a

a a

a a
a a a

a a

a a a

a a
a a a

a a

a

a

where a~  corresponds to each iv~ , (i = 1, 2, 3). In addition, we assume also 
that the fuzzy unmbers are given by the following values: 

1v~ = (2, 4, 6, 8), 2v~  = (0, 3, 5, 7), 3v~  = (18, 20, 22, 24). 

Setting  = *= 0, then we get 
2 1v~  8, 0 2v~  7, 18 3v~  24. 

By choosing ),,( *
3

*
2

*
1

*  = (8, 7, 24), then the aspiration levels of 
the goals have been found h1= 10 and h2 = 15, respectively. 

The integer optimization problem associated with the first goal is 

)(P r1 :    
Minimize    L1= d1 + d1         
subject to 

2x1 + x2 + d1 – d 1 = 10     

                  x1 + x2  8 
                      –x1 + x2  7 
                      6 x1 + 2 x2  24
       0d1 , 0d1 , x1  0, x2  0 and integers. 
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The maximum degree of attainment of problem )(P r1  is 0L*
1 with

the optimal integer solution: 

x1 =(2, 6) and 0d 1 , 0d 1 .

The attainment problem for goal 2 is equivalent to the integer 
optimization problem )(P r2  where 

)(P r2 :   

Minimize  L2= d 2 + d 2      

subject to 

      x1 + 2x2 + d 2 – d 2 =15
2x1 + x2 + d1 – d1 = 10 
d1 + d1 = 0 
x1 + x2  8 
–x1 +x2  7 
6x1 + 2x2  24 

0d i , 0d i , x1  0, x2  0, and integers (i = 1, 2). 
The maximum degree of attainment of goal 2 is *

2L  = 1 with the 
optimal integer solution: 

x2 =(2, 6) and d 2 = 1, d 2 = 0 

Therefore, the optimal integer solution of the original integer linear 
goal program is: 

x* = (2, 6) 

0L*
1   with  d1 = 0, d1 = 0 
*
2L = 1  with d 2  = 1, d 2 = 0 

with the corresponding used Gomory cut: 2 7x .
On the other hand, setting  = *= 1, we get: 

4 1v~  6, 3 2v~  5, 20 3v~  22. 

Choosing ),,( *
3

*
2

*
1

* = (6, 5, 22), then the optimal integer 
solution of the original program has been found:  
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x* = (2, 4) 

0L*
1   with  d1 = 0, d1 = 0 
*
2L = 1  with  d 2  = 1, d 2 = 0 

with the corresponding used Gomory cut: 1 23 10.x x

Remark. It should be noted that a systematic variation of  [0, 1] 
will yield a new optimal integer solution to the integer linear goal program 

v~)( FILGP

10. CONCLUSION

Since goal programming now encompasses any linear, integer, zero one, 
or nonlinear multi-objective problem (for which preemptive priorities may 
be established), the field of applications is wide open. The recent increase 
in interest in this area has already led to a large number of and wide variety 
of actual and proposed applications. In this chapter, we have given numeri-
cal examples for the IMCDM problem and the FIMCDM. Fuzzy goal 
programming has many opportunities to develop new approaches to it.
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GREY FUZZY MULTI-OBJECTIVE 
OPTIMIZATION

P.P. Mujumdar and Subhankar Karmakar 

Abstract:  This chapter provides a description of grey fuzzy multi-objective 
optimization. A prerequisite background on grey systems, along with 
preliminary definitions is provided. Formulation of the grey fuzzy 
optimization starting with a general fuzzy optimization problem is 
discussed. Extension of the grey fuzzy optimization with the acceptability 
index to include multiple objectives is presented. Application of the grey 
fuzzy multi-objective optimization is demonstrated with the problem of 
waste load allocation in the field of environmental engineering.

Key words: Grey fuzzy, fuzzy optimization, waste load allocation 

1. INTRODUCTION

Uncertainties in decision models may stem from a number of factors such 
as randomness of input parameters, imprecision in management goals, 
inappropriateness in model selection leading to scenario uncertainty, broad 
range of possible alternative formulations, and uncertainties in input 
parameters due to inadequate of data. Uncertainty due to randomness of 
input parameters may be modeled using the probability theory when 
adequate data are available to satisfactorily estimate the probability distribu-
tions of the parameters. Uncertainties due to imprecision in the 
management problem, on the other hand, are modeled using the fuzzy sets 
theory, by appropriately constructing membership functions for the fuzzy 
or imprecisely defined goals and constraints. In addition, model parameters 
in most optimization problems need to be addressed as grey parameters,
due to inadequate data for an accurate estimation but with known extreme 
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bounds of the parameter values. Such grey uncertainty, with partially 
known and partially unknown characteristics cannot be effectively 
modeled by probabilistic or fuzzy logic approach because of inadequacy of 
data to estimate probability distribution and lack of information to 
precisely define the membership functions. 

Interval programming (IP) provides a methodology for modeling 
inexactness in parameters (e.g., left-hand side model coefficients and right-
hand side stipulations of constraints) of an optimization model, by 
considering them as interval numbers (Dantzig, 1963; Jaulin et al., 2001; 
Moore, 1979; Tong, 1994). A reason for the lack of many useful 
applications of interval programming is that the solution procedure is too 
complicated and time consuming (Dantzig, 1963; Jansson, 1988; Moore, 
1979). Grey optimization (Huang et al., 1992, 1995, 2001) of grey systems 
theory (Deng, 1982) offers methods for incorporating uncertainties in 
model parameters directly in an optimization framework avoiding huge 
data requirement and mathematical complicacy. The grey uncertainty or 
inexactness of model parameters can be addressed by representing them as 
interval grey numbers, instead of deterministic real numbers. An interval 
grey number is a closed interval with known lower and upper bounds but 
unknown distribution information (Huang et al., 1992; 1995; Liu and Lin, 
1998). Both interval and grey programming techniques are used for 
determining interval-valued solutions of an optimization model in which 
coefficients in objective function, left-hand side model coefficients, and 
right-hand side stipulations of constraints are represented by closed 
intervals. A basic difference between interval programming and grey 
programming lies in their solution procedures. The primary goal of a grey 
optimization model is to determine the two extreme values of the optimal 
interval-valued decision variables in most adverse and favorable 
conditions (Huang et al., 1995, Karmakar and Mujumdar, 2005b). Huang 
et al. (1992, 1993, 1995), and Chen and Huang (2001) have presented a 
few such novel efforts to find the solutions from grey linear, integer and 
quadratic programming models. 

A number of research contributions are available in the literature that 
deal with uncertainty due to imprecision, fuzziness, or vagueness, where 
fuzzy sets theory (Zadeh, 1965) is the only tool used to address such 
uncertainty. The imprecision associated with management goals and 
constraints is quantified using membership functions, which are normally 
represented by a geometric shape that defines how each point in the input 
space is mapped to a membership value between 0 and 1. For example, to 
account for the imprecision in the standards for determining a failure of 
water quality, occurrence of failure is treated as a fuzzy event (Mujumdar 
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and Sasikumar, 2002); a fuzzy set of low water quality maps all water 
quality levels to “low water quality,” and its membership function denotes 
the degree to which the water quality is low. The membership functions 
represent the perceptions of the decision makers and other stakeholders in 
most decision-making problems. The boundaries (Ross, 1995) of the 
membership functions—or, the membership parameters—are assumed 
fixed, and values to the parameters are assigned based on experience and 
judgment. As the model solution is likely to vary considerably with change 
in the membership functions, uncertainty in the boundaries and shape of 
the membership functions should also be addressed in a fuzzy optimization 
model. Some studies address modeling of uncertainty in the values of 
membership parameters by considering the membership function itself as 
fuzzy. Type 2 fuzzy sets (Karnik and Mendel, 2001; Mizumoto and 
Tanaka, 1976; Mendel 2001; Zadeh, 1975), interval-valued fuzzy sets 
(Chiang, 2001; Turksen and Bilgiç, 1996), and grey fuzzy optimization 
(Chang et al., 1996; 1997; Karmakar and Mujumdar, 2005a, b; Maqsood  
et al., 2005) are some examples of attempts to model such uncertainty. 
Mathematically grey fuzzy optimization is the simplest way to model the 
uncertainty in membership parameters. In this approach, the membership 
parameters are considered as interval grey numbers. A set of optimal 
interval-valued decision variables are obtained as solution, corresponding 
to a maximized interval-valued goal fulfillment level, whereas 
conventional fuzzy optimization model gives only a single set of optimal 
decision variables corresponding to the maximum goal fulfillment level 
(Chang et al., 1997; Karmakar and Mujumdar, 2005b; Zhang and Huang, 
1994). This feature of the solution from a grey fuzzy optimization model 
imparts flexibility in decision making. The width of the interval-valued 
optimal decision variables plays an important role in the grey fuzzy 
optimization model, as more width in the optimal values of decision 
variables implies a wider choice to the decision-makers. The width of the 
optimal interval-valued goal fulfillment level, on the other hand, implies 
the system uncertainty, which should be minimized in a grey fuzzy 
optimization model. Grey fuzzy multi-objective optimization is a potential 
approach to maximize the width of the interval-valued optimal decision 
variables for providing latitude in decision making and to minimize the 
width of the goal fulfillment level for reducing the system uncertainty 
(Karmakar and Mujumdar, 2005a). The discussion in this chapter is 
restricted to grey fuzzy optimization techniques mainly focusing on grey 
fuzzy multi-objective optimization. As a prerequisite, a brief overview of 
the grey systems theory is provided first. 
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2. GREY SYSTEMS THEORY 

Grey systems theory was first proposed by Deng (1982). Concepts of grey 
systems are different from those of probability and statistics, which 
address problems with samples of a reasonable size, and also different 
from those of fuzzy mathematics, which deal with problems with cognitive 
uncertainty. Table 1 presents some features of grey systems theory, 
probability theory, and fuzzy mathematics. 

(Deng 1982, Liu and Lin, 1998) 

Grey systems theory Probability theory Fuzzy mathematics 

Intention Small sample 
uncertainty

Large sample 
uncertainty

Cognitive
uncertainty

Foundation Information
coverage

Probability
distribution

Function of 
affiliation

Characteristics Few data points Large number of 
data points Experience

Requirement Any distribution Probability
distribution

Membership
function

Objective Laws of reality Laws of statistics Cognitive
expressions

A grey system is a system other than a white system (system with 
completely known information) and a black system (system with 
completely unknown information), and thus it has partially known and 
partially unknown characteristics. Table 2 shows the major characteristics 
of the white, black, and grey systems. 

Table 2. Characteristics of White, Black and Grey Systems (Liu and Lin 1998) 

White system Black system Grey system 
Information Known Unknown Incomplete 
Appearance Bright Dark Grey 
Property Order Chaos Complexity 
Attitude Surety Indulgence Tolerance 
Conclusion Unique solution No result Multiple solution 

Most processes of interest in decision problems are in the grey stage 
due to the inadequate and/or fuzzy information. Grey fuzzy optimization 
provides a useful tool for decision making addressing such uncertainties. 
As a background to formulation of a grey fuzzy optimization model, we 

Table 1. Features of Grey Systems Theory, Probability Theory and Fuzzy Mathematics 
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first provide a few definitions related to interval analysis (Moore, 1979) 
and grey systems theory (Huang et al., 1995; Liu and Lin, 1998). 

DEFINITION 1.
A “grey number” is such a number whose exact value is unknown, but 

a range within which the value lies is known [Liu and Lin 1998]. Let x
denote a closed and bounded set of real numbers. A grey number (x  ) is 
defined as an interval with known lower (x ) and upper (x ) bounds but 
with unknown distribution information for x (Huang et al., 1997). 

x  = [x , x+] = [t x | x t x ] (1) 

x  becomes a “deterministic number” or “white number” when, x  = x
= x . When x  = [x , x+] = ( , + ) or x  = [x1 , x2 ], that is, x  has neither 
lower limit nor upper limit, or the lower and the upper limits are all grey 
numbers, x  is called a “black number.” An “interval number” or “interval 
grey number” (x  = [x , x+]) is one among several classes of grey numbers. 

DEFINITION 2.
The “whitened value” of a grey number, x , is defined as a 

deterministic number with its value lying between the upper and lower 
bounds of x ; i.e., x xv x , when xv is a whitened value of x . For a 
general interval grey number, 

xv = x  + (1 ) x ,  [0, 1] (2)

is called “equal weight whitenization” (Liu and Lin, 1998). “ ” is a weight 
factor that can take any value between 0 and 1. 

DEFINITION 3.
In an equal weight whitenization, the whitened value obtained, when 

taking  = ½, is called an “equal weight mean whitenization” or 
“Whitened Mid Value” (WMV). Therefore, WMV of x  is written as (Liu 
and Lin, 1998):

xm = ½ (x  + x ) (3)

DEFINITION 4.
The “grey degree” is a measure, useful for quantitatively evaluating the 

quality of input or output uncertain information for mathematical models 

457



P.P. Mujumdar and S. Karmakar

(Huang et al., 1997). The “grey degree” of an interval grey number is 
defined as its width [x  = (x  – x )] divided by its WMV [xm = ½ (x  + x )]
(Huang et al., 1995) and is expressed in percentage (%) as follows: 

Gd(x ) = (x xm)  100  (4) 

where Gd(x ) is the grey degree of x . Solutions (model outputs) with 
considerably high grey degree have high width (x ) of output variables, 
which are considered as less useful and of poor quality for decision 
making. As the grey degree of objective function of an optimization model 
decreases, implying decreasing system uncertainties, the usefulness of the 
grey model increases. 

DEFINITION 5.
A “grey system” is defined as a system containing information 

presented as grey numbers [Huang et al., 1995]. 

DEFINITION 6.
Let  { , , , } be a binary operation on grey numbers. Therefore, 

the operations can be expressed as (Huang et al., 1995; Ishibuchi and 
Tanaka, 1990) 

x y  = [min (x y), max (x y)], x x x , y y y  (5) 

For different binary operations: 

x  + y  = [(x  + y ), (x  + y )] (6) 

x y  = [(x y ), (x y )] (7) 

x y  = [min (x y), max (x y)] (8) 

x y  = [min (x y), max (x y)], when 0 y (9)

DEFINITION 7.
A “general mathematical model” of grey linear programming is as 

follows (Huang et al., 1992): 

Maximize f  = c x (10)
subject to 
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A x b  (11) 

x  0 (12)

where c  = [c1  , c2  , ….., cn  ]; x = [x1 , x2 , ….., xn ]T; b  = [b1  , b2  , 
….., bm  ]T; A  = {aij }, i = 1, 2,……, m, and j = 1, 2,……, n. Since 
interval grey parameters exist in the objective function and constraints, the 
optimal solutions of grey linear programming model are f  = [ f̂,f̂ ], and 

x  = [ n21 x̂,.....,x̂,x̂ ], where jx̂  = [ jj x̂,x̂ ], j = 1, 2,……, n. The 
primary goal of a grey optimization model is to determine the two extreme 
values of the optimal interval-valued decision variables, x̂ , in most 
adverse and favorable conditions considering the appropriate extreme 
bounds of the pre-specified parameters in the model constraints, i.e., c , A ,
b . It is to be noted that the grey optimization model does not include the 
situation when a model parameter expressed as an interval grey number, 
contains a zero with the two bounds having different signs (e.g., bi = [ bi

-,
+bi

+], where bi>0). Details of the solution algorithm for a grey optimization 
problem may be found in Huang et al. (1994, 1995). 

3. CONCEPT OF A GREY FUZZY DECISION 

Fuzzy optimization (Zimmermann, 1978) is an application of fuzzy sets 
theory that determines optimal solution in the presence of imprecisely 
defined goals and constraints. Bellman and Zadeh (1970) proposed a broad 
definition of the fuzzy decision as a confluence of fuzzy goals and fuzzy 
constraints, which is the basis of fuzzy optimization. Noting that the 
decision space is defined by the intersection of different fuzzy goals, the 
fuzzy decision D  is written as follows: 

21 FFD  (13) 

where fuzzy sets 1F  and 2F  represent the two fuzzy goals. The 
membership function of the fuzzy decision (D) is given by 

1 2
( ) min [ ( ), ( )].D F Fx x x  (14) 
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“ ” is the measuring variable corresponding to the membership function 
of fuzzy decision (D), which reflects the degree of fulfillment of the system 
goals. A terminology of “goal fulfillment level” is used throughout the 
chapter to represent “ .” In the concept of fuzzy decision (D) as described 
by Eq. (13), the arguments of 1F  and 2F  are deterministic real numbers (x).
When the goals 1F  and 2F  are imprecise fuzzy goals or grey fuzzy goals, 
i.e., the uncertain membership parameters are considered as interval grey 
numbers and corresponding arguments are interval grey numbers ( x ), the 
fuzzy decision leads to a “grey fuzzy decision (D )” (Karmakar and 
Mujumdar, 2005a, 2000). This terminology is earlier used by Luo et al. 
(1999) to define a “grey fuzzy motion decision” combining grey prediction 
and fuzzy logic control theories. The notion of “grey fuzzy decision” 
presented in this chapter is different from that used by Luo et al. (1999). 
Here grey fuzzy decision represents the fuzzy decision resulting from the 
imprecise membership functions, where the membership parameters are 
expressed as interval grey numbers (Karmakar and Mujumdar, 2005b). 
Figure 1 illustrates the concept of grey fuzzy decision considering the 
confluence of two imprecise membership functions for grey fuzzy goals, 1F
and 2F . Considering “logical and,” corresponding to the “set theoretic 
intersection” as an aggregation operator, the grey fuzzy decision is 
determined. In Figure 1, the decision space is is defined by the lower and 
upper boundaries A “FNGH” and A“ECMC’HH,” respectively. 

Figure 1. Concept of grey fuzzy decision 
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The solutions x̂ , corresponding to the maximum value of the 
membership function of the resulting grey fuzzy decision (D ) is an 
interval in the space CMC’N (Figure 1). Mathematically the grey fuzzy 
decision (D ) for 1F  and 2F  can be defined with the imprecise 
membership function (Karmakar and Mujumdar, 2005a): 

)}]x(,)x({)};x(,)x({[)x(
2F1F2F1FD

minminmin   (15) 

)}]x(,)x({)};x(,)x({[)x(
2F1F2F1FD

minminmax   (16) 

where )x(
D

 and )x(
D

 are lower and upper bounds of the 
imprecise membership functions for an interval [x–, x+], respectively. Eqs. 
(15) and (16) are valid for all combinations of imprecise membership 
functions (i.e., non-increasing, nondecreasing, or a combination of the 
two). Eqs. (15) and (16) are readily extendible to any number of imprecise 
goals.

4. GREY FUZZY OPTIMIZATION 

The grey fuzzy optimization technique is based on the concept of grey 
fuzzy decision. Determination of an appropriate deterministic equivalent of 
the grey fuzzy optimization model is still a potential research area. 
Following the notations used by Zimmermann (1985), a generalized fuzzy 
optimization model may be written as 

Maximize ( )

subject to , 1, .... ,

0 1
0,

i

i i

i i

n

d B x i for i m
d d

x x

 (17–20) 

The solution of model (17) (20) gives the optimal values of x satisfying all m
numbers of fuzzy goals, expressed by the constraint Bix~ di for i = 1,…, m;
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with maximized level of goal fulfillment, ˆ . Here “ ~ ” is “fuzzified” 

version of “ ” and has the linguistic interpretation “essentially less than or 
equal to.” Constraint (18) denotes the ith membership function, i(x),
interpreted as the degree to which x fulfills the fuzzy goal, where Bi and di

denote the i-th row of B and d, respectively. The exponent i is a nonzero 
positive real number. Assignment of numerical value to this exponent is 
subject to the desired shape of the membership functions. A value of i = 1 
leads to the linear membership function. The value of i(x) should be 0 if 
the set of constraints are strongly violated and 1 if they are well satisfied. 

i(x) should increase monotonically from 0 to 1. Figure 2 shows a linear 
membership function of Bix, where two membership parameters are at the 
desirable (di) level and maximum permissible [di’ = (di + pi)] level, fixed 
by the decision maker. 

Figure 2. Linear membership function 

The value of pi is uncertain and a subjectively chosen constant of the 
admissible violation for i-th fuzzy goal. The membership function, i(x),
results in an imprecise membership function, )x(i , when the uncertainty 
in the value of pi is considered as interval grey number ( ip ). The current 
discussion focuses on modeling the uncertainty in membership parameters 
considering the boundaries of the membership functions as interval grey 
numbers, which results in the value of pi as an interval grey number. 
Figure 3 shows a linear imprecise membership function where the 
uncertain value of ip  is expressed as )dd( ii , and extreme bounds are 
presented as )dd(p iii  and )dd(p iii .

1

0
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Slope = (1/pi)
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Figure 3. Linear imprecise membership function 

Mathematically the imprecise membership function )x(i  can be 
expressed as 

i

1 if     

( )   if    for 1, ... ,

0 if            

i i

i i
i i ii

i i

i i

B x d

d B xx d B x d i m
d d

B x d

(21–23)

Similar to the max min formulation for fuzzy optimization by 
Zimmermann (1978), the grey fuzzy optimization model can be 
represented as 

i

i i

ix 0, i i
x 0

Find (x )

d B x
maxmin d d

 (24–25) 

In the grey fuzzy optimization model, the input vector Bi can also be 
uncertain, depending on the particular problem being solved. A more 
generalized form of the grey fuzzy optimization model can be obtained by 
considering Bi as an interval grey number ( iB ). Similar to fuzzy 
optimization model (17) (20), a generalized form of the grey fuzzy 
optimization model may be written as 

1

0
di di

’

Slope = [1/(di
’ -di)]

i

xBiidididid
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i

i

Maximize ( )

( )subject to

0 1
0

i

i i

d B x i
d d

x

 (26–29) 

where Bi is an interval grey number that results in the value of (Bix)± [i.e., 
(Bi x )  ] as an interval grey number, following Eq. (8) in Definition 6. 
A typical confluence of two non increasing linear imprecise membership 
functions as described in Eqs. (21) (23), when i = 1, 2 and i = 1, are 
shown in Figure 4. In Figure 4, the lower and upper boundaries of grey 
fuzzy decision are ABD’F’FG and ABCDEFG, respectively. 

