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Molecular Mechanisms ofAxonal Growth
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Abstract

O utgrowth ofaxons during neuronal development, as well as their regeneration after
injury, of the adult nervous system is controlled by specific extracellular cues which
are diffusible, or bound to cell membranes or extracellular matrix. The exact molecu

lar mechanisms through which these extracellular signals are integrated by the growing axon,
are not yet well defined. However, it is widely accepted that most, if not all, signaling cascades
triggered by guidance cues eventually converge onto the cytoskeleton. The action ofextracellu
lar guidance factors is thus modulated not only by specific membrane receptors, but also by
cytoskeletal and cytoskeleton-associated molecules within the axon. In fact, the cytoskeleton
represents a point of convergence and integration of both neuron-intrinsic and extrinsic fac
tors. Moreover, in recent years, there has been increasing evidence for the involvement of a
coordinated cross-talk between actin filaments and micro tubules, the two main components of
the growth cone cytoskeleton. Their reorganization is complex and involves numerous
cytoskeleton-associated proteins whose function is regulated via activation or inhibition of

. ul . al' h 1-4partie ar sign mg pat ways.

Introduction
The growth cone, highly motile distal tip of the axon, shares many properties with other

motile structures, such as the leading edge of migrating cells. This is reflected in a similar
cytoskeletal organization of these subcellular compartments, and the use ofcommon signaling
pathways, such as the one involving Rho-GTPases (see below). Despite these similarities, the
behavior of neurons appears more complex than that of other cell types, in that they extend
very long processes, and exhibit quite "sophisticated" responses when confronted to extracellu
lar cues. Expression ofcytoskeleton-associated molecules specific for the neuronal growth cone
may, at least in part, explain some unique features ofthis motile structure (for review refs. 5-8).

Here, we will describe in some detail the cytoskeletal network within the neuronal growth
cone, and how its organization is regulated in response to extracellular factors by integration of
signaling pathways.

The Neuronal Growth Cone and Its Cytoskeletal Organization
Neurites should be thought ofas exceptionally differentiated cellular processes. The growth

cone tipping an axon (or dendrite) is an extremely motile and dynamic structure that explores
the environment. To guide an axon towards the appropriate target, the growth cone fulfills
different functions: it acts as sensor of environmental cues, signal transducer, and motility
device. Growth cone advance is mediated by the polymerizationldepolymerization ofcytoskeletal
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elements, and their specific interactions. The axonal cytoskeleton is composed of three main
filamentous polymers: neurofilaments, microtubules and actin microfilaments. Within the
growth cone, micro tubules and actin filaments are actually the major cytoskeletal components,
and have been the focus of most studies. Their spatial organization and relative position in the
growth cone define different, functionally specific zones, described in Figure 1.

The Peripheral Domain
The peripheral domain (P-domain) is the most distal part of the growth cone, a highly

dynamic, actin-rich structure. This domain bears lamellipodia, membranous flat veil-like pro
trusions, from which extend many filopodia, These very thin, finger-like structures contain
mainly actin filament bundles, and undergo permanent elonfation and retraction cycles as
they organize their content in response to the environmenr.v' In the P-domain, equilibrium
between actin polymerization and depolymerization (actin "treadmilling") constantly gener
ates protrusion forces, and retrograde flow of actin (see below).

The Transition Zone
The transition zone (T-wne) is situated at the interface between the actin-rich P-domain

and the MT-rich central domain. The molecular motor myosin, concentrated in the T-wne,
can serve to contract the actin network, thereby inducing the formation of an actin-filament
arc. II Movements of this arc, in association with retrograde actin flow, limit the penetration of
MTs into the P-domain.

The Central Domain
The centraldomain (C-dornain) representsthe main siteofMT polymerization.Neurofilarnents,

which transport vesicles and otganelles along with the MTs, are also present. The size of the
C-dornain varies in correlation to the growth mode ofthe axon: Relativelylarge when the growth
cone is pausing, whereas the C-domain exhibits a thinner shape during fast advance mode.

Actin Filaments andAssociated Proteins
Actin filaments (AFs) are helical polymers formed by addition of ATP-actin monomers.

