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Preface

From the beginning of the 20th century, finance has consolidated its position
as a science of major practical importance for corporate entities, firms, or-
ganizations, and investors. Over this period finance has undergone significant
change keeping pace with the technological innovations that occurred after the
World War II and the socio-economic changes that affected the global business
environment. The changes in the field of finance resulted in a transformation
of its nature from a descriptive science to an analytic science, involved with
the identification of the relationship among financial decisions and the de-
cision environment and ultimately to an engineering science, involved with
the design of new financial products and the development of innovations with
regard to financial instruments, processes, and solutions.

This transformation began in the late 1950s with the work of Markowitz
on portfolio selection and later, during the 1970s, with the work of Black and
Scholes on option pricing. These pioneering works have demonstrated that the
descriptive character of financial theory was gradually progressing toward a
more analytic one that ultimately led to the engineering phase of finance by
the late 1980s.

Several financial researchers and practitioners consider the engineering
phase as a new era in finance. This led to the introduction of the term
“financial engineering” to describe the new approach to the study of financial
decision-making problems. Since the late 1980s, financial engineering has con-
solidated its position among financial researchers and practitioners, referring
to the design, development, and implementation of innovative financial instru-
ments and processes and the formulation of innovative solutions to financial
decision-making problems.

For an analyst (practitioner or academic researcher) to be able to address
the three major aspects of financial engineering (design, development, im-
plementation) in an innovative way, the knowledge of financial theory is not
enough. While the financial theory constitutes the underlying knowledge re-
quired to address financial engineering problems, some synthesis and analysis
are also necessary for innovation. Thus, the major characteristic of this new
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context is the extensive use of advanced decision analysis and modeling tools to
manage the increasing complexity of the financial and business environments.
These tools originate from a variety of different disciplines including statistical
analysis, econometrics, artificial intelligence, and operations research. Thus,
the role of financial decision makers (financial engineers) within the financial
engineering context becomes even more complex. They are involved not only
with the application of the financial theory, but also with the implementa-
tion of advanced methodological tools and quantitative analysis techniques in
order to address effectively financial decision problems.

Over the past decade the financial and business environments have under-
gone significant changes. During the same period several advances have been
made within the field of financial engineering, involving both the methodolog-
ical tools used as well as the application areas. These findings motivate the
preparation of a book with the aim to present, in a comprehensive way, the
most recent advances within the field of financial engineering, focusing not
only on the description of the existing areas in financial engineering research,
but also on the new methodologies that have been developed for modeling
and addressing financial engineering problems more efficiently.

The objective for the preparation of this book has been to address this
requirement through the collection of up-to-date research and real-world ap-
plications of financial engineering, in a comprehensive edited volume.

The book is organized into four major parts, each covering different aspects
of financial engineering and modeling.

Part I is devoted to portfolio management and trading. It covers several
important issues, including portfolio optimization, efficiency analysis, financial
trading, and technical analysis.

The first paper in this part, by Steuer, Qi, and Hirschberger, discusses
the role of multicriteria optimization in portfolio selection. In the traditional
portfolio theory the expected return and the associated variance are the only
two criteria used to select efficient portfolios. The authors extend this setting
to a multicriteria context. This seems to be a more realistic setting, because
beyond the random variable of portfolio return, an investor’s utility function
can take additional stochastic and deterministic arguments, such as dividends,
liquidity, the number of securities in a portfolio, turnover, and the amount of
short selling. The authors discuss the stochastic and deterministic nature of
portfolio selection, illustrate how multiple-argument utility functions lead to
multiple criteria portfolio selection formulations, analyze the mean-variance
nondominated frontier and the nondominated sets of multiple criteria portfolio
selection problems, and discuss issues involved in their computation.

The second paper, by Konno and Yamamoto, involves the recent de-
velopments in integer programming formulations for financial optimization
problems. In the context of financial engineering optimization plays a major
role, especially in large-scale and difficult problems. Konno and Yamamoto
show that nonconvex financial optimization problems can be solved within
a practical amount of time using state-of-the-art integer programming
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methodologies. The authors focus on three classes of problems. The first
involves mean-variance portfolio optimization subject to nonconvex con-
straints related to the minimal transaction unit and the number of assets in
the portfolio. Nonconvex transaction costs are also discussed. It all cases it
is shown that these problems can be formulated as integer linear program-
ming problems and solved to optimality using a convex piecewise linear risk
measure such as absolute deviation instead of variance. A similar approach
is also used in a second class of problems related to “maximal predictability
portfolio optimization” and a solution algorithm is given. The third class of
problems is related to attribute selection in discriminant analysis for failure
prediction.

The third paper, by Hall and Satchell, considers the trade-off between
portfolio return and portfolio downside risk that has arisen because of in-
adequacies of the mean-variance framework and regulatory requirements to
calculate value at risk and related measures by banks and other financial in-
stitutions. Analytical results are given that allow one to better understand
the form of mean-risk frontiers. The authors show that the set of minimum
risk portfolios are essentially the same under ellipticity for a wide class of risk
measures. The authors also derive explicit expressions for mean-value at risk,
mean-expected loss and mean-semivariance frontiers under normality and pro-
pose extensions for portfolio simulation and for the analysis of fairly arbitrary
risk measures with arbitrary return distributions.

In the fourth chapter of Part I, Deville provides a complete overview of
exchange traded funds (ETFs), which have emerged as major financial innova-
tion since the early 1990s. The chapter begins with the history of ETFs, from
their creation in North American markets to their more recent developments
in the U.S. and European markets. The mechanics of ETFs are then presented
along with the current status of the ETF industry. The chapter also covers
several important aspects of ETFs, including their pricing efficiency compared
to closed-end funds, the relative performance of ETFs over conventional index
mutual funds, the impact of ETFs on the market quality of the stock compo-
nents of the underlying indices, as well as the efficiency of index derivatives
markets and the pricing discovery process for index prices.

In the final chapter of Part I, Chen, Kuo, and Hoi investigate the devel-
opment of technical trading rules using a computational intelligence method-
ology. Technical analysis is widely used by practitioners in securities trading,
but the development of proper trading rules in a dynamic and evolving envi-
ronment is cumbersome. Genetic programming (GP) techniques is a promising
methodology that can be used for this purpose. The chapter presents a thor-
ough examination of the applicability and performance of GP in this context
using data from different markets. This extensive study enriches our under-
standing of the behavior of GP in financial markets, and the robustness of
their results.

The second part of the book is devoted to risk management, which is an
integral part of financial engineering. In the first chapter of this part, Ioannidis,
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Miao, and Williams provide a review of interest rate models. Interest rate
modeling has been a major research topic in financial engineering with direct
applications in the pricing of rate-sensitive instruments. This review addresses
three general approaches to interest rate modeling, namely single and multi-
factor models of the short rate, models of forward rates, and finally LIBOR
models. The chapter focuses on key results and pertinent pricing formulas and
discusses several practical approaches to implementing short rate models.

In the next chapter, Dash and Kajiji illustrate the contribution of an arti-
ficial intelligence methodology in modeling volatility spillovers. The analysis
is implemented in two stages. The first stage focuses on the development of
a radial basis function neural network mapping of government bond excess
returns. The second stage establishes the overall effectiveness of the model to
control for the known conditional volatility properties that define transmis-
sion linkages among government bond excess returns. The developed network
model provides helpful policy inferences and research findings and it proves to
be extremely efficient in the separation of global, regional and local volatility
effects.

In the third chapter of Part II, MacLean, Zhao, Consigli, and Ziemba
develop a model of market returns that, under certain conditions, determines
the emergence of a speculative bubble in the economy and drives bond and
equity returns more generally. The model has diffusion parameters, which are
random variables plus shock/jump terms with random coefficients. The model
incorporates both over-and under-valuation of stocks, and an algorithm is
proposed for the estimation of its parameters. Empirical results indicate that
the procedures are able to accurately estimate the parameters and that there
is a dependence of shock intensity on the state of returns.

The last chapter of Part II, by Topaloglou, Vladimirou, and Zenios, an-
alyzes alternative means for controlling currency risk exposure in actively
managed international portfolios. Multistage stochastic programming models
are extended to incorporate decisions for optimal selection of forward con-
tracts or currency options for hedging purposes, and a valuation procedure
to price currency options is presented with discrete distributions of exchange
rates. The authors also provide an empirical analysis of the effectiveness of
alternative decision strategies through extensive numerical tests. Individual
put options strategies as well as combinations of options are considered and
compared to optimal choices of forward contracts, using static tests and dy-
namic backtesting. The results show that optimally selected currency forward
contracts yield superior results in comparison to single protective puts. More-
over, it is shown that a multistage stochastic programming model consistently
outperforms its single-stage counterpart and yields incremental benefits.

The third part of the book is devoted to the applications of operations re-
search methods in financial engineering. This part consists of three chapters. In
the first one, Kosmidou and Zopounidis give an overview of the main method-
ologies that have been used for asset liability management, focusing on bank-
ing institutions. Different types of models are covered, which are categorized
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into two major groups: deterministic mathematical programming models and
stochastic models. An example of a deterministic model is also given, in the
form of a goal programming formulation, which uses Monte Carlo simulation
for handling the interest rate risk.

The next chapter, by Kunsch, is devoted to capital budgeting. Kunsch
gives a detailed tutorial overview of modern operations research methods ap-
plied in this field. The chapter begins with an introduction to the traditional
capital budgeting process and then presents several extensions, including the
application of multicriteria decision aid methods, the treatment of uncertainty
in the context of the fuzzy sets theory (e.g., fuzzy arithmetic and fuzzy rule
systems), and the use of real options in the investment process. All these issues
are discussed in a unified context and their connections are highlighted.

In the last chapter of Part III, Nagurney overviews some of the major de-
velopments in financial engineering in the context of financial networks. The
chapter begins with a discussion of financial optimization problems within a
network context. Then, financial network equilibrium problems that involve
more than a single decision maker are analyzed. The presentation is based on
the extension of the classical mean-variance portfolio optimization to multiple
sectors. The dynamics of the financial economy are also explored with the dis-
cussion of dynamic financial networks with intermediation and the integration
of social networks with financial networks is explored. Optimality conditions,
solution algorithms, and examples are also presented.

The last part of the handbook includes three chapters on mergers/acquisi-
tions and credit rating models. The first paper, by Chevalier and Redor, sur-
veys the theories on the choice of the payment method in mergers and acquisi-
tions and the empirical studies on this topic. Initially, asymmetric information
models are discussed, which assume that both sides (i.e., the target and the
bidder) have private information on their own value. Then, the impact of taxa-
tion is reviewed, followed by the presentation of theories related to managerial
ownership and outside control. Additional issues discussed include past per-
formances, investment opportunities, business cycles, capital structure, the
delay of completion theory, as well as acquisitions for non-public firms.

The next chapter, by Pasiouras, Gaganis, Tanna, and Zopounidis, is also
related to mergers and acquisitions. The authors present empirical results on
the potential of developing reliable models for identifying acquisition targets,
focusing on the European banking industry. The relevant literature on this
topic is reviewed and a methodology is developed based on nonparametric
pattern recognition approach, namely support vector machines. The method-
ology is applied to a sample of European commercial banks and issues such
as the selection of proper explanatory variables and the performance of the
resulting models are discussed.

The last chapter of the handbook, by Papageorgiou, Doumpos, Zopounidis,
and Pardalos, is devoted to the development of credit rating systems, which
have become an integral part of the risk management process under the new
Basel capital adequacy accord. The authors discuss the requirements of the
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new regulatory environment, the role of credit rating systems as well as their
specifications and development procedure, along with their use for estimating
the minimum capital requirements. A review of the current rating systems
and methodologies is also presented together with a survey of comparative
studies. On the empirical side, the chapter presents detailed results on the
relative performance of several methodologies for the development of credit
rating systems, covering issues such as variable and sample selection as well
as model stability.

Sincere thanks must be expressed to all the authors, whose contributions
have been essential in creating this high-quality volume. We hope that this
volume will be of great help to financial engineers/analysts, bank managers,
risk analysts, investment managers, pension fund managers, and of course to
financial engineering researchers and graduate students, as reference material
to the recent advances in the different aspects of financial engineering and the
existing methodologies in this field.

Constantin Zopounidis
Michael Doumpos

Panos M. Pardalos
May 2008
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Portfolio Selection in the Presence of Multiple
Criteria

Ralph E. Steuer1, Yue Qi2, and Markus Hirschberger3

1 Terry College of Business, University of Georgia, Athens, GA 30602-6253, USA
rsteuer@uga.edu

2 Hedge Fund Research Institute, International University of Monaco, Principality
of Monaco

3 Department of Mathematics, University of Eichstätt-Ingolstadt, Eichstätt,
Germany

1 Introduction

There has been growing interest in how to incorporate additional criteria
beyond “risk and return” into the portfolio selection process. In response, our
purpose is to describe the latest in results that have been coming together
under the topic of multiple criteria portfolio selection. Starting with a review
of conventional portfolio selection from a somewhat different perspective so
as better to lead into the topic of multiple criteria portfolio selection, we start
from the basics as follows.

In portfolio selection, two vectors are associated with each portfolio. One
is used to “define” a portfolio. The other is used to “describe” the portfolio.
The vector used to define a portfolio is an investment proportion vector. It
specifies the proportions of an amount of money to be invested in different
securities, thereby defining the composition of a portfolio. The length of an
investment proportion vector is the number of securities under consideration.

The other of a portfolio’s two vectors is a criterion vector. A portfolio’s
criterion vector contains the values of measures used to evaluate the portfolio.
For instance, in mean-variance portfolio selection, criterion vectors have two
components. One is for specifying the expected value of the portfolio’s return
random variable. The other is for specifying the variance of the random vari-
able. The idea is that the variance of the random variable is a measure of risk.
In reality, investors may have additional concerns.

To accommodate multiple criteria in portfolio selection, we no longer call
an “efficient frontier” by that name. Instead we call it a “nondominated fron-
tier” or “nondominated set.” Terminologically, criterion vectors are now either
nondominated or dominated. This does not mean that the term “efficiency”
has been discarded. Efficiency is simply redirected to apply only to investment
proportion vectors in the following sense. An investment proportion vector is

C. Zopounidis, M. Doumpos, and P.M. Pardalos (eds.) Handbook of Financial 3
Engineering, doi: 10.1007/978-0-387-76682-9 1,
c© Springer Science+Business Media, LLC 2008
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efficient if and only if its criterion vector is nondominated, and an investment
proportion vector is inefficient if and only if its criterion vector is dominated.

A portfolio selection problem is a multiple criteria portfolio selection prob-
lem when its criterion vectors have three or more components. In conventional
portfolio selection, with criterion vectors of length two, the nondominated set
is typically a curved line in two-dimensional space, which, when graphed, usu-
ally has expected value of the portfolio return random variable on the vertical
axis and variance (or more commonly, standard deviation) of the same ran-
dom variable on the horizontal axis. But, when criterion vectors are of length
three or more, the nondominated set is best thought of as a surface in higher-
dimensional space. Because of the increased difficulties involved in computing
nondominated surfaces and communicating them to investors, multiple cri-
teria portfolio selection problems can be expected to be much more difficult
to solve than the types of problems we are used to seeing in conventional
portfolio selection.

Multiple criteria portfolio selection problems normally stem from multiple-
argument investor utility functions but can stem from a single-argument util-
ity function.1 While portfolio selection problems with criterion vectors of
length two are the usual case with single-argument utility functions (when
the argument is stochastic), it is possible for a multiple criteria portfolio se-
lection problem to result from a single-argument utility function when the
investor’s nondominated set is a consequence of three or more measures de-
rived from the same single stochastic argument. An example of this is when a
mean-variance portfolio selection problem (which revolves around the single
random variable of portfolio return) is extended to take into account addi-
tional measures, such as skewness, based upon the same random variable.

Despite the above, we will primarily focus on the more general and in-
teresting cases of multiple criteria portfolio selection problems resulting from
multiple-argument utility functions. Beyond the random variable of portfolio
return, utility functions can take additional stochastic and deterministic ar-
guments. Additional stochastic arguments might include dividend, liquidity,
and excess return over of a benchmark random variables. Deterministic argu-
ments might include the number of securities in a portfolio, turnover, and the
amount of short selling.

Conventional mean-variance portfolio analysis (described as “modern port-
folio analysis” in Elton et al., 2002) dates back to the papers of Roy (1952)
and Markowitz (1952). In addition to introducing new ways to think about
finance, the papers are important because they symbolize different strategies
for solving portfolio selection problems. In computing his “safety first” point,
Roy’s paper symbolizes approaches that attempt to directly compute portfo-
lios whose criterion vectors possess prechosen characteristics.

1 Although we use the term utility function throughout, preference function or
value function could just as well have been used.
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On the other hand, Markowitz’s approach is more reflective. It recognizes
that there are likely to be differences among investors. It essentially eschews
preconceived notions, preferring to compute the entire nondominated set first.
Then, only after studying the nondominated set should an investor attempt
to identify a most preferred criterion vector. Overall, Markowitz’s solution
approach consists of the following four stages:

1. Compute the nondominated set.
2. Communicate the nondominated set to the investor.
3. Select the most preferred of the points in the nondominated set.
4. Working backwards, identify an investment proportion vector

whose image is the nondominated point (i.e., criterion vector) selected
in stage 3.

Under assumptions generally accepted in portfolio selection, these four stages,
when properly carried out, will lead to an investor’s optimal portfolio. Because
of the widespread acceptance of Markowitz’s approach, his name is virtually
synonymous with portfolio selection, although Markowitz (1999) has tried to
see that Roy also receives credit.

Despite the degree to which mean-variance portfolio selection dominates
the landscape, there has almost always been a slight undercurrent of multiple
objectives in portfolio selection. However, this undercurrent has become more
pronounced of late. For instance, Steuer and Na (2003), the number of papers
reported as dealing with multiple criteria in portfolio selection has increased
from about 1.5 to 4.5 per year over the period from 1973 to 2000. Such papers
can be grouped into three categories.

In the first category we have overview articles such as those by Colson and
DeBruyn (1989), Spronk and Hallerbach (1997), Bana e Costa and Soares
(2001), Hallerbach and Spronk (2002a, 2002b), Spronk et al. (2005), and
Steuer et al. (2005, 2006a, 2006b).

In the second category, in the spirit of Roy, are articles that attempt to di-
rectly compute points on the nondominated surface that possess certain char-
acteristics. Papers in this category include Lee and Lerro (1973), Hurson and
Zopounidis (1995), Ballestero and Romero (1996), Dominiak (1997a, 1997b),
Doumpos et al. (1999), Arenas Parra et al. (2001), Ballestero (2002), Bouri
et al. (2002), Ballestero and Plà-Santamaŕıa (2004), Bana e Costa and Soares
(2004), and Aouni et al. (2006).

In the third category, in the spirit of Markowitz, are articles that attempt
to compute, or at least interactively search or sample, the nondominated set
before selecting a“final” portfolio. Here, a final solution is a portfolio that is
either optimal or sufficiently close to being optimal to terminate the decision
process. Contributions in this category include those by Spronk (1981), Konno
et al. (1993), L’Hoir and Teghem (1995), Chow (1995), Tamiz et al. (1996),
Korhonen and Yu (1997), Yu (1997), Ogryczak (2000), Xu and Li (2002), Lo
et al. (2003), Ehrgott et al. (2004), Fliege (2004), and Kliber (2005).



6 R.E. Steuer et al.

The organization of the rest of this chapter is as follows. Sections 2 and 3
discuss the initially stochastic, and then deterministic, nature of portfolio se-
lection. Section 4 discusses single- and multiple-argument utility functions
and shows the natural way multiple-argument utility functions lead to mul-
tiple criteria portfolio selection formulations. After a careful study of the
mean-variance nondominated frontier in Section 5, the nondominated sets
of multiple criteria portfolio selection problems, and issues involved in their
computation, are discussed in Section 6. Section 7 concludes the chapter.

2 Initial Stochastic Programming Problem

In its most basic form, the problem of portfolio selection is as follows. Consider
a fixed sum of money to be invested in securities selected from a universe of n
securities. Let there be a beginning of a holding period and an end of the
holding period. Also, let xi be the proportion of the fixed sum to be invested
in the ith security. Being proportions, the sum of the xi equals 1.

Let ri denote the random variable for the ith security’s return over the
holding period. While the realized values of the ri are not known until the end
of the holding period, it is nevertheless assumed that all means µi, variances
σii, and covariances σij of the distributions from which the ri come are known
at the beginning of the holding period.

Letting rp denote the random variable for the return on a portfolio defined
by the ri and some set of xi over the holding period, we have

rp =
n∑

i=1

rixi,

Under the assumption that investors are only interested in maximizing the
uncertain objective of return on a portfolio, the problem of portfolio selection
is then to maximize rp as in

max{ rp =
n∑

i=1

rixi}, (1)

s.t. x ∈ S = {x ∈ R
n |

n∑

i=1

xi = 1, αi ≤ xi ≤ ωi},

where S as above is a typical feasible region. While (1) may look like a linear
programming problem, it is not a linear programming problem. Since the ri are
not known until the end of the holding period, but the xi must be determined
at the beginning of the holding period, (1) is a stochastic programming prob-
lem. For use later, let (1) be called the investor’s initial stochastic programming
problem. As stated in Caballero et al. (2001), if in a problem some parameters
take unknown values at the time of making a decision, and these parameters
are random variables, then the resulting problem is called a stochastic pro-
gramming problem. Since S is deterministic, problem (1)’s stochastic nature
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only derives from random variable elements being present in the objective
function portion of the program. Interested readers might also wish to consult
Ziemba (2003) for additional stochastic discussions about portfolio selection.

3 Equivalent Deterministic Formulations

The difficulty with a stochastic programming problem is that its solution is
not well defined. Hence, to solve (1) requires an interpretation and a deci-
sion. The approach taken in the literature (for instance, in Stancu-Minasian,
1984; Slowinski and Teghem, 1990; Prékopa, 1995) is to ultimately transform
the stochastic problem into an equivalent deterministic problem for solution.
Equivalent deterministic problems typically involve the utilization of some
statistical characteristic or characteristics of the random variables in ques-
tion. For problems with a single stochastic objective as in (1), Caballero et al.
(2001) discuss the following five equivalent deterministic possibilities:

(a) max{E[rp]}
s.t. x ∈ S

(b) min{Var[rp]}
s.t. x ∈ S

(c) max{E[rp]}
min{Var[rp]}
s.t. x ∈ S

(d) max{P (rp) ≥ u} for some chosen level of u
s.t. x ∈ S

(e) max{u}
s.t. P (rp ≥ u) ≥ β for some chosen level of β
x ∈ S

If there is a question about how any of the above can be deterministic, recall
that from the previous section all means µi, variances σii, and covariances σij

of the ri are assumed to be known at the beginning of the holding period.
But with a list of choices, how is one to know which should replace (1) for a
given investor? At this point it is illuminating to take a step back and delve
into the rationale that leads from the investor’s initial stochastic programming
problem to equivalent deterministic possibilities (a) to (e).

Early 17th-century mathematicians assumed that a gambler would be in-
different between receiving the uncertain outcome of a gamble and receiving
its expected value in cash. In the context of portfolio selection, the gambler
would be an investor, the gamble would be the return on a portfolio, and the
certainty equivalent would be

CE = E[rp].
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Given that an investor would want to maximize the amount of cash received
for certain, this rationale leads directly to equivalent deterministic possibil-
ity (a). However, Bernoulli (1738) discovered what has become known as the
St. Petersburg paradox.2 A coin is tossed until it lands “heads.” The gambler
receives one ducat if it lands “heads” on the first throw, two ducats if it first
lands “heads” on the second throw, four ducats if it first lands “heads” on the
third throw, and so on (2h−1 ducats on the hth throw). The expected value of
the gamble is infinite, but in reality many gamblers would be willing to accept
only a small number of ducats in exchange for the gamble. Hence, Bernoulli
suggested not to compare cash outcomes, but to compare the “utilities” of
cash outcomes. With the utility of a cash outcome given by a U : R → R, we
thus have:

U(CE) = E[U(rp)].

That is, the utility of CE equals the expected utility of the uncertain portfolio
return.

With an investor wishing to maximize U(CE), this leads to the problem
of Bernoulli’s principle of maximum expected utility:

max{E[U(rp)]} (2)
s.t. x ∈ S.

With U obviously increasing with rp, this means that any x that solves (2)
solves (1), and vice versa. Although Bernoulli’s maximum expected utility
problem (2) is a deterministic equivalent to (1), we call it an equivalent “un-
determined” deterministic problem. This is because it is not fully determined
in that it contains unknown utility function parameters and cannot be solved
in its present form. However, with investors assumed to be risk-averse (i.e.,
the expected value E[rp] is always preferred over the uncertain outcome rp),
we at least know that in (2) U is concave.

Two schools of thought have evolved for dealing with the undetermined
nature of U . One, in the spirit of Roy, involves attempting to ascertain aspects
of an investor’s preference structure for the purpose of using them to solve (2)
directly for an optimal portfolio. The other, in the spirit of Markowitz, involves
parameterizing U and then attempting to solve (2) for all possible values of its
unknown parameters. With this at the core of contemporary portfolio theory,
Markowitz considered a parameterized quadratic utility function3

U(x) = x− (λ/2)x2. (3)

2 Because it was published in the Commentaries from the Academy of Sciences of
St. Petersburg.

3 There is an anomaly with quadratic utility functions since they decrease from
a certain point on. Instead of quadratic utility, an alternative argument (not
shown) leading to the same result can be made by assuming that U is concave
and increasing and that r = (r1, . . . , rn) follows a multinormal distribution.
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Since U(x) above is normalized such that U(0) = 0 and U ′(0) = 1, this leaves
exactly one parameter λ, the coefficient of risk aversion. By this parameteri-
zation, Markowitz showed that precisely all potentially maximizing solutions
of the equivalent “undetermined” deterministic problem (2) for a risk-averse
investor can be obtained by solving equivalent deterministic possibility (c):

max{E[rp]}
min{Var[rp]}
s.t. x ∈ S

for all x ∈ S from which it is not possible to increase the expected portfolio
return without increasing the portfolio variance, or to decrease the portfolio
variance without decreasing the expected portfolio return. In accordance with
terminology introduced earlier, the set of all such x-vectors constitutes the
efficient set (in investment proportion space) and the set of all images of the
efficient points constitutes the nondominated set (in criterion space). Thus,
with U as in (3), (c) is the most appropriate equivalent deterministic problem
among the five. Note that with respect to the extreme values of λ = 0 (risk
neutrality) or λ→ ∞ (extreme risk aversion), we obtain possibility (a) or (b),
respectively, as special cases of (c). It should be noted that since the limit
function of U does not exist for λ → ∞, (b) is not directly obtained as
an expected utility maximizing solution. It is only obtained as the limit of
expected utility solutions for increasing risk aversion.

Should we consider another extreme situation in which

U(x) =

⎧
⎪⎨

⎪⎩

1, c+ ε ≤ x

(x− c)/ε, c ≤ x < c+ ε,

0, x < c

with an unknown parameter c and an ε > 0, we could observe that

P (r ≥ c) ≥ E[U(r)] ≥ P (r ≥ c+ ε).

For a continuous random variable r, we obtain E[U(r)] = P (r ≥ c) for ε→ 0,
which would lead to candidates (d) and (e). For instance, let c be the risk-
free rate of return. Then candidate (d) would mean that the probability to
receive at least the risk-free rate of return on a portfolio is maximized. If
r = (r1, . . . , rn) follows a multinormal distribution, in the case of c equaling
the risk-free rate, solving (d) then yields Roy’s “safety first” portfolio. Again,
it should be noted that (d) and (e) are not obtained as expected utility
maximizing solutions,4 but only as the limit of expected utility solutions for
an increasing focus on c.
4 While the limit function of U does exist for ε→ 0, it contradicts the Archimedean

axiom of von Neumann and Morgenstern (1947), i.e., the function is discontinu-
ous.
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Although not mentioned in Caballero et al. (2001), a sixth equivalent de-
terministic possibility stemming from (1) is

(f) max{E[rp]}
min{Var[rp]}
max{Skew[rp]}
s.t. x ∈ S,

where Skew stands for skewness. With criterion vectors of length three, (f) is a
multiple criteria portfolio selection problem. This formulation is probably the
only multiple criteria formulation that is not totally unfamiliar to conventional
portfolio selection as a result of the interest taken in skewness by authors such
as Stone (1973), Konno and Suzuki (1995), Chunhachinda et al. (1997), and
Prakash et al. (2003). However, we will not dwell on (f), as this formulation,
as a result of the severe nonlinearities of its third criterion, has not gained
much traction in practice. Instead, we will concentrate on the newer types of
multiple criteria portfolio selection problems that have begun to appear as a
result of the more sophisticated purposes of many investors.

4 Portfolio Selection with Multiple-Argument
Utility Functions

Whereas multiple criteria formulations are little more than a curiosity in
conventional portfolio selection, multiple criteria formulations are mostly
appropriate when attempting to meet the modeling needs of investors
with multiple-argument utility functions. Two situations in which multiple-
argument utility functions are likely to occur are as follows.

One is that in addition to portfolio return, an investor has other consid-
erations, such as to maximize social responsibility or to minimize the number
of securities in a portfolio, that are also important to the investor. That is,
instead of being interested in solely maximizing the stochastic objective of
portfolio return, the investor can be viewed as being interested in optimizing
some combination of several stochastic and several deterministic objectives.

A second situation in which a multiple-argument utility function might
pertain is when an investor is unwilling to accept the assumption that all
means µi, variances σii, and covariances σij can be treated as known at the
beginning of the holding period. In response, an investor might wish to monitor
the construction of his or her portfolio with the help of additional measures
such as dividends, growth in sales, amount invested in R&D, and so forth, to
guard against relying on any single measure that might have imperfections
associated with it.

Let z1 be alternative notation for rp. Then, a list of zi criterion values, from
which arguments might be selected to staff an investor’s multiple-argument
utility function, is as follows:
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max{ z1 = portfolio return}
max{ z2 = dividends}
max{ z3 = growth in sales}
max{ z4 = social responsibility}
max{ z5 = liquidity}
max{ z6 = portfolio return over that of a benchmark}
max{ z7 = amount invested in R&D}
min{ z8 = deviations from asset allocation percentages}
min{ z9 = number of securities in portfolio}
min{ z10 = turnover (i.e., costs of adjustment)}
min{ z11 = maximum investment proportion weight}
min{ z12 = amount of short selling}
min{ z13 = number of securities sold short}

Of course, other zi can be imagined. Note the differences between the first six
and last six of the zi. For the first six, it is not possible to know the realized
values of the zi until the end of the holding period. Depending in turn upon
random variables associated with each of the n securities, these zi, like z1, are
themselves random variables. Thus, the first six are stochastic objectives.

For the last six zi, the actual values of these zi, for any investment pro-
portion vector x, are available at the beginning of the holding period. For
example, for any investment proportion vector x, z9 is given by the number
of nonzero components in x. With the last six zi known in this way at the
beginning of the holding period, they are deterministic objectives.

As for z7 in the middle, it is an example of a measure that could be argued
either way. It could be argued that only the most recent amounts invested in
R&D are relevant to the situation at the end of the holding period, thus
enabling the objective to be treated deterministically.

One might ask why extra objectives can’t be handled by means of con-
straints. The difficulty is in the setting of the right-hand sides of the con-
straints. In general, for a model to produce a mean-variance nondominated
frontier that contains the criterion vector of an optimal portfolio, one would
need to know the optimal value of each objective modeled as a constraint
prior to computing the frontier. It is not likely that this would be possible in
many situations.

With z1 almost certainly an argument of every investor’s utility function,
additional arguments depend upon the investor. For instance, one investor’s
set of arguments might consist of {z1, z2, z10}, and another’s might consist of
{z1, z5, z7, z8, z11}. The point is that all investors need not be the same. If we
let k be the number of selected objectives, in the case of the first investor,
k = 3, and in the case of the second investor, k = 5. Of course, a conven-
tional mean-variance investor’s set of arguments would only be {z1}, in which
case k = 1.
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Fig. 1. Hierarchical structure of the overall focus, initial stochastic program, equiv-
alent “undetermined” deterministic program, and equivalent deterministic imple-
mentation program of conventional portfolio selection.

The differences between conventional portfolio selection and multiple cri-
teria portfolio selection are highlighted in Figures 1 and 2. At the top of
each, as in Saaty’s Analytic Hierarchy Process (1999), is the investor’s over-
all focus. In Figure 1, the overall focus is to maximize the portfolio return
random variable. In Figure 2, the overall focus is to optimize some combina-
tion of stochastic and deterministic objectives. In the second box of each is
the investor’s initial stochastic programming problem. Note that the initial
stochastic programming problem in Figure 2 reflects the multiple stochastic
and deterministic objectives involved in the investor’s overall focus and hence
is a multiobjective stochastic program. As for notation in the second, third,
and fourth boxes of Figure 2, η specifies the number of stochastic objectives
of concern and Diη+1(x) represents the first of the k − η deterministic objec-
tives of concern. For instance, if D13(x) were included, then D13(x) would
represent a function that returns the number of negative xi.

In the third box of Figure 2 is the equivalent “undetermined” deterministic
problem

max{E[U(zi1 , . . . , ziη , ziη+1 , . . . , zik
)]} (4)

s.t. x ∈ S,

which shows the multiple-argument utility function that follows from the in-
vestor’s overall focus. Employing a mean-variance pair for each stochastic
argument of the utility function, we have the equivalent deterministic imple-
mentation program of the bottom box. We use the term “implementation”
because this is the actual deterministic problem that is implemented. Note
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Fig. 2. Hierarchical structure of the overall focus, initial (multiobjective) stochastic
program, equivalent “undetermined” deterministic program, and equivalent deter-
ministic implementation program of multiple criteria portfolio selection.

that all deterministic objectives of the initial (multiobjective) stochastic pro-
gram are repeated unchanged in the equivalent deterministic implementation
program.

As a practical matter, for stochastic objectives in which variation is small
(or not) of noteworthy importance, it may be possible to represent them in
the equivalent deterministic implementation program of the bottom box of
Figure 2 by (a) instead of (c). This would be very advantageous when pos-
sible. For example, suppose an investor’s set is {z1, z2, z5}. Since these objec-
tives are linear in the portfolio weights, the investor’s initial (multiobjective)
stochastic program would be

max{ z1 =
n∑

j=1

rjxj}

max{ z2 =
n∑

j=1

djxj}

max{ z5 =
n∑

j=1

�jxj}

s.t. x ∈ S
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in which dj is the random variable for the dividends, and �j is the random
variable for the liquidity, of the jth security. Should variations in portfolio
dividends and portfolio liquidity be much less important than variations in
portfolio return, then it may well be acceptable to use (a) instead of (c) for
each of the dividends and liquidity. Then the resulting equivalent deterministic
implementation program would be

max{E[z1]} (5)

min{Var[z1]}
max{E[z2]}
max{E[z5]}
s.t. x ∈ S.

The advantage of being able to use (a) instead of (c) with stochastic objec-
tives beyond portfolio return is, of course, that a Var objective for each such
objective can be eliminated from the equivalent deterministic implementation
program. This not only simplifies data collection requirements (as it is neces-
sary to know only the means of the relevant random variables) but also lessens
the burden on computing the nondominated set.

5 Mean-Variance Nondominated Sets

We now utilize matrix notation when convenient. To prepare for the applica-
tion of the four stages of the Markowitz solution procedure to multiple criteria
portfolio selection problems, it is useful to study in a little greater detail the
mean-variance formulation in the bottom box of Figure 1:

max{E[z1] = µT x} (6)

min{Var[z1] = xT Σx }
s.t. x ∈ S

in which µ ∈ R
n is the expected value vector of the ri and Σ ∈ R

n×n is the
covariance matrix of the σij . In this problem, the efficient set is a piecewise
linear path in S. The nondominated set, being the set of images of all effi-
cient points, is piecewise parabolic in (Var[z1], E[z1]) space. This means that
when portrayed in (Stdev[z1], E[z1]) space, the nondominated set is piecewise
hyperbolic. Although theory and computation are customarily carried out in
(Var[z1], E[z1]) space, we mention (Stdev[z1], E[z1]) space, as most nondomi-
nated sets are communicated to investors in this space.

When the feasible region is the 1T x = 1 hyperplane as in

S = {x ∈ R
n | 1Tx = 1 }, (7)
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the efficient and nondominated sets are straightforward. The efficient set is a
(single) straight line in the hyperplane, bounded at one end and unbounded at
the other. The nondominated set is the top half of a (single) hyperbola. And, as
a consequence of the 1T x = 1 nature of S, the efficient and nondominated sets
can, after taking the Lagrangian, be obtained by formula (see, for instance,
Campbell et al., 1997).

x6

x1x2

x4 x3

x5

z6

z1
z2

z3

z4

z5

Stdev[z1]

E[z1]

Fig. 3. Piecewise linear efficient set in S (left) and piecewise hyperbolic nondomi-
nated set in (Stdev[z1], E[z1]) space (right).

However, as soon as additional constraints become involved, as in

S = {x ∈ R
n | 1T x = 1, αi ≤ xi ≤ ωi}, (8)

thereby making S a subset of the 1T x = 1 hyperplane, the situation becomes
more complicated. To illustrate, consider Figure 3 (which might correspond
to a problem with about eight securities). With a little poetic license man-
dated by the fact that it is not possible to draw a graph in 8-space, the graph
on the left is intended to portray (a) the subset of the 1Tx = 1 hyperplane
that is S and (b) the efficient set, which is normally a piecewise linear path.
On the right in (Stdev[z1], E[z1]) space is the nondominated set (or frontier).
Corresponding to the five segments of the piecewise linear path, the non-
dominated frontier consists of five hyperbolic segments. Note that the inverse
images of the endpoints of a given nondominated hyperbolic segment are the
endpoints of the efficient line segment that generates the hyperbolic segment.
For instance, the inverse images of z1 and z2 are x1 and x2, respectively.

A property of a nondominated hyperbolic segment is that along the seg-
ment excluding its endpoints, the securities in a portfolio remain the same.
Only their proportions change as we move along the segment. Securities can
only leave a nondominated portfolio at an endpoint, and securities can only en-
ter a nondominated portfolio if we cross over an endpoint (such as z2) to an ad-
jacent nondominated hyperbolic segment. As for the number of nondominated
hyperbolic segments, the larger the problem, the greater the number of non-
dominated hyperbolic segments. For instance, a problem with 100 securities
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might have 30 to 60 nondominated hyperbolic segments. Apart from when S
is the entire 1Tx = 1 hyperplane, mathematical programming is now the tool
for obtaining information about efficient and nondominated sets.

What about software? In the past there was the IBM (1965) code. Early
computer codes suffered from two problems. One was speed and the other
was core (i.e., memory). Because of the amount of core required for storing
a dense covariance matrix, methods for “sparsifying” or “simplifying” the co-
variance matrix structure all but dominated portfolio optimization research
for the next 20 years. Also, there was debate about whether a portfolio code
should be “parametric” or “one-at-a-time.” A parametric code is one that is
able to define the nondominated frontier as a function of some single para-
meter. A one-at-a-time code simply computes points, one at a time, on the
nondominated frontier, for instance, by repetitively solving the “e-constraint”
formulation5

min{xTΣx} (9)

s.t. µTx ≥ ρ

x ∈ S

for different values of ρ. Then, with the points obtained, representations of
the nondominated frontier as in Figure 4 can be prepared.

In the 1980s there was the Perold code. For achieving a breakthrough
with large-scale problems (500 securities was considered large-scale at the
time), the code was predicated upon a covariance matrix structure sparsified
according to the techniques in Markowitz and Perold (1981a, 1981b) and
Perold (1984). Algorithmically drawing upon Markowitz (1956), the code was
not one at a time, but parametric as it was able to compute parametrically the
nondominated frontier. Having been programmed on older platforms, neither
the IBM code nor Perold’s code is in distribution today. A paper describing
the latest developments in portfolio optimization up until the early to mid
1990s is by Pardalos et al. (1994).

The current situation is eclectic. On the one hand, there are “proprietary
systems,” which are not really intended for university use. Rather, they are
intended for integration into the computing systems of (mainly large) firms in
the financial services industry. Depending upon the modifications necessary
to fit into a client’s computer system, the number of users, and the amount
of training involved, such systems can easily run into the tens of thousands
of dollars. Two such proprietary systems are FortMP, as alluded to in Mitra
et al. (2003), and QOS which developed out of the works of Best (1996), Best
and Kale (2000), and Best and Hlouskova (2005). Each has its own features,
is designed for large-scale problems, and performs at a high speed. However,
they do not parametrically specify the nondominated frontier. Rather, they

5 In multiple criteria optimization, programs with all objectives but one converted
to constraints are often called e-constraint formulations.
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compute points on the nondominated frontier, thus resulting in both being
classified as one-at-a-time.

Fig. 4. Dotted (left) and piecewise linear (right) representations of a nondominated
frontier.

As for codes more suitable for university use, there is the public domain
code Optimizer given in the appendix of Markowitz and Todd (2000). Opti-
mizer is parametric, as it implements the critical line algorithm of Markowitz
(1956). It is written in VBA (Visual Basic for Applications). However, as of
this writing, it is limited to 248 securities.

One might think that commands for computing the linear segments of
the efficient set and the hyperbolic segments of the nondominated frontier
of (6) would be included in packages such as Cplex, Mathematica, MATLAB,
LINGO, SAS, and premium versions of Solver, but this is not the case. Other
than for the simplistic case when S is the 1Tx = 1 hyperplane, the best that
can be done with the packages is to write routines within them to compute
points on the nondominated frontier utilizing formulations such as (9), thus
consigning us, with the packages, to an essentially one-at-a-time world.

6 Solving a Multiple Criteria Portfolio Selection
Problem

Building upon knowledge gained in the previous section, we are now able
to discuss the task of solving a multiple criteria portfolio selection problem.
While the protocol of computing the nondominated set, communicating it
to the investor, searching the nondominated set for a most preferred point,
and then taking an inverse image of the selected point still remains intact,
the first three stages present much greater difficulties. As for the equivalent
deterministic implementation program of the bottom box of Figure 2, different
types of formulations may result. For the purposes of our discussion, we divide
them into three categories: (1) those with one quadratic and two or more
linear objectives, (2) those with two or more quadratic and one or more linear
objectives, and (3) those with one or more non-smooth objective functions [for
instance,D9(x), which is to minimize the number of securities, is non-smooth].
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6.1 One Quadratic and Two or More Linear Objectives

Although many of the problems that can emerge in the bottom box of Figure 2
cannot, given where we are in the development of multiple criteria portfolio
selection, yet be effectively addressed, progress is being made on 1-quadratic
2-linear and 1-quadratic 3-linear problems in Hirschberger, et al. (2007), and
on this we comment. For instance, whereas the nondominated frontier of a
mean-variance problem is piecewise hyperbolic in (Stdev[z1], E[z1]) space,
the nondominated set (surface) of a 1-quadratic multilinear multiple criteria
portfolio selection is platelet-wise hyperboloidic in (Stdev[z1], E[z1], E[z2], . . .)
space. That is, the nondominated set is composed of patches, with each patch
coming from the surface of a different hyperboloid. Also, whereas the efficient
set in the mean-variance case is a path of linear line segments, the efficient set
of a 1-quadratic multilinear problem is a connected union of low-dimensional
polyhedra in S.

Stdev[z1]

za

zd

zbE[z1]

E[z2]

zc

Fig. 5. Efficient set in S (left) and platelet-wise hyperboloidic nondominated set of a
1-quadratic 2-linear multiple criteria portfolio selection problem in (Stdev[z1], E[z1],
E[z2]) space (right).

Consider Figure 5. On the left, the efficient set is portrayed showing the
polyhedral subsets of which it is composed. On the right, the nondominated
set is portrayed showing the hyperboloidic platelets of which it is composed.
Note that not all platelets are of the same size, and they generally decrease
in size the closer we are to the minimum standard deviation point. This is
normal. Also, it is normal for not all platelets to have the same number of
(platelet) corner points. Note the correspondence between the nondominated
hyperboloidic platelets and the efficient polyhedral subsets. For instance, the
platelet defined by corner points za, zb, zc, zd would be associated with a
polyhedral subset such as the shaded one with four extreme points on the
left. And as in the mean-variance case, all portfolios in the relative interior
of a platelet contain the same securities, just in different proportions, and for
a security to leave or for a new one to enter, one would need to cross the
boundary to another platelet.
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With regard to computing the nondominated set, we are able to report lim-
ited computational results using a code under development in Hirschberger
et al. (2007). The results obtained are for 1-quadratic 2-linear problems whose
covariance matrices are 100% dense. With n = 200 securities, 1-quadratic
2-linear problems were found to have in the neighborhood of about 1,000
nondominated platelets, taking on average about 10 seconds to compute. The
computer used was a Dell 2.13GHz Pentium M Centrino laptop. With n = 400
securities, 1-quadratic 2-linear problems were found to have in the neighbor-
hood of about 2,000 nondominated platelets, taking on average about one
minute to compute. These encouraging results lead us to believe that the
nondominated sets of larger problems (in terms of either the number of secu-
rities or the number of linear objectives) are computable in a reasonable time.

Unfortunately, it is not as easy to display the nondominated set in multiple
criteria portfolio selection as in mean-variance portfolio selection. In problems
with criterion vectors of length three, 3D graphics can be used, but in problems
with more objectives, probably about the best that can be done is to enable
the investor to learn about the nondominated set while in the process of
searching for a most preferred point.

As for searching the nondominated set of a problem such as in Figure 5,
one approach is to discretize the nondominated set to some desired level of
resolution. This can be accomplished as follows. For each polyhedral subset
of the efficient set, take convex combinations of its extreme points. Because
platelet size tends to increase the more distant the platelet is from the min-
imum standard deviation point, one would probably want to increase the
number of convex combinations the farther the platelet is away. Then with
perhaps tens of thousands, if not hundreds of thousands, of nondominated
points generated in this way, the question is how to locate a most preferred.
Four strategies come to mind. One is to employ interactive multiple probing
as in the Tchebycheff method described in Steuer et al. (1993). Another is to
pursue a projected line search strategy as in Korhonen and Wallenius (1988)
and Korhonen and Karaivanova (1999). A third is to utilize an interactive
criterion vector component classification scheme as, for instance, in Miettinen
(1999). And a fourth might involve the utilization of some of the visualization
techniques described in Lotov et al. (2004).

6.2 Two or More Quadratic and One or More Linear Objectives

To illustrate what can be done in this category, consider the 2-quadratic
2-linear problem

min{xTΣ1 x } (10)

min{xTΣ2 x }
max{µTx}
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max{νT x}
s.t. x ∈ S,

where Σ1 and Σ2 are positive definite and S is defined, for instance, as in (8).
Given that Σ1 and Σ2 are positive definite, any convex combination

Σ̄ = λΣ1 + (1 − λ)Σ2

(where λ ∈ [0, 1]) renders Σ̄ positive definite. This means that the nondomi-
nated set of the 1-quadratic 2-linear

min{xT Σ̄ x } (11)

max{µTx}
max{νT x}
s.t. x ∈ S

is a subset of the nondominated set of (10). Thus, by solving (11) for a series of
different λ-values, we should be able to obtain a covering of the nondominated
set of the original 2-quadratic 2-linear. The covering can then be handled in
the same way as in the previous subsection.

6.3 One or More Non-Smooth Objectives

When a multiobjective equivalent deterministic problem possesses a non-
smooth objective (such as to minimize the number of securities), we face
major difficulties in that the problem is no longer continuous. Moreover, the
nonpositive hull of the nondominated set might not even be convex. In ad-
dition, a problem might possess non-smooth constraints, for instance, in the
form of semicontinuous variables (variables that are either zero or in some
interval [a, b] where a is materially greater than zero). Possibly, the only way
to attack such problems is to utilize evolutionary algorithms such as set forth
in Deb (2001).

7 Conclusions

For investors with additional concerns, portfolio selection need not only be
looked at within a mean-variance framework. Steps can now be taken to in-
tegrate additional concerns into the portfolio optimization process more in
accordance with their criterion status. Instead of attempting to interject ad-
ditional concerns into portfolio selection by means of constraints — an ad
hoc process that often ends prematurely because of losses in user patience —
the methods that have been outlined form the basis for a new era of solu-
tion methodologies whose purposes are to converge to a final portfolio that
more formally achieves optimal trade-offs among all of the criteria that the
investor wishes to deem important. Of course, as with any area that is gaining
momentum, more work needs to be done.
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1 Introduction

The problems to be discussed in this chapter make up a class of nonconvex
financial optimization problems that can be solved within a practical amount
of time using the state-of-the-art integer programming methodologies.

We will first discuss mean-risk portfolio optimization problems (Elton and
Gruber, 1998; Konno and Yamazaki, 1991; Markowitz, 1959) subject to non-
convex constraints such as minimal transaction unit constraints and cardinal-
ity constraints on the number of assets to be included in the portfolio (Konno
and Yamamoto, 2005b). Also, we will discuss problems with piecewise linear
nonconvex transaction costs (Konno and Wijayanayake, 2001, 2002; Konno
and Yamamoto, 2005a, 2005b). It will be shown that fairly large-scale prob-
lems can now be solved to optimality by formulating the problem as a mixed
0−1 integer linear programming problem if we use convex piecewise linear risk
measure such as absolute deviation instead of variance.

The second class of problems are so-called maximal predictability portfo-
lio optimization problems (Lo and MacKinlay, 1997), where we maximize the
coefficient of determination of the portfolio using factor models. This model,
though very promising, was set aside long ago, since we need to maximize the
ratio of convex quadratic functions, which is not a concave function. This prob-
lem can be solved to optimality by a hyper-rectangular subdivision algorithm
(Gotoh and Konno, 2001; Phong et al., 1995) or by 0−1 integer programming
approach (Yamamoto and Konno, to appear; Yamamoto et al., to appear) if
the number of assets is relatively small.

To solve larger problems, we employ absolute deviation as a measure of
variation and define the coefficient of determination as the ratio of functions
defined by the sum of absolute values of linear functions. The resulting noncon-
vex minimization problem can be reformulated as a linear complementarity
problem that can be solved by using 0−1 integer programming algorithms
(Konno et al., 2007, to appear).
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The third class of problems is the choice of financial attributes to be in-
cluded in failure discriminant analysis (Galindo and Tamayo, 2000; Konno
and Yamamoto, 2007). Which and how many financial attributes out of 100
candidates should be included in the model to achieve the best performance
in failure prediction of a large number of small-to medium-scale enterprises?

We pose this combinatorial optimization problem as a 0−1 integer linear
programming problem using the absolute deviation as the measure of varia-
tion. It has been demonstrated by Konno and Yamamoto (2005b, 2007) that
medium-scale problems can be solved to optimality within a practical amount
of time.

Our success is due to the remarkable developments of integer programming
in the past decade. In 2002, Bixby reported that some class of 0−1 integer
programming problems can be solved 2 million times faster than 15 years ago.
This trend continues, and we can now solve almost 200 million times faster,
so that very large scale-problems in scheduling, distribution, and supply chain
management are solved to optimality.

Unfortunately, however the relatively few people in finance are aware of
these remarkable developments. The important thing is that this trend is ex-
pected to continue for at least another decade. Therefore, more difficult and
important financial optimization problems would be solved through a combi-
nation of integer programming, global optimizations, and heuristic algorithms.

2 Mean-Risk Portfolio Optimization Problems

2.1 Mean-Absolute Deviation Model

Let there be n assets Sj , j = 1, 2, . . . , n, and let Rj be the random variable
representing the rate of return of Sj . Then the rate of return R(x) of portfolio
x = (x1, x2, . . . , xn)T is given by

R(x) =
n∑

j=1

Rjxj . (1)

Let us define the absolute deviation of R(x) as follows:

W (x) = E[|R(x) − E[R(x)]|]. (2)

Theorem 2.1. If R(x) follows a normal distribution with mean r(x) and
variance σ2(x), then

W (x) =
√

2/πσ(x). (3)

Proof. See Konno and Koshizuka (2005). �



Applications of Integer Programming to Financial Optimization 27

We will assume in the sequel that R ≡ (R1, R2, . . . , Rn) is distributed over
a finite set of points (r1t, r2t, . . . , rnt), t = 1, 2, . . . , T , and that

pt = Pr{(R1, R2, . . . , Rn) = (r1t, r2t, . . . , rnt)}, t = 1, 2, . . . , T, (4)

is known in advance.
Let xj be the proportion of the fund to be invested into Sj . Then the

absolute deviation W (x) of the portfolio x = (x1, x2, . . . , xn)T is defined as
follows:

W (x) =
T∑

t=1

pt

∣∣∣∣∣∣

n∑

j=1

(rjt − rj)xj

∣∣∣∣∣∣
, (5)

where rj =
∑T

t=1 ptrjt is the expected value of Rj .
The mean-absolute deviation (MAD) model is defined as follows:

maximize
n∑

j=1

rjxj

s.t. W (x) ≤ w,

x ∈ X,

(6)

where w is a constant representing the acceptable level of risk and X ⊂ Rn is
an investable set defined by

X =

⎧
⎨

⎩x ∈ Rn

∣∣∣∣∣∣

n∑

j=1

xj = 1, 0 ≤ xj ≤ αj , j = 1, 2, . . . , n,

n∑

j=1

aijxj ≥ bi, i = 1, 2, . . . ,m

⎫
⎬

⎭ , (7)

where
∑n

j=1 aijxj ≥ bi, i = 1, 2, . . . ,m, are usually called institutional con-
straints. Readers are referred to Konno and Koshizuka (2005) and Ogryczak
and Ruszczynski (1999) for basic properties of the MAD model.

Let us introduce a set of nonnegative variables φt, ψt satisfying the
condition

φt − ψt = pt

n∑

j=1

(rjt − rj)xj , t = 1, 2, . . . , T,

φtψt = 0, φt ≥ 0, ψt ≥ 0, t = 1, 2, . . . , T.

The absolute deviation W (x) is then represented as follows:

W (x) =
T∑

t=1

(φt + ψt).
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Hence, the MAD model (6) reduces to

maximize
n∑

j=1

rjxj

s.t.
T∑

t=1

(φt + ψt) ≤ w,

φt − ψt = pt

n∑

j=1

(rjt − rj)xj , t = 1, 2, . . . , T,

φtψt = 0, φt ≥ 0, ψt ≥ 0, t = 1, 2, . . . , T,
x ∈ X.

(8)

By using the standard result in linear programming (Chvatal, 1983; Konno
and Yamazaki, 1991), complementarity conditions φtψt = 0, t = 1, 2, . . . , T ,
can be removed, so that the problem becomes a linear programming problem:

maximize
n∑

j=1

rjxj

s.t.
T∑

t=1

(φt + ψt) ≤ w,

φt − ψt = pt

n∑

j=1

(rjt − rj)xj , t = 1, 2, . . . , T,

φt ≥ 0, ψt ≥ 0, t = 1, 2, . . . , T,
n∑

j=1

xj = 1,

0 ≤ xj ≤ αj , j = 1, 2, . . . , n.

(9)

2.2 Minimal Transaction Unit

Associated with a real transaction is a minimal transaction unit (MTU) one
can include in the portfolio. This minimal unit is usually 1,000 stocks in the
Tokyo Stock Exchange. Let γj be the minimal proportion of the fund. Then
xj has to satisfy the following constraint:

xj = γjzj , zj ∈ Z+, (10)

where Z+ is the set of nonnegative integers.
Once this constraint is added, the constraint

∑n
j=1 xj = 1 may not be

satisfied exactly. Hence, we relax this constraint as follows:
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1 − ε ≤
n∑

j=1

xj ≤ 1 + ε, (11)

where ε is a small positive constant. Also, we adjust the upper bound con-
straint xj ≤ αj in such a way that αj is an integer multiple of γj .

2.3 Transaction Cost

The typical cost function c(·) applied to a real transaction in the Tokyo Stock
Exchange is either piecewise linear concave [Figure 1(a)] or piecewise constant
[Figure 1(b)] function with up to 8 linear pieces.

(a) piecewise linear concave (b) piecewise constant

xj1 xj2 xjk−1 αj xj1 xj2 αj

Fig. 1. Transaction cost function.

The net return is given by

n∑

j=1

{rjxj − c(xj)}. (12)

It is well known that these cost functions can be converted to a linear function
by introducing a number of 0−1 integer variables.

(a) Piecewise Linear Concave Case
Let 0 = xj0 < xj1 < · · · < xjk = αj be nondifferentiable points. Then the
piecewise linear concave cost function can be represented as follows (Konno
and Yamamoto, 2005b; Wolsey, 1998):

c(xj) =
k∑

l=0

cjlλjl, (13)
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where

xj =
∑k

l=1 λjlxjl, j = 1, 2, . . . , n,
k∑

l=0

λjk = 1, j = 1, 2, . . . , n,

k∑

l=1

yjl = 1, j = 1, 2, . . . , n,

λj0 ≤ yj1, j = 1, 2, . . . , n,
λjl ≤ yjl + yjl−1, j = 1, 2, . . . , n; l = 1, 2, . . . , k − 1,
λjk ≤ yjk, j = 1, 2, . . . , n,
yjl = 0 or 1, l = 1, 2, . . . , k; j = 1, 2, . . . , n.

(14)

(b) Piecewise Constant Case
Let 0 = xj0 < xj1 < · · · < xjk = αj be the jump points and let c(xj) = cjl

for xj ∈ [xjl−1, xjl), l = 1, 2, . . . , k.
Then the piecewise constant cost function can be represented as follows:

c(xj) =
k∑

l=1

(cjl − cjl−1)yjl, (15)

where

xj − xjl

αj
≤ yjl ≤ 1 +

xj − xjl

αj
,

yjl = 0 or 1.

Note that this constraint ensures that

xj > xjl ⇒ yjl = 1,
xj ≤ xjl ⇒ yjl = 0.

2.4 Cardinality Constraints

It is widely believed among fund managers that one has to include a significant
number of assets in a portfolio to achieve a specified risk-return structure. In
fact, a typical mutual fund consists of over 100 assets.

Also, when a fund manager constructs a portfolio simulating an index, he
or she often purchases virtually all assets included in the index with the same
weight as the index. This will certainly guarantee the same performance as
the associated index.

However, this strategy will lead to a significant amount of transaction cost
and management cost. When the amount of the fund is relatively small, the
net performance would not be satisfactory due to these costs. Therefore, it
would be nice to find a portfolio satisfying the specified risk-return condition
with a smaller number of assets.
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Let p be the maximal number of assets to be included in the portfolio.
Then the cardinality constraint can be represented by adding the following
constraints:

γjyj ≤ xj ≤ αjyj, j = 1, 2, . . . , n, (16)
n∑

j=1

yj = p, yj ∈ {0, 1}, j = 1, 2, . . . , n, (17)

where γj is the minimal transaction unit.
A number of other nonconvex portfolio optimization problems such

as index tracking problems under nonconvex constraints (Konno and
Wijayanayake, 2001) can be solved using a similar approach.

2.5 Computational Experiments

In this section, we will report computational results on the mean-absolute
deviation model under piecewise constant transaction cost and cardinality
constraints (Konno and Yamamoto, 2005b):

maximize
n∑

j=1

rjxj −
n∑

j=1

k∑

l=1

(cjl − cjl−1)yjl

s.t.
T∑

t=1

(φt + ψt) ≤ w,

φt − ψt = pt

n∑

j=1

(rjt − rj)xj , t = 1, 2, . . . , T,

1 − ε ≤
n∑

j=1

xj ≤ 1 + ε,

xj − xjl

αj
≤ yjl ≤ 1 +

xj − xjl

αj
,

γjyj1 ≤ xj ≤ αjyj1, j = 1, 2, . . . , n,
n∑

j=1

yj1 = p,

yjl = 0 or 1, l = 1, 2, . . . , k; j = 1, 2, . . . , n,
φt ≥ 0, ψt ≥ 0, t = 1, 2, . . . , T,
xj = γjzj , zj ∈ Z+, j = 1, 2, . . . , n.

(18)

This problem contains kn 0−1 variables and n integer variables.
We used historical data collected in the Tokyo Stock Exchange and solved

the problem using CPLEX7.1 on an Athlon XP 2000 (1.67 GHz, 512 MB) PC.
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Table 1 shows the CPU time for various values of p and n where ε =
0.01, w = 3.5%. The computation time increases sharply as we increase n, as
expected, while it is not sensitive to the magnitude of p.

Table 1. CPU Time (sec)

p \ n 200 400 600 800

055 033 052 705 1,754
070 013 079 124 0,996
100 102 158 099 0,639
130 061 265 050 7,908
160 043 045 089 2,639
190 021 090 216 5,926

Table 2 shows the computation time as a function of M (the amount of
the fund). Note that k, the number of steps of a piecewise constant function,
increases as we increase the amount of the fund.

Table 2. CPU Time (sec)

p\M(million) 300(k = 2) 450(k = 3) 600(k = 4) 750(k = 5)

055 033 081 00,051 151
070 013 043 00,056 070
100 102 063 00,572 289
130 061 279 00,099 341
160 043 106 00,370 197
190 021 059 12,534 336

The number of 0−1 variables increases linearly as a function of k. When
n = 200 and k = 5, the problem (18) contains 1,200 integer variables. Surpris-
ingly, the number of computations increases more or less linearly as a function
of k.

Table 3 shows the computation time as a function of ε. We see that the
computation time increase sharply as we decrease ε, while the value of the
objective function remains stable. We conclude from this that it is appropriate
to choose ε = 0.01 ∼ 0.001.

Figure 2 shows the maximal return under the constraint on the maximal
number of assets in the portfolio, i.e., under the constraint

∑n
j=1 yj1 ≤ p, with

MTU constraints but without transaction cost.
We see from this figure that the maximal return under a specified level

of risk is attained by a relatively small number of assets. In fact, when the
level of allowable risk is larger, the best portfolio is attained when p = 10,
i.e., a portfolio consisting of 10 assets. This number gradually increases as we
decrease w. However, even when w is close to the globally minimal risk point,
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Table 3. CPU Time (sec)

p \ ε 0.01 0.001 0

055 033 57 805
070 013 30 356
100 102 56 858
130 061 23 327
160 043 95 735
190 021 74 301
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Fig. 2. Maximal return as a function of p.

the best value for p is only 20. This means that we do not have to purchase
more than 20 assets to construct a portfolio to achieve a specified risk-return
structure.

3 Maximal Predictability Portfolio Optimization
Problems

3.1 Definitions

Let rjt be the rate of return of the jth asset during time period t. Let us
consider the following factor representation of rjt:

rjt = βj0 + βj1F1t−1 + βj2F2t−1 + · · · + βjKFKt−1 + εjt,

j = 1, 2, . . . , n; t = 1, 2, . . . , T, (19)

where Fkt is the value of factor k during period t, the εjt are independent and
E[εjt] = 0, and βjk is a constant called the factor loading.
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Let us denote

rt = (r1t, r2t, . . . , rnt)T ∈ Rn, (20)
Ft = (F1t, F2t, . . . , FKt)T ∈ RK , (21)
εt = (ε1t, ε2t, . . . , εnt)T ∈ Rn. (22)

Let x be a portfolio and let R2(x) be the coefficient of determination of
portfolio x defined by

R2(x) =
Var[r̃t

T x]
Var[rt

T x]
, (23)

where r̃t = E[rt|Ft−1].
Let us denote the investable set by

X ′ =
{

x ∈ Rn | r̃t
T x ≥ ρ, eT x = 1, AT x ≥ b, 0 ≤ x ≤ α

}
, (24)

where ρ is a constant, e = (1, 1, . . . , 1), α is the vector of upper bounds, and
AT x ≥ b is a set of institutional constraints. Lo and MacKinlay (1997) defined
a maximal predictability portfolio (MPP) as a portfolio x that maximizes
R2(x) over X , which is claimed to achieve the best predictive power in terms
of the expected rate of return.

R2(x) is the ratio of two convex quadratic functions, so that the prob-
lem becomes a nonconcave maximization problem. In Konno and Yamamoto
(2005a, 2005b), we proposed an algorithm for solving the problem using the
Dinkelbach transformation (Dinkelbach, 1967) and 0−1 integer programming
method. This algorithm can successfully solve problems with n up to 200, and
the resulting portfolio performs better than index. Results should be better if
we solve problems with a larger universe.

To solve large-scale problems, we replace the variance by the absolute
deviation in the definition of R2(x) as follows:

Q(x) =
E[|r̃t

T x − E[r̃t
T x]|]

E[|rt
T x − E[rt

T x]|] . (25)

It is usually assumed in a multifactor approach that Ft−1 and εt−1 are
both normally distributed. Then rt and r̃t are also normally distributed, so
that maximizing Q(x) is equivalent to maximizing R2(x) by Theorem 2.1.

Let us assume that (F1, F2, . . . , FK) are distributed over a finite set of
points (f1t, f2t, . . . , fKt), t = 1, 2, . . . , T . Then

W [rt
T x] =

T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k) + εt(x)

∣∣∣∣∣ , (26)

W [r̃t
T x] =

T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k)

∣∣∣∣∣ , (27)
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where f̂k =
∑T

t=1 ptfkt−1, βk(x) =
∑n

j=1 βjkxj , and εt(x) =
∑n

j=1 εjtxj .
Then the maximal predictability portfolio construction problem in terms of
the absolute deviation is defined as follows:

minimize

T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k) + εt(x)

∣∣∣∣∣
T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k)

∣∣∣∣∣

s.t. βk(x) =
n∑

j=1

βjkxj , k = 1, 2, . . . ,K,

εt(x) =
n∑

j=1

εjtxj , t = 1, 2, . . . , T ,

r̃1x1 + r̃2x2 + · · · + r̃nxn ≥ ρ,
x1 + x2 + · · · + xn = 1,
0 ≤ xj ≤ α, j = 1, 2, . . . , n.

(28)

3.2 0−1 Mixed Integer Programming Formulation

The first step to solve (28) is to apply the Charnes–Cooper transformation
(Charnes and Cooper, 1962). Let

y0 =
1

T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k)

∣∣∣∣∣

. (29)

Then problem (28) can be reformulated as follows:

minimize
T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k) + εt(x)

∣∣∣∣∣ · y0

s.t.
T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(x)(fkt−1 − f̂k)

∣∣∣∣∣ · y0 = 1,

βk(x) =
n∑

j=1

βjkxj , k = 1, 2, . . . ,K,

εt(x) =
n∑

j=1

εjtxj , t = 1, 2, . . . , T,

r̃1x1 + r̃2x2 + · · · + r̃nxn ≥ ρ,

x1 + x2 + · · · + xn = 1,
0 ≤ xj ≤ α, j = 1, 2, . . . , n.

(30)
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Let y = y0 · x. Then problem (30) is equivalent to

minimize
T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(y)(fkt−1 − f̂k) + εt(y)

∣∣∣∣∣

s.t.
T∑

t=1

pt

∣∣∣∣∣

K∑

k=1

βk(y)(fkt−1 − f̂k)

∣∣∣∣∣ = 1,

βk(y) =
n∑

j=1

βjkyj , k = 1, 2, . . . ,K,

εt(y) =
n∑

j=1

εjtyj , t = 1, 2, . . . , T,

n∑

j=1

r̃jyj ≥ ρy0,

y1 + y2 + · · · + yn = y0,

0 ≤ yj ≤ αy0, j = 1, 2, . . . , n; y0 ≥ 0.

(31)

Let (y∗, y∗0) be an optimal solution of this problem. It is straightforward to
see that x∗ = y∗/y∗0 is an optimal solution of the original problem (28).

Let

u = (u1, u2, . . . , uT ), v = (v1, v2, . . . , vT ), (32)
ξ = (ξ1, ξ2, . . . , ξT ), η = (η1, η2, . . . , ηT ). (33)

Then problem (31) is reformulated as follows:

minimize
T∑

t=1

pt(ut + vt)

s.t.
T∑

t=1

pt(ξt + ηt) = 1,

ut − vt =
K∑

k=1

βk(y)(fkt−1 − f̂k) + εt(y), t = 1, 2, . . . , T,

ξt − ηt =
K∑

k=1

βk(y)(fkt−1 − f̂k), t = 1, 2, . . . , T,

utvt = 0, t = 1, 2, . . . , T,
ξtηt = 0, t = 1, 2, . . . , T,
ut ≥ 0, vt ≥ 0, t = 1, 2, . . . , T,
ξt ≥ 0, ηt ≥ 0, t = 1, 2, . . . , T,
(y, y0) ∈ Y.

(34)
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Let

Y =
{

(y, y0)|βk(y) =
n∑

j=1

βjkyj, k = 1, 2, . . . ,K;

εt(y) =
n∑

j=1

εjtyj, t = 1, 2, . . . , T,

n∑

j=1

r̃jyj ≥ ρy0;
n∑

j=1

yj = y0;

0 ≤ yj ≤ αy0, j = 1, 2, . . . , n; y0 ≥ 0
}
.

(35)

The following theorem shows that we can eliminate the complementarity
conditions utvt = 0, t = 1, 2, . . . , T .

Theorem 3.1. Let (y∗, y∗0 ,u
∗,v∗, ξ∗,η∗) be an optimal basic feasible solu-

tion to problem (34) without the complementarity conditions. Then u∗t v
∗
t = 0,

for all t. Also, there exists at most one t such that ξ∗t > 0, η∗t > 0.

Proof. See Konno et al. (2005). �

What makes our problem difficult is a set of complementarity conditions
ξtηt = 0, t = 1, 2, . . . , T . As is well known, these conditions can be represented
as a system of linear inequalities by introducing 0−1 integer variables zt, t =
1, 2, . . . , T .

Let us consider a pair of linear inequalities:

ξt ≤ atzt, t = 1, 2, . . . , T, (36)
ηt ≤ bt(1 − zt), t = 1, 2, . . . , T, (37)

where

at = max{max{
K∑

k=1

βk(y)(fkt−1 − f̂k) | (y, y0) ∈ Y }, 0}, (38)

bt = −min{min{
K∑

k=1

βk(y)(fkt−1 − f̂k) | (y, y0) ∈ Y }, 0}, (39)

and zt = {0, 1}. When zt = 0, then ξt = 0 and ηt is unconstrained. Also,
when zt = 1, then ηt = 0 and ξt is unconstrained.

Problem (34) can now be formulated as a 0−1 integer programming
problem:
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minimize
T∑

t=1

pt(ut + vt)

s.t.
T∑

t=1

pt(ξt + ηt) = 1,

ut − vt =
K∑

k=1

βk(y)(fkt−1 − f̂k) + εt(y), t = 1, 2, . . . , T,

ξt − ηt =
K∑

k=1

βk(y)(fkt−1 − f̂k), t = 1, 2, . . . , T,

0 ≤ ξt ≤ atzt, 0 ≤ ηt ≤ bt(1 − zt), t = 1, 2, . . . , T
zt ∈ {0, 1}, t = 1, 2, . . . , T,
ut ≥ 0, vt ≥ 0, t = 1, 2, . . . , T,
(y, y0) ∈ Y.

(40)

3.3 Computational Experiments

Our target is to solve problems with up to (T, n,K) = (36, 1500, 5) on an
Xeon (3.73 GHz, 2.00 GB) PC using CPLEX10.1. Factors to be included in
the model are chosen in accordance with Fama and French (1993). The com-
putation time is expected to increase sharply as we increase T . A preliminary
test shows that the maximal size of the problem solvable within 1,500 CPU
seconds is (T, n,K) = (36, 600, 3).

To solve larger problems, we introduce several constraints to reduce the
feasible region of the associated linear relaxation problems.

Among several schemes, the following two are very useful:

(a) Bound on y0
Let y∗0 be the minimal value of y0 over the feasible region of problem (28),
and let us add the following constraint:

y0 ≥ y∗0 . (41)

To calculate y∗0 , we need to maximize a piecewise linear convex function over
a polytope. This procedure requires additional computation time but results
in a significant reduction of the total computation time.

(b) Tighter bounds on ξt and ηt

Upon a close look at the optimal solution of (34), we find that the ξt and ηt

in the optimal solution attain a much smaller value than its a priori bounds
at and bt. In fact, they are usually less than 0.3 times of its bounds or even
much smaller.
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Therefore, we will introduce tighter bounds on these variables, i.e.,

ξt ≤ δatzt, ηt ≤ δbt(1 − zt), t = 1, 2, . . . , T, (42)

where δ is some constant less than 1.0.
Table 4 shows the effect of δ on the CPU time. Blanks in Table 4 represent

that an optimal solution was not obtained in 1,500 CPU seconds. We compared
27 cases for different T, n,K by varying δ and found that the solution remains
the same for all problems down to δ = 0.3. When δ = 0.2 ,however, we observe
around a 3.0% relative error or the average.

Table 4. CPU Time (sec)

With constraint (39) and (40)
T K n Original δ = 1 δ = 0.2

12 3 225 1.2 1.8 1.7
1,500,0 9.6 6.5 6.8

5 225 19.70 4.2 2.8
1,500,0 21.40 23.30 15.00

24 3 225 2.1 7.1 3.4
1,500,0 82.20 20.40

5 225 137.700 49.70
1,500,0 674.400 851.200

36 3 225 3.1 5.7 5.1
1,500,0 46.70 31.20

5 225 989.200
1,500,0

Finally, Figures 3 and 4 show the ex-post performance of the Nikkei Index,
MAD portfolio, and MPP for (T,K) = (36, 3) and n = 225 and 1,500, respec-
tively, using an annual rebalancing strategy. We see that MPP significantly
outperforms the Index and MAD portfolio. The difference tends to become
larger as we increase n.

4 Choosing the Best Set of Financial Attributes
in Failure Discriminant Analysis

4.1 The Problem

Let there be n companies Et, t = 1, 2, . . . , T , and let Xk, k = 1, 2, . . . ,K, be
the kth financial attribute.

Let us define the failure intensity f as a linear combination of x as follows:

f = α0 + α1x1 + α2x2 + · · · + αKxK . (43)
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Fig. 3. Ex-post performance (n = 225).

Fig. 4. Ex-post performance (n = 1, 500).

In failure discriminant analysis, we determine the threshold value f∗ and
separate n companies into failing group F1 and nonfailing group F0 depending
upon whether the failure intensity is above and below f∗.

Let yt = 1 if Et failed during the last period and yt = 0 if Et did not fail.
To estimate (α0, α1, α2, . . . , αK), we introduce the error term

εt = yt − (α0 + α1x1t + α2x2t + · · · + αKxKt), t = 1, 2, . . . , T, (44)

where xjk is the magnitude of Xk of company Et, and we apply the least-
squares method. However, if there are too many attributes, we have to choose
a certain portion of variables that achieve the required quality of fitting.
Akaike’s Information Criterion (AIC) is a very popular method for this pur-
pose (Akaike, 1974). To apply this criterion, however, we need to have prior
information about the statistical properties of residual variables. Many other
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criteria have been proposed in the past, but they all inherit the advantages
and disadvantages of AIC (Akaike, 1974).

Problems to be considered here are:

Problem 1. Given a positive integer s, find the set of attributes Xi1 , Xi2 , . . . ,
Xis such that the total amount of residual error is minimal.

Problem 2. Find the set of variables Xi1 , Xi2 , . . . , Xis whose (freedom
adjusted) coefficient of determination is maximal.

These are difficult combinatorial optimization problems for which no exact
and efficient algorithm has been proposed until recently. To find an optimal
combination, we had to use an enumeration approach of some sort.

The number of possible explanatory variables k in the traditional field is
not very large, say less than 20 or 30. However, much larger problems are
under consideration. For example, k is around 100 in the failure discriminant
analysis (Judge et al., 1988; Konno et al., 2004) and is sometimes larger than
1,000 in bio-informatics (Pardalos, et al., 2007).

When k = 100 and s = 20 as in the case of failure discriminant analysis
(Konno et al., 2004), a possible combination is 100C20 ∼ 1021, so that total
enumeration is completely out of reach.

Therefore, people use some sort of heuristic approach (Burnkam and
Andersen, 2002; Galindo and Tamayo, 2000; Miller, 1990; Osborne, 1976).
One commonly used method is to sequentially introduce s “important” vari-
ables one at a time. When the residual error is small enough, we are done.
Otherwise, we eliminate a certain variable from the model, add a new one in
its place, and continue until the fitting is satisfactory enough. This procedure
usually leads to a good solution, but it may not generate the best combination.
The purpose of this paper is to propose an efficient method to solve Problems
1 and 2 above.

Though this procedure need not always generate an optimal solution to
Problem 1, it usually generates such a solution as demonstrated by a series of
numerical experiments to be presented later. Once Problem 1 is solved, then
Problem 2 can be solved by solving Problem 1 by increasing s.

4.2 Least Absolute Deviation Fitting

Given T sets of data (yt, x1t, x2t, . . . , xkt), t = 1, 2, . . . , T , let us define

f(α0, α1, . . . , αk) =
T∑

t=1

⎧
⎨

⎩yt − (α0 +
k∑

j=1

αjxjt)

⎫
⎬

⎭

2

. (45)

Then Problem 1 can be formulated as the following constrained minimization
problem:
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minimize f(α0, α1, . . . , αk)
s.t. at most s components of (α1, α2, . . . , αk) are nonzero.

(46)

By introducing 0−1 integer variables zj , j = 1, 2, . . . , k, this problem can be
formulated as a quadratic 0−1 integer programming problem:

Pk(s)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize f(α0, α1, . . . , αk)

s.t.
k∑

j=1

zj = s,

0 ≤ αj ≤ ᾱjzj, j = 1, 2, . . . , k,
zj ∈ {0, 1}, j = 1, 2, . . . , k,

(47)

where ᾱj > 0 is the largest attainable value of αj . If zj = 0, then αj = 0,
so that at most s components of αj can be positive, as required. Algorithmic
research for solving a quadratic 0−1 integer programming problem is now
under way (Wolsey, 1998). However, to date there exists no efficient algorithm.

The key idea is to replace variance f(α0, α1, . . . , αk) by absolute deviation:

g(α0, α1, . . . , αk) =
T∑

t=1

∣∣∣∣∣∣
yt − (α0 +

k∑

j=1

αjxjt)

∣∣∣∣∣∣
, (48)

and consider the following problem:

Qk(s)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize g(α0, α1, . . . , αk)

s.t.
k∑

j=1

zj = s,

0 ≤ αj ≤ ᾱjzj, j = 1, 2, . . . , k,
zj ∈ {0, 1}, j = 1, 2, . . . , k.

(49)

Let us note that least absolute deviation estimator is more robust than
least-squares estimator (Judge et al., 1988). Also, problems of Pk(s) andQk(s)
are equivalent under normality assumption (Theorem 2.1).

The least absolute deviation estimator is not a linear estimator, but it
shares some nice properties as stated in the following theorem:

Theorem 4.1. If the εi are i.i.d. and symmetrically distributed with E[εi] = 0,
V [εi] = σ2, then an optimal solution of Qk(s) is an unbiased estimator of
(α0, α1, . . . , αk).

Proof. See Judge et al. (1988). �

Therefore, Qk(s) can serve as a proper alternative to Pk(s). More impor-
tantly, problem Qk(s) can be reduced to a 0−1 mixed integer programming
problem that can be solved by the state-of-the-art algorithm (Cplex, 2006;
Wolsey, 1998).
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Let ȳ =
∑T

t=1 yt/T and let (α̂0, α̂1, . . . , α̂k) be an optimal solution of Pk(s).
Then the quality of the cardinality constrained least-squares fitting may be
measured by the adjusted R2 defined below:

R̄2 = 1 − T − 1
T − s− 1

{
1 −

∑T
t=1(ŷt − ¯̂y)2

∑T
t=1(yt − ȳ)2

}
, (50)

where

ŷt = α̂0 +
k∑

j=1

α̂jxjt, (51)

¯̂y =
T∑

t=1

ŷt/T. (52)

4.3 A Two-Step Algorithm

Those who are familiar with linear programming (Chvatal, 1983) should know
that Qk(s) can be rewritten as a 0−1 linear integer programming problem:

minimize
T∑

t=1

(ut + vt)

s.t. ut − vt = yt − (α0 +
k∑

j=1

αjxjt), t = 1, 2, . . . , T,

ut ≥ 0, vt ≥ 0, t = 1, 2, . . . , T,
k∑

j=1

zj = s,

0 ≤ αj ≤ ᾱjzj , j = 1, 2, . . . , k,
zj ∈ {0, 1}, j = 1, 2, . . . , k.

(53)

Problem (53) has an optimal solution since it is feasible and the objective
function is bounded below.

Theorem 4.2. Let (α∗
0, α

∗
1, . . . , α

∗
k, u

∗
1, u

∗
2, . . . , u

∗
T , v

∗
1 , v

∗
2 , . . . , v

∗
T , z

∗
1 , z

∗
2 , . . . , z

∗
k)

be an optimal solution (53). Then (α∗
0, α

∗
1, . . . , α

∗
k, z

∗
1 , z

∗
2 , . . . , z

∗
k) is an optimal

solution of (49).

Proof. See Konno and Yamamoto (2007). �

When k, s, T are not very large, problem (53) can be solved by state-of-
the-art software such as CPLEX10.1.
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Let us now propose a two-step algorithm for solving Pk(s). The first step
is to solve the least absolute deviation fitting problem Qk(s+ r):

Qk(s+ r)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize g(α0, α1, . . . , αk)

s.t.
k∑

j=1

zj = s+ r,

0 ≤ αj ≤ ᾱjzj , j = 1, 2, . . . , k,
zj ∈ {0, 1}, j = 1, 2, . . . , k,

(54)

where r is some positive integer. Let (α∗
0, α

∗
1, . . . , α

∗
k) be an optimal solution

to (54). Let J1 = {j | z∗j = 1} and let (α̂0, α̂1, . . . , α̂k) be an optimal solution
to Pk(s). Then it is quite likely that α̂j = 0 for almost all j such that j /∈ J1

for large enough r since absolute deviation and standard deviation are similar
measures of variation.

To recover an optimal solution of Pk(s), we solve

minimize f(α0, α1, . . . , αk)

s.t.
∑

j∈J1

zj = s,

0 ≤ αj ≤ ᾱjzj, j ∈ J1,

zj ∈ {0, 1}, j ∈ J1.

(55)

If r is not large, this problem can be solved by solving s+rCs least-squares
subproblems associated with all possible s out of s+ r combinations.

4.4 Results of Computational Experiments

We compare a two-step algorithm above and S-plus (Furnival and Wilson,
1974; SPLUS, 2001) using data associated with failure discriminant analysis,
where yt = 1 or 0 depending upon whether or not the tth company failed and
xjt is the jth financial attribute of the tth company.

We prepared four data sets (T, k) = (200, 50), (200, 70), (1000, 50),
(1000, 70) randomly chosen from 6,556 corporate data among which 40%
failed.

Figure 5 shows the distribution of correlation coefficients of 50 financial
attributes. We see that the majority of financial attributes are not strongly
correlated, with a correlation coefficient between −0.3 and 0.3, but there are
a nonnegligible number of highly correlated pairs.

Figures 6 and 7 show the quality of fitting. We see that a two-step algo-
rithm generates a significantly better solution (see Figure 7). In fact, when
s+ r is over 15, a two-step algorithm outperforms S-plus.

Table 5 shows the CPU time for a two-step algorithm. The number in the
bracket shows the CPU time required for the first step of a two-step algorithm.
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Fig. 5. Distribution of correlation coefficients (k = 50).

s+r=30

s+r=20

s+r=10

S−plus

Fig. 6. Comparison of freedom adjusted R2 (T = 200, k = 50).

Table 5. CPU Time (sec)

k s+ r CPU k s+ r CPU
50 10 001.2000(0.65) 50 10 0,011.530.0(10.17)

20 001.5100(0.65) 20 0,013.320.0(10.31)
30 001.9800(0.65) 30 0,004.140.00(0.53)

S-plus 006.2000(0.00) S-plus 0,011.540.0(23.23)
70 10 136.13(135.52) 70 10 1,501.34(1,500.00)

20 026.470(24.78) 20 1,502.98(1,500.00)
30 019.0200(1.08) 30 0,032.230.0(23.23)

S-plus 009.65(000.00) S-plus 0,018.630.0(23.23)

Finally, Figure 8 shows the magnitude of the absolute deviation calculated
by solving Qk(s) and the sequential method similar to the one used in S-plus
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S−plus
s+r=30

s+r=10

s+r=20

Fig. 7. Comparison of freedom adjusted R2 (T = 1000, k = 70).

for least-squares fitting. We see that our method generates significantly better
results than the sequential method adopted in S-plus at the expense of more
CPU time.

Fig. 8. Comparison of the magnitude of absolute deviation (T = 200, k = 50).
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1 Introduction

There is currently considerable interest in the trade-off between portfolio re-
turn and portfolio downside risk. This has arisen due to inadequacies of the
mean/variance framework and regulatory requirements to calculate the value
at risk and related measures by banks and other financial institutions.

Much of the literature focuses on the case where asset and portfolio re-
turns are assumed to be normally or elliptically distributed, see Alexander
and Bapista (2001) and Campbell et al. (2002). In both cases the problem of
a mean/value at risk frontier differs only slightly from a classic mean/variance
analysis. However, the nature of the mean-risk frontiers under normality is not
discussed in any detail, and we present some new results in Section 2. These
are a consequence of two results we present, Proposition 1 and a generaliza-
tion, Proposition 2, which prove that the set of minimum risk portfolios are
essentially the same under ellipticity for a wide class of risk measures. In addi-
tion to these results, we present three extensions. The extensions we propose
in this paper are threefold. First, we consider extensions for portfolio simula-
tion of those advocated for value at risk simulation by Bensalah (2002). Sec-
ond, under normality we compute explicit expressions for mean/value at risk,
mean/expected loss and mean/semivariance frontiers in the two asset case
and in the general N−asset case, complementing the results for mean/value
at risk under normality provided by Alexander and Bapista (2001). Finally,
our framework allows us to consider fairly arbitrary risk measures in the two
asset case with arbitrary return distributions; in particular, some explorations
under bivariate log-normality are considered. In Section 6, we present issues
with the simulation of portfolios, pointing out some of the limitations of our
proposed methodology. These methodologies are applied to general downside
risk frontiers for general distributions. Conclusions follow in Section 7.

C. Zopounidis, M. Doumpos, and P.M. Pardalos (eds.) Handbook of Financial 49
Engineering, doi: 10.1007/978-0-387-76682-9 3,
c© Springer Science+Business Media, LLC 2008
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2 Main Proposition

It is worth noting that although it is well known that normality implies
mean/variance analysis for an arbitrary utility function (see, for example,
Sargent, 1979, page 149) it is not clear what happens to the mean/downside
risk frontier under normality. What is known is that the (µp, θp) frontier should
be concave under appropriate assumptions for θp and that the set of minimum
downside risk portfolios should be the same as those that make up the set of
minimum variance portfolios. We note that Wang (2000) provided examples
that show when returns are not elliptical, the two sets do not coincide. A
proof of this second assertion is provided in Proposition 1. We shall initially
assume that the (N × 1) vector of returns is distributed as NN (µ,Σ) where
µ is an (N × 1) vector of expected returns and Σ is an (N × N) positive
definite covariance matrix. We define the scalars α = µ′Σ−1µ, β = µ′Σ−1e,
and γ = e′Σ−1e, where e is an (N × 1) vector of ones.

Proposition 1. For any risk measure φp = φ(µp, σ
2
p), where µp = µ′x, σ2

p =
x′Σx, φ1 = ∂φ/∂µp, φ2 = ∂φ/∂σ2

p, and φ2 is assumed nonzero, the mean
minimum risk frontier (µp, φp) is spanned by the same set of vectors for all
φ, namely, x = Σ−1E(E′Σ−1E)−1ψp, where ψ′

p = (µp, 1), E = (µ, e).

Proof. Our optimization problem is to minimize φp subject to E′x = ψp.
That is,

min
x

φ(µp, σ
2
p) − λ′(E′x− ψp), (1)

where λ is a (2 × 1) vector of Lagrangians. The first-order conditions are

∂φ

∂µp

∂µp

∂x
+

∂φ

∂σ2
p

∂σ2
p

∂x
− Eλ = 0 (2)

and
E′x− ψp = 0. (3)

Here
∂µp

∂x
= µ (4)

and
∂σ2

p

∂x
= 2Σx. (5)

This implies that

φ1µ+ 2φ2Σx = Eλ (6)

or

φ1Σ−1µ+ 2φ2x = Σ−1Eλ (7)
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or

λ̂ = (E′ΣE)−1(φ1E
′Σ−1µ+ 2φ2ψp). (8)

Thus, the general “solution” x satisfies

φ1Σ−1µ+ 2φ2x = Σ−1E(E′Σ−1E)−1(φ1E
′Σ−1µ+ 2φ2ψp). (9)

We now show that

x = E(E′Σ−1E)−1ψp (10)

satisfies Equation (9) for any φ1 and φ2. This is because the right-hand side
of (9) can be written as

φ1Σ−1E(E′Σ−1E)−1E′Σ−1µ+ 2φ2Σ−1E(E′Σ−1E)−1ψp. (11)

But

(E′Σ−1E)−1E′Σ−1µ =
(

1
0

)
, (12)

so that

φ1Σ−1E(E′Σ−1E)−1E′Σ−1µ = φ1Σ−1µ, (13)

and Equation (9) then simplifies to

2φ2x = 2φ2Σ−1E(E′Σ−1E)−1ψp (14)

or

x = Σ−1E(E′Σ−1E)−1ψp. (15)

Corollary 1. Our result includes as a special case the value at risk calcula-
tions of Alexander and Bapista (2001) since φ(µp, σ

2
p) = tσp − µp for t > 0.

We note that Alexander and Bapista (2001) are more concerned with the
efficient set than the minimum risk set. The distinction between the efficient
set and the minimum risk set is addressed by finding the minimum point
on the mean minimum risk frontier. Nevertheless, their Proposition 2 (page
1168), which implicitly relates normality, goes to some length to show that the
mean/value at risk efficient set of portfolios is the same as the mean minimum
variance portfolios. This follows as a consequence of our Proposition 1 and its
corollaries.

We now turn to the question as to whether the mean minimum risk frontier
is concave (i.e. ∂2v/∂µ2 > 0). Suppose that returns are elliptical, so that our
risk measure v can be expressed as
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v = ϕ(µ, σp), µ = µp, (16)

where

σ2
p =

µ2γ − 2βµ+ α

∆
, (17)

and
∆ = αγ − β2, (18)

so that
∂v

∂µ
= ϕ1 +

ϕ2

σp

(µγ − β)
∆

, (19)

so that ∂v/∂µ ≥=≤ 0 when

ϕ1 +
ϕ2

σp

(µγ − β)
∆

≥=≤ 0. (20)

We shall assume the existence of a unique minimum risk portfolio; if it
exists, the minimum risk portfolio occurs when ∂v/∂µ = 0 or when

µ∗ = ϕ1 +
β

γ
− σpϕ1∆

γϕ2
. (21)

We note that β/γ is the expected return of the global minimum variance
portfolio, so the global minimum “v” portfolio is to the right or to the left
depending on the signs of ϕ1 and ϕ2.

For value at risk, ϕ2 = t > 0 and ϕ1 = −1, whereas for variance, ϕ2 = 2σp

and ϕ1 = 0. In general, one may wish to impose the restriction that ϕ2 > 0
and ϕ1 ≤ 0; then µ∗ ≥ β

γ if σp∆ ≥ ϕ2γ. Other cases can be elaborated.
Multiple solutions may be possible, but we shall ignore these. Consider now
the second derivatives:

∂2v

∂µ2
= ϕ11 +

2ϕ12

σp

(µγ − β)
∆

+
ϕ22

σ2
p

(µγ − β)2

∆2
+
ϕ2

σp

γ

∆
. (22)

For ∂2v/∂µ2 > 0 as required, we need the matrix of second derivatives(
ϕ11 ϕ12

ϕ21 ϕ22

)
to be positive definite and ϕ2 > 0. This condition is satisfied for

variance and for value at risk as in this case ϕij = 0 while ϕ2 = t.

Corollary 2. The above generalizes to a large family of risk measures for a
range of distributions that reduce to the “mean-variance” analysis, namely the
class of distributions as outlined in Chamberlain (1983).

To clarify Chamberlain’s class we need to define elliptical distributions.
Ingersoll (1987, page 104) defined a vector of n random variables to be

elliptically distributed if its density (pdf) can be written as

pdf(y) = |Ω|−1/2g((y − µ)′Ω−1(y − µ)). (23)
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If means exist, then E[y] = µ; if variances exist then cov(y) is proportional to
Ω. The characteristic function of y is

ϕn(t) = E[exp(it′y)] = eit′µψ(t′Ωt) (24)

for some function ψ that does not depend on n. It is apparent from (24) that
if ω′y = z is a portfolio of elliptical variables from (24), then

E[exp(isz)] = E[exp(isω′y)] = eisω′µψ(s2ω′Ωω), (25)

and all portfolios from the joint pdf given by (23) will have the same marginal
distribution, which can be obtained by inverting (24). Furthermore, the distri-
bution is location scale, in the sense that all portfolios differ only in terms of
ω′µ and ω′Ωω, and it is for this reason that mean-variance analysis holds for
these families. A particular subfamily base of elliptical distributions is called
the family of spherical distributions, namely those joint distributions invariant
under orthogonal transformation.

Chamberlain proved (see Theorem 2) that for mean/variance analysis to
be valid when there is no riskless asset, the case we are considering, a necessary
and sufficient condition for pdf(y), E(y) 
= 0, is that ω′y is determined by its
mean and variance for every ω iff there is a nonsingular matrix T such that
Ty =

(
m
v

)
, where, conditional on m, v is spherically distributed around the

origin.
This condition is rather cumbersome. However, we note that for mean/vari-

ance analysis to be valid, the family of distributions needs to be identical if
and only if they have the same mean and variances.

Consider, therefore, an important example. Let

y
∼

= µs1
∼

+ s2
∑ 1

2 z∼, where z ∼ N(0, IN )

and
∑ 1

2 is the square set matrix of the positive definite matrix
∑
. The

variables s1 and s2 are arbitrary and independent of z; furthermore, s2 is
assumed positive. Thus,

pdf(y/s1, s2) ∼ N(µs1,
∑
s2).

Furthermore, we see that rp = ω′y, and then pdf(rp|s1, s2) ∼ N(µps1, σ
2
ps2),

where µp = ω′µ and σ2
p = ω′∑ω. Clearly, if s1 and s2 are common to all

portfolios then two portfolios p and p′ will have the same pdfs if µp = µp′ and
σ2

p = σ2
p′ . This can be reparameterized in terms of Chamberlain’s condition

as his theorem asserts.
Ingersoll demonstrated (1987, page 108) that this class, which he calls

jointly subordinated normal, is compatible with mean/variance analysis in the
case of no riskless asset; the proof amounts to noting that if the joint char-
acteristic function of s1 and s2 is φ(t1, t2), then any portfolio rp will have
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characteristic function φ(t) = µptφ(µpt, t
2σ2

p/2) and so distributions will be
equalized iff µp = µp′ and σp = σp′ .

The above model is especially important in that it provides a tractable
case where we can have mean-variance analysis and distributions that have
both skewness and kurtosis. To see this consider the case where s1 and s2
are independent. Then k(t) = lnφ(t) = lnφ1(µpt) + lnφ2

(
t2σ2

p/2
)
, so that

the φ2(.) term, being even, contributes to the even moments while the φ1(.)
term contributes to both odd and even moments. In particular, the third
central moment is the third central moment of the first term, so the model
will capture skewness.

3 The Case of Two Assets

We now consider the nature of the mean/semivariance frontier. When N = 2,
some general expressions can be calculated for the frontier.

In particular, for any distribution, for N = 2, rp = ωr1 + (1 − ω)r2 and

µp = ωµ1 + (1 − ω)µ2. (26)

Two special cases arise: If µ1 = µ2 = µ, then µp always equals µ, and the
(µp, θ

2
p) frontier is degenerate, consisting of a single point. Otherwise, assume

that µ1 
= µ2, and then Equation (26) can be solved for ω∗, so that

ω∗ =
µp − µ2

µ1 − µ2
. (27)

If we assume, without loss of generality, that µ1 > µ2, so that when there
is no short selling, µ1 ≥ µp ≥ µ2, for 0 ≤ ω∗ ≤ 1. We shall concentrate on this
part of the frontier, but we could consider extensions for ω∗ > 1 or ω∗ < 0.