Figure 4. Confluence of gray fuzzy goals 

To obtain the two extreme values of optimum goal fulfillment level ( ˆ

and ˆ ), that provide solutions for two extreme cases encompassing all 
intermediate possibilities, the deterministic equivalent of the grey fuzzy 
optimization model [Eqs. (26) (29)] is divided into two sub-models as: 
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Sub-model 1 

i

i

i

Maximize ( )
subject to

( )

0 1
0

i

i

d B x i
d d

x

 (30–33) 

Sub-model 2 

rom submodel 1

Maximize ( )
subject to

( )

ˆ

0 1

0

i

i i

i i

f

d B x i
d d

x x

x

 (34–38) 

Sub-model 1 is formulated to obtain the upper bound of a maximized 
minimum goal fulfillment level ( ˆ ) and the corresponding optimal value 
of the decision variable ( x̂ ). The left-hand side (LHS) of constraint (31) is 
written considering the maximum possible values of the LHS of Eq. (27). 
The maximum possible value of the LHS of Eq. (27) occurs with the 
numerator taking the highest value and the denominator, the lowest. Using 
the same argument as in Sub-model 1, Sub-model 2 [(34) (38)] is 
formulated to obtain the lower bound of the maximized minimum goal 
fulfillment level ( ˆ ) and corresponding optimal value of decision variable 
( x̂ ). The LHS of constraint (35) is written considering the minimum 
possible values of Eq. (27). The minimum possible value of the left-hand 
side of Eq. (27) occurs with the numerator taking the lowest value and  
the denominator, the highest. To ensure that the optimal upper bound of the 
decision variable x̂ , obtained from Sub-model 2 is at least equal to the 
optimal lower bound of the decision variable x̂ , obtained from the Sub-
model 1, an interactive constraint (36) (Huang et al., 1995) is added. When 
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the problem is complex and many decision variables with functional 
relationships are present, a direct comparison of the dominance of x+ or x– , 
i.e., whether x+ or x- corresponds to maximized value of  or , is 
impossible to know prior to solving the models. The appropriateness of 
submodel formulation on finding out suitable deterministic equivalent of 
the grey fuzzy optimization model depends on the values of interval-
valued membership parameters and the consequent intersection of the grey 
fuzzy goals (Karmakar and Mujumdar, 2005b). For a given set of interval-
valued membership parameters, if a particular formulation represents an 
appropriate deterministic equivalent, other alternative formulations do not. 
The appropriate deterministic equivalent of a grey optimization model 
should give the lowest value of grey degree of .

The solution approach for the fuzzy optimization problem using the 
max min operator (Zimmermann, 1978) may not result in a unique 
solution (Dubois and Fortemps, 1999; Lai and Hwang, 1992; Lin, 2004). 
To impart flexibility in decision making, the multiple solutions of the 
fuzzy optimization model may be obtained as a parametric equation or 
equations that represent a subspace. Determination of such a subspace in a 
fuzzy optimization problem is itself a potential research area (Lai and 
Hwang, 1992; Li, 1990; Lin, 2004). It is also observed that as the number 
of objectives and decision variables increases in the fuzzy optimization 
model, the possibility of existence of multiple solution increases. When the 
deterministic equivalents of the grey fuzzy optimization model lead to 
fuzzy optimization models with a max min operator, therefore, attention 
must be given to multiple solutions. Solutions from the grey fuzzy 
optimization model enhance the flexibility and applicability in decision 
making, as the decision maker gets a range of optimal solutions, ]x̂,x̂[ .
The width of the interval-valued solutions thus plays an important role in 
the grey fuzzy optimization model. The grey fuzzy multi-objective 
optimization technique discussed in the next section maximizes the width 
of the interval-valued decision variables, ( xx ), (Huang and Loucks, 
2000; Karmakar and Mujumdar, 2005a) in a multi-objective framework. 
Similar to the grey fuzzy optimization model, the upper and lower bounds 
of the goal fulfillment level (i.e.,  and ) are maximized in the grey 
fuzzy multi-objective optimization technique, but additionally the width of 
the degree of goal fulfillment level, ( ) is also minimized, thus 
reducing the system uncertainty. 
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5. GREY FUZZY MULTI-OBJECTIVE 
OPTIMIZATION 

The grey fuzzy optimization model given in Eqs. (26) (29) forms the basis 
of the grey fuzzy multi-objective optimization technique. The inequality 
constraint (27) addresses the grey fuzzy management goals in the 
optimization model. The constraint set (27) defines the order relations 
(e.g., the relations “greater than or equal to” or “less than or equal to”) 
containing interval grey numbers on both sides. Determination of 
meaningful ranking between two partially or fully overlapping intervals in 
the order relations is a potential research area (e.g., Ishibuchi and Tanaka, 
1990; Moore, 1979; Sengupta et al., 2001). Recently, Sengupta et al., 
(2001) proposed a satisfactory deterministic equivalent form of inequality 
constraints containing interval grey numbers by using the acceptability 
index (A). The acceptability index (A) is defined as the grade of 
acceptability of the premise that the “first interval grey number (a ) is 
inferior to the second (b ),” denoted as a  (<) b . Here, the term “inferior 
to” (“superior to”) is analogous to “less than” (“greater than”). The 
acceptability index (A) is expressed as (Sengupta et al., 2001)

A [ a  (<) b ] = [ ( ) ( )] /[ ( ) ( )]m b m a w b w a  (39) 

where [w(b ) + w(a )]  0; w(a ) is the half-width of a = ½ (a a ); m(a )
is the mean of a  = ½ (a  + a ). Notations are similarly defined for the 
interval grey number b . The grade of acceptability of a  (<) b may be 
classified and interpreted further on the basis of the comparative position 
of mean and the half-width of interval b  with respect to those of interval 
a . Let us consider an interval inequality relation a y b , where y is a 
deterministic variable. A satisfactory deterministic equivalent form of 
interval inequality relation a y b , is proposed as (Sengupta et al., 
2001):

a y b  { a y b  and A [ a y (<) b ]  [0, 1]} (40) 

where  is interpreted as an optimistic threshold fixed by the decision 
maker. Similarly, a satisfactory deterministic equivalent form of interval 
inequality relation a±y b± is proposed as (Sengupta et al., 2001): 

a y b  { a y b  and A [ a y(>) b ]  [0, 1]} (41) 
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where the symbol (>) indicates “superior to,” which is analogous to 
“greater than.” The deterministic equivalent of the grey fuzzy optimization 
model given in Eqs. (26) (29) is formulated using the expression (40). By 
using the attributes mean, width, and acceptability index of the interval 
grey numbers, the grey fuzzy optimization model is reduced to a 
deterministic multi-objective optimization model, as follows: 

i i i

       Maximize
Maximize
Minimize [( ) /( )]
subject to

( ) [{ ( ) }/( )]i ix d B x d d i

(42–45)

A [ )dd/(})xB(d{ iiii  (<) ] i  [0, 1]  (46)

x x
x 0, x 0
0 1, 0 1

 (47–50)

The constraints (45) (46) together define the deterministic equivalent 
of the constraint (27). The acceptability index in constraint (46) compares 
the interval grey numbers in the inequality constraints (27). In constraints 
(46), i
maker. In this model, the grey fuzzy management goal as expressed by 
constraint (27), is represented by linear imprecise membership functions 
[i.e., substituting i = 1 in constraint (27)] as the Eq. (40) with acceptability 
index for ranking the interval grey numbers in the inequality constraints is 
applicable only for linear programming problems (Sengupta et al., 2001). 
The expression (39) of the acceptability index may be substituted in the 
constraint (46), to obtain a simplified form with algebraic operations on 
the interval grey numbers (Liu and Lin, 1998; Moore, 1979). The 
objectives (42) and (43) maximize the upper and lower bound of the goal 
fulfillment level ( ), respectively, which ensure the maximum 
possibility of fulfillment of the grey fuzzy goal. The objective (44) 

 is the optimistic threshold for the i-th constraint fixed by the decision 
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minimizes the width of the goal fulfillment level [ )(w ] with 
maximization of the denominator, )( , to be consistent with the first 
two objectives, (42) and (43). This objective is included as the reduction of 
the width of the goal fulfillment level implies reduction in system 
uncertainties and an increase in effectiveness of the grey model (Huang  
et al., 1995). Similarly, a higher flexibility (i.e., higher width of the 
interval) of the decision variables ( x ) is always desirable, as it allows a 
wider choice to the decision-makers. The objectives (42) – (44) do not 
address the maximization of the width of decision variables [i.e., 
( x x )]. The width of the decision variables may be maximized along 
with the objectives (42)–(44) while solving the multi-objective 
optimization model [(42)–(50)] using the fuzzy multi-objective 
optimization technique (Sakawa, 1984) or the fuzzy goal programming 
technique (Pal and Moitra, 2003; Sakawa et al., 1987). The procedure of 
solution is discussed through an application in the next section. 

5.1 An Application in Environmental Engineering 

A number of successful applications of grey systems theory have been 
found in many areas of human endeavors, including agriculture, 
transportation, hydrology, environment, economics, water resources 
systems, and control theory. Table 3 shows some recent applications of 
grey systems theory in the field of environmental and water resources 
engineering. An application of grey fuzzy multi-objective optimization 
technique is demonstrated with a waste load allocation problem here. 

Waste load allocation (WLA) in a stream refers to the determination of 
required treatment levels of pollutants (fractional removal levels) [e.g., 
biochemical oxygen demand (BOD) loading, toxic pollutant concentration, 
etc.] at a set of point sources of pollution to ensure that water quality is 
maintained at desired levels throughout the stream. A common practice of 
the pollution control agency (PCA) to ensure an acceptable water quality 
condition is to check the water quality at a finite number of locations in the 
river. These locations are called water quality checkpoints. A WLA model 
for decision making in water quality control in a river system, in general, 
integrates a water quality simulation model, measuring the influence of a 
pollutant on a water quality indicator [e.g., dissolved oxygen (DO) deficit, 
hardness, nitrate-nitrogen concentration, etc.] at a downstream location 
with an optimization model to provide best compromise solutions 
acceptable to both PCA and dischargers (e.g., municipal and industrial
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Application Literature Case study Parameters considered as 
interval grey numbers 

Municipal solid 
waste
management and 
planning

Chen and Huang 
(2001), Huang et al. 
(1992, 1993), Zou
et al. (2000) 

Hypothetical
study area 

Existing landfill capacity, 
treatment capacity, generated 
residues after treatment, 
revenue from waste-to-
energy facility. 

Water quantity
& quality 
management

Huang et al. (1996), 
Huang and Loucks 
(2000)

1. Fujian province 
of China, 
2. Hypothetical 
study area 

Water quantity: crop water 
requirement, municipal water 
requirement, cost for 
obtaining-transporting-
delivering-allocating water, 
cost of manure collection, cost 
of fertilizer application, 
average returns from 
livestocks, etc.; 
Water quality: amount of 
manure generated by humans, 
livestocks, amount of manure 
applied to soil, population in 
study area, number of 
livestock, nitrogen 
volatilization and 
denitrification rates, area under 
the crops, pollutant losses, etc. 

Rainfall
forecasting

Yu et al. (2000) San-Hsia and 
Heng-Chi
subcatchments in 
Tahan creek, 
Taiwan

Areal mean rainfall. 

Reservoir
operation

Chang et al. (2002) Shiman 
reservoir in 
Taiwan

Storage of the upper and 
lower curves in rule curves at 

irrigation, municipal and 
industrial purposes. 

Water quality 
control problems 
(rivers and lakes) 

Chang et al. (1997), 
Wu et al. (1997), 
Karmakar and 
Mujumdar (2005a, 
2005b)

1. Tseng-Wen 
river basin in 
south Taiwan, 2. 
Lake Erhai in 
southwestern
China

Degree of aspiration levels, 
BOD loading, construction 
and average operating cost of 
treatment plants, removal 
efficiency of BOD, 
deoxygenation and reaeration 
coefficients.

Coastal waste 
water treatment 

Chang and Wang 
(1995)

Guishuic waste 
water treatment 
project in Taiwan 

Concentrations of 
conservative pollutants, 
waste water flow rates, initial 
dilution, length of diffusers. 

Table 3. Applications of Grey Systems Theory in Water Resources and
Environmental Engineering 

i-th stage, inflows, supply for 
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dischargers). A number of WLA models have been developed in the past 
for optimal allocation of assimilative capacity of a river system considering 
uncertainties due to randomness in input variables (e.g., stream flow, 
effluent flow, temperature, reaction rates, etc.) and imprecision in 
management goals (e.g., goals of PCA and dischargers), the latter being 
addressed using the fuzzy sets theory. Imprecision in management goals is 
usually modeled using fuzzy membership functions, specifying the desirable 
maximum permissible levels of the goals by prespecified membership 
parameters. Choice of appropriate values of membership parameters is an 
important issue in any fuzzy optimization model, as these are highly 
subjective. In a water quality control problem, such subjectivity in choice 
of parameters results in an uncertainty in the membership parameters and 
leads to a second level of fuzziness in the model, with the membership 
functions themselves being imprecisely stated. Moreover, in practical 
situations, for the same water quality indicator, different water quality 
standards are used for different uses, which results in an uncertainty in the 
membership parameters of the goals of PCA. 

Two sets of conflicting goals associated with the river water quality 
management are generally considered in a waste load allocation problem. 
The PCA specifies the desirable concentration level (cD

jl) and maximum 
permissible concentration level (cH

jl) of the water quality indicator j at the 
water quality checkpoint l (cD

jl cH
jl). The goal of the PCA (E jl ) is to 

make the concentration level (cjl) of water quality indicator j at the 
checkpoint l as close as possible to the desirable level, cD

jl, so that the 
water quality at the checkpoint l is enhanced with respect to the water 
quality indicator j, for all j and l. This goal is represented by a membership 
function. For example, if the DO-deficit is the water quality indicator, a 
non-increasing membership function suitably reflects the goals of the PCA 
with respect to DO-deficit at a checkpoint. The uncertainty associated with 
membership parameters (cD

jl and cH
jl) is addressed using interval grey 

numbers, and the membership parameters are expressed as cD
jl and cH

jl.
Using nonincreasing imprecise membership functions, the grey fuzzy goals 
of PCA are expressed as 

                                                 0

    

   1

H
jljl

H
jljl

D
jl

jlD
jl

H
jljl

H
jl

D
jljl

jl
jlE

cc

ccc)]cc/()cc[(

cc

)c(  (51) 
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The exponent jl is a nonzero positive real number. Assignment of 
numerical value to this exponent is subject to the desired shape of the 
membership functions. A value of jl = 1 leads to a linear imprecise 
membership function. The grey fuzzy goals of the dischargers are similarly 
expressed as:

                                                 0

    

                      1      

Mmnxjmnx

MmnxjmnxLmnxjmn)]LmnxMmnx/()jmnxMmnx[(

Lmnxjmnx

)jmnx(
jmnF (52)

where the aspiration level and the maximum acceptable level of fractional 
removal of the pollutant n at discharger m are represented as xL

mn and 
xM

mn, respectively (xL
mn  xM

mn). Similar to the exponent jl in Eq. (51), 
jmn is a nonzero positive real number. The goal of the dischargers (F jmn ) 

is to make the fractional removal level (x jmn) as close as possible to xL
mn,

to minimize the waste treatment cost for pollutant n. These two sets of 
conflicting grey fuzzy goals are incorporated in the optimization model 
using the grey fuzzy decision concept. Using the concept of grey fuzzy 
optimization discussed in Section 4, the grey fuzzy waste load allocation 
model (GFWLAM) is written as (Karmakar and Mujumdar, 2005b):

10

n,m,jM
mnxjmnxL

mnx

l,jH
jlcjlcD

jlc

n,m,jjmn)]L
mnxM

mnx/()jmnxM
mnx[()jmnx(

l,jjl)]D
jlcH

jlc/()jlcH
jlc[()jlc(

                 

jmnF

jlE

tosubject

Maximize

(53–58)

The constraints (54) and (55) are constructed from imprecise 
membership functions for the grey fuzzy goals of PCA and dischargers, 
respectively. The crisp constraints (56) and (57) are based on the water 
quality requirements specified by the PCA and possible fractional removal 
levels, respectively. Constraint (58) represents the bounds on the parameter 

. In the expression for goals of PCA [constraint (54)], the concentration 
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level c jl, of water quality indicator j at checkpoint l, may be 
mathematically expressed as: 

)x(fc jmnjl
(59)

where the transfer function f indicates the aggregated effect of all 
pollutants and dischargers (located upstream of checkpoint l) on the water 
quality indicator j. The transfer function can be evaluated using 
appropriate mathematical models that determine spatial distribution of the 
water quality indicator due to pollutant discharge into the river system 
from point sources (Sasikumar and Mujumdar, 1998; Mujumdar and 
Sasikumar, 2002). The fractional removal levels (x jmn) and the goal 
fulfillment level ( ) are the decision variables in this model. The grey 
fuzzy inequality constraints (54) and (55) addressing the goals of the PCA 
and dischargers are the order relations containing interval grey numbers on 
both sides. A satisfactory deterministic equivalent of these constraints can 
be obtained using the concept of acceptability index (A) as defined in Eq. 
(40). The deterministic equivalent of the grey fuzzy optimization model 
(53) (58) can be formulated using the methodology of formulating the 
multi-objective optimization model as presented in (42) (50) and 
expressed as 

Maximize

Maximize

Minimize [( ) /( )]

subject to

 ( ) [( ) /( )] ,
E jl

  ( ) [( ) /( )] , ,
Fjmn

H H Dc c c c c j ljl jl jl jl jl

M M Lx x x x x j m nmn mn mnjmn jmn

 (60–64) 

A [ )D
jlcH

jlc/()jlcH
jlc( (<) ] 1  [0, 1]

A [ )L
jmnxM

jmnx/()jmnxM
jmnx( (<) ] 2  [0, 1]  (66) 

 (65) j, l

j, m, n
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10;10

n,m,jjmnxjmnx

l,jjlcjlc

n,m,jMmnxjmnxLmnx;MmnxjmnxLmnx

l,jH
jlcjlcD

jlc;H
jlcjlcD

jlc

 (67–72) 

The constraints (63) (66) are the deterministic equivalent of the 
constraints (54) (55) using the acceptability index. The goals of the PCA 
and dischargers are represented by linear imprecise membership functions 
(i.e., jl, jmn = 1). The objective (62) minimizes the system uncertainty by 
minimizing [( + –)/( ++ –)]. In the multi-objective optimization model 
(60)–(72), the three objectives are optimized individually in three separate 
sub-problems along with the contraints (63) (72) to obtain the maximum 
and minimum possible values of +, – and [( +– –)/( ++ –)] [i.e., ideal 
points and worst possible values of the fuzzy multi-objective optimization 
technique (Sakawa, 1984)], respectively. As discussed earlier, another 
objective of the river water quality management is to permit more 
flexibility (i.e., more width of the interval) in the optimal fractional 
removal level ( jmnx̂ ). Thus, maximization of the grey degree of x jmn is 
considered as another objective along with objectives (60) to (62). The 
maximum and minimum values of the grey degree of x jmn are determined 
from the three sub-problems. All the objectives are quantified by using 
appropriate membership functions according to the fuzzy multi-objective 
optimization technique (Sakawa, 1984). The fuzzy decision concept with a 
“minimum” operator is applied to aggregate the membership functions of 
the objectives (60) (62) along with other objectives for minimizing  
Gd (x jmn) for the dischargers. The solution algorithm for the problem  
(60)–(72) is as follows: (1) Solve three sub-problems, each formulated 
with one objective ( +, – and [( +– –)/( ++ )]) and all constraints. 
(2) From the three sets of solutions, obtain the best and worst values of +,

, [( +– –)/( ++ –)] and Gd(x jmn). (3) Define membership functions for 
+ (non-decreasing),  (non decreasing), [( + –)/( ++ –)] (non 

increasing) and Gd(x jmn) (non decreasing) with their best and worst 
values. (4) Maximize the minimum membership of the objectives using the 
fuzzy decision concept with the max–min approach. This gives the  

–

–

– –
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solution for the grey fuzzy multiobjective optimnization problem, Eqs. 
(60) (72). Application of the grey fuzzy multi-objective optimization 
model [Eqs. (60) (72)] for water quality management is demonstrated on a 
hypothetical river system shown in Figure 5. 

Figure 5. Hypothetical river system 

In this application, the water quality indicator of interest is the DO-
deficit at 18 checkpoints in the river system due to the point sources of 
BOD from four dischargers. The saturation DO concentration is taken  
as 10 mg/L for all the reaches. A deterministic value of river flow of  
7 Mcum/day is considered. The notations of variables are simplified by 
retaining only the suffixes l (checkpoints) and m (dischargers) in the model 
(60) (72) dropping the suffixes j and n as there is only one water quality 
indicator (DO deficit) and only one pollutant (BOD). Details of the 
effluent flow and imprecise membership functions are given in Tables 4 
and 5, respectively (  Data from Mujumdar and Sasikumar, 2002). 