AFs are polarized structures characterized by a "pointed" and a "barbed" end. Dissociation of
ADP-actin is favored at the pointed end, suggesting that polymerization occurs at the barbed
end, and depolymerization at the pointed endJ,12

Actin is present in both the P-domain and the T-wne, where it is organized in two different
types ofnetworks: 10,13,14 filopodia are composed of thick actin bundles, while in lamellipodia,
AFs are organized in a loose meshwork. Similarly, contraction of the actin meshwork in the
T-wne by myosin action results in formation of a thick actin arc, oriented perpendicularly to
the axonY

In the P-domain, AFs polymerize close to the distal membrane, and polymers are retro
gradely transported to the T-zone by a myosin-dependent mechanism.P Increased contractile
forces in the Tzone then induce severing and depolymerization ofAFs. This permanent actin
treadmilling accounts for the high dynamics of the P-domain. Moreover, the retrograde actin
flow generates a backward force suspected to limit MT invasion into the P-domain.

Dozens of actin-associated proteins have been described in the neuronal growth cone, and
were classified according to their function (for review see ref. 16). There are two main groups
regulating actin polymerizationl depolymerization:

ActinNucleation/Polymerization
Actin nucleation/polymerization factors increasing the number offree barbed ends inciden

tally increase actin polymerization. The Arp2/3 complex, thus, not only favors de novo actin
polymerization, but also by binding sideways to preexisting 6laments, creating a new branch
and hence a new barbed end (for review see ref 17). Members of the formin protein family
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Figure 1. Cytoskeleton growth cone organization. The growth cone, tippi ng an axon, isdivided
in three different, functional zones. The C-domain is the polymerization site of MTs, which are
thereafter stabilized in the axon shaft. The T-zone limits MTs penetration in the C-domain, and
contains a high density actin meshwork associated with myosin. The P-domain is very dynamic
and mainly contains actin, organized in bundles in filopodia, and meshwork in lamellipodia.
Transient interactions between actin filaments and MTs are observed in the P-domain that are
mediated by still unknown factors. MTs- and actin- associated proteins regulate theirtransport,
polymerization and stabilization.
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bind to the barbed end ofelongating actin polymers, enhance filament elongation, and prevent
binding of actin capping molecules (for review see ref 18).

ActinDepolymerizationlSevering
Actin depolymerizing factors (ADFs), as well as cofilins, are important regulators of actin

dynamics in the growth cone. Although encoded by different genes, ADFs and cofilin have
very similar effects, are regulated by reversible phosphorylation, and colocalize in the cells (for
review see ref 7). When phosphorylated, both bind to the rear end ofactin filaments, generat
ing actin fragments. Interestingly, actin severing leads to generation of new free barbed ends,
thereby promoting actin polymerization, a mechanism perpetuating the retrograde actin flow
(for review see refs. 7,19). Other proteins, such as gelsolin, stop actin polymerization by cap
ping barbed ends, and thereby induce depolymerization (for review see ref 20).

Thus, modulation ofactin polymerization by extracellular guidance cues via actin-associated
proteins provides a mechanism to regulate the progress of growth cones.

Microtubules andAssociatedProteins
Microtubule protofilaments are formed by spontaneous association of a/~ tubulin

heterodimers. 13 such protofilaments finally associate to form a hollow microtubule ofa diam
eter of 25 nm (for review see ref 21). Regulation of expression of different a and ~ tubulin
isoforms during axonal development and regeneration regulates MT stability.

The orientation of tubulin monomers makes MTs intrinsically polarized structures with a
"plus" and a "minus" end. In the axon, plus ends are oriented distally toward the growth cone.
Depolymerization mainly occurs at the minus end, while a constant cycle of polymerization/
depolymerization takes place at the plus end. 22,23

The frequency of polymerization/depolymerization or "rescue/catastrophe" events, as well as
the duration of pauses in between, characterizes the "dynamic instability" of microtubules. The
term dynamic instability describesan intrinsic pro~eny ofMTs that allowsthem to switch abrubtly
between phasesofelongation and rapid shortening. 2 MTs are organizedin parallelbundles through
out the axon shaft, and splay out when they enter the growth cone C-domain.13,24 During pauses,
MTs extend loops into the C-domain, and breakage ofthese loops upon regrowth results in highly
dynamic, small polymers capable to enter the P-domain and associatewith actin bundles. Indeed,
while MTs were previously thought to be restricted to the C-domain, recent progress in imaging
rechniques has provided evidence for MT-actin interactions within the P-domain. This interac
tion is fundamental for outgrowth, guidance and branching of the axon.11,25-28 Local stabilization
of MTs is also tightly regulated during these events29