Now define θ2p(τ) as the lower partial moment of degree 2 with truncation
point τ . Then

θ2p(τ) =
∫ τ

−∞
(τ − rp)2pdf(rp)drp. (28)

However, an alternative representation in terms of the joint pdf of r1 and
r2 is available. Namely,

θ2p(τ) =
∫

�
(τ − rp)2pdf(r1, r2)dr1dr2, (29)

where � = {(r1, r2); r1ω∗ + r2(1 − ω∗) ≤ τ}.
We can now change variables from (r1, r2) to (r1, rp) by the (linear) trans-

formations

rp = ω∗r1 + (1 − ω∗)r2 and r1 = r1. (30)



Computing Mean/Downside Risk Frontiers: The Role of Ellipticity 55

Therefore,

dr1dr2 =
1

(1 − ω∗)
dr1drp if 0 ≤ ω∗ < 1. (31)

If ω∗ = 1, then the transformation is (r1, r2) �→ (r2, rp).
Now,

θ2p(τ) =
∫ ∞

−∞

∫ τ

−∞

(τ − rp)2

(1 − ω∗)
pdf

(
r1,

rp − ω∗r1
1 − ω∗

)
dr1drp. (32)

This equation gives us the mean/semivariance locus for any joint pdf , i.e.,
pdf(r1, r2). As µp changes, ω∗ changes and so does θ2p(τ).

In certain cases, i.e., ellipticity, we can explicitly compute pdf(rp) and
we can directly use Equation (28). In general, however, we have to resort to
Equation (32) for our calculations. For the jointly subordinated normal class
described earlier, we can compute pdf(rp), but it would involve integrating
over s1 and s2 and, except in some special cases, will not lead to tractable
solutions.

In what follows, we present two results, first, for N = 2 under normality,
where Equation (28) can be applied directly and a closed-form solution de-
rived. Second, we assume joint log-normality, where we use either Equation
(28) or Equation (32) and numerical methods.

We see, by manipulating the above, that if we can compute the marginal
pdf of rp, the results will simplify considerably. For the case of normality,
and for general elliptical distributions, the pdf of rp is known. We proceed to
compute the (µp, θ

2
p) frontier under normality.

Proposition 2. Assuming that

(
r1
r2

)
∼ N

[(
µ1

µ2

)
,

(
σ2

1 σ12

σ12 σ2
2

)]
, (33)

the mean/semivariance frontier can be written as

θ2p =
(
σ2

p + (t− µp)2
)
Φ
(
t− µp

σp

)
+ (t− µp)σpφ

(
t− µp

σp

)
, (34)

where φ and Φ are the standard normal density and distribution functions,
respectively, µp is given by Equation (26), and σ2

p = ω2σ2
1 +2ω(1−ω)σ12+(1−

ω)2σ2
2 . Moreover, if r1 and r2 are any two mean/variance efficient portfolios,

the above result will hold for any N > 2.

Proof. Consider the integral, [letting θ2p(t) = I(t)],

I(t) =
∫ t

−∞
(t− rp)2pdf(rp)drp, (35)
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where rp ∼ N(µp, σ
2
p), so that

pdf(rp) =
1

σp

√
2π

exp

(
− (rp − µ2

p)
2σ2

p

)
. (36)

Transform rp → y = t− rp ⇒ rp = t− y, |drp| = |dy|, so

I(t) =
∫ ∞

0

y2 1
σp

√
2π

exp
(
− (y + t− µp)2

2σ2
p

)
dy, (37)

I(t) =
∂2

∂q2

[∫ ∞

0

eqy 1
σp

√
2π

exp
(
− (y + t− µp)2

2σ2
p

)
dy

]

q=0

. (38)

So examine the integral in brackets:

J =
∫ ∞

0

eqy 1
σp

√
2π

exp
(
− (y + t− µp)2

2σ2
p

)
dy. (39)

Let t− µp = −µt, so

J =
∫ ∞

0

1
σp

√
2π

exp

(
− (y2 − 2yµt − 2σ2

pqy + µ2
t )

2σ2
p

)
dy, (40)

J = exp
(
− µ2

t

2σ2
p

)
exp

(
(µ2

t +qσ2
p)2

2σ2
p

)∫ ∞

0

1
σp

√
2π

exp

(
− (y−(qσ2

p−µt))2

2σ2
p

)
dy.

(41)

Transform y → z = (y − (qσ2
p − µt))/σp ⇒ y = zσp + qσ2

p − µt, so

J = exp

(
−2qµt + q2σ2

p

2

)∫ ∞

−(qσ2
p−µt)/σp

1√
2π

exp
(
−z

2

2

)
dz, (42)

J = exp

(
−2qµt + q2σ2

p

2

)(
1 − Φ

(
−qσ

2
p − µt

σp

))
. (43)

That is,

I(t) =
∂2

∂q2

[
exp

(
−2qµt + q2σ2

p

2

)
Φ

(
qσ2

p − µt

σp

)]

q=0

, (44)

I(t) =
∂

∂q

[
(qσ2

p − µt) exp

(
−2qµt + q2σ2

p

2

)
Φ

(
qσ2

p − µt

σp

)

+ σp exp

(
−2qµt + q2σ2

p

2

)
Φ′
(
qσ2

p − µt

σp

)]

q=0

, (45)
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I(t) =
[
σ2

p exp

(
−2qµt + q2σ2

p

2

)
Φ

(
qσ2

p − µt

σp

)

+ (qσ2
p − µt)2 exp

(
−2qµt + q2σ2

p

2

)
Φ

(
qσ2

p − µt

σp

)

+ 2σp(qσ2
p − µt) exp

(
−2qµt + q2σ2

p

2

)
Φ′
(
qσ2

p − µt

σp

)

+ σ2
p exp

(
−2qµt + q2σ2

p

2

)
Φ′′

(
qσ2

p − µt

σp

)]

q=0

, (46)

I(t) = σ2
pΦ

(−µt

σp

)
+ µ2

t Φ
(−µt

σp

)
− 2µtσpΦ′

(−µt

σp

)
+ σ2

pΦ′′
(−µt

σp

)
.

(47)

Now

Φ(x) =
∫ x

−∞

1√
2π

exp
(
−z

2

2

)
dz, (48)

Φ′(x) =
1√
2π

exp
(
−x

2

2

)
= φ(x), (49)

Φ′′(x) = −x 1√
2π

exp
(
−x

2

2

)
= −xφ(x). (50)

Thus,

I(t) = (σ2
p + µ2

t )Φ
(−µt

σp

)
− 2µtσpφ

(
µt

σp

)
+ σ2

p

µt

σp
φ

(
µt

σp

)
(51)

or

I(t) = (σ2
p + µ2

t )Φ
(−µt

σp

)
− µtσpφ

(
µt

σp

)
. (52)

Finally, if r1 and r2 are any two mean/variance efficient portfolios, then
they span the set of minimum risk portfolios as described in Proposition 1,
and the result thus follows.

Corollary 3. If we wish to consider expected loss under normality, which we
denote by L, where L = E[rp and rp < t], then

L = (t− µp)Φ
(
t− µp

σp

)
+ σpφ

(
t− µp

σp

)
. (53)

Proof. The same argument as before.

The above results can be generalized to any elliptical distribution with
a finite second moment since in all cases we know, at least in principle, the
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marginal distribution of any portfolio. Let f() and F () be the pdf and cdf
of any portfolio return rp, and let µp and σp be the relevant mean and scale
parameters.

Then it is a consequence of ellipticity that a density (if it exists) f(z) has
the following property. For any (µp, σp) and rp = µp + σpz,

f(z) = σppdf

(
rp − µp

σp

)
. (54)

Furthermore, there are incomplete moment distributions

F k(x) =
∫ x

−∞
zkf(z)dz, F 0(x) = F (x) (55)

for k a positive integer [the existence of the kth moment is required for F k(x)
to exist]. So

L = (t− µp)F
(
t− µp

σp

)
− σpF

1

(
t− µp

σp

)
(56)

and letting w = (t− µp)/σp,

Semivariance = (t− µp)2F (w) − 2(t− µp)σpF
1(w) + σ2

pF
2(w). (57)

To illustrate the problems that arise when the pdf of rp is not available in
closed form, we consider the case of bivariate log-normality; as we see below,
the previous simplifications no longer occur. Suppose that

r1 =
(
P1

P0
− 1

)
; (58)

thus,

(1 + r1) =
(
P1

P0

)
= exp(y1), (59)

so that
(1 + rp) = 1 +

∑
wiri = ω exp(y1) + (1 − ω) exp(y2) (60)

and
rp = ω exp(y1) + (1 − ω) exp(y2) − 1. (61)

Therefore,

sv(rp) =
∫ t

−∞
(t− rp)2pdf(rp)drp. (62)

If
rp < t, then ω exp(y1) + (1 − ω) exp(y2) < 1 + t. (63)

The above transforms to a region R in (y1, y2) space. Hence,

sv(rp) =
∫

R

(1 + t− ω exp(y1) − (1 − ω) exp(y2))2pdf(y1, y2)dy1dy2 (64)
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or

sv(rp) =
∫

R

(1 + t)2pdf(y1, y2)dy1dy2 + c1

∫

R

exp(y1)pdf(y1, y2)dy1dy2

+ c2

∫

R

exp(y1 + y2))2pdf(y1, y2)dy1dy2, (65)

where c1 and c2 are some constants. None of the above integrals can be com-
puted in closed form, although they can be calculated by numerical methods.

4 Conic Results

Using our definition of value at risk as V aRp = tσp − µp with t > 0, and
noting from Proposition 1 that σ2

p must lie on the minimum variance frontier
so that

σ2
p =

(µ2
pγ − 2βµp + α)

(αγ − β2)
, (66)

we see that

(Varp + µp)2 =
(t2)(µ2

pγ − 2βµp + α)
(αγ − β2)

. (67)

Equation (67) is a general quadratic (conic) in µp and Varp and we can ap-
ply the methods of analytical geometry to understand what locus it describes.

The conic for v and u is

v2 + 2vu+ u2(1 − γθ) + 2βθu− αθ = 0, (68)

where θ = t2/(αγ−β2) and u = µp, v = Varp, α, γ, and θ are always positive.
Following standard arguments we can show that this conic must always

be an hyperbola since γθ > 0 (see Brown and Manson, 1959, page 284).
Furthermore, the center of the conic in (u, v) space is (β/γ,−β/γ), so that
the center corresponds to the same expected return as the global minimum
variance portfolio. The center of the hyperbola divides the (u, v) space into
two regions.

We now consider implicit differentiation of (68) for the region where µ ≥
β/γ, which corresponds to the relevant region for computing our frontier:

2v
∂v

∂u
+ 2

∂v

∂u
u+ 2v + 2u(1 − γθ) + 2βθ = 0. (69)

So

∂v

∂u
=
u(γθ − 1) − v − βθ

u+ v
. (70)

Thus,

v = u(γθ − 1) − βθ when
∂v

∂u
= 0, (71)
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or

u =
(v + βθ)
(γθ − 1)

. (72)

Substituting into Equation (68),

v2 + 2v
(v + βθ)
(γθ − 1)

+
(v + βθ)2

(γθ − 1)2
(1 − γθ) + 2βθ

(v + βθ)
(γθ − 1)

− αθ = 0. (73)

Simplifying, letting ∆ = αγ − β2 > 0,

v2(γθ−1)+2v2+2βθv−v2−2βθv−β2θ2+2βθv+2β2θ2−αθ(γθ−1) = 0 (74)

or
v2γ + 2vβ + (α− ∆θ) = 0, (75)

so that

v = −β
γ
±
√
β2 − αγ + ∆θγ

γ
. (76)

Since
β2 − αγ + ∆θγ ≥ 0, (77)

or
−∆ + ∆θγ ≥ 0, (78)

or
∆(θγ − 1) ≥ 0, (79)

we have
θγ ≥ 1. (80)

The solution for the upper part of the hyperbola is where v > −β/γ, which
corresponds to

v = −β
γ

+

√
β2 − αγ + ∆θγ

γ
. (81)

To check that this is a minimum, we compute

u =
(−β

γ + 1
γ

√
∆(θγ − 1)) + βθ

(γθ − 1)
, (82)

u =
(−β +

√
∆(θγ − 1) + βθγ)
γ(γθ − 1)

, (83)

u =
(β(θγ − 1) +

√
∆(θγ − 1))

(γθ − 1)
, (84)

u =
β

γ
+

1
γ

√
∆(θγ − 1)
(θγ − 1)

, (85)
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u =
β

γ
+

1
γ

√
∆

(θγ − 1)
, (86)

u >
β

γ
. (87)

Now considering the second-order conditions, first we have

u+ v =
β

γ
+

1
γ

√
∆

(θγ − 1)
− β

γ
+

1
γ

√
∆(θγ − 1), (88)

u+ v =
1
γ

[

√
∆

(θγ − 1)
+
√

∆(θγ − 1)] > 0. (89)

Differentiating Equation (69) gives

(
∂v

∂u

)2

+ v
∂2v

∂u2
+ u+ v

∂2v

∂u2
+
∂v

∂u
+
∂v

∂u
+ (1 − γθ) = 0. (90)

Since ∂v/∂u = 0 at the minimum, then

∂2v

∂u2
=

(γθ − 1)
(u+ v)

, (91)

and since γθ > 1 and (u+ v) > 0 at (u∗, v∗) from (89), the minimum point is
established.

We note that the condition γθ > 1 corresponds to the condition given
in Proposition 1 of Alexander and Bapista (2001). By substituting (69) back
into (73), we can recover the mean/variance portfolio, which is the minimum
value at risk portfolio as described by Equation (10).

5 Simulation Methodology

We consider simulation of portfolios ω of length N subject to symmetric linear
constraints, i.e.,

∑
ωi = 1 and a ≤ ωi ≤ b.

We assume ω1 is distributed as uniform[a, b] and let ω∗
1 be the sampled

value. Then ω2 is also sampled from a uniform[a, b] distribution with sam-
pled value ω∗

2 . The procedure is repeated sequentially as long as
∑m

j=1 ω
∗
j ≤

(N −m)a. If a value ω∗
m+1 is chosen such that

∑m+1
j=1 ω∗

j ≥ (N −m− 1)a, we
set ω∗

m+1 so that
∑m+1

j=1 ω∗
j + (N −m− 1)a = 1. This is always feasible.

Because the sequential sampling tends to make the weights selected early
in the process larger, for any feasible ω∗ we consider all n! permutations of
ω∗. From the symmetric constraints, these will also be feasible portfolios.
Unfortunately, with N = 8, then N ! = 40, 320, so it may be feasible, but with
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N = 12 then N ! = 47, 9001, 600 and it may no longer be a feasible approach!
We have to rely on random sampling in the first instance.

If we have a history of N stock returns for T periods, then for any vector
of portfolio weights, we can calculate the portfolio returns for the T periods.
These values can then be used to compute an estimate of the expected return
µi and the risk measure φi, which can be mapped into points on a diagram as
in Figure 1. If we believe the data to be elliptically generated, then, following
Proposition 2, we can save the weights of the set of minimum risk portfolios.

We amend an algorithm suggested by Bensalah (2000). If the risk-return
value of individual portfolios can be computed, then an intuitive procedure
is to draw the surface of many possible portfolios in a risk-return framework
and then identify the optimal portfolio in a mean-minimum risk sense. In the
case of no short selling, an algorithm for approximating any frontier portfolios
of N assets each with a history of T returns can be described as follows:

Step 1: Define the number of portfolios to be simulated as M .
Step 2: Randomize the order of the assets in the portfolio.
Step 3: Randomly generate the weight of the first asset w1 ∼ U [0, 1] from

a Uniform distribution, w2 ∼ U [0, 1 − w1], w3 ∼ U [0, 1 − w1 − w2],
. . . , wN = 1 − w1 − w2 − . . .− wN−1.

Step 4: Generate a history of T returns for this portfolio, and compute the
average return and risk measure.

Step 5: Repeat steps 2 to 4, M times.
Step 6: From the M sets of risk-return measures, rank the returns in as-

cending order and allocate the returns and allocate each pair to
B buckets equally spaced from the smallest to the largest return.
Within each bucket determine the portfolio with the minimum (or
maximum as required) risk measure. Across the B buckets these
portfolios define the approximate risk-return frontier.

We illustrate the feasibility and accuracy of this algorithm using data from
the Australian Stock Exchange. Daily returns were obtained for the trading
days from June 1, 1995, to August 30, 2002, on the eight largest capitalization
stocks, giving a history of 1,836 returns. Summary statistics for the daily per-
centage return on these stocks are reported in Table 1. They display typical
properties of stock returns, in particular, with all stocks displaying significant
excess kurtosis. A total of 128,000 random portfolios were generated. For each
portfolio the average return, the sample standard deviation, the sample semi-
standard deviation, the 5% value at risk and the sample expected loss below
zero were computed. Figure 1 illustrates the surface of the mean/standard de-
viation and mean/value at risk pairs obtained from 8,000 random portfolios.
The frontiers for these risk measures are readily identified. From the 128,000
random portfolios, the approximated risk frontiers are presented in Figure
2 for the mean/standard deviation, the mean/semistandard deviation, the
mean/value at risk (5%) and the mean/expected loss. We represent the fron-
tiers when it is assumed that the returns are elliptically distributed. In this
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case, a quadratic programming algorithm has been solved for the optimal
mean/standard deviation portfolio with no short selling for a number of tar-
get returns. The portfolio weights were then used to compute a history of
returns to obtain the three other risk measures. The other lines represent the
frontiers identified by the algorithm. In this case we use the portfolio weights
for the optimal portfolios in each bucket found by minimizing the sample
standard deviation. The identified frontiers for the mean/standard deviation
and mean/semistandard deviation are very close to that identified by the
quadratic programming algorithm. The two expected loss frontiers are su-
perimposed and cannot be distinguished on this diagram. By contrast, the
deviations between the two value at risk frontiers are relatively larger. The
quality of the approximations for the 128,000 random portfolios are summa-
rized in Table 2, where 100 buckets of portfolios have been used. In Panel
A, we chose the optimal portfolio in each bucket, is that portfolio with the
smallest standard deviation. The metric here is returns measured in daily per-
centages. For the mean/standard deviation frontier we measure the error as
the distance of the approximation from the quadratic programming solution,
and across 100 points on the frontier, the average error is 1.05 basis points
with a standard deviation of 0.49 basis points and the largest error is 2.42 ba-
sis points. For the mean/semistandard deviation frontier, the average error is
0.72 basis points with a standard deviation of 0.36 basis points. The expected
loss frontiers almost coincide, with the average error of 0.01 basis points with
a standard deviation of 0.08 basis points. The value at risk frontiers show the
largest discrepancies, with an average error of 1.75 basis points, a standard
deviation of 2.84 basis points, and a range in values from −5.08 up to 9.55
basis points. Panels B, C, and D report similar measures when the optimal
portfolios in each bucket are chosen by minimizing semistandard deviation,

Table 1. Summary Statistics for Eight Stocks

Rank Stock Average StDev Min Max Skewness Kurtosis

1 NAB 0.058 1.407 −13.871 04.999 −0.823 09.688
2 CBA 0.066 1.254 0−7.131 07.435 −0.188 05.022
3 BHP 0.008 1.675 0−7.617 07.843 −0.107 04.205
4 ANZ 0.073 1.503 0−7.064 09.195 −0.122 04.617
5 WBC 0.059 1.357 0−6.397 05.123 −0.181 03.985
6 NCP 0.013 2.432 −14.891 24.573 −0.564 11.321
7 RIO 0.035 1.659 −12.002 07.663 −0.069 05.360
8 WOW 0.078 1.482 0−8.392 11.483 −0.025 06.846

Notes: Stocks are ranked by market capitalization on August 30, 2002. The statistics
are based on 1,836 daily returns and are expressed as percentage per day. Average
is the sample mean; StDev is the sample standard deviation; Min is the minimum
observed return; Max is the maximum observed return; Skewness is the sample
skewness; and Kurtosis is the sample kurtosis.
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maximizing value at risk (5%), and maximizing the associated expected loss.
The results are qualitatively the same as in Panel A, but it is notable that
the portfolios chosen using value at risk result in the largest deviations from
the quadratic programming solutions.

This example does illustrate that it is feasible to approximate the frontiers
for a variety of risk measures using this intuitive simulation methodology,
but in this case there is little to be gained over the frontiers identified from
assuming that the returns are elliptically distributed. Finally, by using jointly
subordinated normal returns, we can have mean risk frontiers while using data
that are skewed and kurtotis.

Table 2. Summary Statistics: Distance Between Frontiers, 8 Assets, 128,000 Simu-
lated Portfolios

StDev Semi-StDev VaR Exp. Loss

Panel A
StDev Avg 0.0105 0.0072 −0.0175 −0.0001

StDev 0.0049 0.0036 −0.0284 −0.0008
Min 0.0004 0.0003 −0.0508 −0.0015
Max 0.0242 0.0158 −0.0955 −0.0020

Panel B
Semi-StDev Avg 0.0111 0.0069 −0.0185 −0.0000

StDev 0.0055 0.0035 −0.0295 −0.0008
Min 0.0004 0.0003 −0.0508 −0.0015
Max 0.0270 0.0166 −0.0981 −0.0023

Panel C
VaR Avg 0.0218 0.0148 −0.0106 −0.0008

StDev 0.0123 0.0093 −0.0187 −0.0012
Min 0.0001 0.0001 −0.0508 −0.0013
Max 0.0614 0.0481 −0.0817 −0.0048

Panel D
Exp. Loss Avg 0.0125 0.0082 −0.0122 −0.0003

StDev 0.0064 0.0050 −0.0258 −0.0007
Min 0.0004 0.0003 −0.048 −0.0015
Max 0.0391 0.0276 −0.0955 −0.0014

Note: The units of measurement are percent per day. For Standard Deviation and
semistandard deviation, we measure the deviation as the simulated portfolio value
minus the quadratic programming value. For value at risk and expected loss, we mea-
sure the quadratic programming value minus the simulated portfolio value. The sta-
tistics reported here are based on 100 points equally spaced along the respective
frontiers from the minimum to the maximum observed sample portfolio returns.
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Fig. 1. Illustration of mean/standard deviation and mean/value at risk surfaces
using 8,000 portfolios.
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Fig. 2. Risk frontiers obtained using quadratic programming and 128,000 simulated
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portfolios where portfolio weights are derived by minimising standard deviation).

6 Conclusion

We have presented analytical results that allow us to understand better
what mean/risk frontiers look like. For elliptical, and related, returns these
simplify to explicit formulas and we present closed-form expressions for
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mean/value at risk frontiers under ellipticity and mean/expected loss and
mean/semivariance frontiers under normality. For nonelliptical distributions,
a simulation methodology is presented that can be applied easily to historical
data. We do not consider the case of a riskless asset since this only has rel-
evance when index-linked bonds are available. However, our results could be
extended to this case.
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1 Introduction

One of the most spectacular successes in financial innovation since the advent
of financial futures is probably the creation of exchange traded funds (ETFs).
As index funds, they aim at replicating the performance of their benchmark
indices as closely as possible. Contrary to conventional mutual funds, however,
ETFs are listed on an exchange and can be traded intradaily. Issuers and
exchanges set forth the diversification opportunities they provide to all types
of investors at a lower cost, but also highlight their tax efficiency, transparency,
and low management fees. All of these features rely on a specific “in-kind”
creation and redemption principle: New shares can continuously be created
by depositing a portfolio of stocks that closely approximates the holdings of
the fund; similarly, investors can redeem outstanding ETF shares and receive
the basket portfolio in return. Holdings are transparent since fund portfolios
are disclosed at the end of the trading day.

ETFs were introduced to U.S. and Canadian exchanges in the early 1990s.
In the first several years, they represented a small fraction of the assets under
management in index funds. However, the 132% average annual growth rate
of ETF assets from 1995 through 2001 (Gastineau, 2002) illustrates the in-
creasing importance of these instruments. The launching of Cubes in 1999 was
accompanied by a spectacular growth in trading volume, making the major
ETFs the most actively traded equity securities on the U.S. stock exchanges.
Since then, ETF markets have continued to grow, not only in the number and
variety of products, but also in terms of assets and market value. Initially,
they aimed at replicating broad-based stock indices; new ETFs extended their
fields to sectors, international markets, fixed-income instruments, and, lately,
commodities. By the end of 2005, 453 ETFs were listed around the world,
for assets worth $343 billion. In the United States, overall ETF assets totaled
$296.02 billion, compared to $8.9 trillion in mutual funds.1

1 Data from the Investment Company Institute; http://www.ici.org/.

C. Zopounidis, M. Doumpos, and P.M. Pardalos (eds.) Handbook of Financial 67
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ETFs were initially developed in the United States by the American Stock
Exchange (AMEX) but soon faced competition for trading. Before the NYSE
ventured into ETFs, these securities were already traded on the Nasdaq In-
terMarket, regional exchanges, and the Island Electronic Crossing Network.
Though long opposed to this practice, for the first time in its history the
NYSE began trading the three most active ETFs under Unlisted Trading
Privileges on July 31, 2001. Moreover, the different trading venues also com-
peted for listings. On December 1, 2004, Nasdaq-100 Index Tracking Stocks,
more commonly known as “Cubes,” changed listing from AMEX to Nasdaq.
More recently, on July 20, 2005, Barclays Global Investors announced the
transfer of 61 iShares ETFs to the NYSE from the AMEX.

Several questions arise:

– Does the ETF-specific structure allow for more efficient index fund
pricing?

– Do ETFs represent a performing alternative to conventional index mutual
funds?

– What impact does the advent of ETFs have on trading and market quality
with regard to index component stocks and index derivatives?

Other empirical studies also focus on ETFs and investigate diverse topics,
such as competition between trading venues, the shape of the demand curve,
or the use of ETFs. Even though they are only loosely related, we will discuss
these studies under the heading “more studies devoted to ETFs”.

In the following section, we start by providing an overview of the history
of ETFs, from their creation in North American markets to their more re-
cent developments in the U.S. and European markets. In Section 3, we detail
the mechanics of ETFs with a special focus on creation and redemption and
present the ETF industry. The next four sections are devoted to the survey
itself. In Section 4, we look at the pricing efficiency of ETFs and compare it
to that of closed-end funds, while in Section 5 we examine the relative perfor-
mance of ETFs over conventional index mutual funds. In Section 6, we explore
the impact the arrival of ETFs has on the market quality of the stock compo-
nents of the underlying indices, the efficiency of index derivatives markets and
the pricing discovery process for index prices. In Section 7, we discuss other,
less studied ETF-related issues. Section 8 concludes and presents directions
for further research.

2 The History of ETFs

2.1 The Birth and Development of ETFs in North America

Depending on how restrictive the authors are in their definition, ETFs as we
now know them were first introduced in the early 1990s, either in Canada
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(with the TIPs that were first traded in 1990) or three years later in the
United States (with the SPDRs). However, the ability to trade a whole stock
basket in a single transaction dates farther back. Major U.S. brokerage firms
provided such program trading facilities as early as the late 1970s, particularly
for the S&P 500 index. With the introduction of index futures contracts,
program trading became more popular. As such, the opportunity to develop
a suitable instrument allowing index components to be negotiated in a single
trade became increasingly interesting.

In 1989, the American Stock Exchange and the Philadelphia Stock
Exchange started trading Index Participation Shares (IPS). These synthetic
instruments were aimed at replicating the performance of the S&P 500 index,
among others, but they had characteristics similar to those of futures con-
tracts. Despite significant interest from investors, IPS had to stop trading
after the lawsuit by the Chicago Mercantile Exchange and the Commodity
Futures Trading Commission (CFTC) was won. As futures contracts, IPS
had to be traded on a futures exchange regulated by the CFTC.

The first equity-like index fund, the Toronto Index Participation units
(TIPs), was introduced to the Toronto Stock Exchange on March 9, 1990.
Tracking the Toronto 35, they were traded on the stock exchange and were
characterized by extremely low management fees, given that the fund man-
ager was authorized to loan the stocks held by the fund, for which demand
was usually high. This product was followed in 1994 by HIPs, based on the
broader TSE-100 index. Despite the huge success of these securities, their
very low expense ratios finally made them too costly for the exchange and
its members. TIPs and HIPs were terminated in 2000.2 In 1993, after three
years of dispute with the SEC, the American Stock Exchange (AMEX) began
trading Standard & Poor’s 500 Depositary Receipt (SPDR, popularly known
as “Spider”; ticker SPY), which is often referred to as the world’s first ETF.
The fund was sponsored by PDR Services Corporation, an AMEX subsidiary,
with State Street Bank and Trust as trustee. Its specific trust structure and
trading process then constituted a model for the next ETFs introduced, such
as MidCap SPDRs, Diamonds (ticker DIA), based on the Dow Jones Indus-
trial Average, or Select Sector SPDRs. In 1996, Barclays Global Investors
preferred a mutual fund structure for their WEBS (World Equity Benchmark
Shares), ETFs that track the performance of foreign markets indices. Despite
a growing interest, it took a few years for these funds to really take off.

The ETF marketplace experienced its effective boom in March 1999 with
the launch of the Nasdaq-100 Index Tracking Stock, popularly known as Cubes
or Qubes in reference to its initial ticker, QQQ, recently changed to QQQQ. In
2 In 1999, S&P acquired the rights to the TSE index family and the TSE-30 and

TSE-100 indices were combined into the S&P/TSE-60. Owners of TIPs and HIPs
then had to choose between redemption and conversion into the i60 Fund based on
this new index, the first ETF managed by Barclays Global Investors. Biktimirov
(2004) analyzed the conversion of the remaining assets to examine the effect of
demand on stock prices.
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its second year of trading, a daily average of 70 million shares was being traded
in Cubes, which is roughly 4% of the Nasdaq trading volume. The popularity
of this specific fund increased market awareness for the other ETFs and the
total assets under management more than doubled in 2000, up to $70 billion at
the end of December (Frino and Gallagher, 2001). Since then, growth in ETF
assets has shown no signs of slowing in the United States: 27% in 2001, 23%
in 2002, 48% in 2003, 50% in 2004, even remaining high at 31% in 2005.3 Over
the years, ETFs progressively became an alternative to traditional non-traded
index mutual funds which led their major competitors such as Vanguard or
Fidelity to lower their fees by up to 10 basis points or less.

By the end of 2002, there were 113 ETFs in the United States with about
$102.14 billion in assets under management. At the end of April 2006, with
new cash invested in the existing ETFs and new ETFs based on still more di-
verse types of indices launched, the ETF marketplace consisted of four stock
exchanges listing 216 ETFs with $335 billion in assets. The iShares (spon-
sored by Barclays Global Investors) and StreetTracks (sponsored by State
Street Global Advisors) series present an extremely diversified offer among
sectors and/or countries, but ETF assets are dominated by Spider, Cube, and
Diamond, which are based on relatively broad market indexes. Trading vol-
ume concentrates on the two most popular ETFs, Cubes and Spiders, with
annual turnovers as high as 3,700% for the former and 2,400% for the latter,
according to Bogle (2004). This made Cubes, a passive investment instrument,
the most actively traded listed equity security in the United States in 2005,
with a daily average of 97 million shares traded.

2.2 The Market for ETFs in Europe

European stock exchanges started listing their first ETFs in 2000, while they
had already gained popularity in the United States. The first exchanges to
quote ETFs in Europe were the Deutsche Börse and the London Stock Ex-
change in April 2000 with the opening of the XTF and extraMARK spe-
cific market segments. Competition rapidly intensified with the entry of the
Stockholm Stock Exchange at the end of October 2000, Euronext in Janu-
ary 2001 when NextTrack began trading ETFs first in Paris and Amsterdam
marketplaces (trading in Brussels began in October 2002), and of the Swiss
Stock Exchange in March 2001. In February of 2002, the Helsinki Stock Ex-
change listed its first ETF, the IHEX 35, whereas the Borsa Italiana opened
the MTF segment dedicated to ETFs in September. More recently, ETFs
were launched in the Icelandic market (December 2004), the Norwegian mar-
ket (March 2005), the Irish market (April 2005), and the Austrian market
(November 2005).

As of the end of 2005, 11 exchanges listed more than 160 ETFs, with assets
growing at an annual rate of 60% up to e45 billion. Following the same trend

3 Data source: Investment Company Institute.
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as the one observed in the United States, exchanges began by quoting broad-
based national and regional equity index ETFs. They then quickly diversified
the benchmarks to a variety of underlying indices. For example, after only
six and five years, respectively, Euronext and the Deutsche Börse listed 95
and 77 ETFs. This included ETFs based on eurozone or European indices,
emerging country indices, style (socially responsible, growth, value, small caps,
mid caps, etc.), or sectors indices. Besides these equity-based ETFs, sponsors
launched fixed-income ETFs, ETFs based on precious metals and, lastly, those
based on commodities.

Table 1 reports ETF trading on European marketplaces for year 2005. The
Deutsche Börse and Euronext account for more than 70% of the total amount
traded in ETFs in Europe. A monthly average of e3,842 million was traded
on the Deutsche Börse in 2005 versus e1,481 million on Euronext, although
fewer ETFs were listed on the dominant exchange at the time. Despite con-
tinuous growth, these figures are still far from those observed in the United
States. Surprisingly, the leader in the number of trades is the Borsa Italiana,
with almost twice as many transactions a month as the Deutsche Börse and
Euronext, but worth only e0,524 million. This highlights the difference in
types of investors in the European ETF markets. In the first two markets,
the trading volume essentially stems from institutional investors posting large
orders, whereas the Italian market is characterized by a higher proportion of
individual investors posting significantly smaller orders.

Table 1. Overview of the European ETF Markets, 2005

Monthly Average
ETFs Trading Volume

No. of No. of Under. No. of No. of Amount
Exchange ETFs Indices Issuers Trades Traded (Ke)

Deutsche Börse 77 68 09 18,787 3,842.1
Euronext 95 68 10 14,434 1,481.9
London Stock Exchange 28 28 01 - 0,770.2
Borsa Italiana 30 29 05 29,964 0,727.1
SWX Swiss Exchange 34 26 08 06,383 0,524.3
Virt-X 17 17 04 00,552 0,059.8
OMX 11 11 02 00,744 0,028.7
Wiener Börse 11 10 02 00,119 0,019.6
Oslo Børs 02 02 01 00,045 0,001.9

Data source: FESE and Deutsche Börse .

Table 1 also illustrates the competition that exists between exchanges con-
cerning the order flow in of ETFs and between issuers for the attraction of
new cash invested. The London Stock Exchange is the only European mar-
ketplace with a single ETF series, the iShares sponsored by Barclays GI. In
every other exchange, there are multiple issuers managing ETFs based either
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on specific “home” indices or under licence from index providers. The lat-
ter represent most of the ETFs listed in Europe, with indices from STOXX,
FTSE, MSCI, or iBoxx, who sometimes grant multiple licences to competing
issuers. For example, the 95 ETFs issued by 10 sponsors that are traded on
Euronext track the performance of only 68 different underlying indices. As
in the United States, the major national (the French CAC 40, the English
FTSE 100) and regional (Dow Jones EURO STOXX 50, Dow Jones STOXX
50) indices concentrate most of the assets under management as well as the
trading volume. Typically, several ETFs use these indices as benchmark, and
are either listed on different European exchanges or on the same exchange.
Table 2 reports basic information on the ETFs tracking the CAC 40 and
the DJ Euro STOXX 50 indices competing on NextTrack as of December 31,
2005. It appears that even if those ETFs are the most traded on Euronext,
the average daily number of transactions is low and highly concentrated on
a single ETF for each index, namely those issued by Lyxor AM. If the same
observation applies to the assets under management for the CAC 40 index
with more than e3 billion, it does not apply to the DJ Euro STOXX 50.
For this eurozone index, three ETFs, issued by Lyxor, Barclays, and IndEx-
change, have assets greater than e3 billion under management. Nonetheless,
the trading volume still mostly concentrates on a single ETF. This situation
is typical of the cross-listing of ETFs in Europe (DJ Euro STOXX 50-based
ETFs are listed on seven different exchanges) where issuers benefit both from
their nationality on their home market and, more importantly, from anterior-
ity. Investors appear to keep trading on the same ETF even when competitors
are launched on the same indices.

3 ETF Trading

ETFs are hybrid instruments combining the advantages of both open-end
unit trusts and closed-end funds. They combine the creation and redemption
process of the former with the continuous stock market tradability of the
latter. Conventional mutual funds must typically buy back their units for cash,
with the disadvantage that investors can only trade once a day at the net asset
value (NAV) computed after the close.4 Moreover, the trustee needs to keep
a fraction of the portfolio invested in cash to meet the possible redemption
outflows. Closed-end funds avoid this so-called cash drag as investors who
wish to exit the fund can trade it throughout the day on exchanges. However,
as no further creations and redemptions are allowed, excess offer or demand
for closed-end funds may result in significant premiums or discounts with
respect to their NAV. An innovative structure has been set up for ETFs.
They trade on the stock market on a continuous basis, but shares can also be

4 NAV is defined as the market value of the securities held less liabilities, all divided
by the number of shares outstanding.
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created or redeemed directly from the fund. The efficiency of the ETF specific
dual trading system essentially relies on the in-kind creation and redemption
process that is only available to institutional investors. We will first describe
the ETF trading structure and then present the different players in the ETF
marketplace.

3.1 The ETF Trading Process

ETF trading in the major marketplaces around the world closely resembles the
system that was set up in the AMEX for SPDRs. The basic idea the original
designer of ETFs, Nathan Most, had was to organize ETFs as commodity
warehouse receipts with the physicals delivered and stored, whereas only the
receipts are traded, although holders of the receipt can take delivery. This “in-
kind” creation and redemption principle has been extended from commodities
to stock baskets. Market makers and institutional investors can deposit the
stock basket underlying an index with the fund trustee and receive fund shares
in return. The shares thus created can then be traded on an exchange as simple
stocks or later redeemed for the stock basket then making up the underlying
index. The interesting feature in this process is that the performance earned
by an investor who creates new shares and redeems them later is equal to the
index return less fees even if the composition of the index has changed in the
meantime.

Figure 1 illustrates the dual structure of the ETF trading process with a
primary market open to institutional investors for the creation and redemption
of ETF shares in lots directly from the fund, and a secondary market where
ETF shares can be traded with no limitation on order size. The conditions
for the creation and redemption of shares, such as the size of creation units,
can vary from one fund to another, but the equity ETF process is typically
as follows.

Creation of New Shares

Only authorized participants (APs), typically large institutional investors who
have an agreement with the fund sponsor, are allowed to create new shares, in
blocks of specified minimal amounts called creation units. Creation units vary
in size from one fund to another, ranging from 25,000 up to 300,000 shares.
Most ETFs have creation units of 50,000 shares, which represents an amount
500 times the dollar value of the index underlying the ETF. APs deposit the
corresponding prespecified stock basket plus an amount of cash into the fund
and receive the corresponding number of shares in return.5 For some ETFs,

5 The cash component is equal to the difference between the NAV and the value
of the stock basket. It accounts for the dividends cumulated by the funds, the
management fees, and adjustments due to rounding. This cash component may
be negative.
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Fig. 1. Primary and secondary ETF market structure.

creation is allowed in cash but the APs then incur higher creation fees to
account for the additional cost of the transactions that the replication of the
index requires. Consequently, ongoing shareholders do not bear the cost of the
entry (or exit) of new shareholders.

Redemption of Outstanding Shares

Shares are not individually redeemable. Investors can ask for redemption only
by tendering to the trust shares in creation units. Typically, the operation is
done “in-kind.” Redeemers are offered the portfolio of stocks that make up
the underlying index plus a cash amount in return for creation units. As is the
case with creation, some funds may redeem ETF units in cash under specific
terms, such as delays or costs.

The number of outstanding shares tradable on the secondary market varies
over time according to creation and redemption operations carried out on the
primary market. Both institutional and individual investors can buy and sell
shares in the secondary market like ordinary stocks at any time during the
trading day. As such, there is no fee payable for secondary market purchases
or sales, but secondary market transactions are subject to regular brokerage
commissions. Negotiating on the secondary market is subject to local exchange
regulations. However, as index funds, ETFs typically need to receive a number
of exemptions to trade like common stocks, and the launch of ETFs has gen-
erally been accompanied by the creation of dedicated market segments with
their own specific rules.
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In the United States, the ETF structure could not exist under the In-
vestment Company Act of 1940. Gastineau (2002) reviewed the exemptions
necessary for ETFs to exist and operate. The major exemptions are related
to the permission for the “in-kind” creation and redemption process to occur
only in creation units and the permission for shares to trade throughout the
day at a price different from its NAV. Generally, ETFs also receive exemptions
from the Securities and Exchange Act of 1934 so as to permit short selling
on a down tick, for example. In European markets, exemptions are gener-
ally embedded in the dedicated market segment regulations. On NextTrack,
Euronext’s dedicated market segment, besides the conventional information
referring to the fund, admission to trading new ETFs is essentially subject
to the nomination of at least two liquidity providers, although Euronext is
organized as a pure order book market.6 Moreover, specific trading halts have
been required for ETFs listed on Euronext Paris since French laws stipulate
that Index Funds must trade at a price that does not deviate from their NAV
by more than 1.5%.7

3.2 The Importance of “In-Kind” Creations and Redemptions

Since an ETF may be negotiated on two markets, it has two prices: the NAV
of the shares and their market price. The first price is the value per share
of the fund holdings computed at the end of each trading day. The second
depends on the supply and demand for shares on the exchange. If selling or
buying pressure is high, these two prices may deviate from each other. The
possibility of “in-kind” creation and redemption helps market makers absorb
the liquidity shocks that might occur on the secondary market, either by
redeeming outstanding shares or by creating new shares directly from the fund.
Moreover, the process ensures that departures are not too large. Indeed, APs
could arbitrage any sizable differences between the ETF and the underlying
index component stocks. If the ETF market price fell below the indicative
NAV, it could be profitable for APs to buy ETFs in the secondary market,
take on a short position in the underlying index stocks and, then ask the fund
manager to redeem the ETFs for the stock basket before closing the short
position at a profit.

Another major advantage of the “in-kind” process relies on the receipt and
delivery of the stock basket with its weightings specified so as to replicate the
underlying index. As they need not sell any stocks on the exchange to meet
redemptions, ETF fund managers can fully invest their portfolio. Moreover,
creations do not yield any additional costly trading within the fund. In the
United States, “in-kind” operations are a nontaxable event, making the ETF
structure seem particularly tax-efficient. When confronted with massive re-
demptions, which often occur in bull markets, classical funds must sell their

6 See Euronext Instruction N3-09, Avis 2000-5271.
7 Decree no. 89-624, September 6, 1989.
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stock, resulting in taxable capital gains. When requesting redemption, APs
are indifferent to the cost basis of the stocks they receive in return for the
shares since their basis is the price at which they first delivered the stocks
for the creation of the ETF shares. The ETF sponsor thus has the ability to
deliver the stocks with the largest embedded capital gain. Historically, Del-
lva (2001) reported almost insignificant capital gains delivered by ETFs with
respect to conventional mutual funds.

As efficient as it may be, this process is not sufficient to ensure a perfect
replication of the underlying index. Changes in the composition of the index
and constraints on the use of dividends and management fees induce some
tracking error. Constraints depend on the legal structure chosen for the fund,
but they generally remain low. Some structures allow the use of derivatives
to ensure replication, whereas others restrict the holdings to the stocks that
make up the index.8 Loaning securities held by the fund might be permitted
and is all the more profitable as the fund turnover is low and demand for
its constituting stocks is high. This may help reduce management fees and
expense ratios. Dividends are generally paid quarterly or half-yearly. Their
value includes the cumulated dividends delivered by the underlying stocks,
less management fees, bringing the NAV back to the initially specified multiple
of the index (usually 1/10th or 1/100th).

3.3 ETF Market Participants

Besides the index providers that develop and provide licences for existing or
new indices, ETF players are the stock exchanges, sponsors, and trustees,
ETF-authorized participants, market makers, and investors on the secondary
market.

Stock Exchanges

A stock exchange’s first task upon entering the ETF business is to define
admission to trading conditions and trading rules in conjunction with market
authorities and regulators. The rules depend on local regulations and often
require exemptions to the existing security laws and regulations. Its second
task is to provide information. Stock exchanges disseminate classical intraday
and daily data on market activity such as trades and quotes, trading volume,
and so on. More specific information including assets under management or
the number of outstanding shares is also made available. More importantly,
exchanges compute and disclose indicative NAVs on a frequent basis. They
are updated throughout the day so as to reflect changes in the underlying
index. Investors can thus assess how far from their value ETFs trade on the
marketplace. Historical data on the mean premium and discount values may

8 The major differences between the two structures used in the United States,
namely the mutual fund or the unit investment trust, will be reviewed later.
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also be available for each ETF. That is the case with the AMEX, for example.
Usually, effective NAVs are computed and disclosed at the end of the trading
day, along with the composition of the creation and redemption stock baskets.

Moreover, exchanges usually undertake marketing and educational activ-
ities to benefit investors. However, the role of stock exchanges is not limited
to these regulatory and operating aspects. More specifically, the exchanges
generally select which ETFs will be listed in the last resort. For example,
Euronext explicitly states that it “may reject an application for admission to
trading on NextTrack if the applicable conditions are not met or if Euronext
believes that admission would not be in the interests of NextTrack or in-
vestors.” It is unclear whether listings of competitor ETFs based on the same
or close indices improve or deteriorate the market quality of their underlying
stocks and other ETFs. In this respect, European exchanges have very differ-
ent strategies. Contrary to Euronext and the Deutsche Börse, the Italian and
English exchanges follow very restrictive listing strategies, limiting listings to
very specific indices for the first and to one single sponsor for the second.
Finally, exchanges can also influence the offer by providing and licensing their
own indices as benchmarks for ETFs.

Sponsors and Trustees

Sponsors and trustees issue ETFs and manage the fund’s holdings so as to
replicate their underlying index or benchmark as closely as possible. How-
ever, in the United States, before an ETF is admitted to trading on a stock
exchange, it must pass through the SEC’s exemptive process since no set of
rules exists to allow firms to launch such an instrument. When a sponsor wants
to cross-list his ETFs in multiple markets, the full prospectus may eventually
be rewritten since, even though regulations are similar, as in Europe, differ-
ent information may be needed or different presentation formats may prevail
according to the country. The prospectuses provide information on the risks
associated to the index replicating scheme. They also contain various infor-
mation, including the list of shareholders, legal representatives, and directors
of the ETF’s management company, the terms and conditions of the product,
and the way it operates. More specifically, the creation and redemption condi-
tions are fully detailed. Replicating the performance of the underlying index is
an objective but not a mandatory one. Prospectuses include a tracking error
objective but specify that it may not be achieved. Holdings management is
broadly limited to adjustments caused by changes to the index, managing div-
idends, and creating new shares or redeeming outstanding shares. ETFs are
extremely transparent since the information on the holdings and their value
as well as the number of outstanding shares must be reported to the exchange
and then made public.
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Fund-Authorized Participants and Market Makers

Although theoretically opened to all investors, the ETF primary market
practically aims at the fund managers and authorized participants. Fund man-
agers, whose role has already been briefly described, are responsible for issuing
and redeeming trackers. Authorized participants have the fund manager’s per-
mission to request share creation and redemption, generally in multiples of
the creation units. All investors requesting that creation units be created or
redeemed must place an order with an AP. APs may be simple investors in
the ETF fund or act as market makers on the secondary market. As with
the AMEX, most ETF marketplaces have specialists or market makers. One
major difference with stock market specialists is their ability to create or re-
deem shares to manage their inventory risk. They play an essential role in
the efficient pricing of ETFs through possible arbitrage between the ETF pri-
mary and secondary markets as well as with the underlying index futures and
options markets.

Retail and Institutional Investors on the Secondary Market

Most ETF trading occurs in the secondary market. That is one major advan-
tage ETFs have over classical mutual funds. Investors need not redeem their
shares to exit the fund; they can simply sell them on the market. Depending
on the market and the ETF, the secondary market may be dominated either
by institutional investors and APs or by retail investors. Trading ETF shares
on the secondary market is organized in the same way as regular stocks, with
the possible difference that there are specialists and market markers posting
bid and offering prices even on order-driven markets. Short selling, even on a
down tick, and margin buying are usually allowed and ETFs may be eligible
to block trades and other trading facilities.

3.4 ETFs of Different Kinds

Differences in Legal Structure

The ETF legal structure primarily depends on which exchange it is listed on.
Security laws and stock exchange regulations differ from country to country.
Sponsors who want to cross-list their ETFs have to accommodate multiple
legal regimes. Even in the United States, three main legal structures co-exist:
open-ended index mutual funds, unit investment trusts, and exchange-traded
grantor trusts. ETFs are regulated by the SEC as mutual funds, but, as we
discussed earlier, their structure is subject to a number of exemptions and
there is still no set of rules that would allow new ETFs to be listed directly.
Historically, the first ETFs were initially designed as Unit Investment Trusts
(UIT) for simplicity and cost-saving reasons (Gastineau, 2002). Followers and
most of the new ETFs preferred the more flexible structure provided by mutual
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funds. The main difference between the two structures is the use of dividends
and the securities the fund holds. Unlike open-end index mutual funds, UITs
cannot reinvest the dividends delivered by the underlying stocks and must
cumulate them in cash.9 Mutual funds are also allowed to use derivatives such
as futures, which allows them to equitize their dividend stream, and, finally,
unlike UITs, they can generate income from loaning the securities they hold.
QQQs (Qubes), DIAMONDS, and S&P 500 SPDRs are structured as UITs
while Select Sector SPDRs and iShares are open-end index mutual funds.

Although HOLDRs are sometimes referred to as ETFs, such exchange-
traded grantor trusts cannot be considered as such according to strict defini-
tions of the term. They are more similar to owning the underlying shares, since
investors keep the right to vote shares and to receive dividends. However, such
funds do not track independent indices, given that the stocks to be included
in the fund are selected based on objective criteria once the industry sector,
or more generally the group of securities, has been chosen. New shares can
then be created and outstanding shares can be cancelled against the delivery
of the stock portfolio. The included stocks are fixed and cannot be changed
even though some of the basket components are acquired by other companies.

Differences in the Underlying Indices

ETFs were initially meant to replicate broad-based stock indices. However,
as the instrument became more familiar to investors, the universe of ETFs
expanded progressively to replicate indices built around sectors, countries, or
styles. The process continued with the launch of fixed-income, commodity,
and finally currency ETFs.

Broad-based stock indices measure the performance of companies that
represent a market. The number of stocks included in the index, and therefore
the diversification of the associated fund, varies from one index to another,
from 30 stocks in the case of the Dow Jones Industrial Average to as much
as 3,000 for the Russell 3000 Index (which measures the performance of the
largest U.S. companies based on total market capitalization) or almost 5,000
for the Dow Jones Wilshire 5000 Composite Index. Major ETFs based on
broad-based stock indices include SPDRs, QQQQs, DIAMONDS, or iShares
Russell 2000 that replicate the S&P 500, the Nasdaq 100, the DJIA, and
the Russell 2000 indices, respectively. Specific ETF series usually break down
broad-based indices into “growth” and “value” management styles and small,
medium, or large capitalization stock sizes. With broad-based ETFs, it is
possible to establish positions in global markets very quickly and equitize
temporary cash positions. They may be used for long-term investing, as a

9 This UIT feature results in a so-called dividend-drag during rising markets. As
we will discuss more extensively later, it partially explains the poor performance
of UITs, such as the S&P 500 SPDR, in comparison with some of their major
mutual fund competitors. See Elton et al. (2002).
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tool to hedge well-diversified portfolios or to implement multiple strategies.
Core-satellite strategies typically use such broad-based ETFs to build the
core allocation. Capitalization size trading strategies can be implemented with
large, medium, and small capitalization ETFs.

Country and regionally based ETFs also generally replicate broad-based
foreign equity market indices. Country ETFs replicate indices that focus on
a single country, whereas regional ETFs track an index that focuses on a
geographical or monetary zone such as Asia, Europe, or the Eurozone. They
provide easy and rapid international diversification but, since ETFs and their
underlying stocks need not be traded synchronously, deviations to the NAV
may be larger for these instruments. WEBs were the first country ETFs to be
launched in 1996, and the iShares MSCI series offer worldwide country ETFs.

Broad-based indices are also generally broken down into sectors. In some
instances, sector indices are designed specifically for the funds. For example,
select sector SPDRs break down the overall S&P 500 index into industry com-
ponents that differ from classical S&P sector indices (an individual security
cannot account for more than 25% of the index in order to comply with the In-
ternal Revenue Code). Other examples of sector ETF series are iShares Dow
Jones, SPDR Sector Series, or Merrill Lynch HOLDRs insofar as they can
be considered ETFs. Sector ETFs appear to be particularly useful in imple-
menting sector rotation strategies since they make it is easy to overweigh or
underweigh sectors in a single transaction.

The first fixed-income ETFs appeared in Canada in 2000; to date, there
are only six of these products on the U.S. market, all iShares funds issued by
Barclays in 2002. These were meant to replicate Goldman Sachs and Lehman
Brothers bond indices, which measure the performance of obligations with dif-
ferent maturities and issuers, both public and corporate. Fixed-income ETFs
do not mature but maintain a portfolio that reflects the underlying bond in-
dex’s target maturity. As of April 2006, fixed-income ETFs represented $16.14
billion in assets out of a total $334.87 billion in assets under management for
the whole ETF industry. Fixed-income ETFs are used for portfolio diversi-
fication, core holding for bond portfolios, or transition management, among
others. European marketplaces list country-specific fixed-income ETFs.

Commodity ETFs were first launched in the U.S. with StreetTracks Gold
Shares, whose objective is to reflect the performance of the gold bullion. To
create new shares, APs must deposit a specified gold amount plus cash. They
are redeemed in the same in-kind basket in return for shares. Commodity
ETFs give investors exposure to a variety of commodities such as gold, silver,
oil, or broad-based index commodities that include commodities from sec-
tors as diverse as energy, metals, agriculture, and livestock. Examples of such
broad-based commodity ETFs include EasyETF GSCIs based on the Goldman
Sachs Commodity Index (listed on the Deutsche Börse and the Swiss Stock
Exchange), Lyxor ETF Commodities CRBs based on the Reuters/Jefferies
CRB index (listed on Euronext), and the Deutsche Bank Commodity Index
Tracking Fund and based on the Deutsche Bank Liquid Commodity Index
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(listed on the AMEX). Unlike classical ETFs, these funds invest in futures
contracts on the underlying commodities.

To date, the last type of ETFs to be created is currency ETFs, with the
launch of Euro CurrencyShares sponsored by Rydex Investments in December
2005. It is listed on the NYSE, and its objective is to reflect the price of the
euro. In this last case, no derivatives are used and the Trust’s assets consist
only of euros on demand deposit. APs can issue and redeem shares in euro-
based creation units.

4 ETFs’ Pricing Efficiency

The specificity of ETF trading is based on the creation and redemption process
we presented in the previous section. Exchanges and sponsors claim that this
structure necessarily brings a high pricing efficiency to the ETF market. Pric-
ing efficiency is a major concern since trading in index funds has long been
at the root of the most intriguing puzzles in finance: the closed-end fund
discount. Although fund holdings are made public and the NAV is disclosed
at least daily, closed-end funds generally trade at a discount to NAV. Con-
ventional explanations for the closed-end fund puzzle include biases in NAV
calculation, agency costs, tax inefficiency, and market segmentation.10 How-
ever, none of these theories can explain the full set of anomalies associated
with the pricing of closed-end funds. One must forego the rational expecta-
tion framework to encompass these anomalies in a single theory. The limited
rationality model developed by Lee et al. (1991) shows how the behavior of in-
dividual investors can explain the puzzle. Misperception leads to overreaction,
and the unpredictability of variations in investor sentiment makes arbitrage
risky. Most of the empirical tests support this investor sentiment theory.

In contrast to closed-end funds, whose capitalization is fixed, ETFs are
characterized by a variable number of shares in issue. APs can ask the fund
to create new shares or redeem outstanding shares with no impact on market
prices and thus should be able to quickly arbitrage any deviation of the price
to the NAV. No specific model that integrates the ETF arbitrage process has
yet been developed. However, some empirical studies test the ability of the
ETF structure to ensure efficient pricing in the U.S. ETF market. Using clos-
ing data, Ackert and Tian (2000) show that discounts on the price of SPDRs
had no economic significance between 1993 and 1997, even though individual
investors were the primary investors in the fund. They measure larger dis-
counts for the MidCap SDPR based on the S&P 400 index. This confirms the
hypothesis that limits to arbitrage cause deviations given that this ETF is
likely to have higher arbitrage costs due to higher fundamental risk, trans-
actions costs, and lower dividend yield associated with its benchmark index.

10 For a review on the closed-end fund puzzle, see Dimson and Minio-Kozerski
(1999).
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Discounts remain very low compared to those observed on closed-end funds,
and excessive volatility is only observed for MidCap SDPRs. Hence, the ETF
specific structure lessens the impact of noise traders since rational traders can
more easily arbitrage deviations to the NAV.

These results are confirmed by the empirical studies carried out by Elton
et al. (2002) on SPDRs, Engle and Sarkar (2006) on a sample of 21 ETFs
listed on the AMEX, and Curcio et al. (2004) on Cubes or Cherry (2004)
on 73 iShares ETFs. Elton et al. (2002) showed that deviations to the NAV
do not persist from day to day. The fact that trading volume is linked to
premium and discount values supports the claim that the arbitrage mecha-
nism is responsible for this efficiency. Engle and Sarkar (2006) examined the
magnitude and persistence of discounts both daily and intradaily. On average,
they found that ETFs are efficiently priced since only small deviations were
seen, lasting for only a few minutes. The daily results of Curcio et al. (2004)
confirmed those of Ackert and Tian (2000). From an intradaily perspective,
their study of transaction size proves that, even if individual investors seem
to be the primary holders of SPDRs and Cubes, they account for less than
one-half of the trading volume. Some economically significant discounts are
found, but these are very short-lived and can be attributed to institutional
arbitrage activity.

The structure is the same for all ETFs, but, in the case of country ETFs,
the arbitrage mechanism is somewhat inhibited by nonoverlapping trading
hours between ETFs and their underlying index component stocks. Engle and
Sarkar (2006) found that deviations to the NAV are greater and more per-
sistent for the 16 country ETFs sample compared to the 21 domestic ETFs
sample. Though imperfect, the existence of the creation/redemption process
along with the high transparency of the funds holdings appears to enhance
price efficiency. In effect, deviations remain smaller in magnitude (around 100
basis points on average with a maximum of 211 bps) than those generally
observed for comparable closed-end country funds (often greater than 10%).
Jares and Lavin (2004) studied this issue for Japan and Hong Kong WEBs
that trade on the AMEX. Nontradability of the underlying stocks is an espe-
cially meaningful concern in this case since Asian markets are closed for the
day before U.S. markets open. For these ETFs, an Indicated Optimized Port-
folio Value serves as the indicative NAV and is disclosed throughout the day.
It is based on stale stock prices and accounts solely for changes in exchange
rates. Jares and Lavin (2004) found frequent discounts and premiums for the
period ranging from 1996 to 2001. Moreover, there is predictability in returns
giving rise to highly profitable trading rules. These results are confirmed in
Madura and Richie (2004), who found reversals in prices that support the hy-
pothesis that informed traders arbitrage overreacting investors. The measured
reversals are insignificant for broad-based ETFs, but are more pronounced for
international ETFs. Simon and Sternberg (2004) also found significant pre-
miums and discounts at the end of the day and overreaction for European
ETFs traded on the AMEX. Hence, if the trading system appears to enhance
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pricing efficiency for traded funds, some inefficiency seems to remain for ETFs
replicating illiquid or foreign benchmarks.

5 ETF Performance

Marketing for ETFs, presented as a low-cost alternative to traditional mutual
funds, has always focused on their low management fees and expense ratios.
As ETFs attracted more and more cash, fierce competition between ETFs and
mutual funds led to the fee war described in Dellva (2001) and Bogle (2004).
Fidelity and Vanguard progressively lowered their fees; after an almost 10-year
fall in expense ratios, they are now at a historical low with 10 basis points
and still less for Vanguard major funds. Broad-based ETFs generally display
annual expense ratios of 20 basis points or less. Recently, the expense ratio for
SPDRs was lowered from 0.12% to 0.10% while Barclays’ iShares S&P 500 fees
are set at 0.09%. The expense ratio comparisons used as a competitive tool
by issuers are obviously in favor of ETFs. However, such direct comparisons
are too simplistic since they omit ETF trading costs and relative tracking
performance over mutual funds.

Dellva (2001) and Kostovetsky (2003) compared both types of funds based
on total costs supported by investors. ETFs generally have lower expense ra-
tios. Investors incur transaction costs when they buy and sell ETFs, while
there is no supplementary cost for trading no-load mutual funds. Taxes are
also of importance to taxable investors. As registered investments companies,
mutual fund and ETFs must both distribute capital gains to their share-
holders. If mutual funds are considered tax-friendly investments, this is even
truer of ETFs. Actually, ETF managers do not need to sell shares to meet
redemptions as creations/redemptions are done in-kind. Moreover, they can
also redeem shares with the higher tax basis. ETFs distribute almost no cap-
ital gains, but, overall, Dellva (2001) found that trading costs are typically
higher than expense ratios and tax savings for small investors. However, as the
invested amount increases, ETFs become more profitable than mutual funds,
even for short-term investment of two or three years. Kostovetsky (2003) goes
one step further by quantitatively modeling the difference in cost in both a
single and multiple-period setting. He also found that there is a threshold in
the amount invested over which ETFs dominate mutual funds. However, both
studies assume that there is no tracking error for both types of funds, although
it is well known that the replication of the benchmark index is rarely, if ever,
perfect.

Replication strategies cannot always be perfect. Even if most times fund
holdings mimic the index composition, when it changes, fund managers must
trade to adjust their holdings. The related transaction costs and possible flaws
in the replication strategies induce tracking error. Elton et al. (2002) evidenced
an average 0.28% annual underperformance for SPDRs relative to the S&P
500 index over the 1993−1998 period. Moreover, SPDRs do not compare fa-
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vorably with major index mutual funds: annually, the Vanguard mutual fund
that replicates the S&P 500 index yields on average 0.18% more than the SP-
DRs. These results are confirmed in the study by Poterba and Shoven (2002)
over the 1994−2000 period, even when taxes on capital gains delivered by both
funds are taken into account. Although differences in performance are reduced,
they remain economically significant. For Elton et al. (2002), 9.95 basis points
are lost due to the SPDR structure. As a Unit Investment Trust, the divi-
dends received on the fund holdings have been kept in a noninterest-bearing
account until distributed to shareholders. The authors claim that investors
are still investing in SPDRs rather than in relatively outperforming mutual
funds because they assign value to the ability to trade their shares intradaily.
The value of immediacy is 9.95 basis points. In addition to comparing SPDRs
and Vanguard performances, Gastineau (2004) investigated the difference in
returns between iShares Russell 2000 ETFs and Vanguard Small Cap Investor
Shares over the 1994−2002 period. Irrespective of the underlying index, ETFs
underperform the corresponding mutual fund. However, Gastineau attributed
these differences to passiveness from ETF managers when faced with changes
in index composition. Mutual fund managers typically anticipate upcoming
events to reduce transaction costs embedded in the index modification process
while ETF managers wait until the announcement.

To date, only a few studies deal with this issue concerning ETFs that
are not based on major broad-based indices or listed in the United States.
Harper et al. (2006) extended the performance issue to country funds. Due
to significantly lower expense ratios, iShares country ETFs offer higher re-
turns than corresponding closed-end country funds. ETFs also have higher
Sharpe ratios. In this case, the ETF cost-efficient structure proves decisive.
On the younger Australian ETF market, Gallagher and Segara (2004) did not
find evidence that the street TRACKS S&P/ASX 200 ETF over or under-
performed the mutual funds tracking the same index in 2002 and 2003. To
our best knowledge, despite the growing success of ETFs in Europe, only one
study is dedicated to the performance of European ETFs to date. For the
seven most important ETFs traded on the Italian market, Zanotti and Russo
(2005) showed that risk-adjusted returns are higher on average than those ob-
served for traditional mutual funds. It therefore seems that, contrary to what
is observed in U.S. major broad-based indices, ETFs based on less liquid in-
dices or listed on less mature exchanges might outperform their mutual fund
counterparts.

6 The Impact of the Introduction of ETFs on Trading
and Efficiency of Related Securities

Before the introduction of ETFs, investors could already trade stock indices
intradaily through their component stocks and index derivatives. The advent
of ETFs offers a new means to take quick and inexpensive positions in indices.
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Given their specific characteristics and organization, ETFs have attracted a
significant portion of index-based trading. Either ETF investors are new to
indexing or they come from the other pre-existing index markets. However, it
is not very clear whether the arrival of new investors and the possible migra-
tion of existing investors from one market to another alter the mix between
liquidity and informed traders for the basket and underlying stock compo-
nents.

The spectacular growth of index futures markets in the 1980s had already
raised the question of what impact the introduction of a basket market would
have on market quality. Depending on the assumptions made about the in-
tegration of the different markets, theoretical models predict opposite effects.
In the framework of perfectly integrated markets, Subrahmanyam (1991) and
Gorton and Pennacchi (1993) modeled the strategic behavior of traders who
can choose to trade either in the basket stock market or in the underlying
stocks market. Subrahmanyam (1991) demonstrated that the basket security
market most probably serves as the lowest-cost market for the index. Adverse
selection costs are lower on the market for the basket in which the firm-specific
private information is diversified. In Gorton and Pennacchi’s (1993) model,
liquidity traders will prefer the basket market, as it enables them to build
their portfolios at a lower cost. Hence, the proportion of informed traders ne-
gotiating the individual securities increases, which results in higher adverse
selection costs.

In Fremault (1991) and Kumar and Seppi (1994), markets are assumed to
be imperfectly integrated. The introduction of a basket instrument removes
some of the obstacles that limited arbitrageurs from establishing profitable
portfolios. Information asymmetry across markets and arbitrage costs will
tend to decrease, attracting new arbitrageurs. Arbitrage activity and compe-
tition between informed traders will increase and result in higher liquidity in
the individual securities market.

Hedge and McDermott (2004) transposed these predictions to the intro-
duction of ETFs. On the one hand, the migration of liquidity trading from
the stock market to the ETF market could deter the liquidity of individual
securities. On the other hand, if ETFs facilitate arbitrage trading, their intro-
duction would increase arbitrage activity and enhance both the liquidity of
the underlying stocks and the efficiency of the derivatives markets. Two con-
trasting theories on how the introduction of ETFs modifies the established
equilibriums can be tested: the “adverse selection hypothesis” and the “ar-
bitrage hypothesis.” The number of studies on this issue is still limited, but
we will nonetheless divide the discussion into three parts. We will first review
the studies that analyze to what extent ETF trading affects the quality of
the underlying index component stocks. Then we will look at the research
that tests what impact the introduction of ETFs has on derivatives markets
efficiency. Finally, we will consider works that measure how the index pricing
discovery process is influenced by the high ETF trading levels.
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6.1 ETFs and the Market Quality of Their Underlying Stocks

The advent of ETF trading is likely to have modified the mix of informed
and liquidity traders on the market for individual securities. To test to what
extent this is the case, empirical studies measure the importance of informa-
tion asymmetries both in ETFs and individual stock markets. This research
typically relies on the analysis of bid-ask spreads and trading volumes and
measures the evolution of market quality after trading in ETFs becomes pos-
sible. Overall, the ETF market is found to attract very few informed trading
and to be more liquid than the individual stocks market. However, there is no
clear consensus on whether ETFs enhance liquidity in the underlying stocks.

Hedge and McDermott (2004) provided an in-depth analysis of the mar-
ket liquidity of Diamonds and the stocks that constitute the DJIA around
the launch of this ETF. Empirical pre- and post-ETF comparisons of vari-
ous liquidity measures computed over two 50-day periods were used to test
the impact of the ETF’s introduction. Their results support the arbitrage
hypothesis. The different measures of the individual stocks’ liquidity improve,
appearing to be mostly due to a decrease in adverse selection costs as mea-
sured with the price formation model developed by Madhavan et al. (1997).
Moreover, the trading volume and open interest of DJIA futures contracts in-
crease over the sample period. Similar, but less significant, results are obtained
for the introduction of Cubes.

The study of Madura and Richie (2005) on the introduction of Cubes
supported the arbitrage hypothesis. First, there is evidence of a decrease in
the spreads of Nasdaq 100 index components over the three months following
the introduction of Cubes compared to the preceding three-month period.
Second, the decrease in the spreads is all the more significant as the weight
of the stock is low. This result supports the role of ETFs in the measured
decrease. Passive fund managers need not invest in all securities to replicate
the index. Rather, they use sampling techniques and limit their activity to
the top holdings. In contrast, arbitrageurs investing in ETFs through the in-
kind creation/redemption process must transact the full 100-stock portfolio.
Among these stocks, the less weighted stocks experience the largest increase in
liquidity. Third, the introduction of Cubes was followed by an increase in the
pricing efficiency of the individual stock and a significant decline in systematic
risk. Yu (2005) also found more efficient pricing and a decline in the trading
costs of component stocks following the introduction of the basket security
for a sample of 63 ETFs and 15 HOLDRs listed on the AMEX.

On the contrary, the results found by Van Ness et al. (2005) and Ascioglu
et al. (2006) supported the adverse selection hypothesis drawn from Sub-
rahmanyam’s (1991) model. Over the two-month period that brackets the
introduction of Diamonds, Van Ness et al. (2005) claim that liquidity traders
move to the ETF market since the spreads measured for the DJIA component
stock experience a smaller decline than those of the control sample. However,
no significant modification is found in the adverse selection components of
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the individual stocks, but the authors argue that this may simply be due to
the poor performance of adverse selection models in general. Ascioglu et al.
(2006) broke down the spread of 64 broad-based ETFs listed on Nasdaq using
Madhavan et al.’s (1997) methodology. In this preliminary study, tests are
carried out over two months, March and April 2005. They showed that infor-
mation asymmetry is less severe for ETFs than it is for comparable stocks,
insofar as it is possible to match the most traded ETFs with stocks.

Nonetheless, whatever the measured effect the introduction of ETFs has
on individual stocks, all studies find that the ETF liquidity is higher than
that of the underlying stock portfolio. For liquidity traders, ETFs appear to
be a cheaper vehicle for building a diversified index portfolio compared to
investing in the individual stocks directly. The study of Bennett and Kerins,
Jr. (2003) confirmed this last point for 92 ETFs listed on the AMEX over
the last quarter of 2000. This remains true even though some ETFs exhibit a
lower trading volume than the underlying stocks.

6.2 ETFs and the Efficiency of the Underlying Index Derivatives

In complete and perfect markets, arbitrage relationships tightly constrain the
price of derivatives with respect to their underlying asset. On real markets,
with the existence of friction and trading constraints, futures (Chung, 1991;
Miller et al., 1994) and options (Kamara and Miller, 1995) prices can fluctuate
around their theoretical value without giving rise to arbitrage opportunities.
Arbitrage relationships only impose bounds that widen with the prevalence of
friction. As Ackert and Tian (2000) noted, the advent of ETFs removes some of
the obstacles that prohibited arbitrageurs to enter in efficiency-creating trades
in index derivatives markets. Besides the possibility of shorting the index, even
on a down tick, ETFs should lower both trading costs and the liquidity risk
of building an index position. Moreover, in the imperfectly integrated market
framework of Fremault (1991) and Kumar and Seppi (1994), the advent of
ETFs should increase intermarket arbitrage activity. As a first hint in favor of
these predictions, Hedge and McDermott (2004) found a significant increase
in the daily average DJIA and Nasdaq-100 futures trading volume and open
interest over the 101 trading days surrounding the introduction of Diamonds
and Cubes, respectively.

Empirical tests that study what impact the introduction of ETFs have on
the efficiency of derivatives markets first rely on the computation of arbitrage
profits. The frequency and values of arbitrage opportunities measured prior
to the advent of ETFs are then compared to those measured after. Though
early studies use daily data, most recent works use tick-by-tick data, which
eventually allows differences in the persistence of efficient value distortions
to be tested. Futures markets distortions are defined with respect to cost-of-
carry prices, whereas the put-call parity relationship is the main benchmark
for theoretical option values, even though other arbitrage relationships such as
the lower boundary or constraints on spreads may set efficiency boundaries.
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Overall, though futures market studies highlight an improvement in inter-
market efficiency, evidence for a similar pattern in the options market is mixed.

Park and Switzer (1995) tested how TIPs, the very first ETF listed on
the Toronto Stock Exchange, impacted the efficiency of the Toronto 35 index
futures market. Using closing data, they found a reduction in arbitrage op-
portunities in terms of both frequency and value. The authors interpreted this
result as evidence that the TIPs lowered arbitrage costs and thus attracted
more arbitrage activity. Switzer et al. (2000) drew the same conclusion from
the reduction in mispricings measured after SPDRs were introduced. Nonsyn-
chronous prices do not explain the improved efficiency observed since the pat-
tern is obtained with both daily and hourly data. As for the advent of Cubes,
Kurov and Lasser (2002) worked with one year of transaction data concerning
the near maturity of Nasdaq-100 futures. Whatever the assumed transaction
cost levels, both the size and frequency of deviations decrease once Cubes
are traded. Kurov and Lasser also conducted ex ante tests that consisted
in building the arbitrage portfolios only after an ad-hoc period had elapsed.
They documented faster market reactions to observed deviations since a larger
percentage of opportunities disappear within two minutes in the post-ETF pe-
riod. On the French index futures market, Deville et al. (2006) investigated
the impact the introduction of the Lyxor CAC 40 ETF had on the pricing
efficiency of the French broad-based CAC 40 index futures over a two-year
period. Even after controlling for liquidity of futures contracts and individual
stocks and market volatility, ETFs appear to enhance intermarket efficiency.
However, further analysis shows that this improvement cannot be directly
attributed to ETF trading. Rather, the introduction of ETFs increased the
liquidity of the underlying stocks, which may have attracted new arbitrage
activity, thus tightening the spot-futures pricing relationship.

In contrast, there is no clear evidence of improved efficiency in the options
markets. Their efficiency seems to improve over time, as evidenced by Ackert
and Tian (1998) on the Toronto Stock Exchange when TIPs were launched
or by Ackert and Tian (2001) on the CBOE when SPDRs were launched.
However, they found no clear effect on the link between stock and index
options markets as measured by sole deviations to relationships that require
trading in the index. No significant improvement is found in the compatibility
of their closing price samples with these relationships. Deville (2003, 2005)
obtained opposite results with tick-by-tick data on the French market for
the launch of CAC 40 index ETFs. The improvement of all market efficiency
measures that rely on put-call parity supports the notion that ETFs improve
the efficiency of the options market. Moreover, the duration of deviations drops
twofold with the introduction of ETFs. Deville and Riva (2006) confirmed the
importance of ETFs in enhancing intermarket efficiency through a survival
analysis approach. The existence of ETFs is found to be a major determinant
of the process that drives prices back to values compatible with efficiency.
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6.3 ETFs and Price Discovery

With the creation and development of index futures, the cash market for com-
ponent stocks has gradually lost its prominence in index trading. Empirically,
for U.S. broad-based indices, studies that explore the dynamics of index prices
show that the futures markets incorporate information more rapidly than the
stock markets. However, significant but weaker effects are measured from the
latter to the first market. ETFs allow indices to be traded throughout the day
at low cost and may appear to be more convenient trading vehicles than fu-
tures for smaller orders and liquidity traders. A question that naturally arises
from this is whether futures contracts remain the lead instrument in the price
discovery process. A byproduct of the studies on price discovery is the in-
sightful information they provide on where uninformed and informed traders
trade.

Despite the introduction of SPDRs, Chu et al. (1999) showed in a vector
error correction framework that price discovery still takes place on S&P 500
futures. SPDRs only make a small contribution to the common factor, but
more so than the spot market. Since the study is based on the ETFs’ first
year of trading, it is necessary to view these results with some caution. SPDRs
only began to exhibit a high trading volume years later. Over the March−May
2000 period, Hasbrouck (2003) analyzed the price discovery process using the
information share approach of Hasbrouck (1995) for three major U.S. indices.
Investors can take positions on the S&P 500 and Nasdaq-100 indices through
individual stocks, floor-traded futures contracts, electronically traded E-mini
futures contracts, options, or ETFs. The largest informational contributions
come from the futures market, with the ETF market playing a minor, though
significant, role. Interestingly enough, there was no E-mini contract for the
S&P MidCap 400 over the sample period, and the ETF information share is
the most important for this last index.

Recent work by Tse et al. (2006) showed that although the E-mini DJIA fu-
tures contracts dominate price discovery, Diamonds also play a very significant
part in the process. Their results for the S&P 500 highlighted a contribution
of about 49% for the ETF. However, this does not cast doubt on Hasbrouck’s
(2003) results, since they were based on floor-based quotes and trades from
the AMEX, whereas Tse et al. used quotes from the ArcaEx Electronic Cross-
ing Network.11 The anonymous and immediate trading execution obtained on
electronic trading platforms may indeed attract informed trading.

The results obtained by Henker and Martens (2004) contrast with the
view that derivatives and ETFs are the leading instruments. They follow
Hasbrouck’s (1995) methodology to assess the discovery process for two liquid
HOLDRs from January to July 2003. Although there are no futures contracts
that could attract most of the informed trading activity, HOLDRs are dom-
inated in the pricing discovery by component stocks. This evidence is in line
11 This confirms what Tse and Erenburg (2003) found concerning the Nasdaq-100

index in that trading in ECNs contributes the most to price discovery.
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with the predictions of the Subrahmanyam (1991) model, in that the under-
lying stocks will lead the basket instrument.

Each stock in the S&P 500 is also assigned to one of the nine Select Sector
indices. Sector ETFs may be of interest to liquidity traders looking for specific
diversification as well as to investors trading on private information at the
sector level. Even though some Sector SPDRs such as the XLK (technology)
exhibit significant trading, Hasbrouck (2003) showed that their information
share is limited. In the period running from July 1, 2002, to September 20,
2002, the results obtained by Yu (2005) in a VAR framework are consistent
with the view that low information production occurs at the sector level. One
explanation is that the high trading costs and low liquidity that characterize
these ETFs might deter liquidity trading. Consequently, Sector SPDRs are
unattractive to informed traders.

7 More Studies Devoted to ETFs

ETFs are often presented as an alternative, either interesting or not, to other
index instruments, mutual funds, and derivatives. Literature on ETFs mostly
takes the same perspective. ETF performance is compared to that of index
mutual funds and their efficiency to that of closed-end funds. Their trading
is essentially analyzed for the impact the advent of ETFs has on the effi-
ciency of the related index markets. However, ETFs trade like stocks and a
few studies started to transpose security market issues to ETFs. In particular,
Boehmer and Boehmer (2003) and Tse and Erenburg (2003) studied the influ-
ence the NYSE ETF listing has on the competition for order flow and market
quality with regard to ETFs primarily traded on the AMEX. Furthermore,
the specific ETF structure may shed new light on other classical questions.
Arshanapalli et al. (2002) measured the impact SPDR creations and redemp-
tions have on the SPDR market price and index component stocks. Biktimirov
(2004) studied the conversion of TIPs to the i60 Fund to assess the shape of
the demand curve for equities. Finally, ETFs were initially designed to offer
low-cost diversification in a single trade, but little is known about their real
use. The capacity of country ETFs to enhance international diversification is
questioned by Pennathur et al. (2002) and Miffre (2004). Amenc et al. (2004)
illustrated the potential use of fixed-income ETFs in core-satellite portfolio
management.

On July 31, 2001, for the first time in its history, the NYSE exercised Un-
listed Trading Privileges and began trading the three majors ETFs, namely
QQQQs, SPDRs, and DIAs, that were then primarily listed on the AMEX.12

On April 15, 2002, the process was continued with the addition of 27 new
AMEX-listed ETFs and HOLDRs, mostly based on sector indices. As of April
12 An Unlisted Trading Privilege (UTP) is a right, provided by the Securities Ex-

change Act of 1934, that permits securities listed on any U.S. securities exchange
to be traded by other such exchanges.
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2006, 270 ETFs now trade on the NYSE on a UTP basis along with 94 primary
listed ETFs. The considerable ETF trading volume made the NYSE decide
to join in the competition.13 Before the NYSE entered into ETFs, QQQQs,
SPDRs, and DIAs were already traded on the Nasdaq InterMarket, regional
exchanges, and the Island ECN. Tse and Erenburg (2003) focused on QQQQs
to investigate to what extent NYSE trading influenced the ETF market quality
as measured by liquidity, efficiency, and price discovery. They found evidence
that trading on the NYSE has increased competition for order since spread
declined in all trading venues and the information shares of QQQQs rela-
tive to Nasdaq-100 futures increased following competition from NYSE. How-
ever, this accrued competition between different trading centers did not result
in market fragmentation or increased trading costs. Boehmer and Boehmer
(2003) confirmed these results for the entire 30-ETF set that began trading on
the NYSE. Post-NYSE liquidity is higher compared to pre-NYSE figures both
in the entire market and in different market centers. Further analysis supports
the hypothesis that ETF market makers earned significant rents prior to the
NYSE entry. However, in his discussion of Boehmer and Boehmer (2003),
Peterson (2003) suggested that these results are also consistent with a seg-
mentation hypothesis in which traders migrate to the market offering the best
liquidity for their trades. Nonetheless, competition appears to enhance overall
market liquidity without impeding the price discovery process. Competition
between exchanges for ETF listings caused Cubes to switch their listing from
AMEX to Nasdaq on December 1, 2004, with a change in ticker from QQQ
to QQQQ. Broom et al. (2006) showed that even when trading already takes
place in different market venues, the location of the primary listing is an im-
portant determinant of trading activity since the move resulted in a decline
in trading costs, a consolidation of order flow, and a less fragmented market.

ETFs are of particular interest in the study of the shape of the stock
demand curve since noninformational events regarding individual stocks are
likely to occur for these securities. Such events may be regular, as is the case
for in-kind creations and redemptions studied by Arshanapalli et al. (2002) or
exceptional like the conversion of TIPs into a new fund that is the central point
of Biktimirov (2004). The findings of Arshanapalli et al. (2002) concerning the
impact of index composition changes, and SPDR creations and redemptions
from January 29, 1993, to September 29, 2001, support the downward sloping
demand curve concept. Biktimirov (2004) made use of a more specific event to
examine the effect of demand on stock prices: the conversion of unredeemed
TIPs 35 and TIPs 100 shares into new S&P/TSE 60 Index Participation Fund
(i60 Fund) shares that occurred on the Toronto Stock Exchange on March 6,
2000. The 40 stocks in the Toronto 100 index that were not included in the
S&P/TSE 60 index (which served as a benchmark for the i60 Fund) had to
be sold. Biktimirov (2004) claimed that this event is completely noninforma-

13 Boehmer and Boehmer (2003) noted that, in early 2001, Cubes, Spiders, and Dia-
monds generated an average daily trading volume of about $5 billion all together.
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tional since it has been long anticipated and is not associated with a change
in the composition of the index. Selling pressure results in a decline in value
both the day before conversion and the day of conversion, with abnormal
trading volumes. There is no change in liquidity and the price decline is per-
manent. All this evidence is consistent with the downward-sloping demand
curve hypothesis.

The natural properties of country ETFs for international diversification
were studied by Pennathur et al. (2002). They found that the international
iShares series efficiently replicates its foreign index benchmarks. However, its
potential for diversification is limited due to of a high degree of exposure to
U.S. equity markets. Miffre (2004) nonetheless insists on the specific advan-
tages country ETFs have over conventional mutual and closed-end country
funds: short selling on a down tick, low costs, and tax efficiency, to name but
a few. Investors are thus able to achieve superior diversification with ETFs as
long as they invest significant amounts. Amenc et al. (2004) measured the per-
formance of a dynamic core-satellite approach based on fixed-income ETFs.
However, ETFs only serve illustrative purposes and no empirical comparison
with other investment vehicles is provided.

8 Conclusion and Perspectives

ETFs are open-end index funds that trade like regular stocks on exchanges.
They combine the features of conventional mutual funds and closed-end funds
since new shares can be continuously created or redeemed and outstanding
shares trade throughout the day on exchanges. They were initially launched
in North American markets in the early 1990s, and new listings on exchanges
led to more than 450 different ETFs being traded around the world with
steadily increasing assets under management. What is even more spectacular
is the growth in trading volume these instruments have generated. In the
United States, major ETFs are more traded than any other security. European
ETF markets are younger, but they exhibit similar tendencies, with fierce
competition both between issuers for new cash and between exchanges for
order flow. Their success raises the issue of the organization of mutual fund
trading.

Research on ETFs mostly focuses on their efficiency and performance as
well as on their impact on the other index markets. Compared to closed-end
funds, the specific in-kind creation and redemption process ensures a higher
degree of pricing efficiency. Nonetheless, the advantages inherent to the in-
kind process do not help ETF managers provide higher performance over the
least-cost no-load index mutual funds. Overall, the advent of ETFs enhances
the liquidity of the individual stock making up the benchmark indices and
the efficiency of index derivatives markets. Finally, ETFs play a significant,
though not prominent, role in the price discovery process.
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Despite the increasing importance of ETFs markets, literature on these
topics is still scarce, although research perspectives are promising. For ex-
ample, European and Asian ETFs markets are very active but remain an
almost untouched research field. The empirical but also theoretical questions
of competition between marketplaces and between ETFs tracking the same
index still need to be investigated. Regulatory issues should also be included
in future research as the evolution of ETF markets may lead markets and
regulators to adopt new rules. This has already been the case for the so-
called trade-through rule exemption implemented by SEC for ETFs studied
by Hendershott and Jones (2005). Finally, new types of ETFs, such as the
recent commodity ETFs, are launched on a regular basis and a study has yet
to examine their specificities, trading, or uses for fixed-income ETFs and ETF
derivatives.
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1 Motivation and Literature Review

The relevance of genetic programming (GP) to technical analysis is quite obvi-
ous. Technical analysis is mainly built upon some mathematical manipulations
of the historical data of prices and volumes. The mathematical manipulations
can be regarded as the function set of GP, whereas the signals of prices and
volumes can be taken as the terminal set of GP. The interest in using GP
to study technical analysis is, therefore, motivated by the two following con-
cerns.1 First, technical analysis generally does not refer to a fixed set of trading
rules. They are evolving and changing over time. Many of them are still not
even known to the public. However, for some time academic studies seem to
have overlooked this property and have tended to study them as if they are
fixed over time.2 It is, therefore, not surprising to see the diversity of the re-
sults: They are profitable in some markets some of the time, while they fail
in other markets at other times, and so they are very inconclusive.3 A more
systematic way to study this evolving subject is to place it in a dynamic and
evolving environment. As a tool for simulating the evolution of trading rules in
response to the changing environment, genetic programming can then serve
this purpose well. Second, technical analysis usually involves quite compli-
cated transformations and combinations of price and volume signals, which is
too demanding to be harnessed by the human mind. GP, as a rules-generating
machine, can better facilitate our travel through this jungle.
1 See also Granville (1976).
2 Brock et al. (1992), as a celebrated work in this area, is a case in point. This

paper motivated a series of follow-ups to test the financial market’s efficiency by
testing the profitability of the simple trading strategies. Trading strategies, later
on, have been parameterized as a parametric model. Either the parameters have
to be inferred from the sample, or they are simply open to many possible values
for us to play with.

3 This phenomenon is sometimes connected to the selection bias.
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Given these two concerns, the financial application of GP to trading rules
is distinguished from the use of other computational intelligence tools. The
point of interest here is to see how well we are able to simulate the rule-
discovery process without assuming the size and the shape of trading rules.
Needless to say, other computational intelligence tools can help us with the
market-timing decision, but either they do not provide us with trading rules,
such as the linear perceptron neural networks and support vector machine,
or they assume a fixed size or shape of trading rules, such as the decision
trees, self-organizing maps, and genetic algorithms. In fact, GP allows us to
work with an issue of academic interest similar to automatic-theorem proofing,
which is not shared by other competing tools.4

Given this academic uniqueness, it is then interesting to inquire whether
this idea actually works. The answer that we have from the literature seems to
be mixed. For example, it seems to work well in the foreign exchange markets
(Bhattacharyya et al., 2002; Neely and Weller, 1999; Neely, et al. 1997) and
has succeeded in some stock markets (O’Neill et al., 2002), but it has failed
in some other markets (Allen and Karjalainen, 1999; Potvin et al., 2004) and
has failed in the future markets (Wang, 2000).5 Nonetheless, the real issue
is that research in this area is so limited that we are far from concluding
anything firm. In particular, GP is notorious for its large number of user-
supplied parameters, and the current research is not rich enough to allow
us to inquire whether these parameters may impact the performance of GP.
Obviously, in order to better understand the present and the future of GP in
evolving trading rules, more research needs to be done.

The purpose of this paper is to give a more thorough examination of what
was found earlier in the stock markets (Allen and Karjalainen, 1999) and for-
eign exchange markets (Neely and Weller, 1999; Neely et al., 1997). To do so,
we test the performance of GP more extensively with many more markets. In
this chapter a total of eight stock markets and eight foreign exchange markets
are tested. This scale has not been attempted in the past.6 Even for the same
market, our test period differs from earlier ones by including the most recent
data after the year 2000, which features significant changes in trends within
this extended period. Putting these efforts together, this extensive study may
enrich our understanding of the behavior of GP in financial markets, and in
particular whether those successes or failures are robust or are general enough.

Furthermore, motivated by Potvin et al. (2004), this chapter also considers
the use of short selling. This consideration has its value. For instance, when
the market experiences a long downward tendency, it will make GP essentially

4 Of course, it is always interesting to compare different tools on the same appli-
cation domain based on their performance. However, that should not be the only
thing to look at, and it is beyond the scope of this paper.

5 See Chen and Kuo (2003a) for a survey.
6 Allen and Karjalainen (1999) only tested the series for the S&P 500, Neely et

al. (1997) tested six foreign exchanges, and Neely and Weller (1999) tested four
foreign exchanges.
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very inactive; in this case, staying out of the market is the best strategy.
However, when short selling is admissible, GP can become more active by
learning to sell short. We therefore test the performance of GP by allowing
traders to sell short in the stock market.7

To choose a benchmark with which GP is compared, most earlier studies
selected the buy-and-hold strategy (B&H). Few have taken into account other
practical trading rules used by practitioners. In this paper, we have the chance
to work with an investment firm and to use the 21 trading strategies supplied
by them as alternative benchmarks. As a result, GP is not just compared with
B&H, but also competes with many other, more active trading strategies.

The rest of the chapter is organized as follows. Section 2 gives a brief
introduction to genetic programming (GP) and the experimental designs in
terms of the setting of the control parameters. One essential part of GP,
namely, the fitness function, is fully discussed in Section 3. The data used
in this paper associated with its preprocessing are detailed in Section 4. The
experimental results together with an analysis are given in Section 5 and are
followed by the concluding remarks in Section 6.

2 Genetic Programming

Genetic programming applies the ideas of biological evolution to a society
of computer programs.8 From one generation to another generation, it fol-
lows the survival of the fittest principle to select from the existing programs
and then to operate these selected programs via some familiar genetic opera-
tors, such as reproduction, crossover, and mutation. To facilitate the genetic
operation, each computer program is visualized as a manifestation of the com-
puter language LISP (List Programming), known as the S-expression (sym-
bolic expression). Each S-expression can be expanded into a parse tree. GP
implements crossover and mutation operations by taking advantage of this
parse-tree structure.

The parse-tree structure and its alteration or recombination make genetic
programming able to demonstrate and operate the idea of modularity and
complexity, which are the two essential ingredients of modern economics. In
light of this virtue, Chen (2001) pointed out the significant relevance of ge-
netic programming to economics, and Chen and Chie (2005) further used it to
demonstrate how economic activities of discovery or innovation can be mod-
eled and simulated by GP. Chen and Kuo (2003a) reviewed literature on the
financial applications of GP by emphasizing its use as a tool for discovering
hidden financial patterns.
7 There is no appropriate counterpart for short selling in the foreign exchange

market, since our position has to be either one of the possible currencies: the host
currency and the foreign currency.

8 For the readers who are not familiar with GP, John Koza’s series of studies
provides a systematic treatment (Koza, 1992, 1994; Koza et al., 1999, 2005).
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Specifically, in financial trading, each computer program represents a trad-
ing program, and the society of computer programs represents a collection of
trading programs. The population size, denoted by Pop, is a key control para-
meter of GP. The evolution of the population of the trading program proceeds
in a cycle. Each cycle is counted as one generation. The maximum number of
generations (Gen) combined with Pop, usually as a product of the two, gives
the maximum search resources to be used in the discovery process. There are
some studies on the choices of these two parameters (Chen et al., 2002). How-
ever, studies using empirical data shed little light on the choice of these two
parameters (Chen and Kuo, 2003b). In this chapter, Pop is set to 500, and
Gen is set to 100 (Table 1).9

The content of each trading program is determined by the associated LISP
S-expression, i.e., a list composed of atoms. The atoms can be functions (op-
erators), variables, or constants (operands) and can be a list as well. The
functions and variables that can be used to span a possible LISP S-expression
(trading program) must be declared at the beginning and are known as the
function set and the terminal set. Our choice of the function set and the ter-
minal set is basically in line with Allen and Karjalainen (1999), Neely et al.
(1997), and Neely and Weller (1999). The idea is to satisfy the closure property
(Koza, 1992). We first have a collection of simple technical trading rules, such
as the moving-average rule, the filter rule, the trading range break-out rule,
etc., and we thus see what operators and operands are required to make them
reachable. A collection of these functions becomes our function set, and a col-
lection of these variables or constants becomes our terminal set (see Table 1).
By the closure property, these functions and terminals are sufficient enough
to span the above-mentioned simple technical trading rules; but, more than
that, they also have the potential to generate complex rules.

The functions and terminals used in Table 1 are all very primitive and
simple. However, they can be enriched in several directions; for example, in
addition to the price, we can include other variables in the terminal set such
as volatility, volume, and technical indexes; we can also add other functions
to the terminal set, such as some well-known trading rules. The significance
of enriching the terminal set and the function set has been discussed in Chen
et al. (2002), and we regard it as a direction for further research.

With the function set and terminal set specified in Table 1, we start the
evolution by initializing a population of Pop random trading programs, called
the initial population. A standard method for this initialization is the ramp-
half-and-half method, which is a combination of the growth method and the
full method. Given a size limit or a depth ceiling, the growth method grows

9 In pilot experiments, we have also tried a larger Pop and Gen, such as 1,000
and 200 for each. However, there is no significant difference. In fact, as we shall
discuss below, an issue arising here is the possibly low efficiency in searching:
GP repeatedly discovers something we already knew, such as the buy-and-hold
strategy.
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Table 1. Control Parameters of GP

Population Size (Pop) 500

Initialization ramp-half-and-half

Offspring trees created
by crossover 50%
by point mutation 20%
by tree mutation (grow method) 20%
by elite 0.2%
by reproduction 9.8%

Function set +,−,×,÷,
norm, average, max, min, lag
and, or, not, >,<
if-then-else, true, false

Terminal set price, constants

Selection scheme Tournament selection (size =2)

Termination criterion
number of generations (Gen) 100
stagnation tolerance (g) 50

Validation
number of best models saved (k) 1

Fitness
Fitness function Equation (2) (stock market)

Equation (10) (foreign exchage market)
Transaction cost (c) 0.5% (stock market)

0.05% (foreign exchage market)

the tree randomly up to or below the size limit, whereas the full method grows
the tree exactly to the size limit.10

Each trading program is then applied to the market and gives the trading
recommendation. Based on the recommendation and the data, we measure
its fitness.11 We then rank all trading programs of the current generation by
their fitness. The top-ranked k programs are selected and are further tested
over another unseen data set, called the validation set (see Section 4). Their
fitness is calculated, and they are saved in a list of winners.

The standard genetic operators, including reproduction, crossover, and
mutation, are then applied to the current generation of the programs, in order
to generate a new generation. In addition to these three operators, as a device
for disturbance avoidance (Chen et al., 2002), the elitism operator, which
is designed to keep the few best programs of the current generation, is also
applied. The share of the total programs assigned to each of these operators
is another control parameter in GP and is given in Table 1. Chen et al. (2002)

10 For details, see Koza (1992).
11 The use of the data is detailed in Section 4, and the exact fitness measure is

detailed in Section 3.
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thoroughly discussed the setting of these control parameters, and their device,
which may not be optimal, is followed here.