Table 4. Effluent Flow Data

Discharger Effluent flow rate 
(104 m3/day)

BOD
(mg/L)

DO
(mg/L)

1 2.134 1250 1.230 
2 6.321 1415 2.400 
3 7.554 1040 1.700 
4 5.180 935 2.160 

1

2
3

4

D1

D2

D3

D4

1 2

3
4

5
6

7 8 9 10 11

12

13

14
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18

e

Dm

LEGEND

River reach e

Discharger m

River flow

1 to 18 Checkpoints
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Table 5. Details of Imprecise Membership Functions*

cD
l (mg/L) cH

l (mg/L) xL
m xM

mRiver
reach

Check-
points  +  +  +  + 

(0.00)  (3.00  (0.30)  (0.85)  1 1 2
0.00 0.00 2.70 3.20 0.25 0.35 0.80 0.90 
(0.10) (3.00) (0.30) (0.85) 

2 3 6
0.00 0.10 2.70 3.20 0.25 0.35 0.80 0.90 
(0.20) (3.50) (0.35) (0.85) 

3 7 11
0.17 0.22 3.30 3.70 0.30 0.40 0.80 0.90 
(0.20) (3.50) (0.35) (0.85) 

4 12 18
0.17 0.22 3.30 3.70 0.30 0.40 0.80 0.90 

( ): Deterministic values of membership parameters, “ ” : Lower bound, “+” : Upper 
bound, “ ”: Data from Karmakar and Mujumdar (2005a) 

In constraints (65) and (66), 1 and 2 are optimistic thresholds, which 
are set to zero in the current application, and thus, a conservative optimal 
solution is obtained, implying a stringent restriction on water pollution. 
The decision maker selects the values of 1  and 2  equal to zero when the 
water quality management issues in the river system are too critical and 
important; otherwise some optimistic strategy can be considered by 
choosing values of 1  and 2  close to unity. For most water quality 
indicators, a high level of fractional removal of pollutants (e.g., BOD 
loading, toxic pollutant concentration, etc.) results in a low level of water 
quality indicator (e.g., DO-deficit, nitrate-nitrogen concentration, etc.). 
The lower bound of water quality indicator (c–

l) is therefore expressed in 
terms of the upper bound of fractional removal level (x+

m) and similarly, c+
l

is expressed in terms of x–
m, using the one-dimensional Streeter Phelps

model for a BOD–DO relationship in a stream (Streeter and Phelps, 1925). 
Further, using the recursive relationships given by Fugiwara et al., 1987; 
1988), the DO-deficit is written as a linear function of the fractional 
removal levels. This results in x jmn as the only decision variables in the 
optimization model (60) (72). Table 6 shows the expressions of the DO-
deficit at the 18 checkpoints in terms of fractional removal levels of BOD 
waste load by dischargers, situated upstream of the particular checkpoint. 
For example, the DO-deficit at checkpoint 15 is expressed as follows using 
the data given in Table 6:

15 1 2 3 40.309 0.201 0.079 0.024 0.002c x x x x (73)
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Table 6. DO-Deficit 

( 1)  Coefficients of fractional removal levels River
reach

Check-
points

Constant
terms 1x 2x 3x 4x

1 0.1142 0.0893 — — — 1 2 0.1935 0.1702 — — — 

3 0.2595 0.1687 — — — 
4 0.6198 0.2409 0.2942 — — 
5 0.9472 0.3062 0.5618 — — 2

6 1.2433 0.3651 0.8042 — — 

7 1.3230 0.3628 0.7992  — 
8 1.8327 0.4149 1.0150 0.2524 — 
9 2.2948 0.4620 1.2095 0.4828 — 
10 2.7140 0.5041 1.3862 0.6923 — 

3

11 3.0919 0.5418 1.5453 0.8821 — 

12 3.1175 0.5361 1.5289 0.8734 — 
13 3.6006 0.5691 1.6690 1.0412 0.1538 
14 4.0345 0.5980 1.7928 1.1937 0.2935 
15 4.4259 0.6238 1.9039 1.3309 0.4211 
16 4.7756 0.6462 2.0023 1.4538 0.5366 
17 5.0877 0.6656 2.0894 1.5635 0.6413 

4

18 5.3635 0.6823 2.1652 1.6611 0.7354 

Substituting the values of membership parameters and the expressions 
of DO-deficit in terms of BOD removal levels from Tables 5/6, 
respectively, in the grey fuzzy multi-objective optimization model (60)–
(72) and solving the resulting linear programming problem, optimal 
interval-valued fractional removal levels of BOD are determined as 
presented in Table 7. In Table 7, columns 2–4 show the results obtained 
from Sub-problems 1–3, i.e., maximization of +, maximization of  and 
minimization of [( + –)/( + + –)], respectively. The minimum and 
maximum values of +, , [( +– ) / ( ++ )] and Gd(x 1), … , Gd(x 4) are 
taken from the columns 2–4; rows 6, 5, 8, and 9–12, respectively. For 
example, columns 2–4, row 5, show the values of – obtained from Sub-
problem 1–3, respectively. The maximum value of – (i.e., 0.3121) is 
obtained from Sub-problem 2, and the minimum value (i.e., 0.0006) is 
obtained from Sub-problem 1. The requirements of all the objectives are 
quantified by defining linear membership functions with the minimum and 
maximum values of the objective functions as membership parameters. 
Column 5, rows 1 6, show the optimal fractional removal levels of the 
pollutants by different dischargers ( x̂ ) and corresponding ˆ  values. 

—

–

– –
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Table 7. BOD

Sl. No. Solution 
(1)

Sub-
problem 1 
(Max. +)
(2)

Sub-
problem 2 
(Max. )
(3)

Sub-
problem 3 
[Min.( + –

/( ++ –)] (4)

Multi-
objective

Deterministic
model  

GFWLAM
(7)

1 X1 [0.4845, 
0.7751]

[0.5955,
0.5964]

[0.6060,
0.6531]

[0.5268,
0.6652]

[0.6150,
0.6150]

[0.5970,
0.6410]

2 X2 [0.4682, 
0.7987]

[0.5967,
0.5970]

[0.4301,
0.6578]

[0.5302,
0.6656]

[0.6150,
0.6150]

[0.5970,
0.6410]

3 X3 [0.5190, 
0.7951]

[0.6124,
0.6126]

[0.5517,
0.5679]

[0.5367,
0.6757]

[0.6360,
0.6360]

[0.6120,
0.6700]

4 X4 [0.5172, 
0.7970]

[0.6121,
0.6127]

[0.6324,
0.6517]

[0.5357,
0.6747]

[0.6360,
0.6360]

[0.6120,
0.6700]

5  0.0006 0.3121 0.1052 0.2066 0.4277 0.3126 
6 + 0.9592 0.3618 0.1052 0.5064 0.4277 0.5745 
7 Gd ( ) — — — 0.8411 0.0000 0.5903 
8 ( + - –)

/( + + –) 0.9987 0.0737 0.0000 — — — 

9 Gd(x 1) 0.4615 0.0015 0.0748 0.2322 0.0000 0.0711 
10 Gd (x 2) 0.5217 0.0004 0.4186 0.2265 0.0000 0.0711 
11 Gd (x 3) 0.4202 0.0003 0.0288 0.2293 0.0000 0.0905 
12 Gd (x 4) 0.4259 0.0010 0.0300 0.2297 0.0000 0.0905 
13 Avg.  

Gd (x ) — — — 0.2294 0.0000 0.0812 

To evaluate the quality of input or output uncertain information, a 
measure of “Grey degree” [Eq. (4)] is used. As the grey degree of the 
optimal value of the objective function decreases, the effectiveness of the 
grey model increases with decreasing system uncertainties. Substituting 
the deterministic values of membership parameters given in Table 5, in the 
grey fuzzy optimization model (53) (58), the optimal fractional removal 
levels of BOD are determined as presented in column 6 of Table 7, for 
which average value of the grey degree of input parameters is zero. In 
column 7 of Table 7, the solutions obtained from GFWLAM based on the 
grey fuzzy optimization technique (Section 4) are presented. For this 
solution, values of all input parameters are considered the same as those 
for the multi-objective GFWLAM. Comparing the results shown in 
column 5 and column 7 (rows 1–4) it may be concluded that the widths of 
optimal fractional removal levels of BOD ( x̂ ) for multi-objective 
GFWLAM are more than those of GFWLAM because of the inclusion of 
the objective of maximization of grey degrees of fractional removal levels. 
The same observation can also be made by comparing the Gd( x̂ ) values 
shown in rows 9–12 of columns 5 and 7. The value of Gd( ˆ ) is, however, 

(5)
– ) GFWLAM(6)
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more than the value obtained from GFWLAM, which indicates more 
uncertainty in the system compared with that resulting from the GFWLAM 
solution. The result obtained from multi-objective GFWLAM is more 
useful to the decision makers as it gives a wider range in the interval-
valued optimal fractional removal levels of the pollutants than GFWLAM, 
although at the cost of increasing uncertainty, in this particular application. 

The current application of grey fuzzy multi-objective optimization 
technique on waste load allocation demonstrates the modeling aspects of 
uncertain membership functions for different management goals and 
shows the usefulness of solutions with a simplified hypothetical river 
system. Although the solutions obtained from the grey fuzzy multi-
objective optimization model (i.e., multi-objective GFWLAM) provide 
more flexibility than those obtained from the grey fuzzy optimization 
model (i.e., GFWLAM), the application of multi-objective GFWLAM is 
limited to grey fuzzy goals expressed by linear imprecise membership 
functions, whereas GFWLAM has the capability to solve the grey fuzzy 
optimization model with monotonic, nonlinear, imprecise membership 
functions with jl and jmn 1, in Eqs. (51) and (52). 

6. CONCLUSION

An overview of grey fuzzy optimization techniques are presented in this 
chapter. The concept of fuzzy decision is extended to grey fuzzy decision 
by considering the uncertainty in membership parameters using grey 
systems theory. A brief description of grey systems theory is presented as a 
prerequisite for understanding the grey fuzzy optimization technique. The 
grey fuzzy optimization model is further enhanced to multi-objective 
framework to maximize the width of the optimal interval-valued decision 
variables providing latitude in decision making and to minimize the width 
of the goal fulfillment level for reducing the system uncertainty. The 
concept of acceptability index for order relation between two partially or 
fully overlapping intervals is used to get a deterministic equivalent of the 
grey fuzzy optimization model. Although the solutions obtained from the 
multi-objective optimization model provide more flexibility in decision 
making than those obtained by the grey fuzzy optimization model, the 
application of the multi-objective optimization model is limited to grey 
fuzzy goals expressed by linear imprecise membership functions, whereas 
the grey fuzzy optimization model has the capability to solve the model 
with monotonic, nonlinear, imprecise membership functions also. The 
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application of the models is demonstrated with the problem of waste load 
allocation, in the field of environmental engineering. 
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Abstract:  Multi-objective linear programming (MOLP) techniques are widely used to 
model many organizational decision problems. Referring to the imprecision 
inherent in human judgments, uncertainty may be incorporated in some 
parameters of an established MOLP model that is also called a fuzzy MOLP 
(FMOLP) problem. This chapter first reviews the development of fuzzy 
multi-objective decision-making (FMODM) models and approaches and 
then proposes an effective way for an optimal solution in the FMOLP 
problem. By introducing an adjustable satisfactory degree , a new concept 
of FMOLP and a solution transformation theorem are given in this chapter. 
This chapter thus develops an interactive fuzzy goal multi-objective 
decision-making method, which provides an interactive fashion with 
decision makers during their solution process and allows decision makers to 
give their fuzzy goals in any form of membership function. An illustrative 
example shows the details of the proposed method. 

Key words: Fuzzy programming, multi-objective linear programming, interactive multi-
objective decision-making method 

1. INTRODUCTION

Many organizational decision problems are involved in multiple 
objectives, called multi-objective decision making (MODM). Most 
MODM problems can be formulated by multi-objective linear 
programming (MOLP) models. Referring to the imprecision and 
insufficient inherent in human judgments, uncertainty may be affected and 
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incorporated in some parameters of an MOLP model. Such a model is 
often called a fuzzy MOLP (FMOLP) model. 

Various methods have been proposed from the literature to derive a 
satisfaction solution of an MOLP problem for decision makers based on 
their subjective value judgment and preference. Two main types of such 
methods are goal programming and interactive programming (Hwang and 
Masud, 1979). In general, there is no unique solution for both MOLP and 
FMOLP problems. To obtain a satisfactory solution of an FMOLP problem 
for a particular decision maker involves a lot of interaction to carry out the 
decision maker’s preference for a solution. When both the parameters in 
the model and the goals given by a decision maker are with uncertainty the 
interactive solution procedure may become very complex, and therefore, 
more efficient FMOLP methods are needed.

Many optimization methods and techniques for modeling and solving 
FMOLP problems have been proposed (Carlsson and Fuller, 1996; 
Inuiguchi and Ramik, 2000; Lai and Hwang, 1994; Sakawa, 1993a). Fuzzy 
numbers seem promising to model and solve an FMOLP problem. Many 
applications have also proved it applicable for dealing with human 
decision-making problems in most practical situations (Bellmann and 
Zadeh, 1970; Sakawa, 1993b). Tanaka and Asai (1984) formulated 
FMOLP problems by using triangular fuzzy numbers to describe the fuzzy 
parameters in both objective functions and constraints. Lai and Hwang 
(1992) also modeled FMOLP problems by using triangular fuzzy numbers 
and solved FMOLP problems by the fuzzy ranking concept as well to 
handle imprecise constraints. Luhandjula (1987) proposed the concepts of 

-possible feasibility and -possible efficiency based on fuzzy numbers 
and used the two concepts to solve the FMOLP problem by transferring it 
into an auxiliary crisp MOLP problem. Furthermore, Slowinski (1990) 
proposed an interactive method (FLIP) for solving MOLP problems with 
fuzzy parameters in the objective functions and on the both sides of the 
constraints. Rommelfanger (1989, 1990) presented a method (FULPAL) 
for solving (multi-criteria) linear programs, where the right-hand sides as 
well as the parameters in the constraints and/or the objective functions may 
be fuzzy. Similarly, Ramik and Rommelfanger (1993, 1996) proposed a 
unified approach based on the fuzzy inequality relations for the fuzzy 
mathematical programming problem in which fuzzy parameters may have 
nonlinear membership functions. In particular, Inuiguchi and Ramik 
(2000) reviewed some fuzzy linear programming methods and techniques 
from a practical point of view and introduced the general history and the 
approaches of fuzzy mathematical programming. In the meantime, goal 
programming (Charnes and Cooper, 1977) as an effective method has been 
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successfully applied in solving FMOLP problems. Kuwano (1996) applied 
the concepts of the -optimal solution and the restricted -optimal value at 
the -optimal solution to establish a goal programming approach for 
solving FMOLP problems. Sakawa and Nishizaki (2000) pushed the work 
forward based on their previous results (Sakawa, 1993a; Sakawa and 
Yano, 1990) by defining two new concepts for FMOLP based on fuzzy 
goals. One is defined by maximizing the minimal fuzzy goal and the other 
by maximizing the sum of fuzzy goals. They then developed two 
computational methods for obtaining the solutions for FMOLP problems. 
More importantly, Ramik (2000) generated a standard goal programming 
problem with alternatives and goals being fuzzy sets, and the satisfaction 
of a goal by a fuzzy objective function is also expressed by a fuzzy 
relation; he proposed a unifying approach covering several approaches 
known from the literature. 

Although these methods are efficient to solve FMOLP problems, there 
are two limitations in their current results. One is that only some 
specialized forms of membership functions such as a triangular form were 
used to deal with fuzzy parameters and fuzzy goals. This may restrict the 
use of other forms of membership functions to describe the parameters in 
modeling an FMOLP problem and to express their goals by decision 
makers in solving the FMOLP problem. The second limitation is that the 
values of objective functions, in corresponding to a satisfactory solution of 
an FLOMP problem, are only described by some crisp values, which is 
sometimes not appropriate in practice. Since a decision problem is 
formulated with uncertainty and its solution is received with fuzzy values, 
it is more reasonable to provide the values of the objective functions with a 
range in values.

This study, therefore, develops a generalized fuzzy goal fuzzy multi-
objective optimization method to assist decision makers to obtain 
satisfactory solutions for an FMOLP problem. The method can solve the 
FMOLP problem with whatever the parameters of both objectives and 
constraints are described in any form of membership functions. The 
method also allows decision makers to provide their fuzzy goals for the 
objectives of their decision problems by linguistic terms by any form of 
membership functions. By introducing an adjustable satisfactory degree ,
the obtained values of objective functions, corresponding to a solution, can 
be described by fuzzy values in which a real number is as a special case. 
Moreover, the generalized fuzzy goal fuzzy multi-objective decision-
making method has the features of interaction with decision makers during 
a solution process.
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The results reported here are our continuing research, and a summary 
about our previous reports is in (Lu et al., 2007; 2006; Wu et al., 2003; 
2004a; 2004b; 2006; Zhang et al., 2002; 2003). This chapter first gives a 
general FMOLP model where fuzzy parameters of objective functions and 
constraints are described by membership functions. To solve such an 
FMOLP problem, an optimal solution concept, a general solution 
transformation theorem, and a related workable solution transformation 
theorem are then developed. Based on these theories, an FMOLP problem 
can be transformed into an MOLP problem. Therefore, an optimal solution 
of an FMOLP can be obtained through solving an associated MOLP 
problem. Under this principle, an interactive FMOLP method is presented 
by 11 steps within two stages. Finally a numeral example illustrates the 
proposed FMOLP method.

2. FUZZY MULTI-OBJECTIVE DECISION-
MAKING MODEL 

This section introduces a set of fuzzy multi-objective linear programming 
models. It then gives the concepts of optimal solutions for such kinds of 
problems. These models will be applied in the following sections to 
develop related methods and algorithms to achieve an optimal solution for 
an FMOLP problem. 

2.1 Model and Pareto Optimal Solution for General 
FMOLP Problems 

Consider the following fuzzy multi-objective linear programming 
(FMOLP) problem: 

,0x,b~xA~

xc~,,xc~,xc~x,c~
Tn

1i
iki

n

1i
ii2

n

1i
ii1F

tosubject

Maximize
(FMOLP)  (1) 

where
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),R(F)b~,,b~,b~(b~

,
a~a~a~

a~a~a~
a~a~a~

A~,
c~c~c~

c~c~c~
c~c~c~

c~

mT
m21

mn2m1m

n22221
n11211

kn2k1k

n22221
n11211

and ,~
sjc *( ), 1, 2, , , 1, 2, , , 1, 2, , .ija F R s k i m j n

For the sake of simplicity, we set 0x,b~xA~;xX~  and assume that 
X~ is compact. In an FMOLP problem, for each x X~ , the value of the 
objective function 

F
x,c~ is a fuzzy number. Thus, we introduce the 

following concepts of optimal solutions to FMOLP problems. 

DEFINITION 1.
A point n* Rx is said to be a complete optimal solution to the FMOLP 

problem if it holds that FF

* x,c~x,c~  for all x X~ .

DEFINITION 2.
A point n* Rx is said to be a Pareto optimal solution to the FMOLP 

problem if there is no x X~  such that
F

*
F x,c~x,c~  holds. 

DEFINITION 3.
A point n* Rx is said to be a weak Pareto optimal solution to the 

FMOLP problem if there is no x X~  such that
F

*
F x,c~x,c~  holds. 

The basic ideas to solve the FMOLP problem are (1) to transform it 
into an associative crisp MOLP problem. (2) As MOLP problems have 
been well studied, a Pareto optimal solution of the MOLP problem can be 
obtained. (3) Through setting up the relationship between the solution of 
the FMOLP and the solution of the associative MOLP, the original 
FMOLP problem can be solved. Therefore, we first consider the following 
MOLP problem that is associated with the FMOLP problem shown in (1):

]1,0[,0x,bxA,bxA

x,c,x,c

RRLL

TRL

tosubject

Maximize
(MOLP)  (2) 

where
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In the following, we introduce the concepts of optimal solutions of the 
MOLP problem.

DEFINITION 4.
A point n* Rx is said to be a complete optimal solution to the MOLP 

problem if it holds that ,)x,c,x,c()x,c,x,c( TRLT*R*L  for all 

1][0,0,x,bxA,bxAx;Xx RRLL  and [0, 1]. 

DEFINITION 5.
A point n* Rx  is said to be a Pareto optimal solution to the  

MOLP problem if there is no x X such that 
1,0,)x,c,x,c()x,c,x,c( TRLT*R*L  holds. 

DEFINITION 6.
A point n* Rx  is said to be a weak Pareto optimal solution  

to the MOLP problem if there is no x X such that 
1,0,)x,c,x,c()x,c,x,c( TRLT*R*L  holds. 

THEOREM 7.
Let n* Rx  be a feasible solution to the FMOLP problem. Then

1. *x  is a complete optimal solution to the FMOLP problem, if and only 
if *x  is a complete optimal solution to the MOLP problem. 
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2. *x  is a Pareto optimal solution to the FMOLP problem, if and only if 
*x  is a Pareto optimal solution to the MOLP problem. 

3. *x  is a weak Pareto optimal solution to the FMOLP problem, if and 
only if *x  is a weak Pareto optimal solution to the MOLP problem. 

Proof.

The proof follows directly from Definitions 1 6. 

2.2 Model and Pareto Optimal Solution for FMOLP
Problems

Obviously, a feasible solution must satisfy the constraints for all  [0, 
1]. However, this is a too strong condition to get an optimal solution. We 
therefore consider a typical parameter ci represented by a fuzzy number ic~ .
The possibility of such a parameter ci taking values in the range ]c,c[ R

i
L

i

is  or above. While the possibility of ci taking values beyond ]c,c[ R
i

L
i  is 

less than . Thus, one would be generally more interested in a solution 
using parameters ci taking values in ]c,c[ R

i
L

i  with  > 0. As a special 
case, if the parameters involved are either a real number or a fuzzy number 
with a triangular membership function, then, we will have the usual non-
fuzzy optimization problem (suppose we choose  = 1). To formulate this 
idea, we introduce the following FMOLP  model. 