,30 by specific post-translational modifica
tions on MTs, and by their interaction with specific associated proteins:

Post- Translational Modifications
Post-translational modifications of MTs include detyrosination/ryrosination, acetylation,

phosphorylation, polyglutamylation and polyglycilation (for review see ref 21). Unmodified
tyrosinated tubulin polymers are enriched in the distal part of the axon, while modified
detyrosinated or acetylated isoforms are found in the proximal pan of the axon, on "older" and
stable MTsY Although these modifications do not have a direct effect on MT stabilization.Y
tubulin modifications are frequently used as markers of MT stability. They may, however,
facilitate localization and interaction ofmicrotubule binding proteins, such as plus end-tracking
proteins (+TIPS33) and Microtubule Associated Proteins ( MAPs34,35) .

Proteins Associated to Mrs
Proteins associated to MTs include two groups of proteins that interact with MTs and

regulate their dynamic instability.
Structural MAPs such as MAPIA, MAPIB, MAP2, and Tau, bind, bundle, and stabilize

MTs. Their association with MTs is regulated by post-translational modifications ofrubulin, as
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well as their own post-translational modification, such as phosphorylation (for review see ref
36). MAPs are particularly abundant in the nervous system, and their subcellular localization is
strictly regulated. Some MAPs are preferentially associated with neuronal processes: MAP2 is
concentrated in dendrites, while tau and MAPlB are mainly found in axons (for review see
refs. 37,38). As a consequence, the spatial distribution of MAPs defines subcellular zones, in
which MTs are more or less stabilized. MAPs are generally important both during development
and in the adult nervous system. Maturation of the nervous system is accompanied by a tran
sition from MAPs typically extressed during the phase ofaxon growth, to other MAPs charac
teristic of mature neurons.39. 0 Certain MAPs, such as MAPIB and tau, are present in the
growth cone, and were shown to play an important role in neurite outgrowth from embryonic
neurons in vivo and in vitroY-44

Other MAPs, identified more recently,46,47 act as potent MT destabilizers. Among these are
stathrnin and SCG10, members of the same gene family, which are expressed in neurons and
promote MT depolymerization by increasing the rate of catastrophes (for review see ref 48).
SCG10 and stathmin are considered as growth-associated proteins, and their expression corre
lates with neurite outgrowth.

Although the dynamic state ofMTs has been shown to be important for neurite elongation
and growth cone turning, it is still not clear how MT dynamics are regulated. In fact, MTs are
known to be particularly labile within the growth cone,31,49 despite the rather high concentra
tion of MT-stabilizing MAPs, such as MAP 1B and tau. Therefore, it has been proposed that
the potent MT destabilizer, such as SCG10, might counteract the activity ofstabilizing MAPs,
contributing to the regulation ofMT dynamics.46,48

Recently, a novel type of MT binding proteins called +TIPs has been identified as being
specifically associated with the distal ends ofgrowing MTs. These proteins have gained consid
erable interest with respect to the regulation of MT dynamics and the intracellular transport
via MTs (for ref and review, see refs. 50,51), and also due to their anchorage to actin filaments
and adhesion sites. A few of them have been detected in neurons, namely, cytoplasmic linker
protein-170 (CLIP-170 ), CLIP-115, end-binding protein 1 (EB1) and EB3. Functions of
these proteins in growth cone MTs remains to be determined.

Intermediate Filaments
Neurofilaments (NFs) are the major intermediate filaments in neurons. The NF network is

composed of a NF-L (low molecular weight NF, 70 kD) core, associated to NF-M (medium
molecular weight NF, 150 kD) and NF-H (high molecular weight NF, 200 kD) chains. 53 The
function of NFs in transport of vesicles, membrane material and organelles has been exten
sively studied (for review see ref 54). In contrast, even ifNFs are found in the C-domain ofthe
growth cone, they do not seem to interact with axonal growth and pathfinding. Thus, transgenic
mice lacking axonal NFs are perfectly viable, and do not present any major defect in their
neural connections. 55