After the emergence of the new generation, we then follow the same pro-
cedure to measure the fitness of each trading program of the new generation.
The best k models are selected, and their fitness over the validation set is
calculated and further compared with that of the k incumbents in the list of
winners. The best k of these 2k programs are then selected as the new list of
winners. This finishes the evolution for one generation, and the cycle starts
over again by generating the next new generation of trading programs, and
this cycle goes on and on until it meets a termination criterion.

There are two termination criteria. One is the maximum number of genera-
tions (Gen), and the other is the maximum number of consecutive stagnations
(g). A stagnation is defined as a state in which none of the k incumbents in the
winners list has been replaced by any from the new generation of programs.
A stagnation implies that we have not learned anything new from the last
generation to this generation. Therefore, to save computational resources, we
may stop the cycle if the stagnating state consecutively lasts for a number of
times. In this paper, k is set to 1, the same as Allen and Karjalainen (1999)
and Neely et al. (1997), whereas g is set to 50, which is twice the size of Allen
and Karjalainen (1999) and Neely et al. (1997). The idea of using a validation
set of data to watch the progress in learning and to determine the point to
terminate the evolution cycle is a device to avoid overfitting or overlearning.
However, the effectiveness of this design has been questioned (Chen and Kuo,
2003c). In Appendix A, we shall revisit this issue.

3 Fitness Function

While the choice of the fitness function is usually not a trivial task for evo-
lutionary computation, there is a generally acceptable one for the purpose
of evaluating investment strategy, i.e., the investment return, e.g., Allen and
Karjalainen (1999) and Neely et al. (1997). For the purpose of comparing our
results with those of earlier studies, we shall also employ this standard fitness
function.12

3.1 Return of Investment in the Stock Markets

There are three steps in computing the return. First, the GP program is
applied to the time series to produce a sequence of trading decisions: True
means to enter/stay in the market, and False means to exit/stay out of the
market. Second, this decision sequence is executed based on the original stock
price series and the daily interest rate in order to calculate the compounded

12 To be more practical, it is definitely more interesting to take also risk and, more
importantly, the downside risk, into account.
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return. Finally, each transaction (buy or sell) is charged with a transaction
cost, which is deducted from the compounded return to give the final fitness.

Let Pt be the S&P 500 index on day t, it be the interest rate on day t, and
the return for day t be πt:

πt =
{

ln(Pt) − ln(Pt−1), in the market,
ln(1 + it), out of the market. (1)

Let n denote the total number of transactions, i.e., the number of times a True
(in the market) is followed by a False (out of the market) plus the number
of times a False (out of the market) is followed by a True (in the market).
Also, let c be the one-way transaction cost. The rate of return over the entire
period of T days, as an arithmetic sum, is

Π =
T∑

t=1

πt + n ∗ log
1 − c

1 + c
. (2)

However, it can be shown that the total return, based on a continuously com-
pounded return (geometric sum), is13

R = expΠ −1. (3)

When a short sale is allowed, the investor may not have to leave the mar-
ket.14 In this case, a False, a signal to sell, implies not only just to sell, but
also to sell short. Similarly, a True, a signal to buy, not only indicates to buy,
but further implies to recover short. Figure 1(a), a three-state automaton,
illustrates the operation of the transaction direction when a short sale is al-
lowed. The three states are denoted by “0,” “1,” and “-1.” “1” refers to being
long on one unit of stock, and “-1” refers to being short on one unit of stock.
“0” serves as both the initial state and the terminal state. In addition to these
three states, there are three actions that will determine the transition to the
next state, namely, “B” (BUY), “S” (SELL), and “H” (Hold). As Figure
1(b) shows, at any point in time, a trader can be either long or short on one
unit of stock. Therefore, if a trader is already in the long (short) position,
then any “BUY” (“SELL”) action will be ignored. Finally, the terminal state
“0” will not be reached until the clearance date, i.e., the period T.
13 The total return means the return earned over the entire investment horizon [0, T ]

per unit of investment. So, say R = 0.05 means that a one-dollar investment
will earn five cents as a total over the entire investment horizon [0, T ]. For the
derivation of Equation (2), see Allen and Karjalainen (1999).

14 While a short sale is implementable in individual stocks, the financial product
corresponding to the short sale of a stock index does not exist. The closest product
that we have is the index futures. Given this circumstance, what we are testing
is not a real implementation. The purpose of doing this is to gain some insights
into GP behavior, when trading can take place in both directions. After all,
this mechanism is crucial when later on we wish to extend our applications to
individual stocks.
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Fig. 1. The use of data: training, validation, and testing.

Based on this three-state automaton, one calculates the sequence of accu-
mulated profits πt (0 ≤ τ < T ) as follows [see Figure 1(b)],

π0 = 0, (4)

and, for 0 < t ≤ T ,

πt =

⎧
⎪⎪⎨

⎪⎪⎩

0 if It−1 = 0, It = 1,−1,
πt−1 if It = It−1,
πt−1 + Pt(1 − c) − Pλt(1 + c) if It−1 = 1, It = −1, 0,
πt−1 + Pλt(1 − c) − Pt(1 + c) if It−1 = −1, It = 1, 0,

(5)

where It is the state at time period t. As depicted in Figure 1(a), It ∈
{1, 0,−1}. c is the transaction cost. λt is an index function:

λt = max{λ | 0 ≤ λ < t, Iλ−1Iλ = −1 or 0}. (6)

3.2 Return of Investment in Foreign Exchange Markets

In the foreign exchange markets, the investment return is again employed
as the fitness function. As to a specific functional form, we follow Neely
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et al. (1997) to distinguish the return associated with long positions from
that associated with short positions. Let us denote the exchange rate at date
t (dollars per unit of foreign currency) by St and the domestic (foreign) in-
terest rate by it (i∗t ).15 A long position can be thought of as borrowing St

dollars at the interest rate it at date t, and converting the dollars into one
unit of foreign currency, reinvesting it at the interest rate i∗t and, in the end,
converting the principal plus the interest back to St+1 dollars. Let

rt+1 =
St+1(1 + i∗t )
St(1 + it)

; (7)

the return of a long position, πt+1, is, therefore,

πt+1 = ln rt+1. (8)

Similarly, a short position can be thought of as borrowing one unit of the
foreign currency at the interest rate i∗t , converting it to St dollars, reinvesting
it at the interest rate it, and, in the end, paying back the borrowing foreign
currency of 1+i∗t , which is equal in value to St+1(1+i∗t ) dollars. So, the return
of a short position is

ln
St(1 + it)
St+1(1 + i∗t )

= ln
1

rt+1
= −πt+1. (9)

The rate of return of a trading rule over the period from time zero to time
T (the arithmetic sum), with a one-way proportional transaction cost c, is
given by

Π =
T∑

t=1

ztπt + n ∗ log
1 − c

1 + c
, (10)

where zt is an indicator variable taking the value “+1” for a long position
and “-1” for a short position, and n is the number of round-trip trades. The
continuously compounded return (geometric sum) is simply

R = expΠ −1. (11)

3.3 Transaction Cost

The transaction cost is another variable that may affect the results we have.
Needless to say, transaction costs can be high to a degree in that there does
not exist any profitable trading strategy, and B&H would be the only surviv-
able strategy. To react to the sensitivity to this arbitrariness, the break-even
transaction cost has been proposed in the literature and used in some related
studies (Pereira, 2002). However, this idea is very difficult to implement in the

15 In this study, we shall assume that USD is the domestic currency, and the other
currencies are the foreign currencies.
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context of the evolutionary cycle; therefore, we just follow what the standard
literature has done to enhance the comparability of our results.

For the case of the stock market (Allen and Karjalainen, 1999), from low
to high, considered three levels of c, namely c = 0.1%, 0.25%, and 0.5%. We
choose the highest one, c = 0.5%.16 For the case of the foreign exchange
market, we follow Neely et al. (1997) to choose c = 0.05%.17

4 Data and Data Preprocessing

The stock indexes from eight stock markets are used in this paper. The
eight stock indexes are, respectively, the S&P 500 (US), FTSE 100 (UK),
TSE 300 (Canada), Frankfurt Commerzbank (Germany), Madrid-SE (Spain),
Nikkei Dow Jones (Japan), Straits Times (Singapore), and the Capitalization
Weighted Stock Index (Taiwan). For each stock index, we use the daily data
from January 1988 to December 2004, except that, for Madrid-SE, due to the
lack of appropriate interest rate data, the data start only from January 1992.
In addition to the stock markets, data from eight foreign exchange markets
are also used in this study. These are the U.S. dollar (USD) to the British
pound (GBP), Canadian dollar (CAD), Deutsche mark (DEM), Italian lira
(ITL), Spanish peseta (ESP), Japanese yen (JPY), Singapore dollar (SGD),
and Taiwan dollar (TWD). For each foreign exchange rate, we use the average
of the daily U.S. dollar bid and ask quotations from 1992 to 2004.

As to the riskless interest rate, we mainly consider the short-term trea-
sury bills. Given the data availability, for the United States and Singapore,
we use three-month Treasury bills, and for the UK and Canada, we employ
one-month Treasury bills. However, for Germany, Spain, Japan, and Taiwan,
whose Treasury bill rates are not available, we take the rate of the interbank
overnight loan.

Data for stock indexes are made available from the AREMOS databank,18

whereas the data for the foreign exchange rates are obtained from the Data-
stream databank.19 Most interest rate data can be downloaded from the
Data-stream databank, except that the interest rate for Germany is directly
downloaded from the Bundesbank.

The right halves of Figures 10 and 11 in Appendix D depict the time series
of the eight indexes. It is quite evident that the United States, UK, Canada,
Germany, and Spain share a similar pattern. The stock prices in these five
16 We also try the zero transaction cost (c = 0). As expected, the performance gets

better, but it does not enable us to reach qualitatively different conclusions. We
will leave some details in Appendix B, for interested readers.

17 Actually, Neely et al. (1997) also considered a different c, a higher c for the
training period, as a device to avoid overfitting. We also try this device, but
doubt its effectiveness. More discussion appears around Table 8.

18 http://140.111.1.22/moecc/rs/pkg/tedc/bank/tse/c4t4.htm.
19 http://www.datastream.com.mt/.
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stock markets experienced a long upward tendency from 1989 to 2000 and
then dropped quite significantly over the next two years (2001−2002) before
they turned up again (after 2003). This pattern is, however, not shared by
the other three Asian countries. Instead of the long upward tendency, Japan
experienced a long declining tendency for almost the entire sample horizon:
The Nikkei dropped from 32,000 to just around 10,000. On the other hand,
Taiwan and Singapore, after a series of fluctuations, did not grow or decline
much. The TAIEX (Taiwan) started at 6,000 and ended about the same. The
Straits index (Singapore) began at 1,200 and remained almost the same in
the year 2003, before it bloated again to 1,800.

The discussion above highlights the nonstationary nature of the data.20 It
is therefore desirable to transform the original series into a stationary series.21

In this chapter, we follow what was conventionally done in the literature by
dividing each day’s price by a 250-day moving average (Allen and Karjalainen,
1999; Neely et al., 1997).22 The data after normalization are shown in parallel
to the original series and are depicted on the right halves of Figures 10 and
11 (see Appendix D). The normalized prices have an order of magnitude of
around 1. Since we use the first year of data for normalization (taking the 250-
day moving average), the usable data set starts from 1989 or 1993 (Spain).

Like most similar studies conducted before, we adopt a very standard way
of decomposing the whole data set into three sections, namely, the training
set, the validation set, and the testing set. To guard against potential data
snooping in the choice of time periods, we use three successive training periods,
validation periods, and test periods, as shown in Figure 2.23 The five-year
training and five-year validation periods start in 1989, 1991, and 1993, with
the out-of-sample test periods starting in 1999, 2001, and 2003.24 For instance,
the first trial uses the years 1989 to 1993 as the training period, 1994 to 1998
as the selection period, and 1999 to 2000 as the test period. For each of the
three training periods, we carry out 50 trials.

20 More technically, this can be rigorously examined by the standard unit-root test.
The test applied to these series of indexes does show that all series have a unit
root, which means that they are nonstationary.

21 The hypothesis that using original data without transformation may adversely
affect the performance of GP has been widely acknowledged by researchers, while
there is no formal test to show how big the difference can be. In Appendix C, we
actually conduct such a test and find that the hypothesis is largely true.

22 Alternatively, one can also take the log and the difference to obtain the the daily
return series.

23 The idea of the rolling-window design was originally proposed by Allen and
Karjalainen (1999).

24 The window size of the three sections of data is another issue for which we do
not yet have a clear answer. We are aware that our result is not independent of
the choices of the sizes. As we will discuss in Section 6, a more flexible way is to
allow the size to be endogenously determined (Lanquillon, 1999).



110 S.-H. Chen et al.

training  validation testing

1.1989-1993,1994-1998,1999-2000    

training  validation testing

2.1991-1995,1996-2000,2001-2002              

training  validation testing

3.1993-1997,1998-2002,2003-2004                     

Fig. 2. The use of stock data: Training, validation, and testing.

The left halves of Figures 12 and 13 in appendix D depict the time series
of the foreign exchange rates. Due to the nonstationary nature of these series,
we also smooth the data by dividing them by a 250-day moving average, which
we show in the right halves of Figures 12 and 13.

A similar way of dividing the data into three sections is also applied to the
foreign exchange market, which is shown in Figure 3. As in Neely et al. (1997),
both the training and validation periods are shortened to only three years.
Neely et al. (1997) also considered a testing period of 15 years. However, we
feel that this period is too long to be practical; therefore, a two-year testing
period is chosen here.25 The three-year training and three-year validation
periods start in 1993, 1995, and 1997, with the out-of-sample test periods
starting in 1999, 2001, and 2003.

training   validation  testing

1.1993-1995,1996-1998,1999-2000

training   validation  testing

2.1995-1997,1998-2000,2001-2002 

training   validation  testing

3.1997-1999,2000-2002,2003-2004 

Fig. 3. The use of foreign exchange rate data: Training, validation, and testing.

5 Results

Genetic programming based on what we describe in Section 2 and Table 1 is
applied to the data in the way we depicted in Figures 10−13. The results are
organized into two parts. First, we present the profitability performance of
GP according to the fitness function Equations (2) and (10). Second, we then
conduct an analysis of the GP-discovered programs.

25 Given the constantly changing nature, it is hard to accept that an underlying
regularity can be sustained for a long span without being exploited. A testing
period that is two years long seems to be more practical. In addition, see Pereira
(2002).
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5.1 Profitability

Stock Markets: GP and Buy-and-Hold

The results shown in Table 2 are the total returns as defined in Equation (3).
Since there are 50 runs for each market, the results reported in Table 2 from
column 2 to column 6 are the mean, the standard deviation, the medium,
the maximum, and the minimum of the 50 runs. In other words, these re-
sults are based on the average performance of 50 GP trading programs. The
mean return (R̄) can therefore be regarded as the return of a uniform portfo-
lio of these 50 programs. Alternatively, since these 50 trading programs will
generally give different trading suggestions, we may follow what the majority
suggests.26 Column 7 gives the performance of this majority rule. The last col-
umn is the performance of the buy-and-hold strategy, which is conventionally
taken as a benchmark to be compared with any potential competitors.

The results are presented separately with respect to three different test
phases. As we can see from the table, the results differ by markets and by
periods. The only one showing a quite consistent pattern is the Taiwan stock
market. In this market, GP persistently beats the buy-and-hold strategy, re-
gardless of whether we follow the portfolio rule or the majority rule, while the
latter gives an even better result. In particular, in the first period, Taiwan’s
stock index experiences a negative total return of 23.66%.27 Nevertheless, GP
performs quite superbly, with a positive return of 18.46% (majority rule) or
16.20% (portfolio rule). The loss of B&H is sustained in the second test period
with a return of −10.91%, but the return for the majority rule of GP remains
positive, i.e., 2.41%. In the last period, when the Taiwan stock market comes
back from a low, and B&H earns a return of 34.34%, the portfolio rule and
the majority rule each earn an even higher return, 36.31% and 36.67%, re-
spectively. In addition, the statistical test of the null that the total return of
GP is no greater than the total return of B&H is significantly rejected in all
three test periods.

The general superiority of GP is, however, not shared by other markets. If
we follow the portfolio rule of GP, then only in 8 out of the remaining 21 cases
can GP outperform B&H, and only in four of these eight does the dominance
reach a significant level. On the other hand, if we follow the majority rule,
GP wins 3 and loses 6 of the 21 cases and is tied with B&H in the remaining
12 cases. Therefore, in general, GP does not perform better than B&H. This
result is consistent with the earlier findings (Allen and Karjalainen, 1999;
Wang, 2000).
26 Since GP is a population-based search algorithm, one can also think about the

majority rule by using all the trading programs in the last generation. In doing
so, we do not have to exclusively concentrate on only the best rule for each run.
Given the size of this paper, we have to leave this interesting experiment to future
research.

27 This means that an initial capital of 1 dollar at the beginning of the year 1999
will result in only 77 cents by the end of the year 2000.
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Table 2. The Total Return R of GP: Case Without Short Sale

Country Mean Stdev Median Max Min Majority B&H

Test Period: 1999−2000

USA −0.0655 0.0342 0.0644 0.1171 −0.1294 0.0644 0.0644
UK −0.0459 0.0908 0.0478 0.2368 −0.2850 0.0478 0.0478
Canada −0.3660 0.1030 0.3601 0.5837 0.0982 0.4136 0.3495
Germany −0.1490 0.1114 0.1491 0.4233 −0.1865 0.2473 0.2127
Spain −0.0666 0.0904 −0.0511 0.0805 −0.2560 −0.0523 −0.0511
Japan −0.0024 0.0540 0.0016 0.1767 −0.1444 0.0016 0.0173
Taiwan −0.1620∗∗ 0.1353 0.1416 0.4675 −0.1893 0.1846 −0.2366
Singapore −0.1461 0.1866 0.1903 0.6178 −0.2801 0.2122 0.3625

Test Period: 2001−2002

USA −0.3171 0.0498 −0.3212 −0.0461 −0.3486 −0.3228 −0.3228
UK −0.3625∗∗ 0.0284 −0.3700 −0.2988 −0.3700 −0.3700 −0.3700
Canada −0.1761∗∗ 0.1065 −0.2251 0.0994 −0.2718 −0.2610 −0.2407
Germany −0.4772∗∗ 0.2242 −0.5169 −0.0392 −0.6384 −0.5474 −0.5474
Spain −0.2780 0.0910 −0.2870 0.0763 −0.3821 −0.2870 −0.2870
Japan −0.0722∗∗ 0.1520 −0.0480 0.1900 −0.3990 −0.0582 −0.3796
Taiwan −0.0376∗∗ 0.1899 0.0249 0.6807 −0.3267 0.0241 −0.1091
Singapore −0.3123 0.0333 −0.3013 −0.2436 −0.3490 −0.3013 −0.3013

Test Period: 2003−2004

USA −0.3065 0.0334 0.3199 0.3199 0.1173 0.3199 0.3199
UK −0.1797 0.0300 0.1888 0.2402 0.0944 0.1888 0.1888
Canada −0.3109 0.0585 0.3625 0.4657 0.0974 0.3625 0.3625
Germany −0.3318 0.0544 0.3571 0.4614 0.1009 0.3571 0.3571
Spain −0.3355 0.1292 0.4454 0.4454 −0.0581 0.4454 0.4454
Japan −0.0212 0.0843 0.0002 0.2695 −0.1476 0.0540 0.3054
Taiwan −0.3631∗∗ 0.0665 0.3685 0.5787 0.1665 0.3667 0.3434
Singapore −0.2512 0.0735 0.2524 0.5072 0.0686 0.2685 0.5311

The “��” refers to the rejection of the null that the total return of GP is no greater
than the total return of B&H at a significance level of 0.05.

However, why can GP perform so well in the Taiwan market but not other
markets? One possible clue is that they have quite different time series pat-
terns. As we mentioned earlier, the United States, UK, Germany, Canada, and
Spain all share a very similar pattern, i.e., they exhibit an upward tendency
from the beginning to the year 2000, and after 2000 they decline for the next
three years before rising again in the year 2003. This changing pattern gives
rise to a sharp difference between the general property of the training set and
the testing set. The smooth upward tendency of the stock index appearing in
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the training set will easily drive GP to pick up B&H, and if B&H strongly
dominates in the training phase, then no matter what patterns appear in the
validation set, it will not make any difference because B&H is the only survivor
there. As a result, the validation mechanism may fail to function in the way
we expect.28 This explains why GP in so many markets strongly recommends
B&H. When using the majority rule, 12 out of 24 cases are essentially using
B&H.29 This also explains why B&H has never been recommended by GP
in both Taiwan’s and Japan’s markets: The former has a fluctuating pattern,
whereas the latter is largely characterized by a declining tendency.

Table 3 gives the performance of GP when short sales are possible. The
original purpose of making GP perform short-sale operations was to make it
able to trade and make profits in both directions, i.e., downturns and upturns.
However, when what GP learns is only B&H, then introducing such a new
function will not make anything different. This is exactly what is revealed by
Table 3, which indicates the identical performance between B&H and GP in
many markets. This is even true for the second test period when the markets
experienced a big slump, and short sales can be extremely profitable, but
GP behaves very quietly: When using the majority rule, five out of the eight
markets strongly recommend B&H. As a total, 16 out of 24 cases essentially
use B&H, a frequency that is even bigger than that for the case without a short
sale. With such a high intensity of using B&H, it is therefore not expected
that there will be any significant difference in the return between B&H and
GP, when the majority rule is used.30

The only two exceptions are the Taiwan and Japan stock markets: the two
markets which do not have a long initial upward trend. The Taiwan market
fluctuates, whereas the Japan market declines. Both situations may allow GP
to learn to do short selling and to take advantage of market downturns. Indeed,
the majority rule of GP does very well in the first test period (1999–2000),
when the TAIEX drops quite dramatically (see Figure 10). It earns a return
of 60.99%, which is almost four times higher than the case when short sales
are not infeasible. In the case of Japan, during the second period, when the
stock index keeps on declining, the majority rule of GP earns a return of
38.08%, which is not only higher than the corresponding case of no short sales
(–0.05%), but is also greater than B&H (–37.96%). However, we also notice
that when the stock price moves upward, GP programs with the short-selling

28 If this is the case, then we can see the early termination of the evolutionary cycle.
The actual number of generations tends to much less than 100, and is not far
away from 50. See Section 5.2 and Figure 8 for details.

29 Since the majority rule follows the outcome of votes from 50 programs, one can-
not tell directly from that outcome whether the rule learned is actually B&H.
Nonetheless, we can confirm this by checking the medium statistics.

30 Here, we don’t have to go through the portfolio rule of GP except by pointing
out that the portfolio rule of GP performs a little worse than the case without a
short sale. Only in two 2 of 24 cases is the null of no excess return rejected.
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Table 3. The Total Return R of GP: Case with Short Sale

Country Mean Stdev Median Max Min Majority B&H

Test Period: 1999−2000

USA −0.0685 0.0243 0.0644 0.2362 0.0647 0.0644 0.0644
UK −0.0444 0.0258 0.0478 0.0481 −0.1347 0.0478 0.0478
Canada −0.3414 0.2025 0.3495 0.8211 −0.1775 0.3495 0.3495
Germany −0.2113 0.1063 0.2127 0.6397 0.0078 0.2127 0.2127
Spain −0.0874 0.1297 −0.0511 0.2173 −0.5844 −0.0511 −0.0511
Japan −0.0317 0.1834 −0.0377 0.3893 −0.3437 −0.0377 0.0173
Taiwan −0.5265∗∗ 0.3726 0.4658 1.4440 −0.1096 0.6099 −0.2366
Singapore −0.1620 0.3711 0.1342 0.9163 −0.8403 0.1342 0.3625

Test Period: 2001−2002

USA −0.3231 0.0018 −0.3228 −0.3228 −0.3353 −0.3228 −0.3228
UK −0.3658 0.0329 −0.3700 −0.1382 −0.3859 −0.3700 −0.3700
Canada −0.2367 0.0307 −0.2407 −0.0502 −0.3175 −0.2407 −0.2407
Germany −0.5512 0.0439 −0.5474 −0.3352 −0.7010 −0.5474 −0.5474
Spain −0.2852 0.0504 −0.2870 0.0231 −0.4509 −0.2870 −0.2870
Japan −0.1745∗∗ 0.3016 0.3653 0.5259 −0.5557 0.3808 −0.3796
Taiwan −0.0470 0.3578 −0.0098 0.8076 −0.7441 −0.0788 −0.1091
Singapore −0.2939 0.0370 −0.3013 −0.0927 −0.3013 −0.3013 −0.3013

Test Period: 2003−2004

USA −0.3109 0.0460 0.3199 0.3215 0.0483 0.3199 0.3199
UK −0.1817 0.0275 0.1888 0.1897 0.0506 0.1888 0.1888
Canada −0.3389 0.1131 0.3625 0.5505 −0.0423 0.3625 0.3625
Germany −0.3457 0.0794 0.3571 0.5701 −0.0147 0.3571 0.3571
Sapin −0.2729 0.2754 0.4454 0.4641 −0.5535 0.4454 0.4454
Japan −0.1792 0.2682 −0.1819 0.2970 −0.7490 −0.0613 0.3054
Taiwan −0.2740 0.2417 0.3073 0.7756 −0.5718 0.2248 0.3434
Singapore −0.0183 0.1917 −0.0384 0.3859 −0.4422 −0.0930 0.5311

The “��” refers to the null that the total return of GP is no greater than the total
return of B&H is rejected at a significance level of 0.05.

devices may not work well. This is clearly reflected by the relatively inferior
performance of GP in the last testing period of both the Taiwan and Japan
stock markets.

In sum, our finding is consistent with Potvin et al. (2004). “The results
show that the trading rules generated by GP are generally beneficial when
the market falls or when it is stable. On the other hand, these rules do not
match B&H when the market is rising,” (Ibid. p. 1046).
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Stock Market: GP and Practical Technical Trading Strategies

While B&H is frequently used as the benchmark in academic research, finan-
cial practitioners are seldom interested in such an inactive strategy. In this
paper, we extend our test to 21 technical trading strategies that have actu-
ally been used by investors in financial securities firms. These strategies are
basically composed of the historical data of prices and trading volumes. In
addition to the closing price, they also involve the opening price, and the
daily highest and lowest.31 Since the data on trading volume are not available
from some markets, our testing is inevitably limited to only those markets
whose data are sufficient, which includes the United States, the UK, Canada,
Taiwan and Singapore.32

Tables 4 to 6 present the performances of the technical trading strategies.
Notice that, unlike GP, the 21 technical trading strategies are deterministic
in the sense that their performance is fixed once the data are fixed. Therefore,
there is no need to conduct statistical tests for these 21 trading strategies, and
the appearance of a “∗” in these figures simply means that the total return
of the corresponding trading strategy is greater than that of B&H. In these
tables, we also include the total returns of B&H, and the portfolio rules of
GP without short sales (GP 1) and with short sales (GP 2).

We have already noticed that the market behaves quite differently within
these three periods. It is therefore interesting to observe how these differences
can impact the performance of the 21 trading strategies. First of all, in the
years 2003–2004, the years of a bull market, all these 21 technical trading
strategies perform uniformly worse than B&H and are also inferior to GP 1.
This is probably the worst period for the 21 technical trading strategies. This
result, however, is in a sharp contrast to that for the years 2001–2002, the
years of a bear market. During this bear market, when both B&H and GP are
earning a negative return, many technical trading strategies can still have a
positive return. A number of technical trading strategies can outperform GP
and B&H in all markets, such as strategies #6, #13, #15, #16, #18, #19,
and #21. This shows that some of these technical trading strategies are very
good at dealing with the bear market.33

31 Unfortunately, due to the business contract, we are unable to spell out exactly
what these strategies are except for pointing out that these strategies are devel-
oped from many familiar technical indices, such as KD line, MACD, etc.

32 For the case of Japan, since trading volume data are only available in the last
testing period, we therefore include the results for that period for Japan only (see
Table 6).

33 These technical trading strategies are fixed and are independent of the history of
the data. Hence, their performance is not path-dependent. This property is very
different from GP, whose performance depends on what it learns from the past.
So, the switch from a bull (bear) market to a bear (bull) market may cause GP
to perform badly.
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Table 4. Performances of 21 Practical Trading Strategies: 1999–2000

Rule USA UK Canada Taiwan Singapore

B&H −0.0636 −0.0478 −0.3495 −0.2366 −0.3625
GP 1 −0.0655 −0.0459 −0.3660 −0.1620∗∗ −0.1461
GP 2 −0.0685 −0.0444 −0.3414 −0.5265∗∗ −0.1620
01 −1.1173 −1.2855 −1.8943 −1.5102 −1.0679
02 −0.0292 −0.5265 −0.9935 −0.8737 −0.8182
03 −0.1640 −0.6941 −0.2494 −0.3338 −0.7028
04 −0.9865 −0.8252 −0.1182 −0.7371 −0.5123
05 −0.0896 −0.3062 −0.9872 −0.2571 −0.6288
06 −0.7176 −0.6335 −0.0440 −0.0048∗ −0.7599
07 −1.1736 −1.7050 −2.1544 −1.1646 −1.9132
08 −1.2402 −1.3594 −2.1444 −0.7130 −0.8391
09 −1.3883 −1.0738 −1.6657 −1.0748 −0.7450
10 −1.6532 −1.4603 −1.5322 −1.0678 −0.4226
11 −1.0941 −0.5934 −1.4946 −0.3628 −0.9329
12 −1.4735 −1.2046 −2.6474 −1.5254 −1.6464
13 −0.9116 −0.7762 −0.1522 −0.6863 −0.3210
14 −0.2477 −0.2666 −0.9692 −0.2258∗ −0.5817
15 −0.6658 −0.5571 −0.0019 −0.0218∗ −0.7405
16 −0.7576 −0.9016 −0.1671 −0.4350 −0.0302
17 −0.1607 −0.0126 −1.0631 −0.3375∗ −0.5044
18 −0.4397 −0.6185 −0.0055 −0.1213∗ −0.4336
19 −0.4240 −0.7951 −0.0942 −0.1480∗ −0.1412
20 −0.1419∗ −0.0474 −1.0680 −0.5793 −0.5628
21 −0.4195 −0.6143 −0.0827 −0.2087∗ −0.5644

The 21 practical technical trading strategies are each coded by a number, from 1
to 21. GP1 refers to the mean total return of the 50 runs without a short sale,
whereas GP2 refers to that with a short sale. “∗∗” refers to the rejection of the
null that the total return of GP is no greater than the total return of B&H at a
significance level of 0.05. “∗” indicates the case where the associated trading strategy
beats B&H.

Foreign Exchange Markets

The performance of GP in the foreign exchange markets is shown in Table 7.
The table presents the total return of GP in three testing phases. As in the
stock markets, we have run 50 trials for each foreign exchange market, so the
results presented here are the sample statistics, which are the same those in
Table 2. We also test the null hypothesis that the trading rules discovered
by GP cannot earn positive profits, and we fail to reject the null hypothesis
in 19 out of the 24 markets. Therefore, the hypothesis that GP can generate
profitable trading strategies in the foreign exchange markets does not win
strong support. This finding contradicts Neely and Weller (1999) and Neely
et al. (1997).
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Table 5. Performances of 21 Practical Trading Strategies: 2001–2002

Rule USA UK Canada Taiwan Singapore

B&H −0.3212 −0.3682 −0.2395 −0.1091 −0.2998
GP 1 −0.3171 −0.3625 −0.1761∗∗ −0.0376∗∗ −0.3123
GP 2 −0.3231 −0.3658 −0.2367 −0.0470 −0.2939
01 −0.6764 −1.2137 −0.6493 −0.7024 −0.6708
02 −0.2521∗ −0.7671 −0.8770 −0.3661 −0.4094
03 −0.3141∗ −0.7511 −0.7826 −0.2876 −0.8150
04 −0.3264∗ −0.1745 −0.2165∗ −0.1807∗ −0.0164∗

05 −0.4818 −0.3331 −0.4180 −1.2470 −0.5208
06 −0.0366∗ −0.2513 −0.0547∗ −0.3708∗ −0.3771∗

07 −0.5690 −1.1215 −1.3767 −0.7911 −0.7403
08 −0.8376 −1.3764 −0.7633 −0.5823 −0.5115
09 −0.5734 −0.4859 −0.3960 −1.3472 −0.3864
10 −0.5684 −0.9808 −0.4071 −1.1382 −0.4474
11 −0.2926∗ −0.4236 −0.1715∗ −1.0765 −0.3287
12 −1.1004 −1.5990 −0.6958 −0.9736 −0.6115
13 −0.2933∗ −0.1761 −0.1881∗ −0.3810∗ −0.0690∗

14 −0.5135 −0.3186 −0.4824 −1.3545 −0.4006
15 −0.0280∗ −0.2329∗ −0.1605∗ −0.4168∗ −0.4207∗

16 −0.1480∗ −0.0733∗ −0.2524∗ −0.3992∗ −0.0091∗

17 −0.2375∗ −0.1076∗ −0.5579 −0.6997 −0.0303∗

18 −0.1103∗ −0.0283∗ −0.1836∗ −0.4934∗ −0.4155∗

19 −0.3294∗ −0.1682∗ −0.1894∗ −0.5084∗ −0.2565∗

20 −0.4114 −0.4669 −0.3571 −0.7458 −0.2711
21 −0.0026∗ −0.1460∗ −0.2175∗ −0.5652∗ −0.4014∗

The 21 practical technical trading strategies are each coded by a number, from 1
to 21. GP1 refers to the mean total return of the 50 runs without a short sale, whereas
GP2 refers to that with a short sale. “∗∗” refers to the rejection of the null that the
total return of GP is no greater than the total return of B&H at a significance level
of 0.05. “∗” indicates the case where the associated trading strategy beats B&H.

Of course, what we have done here is not directly comparable to Neely et al.
(1997), which used a different sample as well as a different testing scheme.34

However, since their study is probably one of the few that has documented
the profitability of GP in financial markets, we attempt to see whether we
can replicate their result and, if so, whether the result can be extended to the
years after their study. We therefore closely follow what Neely et al. (1997)
did before.

We choose the three currencies from the six studied by them, namely,
USD/DEM, USD/JPY, and USD/DBP. We also extend our data set to
the year 1974 from the original 1992, and we then use the same training,
34 They used 3 years of data (1975–1977) to train, the next 3 years of data (1978–

1980) to validate, but tested the performance with the following 15 years of data
(1981–1995).
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Table 6. Performances of 21 Practical Trading Strategies: 2003–2004

Rule USA UK Canada Taiwan Singapore Japan

B&H −0.3199 −0.1888 −0.3625 −0.3434 −0.5311 −0.3054
GP 1 −0.3065 −0.1797 −0.3109 −0.3631∗∗ −0.2512 −0.0212
GP 2 −0.3109 −0.1817 −0.3389 −0.2740 −0.0183 −0.1792
01 −1.2650 −1.2230 −1.2332 −1.2960 −0.8698 −1.1913
02 −0.4914 −0.7151 −0.8140 −0.3149 −1.1061 −1.0995
03 −0.8475 −0.6523 −0.5763 −1.2569 −0.8838 −0.6142
04 −0.3036 −0.4743 −0.1376 −0.2014 −0.1493 −0.3520
05 −0.9854 −0.9161 −0.9404 −0.6707 −0.9288 −0.2907
06 −0.0345 −0.2429 −0.1413 −0.2529 −0.0763 −0.2944
07 −1.1375 −1.5570 −1.3133 −1.8864 −1.0732 −1.7092
08 −1.5310 −1.2684 −1.4079 −1.8406 −0.7647 −1.3282
09 −1.0423 −0.5544 −1.0284 −0.2498 −0.4816 −1.2326
10 −1.1487 −1.4300 −1.0682 −1.1927 −1.1635 −1.1701
11 −0.8146 −0.5441 −0.9877 −0.3081 −0.4581 −0.6512
12 −1.6917 −1.3152 −1.6029 −1.4781 −0.8880 −1.5899
13 −0.2964 −0.5038 −0.1403 −0.1907 −0.1253 −0.4830
14 −0.8910 −0.7512 −0.9259 −0.7126 −1.0833 −0.6836
15 −0.0581 −0.2264 −0.0989 −0.2692 −0.0976 −0.2194
16 −0.3900 −0.6218 −0.1317 −0.3082 −0.4440 −0.5625
17 −0.9896 −0.8966 −0.9200 −0.6355 −0.9069 −0.4680
18 −0.1835 −0.3169 −0.1129 −0.4500 −0.0552 −0.5544
19 −0.3939 −0.4714 −0.1534 −0.3059 −0.3021 −0.5453
20 −0.8376 −0.9450 −0.7904 −0.8147 −0.9371 −0.2721
21 −0.1286 −0.2824 −0.1333 −0.3110 −0.1037 −0.4935

The 21 practical technical trading strategies are coded by numbers, from 1 to 21.
GP1 refers to the mean total return of the 50 runs without short sales, whereas GP2
refers to that with short sales. “∗∗” refers to the null that the total return of GP
is no greater than the total return of B&H being rejected at a significance level of
0.05. “∗” indicates the case where the associated trading strategy beats B&H.

validation, and test periods as they did. However, we do not stop in the year
1995. Instead, we continue to carry out the test further, in a sliding-window
manner, to the periods 1984–1998, 1997–2001, and 1990–2004. To avoid the
problem of over-learning, they apply a higher transaction cost, c = 0.2%, to
the training and validation period, and a lower transaction cost, c = 0.05%, to
the test period. This setting remains unchanged; nonetheless, in order to gain
more insights into the role of the parameter c, we add two more combinations,
i.e., a c of 0.05% uniformly for the training, validation, and test periods, and
a c of 0.2% uniformly for the same three periods. The results are shown in
Table 8.

In Table 8, the first column shows the results obtained by Neely et al.
(1997) in the three currencies. The second column presents our respective
results. Despite slight differences, qualitatively speaking, they are largely the
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Table 7. The Total Return of GP Using Short Testing Periods

FX Mean Stdev Median Max Min Majority

Test Period: 1999−2000
USD/GBP −0.0692 0.0528 −0.0629 0.0537 −0.2448 −0.0406
USD/CAD −0.0225 0.0269 −0.0218 0.0610 −0.0727 −0.0059
USD/DEM −0.2041 0.1390 −0.2575 0.1382 −0.3926 −0.2194
USD/ESP −0.0583 0.1753 −0.0721 0.3540 −0.3574 −0.0016
USD/ITL −0.1175 0.1275 −0.0795 0.1374 −0.4890 −0.1103
USD/JPY −0.0033 0.1459 −0.0523 0.2500 −0.3448 0.0510
USD/TWD −0.0024 0.0608 0.0146 0.1277 −0.1372 0.0231
USD/SGD −0.0864 0.0692 −0.0957 0.0493 −0.2076 −0.0531
Test Period: 2001−2002
USD/GBP −0.0246 0.0717 −0.0510 0.2007 −0.1376 −0.0275
USD/CAD −0.0292∗∗ 0.0633 0.0375 0.1491 −0.1477 0.0470
USD/DEM −0.0136 0.1085 −0.0125 0.2834 −0.2026 0.0973
USD/ESP −0.0069 0.0946 −0.0321 0.2285 −0.1576 0.0374
USD/ITL −0.0156 0.1043 −0.0204 0.1793 −0.2585 0.1133
USD/JPY −0.0950∗∗ 0.0629 0.0866 0.2841 −0.0103 0.0647
USD/TWD −0.0731∗∗ 0.0285 0.0710 0.1788 0.0296 0.0325
USD/SGD −0.0307∗∗ 0.0278 0.0249 0.1173 −0.0692 0.0249
Test Period: 2003−2004
USD/GBP −0.0406∗∗ 0.1006 0.0358 0.2183 −0.2151 0.0364
USD/CAD −0.2259 0.1104 −0.3021 0.0904 −0.3021 −0.3021
USD/DEM −0.2263 0.1503 −0.2923 0.2850 −0.3458 −0.2923
USD/ESP −0.1728 0.1393 −0.2797 0.1634 −0.2797 −0.2797
USD/ITL −0.2557 0.0798 −0.2786 0.0390 −0.3453 −0.2786
USD/JPY −0.0118 0.0937 −0.0647 0.2455 −0.2053 −0.0718
USD/TWD −0.0101 0.0440 −0.0197 0.0784 −0.1485 −0.0734
USD/SGD −0.0539 0.0082 −0.0528 −0.0528 −0.1106 −0.0528

The result reported here is the mean of 50 runs. The “**” refers to the null that the
annual return of GP that is no greater than 0 is rejected at a significance level of
0.05.

same. Indeed, with this training and testing style, GP does perform rather
well in all three markets. Our extended tests also show that GP can discover
profitable trading rules in 1984–1998 and 1990–2004. In sum, out of a total
of 12 test periods (4 in each of the 3 currencies), GP can earn statistically
significant profits in 10 periods. The significance of the transaction cost c
is also reflected in the table. Remember that a higher c was intentionally
chosen by Neely et al. (1997) so as to avoid overlearning. However, from
the second block of Table 8, we fail to see the significance of this design:
When c is decreased to 0.05% in the training set, GP performs even better
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Table 8. The Mean Annual Return of GP Using Long Testing Periods

Test Period USD/DEM USD/JPY USD/DBP

NWD: 1981−1995 −0.0605∗∗ −0.0234∗∗ −0.0228∗∗

c = 0.2% (training), 0.05% (testing)
1981−1995 −0.0418∗∗ −0.0327∗∗ −0.0407∗∗

1984−1998 −0.0033∗∗ −0.0512∗∗ −0.0075∗∗

1997−2001 −0.0070 −0.0200∗∗ −0.0225
1990−2004 −0.0239∗∗ −0.0103∗∗ −0.0149∗∗

c = 0.05% (training), 0.05% (testing)
1981−1995 −0.0350∗∗ −0.0545∗∗ −0.0390∗∗

1984−1998 −0.0170∗∗ −0.0505∗∗ −0.0123∗∗

1987−2001 −0.0005 −0.0239∗∗ −0.0312
1990−2004 −0.0206∗∗ −0.0064 −0.0125∗∗

c = 0.2% (training), 0.2% (testing)
1981−1995 −0.0298∗∗ −0.0241∗∗ −0.0281∗∗

1984−1998 −0.0030 −0.0389∗∗ −0.0002
1987−2001 −0.0132 −0.0010 −0.0267
1990−2004 −0.0124∗∗ −0.0002 −0.0056∗∗

The result reported here is the mean of 50 runs. NWD refers to Neely et al. (1997).
The “**” refers to the null that the annual return of GP that is no greater than 0
is rejected at a significance level of 0.05.

in 7 out of 12 markets than in the case of a higher c.35 There is no evidence
to show the relation between overlearning and direct punishment (transaction
costs).36 Nevertheless, the third block of Table 8 does indicate what we expect:
When the transaction cost is uniformly leveled up from 0.05% to 0.2%, the
return performance gets worse. Now, GP can only earn statistically significant
positive profits in 6 of the 12 markets, down from the original 9.37

This replication of Neely et al. (1997) highlights the significance of the
division of the data into a training set and a test set, an issue that has seldom
been formally addressed in the literature. A maintained hypothesis is not to
use too long a training set, since financial patterns, if they exist, may not
survive too long. Consequently, based on the hypothesis, retraining is needed

35 However, a statistical test shows that GP with c = 0.05 performs significantly
better only on USD/DEM in the periods 1984–1998 and 1987–2001, and a GP
with c = 0.02 performs better only on USD/DBP in the period 1987–2001.

36 In addition, see Chen and Kuo (2003a).
37 Wang (2000) questioned whether the positive result found in Neely et al. (1997)

is due to the use of low transaction cost. The evidence that we have here lends
partial support to this possibility. The role of the transaction cost will be further
examined in Appendix B.
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before one can test long enough. This hypothesis motivates the division of
the data specified in Figures 2 and 3. However, our replication of Neely et al.
(1997) suggests giving a second thought to this hypothesis. In fact, a short
test period has its problems, too. Take Figure 3 as an example. If the pattern
to learn is a cycle that will repeat itself within three years, i.e., the length of
our training set, then using a two-year test period may invalidate this pattern
since the cycle has not been completed yet in two years. We believe that this
is an issue deserving more attention in the future (see also footnote 24).

A Different Measure: The Equity Curve

It is always questionable whether one should judge the performance of a trad-
ing strategy by a fixed duration with a fixed destination, for example, the
end of a year, since sudden changes, i.e., sudden drops or sudden rises, in the
financial market may make the result very sensitive to the destination that
we choose. This is particularly true for B&H. Alternatively, one may like to
evaluate the investment performance dynamically over the entire investment
horizon, such as using the idea of the equity curve (Chen and Kuo, 2001).

Figures 14 and 15 show the equity curves of the stock markets. In each
panel, there are two equity curves: one for GP, and one for B&H. For the
former, since 50 trials generate 50 trading programs, and, associated with
each trading program, there is an equity curve, what is presented is, therefore,
the average of the corresponding fifty equity curves. The average equity curve
of GP is then drawn in contrast to the equity curve of B&H for comparison
reasons. The two equity curves, drawn together, help us keep good track of
the superiority of the two over the entire investment horizon, rather than just
a single point in time, and that may give us second thoughts regarding the
conclusions made earlier. For example, even though GP outperforms B&H
in the Taiwan stock market in all three test periods, GP falls behind B&H
most of the time and only catches up and moves ahead at the very end of the
period. Table 9 gives the percentage of time that GP outperforms B&H.

Table 9. Proportion of the Winning Time for GP

Stock Market USA UK Canada Germany Spain Japan Taiwan Singapore

1999–2000 0.710 0.179 0.191 0.237 0.118 0.020 0.193 0.034
2001–2002 0.940 0.988 0.944 0.932 0.390 0.947 0.266 0.004
2003–2004 0.135 0.249 0.203 0.292 0.044 0.212 0.434 0.183

5.2 Rule Analysis

“Hidden Knowledge”

Analyzing trading rules is always a very tempting task for GP researchers.
It is particularly true when GP is applied as a tool fordiscovering hidden
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knowledge, and we are interested in knowing what we may be missing (Chen
and Kuo, 2003a). Pioneers in this research area, such as Neely et al. (1996)
and Allen and Karjalainen (1999), are the first group of people who are trying
to disclose what these GP-discovered trading programs say to us. This work
so far is still very arduous, and only limited progress has been made. There
are, however, two general results. First, when the rules found by using GP
are simple,38 most likely they are familiar types of rules, such as the moving-
average rules, filter rules, trading range break rules, or even B&H. What
GP discovers is the possible combination of these rules, and the respective
unknown parameters. Second, when the rules found are complex, the situation
becomes more difficult. Three possibilities can arise: redundancy, noise, and
structure. Only the last one can be considered to be rule discovery, and when
that happens, what GP discovers, to some extent, is a nonlinear alteration
or finer modification of the simple rules. These two findings or two types of
hidden knowledge generally apply to us.

For the first type of “hidden knowledge,” let us take the test period 2003–
2004 for the stock markets as an illustration. B&H seems to be the most
frequently discovered strategy using GP.39 For example, it appears 38 times
out of a total of 50 trials for the United States, 20 times for Canada, 7 times
for the UK, 32 times for Spain, and 6 times for Germany. This result is a
little boring, but not too surprising given the strong upward tendency of the
training period. In the foreign exchange market, we see a similar thing.40

When that upward tendency disappears, B&H is no longer the most dom-
inant trading program. In fact, it did not show up at all in the Taiwan, Japan,
and Singapore markets.41 The rules discovered are the familiar simple techni-
cal trading rules. Take Taiwan as an example. The best-performing rule out

38 As to the definition and measure of complexity, see Section 5.2.
39 The simplest case is that the entire GP parse tree has just one single terminal,

namely, “True,” which means to buy and to hold the stock until the end of the
entire investment horizon. Of course, redundancy and noise can make a seemingly
complex trading program nothing more than B&H.

40 In fact, the frequent appearance of the B&H strategy also helps us to see that
GP may fail to perform well. For example, in the last test period, the years 2003–
2004, GP suffers a loss in almost all foreign exchange markets. The trading rules
applied to this period are those learned from the data for the years from 1996
to 1998 and validated by the data for the years from 1999 to 2001. It can be
seen from Figures 12 and 13 that, during this period, a few currencies, such as
CAD, DEM, ITL, and ESP, experienced a tendency to depreciate. For currencies
like these, it would not be too surprising if what comes up from GP is simply
the B&H strategy. Unfortunately, when coming to the years 2003–2004, we see a
major change in the trend, with almost all currencies experiencing a tendency to
appreciate, which inevitably caused GP to perform quite badly.

41 The prevalence of the B&H in GP search was argued as an evidence of market
efficiency in Wang (2000). This assertion is, however, not exact. As we demon-
strate here, whether GP would “rediscover” B&H depends on whether both the
training and the validation set have a strong upward tendency. So, the prevalence
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of the 50 trials in the test period 2003–2004, in the LISP format, is

(or (< min(189) min(148)) (> index lag(201) )), (12)

whose parse-tree representation is shown in Figure 4, which says that “if the
minimum price of the past 189 days is less than the minimum price of the
past 148 days or the current price is larger than the the price lagged by 201
days, then take a long position; otherwise stay out of the market.”42 Rule (12)
is a Boolean combination of a trading range break-out rule and a backward-
looking rule.43 These rules alone are not novel. It is the unknown parameters
of these rules and the unknown possible combination of them that define the
“hidden knowledge.”

In addition to the recombination of primitive trading rules, the second
type of “hidden knowledge” that the GP program can discover for us consists

or 

<

lag 

>

min min price

189 price 148 price 201 price

Fig. 4. GP-discovered trading program: Taiwan stock market.

This trading program is found by GP using the data of the Taiwan stock index
for the years 1993–1997 and is validated by the data for the years 1998–2002. Its
performance is tested using the data for the years 2003–2004.

of discovering B&H should not be used as strong evidence to support the efficient
market hypothesis.

42 Due to data preprocessing as detailed in Section 4, the price is referred to as the
normalized price, and not the original price.

43 The trading range break-out rule, the first part of (12),

(< min(189) min(148)),

is not redundant, since it is not necessarily true as might be seen at first sight. In
fact, in the test period, 2003–2004, only 126 times out of 500 trading days does
this inequality hold; for the rest of the time, the two are the same. If the price
experiences a long upward trend, then this inequality should always be satisfied.
So, this signal indicates some degree of fluctuation for the normalized price, and
possibly for the price as well. This rule, therefore, tries to identify some changes
in the trend.
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of some kinds of nonlinear alterations to the primitive trading rules Allen and
Karjalainen (1999, pages 263–264) has documented such an example. In their
example, the rule found is something similar to a moving-average rule, but the
window size is time-variant. This alteration provides us with the flexibility to
search for both short-term trends and long-term trends, depending on whether
the market is bullish or bearish. We also find trading programs of this kind.
Figure 5 is a trading program found to be comparable to B&H in the 2003–
2004 test period for the Taiwan stock market. A careful analysis would show
that this rule is essentially an alteration of the fixed backward-looking rule:

(> index lag(205)). (13)

What the program in Figure 5 does is to add a condition to this simple rule.
So, in normal times, the trading program just checks whether the inequality
of the backward-looking rule is satisfied when deciding to be in or out of
the market. Nonetheless, when the price experiences an upward trend or a
downward trend, this trading program signals caution regarding using this
simple rule alone and suggests looking at other finer conditions as defined
by its subtrees. The caution seems to be necessary because it reminds the
trader that the ongoing trend may change at any point in time when the
upward or downward tendency has gone too wild. As a result, what GP finds
here is a simple backward-looking rule associated with a reversal protection
mechanism, and its operation becomes much more complex than that of the
original version.

Figure 6 plots the equity curves of the three trading rules, namely B&H,
rule (13), and the GP-discovered trading program as shown in Figure 5. The
figure does show that the equity curve of the GP-discovered program is 64.8%
of the time higher than that of B&H. However, with this test data set, the
modification of the original simple rule (13) does not help much. In fact,
the equity curve of the simple backward-looking rule dominates that of the
modification made by GP 58.8% of the time. What is particularly interesting
is that both of these rules correctly recommend that the trader stay out of the
market on the same day, just right at the beginning of a big drop happening
around the end of April 2004. After that they never signal to buy again, and
neither does the price go back to the same high again.44

Rule Complexity

The complexity of trading rules seems to be another issue concerning many
researchers. The parse-tree structure of GP gives us a very intuitive way of
measuring the complexity of a trading program, namely, the number of nodes

44 We do notice that some GP-discovered trading programs share this feature,
namely, less greedy and more rational. Whether this property can generally hold
to a larger extent of the program requires more systematic study.
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Fig. 5. GP-discovered trading program: Taiwan stock market.

This trading program is found by GP and using the data of Taiwan stock index from
years 1993–1997, and is validated by the data from years 1998–2002. Its performance
is tested with the data from years 2003–2004.
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Fig. 6. Equity curves of the three trading programs.

appearing in a parse tree, which is also known as the node complexity. How-
ever, as Allen and Karjalainen (1999) correctly point out: “measuring the
complexity of the trading rules cannot in general be done by inspection of
the tree structures,” (Ibid. p. 262). This is mainly due to the fact that redun-
dancy and noise, instead of real patterns, may inflate the size of the trading
programs. However, supposing that the chance of introducing redundancy and
noise is equally likely for each market, then the overall complexity measure
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can still be used as a way of examining whether rule complexity is different
among markets or is different over time. It is for this purpose that we present
the mean complexity of the trading program for all markets in Table 10.

Table 10. The Node Complexity of GP-Discovered Programs

Stock Market USA UK Canada Germany Spain Japan Taiwan Singap. Mean

Without Short Sale
1999–2000 14.1 23.2 17.3 25.5 20.2 23.4 28.8 16.2 21.1
2001–2002 10.3 14.1 10.8 23.9 19.2 19.9 26.9 18.7 18.0
2003–2004 12.6 21.8 19.2 23.8 16.6 24.4 22.3 24.5 20.6
Mean 12.3 19.7 15.8 24.4 18.6 22.5 26.0 19.8 19.9

With Short Sale
1999–2000 07.7 19.8 19.0 17.2 21.8 19.2 26.5 15.9 18.4
2001–2002 10.2 12.9 15.5 18.7 20.4 21.7 28.4 15.8 18.0
2003–2004 09.6 12.5 10.0 25.8 15.0 22.9 24.0 23.7 18.0
Mean 09.2 15.1 14.8 20.6 19.1 21.3 26.3 18.5 18.1

FX Market ITL GBP CAD DEM ESP JPY TWD SGD Mean

1999–2000 24.4 23.6 23.2 24.2 28.6 22.3 24.1 17.3 23.5
2001–2002 21.0 29.4 24.0 26.0 21.9 30.7 16.8 17.5 23.4
2003–2004 22.8 22.2 29.9 26.8 24.0 21.6 20.5 13.6 22.7
Mean 22.8 25.1 25.7 25.6 24.8 24.9 20.5 16.1 23.2

The result here is the mean of 50 runs of GP.

Table 10 is the mean complexity of the GP-discovered trading programs in
the eight stock markets (both with and without short sales) and in the eight
foreign exchange markets. The program complexity of the foreign exchange
market (with a mean of 23.2) is greater than that of the stock market (with
a mean of 19.9). Within the stock markets (the case without short sales),
program complexity changes from a low of 12.3 (United States) to a high of
26.0 (Taiwan) and a low of 18.0 in the years 2001–2002 to a high of 21.1 in
the years 1999–2000, while within the foreign exchange markets, it changes
from a low of 16.1 (Singapore) to a high of 25.7 (CAD) and a low of 22.7 in
the years 2003–2004 to 23.5 in the years 1999–2000. Whether or not we can
relate market complexity to program complexity is an issue beyond the scope
of this paper, but the statistics shown here do provoke some thoughts on the
complexity of different markets at different times.

In addition to the mean, by pooling all three scenarios together, we also
present the empirical distribution of the complexity in Figures 18 and 19.
By pooling the three sections of the tests together, each empirical histogram
gives the distribution of the number of nodes of the 150 GP-discovered trading
programs. These two figures show some common patterns across all markets.
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First, most GP-discovered programs are not complex. In particular, programs
with a node complexity of less than 10 dominate all markets. In the U.S.
market, they account for even more than 50% of all 150 programs. Second,
the more complex the program, the less likely it will be discovered. This is well
reflected by declining frequencies in the histogram. This may surprise those
who expect to learn complex trading programs from GP.

A systematic study of the complexity is not available in the literature.
Usually, authors of earlier studies only provided some partial observations.
For example, in the stock market, Allen and Karjalainen (1999) noted “the
structure and complexity of the rules found by the algorithm vary across
different trials. The size of the rules varies from nine to 94 nodes, with a
depth between five and ten levels,” (Ibid. p. 261). Also, in the foreign exchange
market, Neely et al. (1997) found that, out of the 100 programs, the mean
number of nodes for the USD/DEM was 45.58, and only two had fewer than
10 nodes (Ibid. p. 419). Bhattacharyya et al. (2002) are probably the only
ones who documented the statistics of node complexity. They found that the
node complexity of the USD/DEM hourly data ranges from 18.65 to 29.65,
depending on the specific design of GP used.

Another way to reflect upon the complexity of a GP-discovered trading
program is to examine whether its complexity has actually contributed to the
profit performance. This indirectly helps us to estimate how seriously that
noise and redundancy have complicated a trading program. Table 11 gives
the correlation between the complexity and the total return (R) in the stock
market as well as the correlation between complexity and the total rate of
return (Π) in the foreign exchange market.

The results are somewhat mixed. There are a total of 26 cases showing
positive correlation, but also 22 cases showing negative correlation. Pooling
all the cases together, in the stock market, the correlation coefficient is only
about 0.09, and in the foreign exchange market, it is almost nil. There is
thus no clear evidence indicating that complexity can contribute to the profit
performance. This may be partially due to the dominance of simple strategies,
such as B&H or simple technical trading rules. One typical example would be
what we see in Figure 6, where the complex version of the trading program
(13) appears to be no better than the original simple version.

Despite the general pattern described above, it is also worth noting some
special cases. The Taiwan stock market provides such an interesting case.
We notice two concurrent patterns in the Taiwan stock market. First, the
node complexity is generally higher than in other markets. Second, the node
complexity has a positive relation with the return in all three test periods.
These two patterns associated with the performance of GP-discovered trading
programs in this market, as shown in Section 5.1, provide us with one of a
few ideal cases indicating that GP is working.

The rather simple structure of the evolved trading programs motivates us
to ask a question regarding the search intensity required to find these pro-
grams, in particular, the number of generations. It is suspected that a simple
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Table 11. The Correlation Between Program Complexity and Return

Stock -USA -UK -Canada -Germany -Spain -Japan -Taiwan -Singapore
Market
1999–2000 −0.18 −0.08 −0.25 −0.01 0.34 −0.20 −0.23 −0.08
2001–2002 −0.08 −0.36 −0.05 −0.07 0.25 −0.28 −0.10 −0.03
2003–2004 −0.14 −0.07 −0.38 −0.01 0.03 −0.35 −0.19 −0.13
Pooling = 0.09

Exchange -ITL -GBP -CAD -DEM -ESP -JPY -TWD -SGD
Market
1999–2000 −0.22 −0.27 −0.22 −0.00 −0.11 −0.32 −0.01 −0.07
2001–2002 −0.18 −0.40 −0.26 −0.15 −0.06 −0.07 −0.10 −0.19
2003–2004 −0.13 −0.13 −0.52 −0.15 −0.17 −0.11 −0.32 −0.29
Pooling = 0.00

structure may not need a long evolution and can emerge quite quickly, so
that the evolutionary cycle may terminate much earlier than the upper limit
Gen = 100 (Table 1). We test this conjecture by first running the correlation
between the number of generations effectively used and the resultant node
complexity. Figure 7 gives the X-Y plot of the two. We find that this coeffi-
cient is 0.319 in the stock market and 0.575 in the foreign exchange market.
This result supports our hypothesis that complex programs need a longer
time to evolve than simple programs. Nonetheless, from their profitability
performance (Table 11), these complex programs seem to introduce more re-
dundancy than structure, and hence a longer evolution time does not really
help.

Figure 8 gives the histogram of the actual numbers of generations used
to evolve before the evolutionary cycle terminates. As we have specified in
Table 1, if there have been 50 consecutive generations where we have been
unable to find a better program to replace the incumbent in the winner list,
the evolutionary cycle will terminate. The histogram is made by pooling 50×
8×3 = 1, 200 trials. Of these 1,200 trials, it is interesting to notice that a very
high proportion of evolution does not take too much time. In the stock market,
38% of the trials do not actually experience a real search. The best program
found in the initial generation proves to be unbeatable in the validation; hence,
the evolutionary cycle stops right away at 50 generations. Twenty-two percent
of the trials experienced less than 10 generations of search, and terminated
before 60 generations. With so little time to use, it is well expected that most
programs coming out of this evolutionary cycle will not be too complex. GP
in the foreign exchange markets did search more intensively than the stock
markets, but still 40% of the trials terminated before 60 generations. In both
the stock and foreign exchange markets, there are only about 10% to 20% of
trials that actually evolved about 90 to 100 generations.
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Fig. 7. Evolution time and program complexity.

The histogram is made by pooling all trials of different markets and different periods
together. The correlation between evolution time and program complexity is 0.319
in the stock market and 0.575 in the foreign exchange market.
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Fig. 8. Number of evolved generations.

The histogram is made by pooling all trials of different markets and different periods
together.

So, generally speaking, the search intensity is lower than what we expected
at first sight. Given this result, the question as to whether we have actually
searched sufficiently arises. However, the main problem lies in the fact that it
does not pay well to conduct a more intensive search. Table 12 and Figure 20
show that longer search does not bring a higher return.

Trading Frequency

Despite what the rule says or how complex it is, as long as its criterion for
market timing is always satisfied, it makes no essential difference to B&H.45

45 In this case, the trading program always outputs “True.” Similarly, if the criterion
is never satisfied, which is equivalent to always “False,” then the investor will
never invest in the stock market, and the trading frequency can even be as low
as zero.
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Table 12. The Correlation Between Evolving Time and Returns

Stock -USA -UK -Canada -Germany -Spain -Japan -Taiwan -Sing.
Market
1999−2000 −0.02 −0.20 −0.32 −0.02 −0.09 −0.30 −0.38 −0.07
2001−2002 −0.11 −0.16 −0.16 −0.16 −0.36 −0.11 −0.03 −0.07
2003−3004 −0.29 −0.26 −0.40 −0.14 −0.29 −0.36 −0.13 −0.01
Pooling = 0.069

Exchange -ITL -GBP -CAD -DEM -ESP -JPY -TWD -SGD
Market
1999−2000 −0.34 −0.12 −0.33 −0.07 −0.01 −0.26 −0.29 −0.25
2001−2002 −0.41 −0.49 −0.27 −0.34 −0.03 −0.11 −0.01 −0.12
2003−3004 −0.08 −0.17 −0.65 −0.14 −0.11 −0.13 −0.39 −0.44
Pooling = 0.166

Therefore, an alternative way to analyze the GP trading rules is to examine
how often they send buy or sell signals, or how sensitive they are to the price
dynamics. Table 13 gives the average of the number of trades for each market,
where the average is taken over the 50 trials of running GP.

Generally speaking, the trading frequency is quite low for all markets. On
a two-year basis, the trading frequency ranges from a low of one to a high of
9.24. This result is comparable to Allen and Karjalainen (1999)46 but is in a
striking contrast to that of the 21 human-written trading programs. In Table
13 the row starting with “21 rules” gives the average of the trading frequency
of the 21 above-mentioned technical trading rules. Using these business trading
programs, one expects to finish about 25 round trips every two years.

To understand the difference, it is important to be aware that what is cap-
tured by these 21 programs comprises only patterns, but not the transaction
cost. As a result, their development and use seem to be independent of the
transaction cost. However, this is not the case with GP. Since the transaction
cost has been taken into account in the fitness function, different transaction
costs will generally result in different trading programs with different trading
behavior, and this is confirmed by Table 13 when we reduce the transaction
cost from 0.5% to zero. Needless to say, when c is reduced to zero, the GP-
discovered trading programs in all markets become more active. This result is
also consistent with Allen and Karjalainen (1999).47 In Canada and Singapore,
the GP-discovered trading programs are even more active than the 21 rules.
Obviously, changing the transaction cost does drive GP to look for different
trading programs.48

46 Allen and Karjalainen (1999) found that when c = 0.5%, the trading frequency
drops to an average of 1.4 trades per year, which is 2.8 trades biennially (Ibid.
p. 260).

47 Allen and Karjalainen (1999) found that when the transaction cost is as low as
0.1%, the trading frequency is high, with an average of 18 trades per year or 36
trades biennially (Ibid. p. 260)

48 Allen and Karjalainen (1999) are the first who tried to examine how the transac-
tion cost may actually induce different trading programs.
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Table 13. Trading Frequency: Stock Markets

Rule USA UK Canada Taiwan Singapore Japan

Test Period: 1999−2000
GP(c = 0.5%) 1.94 3.56 4.12 2.72 9.24 1.26
GP(c = 0) 13.40 25.44 84.64 10.98 77.54 3.76
21 rules(c = 0.5%) 25.86 27.7 27.75 24.64 25.43 NA

Test Period: 2001−2002
GP(c = 0.5%) 1.08 1.00 2.00 3.40 4.00 2.92
GP(c = 0) 3.10 4.54 97.74 14.26 75.28 9.38
21 rules(c = 0.5%) 24.90 27.67 25.81 24.05 23.74 NA

Test Period: 2003−2004
GP(c = 0.5%) 1.28 1.50 2.04 3.34 3.56 3.90
GP(c = 0) 13.18 19.16 85.64 9.40 54.68 9.48
21 rules(c = 0.5%) 26.21 27.86 25.81 24.07 23.36 25.76

“GP” refers to the average trading frequency of the 50 runs without short sales,
and the “21 rules” refers to the average trading frequency of 21 practical trading
strategies.

Table 14 gives the trading frequencies of the GP-discovered program in
the foreign exchange market. Neely et al. (1997) earlier found that the mean
number of trades for USD/DEM is 14 biennially, which is higher than our
finding here (see Table 14). This may be partially due to their different design
of GP. The impact of the transaction cost on the number of traders is also
shown in Table 14. By increasing the transaction cost from 0.05% to 0.2%,
the GP-discovered trading programs, as expected, become much less active in
many markets.

Consistency of Trading Rules

GP is a stochastic search algorithm. Different trials will not necessary give
the same recommendation; generally, they do not. It is therefore interesting
to know how consistent these different trading rules can be. Figure 16 presents
the proportion of rules indicating a long position for each stock index during
the three test periods. A consistency statistic, H(p), is used to give a summary
of this picture. The statistic is defined as

H(p) = p(1 − p), (14)

where p is the proportion of rules indication a long position. It is clear that
H(p) is minimized at 0 when p is close to the two extremes, namely, 0 and
1, and it is maximized at 0.25 when p = 0.5. Hence, 0 ≤ H(p) ≤ 0.25. On
the top of each plot in Figure 16, we also report the average of H(p) over
the entire three test periods followed by the average of each test period. The
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consistency index ranges from the lowest 0.02 (United States) to the highest
0.14 (Canada) ≈ 0.83 × 0.17, which indicates that the consistency of all GP
programs is high. Even for the individual test period with the highest H , i.e.,
the UK 1999–2000, where H is 0.21 (= 0.7 × 0.3), we can still have 70% of
the programs seeing eye to eye with each other. Similarly, Figure 17 gives the
consistency statistic of the foreign exchange market. The consistency index
is a little higher, ranging from 0.08 to 0.18, with the highest one being 0.21
(USD/CAD 2001–2002, USD/ESP 1999–2000, USD/TWD 1999–2000).49

Table 14. Trading Frequency: Foreign Exchange Markets

ITL GBP CAD DEM ESP JPY TWD SGD

Test Period: 1999–2000
c = 0.05% 7.42 10.92 8.10 8.06 9.30 11.40 5.42 32.66
c = 0.2% 2.58 2.72 2.88 4.82 6.26 10.00 2.68 8.38
Test Period: 2001–2002
c = 0.05% 9.48 9.40 13.08 8.12 10.18 14.85 28.12 1.67
c = 0.2% 6.60 2.94 2.08 6.04 8.02 9.46 3.12 1.00
Test Period: 2003–3004
c = 0.05% 2.28 13.16 4.72 4.02 6.24 11.94 12.46 1.42
c = 0.2% 2.78 6.36 1.26 2.28 2.64 5.04 6.62 1.00

6 Concluding Remarks

The question pertaining to whether GP can discover profitable trading strate-
gies is much harder to answer based on the limited publications we have so
far. The current extensive test does, however, make a few points clearer.

6.1 Issues Learned from the Extensive Test

Data-Division Schemes

First, the performance of GP crucially depends on the experimental design. In
Section 5.1, we have replicated and extended part of the empirical work done
by Neely et al. (1997), and from there we are able to show the significance of
the division of data into training, validation, and testing. If we do not start
with a “right” division, then we may end up with a less desirable result, e.g.,
comparing Table 7 with Table 8. A blind division may cause great dissimilarity
among the three sets, particularly, the training set and the testing set, and
that may cause the GP to malfunction. The general failure of the foreign
49 Neely et al. (1997) have evidence that USD/DEM has a higher degree of census

than USD/Yen. This result is also obtained here.
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exchange investment in the period 2003–2004 serves well to demonstrate this
problem (also see footnote 40).

Evaluation Scheme

Second, in addition to the data-division scheme, the evaluation scheme can be
a problem as well. Specifically, the use of B&H as a benchmark and the use
of the fixed-period return, such as Equation (2) or (3), as the fitness function
can cause some unintended biases, when the market has a strong upward or
downward tendency, as many examples have shown in this paper. As we have
see earlier in footnote 44, the GP-discovered programs quite often are less
greedy and are well altered. It will not chase the upward trend (a bullish
market) and will leave the market earlier before the reversal happens. With
such an operation, an evaluation made before the end of the bullish market
will be very unfavorable for GP as opposed to B&H. On the other hand, since
the GP-discovered programs tend to stop loss, it will leave the bearish market
before it is too late. In this case, an evaluation made before the end of the
bullish market will be more advantageous to GP than to B&H. Briefly, bulls
tend to be biased toward B&H, whereas bears tend to favor GP.

Searching Efficiency

Third, from the analysis of GP-discovered programs, we evidence that GP is
able to discover the “hidden knowledge” by either combining or refining the
existing simple trading rules (Figure 5). It is observed that the GP-discovered
trading programs perform no worse than many human-written business pro-
grams. However, using quite intensive computing resources, GP does not seem
to search very efficiently. Consider the following three hypotheses held by some
financial users of GP:

• The hidden financial or hidden knowledge, if it exists, must be complex.
• Once the complex financial pattern is discovered, we may expect excess

returns.
• Since it takes GP many generations to evolve (grow) or discover complex

patterns, the evolution time, complexity, and return are positively corre-
lated with each other.

In Section 5.2, we have found that two of these three hypotheses are largely
false. The general findings are summarized as follows:

• Evolution time can help grow complex trading programs (Figure 7).
• However, complex trading programs need not have structured patterns as

their essence. They may introduce redundant or noisy elements, which con-
tribute little to making successful trading decisions. As a result, the corre-
lation between complexity and return is weak, if it even exists (Table 11).
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• After the removal of redundancy and noise, some complex trading pro-
grams can be simplified as just a recombination of simple rules. Real
complex, well-structured programs are rarely seen (Figures 18 and 19).
Therefore, either complex patterns are not prevalent, or the simple GP
(the current version) is not powerful enough to capture them.

• Putting them together, we find only a weak correlation between complex-
ity and return, and hence a weak correlation between evolving time and
return (Figure 17), despite the positive correlation between complexity
and evolving time.

6.2 Possible Solutions and Directions for Further Studies

In light of the conclusion reached above, we would also like to revise the
issues list above by pointing out directions for further studies. First of all,
one has to notice that the first two issues mentioned are not unique to GP.
They largely exist for all computational intelligence techniques. As a result,
their solutions can also be found from or shared with other computational
intelligence techniques. The last one also has its generality, but GP does have
unique causes that other techniques do not share. Solutions to the third issues
are, therefore, tailor-made and exploit more advanced GP.

Reacting to the Issue of Data-Division Schemes

Regarding the issue of the data-division scheme, it has been proposed to alter-
nate training sets and the test sets, instead of putting them in chronicle order,
e.g., Bhattacharyya et al. (2002). Nonetheless, alternating training sets and
test sets assumes that one can use the distant future to forecast the immediate
future. From the forecasting viewpoint, this is a not practical solution to the
problem.

Instead, one does not have to work with an exogeneously given division
scheme, and active learning is an idea to leave the choice of the training sets
to be endogenously determined (Lanquillon, 1999). Active learning is a design
to relearn from the past if the current (on-line) performance is worse to a
degree defined by a threshold. For example, if the equity curve of GP has
been continuously below an ideal equity curve for a consecutive number of
periods, then a relearning mechanism will be automatically triggered. This
idea is not new in computational intelligence literature, and in econometrics
it is well-known as the CUSUM test. In the literature of GP, Chen (1998) was
probably the first to apply this idea. Nevertheless, how to design a relearning
scheme may not be a simple task. Hopefully, the pile of the literature on active
learning or incremental learning may provide some help.

Reacting to the Issue of Evaluation Schemes

Regarding the issue of the possibly biased evaluation scheme, the equity curse
frequently used in investment literature would help. It provides a better vision
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of how the trading program behaves over the investment horizon and will avoid
the above-mentioned evaluation bias. Furthermore, the equity curve itself can
be used as the fitness function. One may as well also consider various kinds
of fitness functions addressed in the literature (see footnote 12).

One common cause of the first and the second issue, or, generally, the issue
of luck, is mainly due to the use of only one ensemble (single time series),
and one ensemble may not represent the population well. A solution to this
problem is to conduct a rigorous statistical test using the booth-trapping
method or the Monte Carlo simulation (Tsao and Chen, 2004), which can
help us to give a more rigorous evaluation to see why GP works or fails to
work. One can generate artificial data by using relevant stochastic models,
particularly, those financial econometric models. It would therefore, be nice
to test whether or not GP can survive all types of stationary time series. If
indeed GP can survive well with the stationary time series, then we can add
disturbances with structural changes and test how quickly GP can recognize
the changes and start to relearn under a given active learning scheme. This
may further help us to evaluate the performance of different active learning
schemes and enable us to see whether active learning is, after all, a mean to
avoid the path-dependent problem.50

Reacting to Enhancing Search Efficiency

The last issue is most challenging. Generally, there are two directions to en-
hance search efficiency. First, enhancing representations. The idea of using
strongly typed GP to solve some redundancy issues has been attempted by
several researchers. Bhattacharyya et al. (2002) added semantic restrictions,
O’Neill et al. (2002) adopted gene expression programming, and Yu et al.
(2004) used the λ-abstraction approach, to restrict the types of trading pro-
grams to be generated.51 Second, enriching building blocks. Wang (2000) used
automatic define functions can be a case in point. As we have mentioned in
Section 2, it would be interesting if we could redesign our terminal set and
function set by including some advanced functions and terminals, instead of
starting everything from scratch. Of course, this would need to work with se-
curities and investment firms by incorporating their knowledge base into GP.

50 One problem revealed in this paper is the path dependence of GP. What GP will
perform in the future depends on what it learns from the past. It is generally well
argued in this paper that the switch between the bull and bear market may cause
GP to learn something unsuitable for the future.

51 Of course, this is not an exhaustive list. There is newer research involving novel
GP-based approaches in financial decision making (e.g., newer strongly typed GP
approaches, grammar-guided GP, evolutionary neural logic networks, evolving-
fuzzy systems, or other hybrid intelligent approaches, etc.). See, for example,
Tsakonas et al. (2006).



136 S.-H. Chen et al.

Appendices

A. Significance of Validation

In Section 4, we have mentioned that using part of the data to validate what
was learned from the training set, and based on the validation result decide a
termination point, has become a popular device to avoid overfitting. However,
the effectiveness of this device has not been well addressed in the literature.
Does it really work? Chen and Kuo (2003a) cast doubt on the foundation of
this device. Motivated by earlier studies, we also examine the effectiveness of
the validation device.

Here, let us be more specific regarding what we mean by training without
validation. Look back at Figure 2, where, according to the original proce-
dure, the data are divided into three sections, the training set and the testing
set, and in the middle the validation set. Now, when the procedure does not
have validation, we simply replace the training set by the validation set, i.e.,
to move the training set immediately before the testing set. So, going back
to Figure 2, the three training sets, 1989–1993, 1991–1995, and 1993–1997,
are now completely replaced by the original three validation sets, 1994–1998,
1996–2000, and 1998–2002. This way of carrying out the procedure without
validation is mainly due to the recent nature of the financial time-series data.
When there is no need for validation, then the immediate past should be used
for training.

Without validation, the evolutionary cycle will not terminate until it runs
to 100 generations. The result is shown in Table 15. The statistical test seems
to be in favor of the procedure with validation. In 11 out of a total of 24
cases, the return of the procedure with validation outperforms that without
validation, while only in four cases do we have the opposite situation.

B. Significance of the Transaction Cost

As mentioned in Section 3, the transaction cost can have some impacts on the
results we have. In the main text, we already presented the results associated
with a c of 0.5%. To make us see how significantly the results will be altered,
we choose a rather low value, c = 0. Table 16 presents the profitability result.
By comparing this table with Table 2, we can see that the total return earned
by GP improves over all the cases (in terms of the majority rule), and the
number of times GP beats B&H increases from the original 7 cases to the
current 13 cases.

The change to the transaction cost does not impact the profit performance
directly. Its impact is channeled through the new resultant GP-discovered
trading programs associated with different essence and different behavior.
Table 13 has already shown that the GP-discovered trading programs can
be more active in trading when the transaction cost is reduced. However,
a more fundamental change starts from the trading program itself. To see
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Table 15. Effectiveness of Validation

Validation No Validation
Country Mean Stdev Mean Stdev

Testing Period: 1999−2000

USA −0.0655 0.0342 −0.0689 0.0599
UK −0.0459 0.0908 −0.0401 0.0406
Canada −0.3660 0.1030 −0.3278 0.1570
Germany −0.1490 0.1114 −0.2198∗∗ 0.0822
Spain −0.0666 0.0904 −0.0454 0.0353
Japan −0.0024 0.0540 −0.0132 0.1871
Taiwan −0.1620∗∗ 0.1353 −0.0715 0.1806
Singapore −0.1461∗∗ 0.1866 −0.0419 0.0897

Testing Period: 2001−2002

USA −0.3171 0.0498 −0.1616∗∗ 0.2209
UK −0.3625 0.0284 −0.2725∗∗ 0.2311
Canada −0.1761 0.1065 −0.1917 0.1296
Germany −0.4772 0.2242 −0.5319 0.1123
Spain −0.2780 0.0910 −0.2578 0.1285
Japan −0.0722∗∗ 0.1520 −0.1261 0.1531
Taiwan −0.0376∗∗ 0.1899 −0.1068 0.1598
Singapore −0.3123 0.0333 −0.0685∗∗ 0.1161

Testing Period: 2003−2004

USA −0.3065∗∗ 0.0334 −0.0722 0.0772
UK −0.1797∗∗ 0.0300 −0.0777 0.0658
Canada −0.3109∗∗ 0.0585 −0.1421 0.0786
Germany −0.3318∗∗ 0.0544 −0.1590 0.1377
Spain −0.3355∗∗ 0.1292 −0.0819 0.0803
Japan −0.0212 0.0843 −0.0300 0.0847
Taiwan −0.3631∗∗ 0.0665 −0.0598 0.1329
Singapore −0.2512∗∗ 0.0735 −0.1409 0.1294

The “**”, depending on where it appears, refers to the rejection of the null, at a
significance level of 0.05, that the total return of the procedures with validation is
no greater than that without it or the null that the total return of the procedure
without validation is no greater than that with validation.

this, Table 17 presents the node complexity of the GP-discovered programs
in the stock market when c is reduced to zero. By comparing this table with
Table 10, we can see that the trading programs not only become more active,
but, underlying their activeness, they also become more complex. The node
complexity increases from the original 19.9 (the case without sale) to the
current 24.4, and for each single market, the node complexity also increases
pairwisely.
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Table 16. The Total Return R of GP Without Short Sales: c = 0

Country Mean Stdev Median Max Min Majority B&H

Test Period: 1999−2000

USA −0.1703∗∗ 0.0886 0.1998 0.3678 −0.1464 0.2788 0.0751
UK −0.0477 0.1031 0.0564 0.2732 −0.1989 −0.1171 0.0584
Canada −0.5830∗∗ 0.2169 0.6118 0.9115 0.0295 0.5964 0.3630
Germany −0.1967 0.1249 0.1767 0.5684 −0.1475 0.2515 0.2249
Spain −0.0156∗∗ 0.1166 0.0019 0.2620 −0.1609 0.1428 −0.0416
Japan −0.0066 0.0562 0.0016 0.1523 −0.1372 0.0016 0.0276
Taiwan −0.2825∗∗ 0.1321 0.3119 0.5808 −0.1341 0.5158 −0.2289
Singapore −0.5959∗∗ 0.1319 0.6938 0.8327 0.0719 0.5050 0.3762

Test Period: 2001−2002

USA −0.3099 0.0232 −0.3144 −0.2238 −0.3146 −0.3144 −0.3144
UK −0.3408∗∗ 0.0881 −0.3618 −0.0613 −0.3658 −0.3618 −0.3618
Canada −0.1311∗∗ 0.0404 −0.1389 0.0357 −0.1821 −0.1389 −0.2319
Germany −0.4486∗∗ 0.2401 −0.5058 0.0555 −0.5685 −0.5065 −0.5401
Spain −0.2458∗∗ 0.1018 −0.2784 0.1087 −0.2998 −0.2784 −0.2784
Japan −0.0386∗∗ 0.2053 −0.0133 0.3099 −0.3801 0.0089 −0.3734
Taiwan −0.1588∗∗ 0.2022 0.1509 0.8019 −0.1607 0.2446 −0.1001
Singapore −0.1592∗∗ 0.1125 −0.1926 0.1559 −0.2928 −0.2426 −0.2928

Test Period: 2003−2004

USA −0.3247 0.0638 0.3351 0.4546 0.0681 0.3794 0.3332
UK −0.1607 0.0714 0.1444 0.3646 0.0146 0.1714 0.2007
Canada −0.3862∗∗ 0.0351 0.4118 0.4668 0.2549 0.4118 0.3762
Germany −0.3677 0.0666 0.3707 0.5699 −0.0011 0.3707 0.3707
Spain −0.3278 0.0779 0.3372 0.4546 0.0215 0.3838 0.4599
Japan −0.1159 0.1043 0.0949 0.3926 −0.0356 0.1047 0.3185
Taiwan −0.3662 0.1006 0.3644 0.6195 0.0657 0.5122 0.3569
Singapore −0.4398 0.0888 0.4406 0.7534 0.2327 0.3812 0.5465

The “��” refers to the null that the total return of GP is no greater than the total
return of B&H is rejected at a significance level of 0.05.

Earlier, in Section 5.2, we have seen that it takes time to develop complex
programs. Here, we find that this is still the case. The simple correlation
coefficient, by pooling together all trials, between evolution time and program
complexity is 0.52 (0.32 when c = 0.5%). As shown in Figure 9, we can see
that the peak of the stopping time (the terminal generation) moves from the
original 50 to the interval “91–100.” Now, more than 20% of the trials run
to or almost to the last generation. This result highlights a possibility that
the GP design may not be completely independent of the market to which it
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is applied. The market with low transaction costs may deserve more running
time or a higher search intensity than markets with high transaction costs.

Table 17. The Node Complexity of GP-Discovered Programs: Stock Markets, c = 0

Test period USA UK Canada Germany Spain Japan Taiwan Singap. Mean
1999–2000 19.9 27.9 22.4 22.0 19.7 22.3 27.1 21.4 22.9
2001–2002 23.2 24.2 17.9 26.0 26.6 33.0 28.0 19.8 24.9
2003–2004 24.3 20.6 25.3 29.6 21.5 28.8 24.8 28.8 25.5
Mean 22.5 24.3 21.9 25.9 22.6 28.1 26.7 23.4 24.4

The result here is the mean of 50 runs of GP.

Furthermore, we are interested in knowing whether the increases in evo-
lution time and program complexity can contribute to the return. In other
words, we would like to know whether or not the increase in search inten-
sity, encouraged by a lower transaction cost, has actually led to the discovery
of some hidden patterns that will be neglected when the transaction cost is
high. However, we do not see much change in the two properties established in
Section 5.2. Both the program complexity and evolution time have little to do
with the return. The correlation coefficient, by pooling all trials together, be-
tween program complexity and the return is only 0.02 (0.09, when c = 0.5%),
and the correlation coefficient between evolution time and the return is 0.11
as shown in Table 19 (0.07, when c = 0.5%).

However, the feature that program complexity has little to do with
the return remains unchanged even though the transaction cost is removed
(Table 18).

Table 18. The Correlation Between Program Complexity and Returns: Stock Mar-
kets, c = 0

Test Period −USA −UK −Canada −Germany −Spain −Japan −Taiwan −Singap.

1999–2000 −0.17 −0.11 −0.06 −0.04 −0.12 −0.24 −0.04 −0.12
2001–2002 −0.21 −0.34 −0.24 −0.13 −0.01 −0.05 −0.09 −0.19
2003–2004 −0.22 −0.25 −0.24 −0.10 −0.08 −0.62 −0.11 −0.05
Pooling =0.02

Table 19. The Correlation Between Evolution Time and Return: Stock Markets,
c = 0

Test Period −USA −UK −Canada −Germany −Spain −Japan −Taiwan −Singap.

1999–2000 −0.20 −0.39 −0.28 −0.05 0.42 −0.05 0.20 −0.08
2001–2002 −0.30 −0.34 0.05 −0.16 0.25 −0.27 0.00 −0.27
2003–3004 −0.20 −0.13 0.35 −0.08 0.07 −0.49 0.07 −0.26
Pooling = 0.11
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Stock market in 1999-2004: c=0
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Fig. 9. Number of evolved generations.
The histogram is made by pooling all trials of different markets and different

periods together.

C. Significance of Data Transformation

The hypothesis that the original data without transformation to take care
of the non smoothness may be inappropriate is widely accepted among re-
searchers. Most researchers do consider different ways of smoothing the data
before it is applied to any computational intelligence tool. This is known as
data preprocessing. However, absent is a real test to show how bad it can be if
the original data are directly used, i.e., the price series in our example. Here,
we shall fill the gap by providing some concrete evidence.

Table 20 shows the results of using the transformed data and using the
original data. The transformation taken here is to divide the original price
series by the 250-day moving average as we do in Section 4. The second and
third columns are directly copied from the respective columns of Table 2,
and the next two columns are the counterparts of the previous two using the
original series.

To see the contribution of using data preprocessing, we test the differences
between the return from using the transformed data and the return from using
the original data. Out of a total of 24 markets under examination, there are
8 markets, and the return from using the transformed data is statistically
significant compared to the return from not using the original data. Only
in three cases do we see the opposite result, and in the rest of the 13 cases,
they are tied. This result shows the advantages of using the transformed data.
Nonetheless, the original series is not bad to a prohibitive degree, as some may
expect.
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Table 20. GP Using Transformed Time Series and Original Time Series

Pt/MA(250) − Pt

Country Mean Stdev Mean Stdev

Testing Period: 1999−2000

USA −0.0655∗∗ 0.0342 −0.0428 0.0599
UK −0.0459 0.0908 −0.0669 0.0624
Canada −0.3660∗∗ 0.1030 −0.2747 0.0645
Germany −0.1489 0.1114 −0.2085∗∗ 0.0230
Spain −0.0666 0.0904 −0.0919 0.0822
Japan −0.0024 0.0540 −0.0067 0.0497
Taiwan −0.1620∗∗ 0.1353 −0.0750 0.0915
Singapore −0.1461 0.1866 −0.1297 0.1599

Testing Period: 2001−2002

USA −0.3171 0.0498 −0.3173 0.0271
UK −0.3625 0.0284 −0.3526 0.0689
Canada −0.1761∗∗ 0.1065 −0.2364 0.0633
Germany −0.4772 0.2242 −0.4283 0.2231
Spain −0.2780∗∗ 0.0910 −0.3098 0.0714
Japan −0.0722 0.1520 −0.0037∗∗ 0.0624
Taiwan −0.0376 0.1899 −0.0063 0.2343
Singapore −0.3123∗∗ 0.0333 −0.3709 0.0740

Testing Period: 2003−2004

USA −0.3065 0.0334 −0.3119 0.0309
UK −0.1797∗∗ 0.0300 −0.1607 0.0511
Canada −0.3109 0.0585 −0.3558∗∗ 0.0237
Germany −0.3318 0.0544 −0.3323 0.0669
Spain −0.3355 0.1292 −0.3184 0.0656
Japan −0.0212 0.0843 −0.0199 0.0679
Taiwan −0.3631∗∗ 0.0665 −0.1692 0.1334
Singapore −0.2512 0.0735 −0.2536 0.1455

The “**”, depending on where it appears, refers to the rejection of the null, at a
significance level of 0.05, that the total return of using the transformed time series
is no greater than that of using the original one or the null that the total return of
using the original time series is no greater than that of using the transformed one.

D. Various Figures

Figures 10 and 11 show the time-series plot of the stock indexes. Figures 12
and 13 show the time-series plot of the foreign exchange rates. Figures 14
and 15 depict the equity curves of the GP-discovered trading programs in the
stock markets. Figures 16 and 17 plot the time series of the proportion of
rules indicating a long position in the stock markets and the foreign exchange
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markets, respectively. Figures 18 and 19 give the distribution of the node com-
plexity of the GP-discovered programs for the stock markets and the foreign
exchange markets. Figure 20 plots the relation between the evolution time of
GP and the return in the 2003–2004 period of the stock markets.

Fig. 10. The stock indexes for the United States, the UK, Canada, and Germany.

In the left panel are the original series of the S&P 500 (US), FTSE 100 (UK), TSE
300 (Canada), and Frankfurt Commerzbank (Germany). In the right panel are the
corresponding series after normalization by the 250-day moving average.
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Fig. 11. The stock indexes of Spain, Japan, Taiwan, and Singapore.

In the left panel are the original series of Madrid-SE (Spain), Nikkei Dow Jones
(Japan), Straits Times (Singapore), and the Capitalization Weighted Stock index
(Taiwan). In the right panel are the corresponding series after normalization by the
250-day moving average.
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Fig. 12. Time series of foreign exchange rates: The rates between the United States
and the UK, Canada, Germany, and Italy.

In the left panel are the original series of the USD per GBP, CAD, DEM, and ITL.
In the right panel are the corresponding series after normalization by the 250-day
moving average.
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Fig. 13. Time series of foreign exchange rates: The rates between the United States
and Spain, Japan, Taiwan, and Singapore.

In the left panel are the original series of the USD per ESP, JPY, TWD, and SGD.
In the right panel are the corresponding series after normalization by the 250-day
moving average.
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Fig. 14. Equity curves: Stock markets of the United States, the UK, Canada, and
Germany.

Each equity curve drawn here is the average taken over the 50 equity curves, each
of which is derived by following a single GP-discovered trading program in a single
trial.
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Fig. 15. Equity curves: Stock markets of Spain, Japan, Taiwan, and Singapore.

Each equity curve drawn here is the average taken over the 50 equity curves, each
of which is derived by following a single GP-discovered trading program in a single
trial.
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Fig. 16. Proportion of rules indicating a long position: Stock markets.

At the top of each plot is the entropy statistic H defined in Equation (14). H refers
to the average of three periods, whereas H1,H2,H3 refer to the average of each of
the three respective periods.
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Fig. 17. Proportion of rules indicating a long position: Foreign exchange markets.

At the top of each plot is the entropy statistic H defined in Equation (14). H refers
to the average of three periods, whereas H1,H2,H3 refer to the average of each of
the three respective periods.
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1 Introduction

The pricing of rate-sensitive instruments is a complex and demanding task.
From a financial perspective a popular approach to modeling the term struc-
ture of interest rates is to use an approach driven by one or more stochastic
processes. This review will address three general approaches to interest rate
modeling: single and multifactor models of the short rate, models of forward
rates, and finally LIBOR models. This review will focus on key results and
pertinent pricing formulas and demonstrate several practical approaches to
implementing short-rate models. For extended reviews on interest rate mod-
eling, the interested reader is directed to Musiela and Rutkowski (2004) and
Brigo and Mercurio (2006), who offered comprehensive coverage of each of the
models reviewed here.

The notation conventions that are used are shown in Table 1.

2 Continuous-Time Models of Interest Rates

The success of the Vasicek (1977) and Cox–Ingersoll–Ross (1985) models has
been mainly attributed to the analytical tractability of the price of a default-
free, fixed-income bond. Representations of the evolution of interest rates
using continuous-time stochastic processes require, in general, three desirable
features: first, that the resultant process is always positive; second, a tractable
solution to bond and option prices; and finally, nonexplosive properties to the
money market account. Most of the popular interest rate models result in log-
normal distributions to the interest rate. Unfortunately, a byproduct of these
models is often that the third desirable property, nonexplosive money market
accounts, does not hold. This peculiar property of some log-normal interest
rate models was studied in Sandmann and Sondermann (1997). The issue
is generally overcome in a practical sense, when using numerical techniques
to evaluate the interest rate pathway. For example, when using multinomial
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Table 1. Notation Conventions

Notation Definition Notes

r(·) Functional of interest process r(t), is the function
of the rate w.r.t. time

rt Evolution of the rate process
r(t, T ) The rate of change of account

between t and T

X n length column vector of state X =
[
X1,X2, . . . ,Xn

]′

processes
y, x Arbitrary state/response variables
f(·) Arbitrary function, usually of

forward rates

g(·), a(·), b(·) Arbitrary functions k → d-dimensional a : R
k → R

d

functions

W (·) Functional form of an n-length W (·) =
[
W 1(·), ...,W n(·)]

′

Weiner process
Wt Evolution of an n-length Wt+h −Wt ∼ N(0, hIn×n)

Weiner process

I
d×d

d-dimensional identity matrix

∇f (·) Vector of first-order partial derivatives ∇f (x, y) = [fx, fy ]
′

of the multivariate function f(·)
∇2f (·) Matrix of second-order partial ∇2f (x, y) =

[
fxx fxy

fyx fyy

]

derivatives of f(·)
P (·) Pricing function of a zero coupon bond P (t, T )
Pt Price evolution of a zero coupon bond
Q Q martingale measure

trees, the finite number of states available and the number of periods generally
negate the explosive properties intrinsic to the model; see Brigo and Mercurio
(2006) for extended discussion.

3 Simple Short-Rate Models

Before we begin to look at specific models, we first need to understand the
basic relationship between the value of a rate-dependent security and the
stochastic process that describes the evolution of the interest rate. The basic
model for fixed-income markets utilizes an instantaneous interest rate, r (t),
whose evolution is described by some stochastic differential equation,

dr (t) = µ (t, r (t)) dt+ σ (t, r (t)) dW (t) , (1)

where W (t) is a Brownian motion under some risk-neutral probability mea-
sure, Q, µ (·), and σ (·) are generally affine functions with parameter vector,
θ, and recall that W (t+ h) − W (t) ∼ N (0, h). It is often suggested that
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the diffusion process, r (t), is the shortest rate available (e.g., the overnight
borrowing rate). The following section looks at the pricing of a simple fixed-
income contract in the presence of a general stochastic short-rate diffusion
model.

Consider a zero coupon bond, with price at time, t, designated, P (t, T ),
i.e., a contract that promises to pay a certain “face” amount at some future
time, T . In order to price this contract, a function f (·) needs to be defined,
which is of the following form,

P (t, T ) = f (t, r (t)) . (2)

More specifically, this is a generic pricing function, with substitutable
terms f (t, r), and the sets of first and second partial derivatives of f (t, r)
are given as

∇f (t, r) =
{
∂f (t, r)
∂t

= ft,
∂f (t, r)
∂r

= fr

}
,

∇2f (t, r) =
{
∂2f (t, r)
∂r∂t

=
∂2f (t, r)
∂t∂r

= frt ,
∂2f (t, r)
∂r2

= frr,
∂2f (t, r)
∂t2

= ftt

}
.

