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Netrins and Their Receptors
Simon W. Moore, Marc Tessier-Lavigne and Timothy E. Kennedy*

Abstract

N etrins are a family ofproteins that direct cell and axon migration during development.
Three secreted netrins (netrin-l , -3 and -4) have been identified in mammals, in
addition to two GPI-anchored membrane proteins, netrin-G 1 and G2. Orthologues of

netrin-I playa highly conserved role as guidance cues at the midline of the developing CNS of
vertebrates and some bilaterally symmetric invertebrates. In vertebrates, floor plate cells at the
ventral midline ofthe embryonic neural tube secrete netrin-I, generating a circumferential gradi
ent of netrin protein in the neuroepithelium. This protein gradient is bifunctional, attracting
some axons to the midline and repelling others. Receptors for the secreted netrins include DCC
(deleted in colorectal cancer) and the UNC5 homologues: UNC5A, B, C and D in mammals.
DCC mediates chemoartraction, while repulsion requires an UNC5 homologue and, in some
cases, DCC. The netrin-G proteins bind NGLs (netrin G ligands), single pass transmembrane
proteins unrelated to either DCC or the UNC5 homologues. Netrin function is not limited to
the developing CNS midline. Various netrins direct cell and axon migration throughout the
embryonic CNS, and in some cases continue to be expressed in the mature nervous system.
Furthermore, although initially identified for their ability to guide axons, functional roles for
netrins have now been identified outside the nervous system where they influence tissue morpho
genesis by directing cell migration and regulating cell-cell and cell-matrix adhesion.

Introduction
The discovery ofnetrins can be traced back to insights provided by Santiago Ramon y Cajal

at the end of the 19th century, when he proposed that axons may be guided by diffusible cues.'
Upon observing, in fixed sections, the projections ofspinal commissural neuron axons towards
the ventral midline of the embryonic spinal cord, he hypothesized that floor plate cells at the
midline secreted a diffusible cue that established a chemotropic gradient in the neuroepithe
lium (Fig. 1A). Direct evidence of chemotropic axon guidance began to accumulate in the
1980s through single cell turning assays and coculture of explanted embryonic neural tissue.f
Notably, explants ofembryonic rat spinal floor plate, when cultured at a distance from explants
of dorsal spinal cord, evoked commissural axon outgrowth (Fig. 1D),3 and an ectopic floor
plate cocultured alongside an embryonic spinal cord attracted commissural axons, deflecting
them away from their normal dorsal-ventral trajectory (Fig. 1E).4 These findings provided
strong evidence for the existence ofa chemotropic axon guidance factorts) secreted by the floor
plate.