Molecular Motors
These molecules present a molecular motor domain capable of generating forces on

cytoskeletal polymers by means ofATP hydrolysis. They serve in transporting vesicles back and
forth along the axon shaft, and in addition, can generate forces on the cytoskeleton by moving
polymers relatively to each other. 56 Kinesin and dynein proteins are microtubule-dependent
motors and the polarized structure of MTs induces specificity in the direction of motor mol
ecules. Most kinesins move towards the plus end of MTs, whereas dynein complex moves
towards the minus end (for review see ref 57). Myosin proteins are actin-dependant motors
and rather move to the plus end of actin ftIaments. 58

The diverse cytoskeletal proteins expressed in the growth cone act in concert to mediate
axonal growth and pathfinding. They are regulated by extracellular cues, but also by the
axon-intrinsic program. Thus, throughout development and regeneration, the expression of
particular components, and their transport and final localization in the axon are tightly regulated.
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The subsequent assembly of components and their interactions in the growth cone eventually
modulates axonal outgrowth and pathfinding.

Mechanisms ofAxonal Elongation

Synthesis ofCytoskeletal Proteins
The bulk ofnew cytoskeletal proteins is produced in the cell body. Recently, however, there

is increasing evidence for a local synthesis in growing and regenerating axons, at least in small
amounts (estimated at 5%59), which can playa crucial functional role. Thus, it has been dem
onstrated that ribosomal proteins, translational initiation factors, and ribosome-bound mRNA
are present in axons, Moreover, protein synthesis occurs even when processes are separated
from their cell bodies.60,61 The rapidly growing list of identified intra-axonally synthesized
proteins includes eytoskeletal proteins (intermediate filaments as well as actin and rubulin),
heat shock proteins, endoplasmic reticulum proteins, metabolic proteins, anti-oxidant pro
teins, and proteins associated with neurodegenerative diseases(see ref 62). When communica
tion between processes and the cell body is interrupted by axotomy or colchicine treatment,
blocking local protein synthesis in regenerating axons results in rapid retraction of growth
cones, indicating a physiological importance for local synthesis during axonal regeneration'" as
well as during development 3 to respond to guidance factors.

Cytoskeletal Protein Transport
After their synthesis, eytoskeletal proteins have then to be transported to the site of axonal

growth. The first studies on axonal transport were performed in the adult during axonal regen
eration, and used radio labeled-methionine for tracing of newly synthesized proteins. They
showed a correlation between the rate of axonal regeneration, and the rate of the slow axonal
component (SCM). Tubulin and actin are transported in two peaks, differing in their velocity
and content. In mammals, the slower peak, SCb, is mostly composed of tubulin, while actin
moves faster in association with the SCa peak (reviewed in ref 65).

The polymerization status of actin and tubulin during their transport, as well as the exact
mechanism of their transport are still unclear and have been much debated in recent years.
Novel methods using fluorescent proteins and time lapse imaging may now yield new insight
into this problem.Y'Two models have been proposed: The classical"cargo" model assumes that
tubulin and neurofilament polymer transport uses the classicalmotor molecules. The "sliding
filament" model67,68 suggeststhat short tubulin polymers can be moved anterogradely on longer
MTs by dynein. NF transport was suspected to be linked to this MT transport with the NF
"piggy backed" on MTs, but recent evidences suggest that it may rather rely on the classical
cargo model.67,68

Less is known about anterograde transport of actin. Myosin seems to be the motor for at
least a subpopulation of para-axially aligned actin filaments.68

Axonal Elongation
During axonal elongation, 3 phases can be distinguished (reviewed in refs. 16,69): In the

initial protrusion phase, lamellipodia and filopodia extend from the tip of the axon, forming
the growth cone. This phase is mainly governed by actin dynamics, which in turn, are regulated
by Rho family GTPases, but is also modulated by MTs dynamics.7o The engorgement phase
that follows protrusion, consists in the invasion of MTs and organelles into the growth cone. It
depends on the dynamic instability ofMTs, since inhibition of these dynamics leads to a reduc
tion in axonal growth. 27,71,n During the final consolidation phase, the formation of actin
protrusion stops, and MTs become bundled. This phase probably relies on the activity and
interaction of microtubule- and actin-associatedproteins, although it is still not well elucidated.

Axonal elongation is modulated by extracellular factors that the growth cone senses in the
environment. Extracellular guidance cues elicit diverse intracellular signaling cascades. Here
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we will particularly focus on the signaling mediated by Rho-GTPases, as the consequences of
their activation on reorganization of the cytoskeleton has been well characterized.