(3)

In addition, we define a continuous-time discount process D (t), as an
integral process over t0 to t, as

D (t) = exp
(
−
∫ t

0

r (s) ds
)
. (4)

The intertemporal change of a single unit currency in a money market
account is simply

1
D (t)

= exp
(∫ t

0

r (s) ds
)
. (5)

The evolution of the discount process is therefore

dD (t) = −r (t)D (t) dt. (6)

Now consider the current time t value of a zero coupon bond paying one
unit of currency at time T ; this is in effect the expected cumulative discount
that one unit of currency undergoes between t and T . Therefore,

D (t)P (t) = E (D (T ) |F (t) ),

P (t, T ) = E

(
exp

(
−
∫ T

t

r (s) ds

)
|F (t)

)
,

(7)

where F (t) is some filtration up to time t. The next task now is to compute the
yield between time t and T , which we shall define as Y (t, T ). This is defined



160 C. Ioannidis et al.

as the compounding rate of return that is consistent with the observed process
of a zero coupon bond over the period t and T ,

Y (t, T ) = − (T − t)−1 log (P (t, T )) . (8)

Alternatively, we can rewrite the bond price in terms of the yield:

P (t, T ) = exp (−Y (t, T ) (T − t)) , (9)

where T − t is a proportion of the base time unit, e.g., 6 months is 0.5 years;
therefore, T − t = 0.5.

To find the partial differential equation that generates the pricing formula,
from (2), we simply need to substitute the interest rate and discount rate
differential equations into the bond pricing formula, (7), and differentiate
using the results from (3).

d (D (t)P (t, T )) = f (t, r (t) dD (t) +D (t) df (t, r (t)))
= D (t)

(−rfdt+ ftdt+ frdR+ 1
2frrd

2r
)

= D (t)
(−rf + ft + µfr + 1

2σfrr

)
dt+D (t)σfrdW (t).

(10)
Setting dt = (t+ h) − t and h = 0, the pricing formula has the following

solution:

ft (t, r) + µ (t, r) fr (t, r) + 1
2σ

2 (t, r) frr (t, r) = rf (t, r) , (11)

as the final payoff of the zero coupon bond is set to 1; therefore, the terminal
condition is

f (T, r) = 1, ∀r. (12)

From these conditions given a one-dimensional stochastic differential equa-
tion that determines the spot rate model with tractable terminal solutions
and deterministic drift and volatility functions that are twice differentiable, a
pricing formula for a zero coupon bond may be found using (11).

We review nine of the classical short-rate models illustrating the underlying
stochastic differential equation and the subsequent analytical bond pricing
formulation, if one is available.

1. Vasicek (1977):
• SDE : drt = k(θ − rt)dt+ σdWt

• Feasible domain of rt: rt ∈ R

• Available tractable analytical solution for the price of bond :

P (t, T ) = A (t, T ) exp (−B (t, T ) r (t))

A(t, T ) = exp
((

θ − σ2

2k2

)
B(t, T ) − σ2

2k2
B(t, T )2

)

B (t, T ) =
1
k

(1 − exp (−k (T − t)))
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• Parameters and restrictions :

r0 ∈ R+, k ∈ R+

θ ∈ R+, σ ∈ R+

• Comments : Classical model. The instantaneous spot rate is not neces-
sarily positive.

2. Cox, Ingersoll, and Ross, (1985):
• SDE : drt = k (θ − rt) dt+ σ

√
rtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond :

P (t, T ) = A (t, T ) exp (−B (t, T ) r (t))

A (t, T ) =
2h exp

(
1
2 (k + h) (T + t)

)

2h+ (k + h) (exp (h (T − t)) − 1)

B (t, T ) =
√
k2 − 2σ2

• Parameters and restrictions :

r0 ∈ R+, k ∈ R+

θ ∈ R+, σ ∈ R+

2kθ > σ2

• Comments : Square root diffusion model, yields a log-normal rate. Ex-
plosive money account issue.

3. Dothan (1978):
• SDE : drt = αrtdt+ σrtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond : No closed
form zero coupon bond formula available.

• Parameters and restrictions : -
• Comments : Only approach to have a tractable solution for pure dis-

count bonds, using a modified Bessel function approach.
4. Exponential Vasicek; see Brigo and Mercurio (2006):

• SDE : drt = rt (η − α ln (rt)) dt+ σrtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond : No ana-
lytical closed-form zero coupon bond formula available

• Parameters and restrictions : -
• Comments : Not an affine term structure model and suffers from the

explosive money account properties, present in several log-normal
models.

5. Hull and White (1990):
• SDE : drt = k (θ − rt) dt+ σdWt

• Feasible domain of rt: rt ∈ R
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• Available tractable analytical solution for the price of bond :

P (t, T ) = A (t, T ) exp (−B (t, T ) r (t))

A(t, T ) = P M (0,T )
P M (0,t) exp

(
A(t, T )fM (0, t) − σ2

4a

(
1−exp(−2at)A(t, T )2

))

B (t, T ) =
1
a

(1 − exp (−a (T − t)))

• Parameters and restrictions :

r0 ∈ R+, k ∈ R+

θ ∈ R+, σ ∈ R+

a ∈ R+

• Comments : Hull and White (1990) extend the Vasicek model and im-
prove the fit by endogenizing the mean revision parameter.

6. Black and Karasinski (1991):
• SDE : drt = rt (ηt − α ln (rt)) dt+ σrtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond : No ana-
lytical closed-form zero coupon bond formula available

• Parameters and restrictions : -
• Comments : One of the most commonly implemented models, the Black

and Krasanski (1991) model offers a guaranteed positive rate but yields
infinite money accounts under all maturities.

7. Mercurio and Moraleda (2000):
• SDE : drt = rt

(
ηt −

(
λ− γ

1+γt

)
ln (rt)

)
dt+ σrtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond : No ana-
lytical closed-form zero coupon bond formula available

• Parameters and restrictions : -
• Comments : Extended version of the Hull and White model and is in

many respects a bridge to the Heath, Jarrow, and Morton approach.
8. Extended Cox, Ingersoll, and Ross; see Brigo and Mercurio

(2006):
• SDE :

rt = xt + ϕt

dxt = k (θ − xt) dt+ σ
√
xtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond :
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P (t, T ) =
PM (0, T )A (0, T ) exp (−B (0, t)x0)
PM (0, T )A (0, t) exp (−B (0, T )x0)

A (t, T ) exp (−B (t, T ) r (t))

A (t, T ) =

(
2h exp

(
1
2 (k + h) (T + t)

)

2h+ (k + h) (exp (h (T − t)) − 1)

)

B (t, T ) =
√
k2 − 2σ2

• Parameters and restrictions :

r0 ∈ R+, k ∈ R+

θ ∈ R+, σ ∈ R+

h =
√
k2 + 2σ2

• Comments : Extension of the Cox–Ingersoll–Ross approach, which in-
cludes a deterministic shift, ϕt, to improve the model fit.

9. Extended Vasicek Model; see Brigo and Mercurio (2006):
• SDE :

rt = xt + ϕt

dxt = xt (η − α ln (xt)) dt+ σxtdWt

• Feasible domain of rt: rt ∈ R+

• Available tractable analytical solution for the price of bond : No ana-
lytical closed-form zero coupon bond formula available

• Parameters and restrictions : -
• Comments : The extension to the Vasicek model again incorporates a

deterministic shift in the rate in order to improve the model fit over
the basic specification.

4 Estimating Interest Rate Models

This section will demonstrate the discretization and empirical estimation of
a single-factor Vasicek model from first principles. This is a mean-reverting
process and yields an interest rate process with a general Gaussian distribution
and tractable bond and option pricing formulas. To capture mean reversion,
the Vasicek (1977) model assumes that the short rate follows an Ornstein–
Uhlenbeck process:

drt = κ (θ − rt) dt+ σdWt, (13)

where κ measures the speed of mean reversing, θ is the unconditional mean
(long-term level of short rate), and σ is the instantaneous volatility of the
short rate.

With this Gaussian model under true probability measure, the normally
distributed short rate has the mean and variance
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Er,t (rT ) = θ + (r − θ) e−κ(T−t), (14)

varr,t (rT ) = σ2 (2κ)−1
(
1 − e−2κ(T−t)

)
. (15)

Assuming the market price of risk is a constant, that is, λ (r, t) = λ, the
dynamic of the short rate under risk-neutral measure Q will be

drt = κ
(
θ̂ − rt

)
dt+ σdWQ

t , θ̂ = θ − λθ/κ (16)

where we can see from (13) and (16) that the short-rate dynamic under both
probability measures has the same qualitative properties when the market
price of risk is defined as λ (r, t) = λ.

4.1 Bond Pricing in Continuous Time

Assume that bond prices follow a geometric Brownian motion:

dP (t, T ) = µP (t, T )P (t, T )dt+ σP (t, T )P (t, T )dW. (17)

Using Ito’s lemma, we get the PDE of bond prices:

1
2
∂2P

∂r2t
σ2 +

∂P

∂rt
[κ (θ − rt) − λσ] +

∂P

∂tt
− rtP = 0. (18)

For drt = κ (θ − rt) dt + σdWt and λ (r, t) = λ, with the boundary con-
dition P (T, T ) = 1 and assuming exponential-affine form of the bond price,
P (t, τ) = exp [A (τ) +B (τ) rt] with τ = T − t, it is possible to solve A (τ)
and B (τ) analytically.

Under a Euler scheme, the continuous factor diffusion is rewritten as a dis-
crete process. Campbell et al. (1997) and Backus et al. (1998) gave a discrete-
time version of the Vasicek single-factor model. Under discrete time, the single
factor xt is assumed to follow an AR(1) process:

xt+1 = ϕxt + (1 − ϕ) θ + σεt+1,
εt+1 ∼ N (0, 1). (19)

θ is the mean of this factor, and the unconditional variance is σ2
/ (

1 − ϕ2
)
,

where ϕ is the persistence parameter, i.e., the factor is expected to revert
toward its long-term mean, θ, at a rate of (1 − ϕ).

4.2 Bond Pricing in Discrete Time

Following Backus et al. (1998) closely, bond pricing theory predicts that in an
arbitrage-free market there is a positive stochastic factor denoted by Mt (also
known as the pricing kernel) that determines the price at time t of a bond
with nominal cash flows Pt in terms of its discounted future payoff,
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Pt = Et (Pt+1Mt+1) . (20)

Assuming the distribution of the stochastic discount factor Mt+1 is condi-
tionally log-normal, taking logs of 20, we have

log (Et (Pt+1Mt+1)) ∼ N
(
µ, σ2

)
, (21)

where

µ = Et (mt+1 + pt+1),

σ2 = vart (mt+1 + pt+1)

⇒ pt = Et (mt+1 + pt+1) +
1
2
vart (mt+1 + pt+1),

(22)

where pt and mt represent the natural log of P and M , respectively.
From the assumption that the log of the pricing kernel satisfies a linear

relationship with factor xt, then

−mt+1 = ξ + xt + λεt+1, (23)

where the parameter λ determines the covariance between the factor and
shocks to pricing kernel, finally we set ξ = λ2

/
2, with the boundary condition,

P (T, T ) = 1. From (21) and (23) the one-period bond price will satisfy

pt,1 = −ξ − xt + λ2
/
2, (24)

and the resulting short rate is therefore

rt = −pt,1 = xt. (25)

The price of long bonds will take the form of

−pt,n = An +Bnxt, (26)

with xt+1 = ϕxt + (1 − ϕ) θ + σεt+1, and starting with the condition that
A0 = B0 = 0, (24) implied A1 = 0 and B1 = −1. Given the bond maturity n,
we could evaluate from (21) that

Et (mt+1 + pt+1,n) = − [An +Bn (1 − ϕ) θ] − (1 +Bnϕ) xt (27)

and
vart (mt+1 + pt+1,n) = (λ+Bnσ)2 ; (28)

therefore, with (26), we have the recursion

An = An−1 + ξ +Bn−1 (1 − ϕ) θ − 1/2 (λ+Bnσ)2 (29)

and
Bn = 1 +Bn−1ϕ. (30)
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5 Multifactor Models of Interest Rates

The basic single-factor models of interest rates assume that the spot rate is
driven by a one-dimensional Markov process; therefore, they are driven by
a single unique state variable. Another approach to modeling interest rates
is to derive the term structure assuming that the driving variable is a vec-
tor process containing multiple degrees of uncertainty. In order to look at
multifactor models from a practical point of view, we need to specify an n-
dimensional vector diffusion process and then use this process to identify the
spot rate model. Consider a vector diffusion process, X = [X1, X2, ..., Xn]

′
,

whose diffusion is described by a stochastic differential equation as follows:

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt, (31)

where µ (.) and σ (.) are coefficients with domain in R
n and R

n×n, respec-
tively. The simplest multifactor models assume that there are n sources of
variation in the system. In general, we restrict our attention to two-factor
models, primarily as empirical research suggests that two factors account for
the majority of the variation in the system. These state variables have a va-
riety of economic interpretations beyond the scope of this chapter; however,
certain models assign these state variables as the yield of bonds of certain
finite maturities; see Duffie and Singleton (1993).

5.1 Affine Multifactor Models

A simple class of multifactor models is the affine models. From the previous
section we defined that a model is affine if it permits the following represen-
tation:

P (t, T ) = exp (m (t, T )− g (t, T ) rt) , ∀t ∈ [t, T ] (32)

for some functions m (.) and g (.). If we assume that the state vector evolves
via Equation (31), i.e., that X is a time homogenous Markov process with
some state space X ∈ R

n , then we can define the evolution of the spot rate
as being some function f : R

n → R, which in the simplest case is simply the
summation of the factors. In the simplest sense,

rt = f (Xt) . (33)

In a discrete-time model, the log of the pricing kernel now is a linear
combination of several factors x′t = [x1,t · · ·xj,t] and has the form

−mt+1 = ξ + γ′xt + λ′V (xt)
1/2

εt+1, (34)

where V (xt) is the variance-covariance matrix of the error term and is defined
as a diagonal matrix with the ith diagonal element given by vi (xi) = αi+β′

ixt.
It is important to note that βi and as such the parameters of the volatility
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function are constrained such that vi is always positive. The error term, εt,
is therefore independently normally distributed noise, εt ∼ N (0, I). λ′ is the
market price of risks, which governs the covariance between the pricing kernels
and the factors.

The j-dimensional vector of factors (state variables) x is given by

xt+1 = (I − Φ) θ + Φxt + V (xt)
1/2

εt+1. (35)

Φ has typical positive diagonal elements to keep the state variables sta-
tionary, and θ is specified as the long-run mean of the state variable x. The
bond price in terms of log-linear functions of the state variables takes the form

−pn,t = An +B′
nxt; (36)

considering the restrictions on the end-maturity log bond price, that must
equal zero, and the corresponding restrictions on An and Bn, to the common
normalization of A0 = B0 = 0, the recursion is therefore

An = An−1 + ξ +B′
n−1 (I − Φ) θ − 1

2

j∑

i=1

(λi +Bi,n−1)
2
αi. (37)

Subsequently,

B′
n =

(
γ′ +B′

n−1Φ
)− 1

2

j∑

i=1

(λi +Bi,n−1)
2 β′

i. (38)

Duffie and Kan (1996) demonstrated a closed-form expression for the spot,
forward, volatility, and term structure curves. Following Beckus et al. (1996,
1998) and Cassola and Luis (2001), in discrete time the one-period interest
rate is defined as

y1,t = ξ − 1
2

j∑

i=1

αiλ
2
i +

(
γ′ − 1

2

j∑

i=1

β′
iλ

2
i

)
xt; (39)

the expected short rate is therefore

Et (y1,t+n) = Et

(
ξ − 1

2

j∑

i=1

αiλ
2
i +

(
γ′ − 1

2

j∑

i=1

β′
iλ

2
i

)
xt+n

)

= ξ − 1
2

j∑

i=1

αiλ
2
i +

(
γ′ − 1

2

j∑

i=1

β′
iλ

2
i

)
E (xt+n)

= ξ − 1
2

j∑

i=1

αiλ
2
i +

(
γ′ − 1

2

j∑

i=1

β′
iλ

2
i

)
((I − Φn) θ + Φnxt).

(40)
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The volatility curve derived from the variance-covariance matrix is given
by

vart (yn,t+1) = n−2B′
nV (xt)Bn, (41)

and the one-period forward curve that is derived by using the recursive re-
strictions in (38) takes the form

fn,t = pn,t − pn+1,t. (42)

Finally, the term premium is computed as the log one-period excess return
of the n maturity bond over the one-period short interest rate as

Λn,t = Et (pn,t+1) − pn+1,t − y1,t

= −
j∑

i=1

(
αiλiBi,n − 1

2
αiB

2
i,n

)
−

j∑

i=1

(
λiBi,n +B2

i,n

)
β′

ixt.
(43)

From the above formulation of forward rate, short-term interest rate, and
the term premium, previously we demonstrated that the forward rate equals
the sum of the expected future short-term interest rate, the term premium,
and a constant.

5.2 Vasicek Model in Discrete Time

The Vasicek multifactor model is a special case of Duffie–Kan affine models
and implies that some form of the expectation hypothesis theory holds as it
assumes constant risk premium.

As specified in Duffie and Kan (1996), the factors are assumed to be first-
order autoregressive series with zero mean:1

xi,t+1 = ϕixi,t + σiεi,t+1. (44)

The relevant characterization of parameters for this model as referenced
in Backus et al. (1998) is

θi = 0,
Φ = diag (ϕ1 · · ·ϕk) ,

αi = σ2
i ,

βi = 0,

ξ = δ +
j∑

i=1

1
2
λ2

iσ
2
i

γi = 1,

(45)

1 Zero mean specification as referenced in Cassola and Luis (2001) corresponds to
the consideration of the differences between the true factors and their means.
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and then the corresponding recursive restrictions are derived as

An = An−1 + δ +
1
2

j∑

i=1

(
λ2

i σ
2
i − (λiσi +Bi,n−1σi)

2
)
, (46)

Bi,n = 1 +Bi,n−1ϕi or Bi,n = (1 − ϕn
i )/(1 − ϕi). (47)

For stationarity, the AR(1) parameter is constrained as −1 < ϕi < 1.
This model is also called the constant volatility model, so the terms on the

right-hand side of (34) relating to the risk should be zero. The implication of
this result is that there should be no interactions between the risk and the
state variables (state variables do not enter the volatility curve); therefore,
the term premium will be a constant in this Gaussian model.

The short-term interest rate is given by (39), and the Gaussian model
general restrictions of (45) result in

y1,t = δ +
j∑

i=1

xi,t; (48)

by applying the same set of restrictions to the forward curve, the new one-
period forward rate is

fn,t = δ +
1
2

j∑

i=1

(
λ2

i σ
2
i −

(
λiσi +

1 − ϕn
i

1 − ϕi
σi

)2
)

+
j∑

i=1

(ϕn
i xi,t) . (49)

This forward curve would accommodate very different shapes. Given the
constraint that ϕi < 1, the limiting value will not depend on the state vari-
ables; as such the following limit exists:

lim
n→∞ fn,t = δ +

j∑

i=1

(
− λiσ

2
i

1 − ϕi
− σ2

i

2 (1 − ϕi)
2

)
, (50)

but if ϕi = 1, the interest rates will be nonstationary, in this case the limiting
value of the one-period forward rate will have infinite values but will be time-
varying.2 From the constraints demonstrated in (45), the following definitions
are derived:

vart (yn,t+1) = n−2

j∑

i=1

(
B2

i,nσ
2
i

)
, (51)

Λn,t = Et (pn,t+1) − pn+1,t − y1,t

2 A linear combination of nonstationary state variables will also be a nonstationary
series.
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=
1
2

j∑

i=1

(
λ2

iσ
2
i −

(
λiσi +

1 − ϕn
i

1 − ϕi

)2
)

(52)

=
j∑

i=1

(
−λiσ

2
iBi,n − 1

2
B2

i,nσ
2
i

)
.

Since the state variables have constant volatility, the yield curve volatil-
ity will not depend on the level of the state variables in (51). For the term
premium in (52), the one-period forward rate in this Gaussian model is con-
structed by summing the term premium with a constant and with the state
variables weighted by its autoregressive parameters. Taking the limiting case
into consideration that when ϕi < 1, the finite limiting value of the risk pre-
mium differs only by δ from the forward rate. So we can conclude that for
a constant volatility model, the expected instantaneous rate is the average
short-term interest rate δ.

Correspondingly, the expected future short-term rate with restrictions
from (45) will be defied as

Et (y1,t+n) = δ +
j∑

i=1

(ϕn
i xi,t) . (53)

Combining the results of (49), (52) and (53), the expectation hypothesis of
the term structure holds and with a constant term premium will be as follows:

fn,t = Et (y1,t+n) + Λn. (54)

Therefore, it is equivalent to saying that testing the adequacy of this
Gaussian model is the same as testing the validity of the expectation hy-
pothesis of the term structure with constant term premiums. From (54), this
conclusion implies the expected one-period forward curve should be flat when
the risk premium equals zero.

6 Estimating a Two-Factor Model for German Interest
Rates

The data set utilized is the zero coupon bond yields published by the Bank of
Germany.3 This data set comprises month-end spot rates that are generated
by interpolating German listed federal securities for maturities of 1 to 10 years
between January 1973 and July 2006.4

3 http://www.bundesbank.de/statistik/statistik zeitreihen.en.php (Version 2006).
4 The zero coupon bond estimation method is explained in

http://www.bundesbank.de/download/volkswirtschaft/kapitalmarktstatistik/
2006/capitalmarketstatistics072006.pdf (page 24, Version 2006).
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6.1 Descriptive Analysis on Yield Data

From the descriptive analysis in Table 2 and the average yield curve plot in
Figure 1, we notice first, the average yield curve over this period was up-
ward sloping, with a 11year yield of 5.63% and a 10-year yield of 6.91%. In
relating to the Gaussian model, we estimate that this average upward slop-
ing indicated the expected excess returns on bonds are constant and positive.
The associated standard deviation of these rates deceased from around 2.6%
to 1.8% at a constant rate. The yields are very persistent, with first-order
autocorrelation coefficients all above 0.98 for the entire maturities, suggest-
ing a possible nonstationary structure. Finally, the correlation matrix shows
high cross-correlation of yields along the curve. High cross-correlations sug-
gest that a small number of common factors drive the co-movement of the
bond yields across different maturities. However, the correlation coefficients
differ from unity, lending evidence to the importance of nonparallel shifts.
This is equivalent to suggesting that a one-factor model of the term structure
of interest rates would be insufficient, and this is confirmed by the findings in
the principal component analysis undertaken.

6.2 Principal Component Analysis

Principal component (PC hereafter) analysis is based on the idea that it is
possible to describe the interrelationships between a large number of corre-
lated random variables in terms of a smaller number of uncorrelated random
variables (principal components). This allows us to determine the main fac-
tors that drive the behavior of the original correlated bond yield.5 Suppose we
have a vector Y = (Y1, Y2, . . . , YN )′ with covariance matrix Σ. The covariance
matrix will be positively defined for all nonlinear combinations of one Yi on
the others. When it is positively defined with dimension N , it will have a
complete set of N distinct positive eigenvalues such that A′ΣA = D, where
A is the orthogonal matrix and D is the diagonal matrix with the eigenvalues
of Σ along the diagonal. Now consider a vector W defined as W = A′Y ; the
covariance matrix of W is given as E (WW ′) = A′E (Y Y ′)A = A′ΣA = D,
from which we can construct a set of uncorrelated variables as W∗i = b′iY ,
where bi is the ith eigenvector of Σ, and the corresponding eigenvalue is λi.
Given the property of orthogonality in A, we can show that the following
holds:

Σ = λibib
′
i for i = 1, . . . , N. (55)

In PC analysis, we use only n < N linear combinations (principal com-
ponents), and the first n linear combinations are adequate to describe the

5 Principal component analysis in this chapter followed the theoretical procedures
described in Bolder et a. (2004), An empirical analysis of the Canadian term
structure of zero-coupon interest rates. Working paper 2004-48, Bank of Canada.
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Table 2. Descriptive Analysis of German Zero Coupon Bond Yields (01/1973–
07/2006)

Maturity 1y0, 2y0, 3y0, 4y0, 5y0, 6y0, 7y0, 8y0, 9y0, 10y,
Mean (%) 5.636 5.892 6.131 6.326 6.483 6.608 6.710 6.792 6.860 6.917
Std.Dev. 2.463 2.300 2.192 2.107 2.035 1.975 1.922 1.876 1.835 1.800
Skewness 0.634 0.410 0.265 0.170 0.105 0.060 0.029 0.008 −0.005 −0.013
Kurtosis −0.382 −0.665 −0.773 −0.813 −0.820 −0.808 −0.779 −0.738 −0.686 −0.627
AutoCorr. 0.988 0.988 0.988 0.988 0.988 0.988 0.987 0.987 0.986 0.986
Normality test:

χ2(2) 70.299 39.255 25.834 19.954 16.9940 15.0420 13.2850 11.4700 9.5750 7.7050
P (X > x) 00.000 00.000 00.000 00.000 00.0002 00.0005 00.0013 00.0032 00.0083 00.0212

Correlation matrix:

1y 1.000 0.989 0.972 0.954 0.936 0.92 0.905 0.89 0.877 0.864
2y 1.000 0.995 0.984 0.972 0.959 0.946 0.934 0.922 0.911
3y 1.000 0.997 0.99 0.981 0.972 0.962 0.953 0.943
4y 1.000 0.998 0.993 0.987 0.98 0.972 0.965
5y 1.000 0.999 0.995 0.99 0.985 0.979
6y 1.000 0.999 0.996 0.992 0.988
7y 1.000 0.999 0.997 0.994
8y 1.000 0.999 0.998
9y 1.000 0.999
10y 1.000
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Fig. 1. Average yield curve of German zero coupon bond yields (01/1973–07/2006).

correlation of the original variables Yi. These n principal components are re-
garded as the driving forces behind the co-movement of Yi (yields in our case).
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Litterman and Scheinkman (1991) were the first to use PC analysis. They
found that over 98% of the variation in the returns on government fixed-
income securities can be explained by three factors, labeled as level, slope,
and curvature. From the plot in Figure 2, we see that the sensitivities of
the rates to the first factor are roughly constant across maturities. Thus, if
this PC increased by a given amount, we would observe a (approximately)
parallel shift in the zero coupon term structure. This PC corresponds to the
level factor, and in our context we find the most important first principal
component captured 96.8% of the variation in yield, as shown in Table 3 and
Figure 3. The second PC tends to have an effect on short-term rates that is
opposite to its effect on long-term rates. An increase in this PC causes the
short end of the yield curve to fall and the long end of the yield curve to rise.
This is the slope factor — a change in this factor will cause the yield curve
to steepen (positive change) or flatten (negative change). In our context, the
second PC extended the proportion of variation explained to 99.8%. The third
PC corresponds to the curvature factor, because it causes the short and long
ends to increase, while decreasing medium-term rates. This gives the shape
of the zero coupon bond yield curve more or less curvature. This PC seems
to be the least significant of the three, accounting for an average of less than
0.5% of the total variation in term-structure movements.

Table 3. Percent Variation in Yield Levels Explained by the First k PCs

PC1 PC2 PC3 PC4 PC5

Std. dev. 6.403176 1.126706 0.270761 0.099705 0.030346
% variation explained 0.968038 0.029973 0.001731 0.000235 2.17E-05
% cumulative explained 0.968038 0.998011 0.999742 0.999976 0.999999

The interpretation of the principal components in terms of level, slope,
and curvature turns out to be useful in thinking about the driving forces
behind the yield curve variation. The latent factors implied by the affine
term structure models typically behaved like these principal components. As
Piazzesi (2003) reported, this empirical finding applies to different data set
and model specifications. For example, the Chen and Scott (1993) square-root
process, the Gong and Remolona (1996) Gaussian process, the mixture model
of Balduzzi et al. (1996), and the Dai and Singleton (2002) model find the
coefficients estimated from yn,t = n−1

(
A (n) +B (n)′ xt

)
exhibited similar

general pattern as plotted in Figure 2 for the case of three state variables.
However, there is no exact mapping between “stochastic mean”/“stochastic
volatility” and the Litterman-Scheinkman labels. For instance, some studies
find that “stochastic volatility” behaves like a curvature factor, yet others find
it was as persistent as the level factor. But low-dimensional models with the
number of state variables less than 3 find that the yield coefficients correspond
to the first N (N < 3) principal components. These models include the N = 2
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square-root model as in Chen and Scott (1993) and the Gaussian model as in
Balduzzi et al. (1998). Therefore, in this chapter, according to the evidence
found above, we shall adopt to use a two-factor model.

6.3 Test on the Expectation Hypothesis

The model utilized here belongs to the Gaussian (two-factor Vasicek) model;
as a result, the yield data used in this paper should satisfy the Gaussian
model’s specification of the validity of expectation hypothesis.

The common statement of the expectations hypothesis is that forward
rates are conditional expectations of future short rates, which implies that
forward rates are martingales. As this is easily rejected by the data, which
show average forward rates change systematically across maturities, we inter-
pret the expectations hypothesis as including a constant term premium as in
(54). According to Backus et al. (2001), by the definition of martingale and
the law of iterated expectations, (54) can be rewritten as

fn,t = Et (Et+1 (y1,t+n) + Λn) = Et (fn−1,t+1) + (Λn − Λn−1) , (56)

and by subtracting the short-term interest rate on both sides of (56) and
adding an error term yields

fn−1,t+1 − y1,t = κ+ ηn (fn,t − y1,t) + ε, (57)

where κ is the constant in regression, and the ε is error term. From
(57), the expectation hypothesis holds if the forward regression slope of
ηn = 1 in the regression, and a rejection of this hypothesis may be seen
as evidence of changing term premiums over time. If we define ηn as
(var (fn,t − f0,t))

−1 cov (fn−1,t+1− f0, fn,t − f0,t) and given that y1,t = f0,t

where

cov (fn−1,t+1 − f0,t, fn,t − f0,t) = (B1 +Bn −Bn+1)
′ Γ0

(B1 − Φ′ (Bn −Bn−1)) ,
(58)

var (fn,t − f0,t) = (B1 + Bn −Bn+1)
′ Γ0 (B1 +Bn −Bn+1) , (59)

Γ0 is the unconditional variance of the state vectors x with solution

Γ0 = ΦΓ0Φ′ + V. (60)

V is a diagonal matrix, and the elements along the diagonal represent the
variance, so the solution is therefore

vec (Γ0) = (I − Φ ⊗ Φ′)−1 vec (V ) . (61)

Thus, the slope of the regression takes the form



176 C. Ioannidis et al.

ηn =
(B1 +Bn −Bn+1)

′ Γ0 (B1 − Φ′ (Bn −Bn−1))
(B1 +Bn −Bn+1)

′ Γ0 (B1 +Bn −Bn+1)
. (62)

For n→ ∞, Bn converges to

lim
n→∞ ηn =

B′
1Γ0B1

B′
1Γ0B1

= 1. (63)

The expectation hypothesis testing forward rate regression result corre-
sponding to (57) is represented in Table 4 and plotted in Figure 4. There we
see that the results differ from those anticipated by the expectations hypothe-
sis, and the largest deviations from the expectations hypothesis come at short
maturities of 1 year to 3 years, while the regression slopes are close to 1 for
maturities from 4 years afterwards. As stated in Backus et al. (2001), in a
broad class of stationary models, the theoretical regression slope approaches
1 as n approaches infinity.

This feature of our results is plausible and fits nicely into the stationary
bond pricing theory. The estimated coefficients are about 0.96 at long matu-
rities, less than unity as suggested by theory, with standard errors of 0.02 or
smaller. The evidence suggests, then, that changes in forward rates at short
maturities consist of changes in both short rates and term premiums. It also
suggests that the behavior of long forward rates make this constant term
premium Gaussian model a possible approximation.

Table 4. Expectation Hypothesis Testing Forward Rate Regression (01/1986–
04/2006)

Maturity 1 2 3 4 5 6 7 8 9

Slope coeff. 0.899 0.936 0.951 0.954 0.965 0.965 0.969 0.966 0.971
Std. error 0.031 0.020 0.014 0.012 0.010 0.010 0.012 0.012 0.012

6.4 Econometric Methodology

As stated in Duffee (2002), filtering is a natural approach when the state fac-
tors are not observable. In our model, the state factors that determine the
dynamics of the yield curve are nonobservable but are defined as Gaussian
with the errors that are normally distributed.6 The Kalman filter and a max-
imum likelihood procedure would be chosen for the estimation and since xt

has affine dynamics, analytic expressions of the first two moments of the con-
ditional density are available.
6 According to Duffee (2002), “Outside the Gaussian class of term structure models,

parameter estimates obtained directly from Kalman filter estimation are incon-
sistent. There is Monte Carlo evidence that when the underlying model is linear
but heteroskedastic, the inconsistency may be of limited importance in practice.”
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Fig. 4. Expectation hypothesis testing of German zero coupon bond yields
(01/1986–04/2006).

The starting point for the derivation of the Kalman filter is to write the
model in linear state-space form. Following Dunis et al. (2003), this consists
of two equations: One is the observation equation and the other is the state
equation:

Yt
r×1

= A
r×n

· Xt
n×1

+ H
r×k

· St
k×1

+ wt
r×1

, (64)

St
k×1

= C
k×1

+ F
k×k

·St−1
k×1

+ G
k×k

· vt
k×1

. (65)

r equals the number of variables to estimate, and n is the number of
observable exogenous variables. Since in our model the state variables are all
latent and no macro factors are identified, the matrix Xt should be a unit
matrix, C is a column vector of zeros, and F is a diagonal matrix given that
there is no cross-correlation between the state variables in our defined model. k
represents the number of latent state variables and wt and vt are the identically
independently distributed errors as wt ∼ N (0, R) and vt ∼ N (0, Q), where
the R and Q are defined as:

R
r×r

= E (wtw
′
t) and Q

k×k
= E

(
vt+1v

′
t+1

)
. (66)

For yn,t = n−1 (An +B′
nxt), the observation equation in a Gaussian two-

factor model could be written as
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⎡

⎢⎣
y1,t

...
yr,t

⎤

⎥⎦ =

⎡

⎢⎣
a1,t

...
ar,t

⎤

⎥⎦+

⎡

⎢⎣
b1,1 b2,2

...
...

b1,r b2,r

⎤

⎥⎦
[
s1,t

s2,t

]
+

⎡

⎢⎣
w1,t

...
wr,t

⎤

⎥⎦ , (67)

where the dependent column vector is the r zero coupon yields at time t
with maturities n = 12, 24, . . . , 120 months in our data set, with an = An/n,
bn = Bn/n. The elements s1,t and s2,t consist of two latent variables in consid-
eration at time t, and w1,t, . . . , wr,t are the normally distributed independent
errors with zero mean and variances equal to σ2

n.
According to (44), the state equation is defined as follows:

[
s1,t+1

s2,t+1

]
=
[
ϕ1 0
0 ϕ2

] [
s1,t

s2,t

]
+
[
σ1 0
0 σ2

] [
v1,t+1

v2,t+1

]
, (68)

where s1,t+1 and s2,t+1 are the two state variables at time t+1 and are related
to their one-period lagged values by a stable matrix of ϕ′’s. A diagonal matrix
of σ’s is taken out from the error terms to make v1,t+1 and v2,t+1 with mean
zero and variances of ones.

In order to avoid implausible estimates for the volatility curve, as explained
in Cassola and Luis (2001), we shall attach the volatility curve estimation
equation below the yield curve equation. Therefore, (67) is modified to:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,t

...
yr,t

vart (y1,t+1)
...

vart (yr,t+1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,t

...
ar,t

ar+1,t

...
a2r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 b2,1

...
...

b1,r b2,r

0 0
...

...
0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
s1,t

s2,t

]
+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,t

...
wr,t

wr+1,t

...
w2r,t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (69)

The values of the conditional variance on one-period forward lagged yield
curve are estimated from the specification in (51), and in this example the
number of variables to estimate increases to 2r [previously r in (67)].

6.5 Estimation Results

The results of the Kalman filter estimation are presented in Figure 5, which
displays the comparison between the observed and estimated yield curves. The
estimated yield curve exhibits more curvature in the moderate maturities and
showed a slightly higher yield than the observed, but it generally underesti-
mates the true yield at both ends (shorter maturity and longer maturities).

Comparisons between the estimated and observed volatility curves are
plotted in Figure 6. Clearly, the model estimated volatility generally overesti-
mated the shorter ends but underestimated the longer ends. This may result



Interest Rate Models: A Review 179

0 1 2 3 4 5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8

Term to maturity (in years)

%

Average Yield Curve, 01/1973-07/2006

Estimated Average Yield Curve
Observed Yield Curve

Fig. 5. Observed and estimated average yield curves.

from the constant volatility assumption embedded in this Gaussian model,
as the yield volatility does not depend on the level of factor, and the factor
loadings are the main contribution to the evolution of yield volatility. Never-
theless, the factors’ loadings (as will be shown later in Figure 11) seemed to
have larger values at the shorter ends of maturities and smaller ones at the
longer ends; thus, the estimated volatility curve diverges from the observed
one at both ends.

In Figure 7, the estimated term premium curve is plotted, which can be
seen as a plausible result if we linked it with the results in Figure 8 (av-
erage one-period forward curve) and Figure 9 (average expected short-term
interest rate). Under this model specification, the short-term interest rate
should remain constant in the steady state, which leads a flat one-period for-
ward curve under the condition of a zero term premium. Nevertheless, in our
model, the term premium is predicted to increase as the maturity of bonds
increases (therefore, the average yield curve is upward sloping), so the average
one-period forward curve should also have an upward sloping pattern [combi-
nation effect of both the term premium and the expected short-term interest
rate as shown in (54)].

In Figure 10, we plotted the time-series yield across the range of matu-
rities and indicate the divergence between the estimated and the observed
time series. The best fits come from the moderate maturities of 3-year and
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4-year bond yields; neither the shorter maturities nor the longer maturities
showed a sufficiently close fit between the estimated and observed series. Esti-
mated yield evolution displayed as underestimation in shorter maturities and
overestimation in longer maturities.
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Fig. 10. Time-series yield (01/1973–07/2006).
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The reproduced average yield curve and volatility curve are plausibly con-
sistent with the findings in Cassola and Luis (2001), yet the time-series evo-
lution of the yields across the whole spectrum in this paper is somewhat
different from the findings in their paper. The possible explanations for this
would be: first, the use of a different data set; second, in contrast to Gong
and Remolona (1996)’s findings of the quality of fit for the yields (U.S. term
structure of yields estimated in their paper), at two different two-factor het-
eroskedastic models to fit for the shorter ends and the longer ends of the yield
curve and the volatility curve. Compared to the Gaussian two-factor model
in this chapter, the absence of state factors’ dynamic in the volatility model-
ing would not be able to capture the volatility evolution at the whole of the
maturity spectrum; therefore, the time-series yields curves showed divergence
between predictions and data; third, Cassola and Luis (2001) gave a possible
explanation for the observed divergence from the time-series plot starting at
the beginning of 1998 as the consequence of the Russian and Asian crisis,
events that would violate the stability of the estimates.

Table 5 lists the estimation results of the parameters; they are similar
to the parameter estimation results in Cassola and Luis (2001). ϕ1 and ϕ2
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in both papers are found close to 1, indicating the presence of strongly in
persistent factors. Later the unit root test on the factors confirmed this point,
and this has been referenced in many papers that the driving forces behind
the yield curve are best described as random walks.7

Table 5. Kalman Filtering Estimation of Parameters of German Zero Coupon Bond
Yields (01/1973–07/2006)

ϕ1 ϕ2 σ1 σ2 λ1σ1 λ2σ2 δ

Parameters 0.9440 0.9810 0.0009 0.0025 0.2210 −0.1010 0.0050

Figures 11 and 12 present the factors’ loadings and the factors time series
evolution, respectively. The second factor is clearly the dominant one in ex-
plaining the dynamic of yield curve and showed higher persistency, while the
first factor is relatively less persistent and volatile.
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Fig. 11. Factor loadings of the observation equation.

7 Result from the unit root test is not included in this chapter.
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7 Stochastic Term Structure Models

In reality there is no single basic interest rate model that can be used to
capture the yield of a specific instrument as such a zero coupon bond. Es-
sentially, there are a mixture of bonds with varying coupons and maturities
and terminal payoffs, and these need to be included in the modeling process.
Two approaches to the bond pricing problem maybe utilized; first, using the
term structure and yield curves to estimate the parameters in a simple spot
rate diffusion model, short-rate models, or driving the pricing equation of the
bond from the dynamic evolution of the yield curve, and as such we can view
bond pricing in terms of the forward rate curve f (t, s) as

P (t, T ) = PT e
− ∫

T
t

f(t,s)ds. (70)

Calculation of bond prices requires that we know the function f (t, T ) at
time t for all maturities T . This in turn requires that the forward rate must
adequately represent the market view of the future interest rates that are
unknown at time t. A modeling device to overcome this problem is to develop
techniques to model the evolution of the forward curve from time t, thus
allowing the formation of expectations regarding future bond prices.

Markets for such securities are deep and therefore liquid; by utilizing the
observed prices of currently traded bond we can extract values of discrete
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points of the forward curve. Using these results, dynamic models can be
postulated and their success will be based on their ability to “forecast” the
“observed” discrete values of f (t, T ). The selected short-rate model is then
benchmarked against the market data for the short-term rate. The link of the
forward rate curve with the short-term rate is given as follows:

r(t) = f(t, t). (71)

The choice of the short-term rate model plays is very important in model-
ing forward curves. Technically, all short-rate models postulate the short-rate
as a Markovian random process; subsequently, a partial differential equation
is associated with each model.

Depending upon the choice of the short-rate model, one can derive the
whole forward yield curve by considering a short-term rate model with time-
dependent coefficients.

The model proposed by Heath et al. (1990) offers an encompassing frame-
work that very well-known short-rate models can be embedded (Soloviev,
2002). They modeled the whole forward curve (which is just another name for
the yield curve) by introducing a different stochastic process for the forward
rate. In its most general form, the model is non-Markovian and cannot be
described by a differential equation. The HJM model is considered the most
appropriate device for the correct pricing of interest rate derivatives.

For any given set of bond prices, the forward rate is given as

f(t, T ) =
∂ lnP (t, T )

∂T
. (72)

Thus, from the market prices of bonds at maturities T , we compute the for-
ward rate at the present time t, and vice versa.

This dual relationship between bond prices and forward rates can be used
to develop the HJM model in terms of 1) the stochastic process of bond prices
and then derive the SDE for the forward rate, or 2) develop the forward rate
model and then compute from the appropriate SDE the equilibrium bond
prices. Consider the equation describing the dynamic evolution of the bond
price as the usual geometric Brownian motion

dP (t, T ) = µ(t, T )P (t, T )dt+ σ(t, T )P (t, T )dW (t). (73)

At maturity we expect that σ(T, T ) = 0; from Ito’s lemma, the stochastic
differential equation for the forward rate is

df(t, T ) =
∂

∂T

(
1
2σ

2 (t, T )− β (t, T )
)
dt− ∂

∂T
σ (t, T )dW (t) . (74)

This equation provides estimates of the forward rate that are consistent with
the absence of arbitrage.

The replication approach to pricing derivatives allows the use of a risk-
neutral random process such that β(t, T ) = r(t), where r(t) is the risk-free
rate. Substituting in the above, we obtain
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df (t, T ) = σ (t, T )
∂

∂T
σ (t, T )dt− ∂

∂T
σ (t, T )dW (t) , (75)

or more compactly,

df(t, T ) = α(t, T )dt+ φ(t, T )dW (t), (76)

where the drift parameter is a function of the forward rate volatility φ(·):

α(t, T ) = φ(t, T )
∫ T

t

φ(t, s)ds,

φ(t, s) =
∂σ(t, T )
∂T

.

(77)

The use of risk-neutral valuation requires that the model should be cali-
brated to reproduce the observed bond market data, thus avoiding the possi-
bility of arbitrage. Alternatively, we can derive the same relationship between
the drift and the forward rate volatility starting from the dynamic equation
of the forward rate and substituting into the bond pricing equation and its
dynamic evolution.

What is of interest here is that the forward rate dynamics and thus bond
price evolution depend upon the forward rate volatility, the “driving” variable.
The model does not provide the answer of how to compute it; it takes it
as given, and it is up to the researchers to determine the most appropriate
measure from market data/guess/estimate.

We can now use the analytical framework developed above to encompass
the most popular short-rate models.

The solution to the forward rate dynamic equation is

f(t, T ) = f(0, T ) +
∫ t

0

α(s, T )ds+
∫ T

0

φ(s, T )dW (s), (78)

and the resulting short rate is

r(t) = f(0, t) +
∫ t

0

α(s, t)ds+
∫ t

0

φ(s, t)dW (s). (79)

The risk-neutral valuation requires that the computed short rate is cal-
ibrated to the market. To derive the Ho–Lee model, consider the following
version of the HJM model:

df(t, T ) = σ2(T − t)dt+ σdW (t). (80)

The short-rate model is therefore

r(t) = f(t, t) = f(0, t) + σ2

∫ t

0

(t− s)ds+ σ

∫ t

0

dW (s). (81)

Taking the time derivative, we obtain
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dr(t) = φ(t)dt+ σdW (t), (82)

which is the arbitrage-free version on the Ho–Lee model that can be calibrated
to market by choosing the drift parameter φ(t), with φ(T ) = df(0, T )/dT +
σ2T , with the forward yield curve f(0, T ) determined from market information
(bond prices).

Consider the forward rate volatility:

φ(t) = σe−κ(T−t). (83)

The resulting forward curve is given by

f(0, T ) =
φ

κ
+ e−κT

(
r0 − φ

κ

)
− σ2

2k2
(1 − e−κT )2, (84)

and the corresponding SDE describing the dynamics of the short rate is equiv-
alent to the Hull–White model of the short rate:

dr(t) = (φ− κr(t)) + σdW (t) (85)

(this is a general representation of the widely used Vasicek model that is
discussed in the previous section).

To obtain the CIR model, consider the following representation of the
short-rate volatility:

σ(t, T ) = σ(t)
√
r(t)

∂P (t, T )
∂T

. (86)

A bond price equation can be approximated by

P (t, T ) =
1
α

(1 − e−k(T−t)). (87)

The derivative of bond prices with respect to different maturities is

∂P (t, T )
∂T

≈ e−k(T−t) = ∆(t, T ). (88)

The forward rate equation can be expressed in terms of the above as

f(0, T ) = r(0)∆(0, T ) +
∫ T

0

φs∆(s, T )ds, (89)

and the corresponding short-rate dynamics obey the CIR dynamic equation:

dr(t) = (φ(t) − α(t)r(t)) + σ(t)
√
r(t)dW (t). (90)
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8 Multifactor HJM Models

The stochastic interest rate models we have considered so far all have one sto-
chastic process in their dynamic equations. For this reason, these models are
called one-factor models. The major limitation of the single-factor model is
that they predict that all the segments of the forward curve are perfectly cor-
related. One-factor models allow only coherent changes of the entire forward
curve. This prediction is not supported by the data, as it contradicts market
observations of the forward curve movements. In practice, short-term rates
of interest are not perfectly correlated with long-term rates. Therefore, one-
factor models cannot provide an adequate description of the time evolution
of the entire forward curve.

Thus, in order to model the dynamic of the entire yield curve, we need a
model with more than one stochastic factor. The simplest modification of a
one-factor model is to consider two-factor models where one factor is respon-
sible for the movements of the short end and the other is responsible for the
evolution of the long end. Many two-factor models are formulated directly in
terms of two interest rates: the short rate r and some long rate. A simple two-
factor model allows for two different stochastic processes to enter the rates at
the short and long end of the yield curve:

drs(t) = (π1 − π2(rL(t) − rS(t)))dt+ σSrS(t)dW1(t),
drL(t) = rL(t) (π3 − π4(rS(t) − rL(t)))dt+ σLrL(t)dW2(t).

(91)

In this version of the model the short-rate equation exhibits mean rever-
sion, implying that in the long run the short rate tends to the long rate. The
stochastic terms in the model are of log-normal form. By and large, closed-
form model solutions are very difficult to come by, and so numerical methods
are employed for computation of the equilibrium rates.

Within the context of the HJM model, we can introduce more than one
factor by adopting the following specification:

df(t, T ) = α(t, T )dt+
n∑

i=1

φi(t, T )dWi(t), (92)

where n uncorrelated stochastic factors are included in the description of the
forward curve. As in multifactor pricing models, there is no theory regarding
the choice of factors. A convenient technique to incorporate the factors into
the forward rate equation is principal components analysis. The technique can
be applied in terms of the following sequence of calculations.

First, we determine the functional form of the volatility coefficients:

φi(t, T ) = φ̂i(T − t). (93)

By assuming that the number of factors equals the number of the maturi-
ties of the traded bonds, we can write the volatility coefficients for all market
available maturities as the following matrix:
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Φi,j = φ̂i(Ti − t). (94)

The covariance matrix of the forward rate increments can then be calcu-
lated using time-series observations for each maturity:

Ψi,j = cov(df(Ti, t)df(Tj − t)) = {ΦΦ′}i,j . (95)

We can then compute the eigenvalues and eigenvectors of Ψi,j and express
the volatility coefficients as

Φi,j =
√
λi(γi)j , (96)

where (γi)j denotes the jth element of the vector γi. The eigenvector that
corresponds to the largest eigenvalue is the first principal component and
denotes the most important “driving” variable in the determination of the
forward curve.

9 Market Models: The LIBOR Approach

A relatively new and exciting approach to modeling interest rates is the LI-
BOR market model family. This is essentially arbitrage free modeling of mar-
ket rates, in particular attempting to capture the properties of the evolution
of the prime or base rate. LIBOR stands for the London Inter-Bank Offered
Rate, which is the interest rate offered by banks in Eurocurrency markets to
other banks. This is the floating rate commonly used in floating swap agree-
ments and is commonly used as the basis of spreads for loans of varying risk.
In general, a Heath–Jarrow–Morton approach is always used as the funda-
mental starting block for the majority of LIBOR models. This section will
review the basic LIBOR approaches and suggest strategies for implementing
LIBOR models. The interested reader is directed to Musiela and Rutkowski
(2004), Rebonato (2002, 2004), and Brigo and Mercurio (2006) for extended
reading on market models. In general, this section will summarize the key
results of the LIBOR model and outline implementation strategies for this
popular family of interest rate models.

9.1 The LIBOR Market

The basic Heath–Jarrow–Morton methodology approaches the modeling of
term structure via instantaneous, continuously compounded forward rates. In
practice, this does not always provide the closest fit to reality. Before the
current popularity of the market model approach, the pricing of interest rate
derivatives was almost exclusively tasked to the short-rate model genre, in
particular those models with simple closed-form analytical pricing solutions.
The following section follows the fundamental work of Musiela and Sonder-
mann (1993) and Brace et al. (1997). Consider the jth discrete rate from n
possible rates; this is related to an instantaneous forward rate as follows:
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1 + j (t, T ) = exp (f (t, T )) . (97)

For an annual compounding system with rate q (t, T ), with δ compounding
periods, the nominal rate will be

(1 + δq (t, T ))
1
δ = exp (f (t, T )) . (98)

Happily, if we set γ (t, T ) as the deterministic volatility of each nominal
annual rate, q (t, T ), we can see that

σ (t, T ) = δ−1 (1 − exp (−δf (t, T ))) γ (t, T ) . (99)

As we do not have a money account of the form E
(
exp

(
exp

(
f̄ (t, T )

)))
,

the rates and the value of the money account are nonexplosive. Unfortunately,
there is no closed-form solution to the price of a zero coupon bond, just an
infinite sum of disappearing forward rates as such. Musiela (1994), Brace et
al. (1997), and Miltersen et al. (1997) all effectively concluded that the most
appropriate methodological aim should be to focus on the effective forward
rate, defined by

(1 + δfs (t, T, T + δ))δ = exp

(∫ T+δ

T

f (t, u)du

)
, (100)

where (1 + δfs (t, T, T + δ))δ is the effective discrete compounding forward
rate over the time interval δ. When interpolating the yield curve, we effectively
look at the evolution of the tenor structure over prespecified collection of
settlement dates; ordering these dates 0 ≤ T0 < T1 < · · · < Tn, with some
collection of time differences, δj = Tj − Tj−1, using an indexing approach
j ∈ [1, ..., n], gives us our market modeling approach to the term structure of
interest rates. We can now define the jth LIBOR rate as

1 + δj+1L (t, Tj)
∆=

P (t, Tj)
P (t, Tj+1)

. (101)

Modeling the evolution of the jth LIBOR rate as a log-normal process then,

dL (t, Tj) = L (t, Tj)λ (t, Tj) dW
Tj+1
t , (102)

and with this representation we can define the following expectation:

E (L (t, Tj)) = E

(
1 − P (Tj , Tj+1)
δj+1P (Tj, Tj+1)

|Ft

)
. (103)

Having defined a possible model for the evolution of each forward rate, now
we can use these diffusions to prices a variety of rate-dependent instruments.
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9.2 Basic LIBOR Models: LLM/LFM

The major advantage of LIBOR market models is their ability to capture and
utilize information on the forward yield curve structure of interest rates. In
this sense we start by reviewing two approaches to deriving the forward LI-
BOR curve. The initial work of Miltersen et al. (1997) suggested the following
stochastic differential equation:

dL (t, T ) = µ (t, T )dt+ L (t, T )λ (t, T )dW ∗
t . (104)

This forms the basis of most common LIBOR model, the Log-Normal-LIBOR
Market Model (LLM), or the Log-Normal Forward LIBOR Market Model,
(LFM).

9.3 The Brace–Gatarek–Musiela Log-Normal LIBOR Market
Model

This section follows closely the derivation of Brigo and Mercurio (2006), Chap-
ter 6 and Musiela and Rutkowski (2000), Chapter 12, and describes the deriva-
tion of the Brace–Gatarek–Musiela model proposed in Brace et al. (1997).
Consider a collection of Band prices and a corresponding collection of for-
ward processes:

Bond Forward Processes

P (t, T1) , P (t, T2) fP (t, T2, T2) =
P (t, T1)

(P (t, T2))

P (t, Ti) , P (t, Tj) fP (t, Ti, Tj) =
P (t, Ti)

(P (t, Tj))

(105)

By definition from the basic setup, if the basic δ-LIBOR forward rate is
defined by a simple zero drift stochastic differential equation,

dL (t, T ) = δ−1 (1 + δL (t, T ))λ (t, T, T + δ) dWT+δ
t , (106)

where for any maturity there is a real bounded process, λ (t, T ) representing
the volatility for the forward LIBOR process L (t, T ), then the initial term
structure (Musiela, 1997) is as follows:

L (0, T ) =
P (0, T )− P (0, T + δ)

δP (0, T + δ)
. (107)

If λ (t, T ) is deterministic, then the model collapses to a standard log-
normal representation, over some fixed accrual period. If λ (t, T ) is a stochastic
process, then the LIBOR model is effectively a stochastic volatility process; as
such, log-normality no longer necessarily holds. The Brace–Gatarek–Musiela
approach is to set the feasible LIBOR rates in a Heath–Jarrow–Morton frame-
work and then set out the LIBOR rates as the instantaneous forward rates.
Therefore, if the evolution of the forward rate is log-normal,
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df (t, T ) = µ (t, T )dt+ σ (t, T )dW ∗
t , (108)

where
µ (t, T ) = σ (t, T1)σ (t, T2) , T1 < T2 + δ, (109)

then the LIBOR rate is defined as

σ (t, T + δ) − σ (t, T ) =
∫ T+δ

T

σ (t, u) du =
δL (t, T )

1 + δL (t, T )
λ (t, T ) . (110)

The general Brace–Gatarek–Musiela approach sets σ (t, T ) = 0 and yields
a pricing model for a zero coupon bond:

P (t, T ) = −
n=

T
δ∑

k=1

δL (t, T − kδ)
1 + δL (t, T − kδ)

λ (t, T − kδ) . (111)

This neat pricing formula is only available when λ (t, T ) is deterministic, and
this model is one of the most commonly used market models.

9.4 The Musiela–Rutkowski and Jamshidian Approach

The previous pricing model uses forward induction to form an analytical pric-
ing model for a zero coupon bond. Musiela and Rutkowski (2004) took the
original concept and inverted the induction process. This backward induction
approach was then modified by Jamishidian (1997), who put forward a pric-
ing model that described the whole family of LIBOR rates in a systematic
framework. Recall that the maturity of a family of bonds and the relationship
to a forward LIBOR rate

1 + δj+1L (t, Tj) =
P (t, Tj)
P (t, Tj+1)

.

The major assumption is as follows: Assume that the evolution of all bond
prices characterized by some stochastic process of the form

dP (t, Tj) = P (t, Tj) (a (t, Tj)) dt+ b (t, Tj) dWt,

where Wt ∈ R
d and a (·) and b (·) are arbitrary affine functions; as such,

all bond prices will in effect be determined via some collection of LIBORs.
Jamishidian (1997) demonstrated that under this assumption, we can charac-
terize the evolution of LIBOR rate as the following SDE:

dL (t, Tj) = µ (t, Tj) dt+ ζ (t, Tj) dW
j
t ,

µ (t, Tj) =
P (t, Tj)

δj+1P (t, Tj+1)
(a (t, Tj) − a (t, Tj+1)) − ζ (t, Tj) b (t, Tj+1) ,

ζ (t, Tj) =
P (t, Tj)

δj+1P (t, Tj+1)
(b (t, Tj) − b (t, Tj+1)) .

(112)
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Furthermore, he showed that

b (t, Tj0) − b (t, Tj+1) =
j∑

k=j0

δk+1ζ (t, Tk)
1 + δk+1L (t, Tk)

. (113)

From this setup we can arrive at the three major results from Jamshidian
(1997): the general solution

dL (t, Tj) =
j∑

k=j0

δk+1ζ (t, Tk) ζ (t, Tj)
1 + δk+1L (t, Tk)

dt+ ζ (t, Tj) dW ∗
t ,

where dW ∗
t is a d-dimensional Weiner–Brownian motion. If we set the volatil-

ity component ζ (t, Tj) to be some deterministic function of the individual
volatilities of each of the available LIBOR rates,

ζ (t, Tj) = λj

(
t, L (t, Tj0) , L (t, Tj0+1) , ..., L (t, Tj) , ..., L

(
t, TT

δ

))
, (114)

and simplifying further to impose the log-normal conditions, we find the fol-
lowing SDE representation of the individual LIBOR processes:

dL (t, Tj)
L (t, Tj)

=
j∑

k=j0

δk+1L (t, Tk) λ (t, Tk)λ (t, Tj)
1 + δk+1L (t, Tk)

dt+ λ (t, Tj) dW ∗
t . (115)

The interested reader is directed to Jamshidian (1997) for the full deriva-
tion. However, the implication of this SDE is very visible, as it sets out the
evolution of an individual rate as being some function of all the other rates. In
particular, the volatilities of each forward rate will in some way be correlated.

10 Volatility and Correlation in Forward Rates

The previous section suggested a fundamental set of interrelationships be-
tween LIBOR rates. In this section, we shall review the Rebonato (2004)
approach to specifying the LIBOR dynamics and rerelate this to the principal
component analysis suggested previously. At this point we begin to set some
fundamental structure to the LIBOR rates and evolve them contemporane-
ously as a vector process, instead of taking each rate in isolation. Consider an
n-length vector of LIBOR rates with k factors, representing k underlying sto-
chastic processes driving the evolution of these forward rates. We can specify
the evolution of this system as follows:

dLt =

⎡

⎢⎢⎢⎣

dL (t, T1)
dL (t, T2)

...
dL (t, Tn)

⎤

⎥⎥⎥⎦ . (116)
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Simplifying our notation from the previous section, we set dL (t, Tj) ∈ dLt;
then we can define the instantaneous volatility of the jth rate as σ (t, Tj) and
the correlation between the ith and jth rates as ρ (t, Ti, Tj).

The simplest specification sets a deterministic drift measure µ (Lt, t) ∈ R
n

and a single covariance matrix that describes the volatility and correlation of
the Weiner processes:

dLt = µ (Lt, T ) + Σ (Lt, T )dW ∗
t . (117)

Again, dW ∗
t ∈ R

d. In this case we decompose Σ (Lt, t) = H (Lt, t) ◦
R (Lt, t), where ◦ is the element by element multiplication of two identical
arrays, i.e., the Hadamard product. Setting

H (Lt, t) = [σ (t, Ti)σ (t, Tj)] ,
R (Lt, t) = [ρ (t, T, Tj)] ,

(118)

we implicitly assume that n = k, i.e., for each forward rate there is a factor
underlined by an independent Wiener–Brownian motion and that the volatil-
ity/dependence structure of this variation is fully described by Σ (Lt, t), the in-
stantaneous covariance matrix. It is unlikely that the number of state variables
exactly matches the number of available forward rates. Brigo and Mercurio
(2006) suggested that between 85 and 97% of all variation may be accounted
for by as few as three factors.

Let us now consider the case when k < n. In this circumstance we can
use principal component analysis to identify the common structure. Knowing
that

Wt+h −Wt ∼ N

(
0

k×1
, I
k×k

)
,

we can respecify (117) as follows

dLt = µ (Lt, T ) + Γ (Lt, T )
′
(Ω (Lt, T )dW ∗

t )Γ (Lt, T ) , (119)

where Ω (Lt, t) ∈ R
k×k is the instantaneous factor covariance matrix and

Γ (Lt, t) ∈ R
n×k are the instantaneous factor loading matrices. If we define

Θ (Lt, T ) = Γ (Lt, T )
′
(Ω (Lt, T ))Γ (Lt, T ) (120)

and set ςj as the jth eigenvalue of Θ (Lt, T ), then the number of factors, k,
will be the number of nonzero eigenvalues of Θ (Lt, T ). This identification
procedure can be used to define the factor loadings specified in the previous
section.

11 Concluding Remarks

Free from the optimizing dynamic framework of speculative agents but based
on arbitrage-free pricing theory, there is a wealth of models of the term struc-
ture of interest rates that has produced truly innovative models and that are
of great interest to both academics and practitioners.
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Government bonds are unlike other asset classes such as equities for which
the most popular of analytical devices the log-normal Black–Scholes frame-
work is universally accepted. The reason is that, unlike such securities, the
simultaneous “random” fluctuation in the whole of the yield curve, a locus of
the association between bond yield and maturity, is a complex phenomenon,
and a single movement in the share price or exchange rate fluctuation that we
may analyze using the BS model cannot approximate satisfactorily. While for
a single stock or exchange we are dealing with scalar dynamics, in the case
of the yield curve the model attempts to account for the dynamics of each
element of a vector, the elements being correlated.

The contribution of all the interest rate models reviewed in this chapter
provided a rigorous and convincing (no-free lunch) framework that allows to
price interest rate-sensitive securities and their derivatives.

All the models are mathematically sophisticated, and yet they allow us
freedom to specify key parameters such as the relevant dynamic stricture, the
nature of volatility, and the numbers of factors. The main conceptual difference
between them is the bond pricing framework that is implicitly assumed in their
construction.

This assumption has allowed this review to characterize this set of models
into three major categories that, although they are not mutually exclusive,
allow for a more systematic study of the theoretical and applied approaches
to interest rate modeling and subsequent bond pricing.

The three major families of models are spot rate, forward rate, and market
models. Although all three of these prescriptions are mathematically consis-
tent (by definition of a term structure model), each approach leads to distinct
development, implementation, and calibration issues. Moreover, the resulting
intuition gained from using the models, especially important for relating the
pricing and hedging of products based on the model, is different in each case.
Before the characteristic of each framework is elaborated and comparisons are
made between them, it is useful to first discuss what is required in any term
structure model.

All models are based on the arbitrage-free principle, thus ensuring that
by the appropriate choice of measure the market price of risk is removed.
Technically, this is achieved by formulating the drift parameter in the diffusion
equation that describes the dynamics of the spot rate and/or the forward rates.

Spot Rate Models

The first generation of models developed were generally spot rate-based. This
choice was due to a combination of mathematical convenience and tractability,
or numerical ease of implementation. Furthermore, the most widely used of
these models is one-factor models, in which the entire yield curve is specified
by a single stochastic state variable, in this case the spot or short-term rate.
Examples of these include the models of Vasicek (1977), Ho and Lee (1986),
Hull and White (1990), Black et al. (1990), and Black and Karasinski (1991),
to name but the most well known.
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These models are distinguished by the exact specification of the spot rate
dynamics through time, in particular the form of the diffusion process, and
hence the underlying distribution of the spot rate.

Forward Rate Models

An alternative approach to modeling the term structure was offered by the
Heath et al. (1990) structure. In contrast to the spot rate approach, they model
the entire yield curve as a state variable, providing conditions in a general
framework that incorporates all the principles of arbitrage-free pricing and
discount bond dynamics. The HJM methodology uses as the driving stochastic
variable the instantaneous forward rates, the evolution of which is dependent
on a specific (usually deterministic) volatility function.

Because of the relationship between the spot rate and the forward rate,
any spot rate model is also an HJM model. In fact, any interest rate model
that satisfies the principles of arbitrage-free bond dynamics must be within
the HJM framework.

Market Models

The motivation for the development of market models arose from the fact
that, although the HJM framework is appealing theoretically, its standard
formulation is based on continuously compounded rates and is therefore fun-
damentally different from actual forward LIBOR and swap rates as traded
in the market. The log-normal HJM model was also well known to exhibit
unbounded behavior (producing infinite values) in contrast to the use of log-
normal LIBOR distribution in Black’s formula for caplets. The construction of
a mathematically consistent theory of a term structure with discrete LIBOR
rates being log-normal was achieved by Miltersen et al. (1997) and developed
by Brace et al. (1997). Jamishidian (1997) developed an equivalent market
model based on log-normal swap rates.

The main conclusion of the extensive body of literature regarding the
performance of these models is that there is no clear “winner” as such. The
model performance relates strongly to the type of instrument one wishes to
price.

Empirically, the estimation and calibration of multifactor models in an
arbitrage-free framework, such as the example we have explored in this re-
view, are computationally very intensive and require the application of very
sophisticated econometric techniques. The use of affine models for interest
rate modeling constitutes the dominant econometric methodology, although
the choice and contribution of factors provide for a lively debate. Of crucial
importance is the imposition of parameter restrictions on the affine structure;
without such an imposition, the reliability of the econometric results will be
questionable.

There is no doubt that this approach will be extended to more compli-
cated functional forms and more importantly to ever-increasing dimensions
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as techniques from physics and other natural sciences that deal with multi-
dimensional problems percolate into the empirical finance literature.
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1 Introduction

The recent convergence of two allogeneous disciplines, financial and compu-
tational engineering, has created a new mode of scientific inquiry. Both dis-
ciplines rely upon theoretical analysis and physical experimentation as tools
for discovering new knowledge. With these interrelated roots, it is not sur-
prising that the two disciplines have come together to provide researchers
with new and exciting tools by which to extend findings borne of more tra-
ditional approaches to scientific inquiry. Despite its relatively young age, the
discipline of financial engineering has already provided a unique and sub-
stantial body of knowledge that is best described as contemporary financial
innovation. The discipline’s innovation process is best characterized by its
ability to enumerate engineering solutions to vexing financial problems by
drawing upon the multidisciplinary use of stochastic processes, optimization
methods, numerical techniques, Monte Carlo simulation, and data analytic
heuristics. It is within this multidisciplinary characterization that the study
of European government bond markets is styled. In this chapter, we seek to
utilize the innovation inherent in financial engineering to provide a new and
expanded window into the structure of volatility spillovers in European gov-
ernment bond markets. Within this context, we rely upon the kindred field of
computer engineering to provide the tools needed to design and implement a
radial basis function artificial neural network: a new network that includes an
optimal derivation of the regularization parameter. Simulation-based heuris-
tics encapsulate the optimizing artificial network to help improve the art of
supervising the training phase of the artificial network. And, lastly, by con-
necting traditional parametric-based conditional volatility estimation and a
classification-directed ANN, the conjoint aim of this research is brought to
fruition – to design a generalized financially engineered method of scientific
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inquiry that will extract new information from the distribution of residual risk
that characterizes European government bond returns.

The motivation for the current inquiry can be traced to the launch of the
Euro and the resultant growth that defined the securities markets of Europe.
Today, the European government securities market has reached a size that
rivals its U.S. counterpart. Similarity of size notwithstanding, the question
for policymakers is whether the unique and diverse structure of the Euro-
government bond market is one that will nurture ongoing advances in over-
all efficiency. Conventional wisdom agrees that achieving improved liquidity,
marketability, and other efficiencies will require consistent monitoring and,
importantly, new policy adjustments that reflect an increased understanding
of the information flow from global participants. Such thinking is evidenced
by the creation of industry partnerships between various governments and
the leading primary dealers in Euro government securities. For example, the
European Primary Dealers Association (EPDA) is one such organization. It
has convened to focus on voluntary industry initiatives that are designed to
promote best practices on primary market policies and procedures. The search
for setting effective bond market policy will depend in large part on how well
market participants understand the manner, persistence, and magnitude of
efficiency disturbing shocks that, from time to time, propagate across these
markets. The complexity of multicountry volatility linkages augurs for the
continued development of explanatory investigations.

The specific aim of this research is to reexamine reported findings that
describe the effects of volatility spillovers from the United States (US) and
aggregate European government bond markets into the government bond mar-
kets of two EMU countries (Germany and Spain) and one non-EMU country
(Sweden). The analytical examination is developed in two stages. The initial
stage focuses on the process of engineering a complex nonlinear artificial neural
network (ANN) mapping of government bond excess returns. To accomplish
this step, the current research exploits the Kajiji-4 radial basis function (RBF)
ANN. The algorithm has proven to be a fast and efficient topology for map-
ping financial instrument volatility across various time intervals [for example,
Dash and Kajiji (2003) used the algorithm to successfully model daily volatil-
ity asymmetries of FX futures contracts and, similarly, Dash, et al. (2003)
employ the method to forecast hourly futures options ticks]. The second stage
establishes the overall effectiveness of the ANN to control for the known con-
ditional volatility properties that define transmission linkages among govern-
ment bond excess returns. Stated differently, if the Kajiji-4 RBF ANN method
achieves its appointed task, we expect the modeled residuals to be devoid of
any meaningful latent economic information. A finding to this end will ex-
pand the window of understanding into how information flows from aggregate
markets lead to identifiable volatility asymmetries in individual Euro zone
government bond market.

The testable volatility spillover model preferred for the research inquiry
can be traced to a panoptic review on market contagion by Christiansen
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(2003). The ANN models formulated here are further influenced by the lin-
ear regression-based methods of Bekaert and Harvey (1995, 1997), the VAR
methods of Clare and Lekkos (2000), and associated extensions offered by
Ng (2000). We also take into consideration associated refinements detailed in
Bekaert et al. (2005) and in Baele (2002). Clearly, however, it is the Chris-
tiansen approach that sets a foundation for the two-stage modeling experiment
that defines this research. The initial step of our inquiry is divided between
modeling the excess returns of aggregate bond indices – one for the US and an-
other for European – and the modeling of the mean return generating process
for individual country government bond indices. In the latter step, that of
modeling spillover effects for individual country excess returns, the function
mapping equation is augmented to infer GARCH effects by including the one-
period lagged returns associated with the two aggregate bond indices. As with
prior specifications of country-specific volatility spillover models, the condi-
tional volatility of the unexpected return includes a recognized dependence
on the variance of both the U.S. and European idiosyncratic shocks as well as
own-country idiosyncratic shocks.

The remainder of the chapter is organized as follows. Section 2 revisits the
Christiansen volatility spillover model by providing a modeling extension in
the form of the nonparametric Kajiji-4 RBF ANN. Section 3 describes the
government bond market data available for the study. Section 4 engineers a
second-stage nonlinear ANN analysis, which is applied to the excess bond re-
turns. The objective in this section is to control for latent conditional volatility
in the nonlinearities of the residual bond returns. A summary and conclusion
are presented in Section 5.

2 The Volatility Spillover Model

The issues of time-varying volatility of financial time series are well docu-
mented. The ARCH model process of Engle (1982) exploited this autoregres-
sive property where historical events leave patterns behind for a certain time
after some initial action. The GARCH model of Bollerslev (1986) introduced
the ability to examine volatility in terms of conditional heteroscedasticity
in that the variance, which is now conditional on the available information,
varies and also depends on old values of the process. To this end, the sym-
metric GARCH model has gained rapid acceptance for its ability to generate
a reasonably good fit to actual data over a wide range of sample sizes. Unlike
asymmetric counterparts, the symmetric GARCH technique models the con-
ditional variance that depends solely on the magnitude but not on the sign of
the underlying asset.

The existence of volatility leverage effects in financial time series, the ob-
servation that bad news has a larger impact on volatility than does good news,
is also a well-known phenomenon (see, for example, Koutmos and Booth, 1995,
and Booth et al., 1997). The EGARCH model of Nelson (1991) and Nelson
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and Cao (1992) has proven to be nearly ideal for capturing the leverage ef-
fects that define the overall market behavior of financial instruments. Research
findings by Andersen et al. (2001) provide a useful division of stock return
volatility into the following three dimensions: volatility clustering, asymmetric
volatility, log-normality and long memory volatility. Within the dimension of
volatility clustering, the effort of Skintzi and Refenes (2004) is of direct impor-
tance to the objectives set forth for this research. These researchers employ a
dynamic correlation structure bivariate EGARCH model to yield evidence of
price and volatility spillovers from the U.S. bond market and the aggregate
Euro-area bond market to 12 individual European bond markets. These same
results also provided new evidence that own bond market effects are signifi-
cant and exhibit asymmetric impacts in the volatility-generating process. The
generation of this new knowledge was inextricably linked to the innovative
use of new modeling methodology

2.1 An ANN Volatility Spillover Model for the U.S. Government
Bond Market

While there are many plausible modeling structures available to investigators
of bond volatility spillover effects, the approach used here continues the au-
thoring of innovative and parsimonious expression. Within the context of the
Christiansen methodology, we engineer a nonlinear ANN approach that is not
unwieldy, overparameterized, nor difficult to test with the temporal and spa-
tial dynamics of bond volatility. We begin by defining the conditional return
on the U.S. government bond index as an AR(1) process:

RUS,t = b0,US + b1,USRUS,t−1 + εUS,t. (1)

In this model, the idiosyncratic shocks (εUS,t) are normally distributed
with a mean zero (E|εi,t| = 0), are uncorrelated among them (E|εi,tεj,t| =
0; ∀ i 
= j), and the conditional variance follows an asymmetric EGARCH(1,1)
specification:

σ2
US,t = ωUS + αUSe

2
US,t−1 + γUSσ

2
US,t−1. (2)

The constraints ωUS > 0, σUS , γUS ≥ 0, and αUS + σUS ≤ 1 of the
somewhat restrictive GARCH framework are relaxed by not imposing non-
negative constraints on parameters αk and γj ; a characteristic that allows for
the capture of directional shock effects of differing magnitudes on the volatility
distribution.

Specifically, the generalized EGARCH model implemented for the all ex-
cess bond return generating models presented in this section is represented by

ln(ε2US,t) = � +
q∑

k=1

αkg(zt−1) +
p∑

j=1

γj ln(h2
t−j), (3)
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where
g(zt) = θzt + γ [|zt| − E |zt|] (4)

and
zt =

εt√
ht

(5)

are defined as

E |zt| =
(

2
π

)0.5

; zt ∼ N(0, 1) (6)

In our formulation, the parameter γ is set to 1. Next, we focus our attention
on the return-generating process across European markets.

2.2 ANN Volatility Spillover Models for European Government
Bond Markets

The degree to which economic shocks in the aggregate European government
bond market influence the return-generating process of individual European
countries is reestimated by application of the ANN econometric model in this
research. The existence of own-market volatility spillover effects is another
postulate that is reexamined under the engineering approach developed here.
The reexamination of these two effects requires the proposed specification
to be consistent across normative models – one for the aggregate European
government bond market and another that is suitable to describe both EMU
and non-EMU countries. The process begins with the former. The conditional
excess return on the European total return government bond index is assumed
to be a multifactor AR(1). The model is specified as:

RE,t = b0,E + b1,ERE,t−1 + γE,t−1RUS,t−1 + φE,t−1εUS,t + εE,t. (7)

In this system, the conditional mean of the European bond excess return
depends on its own lagged return as well as the spillover effects introduced by
the lagged U.S. excess return, RUS,t−1, and the U.S. idiosyncratic risk shock,
εUS,t. Following the previous assumption, the conditional variance of the idio-
syncratic risk shock (εE,t) is assumed to follow an asymmetric EGARCH(1,1)
specification:

ln(ε2E,t) = � +
q∑

k=1

αkg(zt−1) +
p∑

j=1

γj ln(ε2t−j), (8)

subject to the usual restrictions [e.g., see Equations (4)–(6)].
The second ANN econometric specification described here is a model that

is capable of describing the conditional return-generating process for the ith
individual European country government bond market from among the N
markets included in the study. That is, for country i, the conditional excess
return is determined by
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Ri,t = 0b0,i + b1,iRi,t−1 + γi,t−1RUS,t−1 + δi,t−1RE,t−1 +
(9)

φi,t−1εUS,t + ψi,t−1εE,t + εi,t

Within this model statement the conditional excess return depends upon
the lagged performance of own-country return as well as that of the U.S. and
aggregate European bond markets. More specifically, the U.S. and European
spillover to the ith country is captured by the lagged returns RUS,t−1 and
RE,t−1, while volatility spillover effects are captured by εUS,t and εE,t, idio-
syncratic shocks from the regional conditional return estimations, respectively.
Finally, and for completeness, again we note that the idiosyncratic shocks for
all N country models are subject to the same EGARCH(1,1) distributional
assumptions [Equation (10)] and associated constraints [Equations (4)–(6)] as
previously defined for the expected behavior of the regional return index:

ln(ε2i,t) = � +
q∑

k=1

αkg(zt−1) +
p∑

j=1

γj ln(ε2t−j). (10)

With the return-generating process identified for all bond indices associ-
ated with expected volatility spillover effects, the emphasis shifts directly to
the nonlinear modeling features provided by the application a neural network
methodology.

2.3 The ANN Normative Extension

In a manner that is reminiscent of how the human brain processes information,
ANNs follow an engineering process that relies upon a large number of highly
interconnected neurons working in parallel to solve a specific problem based
on approximations.1 Of course, for artificial networks information processing
must be achieved by using software to simulate the components of the brain.
While a number of interesting computational topologies are currently in use
for simulating interconnected neurons, the focus here is on research dimen-
sions that have compared ANN to nonparametric statistical inference (Amari,
1990), provides an interesting review and discussion. Within this direction,
Weigend et al. (1991) have shown that Bayesian estimation theory is a useful
way to build parsimonious models that permit for a subsequent comparison
to an analogous nonparametric regression. Like Refenes and Bolland (1996),
we advance the domain of applicability of artificial networks in financial re-
search. In this specific application the research exploits the topology’s design
to estimate structural models where the properties of the estimators are read-
ily ascertained. Finally, we buttress our rational to use the proposed ANN to
1 For the decision-making principles of functional segregation (not all functions

of the brain are performed by the brain as a whole) and functional integration
(different regions of the brain are activated for different functions, with region
overlaps being available for use in different networks) under ANN approximation,
see Rustichini et. al. (2002).
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reexamine volatility spillover effects in European government bond markets
based on the successful applications of ANNs to uncover bond features as
chronicled in McNelis (2005).2,3

What is left unresolved by extant literature is an assessment of how effi-
ciently Bayesian-based RBF ANN topology – a network with a documented
ability to represent any Borel-measureable function – actually approximates
the volatility features of government bond excess returns at local, regional,
and global levels (for additional discussion on function approximation, see
Polak, 1971, Saarinen et al., 1993, Schraudolph and Sejnowski, 1996, and
Smagt, 1994). Of course, while examples of RBF ANN applications populate
the literature, we expect the recently developed Kajiji-4 algorithm to add even
greater efficiency to the function mapping process. To that end, in the next
section, we introduce the data used in the normative ANN estimation of ex-
cess government bond returns. It is important to summarize the data before
developing the mathematical characteristics of the Kajiji-4 algorithm since
the ANN topology requires rescaling the actual data before the supervised
learning process is initiated. After data transformation issues are presented,
Section 4 of the chapter provides the details of the enhanced RBF ANN algo-
rithm and its relevance to the financial engineering study at hand.

3 The Data

Weekly data for all government total return bond indices under study are
obtained from Global Financial Data for the period May 2003 to January
2005 inclusive (a total of 90 observations).4 Non-synchronous data issues are
partially reduced by the use of weekly data. The two EMU-member countries,
Germany (REX government bond performance index) and Spain (Spain 10-
year government bond total return index), and one non-EMU country, Sweden
(government bond return index w/GFD extension), defines the European local
market. The U.S. effect is sampled by the inclusion of the Merrill Lynch
U.S. government bond return index. Lastly, the JP Morgan European total
return government bond index samples the aggregate European government
bond market. Total return indices are preferred, as they are derived under
the assumption that all received coupons are invested back into the bond
index. All weekly returns are stated in U.S. dollar terms. Excess log returns

2 Feature extraction encompasses the process where raw input data are transformed
and mapped to the target variable that is being modeled. It is necessary for
the mapping process of inputs onto a target to contain a sufficient amount of
information to make it possible for the ANN to learn a generalized behavior that
will produce accurate predictions.

3 See Zirilli (1997) for a detailed discussion on strategies for trend prediction us-
ing ANNs as well as various ANN configurations for optimal use of networks in
financial trading systems.

4 www.globalfindata.com.
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are obtained by removing (retaining) the risk-free rate from log-differenced
government bond index levels. Where needed, the 90-day secondary market
Treasury bill yield is used as the U.S. risk-free proxy and the 1-month LIBOR
rate is used as a proxy for the European aggregate market.

By definition, the European aggregate government total return index is
a weighted average of the individual local bond markets. This suggests the
potential for a spurious correlation between local market returns and those of
the aggregate European index. This issue is explored by Christiansen (2003),
Bekaert et al. (2005), and Diamond et al. (2002). In the latter analysis, the fo-
cus is on generating an artificial aggregate European bond index by removing
the local market effect. The research presented deviates from this approach for
the following two reasons. First, prior research reports a correlation of 0.95
between the artificial aggregate index and each unadjusted aggregate bond
index. Given the significantly high correlation measure, the gains associated
with creating an artificial aggregate European government bond index appear
to be marginal. Second, the Kajiji-4 RBF ANN is constructed upon a closed-
form derivation of the regularization parameter, a structural approach that
is designed to explicitly and directly minimize correlated variables error. In
summary, because the gain from removing correlated variables appears to offer
a small benefit and given the explicit objective of multicollinearity reduction
embraced within the design of the Kajiji-4 RBF ANN, this research does not
implement an artificially constructed aggregate European government bond
index.

Figure 1 provides a comparative view of the five excess government bond
returns for the sample period. Table 1 complements Figure 1 with a presenta-
tion of descriptive statistics for the five government bond indices. The range
of the average weekly returns is very tight. The returns are moderately neg-
ative for each of the five series over the sample period. This finding coincides
with the comparative graphical view as provided by Figure 1. Except for the
United States, the variability of returns is remarkably similar across all other
countries. Return volatility for non-U.S. countries ranges between 0.0002 and
0.0003. The U.S. return volatility presents a minor exception with measure-
ments approaching zero. Further, for all European-based government bond
indices, the returns (and their associated volatility) show a significant right-
skew and excess kurtosis. The absence of normality for all measured bond in-
dices is confirmed by the Shapiro–Wilk (1965) test for normality. Once again
noting the exception for U.S. bond returns, the Ljung and Box (1978) test for
first- to fourth-order autocorrelation indicates that all other bond returns and
their squared terms exhibit significant autocorrelation. The clear presence of
heteroscedasticity in the bond returns motivates us to diligently examine the
ability of the engineered RBF ANN to uniformly control for this (and other)
identified distributional properties. Specifically, we use this statistical sum-
mary to argumentatively examine the EGARCH properties of the estimated
residuals.
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Weakly excess returns
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Fig. 1. Comparative view of excess returns.

Table 1. Descriptive Statistics

Mean Std.Dev Skewness Kurtosis* Normal AC(1) AC(2) AC(3) AC(4)
Germany
Weekly −0.0108 0.0339 0.7307 4.72600 0.777 0.328 0.039 −0.015 0.135
return (0.0001) (0.001) (0.006) (0.016) (0.017)

Weekly 0.0003 0.0009 5.7485 35.54900 0.432 0.307 −0.060 −0.015 −0.021
volatility (0.0001) (0.003) (0.01) (0.027) (0.056)
Sweden
Weekly −0.0105 0.0341 0.6914 4.63500 0.777 0.296 0.064 0.016 0.069
return (0.0001) (0.004) (0.013) (0.034) (0.025)

Weekly 0.0003 0.0007 4.6452 23.10300 0.420 0.276 −0.059 −0.022 0.000
volatility (0.0001) (0.008) (0.024) (0.058) (0.112)
Spain
Weekly −0.0106 0.0340 0.6307 4.40600 0.788 0.319 0.045 −0.018 0.144
return (0.0001) (0.002) (0.008) (0.021) (0.019)

Weekly 0.0003 0.0007 4.3329 20.44700 0.433 0.291 −0.059 −0.017 −0.025
volatility (0.0001) (0.005) (0.017) (0.042) (0.083)
Euro
Weekly −0.0092 0.0326 0.8472 5.34800 0.751 0.355 0.041 0.031 0.172
return (0.0001) (0.001) (0.002) (0.007) (0.005)

Weekly 0.0002 0.0008 6.4010 39.87100 0.401 0.340 −0.069 −0.001 0.023
volatility (0.0001) (0.001) (0.004) (0.011) (0.024)
USA
Weekly −0.0122 0.0388 0.5690 2.82400 0.815 0.224 0.092 0.094 0.070
return (0.0001) (0.031) (0.065) (0.097) (0.148)

Weekly 0.0000 0.0001 0.0000 −3.00000 0.502 0.185 −0.085 0.036 0.119
volatility (0.0001) (0.074) (0.144) (0.262) (0.252)

p-values in parentheses represent the significance level for the Ljung–Box statistic.
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4 ANN Estimation of Volatility Spillover

This section of the chapter estimates bond market spillover effects by applying
the Kajiji-4 RBF ANN to the aggregate European bond model [Equation
(6)] and to the individual country model [Equation (8)]. However, before the
exact estimation of spillover effects is presented, we provide algorithmic detail
as it pertains to the ANN modeling methodology. Section 4.1 sets forth the
algorithmic properties of the Kajiji-4 RBF ANN in a context that advances the
efficient modeling of a near-chaotic target variable. This section differentiates
the enhanced dual objective Kajiji-4 algorithm from the more traditional uni-
objective RBF ANN. Section 4.2 is devoted to the specifics of generalizing the
application of the Kajiji-4 RBF ANN to modeling of European government
bond returns and their associated volatility. The first subsection of 4.2 is
devoted specifically to data transformation and scaling.

The second subsection of 4.2 continues the engineering of the generalized
network. As a supervised learning method there is a need to infer a functional
mapping based on a set of training examples. Hence, an important research
consideration is lodged in the determination of how many observations are
required to effectively train the ANN. To achieve a meaningful generalization,
we invoke a simulation analysis that is designed to find the ideal minimum
bias-variance (modeling error, or MSE) over a range of training values such
that it is possible to visualize a global optimum. By identifying an ideal train-
ing size (or, training range), it is possible to reduce the negative impacts of
overfitting the mapping function.

Section 4.3 presents the empirical results generated from the actual map-
ping of spillover effects onto the excess bond market returns for each individual
European country. Within this section we also report the effectiveness of the
ANN topology by examining the distributional properties of the squared resid-
uals obtained by application of the Kajiji-4 RBF ANN to the country-specific
return-generating models as well as the model for the aggregate European
bond market. In addition to the nonlinear ANN examination of the squared
residuals, this section is augmented to include a linear diagnostic of the same
squared residuals. Section 4.4 closes the fourth part of the chapter with an
interpretive deduction of the policy implications generated by the engineered
neural network for mapping volatility spillovers in European government bond
markets.

4.1 The Kajiji-4 RBF ANN: Modeling the Conditional
Return-Generating Process

The process of engineering a nonparametric RBF ANN bond spillover model(s)
is an extension of the parametric-based three-step approach proffered by
Christiansen (2003). To estimate the coefficients of her model, Christiansen
employed the Quasi Maximum Likelihood method with Gaussian likelihood
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functions using a combination of the Berndt et al. (1974) and the Newton–
Raphson numerical optimization algorithm. Our efforts deviate from the
parametric approach by introducing the Gaussian-based Kajiji-4 RBF ANN
to extract relevant model coefficients.

The Uni-Objective RBF ANN Architecture

The appointed task of an ANN is to produce an analytic approximation for
the input–output mappings as described by the following noisy data stream:

{[x(t), y(t)] : [Rn,R]}∞t=1 , (11)

where x(t) is the input vector at time t, y(t) is the output at time t, and n is
the dimension of the input space. The data are drawn for the set

{[x(t), y(t) = f(x(t) + ε(t)]}∞t=1 . (12)

A radial basis function artificial neural network is a topology defined by
three associated computational layers. The input layer has no particular cal-
culating power; its primary function is to distribute the information to the
hidden layer. The neurons of the hidden middle layer embrace a nonlinear
radial basis transfer function – the most popular being the Gaussian. Ra-
dial basis transfer functions are well regarded for their ability to interpolate
multidimensional space. The estimated weights of the third and final layer,
the output layer, are described by a linear transfer function. The linearity
property infers that if one fixes the basis functions (i.e., picks the centers and
widths of the Gaussians), then the predictions are linear in the coefficients
(weights). Researchers rely upon the linearity of output weights to assist in
the identification of main input effects (for the foundations of RBF ANNs, see
Broomhead and Lowe, 1988; Lohninger, 1993; Parthasarathy and Narendra,
1991, as well as Sanner and Slotine, 1992).5

The Kajiji-4 RBF ANN is an enhanced Bayesian network that incorpo-
rates a closed-form determination of the regularization parameter.6 Before we
explore the extensions proffered by Kajiji to enhance the mapping efficiency of
the single-objective RBF ANN, it is useful to describe the basic underlying ar-
chitecture of the uni-objective algorithm. Within the underlying architecture
the optimal output weighting values are estimated by applying a supervised
least-squares method to the training set. The term “supervised” describes a
technique for creating an output function by training the network using pairs
5 The RBF ANN is a type of nonlinear regression model where it is possible to esti-

mate the output layer weights by any of the methods normally used in nonlinear
least squares or maximum likelihood. However, we note that if every observation
was used as an RBF center, this would result in a vastly overparameterized model.

6 The Kajiji-4 algorithm is one of several artificial network methods supported
within version 3.15 (and above) of the WinORSe-AI software system produced
by The NKD-Group, Inc. (www.nkd-group.com).
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of training input data with corresponding desired outputs. For the general
topology of radial basis function neural networks, the learning function is
stated as

y = f(x), (13)

where y, the output vector, is a function of x, the input vector, with n the
number of inputs. The supervised learning function architecture is

f(xi) =
m∑

j=1

wjhj(x), (14)

where m is the number of basis functions (centers), h is the hidden units, w
is the weight vector, and i = 1 . . . k are the output vectors (target outputs).
The flexibility of f(x) and its ability to model many different functions are
inherited from the freedom to choose different values for the weights. Within
the RBF architecture, the weights are found through optimization of an objec-
tive function. The most common objective function employs the least-squares
criterion. This is equivalent to minimizing the sum of squared errors (SSE) as
measured by

SSE =
p∑

i=1

(ŷi − f(xi))
2. (15)

The Multiple-Objective RBF ANN Architecture

Kajiji (2001) reasoned that some modeling problems are best examined by
considering at least two objectives: smoothness and accuracy. To achieve these
dual objectives, Kajiji augmented the generalized RBF to include a modi-
fied Tikhonov regularization equation (1977). Tikhonov regularization adds
a weight decay parameter to the error function to penalize mappings that
are not smooth. By adding a weight penalty term to the SSE optimization
objective, the modified SSE is restated as the following cost function:

C =
p∑

i=1

(ŷi − f(xi))
2 +

m∑

j=1

kjw
2
j , (16)

where the kj are regularization parameters or weight decay parameters. Under
this specification the function to be minimized is stated as

C =
argmin
k

⎛

⎝ς
p∑

i=1

(yi − f(xi | k))2 +
m∑

j=1

kjw
2
j

⎞

⎠ . (17)

Iterative techniques are commonly employed to compute the weight de-
cay vector k. With the introduction of weight decay methods by Hoerl and
Kennard (1970) and Hemmerle (1975), iterative techniques were found to
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lack specificity and to be computationally burdensome (see, Orr, 1996, 1997).
Furthermore, computational experience has established that iteration-based
methods often stop at local minima or produce inflated residual sums of
squares whenever the weight decay parameter approaches infinity. The Kajiji-4
RBF algorithm was designed to overcome these inefficiencies through its in-
corporation of a globally optimized regularization parameter based on Crouse
et al.’s (1995) Bayesian enhancement to optimal ridge regression. Taken to-
gether, the aforementioned extensions embraced by the Kajiji-4 RBF ANN
allow the dual-objective algorithm to directly attack the twin evils that de-
ter efficient ANN modeling: the curse of dimensionality (multicollinearity or
overparameterization) and inflated residual sum of squares (inefficient weight
decay).

4.2 Engineering an Efficient ANN Mapping of Market Volatility

A primary reason for a decision maker to utilize a neural network is to gener-
ate an efficient mapping of a complex target variable. To achieve this objective
it is necessary for the modeler to execute several well-defined steps. The ANN
modeling progression begins with an assessment of the input data. At this
point in the analysis it is always advisable to transform the data to a scale
that contributes to efficient supervised learning. That is, preprocessing the
input data by rescaling generally leads to improved performance as the data
are shaped to a range that is more appropriate for the network and the distri-
bution of the target variable. In the next step, the parameters that control the
algorithm’s learning phase must be stated and calibrated. This includes the
identification of the network’s transfer function and the associated bias-error
measure. The transfer function accepts input data in any range and responds
nonlinearly to the distance of points from the center of the radial unit. Con-
trastingly, the generated output occurs in a strictly limited range, a fact that
augers for preprocessing as defined in the prior step. Prior to initiating the final
step – executing the modeling algorithm – one must determine just how many
data cases are needed to supervise efficient training of the network so that it
learns to recognize patterns without learning idiosyncratic noise. The follow-
ing subsections explore this three-step approach as we engineer an efficient
ANN model to examine bond volatility spillover across European government
bond markets.

Data Scaling by Transformation

Neural networks learn more efficiently with lower prediction errors when the
distribution of input variables is modified to better match outputs. For ex-
ample, if one input variable ranges between 1 and 10,000, and another ranges
between 0.001 and 0.100, the accuracy of the estimated network weights would
be impacted substantially by these different magnitudes. To estimate an effi-
cient network model, it is desirable to help the network cope with these differ-
ent ranges by scaling the data in such a way that all the weights can remain
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in small, predictable ranges. Shi (2000) provided a more robust discussion on
the comparative merits of three popular transformation methods to rescale
input data (linear transformation, statistical standardization, and mathemat-
ical functions). More importantly, the Shi analysis adds to this discussion by
proposing a new method for efficient data scaling as a preprocessor to neural
network modeling – it is a method that relies upon the use of cumulative
distribution functions (distribution transformation). The point to emphasize
here is the importance of data scaling by one of any number of recognized
transformations as an integral part of the neural network engineering process.

The Kajiji-4 RBF ANN supports several alternative data transformation
algorithms. For the bond volatility modeling application described herein, we
choose to scale the data by the Normalized Method 1 technique as defined in
Table 2 and Equations (18)–(20).7 We note that this transformation technique
scales the data to [0, 1.01] when SL = 0% and SU = 1%. That is, the post-
transformation minimum data value is 0 and the maximum data value is 1
plus the SU value. Setting the headroom parameters SL and SU to any other
positive value produces a scaled data series that is bounded between two
positive numbers based on the actual minimum and maximum data values.
For example, if the actual data minimum is −1 and the actual data maximum
is 0; the scaled data after transformation will lie in the range [−0.01, 1.0].