10

,0x,b~xA~

xc~x,c~
n

1i
iiF

tosubject

Maximize
)(FMOLP  (3) 

where

),R(*F)b~,,b~,b~(b~

,
a~a~a~

a~a~a~
a~a~a~

A~,
c~c~c~

c~c~c~
c~c~c~

c~

mT
m21

mn2m1m

n22221
n11211

kn2k1k

n22221
n11211

and ,c~sj .n,,2,1j,m,,2,1i,k,,2,1s),R(Fa~ *
ij
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Now, associated with the FMOLP  problem, consider the following 
MOLP  problem,

]1,[,0x,bxA,bxA

x,c,x,c

RRLL

TRL

tosubject

maximize
)(MOLP  (4) 
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In the following, we introduce the concepts of optimal solutions of the 
MOLP  problem.

DEFINITION 8.
A point nRx* is said to be a complete optimal solution to the 

FMOLP problem if it holds that FF

* x,c~x,c~  for all x .X~

DEFINITION 9.
A point n* Rx is said to be a Pareto optimal solution to the FMOLP 

problem if there is no x X~  such that
F

*
F x,c~x,c~  holds. 

DEFINITION 10.
A point n* Rx is said to be a weak Pareto optimal solution to the 

FMOLP problem if there is no x X~  such that
F

*
F x,c~x,c~  holds. 
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DEFINITION 11.
A point n* Rx is said to be a complete optimal solution to the MOLP

problem if it holds that ,)x,c,x,c()x,c,x,c( TRLT*R*L  for all x

]1,[,0x,bxA,bxA;xX RRLL and [ , 1]. 

DEFINITION 12.
A point n* Rx  is said to be a Pareto optimal solution to the  

MOLP problem if there is no x X  such that 
1,,)x,c,x,c()x,c,x,c( TRLT*R*L  holds. 

DEFINITION 13.
A point n* Rx  is said to be a weak Pareto optimal solution to the 

MOLP  problem if there is no x X  such that 
1,,)x,c,x,c()x,c,x,c( TRLT*R*L  holds. 

THEOREM 14.
Let nRx*  be a feasible solution to the FMOLP  problem. Then

1. *x  is a complete optimal solution to the FMOLP  problem, if and only 
if *x  is a complete optimal solution to the MOLP  problem. 

2. *x  is a Pareto optimal solution to the FMOLP  problem, if and only if 
*x  is a Pareto optimal solution to the MOLP  problem. 

3. *x  is a weak Pareto optimal solution to the FMOLP  problem, if and 
only if *x  is a weak Pareto optimal solution to the MOLP  problem. 

Proof.
The proof follows directly from Definitions 8 13 and Theorem 14. 

In this section, we have addressed the FMOLP problem and have 
introduced the concepts of complete optimal solution, Pareto optimal 
solution, and weak Pareto optimal solution for FMOLP, FMOLP , MOLP, 
and MOLP . We have also proposed an efficient approach for solving the 
FMOLP and FMOLP  problems, which is to transform them into the 
associative crisp MOLP and MOLP .
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3. SOLUTION TRANSFORMATION 
THEORIES FOR FUZZY MULTI-
OBJECTIVE DECISION-MAKING 
PROBLEMS

As outlined in Section 2, the possible values of parameters in the FMOLP 
are appropriate to be represented by fuzzy numbers. Here we will show 
how a fuzzy number parameters-based FMOLP problem is transformed 
into an associated MOLP problem. 

3.1 General MOLP Transformation Theories

Consider the situation in which all parameters of the objective functions and 
the constraints are fuzzy numbers represented in any form of membership 
functions. Such FMOLP problems can be formulated as follows: 

Lemma 15. If a fuzzy set c~ on R has a trapezoidal membership 
function (see Figure 1): 

xc0

cxccx
cc

cxc

cxccx
cc

cx0

)x(

R

RRR
RR

RL

LLL
LL

L

c~

Figure 1. Trapezoidal membership function 

1

Lc Lc Rc Rc
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and there is nXx*  such that ,x,cx,c *LL ,x,cx,c *LL

,x,cx,c *RR )10( , and ,x,cx,c *RR  for any 

,nXx   then

*LL x,cx,c

*RR x,cx,c

for any [ , ].

Proof.
As a -section of the trapezoidal fuzzy set c~  is

LLLL cccc  and RRRR cccc

Therefore, we have 

*L*L*LL

*L
1

*L

LL

LLL

LLLL

x,cx,cx,cc

x,cx,c

x,cx,c

x,cx,cx,c

x,cx,ccx,c

from ,x,cx,c *L
1

L
1

*LL x,cx,c  and ,10 we can 

prove *RR x,cx,c  from a similar reason.
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THEOREM 16.
If all the fuzzy parameters ,a~,c~ ijsj  and ib~ have trapezoidal membership 

functions:

tz0

ztzzt
zz

ztz

ztzzt
zz

zt0

)t(

R

RRR
RR

RL

LLL
LL

L

z~  (5) 

where z~  denotes ijsj a~,c~  or ib~  respectively, then the space of feasible 
solutions X is defined by the set of x X with xi, for i = 1,2,…,n satisfying 

.

0x

bxa
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i
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R
ij

R
ij
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 (6) 
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n n
n L L R R

ij j i ij j i
j 1 j 1

X {x R | a x b , a x b , x 0

[ , ] and i 1,2, , m}.

 (7) 

That is, X is the set of x Rn with 0x  and satisfying 

0bxaJ,0bxaI R
i

n

1j
j

R
iji

L
i

n

1j
j

L
iji

 (8) 

For the fuzzy sets with trapezoidal membership functions, we have 

,a)(
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b)(
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b)(
bb

b
 (10) 

Substituting Eqs. (9) and (10) into (8), we have 

L
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[ , ] and i 1,2, ,m.

Proof.
From Theorem 7, X is defined by 
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Now, our problem becomes to show that 0, 0,i iI J
[ , ] and 1, 2, ,i m  if (6) is satisfied. From Eq. (6), we have 

1

1

1

1

0 (13a)

0 (13b)
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ij j i
j

n
R R

ij j i
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Thus, from Eqs. (13a) and (13c), we have for any  [ , ] and
i = 1,2,…,m
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and from Eqs. (13b) and (13d), we have for any  [ , ] and i = 1,2,…,m
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Corollary 17. 
If all the fuzzy parameters ijsj a~,c~  and ib~ have piece-wise trapezoidal 

membership functions 
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where z~  denotes ijsj a~,c~  or ib~ respectively, then the space of feasible 
solutions X is defined by the set of x X with xi, for i = 1,2,…,n satisfying 

.

0x

bxa

bxa

bxa

bxa

bxa

bxa

i

n

1j

R
nij

R
nij

n

1j

L
nij

L
nij

n

1j

R
1ij

R
1ij

n

1j

L
1ij

L
1ij

n

1j

R
0ij

R
0ij

n

1j

L
0ij

L
0ij

 (15) 

497



J. Lu et al.

THEOREM 18.
Let all the fuzzy parameters be piece-wise trapezoidal membership 

functions in FMOLP :
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If a point nRx*  be a feasible solution to the FMOLP  problem, then 
x* is a complete optimal solution to the problem if and only if x* is a 
complete optimal solution to the MOLP  problem: 
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)(MOLP (17)  

where .1n1n10

Proof.
If x* is an optimal solution to the FMOLP  problem, then for any 

x X~ , we have FF

* x,c~x,c~ . Therefore, for any [ , 1], 
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that is 
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Hence x* is a complete optimal solution to the MOLP  problem by 
Definition 11.                      

If x* is a complete optimal solution to the MOLP  problem, then for all 
x X , we have 
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For any [ , 1], there exist n,,2,1i  so that i1i , .

As c~ has a piece-wise trapezoidal membership function, we have
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From Lemma 15, we have 
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for any [ , 1]. Therefore, x* is an optimal solution to the FMOLP
problem.

THEOREM 19.
Let all the fuzzy parameters be piece-wise trapezoidal membership 

functions in FMOLP :
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Let a point X~x*  be any feasible solution to the FMOLP problem. 
Then x* is a Pareto optimal solution to the problem if and only if x* is a 
Pareto optimal solution to the MOLP  problem: 
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 (19) 

where .1n1n10

Proof.
Let X~x*  be a Pareto optimal solution to the FMOLP  problem. On 

the contrary, we suppose that there exists an Xx such that 

i i i i

L * R * T L R T( c , x , c , x ) ( c , x , c , x ) , i 0, 1, , n (20)

Therefore

i i i i

L L * R R * T0 ( c , x c ,x , c , x c , x ,) , i 0, 1, 2, , n  (21) 

(MOLP
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Hence

i i i i

L L * R R *0 c ,x c ,x , 0 c ,x c ,x , i 0, 1, 2, , n  (22) 

That is 

n,,2,1i,x,cx,c,x,cx,c *R
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R
i

*L
i

L
i

By using Lemma 15, for any [ , 1], we have 

x,cx,cx,cx,c R*RL*L and

that is
F

*
F x,c~x,c~ . However, this contradicts the assumption that 

X~x*  is a Pareto optimal solution to the FMOLP problem.
Let Xx  be a Pareto optimal solution to the MOLP  problem. If x* is 

not a Pareto optimal solution to the problem, then there exists an 
X~x such that

F

*
F x,c~x,c~ . Therefore, for any [ , 1], we have 
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That is

x,cx,cx,cx,c R*RL*L and

Hence, for 0 1 n 1 n 1, we have

i i i i

L * R * T L R T( c , x , c , x ) ( c , x , c , x ) , i 0, 1, , n

which contradicts the assumption that Xx* is a Pareto optimal solution 
to the MOLP  problem. 

THEOREM 20.
Let all the fuzzy parameters be piece-wise trapezoidal membership 

functions in FMOLP :
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 (23) 

and a point Xx*  be a feasible solution to the FMOLP problem. Then x*

is a weak Pareto optimal solution to the problem if and only if x* is a weak 
Pareto optimal solution to the MOLP  problem:
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Proof.
See Theorem 19.                     

Therefore, if we use existing methods to get a complete optimal 
solution *x  to the MOLP  problem, then *x  is a complete optimal solution 
to the FMOLP  problem. This gives a way to solve the FMOLP  problems, 
which will be used in developing detailed FMOLP algorithms and 
methods.

4. FUZZY-GOAL MULTI-OBJECTIVE DECISION-
MAKING MODEL 

Decision makers may want to specify their fuzzy goals for the objective 
functions in dealing with the FMOLP problem (21) under some 
circumstances. The key idea behind goal programming is to get the 
optimal solution that has the minimized deviations from goals set by 
decision makers. In standard goal programming, goals need to be given by 
precise data. In practice, it is often difficult for a decision maker to provide 
a precise attainment for each objective function. Applying fuzzy set theory 
into goal programming makes it possible for decision makers to indicate 
their vague aspirations, which can be qualified by linguistic terms.  Such 
goals can be expressed as, for instance, “possibly greater than 1g ,”
“around 2g ” or “substantially less than 3g .” These types of linguistic terms 
can then be qualified by eliciting membership functions of fuzzy sets. 

Considering the FMOLP  problem for the fuzzy multiple objective 
functions ,x,c~ F any decision maker can specify fuzzy goals 

T
k21 g~,,g~,g~g~ …  under a satisfactory degree  that reflects the desired 

values of the objective functions of the decision maker. These fuzzy goals 
can be represented by fuzzy numbers with any form of membership 
functions. By defining a fuzzy deviation function g~,x,c~D~ F

 as a fuzzy 
difference between the fuzzy objective function 

F
x,c~  and fuzzy 

goals T
k21 g~,,g~,g~g~ … , the FMOGP  problem under a satisfactory degree 

is formulated as follows: 
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(FMOGP )
FMinimize D c, x ,g

subject to  Ax b

x 0

 (25) 

that is, find an X~x* , which minimizes g~,x,c~D~
F

 or

g~,x,c~D~x FXx

* min  arg . (26) 

Normally, the fuzzy distance function g~,x,c~D~
F

 is defined as a maximum 
of deviations of individual goals, 

i
n

1j
jijik.,1iF g~,xc~D~maxg~,x,c~D~

…
. (27) 

By Eq. (26), the FMOGP  problem (25) is converted as follows: 

0x
b~xA~

g~,xc~D~ i
n

1j
jiji

k,,1i …

   tosubject 

maxMin

 (28) 

where

0,11 1 1

0,1

, max ,

max , 1, , .

n n n
L RL R

i ij j i ij j i ij j i
j j j

L L R R
i i i i

D c x g c x g c x g

c x g c x g i k…

 (29) 

From Eq. (29), the optimal solution of Eq. (28) can be obtained by 
solving the following GP model: 
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(GP  -1)

L L R R
i i i ii 1, ,k

,1

L L R R

min max c x g , c x g

subject to A x b , A x b , ,1
x 0

…

 (30) 

or

(GP  -2)

L L R R
i i i ii 1, ,k

,1

L L R R

min max g c x, g c x

subject to A x b , A x b , ,1
x 0

…

 (31) 

where

L
kn

L
2k

L
1k

L
n2

L
22

L
21

L
n1

L
12

L
11

L
k

L
2

L
1

ccc

ccc
ccc

c

c
c

,
R
kn

R
2k

R
1k

R
n2

R
22

R
21

R
n1

R
12

R
11

R
k

R
2

R
1

ccc

ccc
ccc

c

c
c

The adoption of GP -1 (30) or GP -2 (31) for solving the FMOGP
problem depends on the relationship of 

F
x,c~  and g~ ; i.e., if g~x,c~

F
  , then 

GP -1 (30) is used; otherwise, GP -2 (31) is adopted. 
Hence, when we get a complete optimal solution *x  to the goal 

programming problem, *x  is a complete optimal solution to the FMOLP 
problem.
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5. AN INTERACTIVE FUZZY-GOAL FUZZY 
MULTI-OBJECTIVE DECISION-MAKING 
METHOD

5.1 Fuzzy Goal-Based Interaction 

Many decision makers prefer an interactive approach to finding an optimal 
solution for their decision problem as such an approach enables them to 
directly engage in the problem-solving process. This section proposes an 
interactive algorithm based on the fuzzy goal approximation algorithm. 
This algorithm not only allows decision makers to give their fuzzy goals 
but also allows them to continuously revise and adjust their fuzzy goals. 
Decision makers can then explore various optimal solutions under their 
goals and choose the most satisfactory one.  

From the definitions of both FMOLP and MOLP  problems, any 
decision maker can set up their fuzzy goals T

k21 g~,,g~,g~g~ …  under a 
satisfactory degree . Its corresponded optimal solution, which results in 
the objective values being the nearest to the fuzzy goals, is obtained by 
solving the following minimax problem: 

   tosubject

  max min  

MOLP
1,,0x,bxA,bxA|RxXx

1,,
gxC
gxC

RRLLn

RR

LL

 (32) 

where

TL
k

L
2

L
1

L g,,g,gg , TR
k

R
2

R
1

R g,,g,gg

L
kn

L
2k

L
1k

L
n2

L
22

L
21

L
n1

L
12

L
11

L

ccc

ccc
ccc

C ,
R
kn

R
2k

R
1k

R
n2

R
22

R
21

R
n1

R
12

R
11

R

ccc

ccc
ccc

C
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L
mn

L
2m

L
1m

L
n2

L
22

L
21

L
n1

L
12

L
11

L

aaa

aaa
aaa

A ,
R
mn

R
2m

R
1m

R
n2

R
22

R
21

R
n1

R
12

R
11

R

aaa

aaa
aaa

A  (33) 

TL
m

L
2

L
1

L b,,b,bb ,
TR

m
R
2

R
1

R b,,b,bb .

Let the interval [ , 1] be decomposed into l mean sub-intervals with 
(l+1) nodes l,,0ii  that are arranged in the order of 

0 1 l 1.

Based on the current decompositions, we denote: 

(MOLP m) l
j ji

j ji

L L
i i

R R
i i

l

c x g
min max  ,  i 1,2, ,k, j 1, 2, , l,

c x g

subject to      x X     

 (34)

where l

i
i

l XX , 0x,bxA,bxA|RxX R
i

R
i

L
i

L
i

n
i , 1, .

5.2 Description of the Algorithm 

This algorithm consists of 11 steps within two stages. Stage 1 aims to find 
an initial optimal solution for the problem. Stage 2 is an interactive process 
in which when a decision maker specifies a set of fuzzy goals for related 
objective functions, an optimal solution is generated. By revising fuzzy 
goals, this algorithm will provide the decision maker with a series of 
optimal solutions from which the decision maker can select the most 
suitable one on the basis of preference, judgment, and experience.

The algorithm is described as follows: 
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Stage 1: Initialization 
Step 1. Select an initial satisfactory degree 10 , give the 
membership function of c~ for xc~xf~ , a~ and b~ for b~xa~ , and set 
weights for objective functions by the decision maker. 
Step 2. Set 1l , then solve

(MOLP ) l

j

j

L
i

R
i

l

c x
max    ,  i 1, ,k;   j 0,1, , l,   

c x

subject to.      x X

 (35)

with the solution lx , where ln21l x,,x,xx … , and the solution obtained 
is subject to the constraint lXx .

Step 3. Solve (MOLP )2l with the solution l2x , subject to the 
constraint l2Xx .

The interval [ , 1] is further split. Suppose there are 1l
nodes  0,  2,  4, ,  2i i l…  in the interval [ , 1], and l new nodes 

 1,  3,  ,  2 1i i l…  are inserted. The relationship between the new 
nodes and previous ones is: 

2 2 2
2 1 ,    0,  1,  ,  1

2
i i

i i l… . (36)

Therefore, each of the fuzzy objective functions is converted into 
2 2 1l  non-fuzzy objective functions, and the same conversion 
happens for the constraints ii b~xa~   . The solution l2x  is now based on the 
set of updated (including original) nonfuzzy objective functions and 
nonfuzzy constraints. 
Step 4. If ll2 xx , then l2x is the final solution of the MOLP
problem. Otherwise, update l to 2l and go back to Step 3.
Step 5. If the corresponded Pareto optimal solution *x exists, go forward 
to Step 6. Otherwise, the decision maker must go back to Step 1 to 
reassign a degree  (give a higher value for the degree ).
Step 6. If the decision maker is satisfied with the Pareto optimal solution, 
the interactive process terminates. Otherwise, go to Stage 2.
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Stage 2: Iteration 
As the decision maker is not satisfied with the obtained optimal 

solution in the Initialization stage (or the previous iteration phase), the 
decision maker specifies fuzzy goals (or revised current goals) for the 
fuzzy objective functions. A new compromise solution is then generated. 
This process will terminate when the decision maker finds a satisfactory 
solution.
Step 7. Give a set of new fuzzy goals or revise current fuzzy goals 
according to the decision maker. At the same time, a satisfactory degree 
can be revised as well. The original decision problem is therefore covered 
into an (MOLP m) l problem.
Step 8. Set 1l ; solve (MOLP m) l with the solution lx , subject to the 
constraint lXx .

Let 0  and 11  in the interval [ , 1]; each fuzzy objective function 
xc~xf~ ii  under the fuzzy goal T

k21 g~,,g~,g~g~ … , and related constraints 
are converted into non-fuzzy forms. 

Step 9. Solve (MOLP m) 2l with the solution l2x  subject to the 
constraint l2Xx .

Similar to Step 6, the interval [ , 1] is further split, and new nodes are 
inserted further. Fuzzy objective functions under related fuzzy goals and 
constraints are converted into non fuzzy again. A new solution lx 2  is 
generated.
Step 10. If ll2 xx , then l2x is the final solution of the MOLP m

problem. Otherwise, update l to 2l and go back to Step 9.
Step 11. If the decision maker is satisfied with the current Pareto optimal 
solution obtained in Step 10, the interactive process terminates, and the 
current optimal solution is the final satisfactory solution to the decision 
maker. Otherwise, go back to Step 7. 

We now give another explanation for this algorithm: 
Definition 1 is about ranking two n-dimensional fuzzy numbers under a 

satisfactory degree . This definition is the foundation for the comparison 
of fuzzy objective functions and the left- and right-hand sides of fuzzy 
constraints in an FMOLP problem. In Step 5 of this method, if the Pareto 
optimal solution does not exist under a satisfactory degree , replacing this 

 with a higher value may derive a Pareto optimal solution. 
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In Step 7 of the algorithm, the decision maker can improve goals for 
some unsatisfactory objectives by sacrificing the goals of others. The new 
fuzzy goals can be given directly by a new fuzzy number vector or by 
increasing/decreasing the values of its corresponded objective functions in 
a current Pareto optimal solution. 

Figure 2 shows the flowchart of the fuzzy goal interactive algorithm. 

6. A NUMERAL EXAMPLE 

To illustrate the interactive fuzzy-goal multi-objective algorithm, we 
consider the following FMOLP  problem with two fuzzy objective 
functions and four fuzzy constraints: 

21

21
222121
212111

2

1
x4~x~ x2~x4~

xc~xc~
xc~xc~

xf~
xf~xf~

2- 
maxmaxmaxmax    

subject to

0x;0x

30b~x1~x3~xa~xa~

45b~x3~x4~xa~xa~

27b~x3~x~xa~xa~

21b~x3~x~xa~xa~

21

~
421242141

~
321232131

~
221222121

~
121212111

1   

1-  

The membership functions of the parameters of the objective functions 
and constraints are set up as follows: 
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Figure 2. Flow chart for the fuzzy goal interactive algorithm 

N
Solution exists?

Y
Y

Satisfy solution?

N

N
Satisfy solution?