Regulation of the Cytoskeleton byExtracellular Cues,
Role of Rho-GTPases

Regulation ofRho-GTPases
Rho-GTPases act as "molecular switches" by oscillating between an active, GTP-bound and

an inactive, GDP-bound state. The three best-characterized members of this family are Rho,
Rac and Cdc42. Their regulatory function on the actin cytoskeleton during axon outgrowth
and guidance has been extensively demonstrated (for review see refs. 73-75). Rho, Rac and
Cdc42 are generally considered to regulate formation of stress fibers (actin- and myosin-rich
structures), lamellipodia, and filopodia, respectively.

The activity ofRho-GTPases is itself modulated by three families offactors. GAPs (GTPases
activating proteins) facilitate hydrolysis of GTP by GTPases, and hence favor the inactive,
GDP-binding state of Rho-GTPases.76 GEFs (guanine nucleotide exchange factors) activate
GTPases by facilitating GDP/GTP exchange.77 Finally, GDIs (guanine nucleotide dissociation
inhibitors) inhibit GDP dissociation and maintain GTPases in an inactive state. GEFs/GDIsl
GAPs can be either specific for a given GTPase, or act simultaneously on several molecules.

In addition, Rho-GTPase activity can also be modulated by second messenger cyclic nucle
otides. Indeed, cAMP-dependent protein kinase A (PKA) reduces Rho-GEF activity,78 while
activating Rho-GDIs.79 RhoA is also directly inhibited upon phosphorylation by PKA.80,81 In
addition to its action on Rho-GTPases, PKA can directly act on their downstream targets,
including cytoskeletal components (see chapter by Piper et al.).

Binding of permissive or inhibitory factors to their neuronal receptors induces different
signaling cascades, which in turn leads to activation/inactivation of Rho-GTPases. Since Rho,
Rae and Cdc42 may also interact and thereby modulate themselves, it seems that the balance
between the activities of different GTPases, rather than activation of a single group, will con
trol the axonal response.

After binding to their membrane receptors, repulsive guidance cues activate Rho, while
inhibiting Cdc42 and Rae activity by acting on GTPase modulators (see Fig. 2). For example
ephrines, viaSrc kinase and RasGAP, inhibit p190RhoGAP.82,83 In parallel, the RhoGEF ephexin
is activated,84which leads to RhoA activation.

Semaphorins activate Rho and inhibit Racvia a slightlydifferent mechanism. The semaphorin
receptors Plexins are able to directly bind Rae and Rho. This binding then activates Rho, while
it sequesters Rae and inhibits its interaction with its downstream effector Pak.85

In contrast, outgrowth- and regeneration-permissive factors activate Cdc42 and Rae, while
inhibiting Rho. Neurotrophins for example, besides their trophic effect mediating gene tran
scription in the cell body, activate GEFs via a PI3-K signaling pathway,86,87 and thereby Cdc42.
Binding of the neurotrophin receptor p75 to RhoA inactivates this Rho-GTPase, and further
contributes to the attractive effect of neurotrophins.P Moreover, it has recently been demon
strated that RhoA-kinase and myosin-II are required for the maintenance of growth cone po
larity and guidance mediated by nerve growth factor,89 suggesting that localized activation of
different RhoGTPases is necessary for axonal pathfinding.

Effect ofRho-GTPases on the Cytoskeleton
Activation of Rho-GTPases leads to an important cytoskeletal remodeling. Their effects

converge on three main systems: actin polymerization/depolymerization, actin/myosin con
tractility, and microtubule reorganization, as represented in Figure 2.
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Figure 2. Rho GTPases signalling to the cytoskeleton. Rho-GTPases are controlled via their
associated partners by extracellular cues. Specific effectors mediate actions of Rho-GTPases
on the cytoskeleton. Theyfocus on three main effects: actin polymerization/depolymerization,
regulation of acto/myosin contractility, and microtubules polymerization/depolymerization/
stabiIization.
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Regulation ofActin Polymerization
Upon Cdc42 activation, N-WASP (N-Wiskott-Aldrich related protein), activates the Arp21

3 factor.90 Arp2/3 stimulates de novo actin polymerization (for review see ref 91). This factor
is also activated by Rac effectors IRSp53 and WASP related protein SCARIWAVE. 92