In parallel, studies in the nematode Caenorhabditis elegans identified genes required for
circumferential axon guidance. 5,6 One of the genes identified, unc-S, encoded a secreted
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Figure 1. Netrins are important midline axon guidance cues: A) Netrin-1 secreted by the floor
plate (FP) attracts commissural neuron (CN) axons and repels motoneuron (MN) axons from
the ventral midline. B) During early neural development in C. e/egans, axons are guided
towards and away from a row ofepidermoblasts (EB) expressing the netrin homologue UNC-6
at the ventral midline. C) Netrin-A and -B emanating from midline glia guides commissural
(CN) axons to and segmental nerve (SN) axons away from the D. melanogaster midline. D)
Embryonic spinal commissural axon outgrowth assay: An explant of dorsal embryonic rat
spinal cord containing the commissural neuron cell bodies is embedded in a collagen matrix.
In the absence of asource of netrin-1, such asthe floor plate, the extending axons remain within
the explant. In the presence of netrin-1, the axons emerge from the explant and grow into the
collagen. E) Embryonic spinal commissural axon turning assay: A segment of embryonic rat
spinal cord is embedded into a collagen matrix and an explant of the floor plate is grafted onto
one end. Neurons within - 250 11m of the ectopic floor plate turn away from their normal dorsal
to ventral trajectory and grow toward the grafted floor plate. F)Netrin-1, expressed at the optic
nerve head, is required for retinal ganglion cell (RGC) axons to exit from the retina into optic
nerve. G) Netrin and its receptors DCC and UNC5C are required for the decussation of the
corticospinal tract at the spinal medulla boundary. H) In the mature mammalian CNS, netrin-1
is localized to peri axonal myelin suggesting a role regulating interactions between axonal and
01 igodendrogl ial membranes. PanelsA, D, Eand H have been repri nted from Current Opinions
in Neurobiology 16:529-534 with permission from Elsevier, ©2006. 124
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protein with sequence homology to lamininsr' In 1994, using commissural axon outgrowth
from explants of embryonic rat dorsal spinal cord as a functional assay, two proteins were
purified from homogenates of embryonic chick brain and discovered to be homologous to
UNC-6.8They were named netrin-I and netrin-Z based on the Sanskrit word 'netr' meaning
'one who guides'. Netrin-I is expressed by floor plate cells'' and forms a gradient in the spinal
neuroepithelium as commissural axons extend to the floor plate.10 Engineering an aggregate
ofcells to expresseither netrin-I or netrin-Z, mimicked the commissural axon guidance activ
ity of the floor plate (Fig. ID-E).9 Identification of the mouse ortholog of netrin-L, and
generation of netrin-I mutant mice, demonstrated that netrin-I is essential for appropriate
spinal commissural axon extension in the embryonic spinal cord. II In parallel, C elegam
unc-6 was shown to be expressed at the ventral midline. 12 and to function as a long-range
midline attractant guidance cue.13 Furthermore, two netrins, Netrin-A and Netrin-B, were
implicated in midline attraction in Drosophila,14,15 although in this case netrin mediated
attraction is apparently only essential at short-range close to the midline. 16 Thus, a century
after chemotropic mechanisms were proposed to direct axon guidance, netrins were identi
fied as diffusible chemotropic cues that guide spinal commissural axon extension, with ho
mologues implicated in long- and short-range guidance in worms and flies. Netrins are now
known to function not only as attractants, but also as repellents, and to be essential for the
development of numerous axonal tracts.

Netrin Structure
Netrins are highly conserved in the course of animal evolution. Illustrating this, a netrin

homologue has recently been identified in the sea anemone Nematostella uectensis, an organism
thought to exhibit some of the earliest hallmarks ofbilateral symmetry (Fig. 2A).17 Vertebrate
species express the secreted netrins, netrins 1-4, and two related GPI-anchored membrane
proteins, netrin-G 1 and -G2 (Fig. 2A). All netrins are composed of approximately 600 amino
acids, and havea molecular mass of approximately 70 kilodaltons. They share two characteristic
amino terminal domains, V and VI, that are homologous to domains V and VI found at the
amino terminal ends of laminins (Fig. 3A). Laminins are large secreted heterotrimers made up
of a, ~, and y subunits.l'' Domains V and VI of netrin-4 and netrin-Gs are most similar to ~
subunits of laminins, while those of netrins 1-3 are more similar to the y subunits (Fig. 3C).19

Netrins 1,3,4, Gl and G2 are expressed in mammals, including rats, mice and humans,
whereas onhologues ofnetrin-2 have thus far only been identified in chicken8and zebrafish.20

The amino acid sequences of netrins 1-3 are highly similar (Fig. 3C) and, consistent with this,
cellular sources of any of these proteins mimic the chemoattractant function of the floor
plate.8,9,21 The sequences of netrin-4 and nettin-Gs are substantially divergent, notably exhib
iting a higher degree of homology to laminins than to netrins 1-3 (Fig. 3C).22.25 Orthologues
of netrin-4 or the netrin-Gs have thus far only been found in vertebrates, while orthologues of
netrins 1-3 have been identified in distantly related animals, including the nematode worm C
elegam,7 the flatworm Schmidea mediterranea,26 the fruit fly Drosophila melanolfaster,14.15 the
leech Hirudo medicinali?? and the sea anemone Nematostella uectensis (Fig. 2A). 7