Table 2. Notation for RBF ANN Scaling

Term Definition

Di Actual data point
DL Lower scaling value
DU Upper scaling value
Dmin Minimum data value
Dmax Maximum data value
DV Normalized data value
SL Lower headroom (%)
SU Upper headroom (%)

The algorithm proceeds by computing DL andDU as defined by Equations
(18) and (19):

DL = Dmin − (Dmax −Dmin)SL

100
, (18)

DU = Dmax +
(Dmax −Dmin)SU

100
. (19)

7 In addition to the Normalized Method 1, we found interesting results by appli-
cation of Normalized Method 2 : DV = NL + (NU −NL) (Di−Dmin)

(Dmax−Dmin)
, where DV ,

Di, Dmin, and Dmax are as previously defined. NL and NU specify the lower and
upper bounds of the scaled data, respectively (e.g., to scale the data to [−1,+1],
set NL = −1 and NU = +1).
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The scaled data values, DV , replace the original data series by Equation
(20):

DV =
Di −DL

DU −DL
. (20)

Algorithmic Parameterization

Like all supervised learning networks, the RBF network approximates an un-
known mapping, F ∗, between pairs (xi, yi), for i = 1, . . . , n form observations.
Mapping to the target response surface is by the use of a radial function, a
function that decreases (increases) monotonically with the distance from a
central point. The parameterization of the RBF network begins with the judi-
cious choice of a transfer function. Neural network researchers understand that
sigmoidal functions may be better estimates for some data, while Gaussian
functions may be better approximators for other kinds of data.8 For the pur-
pose of mapping bond volatility, we implement a radial Gaussian transfer
function. The central point, or radius, for the Gaussian transfer function is
set to 1.0. To avoid over- and underfitting (inefficient training) of the network,
it is important to 1) identify the appropriate number of data cases to include
in the training session and 2) choose a bias-variance control that matches the
complexity of the ANN to the complexity of the data. The former issue is
discussed in more detail in the next section. As for the choice of bias-variance
control, using the options available within the Kajiji-4 RBF ANN, we estimate
the parameters of the bond volatility experiment by invoking the generalized
cross-validation (GCV) error minimization method.9

Efficient Supervised Learning

RBF ANN algorithms are trained to predict the target variable by supervising
the use of an increasing number of cases (observations) on the input variables
up to the point where modeling improvements become redundant. Overfit-
ting occurs at the point where the ANN ceases to learn about the underlying
process, but, instead, it begins to memorize the peculiarities of the training
cases. By way of example, using a financial training model, Mehta and Bhat-
tacharyya (2004) demonstrated how an overfit network effectively obscured
important short-term patterns of profitable trading. ANN researchers agree
that prior to initiating the economic modeling process, it is important to deter-
mine the efficient number of cases over which to train the network. To achieve

8 Alternative radial functions supported by the Kajiji-ANN framework include (1)
Cauchy, (2) multiquadric, and (3) inverse multiquadric.

9 Support for alternative bias-error minimization methods include (1) unbiased
estimate of variance (UEV), (2) final prediction error (FPE), and (3) Bayesian
information criterion (BIC).
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the goal of locating an ideal minimum of training cases, the Kajiji-4 ANN
framework supports a stepwise minimization of the ANN cost function:10

i∗ = min
∑Qmax

i
Ci. (21)

In this equation, Ci is the cost function C as defined in equation (16)
computed for the ith data observation and Qmax is the maximum number
of cases in the training set. For the comparative modeling process invoked
in this chapter, we step the network over Qmax vectors to find i∗, the case
associated with a global (ideal) minimization of the network cost function
(C∗). Table 3 summarizes the simulation results over the 80 total observation
points available to each spillover model. Figure 2 presents a graphical sum-
mary of the Kajiji-4 training simulation when applied to the return-generating
models. The headroom setting (scaling control) for data transformation is set
to [0, 1]. The column MinN reports the base number of cases required to
obtain a global minimum bias-error measurement under supervised training.
The column labeled i∗ reports the result of the country-specific simulations
that identified the observation associated with the smallest MSE within the
simulation range. By way of example, the results of the simulation suggest
that when applied to a specific volatility model, like the German government
bond volatility index, the Kajiji-4 RBF model should be trained using 55
observations, which by contrast, would be increased to 72 observations when
modeling the Swedish government bond volatility index.

Table 3. RBF ANN Simulation Settings

Model Min N i∗

Germany 11 55
Sweden 11 72
Spain 11 71
Euro 11 74
US 11 52

4.3 The Estimated Kajiji-4 RBF ANN Spillover Model

Before presenting the policy inferences drawn from an interpretation of the op-
timal RBF ANN weights, it is useful to investigate the overall efficiency of the
RBF ANN function approximation. The Kajiji-4 algorithm provided an accu-
rate mapping of excess government bond returns for the aggregate European
10 Also supported within the ANN framework are the following methods as dif-

ferentiated by their treatment of the regularization parameter: (1) Kajiji-1
(Hemmerle’s calculation, 1975), (2) Kajiji-2 (Crouse et al. closed-form estima-
tion, 1995), and (3) Kajiji-3 (Kajiji-1 with prior information).
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Fig. 2. Simulation results.

government bond market and the individual country bond markets. Table 4
reports output measures generated by an application of the Kajiji-4 RBF ANN
for the individual European country government bond spillover models. We
note the value of R-square is evenly reported across countries, ranging from
a low of 86.27% (Germany) to a high of 87.37% (Sweden). Additionally, the
two ANN performance measures defined as Direction and Modified Direction
each report accuracy and consistency across all countries.11

Figure 3 presents a visual reference using the German Government bond
market to support the reported function mapping accuracy for all countries
(the spillover modeling results are similar for all other bond markets). For both
the training and validation subsamples, the full range of the predictability
chart reflects a close and effective function mapping.

Before proceeding with an interpretation of policy implications, we turn
our attention to the distributional properties of the residual error terms
obtained by solving the Kajiji-4 excess return government bond spillover
model(s). The basic intuition applied here is related to the nonlinear na-
ture of the network. If the nonlinear mapping ability of the Kajiji-4 algorithm
met its appointed task, then we expect the residual error terms to be de-

11 The Direction measure captures the number of times the target prediction fol-
lowed the up-and-down movement of the actual target variable. The Modified
Direction measure augments the Direction measure to consider a ratio of number
of correct up-tick predictions to number of down-tick predictions. Both measures
are scaled between 0 and 1. TDPM (not reviewed in this analysis) is a correction
weight that compensates for incorrect directional forecasts by overall magnitude
of the movement. The smaller the weight, the more accurate the training phase.
Large weights are indicative of a missed direction, an incorrect magnitude adjust-
ment, or some combination of the two.
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Table 4. RBF ANN Government Bond Spillover Models

Germany Sweden Spain Euro

Computed Measures
Lambda 0.018761 0.000013 0.000005 0.323282
Actual error 0.032489 0.028351 0.028568 0.024464
Training error 0.000439 0.000332 0.000335 0.000196
Validation error 0.000102 0.000116 0.000166 0.000031
Fitness error 0.000310 0.000291 0.000301 0.000168

Performance Measures
Direction 0.733333 0.777778 0.777778 0.755556
Modified direction 0.647321 0.764368 0.689304 0.680460
TDPM 0.000048 0.000044 0.000043 0.000026
R-Square 86.27% 87.37% 86.98% 92.70%

Model Characteristics
Training (N) 55 72 71 74
Training (%) 61.80% 80.90% 79.78% 83.15%
Transformation Norm:1 Norm:1 Norm:1 Norm:1
Min/Max/SD 0% / 1% 0% / 1% 0% / 1% 0% / 1%
Radius 1 1 1 1

Algorithmic Settings
Method Kajiji-4 Kajiji-4 Kajiji-4 Kajiji-4
Error min. rule GCV GCV GCV GCV
Transfer function Gaussian Gaussian Gaussian Gaussian

06/16/03 09/14/03 12/13/03 03/12/04 06/10/04 09/08/04 12/07/04

PredictedActual
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Fig. 3. Kajiji-4 RBF-ANN actual and predicted values (Germany).

void of any latent economic information [but not necessarily N(0, 1) i.i.d.].
By our earlier-stated hypothesis, we expect an absence of the heteroscedastic
EGARCH effects, which were reported to exist by prior studies conducted on
both bond and equity returns.
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In the next section we describe the statistical properties of the ANN resid-
uals. After the presentation of descriptive statistics, the investigation proceeds
by testing for latent ARCH-framework effects within the Kajiji-4 generated
residuals. This is followed by both a linear and nonlinear components analysis
of the European sector return residuals. The linear investigation is accom-
plished by extracting principal components. The nonlinear analysis rests upon
the application of an alternative ANN topology: the Kohonen self-organizing
map (K-SOM). The K-SOM method is an effective counterpart to nonlinear
principal components.

RBF Residuals – Descriptive Statistics

Table 5 presents the descriptive statistics for country-level idiosyncratic resid-
ual returns obtained by the application of the Kajiji-4 spillover model. At four
significant digits, the results show a mean of zero and are relatively small to
near-zero variance measurement. For both Sweden and Spain, the skewness
measure is small and negative. The skewness coefficient for Germany is also
negative but at a much higher level (−1.3266). Excess kurtosis is also evident
for all residual return time series, with the range among the countries span-
ning from 6.776 (Germany) to a relatively small coefficient of 2.983 (Spain).
The Shapiro–Wilk’s test for normality (W-statistic) confirms the expectation
of nonnormality.

Table 5. Idiosyncratic Term Descriptive Statistics

Germany Sweden) Spain) Euro0)

Mean 0.0000) 0.0000) 0.0000) 0.0000)
Variance 0.0003) 0.0003) 0.0003) 0.0002)
Skewness −1.3266) −0.5513) −0.2867) −3.7772)
Kurtosis 6.7757) 4.1138) 2.9828) 17.8946)
W-Statistic 0.8108) 0.8237) 0.8556) 0.6330)

(0.0001) (0.0001) (0.0001) (0.0001)
LB(12) 33.4180) 14.5250) 17.2830) 10.9250)

(0.0010) (0.2680) (0.1390) (0.5350)
LB2 (4) 0.8500) 8.4470) 10.1040) 0.3800)

(0.9320) (0.0770) (0.0390) (0.9840)
LB2 (8) 1.4860) 9.4690) 11.3200) 0.5600)

(0.9930) (0.3040) (0.1840) (1.0000)
LB2(12) 5.0860) 10.4130) 11.7030) 0.6000)

(0.9550) (0.5800) (0.4700) (1.0000)

LB(.) and LB2(.) are the Ljung–Box statistics for
heteroscedasticity in the residual and squared
residual series, respectively; W-statistic is the
Shapiro–Wilk’s statistic for normality. p-values
are shown in parentheses.
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The autocorrelation patterns among the residuals are somewhat mixed.
Germany is the only country that exhibits a significant 12-period (12-week)
lag in the first-order autocorrelation of the excess return residual. The analysis
is moderately stronger upon the examination for nonlinear dependence as
captured by the squared residuals. At the 5% and 10% levels of significance,
the Ljung–Box statistic reports evidence of a four period nonlinear dependence
for both Spain and Sweden. In summary, we find that applying the Kajiji-4
RBF ANN to the government bond spillover model for European markets
results in a solution where the idiosyncratic residual returns exhibit moderate
nonlinear dependence, an absence of skewness at the individual country level,
and for one country (Germany) moderately heavy tails.

RBF Residuals – ARCH Effects

This section of the research is directed toward obtaining a better understand-
ing of what, if any, latent economic information remains in the idiosyncratic
residuals after solving the Kajiji-4 excess return-generating models. Nonlinear
dependence and heavy-tailed unconditional distributions are characteristic of
conditionally heteroscedastic data. The premise behind the use of the RBF
ANN is that its penchance for resolving nonlinear structure will result in the
extraction of all relevant economic variability patterns. We take the additional
step of applying the EGARCH(1,1) framework to the squared idiosyncratic
residuals. While it is not the only method within the ARCH framework by
which it is possible to capture some of the most important stylized features of
return volatility, we have previously reported that the EGARCH(1,1) model
is well suited to capture time-series clustering, asymmetric correlation, log-
normality, and, with proper specification, long memory (for a comprehen-
sive review, see Andersen, 2001). Table 6 presents the results of applying the
EGARCH(1,1) model.

Table 6. EGARCH Estimates of the Idiosyncratic RBF ANN Volatility

Index µ α0 α1 β θ R2 Log Lik. Pr > ξ2

Germany 0.0004) −13.9817) −1.5427) 0.0499) −1.1194) 1.76% 530.25 0.0001
(0.9966) (0.0001) (0.0001) (0.6177) (0.0001)

Sweden 0.0004) 21.6825) 0.0399) −0.4648) 38.0063) 3.10% 532.85 0.0001
(0.0001) (0.0001) (0.0764) (0.0001) (0.0391)

Spain 0.0002) −14.5430) 1.4386) 0.0009) −0.2956) 7.76% 542.44 0.0001
(0.0001) (0.0001) (0.0001) (0.9757) (0.2278)

Euro 0.0002) −14.3619) −1.7946) 0.0648) −0.8626) 1.09% 550.34 0.0001
(0.6769) (0.0001) (0.0001) (0.5171) (0.0001)

US 0.0000) −18.8703) 0.0000) 0.0000) 0.0000) 2.09% 714.44 0.0001
(0.9935) (0.0001) (0.2827) (1.0000) (1.0000)

p-values in parentheses.



Generalized Neural Network Mapping of Volatility Spillovers 221

The reported EGARCH results fail to identify significant residual return
dependence and leverage effects. Except for Sweden (a non-EMU country),
none of the explanatory variables is jointly significant for any of the bond
indices.

RBF Residuals – Linear Diagnostics

The results of the prior section suggest that the country-specific residuals
generated by the Kajiji-4 RBF ANN appear to be statistically well ordered, as
they do not exhibit any significant ARCH effects. In this section we extend the
examination of the residuals to test for statistical independence. Specifically,
we apply a principal components analysis (PCA) to the European residuals in
order to uncover whether the observed distributional properties are caused by
some hidden factor(s). The PCA method is widely used for finding the most
important directions in the data in mean-square space. In this application
there are K common factors Ft through the N observations of the N × K
factor loading matrix Γ , where

εi,t ≡ ΓFt (22)

The unobservable factors Ft are assumed to be i.i.d. distributed with

E[εt] = 0, Var[εt] = σ2IN , (23)
E[Ft] = 0, Var[Ft] = IK , (24)
Cov[Ft, εt], (25)

where IN is an N × N identify matrix and the zeros indicate null vectors
and matrices of the appropriate size. The results of the PCA are presented in
Table 7.

Table 7. PCA of RBF ANN Spillover Residuals

Factor 1 Factor 2 Factor 3 Factor 4

Sweden 0.954 - - -
Spain 0.936 - - -
Germany 0.926 - - -
Euro 0.847 0.487 - -

Eigenvalue 3.360 0.467 0.161 0.012

Cumulative percentage 0.840 0.957 0.997 1.000
of variance explained

If the Kajiji-4 RBF ANN has achieved its appointed task, then the linear
factor-analytic solution should not be able to discern any latent independent
factor structure. That is, the simple structure of the data should be reduced
to a single variance-maximizing factor. The results derived from this analysis
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provide strong evidence that one latent factor dominates the analysis. Factor
1 alone explains 84% of the variability in the idiosyncratic risk terms. The
remaining factors add decreasing contributions to the decomposition of vari-
ability among the residuals. For example, factors 2 and 3 add 11.7% and 4.0%,
respectively, to the decomposition of total variance. The one-factor dominance
of this solution provides additional evidence that the RBF ANN spillover
model removed a significant amount of structured economic volatility from
the excess returns of European government bonds.

RBF Residuals – Nonlinear Diagnostics

A self-organizing map (SOM) is a type of neural network (a vector quanti-
zation method) that implements a k-means cluster algorithm. The Kohonen
SOM (K-SOM ) has the supplementary property that it maps the distribu-
tion of any input space to which it is exposed (see Kohonen, 1990, for theory
and examples). Not only is the method computationally fast to solve, but
the output from this method presents the latent features of the data in an
ordered set of clusters that contributes to their data-specific interpretation.
SOMs have proven to be a useful classification tool, when applied to large
high-dimensional data sets (Craven and Shavlik, 1997; Lu et al., 1996; Kaski
and Kohonen, 1996; Kaski, 1997).

In this section of the study, we apply the K-SOM to the standardized
residuals produced by application of the RBF spillover model. Unlike the
PCA solved above, the K-SOM method does not impose any distributional
assumptions on the components. Our objective is to employ this nonparamet-
ric visualization method to locate any latent clusters that may remain in the
residuals of the associated spillover models. As with the application of factor-
analytic methods, we do not expect the SOM application to locate more than
one dominant cluster when applied to the RBF-generated standardized resid-
uals. A low-dimensional topology in residual error space is consistent with a
model that has accounted for all relevant variability.

Figure 4 provides a visualization of the K-SOM solution. At a value of
approximately 2.0 on the independent axis and 1.0 on the dependent axis, a
large significant cluster is visible. Although we observe several smaller clusters,
the ad hoc review argues for a single dominant source of similarity within the
residual error measurements. This observation is reinforced by the ordered
parameter identities as summarized in Table 8. The desired outcome of this
application was to obtain a single dominant cluster. Based on the combined
review of Table 8 and Figure 4, it is immediately apparent that the Kajiji-4
RBF ANN spillover model achieved its appointed task – to model the time-
dependent sources of volatility spillover effects in European government bond
markets.
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Table 8. K-SOM Clusters Identity

Cluster 1/1 Cluster 2/1

Week of June 16, 2003 All other
Week of May 24, 2004 observations

Fig. 4. K-SOM clusters within RBF ANN residuals.

4.4 Policy Implications

Table 9 reports the computed network weights obtained as a result of esti-
mating the individual country spillover models [Equations (7) and (9)]. To
assess which European policy effects for individual government bond markets
were extracted by application of the spillover model, we focus on the sign
and magnitude of the weights produced by applying the Kajiji-4 RBF ANN.
For the individual country models, the algorithmic solution weights assist in
the determination of the mean- and volatility-spillover effects to each country
from both the U.S. and aggregate European government bond markets. We
note, however, that the estimated weights are not unit-specific with regard
to the data (like regression parameters). That is, the RBF weights do reflect
direction and magnitude. Hence, it is possible to infer an economic interpreta-
tion that follows along the usual interpretation of estimated parameters from
a parametric estimation method.

For the most part, the empirical results for individual government bond
markets corroborate extant findings for post Euro introduction (Christiansen,
2003). Except for Germany, the sign of each RBF weight is positive. That is,
the mean spillover effect from the European aggregate bond market to individ-
ual countries is large and positive for all countries except Germany (−0.1692).
However, the magnitude of the RBF weights suggests that the spillover effect
is weaker (by half) for the non-Euro zone country (Sweden) than it is for EMU
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Table 9. RBF ANN Spillover Model Weights

Return- Lagged Lagged Lagged Euro U.S.
Generating Country Euro U.S. Residual Residual
Model b1,t δi,t−1 γi,t−1 ψi,t−1 φi,t−1

U.S. n/a n/a 0.4137 n/a n/a
Euro n/a 0.1470 0.1328 n/a 0.1385
Germany 0.267 −0.1692 0.2520 −0.0760 0.1629
Sweden 2.033 6.2023 0.2249 1.8278 −9.7189
Spain 3.554 15.4974 −0.1560 3.6120 −21.8662

member Spain. The negative and smaller weight reported for Germany sug-
gests a minor spillover effect from the German bond market to the aggregate
Euro government bond market. Skintzi and Refenes (2004) reported contra-
dictory results for the study period 1991 to 2002. After including additional
EMU countries, this study reports that spillovers were to Germany from the
aggregate Euro area bond index and that the effect became stronger after the
introduction of the Euro.

The inferences from the signs and relative magnitudes of the weights de-
rived from the U.S. mean spillover effect corroborate prior research findings.
For example, we note that the RBF model is consistent in finding a larger
U.S. mean-spillover effect to the German market than that provided by the
aggregate European bond market (0.2520 and −0.1692, respectively). By con-
trast, for the other Euro member, Spain, the U.S. mean spillover effect is 100
times smaller than that reported for the aggregate European bond markets
(−0.1560 and 15.4974, respectively).

The evidence of volatility spillover effects uncovered by the application of
the Kajiji-4 ANN supports prior findings with one important caveat. At the
outset, each country exhibits strong ARCH effects in excess government bond
returns as each country displays a positive weight for its own index’s past
values. The German weight is almost 10 times less contributory than that
reported for either Spain or Sweden. The ANN results for the German mar-
ket produce additional findings that challenge contemporary wisdom when
compared to parametric-based analytics. By way of example, we note that
the U.S. volatility spillover effect is just over 2.2 times as important as the
European volatility spillover effect and, when compared to the other coun-
tries, the signs for the U.S. spillover are reversed. Thus, while increased U.S.
volatility leads to increased volatility in German bond market, just the op-
posite outcome is realized from increased aggregate European bond market
volatility in excess return. That is, the Kajiji-4 findings provide strong evi-
dence that German bond volatility spills into the aggregate European markets.
Not only does this finding contradict to prior reports, but the contradiction
is amplified when we note that the magnitude of the U.S. and Euro bond
market volatility effects is reversed for the other two countries. As shown
in Table 9, for both Spain and Sweden the U.S. volatility effect is negative
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(−21.8662 and −9.7189), while that for the Euro zone is positive (3.6120 and
1.8278). This finding suggests that as U.S. excess bond volatility increases
(decreases), country-specific excess bond volatility in both Spain and Sweden
will decrease (increase). For Spain and Sweden the volatility effects are 6.1
and 5.3 times larger from U.S. sources than from European sources, respec-
tively. In succinct terms, the policy implications derived from the application
of the Kajiji-4 RBF ANN to the defined sample period support the existence
of volatility spillover effects from U.S. and aggregate European government
bond markets, but the findings stand in contradiction to the extant literature
that reports aggregate European spillover effects dominate those generated by
U.S. bond markets. The results presented here also raise a question about the
length of the time required to properly train and develop a generalized RBF
neural network. While the length of the data series proved to be sufficient for
adequate network training, left unanswered by this research is any assessment
of how unique economic peculiarities may impact the ANN learning process
as it relates to the volume and direction of volatility transmission linkages.

5 Summary and Conclusions

The objective of this chapter centered on the use of a two-step econometric
analysis to gain a more in-depth understanding of the volatility transmission
linkages among U.S., aggregate European, and individual country government
bond markets. The intended outcome was motivated by global policymakers
who, collectively, desired to achieve increased efficiency in the overall operation
of the European government bond market. This chapter introduced an inno-
vative financial engineering approach to investigate the historical volatility of
European government bond markets. With a focus on transmission linkages
among U.S., aggregate European and individual European government bond
markets, the analytical phase of the chapter set out to generalize the engineer-
ing of a nonlinear neural network mapping of European volatility spillover.
The effectiveness of the engineered model was tested based on its ability to
control for the ARCH effects that are known to characterize the distribu-
tional properties of bond excess returns. The Kajiji-4 RBF ANN algorithm
was chosen for the modeling task based primarily on its use of a closed-form
solution to derive the regularization parameter, a design consideration that
is used to mitigate the ill effects of within-model collinearity. The network
proved to be extremely efficient in the separation of global, regional, and lo-
cal volatility effects. The econometric effectiveness of the findings enumerated
from Kajiji-4-based volatility spillover models was interrogated by conduct-
ing both a parametric and nonparametric examination of its estimated time-
series residuals. In all post-application analyses, the structural independence
of modeled equations was more characteristic of initial assumptions than not.

The econometric modeling experiment produced several important find-
ings for researchers who engineer nonlinear mappings of economic time series
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by intelligent networks. First, as with all ANN applications, calibration of a
supervised network is a necessary step along the way to producing an efficient
nonlinear mapping of a target variable. In this regard, it was found that among
the choices for data transformation, the normalize method 1 approach pro-
duced the smallest fitness MSE. Second, for the Kajiji-4 method, the demar-
cation between supervised training and model validation is best accomplished
by a simulation-based application for each individual country as well as for
all broad market bond indices. Default settings for all remaining algorithmic
control parameters (e.g., radius, transfer functions, etc.) produced efficient
and accurate mapping for all financial time series. Third, the two-stage ana-
lytical approach preferred in this research demonstrated the effective use of
a classification directed neural network topology to confirm the efficient engi-
neering of time-series mapping neural networks. Specifically, for the intent of
this study, in the second stage we were able to successfully invoke a Kohonen
self-organizing map to document the absence of latent economic effects in the
squared residuals produced by the first-stage time-series mapping of volatil-
ity effects by the Kajiji-4 RBF ANN. For comparative analytics, orthogonal
PCA was also applied to the squared residuals, a process that produced one
well-organized principal component with no latent economic meaning.

Lastly, an examination of the weights produced by ANN algorithmic pro-
cedure yielded policy inferences that supported for prior findings, but with a
degree of ambiguity. The engineered network model reported in this research
confirmed the volatility linkages reported by Christiansen (2003) of mean and
volatility spillover effects from both the U.S. and aggregate European bond
markets to individual European country government bond markets. The re-
sults also confirmed the importance of U.S. government bond market volatility
as a determinant of local government bond market volatility (see Skintzi and
Refenes, 2004). The ambiguity arises when interpreting the reversed signs at-
tached to the parameter estimates. Our research suggests that U.S. volatility
operates inversely with volatility measurements in local markets. Moreover,
the modeling effect here finds that German bond market volatility spills into
the aggregate European market to affect both EMU and non-EMU countries.
Due to the targeted time span implemented in this research, one may conjec-
ture that the reported evidence may be time domain-dependent. The question
of time domain length as it relates to unique economic shocks is deserving of
increased scrutiny given the inverted signs of extracted parameters. Addition-
ally, when compared to extant literature, the efficient findings extracted by
engineering a nonlinear mapping network call for an extension of the current
analysis to include the emerging bond markets of Europe. Such an extension
would lead to a more tractable generalization of generated policy inferences.
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1 Introduction

The expansion of international liquidity and free capital mobility across global
financial markets in the last two decades has increased the likelihood and scope
of financial instability events induced by sudden changes of market agent ex-
pectations. These include unprecedented exchange rates devaluations in de-
veloped and emerging markets, Eurobond spreads sudden tightening (Russia
1998, Brazil 1999, Argentina 2001, Venezuela 2001, etc.), and stock markets
turmoil due to prevailing speculative conditions (Wall Street, 1987, 1989, 1997,
2002; Japan 1990; Nasdaq dot com 2000–2003). A particular form of volatil-
ity is the price bubble, with a steady increase in stock prices followed by a
collapse.

A rationale for speculative bubbles, common among practitioners and eq-
uity market research units in large financial institutions, is based on the so-
called irrational exuberance model, whose origin dates back to 1996 after a
speech given by the Fed Chairman Alan Greenspan. He postulated that a
long-term equilibrium level for the equity market benchmark implied yield,
the 10-year Treasury yield. Price earnings, according to this approach, are
thus expected to fluctuate over time around the inverse of the 10-year Trea-
sury rate: Risk premiums will accordingly reduce to negligible values or in
some periods even become negative (as observed, for instance, in the early
part of this decade). In the Fed model, the correction to stock prices comes in
the form of a shock whose size and probability depend on the overvaluation.

In this chapter, we define a model of market returns that under certain
conditions determines the emergence of a speculative bubble in the economy
and more generally drives bond and equity returns. The model has diffusion
parameters that are random variables plus shock/jump terms with random
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coefficients. There are a number of existing models with jumps (Chernov et al.,
2002), but the jumps are modeled by a homogeneous Poisson process. The
theory behind the bubble implies that the jump is dependent on the excess
returns on stocks. That is, the jump process is state-dependent and therefore
is nonhomogeneous. In Section 2, a model is defined with jump terms having
a probability and size depending on the differential between the returns on
stocks and the long-run equilibrium return. The model incorporates both over-
and undervaluation of stocks. A methodology for estimating parameters in
the model from actual returns is presented in Section 3. The basis of the
approach is the excess volatility in stock returns. Excess returns are assumed
to have a shock component, so the location of shocks can be inferred from
returns. An algorithm for locating shocks and maximum likelihood estimates
for parameters conditional on the shocks are presented. In Section 4, the
methodology is tested on returns from the U.S. securities and bond markets.
The results support the dependence of shocks on the yield differential.

2 The Pricing Model

The accumulation of wealth is achieved through investment in risky assets in
a dynamic securities market. In this section, a general model for asset prices
is developed, which accommodates the generation of speculative bubbles and
subsequent crashes as prescribed by the Fed model. However, the model is gen-
eral in that normal and undervalued periods are possible. The presentation
will consider three assets: stock, bond, and cash, but the equations and meth-
ods can be extended to multiple stocks and bonds. A discrete-time model is
presented, since it provides the framework for observation of prices at regular
intervals such as days, and the estimation of parameters from observations.

The manifest variables in the pricing model are

S(t) = stock price at time t,
P (t) = bond price at time t,
B(t) = cash return at time t.

The stock and bond prices are random variables defined on a probability
space (Ω,B, P ) representing the uncertain dynamics of the market.

The prices at regular intervals in times are the result of accumulated
changes between observations, so continuous-time differential equations are
integrated to get difference equations for changes over an interval.

Consider then the prices of the stock and bond in log form at regular
intervals in time s = 1, . . . , t. Let Y1s = ln(Ps) and Y2s = ln(Ss), with the
initial prices y10 = ln(p0) and y20 = ln(s0). So

Yis = yi,s−1 + ∆Yis, i = 1, 2, (1)
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where ∆Yis is the change in log-price between times s − 1 and s. It is as-
sumed that

∆Y1s = α1s + δ1Z1s, (2)
∆Y2s = α2s + δ2Z2s + Isϑs, (3)

where Zis ∝ N(0, 1), i = 1, 2. ϑs is the shock size and Is is the indicator for
a shock in period s, where Is = 1 with probability λs, for s = 1, . . . , t. For
t days we have (I1, . . . , It) specifying the days for which there was a shock.
Then the time since last shock τ is

τs = τs−1(1 − Is−1) + 1. (4)

The shock parameter ϑs is the aggregate effect of shocks and the drift
parameter αis, i = 1, 2, are the aggregate effects of drift in the sth time
interval. The drift and shock parameters are random variables, defined for
i = 1, 2, by the equations

αis = µi + γiF, (5)

ϑs = τsθ + ηZ, (6)

where F ∝ N(0, 1) is a common factor to stocks and bonds, and Z ∝ N(0, 1)
defines the variation in shock size. So α1s and α2s are correlated. The parame-
ter θ captures the size per period of the differential from the long-run rate. In
(6) the expected shock size grows linearly with the time since the last shock.

It is assumed that the intensity λs follows the power law, with shape
parameter β and size parameter φ. The intensity is

λs =
(
β

φ

)(
τs
φ

)β−1

. (7)

The power law specification for the intensity fits into the type of formu-
lation where indicator variables are used to define a shock on a given day.
So the probability of a shock increases with the time since the last shock,
or equivalently with the differential. There are theoretical foundations for the
power law with growth models, and so it is the preferred form for the intensity
(Gabaix et al., 2003).

The drift parameters αis, i = 1, 2, are not dynamic. It is anticipated that
a moving window of data will be used to estimate parameters, and within a
window a constant prior is justified. The shock size ϑs is dynamic, since it
depends on the time since the last shock and occurs with probability

qs =
λs−τs

λs

s∏

j=s−τs+1

(1 − λj). (8)
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Putting the equations together yields the formulas for prices on bonds and
stocks at time t:

Y1t = y10 + µ1t+ γ1

t∑

s=1

Fs + δ1

t∑

s=1

Z1s, (9)

Y2t = y20 + µ2t+ γ2

t∑

s=1

Fs + δ2

t∑

s=1

Z2s + ϑ{t}, (10)

where

ϑ{t} = θ

t∑

s=1

Isτs + η

t∑

s=1

IsZs. (11)

The model for price dynamics defined by the above equations has simi-
lar components to existing models (Chernov et al., 2002). The distinguishing
feature of the model here is the time dependence of the point process ϑ{t}.
This feature is the mechanism for irrational exhuberance and bubbles, but the
distribution of prices is considerably complicated by the time dependence. An
approach that makes the problem tractable is to separate the price distribu-
tions into the conditional distributions, given a sequence of shocks, and the
identification of an optimal sequence of shocks.

With the parameters represented as Θ = (µ1, µ2, θ, γ1, γ2, δ1, δ2, η) and the
shock sequence I = (I1, . . . , It), the conditional distribution of log-prices at
time t, given the shock sequence and parameters, is Gaussian:

(Y1t | Θ, I) ∝ N(µ1t(Θ), σ2
1t(Θ)), (12)

(Y2t | Θ, I) ∝ N(µ2t(Θ, I), σ2
2t(Θ, I)), (13)

where

µ1t(Θ) = y10 + µ1t, (14)
µ2t(Θ, I) = y20 + µ2t+ θKt(I), (15)

σ2
1t(Θ) = γ2

1t+ δ21t, (16)

σ2
2t(Θ, I) = γ2

2t+ δ22t+ η2Nt(I), (17)

Kt(I) =
t∑

s=1

Isτs, (18)

Nt(I) =
t∑

s=1

Is. (19)

Based on the independence of Fs, Z1s, Z2s, and Zs, the covariance between
log-prices on stocks and bonds is

σ12t(Θ, I) = γ1γ2t. (20)
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These normal distributions determined by the number of shocks are similar
to the form presented in Consigli (2002). The log-prices on the bond have
a normal distribution, which doesn’t depend on the shocks. The conditional
distribution of prices, given a specific shock sequence, is important to the
methodology used to estimate model parameters in the next section.

3 Parameter Estimation

Consider the set of observations on daily closing prices

{y1, . . . , yt} ,

where

y′s = (y1s, y2s), s = 1, . . . , t.

Corresponding to the observed prices on stocks is an unobserved sequence
of shocks I = (I1, . . . , It). Fitting the model to the data implies estimating
the parameters and inferring the sequence of shocks. The changes in prices:
∆Ys = Ys − ys−1, are defined by (10) and (11). Consider the observed daily
changes in log-prices

es = ys − ys−1, s = 1, . . . , t. (21)

The conditional distribution for es given I and (Θ,Ξ) is a bivariate normal
distribution with density

fs(es | Θ, I) = (2π)−1 |Σs(I)|−
1
2 exp

[− 1
2 (es − ξs(I))′Σ−1

s (I)(es − ξs(I))
]
,

(22)

where

ξs(I) =
(
ξ1s(I)
ξ2s(I)

)
=
(

µ1

µ2 + Isτsθ

)
, (23)

Σs(I) =
(
σ2

1s(I) σ12(I)
σ12(I) σ2

2s(I)

)
=
(
γ2
1 + δ21 γ1γ2

γ1γ2 γ2
2 + δ22 + η2Is

)
. (24)

The structure in the covariance matrix is important for model fitting.

Consider Γ′ = (γ1, γ2) and ∆s(Is) =
[
δ21 0
0 δ22 + η2Is

]
. Then Σs(I) = ΓΓ′ +

∆s(Is). This decomposition of the covariance matrix into a matrix determined
by common market factors and a matrix of specific variances will be important
in the estimation of parameters.
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3.1 Estimating Model Parameters with Given Shocks

For given values of the shocks indicators I = (I1, . . . , It) and data e =
(e1, . . . , et) , the data can be split into two sets based on times with shocks.
Let A = {s|Is = 1} and Ā = {s|Is = 0}. Consider the statistics for the sub-
samples: nA = the number of values in A, nĀ = the number of values in Ā,

ξ̂A =
1
nA

∑

s∈A

es =
(
ē1A

ē2A

)
, (25)

ξ̂Ā =
1
nĀ

∑

s∈Ā

es =
(
ē1Ā

ē2Ā

)
, (26)

SA =
1
nA

∑

s∈A

(
es − ξ̂A

)(
es − ξ̂A

)′
=
(
σ̂2

1A σ̂12A

σ̂12A σ̂2
2A

)
, (27)

SĀ =
1
nĀ

∑

s∈Ā

(
es − ξ̂Ā

)(
es − ξ̂Ā

)′
=
(
σ̂2

1Ā
σ̂12Ā

σ̂12Ā σ̂2
2Ā

)
. (28)

The subsample statistics are the basis of maximum likelihood estimates for

parameters. Consider the notation J =
[

0 0
0 1

]
, Ts = [0, τs]

′ , ΣA = Σ + η2J ,

and µA = µ + θTs, where µ is the expected return and Σ is the covariance,
respectively, for the returns without shocks. Assuming the shock sequence is
known, the likelihood function for the parameters Θ = (µ,Σ, θ, η) is Gaussian,
and maximizing the log-likelihood produces the estimates in Table 1. In the
formulas, Σ̃ is a prior value for the covariance matrix. It is anticipated that
the formulas will be used iteratively, so the prior value is the result from the
previous iteration.

Table 1. Conditional Maximum-Likelihood Estimates for Θ

Parameter Estimate

µ µ̂ = (nAΣ̃−1
A + nĀΣ̃−1)−1[(Σ̃−1

A

∑
s∈A(es − θTs)) + (Σ̃−1 ∑

s∈Ā es)]

Σ Σ̂ = 1
n
[SAΣ̃−1

A Σ̃ + Σ̃−1Σ̃ASĀ] − nĀ
n
η2J

θ θ =
∑

s∈A(es−µ)′Σ̃−1Ts∑
s∈A T ′

sΣ̃−1Ts

η2 η2 = |Σ̃|
σ̃11

(
tr( 1

nA
SAΣ̃−1JΣ̃−1)

trΣ̃−1J
− 1

)

For the covariance matrices, there is a similar structure defined by the
common factor in the drift. The structural solution is presented in Table 2.

With a given sequence of shocks it is straightforward to estimate Ξ = (β, φ)
using the definition of the power law.
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Table 2. Structural Solution: Σ = ΓΓ′ + ∆

Parameter Estimate

Γ Γ̂′ =
(√
ρ̂σ̂1,

√
ρ̂σ̂2

)

∆ ∆̂ = diag((1 − |ρ̂|)σ̂2
1 , (1 − |ρ̂|)σ̂2

2)

ρ ρ̂ = σ̂12
σ̂1σ̂2

Consider the times between shocks calculated from the given sequence
I = (I1, . . . , It), defined as

x = {x1, . . . , xnA+1} .

Note that the first time x1 will include the estimated time since a shock at
the start of observation, which is x̂0 = (y20−y10)/θ̂. Also, the process at time
t is possibly truncated before a shock, so the last time xn+1may be truncated.
The likelihood for Ξ, given I and x, is

L(Ξ | I, x) =
(
β

φ

)nA
[

nA∏

i=1

(
xi

φ
)β−1

]
exp

[
−
(
xnA+1

φ

)β
]
. (29)

With

�(Ξ | I, x) = lnL(Ξ | I, x),

the maximum-likelihood estimates are given in Table 3.

Table 3. Conditional Power Law Estimates

Parameter Estimate

G(β) nA

∑nA
i=1 x

β
i + (

∑nA
i=1 ln(xi))

∑nA
i=1 βx

β
i − nA

∑nA
i=1 β

2xβ−1
i

φ φ̂ =
∑nA

i=1 x
β̂
i

nA
,

β β̂ � G(β̂) = 0.

For the power law, the time between shocks follows a Weibull distribution,
with shape parameter β. If the probability of a shock increases with the time
since the last shock, then β > 1, and the estimate β̂ can be used to verify the
hypothesis that the shock intensity is state-dependent.
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4 Fitting the Shocks: A Peaks Method

The identification of periods with shocks is a key step in implementing the
maximum-likelihood methodology. It remains to determine the specification
of shocks that is most compatible with the observed log-price increments. If
the motivation for shocks is the distribution of returns, and in particular the
extreme values, then specifying a critical size for increments and assuming
that periods with increments beyond the critical size must contain a shock
component is reasonable. The critical size should be linked to the actual dis-
tribution of returns. An approach to identifying shocks based on extreme value
concepts is presented in this section.

Let e = (e1, . . . , en) be the vector of one-period observations of log returns
and I = (I1, . . . , In) be the associated jump sequence where Ii = 1 indicates
a jump. The joint likelihood is p(e, I) = p(e|I)× p(I), and then the log of the
joint likelihood is ln(p(e, I)) = ln(p(e|I)) + ln(p(I)).

The diffusion (random walk) parameters including the jump distribution
parameters can be estimated using the conditional log-likelihood ln(p(e|I)) for
a given jump sequence, and the intensity parameters φ and β can be estimated
via ln(p(I)). Note that ln(p(e|I)) = ln

∏n
i=1 p(ei|Ii) =

∑n
i=1 ln(p(ei|Ii)).

For computations, first the diffusion and the jump distribution parame-
ters are estimated by maximizing the above log-likelihood, ln(p(e|I)) for a
given sequence I. To determine the “best” jump sequence for a given set of
observations, maximize the above total (joint) log-likelihood, ln(p(e, I)), over
all “possible” jump sequences. The parameter estimates in the propositions
are for a given set of shocks. To determine the “best” sequence of shocks, the
conditional mle Θ̂(I) is used. So the shock space is searched and for each se-
lection the conditional likelihood value is calculated for the optimal estimates.
The shock sequence with the highest conditional likelihood value is the goal.
This is assumed to be close to the joint likelihood value. The number of shock
sequences is very large, so a search method based on the observed trajectory
of prices is proposed. It is referred to as the peaks method since it looks
for changes/increments above a specified size in identifying shock times. The
method proceeds as follows:

1. Calculate the mean ē and standard deviation s1 from the observed incre-
ments on stocks.

2. Specify a grid size ω > 0 and a size interval (L,U), and set k = 0.
3. Determine a critical increment deviation size L ≤ kωs1 ≤ U, and identify

times/indices Tk =
{
i | |ei − ē| > kωs1, 1 ≤ i ≤ n

}
.

4. Assume there is a shock at times i ∈ Tk, i.e. Ii = 1, i ∈ Tk. For this
sequence of shocks, calculate the conditional maximum-likelihood esti-
mates for Θ(k), and corresponding conditional likelihood value l(k). Set
k = k + 1, and return to [2], unless k ≥ (U − L)/ωs1.

5. Find the best sequence of shocks from

k∗ = argmax {l(k), 0 ≤ k ≤ (U − L)/ωs1} .
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In the peaks method fewer shocks are identified as k increases. The
definition of shock is determined by the data, or more specifically the
shock size that produces the best conditional likelihood for the data. A
plot {k, l(k)} would indicate the pattern of the likelihood with shock size.

5 Numerical Tests

Two issues about the estimation methodology need to be checked: (1) If prices
follow the model specified by the equations, are the estimation procedures
accurate? (2) If the estimation methodology is sound, what do parameter
estimates from actual price trajectories tell us about the significance of shocks
and the dependence of shocks on the state of prices?

5.1 A Monte Carlo Study

The soundness of the procedures is checked through simulation. Assume the
parameter sets Θ = [µ1, µ2, σ

2
1 , σ12, σ

2
2 , θ, η] and Ξ = (φ, β) for generating

the stock returns. θ and η are the mean and the standard deviation of the
jumps. Let

Θ = [0.0023, 0.0089, 0.0052, −0.0021, 0.0124, −0.0070, 0.0312],
Ξ = (20, 5).

An example of simulated trajectories of stocks and bonds is shown in
Figure 1.

Fig. 1. Simulated trajectories for stocks and bonds.
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To test the estimation methodology, 200 trajectories of daily prices were
generated and parameter estimates calculated. The results are presented in
Table 4.

Table 4. Monte Carlo Results

Parameters True Value Estimate Standard Error 95% Interval

µ1 0.002300 0.0023, 0.0003 (0.0018, 0.0029)
µ2 0.008900 0.0090, 0.0008 (0.0076, 0.0102)
σ11 0.005200 0.0051, 0.0002 (0.0047, 0.0055)
σ12 −0.002100 −0.0009, 0.0003 (−0.0014, −0.0004)
σ22 0.012400 0.0126, 0.0005 (0.0118, 0.0135)
θ −0.007000 −0.0060, 0.0086 (−0.0176, 0.0079)
η 0.013200 0.0287, 0.0068 (0.0179, 0.0394)
φ 20.000000 20.3636, 1.1418 (18.2563, 22.1391)
β 5.000000 5.7206, 1.2343 (4.2370, 8.1255)

The estimation results are very reasonable. All estimates are statistically
significant and are within the 95% confidence intervals for the true values. The
procedures are internally consistent. If the model is an accurate description
of price behavior, then the statistical methods are valid for estimating para-
meters. It is possible that there is model error, but the model presented by
Equations (9)–(11) is an enhancement of existing models. The new feature is
the power law for the intensity in the Poisson process, and that accomodates
constant intensity (existing models) and time-/state-dependent intensity.

5.2 Shock Intensity and Price Differentials

The setup in the pricing model emphasizes the possible dependence of the
shock intensity on the time since the last shock and therefore on the gap in
prices between stocks and bonds. The shock is a correction, and in the absence
of a correction, the stock price can become over- or undervalued, depending
on investor sentiment. As the stock price becomes increasingly misvalued, the
chances for a correction grow.

To test the intensity for dependence, the parameters in the model for as-
set price dynamics with (possibly) time-dependent shocks are estimated from
actual trajectories of daily prices for stocks and bonds in the U.S. market
between 1998 and 2002. The data are from Datastream, with the stock price
representing the total market price index, and the bond price representing the
yield on 10-year government benchmark bonds. For the computational exper-
iment the 5-year period was divided into 10 consecutive half-year intervals
with 130 trading days. A plot of the stock returns in the 10 intervals is shown
in Figure 2.
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Fig. 2. Daily stock returns for half-year periods.

In each period, the peaks method for shock selection was implemented
and conditional maximum-likelihood estimates for model parameters were de-
termined.
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The final results for shock selection are presented in Table 5. The “best”
shock size in terms of the number of standard deviations is very consistent
across periods.

Table 5. Peaks Method

Period Log Likelihood Critical Size Number of Shocks
i l(k∗) k∗ω nA

100 1023.14000 2.36 3
200 871.52000 2.40 4
300 960.63000 2.14 1
400 885.52000 2.14 4
500 913.45000 2.16 3
600 990.97000 2.10 4
700 855.77000 2.42 4
800 913.77000 1.96 3
900 971.12000 2.10 4

1000 889.79000 2.12 3

The parameter estimates for the best selection of shocks are given in
Table 6. Estimates for the shape parameter β are consistently above 1.0, in-
dicating that the probability of a shock depends on the time since the last
shock.

Table 6. Parameter Estimates

Period Bond Stock Bond Stock Bond Stock Scale Shape
i µ1 µ2 γ1 γ2 δ21 δ22 φ β

100 0.00020 0.00166 −0.00086 0.00113 0.00571 0.00753 45.25 1.53
200 −0.00048 0.00070 −0.00469 0.00607 0.00886 0.01148 19.95 0.99
300 −0.00103 0.00090 0.00271 0.00413 0.00728 0.01111 – –
400 0.00028 0.00019 0.00823 0.00542 0.01153 0.00759 25.20 1.49
500 0.00053 0.00027 −0.00178 0.00314 0.00741 0.01311 30.06 1.50
600 0.00045 −0.00123 −0.00139 0.00283 0.00495 0.01011 32.40 1.01
700 −0.00139 −0.00133 −0.00337 0.00324 0.01207 0.01160 23.36 1.43
800 0.00031 −0.00007 −0.00188 0.00211 0.00933 0.01047 16.15 0.65
900 0.00038 −0.00161 −0.00310 0.00483 0.00577 0.00900 36.00 2.40

1000 0.00055 −0.00153 −0.00577 0.01285 0.00574 0.01277 28.35 1.07

The statistics on the mean and standard deviation of shocks are presented
in Table 7. These statistics characterize the set of shocks in each period. The
total effect of shocks in a period is small, indicating that market corrections
almost cancel out. However, the variance is large, indicating that the individ-
ual shocks are large. This supports the use of Poisson processes to fit extreme
values (Chernov et al. 2002).

The key finding in this analysis is the placement of shocks. In the data,
the probability of a shock depends on the state of prices for stocks and bonds,
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Table 7. Shock Statistics

Period Mean Variance
i0 θ2 η2

2

100 −0.00038 0.01557
200 −0.00020 0.04968
300 – –
400 0.00030 0.02610
500 0.00026 0.04680
600 0.00050 0.02520
700 −0.00016 0.04242
800 −0.00081 0.02644
900 0.00042 0.02478

1000 0.00114 0.03053

and in particular on the gap in prices. In the usual model with Poisson terms,
the intensity is constant and the shocks occur randomly in time. From the
perspective of the distribution of returns, the timing of shocks may not appear
important since the excess volatility will be captured. From the perspective
of market dynamics, it is very important when shocks occur.

6 Conclusion

The addition of shock or jump terms in models for the dynamics of stock
prices is useful in fitting the excess volatility of returns. The usual models have
shocks with constant intensity. However, there are strong economic reasons to
support the dependence of the shock intensity on the recent history of returns.
In particular, over- or undervaluation of returns for an extended period should
be a precursor of a market correction in the form of a shock.

In this chapter, a model for stock price dynamics is proposed that acco-
modates state-dependent shocks. Parameter estimation in this more complex
model requires a predetermination of the size of shocks. An algorithm that
iterates through shock sizes is used to fix a best sequence of shocks over the
time periods in an estimation interval.

The test results on the model and estimation methods indicate that the
procedures are able to accurately estimate parameters and that the depen-
dence of shock intensity on the state of returns is supported by actual data.
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1 Introduction

International investment portfolios are of particular interest to multinational
firms, institutional investors, financial intermediaries, and high-net-worth in-
dividuals. Investments in financial assets denominated in multiple currencies
provide a wider scope for diversification than investments localized in any
market and mitigate the risk exposure to any specific market. However, inter-
nationally diversified portfolios are inevitably exposed to currency risk due to
uncertain fluctuations of exchange rates.

Currency risk is an important aspect of international investments. With
the abandonment of the Bretton Woods system in 1973, exchange rates were
set free to float independently. Since then, exchange rates have exhibited peri-
ods of high volatility; correlations between exchange rates, as well as between
asset returns and exchange rates, have also changed substantially. Stochas-
tic fluctuations of exchange rates constitute an important source of risk that
needs to be properly considered (see, e.g., Eun and Resnick, 1988). Thus, it
is important to investigate the relative effectiveness of alternative means for
controlling currency risk.

Surprisingly, in practice, and usually in the literature as well, interna-
tional portfolio management problems are addressed in a piecemeal manner.
First, an aggregate allocation of funds across various markets is decided at
the strategic level. These allocations are then managed pretty much indepen-
dently, typically by market analysts who select investment securities in each
market and manage their respective portfolio. Performance assessment is usu-
ally based on comparisons against preselected benchmarks. Currency hedging
is often viewed as a subordinate decision; it is usually taken last so as to cover
exposures of foreign investments that were decided previously. Changes in the
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overall portfolio composition are not always coordinated with corresponding
adjustments to the currency hedging positions. Important and interrelated
decisions are considered separately and sequentially. This approach neglects
possible cross-hedging effects among portfolio positions and cannot produce
a portfolio that jointly coordinates asset and currency holdings so as to yield
an optimal risk-return profile. Jorion (1994) criticized this overlay approach;
he showed that it is suboptimal to a holistic view that considers all the inter-
related decisions in a unified manner.

We consider models that jointly address the international diversification,
asset selection, and currency hedging decisions. An important part of this
study is the comparison of alternative instruments and tactics for control-
ling currency risk in international financial portfolios. In dynamic portfolio
management settings, this is a challenging problem. We employ the stochas-
tic programming paradigm to empirically assess the relative performance of
alternative strategies that use either currency forward contracts or currency
options as a means of controlling currency risk.

A currency forward contract constitutes an obligation to sell (or buy) a
certain amount of a foreign currency at a specific future date, at a predeter-
mined exchange rate. A forward contract eliminates the downside risk for the
amount of the transaction, but at the same time it forgoes the upside poten-
tial in the event of a favorable movement in the exchange rate. By contrast, a
currency put option provides insurance against downside risk, while retaining
upside potential as the option is simply not exercised if the exchange rate
appreciates. So, currency forward contracts can be considered as more rigid
hedge tools in comparison to currency options.

Few empirical studies on the use of currency options are reported in the
literature. Eun and Resnick (1997) examined the use of forward contracts
and protective put options for handling currency risk. In ex ante tests, they
found that forward contracts generally provide better performance in hedging
currency risk than single protective put options. Albuquerque (2007) ana-
lyzed hedging tactics and showed that forward contracts dominate the use
of single put options as hedges of transaction exposures. The reason is that
forward contracts pay more than single options on the downside; hence, less
currency needs to be sold forward to achieve the same degree of hedging; a
smaller hedge ratio is required and the cost for hedging is less. Maurer and
Valiani (2003) compared the effectiveness of currency options versus forward
contracts for hedging currency risk. They found that both ex-post, as well as
in out-of-sample tests, forwards contracts dominate the use of single-currency
put options. Only put in-the-money options produce comparable results with
optimally hedged portfolios with forwards. Their results indicate more active
use of put in-the-money options than at-the-money or out-of-the money put
options, revealing the dependence of a hedging strategy based on put options
on the level of the strike price.

Conover and Dubofsky (1995) considered American options. They empir-
ically examined portfolio insurance strategies employing currency spot and
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future options. They found that protective puts using future options are gen-
erally dominated by both protective puts that use options on spot currencies
and by fiduciary calls on futures contracts. Lien and Tse (2001) compared
the hedging effectiveness of currency options versus futures on the basis of
lower partial moments (LPM). They concluded that currency futures provide
a better hedging instrument than currency options; the only situation in which
options outperform futures occurs when the decision maker is optimistic (with
a large target return) and not too concerned about large losses.

Steil (1993) applied an expected utility analysis to determine optimal con-
tingent claims for hedging foreign transaction exposure as well as optimal
forward and option hedge alternatives. Using quadratic, negative exponen-
tial, and positive exponential utility functions, Steil concluded that currency
options play a limited useful role in hedging contingent foreign exchange trans-
action exposures.

There is no consensus in the literature regarding a universally preferable
strategy to hedge currency risk, although the majority of results indicates that
currency forwards generally yield better performance than single protective
put options. Earlier studies did not jointly consider the optimal selection of
internationally diversified portfolios. Our study addresses this aspect of the
portfolio management problem in connection with the associated problem of
controlling currency risk and contributes to the aforementioned debate. We
empirically examine whether forward contracts are effective hedging instru-
ments, or whether superior performance can be achieved by using currency
options–either individual protective puts or combinations of options with ap-
propriate payoffs.

To this end, we extend the multistage stochastic programming model for
international portfolio management that was developed in Topaloglou et al.
(forthcoming) by introducing positions in currency options to the decision set
at each stage. The model accounts for the effects of portfolio (re)structuring
decisions over multiple periods, including positions in currency options among
its permissible decisions. The incorporation of currency options in a practi-
cal portfolio optimization model is a novel development. A number of issues
are addressed in the adaptation of the model. Currency options are suitably
priced at each decision stage of the stochastic program in a manner consistent
with the scenario set of exchange rates. The scenario-contingent portfolio re-
balancing decisions account for the discretionary exercise of expiring options
at each decision point.

The dynamic nature of portfolio management problems motivated our de-
velopment of flexible multistage stochastic programming models that capture
in a holistic manner the interrelated decisions faced in international portfolio
management. Multistage models help decision makers adopt more effective
decisions; their decisions consider longer-term potential benefits and avoid
myopic reactions to short-term movements that may lead to losses.

We use the stochastic programming model as a testbed to empirically as-
sess the relative effectiveness of currency options and forward contracts to
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control the currency risk of international portfolios in a dynamic setting. We
analyze the effect of alternative strategies on the performance of international
portfolios of stock and bond indices in backtesting experiments over multiple
time periods. Our empirical results confirm that portfolios with optimally se-
lected forward contracts outperform those that involve a single protective
put option per currency. However, we find that trading strategies involv-
ing suitable combinations of currency options have the potential to produce
better performance. Moreover, we demonstrate through extensive numerical
tests the viability of a multistage stochastic programming model as a decision
support tool for international portfolio management. We show that the dy-
namic (multistage) model consistently outperforms its single-stage (myopic)
counterpart.

The chapter is organized as follows. In Section 2, we present the formula-
tion of the optimization models for international portfolio selection. In Sec-
tion 3, we discuss the hedging strategies employed in the empirical tests. In
Section 4, we describe the computational tests and we discuss the empirical
results. Section 5 concludes. Finally, in the Appendix we describe the pro-
cedure for pricing European currency options consistently with the discrete
distribution of exchange rates on a scenario tree.

2 The International Portfolio Management Model

The international portfolio management model aims to determine the optimal
portfolio that has the minimum shortfall risk at each level of expected return
over the planning horizon. The problem is viewed from the perspective of a
U.S. investor who may hold assets denominated in multiple currencies. The
portfolio is exposed to market and currency risk. To cope with the market risk,
the portfolio is diversified across multiple markets. International diversifica-
tion exposes the foreign investments to currency risk. To control the currency
risk, the investor may enter into currency exchange contracts in the forward
market, or buy currency options–either single protective puts, or combinations
of options that form a particular trading strategy.

In this section, we develop scenario-based stochastic programming mod-
els for managing investment portfolios of international stock and government
bond indices. The models address the problems of optimal portfolio selection
and currency risk management in an integrated manner. Their determinis-
tic inputs are the initial asset holdings, the current prices of the stock and
bond indices, the current spot exchange rates, the forward exchange rates,
or the currency option prices–depending on which instruments are used to
control currency risk–for a term equal to the decision interval. We also specify
scenario-dependent data, together with associated probabilities, that repre-
sent the discrete process of the random variables at any decision stage in
terms of a scenario tree. The prices of the indices and the exchange rates
at any node of the scenario tree are generated with the moment-matching
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procedure of Høyland et al. (2003); these, in turn, uniquely determine the
option payoffs at any node of the tree.

We explore single-stage as well as multistage stochastic programming mod-
els to manage international portfolios of financial assets. The multistage model
determines a sequence of buying and selling decisions at discrete points in time
(monthly intervals). The portfolio manager starts with a given portfolio and
with a set of postulated scenarios about future states of the economy repre-
sented in terms of a scenario tree, as well as corresponding forward exchange
rates or currency option prices depending on the postulated scenarios. This
information is incorporated into a portfolio restructuring decision. The com-
position of the portfolio at each decision point depends on the transactions
that were decided at the previous stage. The portfolio value depends on the
outcomes of asset returns and exchange rates realized in the interim period
and, consequently, on the discretionary exercise of currency options whose
purchase was decided at the previous decision point. Another portfolio re-
structuring decision is then made at that node of the scenario tree based on
the available portfolio and taking into account the projected outcomes of the
random variables in subsequent periods.

The models employ the conditional value-at-risk (CVaR) risk metric to min-
imize the excess losses, beyond a prespecified percentile of the portfolio return
distribution, over the planning horizon. The decision variables reflect asset
purchase and sale transactions that yield a revised portfolio. Additionally, the
models determine the levels of forward exchange contracts or currency option
purchases to mitigate currency risk. Positions in specific combinations of cur-
rency options–corresponding to certain trading strategies–are easily enforced
with suitable linear constraints. The portfolio optimization models incorpo-
rate practical considerations (no short sales for assets, transaction costs) and
minimize the tail risk of final portfolio value at the end of the planning hori-
zon for a given target of expected return. The models determine jointly the
portfolio compositions (not only the allocation of funds to different markets,
but also the selection of assets within each market) and the levels of currency
hedging in each market via forward contracts or currency options.

To ensure the internal consistency of the models, we price the currency
options at each decision node on the basis of the postulated scenario sets.
To this end, we adapt a suitable option valuation procedure that accounts
for higher-order moments exhibited in historical data of exchange rates, as
described in the Appendix. The option prices are used as inputs to the opti-
mization models together with the postulated scenarios of asset returns and
exchange rates. We confine our attention to European currency options that
may be purchased at any decision node and have a maturity of one period.
At any decision node of the scenario tree, the selected options in the portfolio
may be exercised and new option contracts may be purchased.
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We use the following notation:

Sets:
C0 the set of currencies (synonymously, markets, countries),
� ∈ C0 the index of the base (reference) currency in the set of currencies,
C = C0\{�} the set of foreign currencies,
Ic the set of assets denominated in currency c ∈ C0

(these consist of one stock index, one short-term, one
intermediate-term, and one long-term government bond index
in each country),

N the set of nodes of the scenario tree,
n ∈ N a typical node of the scenario tree (n = 0 is the root node at

t = 0),
Nt ⊂ N the set of distinct nodes at time period t = 0, 1, . . . , T ,
NT ⊂ N the set of leaf (terminal) nodes at the last period T , that

uniquely identify the scenarios,
Sn ⊂ N the set of immediate successor nodes of node n ∈ N \NT . This

set of nodes represents the discrete distribution of the random
variables at the respective time period, conditional on the state
of node n.

p(n) ∈ N the unique predecessor node of node n ∈ N \{0},
Jc the set of available currency options for foreign currency c ∈ C

(differing in terms of exercise price).

Input Data:

(a) Deterministic parameters:

T length of the time horizon (number of decision periods),
bic initial position in asset i ∈ Ic of currency c ∈ C0 (in units of

face value),
h0

c initially available cash in currency c ∈ C0 (surplus if +ve, short-
age if -ve),

δ proportional transaction cost for sales and purchases of assets,
d proportional transaction cost for currency transactions in the

spot market,
µ prespecified target expected portfolio return over the planning

horizon,
α prespecified percentile for the CVaR risk measure,
π0

ic current market price (in units of the respective currency) per
unit of face value of asset i ∈ Ic in currency c ∈ C0,

e0c current spot exchange rate for foreign currency c ∈ C,
f0

c currently quoted one-month forward exchange rate for foreign
currency c ∈ C,

Kj the strike price of an option j ∈ Jc, on the spot exchange rate
of foreign currency c ∈ C.
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(b) Scenario-dependent parameters:

pn probability of occurrence of node n ∈ N ,
en

c spot exchange rate of currency c ∈ C at node n ∈ N ,
fn

c one-month forward exchange rate for foreign currency c ∈ C at
node n ∈ N \NT ,

πn
ic price of asset i ∈ Ic, c ∈ C0 on node n ∈ N (in units of local

currency),
ccn(en

c ,Kj) price of European call currency option j ∈ Jc on the exchange
rate of currency c ∈ C, at node n ∈ N \NT , with exercise price
Kj and maturity of one month,

pcn(en
c ,Kj) price of European put currency option j ∈ Jc on the exchange

rate of currency c ∈ C, at node n ∈ N \NT , with exercise price
Kj and maturity of one month.

All exchange rates (e0c , f0
c , e

n
c , f

n
c ) are expressed in units of the base cur-

rency per one unit of the foreign currency c ∈ C. Of course, the exchange rate
of the base currency to itself is trivially equal to 1, fn


 = en

 ≡ 1, ∀n ∈ N . The

prices cc and pc of currency call and put options, respectively, are expressed
in units of the base currency �.

Computed Parameters:
V 0


 total value (in units of the base currency) of the initial portfolio.

V 0

 = h0


 +
∑

i∈I�

bi
 π
0
i
 +

∑

c∈C

e0c

(
h0

c +
∑

i∈Ic

bic π
0
ic

)
(1)

Decision Variables:

Portfolio (re)structuring decisions are made at all non-terminal nodes of the
scenario tree, thus ∀n ∈ N \NT .

(a) Asset purchase, sale, and hold quantities (in units of face value):

xn
ic units of asset i ∈ Ic of currency c ∈ C0 purchased,
vn

ic units of asset i ∈ Ic of currency c ∈ C0 sold,
wn

ic resulting units of asset i ∈ Ic of currency c ∈ C0 in the revised portfolio.

(b) Currency transfers in the spot market:

xn
c,e amount of base currency exchanged in the spot market for foreign cur-

rency c ∈ C,
vn

c,e amount of the base currency collected from a spot sale of foreign currency
c ∈ C.
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(c) Forward currency exchange contracts:
un

c,f amount of base currency collected from sale of currency c ∈ C in the
forward market (i.e., amount of a forward contract, in units of the base
currency). A negative value indicates a purchase of the foreign currency
forward. This decision is taken at node n ∈ N\NT , but the transaction is
actually executed at the end of the respective period, i.e., at the successor
nodes Sn.

(d) Variables related to currency options transactions:
nccnc,j purchases of European call currency option j ∈ Jc on the exchange

rate of currency c ∈ C, with exercise price Kj and maturity of one
month,

npcnc,j purchases of European put currency option j ∈ Jc on the exchange
rate of currency c ∈ C, with exercise price Kj and maturity of one
month.

When currency options are used in the portfolio management model, only
long positions in the respective trading strategies of options are allowed.

Auxiliary Variables:

yn auxiliary variables used to linearize the piecewise linear function in the
definition of the CVaR risk metric; they measure the portfolio losses at leaf
node n ∈ NT in excess of VaR,

z the value-at-risk (VaR) of portfolio losses over the planning horizon (i.e.,
the αth percentile of the loss distribution),

V n

 the total value of the portfolio at the end of the planning horizon at leaf

node n ∈ NT (in units of the base currency),
Rn return of the international portfolio over the planning horizon at leaf node

n ∈ NT .

2.1 International Portfolio Management Models

We consider either forward contracts or currency options in the optimization
models, but not both, as means to mitigate the currency risk of international
portfolios. Hence, we formulate two different variants of the international port-
folio optimization model; the models differ in the cashflow balance constraints
and the computation of the final portfolio value.

Portfolio Optimization Model with Currency Options

This model minimizes the conditional value-at-risk (CVaR) of portfolio losses
over the planning horizon, while also requiring that expected portfolio return
meets a prespecified target, µ, (2i). Expectations are computed over the set
of terminal states (leaf nodes). The objective value (2a) measures the CVaR
of portfolio losses at the end of the horizon, while the corresponding VaR of
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portfolio losses (at percentile α) is captured by the variable z; see Rockafellar
and Uryasev (2002), Topaloglou et al. (2002).

minz +
1

1 − α

∑

n∈NT

pnyn (2a)

s.t.h0
� +

∑

i∈I�

v0
i�π

0
i�(1 − δ) +

∑

c∈C

v0
c,e(1 − d) =

∑

i∈I�

x0
i�π

0
i�(1 + δ) +

∑

c∈C

x0
c,e(1 + d)

+
∑

c∈C

∑

j∈Jc

[
npc0c,j ∗ pc0(e0c,Kj)

]
(2b)

h0
c +

∑

i∈Ic

v0
icπ

0
ic(1 − δ) +

1

e0c
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c,e =
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icπ

0
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1

e0c
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c,e, ∀ c ∈ C (2c)

hn
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∑

i∈I�

vn
i�π

n
i�(1 − δ) +

∑

c∈C
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c,e(1 − d) +

∑

c∈C

∑

j∈Jc

[
npc

p(n)
c,j ∗ max(Kj − en

c , 0)
]

=
∑

i∈I�

xn
i�π

n
i�(1 + δ) +

∑

c∈C

xn
c,e(1 + d) +

∑

c∈C

∑

j∈Jc

[
npcnc,j ∗ pcn(en

c ,Kj)
]
,

∀ n ∈ N \ {NT ∪ 0} (2d)

hn
c +

∑

i∈Ic
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icπ

n
ic(1 − δ) +

1
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c

xn
c,e =

∑

i∈Ic

xn
icπ

n
ic(1 + δ) +

1

en
c
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c,e ,

∀ c ∈ C , ∀ n ∈ N \ {NT ∪ 0} (2e)

V n
� =

∑

i∈I�

w
p(n)
i� πn

i� +
∑

c∈C

{
en

c

[ ∑

i∈Ic

w
p(n)
ic πn

ic

]

+
∑

j∈Jc

[
npc

p(n)
c,j ∗ max(Kj − en

c , 0)
]}
, ∀n ∈ NT (2f)

∑

j∈Jc

npcnc,j ≤
∑

i∈Ic

en
c (wn

icπ
n
ic) , ∀c ∈ C , ∀n ∈ N \ NT (2g)

Rn =
V n

�

V 0
�

− 1, ∀n ∈ NT (2h)

∑

n∈NT

pnRn ≥ µ, (2i)

yn ≥ Ln − z, ∀n ∈ NT (2j)

yn ≥ 0, ∀n ∈ NT (2k)

Ln = −Rn, ∀n ∈ NT (2l)

w0
ic = bic + x0

ic − v0
ic, ∀ i ∈ Ic , ∀ c ∈ C0 (2m)

wn
ic = w

p(n)
ic + xn

ic − vn
ic, ∀ i ∈ Ic, ∀ c ∈ C0, ∀ n ∈ N \ {NT ∪ 0} (2n)

xn
ic ≥ 0, wn

ic ≥ 0, ∀ i ∈ Ic , ∀ c ∈ C0, ∀ n ∈ N \ NT (2o)

0 ≤ v0
ic ≤ bic, ∀ i ∈ Ic , ∀ c ∈ C0 (2p)

0 ≤ vn
ic ≤ w

p(n)
ic , ∀ i ∈ Ic, ∀ c ∈ C0, ∀ n ∈ N \ {NT ∪ 0} (2q)
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We adopt the CVaR risk metric, as it is suitable for asymmetric distribu-
tions. Asymmetry in the returns of the international portfolios arises not only
because of the skewed and leptokurtic distributions of exchange rates, but
mainly because of the highly asymmetric payoffs of options. The choice of the
CVaR metric that captures the tail risk is entirely appropriate for the purposes
of this study that aims to explore the effectiveness of currency options–or for-
ward contracts–as means to mitigate and control the currency risk so as to
minimize the excess shortfall of portfolio returns over the planning horizon.

The purchase of an option entails a cost (price) that is payable at the time
of purchase. The cost of option purchases is considered in the cash balance
constraints of the base currency (2b) and (2d). Similarly, the conditional pay-
offs of the options are also accounted for in the cash balance conditions at the
respective expiration dates. We consider only European options. Specifically,
we use options with a single-period maturity (one month in our implemen-
tation). So, options purchased at some decision stage mature at exactly the
next decision period, at which time they either are exercised, if they yield a
positive payoff, or are simply left to expire.

The exercise prices of the options are specified exogenously as inputs to the
model. By considering multiple options with different strike prices on the same
currency, we can provide the model flexibility to choose the most appropriate
options at each decision stage. The option prices at each node of the scenario
tree are computed according to the valuation procedure summarized in the
Appendix. The corresponding payoffs at the successor nodes on the tree are
also computed and entered as inputs to the portfolio optimization program.
The optimal portfolio rebalancing decisions, as well as the optimal positions
in currency options, are considered in a unified manner at each decision node
of the scenario tree. The model does not directly relate positions in options
on different currencies, thus allowing selective hedging choices.

Model (2a)–(2q) is a stochastic linear program with recourse. Equa-
tions (2b) and (2c) impose the cash balance conditions in every currency
at the first decision stage (root node), the former for the base currency, �,
and the latter for the foreign currencies, c ∈ C. Each constraint equates the
sources and the uses of funds in the respective currency. The availability of
funds stems from initially available cash reserves, revenues from the sale of
initial asset holdings, and amounts received through incoming currency ex-
changes in the spot market. Correspondingly, the uses of funds include the
expenditures for the purchase of assets, the outgoing currency exchanges in
the spot market, and the costs for the purchase of currency options, the latter
for the cash equation of the base currency only. All currency exchanges are
made through the base currency. Linear transaction costs (i.e., proportional to
the amount of a transaction) are considered for purchases and sales of assets,
as well as for currency exchanges in the spot market. Note that all available
funds are placed in the available assets; that is, we don’t have investments
in money market accounts in any currency, nor do we have borrowing. These
could be simple extensions of the model.
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Similarly, Equations (2d) and (2e) impose the cash balance conditions at
subsequent decision states for the base currency, �, and the foreign currencies,
c ∈ C, respectively. Now cash availability comes from exogenous inflows, if
any, revenues from the sale of asset holdings in the portfolio at hand, incoming
spot currency exchanges, and potential payoffs from the exercise of currency
option contracts purchased at the predecessor node. Again, the uses of funds
include the purchase of assets, outgoing currency exchanges in the spot mar-
ket, and the purchase of currency options with maturity one period ahead.
The cash flows associated with currency options (purchases and payoffs) enter
only the cash balance equations of the base currency.

The final value of the portfolio at leaf node n ∈ NT is computed in (2f).
The total terminal value, in units of the base currency, reflects the proceeds
from the liquidation of all final asset holdings at the corresponding market
prices and the payoffs of currency put options expiring at the end of the
horizon. Revenues in foreign currencies are converted to the base currency by
applying the respective spot exchange rates at the end of the horizon.

Constraints (2g) limit the put options that can be purchased on each
foreign currency. The total position in put options of each currency is bounded
by the total value of assets that are held in the respective currency after the
portfolio revision. So, currency puts are used only as protective hedges for
investments in foreign currencies and can cover up to the foreign exchange
rate exposure of the portfolio held at the respective decision state.

Equation (2h) defines the return of the portfolio during the planning hori-
zon at leaf node n ∈ NT . Constraint (2i) imposes a minimum target bound, µ,
on the expected portfolio return over the planning horizon. Constraints (2j)
and (2k) are the definitional constraints for CVaR, while Equation (2l) de-
fines portfolio losses as negative returns. Equations (2m) enforce the balance
constraints for each asset, at the first decision stage, while Equations (2n)
similarly impose the balance constraint for each asset, at subsequent decision
states. These equations determine the resulting composition of the revised
portfolio after the purchase and sale transactions of assets at the respective
decision nodes. Short positions in assets are not allowed, so constraints (2o)
ensure that asset purchases, as well as the resulting holdings in the rebalanced
portfolio, are nonegative. Finally, constraints (2p) and (2q) restrict the sales
of each asset by the corresponding holdings in the portfolio at the time of a
rebalancing decision.

Starting with an initial portfolio and using a representation of uncertainty
for the asset prices and exchange rates by means of a scenario tree, as well as
the prices and payoffs of the currency put options at each decision node, the
multistage portfolio optimization model determines optimal decisions under
the contingencies of the scenario tree. The portfolio rebalancing decisions at
each node of the tree specify not only the allocation of funds across markets
but also the positions in assets within each market. Moreover, positions in
currency options are appropriately determined so as to mitigate the currency
risk exposure of the foreign investments during the holding period (i.e., until
the next portfolio rebalancing decision).
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Portfolio Optimization Model with Currency Forward Contracts

Positions in currency forwards shell the value of foreign investments against
potential depreciations of exchange rates. However, by fixing the exchange
rate of forward transactions, these contracts forgo potential gains in the event
of potential appreciations of exchange rates; this is the “penalty” for the pro-
tection against downside risk. We consider currency forward contracts with a
single-period term (one month in our implementation). Hence, forward con-
tracts decided in one period are executed in the next decision period. Posi-
tions in currency forward contracts are introduced as decision variables (un

c,f)
at each decision state of the multistage portfolio optimization program. These
decisions are determined jointly with the corresponding portfolio rebalancing
decisions in an integrated manner. Forward exchange contracts in different
currencies are not explicitly connected. The model can choose different cov-
erage of the foreign exchange exposures in the different currencies (i.e., dif-
ferent hedge ratios across currencies), reflecting a flexible selective hedging
approach.
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and also constraints (2h)–(2q).

This formulation differs from the previous model, which employs currency
options, in the cash balance constraints and the valuation of the portfolio at
the end of the planning horizon. Equations (3b) and (3c) impose the cash bal-
ance conditions in the first stage for the base currency, �, and the foreign cur-
rencies, c ∈ C, respectively. Equations (3d) and (3e) impose the cash balance
conditions for every currency at subsequent decision states. These equations
account for the cash flows associated with currency forward contracts that
were decided at the predecessor state.
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Equation (3f) computes the value of the portfolio, in units of the base
currency, at leaf node n ∈ NT . The terminal value reflects the proceeds from
the liquidation of the final asset holdings at the corresponding market prices
and the proceeds of outstanding forward contracts in foreign currencies. The
values in foreign currencies are converted to the base currency by applying
the respective spot exchange rates at the end of the horizon, after settling the
outstanding forward contracts.

Constraints (3g) limit the currency forward contracts. The amount of a
forward contract in a foreign currency is restricted by the expected value of all
asset holdings in the respective currency after the revision of the portfolio at
that state. This ensures that forward contracts are used only for hedging, and
not for speculative purposes. The right-hand side of (3g) reflects the expected
value of the respective foreign positions at the end of the holding period. The
conditional expectation is taken over the discrete outcomes at the successor
nodes (Sn) of the decision state n ∈ N \NT .

2.2 Scenario Generation

The scenario generation is a critical step of the modeling process. The set of
scenarios must adequately depict the projected evolution of the underlying
financial primitives (asset returns and exchange rates) and must be consistent
with market observations and financial theory. We generate scenarios with the
moment-matching method of Høyland et al. (2003). The outcomes of asset re-
turns and exchange rates at each stage of the scenario tree are generated so
that their first four marginal moments (mean, variance, skewness, and kur-
tosis) as well as their correlations match their respective statistics estimated
from market data. Thus, the outcomes on the scenario tree reflect the empiri-
cal distribution of the random variables as implied by historical observations.

We analyze the statistical characteristics of exchange rates over the period
05/1988–11/2001 that were used in the static and dynamic tests. As Table 1
shows, the monthly variations of spot exchange rates exhibit skewed distrib-
utions. They also exhibit considerable variance in comparison to their mean,
as well as excess kurtosis, implying heavier tails than the normal distribution.
Jarque–Berra tests (1980) on these data indicate that normality hypotheses
cannot be accepted.1

The skewed and leptokurtic distributions of the financial random vari-
ables (asset returns and exchange rates) motivated our choice of the moment-
matching scenario generation procedure, as this approach can capture the
statistical characteristics implied by historical market data. An essential re-
quirement in modeling stochastic financial variables is that they must satisfy

1 The Jarque–Berra statistic has a X 2 distribution with two degrees of freedom. Its
critical values at the 5% and 1% confidence levels are 5.99 and 9.21, respectively.
The normality hypothesis is rejected when the Jarque–Berra statistic has a higher
value than the corresponding critical value at the respective confidence level.
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Table 1. Statistical Characteristics and Jarque–Berra Statistic of Historical
Monthly Changes of Spot Exchange Rates Over the Period 05/1988–11/2001

Exchange Rate Mean Std. Dev. Skewness Kurtosis Jarque–Berra
Statistic

UKtoUS −0.116% 2.894% −0.755 5.672 102.39
GRtoUS −0.124% 3.091% −0.215 3.399 5.69
JPtoUS 0.030% 3.615% 0.942 6.213 105.27

the fundamental no-arbitrage condition. We exhaustively tested all the sce-
nario sets used in the numerical experiments and empirically verified that the
no-arbitrage requirement was always satisfied.

We note that the stochastic programming models presented above are not
restricted to the moment-matching scenario generation procedure. A user may
adopt an alternative approach that he finds preferable to project the evolution
of the stochastic asset prices and exchange rates, as long as the scenarios
effectively reflect the empirical distribution of the random variables and satisfy
fundamental financial principles (i.e., must be arbitrage-free). Dupačová et al.
(2000) reviewed alternative scenario generation approaches.

In order to ensure internal consistency of the model, we adapt a suitable
valuation procedure to price the currency options consistently with the postu-
lated scenarios of exchange rates. This option pricing approach–summarized in
the Appendix–accounts for the higher moments of exchange rate fluctuations.

3 Currency Hedging Strategies

The pursuit of effective means to hedge currency risk in international finan-
cial portfolios has been a subject of active research. Over the years, there has
been considerable debate on this subject. The observation that, historically,
changes in exchange rates had fairly low correlations with foreign stock and
bond returns had raised doubts as to the potential benefit of currency hedg-
ing. This lack of a systematic relationship could, in principle, lower portfolio
risk. Another argument is that, over a long time horizon, currency movements
cancel out–the mean-reversion argument. In other words, exchange rates have
an expected return of zero in the long run. On the other hand, for active port-
folio managers who are concerned with shorter-term horizons, it is important
to account for the impact of currency movements on the risk-return char-
acteristics of international portfolios. Moreover, currency returns tend to be
episodic; exchange rates can be volatile over short horizons, and the impact of
this volatility needs to be controlled through appropriate means in the context
of international portfolios. Currency movements also tend to exhibit some de-
gree of persistence (volatility clamping). For these reasons, effective hedging
strategies are actively sought by researchers and practitioners to improve the
performance of international portfolios.
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Currency hedging decisions typically concern the choice between foreign
exchange forward contracts or currency options. A forward contract is an
agreement between two parties (the investor and a bank) to buy (or sell)
a certain amount of foreign currency at a future date at an exchange rate
specified at the time of the agreement. Foreign exchange forward contracts are
sold by major commercial banks and typically have fixed short-term maturities
of one, six, or nine months.

Currency forwards provide a simple and cost-effective way to alter the
variability of revenues from foreign currency sources, but they may not be
equally effective for all types of risk management problems. These contracts
fix both the rate as well as the amount of a foreign exchange transaction
and thus protect the value of a certain amount in foreign currency against a
potential reduction in the exchange rate. If the amount of foreign revenues
is known with certainty, then an equivalent currency forward contract will
completely eliminate the currency risk. However, in the case of foreign holdings
of financial assets, their final value is stochastic due to their uncertain returns
during the interim period; hence, full hedging is not attainable in this case.
A limitation of currency forwards is that by fixing the exchange rate they forgo
the opportunity for gains in the event that the exchange rate appreciates.
One could argue that mitigating risk should be the primary consideration,
while potential benefits from favorable exchange rate movements should be
of a secondary concern. But it is the entire risk-return trade off that usually
guides portfolio management decisions.

Options provide alternative means to control risks. An exporter could
“shell” the future foreign exchange receipts by purchasing a currency put.
A portfolio manager could protect his foreign asset holdings by buying cur-
rency options to mitigate currency risk exposure associated with foreign in-
vestments in the portfolio. Currency put options protect from losses in the
event of a significant drop in the exchange rate, but with no sacrifice of poten-
tial benefits in the event of currency appreciation, as they would simply not
be exercised in such a case. However, currency options entail a cost (purchase
price).

In this study we experiment with two different trading strategies involving
currency options that have different payoff profiles.

Using Protective Put Options

By buying a European put currency option, the investor acquires the dis-
cretionary right to sell a certain amount of foreign currency at a specified
rate (exercise price) at the option’s maturity date. In the numerical tests, we
consider protective put options for each foreign currency with three different
strike prices, Kj (“in-the-money,” ITM, “at-the-money,” ATM, and “out-of-
the-money,” OTM). These three options constitute the set of available options,
Jc, for each foreign currency c ∈ C. The options have a term (maturity) of
one month that matches the duration of each decision stage in the model.
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The ATM options have strike prices equal to the respective spot exchange
rates at the time of issue. As decisions are considered at non-leaf nodes of the
scenario tree, the strike prices of the ATM options are equal to the scenario-
dependent spot exchange rates specified for the corresponding node of the
scenario tree. The ITM and OTM put options have strike prices that are 5%
higher, respectively 5% lower, than the corresponding spot exchange rates
at the respective decision state. These levels of option strike prices have been
chosen fairly arbitrarily. Obviously, a larger set of options with different strike
prices and cost can easily be included in the model.

The model is allowed to take only long positions in the protective put
options. Thus, we add nonnegativity constraints for the positions in options
in model (2):

npcnc,j ≥ 0 , ∀ j ∈ Jc , ∀ c ∈ C , ∀n ∈ N \ NT .

Obviously, the OTM put option has a lower price than the ATM put,
which, in turn, is cheaper than the ITM put option. In the numerical tests we
have observed that when the model selects options in the portfolios, these are
OTM put options–ITM and ATM options are never selected in the solutions
when they are considered together with OTM put options.

Using BearSpread Strategies

A BearSpread strategy is composed of two put options with the same expira-
tion date. It involves a long position in an ITM put and a short position in
an OTM put. The strike prices of the constituent options are set as described
above.

Let npcnc,ITM and npcnc,OTM be the long position in the ITM and the
short position in the OTM currency put option, respectively, constituting a
BearSpread position in foreign currency c ∈ C at decision node n ∈ N \NT .
To incorporate the BearSpeard strategy in the optimization model (2), we
additionally impose the following constraints:

npcnc,OTM + npcnc,ITM = 0 , ∀ c ∈ C , ∀n ∈ N \ NT ,

npcnc,ITM ≥ 0 , ∀ c ∈ C , ∀n ∈ N \ NT .

The first constraint ensures that the positions in the respective put options
have the same magnitude, while the second constraint ensures that the long
position is in the ITM option.

The payoff profile of the BearSpread is contrasted in Figure 1 to that of a
long position in an OTM currency put option. We test both of these option
tactics in the context of an international portfolio management problem. The
numerical experiments aim to empirically assess the relative effectiveness of
these tactics to control currency risk and enhance portfolio performance.
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Fig. 1. Payoff patterns of currency option strategies.

We have also tested alternative option trading strategies composed of long
positions in put and call options with the same expiration date. The straddle,
strip, and strap strategies are composed of ATM put and call options, i.e.,
with the same strike price; they differ only in the proportion of their long
positions in the put and the call option. The proportions of positions in the
put to the call option for the straddle, strip, and strap strategies are 1:1, 2:1,
and 1:2, respectively. All three strategies yield positive payoffs in the event
of sufficient movement in the underlying exchange rate, either downside or
upside. Their proportional payoffs in the event of currency depreciation, or
appreciation, differ depending on the proportion of the put option with respect
to the corresponding call option. Although these strategies yield gains in the
event of even moderate volatility in exchange rates, they have a higher cost
as they are composed of ATM options. The strangle strategy involves long
positions (equal in magnitude) in an OTM put and an OTM call option. It
provides coverage against larger movements of the underlying exchange rate,
in comparison to the previous three strategies, but at a lower cost.

We do not report results with these option trading strategies because in
the numerical tests the straddle, strip, and strap strategies were dominated
both by the forward contracts as well as by the use of a single protective
OTM put option per currency. The performance of the strangle strategy was
essentially indistinguishable from that of a single protective put per currency.
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4 Empirical Results

As prior research suggests, currency risk is a main aspect of the overall risk
of international portfolios; controlling currency risk is important to enhance
portfolio performance. We examine the effectiveness of alternative tactics to
control the currency risk of international diversified portfolios of stock and
bond indices. Alternative strategies, using either forward exchange contracts
or currency options, are evaluated and compared in terms of their performance
in empirical tests using market data.

We solved single-stage and two-stage instances of the stochastic program-
ming models described in Section 2. The results of the numerical tests enable
a comparative assessment of the following:

• forward exchange contracts versus currency options,
• alternative tactics with currency options,
• single-stage vs. two-stage stochastic programming models.

First, we compare the performance of a single-stage model with forward
contracts against that of a corresponding model that uses currency options
as a means to mitigate currency risk. Second, we compare the performance
of alternative tactics that provide coverage against unfavorable movements in
exchange rates by means of currency options. Finally, we consider the per-
formance of two-stage variants of the stochastic programming models. The
two-stage models permit rebalancing at an intermediate decision stage, at
which currency options held may be exercised, and new option contracts can
be purchased. We investigate the incremental improvements in performance
of the international portfolios that can be achieved with the two-stage models,
over their single-stage counterparts.

As explained in Section 2, the models select internationally diversified
portfolios of stock and bond indices, and appropriate positions in currency
hedging instruments (forward contracts or currency options), in order to min-
imize the excess downside risk while meeting a desirable target of expected
return. Selective hedging is the norm followed in all tests.

Performance comparisons are made with static tests (in terms of risk-
return efficient frontiers) as well as with dynamic tests. The dynamic tests
involve backtesting experiments over a rolling horizon of 43 months: 04/1998–
11/2001. At each month we use the historical data from the preceding 10 years
to calibrate the scenario generation procedure: We calculate the four marginal
moments and correlations of the random variables and use these estimates as
the target statistics in the moment-matching scenario generation procedure.
We price the respective currency options on the nodes of the scenario tree
using the method described in the Appendix. The scenario tree of asset prices
and exchange rates, and the option prices, are used as inputs to the portfolio
optimization model. Each month we solve one instance of the optimization
model (single- or multistage) and record the optimal first-stage decisions. The
clock is advanced one month and the market values of the random variables are
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revealed. Based on these we determine the actual return using the composition
of the portfolio at hand, the observed market prices for the assets and the
exchange rates, and the payoffs from the discretionary exercise of currency
options that are held. We update the cash holdings accordingly. Starting with
the new initial portfolio composition, we repeat the same procedure for the
following month. The ex post realized returns are compounded and analyzed
over the entire simulation period. These reflect the portfolio returns that would
have been obtained had the recommendations of the respective model been
adopted during the simulation period.

We ran backtesting experiments for each investment tactic that is studied,
using the CVaR metric to minimize excess shortfall in all cases.

4.1 Efficient Frontiers

We now examine the potential performance of forward and currency options,
in comparison to unhedged portfolios, in terms of the risk-return profiles of
their respective portfolios. Thus, we examine the potential effects of currency
hedging through alternative means by comparing the efficient frontiers result-
ing from the alternative decision tactics. Single-stage CVaR models were used
for all tests reported in this section.

Figure 2 contrasts the efficient frontiers of CVaR-optimized international
portfolios on August 2001 using optimal positions in currency options or for-
ward contracts, versus totally unhedged portfolios. We consider two different
strategies with currency options: (1) a single protective put option (“at-the-
money,” “in-the-money,” or “out-of-the-money”); (2) a BearSpread strategy
of put options.

We observe that risk-return efficient frontiers of hedged portfolios (using
either forwards or currency options) clearly dominate the efficient frontiers
of unhedged portfolios. The efficient frontiers of unhedged portfolios extend
into a range of higher risk levels. Clearly, the selectively hedged portfolios are
preferable to unhedged portfolios; at any level of expected return, efficient
hedged portfolios have a substantially lower level of risk–as measured by the
CVaR metric–compared to efficient unhedged portfolios. We also observe that
currency risk hedging (regardless of the strategy used) yields higher benefits,
in terms of higher expected returns compared to the unhedged case, for the
medium- and high-risk portfolios, rather than for the low-risk portfolios. The
potential gain from risk reduction is increasing for more aggressive targets of
expected portfolio returns.

These ex ante results indicate that forward contracts exhibit superior po-
tential as hedging instruments compared to currency options. The results in
Figure 2 show that, while the various strategies of currency options produce
efficient frontiers that dominate that of the unhedged portfolios, the most
dominant efficient frontier is the one produced with the optimal selection
of forward contracts. For any value of target expected return, the optimal
hedged portfolios with forwards exhibit a lower level of risk than the efficient
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Efficient frontiers of international portfolios
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Fig. 2. Efficient frontiers of CVaR-optimized international portfolios of stock and
bond indices, and currency hedging instruments.

portfolios of any other strategy. The use of currency options improves the
performance of international portfolios compared to unhedged portfolios, but
forward contracts exhibit the most dominant performance in the static tests.

Among the trading strategies using currency options, we observe that the
efficient frontier with “out-of-the-money” options is the closest to that ob-
tained with forward contracts, especially in the highest levels of target ex-
pected return (i.e., most aggressive investment cases). The efficient frontier of
the BearSpread strategy follows next, but the differences from the first two are
increasing for more aggressive targets of expected portfolio returns. Portfolios
with “in-the-money” or “at-the-money” options give almost indistinguishable
risk-return efficient frontiers.

4.2 Dynamic Tests: Ex-post Comparative Performance
of Portfolios with Currency Options

The results of the previous section indicate that, in static tests, forward con-
tracts demonstrated better ex ante performance potential compared to cur-
rency options. We additionally ran a number of backtesting experiments on a
rolling horizon basis for a more substantive empirical assessment of alternative
currency hedging strategies.
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Single-Stage Models

First, we compare the ex-post realized performance of portfolios with various
hedging strategies that are incorporated in single-stage stochastic program-
ming models. The models have a holding period of one month and consider
portfolio restructuring decisions at a single point during the planning horizon.
The joint distribution of the random variables (asset returns and exchange
rates) during the one month horizon of the models is represented by sets of
15,000 discrete scenarios.

Figure 3 contrasts the ex-post performance of portfolios with optimal for-
ward contracts with that of portfolios using different strategies of put options.
The first graph compares performance in the minimum risk case–i.e., when
the models simply minimize the CVaR risk measure at the end of the planning
horizon, without imposing any minimal target on expected portfolio return;
for the second graph the target expected return during the one-month plan-
ning horizon is µ = 1%.

We observe that in the minimum risk case of the dynamic tests, forward
contracts and the use of a single protective put per currency resulted in very
similar performance, regardless of the exercise price of the options (i.e., ITM,
ATM, or OTM). Forward contracts exhibited the most stable return path
throughout the simulation period, indicating their effectiveness in hedging
currency risk. In this minimum risk case, the models did not select a large
number of currency options, resulting in low hedge ratios.

Figure 3 also presents the ex-post performance of portfolios that use a
combination of currency put options comprising the BearSpread strategy. We
observe a noticeable improvement in the performance of portfolios when the
BearSpread strategy is employed. In the minimum risk case, the BearSpread
strategy yields discernibly higher gains in the period of Sept.–Oct. 1999; this
was due to its positions in Japanese bonds during this period, that allowed
it to capitalize on the appreciation of the yen at that time. The remaining
strategies had very limited positions in Japanese assets during that period.

In the minimum risk case, the optimal portfolios (regardless of the cur-
rency hedging strategy) were positioned almost exclusively in short-term gov-
ernment bonds in various currencies throughout the simulation period. These
portfolios were able to weather the storm of the September 11, 2001, crisis
unscathed, and actually generated profits during that period. That crisis had
affected primarily the stock markets for a short period and had no material
impact on the international bond markets.

The second graph in Figure 3 shows the performance of more aggressive
portfolios–when a target expected return µ = 1% is imposed over the models’
one-month horizon. The differences in the performance of the currency hedg-
ing tactics are more pronounced in this case. Again, we observe that portfolios
with forward contracts exhibit the most stable path of realized returns. We
also observe that the BearSpread strategy of put options materially outper-
formed all other tactics. In this case of an aggressive target on expected return,
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Ex post realízed returns of international portfolios with different currency hedging strategies.

Single-Stage Models (Minimum risk case)
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Fig. 3. Ex-post realized returns of single-stage CVaR-optimized internationally di-
versified portfolios of stock and bond indices, and currency hedging instruments.
Backtesting simulations over period 04/1998–11/2001.
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the models selected portfolios that involved sizable positions in the U.S. stock
index for most of the simulation period and thus did not avoid the effects of
the crisis in September 2001.

Multistage Models

We also tested two-stage instances of the portfolio management models pre-
sented in section 2. Figure 4 contrasts the ex-post performance of CVaR-
optimized portfolios with alternative tactics for controlling currency risk. The
first graph shows realized returns in the minimum risk case, and the second
graph shows the realized returns for the aggressive investment case corre-
sponding to a target expected return µ = 2% during the two-month planning
horizon of the models.

The comparative performance of the various currency hedging tactics re-
mains similar, at least qualitatively, to that we had observed with the single-
stage models. Again, forward contacts yield the most stable path of realized
returns and the BearSpread strategy of currency put options results in the best
ex-post performance. Portfolios with ITM currency options show a noticeable
improvement in performance when the two-stage models are used; although
these portfolios exhibit higher fluctuations in returns compared to the other
strategies, they result in higher cumulative returns. In the multistage setting,
the model with ITM options benefits the most from favorable exchange rate
movements of the Japanese yen in Sept.–Oct. 1999 and the German mark in
Nov.–Dec. 2000; the model maintained sizable positions in these currencies
during the respective periods.

Overall, the results indicate that although forward contracts are gener-
ally more effective in hedging the currency risk compared to single protective
put options per currency, appropriate combinations of put options lead to
performance improvements.

Next, we turn to a comparative assessment of single- and two-stage models
for international portfolio management in dynamic tests with real market
data. The two-stage models use scenario trees composed of 150 joint outcomes
of the random variables in the first month, each followed by a further 100
joint outcomes of the random variables in the subsequent month; thus, we
have 15,000 scenarios over the two-month planning horizon of the models.