Y

Set up the FMOLP model, i.e., input the
membership functions of c~ for cxxf ~~ ,

~a and b
~ for bxa

~~

Specify new fuzzy goals T
kggg g ~,,~,~ ~

21
for

objective functions based on the current fuzzy
Pareto optimal solution

The interactive process stops here and the
final solution is shown

End

Calculate the max fuzzy objective functions
xCxf

~
max

~ * of the FMOLP problem under

the constraints bxa
~~

Calculate the fuzzy Pareto optimal solution
based on the current fuzzy goals of objective

functions and degree specified above

Start

Specify an initial value of the degree
10

Set weights for each xcxf ii
~~
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2

2
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1
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1
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0
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Stage 1: Initialization
Step 1. Input membership functions of c~  for objective functions xc~xf~ ,
~a and b~ for constraints b~xa~    . We set an initial satisfactory degree  as 
0.2. We use default values for the weights of objective functions. 
Steps 2–4. Under the degree  = 0.2, we calculate the Pareto optimal 
solution. Associated with the FMOLP  problem in this example, a 
corresponding MOLP  problem is listed:

1

2

9 9 3 1

x36 20 16 12
max  

x6.25 2.25 9 9

3 1 36 20

subject to 

1

1

4 3 5 4 41 400

0.75 0.25 25 16 529 88

0.75 0.25 5 4 53 676

x4 3 25 16 841 112
      

x9 9 5 4 89 1936

36 20 25 16 2209 184

5 4 0.75 0.25 59 841

25 16 4 3 1024 124

where 1, .

Refer to the MOLP  problem, initially 0 0.2  and 11 ; then 8 non 
fuzzy objective functions and 16 non fuzzy constraints are generated. The 
result is listed as follows: 

1

2

10.8 1.6
218

13.632
2 x4max  

x10.85.8
2 18

1.6 32
2 4
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subject to

1

1

3.4 5 408.2
1 3 21

0.4 21.8 501.6
1 3 21

0.4 5 686.6
1 3 27

3.4 21.8 818.6
1 x3 27

x10.8 5 1953.8
3 4518

21.8 2245.832
3 454

0.4 852.85
1 303

3.4 999.221.8
1 303

The interval [ , 1] is further split. We then have

9115.1x*
1

1023.5x*
2

and two optimal objective values

1211
*

1
*
2

*
1

*
1 c~1023.5c~9115.11023.5,9115.1f~x,xf~

2221
*
2

*
2

*
1

*
2 c~1023.5c~9115.11023.5,9115.1f~x,xf~ .

Steps 5 and 6. Suppose the decision maker is not satisfied with the initial 
Pareto optimal solution; the interactive process will start. 
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Stage 2: Iterations 
Iteration No. 1: 

Step 7. Based on the Pareto optimal solution obtained in Stage 1, the decision 
maker specifies new fuzzy goals 21 g~,g~  by increasing 30% of the value of the 

1211
*

1
*
2

*
1

*
1 c~1023.5c~9115.11023.5,9115.1f~x,xf~

*
2

*
2

*
1

*
2 1023.5,9115.1f~x,xf~

*
2

*
1

*
2

*
2

*
1

*
121 x,xf~,x,xf~*3.1g~,g~ *0.75    

Steps 8–10. Calculate the fuzzy Pareto optimal solution based on the new 
fuzzy goals 21 g~,g~  and the satisfactory degree  = 0.2.

Under the new fuzzy goals, the FMOLP  problem is converted into a 
nonfuzzy MOLP m problem as follows: 

20360818.4135292.1
990818.425.225.65292.1

12166329.620364849.2
136329.6994849.2

x
x

2036
99
1216
13

13
25.225.6

2036
99

2

1

maxmin  

subject to 

1241024
84159
1842209

193689
112841
67653
88529
40041

x
x

34
25.075.0

1625
45
1625
45
1625
45

1625
45
2036
99

34
25.075.0
25.075.0

34

1

1       

where 1, ;

We obtain

0486.3x*
1 9239.4x*

2 ,

2221 c~1023.5c~9115.1 . That is, 

andfirst objective function 
decreasing 25% of the value of the second one 
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and two optimal fuzzy objective values are

1211
*

1
*
2

*
1

*
1 c~9239.4c~0486.39239.4,0486.3f~x,xf~

2221
*

2
*
2

*
1

*
2 c~9239.4c~0486.39239.4,0486.3f~x,xf~ .

Comparing the two groups of objective values, we can find that the first 
fuzzy objective function has some improvement, and the second one has 
some decrement. 
Step 11. Suppose the decision maker does not satisfy the fuzzy Pareto 
optimal solution, the interactive process will proceed; that is, start the 
second iteration. 

Iteration No. 2:
Step 7. At this iteration, suppose the decision maker specifies new fuzzy 
goals 21 g~,g~  by the corresponding membership functions as follows:

928x1369

1

245196x

0

x

2

2

1g~

37x21

21x

21x

14x

14

x37or  

75.468x625

1

11425.42x

0

x

2

2

2g~

25x5.12

5.12x

5.12x

5.6x

6.5

x25or  

Steps 8–10. Calculate the fuzzy Pareto optimal solution based on the new 
fuzzy goals 21 g~,g~ , and keep the degree  = 0.2. 

Under the fuzzy goals, the FMOLP  problem is converted into the non 
fuzzy MOLP m problem as follows: 
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75.468625
25.42114

9281369
196245

x
x

2036
99
1216
13

13
25.225.6

2036
99

2
1

maxmin  

subject to 

1241024
84159
1842209

193689
112841
67653
88529
40041

x
x

34
25.075.0

1625
45
1625
45
1625
45

1625
45
2036
99

34
25.075.0
25.075.0

34

1
1       

where 1, .

We have

2.8992*
1x 4.9829*

2x

and two optimal objective values are

1211
*

1
*
2

*
1

*
1 c~c~,f~x,xf~ 4.98292.89924.98292.8992

2221
*
2

*
2

*
1

*
2 c~c~,f~x,xf~ 4.98292.89924.98292.8992 .

Step 11. Now the decision maker is satisfied with the fuzzy Pareto optimal 
solution obtained in Step 10; the interactive process thus terminates. The 
current fuzzy Pareto optimal solution is the final satisfactory solution of 
the FMOLP problem to the decision maker as follows:

4.9829

2.8992

*
2

*
1

x

x

2221
*
2

*
2

*
1

*
2

1211
*

1
*
2

*
1

*
1

c~c~,f~x,xf~
c~c~,f~x,xf~

4.98292.89924.98292.8992

4.98292.89924.98292.8992
 . 
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This example illustrates the proposed fuzzy-goal fuzzy multi-objective 
decision-making method. 

7. CONCLUSION

This chapter presented a set of models and an interactive method to 
describe and solve the FMOLP problems. In the proposed FMOLP models, 
fuzzy parameters can appear in both objective functions and constraints 
and can be described by any form of membership function. When only 
objective functions or only constraints include fuzzy parameters, the model 
is still as an FMOLP problem since a real number is a special case of a 
fuzzy number. Similarly, a goal of a decision maker with a real number is 
also a special case of a fuzzy goal in the models. The proposed FMODM 
method extends MODM decision analysis functions from a crisp to an 
imprecise scope and improved existing FMODM methods. It allows 
decision makers to express their goals by any form of membership 
function. When decision makers do not have a clear idea to how of choose 
a suitable form of membership function, they can try different forms. This 
feature offers decision makers a much higher confidence in using the 
method to solve their practical problems.

A decision support system has been developed to apply the method to 
assist decision makers to solve realistic FMOLP problems. This system has 
been initially tested by a number of examples, and results are very positive 
for our research project supported by the Australian Research Council 
(ARC).
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FUZZY OPTIMIZATION VIA MULTI-
OBJECTIVE EVOLUTIONARY COMPUTATION 
FOR CHOCOLATE MANUFACTURING 
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1

2 3
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Abstract:  This chapter outlines, first, a real-world industrial problem for product mix 
selection involving 8 variables and 21 constraints with fuzzy coefficients 
and, second, a multi-objective optimization approach to solve the problem. 
This problem occurs in production planning in which a decision maker plays 
a pivotal role in making decisions under a fuzzy environment. Decision 
maker should be aware of his/her level-of-satisfaction as well as degree of 
fuzziness while making the product mix decision. Thus, the authors have 
analyzed using a modified S-curve membership function for the fuzziness 
patterns and fuzzy sensitivity of the solution found from the multi-objective 
optimization methodology. An ad hoc Pareto-based multi-objective evolu-
tionary algorithm is proposed to capture multiple nondominated solutions in 
a single run of the algorithm. Results obtained have been compared with the 
well-known multi-objective evolutionary algorithm NSGA-II. 

Key words: Multi-objective optimization, evolutionary algorithm, NSGA-II  

1. INTRODUCTION

It is well known that optimization problems originate in a variety of 
situations. Particularly interesting are those concerning management 
problems as decision makers usually state their data in a vague way: “high 
benefits,” “as low as possible,” “important savings,” etc. Because of this 
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so that the most suitable solution can be applied according to the state of 
existing decision of the production process at a given time and without 
increasing delay. In these situations, fuzzy optimization is an ideal 
methodology, since it allows us to represent the underlying uncertainty of 
the optimization problem, while finding optimal solutions that reflect such 
uncertainty and then applying them to possible instances, once the 
uncertainty has been solved. This allows us to obtain a model of the behavior 
of the solutions based on the uncertainty of the optimization problem. 

Fuzzy constrained optimization problems have been extensively 
studied since the 1970s. In the linear case, the first approaches to solve the 
so called fuzzy linear programming problem appeared in Bellmann and 
Zadeh (1970), Tanaka et al. (1974), and in Zimmerman (1976). Since then, 
important contributions solving different linear models have been made 
and these models have been the subject of a substantial amount of work. In 
the nonlinear case (Ali, 1998; Ekel et al., 1998; Ramik and Vlach, 2002) 
the situation is quite different, as there is a wide variety of specific and 
both practically and theoretically relevant nonlinear problems, with each 
having a different solution method. 

In this chapter a real-life industrial problem for product mix selection 
involving 21 constraints and 8 variables has been considered. This problem 
occurs in production planning in which a decision maker plays a pivotal role 
in making decisions under a highly fuzzy environment. Decision maker 
should be aware of his/her level-of-satisfaction as well as degree of 
fuzziness while making the product mix decision. Thus, the authors have 
analyzed using the sigmoidal membership function, the fuzziness patterns 
and fuzzy sensitivity of the solution. In Vasant (2003, 2004, 2006) a linear 
case of the problem is solved by using a linear programming iterative 
method that is repeatedly applied for different degrees of satisfaction values. 
In this chapter, a nonlinear case of the problem is considered and we propose 
a multi-objective optimization approach in order to capture solutions for 
different degrees of satisfaction with a simple run of the algorithm. This 
multi-objective optimization approach has been proposed by Jiménez et al. 
(2004a, 2004b, 2006) within a fuzzy optimization general context. 

Given this background, this chapter is organized as follows: In section 
2 a nonlinear case study in a chocolate manufacturing firm is described, 
and its mathematical formulation is stated. Section 3 we propose a multi-
objective optimization approach for this problem and an ad hoc multi-
objective evolutionary algorithm. Section 4 shows results obtained with 
the proposed multi-objective evolutionary algorithms and the well-known 
NSGA-II algorithm. Finally, Section 5 offers the main conclusions and 
future research. 

vagueness, managers prefer to have not just one solution but a set of them, 
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2. NONLINEAR CASE STUDY IN A CHOCOLATE 
MANUFACTURING FIRM 

Due to limitations in resources for manufacturing a product and the need to 
satisfy certain conditions in manufacturing and demand, a problem of 
fuzziness occurs in industrial systems. This problem occurs also in 
chocolate manufacturing when deciding a mixed selection of raw materials 
to produce varieties of products. This is referred here to as the product mix 
selection problem (Tabucanon, 1996). 

There are a number of products to be manufactured by mixing different 
raw materials and using several varieties of processing. There are 
limitations in resources of raw materials and facility usage for the varieties 
of processing. The raw materials and facilities usage required for manu-
facturing each product are expressed by means of fuzzy coefficients. There 
are also some constraints imposed by the marketing department such as 
product mix requirement, main product line requirement, and lower and 
upper limit of demand for each product. It is necessary to obtain maximum 
profit with a certain degree of satisfaction of the decision maker. 

2.1 Fuzzy Constrained Optimization Problem 

The firm Chocoman Inc. manufactures eight different kinds of chocolate 
products. Input variables xi represent the amount of manufacturated 
product in 103 units. 

The function to maximize is the total profit obtained calculated as the 
summation of profit obtained with each product and taken into account the 
applied discount. Table 1 shows the profit (ci) and discount (di) for each 
product i.

Table 1. Profit (ci) and Discount (di) in $ per 103 units 

Product (xi) Synonym Profit (ci) Discount (di)
x1 = Milk chocolate, 250 g MC 250 c1 = 180 d1 = 0.18
x2 = Milk chocolate, 100 g MC 100 c2 = 83 d2 = 0.05
x3 = Crunchy chocolate, 250 g CC 250 c3 = 153 d3 = 0.15
x4 = Crunchy chocolate, 100 g CC 100 c4 = 72 d4 = 0.06
x5 = Chocolate with nuts, 250 g CN 250 c5 = 130 d5 = 0.13
x6 = Chocolate with nuts, 100 g CN 100 c6 = 70 d6 = 0.14
x7 = Chocolate candy CANDY c7 = 208 d7 = 0.21
x8 = Chocolate wafer WAFER c8 = 83 d8 = 0.1

The lower limit of demand for each product i is 0 in all cases, whereas 
the upper limit (ui) is shown in Table 2. 
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Table 2. Demand (ui) in $ per 103 Units 

Product Demand (ui)
MC 250 u1 = 500
MC 100 u2 = 800
CC 250 u3 = 400
CC 100 u4 = 600
CN 250 u5 = 300
CN 100 u6 = 500
CANDY u7 = 200
WAFER u8 = 400 

There are eight raw materials to be mixed in different proportions and 
nine processes (facilities) to be utilized. Therefore, there are 17 constraints 
with fuzzy coefficients separated in two sets such as raw material 
availability and facility capacity. These constraints are inevitable for each 
material and facility that is based on the material consumption, facility 
usage, and the resource availability. Table 3 shows fuzzy coefficients ija~

represented by h
ij

l
ij a,a  for required materials and facility usage j for

manufacturing each product i and nonfuzzy coefficients bj for availability 
of material or facility j.

Table 3. Raw Material and Facility Usage Required (per 103 units) h
ij

l
ij a,a  and

Availability (bj )

  MC 250 MC 100 CC 250 CC 100 CN 250 CN 100 CANDY WAFER Availability 

1 66, 109 26, 44 56, 94 22, 37 37, 62 15, 25 45, 75 9, 21 100,000 

2 47, 78 19, 31 37, 62 15, 25 37, 62 15, 25 22, 37 9, 21 120,000 

3 0, 0 0, 0 28, 47 11, 19 56, 94 22, 37 0, 0 0, 0 60,000 

4 75, 125 30, 50 66, 109 26, 44 56, 94 22, 37 157, 262 18, 30 200,000 

5 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 54, 90 20,000 
6 375, 625 0, 0 375, 625 0, 0 0, 0 0, 0 0, 0 187, 312 500,000 
7 337, 562 0, 0 337, 563 0, 0 337, 562 0, 0 0, 0 0, 0 500,000 
8 45, 75 95, 150 45, 75 90, 150 45, 75 90, 150 1200, 2000 187, 312 500,000 
9 0.4, 0.6 0.1, 0.2 0.3, 0.5 0.1, 0.2 0.3, 0.4 0.1, 0.2 0.4, 0.7 0.1, 0.12 1000 
10 0, 0 0, 0 0.1, 0.2 0.04, 0.07 0.2, 0.3 0.07, 0.12 0, 0 0, 0 200 
11 0.6, 0.9 0.2, 0.4 0.6, 0.9 0.2, 0.4 0.6, 0.9 0.2, 0.4 0.7, 38718 0.3, 0.4 1500 
12 0, 0 0, 0 0.2, 0.3 0.07, 0.12 0, 0 0, 0 0, 0 0, 0 200 
13 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0.2, 0.4 100 
14 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.15, 0.25 0, 0 400 
15 0.2, 0.3 0, 0 0.2, 0.3 0, 0 0.2, 0.3 0, 0 0, 0 0, 0 400 
16 0.04, 0.06 0.2, 0.4 0.04, 0.06 0.2, 0.4 0.04, 0.06 0.2, 0.4 1.9, 3.1 0.1, 0.2 1200 
17 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 1.9, 3.1 1.9, 3.1 1000 
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Material or Facility 
Cocoa (kg), Milk (kg), Nuts (kg), Cons.sugar (kg), Flour (kg), Alum.foil 
(ft2), Paper(ft2), Plastic (ft2), Cooking(ton-hours), Mixing(ton-hours), 
Forming(ton-hours), Grinding(ton-hours), Wafer making(ton-hours), 
Cutting(hours), Packaging 1(hours), Packaging 2(hours), Labor(hours) 

Additionally, the following constraints were established by the sales 
department of Chocoman Inc.: 

1. Main product line requirement. The total sales from candy and wafer 
products should not exceed 15% of the total revenues from the 
chocolate bar products. Table 4 shows the values of sales/revenues (ri)
for each product i.

2. Product mix requirements. Large-sized products (250 g) of each type 
should not exceed 60% of the small-sized product (100 g). 

Table 4. Revenues/Sales (ri) in $ per 103 Units 

Product Revenues/Sales (ri)

MC 250 r1 = 375 
MC 100 r2 = 150 
CC 250 r3 = 400 
CC 100 r4 = 160 
CN 250 r5 = 420 
CN 100 r6 = 175 
CANDY r7 = 400 
WAFER r8 = 150 

2.2 Membership Function for Coefficients 

We consider the modified S-curve membership function proposed by 
Vasant (2003). For a value x, the degree of satisfaction, )x(ija~  for fuzzy 
coefficient ija~ is given by the membership function given in (1). 
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Given a degree of satisfaction value µ, the crisp value aij|µ for fuzzy 
coefficient ija~ can be calculated using Eq. (2). 

1ln 1
h l
ij ijl

ij ij

a a Ba a
C

 (2) 

The value determines the shape of the membership function, whereas 
B and C values can be calculated from , Eqs. (3) and (4). 

0.998
0.999 0.001

C
e

 (3) 

0.999(1 )B C (4)

If we wish that for a degree-of-satisfaction value µ = 0.5, the crisp 
value aij |0.5 is in the middle of the interval

ij 0.5a
2

l h
ij ija a

then, = 13.81350956.
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2.3 Problem Formulation 

Given a degree of satisfaction value µ, the fuzzy constrained optimization 
problem can be formulated (Jiménez et al., 2006; Vasant, 2004) as the non 
linear constrained optimization problem shown in the following: 

8
2

1

8

1

8 6

7 1

1 2

3 4

5 6

Maximize

subject to

1ln 1 0, 1,...,  17

0.15 0

0.6 0
0.6 0
0.6 0

0 , 1,...,  8

i i i i
i

h l
ij ijl

ij i j
i

i i i i
i i

i i

c x d x

a a Ba x b j
C

r x r x

x x
x x
x x

x u i

3. A MULTI-OBJECTIVE EVOLUTIONARY 
APPROACH

In this section, we propose a multi-objective optimization approach to 
solve the problem shown above for all satisfaction degree values, which 
composes the fuzzy solution of the former fuzzy optimization problem. In 
the multi-objective optimization problem, a new input variable is 
considered in order to find the optimal solution for each degree-of-
satisfaction value (Jimenez et al., 2004a, 2004b, 2006).

The following formulation shows the multi-objective constrained 
optimization problem for Chocoman Inc. In this problem, x9 represents the 
degree-of-satisfaction value, which must be minimized to generate the 
desired Pareto front. 
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8
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0.001 0.999,

i i i i
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ij i j
i

i i i i
i i
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c x d x

x
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C

r x r x

x x
x x
x x

x u i
x

Multi-objective Pareto-based evolutionary algorithms (Coello et al., 
2002; Deb, 2001; Jiménez et al., 2002) are especially appropriate to solve 
multi-objective nonlinear optimization problems because they can capture 
a set of Pareto solutions in a single run of the algorithm. 

We propose an ad hoc multi-objective Pareto-based evolutionary 
algorithm to solve the Chocoman Inc. problem. The algorithm uses a real-
coded representation, uniform and arithmetical cross, and uniform, 
nonuniform and minimal mutation (Jiménez et al., 2002). Diversity among 
individuals is maintained by using an ad hoc elitist generational 
replacement technique. 

The algorithm has a population P of N solutions. For each solution i,
i
jf is the value for the j-th objective (j = 1, . . . , n) and i

jg is the value for 
the j-th constraint (j = 1, . . . , m). For the Chocoman Inc. problem, n = 2 
and m = 21.

Given a population P of N individuals, N children are generated by 
random selection, crossing, and mutation. Parents and children are ordered 
in N slots in the following way. A solution i belongs to slot si such that

Nfs 2
ii

The order inside slots is established with the following criteria. Position 
pi of solution i is lower than position pj of solution j in the slot if: 

i is feasible and j is unfeasible, 
i and j are unfeasible and gi

max  gj
max,

i and j are feasible and i dominates j
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i and j are feasible and nondominated and cdi > cdj
where

gi
max = maxj = 1,...,m {gi

j}
and cdi is a metric for the crowding distance of solution i:

i i

max min

sup in

max min
1

, or for any

, in anothercase

i i
j i j i

n
i j j

j j j

if f f f f i

cd f f
f f

where

i
jf

N,...,1i

max
jf max i

jf
N,...,1i

min
jf min

i
j

jf
sup

 is the value of the jth objective for the higher solution 
adjacent in the jth objective to i,

i
j

jf
inf

f is the value of the jth objective for the solution lower 
adjacent in the jth objective to i.

The new population is obtained by selecting the N best individual from 
the parent and children. The following heuristic rule is considered to 
establish an order. Solution i is better than solution j if:

pi < pj

pi = pj and cdi > cdj

where pi is the position of solution i in its slot. 