In laminins, domain VI, approximately 300 amino acids in length, is capable of binding
heparin, cell surface receptors and ECM proteins28,29 and is required for calcium-dependent
multimerization between laminin molecules.j" Mutational studies carried out in C elegam
indicate that domain VI ofnetrin is critical for both axon attraction and repulsion.f ' The motif
SXDXGXS/TW is present in domain VI ofallnetrins and mutation of these residuesin the C
elegam netrin UNC-6 disrupts guidance functions. 19,31 Interestingly, only the ~ subunits of
laminin contain this motif This is noteworthy because, as described above, netrins 1 through
3 are most homologous to the y chain. Domain VI of netrins 1-3 also contains two cysteine
residues not present in other netrins or laminins. One of these cysteines replaces a tryptophan
that is strictly conserved among laminin subunits.l" Domain V of netrins contains three tan
dem arrays of cysteine-rich epidermal growth factor (EGF) repeats named V-I, V-2 and V-3,
and is approximately 150 amino acids in size.7Mutation of domain V-3 in the C elegan: netrin
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Figure2. Netrinsand their receptorsin variousorganisms:A) Evolutionary treediagram highlight
ing the presenceof netrin homologues in a wide variety of bilaterally symmetrical organisms. B)
Netrin 1-3 receptors (DCC and UNC5) and the netrin-G receptors (NGL) in various organisms.

UNC-6 disrupts attractant mechanisms, whereas repulsion is lost following mutation ofeither
V-2 or V-3 domains. 12,31

Netrins 1-4 contain a conserved carboxyl terminal domain, domain C (Fig. 3A), that has a
predicted a-helical secondary structure and is homologous to domains found in the comple
ment C3, 4 and 5 protein family (CC3, 4 and 5), secreted frizzled-related proteins (sFRP), type
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Figure 3. Netrin and netrin receptor structure: A) All netrins conta in amino terminal domains
Vand VI related to corresponding amino terminal domains of lamin ins. Domain V iscomposed
of cysteine-rich epidermal growth factor (EGF) repeats. Domain C in secreted netrins contains
many positively charged, basic residues. B) DCC and UNC5 are receptors for netrin-l to -3.
NGL1 and NGL2 are receptors for nett in-G, and -G2, respectively. C) Tree illustrating a phy
logenetic relationship based on sequence of the VI and V domains in human netrins and
laminins. D) Phylogenetic tree based on human protein sequences related to the C domain of
netrin-l (seetext for details). PanelsA and B have been reprinted with permission from 'A830:
Netr ins' in the Encyclopedia of Life Sciences by John Wiley & Sons, Ltd.

I C-proteinase enhancer proteins (PCOLCEs) and tissue inhibitors of metalloproteinases
(TIMPs) (Fig. 3D). Deletion of domain C from UNC-6 netrin in C. eiegans does not appear to
disrupt axon guidance, although increased axon branching has been detected.32Most netrin-I
protein in the vertebrate CNS is not freely soluble, but bound to cell surfaces or extracellular
matrix.33.34 A notable feature of the netrin C domain is that it contains many basic amino
acids. It has been hypothesized that these may bind to negatively charged sugars associated
with proteoglycans on cell surfaces, such as heparin sulfate proteoglycans and chondroitin
sulfate proteoglycans.8.35.36 Presentation of netrins closely associated with cell surfaces may be
a common mode ofaction in the netrin family. Although the C domain isnot conserved in the
netrin-Gs, a C terminal GPI-link anchors them to cell surfaces.
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Functional Roles for Netrins during Nervous System Development
During embryogenesis in C. elegans and D. melanogaster, secretion of the netrin UNC-6

and netrins NB respectively, are essential for orienting cell and axon m~ration with respect to
the ventral midline of the developing nervous system (Fig. IB,q.6,7,15, ,38 Similarly,netrin-l
expressedby the floor plate in mouse plays an essential role directing axon extension relative to
the ventral midline of the embryonic spinal cord. Netrin-I deficiency in mouse also disrupts
the formation ofmajor axon projections to the midline in brain, including the corpus callosum
and hippocampal commissure,1 indicating that numerous axon tracts require netrin-I to cross
from one side of the CNS to the other. Acting as a repellent, netrin-I directs axon extension by
subsets of motoneurons, including: trochlear moconeurons.r" cranial moroneuronst" and spi
nal accessorymoroneurons."