Figure 5 compares the performance of the models with currency options
or forward contracts. The first graph presents the results of experiments min-
imizing the CVaR risk measure without any constraint on expected portfolio
return. The second graph corresponds to more aggressive portfolios (target
expected return µ = 1% for single-stage models and µ = 2% for two-stage
models).

We observe that in the minimum risk case the models exhibit stable port-
folio returns throughout the simulation period, with small losses in only very
few periods. The more aggressive cases exhibit larger fluctuations in returns,
reflecting riskier portfolios. In Figure 5, we observe that when currency risk is
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hedged with forward contracts, the two-stage model gives only slightly better
results compared to the single-stage model. However, when currency options
are used, the performance improvements of the two-stage models compared
to the corresponding single-stage models are more evident, particularly for
the cases that use ITM put options. Performance improvements with the two-
stage model are also observed when the BearSpread strategy is employed. In
all tests, and regardless of the trading strategy of options that is used, the two-
stage models result in improved performance compared to the corresponding
single-stage models.

In comparison to their single-stage counterparts, two-stage models incor-
porate the following advantages: (1) a longer planning horizon that permits
to assess the sustained effects of investment choices; (2) increased informa-
tion content as it accounts for the evolution of the random variables over
the longer planning horizon; (3) the opportunity to account for the effect of
portfolio rebalancing at an intermediate point during the planning horizon.
The combined effects of these features lead to the selection of more effective
portfolios with the two-stage models. The performance improvements are ev-
ident in higher and more stable portfolio returns that are achieved with the
two-stage models in comparison to their single-stage counterparts.

Empirical comparisons of multistage stochastic programming models and
single-stage models are scantly found in the literature. The results of this
study demonstrate the performance improvements that are achievable with
the adoption of multistage stochastic programs–that account for information
and decision dynamics–in comparison to single-stage (myopic) models.

Figure 6 shows the degree of currency hedging in each country (percentage
of foreign investments hedged), when using forward contracts or currency
options that form the BearSpread strategy to control currency risk; these
results correspond to the first-stage decisions of the two-stage optimization
models. The differences are evident. When using currency options, the model
consistently chooses to hedge to a high degree–hedge ratios between 90% and
100%–foreign investments in the selected portfolios (see the second graph in
Figure 6). The hedge ratio is zero only when the selected portfolio does not
include asset holdings in a particular foreign market. The degree of hedging
is evidently different when forward contracts are used to control currency risk
(first graph in Figure 6). In this case the model makes much more use of the
selective hedging flexibility; hedge ratios varying both in magnitude as well
as across currencies are observed during the simulation period. Moreover, we
have observed that, in comparison to the single-stage models, the two-stage
models select more diversified portfolios throughout the simulation period and
exhibit lower portfolio turnover.

Finally, we compute some measures to compare the overall performance
of the models. Specifically, we consider the following measures of the ex-
post realized monthly returns over the simulation period: geometric mean,
standard deviation, Sharpe ratio, and the upside potential and downside risk
ratio (UPratio) proposed by Sortino and van der Meer (1991). This ratio
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Ex post realízed returns of international portfolios with different currency hedging strategies.

Two-stage Models (Minimum risk case)
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Fig. 4. Ex-post realized returns of two-stage CVaR-optimized internationally diversi-
fied portfolios of stocks and bonds indices, and currency hedging tactics. Backtesting
simulations over the period 04/1998–11/2001.
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Ex post realized returns with single-and two-stage models

(Minimum risk case)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Nov-01

R
e

a
li

z
e

d
 R

e
tu

rn

Forward_Single Forward_TwoStage ITM_Single ITM_TwoStage BearSpread_Single BearSpread_TwoStage

May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb-00 May-00 Aug-00 Nov-00 Feb-01 May-01 Aug-01

Ex post realized returns with single - (m=1%) and two-stage (m=2%) models

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

R
e

a
li

z
e

d
 R

e
tu

rn

Forward_Single Forward_TwoStage ITM_Single ITM_TwoStage BearSpread_Single BearSpread_TwoStage

Nov-01May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb-00 May-00 Aug-00 Nov-00 Feb-01 May-01 Aug-01

Fig. 5. Ex-post realized returns of CVaR-optimized international portfolios of stocks
and bond indices, and currency hedging tactics. Comparison of single- and two-stage
models.



Controlling Currency Risk with Options or Forwards 271

Hedge ratios of international portfolios

(Currency forward contracts)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
ay

-9
8

Ju
l-9

8

S
ep

-9
8

N
ov

-9
8

Ja
n-

99

M
ar

-9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

Ja
n-

00

M
ar

-0
0

M
ay

-0
0

Ju
l-0

0

S
ep

-0
0

N
ov

-0
0

Ja
n-

01

M
ar

-0
1

M
ay

-0
1

Ju
l-0

1

S
ep

-0
1

N
ov

-0
1

H
e
d

g
e
 R

a
ti

o

UK GR JP

UK GR JP

Hedge ratios of international portfolios

(BearSpread currency Options) 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
ay

-9
8

Ju
l-9

8

S
ep

-9
8

N
ov

-9
8

Ja
n-

99

M
ar

-9
9

M
ay

-9
9

Ju
l-9

9

S
ep

-9
9

N
ov

-9
9

Ja
n-

00

M
ar

-0
0

M
ay

-0
0

Ju
l-0

0

S
ep

-0
0

N
ov

-0
0

Ja
n-

01

M
ar

-0
1

M
ay

-0
1

Ju
l-0

1

S
ep

-0
1

N
ov

-0
1

H
e
d

g
e
 R

a
ti

o

Fig. 6. Comparison of optimal hedge ratios in each currency for different decision
tactics. The first graph represents the use of forward contracts; the second graph
shows the hedge ratios for the BearSpread strategy of currency put options.

contrasts the upside potential against a specific benchmark with the short-
fall risk against the same benchmark. We use the risk-free rate of one-month
T-bills as the benchmark. This ratio is computed as follows. Let rt be the
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realized return of a portfolio in month t = 1, . . . , k of the simulation, where
k = 43 is the number of months in the simulation period 04/1998–11/2001.
Let ρt be the return of the benchmark (riskless asset) at the same period.
Then the UPratio is

UPratio =
1
k

∑k
t=1 max [0, rt − ρt]

[ 1
k

∑k
t=1(max [0, rt − ρt] )2]1/2

. (4)

The numerator is the average excess return compared to the benchmark,
reflecting the upside potential. The denominator is a measure of downside
risk, as proposed in Sortino et al. (1999), and can be thought of as the risk of
failing to meet the benchmark.

Table 2. Statistics of Realized Monthly Returns with Alternative Models and
Decision Tactics

Statistic Forward ITM ATM OTM BearSpread
Contracts Put Put Put Strategy

Statistics of Monthly Realized Returns, Single-Stage Model (µ = 1%)

Geometric mean 0.0043 0.0035 0.0021 0.0022 0.0057
Stand. dev. 0.0139 0.0148 0.0193 0.0222 0.0205
Sharpe ratio −0.0307 −0.0808 −0.1324 −0.1128 0.0468
UPratio 0.9500 0.8800 0.6910 0.7060 0.8300

Statistics of Monthly Realized Returns, Single-Stage Model (Minimum Risk)

Geometric mean 0.0057 0.0058 0.0054 0.0063 0.0076
Stand. dev. 0.0027 0.0045 0.0036 0.0042 0.0061
Sharpe ratio 0.3796 0.2350 0.1911 0.3641 0.4725
UPratio 11.1355 5.4853 6.7168 6.7518 25.1671

Statistics of Monthly Realized Returns, Two-Stage Model (µ = 2%)

Geometric mean 0.0046 0.0061 0.0056 0.0045 0.0065
Stand. dev. 0.0124 0.0163 0.0193 0.0153 0.0208
Sharpe ratio −0.0120 0.0862 0.0458 −0.1023 0.0864
UPratio 0.9690 0.9470 0.7670 0.8380 0.833

Statistics of Monthly Realized Returns, Two-Stage Model (Minimum Risk)

Geometric mean 0.0058 0.0061 0.0071 0.0057 0.0078
Stand. dev. 0.0025 0.0047 0.0078 0.0042 0.0075
Sharpe ratio 0.4132 0.3006 0.3083 0.2302 0.4108
UPratio 12.4510 5.4270 10.1260 4.6344 21.134

The statistics of the realized monthly portfolio returns over the simula-
tion period 04/1988–11/2001 are shown in Table 2. First, we observe that in
the single-stage models, the optimal portfolios with forwards exhibit better
statistics compared to portfolios with protective put options. When forward
contracts are used, the Sharpe ratio is higher than that for the use of protec-
tive put options (ITM, ATM, or OTM), and the standard deviation is lower.
Also, the UPratio is substantially higher, indicating improved upside potential
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relative to downside risk. In some cases the portfolios with protective currency
put options exhibit higher geometric mean than the portfolios with forward
contracts; however, the rest of their statistics are worse in all simulation tests.

Next, we note that multistage models clearly outperform the corresponding
single-stage models. All the statistics for the multistage models are improved
compared to the results of their single-stage counterparts. These results clearly
show that incremental benefits are gained over myopic models–in terms of
improved performance (higher returns and lower risk)–with the adoption of
two-stage (dynamic) portfolio optimization models.

Finally, we observe that a combination of currency put options that forms
the BearSpread strategy outperforms the use of forward contracts. In our
simulation experiments, this was the case both for the two-stage and the
single-stage models, and for both the minimum risk case as well as the more
aggressive case (higher expected return targets). Hence, the judicious choice of
option trading strategies with suitable payoff patterns can provide the means
to improve performance in international portfolio management.

5 Conclusions

This chapter investigated alternative strategies for controlling currency risk in
international portfolios of financial assets. We carried out extensive numerical
tests using market data to empirically assess the effectiveness of alternative
means for controlling currency risk in international portfolios.

Empirical results indicate that the optimal choice of forward contracts
outperforms the use of a single protective put option per currency. The re-
sults of both static as well as dynamic tests show that optimal portfolios with
forward contacts achieve better performance than portfolios with protective
put options. However, combinations of currency put options, like the Bear-
Spread strategy, exhibit performance improvements. Yet, forward contracts
consistently produced the more stable returns in all simulation experiments.

Finally, we point out the notable performance improvements of interna-
tional portfolios that result from the adoption of dynamic (multistage) port-
folio optimization models instead of the simpler, but more restricted myopic
(single-stage) models. The two-stage models tested in this study consistently
outperformed their single-stage counterparts in all cases (i.e., regardless of
the decision tactics that were tested as means to control currency risk). These
results strengthen the argument for the development, implementation, and
use of more sophisticated dynamic stochastic programming models for port-
folio management. These models are more complex, have higher information
demands (i.e., complete scenario trees), and are computationally more de-
manding because of their significantly larger size. However, as the results of
this study demonstrate, dynamic models yield superior solutions, that is, more
effective portfolios that attain higher returns and lower risk. Such improve-
ments are important in an increasingly competitive financial environment.
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The next step of this work is to investigate the use of appropriate instru-
ments and decision tactics, in the context of dynamic stochastic programming
models, so as to jointly control multiple risks that are encountered in interna-
tional portfolio management. For example, we can incorporate in the models
options on stocks as a means to control market risk in addition to forward
exchange contracts or currency options to control currency risk. We expect
that such an approach to jointly manage all risk factors in the problem should
yield additional benefits.

Appendix: Pricing Currency Options

In order to incorporate currency options in the stochastic programming model
and maintain internal consistency, the options must be priced in accordance
with the discrete distributions of the underlying exchange rate, as represented
by the scenario tree. Conventional option pricing methods are not applicable,
as they rely on specific distributional assumptions on the underlying exchange
rate that are not satisfied in this case. In this study, the scenarios of asset
returns and exchange rates are generated with a moment-matching method
so as to closely reflect the empirical distributions of the random variables
implied by historical market data.

We price the currency options based on empirical distributions of the ex-
change rates using a valuation procedure developed by Corrado and Su (1996),
based on an idea of approximating the density of the underlying by a series ex-
pansion that was introduced by Jarrow and Rudd (1982). Backus et al. (1997)
extended this approach to price currency options; we adapt their methodol-
ogy.

We consider European currency options with maturity equaling a single
period of the portfolio optimization model (i.e., one month). To price such
a European option at a nonterminal node (state) n ∈ N \NT of the sce-
nario tree, the essential inputs are the price of the underlying (exchange rate)
at the option’s issue date (i.e., at node n) and the distribution of the un-
derlying exchange rate at the maturity date, conditional on the state at the
issue date (i.e., conditional on state n). In the context of a scenario tree, this
conditional distribution is represented by the discrete outcomes of the under-
lying exchange rate associated with the immediate successor nodes (set Sn)
of node n. Hence, the option is priced on the basis of this discrete conditional
distribution.

We use the following notation:

et the underlying spot exchange rate at node n (deterministic for the pricing
problem),

ẽt+1 the random value of the underlying exchange rate at the maturity of the
option,



Controlling Currency Risk with Options or Forwards 275

rd
t the riskless rate in the base currency for the term of the option,
rf
t the riskless rate in the foreign currency for the term of the option,
K the exercise price of the currency option (USD to one unit of the foreign

currency).

The log of the underlying’s appreciation during the term of the option, starting
from node n, is

x̃t+1 = ln(ẽt+1) − ln(et) = ln
(
ẽt+1

et

)
. (5)

Then
ẽt+1 = et exp(x̃t+1) (6)

and the conditional distribution of ẽt+1 depends on that of x̃t+1.
In the risk-neutral setting, the price at node n of a European call option

(in units of the base currency) on the exchange rate ẽt+1 with strike price K
is computed as:

cct(et,K) = exp (−rd
t ) Et

[
(ẽt+1 −K)+

]

= exp (−rd
t )

∫ ∞

ln(K/et)

(et exp(x) −K) f(x) dx, (7)

where f(.) is the conditional density of x̃t+1. Typically, the conditional den-
sity is not analytically available, and this is the case in this study where the
uncertainty in exchange rates is represented in terms of an empirical distrib-
ution.

Corrado and Su (1996) applied a Gram–Charlier series expansion to ap-
proximate the empirical distribution of the underlying’s logreturns in order
to derive the option price. The series expansion approximates the underly-
ing distribution with an alternate (more tractable) distribution, specifically,
with the log-normal. Hence, the normal density is augmented with additional
terms capturing the effects of skewness and kurtosis in the distribution of the
underlying random variable. The resulting truncated series may be viewed
as the normal probability density function multiplied by a polynomial that
accounts for the effects of departure from normality. The coefficients in the
expansion are functions of the moments of the original and the approximating
distribution. The underlying theory is described by Johnson et al. (1994) and
Kolassa (1994).

The series expansion represents an approximate density function for a
standardized random variable that differs from the standard normal in having
nonzero skewness and kurtosis. If the one-period log-change (x̃t+1) in the
spot exchange rate e has conditional mean µ and standard deviation σ, the
standardized variable is

ω̃ = ( x̃t+1 − µ )/σ . (8)
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A truncated Gram–Charlier series expansion defines the approximate density
for ω̃ by

f(ω̃) ≈ ϕ(ω̃) − γ1
1
3!
D3ϕ(ω̃) + γ2

1
4!
D4ϕ(ω̃), (9)

where
ϕ(ω̃) =

1√
2π

exp (−ω̃2/2) (10)

is the standard normal density and Dj denotes the jth derivative of what
follows.

Using the Gram–Charlier expansion in (9), Backus et al. (1997) solved
the pricing equation (7) and obtained the following result for the price of a
European currency call option:

cct(et,K) = et exp (−rf
t )N(d) − K exp (−rd

t )N(d− σ)

+ et exp (−rd
t )ϕ(d)σ

[γ1

3!
(2σ − d)

−γ2

4!
(1 − d2 + 3dσ − 3σ2)

]
, (11)

where

d =
ln (et/K) − (rf

t − rd
t ) + σ2/2

σ
. (12)

ϕ(.) is the standard normal density, N(.) is the cumulative distribution of the
standard normal, γ1 = µ3/µ

(3/2)
2 and γ2 = µ4/µ

2
2 are the Fisher parameters

for skewness and kurtosis, and µi is the ith central moment.
To apply this pricing procedure at a non-leaf node n ∈ N \NT of the

scenario tree, we first calculate the first four moments of the underlying ex-
change rate over the postulated outcomes on the immediate successor nodes,
Sn. These estimates of the moments, and the other parameters that are de-
terministic (current spot exchange rate et, exercise price K, interest rates rf

t

and rd
t ), are used as inputs in Equation (11) to price the European currency

call option. The price of a European currency put option with the same term
and strike price K is determined by put-call parity:

pct(et,K) = cct(et,K) +K exp(−rd
t ) − et. (13)

This method of approximating the density of the underlying has been
applied by Abken et al. (1996a, 1996b), Brenner and Eom (1997), Knight and
Satchell (2000), Longstaff (1995), Madan and Milne (1994) and Topaloglou
et al. (forthcoming).
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1 Introduction

Nowadays, because of the uncertainty and risk that exist due to the integrat-
ing financial market and technological innovations, investors often wonder
how to invest their assets over time to achieve satisfactory returns subject to
uncertainties, various constraints, and liability commitments. Moreover, they
speculate how to develop long term strategies to hedge the uncertainties and
how to eventually combine investment decisions of asset and liability in order
to maximize their wealth.

Asset liability management is the domain that provides answers to all
these questions and problems. More specifically, asset liability management
(ALM) is an important dimension of risk management, where the exposure
to various risks is minimized while maintaining the appropriate combination
of asset and liability, in order to satisfy the goals of the firm or the financial
institution (Kosmidou and Zopounidis, 2004).

Through the 1960s, liability management was aimless. In their majority,
the banking institutions considered liabilities as exogenous factors contribut-
ing to the limitation of asset management. Indeed, for a long period the greater
part of capital resources originated from savings deposits and deposits with
agreed maturity.

Nevertheless, the financial system has radically changed. Competition
among the banks for obtaining capital has become intense. Liability man-
agement is the main component of each bank strategy in order to ensure the
cheapest possible financing. At the same time, the importance of decisions
regarding the amount of capital adequacy is enforced. Indeed, the adequacy
of the bank as far as equity contributes to the elimination of bankruptcy risk,
a situation in which the bank cannot satisfy its debts toward clients who
make deposits or others who take out loans. Moreover, the capital adequacy
of banks is influenced by the changes of stock prices in relation to the amount
of the capital stock portfolio. Finally, the existence of a minimum amount of
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equity is an obligation of commercial banks to the Central Bank for super-
visory reasons. It is worth mentioning that based on the last published data
(Dec. 31, 2001) the Bank of Greece assigns the coefficient for the Tier 1 capital
at 8%, while the corresponding European average is 6%. This results in the
configuration of the capital adequacy of the Greek banking system at higher
levels than the European average rate. The high capital adequacy index de-
notes large margins of profitability amelioration, which reduces the risk of a
systematic crisis.

Asset management in a contemporary bank cannot be distinct from lia-
bility management. The simultaneous management of assets and liabilities, in
order to maximize the profits and minimize the risk, demands the analysis of
a series of issues.

First is the substantive issue of strategic planning and expansion, that is,
the evaluation of the total size of deposits that the bank wishes to attract and
the total number of loans that it wishes to provide.

Second is the issue of determination of the “best temporal structure” of
the asset liability management, in order to maximize the profits and to ensure
the robustness of the bank. Deposits cannot all be liquidated in the same way.
From the point of view of assets, the loans and various placements to securities
constitute commitments of the bank’s funds with a different duration time.
The coordination of the temporal structure of the asset liability management
is of major importance in order to avoid the problems of temporary liquidity
reduction, which might be very injurious.

Third is the issue of risk management of assets and liabilities. The main
focus is placed on the assets, where the evaluation of the quality of the loans
portfolio (credit risk) and the securities portfolio (market risk) is more easily
measurable.

Fourth is the issue of configuration of an integrated invoice, which refers
to the entire range of bank operations. It refers mainly to the determination
of interest rates for the total of loans and deposits as well as for the various
commissions that the bank charges for specific mediating operations. It is
obvious that in a bank market that operates in a competitive environment,
there is no issue of pricing. This is true even in the case where all interest
rates and commissions are set by monetary authorities, as was the situation
in Greece before the liberalization of the banking system.

In reality, bank markets have the basic characteristics of monopolistic com-
petition. Thus, the issue of planning a system of discrete pricing and product
diversification is of major importance. The problem of discrete pricing, as far
as the assets are concerned, is connected to the issue of risk management. It
is a common fact that the banks determine the borrowing interest rate on the
basis of the interest rates, which increase in proportion to the risk as they
assess it in each case. The product diversification policy includes all the loan
and deposit products and is based on thorough research that ensures the best
possible knowledge of market conditions.
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Lastly, the management of operating cost and technology constitutes an
important issue. The collaboration of well-selected and fully skilled person-
nel, as well as contemporary computerization systems and other technological
applications, constitutes an important element in creating a low-cost bank.
This results in the acquisition of a significant competitive advantage against
other banks, which could finally be expressed through a more aggressive pol-
icy of attracting loans and deposits with low loan interest rates and high
deposit interest rates. The result of this policy is the increase of the market
stake. However, the ability of a bank to absorb the input of the best strategic
technological innovations depends on the human resources management.

The present research focuses on the study of bank asset liability manage-
ment. Many reasons lead us to study bank asset liability management as an
application of ALM. First, bank asset/liability management has always been
of concern to bank managers, but in recent years and especially today its
importance has increasingly grown. The development of information technol-
ogy has led to such increasing public awareness that the bank’s performance,
its politics, and its management are closely monitored by the press and the
bank’s competitors, shareholders, and customers and thereby highly affect the
bank’s public standing.

The increasing competition in the national and international banking mar-
kets, the changeover toward the monetary union, and the new technological
innovations herald major changes in the banking environment and challenge
all banks to make timely preparations in order to enter into the new compet-
itive monetary and financial environment.

All the above factors drove banks to seek out greater efficiency in the
management of their assets and liabilities. Thus, the central problem of ALM
revolves around the bank’s balance sheet; the main question that arises is,
what should be the composition of a bank’s assets and liabilities on average
given the corresponding returns and costs, in order to achieve certain goals,
such as maximization of the bank’s gross revenues?

It is well known that finding an appropriate balance among profitability,
risk, and liquidity considerations is one of the main problems in ALM. The
optimal balance between these factors cannot be found without considering
important interactions that exist between the structure of a bank’s liabilities
and capital and the composition of its assets.

Bank asset/liability management is defined as the simultaneous planning
of all asset and liability positions on the bank’s balance sheet under consid-
eration of the different banking and bank management objectives and legal,
managerial, and market constraints. Banks are looking to maximize profit and
minimize risk.

In this chapter we make a brief overview of bank ALM techniques as an
application of ALM. This overview is traced by classifying the models in two
main categories. Finally, the concluding remarks are discussed.
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2 Bank ALM Techniques

Asset and liability management models can be deterministic or stochastic.
Deterministic models use linear programming, assume particular realizations
for random events, and are computationally tractable for large problems. The
banking industry has accepted these models as useful normative tools (Cohen
and Hammer, 1967). Stochastic models, however, including the use of chance-
constrained programming, dynamic programming, sequential decision theory,
and linear programming under uncertainty, present computational difficulties.

The theoretical approach of these models is outlined in the following sec-
tion, whereas the mathematical programming formulation is described in the
Appendix.

2.1 Deterministic Models

Looking to the past, we find the first mathematical models in the field of bank
management. The deterministic linear programming model of Chambers and
Charnes (1961) is the pioneer on asset and liability management. Chambers
and Charnes were concerned with formulating, exploring, and interpreting the
uses and constructs that may be derived from a mathematical programming
model that expresses more realistically than past efforts the actual conditions
of current operations. Their model corresponds to the problem of determining
an optimal portfolio for an individual bank over several time periods in accor-
dance with requirements laid down by bank examiners, which are interpreted
as defining limits within which the level of risk associated with the return on
the portfolio is acceptable.

Cohen and Hammer (1967), Robertson (1972), Lifson and Blackman
(1973), and Fielitz and Loeffler (1979) are successful applications of Chambers
and Charnes’model. Even though these models have differed in their treatment
of disaggregation, uncertainty, and dynamic considerations, they all have in
common the fact that they are specified to optimize a single objective profit
function subject to the relevant linear constraints.

Eatman and Sealey (1979) developed a multiobjective linear programming
model for commercial bank balance sheet management. Their objectives are
based on profitability and solvency. The profitability of a bank is measured
by its profit function. Since the primary goals of bank managers, other than
profitability, are stated in terms of liquidity and risk, measures of liquidity
and risk would seem to reflect the bank’s solvency objective. Many measures
of liquidity and risk could be employed, just as there are many measures used
by different banks and regulatory authorities. Eatman and Sealey measured
liquidity and risk by the capital-adequacy (CA) ratio and the risk-asset to
capital (RA) ratio, respectively. The capital-adequacy ratio is a comprehen-
sive measure of the bank’s liquidity and risk because both asset and liability
composition are considered when determining the value of the ratio. Since
liquidity diminishes and risk increases as the CA ratio increases, banks can



Asset Liability Management Techniques 285

maximize liquidity and minimize risk by minimizing the CA ratio. The other
objective reflecting the bank’s solvency is the risk-asset to capital (RA) ratio.
Using the RA ratio as a risk measure, the bank is assumed to incur greater
risk as the RA ratio increases. Therefore, in order to minimize risk, the RA
ratio is minimized. The constraints considered in the model of Eatman and
Sealey are policy and managerial.

Apart from Eatman and Sealey, Giokas and Vassiloglou (1991) developed a
multiobjective programming for bank assets and liabilities management. They
supported that apart from attempting to maximize revenues, management
tries to minimize risks involved in the allocation of the bank’s capital, as well as
to fulfill other goals of the bank, such as retaining its market share, increasing
the size of its deposits and loans, etc. Conventional linear programming is
unable to deal with this kind of problem, as it can only handle a single goal in
the objective function. Goal programming is the most widely used approach in
the field of multiple criteria decision making that enables the decision maker
to incorporate easily numerous variations of constraints and goals.

The description of the linear goal programming model is presented at the
Appendix.

2.2 Stochastic Models

Apart from the deterministic models, several stochastic models have been at-
tempted since the 1970s. These models, in their majority, originate from the
portfolio selection theory of Markowitz (1959) and are known as static mean-
variance methods. According to this approach, the risk is measured by the
variance in a single-period planning horizon, the returns are normally distrib-
uted, and the bank managers use risk-averse utility functions. In this case,
the value of an asset depends not only on the expectation and variance of its
return but also on the covariance of its return with the returns of all other
existing and potential investments. Pyle (1971) applied Markowitz’s theory in
his static model where a bank selects the asset and liability levels it wishes to
hold throughout the period. He considered only the risk of the portfolio and
not other possible uncertainties. The model omits trading activity, matching
assets and liabilities, transactions costs, and other similar features. A more
sophisticated approach was that of Brodt (1978), who adapted Markowitz’s
theory and presented an efficient dynamic balance sheet management plan
that maximizes profits for a given amount of risk over a multiperiod plan-
ning horizon. His two-period, linear model included uncertainty, based on
Markowitz’s portfolio selection theory, he tried to build an efficient frontier
between the function of expected profits and the linear one of its deviations.
Instead of the variance, he used the mean absolute deviation or the semi-
absolute deviation that is taken by varying the value of the upper or lower
bound of one of the two functions.

Charnes and Thore (1966), and Charnes and Littlechild (1968) devel-
oped chance-constrained programming models. These models express future
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deposits and loan repayments as joint, normally distributed random variables,
and replace the capital adequacy formula by chance constraints on meet-
ing withdrawal claims. These approaches lead to a computationally feasible
scheme for realistic situations. Pogue and Bussard (1972) formulated a 12-
period chance-constrained model in which the only uncertain quantity is the
future cash requirement. The major weakness is that the chance-constrained
procedure cannot handle a differential penalty for either varying magnitudes
of constraint violations or different types of constraints.

In 1969, Wolf proposed the sequential decision-theoretic approach that
employs sequential decision analysis to find an optimal solution through the
use of implicit enumeration. This technique does not find an optimal solution
to problems with a time horizon beyond one period, because it is necessary to
enumerate all possible portfolio strategies for periods preceding the present
decision point in order to guarantee optimality. In order to explain this draw-
back, Wolf asserts that the solution to a one-period model would be equivalent
to a solution provided by solving an n-period model. This approach ignores
the problem of synchronizing the maturities of assets and liabilities. Bradley
and Crane (1972) developed a stochastic decision tree model that has many
of the desirable features essential to an operational bank portfolio model. The
Bradley–Crane model depends upon the development of economic scenarios
that are intended to include the set of all possible outcomes. The scenarios
may be viewed as a tree diagram for which each element (economic condi-
tion) in each path has a set of cash flows and interest rates. The problem
is formulated as a linear program, whose objective is the maximization of
expected terminal wealth of the firm and the constraints refer to the cash
flow, the inventory balancing, the capital loss, and the class composition. To
overcome computational difficulties, they reformulated the asset and liability
problem and developed a general programming decomposition algorithm that
minimizes the computational difficulties.

Another approach to stochastic modeling is dynamic programming. The
approach dates to the work of Samuelson (1969), Merton (1969, 1990), and
others. The main objective of this approach is to form a state space for the
driving variables at each time period. Instead of discerning the scenarios,
stochastic control perplexes the state space. Either dynamic programming
algorithms or finite-element algorithms are available for solving the problem.
Merton (1969) explored two classes of reasons why optimal endowment invest-
ment policy and expenditure policy can vary significantly among universities.
This is done by relating the present value of the liability payments to the
driving economic variables. The analysis suggests that managers and others
who judge the prudence and performance of policies by comparisons across
institutions should take account of differences in both the mix of activities of
the institutions and the capitalized values of their no-endowment sources of
cash flows. Eppen and Fama (1971) modeled asset problems. The basic idea
is to set up the optimization problem under uncertainty as a stochastic con-
trol model using a popular control policy. This model reallocates the portfolio



Asset Liability Management Techniques 287

in the end of each period such that the asset proportions meet the specified
targets. The continuous sample space is represented via a discrete approxi-
mation. The discrete approximation offers a wider range of application and is
easy to implement. These models are dynamic and account for the inherent
uncertainty of the problem.

An alternative approach in considering stochastic models is the stochastic
linear programming with simple recourse (SLPSR), also called linear program-
ming under uncertainty (LPUU). This technique explicitly characterizes each
realization of the random variables by a constraint with a limited number of
possible outcomes and time periods. The general description of the model is
presented in the Appendix. Cohen and Thore (1970) viewed their one-period
model more as a tool for sensitivity analysis than as a normative decision
tool. Crane (1971) on the other hand, modulated the model to a two-period
one. The computational intractability and the perceptions of the formulation
precluded consideration of problems other than those that were limited both
in terms of time periods and in the number of variables and realizations.
Booth (1972) applied this formulation by limiting the number of possible re-
alizations and the number of variables considered, in order to incorporate two
time periods. Kallberg et al. (1982) formulated a firm’s short-term financial
planning problem as a stochastic linear programming with a simple recourse
model where forecasted cash requirements are discrete random variables. The
main goal of their paper was to minimize costs of the various sources of funds
employed plus the expected penalty costs due to the constraint violations over
the four-quarter horizon. They concluded that even with symmetric penalty
costs and distributions, the mean model is significantly inferior to the sto-
chastic linear programming formulation. Kusy and Ziemba (1986) employed a
multiperiod stochastic linear program with simple recourse to model the man-
agement of assets and liabilities in banking while maintaining computational
feasibility. Their model tends to maximize the net present value of bank prof-
its minus the expected penalty costs for infeasibility and includes the essential
institutional, legal, financial, and bank-related policy considerations and their
uncertainties. It was developed for the Vancouver City Savings Credit Union
for a five-year planning period. The results indicate that ALM is theoretically
and operationally superior to a corresponding deterministic linear program-
ming model and that the effort required for the implementation of ALM and
its computational requirements are comparable to those of the deterministic
model. Moreover, the qualitative and quantitative characteristics of the solu-
tions are sensitive to the model’s stochastic elements, such as the asymmetry
of cash flow distributions. This model had (1) multiperiodicity incorporating
changing yield spreads across time, transaction costs associated with selling
assets prior to maturity, and the synchronization of cash flows across time
by matching maturity of assets with expected cash outflows; (2) simultane-
ous considerations of assets and liabilities to satisfy accounting principles and
match the liquidity of assets and liabilities; (3) transaction costs incorporating
brokerage fees and other expenses incurred in buying and selling securities;
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(4) uncertainty of cash flows incorporating the uncertainty inherent in the
depositors’ withdrawal claims and deposits that ensures that the asset port-
folio gives the bank the capacity to meet these claims; (5) the incorporation
of uncertain interest rates into the decision-making process to avoid lending
and borrowing decisions that may ultimately be detrimental to the financial
well-being of the bank; and 6) legal and policy constraints appropriate to the
bank’s operating environment. The Kusy and Ziemba model did not contain
end effects, nor was it truly dynamic since it was solved two periods at a time
in a rolling fashion. The scenarios were high, low, and average returns that
were independent over time.

Another application of the multistage stochastic programming is the
Russell–Yasuda Kasai model (Carino et al., 1994), which aims at maximizing
the long-term wealth of the firm while producing high income returns. This
model builds on this previous research to make a large-scale dynamic model
with possibly dependent scenarios, end effects, and all the relevant institu-
tional and policy constraints of Yasuda Kasai’s business enterprise. The mul-
tistage stochastic linear program used by Carino et al. incorporates Yasuda
Kasai’s asset and liability mix over a five-year horizon followed by an infinite
horizon, steady-state, end-effects period. The objective is to maximize ex-
pected long-run profits less expected penalty costs from constraint violations
over the infinite horizon. The constraints represent the institutional, cash flow,
legal, tax, and other limitations on the asset and liability mix over time.

Based on one or more decision rules, it is possible to create an ALM model
for optimizing the setting of decision rules or even to create a scenario analy-
sis. These optimization problems are relatively small, but they often result in
nonconvex models and it is difficult to identify the global optimal solution.
Examples of optimizing decision rules are Falcon Asset Liability Management
(Mulvey et al., 1997) and Towers Perrin’s Opt: Link System (Mulvey, 1996).
In general, scenario analysis is defined as a single deterministic realization of
all uncertainties over the planning horizon. The process constructs, mainly,
scenarios that represent the universe of possible outcomes (Glynn and Igle-
hart, 1989; Dantzig and Infanger, 1993). The main idea is the construction
of a representative set of scenarios that are both optimistic and pessimistic
within a risk-analysis framework. Such an effort was undertaken by Towers
Perrin, one of the largest actuarial firms in the world, which employs a capital
market scenario generation system, called CAP: Link. This was done in order
to help its clients to understand the risks and opportunities relating to capital
market investments. The system produces a representative set of individual
simulations – typically 500 to 1,000 – starting with the interest rate compo-
nent. Towers Perrin employs a version of the Brennan and Schwartz (1982)
two-factor interest rate model. The other submodels are driven by the interest
rates and other economic factors. Towers Perrin has implemented the system
in over 14 countries in Europe, Asia, and North America.
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Derwa (1972), Robinson (1973), and Grubmann (1987) reported successful
implementations of simulation models developed for various financial institu-
tions. Derwa, for example, used a computer model, operating now at Société
Générale de Banque, to improve management decision making in banks. The
model was conceived as a form of a decision tree, which made it possible to
proceed step by step and examine the factors converging on the essential ob-
jectives of the bank. Derwa concluded that the problems raised by introducing
models into management are much more difficult to solve than the technical
ones connected with mathematics or date processing.

Mulvey and Vladimirou (1989) used dynamic generalized network pro-
grams for financial planning problems under uncertainty. They developed a
model in the framework of a multiscenario generalized network that captures
the essential features of various discrete-time financial decision problems and
represented the uncertainty by a set of discrete scenarios of the uncertain
quantities. However, these models are small and are not able to solve practical-
sized problems. Mulvey and Crowder (1979) and Dantzig and Glynn (1990)
used the methods of sampling and cluster analysis, respectively, to limit the
required number of scenarios to capture uncertainty and maintain computa-
tional tractability of the resulting stochastic programs.

Korhonen (2001) presented a multistage stochastic programming approach
to the strategic financial management of a multicompany financial conglomer-
ate. He created a comprehensive strategy that simultaneously covered a num-
ber of future scenarios within a multiperiod planning horizon. The strategy
includes multiple conflicting goals specified for a group level, company level,
or individual business area level. Moreover, the decision maker’s preferences
were allowed to change over time to reflect changing operating conditions and
trade-off relationships between the goals.

Kouwenberg (2001) developed a scenario generation methodology for as-
set liability management. He proposed a multistage stochastic programming
model for a Dutch pension fund. Both randomly sampled event trees and
event trees fitting the mean and the covariance of the return distribution
were used to generate the coefficients of the stochastic program. In order to
investigate the performance of the model and the scenario generation pro-
cedures, he conducted rolling horizon simulations. The average cost and the
risk of the stochastic programming policy were compared to the results of a
simple fixed mix model. He compared the average switching behavior of the
optimal investment policies; the results of this analysis proved that the per-
formance of the multistage stochastic program could be improved by choosing
an appropriate scenario generation method.

2.3 A Goal Programming Formulation

Kosmidou and Zopounidis (2004) developed an asset liability management
(ALM) methodology into a stochastic environment of interest rates in order
to select the best direction strategies to the banking financial planning. The
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ALM model was developed through goal programming in terms of a one-year
time horizon. The model used balance sheet and income statement information
for the year t − 1 to produce a future course of ALM strategy for the year
t + 1. As far as model variables are concerned, we used variables familiar to
management and facilitated the specification of the constraints and goals. For
example, goals concerning measurements such as liquidity, return, and risk
have to be expressed in terms of utilized variables.

More precisely, the asset liability management model that was developed
can be expressed as follows:

min z =
∑

P

pk(d+
k + d−k ), (1)

s.t. LBX′ ≤ X ′ ≤ UBX′ , (2)
LBY ′ ≤ Y ′ ≤ UBY ′ , (3)

n∑

i=1

Xi =
m∑

j=1

Yj , (4)

∑

j∈ΠY ′′

Yj − a
∑

i∈EX′′

Xi = 0, (5)

∑

j∈Π1

Yj −
∑

i∈E

wiXi − d+
s + d−s = k1, (6)

∑

i∈Ex

Xi − k2

∑

j∈Πk

Yj + d−l − d+
l = 0, (7)

n∑

i=1

RX
i Xi −

m∑

j=1

RY
j Yj − d+

r + d−r = k3, (8)

∑

i∈Ep

Xi + d−p − d+
p = lp, ∀ p, (9)

∑

j∈Πp

Yj + d−p − d+
p = lp, ∀ p, (10)

Xi, Yj , d
+
k , d

−
k ≥ 0, ∀ i = 1, . . . , n, j = 1, . . . ,m, k ∈ P. (11)

where

– Xi: the asset element i = 1, . . . , n, with n the number of asset variables,

– Yj : the liability element j = 1, . . . ,m, with m the number of liability
variables,

– LBX′ (LBY ′ ) is the low bound of specific asset accounts X ′ (liability Y ′),

– UBX′ (UBY ′ ) is the upper bound of specific asset accounts X ′ (liability
Y ′),

– EX′′ are specific categories of asset accounts,
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– EY ′′ are specific categories of liability accounts,

– a is the desirable value of specific asset and liability data,

– Π1 is the liability set, which includes the equity,

– E is the set of assets,

– wi is the degree of riskiness of the asset data,

– k1 is the solvency ratio, as defined by the European Central Bank,

– k2 is the liquidity ratio, as defined by the bank policy,

– EX is the set of asset data, which includes the loans,

– Πk is the set of liability data, which includes the deposits,

– RX
i is the expected return of the asset i,

– RY
j is the expected return of the liability j,

– k3 is the expected value for the goal of asset and liability return,

– P is the set of goals imposed from the bank,

– lp is the desirable value goal for the goal constraint p defined by the bank,

– d+
k is the overachievement of the goal k ∈ P ,

– d−k is the underachievement of the goal k ∈ P ,

– pk is the priority degree (weight) of the goal k ∈ P .

Certain constraints are imposed by the banking regulation on particular
categories of accounts. Specific categories of asset accounts (X ′) and liability
accounts (Y ′) are detected, and the minimum and maximum allowed limit for
these categories are defined based on the strategy and policy that the bank
intends to follow (constraints 2–3).

The structural constraints (4–5) include those that contribute to the struc-
ture of the balance sheet and especially to the performance of the equation
Assets = Liabilities + Net Capital.

The bank management should determine specific goals, such as the desir-
able structure of each financial institution’s assets and liabilities for the units
of surplus and deficit, balancing the low cost and the high return. The struc-
ture of assets and liabilities is significant, since it swiftly affects the income
and profits of the bank.

Referring to the goals of the model, the solvency goal (6) is used as a
risk measure and is defined as the ratio of the bank’s equity capital to its
total weighted assets. The weighting of the assets reflects their respective
risk, greater weights corresponding to a higher degree of risk. This hierarchy
takes place according to the determination of several degrees of significance
for the variables of assets and liabilities. That is, the variables with the largest
degrees of significance correspond to categories of the balance sheet accounts
with the highest risk stages.
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Moreover, a basic policy of commercial banks is the management of their
liquidity and specifically the measurement of their needs that is relative to the
progress of deposits and loans. The liquidity goal (7) is defined as the ratio
of liquid assets to current liabilities and indicates the liquidity risk, which
indicates the possibility of the bank to respond to its current liabilities with
a security margin, which allows the probable reduction of the value of some
current data.

Furthermore, the bank aims to maximize its efficiency, which is the ac-
complishment of the largest possible profit from the best placement of its
funds. Its aim is the maximization of its profitability; therefore, precise and
consistent decisions should be taken into account during bank management.
These decisions will guarantee the combined effect of all the variables that are
included in the calculation of the profits. This decision process emphasizes sev-
eral selected variables that are related to the bank management, such as to the
management of the difference between the asset return and the liability cost,
the expenses, the liquidity management, and the capital management. The
goal (8) determines the total expected return based on the expected returns
for all the assets RX and liabilities RY .

Beside the goals of solvency, liquidity, and return of assets and liabilities,
the bank could determine other goals that concern specific categories of assets
and liabilities, in proportion to the demands and preferences of the bank
managers. These goals are the deposit goal, the loan goal, and the goal of
asset and liability return.

The drawing of capital, especially from the deposits, constitutes a major
part of commercial bank management. All sorts of deposits constitute the
major source of capital for the commercial banks, in order to proceed to
the financing of the economy, through the financing of firms. Thus, special
significance is given to the deposits goal.

The goal of asset and liability return defines the goal for the overall
expected return of the selected asset-liability strategy over the year of the
analysis.

Finally, there are goals reflecting that variables such as cash, cheques re-
ceivables, deposits to the Bank of Greece, and fixed assets should remain
at the levels used in previous years. More analytically, it is known that the
fixed assets are the permanent assets, which have a natural existence, such
as buildings, machines, locations, and equipment. Intangible assets are the
fixed assets, which have no natural existence but constitute rights and bene-
fits. They have significant economic value, which sometimes is larger than the
value of the tangible fixed assets. These data have stable character and are
used productively by the bank for the regular operation and performance of
its objectives. Since the fixed assets, tangible or intangible, are presented at
the balance sheet at their book value, which is the initial value of cost minus
the depreciation until today, it is assumed that their value does not change
during the development of the present methodology.
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At this point, Kosmidou and Zopounidis (2004) took into account that the
banks should manage the interest rate risk, the operating risk, the credit risk,
the market risk, the foreign exchange risk, the liquidity risk, and the country
risk.

More specifically, the interest rate risk indicates the effect of the changes
to the net profit margin between the deposit and borrowing values, which are
evolved as a consequence of the deviations to the dominant interest rates of
assets and liabilities. When the interest rates diminish, the banks accomplish
high profits since they can refresh their liabilities to lower borrowing values.
The reverse stands for high borrowing values. It is obvious that the changes
to the inflation have a relevant impact on the above sorts of risk.

Considering the interest rate risk as the basic uncertainty parameter to
the determination of a bank asset liability management strategy, the crucial
question that arises concerns the determination of the way through which
this factor of uncertainty affects the profitability of the prespecified strategy.
The estimation of the expected return of the prespecified strategy and of its
variance can render a satisfactory response to the above question.

The use of Monte Carlo techniques constitutes a particular widespread ap-
proach for the estimation of the above information (expected return–variance
of bank asset liability management strategies). Monte Carlo simulation con-
sists in the development of various random scenarios for the uncertain variable
(interest rates) and the estimation of the essential statistical measures (ex-
pected return and variance), which describe the effect of the interest rate risk
to the selected strategy. The general procedure of implementation of Monte
Carlo simulation based on the above is presented in the Figure 1.

During the first stage of the procedure, the various categories of the interest
rate risks are identified. The risk and the return of the various data of bank
asset and liability are determined from the different forms of interest rates. For
example, bank investments in government or corporate bonds are determined
from the interest rates that prevail in the bond market, which are affected
equally by the general economic environment as by the rules of demand and
supply. Similarly, the deposits and loans of the bank are determined from
the corresponding interest rates of deposits and loans, which are assigned
by the bank according to the conditions that prevail to the bank market.
At this stage, the categories of the interest rates, which constitute crucial
uncertain variables for the analysis, are detected. The determined interest
rates categories depend on the type of the bank. For example, for a decisive
commercial bank, the deposit and loan interest rates have a role, whereas
for an investment bank more emphasis is given to the interest rates and the
returns of various investment products (repos, bonds, interest-bearing notes,
etc.).

After the determination of the various categories of interest rates, which
determine the total interest rate risk, at the second stage of the analysis the
statistical distribution that follows each of the prespecified categories should
be determined.
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Determination of the uncertain
parameters (interest rates) 

Determination of the statistical
distribution 

Development of random
scenarios 

Evalution of the strategy for
each scenario 

Determination of appropriate
statistical measures 

Fig. 1. General Monte Carlo simulation procedure for the evaluation of the asset
liability management strategies.

Having determined the statistical distribution that describes the uncer-
tain variables of the analysis (interest rates), a series of random independent
scenarios is developed, through a random number generator. Generally, the
largest the number of scenarios that are developed, the more reliable conclu-
sions can be derived. However, the computational effort increases significantly,
since for each scenario the optimal asset liability strategy should be deter-
mined and moreover its evaluation for each other scenario should take place.
Thus, the determination of the number N of simulations (scenarios), which
will take place should be determined, taking into account both the reliability
of the results and the available computational resources.

For each scenario si (i = 1, 2, . . . , N) over the interest rates, the optimal
asset liability management strategy Yi is determined through the solution of
the goal programming problem. It is obvious that this strategy is not expected
to be optimal for each of the other scenarios sj (j 
= i). Therefore, the results
obtained from the implementation of the strategy Yi under the rest N − 1
possible scenarios sj should be evaluated. The evaluation of the results can be
implemented from various directions. The most usual is the one that uses the
return. Representing as rij the outcome (return) of the strategy Yi under the
scenario sj , the expected return ri of the strategy can be easily determined
based on all the other N − 1 scenarios sj (j 
= i) as follows:
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ri =
1

N − 1

∑

j �=i

rij .

At the same time, the variance σ2
i of the expected return can be determined

as a risk measure of the strategy Yi as follows:

σ2
i =

1
N − 1

∑

j �=i

(rij − ri)2.

These two statistical measures (average and variance) contribute to the
extraction of useful conclusions concerning the expected efficiency of the as-
set liability management strategy as well as the risks that it carries. More-
over, these two basic statistical measures can be used for the expansion of
the analysis of the determination of other useful statistical information, such
as the determination of the confidence interval for the expected return, the
quantiles, etc.

The above ALM model was applied to a commercial bank of Greece. This
model provides the possibility to the financial institutions and more specifi-
cally to the banks to proceed to various scenarios of their economic progress
for the future, aiming at the management of deposit, loan, and bond interest
rates emerging from the changes of the market variables.

3 Conclusions

The main purpose of the present chapter was to provide a brief outline of the
bank ALM techniques in the banking industry.

The banking business has recently become more sophisticated due to tech-
nological expansion, economic development, creation of financial institutions,
and increased competition. Moreover, the mergers and acquisitions that have
taken place the last years have created large groups of banking institutions.
The success of a bank depends mainly on the quality of its asset and liability
management, since the latter deals with the efficient management of sources
and uses of bank funds concentrating on profitability, liquidity, capital ade-
quacy, and risk factors.

It is obvious that in the last two decades modern finance has developed into
a complex, mathematically challenging field. Various and complicated risks
exist in financial markets. For banks, interest rate risk is at the core of their
business; managing it successfully is crucial to whether or not they remain
profitable. Therefore, it has been essential to the creation of the department
of financial risk management within the banks. Asset liability management is
associated with the changes of the interest rate risk. Although several models
exist regarding asset liability management, most of them are focused on the
general aspects and methodologies of this field and do not refer extensively
to the hedging of bank interest rate risk through asset liability management.
Thus, we believe that the development of a bank asset liability management
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model that takes into account the exogenous factors and the economic para-
meters of the market as well as the uncertainty of variations of the financial
risks become essential. The investigation of the above will contribute to a more
complete definition of the ALM of commercial banks, through an integrated
information system that gives the possibility to the decision maker to proceed
to various scenarios of the economic process of the bank in order to monitor
its financial situation and to determine the optimal strategic implementation
of the composition of assets and liabilities.

Finally, despite the approaches described here, little academic work has
been done so far to develop a model for the management of assets and liabili-
ties in the European banking industry. Based on the above, we conclude that
the quality of asset liability management in the European banking system has
become significant as a resource of competitive advantage. Therefore, the de-
velopment of new technological approaches in bank asset liability management
in Europe is worth further research.

Appendix

Linear Programming Formulation of Assets and Liabilities
Management

Assuming that rj is the unit revenue of asset i (in real terms) and cj is the
unit cost of liability j, the objective function is

max z =
∑

rixi −
∑

cjYj ,

where Xi is the mean balance of asset i, Yj is the mean balance of liability j
and z represents the difference between the bank’s interest income and interest
expense, i.e., its revenues ignoring operational expense. The objective function
is maximized under a set of constraints.

Linear Goal Programming Model

The problem of a bank’s assets and liabilities management can be formulated
as the following goal programming model:

min z = f(d+
i + d−i ), (12)

s.t.
n∑

j=1

cmjxj ≤ θm, ∀m = 1, . . . ,M (rigid constraints), (13)

n∑

j=1

aijxj = bi + d+
i − d−i ∀ i = 1, . . . , I (goals), (14)

xj , d
+
i , d

−
i ≥ 0, (15)
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where

– xj is the mean balance of asset or liability j (structural variables),

– Yj is the mean balance of liability j,

– aij is the technological coefficient attached to xj in goal i,

– θm is the available amount of resource m,

– cmj is the consumption coefficient corresponding to xj in constraint m,

– bi is the target value for goal i,

– d+
i , d−i are the positive and negative deviations from the target value of

goal i.

The rigid constraints (13) reflect the availability limitations of resources
m and correspond to the constraints in the conventional linear programming
model. The goals (14) represent the objectives set by management, with the
right-hand side of each goal consisting of the target value bi and the posi-
tive/negative deviation d+

i , d−i from it.
The difference in formulation between rigid constraints and goals can be

handled in a number of ways. In the sequential linear goal programming model
applied at a bank, these constraints are transformed to the same form as the
goals. Thus, (13) becomes

n∑

j=1

cmjxj = θm + d+
m − d−m, ∀m = 1, . . . ,M.

The achievement function (objective function) has the following form:

min Z =

⎧
⎪⎪⎨

⎪⎪⎩

P1

[
M∑

m=1
W1m(d+

m, d
−
m)
]
, P2

[
I∑

i=1

W2i(d+
i , d

−
i

]
, . . . ,

Pϕ

[
I∑

i=1

Wϕi(d+
i , d

−
i )
]

⎫
⎪⎪⎬

⎪⎪⎭
,

where

– Pϕ are the priority levels, with P1 > P2 > · · · > Pϕ,

– Wϕi is the linear weighting function of the deviation variables of constraint
i at priority level ϕ,

– ϕ ≤ i + 1, i.e., the number of priority levels is less than or equal to the
number of goals plus 1, since all the rigid constraints appear at the first
priority level.

Stochastic Linear Programming with Simple Recourse

The general n-stage (SLPSR) model is
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max c1x1 − Eξ1

⎧
⎨

⎩min

⎡

⎣
q+1 y

+
1 + q−1 y

−
1 + ...+

min
[
cnxn + Eξn /ξn−1...ξ1+
{ min [q+n y+

n + q−n y−n ] }
]
...

⎤

⎦

⎫
⎬

⎭ ,

s.t.
i∑

j=1

Tijxi + Iy+
i − Iy−i = ξi, i = 1, . . . , n.

The objective function implies the maximization of the net present value
of monthly profits minus the expected penalty costs for constraint violations.

The approximation procedure aggregates x2, . . . , xn with x1 and ξ2, . . . , ξn
with ξ1. Thus, one chooses x = (x1, . . . , xn)′ in stage 1, observes ξ =
(ξ1, . . . , ξn)′ at the end of stage 1, and these steps together determine (y+, y−)
= [(y+

1 y
−
1 ), . . . , (y+

n , y
−
n )] in stage 2. This approach yields a feasible procedure

for the true dynamic model that is computationally feasible for large prob-
lems and incorporates partial dynamic aspects, since penalty costs for periods
2, . . . , n are considered in the choice of x1, . . . , xn. Aggregating all future pe-
riod decision variables into x1 would make the first period decision function
as if all future period decisions were the same regardless of the scenario. The
decision maker is primarily interested in the immediate revision of the bank’s
assets and liabilities.
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1 Scope of the Chapter

Capital budgeting is a very important topic in corporate finance to make
investment decisions. The purpose of the present chapter is to provide an
overview in tutorial form about modern operations research (OR) techniques
that can be used in such a seemingly rather traditional discipline of finance.

I have held the provided references to the useful minimum necessary for
further personal studies.

Given an investment project portfolio, the problem to be solved is to select
a number of projects that can create value under satisfactory conditions for
the corporation. Project are adopted or deleted from the portfolio according
to multiple criteria. When only monetary criteria are considered by managers,
the following well-known decision methodologies are usual:

• Discounted cash flow (DCF) is based on cost-benefit analysis: the net
present value (NPV) is calculated of all initial outlays (costs) and future
free cash flows generated by the project after its completion (benefits).
Only projects with a positive NPV will pass the DCF test.

• Payback time (PBT) is a measure of the number of years necessary to
repay the initial outlay by means of the future cash flows generated by the
project. Only projects with a PBT below a defined ceiling threshold will
pass the PBT test.

• Internal rate of return (IRR): IRR is the discount rate at which the NPV
of the initial outlays and the future cash flows will vanish. Only projects
with an IRR above a defined floor threshold will pass this test.

Complications arise for many reasons, even in the case when only monetary
criteria are considered. Note in particular that three main issues need to be
addressed:

1. There are constraints on the available budgets (this is the very reason for
the name “capital budgeting”).
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2. In many investment decision problems, other points of view of different
stakeholders are to be considered beyond pure monetary criteria appearing
in the free cash flow previsions.

3. There are many uncertainties, especially in defining future cash flows to
be generated by the project, or in calculating the initial outlay.

In Section 2, I briefly describe the traditional capital budgeting toolkit
used for addressing the first and third issues. The literature here is so exten-
sive that only very basic information can be provided, mainly on the DCF
technique. The readers are referred to textbooks like Mishan (1988) on cost-
benefit analysis, Brealey and Myers (1991), and Besley and Brigham (2005),
both on corporate finance for a more detailed introduction. Moreover, due to
the limited space, many aspects will be entirely ignored. No information will
be provided on issues like the way free cash flows are deduced from corpo-
rate accounting statements, the choice of a discount rate from the evaluation
of the weighed average cost of capital (WACC) or from capital asset pricing
model (CAPM), the use of decision trees and certainty equivalents to cope
with stochastic uncertainties, etc.

The following sections describe more advanced techniques to address the
three described issues.

In Section 3, the decision-making process is expanded beyond the mere
monetary aspects by considering additional criteria and additional constraints,
e.g., on available budgets, with the purpose of addressing the first and second
issues. For illustration of the resulting multicriteria-decision aid (MCDA) ap-
proach, the well-known PROMETHEE technique is introduced: It is easy to
use and quite popular among managers.

In Sections 4 and 5, advanced uncertainty treatments are presented, to
address the third issue.

In Section 4, fuzzy numbers and fuzzy-inference systems are introduced to
cope with uncertainties on important data appearing in the decision process,
like initial outlays, free cash flows, discount rates, etc. Some elements will be
given on how MCDA problems are “fuzzified,” considering herewith all three
issues within the same problem.

In Section 5, real options present in some investment decisions are dis-
cussed: They can improve the flexibility of the decision-making process and
the NPV of the project. Examples of options are given; they are solved by
means of the binomial-tree technique. Moreover, elements are given on how to
introduce the real-option value as a supplementary criterion in capital bud-
geting using MCDA techniques.

A short conclusion is given in Section 6.
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2 The Traditional Discounted Cash Flow Approach

2.1 Basics

Assume three projects (i = 1, 2, 3) with cash flow streams, given in Table 1,
generated over a common lifetime of five years. The negative cash flow CF0

in year y = 0 represents the initial outlays. Subsequent cash flows CFy in
years y = 1, 2, . . . , 5 are all positive in this example: In real problems cash
flows could become negative in some years (note that in this case there are
well-known difficulties in obtaining just one IRR value: This is discussed in
all textbooks).

Table 1. Cash Flows (CF), Net Present Values (NPV) and Profitability Indices
(PIN) of Three Investment Projects with 5-Year Lifetime

Project i Rate Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 NPV PIN

1 7% −1000 220 300 400 180 150 −038.43 04%
2 7% 0−500 100 150 200 200 200 −182.91 37%
3 7% 0−375 050 075 080 090 100 0−57.50 na

The cost of capital is R = 7% per year. The net present values are com-
puted with the DCF approach as being given by the following expression:

NPV(project i = 1, 2, 3) = CF0(i) +
5∑

y=1

CFy(i)
(1 +R)y

. (1)

Only the two first projects pass the DCF test and are considered for po-
tential investment. It is also mentioned and demonstrated in textbooks that
the NPV technique is the most suitable approach for selecting investment
projects. In case the projects are exclusive, only one can be adopted.

To decide which projects are selected, a ranking is made using the NPV
values. In this very simple example, the second project is ranked first on the
basis of the larger NPV. This is, however, a special case: For example, it will
be difficult to compare projects with different lifetimes and also with different
magnitudes in investment and cash flows.

A possible attractive approach is to use a nonnegative profitability index
(PIN), obtained by calculating the ratio between the NPV and the absolute
value of the negative initial outlay as follows:

PIN(project i) =
NPV(project i)

|CF0| , 1 ≤ i ≤ 3. (2)

Note that many more approaches are described in textbooks on corporate
finance, but this one is certainly easy to calculate.

From Equation (2) we obtain PIN(project 1; project 2; project 3)= (4%;
37%; na), so that indeed project 2 should be selected: But this a special case
where it works both ways.
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2.2 Budget Constraints – The Knapsack Approach

Of course, in general, there are constraints, either on the budgets, which are
available at start for investment, or on the cash drains as the cash flows may
become negative in some years; sometimes working capital requirements are
imposed in addition.

This capital budgeting problem with constraints can be solved using inte-
ger linear programming (ILP) with binary variables:

A binary variable xi with values 0 or 1 is introduced for each project i.
Assuming that there are N candidate projects in the portfolio, all with a
positive NPV, and that there is only one constraint on the total budget to
be spent for the initial outlays for each project i, the following ILP problem
must be solved:

max z =
N∑

i=1

PINixi,

s.t.
N∑

i=1

xiCF
i
0 ≤ total budget,

xi = 0, 1, 1 ≤ i ≤ N.

(3)

Of course, several additional constraints could be considered in addition.
Commercial packages implementing the Branch-and-Bound algorithm, or sim-
ply the SOLVER add-in in Excel, are then used for resolution of the ILP
problem.

This is exactly the well-known “knapsack problem”: It has to be decided
which of the more or less indispensable N objects have to be introduced in
a knapsack, given some constraints on the maximum available space, total
permissible weight, etc.

Figure 1 brings a simple example with one budget constraint solved by us-
ing SOLVER. Projects have to be selected among a portfolio of seven projects,
all having positive NPVs. The budget constraint is 1000 AU (arbitrary ac-
counting units). As seen in this figure, the constraint imposes that the second
project, which has a PIN= 40%, cannot be kept because its budget is too
large. The sixth project, which has a PIN= 21%, is chosen instead.

2.3 Stochastic Treatment of Uncertainties

Usually, input data to the DCF analysis are affected with all kinds of uncer-
tainty, including the discount rate itself.

Many techniques are available to handle uncertainties from certainty equiv-
alents to decision trees. Another popular technique is Monte Carlo analysis, in
which important parameters are represented by probability distributions, so
that for each project a probability distribution of NPVs and other useful pa-
rameters can be obtained, like the PINs defined in Equation (2). Techniques
for comparing probability distributions can be used to define a ranking of
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Fig. 1. Resolution with SOLVER of the knapsack problem applied to capital bud-
geting: Seven projects with positive PINs and one budget constraint are considered.
A project is selected when xi = 1.

the projects on the basis the NPV distributions, generalizing the approach
presented in Section 2.1.

As an example, assume a project consisting in building a production plant
for some manufactured items to be sold on a market, the uncertain yearly
revenues could be estimated as follows in some year y:

revenue(y) = price × size of the market(y) × market share(y), (4)

where the price is a known parameter, and both “size of the market (S)”
and “market share (M)” in year y are random variables represented by some
estimated cumulative probability distributions FS and FM. The Monte Carlo
procedure would have the following steps, assuming a large enough number of
random drawings, up to an upper counter limit (CL), e.g., CL = 500 drawings,
and no correlation between both probability distributions:

1. set counter = 0;
2. generate random number RS and RM uniformly distributed on [0,1];
3. calculate the corresponding values of size of the market, market share by

calculating, respectively, i.e., by using the inverse cumulative probability
distributions;
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4. calculate and record the revenue (Counter) from Equation (4) by using
the obtained values and the given price;

5. increment counter:=counter+1;
6. if counter<CL, go back to step 2; otherwise, go to step 7;
7. prepare a frequency histogram of revenue; calculate mean, standard devi-

ation, etc.

From the produced probability distribution of NPVs (or PINs) for each
project in the portfolio, it is possible to estimate the probability NPV> 0, or
IRR> k%, given the required minimum percentage return k, etc.

A ranking can also be established, e.g., NPV1>NPV2, with confidence
level 95%, etc.

However, both difficulties discussed in Besley and Brigham (2005) should
not be underestimated: (1) defining probability distributions for the differ-
ence parameters in the cash flow models; and (2) taking into account the
correlations that usually exist between those parameters.

Section 4 discusses how to approach uncertainties in parameters by using
fuzzy numbers rather than probability distributions.

3 Multicriteria Analysis

3.1 Basics of Multicriteria Analysis

In many decision problems other aspects than purely monetary must be con-
sidered, i.e., multiattribute or multicriteria dimensions.

This is, of course, also valid for capital budgeting problems: It is necessary
to go beyond monetary values to consider additional dimensions, like the
impact on available knowledge for a R&D project, environmental impact of a
technological project, flexibility in a decision to invest, etc.

The treatment of these multidimensional aspects in decision problems is
the object of Multicriteria Decision Aid (MCDA). An abundant literature is
dedicated to the numerous available techniques. Vincke (1992) gave a good
overview.

Basically, two important families of techniques can be distinguished:

1. Multiattribute techniques are based on utility theory; they have been
developed in the UK and North America. A classical reference book is
Keeney and Raiffa (1976). Note that the weighed sum rule is a special
case of additive linear utility functions;

2. Outranking methods are based on pairwise comparisons of alternatives;
they have been developed in continental Europe, and especially in France
around the work of Roy (1985). A more recent reference is Roy and
Bouyssou (1993).
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Most techniques are valuable, but not all can be mentioned or compared
with respect to their respective merits in the present chapter.

For the sake of illustrating the concepts used in many outranking methods,
the following explanations will spin around the PROMETHEE approach, an
easy-to-use methodology developed in Brans and Vincke (1985), and Brans
and Mareschal (1994), (2002). It also has the capability of including con-
strained budgeting and other constraints.

3.2 A Simple Multicriteria Technique

The basic principles of the PROMETHEE technique are now presented.
Let f1(·), f2(·), . . . , fK(·) be K evaluation criteria the decision makers wish

to take into account. Consider N investment strategies; suppose, in addition,
that the evaluations of these projects are real numbers expressed on their
particular criterion units or real number scores placed on numerical scales,
such as 0 to 10, or 0 to 100, etc. The following evaluation table is set up for
N investment strategies Si, i = 1, 2, . . . , N .

Table 2. Multicriteria Evaluation Table in PROMETHEE in Case N Investment
Strategies Si, i = 1, 2, . . . , N are Evaluated Against Multiple Criteria k = 1, 2, . . . ,K

Strategies f1(·) f2(·) · · · fj(·) · · · fK(·)
S1 f1(S1) f2(S1) · · · fj(S1) · · · fK(S1)
S2 f1(S2) f2(S2) · · · fj(S2) · · · fK(S2)
· · · · · · · · · · · · · · · · · · · · ·
Si f1(Si) f2(Si) · · · fj(Si) · · · fK(Si)
· · · · · · · · · · · · · · · · · · · · ·
SN f1(SN ) f2(SN) · · · fj(SN) · · · fK(SN )

First, preference functions Pk(Sn, Sm) are defined for the sake of compar-
ing strategy pairs Sn, Sm for all criteria fk(·), k = 1, 2, . . . ,K. Each function
for a given k is defined as being monotonously increasing, as a function of the
difference of the scores being obtained by the two strategies on each particu-
lar criterion. Different shapes of the preference function with the possibility of
multiple preference thresholds can be chosen. An example of a linear V-shaped
function with one threshold (p) is given in Figure 2; a linear function with
two thresholds (q, p) is shown in Figure 3. Other possible shapes are Gaussian
shapes, or staircase-like preference functions.

Suppose now that all pairwise comparisons have been performed, providing
all preference-function values:

0 ≤ Pk(Sn, Sm) ≤ 1, for k = 1, 2, . . . ,K; n,m = 1, 2, . . . , N. (5)

An aggregated preference index over all the criteria is then calculated:
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Fig. 2. A PROMETHEE V-shaped linear preference function with one preference
threshold (p = 0.5) of the difference dij between the evaluations of a pair of actions
(i, j).
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Fig. 3. A PROMETHEE linear preference function with two preference thresholds
(q = 0.1) and (p = 0.5) of the difference dij between the evaluations of a pair of
actions (i, j).

Π(Sn, Sm) =
k∑

j=1

Pj(Sn, Sm)wj , (6)

where wj is a weight, measuring the relative importance allocated to
criterion j. The weights are supposed to be normalized, so that

k∑

j=1

wj = 1. (7)

The following so-called positive and negative dominance flows express the
dominating and the dominated character of a strategy Sn, respectively, over
all other strategies:
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Φ+(Sn) =
1

n− 1

N∑

m=1

Π(Sn, Sm), (8)

Φ−(Sn) =
1

n− 1

N∑

m=1

Π(Sm, Sn), (9)

while the balance of the dominance flow gives the net flow:

Φ(Sn) = Φ+(Sn) − Φ−(Sn). (10)

Two partial rankings give by intersection the so-called PROMETHEE I
ranking. The former rankings are obtained from both the positive and the
negative flows, corresponding respectively to the more or less dominating
strategies (positive flows) and the more or less dominated strategies (negative
flows).

Both rankings may be contradictory, so that some strategies are considered
to be incomparable, i.e., they are better than other strategies for some criteria
and worse for some other criteria.

Only by using the net flows in Equation (10) can a complete ranking be
obtained, the so-called PROMETHEE II ranking.

The PROMCALC software in MS-DOS and the more recent Decision Lab
2000 under WINDOWS are described in Brans and Mareschal (1994, 2002).
Available additional features of the software are the sensitivity analysis on the
weights and graphical investigations in the so-called GAIA plane obtained by
principal components analysis (PCA) (Brans and Mareschal, 1994).

An Example

Consider the following evaluation table of five projects i = 1, 2, . . . , 5 for three
criteria: profitability index (PIN) measured in percents, environmental index
(EIN) measured on a scale from 0 (lowest value) to 10 (highest value) de-
scribing the environmental quality of each project, and the flexibility (FLEX)
during the investment decision-making process, also measured on a 0–10 scale.

Table 3. Scores for Five Projects for Three Criteria

Projects PIN (%) EIN (0–10) FLEX (0–10)

Proj1 50 04 06
Proj2 28 08 07
Proj3 17 07 10
Proj4 12 10 04
Proj5 34 08 02

Weights 0.4 0.25 0.35
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All three criteria have to be maximized. A linear V-shaped function is
adopted for the PIN criterion, with a preference threshold equal to 5%; linear
functions with two thresholds are adopted for the EIN and the FLEX criteria
with an indifference threshold equal to 1, and a preference threshold equal to 2.

Figure 4 shows the complete PROMETHEE II ranking established on the
basis of the net flows Φs.

Fig. 4. The PROMETHEE II ranking with the indication of the net flows Φs.

The GAIA plane obtained by PCA is shown in Figure 5. The pi-decision
axis (circle) is a representation in the GAIA plane of the weighting of the
criteria. Its orientation indicates the type of compromise obtained in the
PROMETHEE II ranking. The strategy is ranked first, which has the largest
value of the projection in the plane on the pi-decision axis. It can easily be
seen from the last figure that Proj1 has the largest projection on the pi-axis,
and it is indeed ranked first.

3.3 Taking Constraints into Account

The approach has been extended to take into account constraints, common
in capital budgeting, and discussed earlier in Section 2.2. Again the knapsack
formulation is used. Equation (3) is directly transposed: The PIN values are
replaced by coefficients derived from the net flows Φs in PROMETHEE as
follows:

max z =
N∑

i=1

(Φi − Φmin + ε)xi,

s.t.
N∑

i=1

xiCF
i
0 ≤ total budget,

xi = 0, 1 1 ≤ i ≤ N,

(11)

where Φmin represents the (negative) smallest flow obtained in PROMETHEE,

and ε is a small positive number. In this way all coefficients of the objective
function z to be maximized are positive, as requested in the knapsack problem.
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Fig. 5. The GAIA plane obtained by PCA of five projects (triangle) and three
criteria (squares). The pi-axis indicates the compromise between the three criteria
for the given weights.

In the original approach called PROMETHEE V described in Brans and
Mareschal (2002), the net flows are directly used in the objective function z
so that the formulation is no longer a knapsack problem. Because the total
net flows must sum up to zero, as can be seen from analyzing Equations (5)
to (10), some investments always have negative values, in particular the last
ranked with the minimum flow Φmin. Therefore, unless additional suitable
constraints are used, investments with negative net flows will never have a
chance of getting selected. It is why it is necessary to adapt the methodology
as done in (11).

To illustrate this, let us use the example of Table 3 completed with budget
values as given in column C of Table 4. Two constraints are considered:

• the total budget lies between 350 and 420 AU (arbitrary accounting units);
• at least three projects should be selected, so that the sum of the binary

variables xi appearing in column B of the spreadsheet is larger than or
equal to 3.

The problem is solved with SOLVER, and the results are shown in Table 4:
PROJ1, PROJ3, and PROJ4 are selected. Note that PROJ4 is the least-scored
project, but it is still kept to satisfy the constraints.
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Table 4. Multicriteria Analysis Using PROMETHEE Net Flows Submitted to Bud-
get Constraints for a Minimum of Three Projects (ε = 0.01)

xi Budget Φ Φ − Φmin + ε x(Φ − Φmin + ε) x×Budget

PROJ1 1 300 −0.24 0.58 0.58 300
PROJ2 0 120 −0.09 0.43 0.00 000
PROJ3 1 045 −0.15 0.49 0.49 045
PROJ4 1 060 −0.33 0.01 0.01 060
PROJ5 0 270 −0.15 0.19 0.00 000

SUM 3 795 1.08 405

Budget≤ 420
Budget≥ 350

4 Fuzzy Treatment of Uncertainties

4.1 Basics on Fuzzy Logic

Fuzzy logic (FL) is a mathematical technique to assist decisions on the basis of
rather vague statements and logical implications between variables. FL is close
to the natural language, which is why some people have called it “computation
with words.” It was a big achievement of Bellman and Zadeh (1970) to provide
this fantastic instrument to decision making. FL is indeed very useful in many
technical and economic applications in which the imprecise and relatively
vague judgments of experts have to be accounted for in a quantitative way,
as explained for business applications in Cox (1995).

A basic ingredient of fuzzy logic is the use of “fuzzy numbers” (FNs)
representing the range of possible values of a vague or imprecisely known
variable or parameter. Ordinary Boolean logic would accept just one single
value to represent what is then called a “crisp number.”

An FN represents a possibility grade, called a membership grade (MG),
that some parameters or variables in a model represent some semantic prop-
erty or affirmation, for example, the property of a person being “middle-aged.”

This MG can be represented as a function, called a membership function
(MF), of the value of the parameter or variable, here the person’s age. In this
example:

MG of being middle-aged = MF “MIDDLE-AGED” (person age). (12)

MFs are often normalized, i.e., the largest possible MG is equal to 1.
Common MFs are given as triangular fuzzy numbers (TFN) defined by the
triplet [a, b, c], or as trapezoidal fuzzy numbers (TRFN) defined by the quadru-
plet [a, b, c, d]. Other shapes are triangular-like, trapezoidal-like, Gaussian
FNs, etc.

To represent an FN, the MF must have a number of properties defined
in Buckley et al. (2002, pages 5–8), i.e., to be normalized and monotonically
increasing or decreasing along each lateral edge.
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In the quoted example, MF “MIDDLEAGED” may be a TFN, defined
with MG = 0 for age values below 30 years (y), increasing to MG = 1 at 45 y,
and declining to MG = 0 at 60 y.

This TFN is expressed in “years” units, and it is defined by the triplet [30,
45, 60]. Note that the membership grade (MG) 0.5 corresponds to an age of
37.5, or 52.5.

Figure 6 shows this representation and an alternate representation with
the TRFN [30, 45, 52.5, 60].
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Fig. 6. Middle-aged membership function in two representations TFN and TRFN.

In the same context, other lifetimes could be represented, e.g., “CHILD,”
“YOUNG,” “OLD.” The interval of variation of the fuzzy variable is called
the universe of discourse, in the given example for life ages, it would be in the
interval [0, 100] (years).

The starting part of fuzzy logic thus consists of “fuzzification,” i.e., trans-
lating imprecise variables or parameters in a model into fuzzy numbers, rep-
resented by MFs, e.g., using four MFs in describing the different ages of life.

Note that those MFs are different from probability distributions. For ex-
ample, the total surface underneath any MFs is not normalized to 1, but use is
made of normalized FNs; thus with a maximum at the value MG = 1. FNs are
defined in the framework of possibility distributions, rather than probabilistic
distributions.

In many applications a further step in fuzzification consists of developing
mappings between fuzzy variables by means of fuzzy rules.

In the given example, rules connecting the life ages to the degrees of ex-
perience may be imagined:

(a) If AGE is CHILD, then EXPERIENCE is VANISHING,
(a) If AGE is YOUNG, then EXPERIENCE is LIMITED,
(c) If AGE is MIDDLE-AGED, then EXPERIENCE is APPRECIABLE,
(d) If AGE is OLD, then EXPERIENCE is IMPORTANT.

(13)
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In this one-input, one-output fuzzy-inference system, the four input life
ages, i.e., “CHILD,” “YOUNG,” “MIDDLE-AGED,” and “OLD,” may be
represented, e.g., by triangular MFs (TFN) and the output experience levels
by corresponding four trapezoidal MFs (TRFN), e.g., “VANISHING,” “LIM-
ITED,” “APPRECIABLE,” “IMPORTANT.”

Section 4.3 discusses how such rule systems can be used in capital budget-
ing to link several uncertain variables.

4.2 Use of Fuzzy Numbers to Represent Uncertain Data

Fuzzy arithmetic can be developed with fuzzy numbers; thus, fuzzy DCF cal-
culations are easy to perform. A very complete and pleasant-to-read reference
is Chapter 4 of Buckley et al. (2002) on fuzzy mathematics in finance. Assume,
for example, that the yearly cash flows and the discount rate are represented
by FNs (provided with “hats” in the following to distinguish them from crisp
data); Equation (1) can be immediately “fuzzified”:

NPV(project i = 1, 2, 3) = CF0(i) +
5∑

y=1

CFy(i)
(1 +R)y

. (14)

The fuzzy NPVs can be calculated from addition, multiplication, and di-
vision, as now explained.

To perform fuzzy arithmetic, the easiest way is to use so-called α-cuts
applied on fuzzy number. For any given value of 0 ≤ α ≤ 1, the α-cut of any
FN is the interval of values x in the universe of discourse for which MG(x) ≥ α.
In the example given in Figure 6, considering the TFN “MIDDLE-AGED” [30,
45, 60], the following α-cuts in years are easily obtained:

• for α = 0, it is the interval [30, 60],
• for α = 0.5, it is the interval [37.5, 52.5],
• for α = 1, it is the singleton [45, 45], etc.

Consider two TFN or TRFN A,B. For any let us note the α-cuts Aα =
[a1, b1] and Bα = [a2, b2]. Interval arithmetic operations are performed for
each α-cut:

addition: Aα +Bα = [a1 + a2, b1 + b2] , (15)
difference: Aα −Bα = [a1 − b2, b1 − a2] . (16)

The product depends on the sign of a and b. The general formula is easily
established:

Aα ∗Bα = [min(a1a2, a1b2, a2b1, b1b2), max(a1a2, a1b2, a2b1, b1b2)] . (17)

If we assume that zero does not belong to the two α-cuts, then a1b1 ≥ 0
and a2b2 ≥ 0. The following four possibilities are then considered:
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a1 ≥ 0 and a2 ≥ 0 : Aα ∗Bα = [a1a2, b1b2] ,
b1 < 0 and b2 < 0 : Aα ∗Bα = [ b1b2, a1a2] ,
a1 ≥ 0 and b2 < 0 : Aα ∗Bα = [ a2b1, a1b2] ,
b1 < 0 and a2 ≥ 0 : Aα ∗Bα = [ a1b2, a2b1] .

(18)

Division of A by B can be brought back to the product if zero does not
belong to the interval [a2, b2], by considering:

Cα =
[

1
b2
,

1
a2

]
, and it happens that Aα/Bα = Aα ∗ Cα. (19)

Figure 7 shows the product of two positive TFNs performed in a rather
tedious but straightforward way with EXCEL. Note that the result is still an
FN, but it is no longer a TFN: Rather it is a triangular-like FN. In the same
way the product/division of two TRFNs is a trapezoidal-like FN.

Product of two TFN
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Fig. 7. Fuzzy product of two positive TFNs, TFN1 and TFN2, resulting in a
triangular-like fuzzy number.

Example 4.2.1

Assume two projects with the same initial crisp outlay CF0 and positive
constant fuzzy cash flows (constant currency units), so that they can be in-
terpreted as perpetuities. The values of the annual cash flows are two TRFNs
(CF 1 and CF 2). The discount rate is also a triangular fuzzy number (DR).
The resulting perpetuities have to be calculated, and it must be determined
which one is larger! Assume the following values:

CF 1 [5, 6, 7, 8], CF 2 [6, 8, 9, 9.5], DR [9.5%, 10%, 10.5%]. (20)

The two perpetuities, say P1 and P2, are easily calculated as the NPV
of the infinite cash flow row, resulting in the following expressions, using
Equation (19) to transform the fuzzy division into the fuzzy product:
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Pi = CFi ∗ 1
DR

, i = 1, 2, (21)

1
DR

=
[

1
10.5%

,
1

10%
,

1
9.5%

]
. (22)

Figure 8 shows the resulting trapezoidal-like fuzzy numbers P1, P2 (though
they look at first sight almost like TRFNs, but the lateral edges are slightly
curved, and trapezoidal-like FNs are obtained). P2 > P1 is the immediate
guess, but the important overlapping between the two FNs makes it difficult
to confirm this assumption without further analysis.
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Fig. 8. Example 4.2.1; the two perpetuities P1, P2; the difference P2 − P1 and the
fuzzy ZERO for verifying that P2 > P1.

To be sure, we may calculate the fuzzy difference P2 − P1 and compare it
to zero. As we are in the fuzzy-arithmetic world, a fuzzy ZERO is needed, say
the TFN [−10, 0, 10], and we need to decide if the following fuzzy equality
holds:

P2 − P1 > ZERO. (23)

A more straightforward way is to check if P2 > P1 in the fuzzy sense,
which has to be defined: Many approaches are described in the literature on
comparing two FNs.

The methodology proposed by Buckley et al., Chapter 4 (2002), seems to
be adequate for our purpose:

• when the two FNs do not overlap, the result of the comparison is imme-
diate;

• when the two numbers overlap, the largest MG is considered at points
where the lateral edges are cutting each other;
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if MG(edge cutting) < θ then
the FN more to the right is larger

else
both FN’s are equal in the fuzzy sense

(24)

where 0 � θ < 1, e.g., θ = 0.8, as recommended in Buckley et al. (2002, page
58).

In both (23) and in the direct comparison P2 > P1, it can be immediately
read from the figure that the edge cutting is below θ = 0.8 (through close to
it from below), so that indeed it can be considered that the second project
has to be preferred to the first one, from the DCF point of view.

4.3 Use of Fuzzy-Rule Systems to Infer Uncertain Data

Fuzzy logic has many more potentialities than only fuzzy arithmetic. Mostly
it will be used, as in control theory, when some semantic statements can be
expressed in the form of rules, as we saw in the trivial example in Equation
(13) relating life ages to levels of experience.

In general, the rules result from past observations and data interpretations,
or in guess work based on the experience of experts in the field. Fuzzy-rule
systems like that in Equation (13) can then be used to draw conclusions and
provide quantitative evaluations on data that are largely uncertain. In capital
budgeting evaluations, there are, of course, many cases where this approach
is relevant.

Example 4.3.1

Assume a company is developing an electric car for private use. Ignoring for
the sake of simplicity all issues related to tax, capital, etc., the company
analysts have estimated the annual free cash flow in year (y) as follows:

cash flow(y) = price of a car × total demand for cars(y)
× market share of electrical cars(y). (25)

The analysts also discovered that in a first approximation, the market
share is expected to be dependent only on the price of oil: Whenever oil is
cheap, the demand for electric car is expected to be “large”; conversely, in
times of expensive oil, demand will be “small.”

The following computations and graphics have been prepared with the
Fuzzy Toolbox for Use with MATLAB (2001).

Just concentrating on the market share aspect, the analysts were able
to “fuzzify” the problem. They elaborated four market share levels (MS) in
percentage represented by TRFNs in the universe of discourse between 0%
and 15% of the total market per year:
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SMALL MS [0, 0, 1, 4]%,
REDUCED MS [1, 4, 5, 8]%,
NOTICEABLE MS [5, 8, 10, 13]%,
LARGE MS [10, 13, 15, 15]%.

(26)

Those trapezoidal MFs are shown in Figure 9.

Fig. 9. The four MFs representing the four levels of the market share (MS) in the
universe of discourse [0, 15%].

In this specific case, the market share was shown to depend only on the
world oil price (P ) in $/barrel, for which four trapezoidal MFs are also iden-
tified in the universe of discourse [20,150]$/barrel:

SMALL P [20, 20, 27, 41]$/barrel,
REDUCED P [27, 41, 63, 77]$/barrel,
NOTICEABLE P [63, 77, 95, 113]$/barrel,
LARGE P [95, 113, 120, 120]$/barrel.

(27)

Those four MFs are shown in Figure 10.
Further, the experts elaborated a system of four rules connecting the oil

price to the market share:

Rule 1: If P is SMALL P, then MS is LARGE MS,
Rule 2: If P is REDUCED P, then MS is NOTICEABLE MS,
Rule 3: If P is NOTICEABLE P, then MS is REDUCED MS,
Rule 4: If P is LARGE P, then MS is SMALL MS.

(28)
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Fig. 10. The four MFs representing the four levels of the oil price (P) in the universe
of discourse [20, 120]$/barrel.

This system of rules is a mapping from the universe of discourse of oil
prices in [20, 120]$/barrel, which is the unique input to the fuzzy rules, to
the universe of discourse of the market shares (MS) in [0, 15]%, which is the
unique output, or conclusion, of the fuzzy rules.

Of course, more complicated fuzzy-rule systems may be considered. For
example, the analyst could create rules with two or more inputs: An additional
sensible input for determining the market share could, for example, be the
price of an electric car.

The fuzzy inputs and outputs and the partial rules in the mapping build a
“fuzzy inference system” (FIS) or more popularly, “a rule-firing system.” The
FIS computations are shown in Figure 11.

It is very easy to understand how such an FIS works. The four rules are
displayed in Figure 11 from top to bottom: On the left are the four input
MFs representing the oil price (oil P) as in Figure 10; on the right are the
four output MFs representing the market share (MS) as in Figure 9.

Assume the expected price for next year to be 67$/barrel, as indicated
by the cursor in the left-hand window. Consider the four MFs and the corre-
sponding four rules. Rule 1 and Rule 4 listed in Equation (28) are not active
(“fired”), as the oil price 67$/barrel is outside their respective range, i.e., the
trapezoidal MF “SMALL P,” or “LARGE P.” Rule 2 and Rule 3 are “fired,”
i.e., partially active as the oil price lies within the range of their respective
MF “REDUCED P” or “NOTICEABLE P.”
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The possibility grade of the output in each fired rule is limited above by
the membership grade MG(Rule i; oil P)≤ 1, up to the level indicated by the
gray surface.

The corresponding rule output for MS, indicated in the right window, thus
appears as a truncated trapezoidal MF (dark surface) calculated by means of
the minimum operator “min”:

MF(Output i; MS) = min [MG(Rule i; oil P), MF(Rule i; MS)] . (29)

The specific fuzzy-inference system (FIS) using the minimum operator
“min” to fire rules as in Equation (29) is called the Mamdani FIS: It is most
familiar for those who use control theory. Interesting textbooks in control the-
ory are Kacprzyk (1997) and Passino and Yurkovich (1998). The Mamdani
inference generally serves in engineering for the purpose of controlling tech-
nical devices, but it is very useful here, too, as well as in many economic or
financial applications. An introduction to fuzzy control for decision theory is
given in Chapter 7 of Bouyssou et al. (2000).

Note that some FIS utilize other operators, which I will not discuss here.
Dubois and Prade (1996), and Fodor and Roubens (1994) are useful references.

Moreover, one of my previous papers in Kunsch and Fortemps (2002) de-
scribes an FIS using different fuzzy-inference operators. It is used in the eco-
nomic calculus of projects in radioactive waste management.

The Mamdani inference thus provides two truncated trapezoidal, but not
normalized, MFs, visible in the right-hand windows in Figure 11. Each shape
corresponds to the partial conclusion of one of the two active rules. Those
partial conclusions are no FN’s because they are not normalized. This is not
the end yet. First, a global fuzzy conclusion is obtained in the so-called aggre-
gation step in the FIS: In the Mamdani FIS, the maximum operator “max”
is used:

MF(Global Output; MS) = max
i

[MG(Output i; MS)] . (30)

The aggregation of the partial conclusions to a global conclusion is shown
in the lowest window on the right-hand side of Figure 11. It is a composite
MF, which is, of course, no fuzzy number (one reason is that this MF is not
normalized: Can you give another reason?).

This MF is not usable as such: A crisp number is expected to be the global
practical conclusion of the Mamdani FIS. The last step is thus defuzzification.
In this case the center-of-gravity (COG) of this composite shape is computed
to obtain one final value for the output. This gives in the example a mar-
ket share MS (oil P=67$/barrel)= 7.79% appearing on top of the right-hand
windows in Figure 11.

Looking at other values of the oil price in the range [20, 120]$/barrel, the
corresponding values of the market share MS(oil P) are obtained. Figure 12
delivers the staircase-like MS values in function of the oil price in the universe
of discourse.
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Fig. 11. The fuzzy-inference system (FIS) provides a market share (MS) of 7.8%
when the expected oil price next year is 67$/barrel.

How do we decide which oil price to use as an input to the Mamdani FIS?
It is the nice thing about fuzzy logic that this question can be answered just
as well by building an additional FIS: The input data to this new FIS will
now be given by some expert judgments on the oil price.

Assume that there are three experts, ex1, ex2, and ex3, whose oil price
forecasts for next year are represented by the MFs of Figure 13, i.e., FN’s
of Gaussian or trapezoidal shapes. The first expert predicts a lower range
pex1 between 35 and 45$/barrel; the two other experts forecast higher ranges
pex2, respectively pex3, between 45 and 85$/barrel. Experts have been given
credibility scores in the range [0, 1] resulting from an analysis of the accuracy
of previous forecasts they have made on oil prices. A nice textbook on how to
evaluate the value of expert judgments is Meyer and Booker (2001).

A high score indicates a high level of trust in the expertise. Assume the
credibility scores to be 0.2 for ex1, 0.9 for ex2, and 0.75 for ex3. This indicates
that the last two experts are quite credible, while the first one is not.

The Mamdani FIS is elaborated along three rules; the credibility scores
serve as inputs to the partial rules:
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Fig. 12. The Mamdani inference system (FIS) delivers the evolution of the market
share (MS) as a function of the oil price for the whole universe of discourse [20,
120]$/barrel.

Rule 1: If Expert is ex1, then oil P is pex1,
Rule 2: If Expert is ex2, then oil P is pex2,
Rule 3: If Expert is ex3, then oil P is pex3.

(31)

The activation of the Mamdani FIS is shown in Figure 14, resulting in a
defuzzified oil price with the COG technique: oil P = 60.4$/barrel.

4.4 Fuzzy Multicriteria Capital Budgeting

The fuzzy treatment in the case where only one fuzzy monetary criterion is
being considered, i.e., the NPV value of each project cash flow streams, can
be “in principle” extended to MCDA: A global score is obtained through
aggregating several criteria representing multiple facets of the projects.

This is only true “in principle” because this statement would only be valid
for MCDA procedures that aggregate partial preferences in an “arithmetic
way” (addition/subtraction and multiplication/division), like in the weighed
sum rule, or in utility-based approaches. Only elementary operations of fuzzy
arithmetic can indeed produce FNs from FNs.

By contrast, outranking methodologies and in particular PROMETHEE
(see Sections 3.2 and 3.3) are not reducible to fuzzy arithmetic, because they
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Fig. 13. The guesses of three experts for the dollar price of the oil barrel next year.

Fig. 14. The price of oil according to three expert analysts with credibility factors
(0.2; 0.9; 0.75). The price resulting from the Mamdani inference and the COG de-
fuzzifying is 60.4$/barrel, a value between the previsions of the two most credible
experts.
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require thresholds, nonlinear, or piecewise linear preference functions, etc.
As a result, in general, the resulting global scores, e.g., the net flows Φs of
PROMETHEE, will no longer be FNs, even if each partial score attached to
each criterion is.

Nevertheless, the use of α-cuts and interval arithmetic as we explained in
Section 4.2 is quite useful to cope with uncertainties in PROMETHEE, as
has been demonstrated in Le Teno and Mareschal (1998). Fuzzy arithmetic
provides a measure of the dispersion of results, beyond central values obtained
with the crisp maximum MG values (α = 1) of all partial scores. For example,
in a maximizing problem, minimum scores (pessimistic view) and maximum
scores (optimistic view) are obtained from α-cuts with α = 0, 0.25, 0.5, 0.75,
etc.

Example 4.4.1

Assume two projects with two maximizing criteria with the partial fuzzy scores
represented by TFNs, shown in Table 5.

Table 5. Two Projects Evaluated in Two Fuzzy Criteria

Projects PIN (%) EIN (0–10)

Proj1 [40, 50, 60] [3.8, 4, 4.3]
Proj2 [25, 28, 32] [7, 8, 8.8]

A first calculation could be made using the central α = 1 scores, i.e.,
Proj1(50; 4) and Proj2(28; 8).

If it is decided to consider only data for which MG ≥ 0.5, the α-cut with
α = 0.5 is then considered to provide a good measure of the score dispersion.
This provides two sets of possible scores for each project, corresponding to
two optimistic and two pessimistic assumptions, i.e.:

Proj11(45; 3.9) (pessimistic) and Proj12(55; 4.15) (optimistic),
Proj21(26.5; 7.5) (pessimistic) and Proj22(30; 8.4) (optimistic).

Two additional PROMETHEE calculations can be performed by combin-
ing two assumptions in the pairwise comparison, a pessimistic and an opti-
mistic one, i.e., (Proj11, Proj22), (Proj12, Proj21): In this way the smallest
and largest values of the net flows are obtained for both projects. In total for
each project i = 1, 2, one will get three net flow values (Φp

i ,Φ
c
i ,Φ

o
i ), where

the superscripts p, c, o refer to pessimistic, central, or optimistic net flows,
respectively.

In case there are n > 2 projects, the same approach can be generalized for
some α-cut by pairwise comparisons of projects: The optimistic (pessimistic)
scores on each project i = 1, n is compared to the pessimistic (optimistic)
scores on any other project j 
= i.
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After 2n(n−1)
2 = n(n − 1) pairwise comparisons, all optimistic and pes-

simistic flow values are calculated. At the end of the day, the triplets
(Φp

i ,Φ
c
i ,Φ

o
i ) are obtained for all projects i = 1, 2, . . . , n.

To decide about the ranking of the projects in a portfolio, a definition of
“greater than” must be found, as was done previously in Equation (24) for
comparing FNs: Intervals are provided in this case. Simple comparison rules
between a pair of intervals can be elaborated for project1, I1 = [Φp

1,Φ
o
1], and

for project2, I2 = [Φp
2,Φ

o
2].

There are only three main possibilities: The two intervals are disjoint, or
they are overlapping; in this second case there can be full or partial overlap-
ping. Assume first the case that the interval I1 is either located left or fully
included in the central part of the interval I2. The following simple comparison
procedure seems to be sensible for ranking both projects:

if Project1 does not overlap with Project2
Project2 is preferred to Project1

else if I1 ⊂ I2
Project1 is preferred to Project2

else if I1 
⊂ I2
Project2 is preferred to Project1.

(32)

As a short explanation:

• If there is no overlapping: Because I1 is in our assumption located left to
I2, Project1 is ranked second;

• If I1 is fully included in I2, assume first that it is located in the central part
of I2: In a fuzzy sense both values are equal; nothing can be said about
the ranking. But one can possibly argue that Project1 has the smaller
dispersion of net flows around its central value, and therefore it appears
as being less risky: Project1 is ranked first. This may not be a sufficient
answer when the interval I2 is rather large; several possibilities then exist
with respect to the positioning of I1 within I2, when comparing central net
flow values Φc

1,Φ
c
2: I1 is located in the left corner (Project2 is preferred);

I1 is rather central (as before Project1 is preferred); I1 is located in the
right corner of interval I2 (Project1 is preferred), etc.

• If there is partial overlapping, Project2 will again be ranked first, because
I2 is located by assumption right of I1.

In case there are constraints, like budget constraints, things may become
much more intricate. The knapsack approach explained in Section 3.3 can
be used, but unfortunately, in general, three different portfolios of adopted
projects will come out when using the pessimistic, central, and optimistic
values for the net flows: In general, the nonvanishing binary variables will be
different in each case: The three solutions are not part of a unique FN.

How in practice do we decide which projects should be either chosen or
rejected? The problem can be handled by multiobjective integer linear pro-
gramming as explained in Vincke (1992), considering the three pessimistic,
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central, and optimistic scores: The usually inaccessible “ideal solution,” op-
timizing those three global scores at the same time is unattainable. It could
also be handled as in the crisp case by goal programming in which the three
goals are again the three global scores.

Other authors would like to use a different approach and consider fuzzy
linear programming, as explained in Chapter 6 of Buckley et al. (2002). I stop
the discussion here.