4. EXPERIMENTS AND RESULTS 

To compare performance of the algorithms in multi-objective optimization, 
we have followed an empirical methodology similar to that proposed in 
Laumanns et al. (2001) and Purshouse and Fleming (2002). It has been used 
as a measure that calculates the fraction of the space that is not dominated 
by any of the solutions obtained by the algorithm (Laumanns et al., 2001; 
Zitler et al., 2003). The aim is to minimize the value of . This measure 
estimates both the distance of solutions to the real Pareto front and the 
spread. Value can be calculated as shown in Eq. (5) where Pı is composed 
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by the Nı non dominated solutions of P and maxu
jf and minu

jf are the utopia 
maximum and minimum value for the j-th objective. For the Chocoman Inc. 
problem, utopia minimum and maximum values are shown in Table 5. 

1
supmax

11

max min

1

1

ı
i
j

N n
u i i

n n j j
ji

n
u u
j j

j

f f f f

f f
 (5) 

Table 5. Utopia Minimum and Maximum Values for the Chocoman Inc. Problem. 

Utopia Min. Utopia Max. 
Objective 1 140,000 200,200
Objective 2 0.001 0.999

The parameters were set up using a previous process using a 
methodology similar to the one proposed in Laumanns et al. (2001). Table 6 
shows the parameters obtained.

Table 6. Parameters in the Run of the Proposed Algorithm and NSGA-II for the Chocoman 
Inc. Problem. 

Number of iterations T = 10000 
Population size N = 100 
Cross-probability pCross = 0.8
Mutation probability pMutate = 0.5
Uniform cross-probability pUniformCross = 0.7
Uniform mutation probability pUniformMutate = 0.7
Parameter c for nonuniform mutation c = 2.0

Various metrics for both convergence and diversity of the populations 
obtained have been proposed for a more exact evaluation of the 
effectiveness of the evolutionary algorithms. In his book, Deb (2001) 
assembles a wide range of the metrics that figure in the literature. For this 
chapter we propose the use of two metrics to evaluate the goodness of the 
algorithm.

The first metric we use is the generational distance ( ) proposed by 
Veldhuizen and Lamont (1999), evaluates the proximity of the population to 
the Pareto optimal front by calculating the average distance of the population 
from an ideal population P* made up of N* solutions distributed uniformly 
along the Pareto front. This metric is shown in Eq. (6). 
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N

d
r

N

1i

v
i

 (6) 

We use v = 1, and parameter dmini is the Euclidean distance (in the 
objective space) between the solution i and the nearest solution in P*:

2n

1j

k*
j

i
j

*N

1k
i ffd min

where k*
jf k is the value of the j-th objective function for the k-th solution 

in P*. For our problem, we use the points in Tables 7 and 8 as the ideal 
population P*.

Table 7. Optimal Points for Uniformly Distributed Values In µ Obtained with Gradient for 
the Chocoman Inc. Problem 

µ x1 x2 x3 x4 x5

0.001  2.397.161 3.995.268 1.989.859 3.316.432 1.411.270 
0.1  2.794.339 4.657.232 2.347.411 3.912.352 1.553.713 
0.2  2.875.612 4.792.687 2.420.906 4.034.844 1.583.183 
0.3  2.932.170 4.886.950 2.472.111 2.472.111 1.603.752 
0.4  2.980.141 4.966.902 2.515.579 4.192.632 1.621.237 
0.5  3.025.503 5.042.506 2.556.712 4.261.187 1.637.803 
0.6  3.072.207 5.120.344 2.599.091 4.331.819 1.654.891 
0.7  3.124.697 5.207.829 2.646.756 4.411.260 1.674.136 
0.8  3.191.108 5.318.513 2.707.111 4.511.852 1.698.541 
0.9  3.296.295 5.493.824 2.802.814 4.671.356 1.737.323 
0.999  4.143.502 6.905.837 3.540.144 5.900.239 2.000.325 

Table 8. Optimal Points for Uniformly Distributed Values in µ Obtained with Gradient for 
the Chocoman Inc. Problem-(Continued) 

µ x6 x7 x8 Profit
0.001  2.352.116 1.392.046 1.170.292 150089.2 
0.1  2.589.522 1.593.681 1.673.137 165662.6 
0.2  2.638.638 1.635.240 1.772.523 168585.9 
0.3  2.672.920 1.664.218 1.841.035 170566.9 
0.4  2.702.061 1.688.830 1.898.738 172212.8 
0.5  2.729.672 1.712.133 1.952.965 173740.0 
0.6  2.758.152 1.736.153 2.008.459 175282.7 
0.7  2.790.226 1.763.184 2.070.434 176980.6 
0.8  2.830.901 1.797.432 2.148.254 179074.1 
0.9  2.895.538 1.851.788 2.270.207 182264.4 
0.999  3.333.874 2.000.000 5.448.504 200116.4 

533



F. Jiménez et al.

The second metric we use is the spread ( ) put forward by Deb (2001) to 
evaluate the diversity of the population. Equation (7) shows this measure.

dNd

ddd

n

1j

e
j

N

1i
i

n

1j

e
j

 (7) 

where di may be any metric of the distance between adjacent solutions, and 
d is the mean value of such measurements. In our case, di has been 
calculated using the Euclidean distance. Parameter e

jd  is the distance 
between the extreme solutions in P* and P corresponding to the j-th
objective function. 

Table 9 shows the best, worst, medium, and variance values for the ,
, and measures obtained in 10 executions of both algorithms. 

Table 9. Results of 10 Runs of the Proposed Algorithm and NSGA-II for the Chocoman 

Algorithm best worst mean variance
Proposed
algorithm  0.5366  0.583  0.5589  2.1568 × 10-5

NSGA-II  0.5519  0.5928  0.5715  1.143 × 10-5

Ybest Yworst Ymean Yvariance
Proposed
algorithm  227781.6632 228187.1852 2.28031.9.239 1479.6619 
NSGA-II  2.27914.8763 2.28427.1933 228228.772 2724.6756 

best worst mean variance
Proposed
algorithm  0.9737  0.9898  0.9837  2.8096 × 10-6

NSGA-II  0.9735  0.9809  0.9784  6.0036 × 10-7

Figure 1 shows the non dominated solutions obtained in the best of 10 
executions of the proposed algorithm and NSGA-II for the Chocoman Inc. 
problem.

5. CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions

Fuzzy nonlinear optimization problems are, in general, difficult to solve. In 
this chapter we describe a multi-objective approach to solving a fuzzy 
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nonlinear constrained optimization problem that appears in production 
planning for chocolate manufacturing. A Pareto-based evolutionary 
algorithm is proposed to capture the solution in a single run of the algorithm. 
Optimality and diversity metrics have been used for the evaluation of the 
effectiveness of the proposed multi-objective evolutionary algorithm 
compared with the well-known algorithm NSGA-II. We show the values 
obtained using these metrics for the solutions generated by both algorithms. 
The results show a real ability of the proposed approach to solve problems in 
production planning for chocolate manufacturing. 

Figure 1. Nondominated solutions obtained with the proposed algorithm and NSGAII for 
the Chocoman Inc. problem. 

5.2 Future Works 

Multi-objectives with several other objective functions can be considered 
for future research work as well as fuzzy costs and fuzzy right-side 
coefficients in constraints. There is a possibility of designing a productive, 
computational intelligence, self-organized evolutionary fuzzy system. 
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MULTI-OBJECTIVE GEOMETRIC 
PROGRAMMING AND ITS APPLICATION
IN AN INVENTORY MODEL 

Tapan Kumar Roy 
Department of Mathematics, Bengal Engineering and Science University, Shibpur Howrah,
West Bengal, India 

Abstract:  In this chapter, first the general multi-objective geometric programming 
problem is defined, then Pareto optimality, the fuzzy geometric programming 
technique to solve a multi-objective geometric programming problem is 
discussed, and finally a multi-objective marketing planning inventory problem 
is explained and formulated. Numerical examples are given for the inventory 
problem in a multinational soft drink manufacturing company. 

Key words: Multi-objective, geometric programming, fuzzy sets, inventory, Pareto 
optimality, posynomial function 

1. INTRODUCTION

As society becomes more complex and as the competitive environment 
develops, business persons are finding that they require multiple 
objectives. Almost every imperative real-world problem involves more 
than one objective. In such cases, decision makers evaluate the best 
possible approximate solution alternatives according to multiple criteria. 

A general multiple objective (or multiple criteria) nonlinear 
programming (MONLP) problem is of the following form: 

Find x = (x1, x2,…, xn)T( * ) 
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which minimizes 

F(x) = (f1(x), f2(x) … fk(x) )T

subject to   ( ) , ( 1, 2,..., )j jg x b j m

and

1 2( ( , ,... ) ) 0T
kx x x x

where

1 2( ), ( ),.... ( )k jf x f x f x

Here

: for 1,2,...., and : 1,2,...,n n
i jf R R i k g R R for j m

REMARK 1.
When k = 1, problem (*) reduces to a single objective NLP problem. It 

is noted that if the objectives of the original problem are to minimize 

0 0( ) for 1, 2,....rf x r k k k

then the objective in the mathematical formulation will be

0 0 11 2

0 2

Minimize ( ) ( ( ), ( ) , ( ), ( ),

( ), , ( ))
k k

T
k k

F x f x f x f x f x

f x f x

subject to the same constraints as in (*) 
If ( ), ( 1, 2, , ), ( ), ( 1, 2, , )r jf x r k g x j m are linear, the 

corresponding problem (*) is called multiple objective linear programming 
(MOLP) problem. When all or any one of the above functions are 
nonlinear, it is referred as a MONLP problem. When all of the above 
functions are posynomial or signomial, (*) is referred as a multi-objective 
geometric programming problem (MOGPP). 

are ( 2)and g (x) ( j 1,2,....,m) are functions.
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A MOGPP can be stated as 

Find 1 2, , , T
nxt x x x so as to (1)

0
1 0

1

0
2 0

2

0
0

0
1 1

11

0
2 2

11

0

11

11

...................................................

1 1, 2 ...

ir

ir

k
k ir

p
p sr

T n
a

i r
ri

T n
a

i r
ri

T n
a

k k i r
ri

T n
a

p p s r
rs

f x c x

f x c x

f x c x

g x c x p ...., m

x > 0

where 0 00 , 0 , ,ji ks jir jirc c a a  are all real numbers for j = 1, 

2,.., k; i = 1, 2, .., 0
jT  ; k = 1, 2, …, m; s = 1, 2, …, kT

Let X be a set of constraints of (*) such that 

1 2

with 0 1, 2, , }

n

T
i j

n ix for i n

REMARK 2.
The multi–objective optimization problem is convex if all the objective 

functions and the feasible region are convex. 

2. PARETO OPTIMALITY 

In single objective optimization problems, the main focus is on the 
decision variable space, whereas in the multi-objective framework, we are 
often more interested in the objective space (see Ehrogott, 2005). In multi-
objective programming problems, multiple objectives are usually 
noncommensurable and cannot be combined into a single objective. In the 
MONLP problem, the objectives are simultaneously optimized. But due to 
an intrinsic conflicting nature among the objectives, it is not possible to 

Minimize

Maximize

Minimize

subject to

X {x | g (x) b , j 1, 2, , m, and x (x , x , ,
x )
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find a single solution that would be optimal for all the objectives 
simultaneously. Consequently, the aim in solving MONLP is to find a 
compromise or satisfying solution of the decision maker. There is no 
natural ordering in the objective space because it is only partially ordered. 
For example, T)3,3( can be said to be less than T)7,7( , but we cannot say 
any such order between T)2,6( and T)8,5( .

However, some of the objective vectors can be extracted for 
examination. These vectors are those where none of the components can 
be improved without deterioration to at least one of the other components. 
This definition is usually called Pareto optimality, which is laid, by 
French-Italian economist and sociologist Vilfredo Pareto (Aliprantis et al., 

DEFINITION 1.
Let x*  be the optimal solution of the following problem:

Minimize ( ) 1,  2, ,  rf x r k
subject to Xx

The point x* is known as ideal objective value and rth objective 
function value at x* i.e. )x(f *

r  is known as ideal objective value. 

DEFINITION 2.
x* is said to be a Complete optimal solution  to the MONLP problem 

(1) if there exists Xx*  such that )k......,2,1r(),x(f)x(f r
*

r  for all 
Xx .
In general, the objective functions of the MONLP conflict with each 

other; a complete optimal solution does not always exist, and so the Pareto 
(or non dominated) optimality concept is introduced. 

DEFINITION 3.
A decision vector Xx*  is a Pareto optimal solution if there does 

not exist another decision vector Xx such that )x(f)x(f *
rr  for all  

r = 1, 2,…, k and )x(f)x(f *
1r1r  for at least one 1 1, 2, , .r k

An objective vector F* is Pareto optimal if there does not exist another 
objective vector F(x) such that *

rr ff for all r =1, 2,….k  and *
1r1r ff

for at least one index 1r . Therefore, F* is Pareto-optimal if the decision 
vector corresponding to it is Pareto optimal. 

T.K. Roy

2001).
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REMARK 3.
In general, a Pareto optimal solution consists of an infinite number of 

solutions. A Pareto optimal solution is sometimes called a noninferior 
solution since it is not inferior to other feasible solutions. 

DEFINITION 4.
A decision vector Xx*  is a weakly Pareto optimal solution if there 

does not exist another decision vector Xx  such that )x(f)x(f *
rr

for all r = 1, 2,…, k. 

DEFINITION 5.
Xx*  is said to be a locally Pareto optimal solution  to the MONLP 

if and only if there exists an r < 0 such that x* is Pareto optimal in 
)r,x(NX * ; i.e. there does not exist another )r,x(NXx **  such 

that )x(f)x(f *
ii .

Now, we introduce some non linear programming techniques, which 
have been used in this thesis to achieve at least local Pareto optimal 
solutions.

2.1 Method of Global Criterion 

In this method, the distance between some reference point and the feasible 
objective region is minimized. The decision maker has to select the 
reference point and the metric for measuring the distances. In this way, the 
multiple objective functions are transferred into a single objective 
function. We suppose that the weighting coefficients r are real numbers 
such that 0, 1, 2, ,r r k  and 

k

1r
r 1

The weighted Lp-problem for minimizing distances is stated as 

p
1

k

1r

p*
rrrp |)x(f)x(f|))x(f(LMinimize  (2) 

subject to    p1,Xx for
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2.2 Hybrid Method 

Following Chankong and Haimes (1983), the hybrid problem combining 
p

1/

*

1

( ( )) | ( ) ( ) |
p

k
p

p r r r
r

L f x f x f x  (3) 

subject to rrf

, for 1x X p

where
1

0, 1, 2, , 1
k

r r
r

r k

and ))x(f( *
rr is a real number for all r = 1, 2, …, k.

For p = 1, k

1r

*
rrr1 |)x(f)x(f|))x(f(L  (4) 

The objective function 1 ( ( ))L f x  is the sum of the weighted 
deviations, which is to be minimized and is known as weighted sum 
method.

For p = 2,
1/ 2

* 2
2

1

( ( )) | ( ) ( ) |
k

r r r
r

L f x f x f x  (5) 

When p becomes larger, the minimization of the deviation becomes 
more and more important. 

Finally, when p , the only thing that matters is the weighted 
relative deviation of one objective function; i.e., 

*

1, 2, , 1

( ( )) Max | ( ) ( ) |
k

r r rr k r

L f x f x f x  (6) 

This multi-objective method is called the “min–max” method or the 
Tchebycheff method. Problem (6) is nondifferentiable like its unweighted 

L and the -constraint method is as follows: 

T.K. Roy
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counterpart. Correspondingly, it can be solved in a differentiable form as 
long as the objective and the constraint functions are differentiable and 

)x(f *
r  is known globally. In this case, instead of problem (6), the problem 

becomes 

Minimize

subject to )x(f)x(f *
rrr for all  r = 1, 2, …, k (7)

,Xx

THEOREM 6.
The solution of weighted Lp–problem (when 1  p < ) is a Pareto 

optimal solution if all the weighting coefficients are positive. 

THEOREM 7.
The solution of a weighted Tchebycheff problem (L ) is weakly Pareto 

optimal if all the weighting coefficients are positive. 

THEOREM 8.
The weighted Tchebycheff problem has at least one Pareto optimal 

solution.

THEOREM 9.
Let a decision vector Xx*  be given, Solve the problem 

k

1r
r )x(fMinimize  (8) 

subject to *( ) ( )r rf x f x  and x  0. 

Let Ø(x*) be the optimal objective value. The decision vector Xx*

is Pareto optimal if and only if it is a solution of Eq. (8) so that 

k

1r

*
r

* )x(f)x(

for all r 1,2, , k
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Proof .
The proof of Theorems 9 12 are followed by Miettinen (1999). 
When )(xf r  and (r = 1, 2,…, k)  and )(xg j  (j = 1, 2, …, k) are 

polynomial and signomial functions, Eqs. (4), (5), and (7) may be reduced 
to a single objective geometric programming problem. 

3. FUZZY GEOMETRIC PROGRAMMING 
TECHNIQUE TO SOLVE A MULTI-OBJECTIVE 
GEOMETRIC PROGRAMMING PROBLEM 

Multi-objective geometric programming (MOGP) is a special type of a 
class of MONLP problems. Biswal (1992) and Verma (1990) developed a 
fuzzy geometric programming technique to solve a MOGP problem. Here, 
we have discussed a fuzzy geometric programming technique based on 
max min and max convex combination operators to solve a MOGP. 

When ( ) ( 1, 2, , )rf x r k  and ( ) ( 1, 2, , )ig x j m  are 
polynomial or signomial functions, Eq. (1) may be taken as a MOGP. 

To solve the MOGP problem (1), we use the Zimmerman’s (1978) 
technique. The procedure consists of the following steps. 

Step 1. Solve the MOGP as a single objective GP problem using only 
one objective at a time and ignoring the others. These solutions are known 
as ideal solutions. Repeat the process k times for k different objective 
functions. Let 1 2 3, , , , kx x x x  be the ideal solutions for the 
respective objective functions, where 

1 2( , , , )r r r r
nx x x x

Step 2. From the ideal solutions of Step 1, determine the corresponding 
values for every objective at each solution derived. With the values of all 
objectives at each ideal solution, the pay-off matrix of size (k × k ) can be 
formulated as follows : 

1 2( ) ( ) ( )kf x f x f x

T.K. Roy546
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1

2

......
k

x
x

x

* 1 1 1
1 2

2 * 2 2
1 2

*
1 2

( ) ( ) ........ ( )
( ) ( ) ........ ( )

......... ......... ........ .........
( ) ( ) ........ ( )

k

k

k k k
k

f x f x f x
f x f x f x

f x f x f x

Step 3. From the Step 2, find the desired goal rL  and worst tolerable 
value rU  of ( ), 1, 2,...,rf x r k  as follows: 

UfL rrr

where

rU
))x(fx(f

),x(f),x(x(f),x(f(
k

r
)1r(

r

r*
r

)1r(
r

2
r

1
rMax

rL =
1 2 ( 1) *

( 1)

Min ( ( ), ( ), , ( ), ( ),
( ), , ( ))

r r
r r r r

r k
r r

f x f x f x f x
f x f x

Step 4. Define a fuzzy linear or non-linear membership function 
))x(f( rr for the r-th objective function ( ), ( 1, 2, 3, )rf x r k

rr
rrrrr

r
rr

U)x(fif0
U)x(fLif))x(f(u

L)x(if1
))x(f(

rf    

Here ))x(f(u rr   is a strictly monotonic decreasing function with 
respect to ).x(f r

Step 5. At this stage, either a max min operator or a max convex 
combination operator can be used to formulate the corresponding single 
objective optimization problem. 

3.1 Through a Max Min Operator 

According to Zimmermann (1978), the problem (1) can be solved as:

, ( r 1,2,...,k )

),..., f
),...,
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*( )D x 1 1 2 2Max(Min ( ( ( )), ( ( )), ..., ( ( ))))k kf x f x f x  (9)

subject to

( ) , 1, 2, ,j jg x b j m x > 0 

which is equivalent to the following problem as 

Maximize  (10) 

subject to  

( ( )), for 1,2,3, ,r rf x r k

( ) , for 1,2, ,j jg x b j m x > 0 

The parameter  is called an aspiration level and represents the 
compromise among the objective functions. After reducing the problem 
(10) into a standard form of a PGP problem, it can be solved through a GP 
technique.

3.2 Through a Max–Convex Combination Operator 

Using the membership functions ))x(f( rr  to formulate a crisp non-linear 
programming model (following Tiwari et al., 1987) by adding the 
weighted membership functions together as: 

m

1r
rrr

*
D )))x(f(()x( Maximize  (11) 

subject to

( ) , 1, 2, ,i jg x b j m x  >  0. 

For equivalent weights, 1 2 1m  are considered. 

T.K. Roy548
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EXAMPLE 10.
Solve MOGP 

)x(Z),x(Z 21Minimize  (12) 

subject to

( ) 1Y x , x  >  0 

where

2 2 1 2 1 1
1 1 1 2 2 1 1 2 1 230 , ( ) 15 20 , ( )x x Z x x x x Y x x x and

1 2( , )Tx x x .

In order to solve the problem (12), we shall have to solve the sub-
problems

Minimize Z1(x) (13)

subject to  

Y(x)  1     (Sub-PGP – 1 ), x  > 0 

It is a GP with   DD = 3 – (2 + 1) = 0 and 

Minimize Z2(x) (14)

subject to  

Y(x)  1     (Sub-PGP–2 ), x > 0 

It is a GP with DD = 3 – (2+1) = 0
Solving the sub-problems (12) and (13) by GP technique, we have

For  (Sub PGP – 1) *1x =  (1.124746, 0.8890896) and
)x(Z **

1  = 52.70158. 
For (Sub PGP – 2) *2x =  (1.414219, 0.7071040) and 

)x(Z **
2  = 28.28427. 

Z x( ) 25 x
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The pay-off matrix is given below: 

2

1

x
x

1 2( ) ( )

52.71058 30.92735
60.60687 28.28427

Z x Z x

From pay-off matrix the lower and upper bounds of )x(Z1  be 52.71058 
and 60.60687 and that of )x(Z2 be 30.92735 and 28.28427.