Awayfrom the midline, netrin-l expressionat the optic nerve head is required for the axons
of retinal ganglion cells to exit the retina and enter the optic nerve (Fig. 1F).42 Netrin-I is also
implicated in the guidance of dopaminergic axonswithin the ventral midbrain,43in the thalamo
conical projection.l" aswell as in the formation of axon projections within the hippocampus.P

In contrast to netrin-I, the function of other netrin family members in vertebrates is
relatively poorly understood. Netrin-3 can mimic the ability of netrin-I to attract spinal
commissural axons and repel trochlear motor neuron axons in vitro,21 however, netrin-3
expression in the spinal cord begins afrer the initial commissural axons have pioneered the
path to the floor plate. Netrin-3 is, however, expressed in dorsal root ganglia in the develop
ing PNS, and by mesodermal cells that may influence axon guidance to peripheral targets.46

Netrin-4 is widely expressed in the developing nervous system, including in the olfactory
bulb, retina, dorsal root ganglia, as well as by cerebellar granule, hippocampal, and cortical
neurons. 22 In the developing spinal cord, a relatively low level of netrin-4 is expressed adja
cent to floor plate cells; however, like netrin-3, this begins afrer the first commissural axons
have crossed the midline. Both netrin-G 1 and -G2 are expressed primarily by neurons, with
very limited expression outside the nervous system.25,47 Netrin-G1 is expressed in the dorsal
thalamus, olfactory bulb and inferior colliculus, whiie netrin-G2 is expressed in the cerebral
cortex. Netrin-Gl gene mutations in humans produce symptoms similar to Rett syndrome,48
characterized by normal early development followed by loss of purposeful use of the hands,
distinctive hand movements, slowed brain and head growth, gait abnormalities, seizures,
and mental retardation. Netrin G I-deficient mice have no obvious abnormalities in gross
anatomy and neural circuitry, but exhibit altered synaptic responsesand defects in sensorimotor
gating bchavior.l'' These findings led to the suggestion that the major role for nettin-G
proteins may be in the maturation, refinement, and maintenance of synapses, rather than
axonal outgrowth and guidance. Consistent with this, the netrin-G receptor NGL-2 influ
ences the formation ofglutamatergic synapses through an interaction with the post-synaptic
scaffold protein PSD-95.5o

Netrin Signal Transduction
The signal transduction mechanisms regulated by netrins are currently the subject of in

tense scrutiny. The majority of the studies carried out have focused on the role of netrin-l as a
chemoartractant axon guidance cue and comparatively little is known regarding signal trans
duction by other netrins, The following provides an overview of signal transduction events
implicated in the response to netrin-l, for a detailed (for a derailed reviewsee ref 51,52).

Netrin receptors in vertebrates include DCC (deleted in colorectal cancer), the DCC
paralogueneogenin, and four UNC5 proteins, UNC5A-D (Fig.2B).Although DCC, neogenin,
and the UNC5 proteins all bind netrin-L, the majority of studies of netrin signaling have
focused on DCC. Attractant responses to netrin-l require DCC. In contrast, repellent re
sponses require expression of an UNC5 protein, with coexpression of DCC in some cases.
Interestin~r' neogenin also interacts with a GPI-linked protein called Repulsive Guidance
Molecule.
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Netrin-l Mediated Chemoattraction
Unc-40 encodes the C. elegans orthologue of DCC.6,54 C.elegam unc-40mutants predomi

nantly exhibit defects in ventrally-directed migration of cells and axons, in contrast to unc-6
inetrin) mutants in which migrations both toward and away from the ventral midline are dis
rupted. Consistent with the unc-40 mutant phenotype in the nematode, application of DCC
function blocking antibodies to explants of embryonic mouse spinal cord blocked netrin-I
induced commissural axon outgrowth.55 Furthermore, dec gene knockout produced a pheno
type very similar to that generated by loss of netrin-I function , including loss of the spinal
ventral commissure, corpus callosum and hippocampal commissure.56

The extracellular domain ofDCC is composed ofsix fibronectin type 3 (FN3) repeats and
four immunoglobulin (Ig) repeats (Fig. 3B). The DCC FN3 domains are implicated as netrin-I
binding sites, but exactly which FN3 domain binds netrin-I remains controversial.57-59 The
DCC intracellular domain has no known intrinsic catalyticactivity,but contains severalputative
protein binding and phosphorylation sites. Basedon particularly strong identity between DCC
family members, three regions of the intracellular domain of DCC, termed domains, PI, P2
and P3, have been identified (Figs. 3B and 4A).60 The PI domain is a highly conserved 17
amino acid motif, the P2 domain is rich in proline residues, containing four PXXP putative
SH3 domain-binding motifs (Fig. 4A), and the P3 domain contains several highly conserved
possible phosphorylation sites.