To be complete about uncertainties and the use of fuzzy logic, the uncer-
tainties in the choice of technical parameters in the applied MCDA method-
ologies should also be mentioned. In PROMETHEE preference functions and
thresholds, and, last but not least, the weights have to be chosen. Only a
limited literature exists about how to deal with those issues using fuzzy logic.
Fuzzy extensions of PROMETHEE have, however, been discussed in Goumas
and Lygerou (2000) and Gelderman (2000). I will not go into details, because
of the technicalities of some developments.

The problem of weights deserves some additional considerations, however.
To discuss this point I will use the simple weighed sum rule.

Assume crisp normalized scores 0 ≤ si
k ≤ 1, for criteria k = 1, 2, . . . ,K,

for some projects i = 1, 2, . . . , k, and the corresponding fuzzy weights wk,
k = 1, 2, . . . ,K, assumed to be represented by TFNs. The weighed sum is
used to obtain the fuzzy global score of the project Si:

Si =
K∑

k=1

wks
i
k = (Sp

i , S
c
i , S

o
i ), (33)

wk = (ak, bk, ck) with 0 ≤ ak < bk < ck < 1, (34)

where the superscripts p, c, o again respectively refer to the pessimistic, cen-
tral, and pessimistic evaluations of the global score.

This looks like trivial fuzzy arithmetic: Si appears to be a TFN (or a
triangular-shaped fuzzy number if the scores si

k are fuzzy as well, which we
did not assume for simplicity). This rough result is, however, meaningless as
the sum of weights is not equal to (crisp) “one”; therefore, there is no guarantee
that the so-calculated global fuzzy score will stay in the interval [0, 1].

A not-so-trivial explanation of that difficulty is that there is a strange
property about fuzzy arithmetic, namely that if A, B, C are fuzzy numbers:

if B = C −A, then A+B 
= C. (35)

Example 4.4.2

Assume the following TFNs:

A[5, 6, 7],
C[10, 12, 14],
B = (C −A) [3, 6, 9],
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But A+B = D [8, 12, 16]
= C.

The consequence is that if we cannot impose that fuzzy weights will sum
up to the crisp “one,” i.e., the TFN (1, 1, 1) with zero spread, because the
fuzzy addition will, on the contrary, amplify the spread of each term in the
sum.

So, though Equation (33) is expected to provide an FN, the latter can-
not be directly computed with fuzzy arithmetic. The more involved way to
compute this FN is as follows:

1. Compute (33) with central values of the weights bk. In this way the central
value Sc

i is obtained.
2. Set up two linear programs for each project with constraint on the weights

as follows:
For the pessimistic project score:

max Sp
i = min

K∑

k=1

wp
ks

i
k,

s.t.
K∑

k=1

wp
k = 1,

ak ≤ wp
k ≤ ck,

(36)

and for the optimistic project score:

max So
i = min

K∑

k=1

wo
ks

i
k,

s.t.
K∑

k=1

wo
k = 1,

ak ≤ wo
k ≤ ck.

(37)

Note that instead of choosing the optimistic and pessimistic values given
by the α-cut= 0, other values of α > 0 could be used.

Moreover, in cases where the scores si
k are themselves fuzzy, the usual

interval arithmetic can be used. The optimistic and pessimistic global scores
come out for the chosen α-cut. At the end of the day triplets (Sp

i (α), Sc
i , S

p
i (α))

are obtained for each project, where α refers to the α-cut.
As explained earlier in this section, comparisons can be made between

projects, or other capital budgeting constraints can be introduced, using, for
example, multi-objective integer linear programming to test the changes in
solutions due to the weight uncertainties. Recent work of Mavrotas and Di-
akoulaki (2004) has been in developing similar ideas.
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5 Treatment of Uncertainties Using Real Options

5.1 The Value of Flexibility

Until now we have come across static uncertainties, which are present at
the very time a decision is made and are not changing over time. But time
has a value, not only because there is a preference for now rather than for
later, as manifested in the choice of a discount rate. There is also a value
in reducing some uncertainties, by learning more about the project value,
observing the changes in the economic environment, or the advancements in
science, technology, etc.

As a simple example, consider the investment in electric cars mentioned
in Example 4.3.1. The development of this business is crucially dependent on
the knowledge about oil prices, and also current technological development of
batteries, fuel cells, etc., for which it may be difficult to measure the exact
impact at the present time. But let us assume that it becomes easier one
year from now, because new information will be available. All those factors
crucially affect the profitability or even the viability of the project. A prudent
stance is therefore to cautiously develop the activity, keeping the flexibility to
withdraw, to wait before investing for further expansion, or even to abandon
the project if it becomes unprofitable.

The added value embedded in keeping open some options is in many cases
far from being negligible. Value is added to the project because new degrees of
flexibility are gained, e.g., from the possibility of changing the present stance
in the face of fresh incoming information.

In the last 15 years, a promising approach has been developing around
financial option (FO) theory to deal with the learning and flexibility aspects
embedded in risky assets. Real option (RO) theory is used when the underlying
risky asset is not a financial asset, like a stock, but it is a real asset, like an
investment project.

In the main field of application of ROs are projects for which the DCF
technique does provide a slightly negative or a slightly positive NPV, so that
no clear-cut decision can be made: On a strict DCF basis, most projects of
this type would not pass or would hardly pass the profitability test. Because
of the value of their intrinsic flexibility, they are worth considering for further
analysis: The RO value captures those flexibility aspects, and this may change
the picture for the better.

Unfortunately, valuing ROs may become very intricate in the most gen-
eral cases when partial differential equations must be solved. I do not have
the space here to write a full treaty on this topic, and therefore readers are
referred to excellent textbooks for details on option-valuation methodologies.
But still, I hope to be able to meet the challenge of this chapter to present
the basic theoretical background sufficient for understanding the principles of
RO evaluation in simpler problems, and for providing herewith an incentive
for further self-study.
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For a technical introduction to options, see Hull (2000) and Beninga
(2000). The practical use of ROs in management is described in Copeland
and Antikarov (2001); ROs and financial flexibility is described in Dyson and
Berry (1998) and Trigeorgis (1998).

Let me start with a definition taken from this literature, paraphrasing
the usual definition of FOs, i.e., by replacing “financial asset” by “investment
project”:

A real option (RO) is the right, but not the obligation, to take an
action (e.g., deferring, expanding, contracting, or abandoning an in-
vestment project) at a predetermined cost called the exercise price,
for a predetermined period of time – the life of the option.

An RO is a right and not an obligation. This right will only be exercised
when it is useful to do so. For example, a growth option on buying a com-
pany will only be exercised when information arriving before the exercise time
confirms the growth expectations. Because option theory helps modeling flex-
ibility in decisions under uncertainty, an underlying risky asset with uncertain
value is always present, either a stock (in the case of FOs) or a real asset, e.g.,
an irreversible investment in some risky project (in the case of ROs).

Therefore, ROs will only be useful under two conditions, which are related
to both uncertainty and flexibility:

1. There are uncertainties on the real asset, and more can be learned about
it over time. This would exclude irresolvable uncertainties, which are not
reduced with learning.

2. The learning process adds flexibility value by revisiting the investment
strategy.

With those conditions in mind, we can identify three large families of ROs
for investing in real assets:

1. Growth RO in which growth opportunities are created when investing in
some markets, e.g., in using the investment as an opportunity to pene-
trate those developing markets with more efficient products. Example of
market-opportunity ROs are given in Chevalier et al. (2004) for mergers
and acquisitions;

2. Defer or waiting RO in which key uncertainties can be resolved by learning
or by doing, e.g., by performing preliminary investigations in a newly
discovered oil field. Examples of waiting options can be found in Dixit
and Pindyck (1994);

3. Abandonment/shrinking RO in which the risk of unfavorable development
is considerably reduced by downsizing, divesting, or abandoning the real
asset, e.g., by selling a piece of machinery for some residual value. Exam-
ples of divesting options are found in Chevalier et al. (2003).

In the following, simple examples of each type will be analyzed. Before
going further, it is necessary to become familiar with the “jargon” that is
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usual for FOs and has also been adopted for discussing ROs. Note beforehand,
however, that no market exists for ROs, like it does for FOs, so that an RO
is indeed only a notional instrument.

• An RO is exercised if it is favorable at some time to make the subjacent
decision, e.g., to invest. Otherwise, the RO is not exercised and it becomes
worthless.

• When an exercise time is imposed at some expiry time T , the RO is a
European option. In case there is a possibility of premature exercise before
the expiry time T , the RO is an American option. Note that many ROs are
American options, in the frequent case where early exercise of the option
indeed increases the flexibility, and thus the project’s intrinsic values. This
is one of the reasons why the valuation of ROs can often be quite difficult:
A closed-form formula like the famous Black–Scholes formula, described
in Brealey and Meyers (1991) or in Chapter 16 of Beninga (2000), is only
useful for European options, as it indeed assumes a fixed exercise time.
A short introduction to the Black–Scholes formula is given in Section 5.2.
Another reason is that many ROs are compound options, i.e., the exercise
of one option may triggers a cascade of many ROs. Closed-form formulas
are useless here. We will see that, when the time takes discrete values, the
binomial-tree technique will render good services most of the time. Though
the latter technique does not look at first sight like it is an OR technique,
its origin is found in stochastic dynamic programming. Interested readers
may check in Dixit and Pindyck (1994), Chapter 4, that the Bellman equa-
tion of dynamic programming in the discrete-time case converges to the
partial differential equation, which constitutes the continuous-time foun-
dation of option theory. It is shown with an example in Section 5.2 that
the Black–Scholes formula is a particular case of this theory for European
options.

• The exercise price,X , is the monetary value acting as a cutoff for exercising
or not the RO, given some time-dependent project NPV, S.

• The RO is a call option if it is exercised when the investment value S
is above the exercise price. Both Growth and Defer ROs are call options,
because they capture growth opportunities associated with a project value
expected to increase above the exercise price X . The value of a call RO
(for an FO it would be the call price) is thus measured by the expected
value of the positive difference S −X :

C = max(S −X, 0). (38)

A positive call value C when S > X will place the option “in the money,”
as it can be exercised with some benefit. Otherwise, C will be zero (“out of
the money”), and the option will never be exercised, because it is worthless.

• The RO is a put option if it is exercised when the investment value is below
the exercise price. Abandonment/divesting/shrinking ROs are thus put
options: They allow withdrawing when the expectations are not fulfilled
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and the project value falls below the exercise price. They thus provide a
stop loss, or they reward the investor with some residual value. The value
of a put option (for FOs it would be the put price) is thus measured by
the expected positive difference X − S:

P = max(X − S, 0). (39)

The put option is “in the money” when X > S; otherwise, it is “out of
the money” and worthless.
Call and put options are thus like the two sides of a coin, and they provide
protection (“hedging”) to the investors against missing growth opportuni-
ties or losing too much money in a risky project, respectively.

• Option theory distinguishes the risk-free rate of return r of the investment
from the discount rate (DR), which is used to evaluate the NPV. It is
indeed assumed that decisions are made in a risk-free world, i.e., that the
decision makers are neither risk-prone nor risk-adverse, but that they are
indifferent to risk. This is discussed in the Section 5.2.

• Note also that the option value (or option price) always increases with
the risk associated with the investment, i.e., the volatility of its intrinsic
value, measured by the standard deviation of the risky NPV. The RO value
represents the actual value of the opportunity attached to this volatility.

• The RO value is expected to grow with (1) the time still to run till expiry,
(2) an increase in the risk-free rate r because it represents the time-value
of money, (3) the project NPV, and (4) the volatility of the NPV, creating
new opportunity values.

• The RO value is expected to decrease with (1) a higher initial outlay,
necessary to acquire the real asset, and (2) the exercise price X .

I am now in a position to discuss with practical and simple examples the
binomial-tree technique, which is used to evaluate ROs.

5.2 Real Options and How to Evaluate Them

This section provides basic information on how options can be evaluated with
the binomial-tree technique.

In order to keep the presentation as easy to follow as possible, the best
way seems to avoid abstract theory by solving step by step a rather trivial
numerical example of RO valuation: References are made to the cells in the
spreadsheet shown in Figures 15 and 16.

Example 5.2.1 Abandonment and Growth Real Options

A manufacturing company considers buying a new machine to boost its
present production relying on four rather old and less efficient machines. The
expected NPV of the future free cash flows generated by the new machine is
100 AU (arbitrary accounting units) as shown in cell $B$8 of the spreadsheet
in Figures 15 and 16. The discount rate is DR = 10% in cell $D$2.
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Fig. 15. A risky project taking into account an abandonment put real option at
the end of year 1.
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Fig. 16. A risky project taking into account a growth call real option at the end of
year 1.

Unfortunately, the acquisition investment (initial outlay) is 105 AU
($B$9), so that the total NPV value is negative: 100 − 105 = −5 AU
($B$18); the project should be rejected by the company according to the sole
DCF test.

However, the NPV can in reality take two values next year: It can go up
by u = 25% ($B$1) or it can go down by d = −20%($B$2).

Therefore, the company can take the following stance:

• Should the project prove to be unprofitable in the down state d, it will
be abandoned next year: The equipment will be sold at a residual value
of 98 AU. A put abandonment RO is hidden behind this possibility of
pulling out of the project in this instance, and thus the RO exercise price
is X = 98 AU ($K$4).

• Should the project be in the up state u, it will be more profitable that the
equipment residual value of 98 AU: The company will keep the machine
running and even scrap the four old machines and replace them by four
new machines. A call growth RO is given by this opportunity to increase
in the productivity one go. The exercise price is again X = 98 AU ($K$4).

Consider first the put option in Figure 15. On the left-hand section of the
spreadsheet called “Risky universe,” it is noted that the NPV of future cash
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flows today can become next year either 125 AU ($D$6), corresponding to
the up movement u = 25% ($B$1), with a probability p1 = 66.7% ($B$12),
i.e., two chances out of three, or 80 AU ($D$10), corresponding to a down
movement d = −20% ($B$2), with a probability p2 = 33.3% ($B$13), i.e.,
one chance out of three.

Assume now that, instead of investing in the risky project, the company
would be indifferent to drop the project, and to invest instead in some risk-free
asset, e.g., bonds with zero volatilities, bringing the risk-free rate of r = 6%
($D$1). After one year the value would become 106 AU for all states of the
risky world ($H$6 and $H$10).

In such a universe characterized by indifference to risk, the expected values
of the cash flows of both the risky assets and the risk-free asset would be the
same, so that one would expect the following equation to hold:

pu(1 + u) + pd(1 + d) = 1 + r,
pu + pd = 1, (40)

where pu and pd are the probabilities in this risk-free world: They are different
from the actual probabilities p1 and p2 to observe an up or down movement
in the project value measured by the NPV of cash flows.

The general solution of this equation system is as follows:

pu =
r − d

u− d
; pd = 1 − pu =

u− r

u− d
, (41)

which here gives pu = 58% ($F$1), and pd = 42% ($F$2).
The put RO is to abandon the project in year 1, in case the NPV of the

cash flow in this year would be 80 AU($D$10); the equipment would then be
sold for the residual value of X = 98 AU ($K$4).

What is the present value of this option?
The calculation is shown on the right-hand section of the spreadsheet called

“Option to abandon.” It is made backward by starting at the end of the first
year, at which time the option to abandon the project may be exercised: In
this case the company will realize what was before only a possibility, and it
will give up the project.

At end of year 1, if the NPV of the project is in upper state, i.e., S =
125 AU, the option will not be exercised, and its value is zero according to
Equation (39), because X < S ($L$6). In the option jargon, the RO is “out
of the money,” because it brings nothing more to the already rosy situation.

If the project is now in the down state, i.e., S = 80 AU, it is worth
exercising the option, i.e., to receive the residual value of 98 AU instead of
continuing the project. The RO value is exercised; it is “in the money,” because
according to Equation (39) it brings a positive value of X −S = 98− 80 = 18
AU at the end of the first year ($L$10).

This put option provides an advantageous stop loss for the project. With-
out the option, and considering the initial outlay of 105 AU, the undiscounted
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loss in the down state would be 80 − 105 = −25 AU, while with the option,
the loss is reduced to 98 − 105 = −7 AU.

The present value of the put option P is calculated as being the expected
value of those two situations, i.e., 0 AU or 18 AU, discounted at the present
time with r: It would be the price of the corresponding FO effectively traded
on the derivative market. Because we are in the risk-free universe, the risk-free
probabilities pu = 58% ($F$1), pd = 42% ($F$2) and the risk-free rate r = 6%
($D$1) are used:

P =
pu.0
1 + r

+
pd.18
1 + r

= qu.0 + qd.18 = 7.2 AU ($J$8), (42)

qu =
pu

1 + r
qd =

pd

1 + r
. (43)

qu and qd defined in Equation (43) are called the state prices : They are the
prices today of one AU to be paid in the succeeding period either in the
up state u, or in the down state d, as explained in Chapter 14 of Beninga
(2000). Using them makes the backward calculation in Equation (42) more
straightforward. It provides the option value at any node in the tree from the
option values at the connected nodes in the following time period.

Adding the option value of the project to its negative NPV=−5 leads to
a total positive value 7.2 − 5 = 2.2 > 0 ($J$18): The project value with the
abandonment RO, though small, is positive and is now passing the DCF test.

Now the growth call RO can also be easily evaluated, as shown in the
spreadsheet of Figure 16.

The calculation procedure is as before, except that now it will be worth
exercising the call option when the upper value S = 125 AU ($D$6) is observed
in year 1. On the right of the diagram at year 1, the option values are given
by max(S −X, 0) [Equation (38)], so that they will be 27 AU ($L$6) in the
upper state and 0 AU ($L$10) in the down state. The present value of the call
option is thus obtained by using the state prices qu, qd defined in Equation
(43):

P = qu27 + qd0 = 14.7 AU ($J$8). (44)

The total value of the project with the call option is 9.7 AU ($J$18).
The binomial tree has only two branches in this example, spanning one

year. Because in practice the asset value will take many possible values, it
may be better to consider smaller time periods h. Therefore, it is worth inves-
tigating how the option values change for two periods of six months (h = 0.5
month), instead of one period of one year, four periods of one quarter (h = 0.25
month), etc.

The calculation for the call option and two six-month periods, i.e., h = 0.5
month, is shown in the spreadsheet in Figure 17.

The principle of the RO valuation is the same as before, except that all
parameters are calculated at h = 0.5 year ($F$1), the elementary time step.
This is easy for the DR and the risk-free rate:



Advanced Operations Research Techniques in Capital Budgeting 335

1

2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18

A B C D E F G H I J K L M N O P Q
u 17,1% r 3% h 0,50 pu 56% upu+dpd= 3% =r

d pd 44%

98Growth real option at X=Risk-free universeRisky universeCASH FLOWS

9390,601731
22301711

23,2190,601001001001FCVPN
−105yaltuO

130158

p1 090,60137%26

p2 38%

p1*u+p2*d= 5% =D.R.

NPV 3,7eulavtcejorP

5%D.R.−14,6%

−5

Fig. 17. The growth call RO with two periods of six months.

DR(h) = DR
h

1
= 5%($D$2); r(h) = r

h

1
= 3%($D$1). (45)

How do we represent the up (u) and down (d) movements over a six-
month period given their annual values? There is a nice formula, which comes
from the theory of random-walk processes explained in Chapter 15 of Beninga
(2000): It allows a painless calculation. Assume that the NPV of such a
random-walk process is characterized by an average value µ and a standard
deviation σ: u and d can then be represented by the following equations:

u = eµ+σ
√

h,

d = eµ−σ
√

h.
(46)

Looking at u = +20% and d = −25% for h = 1 year in the present
example, it is found that they are compatible with µ = 0 (no expected growth)
and σ = 22.31%. Thus, for h = 0.5

u = eσ
√

h = 17.09% ($B$1); d =
1
u

= e−σ
√

h = −14.59%($B$2). (47)

Therefore, using Equation (41), the risk-free probabilities are pu = 56%
and pd = 44%, and the state prices are obtained by means of Equation (43).

Starting again at the end of the second six-month period in the spreadsheet
of Figure 17, the call RO values are obtained in column Q, i.e., (39 = 137−98,
2 = 100 − 98, 0) AU. Using (42), the RO values are obtained at the end of
the first six-month period in column O, i.e., (22, 1). By backward application
of the same formula, the present value of the RO is calculated to be 12.3 AU
($M$8), so that the project NPV including the call RO is 12.3 − 5 = 7.3 AU
($M$18).

This process can be repeated when considering h = 0.25 year, i.e., four
quarters. Figure 18 shows this computation for the call RO. It now results in
C = 12.7, so that the project NPV including the call RO is 12.7 − 5 = 7.7
AU.

If we now go on splitting the one-year period into shorter and shorter time
intervals of diminishing length h→ 0 , we come to the continuous case, which
can be calculated with an analytical formula, the well-known Black–Scholes
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Fig. 18. The growth call RO with four periods of three months.

formula, explained in Chapter 16 of Beninga (2000). The intention is not to
discuss here this closed-form formula for the continuous case in the valuation
of European options, which admit no early exercise before the expiry time T .

In my opinion one of the most impressive achievements of modern finance
and a fantastic, first unexpected, property is the following: The RO value,
obtained with the binomial-tree technique applied to European options, con-
verges to the Black–Scholes formula when the elementary time interval be-
tween branches in the tree h→ 0, i.e., the continuous case is obtained at the
limit.

To be a little bit more precise, the Black–Scholes formula is given in
Equation (48), considering T the remaining time from now to the expiry
date, the call value C, the put value P , S the NPV of the project cash flows;
the exercise price X , the risk-free rate r, and the volatility σ of the risky real
asset:
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C = SN(d1) −Xe−rTN(d2),

d1 =
ln(S/X) + (r + σ2

2 )T

σ
√
T

, (48)

d2 = d1 − σ
√
T ,

P = C − S +Xe−rT . (49)

N(x) is the value in x of the cumulative normal distribution with mean
0 and variance 1. N(d2) is shown to represent the probability to exercise the
call option at exercise time T . It can immediately be seen that at time T , if
the option is strongly “in the money,” this probability will be growing to 1,
so as d1 = d2 in t = T , the call price will be converging toward the call value
C = S −X > 0, given in Equation (38). The same type of reasoning applies
to the put option price P = X − S > 0 given in Equation (39). Relation (49)
is called the put-call parity identity: It is always verified for the pair of call
and put option values in the same problem.

Table 6 illustrates our previous statement for Example 5.2.1. Note that
the RO values are not always growing monotonously with the number of
time periods, but fluctuate before converging to the limit values given by the
Black–Scholes formula.

Table 6. The Call and Put Options in Example 5.2.1. The Evaluations are Made
with Binomial Trees Counting Different Numbers of Periods in the Discrete Case,
and with the Black–Scholes Formula in the Continuous Case

Number of Periods (n) Call RO Value Put RO Value

1 14.7 7.2
2 12.3 4.7
4 12.7 5.0

Black–Scholes (n = ∞) 12.9 5.2

In all cases with a finite number of periods (n) and a European option,
the put-call parity identity in Equation (50) generalizes the continuous case
in Equation (49):

P + [NPV(project) = S] = C +
X

(1 + r/n)n
. (50)

Equations (49) and (50) reflect the complementary roles in the pair of
call and put ROs, both with the exercise price X (see Brealey and Myers,
1991, Chapter 20, pages 488–490). This identity is useful to verify the price
computation of European ROs, which are not exercised before their expiry
dates.
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5.3 A Real Option with Early Exercise

In many situations a RO will not be kept until its expiry date. In other words,
American ROs offer the possibility of early exercise, contrary to the call and
put options handled in the previous section. To evaluate such options, the
Black–Scholes formula is not adapted, as it works exclusively with European
options with a fixed exercise time.

An example of this kind is the waiting RO, which captures the value of
waiting for new information. Details on early option exercise can be found in
Beninga (2000), Chapter 19.

Example 5.3.1 A Waiting Real Option

A company makes plans for implementing a project, which is expected to
provide cash flows for an indefinite time. The initial investment is 90 AU
(arbitrary accounting units) and the present value of the project is 100 UA,
assuming a 10% DR.

For the next years the annual cash flow is estimated to increase from its
level in the year before by 20% with a probability p1 = 60%, or to decrease
by 30% with a probability p2 = 40%. The indefinite expected cash flow is 10
UA/year. In the first year, the cash flow is thus expected to be either 7 AUs
(down state), or 12 AU (up state). The risk-free rate is 5%.

Although the investment NPV = 100−90 = 10 AU> 0, the company man-
agers are finding an additional benefit in postponing the investment decision.
In other words, a waiting call option increases the investment value and gives
more flexibility in time.

Assume that the decision about the project must be taken at the latest two
years from the present time. The evaluation of the call RO is made as before by
means of a binomial tree over two time periods. Looking at the time evolution
of the RO value, the managers will have to answer two questions regarding
the project investment: (1) How much is the option worth? (2) When should
the RO be exercised, possibly before the expiry time in two years?

The tree representing the project value can be established as in the upper
part of figure 19. The cash flow in the first year are 7 AU and 12 AU, so that
the project value after one year will be given by a perpetuity, calculated with
DR = 10% to be either 70 or 120 AU. The cash flows in the next years are
again increasing by u = 20%, or decreasing by d = 30%, so that the resulting
annual cash flows in the second year are estimated to be 4.9, 8.4, or 14.4 AU,
and the corresponding present values calculated with the DR = 10% at the
end of the second year are thus 49, 84, or 144 AU.

In each year the project generates a profit, comparable to a dividend paid
by a stock in the world of FOs. The return to the company owner is given in
the upper state by u = (12 + 120)/100− 1 = 32%, and in the lower state by
d = (7 + 70)/100− 1 = −23%.

By contrast with the previous example with European options, the pres-
ence of this yearly profit stream makes an early exercise of the call option
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2-period American option with early exercise

CF u 12 % annual increase 5 % pu20% riskfree r 50,9% qu 0,485
CF d 7 % annual decrease −30% D.R. 10% pd 49,1% qd 0,468

p1 60% 100,0%
p2 40% X = 90

100

701 120 return− =u      −23%
return+ =d        32%

2 49,0 84,0 144, 0

14,55

10,0

0,0
0,0

54,00,0

26,2

0,0

30,0

Fig. 19. An RO with early exercise.

possible. For those readers who are familiar with FO theory, note that an
American call option without dividend-paying stock can never be prematurely
exercised.

In the assumption of the risk-free world, the payoff of the risky project is
exactly the same as a risk-free investment at the risk-free rate r = 5%; one
must have

pu32% + pd(−23%) = 5%,
pd = 1 − pu,

pu = 50.9%; pd = 49.1%,

qu =
pu

1 + r
= 0.485; qd =

pd

1 + r
= 0.468,

(51)

where pu and pd are, as usual, respectively, the probability of moving up or
down in the risk-free world of options, and qu and qd are the corresponding
state prices in Equation (43).

We again work out the option value at the end of year 2 and then move
backward to the present time, each time using the state prices to calculate
the option value at the previous period according to Equation (42).

The lowest row in the tree in Figure 19 gives the NPV values of cash flows.
The exercise price X of the call is the initial outlay for the project, i.e., 90
AU. Equation (39) gives C = max[NPV(year 2)−90, 0], so that we obtain the
respective option values (0, 0, 54) AU at end of year 2 shown in the lowest
row in the lower tree in Figure 19. Only the branch in the upper state thus
has a positive value equal to 144 − 90 = 54 AU.
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The RO value in year 1 for this branch is worked out as usual with
Equation (42) as being

54qu + 0qd = 26.2 AU. (52)

The other branch gives zero. The positive value at end of year 1 is the
value of the option at end of this branch, only if the RO is kept alive to year 2.
What is, however, the price of the option at end of the same branch when it is
exercised immediately, i.e., at end of year 1? In this case the option is worth
the NPV at end of this branch minus the exercise price, i.e., 120 − 90 = 30
AU > 26.2 AU. The option thus has more value dead than when alive, and it
should be exercised at the end of year 1.

The value 30 AU is used to calculate in turn with the state prices the
option value at top of the tree at present time, which results in 14.55 AU
> 100 −X = 10, so that this time it is worth keeping the option open until
at least year 1.

The procedure to verify possible early exercise of an RO is thus as follows:
Work backward and check at each node of the binomial tree if the option is
more worth if exercised at this time, or if kept alive to the next period. Keep
whatever value is larger, record the early exercise possibility, and move again
upward to the top of the tree in year 0.

The possibility of early exercise clearly shows why RO valuation is usually
not feasible with Black–Scholes alone, because this formula imposes a fixed
RO exercise time.

Another reason why the use of the binomial tree is necessary in more
general cases is that any arbitrary evolution of the cash flows can be repre-
sented, and not only up and down states corresponding to the random-walk
assumption in Equation (46).

5.4 Real Options and Multicriteria Analysis

In the existing literature the option value (OV) is simply added to the NPV:
The resulting total value takes into account the flexibility given by the OV,
but not available in plain DCF evaluations. Under those conditions the DCF
is applied to the resulting total project value, including the OV.

The OV is added to the NPV for computing a complete profitability index,
extending Equation (2):

PIN(project i) =
[NPV + OV] (project i)

|CF0| (53)

This full PIN value may be used in a subsequent MCDA analysis. But,
as the OV has been aggregated in the NPV, the additional information it
represents gets lost. An easy remedy to this drawback is found by adding a
new criterion to the analysis, representing the gained flexibility:

FLEX(project i) =
OV(project i)

|CF0| (54)

Any of the MCDA procedures introduced in Section 3 can then be applied.
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6 Conclusions

This chapter had the ambition of showing that capital budgeting is not just
an old-fashioned cookbook of traditional recipes. Although I had to be very
concise, I hope to have convinced my readers that, on the contrary capital
budgeting benefits from a rich asset of modern techniques coming from oper-
ations research (OR).

I could only give a flavor of available OR techniques, without being, of
course, exhaustive with respect to the many possibilities of combinations be-
tween them. I have limited my presentation to multicriteria decision analysis,
fuzzy arithmetic, fuzzy-rule systems, and finally binomial trees used in real
option evaluations, which are closely related to stochastic dynamic program-
ming.

My main hope is to have awakened in my readers the desire to delve
deeper into the existing literature about those different OR fields, for which
the current research is still very active.
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31. Roy, B., and Bouyssou, D. Aide multicritère à la décision: Méthodes et Cas.
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1 Introduction

Finance is a discipline concerned with the study of capital flows over space
and time in the presence of risk. It has benefited from a plethora of mathe-
matical and engineering tools that have been developed and utilized for the
modeling, analysis, and computation of solutions in the present complex eco-
nomic environment. Indeed, the financial landscape today is characterized by
the existence of distinct sectors in economies, the proliferation of new financial
instruments, with increasing diversification of portfolios internationally, vari-
ous transaction costs, the increasing growth of electronic transactions, and a
myriad of governmental policy interventions. Hence, rigorous methodological
tools that can capture the complexity and richness of financial decision mak-
ing today and that can take advantage of powerful computer resources have
never been more important and needed for financial quantitative analyses.

This chapter focuses on financial networks as a powerful financial engineer-
ing tool and medium for the modeling, analysis, and solution of a spectrum
of financial decision making problems ranging from portfolio optimization to
multisector, multi-instrument general financial equilibrium problems, dynamic
multiagent financial problems with intermediation, as well as the financial en-
gineering of the integration of social networks with financial systems.

Note that throughout history, the emergence and evolution of various
physical networks, ranging from transportation and logistical networks to
telecommunication networks and the effects of human decision making on
such networks, have given rise to the development of rich theories and scientific
methodologies that are network-based (cf. Ford and Fulkerson, 1962; Ahuja
et al., 1993; Nagurney, 1999; Guenes and Pardalos, 2003). The novelty of net-
works is that they are pervasive, providing the fabric of connectivity for our
societies and economies, while, methodologically, network theory has devel-
oped into a powerful and dynamic medium for abstracting complex problems,
which, at first glance, may not even appear to be networks, with associated
nodes, links, and flows.
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Engineering, doi: 10.1007/978-0-387-76682-9 12,
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The topic of networks as a subject of scientific inquiry originated in the
paper by Euler (1736), which is credited with being the earliest paper on
graph theory. By a graph in this setting is meant, mathematically, a means
of abstractly representing a system by its depiction in terms of vertices (or
nodes) and edges (or arcs, equivalently, links) connecting various pairs of
vertices. Euler was interested in determining whether it was possible to stroll
around Königsberg (later called Kaliningrad) by crossing the seven bridges
over the River Pregel exactly once. The problem was represented as a graph
in which the vertices corresponded to land masses and the edges to bridges.

Quesnay (1758), in his Tableau Economique, conceptualized the circular
flow of financial funds in an economy as a network; this work can be identified
as the first paper on the topic of financial networks. Quesnay’s basic idea has
been utilized in the construction of financial flow of funds accounts, which are
a statistical description of the flows of money and credit in an economy (see
Cohen, 1987).

The concept of a network in economics, in turn, was implicit as early
as the classical work of Cournot (1838), who not only seems to have first
explicitly stated that a competitive price is determined by the intersection of
supply and demand curves, but had done so in the context of two spatially
separated markets in which the cost associated with transporting the goods
was also included. Pigou (1920) studied a network system in the form of a
transportation network consisting of two routes and noted that the decision-
making behavior of the the users of such a system would lead to different
flow patterns. Hence, the network of concern therein consists of the graph,
which is directed, with the edges or links represented by arrows, as well as the
resulting flows on the links.

Copeland (1952) recognized the conceptualization of the interrelationships
among financial funds as a network and asked the question, “Does money flow
like water or electricity?” Moreover, he provided a “wiring diagram for the
main money circuit.” Kirchhoff is credited with pioneering the field of elec-
trical engineering by being the first to have systematically analyzed electrical
circuits and with providing the foundations for the principal ideas of network
flow theory. Interestingly, Enke in 1951 had proposed electronic circuits as a
means of solving spatial price equilibrium problems, in which goods are pro-
duced, consumed, and traded, in the presence of transportation costs. Such
analog computational devices were soon to be superseded by digital comput-
ers along with advances in computational methodologies, that is, algorithms,
based on mathematical programming.

In this chapter, we further elaborate upon historical breakthroughs in the
use of networks for the formulation, analysis, and solution of financial prob-
lems. Such a perspective allows one to trace the methodological developments
as well as the applications of financial networks and provides a platform upon
which further innovations can be made. One of the principal goals of this
chapter is to highlight some of the major developments in financial engineer-
ing in the context of financial networks. Methodological tools that will be
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utilized to formulate and solve the financial network problems in this chap-
ter are drawn from optimization, variational inequalities, as well as projected
dynamical systems theory. We begin with a discussion of financial optimiza-
tion problems within a network context and then turn to a range of financial
network equilibrium problems.

2 Financial Optimization Problems

Network models have been proposed for a wide variety of financial problems
characterized by a single objective function to be optimized as in portfolio
optimization and asset allocation problems, currency translation, and risk
management problems, among others. This literature is now briefly overviewed
with the emphasis on the innovative work of Markowitz (1952, 1959) that
established a new era in financial economics and became the basis for many
financial optimization models that exist and are used to this day.

Note that although many financial optimization problems (including the
work by Markowitz) had an underlying network structure, and the advantages
of network programming were becoming increasingly evident (cf. Charnes and
Cooper, 1958), not many financial network optimization models were devel-
oped until some time later. Some exceptions are several early models due to
Charnes and Miller (1957) and Charnes and Cooper (1961). It was not until
the last years of the 1960s and the first years of the 1970s that the network
setting started to be extensively used for financial applications.

Among the first financial network optimization models that appear in the
literature were a series of currency-translating models. Rutenberg (1970) sug-
gested that the translation among different currencies could be performed
through the use of arc multipliers. His network model was multiperiod with
linear costs on the arcs (a characteristic common to the earlier financial net-
works models). The nodes of such generalized networks represented a partic-
ular currency in a specific period and the flow on the arcs the amount of cash
moving from one period and/or currency to another. Christofides et al. (1979)
and Shapiro and Rutenberg (1976), among others, introduced related financial
network models. In most of these models, the currency prices were determined
according to the amount of capital (network flow) that was moving from one
currency (node) to the other.

Barr (1972) and Srinivasan (1974) used networks to formulate a series of
cash management problems, with a major contribution being Crum’s (1976)
introduction of a generalized linear network model for the cash management of
a multinational firm. The links in the network represented possible cash flow
patterns and the multipliers incorporated costs, fees, liquidity changes, and
exchange rates. A series of related cash management problems were modeled
as network problems in subsequent years by Crum and Nye (1981) and Crum
et al. (1983), and others. These papers further extended the applicability of
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network programming in financial applications. The focus was on linear net-
work flow problems in which the cost on an arc was a linear function of the
flow. Crum et al. (1979), in turn, demonstrated how contemporary financial
capital allocation problems could be modeled as an integer-generalized net-
work problem, in which the flows on particular arcs were forced to be integers.

It is important to note that in many financial network optimization prob-
lems the objective function must be nonlinear due to the modeling of the
risk function and, hence, typically, such financial problems lie in the domain
of nonlinear, rather than linear, network flow problems. Mulvey (1987) pre-
sented a collection of nonlinear financial network models that were based on
previous cash flow and portfolio models in which the original authors (see,
e.g., Rudd and Rosenberg, 1979, and Soenen, 1979) did not realize, and, thus,
did not exploit the underlying network structure. Mulvey also recognized that
the Markowitz (1952, 1959) mean-variance minimization problem was, in fact,
a network optimization problem with a nonlinear objective function. The clas-
sical Markowitz models are now reviewed and cast into the framework of net-
work optimization problems. See Figure 1 for the network structure of such
problems. Additional financial network optimization models and associated
references can be found in Nagurney and Siokos (1997) and in the volume
edited by Nagurney (2003).

�

�

0

1

1 2 · · · n

��

Fig. 1. Network structure of classical portfolio optimization.

Markowitz’s model was based on mean-variance portfolio selection, where
the average and the variability of portfolio returns were determined in terms
of the mean and covariance of the corresponding investments. The mean is a
measure of an average return and the variance is a measure of the distribution
of the returns around the mean return. Markowitz formulated the portfolio
optimization problem as associated with risk minimization with the objective
function:

minimize V = XTQX (1)

subject to constraints, representing, respectively, the attainment of a specific
return, a budget constraint, and that no short sales were allowed, given by
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R =
n∑

i=1

Xiri, (2)

n∑

i=1

Xi = 1, (3)

Xi ≥ 0, i = 1, . . . , n. (4)

Here n denotes the total number of securities available in the economy, Xi

represents the relative amount of capital invested in security i, with the secu-
rities being grouped into the column vector X , Q denotes the n×n variance-
covariance matrix on the return of the portfolio, ri denotes the expected value
of the return of security i, and R denotes the expected rate of return on the
portfolio. Within a network context (cf. Figure 1), the links correspond to the
securities, with their relative amounts X1, . . . , Xn corresponding to the flows
on the respective links: 1, . . . , n. The budget constraint and the nonnegativity
assumption on the flows are the network conservation of flow equations. Since
the objective function is that of risk minimization, it can be interpreted as
the sum of the costs on the n links in the network. Observe that the net-
work representation is abstract and does not correspond (as in the case of
transportation and telecommunication) to physical locations and links.

Markowitz suggested that, for a fixed set of expected values ri and covari-
ances of the returns of all assets i and j, every investor can find an (R, V )
combination that better fits his taste, solely limited by the constraints of the
specific problem. Hence, according to the original work of Markowitz (1952),
the efficient frontier had to be identified and then every investor had to select
a portfolio through a mean-variance analysis that fitted his preferences.

A related mathematical optimization model (see Markowitz, 1959) to the
one above, which can be interpreted as the investor seeking to maximize his
returns while minimizing his risk can be expressed by the quadratic program-
ming problem:

maximize αR− (1 − α)V (5)

subject to

n∑

i=1

Xi = 1, (6)

Xi ≥ 0, i = 1, . . . , n, (7)

where α denotes an indicator of how risk-averse a specific investor is. This
model is also a network optimization problem with the network as depicted
in Figure 1, with Equations (6) and (7) again representing a conservation of
flow equation.

A collection of versions and extensions of Markowitz’s model can be found
in Francis and Archer (1979), with α = 1/2 being a frequently accepted value.
A recent interpretation of the model as a multicriteria decision making model
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along with theoretical extensions to multiple sectors can be found in Dong
and Nagurney (2001), where additional references are available. References to
multicriteria decision making and financial applications can also be found in
Doumpos et al. (2000).

A segment of the optimization literature on financial networks has focused
on variables that are stochastic and have to be treated as random variables in
the optimization procedure. Clearly, since most financial optimization prob-
lems are of large size, the incorporation of stochastic variables made the prob-
lems more complicated and difficult to model and compute. Mulvey (1987)
and Mulvey and Vladimirou (1989, 1991), among others, studied stochastic
financial networks, utilizing a series of different theories and techniques (e.g.,
purchase power priority, arbitrage theory, scenario aggregation) that were then
utilized for the estimation of the stochastic elements in the network in order
to be able to represent them as a series of deterministic equivalents. The large
size and the computational complexity of stochastic networks, at times, lim-
ited their usage to specially structured problems where general computational
techniques and algorithms could be applied. See Rudd and Rosenberg (1979),
Wallace (1986), Rockafellar and Wets (1991), and Mulvey et al. (2003) for
a more detailed discussion on aspects of realistic portfolio optimization and
implementation issues related to stochastic financial networks.

3 General Financial Equilibrium Problems

We now turn to networks and their utilization for the modeling and analysis
of financial systems in which there is more than a single decision maker, in
contrast to the above financial optimization problems. It is worth noting that
Quesnay (1758) actually considered a financial system as a network.

Thore (1969) introduced networks, along with the mathematics, for the
study of systems of linked portfolios. His work benefited from that of Charnes
and Cooper (1967), who demonstrated that systems of linked accounts could
be represented as a network, where the nodes depict the balance sheets and
the links depict the credit and debit entries. Thore considered credit networks,
with the explicit goal of providing a tool for use in the study of the propagation
of money and credit streams in an economy, based on a theory of the behav-
ior of banks and other financial institutions. The credit network recognized
that these sectors interact and its solution made use of linear programming.
Thore (1970) extended the basic network model to handle holdings of finan-
cial reserves in the case of uncertainty. The approach utilized two-stage linear
programs under uncertainty introduced by Ferguson and Dantzig (1956) and
Dantzig and Madansky (1961). See Fei (1960) for a graph-theoretic approach
to the credit system. More recently, Boginski et al.(2003) presented a detailed
study of the stock market graph, yielding a new tool for the analysis of market
structure through the classification of stocks into different groups, along with
an application to the U.S. stock market.
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Storoy et al. (1975), in turn, developed a network representation of the in-
terconnection of capital markets and demonstrated how decomposition theory
of mathematical programming could be exploited for the computation of equi-
librium. The utility functions facing a sector were no longer restricted to being
linear functions. Thore (1980) further investigated network models of linked
portfolios, financial intermediation, and decentralization/decomposition the-
ory. However, the computational techniques at that time were not sufficiently
well-developed to handle such problems in practice.

Thore (1984) later proposed an international financial network for the
Euro dollar market and viewed it as a logistical system, exploiting the ideas
of Samuelson (1952) and Takayama and Judge (1971) for spatial price equi-
librium problems. In this paper, as in Thore’s preceding papers on financial
networks, the micro-behavioral unit consisted of the individual bank, sav-
ings and loan, or other financial intermediary, and the portfolio choices were
described in some optimizing framework, with the portfolios being linked to-
gether into a network with a separate portfolio visualized as a node and assets
and liabilities as directed links.

Notably, the above-mentioned contributions focused on the use and ap-
plication of networks for the study of financial systems consisting of multiple
economic decision makers. In such systems, equilibrium was a central con-
cept, along with the role of prices in the equilibrating mechanism. Rigorous
approaches that characterized the formulation of equilibrium and the corre-
sponding price determination were greatly influenced by the Arrow–Debreu
economic model (cf. Arrow, 1951; Debreu, 1951). In addition, the importance
of the inclusion of dynamics in the study of such systems was explicitly em-
phasized (see also Thore and Kydland, 1972).

The first use of finite-dimensional variational inequality theory for the com-
putation ofmultisector,multi-instrumentfinancial equilibria is due toNagurney
et al. (1992), who recognized the network structure underlying the subproblems
encountered in their proposed decomposition scheme. Hughes and Nagurney
(1992) and Nagurney and Hughes (1992) had, in turn, proposed the formulation
andsolutionof estimationoffinancialflowof fundsaccountsasnetworkoptimiza-
tion problems. Their proposed optimization scheme fully exploited the special
network structure of these problems. Nagurney and Siokos (1997) then devel-
oped an international financial equilibrium model utilizing finite-dimensional
variational inequality theory for the first time in that framework.

Finite-dimensional variational inequality theory is a powerful unifying
methodology in that it contains, as special cases, such mathematical pro-
gramming problems as nonlinear equations, optimization problems, and com-
plementarity problems. To illustrate this methodology and its application in
general financial equilibrium modeling and computation, we now present a
multisector, multi-instrument model and an extension due to Nagurney et al.
(1992) and Nagurney (1994), respectively. For additional references to vari-
ational inequalities in finance, along with additional theoretical foundations,
see Nagurney and Siokos (1997) and Nagurney (2001, 2003).
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3.1 A Multisector, Multi-Instrument Financial Equilibrium Model

Recall the classical mean-variance model presented in the preceding section,
which is based on the pioneering work of Markowitz (1959). Now, however,
assume that there are m sectors, each of which seeks to maximize his return
and, at the same time, to minimize the risk of his portfolio, subject to the
balance accounting and nonnegativity constraints. Examples of sectors include
households, businesses, state and local governments, banks, etc. Denote a
typical sector by j and assume that there are liabilities in addition to assets
held by each sector. Denote the volume of instrument i that sector j holds
as an asset by Xj

i , and group the (nonnegative) assets in the portfolio of
sector j into the column vector Xj ∈ Rn

+. Further, group the assets of all
sectors in the economy into the column vector X ∈ Rmn

+ . Similarly, denote
the volume of instrument i that sector j holds as a liability by Y j

i , and group
the (nonnegative) liabilities in the portfolio of sector j into the column vector
Y j ∈ Rn

+. Finally, group the liabilities of all sectors in the economy into the
column vector Y ∈ Rmn

+ . Let ri denote the nonnegative price of instrument i,
and group the prices of all the instruments into the column vector r ∈ Rn

+.
It is assumed that the total volume of each balance sheet side of each

sector is exogenous. Recall that a balance sheet is a financial report that
demonstrates the status of a company’s assets, liabilities, and the owner’s
equity at a specific point of time. The left-hand side of a balance sheet contains
the assets that a sector holds at a particular point of time, whereas the right-
hand side accommodates the liabilities and owner’s equity held by that sector
at the same point of time. According to accounting principles, the sum of all
assets is equal to the sum of all the liabilities and the owner’s equity. Here,
the term “liabilities” is used in its general form and, hence, also includes the
owner’s equity. Let Sj denote the financial volume held by sector j. Finally,
assume that the sectors under consideration act in a perfectly competitive
environment.

A Sector’s Portfolio Optimization Problem

Recall that in the mean-variance approach for portfolio optimization, the min-
imization of a portfolio’s risk is performed through the use of the variance-
covariance matrix. Hence, the portfolio optimization problem for each sector j
is the following:

minimize
(
Xj

Y j

)T

Qj

(
Xj

Y j

)
−

n∑

i=1

ri

(
Xj

i − Y j
i

)
(8)

subject to
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n∑

i=1

Xj
i = Sj , (9)

n∑

i=1

Y j
i = Sj , (10)

Xj
i ≥ 0, Y j

i ≥ 0, i = 1, 2, . . . , n, (11)

where Qj is a symmetric 2n× 2n variance-covariance matrix associated with
the assets and liabilities of sector j. Moreover, sinceQj is a variance-covariance
matrix, one can assume that it is positive definite and, as a result, the objective
function of each sector’s portfolio optimization problem, given by the above,
is strictly convex.

Partition the symmetric matrix Qj as

Qj =
(
Qj

11 Q
j
12

Qj
21 Q

j
22

)
,

where Qj
11 and Qj

22 are the variance-covariance matrices for only the assets
and only the liabilities, respectively, of sector j. These submatrices are each
of dimension n×n. The submatrices Qj

12 and Qj
21, in turn, are identical since

Qj is symmetric. They are also of dimension n×n. These submatrices are, in
fact, the symmetric variance-covariance matrices between the asset and the
liabilities of sector j. Denote the ith column of matrix Qj

(αβ) by Qj
(αβ)i, where

α and β can take on the values of 1 and/or 2.

Optimality Conditions

The necessary and sufficient conditions for an optimal portfolio for sector j are
that the vector of assets and liabilities, (Xj∗, Y j∗) ∈ Kj , where Kj denotes
the feasible set for sector j, given by (9) – (11), satisfies the following system
of equalities and inequalities: For each instrument i; i = 1, . . . , n, we must
have

2(Qj
(11)i)

T ·Xj∗ + 2(Qj
(21)i)

T · Y j∗ − r∗i − µ1
j ≥ 0,

2(Qj
(22)i)

T · Y j∗ + 2(Qj
(12)i)

T ·Xj∗ + r∗i − µ2
j ≥ 0,

Xj
i

∗ [
2(Qj

(11)i)
T ·Xj∗ + 2(Qj

(21)i)
T · Y j∗ − r∗i − µ1

j

]
= 0,

Y j
i

∗ [
2(Qj

(22)i)
T · Y j∗ + 2(Qj

(12)i)
T ·Xj∗ + r∗i − µj

2

]
= 0,

where µ1
j and µ2

j are the Lagrange multipliers associated with the accounting
constraints, (9) and (10), respectively.

Let K denote the feasible set for all the asset and liability holdings of all
the sectors and all the prices of the instruments, where K ≡ {K × Rn

+} and
K ≡ ∏m

i=1Kj . The network structure of the sectors’ optimization problems
is depicted in Figure 2.
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Fig. 2. Network structure of the sectors’ optimization problems.

Economic System Conditions

The economic system conditions, which relate the supply and demand of each
financial instrument and the instrument prices, are given by the following:
For each instrument i; i = 1, . . . , n, an equilibrium asset, liability, and price
pattern, (X∗, Y ∗, r∗) ∈ K, must satisfy

J∑

j=1

(Xj
i

∗ − Y j
i

∗
)
{

= 0 if r∗i > 0,
≥ 0 if r∗i = 0. (12)

The definition of financial equilibrium is now presented along with the vari-
ational inequality formulation. For the derivation, see Nagurney et al. (1992)
and Nagurney and Siokos (1997). Combining the above optimality conditions
for each sector with the economic system conditions for each instrument, we
have the following definition of equilibrium.

Definition 1. Multisector, Multi-Instrument Financial Equilibrium
A vector (X∗, Y ∗, r∗) ∈ K is an equilibrium of the multisector, multi-
instrument financial model if and only if it satisfies the optimality conditions
and the economic system conditions (12), for all sectors j; j = 1, . . . ,m, and
for all instruments i; i = 1, . . . , n, simultaneously.

The variational inequality formulation of the equilibrium conditions, due
to Nagurney et al. (1992) is given by the following.
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Theorem 1. Variational Inequality Formulation for the Quadratic
Model
A vector of assets and liabilities of the sectors, and instrument prices,
(X∗, Y ∗, r∗) ∈ K, is a financial equilibrium if and only if it satisfies the
variational inequality problem:

m∑

j=1

n∑

i=1

[
2(Qj

(11)i)
T ·Xj∗ + 2(Qj

(21)i)
T · Y j∗ − r∗i

]
×
[
Xj

i −Xj
i

∗]

+
m∑

j=1

n∑

i=1

[
2(Qj

(22)i)
T · Y j∗ + 2(Qj

(12)i)
T ·Xj∗ + r∗i

]
×
[
Y j

i − Y j
i

∗]

+
n∑

i=1

m∑

j=1

[
Xj

i

∗ − Y j
i

∗]× [ri − r∗i ] ≥ 0, ∀(X,Y, r) ∈ K. (13)

For completeness, the standard form of the variational inequality is
now presented. For additional background, see Nagurney (1999). Define the
N -dimensional column vector Z ≡ (X,Y, r) ∈ K, and the N -dimensional
column vector F (Z) such that

F (Z) ≡ D

⎛

⎝
X
Y
r

⎞

⎠ , where D =
(

2Q B
−BT 0

)
,

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1
11 Q1

21

. . . . . .
QJ

11 QJ
21

Q1
12 Q1

22

. . . . . .
QJ

12 QJ
22

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

2mn×2mn

,

and
BT =

(−I . . . −I I . . . I )
n×mn

,

and I is the n× n-dimensional identity matrix.
It is clear that variational inequality problem (13) can be put into standard

variational inequality form: Determine Z∗ ∈ K, satisfying

〈F (Z∗)T , Z − Z∗〉 ≥ 0, ∀Z ∈ K. (14)

3.2 Model with Utility Functions

The above model is a special case of the financial equilibrium model due to
Nagurney (1994) in which each sector j seeks to maximize his utility function,

U j(Xj,j , r) = uj(Xj , Y j) + rT · (Xj − Y j),
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which, in turn, is a special case of the model with a sector j’s utility function
given by the general form U j(Xj , Y j , r). Interestingly, it has been shown by
Nagurney and Siokos (1997) that, in the case of utility functions of the form
U j(Xj, Y j , r) = uj(Xj , Y j) + rT · (Xj − Y j), of which the above-described
quadratic model is an example, one can obtain the solution to the above
variational inequality problem by solving the optimization problem:

maximize
J∑

j=1

uj(Xj, Y j) (15)

subject to

J∑

j=1

(Xj
i − Y j

i ) = 0, i = 1, . . . , n, (16)

(Xj, Y j) ∈ Kj, j = 1, . . . ,m, (17)

with Lagrange multiplier r∗i associated with the ith “market clearing” con-
straint (16). Moreover, this optimization problem is actually a network opti-
mization problem as revealed in Nagurney and Siokos (1997). The structure
of the financial system in equilibrium is as depicted in Figure 3.
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3.3 Computation of Financial Equilibria

In this section, an algorithm for the computation of solutions to the above
financial equilibrium problems is recalled. The algorithm is the modified pro-
jection method of Korpelevich (1977). The advantage of this computational
method in the context of the general financial equilibrium problems is that
the original problem can be decomposed into a series of smaller and simpler
subproblems of network structure, each of which can then be solved explicitly
and in closed form. The realization of the modified projection method for the
solution of the financial equilibrium problems with general utility functions is
then presented.

The modified projection method can be expressed as follows:

Step 0: Initialization

Select Z0 ∈ K. Let τ := 0 and let γ be a scalar such that 0 < γ ≤ 1/L, where
L is the Lipschitz constant (see Nagurney and Siokos, 1997).

Step 1: Computation

Compute Z̄τ by solving the variational inequality subproblem:

〈(Z̄τ + γF (Zτ )T − Zτ )T , Z − Z̄τ 〉 ≥ 0, ∀Z ∈ K. (18)

Step 2: Adaptation

Compute Zτ+1 by solving the variational inequality subproblem:

〈(Zτ+1 + γF (Z̄τ )T − Zτ )T , Z − Zτ+1〉 ≥ 0, ∀Z ∈ K. (19)

Step 3: Convergence Verification

If max |Zτ+1
b − Zτ

b | ≤ ε, for all b, with ε > 0, a prespecified tolerance, then
stop; else, set τ := τ + 1, and go to step 1.

For completeness, we now present the modified projection algorithm in
which the function F (Z) is in expanded form for the specific model.

The Modified Projection Method

Step 0: Initialization

Set (X0, Y 0, r0) ∈ K. Let τ := 0 and set γ so that 0 < γ ≤ 1/L.

Step 1: Computation

Compute (X̄τ , Ȳ τ , r̄τ ) ∈ K by solving the variational inequality subproblem:
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J∑

j=1

I∑

i=1

[
X̄jτ

i + γ

(
−∂U

j(Xjτ
, Y jτ

, rτ )
∂Xj

i

)
−Xj

i

τ

]
×
[
Xj

i − X̄jτ

i

]

+
J∑

j=1

I∑

i=1

[
Ȳ jτ

i + γ

(
−∂U

j(Xjτ
, Y jτ

, rτ )
∂Y j

i

)
− Y j

i

τ

]
×
[
Y j

i − Ȳ jτ

i

]

+
I∑

i=1

⎡

⎣r̄τ
i + γ

⎡

⎣
J∑

j=1

(
Xj

i

τ − Y j
i

τ
)
⎤

⎦− rτ
i

⎤

⎦× [ri − r̄τ
i ] , ∀(X,Y, r) ∈ K.

Step 2: Adaptation

Compute (Xτ+1, Y τ+1, rτ+1) ∈ K by solving the variational inequality sub-
problem:

J∑

j=1

I∑

i=1

[
Xj

i

τ+1
+ γ

(
−∂U

j(X̄jτ
, Ȳ jτ

, r̄τ )
∂Xj

i

)
−Xj

i

τ

]
×
[
Xj

i −Xj
i

τ+1
]

+
J∑

j=1

I∑

i=1

[
Y j

i

τ+1
+ γ

(
−∂U

j(X̄jτ
, Ȳ jτ

, r̄τ )
∂Y j

i

)
− Y j

i

τ

]
×
[
Y j

i − Y j
i

τ+1
]

+
I∑

i=1

⎡

⎣rτ+1
i + γ

⎡

⎣
J∑

j=1

(
X̄jτ

i − Ȳ jτ

i

)
⎤

⎦− rτ
i

⎤

⎦× [
ri − rτ+1

i

]
, ∀ (X,Y, r) ∈ K.

Step 3: Convergence Verification:

If maxi,j |Xj
i

τ+1 −Xj
i

τ | ≤ ε; maxi,j |Y j
i

τ+1 − Y j
i

τ | ≤ ε; maxi |rτ+1
i − rτ

i | ≤ ε,
for all i; i = 1, . . . , I, and j; j = 1, . . . , J , with ε > 0, a prespecified tolerance,
then stop; else, set τ := τ + 1, and go to step 1.

Convergence results are given in Nagurney et al. (1992); see also Nagurney
and Siokos (1997).

An interpretation of the modified projection method as an adjustment
process is now provided. The interpretation of the algorithm as an adjustment
process was given by Nagurney (1999). In particular, at an iteration, the
sectors in the economy receive all the price information on every instrument
from the previous iteration. They then allocate their capital according to their
preferences. The market reacts on the decisions of the sectors and derives new
instrument prices. The sectors then improve upon their positions through the
adaptation step, whereas the market also adjusts during the adaptation step.
This process continues until no one can improve upon his position, and the
equilibrium is reached, that is, the above variational inequality is satisfied
with the computed asset, liability, and price pattern.
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Fig. 4. Financial network subproblems induced by the modified projection method.

The financial optimization problems in the computation step and in the
adaptation step are equivalent to separable quadratic programming problems,
of special network structure, as depicted in Figure 4. Each of these network
subproblems structure can then be solved, at an iteration, simultaneously, and
exactly in closed form. The exact equilibration algorithm (see, e.g., Nagurney
and Siokos, 1997) can be applied for the solution of the asset and liability
subproblems, whereas the prices can be obtained using explicit formulas.

A numerical example is now presented for illustrative purposes and solved
using the modified projection method, embedded with the exact equilibration
algorithm.

Example 1: A Numerical Example

Assume that there are two sectors in the economy and three financial instru-
ments. Assume that the “size” of each sector is given by S1 = 1 and S2 = 2.
The variance-covariance matrices of the two sectors are
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Q1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 .25 .3 0 0 0
.25 1 .1 0 0 0
.3 1 1 0 0 0
0 0 0 1 .2 .3
0 0 0 .2 1 .5
0 0 0 .3 .5 1

⎞

⎟⎟⎟⎟⎟⎟⎠

and

Q2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 .3 0 0 0
0 1 .2 0 0 0
.3 .2 1 0 0 0
0 0 0 1 .5 0
0 0 0 .5 1 .2
0 0 0 0 .2 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The modified projection method was coded in FORTRAN. The variables
were initialized as follows: r0i = 1, for all i, with the financial volume Sj

equally distributed among all the assets and among all the liabilities for each
sector j. The γ parameter was set to 0.35. The convergence tolerance ε was
set to 10−3.

The modified projection method converged in 16 iterations and yielded
the following equilibrium pattern:

Equilibrium Prices:

r∗1 = 0.34039, r∗2 = 0.23805, r∗3 = 0.42156,

Equilibrium Asset Holdings:

X1
1
∗

= 0.27899, X1
2
∗

= 0.31803, X1
3
∗

= 0.40298,

X2
1
∗

= 0.79662, X2
2
∗

= 0.60904, X2
3
∗

= 0.59434,

Equilibrium Liability Holdings:

Y 1
1
∗

= 0.37081, Y 1
2
∗

= 0.43993, Y 1
3
∗

= 0.18927,

Y 2
1
∗

= 0.70579, Y 2
2
∗

= 0.48693, Y 2
3
∗

= 0.80729.

The above results show that the algorithm yielded optimal portfolios that

were feasible. Moreover, the market cleared for each instrument, since the
price of each instrument was positive.

Other financial equilibrium models, including models with transaction
costs, with hedging instruments such as futures and options, as well as inter-
national financial equilibrium models, can be found in Nagurney and Siokos
(1997) and the references therein.

Moreover, with projected dynamical systems theory (see the book by
Nagurney and Zhang, 1996), one can trace the dynamic behavior prior to
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an equilibrium state (formulated as a variational inequality). In contrast to
classical dynamical systems, projected dynamical systems are characterized
by a discontinuous right-hand side, with the discontinuity arising due to the
constraint set underlying the application in question. Hence, this methodology
allows one to model systems dynamically that are subject to limited resources,
with a principal constraint in finance being budgetary restrictions.

Dong et al. (1996) were the first to apply the methodology of projected
dynamical systems to develop a dynamic multisector, multi-instrument finan-
cial model, whose set of stationary points coincided with the set of solutions
to the variational inequality model developed in Nagurney (1994), and then to
study it qualitatively, providing stability analysis results. In the next section,
the methodology of projected dynamical systems is illustrated in the context
of a dynamic financial network model with intermediation (cf. Nagurney and
Dong, 2002).

4 Dynamic Financial Networks with Intermediation

In this section, dynamic financial networks with intermediation are explored.
As noted earlier, the conceptualization of financial systems as networks dates
back to Quesnay (1758), who depicted the circular flow of funds in an economy
as a network. His basic idea was subsequently applied to the construction
of flow of funds accounts, which are a statistical description of the flows of
money and credit in an economy (cf. Board of Governors, 1980; Cohen, 1987;
Nagurney and Hughes, 1992). However, since the flow of funds accounts are
in matrix form and, hence, two-dimensional, they fail to capture the dynamic
behavior on a micro level of the various financial agents/sectors in an economy
such as banks, households, insurance companies, etc. Moreover, as noted by
the Board of Governors (1980) on page 6 of that publication, “the generality of
the matrix tends to obscure certain structural aspects of the financial system
that are of continuing interest in analysis,” with the structural concepts of
concern including financial intermediation.

Thore (1980) recognized some of the shortcomings of financial flow of
funds accounts and instead developed network models of linked portfolios
with financial intermediation, using decentralization/decomposition theory.
Note that intermediation is typically associated with financial businesses, in-
cluding banks, savings institutions, investment and insurance companies, etc.,
and the term implies borrowing for the purpose of lending, rather than for non-
financial purposes. Thore also constructed some basic intertemporal models.
However, the intertemporal models were not fully developed and the computa-
tional techniques at that time were not sufficiently advanced for computational
purposes.

In this section, we address the dynamics of the financial economy, which
explicitly includes financial intermediaries along with the “sources” and “uses”
of financial funds. Tools are provided for studying the disequilibrium dynamics
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as well as the equilibrium state. Also, transaction costs are considered, since
they bring a greater degree of realism to the study of financial intermediation.
Transaction costs had been studied earlier in multisector, multi-instrument fi-
nancial equilibrium models by Nagurney and Dong (1996a, 1996b) but without
considering the more general dynamic intermediation setting.

The dynamic financial network model is now described. The model con-
sists of agents with sources of funds, agents who are intermediaries, as well as
agents who are consumers located at the demand markets. Specifically, con-
sider m agents with sources of financial funds, such as households and busi-
nesses, involved in the allocation of their financial resources among a portfolio
of financial instruments that can be obtained by transacting with distinct n
financial intermediaries, such as banks, insurance and investment companies,
etc. The financial intermediaries, in turn, in addition to transacting with the
source agents, also determine how to allocate the incoming financial resources
among distinct uses, as represented by o demand markets with a demand mar-
ket corresponding to, for example, the market for real estate loans, household
loans, or business loans, etc. The financial network with intermediation is now
described and depicted graphically in Figure 5.
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Fig. 5. The network structure of the financial economy with intermediation and
with non-investment allowed.

The top tier of nodes in Figure 5 consists of the agents with sources of
funds, with a typical source agent denoted by i and associated with node i.
The middle tier of nodes in Figure 5 consists of the intermediaries, with a
typical intermediary denoted by j and associated with node j in the network.
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The bottom tier of nodes consists of the demand markets, with a typical
demand market denoted by k and corresponding to the node k.

For simplicity of notation, assume that there are L financial instruments
associated with each intermediary. Hence, from each source of funds node,
there are L links connecting such a node with an intermediary node with the
lth such link corresponding to the lth financial instrument available from the
intermediary. In addition, the option of non-investment in the available finan-
cial instruments is allowed and to denote this option, construct an additional
link from each source node to the middle tier node n + 1, which represents
non-investment. Note that there are as many links connecting each top tier
node with each intermediary node as needed to reflect the number of financial
instruments available. Also, note that there is an additional abstract node
n+1 with a link connecting each source node to it, which, as shall shortly be
shown, will be used to “collect” the financial funds that are not invested. In
the model, it is assumed that each source agent has a fixed amount of financial
funds.

From each intermediary node, construct o links, one to each “use” node
or demand market in the bottom tier of nodes in the network to denote the
transaction between the intermediary and the consumers at the demand mar-
ket.

Let xijl denote the nonnegative amount of the funds that source i “invests”
in financial instrument l obtained from intermediary j. Group the financial
flows associated with source agent i, which are associated with the links em-
anating from the top tier node i to the intermediary nodes in the logistical
network, into the column vector xi ∈ RnL

+ . Assume that each source has, at
his disposal, an amount of funds Si and denote the unallocated portion of this
amount (and flowing on the link joining node i with node n+1) by si. Group
then the xi of all the source agents into the column vector x ∈ RmnL

+ .
Associate a distinct financial product k with each demand market, bottom-

tiered node k, and let yjk denote the amount of the financial product obtained
by consumers at demand market k from intermediary j. Group these “con-
sumption” quantities into the column vector y ∈ Rno

+ . The intermediaries
convert the incoming financial flows x into the outgoing financial flows y.

The notation for the prices is now given. Note that prices will be associated
with each of the tiers of nodes in the network. Let ρ1ijl denote the price
associated with instrument l as quoted by intermediary j to source agent i,
and group the first tier prices into the column vector ρ1 ∈ RmnL

+ . Also, let
ρ2j denote the price charged by intermediary j and group all such prices into
the column vector ρ2 ∈ Rn

+. Finally, let ρ3k denote the price of the financial
product at the third or bottom-tiered node k in the network, and group all
such prices into the column vector ρ3 ∈ Ro

+.
We now turn to describing the dynamics by which the source agents adjust

the amounts they allocate to the various financial instruments over time, the
dynamics by which the intermediaries adjust their transactions, and those by
which the consumers obtain the financial products at the demand markets.
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In addition, the dynamics by which the prices adjust over time are described.
The dynamics are derived from the bottom tier of nodes of the network on up
since it is assumed that it is the demand for the financial products (and the
corresponding prices) that actually drives the economic dynamics. The price
dynamics are presented first and then the dynamics underlying the financial
flows.

The Demand Market Price Dynamics

We begin by describing the dynamics underlying the prices of the financial
products associated with the demand markets (see the bottom-tiered nodes).
Assume, as given, a demand function dk, which can depend, in general, upon
the entire vector of prices ρ3, that is,

dk = dk(ρ3), ∀k. (20)

Moreover, assume that the rate of change of the price ρ3k, denoted by ρ̇3k,
is equal to the difference between the demand at the demand market k, as
a function of the demand market prices, and the amount available from the
intermediaries at the demand market. Hence, if the demand for the product
at the demand market (at an instant in time) exceeds the amount available,
the price of the financial product at that demand market will increase; if
the amount available exceeds the demand at the price, then the price at the
demand market will decrease. Furthermore, it is guaranteed that the prices
do not become negative. Thus, the dynamics of the price ρ3k associated with
the product at demand market k can be expressed as

ρ̇3k =
{
dk(ρ3) −

∑n
j=1 yjk if ρ3k > 0,

max{0, dk(ρ3) −
∑n

j=1 yjk} if ρ3k = 0. (21)

The Dynamics of the Prices at the Intermediaries

The prices charged for the financial funds at the intermediaries, in turn, must
reflect supply and demand conditions as well (and, as shall be shown shortly,
also reflect profit-maximizing behavior on the part of the intermediaries who
seek to determine how much of the financial flows they obtain from the dif-
ferent sources of funds). In particular, assume that the price associated with
intermediary j, ρ2j , and computed at node j lying in the second tier of nodes,
evolves over time according to

ρ̇2j =

{∑o
k=1 yjk −∑m

i=1

∑L
l=1 xijl if ρ2j > 0,

max{0,∑o
k=1 yjk −∑m

i=1

∑L
l=1 xijl} if ρ2j = 0,

(22)

where ρ̇2j denotes the rate of change of the jth intermediary’s price. Hence, if
the amount of the financial funds desired to be transacted by the consumers
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(at an instant in time) exceeds that available at the intermediary, then the
price charged at the intermediary will increase; if the amount available is
greater than that desired by the consumers, then the price charged at the
intermediary will decrease. As in the case of the demand market prices, it is
guaranteed that the prices charged by the intermediaries remain nonnegative.

Precursors to the Dynamics of the Financial Flows

First some preliminaries are needed that will allow the development of the
dynamics of the financial flows. In particular, the utility-maximizing behavior
of the source agents and that of the intermediaries are now discussed.

Assume that each such source agent’s and each intermediary agent’s util-
ity can be defined as a function of the expected future portfolio value, where
the expected value of the future portfolio is described by two characteristics:
the expected mean value and the uncertainty surrounding the expected mean.
Here, the expected mean portfolio value is assumed to be equal to the market
value of the current portfolio. Each agent’s uncertainty, or assessment of risk,
in turn, is based on a variance-covariance matrix denoting the agent’s assess-
ment of the standard deviation of the prices for each instrument/product. The
variance-covariance matrix associated with source agent i’s assets is denoted
by Qi, is of dimension nL × nL, and is associated with vector xi, whereas
intermediary agent j’s variance-covariance matrix is denoted by Qj , is of di-
mension o× o, and is associated with the vector yj .

Optimizing Behavior of the Source Agents

Denote the total transaction cost associated with source agent i transacting
with intermediary j to obtain financial instrument l by cijl and assume that

cijl = cijl(xijl), ∀i, j, l. (23)

The total transaction costs incurred by source agent i, are thus equal to
the sum of all the agent’s transaction costs. His revenue, in turn, is equal to
the sum of the price (rate of return) that the agent can obtain for the finan-
cial instrument times the total quantity obtained/purchased of that instru-
ment. Recall that ρ1ijl denotes the price associated with agent i/intermediary
j/instrument l.

Assume that each such source agent seeks to maximize the net return
while, simultaneously, minimizing the risk, with source agent i’s utility func-
tion denoted by U i. Moreover, assume that the variance-covariance matrix
Qi is positive semidefinite and that the transaction cost functions are con-
tinuously differentiable and convex. Hence, one can express the optimization
problem facing source agent i as

maximize Ui(xi) =
n∑

j=1

L∑

l=1

ρ1ijlxijl −
n∑

j=1

L∑

l=1

cijl(xijl) − xi
TQixi, (24)
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subject to xijl ≥ 0, for all j, l, and to the constraint

n∑

j=1

L∑

l=1

xijl ≤ Si, (25)

that is, the allocations of source agent i’s funds among the financial instru-
ments made available by the different intermediaries cannot exceed his hold-
ings. Note that the utility function above is concave for each source agent i.
A source agent may choose not to invest in any of the instruments. Indeed,
as shall be illustrated through subsequent numerical examples, this constraint
has important financial implications.

Clearly, in the case of unconstrained utility maximization, the gradient
of source agent i’s utility function with respect to the vector of variables xi

and denoted by ∇xiUi, where ∇xiUi=(∂Ui/∂xi11, . . . , ∂Ui/∂xinL), represents
agent i’s idealized direction, with the jl-component of ∇xiUi given by

ρ1ijl − 2Qi
zjl

· xi − ∂cijl(xijl)
∂xijl

, (26)

where Qi
zjl

denotes the zjlth row of Qi, and zjl is the indicator defined as
zjl = (l−1)n+j. We return later to describe how the constraints are explicitly
incorporated into the dynamics.

Optimizing Behavior of the Intermediaries

The intermediaries, in turn, are involved in transactions both with the source
agents as well as with the users of the funds, that is, with the ultimate con-
sumers associated with the markets for the distinct types of loans/products
at the bottom tier of the financial network. Thus, an intermediary conducts
transactions both with the “source” agents as well as with the consumers at
the demand markets.

An intermediary j is faced with what is termed a handling/conversion
cost, which may include, for example, the cost of converting the incoming
financial flows into the financial loans/products associated with the demand
markets. Denote this cost by cj and, in the simplest case, one would have that
cj is a function of

∑m
i=1

∑L
l=1 xijl , that is, the holding/conversion cost of an

intermediary is a function of how much he has obtained from the various source
agents. For the sake of generality, however, allow the function to, in general,
depend also on the amounts held by other intermediaries and, therefore, one
may write

cj = cj(x), ∀j. (27)

The intermediaries also have associated transaction costs in regard to
transacting with the source agents, which are assumed to be dependent on
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the type of instrument. Denote the transaction cost associated with interme-
diary j transacting with source agent i associated with instrument l by ĉijl

and assume that it is of the form

ĉijl = ĉijl(xijl), ∀i, j, l. (28)

Recall that the intermediaries convert the incoming financial flows x into
the outgoing financial flows y. Assume that an intermediary j incurs a trans-
action cost cjk associated with transacting with demand market k, where

cjk = cjk(yjk), ∀j, k. (29)

The intermediaries associate a price with the financial funds, which is de-
noted by ρ2j , for intermediary j. Assuming that the intermediaries are also
utility maximizers with the utility functions for each being comprised of net
revenue maximization as well as risk minimization, then the utility maximiza-
tion problem for intermediary agent j with his utility function denoted by U j,
can be expressed as

maximize Uj(xj , yj) =
m∑

i=1

L∑

l=1

ρ2jxijl − cj(x) −
m∑

i=1

L∑

l=1

ĉijl(xijl)

−
o∑

k=1

cjk(yjk) −
m∑

i=1

L∑

l=1

ρ1ijlxijl − yj
TQjyj,

(30)

subject to the nonnegativity constraints: xijl ≥ 0, and yjk ≥ 0, for all i, l,
and k. Here, for convenience, we have xj = (x1j1, . . . , xmjL). The above bi-
jective function expresses that the difference between the revenues minus the
handling cost and the transaction costs and the payout to the source agents
should be maximized, whereas the risk should be minimized. Assume now
that the variance-covariance matrix Qj is positive semidefinite and that the
transaction cost functions are continuously differentiable and convex. Hence,
the utility function above is concave for each intermediary j.

The gradient ∇xjUj=(∂Uj/∂x1j1, . . . , ∂Uj/∂xmjL) represents agent j’s
idealized direction in terms of xj , ignoring the constraints, for the time being,
whereas the gradient ∇yjUj=(∂Uj/∂yj1, . . . , ∂Uj/∂yjo) represents his ideal-
ized direction in terms of yj . Note that the ilth component of ∇xjUj is given
by

ρ2j − ρ1ijl − ∂cj(x)
∂xijl

− ∂ĉijl(xijl)
∂xijl

, (31)

whereas the jkth component of ∇yjUj is given by

−∂cjk(yjk)
∂yjk

− 2Qj
k · yj. (32)

However, since both source agent i and intermediary j must agree in terms
of the xijl , the direction (26) must coincide with that in (31), so adding both
gives us a “combined force,” which, after algebraic simplification, yields
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ρ2j − 2Qi
zjl

· xi − ∂cijl(xijl)
∂xijl

− ∂cj(x)
∂xijl

− ∂ĉijl(xijl)
∂xijl

. (33)

The Dynamics of the Financial Flows Between the Source Agents
and the Intermediaries

We are now ready to express the dynamics of the financial flows between
the source agents and the intermediaries. In particular, define the feasible
set Ki ≡ {xi|xijl ≥ 0, ∀i, j, l, and (25) holds}. Also let K be the Cartesian
product given by K ≡ Πm

i=1Ki and define F 1
ijl as minus the term in (33)

with F 1
i = (F 1

i11, . . . , F
1
inL). Then the best realizable direction for the vector

of financial instruments xi can be expressed mathematically as

ẋi = ΠKi(xi,−F 1
i ), (34)

where ΠK(Z, v) is defined as

ΠK(Z, v) = lim
δ→0

PK(Z + δv) − Z

δ
, (35)

and PK is the norm projection defined by

PK(Z) = argminZ′∈K‖Z ′ − Z‖. (36)

The Dynamics of the Financial Flows Between the Intermediaries
and the Demand Markets

In terms of the financial flows between the intermediaries and the demand
markets, both the intermediaries and the consumers must be in agreement
as to the financial flows y. The consumers take into account in making their
consumption decisions not only the price charged for the financial product by
the intermediaries but also their transaction costs associated with obtaining
the product.

Let ĉjk denote the transaction cost associated with obtaining the product
at demand market k from intermediary j. Assume that this unit transaction
cost is continuous and of the general form

ĉjk = ĉjk(y), ∀j, k. (37)

The consumers take the price charged by the intermediaries, which was
denoted by ρ2j for intermediary j, plus the unit transaction cost, in making
their consumption decisions. From the perspective of the consumers at the
demand markets, one can expect that an idealized direction in terms of the
evolution of the financial flow of a product between an intermediary/demand
market pair would be

(ρ3k − ĉjk(y) − ρ2j). (38)
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On the other hand, as already derived above, one can expect that the
intermediaries would adjust the volume of the product to a demand mar-
ket according to (32). Now combining (32) and (38), and guaranteeing that
the financial products do not assume negative quantities, yields the following
dynamics:

ẏjk =

{
ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)

∂yjk
− 2Qj

k · yj if yjk > 0,

max{0, ρ3k − ĉjk(y) − ρ2j − ∂cjk(yjk)
∂yjk

− 2Qj
k · yj} if yjk = 0.

(39)

The Projected Dynamical System

Consider now the dynamic model in which the demand prices evolve according
to (21) for all demand markets k, the prices at the intermediaries evolve ac-
cording to (22) for all intermediaries j, the financial flows between the source
agents and the intermediaries evolve according to (34) for all source agents i,
and the financial products between the intermediaries and the demand mar-
kets evolve according to (39) for all intermediary/demand market pairs j, k.

Now let Z denote the aggregate column vector (x, y, ρ2, ρ3) in the feasible
set K ≡ K × Rno+n+o

+ . Define the column vector F (Z) ≡ (F 1, F 2, F 3, F 4),
where F 1 is as has been defined previously; F 2 = (F 2

11, . . . , F
2
no), with compo-

nent F 2
jk ≡ (2Qj

k ·yj + ∂cjk(yjk)
∂yjk

+ ĉjk(y)+ρ2j −ρ3k), ∀j, k; F 3 = (F 3
1 , . . . , F

3
n),

where F 3
j ≡ (

∑m
i=1

∑L
l=1 xijl −

∑o
k=1 yjk), and F 4 = (F 4

1 , . . . , F
4
o ), with

F 4
k ≡ (

∑n
j=1 yjk − dk(ρ3)).

Then the dynamic model described by (21), (22), (34), and (39) for all
k, j, i, l can be rewritten as the projected dynamical system defined by the
following initial-value problem:

Ż = ΠK(Z,−F (Z)), Z(0) = Z0, (40)

where ΠK is the projection operator of −F (Z) onto K at Z and Z0 =
(x0, y0, ρ0

2, ρ
0
3) is the initial point corresponding to the initial financial flows

and the initial prices. The trajectory of (40) describes the dynamic evolution
of and the dynamic interactions among the prices and the financial flows.

The dynamical system (40) is nonclassical in that the right-hand side is
discontinuous in order to guarantee that the constraints in the context of the
above model are not only nonnegativity constraints on the variables, but also
a form of budget constraints. Here this methodology is applied to study finan-
cial systems in the presence of intermediation. A variety of dynamic financial
models, but without intermediation, formulated as projected dynamical sys-
tems can be found in the book by Nagurney and Siokos (1997).
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A Stationary/Equilibrium Point

The stationary point of the projected dynamical system (40) is now discussed.
Recall that a stationary point Z∗ is that point that satisfies

Ż = 0 = ΠK(Z∗,−F (Z∗))

and, hence, in the context of the dynamic financial model with intermediation,
when there is no change in the financial flows and no change in the prices.
Moreover, as established in Dupuis and Nagurney (1993), since the feasible
set K is a polyhedron and convex, the set of stationary points of the projected
dynamical system of the form given in (40) coincides with the set of solutions
to the variational inequality problem given by the following: Determine Z∗∈K
such that

〈F (Z∗)T , Z − Z∗〉 ≥ 0, ∀Z ∈ K, (41)

where in the model F (Z) and Z are as defined above and recall that 〈·, ·〉
denotes the inner product in N -dimensional Euclidean space, where here N =
mnL+ no+ n+ o.

Variational Inequality Formulation of Financial Equilibrium
with Intermediation

In particular, variational inequality (41) here takes the following form: Deter-
mine (x∗, y∗, ρ∗2, ρ

∗
3) ∈ K, satisfying

m∑

i=1

n∑

j=1

L∑

l=1

[
2Qi

zjl
· x∗i +

∂cijl(x∗ijl)
∂xijl

+
∂cj(x∗)
∂xijl

+
∂ĉijl(x∗ijl)
∂xijl

− ρ∗2j

]

× [
xijl − x∗ijl

]

+
n∑

j=1

o∑

k=1

[
2Qj

k · y∗j +
∂cjk(y∗jk)
∂yjk

+ ĉjk(y∗) + ρ∗2j − ρ∗3k

]
× [

yjk − y∗jk

]

+
n∑

j=1

[
m∑

i=1

L∑

l=1

x∗ijl −
o∑

k=1

y∗jk

]
× [

ρ2j − ρ∗2j

]

+
o∑

k=1

⎡

⎣
n∑

j=1

y∗jk − dk(ρ∗3)

⎤

⎦× [ρ3k − ρ∗3k] ≥ 0, ∀(x, y, ρ2, ρ3) ∈ K, (42)

where K ≡ {K ×Rno+n+o
+ } and Qi

zjl
is as defined following (26).

We now discuss the equilibrium conditions. First, note that if the rate of
change of the demand price ρ̇3k = 0, then from (21) one can conclude that
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dk(ρ∗3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

=
n∑

j=1

y∗jk if ρ∗3k > 0,

≤
n∑

j=1

y∗jk if ρ∗3k = 0.
(43)

Condition (43) states that, if the price the consumers are willing to pay for the
financial product at a demand market is positive, then the quantity consumed
by the consumers at the demand market is precisely equal to the demand. If
the demand is less than the amount of the product available, then the price
for that product is zero. This condition holds for all demand market prices in
equilibrium.

Note that condition (43) also follows directly from variational inequality
(42) if one sets x = x∗, y = y∗; ρ2 = ρ∗2, and make the substitution into (42)
and note that the demand prices must be nonnegative.

Observe now that if the rate of change of a price charged by an interme-
diary is zero, that is, ρ̇2j = 0, then (22) implies that

m∑

i=1

L∑

l=1

x∗ijl −
o∑

k=1

y∗jk

{
= 0 if ρ∗2j > 0,
≥ 0 if ρ∗2j = 0. (44)

Hence, if the price for the financial funds at an intermediary is positive,
then the market for the funds “clears” at the intermediary, that is, the sup-
ply of funds, as given by

∑m
i=1

∑L
l=1 x

∗
ijl, is equal to the demand of funds,∑o

k=1 y
∗
jk at the intermediary. If the supply exceeds the demand, then the

price at the intermediary will be zero. These are well-known economic equi-
librium conditions, as are those given in (43). Of course, condition (44) could
also be recovered from variational inequality (42) by setting x = x∗, y = y∗,
and ρ3 = ρ∗3, making the substitution into (42), and noting that these prices
must be nonnegative. In equilibrium, condition (44) holds for all intermediary
prices.

On the other hand, if one sets ẋi = 0 [cf. (34) and (40)], for all i and
ẏjk = 0 for all j, k [cf. (39) and (40)], one obtains the equilibrium conditions,
which correspond, equivalently, to the first two summands in inequality (42)
being greater than equal to zero. Expressed in another manner, we must have
that the sum of the inequalities (45), (46), and (48) must be satisfied.

Optimality Conditions for All Source Agents

Indeed, note that the optimality conditions for all source agents i, since each
Ki is closed and convex, and the objective function (24) is concave, can be
expressed as (assuming a given ρ∗1jl, for all i, j, l)

m∑

i=1

n∑

j=1

L∑

l=1

[
2Qi

zjl
· x∗i +

∂cijl(x∗ijl)
∂xijl

− ρ∗1ijl

]
× [

xijl − x∗ijl

] ≥ 0, ∀x ∈ K.

(45)
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Optimality Conditions for All Intermediary Agents

The optimality conditions for all the intermediaries j, with objective functions
of the form (30), which are concave, and, given ρ∗1 and ρ∗2, can, in turn, be
expressed as

m∑

i=1

n∑

j=1

L∑

l=1

[
∂cj(x∗)
∂xijl

+ ρ∗1ijl +
∂ĉijl(x∗ijl)
∂xijl

− ρ∗2j

]
× [

xijl − x∗ijl

]

+
n∑

j=1

o∑

k=1

[
2Qj

k · yj +
∂cjk(y∗jk)
∂yjk

]
× [

yjk − y∗jk

] ≥ 0, ∀x ∈ RmnL
+ , ∀y ∈ Rno

+ .

(46)
Note that (46) provides a means for recovering the top-tiered prices, ρ∗1.

Equilibrium Conditions for Consumers at the Demand Markets

Also, the equilibrium conditions for consumers at demand market k thus take
the following form: For all intermediaries: j; j = 1, . . . , n,

ρ∗2j + ĉjk(y∗)
{

= ρ∗3k if y∗jk > 0,
≥ ρ∗3k if y∗jk = 0, (47)

with (47) holding for all demand markets k, which is equivalent to y∗ ∈ Rno
+

satisfying

n∑

j=1

o∑

k=1

(ρ∗2j + ĉjk(y∗) − ρ∗3k)) × (yjk − y∗jk) ≥ 0, ∀y ∈ Rno
+ . (48)

Conditions (47) state that consumers at demand market k will purchase
the product from intermediary j if the price charged by the intermediary for
the product plus the transaction cost (from the perspective of the consumers)
does not exceed the price that the consumers are willing to pay for the product,
that is, ρ∗3k.

In Nagurney and Ke (2001), a variational inequality of the form (42) was
derived in a manner distinct from that given above for a static financial net-
work model with intermediation, but with a slightly different feasible set where
it was assumed that the constraints (25) had to be tight, that is, to hold as
an equality. Nagurney and Ke (2003), in turn, demonstrated how electronic
transactions could be introduced into financial networks with intermediation
by adding additional links to the network in Figure 5 and by including addi-
tional transaction costs and prices and expanding the objective functions of
the decision makers accordingly. We discuss electronic financial transactions
subsequently, when we describe the financial engineering of integrated social
and financial networks with intermediation.
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4.1 The Discrete-Time Algorithm (Adjustment Process)

Note that the projected dynamical system (40) is a continuous-time adjust-
ment process. However, in order to further fix ideas and to provide a means
of “tracking” the trajectory of (40), we present a discrete-time adjustment
process, in the form of the Euler method, which is induced by the general
iterative scheme of Dupuis and Nagurney (1993).

The statement of the Euler method is as follows:

Step 0: Initialization

Start with a Z0∈ K. Set τ := 1.

Step 1: Computation

Compute Zτ by solving the variational inequality problem:

Zτ = PK(Zτ−1 − ατF (Zτ−1)), (49)

where {ατ ; τ = 1, 2, . . .} is a sequence of positive scalars such that
∑∞

τ=1 ατ =
∞, ατ → 0, as τ → ∞ (which is required for convergence).

Step 2: Convergence Verification

If |Zτ
b −Zτ−1

b | ≤ ε, for some ε > 0, a prespecific tolerance, then stop: otherwise,
set τ := τ + 1, and go to step 1.

The statement of this method in the context of the dynamic financial
model takes the following form.

The Euler Method

Step 0: Initialization Step

Set (x0, y0, ρ0
2, ρ

0
3) ∈ K. Let τ = 1, where τ is the iteration counter, and set

the sequence {ατ} so that
∑∞

τ=1 ατ = ∞, ατ > 0, ατ → 0, as τ → ∞.

Step 1: Computation Step

Compute (xτ , yτ , ρτ
2 , ρ

τ
3) ∈ K by solving the variational inequality subproblem:

m∑

i=1

n∑

j=1

L∑

l=1

[
xτ

ijl + ατ (2Qi
zjl

· xτ−1
i +

∂cijl(xτ−1
ijl )

∂xijl
+
∂cj(xτ−1)
∂xijl

+
∂ĉijl(xτ−1

ijl )
∂xijl

− ρτ−1
2j ) − xτ−1

ijl

]
× [

xijl − xτ
ijl

]

+
n∑

j=1

o∑

k=1

[
yτ

jk + ατ (2Qi
k · yτ−1

j + ĉjk(yτ−1) +
∂cjk(yτ−1

jk )
∂yjk
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+ρτ−1
2j − ρτ−1

3k ) − yτ−1
jk

]
× [

yjk − yτ
jk

]

+
n∑

j=1

[
ρτ
2j + ατ (

m∑

i=1

L∑

l=1

xτ−1
ijl −

o∑

k=1

yτ−1
jk ) − ρτ−1

2j

]
× [

ρ2j − ρτ
2j

]

+
o∑

k=1

⎡

⎣ρ̄τ
3k + ατ (

n∑

j=1

yτ−1
jk − dk(ρτ−1

3 )) − ρτ−1
3k

⎤

⎦× [ρ3k − ρτ
3k] ≥ 0,

∀(x, y, ρ2, ρ3) ∈ K.
Step 2: Convergence Verification

If |xτ
ijl − xτ−1

ijl | ≤ ε, |yτ
jk − yτ−1

jk | ≤ ε, |ρτ
2j − ρτ−1

2j | ≤ ε, |ρτ
3k − ρτ−1

3k | ≤ ε, for all
i = 1, . . . ,m; j = 1, . . . , n; l = 1, . . . , L; k = 1, . . . , o, with ε > 0, a prespecified
tolerance, then stop; otherwise, set τ := τ + 1, and go to step 1.

Note that the variational inequality subproblem encountered in the com-
putation step at each iteration of the Euler method can be solved explicitly
and in closed form since it is actually a quadratic programming problem and
the feasible set is a Cartesian product consisting of the product of K, which
has a simple network structure, and the nonnegative orthants, Rno

+ , Rn
+, and

Ro
+, corresponding to the variables x, y, ρ2, and ρ3, respectively.

Computation of Financial Flows and Products

In fact, the subproblem in the x-variables can be solved using exact equili-
bration (see also Dafermos and Sparrow, 1969) noted in the discussion of the
modified projection method, whereas the remainder of the variables can be
obtained by explicit formulas, which are provided below for convenience.

In particular, compute, at iteration τ , the yτ
jk, according to:

yτ
jk =max

{
0, yτ−1

jk −ατ

(
2Qi

k · yτ−1
j + ĉjk(yτ−1)+

∂cjk(yτ−1
jk )

∂yjk
+ρτ−1

2j −ρτ−1
3k

)}
,

∀j, k. (50)

Computation of the Prices
At iteration τ , compute the ρτ

2j according to

ρτ
2j = max

{
0, ρτ−1

2j − ατ

(
m∑

i=1

L∑

l=1

xτ−1
ijl −

o∑

k=1

yτ−1
jk

)}
, ∀j, (51)

whereas the ρτ
3k are computed explicitly and in closed form according to

ρτ
3k = max

⎧
⎨

⎩0, ρτ−1
3k − ατ

⎛

⎝
n∑

j=1

yτ−1
jk − dk

(
ρτ−1
3

)
⎞

⎠

⎫
⎬

⎭ , ∀k. (52)



Financial Networks 373

5 Numerical Examples

In this section, the Euler method is applied to several numerical examples.
The algorithm was implemented in FORTRAN. For the solution of the in-
duced network subproblems in x, we utilized the exact equilibration algoritm,
which fully exploits the simplicity of the special network structure of the sub-
problems.

The convergence criterion used was that the absolute value of the flows
and prices between two successive iterations differed by no more than 10−4.
For the examples, the sequence {ατ} = 0.1{1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . .}, which is of the

form given in the intialization step of the algorithm in the preceding section.
The numerical examples had the network structure depicted in Figure 6 and
consisted of two source agents, two intermediaries, and two demand markets,
with a single financial instrument handled by each intermediary.

The algorithm was initialized as follows: Since a single financial instrument
was associated with each of the intermediaries, we set xij1 = Si/n for each
source agent i. All the other variables, that is, the initial vectors y, ρ2, and ρ3,
were set to zero. Additional details are given in Nagurney and Dong (2002).

Example 2
The data for this example were constructed for easy interpretation purposes.
The supplies of the two source agents were S1 = 10 and S2 = 10. The variance-
covariance matricesQi andQj were equal to the identity matrices for all source
agents i and all intermediaries j.

The transaction cost functions faced by the source agents associated with
transacting with the intermediaries were given by

c111(x111) = 0.5x2
111 + 3.5x111, c121(x121) = 0.5x2

121 + 3.5x121,

c211(x211) = 0.5x2
211 + 3.5x211, c221(x221) = 0.5x2

221 + 3.5x221.

The handling costs of the intermediaries, in turn, were given by

c1(x) = 0.5

(
2∑

i=1

.5xi11

)2

, c2(x) = 0.5

(
2∑

i=1

xi21

)2

.

The transaction costs of the intermediaries associated with transacting
with the source agents were respectively given by

ĉ111(x111) = 1.5x2
111 + 3x111, ĉ121(x121) = 1.5x2

121 + 3x121,

ĉ211(x211) = 1.5x2
211 + 3x211, ĉ221(x221) = 1.5x2

221 + 3x221.

The demand functions at the demand markets were

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1000, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1000,



374 A. Nagurney

Source Agents

��

	

1

��

	

2

��

	

1

��

	

2

��

	

1

��

	

2


 


������������

������������


 


������������

������������

Intermediaries ��

	

3

Demand Markets

�
�

�
�

�
�

���

Fig. 6. The financial network structure of the numerical examples.

and the transaction costs between the intermediaries and the consumers at
the demand markets were given by

ĉ11(y) = y11 + 5, ĉ12(y) = y12 + 5, ĉ21(y) = y21 + 5, ĉ22(y) = y22 + 5.

It was assumed for this and the subsequent examples that the transaction
costs as perceived by the intermediaries and associated with transacting with
the demand markets were all zero, that is, cjk(yjk) = 0, for all j, k.

The Euler method converged and yielded the following equilibrium pat-
tern:

x∗111 = x∗121 = x∗211 = x∗221 = 5.000,

y∗11 = y∗12 = y∗21 = y∗22 = 5.000.

The vector ρ∗2 had components ρ∗21 = ρ∗22 = 262.6664, and the computed
demand prices at the demand markets were: ρ∗31 = ρ∗32 = 282.8106.

The optimality/equilibrium conditions were satisfied with good accuracy.
Note that in this example, the budget constraint was tight for both source
agents, that is, s∗1 = s∗2 = 0, where s∗i = Si−∑n

j=1

∑L
l=1 x

∗
ijl, and, hence, there

was zero flow on the links connecting node 3 with top-tier nodes 1 and 2. Thus,
it was optimal for both source agents to invest their entire financial holdings
in each instrument made available by each of the two intermediaries.