[ 52.71058 )x(Z1 60.60687 and 28.28427 )x(Z2 30.92735 ] 

Suppose )x(1Z  and )x(2Z  are the linear membership functions of the 
objective functions )x(Z1  and )x(Z2  respectively and they are defined as: 

60687.60)x(Z0

60687.60)x(Z71058.52
89629.7

)x(Z60687.60

71058.52)x(Z,1

)x(

1

1
1

1

1Z

if

if

if

92735.30)x(Zi0

92735.30)x(Z28427.28
64308.2

)x(Z92735.30

28427.28)x(Z,1

)x(

2

2
2

2

2Z

f

if

if

Equation (14) can be reduced to a single objective GPP by max-min 
operator or max-addition operator. 

3.3 Through a Max Min Operator 

Using max-min operator MOGP (14) can be reduced to a following single 
objective problem 

Maximize  (15) 

subject to

T.K. Roy550
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1

1

60.60687 ( )
( )

7.89629
Z x

xZ , 2

2

30.92735 ( )
( )

2.64308
Z x

xZ ,

,1xx 1
2

1
1 1,0x,x, 21 and

In the standard form of GP the problem (15) can be written as 

1Minimize  (16) 

subject to   

0.41249 2
1x  + 0.49499 2

2
1 xx  + 0.13029 1

0.48501 1x  + 0.64668 2
2

2
1 xx  + 0.08546 1

,1xx 1
2

1
1 ,0,x,x, 21       and 1

The problem (16) has DD = 8–(3+1)=4. The corresponding dual 
problem (DP) is 

)w(dMaximize =

31 2 4

1 2 3 4

1 0.41249 0.49499 0.13029
ww w w

A A A

w w w w
 (17) 

5 6 7

8

5 6 7

0.48501 0.64668 0.08546 1
w w w

wB B B

w w w

subject to the following normal and orthogonal conditions are as 
follows:

1 1w

1 4 1,w w w 2 3 5 6 82 2 2 0w w w w w

3 6 82 0w w w
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0 < 1w,w,w,w,w 54321

Solving the DP (17) subject to the normal and orthogonal conditions, 
we get the optimal values of dual variables *

1w  = 1, *
2w  = 0.54598, *

3w  = 
0.30614, *

4w = 0.12419, *
5w  = 0.55135, *

6w = 0.34351, *
7w = 0.08146, and 

*
8w = 0.976311. The optimal dual objective value is )w(d *  = 1.02426,  

and hence, the optimal values of the decision variables are *
1x  = 1.16436 

and *
1x = 0.85884. Then )x(Z **

1 = 52.89796 and )x(Z **
2  = 30.13521. 

3.4 Through a Max–Convex Combination Operator 

Using a convex-combination operator, the multi-objective problem (12) 
can be transformed into a following single objective problem:

1 2
( ( ), ( ))Z ZV x x =

1 21 2( ) ( )Z Zx x (18)

subject to

1 1
1 2 1x x 1 2, 0x x

where

)(xg = 3.166604 2
1x  + 3.79925 2

2
1 xx + 5.67520 1x  + 7.56693 2

2
1

1 xx

1 2Here 1.

For maximizing the problem (18), it is sufficient to solve the following 
problem:

Minimize ( )g x =

3.16604 2
1x +3.79925 2

2
1 xx +5.67520 1x +7.56693 2

2
1

1 xx  (19) 

Maximize

where

=19.37661– g( x )
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1 1
1 2 1x x , 1 2,  0x x

The problem has DD = 5 – (2+1) = 2. The corresponding dual problem is  

)w(dMaximize =

5w
4w

4

3w

3

2w

2

1w

1
1

w
56693.7

w
67520.5

w
79925.3

w
16604.3  (20) 

subject to the normal and orthogonal conditions 

,1wwww 4321 0wwww2w2 54321

,0ww2w 542 0 1w,w,w,w,w 54321

Solving the problem (20), we ultimately get *
1w = 0.28032, *

2w  = 
0.10699, *

3w  = 0.39960, *
4w  = 0.21309, and *

5w = 0.05599. The value of  
)w(d *  = 17.85902. Therefore the value of *g = 17.85902 and the value of 

*
1x = 1.25747 and *

2x = 0.795245, and the value of objectives are )x(Z **
1 =

54.61878 and )x(Z **
2 = 28.92060. 

4. MULTI-OBJECTIVE MARKETING PLANNING 
INVENTORY PROBLEM 

In most inventory problems, the unit price of an item in considered as 
independent in nature. Actually, it relates to the demand of that item. 
When the demand of an item is high, it is produced in large numbers. 
Fixed costs of production are spread over a large number of items. Hence 
the unit cost of the item decreases; i.e., the unit price of an item inversely 
relates to the demand of that item. Cheng (1989) formulated the EOQ 
problem with this idea and solved it through the GP method.

Similarly the marketing cost, which includes the advertisement and 
promotion cost, directly affects the demand of an item. The manufacturing 
companies increase the advertisement cost and give some advantages (like 
promotion, incentives) to their sales representatives according to their 
performances. Lee and Kim (1993) studied the marketing planning 
problem considering such how to solve the problem by the GP method. 

subject to  
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ASSUMPTIONS.
1. Production is instantaneous. 
2. Demand is uniform. 
3. The demand of a function is directly proportional to the marketing 

expenditure; i.e., ,0,0d,MdD ii2
i

ii2i

4. The unit cost is inversely proportional to demand; i.e., 
0c,Dcc i0

iT
ii0i0 .

Let for the amount of stock is iR  at time t = 0. In the interval 
),ttT,0( i2i1i the inventory level gradually decreases to meet demands. 

By this process, the inventory level reaches zero level at time i1t  and then 
shortages are allowed to occur in the interval ).T,t( ii1  The cycle then 
repeats itself. The differential equation for the instantaneous inventory 

)t(qi  at time t in (0, Ti) is given by 

dt
)t(dqi  = ii Tt0D for  (21) 

with the initial conditions 

.0)t(qS)T(q,R)0(q i1iiiiii and

For each period, a fixed amount of shortage is allowed and there is a 
penalty cost i2c  per items of unsatisfied demand per unit time. From Eq. (21) 

i1iii tt0tDR)t(q for

= ii1i1i Ttt)tt(D for

So,

iiii2iiii1i TDQ,tDS,RtD

Holding cost = i1t
0 i

i

2
iii0i

ii0i T
Q2

)SQ(ch
dt)t(qch

Shortage cost = i
i

2
ii2iT

i1t ii2 T
Q2
Sc

dt))t(q(c

The following basic assumptions are used in the proposed model: 
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Production cost = i
iir

i
ir

i2i0ii0 QMdcQc

Advertisement cost = iiQM

The total inventory cost = setup cost + holding cost + shortage cost 

= i
i

2
i

i2i3i
i

2
ii

i0i T
Q2

S
ccT

Q2
)SQ(

ch

The total average inventory cost, 

)S,Q,M(CT 1 =

n

1i i

2
i

i2
i

i
ii2

i3
iiTiT

i2i0
i

2
iii

Q2
S

c
Q
Md

cMdc
Q2

)SQ(h
 (22) 

=
n

1i

i

2
i

i2
i

i
ii2

i3
i

2
i

iiT
i

iT
i2i0i

i
iiT

i
iT

i2i0ii
iiT

i
iT

i2i0i

Q2
S

c
Q
Md

c
Q2

SMdch

SMdchQMdch
2
1

= .QcQM
n

1i
iiii

So, the total average additional cost

n

1i

)ir1(i
ii0

iT1
i2

1i
ii22 McdMd)M(TC  (23) 

Special Case.
When shortages are not allowed i.e., when i2c , then 

)Q,M(CT 1 =
n

1i i

i
ii2i3

i
iiT

i
iT

i2i0i Q
Mdc

QMdch
2
1

. (24) 

)M(CT 1 = .McdMd
n

1i

)ir1(i
ii0

ir1
i2

1i
ii2  (25) 

And total additional cost  = marketing cost + production cost
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4.1 Problem Formulation 

The manufacturing organization produces some items and stocks these 
items in a warehouse. The manufacturing companies or organizations use a 
huge advertisement for their products in order to increase the level of 
demand. Still they have some limitations regarding total space capacity, 
total allowable shortage cost, etc. In this phenomenon, the organization is 
interested in minimizing the inventory-related cost (including setup cost, 
shortage cost) and additional cost (including marketing cost and 
production cost) simultaneously. 

The problem is to minimize total average inventory costs and also to 
minimize total average of additional cost under the limitations of space 
capacity, total allowable shortage cost. Hence the problem is

Minimize )M(TC),S,Q,M(TC 21  (26) 

subject to 

W)SQ(W iii
n

1i
, S

Q
S

2
c

i

2
in

1i

i2

Mi, Qi, Si, > 0 for i = 1,2,…,n.

4.2 Solution Procedure of Multi-objective Inventory 
Model (MOIM) 

The MOIM may be solved by several techniques. Some of those are the 
fuzzy geometric programming technique and global criterion method. Here 
global criterion is used to find the compromise solution of model (26). In 
this method, the objective functions are combined to a single objective 
function.

4.2.1 Global Criterion Method 

Let wr )1w21

corresponding to the objective functions )S,Q,M(TC1 and )M(TC2 . 01TC
and 02TC  are the ideal objective values of )S,Q,M(TC1  and )M(TC2 ,
respectively. Deductions are shown in Appendix A. TC01 and TC02 are 
obtained objective functions for )S,Q,M(TC1 and ),M(TC2 respectively,
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0, r 1,2 be the normalized weights (i.e., w
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without constraints by GP methods. The weighted Lp-problem according to 
Miettinen (1999) is

Minimize
1/2

0
1

( , , ) | [ . | 1
p

p
p r r r

r

U M Q S w TC TC p

=
1/

1 1 01 2 2 02| ( , , ) | | ( ) |
pp pw TC M Q S TC w TC M TC  (27) 

subject to same constraints as in Eq. (26) 

CASE 1.
The weighted sum problem (i.e., for p = 1 in (27) is given as

))TCMTC(w)TC)S,Q,M(TC(w)S,Q,M(U 022201111Minimize

subject to same constraints as in Eq. (26). 

Since 02012,1 TCTC,ww and are independent of the decision variable, 
so it is enough to solve the following problem: 

MTCw)S,Q,M(TCw)S,Q,M(V 22111Minimize  (28) 

subject to same constraints as in (26)

where )TCwTCw()S,Q,M(V)S,Q,M(U 02201111 .

The problem is a signomial GP problem with DD = 6n – 1 and can be 
solved by the GP method.

CASE 2.
The least squares problem (i.e., for p = 2 ) is given as

1/ 22
1 1 01

2 2
2 2 02

( ( , , ) )
Minimize ( , , )

( )

w TC M Q S TC
U M Q S

w TC M TC

subject to same constraints as in Eq. (26). 
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To obtain the standard form of a GP problem of the above weighted
quadratic problem, we introduce two new variables 1y  and 2y , which are 
the upper bounds of 011 TC(.)TC  and 022 TC(.)TC  respectively 

).yTCMTCyTC)S,Q,M(TC.,e.i( 20221011 and  We may then 
rewrite the problem as:

Minimize 2
22

2
112 ywyw)Y,S,Q,M(V  (29) 

subject to 

1
TC

y
TC

)S,Q,M(TC
01

1

01

1 , 1
TC

y
TC

)M(TC
02

2

02

2

1)SQW
w
1

iii
n

1i
, 1

Q2
Sc

s
1

i

2
ii2n

1i

j,..,2,1i0y,y,S,QM 21ii,i  for

where

1/ 2
2 2( , , ) ( ( , , ))U M Q S V M Q S

The problem (29) is also a signomial GP problem with DD = 6n + 1 
and it can be solved by the GP method. 

CASE 3.
The Tchebycheff problem (i.e., for )p  is given as

S,Q,M
Minimize

0

Maximize
| . |

1, 2 r r rw TC TC
r

subject to same constraints as in Eq. (26) . 

We introduce a new variable , which is maximum between  

).)TC)M(TC(w

)TC)S,Q,M(TC(w(

)TC)M(TC(w)TC)S,Q,M(TC(w

0222

0111

02220111

and i.e.,

and
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Minimize  (30) 

subject to

1
TCwTC

)S,Q,M(TC
01101

1 , 1
TCwTC

)M(TC
02202

2

,1)SQ(W
w
1

iii
n

1i
1

Q2
Sc

s
1

i

2
ii2n

1i

1 2, , , , 0, 1, 2, ,i i iy y M Q S i n

The problem is again a signomial GP problem with DD = 6n + 1 and it 
can be solved by the GP technique. 

4.3 Numerical Illustration 

A multinational soft drink manufacturing company produces two types of 
brands. The brands are produced in lots. The pertinent data for the items 
are given in Table 1. 

Table 1. Input Data for Model 17 

Brands names A B
Inventory holding cost rate (hi) 25% 32% 

Shortage cost (c2i) ($)
10 14 

Set up cost (c2i) ($) 
130 150 

Annual demand (Di) 5.1
1M10 2.1

2M12

Production cost (c0i) ($) 8.1
1M05.5

464.1
2M34.4

Storage area (wi) (m2)
3 2.5 

Total available storage area and total allowable shortage cost are w = 
225 m2  and S = $ 0.085

The problem is then reorganized as
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The ideal value (as computed in Appendix A) of TC1(M,Q,S) is TC01 = 
$123.1274 and that of TC2(M) is TC02 = $122.2257. The company decides 
to know the optimal values of the inventory related cost (TC1(M,Q,S)),
additional cost (TC2(M)), marketing cost M1,M2, lot sizes Q1,Q2 , shortage 
amount S1, S2.

Optimal solutions of problem (26) are given in Table 2, Table 3, and 
Table 4 for different preference values of the objective functions. 

Table 2. Equal Preference Values of the Objective Functions i.e., for (w1, w2) = (0.5, 0.5) 

p i *
iM *

iQ *
iS )S,Q,M(TC ****

1 )M(TC **
2

1 1
2

0.9300382    39.51303      0.5809763 
0.9025289    43.79591      0.5143728 

128.0386 123.0328 

2 1
2

0.9196067     37.23608       0.5836205 
0.9720086     46.52790      0.5108576 

127.6902 123.6351 

1
2

0.8458588     32.01543      0.5797730 
1.0992430     52.77223      0.4950188 

127.5276 125.2465 

The above table gives different optimal solutions when the decision 
maker supplies equal preferences to the inventory-related cost function 

)S,Q,M(TC1  and additional cost function )M(TC2 . )S,Q,M(TC ****
1  is 

minimum when p , whereas )M(TC **
2 is minimum when p = 1. 

Table 3. More Preference Values to the Inventory Related Cost Functions,  i.e., for 
1 2

p i M* Q* S* )S,Q,M(TC ****
1 ($) )($)M(TC **

2
1 1 

2
0.9306990    38.83385    0.5819986 
0.9257421    44.61137    0.5135849 

127.8774 123.2292 

2 1 
2

0.9123236     36.57991    0.5838419 
0.9891751     47.31423   0.5095112 

127.6460 123.7997 

 1 
2

0.8458587     32.01543     0.5797731
1.099243       52.77223     0.4950187

127.5276 125.2465 

Table 3 shows different optimal solutions when the decision maker 
supplies more preference to the inventory-related cost function 

)S,Q,M(TC1  than the additional cost function ).M(TC2  Here 
)S,Q,M(TC ****

1  is minimum when ),p(  whereas )M(TC **
2  is 

minimum when p = 1.

T.K. Roy

(w , w ) = (0.6, 0.4) 
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1 2

p i M*                   Q*                   S*  )S,Q,M(TC ****
1 ($) )($)M(TC **

2
1 1 

2
0.8966431    38.19715    0.5651637 
0.8438916    40.85587    0.5020723

128.8857 122.5162 

2 1 
2

0.9293127     38.46130    0.5824761 
0.9373176     45.05847   0.5130581

127.8178 123.3277 

 1 
2

0.8961108     35.32355    0.5837589
1.020650       48.81861    0.5063539

127.5862 124.1366 

The Table 4 shows different optimal solutions when the decision maker 
supplies more preference to the additional cost function )M(TC2  than to 
the inventory-related cost function )S,Q,M(TC1 . Here *

1TC  is minimum 
when )p( , whereas )M(TC **

2  is minimum when p = 1.

5. CONCLUSION

Here we have discussed multi-objective geometric programming based on 
the global criterion method and then fuzzy geometric programming 
technique. We have also formulated the multi-objective inventory 
optimization model of the economic production and the marketing 
planning problem. The different objective functions are combined into a 
single objective function by the global criterion method. The GP technique 
is used to derive the optimal solutions for different preferences on 
objective functions. In Tables 2–4 we have shown the optimal solution of 
our problem for different preference values of the objective functions. This 
multiobjective inventory model may also be solved by the fuzzy geometric 
programming technique. 
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APPENDIX A 
Working rule for finding the ideal objective values 01TC  and .02TC

i

2
i

i2
i

i
ii2

i3

i

2
1

ii
i

i
i2

'
i0i

i
ii

ii2
'

i0i

i
ii

i
i

i2
'

i0iiiii1

Q2
S

c
Q
Md

c

Q2
SMdch

SMdch

QMdch
2
1

)S,Q,M(TCMinimize

subject to 0,, iii SQM .

The above problem is a primal GP problem with DD = 1 0. The 
corresponding dual programming problem is

i5w

i5

i2
i4w

i2i3
i3wiT

i2
'

i0i

i2wiT
i2

'
i0i

i1wiT
i2

'
i0i'

i

w2
c

i4w
dc

i3w2
dch

i2w
dch

i1w2
dch

dwMaximize

subject to normally and orthogonal conditions 

0i5w,i4w,i3w,i2w,i1w

0i5w2i3w2i2w

0i5wi4wi3wi1w

0i4wii3wiii2wiii1wii

1i5wi4wi3wi2wi1w

Solving the dual weights in terms of i3w , we get 

i

i
i5i4

i

i
i3i2

i

i
i3i1 2

1
w,

2
1

w,
1

w2w,
2

12
ww
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Since the dual weights are always positive, 1i . Substituting the 
above dual weights into the dual function and then differentiating them 
with respect to ,w i3  we get

i

2
i*

i3 2
)1(

w

The other dual weights are 

1
i2
1

,
2
1

,1,
2 i

i*
i5i4i

*
i2

i*
i1 where

Substituting the dual weights into the dual function, we get *
iwd .

Following Duffin et al. (1967) we get the optimum objective value as 
*

i
*
li wdTC . The decision variables can be obtain from the following 

relations:

,wd
2

QMdch *
i*

i1

i
ii

i
i

i2i0i *
i

i
*

i4

i
ii2i3

wd
Q

Mdc
, *

i
i

*
i5

2
ii2

wd
Q

Sc

Solving the above relations, we get 

)1i(i
1

2*
i

*
i4

*
i1

1i
i2

i3i0i*
i

)wd(d2

cch
M

1i
1

2*
i

*
i4

*
i1

1i
i2

i3i0i

*
i

*
i4

i2i3*
i

)wd(d2

cch

wd

dc
Q

5.01i
1

2*
i

*
i4

*
i1

1i
i2

i3i0i

*
i

*
i4

i2i3

i2

*
i

*
i5*

i
)wd(d2

cch

wd

dc
c

wd2
S
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The ideal objective value 01TC  is defined as

n
1i

*
i101 TCTC

In a similar way, we can find the optimal value of the objective 
function ).M(TC i2

1 1 (1 )
2 2 2 0Minimize ( ) i i i i

i i i i i iTC M d M d c M

subject to M > 0. 

The above problem is a primal problem with DD = 0. 

The corresponding dual function is

6 71
2 2 0

6 7

Maximize
i ii

i i i
i

i i

d d cdw

subject to the normality and orthogonal conditions 

1i7i6 0)1()1( i7iii6i

where .0, i7i6

Solving the dual weights, we get 

.1,
1

1
,

1
)1(

i
ii

i*
i7

ii

ii*
i6

Substituting the dual weights into the dual function, we get .*
iwd

Following Duffin et al. (1967), the optimal objective value is .wdTC *
i

*
i2

The optimal values of the decision variable are obtained from 

*
i

i6

1i
ii2

wd
Md
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Solving the relation, we get 

1i
1

i2

*
i

*
i6*

i d
wd

M .

The ideal objective 02TC  is defined as n
1i

*
i202 .TCTC
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FUZZY GEOMETRIC PROGRAMMING
WITH NUMERICAL EXAMPLES 

Tapan Kumar Roy 

Abstract:  Geometric programming (GP) has the high potential to be applied to a wide 
range of problems. This chapter summarizes the fundamentals of fuzzy GP 
and presents many application examples. Some variants of the gravel box 
problem are presented to solve it by fuzzy GP.

Key words: Fuzzy GP, gravel box problem, posynomial, signomial 

1. INTRODUCTION

1.1 Geometric Programming

Geometric programming (GP) can be considered to be an innovative 
modus operandi to solve a nonlinear problem in comparison with other 
nonlinear techniques. It was originally developed to design engineering 
problems. It has become a very popular technique since its inception in 
solving non-linear problems. The concept of geometric programming (GP) 
was introduced by Duffin et al. (1967) in their famous book Geometric
Programming—Theory and Application. This publication is a landmark in 
the development of GP. It studied all the theoretical developments up to 
date providing important examples to illustrate the technique. In addition 
to elegant proofs, it provided several constructive transformations and 
approximation for expressing optimization problems in suitable form in 
order to solve by GP. 

West Bengal, India 
Department of Mathematics, Bengal Engineering and Science University, Shibpur,
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The study of GP by Duffin et al. (1967) deals with the problem 
involving only a positive coefficient for the component cost terms. 
However, many real-world problems comprise of positive as well as 
negative coefficients for the cost terms. Passy and Wilde (1967) made a 
significant methodological development of GP to deal with this type of 
problem. They extended the concept of the GP technique to generalized 
polynomials free from a restrictive environment. Now GP is capable of 
dealing with any problems involving signomials in both objective and 
constraint functions. It is important to note that any nonlinear algebraic 
problem can be transformed into an equivalent posynomial/signomial. For 
a detailed discussion, one may consult with the book Applied Geometric 
Programming written by Beightler and Phillips (1976). 