The ability of a cue to attract axon growth is thought to reflect its capacity to regulate
membrane protrusions made by the growth cone. Rho GTPases are a family of intracellular
proteins that coordinate eytoskeletal organization and adhesive interactions. 61 In particular,
the activation of the Rho GTPases Rae and Cdc42 has been shown to be essential for artractant
responses to a number of guidance cues,62,63 including netrin_l.64,65 The exact sequence of
events linking DCC to Rho GTPase activation, and their downstream effectors,remains unclear.
Multimerization of the DCC P3 domain following binding to netrin -I is implicated as an
initial event in mediating chemoattraction.66,67The DCC intracellular domain associateswith
the adaptor protein Nckl ,68 the tyrosine kinases Fak69 and Fyn,7° the serine/threonine kinase
pak,64 as well as the actin binding proteins Ena/Vasp/" and N-WASI~64 In addition to Rae and
Cdc42 activation, application of nerrin-I leads to production of phosphoinosicides by recruit
ment of phospharidylinosirol transfer protein-a,72 activation of phosphatidylinositol-3 kinase,73
and the breakdown of phosphoinosirides by phospholipase C into IP3 and diacylglycerol
(DAG).73 IP3 promotes intracellular calcium releasefrom intracellular storesand DAG activates
protein kinase C.74Supporting a role for IP3 production in netrin-I mediated chemoattraction,
elevating intracellular calcium is required for turning to netrin-l.75 Notably, such calcium
increasescan contribute to Rae and Cdc42 activation. I Figure 4C presents a speculative model
of how these events may contribute to netrin-l mediated axonal chemoattraction.

Netrin-l Mediated Chemorepulsion
UNC5 netrin receptors were first im?licated as mediators of repellent responses to the

netrin UNC-6 from studies in C.elegam.6
, 7 Unc-5 mutants exhibit defects in dorsally-directed

migrations, away from the ventral midline source of UNC-6 netrin, and misexpression of
unc-5by neurons caused their axons to be redirected along a dorsal trajectory.37Asin C.elegam,
a single UNC5 family member has been identified in D. melanogaster. 38 Four have been found
in mammals: UNC5A, B, C and 0 (Fig. 2B).78-81 UNC5s are composed oftwo extracellular~
domains, that bind netrin , and two extracellular Tsp (thrombospondin) domains (Fig. 3B).
The UNC5 intracellular domain is made up of three conserved domains: a ZU5 domain, a
DCC-binding (DB) domain and a death domain (DD, Fig. 3B). The function of the ZU5
domain is unknown, however it is homologous to a sequence in the scaffolding protein Zona
Occludens-l found at tight junctions.82
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Figure 4. Model of netrin signal transduction: Amino acid sequences of the intracellular
domains of human DCC (A) and UNCSA (B). Amino acids conserved between C. elegans, X.
laevis and humans are in bold capital letters. Assigned domains are lightly shaded, while WW
class IV motifs (PSP) are more darkly shaded. Core SH3 PXXPmotifs are underlined. Panel C
and D summarize signaling events involved in attractive and repellent responses, respectively
(seetext for details). PanelsA and B have been reprinted with permission from 'A830: Netrins'
in the Encyclopedia of Life Sciences by John Wiley & Sons, Ltd.