Conversely, actin depolymerizarion is induced by cofilin/ADF (Actin Depolymerizin~Fac
tor). Cofilin is activated by ~hosphatase SSH (slingshot) , and inhibited by LIM kinase. Rae
and Cdc42 activate LIM-K, while Rho and its downstream effector ROCK (Rho-associated
kinase) activate SSH , and as a consequence, promote actin depolymerizarion.P

Regulation ofActo-Myosin Contractility
Rho activation ofROCK increases myosin contractility by two converging pathways. ROCK

activation induces phosphorylation of myosin light chain 2 (MLC2) by activating mlosin light
chain kinase, while at the same time inhibiting myosin light chain phosphatase," ,97 An in
crease in MLC phosphorylation and myosin activity then leads to contraction of the actin
network.

Regulation ofMicrotubules
Rho-GTPases have been extensively described as actin modulators, but a growing number

of studies also suggest a function in regulation of MT dynamics. In particular, it has been
described that after Rho activation, the formin mDia not only favors actin nucleation,98 but
also stabilizes MTs via TIPS proteins EB1 and APc.99 Racl activity has a MT stabilizinyeffect,
since the Rac effector PAK inhibits the MT-severing protein StathminlOpI8.100

, lO These
pathways have mainly been characterized in nonneuronal cells, but we assume that the same or
similar mechanisms should also regulate neuronal cell motility. In neuronal cell lines, the Rhol
ROCK pathway has been shown to induce hyperphosphorylarion of two major MAPs, tau and
MAPIB, by GSK3~,102 thereby destabilizing MTs. Interestingly, Rho-GTPase activity is in
versely regulated by MT polymerization/depolymerization in nonneuronal cells: MT depoly
merization leads to release ofa RhoA activating GEF,103 whereas their polymerization activates
Racl by a still unknown mechanism. 104

This "retrograde signaling" from MTs to Rho-GTPases could be one way of coregulating
MTs and actin dynamics during motile events. Indeed, a strict coordination of actin and MT
systems is required for proper growth cone advance, turning and branching.13,25,29,I05,106 Be
sides those based on regulatory interactions involving Rho-GTPases, several hypotheses have
been put forward for a model ofcoupling between actin and MTs (for review see refs. 2,8,107) .
Structural interactions mediated by MT- and actin-binding proteins or protein complexes might
physically couple actin and MT movements (for review and see refs. 8,45). For example, in
addition to their interaction with MTs, some MAPs directly or indirectly interact with actin
filaments. Another hypothesis proposes that actin and MT movements are controlled by the
equilibrium between forces generated by molecular motors on the 2 types offtIaments. Accord
ing to this hypothesis, a balance between backward forces generated by myosin and forward
forces generated by dynein or kinesins should control advance or retraction of the axon. 56

In summary, during axonal outgrowth, extracellular signals converge on the reorganization
ofcyroskeletal proteins, particularly actin filaments and microtubules, and thereby control the
advance of the growth cone. On the other hand, specific expression and intrinsic modification
of cytoskeleral proteins also modulates the neuronal response to extrinsic factors, allowing for
diversity in the response to a specific guidance cue, and underlying the role of the cytoskeleton
as a convergence point during axonal outgrowth.

During the past two decades, a huge amount of data has been acquired detailing the mo
lecular mechanisms of axon outgrowth and guidance. Today, it seems possible to exploit these
data also in view of a better understanding of phenomena related to axonal plasticity in adult
nervous system. Thus, especially our growing knowledge of how exactly extracellular cues and
intracellular pathways ultimately converge on the axonal cytoskeleton, is of particular interest
for studies of axonal regeneration in the adult following a traumatic lesion.
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Growth Cone of Regenerating Axons
In the adult nervous system, particularly of mammals, understanding why certain types of

neurons regenerate their axons while others do not, may provide clues to establish a therapy for
each type oflesion, beit traumatic, degenerative, or linked to developmental (genetic) anomalies.

In order to regenerate, adult neurons should have the intrinsic capacity to survive a trau
matic or degenerative lesion, and to activate a cell-autonomous program that will end in plastic
changes in their network. At the same time, this program is influenced by interactions between
neurons and neighboring cells (glia in particular), mediated by cell- and substratum- adhesion
molecules and their receptors, and by a variety ofsecreted factors into the extra-cellular space.
A number ofkey players in these regenerative processes have already been identified. However,
the relationship between individual molecular events, especially the triggering of gene expres
sion and the corresponding cascade ofsignaling pathways, are still poorly understood. Here we
summarize some relevant findings from studies that were undertaken to understand how the
axonal cytoskeleton is reorganized in response to a lesion, particularly in response to axotomy.