The advantages of GP are as follows: 

This technique provides us with a systematic approach for solving a 
class of nonlinear optimization problems by finding the optimal value 
of the objective function and then the optimal values of the design 
variables are derived. 
This method often reduces a complex nonlinear optimization problem 
to a set of simultaneous equations. 
This approach is more amenable to the digital computers. 
This method allows an easy sensitivity analysis, which can be 
performed in the optimal solution.

GP inherits some drawbacks. The main disadvantages of GP lie in the 
fact that it requires the objective functions and constraints in the form of 
posynomials/signomials.

Note. Someone guesses that the name GP comes from the many 
geometrical problems. There is a difference between GP and geometric 
optimization (GOP). GP is an optimization problem based on the 
arithmetic- geometric mean inequality (A.M.  G.M.). However, GOP is 
an optimization problem involving geometry. 

GP is an optimization problem of the form

Minimize g 0  (t) (1) 
subject to 

gj(t)  1,  j = 1, 2,…, m

hk(t) = 1, k =1, 2,…, p
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ti > 0, i = 1, 2,…, n

where gj(t) (j = 0, 1, 2, …, m) are posynomial or signomial  functions, hk(t)
(k =1, 2,…, p) are monomials and t is the decision variable vector of n
components ti ( i = 1, 2,.., n).

The problem (1) may be written as:

Minimize tg0  (2) 
subject to 1' tg j j =1, 2, ... , m

t > 0, [since 1,1 thtg jj 1' tg j  where t'jg  (=gj(t)/hk(t)) be a 
posynomial (j =1, 2,.., m ; k = 1, 2, …, p)].

2. POSYNOMIAL GEOMETRIC PROGRAMMING 
PROBLEM

2.1 Primal Problem 

Minimize g 0 (t) (3) 
subject to

tjg  1, ( j = 1, 2, …, m)

and ti > 0, (i = 1, 2, …, n)

where tjg  = 
jN

1k

n

1i

jki
ijk tc

where cjk(> 0) and jki ( i = 1, 2, …, n; k  = 1, 2,…, Nj; j = 0, 1, 2,…, m)
are real numbers.

t  ( t1, t2, …, tn)T.

It is a constrained posynomial primal geometric problem (PGP). The 
number of inequality constraints in the problem (3) is m. The number of 
terms in each posynomial constraint function varies, and it is denoted by Nj
for each j = 0, 1, 2, …, m.
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The degree of difficulty (DD) of a GP is defined as number of terms in 
a PGP  (number of  variables in PGP + 1).

2.2 Dual Problem: 

The dual programming of (3) is as follows: 

Maximize )w(d =
jk

j
wNm

jk j0

j 0 k 1 jk

c w
w

 (4) 

subject to 

1
1

0N

k
0kw      (normality condition) 

m

j

jN

k
jkjki w

0 1
0 , (i = 1, 2, ..., n)     (orthogonality condition) 

wj0 = 
jN

1k
jkw  0, wjk  0,   (i = 1, 2,..., n; k =1, 2,…, Nj), w00 = 1. 

There are n+1 independent dual constraint equalities and N = 
m

1j
jN

independent dual variables for each term of the primal problem. In this 
case DD = N (n+1).

3. SIGNOMIAL GEOMETRIC PROGRAMMING 
PROBLEM

3.1 Primal Problem 

Minimize g 0 (t) (5) 

subject to

tjg j ,     (j = 1, 2, …, m)
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and ti > 0,       (i = 1, 2, …, n)

where tjg  = 
jN

1k

n

1i

jki
ijkjk tc     (j = 0, 1, 2, …, m)

j  = 1     ( j = 2, …, m), jk = 1    (j = 0, 1,  2, …, m; k = 1, 2, …, Nj), 
t  ( t1, t2, …, tn)T.

3.2 Dual Problem 

The dual problem of (5) is as follows: 

Maximize d(w)  = 
0

0 1
0

m

j

jN

k

jkwjk

jk

j0jk

w
wc  (6) 

subject to 

0
1

0N

k
0k0k w       (normality condition) 

m

j

jN

k
jkjkijk w

0 1
0        (i =1, 2, ..., n)     (orthogonality condition) 

where j  = 1 (j =  2, …, m), jk = 1 (j =1, 2, …, m; k = 1, 2, …, Nj), and 
w00 = 1 

1,10  and non-negativity conditions, wj0 j jk
jN

1k
jk w  0, jk  0, 

(j =1, 2, …, m; k = 1, 2, …, Nj) and w00 = 1. 

4. FUZZY GEOMETRIC PROGRAMMING (FGP)   

izemMini~ g 0 (t) (7) 

subject to gj(t)
~

bj (j = 1,2 ,…, m)

t  0 
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Here, the symbol “ mizei~Min ” denotes a relaxed or fuzzy version of 
“Minimize.” Similarly, the symbol “

~
” denotes a fuzzy version of “ . ” 

These fuzzy requirements may be quantified by eliciting membership 
functions tg jj  (j = 0, 1, 2,…, m) from the decision maker for all 
functions gj(t) (j = 0, 1, 2,…, m). By taking account of the rate of increased 
membership satisfaction, the decision maker must determine the subjective 
membership function tg jj . It is, in general, a strictly monotone 
decreasing linear or non linear function tgu jj  with respect to gj(t) (j = 0, 
1, 2,…, m). Here for simplicity, linear membership functions are considered. 
The linear membership functions can be represented as follows: 

j jg t  = 

0
j j

'
j j 0 '

j j j' 0
j j

'
j j

1, if  ( )   

( )
         if ( )

0 if ( )

g t g

g g t
g g t g

g g

g t g

for j = 0, 1, 2,…, m.

Figure 1. Membership function 

As shown in Figure 1,

0
jg  the value of gj(t) such that the grade of membership function 

j jg t  is 1. 

tjj g

1

,jg

g j(t)
0 tjg 0

jg 0
jg '

jj
0
j t ggg '

jg '
jj t gg
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'
jg  the value of gj(t)  such that the grade of membership function 

j jg t  is 0. 

jg  the intermediate value of gj(t) between 0
jg and '

jg  (i.e., jg ( 0
jg ,

'
jg )) such that the grade of membership function  (0,1). 

The problem (7) reduces to FGP when g0(t) and gj(t) are signomial and 
posynomial functions.

Based on fuzzy decision making of Bellman and Zadeh (1972), we may 

write

(i) tgminmax j* jD t  (max min operator) (8)

subject to 

g tj j  = 
'

' 0

(t)j j

j j

g g
g g

  (j = 0, 1, 2,…, m)

t > 0

(ii)
m

*
D

j 0

max tj j jt g   (max additive operator) (9) 

subject to tg jj =
'

' 0

( )j j

j j

g g t
g g

        (j = 0, 1, 2,…, m)

t > 0

(iii) j
m

*
D j j

j 0
max ( ( ) )t g t  (max product operator)  (10) 

subject to

j jg t =
'

' 0

( )j j

j j

g g t
g g

                        (j = 0, 1, 2,…, m)

t > 0. 
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Here, for  j  (j = 0, 1, 2, ..., m) are numerical weights considered by a 
decision making unit. For normalized weights 

1,01
0

j
m

j
j and

For equal importance of objective and constraint goals, j = 1. 
In contrast to GP, FGP in general has not been widely circulated in the 

literature. In 1990, Verma studied a new concept to use the GP technique 
for multi-objective fuzzy decision-making problems. He projected the very 
importance on the product operator, which reduces the DD with a 
considerable amount. Biswal (1992) applied the fuzzy programming 
technique to solve a multi-objective GP problem as a vector minimization 
problem. A vector maximization problem can be transformed into a vector 
minimization problem. Cao (1993, 1994) discussed the properties of a kind 
of posynomial GP with an L-R fuzzy coefficient in objectives and 
constraints. In the sequel, Cao (2002) published an important book on 
FGP, which was the most recent book until now.

If gj(t) (j = 0,1,2,…,m) be posynomial function as

gj(t)=
11

j
jki

N n

jk i
ik

c t  ( cjk(> 0) and jki ( i = 1, 2, ..., n; k  = 1, 2,..,Nj;

j = 0, 1, 2,…, m)) then

i) max min operator (8) reduces to

Maximize
'

' 0
j j

j
j j

g g t
g g

subject to

'

' 0
r r

r
r r

g g t
g g

'

' 0
j j

j
j j

g g t
g g

,    (r = 0, 1, 2, …, m and r j ) 

t > 0.
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So V **M t  = 
'

j ' 0
j

j j

g
g g

** tV

where *t is obtained by solving the following signomial GP: 

Minimize V(t) =
' 0

j

j jg g 1k 1

c
j

jki

N n

jk i
i

t                                  (12) 

subject to

(r = 0, 1, 2, …, m and r j ) 

t > 0

ii) max additive operator (9) reduces to

Maximize VA(t) = 

'

11
' 0

0

j
jki

N n
a

j jk im
ik

j
j j j

g c t

g g
(13)

subject to

t > 0

So the optimal decision variable t* with the optimal objective value V*(t*)

can be obtained by V*(t*) = 
'

* *
' 0

0

m
j j

j j j

g
U t

g g
 where t* is the optimal 

decision variable of the unconstrained geometric programming problem  

' 0 ' 0
1 11 1

''

' 0 ' 0

j j
jkirki

N Nn n
ajr

rk i jk i
i ik kr r j j

j jr r

r r j j

c t c t
g g g g

gg
g g g g
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Minimize U(t) = ' 0
10 1

j
j jki

Nm n
a

jk i
ij kj j

C t
g g

 (14) 

subject to

t > 0. 

iii) Similarly, Eq. (10) can be solved by GP based on a suitable 
transformation.

4.1 Numerical Example 1 

1 2
1 2Minimize (x) x x

[Here objective goal Z(x)
~

6.94 0.19 ancewith toler ] (15) 

2 3
1 1 2x ` 57.87 (with tolerance 2.88) 

2 1 2 1 2(x ) x x 1, x , x 0

Here, linear membership functions for the fuzzy objective and 
constraint goals are

x1  = 
1

1
1

1

1, if  ( )  6.75

6.94 ( )
   if 6.75 ( )   6.94

0.19
0 if ( ) 6.94

x

x
x

x

x2  = 

1

1
1

1

1, if  ( )  57.87

60.75 ( )
if 57.85 ( )  60.75

2.88
0 if ( ) 60.75

x

x
x

x

Z

Y

Z

Z

Z

Y

Y

(x ) 2xY

Y
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i) Based on max–min operator (8), FGP (15) reduces to

Maximize V(x1, x2) = 
1 2

1 26.94 x x
0.19

 (16) 

subject to 
1 2

1 260.75 x x
2.88

1 2
1 26.94 x x

0.19

x1+ x2  1, x1 >0, x2 > 0 

So Eq. (16) reduces to 

Maximize VM(x1, x2) = 36.37 V(x1, x2 ) (17) 

subject to

0.341 1 2
1 2x x 0.045 2 3

1 2x x 1, x1 > 0, x2 > 0 

where V(x1, x2) = 5.26 1 2
1 2x x

To solve Eq. (17), we are to solve the following crisp GP:

Minimize V(x1, x2) = 5.26 1 2
1 2x x .

subject to

0.45 2 3
1 2x x 0.341 1 2

1 2x x 1, x1+ x2  1, x1 > 0, x2 > 0. 

For this problem DD = 5  (2 + 1) = 2.
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The dual problem (DP) of this GP is 

Maximize 01 11 12 21 22 0( , , , , ,d w w w w w )=

001 11 12 215.26 0.045 0.341 1

01 11 12 21
0 221 11 12 21 22

11 12 21 22
22

w w w w

w w w w
w

w w w w
w w w w

w

subject to

0 01 1w

01 11 12 212 0w w w w , 01 11 12 222 3 2 0w w w w

Considering 0 1, we have 

01 1w , 21 11 122 1w w w , 22 11 123 2 2w w w

Here 1 11 11 12 12 1w w  = 11 12 0w w .

So, max 11 12,d w w =
11

111211 12

11 11 12

12

11 12

2 1
0.045 0.341 1

5.26
2 110

3 2 2
1

3 2 2

ww w w

w w w w

w w

w w

12 11 125 3 311
12 11 11 125 3 3w w w ww w w w

For optimality of 11 12,d w w , we have

11 12

11

,
0

d w w
w

and
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11 12

12

,
0

d w w
w

.

That is, 

5
12 11 11 120.045 5 3 3w w w w = 2 3

11 11 12 11 122 1 3 2 2w w w w w

and

12 11 12 11 12(2 1)(3 2 2)w w w w w = 3
12 11 11 120.341( )(5 3 3)w w w w .

the optimal solution is ( ) 35.75646422d w , 01 1w , 11 0.2901869w ,

12 0.5103887w , 21 1.0699851w , 22 1.8497833w , 1 0.2202018 .

So, the optimal solution of Eq. (13) is x1 = 0.36631095, x2 = 
0.633699788, and Z(x) = 6.79798859. 

ii) Based on the max additive operator (9), FGP (15) reduces to

Maximize

VA(x1,x2)=(
1 2

1 26 94
0 19

. x x
.

+
1 2

1 260.75
2.88

x x ) 1 257.62 ( , )V x x  (18) 

subject to

x1+ x2  1, x1 > 0, x2 > 0 

where 1 2( , )V x x 1 2 2 3
1 2 1 25.263 0.694x x x x .

To solve Eq. (18), we are to solve the following crisp GP:

Minimize 1 2(x , x )V 1 2 2 3
1 2 1 25.263 0.694x x x x

subject to

x1+ x2  1, x1 > 0, x2 > 0. 

For this problem, DD = 4 (2 + 1) = 1 
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The DP of this GP is 

01 02 11 12Maximize  ( , , , )d w w w w

=
12

11 12
01 02 11

11 12
01 02 11 12

5.263 0.694 1 1
w w w w

w ww w
w w w w

subject to 

01w + 02w =1, 01w 2 02 11 0w w

2 01w 3 02 12 0w w

So, 02 011w w , 11w 012 w , 12w 013 w

01 01 01

01
01 01 01

01
01

01
01

1 2
5.263 0.694 1

Maximize ( )
1 2

3
1 5 2

5 2
3

w w w
d w

w w w
w

w
w

w

subject to 0 < 01w < 1 

For optimality of 01 02 11 12( , , , )d w w w w , we have

01
01

( ) 0d d w
dw

That is, 2
01 01 01 01 015.263(1 ) (2 ) (3 ) 0.694 (5 2 )w w w w w .

The optimal solution is )w(d 01 = 56.10412298 

01 020.6375822, 0.3624178,w w 11 121.3624178, and  2.3624178w w

So, the optimal solution of Eq. (15) is x1 = 0.364517711, x2 = 
0.635681102, and Z(x) = 6.788952396 
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iii) Based on the max product operator (10), FGP (15) reduces to

Maximize

Vp(x1,x2)=(
1 2

1 26.94
0.19

x x ) (
1 2

1 260.75
2.88

x x )= 1 2770.479 ( , )V x x  (19) 

subject to

x1+ x2  1, x1 > 0, x2 > 0 

where 1 2 2 3
1 2 1 2 1 2( , ) 111.018 25.349V x x x x x x 3 5

1 23.653x x .

To solve Eq. (19), we are to solve the following crisp GP:

1 2Minimize ( , ) 111.018V x x 1 2 2 3
1 2 1 225.3492x x x x 3 5

1 23.653x x

subject to

x1+ x2  1, x1 > 0, x2 > 0 

For this case DD = 5 (2 + 1) = 2. 

The DP of this GP is 

01 02 11 12Maximize   ( , , , )d w w w w

01 02 03 11

01 02 03 11

12
11 12

11 12
12

111.018 25.349 3.653 1

1

w w w w

w w w w
w

w w
w w

w

subject to 

01 02 03 1w w w

01 02 03 112 3 0w w w w
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01 02 03 122 3 5 0w w w w

So, 03 01 02 1w w w

11 01 023 2w w w

12w = 01 025 3 2w w

For the optimality of 01 02 11 12( , , , )d w w w w , we have 

01 02 11 12
01

( , , , ) 0d w w w w
w

, 01 02 11 12
02

( , , , ) 0d w w w w
w

.

That is 111.018 2
01 02(3 2 )w w 3 1

01 02 01 02(5 3 2 ) ( )w w w w  = 

013.653w 5
01 02(8 5 3 )w w

and

25.349 01 02(3 2 )w w 2
01 02 01 02(5 3 2 ) ( 1)w w w w

= 02653.3 w 3
01 02(8 5 3 )w w . The optimal solution is )w(d

= 8551092.769 ,

01 020.9774833, 0.9249442,w w

03 0.9024275w , 11 0.1200892w , and 12 0.2176617w

So, the optimal solution of Eq. (15) is 1x 0.394682105 ,

2x 0.611383637 , and (x ) 6.778364884Z .
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5. APPLICATION 

5.1 Gravel Box Problem 

Problem 1a. 
A total of 80 cubic-meters of gravel is to be ferried across a river on a 
barge. A box (with an open top) is to be built for this purpose. After the 
entire gravel has been ferried, the box is to be discarded. The transport cost 
per round trip of barge of box is Rs 1; the cost of materials of the sides and 
bottom of the box are Rs 10/m2 and Rs 80/m2 and the ends of box are Rs
20/m2. Find the dimension of the box that is to be built for this purpose and 
the total optimal cost (see Figure 2). 

Figure 2. Gravel box problem 

Let us assume the gravel box has

length = 1t m ,    width  = 2t m ,    height  = 3t m

The area of the ends of the gravel box = 2
2 3t t m

The area of the sides of the gravel box = 2
1 3t t m
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The area of the bottom of the gravel box = 2
1 2t t m

The volume of the gravel box = 3
1 2 3t t t m

Cost function

Transport cost:
3

3
1 2 3

80m1/ trip
m / trip

Rs
t t t

= 1 1 1
1 2 3. 80Rs t t t ,

Material cost: Ends of box: 2 2
2 32 20 / m mRs t t = 3240. ttRs

Sides of box : 2 2
1 32 10 / m mRs t t  = 1 3. 20Rs t t

Bottom of box: 2 2
1 280 / m mRs t t  = 1 2.80Rs t t

The total cost (Rupees): 

1 1 1
1 2 3 2 3 1 3 1 280 40 20 80g t t t t t t t t t t

It is a posynomial function. 
As stated, this problem can be formulated as an unconstrained GP 

problem

1 1 1
1 2 3 2 3 1 3 1 2Minimize 80 40 20 80g t t t t t t t t t t

subject to t1, t2, t3 0
The optimal dimensions of the box are t1

*=1m, t2
*=1/ m, and t3

*=2m,
and the minimum total cost of this problem is Rs 200. 

Problem 1b. 
We now consider the following variant of the above problem (a similar 

discussion take place in Duffin et al., 1967 in their book). It is required that 
the sides and bottom of the box should be made from scrap material, but 
only 4 m2 of this scrap material are available. 

This variation of the problem leads us to the following constrained 
posynomial GP problem: 

584 T.K. Roy



Fuzzy Geometric Programming Applications 

0 2 3
1 2 3

1 1 3 1 2

1 2 3

80Minimize 40

subject to 2 4
where 0, 0, 0

g t t t
t t t

g t t t t t
t t t

Solving this constrained GP problem, we have the minimum total cost 
Rs 95.24, and the optimal dimensions of the box are t1

*=1.58m, t2
*=1.25m,

and t3
*=0.63 m. 

Problem 1c. 
We now consider the fuzzy objective and constraint goal in Problem 

1b. The fuzzy problem becomes

Find t = ( t1, t2, t3)T so as to satisfy 

g 0 (t)
~

 90 and g 1 (t)
~

 4 , t > 0 

For treating the above fuzzy inequalities, we construct the following 
linear membership functions:

1 1 2 3, ,g t t t =

1 1 2 3

1 1 2 3
1 1 2 3

1 1 2 3

0, if ( , , )  6                       
( , , ) 41 , if 4 ( , , ) 6

2
1, if  ( , , ) 4

g t t t
g t t t g t t t

g t t t

0g t  =

0

0
0

0

1, if ( )  90                       
98- ( ) , if 90 ( ) 98

8
0, if  ( ) 98

g t
g t g t

g t

1g t   =

1, if g ( )  4                      
1

6-g ( )1 , if 4 g ( ) 6
12

0, if g ( ) 6
1

t

t
t

t
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where 8 (= 98 90) and 2 (= 6 4) are subjectively chosen constants 
expressing the limit of the admissible violations of the inequalities. 

It is assumed that the membership function tg0
 should be 1 if the 

objective goal is well satisfied, and 0 if the objective goal is violated 
beyond its limit 8(= 98 90) and linear from 0 to 1.

Following the fuzzy decision on the max additive operator (9), the said 
problem can be transformed into the following equivalent conventional 
nonlinear programming problem as 

Maximize V(t) = 098
8
g t

+ 16
2
g t

subject to t > 0. 
So the optimal decision variable t* can be obtained by solving the 

following unconstrained GP problems: 

Minimize U(t) = 0

8
g t

+ 1

2
g t

subject to t > 0. 

Minimize 1 1 1
1 2 3 2 3 1 3 1 2

110 5
2

U t t t t t t t t t t

subject to t1, t2, t3  > 0. 

Solving the unconstrained GP we have *
1t = 1.58, *

2t = 1.426883, and *
3t =

0.7134413; the optimal objective goal is **
0 tg = * *

2 3* * *
1 2 3

80 40t t
t t t

 = 

90.45766 and the constraint goal **
1 tg = * * * *

1 3 1 22t t t t = 4.50895. 
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