Studies in worms, flies and vertebrates suggest that long-range repulsion to netrin requires
the cooperation ofUNC5 and DCC, but that UNC5 without DCC issufficient for short-range
repulsion. 38,66 Although the reason for this difference is not clear, it may be the case that DCC
and UNC5 together form a more sensitive netrin receptor complex that is able to respond to
lower concentrations ofprotein found at a greater distance from a source ofnetrin secretion. At
long-range, direct association between the cytoplasmic domains of UNC5 and DCC appears
to be essential.66,83 While mediating short-range responses to netrin independently of DCC,
genetic studies in C elegans have stressed the importance of the region between UNC5 cyto
plasmic ZU5 and DD domains. 84Severalproteins have been proposed to interact with UNC5
family members in mediating a repellent response, including: the tyrosine kinase Srcl , the
tyrosine phosphatase Shp2,85 the F-actin anti-capping protein Mena,86 the structural protein
ankryn, and the adaptor protein Max1.87 Repellent responses to netrin-l are thought to in
volve tyrosine phosphorylation ofUNC5's intracellular domains at multiple sites.85Figure 4D
outlines a speculative model of the intracellular events occurring during short and long-range
repulsion.
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Regulating the Response to Netrin-l
Growth cones respond rapidly to local guidance cues and exhibit substantial autonomy

from the neuronal cell body. Growth cones react to netrin along a continuum that ranges from
repulsion to unresponsiveness to attraction. The mechanisms that control this shift in netrin
responsiveness are just beginning to be understood.

Many of the factors shown to regulate the response ofgrowth cones to netrin can be corre
lated with changes in the expression of either UNC5 or DCC. At the transcriptional level,
mis-expressing the homeobox transcription factor even-skipped in D. melanogaster resulted in
disruption ofunc5 expression and motoneuron axon guidance defects.88 Local protein synthe
sis within the growth cone is required for chemoattraction of cultured X laeuis neurons to
netrin.89The newly synthesized proteins have been suggested to influence either the recovery
ofgrowth cones from desensitization, or netrin signal transduction directly.9O Conversely, DCC
function is negatively regulated by proteolysis, including both extracellular metalloproteinase
implicated in shedding of the DCC ectodomain.i" and ubiquitination of the DCC intracellu
lar domain through an interaction with Siah-l , a RING domain containing protein that pro
motes DCC degradation via the ubiquitin-proteasome pathway.92,93 In mammals, the intracel
lular domains ofUNC5 proteins are substrates for caspases.94

Intracellular concentrations of cyclic nucleotides arc keyregulators of growth cone respon
siveness to several guidance cues (see Chapter 10 for further discussion). Manipulating the
intracellular concentration of cAMp, thereby activating protein kinase A (PKA), regulates the
response of growth cones to netrin-L Initial experiments demonstrated that axons of cultured
X laeuis spinal neurons attracted to a pipette puffing netrin-l , were instead repelled when PKA
was inh ibited.95These studies led to the proposal that PKA can control the direction ofgrowth
cone turn ing by regulating intracellular signal transduction pathways downstream ofnetrin-L
PKA activation has been shown to selectively recruit DCC from an intracellular vesicular pool
to the plasma membrane of commissural neuron growth cones, and the increased levels of
DCC potentiate the outgrowth and turning response of these neurons to netrin_1.96.97 Inter
estingly, activation of protein kinase C (PKC) induces endocytosis ofUNC5 homologues re
sulting in cultured cerebellar granule cell neurons switching from chemorepellent to
chemoattractant responses to netrin-l.98These findings suggest that extracellular factors that
regulate PKA and PKC will influence axon outgrowth by determining which receptors are
presented by the growth cone.

Other Potential Netrin Receptors
Other receptors , in addition to DCC and UNC5 proteins, have been suggested for netrins

1-3. The G-protein coupled adenosine receptor, AlB, was reported to bind netrin-I and
cooperate with DCC in spinal commissural axon guidance.99 However, subsequent studies
provided evidence that AlB is neither expressed by these neurons nor required for commis
sural axon guidance in response to netrin-1.67 The a6~4 and a3~1 integrins bind netrin-I
and these interactions have been implicated in the development of the pancreas. 1OO Given
the homology of the N-terminus of netrin-I to laminins, it might be predicted that netrins
would bind integrins through N-terminal domains; but surpris ingly a6~3 and a3~1 integr ins
interact with a highly charged sequence of basic amino acids at the C-terminus of netrin-I
that is not homologous to laminins. While these findings raise the exciting possibility that
integrins may funcrion as netrin receptors in other contexts, the significance ofnetrin-integrin
interactions in vivo remains to be demonstrated. In contrast to the secreted netrins, netrin-Gs
bind transmembrane proteins called the netrin-G ligands (NGL) (Fig. 3B) and netrin-Gs do
not appear to interact with DCC, neogenin, or the UNC5 proteins.24,101