Initiation ofAxonal Regeneration after Axotomy
The regeneration ofan amputated axon involves the transformation of a stable axonal seg

ment, i.e., a stable structure specialized in propagating action potentials, into a highly motile
and complex tip, a new growth cone, that will sense the surrounding environment and guide
regenerating neurites to their targets. This is a critical step in the process of recovery from
neural injury. Most of the studies on the initiation of the regeneration of damaged axon were
done on Aplysia neurons lO8,109 where it has been shown that cytoskeleton reorganization pro
motes a growth cone formation, allowing elongation of a new axon.

Gene Expression Recapitulates Developmental Program
duringAxonal Regeneration

In response to injury, such as axotomy, adult neurons shutdown their specific differentiated
functions and activate growth program through local intracellular signaling cascade. Coordi
nated sequence ofgene expression is induced for synthesis and transpon ofproteins that main
tain axonal plasticity, growth cones are formed and ultimately functional synaptic contacts are
restored. In vertebrates, these events occur only in the peripheral nervous system (PNS). In
contrast, most lesions in the central nervous system (CNS) result in abortive regeneration
associated with decrease in protein synthesis and may ultimately induce atrophy or death. The
coordination of gene expression pattern after axonal injury is complex and is determined by
both intrinsic factors to neurons as well as environment factors.

Cytoskeleton Synthesis in Injury-Induced Axonal Plasticity
The contribution of cytoskeleton proteins to the axonal regeneration process is crucial.

Although several studies on neuronal cytoskeleton were undertaken during the development,
its regulation during axonal regeneration remains poorly understood. Nevertheless, cytoskel
eton proteins in regenerating axon undergo quantitative and qualitative changes in synthesis,
organization and protein transport, similar to that of growing axon during development.U"

In vertebrates, the recapitulation of the developmental cytoskeleton-protein expression has
been mainly demonstrated in the peripheral sensory neurons of the dorsal root ganglia (DRG)
and motor neurons (MN, in the CNS). These neurons are able to regenerate after peripheral
injury.

MN or DRG axotomy is followed by an increase in levels of specific tubulin isoforms, as
well as beta actin and peripherin, while levels of neurofilaments (NF), known to regulate the
axon caliber I I I decrease. The down regulation ofNF gene expression was suggested to facilitate
supplying structural elements toward the distal end of the regenerating axon, resulting in a
selective acceleration in the transport rate of tubulin and actin (for review see ref. 112).
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It is important to note that although the capacity of axonal regeneration is attributed to
PNS neurons, it is now well accepted that, in response to CNS injury, there are some neu
ronal populations able to initiate an axonal growth program to regenerate. This has been
observed during the first days after axotomy of rubrospinal neurons, where the amounts of
GAP43 and cytoskeleton proteins such actin and tubulin increase. Sustained only in few
neurons, a decrease in these proteins occurs thereafter, associated with neuronal atrophy,u3
This study demonstrated that for some CNS neurons, the failure to regenerate after axotomy
is not due to the failure to initiate gene-expression changes, but mainly to due to the environ
ment. Depending on extracellular cues, the signals converge in growth cone on cytoskeleton
protein reorganization to promote axonal regeneration (PNS) or to impede regeneration (CNS).

Following a traumatic lesion, severalinhibitory guidance cues are expressed in the CNS and
are partly responsible for the poor regenerative response ofaxotomized neurons. Besides the
inhibitory effect of these molecules, loss of regenerative capacities in the adult nervous system is
thought to coincide with myelination. Indeed, several inhibitors of regeneration have been de
scribed on the myelinating cells surface, and, in the adult, contribute to the failure of regenera
tion in the CNS (for review see ref 114). Furthermore, the effect of these molecules, as well as
other extracellular factors, on axonal regeneration is modulated by the intrinsic neuronal state.