Netrin in the Adult Nervous System
Netrins and netrin receptors are expressed in the adult vertebrate nervous sys

tem.9,21 ,22,24,25,33.102-108 Netrin-l is expressed by many types of neurons and by myelinating



26 Axon Growth and Guidance

glia: oligodendrocytes in the CNS33and Schwann cells in the PNS. 105,107 Subcellular fraction
ation ofCNS white matter indicated that netrin-l is enriched in periaxonal myelin membranes
(Fig. 1H),33 suggesting that it may normally mediate interactions between axonal and oligo
dendrocyte membranes. Expression by mature myelinating oligodendrocytes raises the possi
bility that netrin-I may influence axon regeneration. Notably, netrin-L, DCC and UNC5s
influence the development of the corticospinal tract, which transmits information controlling
voluntary limb movements, sU.ffesting that netrin-I might play an important role following
spinal cord injury (Fig. 1G).IO , 10 During maturation of the mammalian sginal cord, DCC
expression is downregulated, while UNC5 homologue expression increases, I 8 indicating that
UNC5 repellent signaling may be the dominant response to netrin in the adult spinal cord.

An examination of the consequences ofspinal cord injury in the adult rat found that levels
of netrin-I mRNA and protein were substantially reduced at the site of injury itself, and this
decreased expression persisted for at least 7 months. III Netrin-l was not associated with the
glial scar, but netrin-I was expressed in an apparently normal distribution by neurons and
oligodendrocytes adjacent to the lesion. The expression ofDCC and UNC5 proteins was also
reduced after injury. Although DCC expression remained low, UNC5 expression recovered
and subsets of neurites adjacent to the lesion exhibited elevated UNC5 immunoreactivity.
These findings are consistent with earlier studies carried out in the optic nerve, indicating that
both DCC and UNC5B continue to be expressed by retinal ganglion cells following axotorny,
albeit at reduced levels, as their axons attempt to extend along either the injured optic nerve
itself or into a growth permissive peripheral nerve graft. 106,107 While a role for netrin-I in axon
regeneration remains to be demonstrated directly, these findings suggest a role for netrin-l as a
component ofCNS myelin that inhibits axon regeneration by neurons expressing UNC5 fol
lowing injury.

Although the functional significance of netrin-l expression in the adult CNS remains un
known, an intriguing hypothesis is that netrins may contribute to maintaining appropriate
connections in the intact CNS by restraining inappropriate axonal sprouting. A consequence
of this may be that netrins subsequently inhibit the reestablishment of connections following
injury. In line with this hypothesis, studies carried out in lamprey, a primitive vertebrate with
the ability to recover significant function following spinal cord transaction,112 indicate a corre
lation between UNC5 expression and poor axonal regeneration following lesion. 113 Impor
tantly, it may be possible to reverse such an inhibitory role for netrin in the adult mammalian
CNS by manipulating cAMP levels within regenerating axons. As described above, increasing
cAMP converts netrin-mediated repulsion to attraction, and encouraging findings indicate
that increasing the concentration of cAMP in neurons promotes axon regeneration in the ma
ture CNS following injury.1l4,115

Conclusion and Perspectives
Since their discovery a little over a decade ago, significant insight has been gained into

netrin function. Extending axons have been found to be directed by netrins in multiple con
texts. Netrins also direct the migration ofnumerous cell types during development, including:
inferior olivary,116 basilar pontine1l7 and LHRH neurons,118 as well as, striatal neuronal pre
cursors, 119 cerebellar granule cells,120 spinal accessory neurons41 and oligodendrocyte precur
sor cells.121,122 An exciting new avenue of research has identified roles for netrins in the mor
phogenesis of a variety of tissues.123,124 Netrins are now im~licated in the development of the
lung, 125,126 mammary glandl27 and vascular networks. 128-1 I Although aspects of this work is
in its initial stages, the studies described here identify roles for netrins in axon guidance, cell
migration, tissue morphogenesis, and the maintanance of appropriate cell-cell interactions,
supporting the conclusion that netrins influence development in a broad range of biological
contexts.
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