How Intrinsic Neuronal Properties Control the SuccessofRegeneration!

cAMP
The best characterized example of intrinsic neuronal state controlling axonal regeneration

comes from demonstration that elevating intracellular cAMP concentration of adult neurons
to reach that ofyoung neurons allow them to regenerate on a central myelin substrate.115-117

Binding of myelin inhibitors to their receptors induces, reRulsive guidance cues during
development, an elevation of Rho activity via a RhoGDL ll8, 19 The exact mechanisms by
which myelin inhibitors inhibit axonal regeneration are still unclear, but probably involve, as
during the development, an actin depolymerization/contracrion and a MTs destabilization.
The precise effect of cAMP in overcoming myelin inhibition is not known. However, for a
short phase, PKA action on Rho-GTPases may explain a part of the mechanism (see above). A
second, transcription-dependant phase is induced by CREB activation. The multiple targets of
this transcription factor are unknown, but one can reasonably consider that it may include
cytoskeleton proteins. Moreover, it has been demonstrated that CREB activation leads to
polyamines synthesis, which are known to modulate the cytoskeleton. 12l, 122

Cytoskeleton Associated Protein, GAP43/CAP32
One ofthe first and best studied example ofa cytoskeletal regeneration-associated protein is

GAP43, a phosphoprotein associated with growth cones, whose expression is also induced in
adult regenerating axons (for review see ref 123). GAP43 is one of the final targets of calcium
signals. GAP43 is an actin capping protein that blocks microfilament elongation and appears
to be an important regulator ofgrowth cone motility during development. Phosphorylation of
GAP43 by the protein kinase C (PKC) affects its interaction with actin filament and might
therefore trigger actin polymerization and hence regulating axonal outgrowth (for review see
ref. 135). Furthermore, it plays a significant role in regeneration, together with CAP23, a
functionally related protein that is also upregulated by injury (ref 124 and references therein).

Cytoskeleton Associated Protein, MAPIB
Severalstudies strongly suggest an axon growth-related function ofMAP1B that is regulated

by phosphorylation (for review see ref 38). Although generally down-regulated in the adult,
MAP1B is constitutively highly expressed in adult DRG and MN. After sciatic nerve lesion, the
phosphorylated forms ofMAP 1B (MAP1B-P) is enriched in the more distal portion ofthe axon
and is associated with peripheral regeneration of these neurons. 125,126 In adult CNS, axonal
MAP1B-P remains detectable in areasthat retain axonal plasticity,127,128 and can alsobe reinduced
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in injury-induced axonal reorganization.129.130 Adult DRG from MAP1B null allele mutant
mice 31are able to regenerate their axons but exhibit two main abnormalities: (1) the number of
terminal and collateral branching issignificantly increased and (2) the turning capacity ofgrowth
cones, i.e., "choice" of a proper orientation, is impaired.45 In developing neurons, both growth
cone turninglO6 and axonal branch formation25 are known to involve local cross-talk between
actin and MTs. MAPIB capacity to bind both actin ftIaments and microtubules132-134 suggests
that MAPlB is involved in the locally coordinated assembly of cytoskeleton components re
quired for branching and straighr directional axon growth.45 The developmental role of
cytoskeleton-associated proteins in the organization of the cross-talk between MTs and
actin-filamentsf appears thus to be maintained during axonal regeneration in the adult.

In conclusion, it seems evident that most, if not all signaling cascades triggered by extracel
lular stimuli converge onto the cytoskeleton. The subsequent reorganization ofactin-filaments
and micro tubules is a complex phenomenon, and involves numerous cytoskeleton-associated
proteins, whose function is fine-tuned via activation or inhibition ofparticular signaling path
ways. Specific expression of some of these cytoskeleton-associated proteins in the neuronal
growth cone may, at least in part, explain some unique features ofthis motile structure. Further
studies, such as the one examining the coordinated cross-talk between actin filaments and
rnicrotubules during axonal branching and growth cone guidance to the appropriate target,
will help determine the precise molecular mechanisms of axonal growth.

In contrast to neural development, the pathways inolved in triggering cytoskeletal reorgani
zation during regeneration are less well known, and this field of research is attracting great
inte rest. Indeed, the ability of regenerating axons to respond to extracellular signals present in
their environment depends on both the intrinsic neuronal state , and the presence (or absence)
of specific cytoskeleton-associated proteins. It may be particularly interesting to determine a
potential central convergence point of inhibitory extrinsic signaling. Modulating the intrinsic
state ofthe neuron, and the response ofthe cytoskeleton to environmental factors, may provide
clues for search of therapeutic targets to promote axonal regeneration after injury.
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