Example 3
The following variant of Example 2 was then constructed to create Example 3.
The data were identical to that in Example 2 except that the supply for each
source sector was increased so that S1 = S2 = 50.
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The Euler method converged and yielded the following new equilibrium
pattern:

x∗111 = x∗121 = x∗211 = x∗221 = 23.6832,
y∗11 = y∗12 = y∗21 = y∗22 = 23.7247.

The vector ρ∗2 had components ρ∗21 = ρ∗22 = 196.0174, and the demand prices
at the demand markets were ρ∗31 = ρ∗32 = 272.1509.

It is easy to verify that the optimality/equilibrium conditions again were
satisfied with good accuracy. Note, however, that unlike the solution for
Example 2, both source agent 1 and source agent 2 did not invest his en-
tire financial holdings. Indeed, each opted not to invest the amount 23.7209,
and this was the volume of flow on each of the two links ending in node 3 in
Figure 6.

Since the supply of financial funds increased, the price for the instruments
charged by the intermediaries decreased from 262.6664 to 196.1074. The de-
mand prices at the demand markets also decreased, from 282.8106 to 272.1509.

Example 4

Example 3 was then modified as follows: The data were identical to that
in Example 3 except that the first diagonal term in the variance-covariance
matrix Q1 was changed from 1 to 2.

The Euler method again converged, yielding the following new equilibrium
pattern:

x∗111 = 18.8676, x∗121 = 23.7285, x∗211 = 25.1543, x∗221 = 23.7267,
y∗11 = y∗12 = 22.0501, y∗21 = y∗22 = 23.7592.

The vector ρ∗2 had components ρ∗21 = 201.4985, ρ∗22 = 196.3633, and the
demand prices at the demand markets were ρ∗31 = ρ∗32 = 272.6178.

5.1 The Integration of Social Networks with Financial Networks

As noted by Nagurney et al. (2007), globalization and technological advances
have made major impacts on financial services in recent years and have al-
lowed for the emergence of electronic finance. The financial landscape has been
transformed through increased financial integration, increased cross-border
mergers, and lower barriers between markets. Moreover, as noted by several
authors, boundaries between different financial intermediaries have become
less clear (cf. Claessens and Jansen, 2000; Claessens et al., 2003; G-10, 2001).

For example, during the period 1980–1990, global capital transactions
tripled, with telecommunication networks and financial instrument innova-
tion being two of the empirically identified major causes of globalization with
regards to international financial markets (Kim, 1999). The growing impor-
tance of networks in financial services and their effects on competition have
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been also addressed by Claessens et al. (2003). Kim (1999) argued for the
necessity of integrating various theories, including portfolio theory with risk
management, and flow theory in order to capture the underlying complexity
of the financial flows over space and time.

At the same time that globalization and technological advances have trans-
formed financial services, researchers have identified the importance of social
networks in a plethora of financial transactions (cf. Nagurney et al., 2007 and
the references therein), notably in the context of personal relationships. The
relevance of social networks within an international financial context needs to
be examined both theoretically and empirically. It is clear that the existence
of appropriate social networks can affect not only the risk associated with
financial transactions but also the transaction costs.

Given the prevalence of networks in the discussions of globalization and
international financial flows, it seems natural that any theory for the illu-
mination of the behavior of the decision makers involved in this context as
well as the impacts of their decisions on the financial product flows, prices,
appreciation rates, etc., should be network-based. Recently, Nagurney et al.
(2007) took on a network perspective for the theoretical modeling, analysis,
and computation of solutions to international financial networks with inter-
mediation in which they explicitly integrated the social network component.
They also captured electronic transactions within the framework since that
aspect is critical in the modeling of international financial flows today.

Here, that model is highlighted. This model generalizes the model of
Nagurney and Cruz (2003) to explicitly include social networks.

As in the model of Nagurney and Cruz (2003), the model consists of L
countries, with a typical country denoted by l or l̂, I “source” agents in each
country with sources of funds, with a typical source agent denoted by i, and
J financial intermediaries with a typical financial intermediary denoted by j.
As noted earlier, examples of source agents are households and businesses,
whereas examples of financial intermediaries include banks, insurance com-
panies, investment companies, and brokers, where we now include electronic
brokers, etc. Intermediaries in the framework need not be country-specific but,
rather, may be virtual.

Assume that each source agent can transact directly electronically with
the consumers through the Internet and can also conduct his financial trans-
actions with the intermediaries either physically or electronically in different
currencies. There are H currencies in the international economy, with a typ-
ical currency being denoted by h. Also, assume that there are K financial
products, which can be in distinct currencies and in different countries with
a typical financial product (and associated with a demand market) being de-
noted by k. Hence, the financial intermediaries in the model, in addition to
transacting with the source agents, also determine how to allocate the in-
coming financial resources among distinct uses, which are represented by the
demand markets with a demand market corresponding to, for example, the
market for real estate loans, household loans, or business loans, etc., which, as
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mentioned, can be associated with a distinct country and a distinct currency
combination. Let m refer to a mode of transaction with m = 1 denoting a
physical transaction and m = 2 denoting an electronic transaction via the
Internet.

The depiction of the supernetwork (see also, e.g., Nagurney and Dong,
2002) is given in Figure 7. As this figure illustrates, the supernetwork is com-
prised of the social network, which is the bottom-level network, and the in-
ternational financial network, which is the top-level network. Internet links to
denote the possibility of electronic financial transactions are denoted in the
figure by dotted arcs. In addition, dotted arcs/links are used to depict the
integration of the two networks into a supernetwork.

Social Network
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Fig. 7. The multilevel supernetwork structure of the integrated international finan-
cial network / social network system.

The supernetwork in Figure 7 consists of a social and an international fi-
nancial network with intermediation. Both networks consist of three tiers of
decision makers. The top tier of nodes consists of the agents in the differ-
ent countries with sources of funds, with agent i in country l being referred
to as agent il and associated with node il. There are, hence, IL top-tiered
nodes in the network. The middle tier of nodes in each of the two networks
consists of the intermediaries (which need not be country-specific), with a
typical intermediary j associated with node j in this (second) tier of nodes
in the networks. The bottom tier of nodes in both the social network and in
the financial network consists of the demand markets, with a typical demand
market for product k in currency h and country l̂ associated with node khl̂.
There are, as depicted in Figure 7, J middle- (or second) tiered nodes corre-
sponding to the intermediaries and KHL bottom- (or third) tiered nodes in



378 A. Nagurney

the international financial network. In addition, we add a node J + 1 to the
middle tier of nodes in the financial network only in order to represent the
possible non-investment (of a portion or all of the funds) by one or more of
the source agents, as was also done in the model in the previous section.

Note that the network in Figure 7 includes classical physical links as well as
Internet links to allow for electronic financial transactions. Electronic transac-
tions are possible between the source agents and the intermediaries, the source
agents and the demand markets, as well as the intermediaries and the demand
markets. Physical transactions can occur between the source agents and the
intermediaries and between the intermediaries and the demand markets.

Nagurney et al. (2007) described the behavior of the decision makers in
the model, and allow for multicriteria decision making, which consists of profit
maximization, risk minimization (with general risk functions), as well as the
maximization of the value of relationships. Each decision maker is allowed
to weigh the criteria individually. The dynamics of the interactions are dis-
cussed and the projected dynamical system derived. The Euler method is then
used to track the dynamic trajectories of the financial flows (transacted either
physically or electronically), the prices, as well as the relationship levels until
the equilibrium state is reached.

Acknowledgments

The writing of this chapter was supported, in part, by NSF Grant no. IIS
0002647 under the MKIDS Program. This support is gratefully acknowledged.

References

1. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows. Prentice Hall,
Upper Saddle River, NJ, 1993

2. Arrow, K. J. An extension of the basic theorems of classical welfare economics.
Econometrica, 51:1305–1323, 1951.

3. Barr, R. S. The multinational cash management problem: A generalized net-
work approach. University of Texas, Austin, Working paper, 1972.

4. Board of Governors Introduction to Flow of Funds. Flow of Funds Section,
Division of Research and Statistics, Federal Reserve System, Washington, DC,
June, 1980.

5. Boginski, V., Butenko, S., and Pardalos, P. M. On structural properties of the
market graph. In A. Nagurney, Editor, Innovations in Financial and Economic
Networks. Edward Elgar Publishing, Cheltenham, 2003.

6. Charnes, A., and Cooper, W. W. Nonlinear network flows and convex program-
ming over incidence matrices. Naval Research Logistics Quarterly, 5:231–240,
1958.

7. Charnes, A., and Cooper, W. W. Management Models and Industrial Applica-
tions of Linear Programming. John Wiley & Sons, New York, 1961.



Financial Networks 379

8. Charnes, A., and Cooper, W. W. Some network characterizations for mathe-
matical programming and cccounting approaches to planning and control. The
Accounting Review, 42:24–52, 1967.

9. Charnes, A., and Miller, M. Programming and financial budgeting. Symposium
on Techniques of Industrial Operations Research, Chicago, June, 1957.

10. Christofides, N., Hewins, R. D., and, Salkin, G. R. Graph theoretic approaches
to foreign exchange operations. Journal of Financial and Quantitative Analysis,
14:481–500, 1979.

11. Claessens, S. and Jansen, M., Editors Internationalization of Financial Ser-
vices. Kluwer Academic Publishers, Boston, 2000.

12. Claessens, S., Dobos, G., Klingebiel, D., and Laeven, L. The growing impor-
tance of networks in finance and their effects on competition. In A. Nagurney,
Editor, Innovations in Financial and Economic Networks. Edward Elgar Pub-
lishing, Cheltenham, 2003.

13. Cohen, J. The Flow of Funds in Theory and Practice. Kluwer Academic Pub-
lishers, Dordrecht, 1987.

14. Copeland, M. A. A Study of Moneyflows in the United States. National Bureau
of Economic Research, New York, 1952.

15. Cournot, A. A. Researches into the Mathematical Principles of the Theory of
Wealth, 1838; English translation, Macmillan, London, 1897.

16. Crum, R. L. Cash management in the multinational firm: A constrained gen-
eralized network approach. University of Florida, Working paper, 1976.

17. Crum, R. L., and Nye, D. J. A network model of insurance company cash flow
management. Mathematical Programming Study, 15:86–101, 1981.

18. Crum, R. L., Klingman, D. D., and Tavis, L. A. Implementation of large-
scale financial planning models: Solution efficient transformations. Journal of
Financial and Quantitative Analysis, 14:137–152, 1979.

19. Crum, R. L., Klingman, D. D., and Tavis, L. A. An operational approach
to integrated working capital planning. Journal of Economics and Business,
35:343–378, 1983.

20. Dafermos, S. C., and Sparrow, F. T. The traffic assignment problem for a
general network. Journal of Research of the National Bureau of Standards,
73B:91–118, 1969.

21. Dantzig, G. B., and Madansky, A. On the solution of two-stage linear programs
under uncertainty. In Proceedings of the Fourth Berkeley Symposium on Math-
ematical Statistics and Probability. University of California Press, Berkeley,
1961, pages 165–176.

22. Debreu G. The coefficient of resource utilization. Econometrica, 19:273–292,
1951.

23. Dong, J., and Nagurney, A. bicriteria decision-making and financial equi-
librium: A variational inequality perspective. Computational Economics,
17:29–42, 2001.

24. Dong, J., Zhang, D., and Nagurney, A. A projected dynamical systems model
of general financial equilibrium with stability analysis. Mathematical and Com-
puter Modelling, 24:35–44, 1996.

25. Doumpos, M., Zopounidis, C., and Pardalos, P. M. Multicriteria sorting
methodology: Application to financial decision problems. Parallel Algorithms
and Applications, 15:113–129, 2000.

26. Dupuis, P., and Nagurney, A. Dynamical systems and variational inequalities.
Annals of Operations Research, 44:9–42, 1993.



380 A. Nagurney

27. Enke, S. Equilibrium among spatially separated markets. Econometrica,
10:40–47, 1951.

28. Euler, L. Solutio problematis ad geometriam situs pertinentis. Commetarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736.

29. Fei, J. C. H. The study of the credit system by the method of linear graph.
The Review of Economics and Statistics, 42:417–428, 1960.

30. Ferguson, A. R., and Dantzig, G. B. The allocation of aircraft to routes. Man-
agement Science, 2:45–73, 1956.

31. Ford, L. R., and Fulkerson, D. R. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

32. Francis, J. C., and Archer, S. H. Portfolio Analysis. Prentice Hall, Englewood
Cliffs, NJ, 1979.

33. G-10 Report on Consolidation in Financial Services. Bank for International
Settlements, Switzerland, 2001.

34. Guenes, J., and Pardalos, P. M. Network optimization in supply chain man-
agement and financial engineering: An annotated bibliography. Networks,
42:66–84, 2003.

35. Hughes, M., and Nagurney, A. A network model and algorithm for the estima-
tion and analysis of financial flow of funds. Computer Science in Economics
and Management, 5:23–39, 1992.

36. Korpelevich, G. M. The extragradient method for finding saddle points and
other problems. Matekon, 13:35–49, 1977.

37. Kim, H. M. Globalization of International Financial Markets. Ashgate, Hants,
1999.

38. Markowitz, H. M. Portfolio Selection. The Journal of Finance, 7:77–91, 1952.
39. Markowitz, H. M. Portfolio Selection: Efficient Diversification of Investments.

John Wiley & Sons, New York, 1959.
40. Mulvey, J. M. Nonlinear networks in finance. Advances in Mathematical Pro-

gramming and Financial Planning, 1:253–271, 1987.
41. Mulvey, J. M., and Vladimirou, H. Stochastic network optimization models for

investment planning. Annals of Operations Research, 20:187–217, 1989.
42. Mulvey, J. M., and Vladimirou, H. Solving multistage stochastic networks: An

application of scenario aggregation. Networks, 21:619–643, 1991.
43. Mulvey, J. M., Simsek, K. D., and Pauling, B. A stochastic network opti-

mization approach for integrated pension and corporate financial planning.
In A. Nagurney, Editor, Innovations in Financial and Economic Networks.
Edward Elgar Publishing, Cheltenham, 2003.

44. Nagurney, A. Variational inequalities in the analysis and computation of multi-
sector, multi-instrument financial equilibria. Journal of Economic Dynamics
and Control, 18:161–184, 1994.

45. Nagurney, A. Network Economics: A Variational Inequality Approach, 2nd
edition. Kluwer Academic Publishers, Dordrecht, 1999.

46. Nagurney, A. Finance and variational inequalities. Quantitative Finance,
1:309–317, 2001.

47. Nagurney, A. Innovations in Financial and Economic Networks. Edward Elgar
Publishing, Cheltenham, 2003.

48. Nagurney, A., and Cruz, J. International financial networks with electronic
transactions. In A. Nagurney, Editor, Innovations in Financial and Economic
Networks. Edward Elgar Publishing, Cheltenham, 2003, pages 135–167.



Financial Networks 381

49. Nagurney, A., and Dong, J. Network decomposition of general financial equi-
libria with transaction costs. Networks, 28:107–116, 1996a.

50. Nagurney, A., and Dong, J. General financial equilibrium modelling with pol-
icy interventions and transaction costs. Computational Economics, 9:363–384,
1996b.

51. Nagurney, A., and Dong, J. Supernetworks: Decision-Making for the Informa-
tion Age. Edward Elgar Publishers, Cheltenham, 2002.

52. Nagurney, A., and Hughes, M. Financial flow of funds networks. Networks,
22:145–161, 1992.

53. Nagurney, A., and Ke, K. Financial networks with intermediation. Quantitative
Finance, 1:441–451, 2001.

54. Nagurney, A., and Ke, K. Financial networks with electronic transactions:
Modeling, analysis, and computations. Quantitative Finance, 3:71–87, 2003.

55. Nagurney, A., and Siokos, S. Variational inequalities for international general
financial equilibrium modeling and computation. Mathematical and Computer
Modelling, 25:31–49, 1997.

56. Nagurney, A., and Zhang, D. Projected Dynamical Systems and Variational
Inequalities with Applications. Kluwer Academic Publishers, Boston, MA, 1996.

57. Nagurney, A., Cruz, J. M., and Wakolbinger, T. The co-evolution and emer-
gence of integrated international financial networks and social networks:
Theory, analysis, and computations. In R. J. Cooper, K. P. Donaghy, and
G. J. D. Hewings, Editors, Globalization and Regional Economic Modeling.
Springer, Berlin, 2007, pages 183–226.

58. Nagurney, A., Dong, J., and Hughes, M. Formulation and computation of gen-
eral financial equilibrium. Optimization, 26:339–354, 1992.

59. Pigou, A. C. The Economics of Welfare. Macmillan, London, 1920.
60. Quesnay, F. Tableau Economique, 1758; reproduced in facsimile with an intro-

duction by H. Higgs by the British Economic Society, 1895.
61. Rockafellar, R. T., and Wets, R. J.-B. Scenarios and policy in optimization

under uncertainty. Mathematics of Operations Research, 16:1–29, 1991.
62. Rudd, A., and Rosenberg, B. Realistic portfolio optimization. TIMS Studies

in the Management Sciences, 11:21–46, 1979.
63. Rutenberg, D. P. Maneuvering liquid assets in a multi-national company:

Formulation and deterministic solution procedures. Management Science,
16:671–684, 1970.

64. Samuelson, P. A. Spatial price equilibrium and linear programming. American
Economic Review 42:283–303, 1952.

65. Shapiro, A. C., and Rutenberg, D. P. Managing exchange risks in a floating
world. Financial Management, 16:48–58, 1976.

66. Soenen, L. A. Foreign Exchange Exposure Management: A Portfolio Approach.
Sijthoff and Noordhoff, Germantown, MD, 1979.

67. Srinivasan, V. A transshipment model for cash management decisions. Man-
agement Science, 20:1350–1363, 1974.

68. Storoy, S., Thore, S., and Boyer, M. Equilibrium in linear capital market net-
works. The Journal of Finance, 30:1197–1211, 1975.

69. Takayama, T., and Judge, G. G. Spatial and Temporal Price and Allocation
Models. North-Holland, Amsterdam, 1971.

70. Thore, S. Credit networks. Economica, 36:42–57, 1969.
71. Thore, S. Programming a credit network under uncertainty. Journal of Money,

Banking, and Finance, 2:219–246, 1970.



382 A. Nagurney

72. Thore, S. Programming the Network of Financial Intermediation. Universitets-
forlaget, Oslo, 1980.

73. Thore, S. Spatial models of the Eurodollar market. Journal of Banking and
Finance, 8:51–65, 1984.

74. Thore, S., and Kydland, F. Dynamic for flow-of-funds networks. In S. Eilon
and T. R. Fowkes, Editors, Applications of Management Science in Banking
and Finance. Gower Press, London, 1972, pages 259–276.

75. Wallace, S. Solving stochastic programs with network recourse. Networks,
16:295–317, 1986.



Part IV

Mergers, Acquisitions, and Credit Risk Ratings



The Choice of the Payment Method
in Mergers and Acquisitions

Alain Chevalier1 and Etienne Redor2
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1 Introduction

Mergers and acquisitions are major events in a firm’s life. It is not surprising,
that numerous studies aim at explaining this phenomenon. Since the late
1970s, the number of studies following the evolution of the number of deals.
Among the various points that have been studied by researchers in finance,
we can identify the study of the motivations of mergers and acquisitions (the
market power, the hubris hypothesis, the economy of scale and the economy of
scope, the managerial hypothesis, etc.), the short- and long-term performances
for target’s and bidder’s shareholders, the vast merger waves, and the choice
of the payment methods.

The latter has been the subject of numerous research as well as empirical
and theoretical studies. A part of the literature on this issue focuses on the
impact of the choice of the payment methods on the shareholders’ wealth.
Concerning the returns earned by the bidder, Travlos (1987) reported negative
abnormal returns when the operation is financed with stocks but positive
abnormal returns when it is financed with cash. In addition, Antoniou and
Zhao (2004) showed that the bidders’ returns are lower when the operation
is financed in stocks than in case of alternative combined and cash offers.
Similarly, many empirical studies reveal that the target’s returns are higher
in cash offers than in stock offers (Huang and Walkling, 1987; Franks et al.,
1988; Eckbo and Langohr, 1989), confirming that the choice of the payment
method has an impact on the profitability of a takeover.

A second part of the literature has tried to explain the choice of the pay-
ment method by managers. Many theories and many models have thus been
developed; primary among these are informational asymmetry models. As
their name indicates, they are based on the principle that there is asymme-
try between the information owned by the managers and the other agents
of the market. In other words, managers have access to private information
concerning the firm’s stocks value and its investment opportunities, whereas
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external investors don’t. Therefore, if he strikes a deal with an another agent
having more information than him, a non-informed agent may have to face
heavy adverse selection problems because he does not know whether the other
agent has positive or negative information (for a very famous case of adverse
selection and a study of the signals allowing to solve this kind of problem, see
Akerlof, 1970).

In some countries, taxation is also a factor that managers have to take
into account when they determine the payment method used to finance the
acquisition. Taxation of capital gains is in this case immediate for cash acqui-
sitions, whereas it is postponed for stock acquisitions. If the option allowing
one to postpone this taxation is important for the target’s shareholders, the
bidding firm can be incited to offer stocks to finance the deal. Similarly, a
bidding firm can profit from the tax losses and tax credits of a target if the
deal is financed with stocks.

In the same way as the models based on informational asymmetry and on
taxation, a family of theories has developed, dealing on the one hand with the
managerial ownership, and on the other hand with external control. The first
branch comes from the fact that the choice of the payment method influences
the ownership structure of the firms concerned. One can therefore suppose
that a manager will not finance an acquisition with stocks if he owns a large
proportion of the bidder’s stocks, to avoid having his stake diluted in the
combined firm. Conversely, one can suppose that the manager of the target
will prefer an acquisition to be financed with stocks if he owns a large stake
in the target, so as to retain power in the merged entity, and therefore to
increase the probability of keeping a managerial job in the combined firm.

The second branch of theories deals with the control of managers by share-
holders. Admittedly, a shareholder owning a small part of the firm’s share
cannot afford to control every action of the manager, because it would be too
costly in money and in time. However, investors who own a large part of the
firm’s shares are incited to control the managers’ actions, that is, to check
the projects’ quality in which the manager invests as well as the way these
investments are financed. Since mergers and acquisitions financed with stocks
are, on average, not well thought of by the market (they destroy value for the
bidder’s shareholders), large shareholders can put pressure on the bidder’s
managers so that they use cash rather than stocks to finance their acqui-
sitions. In the same family of theories, we can also find the free cash flow
theory. According to Jensen (1986), bidding firms owning large free cash flow
or having a sufficient debt capacity will be predisposed to undertake cash ac-
quisitions rather than stock acquisitions. In this theory, debt plays a positive
role, because it allows one to reduce the agency phenomena and increases the
managers’ control.

Various studies also allow one to show that past performance, invest-
ment opportunities, and business cycles are elements that could influence the
choice of the payment method used to finance the merger or the acquisition.
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According to Weston et al. (1990),1 a firm having an efficient excess
management team can use its excess managerial resources by acquiring a
firm managed inefficiently because of a lack of resources of this kind. In this
case, it can be incited to use cash to convince the target’s shareholders to
participate in the deal and to replace the inefficient management by managers
with planning and monitoring capacities which will be beneficial to the target
(Trautwein, 1990). Similarly, a bidder having good investment opportunities
is supposed to have a higher probability to use stocks to finance its deal,
because this payment method is less compelling than debt. Indeed, the use of
debt requires the payment of cash flows at regular intervals. Thus, the higher
the investment opportunities of the bidding firm, the more likely it will be
willing to use stocks to be able to benefit from these opportunities. Conversely,
the lower its investment opportunities, the more likely it will have interest in
financing the operation with debt, because the repayments of the debt will
not be invested in negative net present value projects. Some studies have also
indicated that business cycles influence the choice of the payment method,
the probability of a stock offer increasing with the general economic activity.

The optimal capital structure hypothesis suggests that managers can
choose the payment method used to finance a merger or an acquisition ac-
cording to the capital structure of the merged firm after the acquisition. In
this case, cash-rich firms will use cash and cash-poor firms will use stocks.
Moreover, this theory suggests that the bidders of leveraged firms will use
stocks and that the bidders of firms with a debt capacity will use debt.

A last family of theories deals with the period of time necessary to the
completion of the deal. The delays of control theory stipulate that a hostile
offer is more likely to be financed with cash, because a stock offer needs to
obtain authorizations. Obtaining these authorizations can take a long time,
which offers time for rivals to get organized, to obtain information, and to
potentially intercede. As for the target, it has more time to organize its defense
and to eventually find a white knight.

The minimization of the renegotiation costs is close to the delays of con-
trol theory. The idea in this case is that since the delay between the operation
announcement and its completion is long, there is an incentive for managers
to ask for an ex-post renegotiation of the contract terms, if the value of the
bidder’s offer has sensibly changed in comparison with the target’s value dur-
ing this period. The risk is particularly high when it is a stock offer. As this
renegotiation has a cost, the payment method can be chosen so as to minimize
the renegotiation costs of both firms at the completion of the deal.

The aim of this survey is to successively present these theories and the
different empirical studies that allow one to confirm or invalidate them. The
first two sections are devoted to asymmetric information models. The first

1 Quoted by Yanne Gourvil (2002): “La croissance externe et l’emploi dans
les entreprises absorbantes,” Cahier de recherche no 2002-07, GREFIGE, Uni-
versité Nancy 2. This article is available at the following Internet address:
http://www.univ-nancy2.fr/GREFIGE/cahier2002/Gourvil02-07.pdf.
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one will more particularly describe the origin of these models and the precur-
sory work of Myers and Majluf (1984), and the second one will present the
complementary work carried out by Hansen (1987), Fishman (1989), Eckbo
et al. (1990), and Berkovitch and Narayanan (1990). Then, in a third part, we
will look into the impact of taxation on the choice of the payment method.
The fourth part of this study will present managerial ownership and outside
control theories, and then the fifth one will be devoted to the fact that past
performance, investment opportunities, and business cycles can influence the
choice of the payment method. A sixth part will study the models binding
the capital structure to the payment method. Finally, before presenting theo-
ries explaining the choice of the payment method in acquisitions of nonpublic
firms, we will study the delay of completion theory.

2 The Origin of the Asymmetric Information Models
and Myers and Maljuf’s Model (1984)

The asymmetric information models that allow one to explain the choice of
the payment method in mergers and acquisitions have initially been devel-
oped by Hansen (1987) and by Fishman (1989) and are based on Myers and
Maljuf’s work (1984). They suppose asymmetric information on both sides,
which means that both the target and the bidder have private information on
their own value. According to these informational models, the abnormal re-
turns are significantly negative when the operation is financed with stocks but
do not show that the performance of the investment is low, since the choice
of the payment method reveals private information of the bidder concerning
the value or the synergies of both firms.

2.1 The Origin of the Informational Asymmetry Models

As Leland and Pyle (1977) showed, a market in which there would be no
information transfers between agents could not work very well. Actually, if
we consider the financing of projects of variable quality, the market value
should correspond to projects of average quality since lenders cannot dis-
tinguish between good and bad projects. To be financed, the good-quality
projects need information transfers to take place. This information can be
obtained by shareholders simply by observing the managers because their
actions reveal information about the quality of the project.

According to Ross (1977), managers who can have an informational ad-
vantage are incited to signal their private information through the choice of
their debt level. For firms with low cash flows, it is costly to have high debt
levels, because the probability of bankruptcy is higher than for firms whose
cash flows are high. Therefore, managers of firms with high cash flows can
signal this information to the market by issuing enough debt. In Leland and
Pyle (1977), under certain conditions, managers of valuable firms signal their
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quality by retaining a large stake in the firm and so will use more debt than
managers of low-value firms. Debt financing allows the manager to retain a
large part of the ownership of the firm, but holding a large stake in the firm
is costly for risk-averse managers. This large stake is less costly to a manager
of a high-quality firm than to a manager of a low-quality firm, and therefore
the proportion of stocks held by insiders is a signal concerning the firm’s qual-
ity. The question of the capital structure is also bound to the phenomena of
signals. As Blazenko (1987) showed, high-quality projects are signaled by the
use of debt or cash. Indeed, risk-averse managers will not use cash if they are
compelled to issue debt in order to obtain cash, unless they are sure that the
quality of the stocks to be acquired justifies the personal risk of losing their
job. In other words, since managers are not in favor of the use of cash as a pay-
ment method, the fact that they use it nevertheless can be a signal concerning
the potential of the stocks that will be acquired. Numerous other studies of
asymmetric information have been developed since the works of Ross (1977)
and of Leland and Pyle (1977) (see, for example, Heinkel, 1982; Vermaelen,
1984; John, 1987; Ravid and Sarig, 1991; Brick et al., 1998; Persons, 1994,
1997; and McNally, 1999).

Similarly, as a result, for some authors, the choice of the payment method
used in mergers and acquisitions can signal different kinds of information for
investors. In a perfect market, without asymmetric information and taxes, the
payment method of an acquisition is not important (Modigliani and Miller,
1958): The division and the level of gains are equivalent whether the operation
is financed with stocks only or with a mix of cash and stocks. In 1977, Miller
extended this result to a world in which tax exists. However, due to asym-
metry problems and to nonzero transaction costs, the choice of the payment
method has an impact on the success or failure of the deal and on the returns
associated.

2.2 The Work of Myers and Majluf (1984)

In a world of asymmetric information between managers and investors,
firms that raise external capital to finance their new projects have to face
problems of adverse selection. Firms with low investment opportunities can
issue stocks looking like those issued by firms with high investment oppor-
tunities. As a result, stocks from low investment opportunities firms will be
overvalued, whereas stocks from high investment opportunities firms will be
undervalued.

Myers and Majluf (1984) showed that, in a world of asymmetric informa-
tion, the choice of the payment method by the bidding firm in acquisitions can
reveal information concerning the bidder. The managers who own information
and want to act in the interest of their current shareholders will use stocks
if they are overvalued. They will put some positive net present value invest-
ments aside if the stocks necessary to finance the operation are undervalued
by the market. Thus, the decision to finance an investment by stocks will be
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interpreted by the market as bad news, so that the stock price of the firm
will decrease at the announcement of the acquisition. Moreover, investors are
incited to decrease their valuation of a stock offer, for fear of acquiring over-
valued stocks. Conversely, when a cash offer is announced, the assets of the
bidder will be considered as being undervalued, which constitutes a positive
signal for investors.

This hypothesis is confirmed by Travlos (1987) who, through annual data
between 1972 and 1981, showed that the deals financed with stock offers result
in significantly negative abnormal returns for the bidders’ shareholders. It is
also confirmed by Tessema (1989) who, in a similar study, concluded that
the market considers a stock offer as being less attractive than a cash offer.
The negative abnormal returns observed in stock offers are not due to the
realization of negative net present value deals but to the fact that the positive
effects of the deal are offset by the negative informational effects caused by
the use of stocks.

Asquith and Mullins (1986), Masulis and Korwar (1986), and Mikkelson
and Partch (1986) highlighted a decrease of the stock price when new stocks
are issued. This fall of the stock price is consistent with the Myers and Maljuf
hypothesis (1984) of negative information transfers when stocks are offered.

However, as Chang (1998) pointed out, when firms offer stocks to acquire
privately held firms, that is, held by a small number of shareholders, the
asymmetric information problems described by Myers and Majluf (1984) can
be reduced thanks to the revelation of private information by the bidder to
the target’s shareholders.

Myers and Majluf (1984) argued that the underinvestment problem can be
avoided by the issue of a less risky asset, that is, less sensitive to errors in its
value estimation. Given this underinvestment problem, there is a hierarchy
of preferences or a “pecking order” in the issue of new financing: Informa-
tional asymmetries between new investors and the managers who maximize
the wealth of their current shareholders make the stock issue more costly than
the debt issue. So the riskier the financing, the more negative the effect on the
stocks, which is why managers use internal financing first, then debt, and they
finally issue stocks (Myers, 1984). In accordance with this hypothesis, Nayar
and Switzer (1998) showed that the riskier the debt used in the acquisition,
the less favorable the effects for the bidder’s shareholders.

Sung (1993) showed that, in the 1980s, everything else being equal, cash
offers were mainly chosen by relatively cash-rich firms, whereas stock offers
were rather chosen by cash-generating firms in comparison with their sector.
This result is consistent with the “pecking order” theory, but not with the
theory of the signal.

The Myers and Maljuf (1984) model has been the subject of numerous
empirical studies, whose results seem to be mixed. Whereas the results of
Amihud et al. (1990) and Chaplinsky and Niehaus (1993) also go in the way
of the “pecking order” theory, the results of Korajczyk et al. (1991) seem to
contradict it. Moreover, the tests of Rajan and Zingales (1995), of Jung et al.
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(1996), of Helwege and Liang (1996), of Shyam-Sunder and Myers (1999), and
of Fama and French (2002) are consistent with this theory on certain points,
but opposite to it on others.

According to Nayar and Switzer (1998), whereas some managers will ef-
fectively try to use overvalued stocks to acquire stocks from the target, others
use stocks to undertake an acquisition that is really profitable, and not to
exploit an unjustified overvaluation of their stocks. Unfortunately, the mar-
ket being unable to distinguish between these two scenarios, every firm that
offers stocks in an acquisition will suffer a decrease of their stock price at the
announcement of the acquisition.

As a consequence, potential bidders may abandon potentially profitable
deals to avoid this adverse selection problem and bidders using cash avoid
this problem. In addition, Nayar and Switzer (1998) showed, in accordance
with Myers and Maljuf’s predictions (1984), according to which the use of
debt reduces the effects of adverse selection associated with stock-only offers,
that the average abnormal returns of offers that include debt as a payment
method are higher than those observed with other payment methods. Finally,
once the impact of the taxation and the risk of the debt have been controlled,
the higher the proportion of stocks used in the acquisition, the more favorable
the reaction of the market. This can indicate that the issuing of stocks to
counterbalance the increase of the debt level linked to the deal improves the
shareholders’ wealth. This increase of the number of stocks, if it is accompa-
nied by a debt issue, is not seen as an attempt by managers to exploit the
private information to use a possible stock overvaluation. On the contrary,
the market can see acquisitions as a phenomenon in which payment methods
allow the realization of risk-sharing adjustments.

According to Jensen and Ruback (1983), since most tender offers are fi-
nanced with cash while most mergers are financed with stocks, the informa-
tional theory suggests that the returns of tender offers are higher than those of
mergers. Thus, the difference between mergers and tender offers underlined in
empirical studies may only reflect the various informational effects, according
to the payment method used in the acquisition.

Moeller et al. (2003) showed that acquisitions undertaken by small firms
are profitable, but that they realize small acquisitions, the returns of which
are low (altogether, the returns of small firms reach 8 billion dollars in their
sample). On the contrary, large firms suffer high losses (around 226 billion
dollars in their sample). Acquisitions are therefore value-destroying on aver-
age for the bidder’s shareholders, since the losses suffered by large firms in
acquisitions are significantly higher than the returns earned by small firms.
These results seem to contradict the idea according to which the bidder’s de-
cision to finance the deal with stocks is a signal pointing out that the bidder’s
managers think that their firm’s stocks are overvalued. Actually, if this expla-
nation were valid, there would be no reason to find a difference between the
abnormal returns of small and large firms.
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The asymmetric information models are also called into question by
Cornett and De (1991) who, through a study of interstate banks mergers
between 1982 and 1986, showed that the bidder’s shareholders have positive
abnormal returns that are significant at the 1% level, in cash offers, stock of-
fers, and combined offers. This result contradicts the previous studies on this
issue and seems to be inconsistent with the theory of informational asymme-
try. The authors suggested two explanations. The first one might be that the
role of informational asymmetry is not as important in the banking sector
as in the nonbanking sector. The second possible explanation is that a stock
offer is good news for a bank, because it is a signal indicating that the bid-
der is efficient in asset management. Indeed, before an interstate merger can
take place in the banking sector, the bidder’s asset management has to be
examined and approved by organisms of control.

Conversely, Harris et al. (1987) showed, with empirical evidence, that for
bidders, cash offers result in higher post-acquisition performance than stock
offers. This result is consistent with the theory of informational asymmetry.

According to Yook (2003), the difference between the information held by
the managers and the one held by the external investors in an acquisition is
“more complex than the one existing in the new security offering market.” In
his view, the asset value of the merged firm is therefore the main source of
informational asymmetry on the market of corporate acquisition. Managers
often claim that the deal creates value for the shareholders. However, as the
quantity of synergy is nonmeasurable by shareholders, an acquisition generates
a lot of uncertainty, as far as the operating performance of the merged entity
is concerned. Thus, according to the author, informational asymmetry in the
takeover market mainly concerns the synergies of the deal and the merged
entity valuation rather than the bidder’s assets. Even though the payment
method probably affects the value of the merged firm, it is probably not the
only element taken into account to make the acquisition.

Managers must first of all decide whether they want to acquire a particular
firm or not, and then the payment method must be chosen. However, since
managers are in a good position to estimate the impact of an acquisition on
their firm’s products, markets, strategies, investment opportunities, etc., they
give information on expected synergies by their choice of the payment method.
In other words, they will offer cash if they think that their valuation of the
synergy is higher than the market’s one. Therefore, the payment method in
acquisitions gives information about the bidder’s real valuation of the merged
firm’s assets as well as on the valuation of the assets in place.

Finally, a study by Davidson and Cheng (1997) based on 219 deals com-
pleted in the United States between 1981 and 1987 showed results that are
inconsistent with the informational asymmetry. The authors thought that
after the impact of the premium has been controlled, the payment method
necessary remains a significant determinant of the returns, if a cash offer
effectively reduces the informational asymmetry costs borne by the target’s
shareholders. They pointed out that the targets acquired through cash offers
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earn on average 39.93% of the premium, while those acquired through stock
offers earn on average 29.25%. However, the authors showed that once the
impact of the non-distributed cash flows of the multiple offers, of the pre-
mium, and of the relative size of the target compared to the bidder have been
controlled, the payment method is not linked to the abnormal returns. Thus,
for the authors, cash offers do not contain any additional information, they
do not create additional value either, and, finally, they do not seem to reduce
the informational asymmetry problems more than stock offers.

3 The Informational Asymmetry Models Subsequent
to Myers and Maljuf (1984)

Many other models of informational asymmetry have been developed follow-
ing Myers and Maljuf’s work (1984). Among them, we find Hansen’s model of
bargaining under asymmetric information model (1987) and its extension de-
veloped by Eckbo et al. (1990), Fishman’s preemptive bidding model (1989),
and Berkovitch and Narayanan’s model of informational asymmetry with com-
petition (1990). The aim of this section is to present these models as well as
the main empirical studies run to test their validity (Table 1).

3.1 Hansen’s Model (1987)

Hansen (1987) imagined the case of a bidding firm with a monopolistic access
to information concerning the true value of the merger. The optimal strategy
for the bidder in this case is to make one offer only. In cash offers and when the
target holds private information concerning the state of its assets, a problem
can occur: The target will only accept to sell its stocks if their value is inferior
to the bidder’s offer. So as to protect itself from adverse selection phenomena,
the bidder must base its optimal offer on “expected value conditional on the
offer being accepted.” Thus, the target using the information at its disposal
will not always accept the offer, and as a consequence, the deal will not always
take place.

Then, the bidding firm can use its own stocks instead of cash, because
stocks have a contingent pricing effect, which, at the same cost for the bidder,
encourages the target to accept all the offers that it would accept in cash.
Actually, the main difference between a cash offer and a stock offer is that the
value of a stock offer depends on the acquisition returns, in opposition to a cash
offer. However, if we admit that the bidding firm can have private information
about its own value, then a double problem is raised: The bidding firm will
not offer stocks if the target underestimates the value of the offer (that is, if
the bidding firm has information allowing it to think that its stocks are more
worthy than the target thinks). Once again, it is an adverse selection problem
that encourages the target to lower its valuation of the bidder’s stocks.
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Nevertheless, equilibrium can occur (in the case of a double asymmetry) if
the acquirer offers stocks when they are overvalued and if it offers cash when
the stocks are undervalued. The target will interpret the payment method
as well as the size of the bid as a signal indicating the bidder’s value, and
the bidder, conscious of the target’s interpretation, will make the optimum
choice as far as the payment method and the size of the bid are concerned, to
confirm the target’s valuation. In this model, no mixed offer can be observed,
because the bidders use the foregone synergy cost to signal their value to the
target. The first implication of this model is that there is a link between the
probability for the bidder to offer cash only or stocks only, and the bidder’s and
target’s sizes, as well as their level of debt. However, Hansen’s study (1987),
based on a comparison of means in a sample made up of 46 deals financed with
stocks only and 60 ones financed with cash only, poorly confirmed his model.

Within the framework of Hansen’s model (1987), the probability of a stock
offer is inversely correlated to the relative size of the bidder in comparison with
the size of the target, because contingent pricing characteristics of stocks de-
pend on the relative size of the target’s asset compared to the target. The
larger the equity of the target compared to the bidder, the higher the contin-
gent pricing effect of stocks.

Thus, this model predicts that the larger the target, the more important
the informational asymmetry problems. Consequently, if the target represents
an important weight comparatively to the bidding firm, the latter will more
probably use stocks as a payment method. Martin (1996) tested this hypoth-
esis, according to which the larger the bidding firm, the lower the probability
of a stock financing, and the larger the target, the higher the probability of
cash financing. He showed that the relative size of the target, measured by the
ratio of the sum paid for the acquisition to the market value of the bidding
firm, in the 20 days preceding the announcement, is not significant at the
5% level. These results therefore suggest that there is no obvious relationship
between the relative size of the target comparatively to the bidder and the
payment method used in mergers and acquisitions.

However, Grullon et al.’s study (1997) contradicted the empirical results
of Martin (1996) since they found that, in the banking sector, the larger the
relative size of the target comparatively to the bidder’s size, the higher the
probability of a stock or stock and cash financing. Another study, carried
out by Ghosh and Ruland (1998), confirmed Martin’s results (1996). Indeed,
through a logit model, they found that the relative size of the target does not
differ significantly according to the payment method. They accounted for this
result by the fact that managers of large targets will prefer to obtain stocks
in order to retain power in the merged firm. Conversely, managers of bidding
firms have a strong incentive to offer cash to finance their acquisition if they do
not want to dilute their current ownership. According to Ghosh and Ruland
(1998), those two opposite incentives show that there is no clear link between
the relative size of the two firms and the payment method used to finance the
acquisition. On the other hand, Zhang (2001), through a sample made up of
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deals taking place in the United Kingdom, showed that the larger the target
in comparison with the size of the bidding firm, the higher the probability of
a stock financing.

Hansen’s predictions (1987) were also confirmed by Noronha and Sen
(1995) who showed that the probability of a stock offer has a negative corre-
lation with the debt-to-asset ratio and a positive one with the leverage of the
bidding firm, and by Houston and Ryngaert (1997), who showed that high
elasticity (that is, a stock financing) is more likely when the target is large
and when the correlation between the returns of the target and those of the
bidding firm are high.

3.2 Fishman’s Model (1989)

In his model, Fishman (1989) emphasized the role of the payment method in
preemptive bidding for the control of the same firm by several rivals. Indeed,
if a potential bidder makes an offer, other potential bidders will then study
the offer, obtain information concerning the potential profitability of the of-
fer, and perhaps enter into the competition. Therefore, a preemptive bid has
to avoid this competition, because in the case of a competition between sev-
eral potential bidders, the target’s returns increase whereas the bidder’s re-
turns decrease as the competition goes on (Berkovitch and Narayanan, 1990;
Bradley et al., 1988; De et al., 1996). If a firm competes with a bidder who
proposed an important initial valuation for the target, this firm may have
to face a small probability to win and small expected returns if it wins this
competition. Thus, if the initial bidder sends a signal of high valuation, it
can discourage competition. The fact that a high offer shows a high valuation
and that this can serve to get ahead of the competition was demonstrated by
Fishman (1988), on samples made up of offers in cash only.

Contrary to Hansen’s model (1987), the target, like the bidder, is supposed
to have access to private information on the profitability of the acquisition. In
this case, stock offers become an interesting alternative to cash offers. Suppose
the bidder offers an important sum if the target’s information indicates that
the acquisition is profitable and a low payment in the opposite case. This
leads the target to make an efficient decision given its information. On the
other hand, if the information is not verifiable, the offer is not feasible. The
alternative is then to resort to a stock offer. Rather than making the offer
dependent on the target’s information concerning its future cash flows, a stock
offer makes the value of the offer dependent on the cash flows themselves. If it
is correctly built, a stock offer will encourage the target to make an efficient
decision. The value of a cash offer, contrary to a stock offer, is not dependent
on the target’s future cash flows.

Thus, a target may make a decision regardless of the information concern-
ing its cash flows and a cash offer may not imply an efficient decision.

Fishman (1989) developed a model of preemptive bid. At the equilibrium,
stocks are offered by the bidding firms that have a low valuation of the target,
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and cash is offered by the firms that have a high valuation of it. The advantage
of a cash offer is that at the equilibrium, it discourages a potential competition
by sending a signal of high valuation. This model has various implications:

• The results expected by a bidder are lower if it uses stocks rather than
cash in its first offer.

• The probability of a competition between different bidders is higher if the
initial offer is in stocks rather than in cash.

• The probability for the target’s management to refuse an offer is higher if
the payment method used is stocks rather than cash.

• The more important the cost for studying the target, the more likely the
initial offer will be in cash, and the less likely a competition between
bidders will be.

In both models, the interest of using stocks is linked to their contingent
effect. The difference between the two models lies in the interest of using
cash. For Hansen (1987), bidders will pay in cash if they think that stocks
are undervalued. For Fishman (1989), they pay in cash in order to signal an
important valuation of the target and to discourage competition from other
potential bidders, but Fishman (1989) does not propose empirical tests of
his model in his paper. However, Franks et al. (1988) reported that in the
1955–1985 period, contrary to Fishman’s predictions (1989), the competition
is higher in cash offers than in stock offers. Chowdhry and Nanda (1993)
also supposed that the bidding firm and the target own private information,
but they only work on 100% cash and 100% stocks deals. They show that
the existence of bondholders in the bidding firm and the use of debt as a
payment method allow the bidder to make more aggressive offers, since a part
of the acquisition’s costs is borne by the existing bondholders. This can deter
potential bidders from entering in competition. However, a cost can exist
when the competition occurs in spite of the dissuasive effect. In this case,
indeed, as a result, a bidding war between bidders happens, which can lead
the various potential bidders to offer an excessive premium, that is, higher
than the target’s valuation.

Dodd’s results (1980) seem to verify Fishman’s predictions (1989) rather
than Hansen’s ones (1987). Cornu and Isakov (2000) showed that cash offers
are more frequently associated with a competition between bidders than stock
offers, because they are, by definition, more aggressive, since they are often
used in hostile deals. On the other hand, they underlined the fact that cash
offers allow one to signal a high valuation by the bidder even if a competition
between bidders happens. Thus, cash offers have a more important dissuasive
power than stock offers. In addition, they found, on both the theoretical and
empirical levels, that the probability to have a competition in a hostile deal
is weaker after a cash offer than after a stock offer. As a result, the returns of
the initial bidder are higher when the deal is financed with cash. These results
confirm Fishman’s model (1989).
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Chemmanur and Paeglis (2002), through a model that directly tests the
informational asymmetry on both sides concerning the choice of the payment
method by the bidder in acquisitions, showed that the bidders using stocks
are indeed overvalued, and they found elements allowing one to think that the
bidders using cash are undervalued. They proved that these estimation errors
influence the choice of the payment method. Concerning the targets, they
showed that preemptive bidding considerations are contingent upon payment
ones. Their study also showed that cash dissuades the potential bidders from
entering into the competition. Finally, they found results in contradiction with
Hansen’s theory of the relative size (1987).

On the basis of Fishman’s work (1989), Nayar and Switzer (1998) studied
the use of debt as a payment method used by bidding firms in their acquisi-
tions. Fishman (1989) indeed asserted that debt also has a contingent price
effect because, as in case of stocks, stockholders are compelled to receive a se-
curity from the firm after the deal. Although debt is less sensitive than stocks,
the final value of the security attained by the target’s shareholders depends on
the future profitability of the deal. Therefore, there is an important distinc-
tion between acquisitions financed with debt and those financed with cash,
since, whatever the way the money has been raised (capital increase, debt, or
self-financing), the shareholders no longer dispose of stocks after the deal, and
therefore a cash offer has no contingent impact on the price.

3.3 Eckbo, Giammarino, and Heinkel (1990)

Eckbo et al.’s model (1990) is an extension of the model developed by Hansen
(1987). It claims that an informational asymmetry on both sides between the
bidder and the target can lead to an optimal mix of cash and stocks as a
payment method. The authors showed a separating equilibrium for which the
true post-acquisition value of the bidding firm is revealed to the target by the
composition of the mixed offer and where this value is increasing and convex
in the amount of cash used in the offer. They argue that the abnormal returns
of the bidding firm are made up of two parts: a component related to synergy
revaluation and a component for the signal. According to this model, a cash
offer results in no signal. The abnormal returns of the bidding firm are linked
to the revaluation of synergy. In the case of stock offers, it is the opposite.
Abnormal returns result from the signal of the stock offer. Only in a mixed
offer can both a signal effect and a synergy revaluation effect take place. In
addition, they argued that the target’s stock price increases at the acquisition
announcement, by an amount that is independent from the chosen payment
method. This result is due to the fact that the bidder is compelled to make an
offer that is acceptable for every kind of targets and, as a consequence, there
is no separation between the various targets.

On the contrary, according to Fishman (1989), the reaction of the target’s
stock price at the announcement of the acquisition is ambivalent. The stock
price of the target will react positively to the cash offer, only if the preemptive
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cash offer, is superior to the expected value of the target. Such ambivalence
also exists in Hansen’s model (1987).

In the previous models developed by Fishman (1989), Hansen (1987), and
Eckbo et al. (1989), the bidders, whose private information is positive, use cash
as a payment method, which can explain why the bidders’ stock prices react
more favorably to the announcement of a cash offer than to the announcement
of a stock offer.

In the last part of their study, Eckbo et al. (1989) have empirically tested
their model on a sample of 182 Canadian deals, among which 56 are mixed
offers. The abnormal returns observed are positive and significantly higher for
mixed offers than for cash-only and stock-only offers. Therefore, the empirical
results do not allow one to confirm the model’s predictions.

3.4 Berkovitch and Narayanan’s Model of Informational
Asymmetry with Competition (1990)

Bradley et al. (1988) showed that, when there is competition for the target
in a tender offer, the average abnormal returns are lower for the bidding firm
and that they are higher for the target in case of competition.

Berkovitch and Narayanan’s model (1990) studied the role of the payment
method in the competition between bidders and its effects on the returns of
the target’s and the bidder’s shareholders. Their theory is consistent with the
previous works. In this model, there are two types of bidders: high-type bid-
ders and low-type bidders. The merged firm value is higher for high-type
bidders than for low-type bidders. A potential bidder makes an offer with
a given payment method, and this offer can be rejected or accepted by the
target. If the offer is rejected, there is a time period during which no new
offer can be realized by the existing bidders. During this period, other poten-
tial bidders can enter into the competition. If it is actually the case, there is
a competition between the two potential bidders and, the highest offer can
be rejected or accepted by the target. If the offer is rejected, the process is
repeated after a new time period.

Thus, this model comes within a framework of informational asymmetry,
where the target earns a higher sum if it is acquired by a high-type bidder but
earns a higher proportion of synergies if it is acquired by a low-type bidder.
This result is due to the fact that the low-type bidder will have to face a
higher competition than a high-type bidder and that it will be ready to offer
the target a higher proportion of the created synergies.

If the bidder is conscious of the kind of bidders he belongs to, then there is
a unique separating sequential equilibrium in which the high-type bidder uses
a higher amount of cash, and the low-type bidder uses a higher proportion
of stocks. The value of the offer is the same as in the case of symmetric
information. Since the fraction of synergy offered by low-type bidders is higher
than the one offered by high-type bidders, the latter have no incentive to
imitate the former by offering stocks. Similarly, since the value of the offer
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made by low-type bidders is lower than the one realized by high-type bidders,
the former have no incentive to imitate the latter by offering cash. As in the
models of informational symmetry, the offers are accepted without delay.

Berkovitch and Narayanan’s model (1990) allows one to study the interac-
tion between the informed bidders and the uninformed target. The dynamic
structure of the model allows one to show that

• In mixed offers, the more important the amount of cash, the higher the
abnormal returns of the target and of the bidder.

• The proportion of synergy captured by the target decreases with the level
of total synergies. However, the higher the proportion of cash, the lower
the proportion of synergy captured by the target.

• The dollar amount of synergy captured by the target increases with the
level of total synergy and the proportion of cash. When the competition
(whether it is real or not) increases, the proportion of synergy captured by
the target increases. The target’s payoff is higher when the competition is
real than when it is potential.

• When the potential competition increases, the amount of cash used to
finance the deal also increases. Moreover, the amount of cash as a propor-
tion of the total offer increases if the target’s payoff is a concave function
of the synergy.

• In the case of real competition, all firms but the lowest type make cash-
only offers. Because of this, cash-only offers are more profitable than mixed
and stock-only offers.

De et al. (1996) showed that cash-only offers and stock-only offers are
more competitive than mixed offers. Moreover, the authors did not prove that
cash offers generate less competition than stock offers. Thus, these results are
inconsistent with Fishman (1989) and with Berkovitch and Narayanan (1990).

4 The Impact of Taxation on the Choice of the Payment
Method

Numerous authors emphasize the fact that the choice of the payment method
is influenced by taxation (Table 2). The advantage linked to the taxation of a
given payment method corresponds to a disadvantage for another one. Indeed,
cash offers are considered immediately taxable for the target’s shareholders.
Thus, a cash offer requires the payment of a higher premium in order to
compensate for the tax burden. This additional premium may be offset by
the tax advantage linked to the possibility of writing up the value of the
purchased assets to market value for depreciation purposes. On the contrary,
stock offers are generally nontaxable until the stocks are sold. In order to
benefit from this advantage, the offer needs to be composed of at least 50%
stock. Thus, although the deals financed with cash have an advantage over
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the deals financed with stocks from the bidder’s point of view, they require
the payment of a higher premium. The amortization of this goodwill will
artificially decrease the bidder’s earnings. From the taxation point of view, and
without any knowledge of the signal effect, the bidder’s shareholders will prefer
a cash offer if the premium offered to the target’s shareholders is not higher
than the taxation advantages of the deal. The managers will be favorable to
a stock offer in order to avoid the artificial decrease of the returns linked to
the amortization of the goodwill (Blackburn et al., 1997).

The attractiveness of a target increases if it has accumulated tax losses
and tax credits. As Noronha and Sen (1995) as well as Brown and Ryngaert
(1991) concluded, the continuity of interests is required for a firm to inherit
from the favorable aspects of taxation. From a legal point of view, two condi-
tions are needed. First, the majority of the target’s stocks has to be acquired
in exchange for the bidder’s stocks. Thus, the target’s shareholders will par-
tially be owners of the merged entity. The second condition is the continu-
ity of the target’s operations. The acquisition has to have a legitimate goal,
which will, thus be proved, in case of a continuity of the target’s activity. If
these conditions are verified, the merger becomes exempt of tax: The capital
losses or gains of the target’s shareholders can be postponed and the tax at-
tributes of the target can be inherited. The notion of continuity of interests
also applies to the taxation of firms. In a nontaxable deal, the tax credits not
used by the target and the loss carryovers can be deduced from the taxable
earnings of the future merged firm, since the target shareholders have kept
sufficient ownership. In a taxable offer, ownership rights are considered sold,
and the bidder has the right to set up the depreciation basis of the assets
purchased.

American tax laws allow one to carry back the net operating losses 3 years
and to carry them forward 15 years. The present value of this carryover is
weak unless the firm has been profitable enough before and after the losses.
However, the value of these tax characteristics increases when the losses are
transferred to a bidding firm that has important earnings before tax.

The payment method also affects the accounting treatment and has tax
implications for the bidder. The main accounting treatments for acquisitions
are the pooling of interest and the purchase accounting. The first technique
allows the acquirer to register the acquisition in the group’s accounts on the
basis of the book value. The stocks issued by the bidder are then registered
in the balance sheet for the book value of the target’s equity. For example,
in France, for this technique to be used, the deal needs to have been made
in one time, to include at least 90% of the target’s equity, to have been paid
through the issue of new stocks, and not to be called into question during the
two years following its realization. The IAS norms also demand that bidders
cannot be identified. This technique has been abolished in the United States.
On the contrary, when the operation is financed with more than 10% cash
or assimilated (contingent value right), the purchase accounting technique
applies: The target’s assets and liabilities are reevaluated and the goodwill
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is amortized on a more or less long period among the intangible assets. This
technique is used in the Unites States to register takeovers.

From the conceptual point of view, these two methods should be equiv-
alent since they do not affect the future cash flows of the bidding firm: The
amortization of the goodwill reduces the declared returns, but it is not de-
ductible from taxation. However, as Huang and Walkling (1987) emphasized,
the choice of the payment method can be linked to the rewarding method
used to compensate the managers. Thus, the managers whose compensation
is linked to book performance measures will prefer to avoid the amortization
of the goodwill.

According to Erickson and Wang (1999), some managers who use stocks
as a payment method can be incited to use discretionary accruals aggressively,
in order to temporarily and artificially increase the stock value of their firm,
and therefore to reduce the effective cost of their acquisitions. Their empirical
study confirmed this hypothesis and showed that the returns linked to book
manipulations increase with the relative size of the bidder. If managers do have
recourse to discretionary accruals, a decrease in the operating performance
should occur, because accounting procedures compel accruals to inverse as
time goes by. By examining the returns of pre-acquisition and post-acquisition
over a sample of 947 acquisitions, Loughran and Vijh (1997) showed that the
target’s shareholders make gains when they sell their stocks not a long time
after the acquisition’s effective date, but those who retain the stocks received
as a payment method see their gains decrease over time. Even worse, for
one of their subsamples they found that the shareholders suffer losses. On
the contrary, Heron and Lie (2002) showed in their sample that there is no
proof of these phenomena concerning the three years preceding the acquisition.
Moreover, contrary to Erickson and Wang (1999), they found no differences in
the use of discretionary accruals between the different payment method used
by the bidder (cash, stocks, and mixed offers).

Wansley et al. (1983) jointly studied the taxation and the payment method.
They showed that differences in returns exist between the different payment
methods used: The average abnormal return at the announcement day in
cash offers is significantly superior to the one observed in stock offers. The
residuals in cash offers are superior to the one in stock offers from the 23rd
day preceding the announcement, and this difference increases until the day
of announcement.

During the 41 working days following the announcement of the acquisition,
they found average cumulated abnormal returns of 33.54% for the target when
the deal is financed with cash, of 17.47% when the deal is financed with stocks,
and of 11.77% for mixed offers. They accounted for this important difference
between cash offers and stock offers by the impact of taxation. Indeed, they
explained that the higher returns obtained by the target’s shareholders in cash
deals offset the impact of complementary taxes.

Harris et al. (1987) also showed that cash offers produce higher abnormal
returns for targets. Through a sample made up of 2,500 acquisitions that
have taken place in the United Kingdom and in the United States between
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1955 and 1985, they showed that, in both countries, cash-only offers and
stock-only offers have been the most frequent payment methods in mergers
and acquisitions. They explained this result by the fact that the shareholders
who care about capital gains taxation will be ready to accept stock offers,
and that the others will accept cash: That is what they called the tax and
transaction cost efficiency. On the other hand, they emphasized that there is
no clear evidence that capital gains taxation is the main reason for the choice
of the payment method.

Huang and Walkling (1987) confirmed the previous works thanks to a
sample of 204 operations during the 1977–1982 period by showing that average
cumulated abnormal returns for cash offers are of 29.3%, whereas they are of
14.4% in stock offers and are of 23.3% in mixed offers. They also explained
this result by the impact of taxation.

According to Brown and Ryngaert’s model (1991), the taxation aspect
plays an important role in the determination of the payment method. The
bidding firm takes into consideration the target’s valuation of the stocks of-
fered by the bidder as well as the tax consequences of the offer given the
payment method. The equilibrium is consistent with the returns observed for
the bidder, but the model also allows one to make different predictions from
those that only consider the informational role of the payment method. For
example, since the use of stocks is explained by tax advantages only, stocks
should not be used in taxable deals. Moreover, this model supposes that every
non taxable deal, that is, stock and mixed offers, reveals negative information
concerning the bidder. The bidders who have a low valuation for their firm
thus use at least 50% stocks to avoid the taxation of the deal, and the bidders
who have a high valuation of their firm use cash to avoid the stocks issued to
be undervalued. The empirical results they presented are consistent with the
idea according to which stocks are used for the tax advantage: Only 7 taxable
deals out of the 342 constituting the sample used stocks and only 12 taxable
deals used securities that could be transformed into stocks. Out of the 131
nontaxable deals, 86 were stock offers and 45 were mixed offers (34 were deals
using more than 50% stock). Thus, mixed offers often use almost the maximum
possible amount of cash, while enjoying the tax-free status. This result shows
that taxation plays an important role in the choice of the payment method in
the United States. Moreover, in accordance with the model’s predictions, the
results show that the abnormal returns of mixed offers and stock offers are
negative. The abnormal returns associated with cash offers are zero and are
significantly higher than those associated with stock offers or mixed offers.
On the other hand, these results are not consistent with the idea according
to which bidders signal a higher asset value through a more important use
of cash in nontaxable deals: The results associated with mixed offers are not
noticeably different from those associated with stock-only offers.

The hypothesis of the role of taxation in the choice of the payment method
was also verified by Noronha and Sen (1995), since they showed that the
propensity to realize stock offers is positively linked to the cumulated tax
credits of the target.
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Carleton et al. (1983) modeled the decision of the bidder concerning the
payment method according to the target’s characteristics. They showed that
lower dividend payout ratios or lower market to book ratios increase the prob-
ability of being acquired in cash. Low market-to-book ratios linked to the use
of cash are inconsistent with tax effect, since high market-to-book ratios rep-
resent important potential tax savings due to higher depreciation. On the
contrary, this result is consistent with a second tax aspect, since the book
value is close to the basis on which capital gains liabilities of the target’s
shareholders are calculated.

On the other hand, Gilson et al. (1988) showed that there is no direct
link between tax benefits and the payment method. Niden (1986) found no
relation between the tax situation of the target’s shareholders and the payment
method; for Auerbach and Reihus (1988), the tax savings due to the use of the
target’s losses and credits are not significant to explain the payment method.

If we consider the tax advantage linked to the use of debt, then a stock
offer can have a negative impact on the stock price of the firm (Modigliani
and Miller, 1963; DeAngelo and Masulis, 1980; Masulis, 1980a, 1980b). In this
view, according to Nayar and Switzer (1998), the use of debt securities can
entail tax advantages, since the interests of the debt offered to shareholders
are deductible for the bidder. The bidder can offer either cash or debt to
avoid a stock price decrease that would occur in case of a stock offer, but an
offer with debt will, however, be preferred if the bidder needs an important
tax reduction. Thus, according to Nayar and Switzer (1998), a debt issue is
a signal to the market that the firm anticipates its ability to exploit the tax
reduction linked to the payment of the new debt’s interests. They confirmed
their hypothesis through an empirical study that showed that for the firms
using debt in their offer, the higher the tax rate, the more positive the market’s
reaction.

Contrary to the suggestions of the informational and tax hypotheses,
Franks et al. (1988) and Suk and Sung (1997) showed that the target’s abnor-
mal returns in tender offers are higher than the ones in mergers, even after the
impact of the payment method has been controlled. The latter also showed
that there is no relation between the offer premium and the institutional own-
ership of the target in cash offers and that there is no difference in premiums
between cash offers and stock offers, even after the institutional ownership
and other variables linked to taxation have been controlled. These results are
also inconsistent with the informational and tax hypotheses.

On the contrary, Eckbo and Langohr (1989) showed, through a French
sample of deals realized between 1972 and 1982, that the informational hy-
pothesis seems to dominate the tax hypothesis. Indeed, they showed that the
average premium is 17.2% in stock offers, and 73.3% in cash offers whereas the
post-expiration premium is practically the same, whether the deal has been
financed with stocks (23.7%) or with cash (22.5%). This result is inconsistent
with the tax theory, because the post-expiration premium should be higher
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for cash offers, if the firms using this payment method pay a higher premium
in order to compensate for the negative impact of taxation.

5 The Theories Linked to Managerial Ownership
and to Outside Monitoring

Most empirical studies run on the impact of the announcement of a merger
or acquisition on the shareholder’s wealth show that the bidder’s shareholders
earn less than the target’s shareholders. Some studies even show that acquisi-
tions are beneficial only to the target’s shareholders (Langetieg, 1978; Dodd,
1980; Morck et al., 1990). One of the explanations generally proposed is the
agency theory. Jensen and Meckling (1976) defined the agency relationship “as
a contract under which one or more persons (the principal(s)) engage another
person (the agent) to perform some service on their behalf which involves
delegating some decision making authority to the agent.” Then, conflicts of
interest can occur between managers and shareholders, due to the separation
of ownership and control. Such is the case when the managers do not own all
the stocks of the firm they run: They can be incited no to serve the share-
holders’ interests anymore, but to give more importance to personal interests
because of a lack of internal monitoring.

This theory relies on the empire-building theory, which suggests that
managers deliberately overpay the acquisition. Their compensation and their
power are functions of the increase of their responsibility inside the firm, that
is, of the asset quantity they control; they launch the takeover process only to
maximize their own welfare, to the detriment of their shareholders (Rhoades,
1983; Williamson, 1964; Jensen, 1986). Thus, according to this theory, man-
agers are inclined to try to increase the firm’s size (even beyond the optimal
size) and not to optimize its profitability. Believing that all the mergers and ac-
quisitions deals are motivated by shareholder wealth creation therefore seems
to be illusory. Nevertheless, different elements can influence the managerial
motivations in mergers and acquisitions. Among these elements, we find in
particular the managerial ownership and the outside monitoring. The man-
agerial ownership theory stipulates that managers’ interests converge toward
those of shareholders as the managerial ownership increases. In other words,
the more the manager owns stocks of the bidding firm, the more he will be
incited to make wealth-creating deals for shareholders.

Amihud and Lev (1981) argued that imperfect monitoring allows managers
to realize actions that are in their own interest and not necessary in the
shareholders’ interest. Managers can thus have the will to diversify the firm’s
activities in order to reduce the risk of losing their job (preventing the firm
where they work to be acquired, diversifying risk, and minimizing financial
bankruptcy cost, etc.). This incentive is contrary to the shareholders’ wealth
maximization, since the shareholders can reduce their own risk by diversifying
their portfolio for a lower cost in an integrated market. From this perspective,
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they showed in addition that the constitution of conglomerates is more likely
when shareholding is widespread, since, in those cases, managers are able
to pursue strategies that serve their own interest. Thus, a better control of
managers’ actions could reduce agency costs. Gompers and Metrick (2001)
showed on that matter that a firm’s profits are higher when the proportion
of stocks held by institutional investors is high. This result is consistent with
Amihud and Lev’s theory on monitoring (1981), since an important quantity of
stocks held by institutional investors means a more effective control of firms by
shareholders. Ang et al. (2000) showed that agency costs are more important
when a nonshareholder manager runs the firm and that they vary inversely
with the proportion of stocks he holds. Moreover, they found evidence that
these costs increase with the number of nonmanager shareholders. Finally,
they proved that outside monitoring by banks allows one to reduce these
costs.

5.1 The Managerial Ownership Theory

Managerial ownership refers to the number of stocks held by management and
the insiders. Many authors think that the choice of the payment method used
in a merger or an acquisition depends on the managerial ownership of the
two firms implied in the deal (cf. Table 3). Thus, it is often supposed that the
more stocks the bidder’s management owns before the deal, the more likely
cash will be used to avoid dilution phenomena. On the contrary, the more
stocks the target’s managers own, the more likely stocks will be used to allow
managers to retain power in the future merged firm.

Moreover, by increasing the debt and by using the means that allow one to
reduce the number of stocks held by the public, the owner-manager increases
the probability to retain the control of the firm as well as the profits linked,
since exchanging debt for external stocks reduces the proportion of investors’
control rights that can be acquired by a raider.

A stock offer increases the number of stocks held by outsiders. The pro-
portion of stocks held by the managers therefore decreases (if we suppose that
the managers do not increase their ownership in the firm). Thus, this reduc-
tion implies a decrease of the firm’s value according to the adverse selection
model of Leland and Pyle (1977) and to the agency theory of Jensen and
Meckling (1976). Indeed, according to them, the more important the decrease
of stocks held by managers, the more the stock value will decrease. Travlos
(1987) found evidence that is consistent with these hypotheses.

Stulz (1988) studied the relationship between the choice of the payment
method and the managerial ownership of the bidding firm. He showed that the
use of new debts reduces the firm’s attractiveness for corporate raiders. The
owner-managers who want to retain the control of their firm will therefore
prefer to use cash in order to avoid the threat of a hostile takeover. However,
Harris and Raviv (1988) noticed that increasing the debt also reduces the
probability to retain the control of the firm, since the bankruptcy risk increases
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and because of the increased restrictiveness of loan covenants, and the greater
commitment for future cash payments. Stulz (1988) also admitted that his
argument has to be somewhat nuanced, since an increase in debt reduces the
total value of stocks in circulation, so that it becomes cheaper for a bidder
that has an increasing marginal cost, to acquire stocks. Moreover, Stulz (1988)
showed that the more important the proportion of stocks held by the bidding
firm, the less likely the acquisition is to be financed with stocks. Indeed, in
this case, the bidder’s management is not inclined to offer stocks as a payment
method, so as not to dilute its control after the deal. Moreover, he showed
that the probability of a hostile deal is low if the proportion of control rights
held by the target’s management is high, since the target, which owns an
important fraction of his stocks, will want more rights after the deal.

Martin (1996), through a sample made up with 846 deals, showed that
a lower managerial ownership is negatively correlated to the probability of
a stock financing, although the relationship is not linear. He showed in-
deed that the managers who own less than 5% of the stocks are not con-
cerned by the effects of control dilution. On the other hand, when they own
between 5 and 25% of the stocks, they consider the dilution an important
element in the choice of the payment method. Beyond 25%, the link be-
tween managerial ownership and the probability of cash financing is no longer
verified.

Amihud et al. (1990) established a link between the preferences of the
bidding firm’s managers and the payment method. Through a sample of 209
American acquisitions in the 1981–1983 period, they showed that in cash
offers, the five more important managers held close to 11% of the firm’s stocks,
whereas in stock offers, they held less than 7%. Thus, managers who own an
important fraction of stocks will prefer to finance the acquisition by cash
rather than by stocks, because they value having control of the firm and do
not want to increase the risk of losing it after the merger. Moreover, they
showed that the negative abnormal return of a stock offer mainly concerns
firms whose managers did not own a lot of the bidder’s stocks. According to
these results, the extent of managerial ownership in firms announcing new
stocks issues therefore affects abnormal returns.

Song and Walkling (1993) showed that the managerial ownership of target
firms is significantly lower than the managerial ownership of nontarget firms
from the same sector. In other words, a firm with low managerial ownership
is more likely to be the target of a deal. They also showed that a target whose
managerial ownership level is low has a higher probability to be competed
by several bidders: The average managerial ownership in competed offers is
around 6.4%, which seems to be very different from the 18.7% observed for
nontarget firms in the same sector. Moreover, they emphasized through the
use of a logistic regression that the probability to be a target is inversely
correlated to the managerial ownership, which means that firms whose man-
agerial ownership level is high have a lower probability to be the subject of an
attack. Finally, they showed that for successful deals in which the managerial
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ownership of the target is low, the average abnormal return is 29.5%, whereas
in the case of unsuccessful offers, it only reaches 5.2%. They explained this
result through a regression that indicates that there is a positive and strong
relationship between the target’s managerial ownership and the abnormal re-
turn in competed but finally successful deals. In other cases (unsuccessful
deals, noncompeted deals), this relationship is not significant.

According to Blackburn et al. (1997), if managers undertake deals that
are not in the interest of their shareholders, then the ownership structure
of the firm plays an important part in case of mixed offers. The managers
who own few stocks will not suffer much from the negative re-evaluation of
stocks described by Eckbo et al. (1990). They can therefore accept a mixed
offer even if their firm is overvalued, as long as their private profit is higher
than the loss of value of the stocks they hold. On the contrary, managers who
own an important stake in the firm will be less likely to realize a mixed offer
if their firm is overvalued. Thus, lower returns are expected in mixed offers
realized by firms that are not run by their owner. In addition, consistently
with Amihud et al. (1990), Blackburn et al. (1997) showed that the manager-
controlled firms that make stock offers suffer significant losses, but contrary to
Amihud et al. (1990), they also showed that the firms run and controlled by
their managers suffer significant losses. The negative signal associated with
stocks, use for firms run and controlled by their managers is not eased by
the fact that managers do not want to dilute, or even, in some cases, to lose
control of their firm by investing in a deal that is not wealth-creating.

Ghosh and Ruland (1998) studied the way target and bidder managers’
preferences for control rights influence the choice of the payment method in a
takeover. In a study including 212 deals in the United States between 1981 and
1988, they showed that in stock offers, the average managerial ownership of the
target is significantly higher, whereas in cash offers, the bidder’s managerial
ownership is higher. Thus, the bidding firms will prefer to use cash when
their managerial ownership is high, and, conversely, targets will prefer to use
stocks if the management of the target wants to obtain influence in the merged
firm. The results show that the managerial ownership of the target is more
important than the managerial ownership of the bidding firm to account for
the choice of the payment method.

Yook et al. (1999) confirmed the result according to which the higher the
managerial ownership of the bidding firm, the more inclined to use cash the
bidder will be. In addition, they showed that manager-owners more often sell
their stocks before the announcement of a stock offer than before a cash offer.
This result is consistent with both the management control and the infor-
mational asymmetry theories. Moreover, they showed a negative relationship
between the sale of stocks by owner-managers before the announcement and
the abnormal return at the announcement. In other words, the more stocks
that are sold by insiders before the announcement of the deal, the higher the
abnormal losses realized by the bidder. So, this result implies that insiders
have access to information on which they base the sale of their stocks. The
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authors concluded the existence of informational asymmetry phenomena on
the market of corporate control and that they can influence the choice of the
payment method.

5.2 The Outside Monitoring Hypothesis

According to Berle and Means (1932), the passivity of shareholders cannot be
prevented. Firms grow so much that they call up new shareholders to raise
capital. As a result, every shareholder owns a small part of the firm’s stocks. If
a shareholder decided to play an active role in the monitoring of managers, he
would only get a small part of the profit (the other shareholders would benefit
from this monitoring, too), but he would bear all the costs alone. Thus, the
passivity serves the personal interest of every shareholder, even if managers’
control assures collective gains. In the same way, a shareholder’s vote is not
likely to have any influence on the realization or not of a project, which is
why numerous shareholders become apathetic and accept the management’s
propositions without evaluating them with care.

However, the shareholders will keep on controlling the managers’ actions
if the returns linked to the managers’ control are superior to the costs they
have to bear. A shareholder who owns an important stake in the firm will be
more likely to accept to control the manager’s actions than a shareholder who
owns only a small stake in the firm. Thus, for Jensen (1991), active external
investors such as blockholders and institutional investors benefit to the firm
because they are incited to undertake a costly control of the firm’s functioning.
Black (1992) thought that institutional investors can control the managers’
actions in order to bring the managers’ interests into line with the sharehold-
ers’ interests. For example, some institutional investors have contacts with
top managers and can thus influence the characteristics of the deal. Since
numerous empirical studies show that a stock offer has a negative impact on
the wealth of the bidder’s shareholders, the probability of a stock offer should
be lower when the proportion of institutional investors or of stockholders in-
creases. Martin (1996) partially confirmed this hypothesis since he showed
that the higher the proportion of institutional investors, the lower the prob-
ability of a stock financing. However, the existence of external blockholders
does not seem to have an impact on the choice of the payment method.

5.3 The Free Cash Flows Hypothesis

Jensen (1986) defined the free cash flows as cash flows in excess of those
required to finance the positive net present value investment projects of the
firm. The shareholders will prefer managers to distribute this excess of cash
rather than to invest in projects with low returns. However, it is possible
that managers have incentives to retain this supplementary cash in order to
make the firm grow beyond the optimal level, their compensation often being
correlated to the sales rather than to the profit. From this perspective, tender
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offers are both evidence of the conflict between managers and shareholders
and a solution to the problem. Therefore, this theory suggests that bidders
with high free cash flows or with a sufficient debt capacity will be inclined to
realize cash offers rather than stock offers.

The increase of the leverage allows one to explain the higher returns in
cash operations. Indeed, this increase does not only make managers work
harder for fear of the bankruptcy of the firm, but it also allows one to limit
the agency costs of free cash flows by reducing the cash flows freely usable by
managers. According to Jensen (1986, 1988), Harris and Raviv (1990), and
Stulz (1990), the debt has a positive impact, since it allows one to reduce the
agency phenomena and increases the managers’ control. The profit linked to
this theory is all the more important as the bidding firm does not have many
growing opportunities, has an unused supplementary debt capacity, and has
important free cash flows, since in this case, the probability that this deal
results in low wealth creation, or even in value destruction, is higher. Thus,
the use of debt can allow managers to signal that the future returns of the
acquisition will be high enough for them to be able to repay the interests
linked to the debt, and by this way, they will not have to pay an excessive
price for the target. Henceforth, resorting to debt allows managers to show
that they are not motivated by agency phenomena.

Maloney et al. (1993) studied the relationship between the bidding firm’s
returns in the announcement period and the leverage level before the deal,
as well as the changes in the leverage after the deal. They showed that the
bidder’s returns vary positively and significantly with the pre-existing level of
leverage and with leverage changes. Then they concluded that debt improves
the managers’ decisions.

Yook (2003) tested this hypothesis through the changes in Standard and
Poor’s debt rating. When the bidding firms offering cash are divided into two
sub-groups, one in which the rating has been reduced, and the other in which
it has not changed, those that have suffered a decrease obtain an abnormal
return in two days (t = −1 and t = 0) significantly higher than the one ob-
tained by the other group, which corroborates the theory of the benefit of
the debt. This result contradicts the signal theory because the rating of the
bidding firm should remain unchanged or improve if the synergies of the deal
offset the increase of the financial risk. On the contrary, when bidding firms
offering stocks are grouped together in three groups according to whether the
rating is reduced, remains unchanged, or is improved, the results strongly con-
trast with the ones of cash-financed bidders. The abnormal return is positive
and significant for the group with an upgraded rating, whereas it is negative
for the group whose rating is reduced. This result is explained by synergies
phenomena according to the author and implies that cash acquisitions and
stock acquisitions are two distinct kinds of deals, with different sources of
value creation. Cash offers are used in hostile financial deals and stock offers
in friendly strategic deals.
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According to Mayer and Walker (1996), the choice of the payment method
depends on the financial conditions of the target and of the bidder. The fi-
nancing cost of a cash acquisition includes an increase of the interests and
therefore of the bankruptcy risk. An additional debt or a decrease of cash or
of liquid assets can be costly for a firm that already owns debt. The propensity
to use cash is lower when the free cash flows and liquidity decrease and when
the leverage increases. In addition, a change in the monetary policy can have
a positive impact on interest rates and on the credit availability, which can
affect the choice of the payment method. For example, a higher interest rate
and a narrower credit market are problematic for the liquidity and will make
a cash offer less attractive.

Firms with large liquidity but few internal growth opportunities are sup-
posed to own important cash flows. Martin (1996) confirmed Jensen’s free
cash flow theory, since he underlined that the more the bidding firm has cash,
the less likely a stock financing will be. Zhang (2001) showed that the higher
the dividend payment is (which is a measure of the available free cash flow
according to the author), the more likely the deal will be financed by cash.

Noronha and Sen’s results (1995) are also consistent with Jensen’s free
cash flow theory, since they showed that the amount of free cash flow of the
bidder is directly linked to the probability of cash financing. Actually, Shrieves
and Pashley (1984) showed that the firms that use cash increase their leverage,
whereas those using stocks do not. However, before the acquisition, the authors
showed no differences in the leverage of bidding firms using stocks and those
using cash.

6 The Past Performances, the Investment Opportunities,
and the Business Cycles

Indicators of the past performances of the bidder and of the target also have
an impact on the choice of the payment method used to finance the deal. A
firm run inefficiently is a potential source of returns for the bidding firm. In
this case, the latter will be more likely to finance its deal with cash in order
to ensure the control of the target and to replace the inefficient management
team. Conversely, if the bidding firm has realized particularly important stock
performances recently, the use of stocks can turn out to be attractive for the
target and the bidder.

Investment opportunities of the bidding firm also seem to influence the
choice of the payment method. Indeed, the more investment opportunities the
bidding firm will have, the more it will be incited to use stocks to finance its
investments, because this payment method gives the manager more freedom
than debt, which will allow one to fully profit from the investment opportuni-
ties. Conversely, debt is beneficial for firms with low investment opportunities,
because debt requires the payment of cash flows that cannot be used to invest
in low-profit projects. Finally, business cycles are also supposed to influence
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the choice of the payment method in such a way that the probability of stock
financing increases when the general business activity increases.

6.1 The Theories of the Inefficient Managers’ Replacement
and of the Financial Characteristics

According to Zhang (2001), the fact that the target realizes low pre-acquisition
performances means that the target is run inefficiently. In such a case, the
bidding firm is more inclined to use cash, so as to replace the target’s man-
agement. The author was not able to confirm this hypothesis in an empirical
study in which the target’s performances before the deal are measured through
its return on equity. He showed a positive correlation between the return on
equity of the target and the probability of cash financing. This result is in-
consistent with Grullon et al. (1997), who showed that in the banking sector,
a cash payment is more likely when the target realized low performances in
the past.

On the other hand, Zhang (2001) thought that the good stock performance
of the bidding firm is an incentive for it to use stocks, because this payment
method becomes cheaper. Moreover, this good stock performance can be at-
tractive for the target, which can be incited to accept the offer. In an empirical
study, he showed a positive link between the stock performances of the bid-
ding firm (measured through the market-to-book ratio) and the probability
of a stock financing. This result is consistent with previous works of Carleton
et al. (1983) showing the same result.

Carleton et al. (1983) also showed that firms with higher dividend payout
ratios have a higher probability to be acquired with stock than with cash. They
studied the target’s characteristics thanks to data distinguishing three kinds
of firms: non-acquired firms, firms acquired with stocks, and firms acquired
with cash. They showed, among other things, that acquired firms are generally
smaller than non-acquired firms, which are smaller than bidding firms. They
also showed that the price earnings ratios of acquired firms are lower than
those of other firms, that cash-acquired firms have a lower dividend payout
ratio, that acquired firms use less debt than the average in their sector, and
that acquired firms are more profitable. On the other hand, there are no
significant differences between financial elements according to the payment
method chosen. The probability for a given firm to be acquired increases as
its liquidity, its leverage, its price earning ratio, or its size decreases. On the
other hand, the dividend payout ratio and the book-to-market value do not
seem to have an impact on the probability for a firm to be acquired. A higher
size and a higher level of liquidity reduce the probability of an acquisition,
even though these effects are significant only for stock-financed acquisitions.
According to the authors, these results are consistent with the tax hypothesis
and the theory of managerial preferences.

The study of Carleton et al. (1983) was completed by Chaney et al. (1991),
who studied the bidding firm’s characteristics. They showed that the bidding
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firms using stocks are different from the bidding firms using cash. The firms
that pay in stocks are larger, have higher price earning ratios, and have lower
debt equity and return on assets ratios. Conversely, the ones paying in cash
are smaller, with higher leverage and return on assets ratios.

Finally, Jung et al. (1996) and Baker and Wurgler (2002), among others,
showed that the firms whose market value on book value ratio is high have a
higher probability to issue stocks.

6.2 The Investments Opportunities Theory

The link between the investment opportunities of a firm and its corporate
finance activities has been the subject of studies for many years. As early as
1977, Myers emphasized the link between the existence of growing opportu-
nities and the corporate borrowing activity. According to Jung et al. (1996),
managers with growing objectives prefer to raise capital thanks to stocks, be-
cause it gives them more freedom in their use than debt. Actually, contrary
to stock issuing, debt compels the manager to repay cash flows. Therefore, he
cannot use them to invest in low-profit projects. Consequently, debt financing
maximizes the value of firms with low investment opportunities. Conversely,
the freedom in the use of the funds obtained with stock is high for firms with
good investment opportunities, because it makes them more likely to take full
advantage of their investment opportunities. Thus, they supposed that firms
with good investment opportunities are more likely to issue stocks in order
to finance their acquisitions and that, on the contrary, firms with low invest-
ment opportunities finance their acquisitions by issuing debt. Moreover, they
showed that the firms financing their acquisitions with stocks have interesting
investment opportunities and experience an important growth in their assets
during the period between the year preceding the stock issue and the end of
the year following it.

Using this perspective, Martin (1996) studied the relationship between the
payment method used in mergers and acquisitions and the growing opportu-
nities of the firm. He showed that both the target’s and the bidder’s growing
opportunities are important determinants of the payment method. Actually,
he showed that more important investment opportunities, measured by either
using Tobin’s Q or the average annual growth rate of sales in the five-year
period preceding the acquisition, lead to a higher probability for the deal to
be financed with stocks.

6.3 The Business Cycles Hypothesis

According to this hypothesis, the business cycles are supposed to have an
impact on the payment method used in acquisitions. Thus, in Brealey et al.
(1976), Taggart (1977), Marsh (1982), and Choe et al. (1993), an increase in
the general economic activity resulted in an increase in the probability of stock
financing. According to the latter, one can explain this phenomenon by lower
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adverse selection costs, by even more promising investment opportunities and
by a decrease of uncertainty concerning the assets in place. This hypothesis
is weakly empirically verified by Martin (1996).

Lucas and McDonald (1990) proposed a dynamic model of stock issuing
that took into account adverse selection phenomena. However, in their work,
firms do not have the possibility to finance their projects with debt. Their
model predicted that stock issuing tends to follow a general increase of the
market. However, contrary to Choe et al.’s model (1993), it does not predict a
relationship between returns, business cycles, or the stocks issues on the one
hand, and the reaction of the firm’s stock price at the announcement of the
stock issues on the other hand, once the stock price’s variations before the
deal have been taken into account.

7 The Optimal Structure of Capital

According to Murphy and Nathan (1989), the payment method can be chosen
so as to optimize the capital structure of the merged firm after the acquisition.
In this case, the choice of the payment method can be crucial for the success
of a deal, since it influences the financial structure of the merged firm: A cash
acquisition reduces the liquidity of the merged firm, whereas a stock offer re-
duces its leverage. The managers who organize a merger or an acquisition had
better choose the payment method according to the optimal capital structure
of the firm after the acquisition. Thus, according to this theory, cash-rich firms
will use cash and cash-poor firms will use stocks. Moreover, the bidding firms
in debt will use stocks, whereas the bidders with a debt capacity will use debt.
The authors reported that returns in the announcement period are positive
(whatever the payment method), as long as the payment method is consis-
tent with the concept of the optimal capital structure. Conversely, Travlos
and Papaioannou (1991) showed that the abnormal returns of cash and stock
offers are not affected by the market’s perception of changes in the optimal
capital structure. This result is consistent with the hypothesis according to
which the payment method in acquisitions conveys precious information to
the market. The returns or losses come from the informational effects asso-
ciated with the payment method, whatever the financial changes implied by
the deal.

In most cases, an acquisition reduces the variance of the firm’s returns
and also its underlying debt capacity. According to the theory of the increase
of the underlying debt capacity, sometimes also called the coinsurance effects
theory, the firms that merge and do not have a perfect correlation with their
returns decrease their default probability (Lewellen, 1971).

This increase in the debt capacity associated with the deductibility of
interest can be an incentive to realize a tender offer for managers who want
to maximize the wealth of their shareholders. Moreover, Higgins and Schall
(1975) and Galai and Masulis (1976) showed that this coinsurance effect leads
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to an increase in the market value of the firm’s debts, and therefore to a
decrease of the market value of its stocks, which benefits bondholders at the
detriment of shareholders. Thus, the debt level of the merged firm can be
increased beyond the individual levels of the firms, without increasing the
risk of default. In such a case, a stock offer increases this effect and leads to a
more important wealth transfer between shareholders and bondholders, which
results in an important decrease in the stock price. Conversely, a cash offer
could offset the decrease of the bidder’s stock price caused by coinsurance
phenomena. The impact on the stock price would then be zero.

On the contrary, Jensen and Meckling (1976) thought that there is a real
incentive for shareholders of highly leveraged firms to appropriate the bond-
holders’ wealth by investing in projects increasing the firm’s risk. Therefore,
there is an incentive for shareholders to acquire firms that increase the vari-
ability of the bidding firm’s cash flows. Although the deal does not generate
synergies, the bidding firm’s shareholders could thus obtain a positive ab-
normal return to the detriment of bondholders. The bondholders’ loss, which
can be explained by the increase in the risk of default of the existing bonds,
would cause a wealth transfer from bondholders to stockholders in this case.
According to Chowdhry and Nanda (1993), in the case of a fight for control
of a firm, the existence of bondholders allows the bidding firm to offer more
than the target’s valuation, provided they can be expropriated by the use of
new debts whose seniority is equal to or greater than that of the existing debt.

Unfortunately, empirical studies do not really allow one to conclude on the
existence of such a wealth transfer between shareholders and bondholders in
acquisitions. On the one hand, Kim and McConnell (1977), Asquith and Kim
(1982), and Dennis and McConnell (1986) showed that there is no significant
wealth transfer from shareholders to bondholders, and Travlos (1987) even
showed that, on the contrary, bondholders suffer a small loss. Conversely,
Eger (1983) and Settle et al. (1984) showed that the bondholders’ wealth is
positively affected by the acquisitions, these latter generating synergies and/or
a diversification effect for bondholders.

Nonowner-managers can undertake deals reducing the variability of the
cash flows and of the firm’s returns. If such is the case without a capital
restructuring, the wealth of the target’s shareholders will decrease. From the
capital structure perspective, it appears that shareholders will prefer a cash
offer, whereas managers will tend to offer stocks, even more so if the manager’s
situation is inversely linked to the fluctuations of the firm’s returns and cash
flows.

In the banking sector, as Grullon et al. (1997) showed that the higher the
capital ratio of the bidding firm, the higher the probability of stock financ-
ing. According to the authors, this result is linked to the norms of capital
sufficiency in force in the banking sector.
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8 The Theories Linked to the Delays of Achievement
of the Deal

The waiting time for an authorization to undertake a stock offer is longer
than in the case of a cash offer. A bidding firm planning to realize a hostile
takeover is therefore incited to use cash to finance its acquisition so as not to
give the target time to organize its defense.

This waiting time also influences the probability of renegotiations of the
contract’s terms. In the case of a stock offer in a fixed ratio, the stock prices
of both firms may evolve between the announcement and the completion of
the deal, so that one of the two parts may have a strong incentive to ask for
a renegotiation of the offer’s terms. The payment method can thus also be
chosen so as to minimize the renegotiation costs.

8.1 The Control Delays Hypothesis

According to Martin (1996), the acquisition method can play an important
role in the choice of the payment method. A tender offer financed with cash
is subject to the William Act and can begin a few days after the deal’s
announcement. Conversely, a stock offer, whether it is a tender offer or a
merger, has to respect the Securities Act of 1933 and compels the bidding
firm to obtain authorization from the Securities and Exchange Commission
(see Gilson, 1986). This process can take several months, and yet the speed
of the transaction has an impact on the success of a hostile deal: Since the
process is longer in the case of a stock offer, the management of the target
has more time to organize a response. This delay also allows rival bidders to
enter into the competition for the target.

Finally, this delay allows the management of the target to give information
about its own value to his favorite bidder (if it is a different bidder from the
one that realized the initial offer). This information can come from an upward
revision of the estimated cash flows and from a reduction of the uncertainty
borne by the privileged bidder. In this case, the privileged bidder can offer a
higher premium. Therefore, a hostile stock offer is less likely to succeed than
a hostile cash offer.

The results Martin (1996) presented are consistent with this hypothesis.
According to him, the desire to realize the deal as quickly as possible, because
of the actual or potential competition from other bidding firms and the dif-
ferent regulations applicable according to the payment method finally chosen,
encourages managers to use cash in tender offers.

On the other hand, Noronha and Sen (1995) showed that the hostile or
friendly character of the offer is not a function of the payment method.

8.2 The Hypothesis of the Negotiations Costs Minimization

According to Officer (2004), the payment method used to finance an acqui-
sition can be chosen so as to minimize the renegotiation costs of both firms
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at the time of the deal. As the period between the announcement of the deal
and its completion is quite long, managers have an ex-post incentive to ask
for a renegotiation of the contract’s terms if the value of the bidder’s offer has
changed in comparison with the target’s value during this period. The risk
of having to renegotiate an offer is particularly high when the bidding firm
offers a fixed number of its own stocks to acquire the target’s stocks. Indeed,
in this case, a decrease of the bidder’s stock value reduces the value of the
compensation paid to the targets’ shareholders if the elasticity of the offer is
high, that is, if it is sensitive to the changes of value of the merged firm. To
avoid such costly renegotiations of the contract’s terms, the bidding firm can
protect the target from a decrease of the compensation, in case of a fall in
the bidding firm’s stock price, by including, for example, a protection such
as a collar in the offer. Although the renegotiation ex-ante of such a financial
tool is costly for both parties, Officer (2004) thought that the collar is used
as a contractual system that allows one to reduce the ex-ante expected costs
of negotiations during the bid period.

However, the ex-ante expected costs of negotiation between the deal an-
nouncement and its completion will be lower if the elasticity of the offer
matches the relative sensitivity of the bidder and the target to economic
shocks during the period of the bid. In other words, if both firms have to
face very different economic shocks, or if the sensitivity of their market value
is very different for the same shock, then a high elasticity offer (a stock of-
fer) will need an ex-post renegotiation. Because of this, the will to structure
an offer that minimizes the renegotiation costs will lead the bidder and the
target to choose a payment method so that changes in the value of the offer
will correspond to the changes in the value of the target’s assets. The firm
will use cash, if it is not financially compelled, or a protection (of the collar
type, for example) if the target’s and bidder’s stocks prices are not sufficiently
correlated to allow an offer in stocks only without a renegotiation.

Officer (2004) tested this theory in the same article. He showed that the
strongest determinants of the offer’s structure (cash or stocks, use of a collar
or not) are the bidder’s and the target’s market-related stock return volatil-
ities. Thus, this result tends to show that merging firms take into account
the historical differences in the sensitivity of their market values to general
economic shocks. Not to take these differences into account could have the
consequence of overpaying or underpaying the targets’ assets, which could
require costly negotiations once again during the period when the result of
the deal is uncertain. This result is thus consistent with the hypothesis of the
minimization of the renegotiations costs.

9 The Acquisition of Nonpublic Firms

Most studies carried out until now (and therefore summed up in this survey,
cf. Table 4) have dealt with the acquisition of public firms by other public
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firms. Numerous authors have shown a negative reaction to the announce-
ment of a stock offer. For example, Travlos (1987) and Asquith et al. (1987)
showed higher returns for the bidder in a cash offer than in case of a stock
offer. As Agrawal et al. (1992) showed, this negative impact of a stock offer
does not only concern the announcement period, but can also be observed dur-
ing the period following the deal. Conversely, the recent research has shown
that, when the target is a nonpublic firm, a stock offer has a positive impact
and a cash offer has no impact on the bidder’s wealth. Indeed, for Chang
(1998), the acquisition of a nonpublic firm thanks to an offer mainly in stocks
tends to create outside blockholders. According to Shleifer and Vishny (1986),
this can be positive for the bidder’s shareholders, because these blockholders
can generate an effective monitoring of the performance or can ease mergers,
which can increase the bidding firm’s value. Moreover, when firms offer stocks
to acquire firms held by a small number of shareholders, the informational
asymmetry problems described, among others, by Myers and Majluf (1984)
can be lowered by the disclosure of private information to the target’s share-
holders. The author also explains that the shareholder of a privately held
firm owning an important quantity of stocks had better examine the bidder’s
prospects with caution, because, at the end of the deal, he will hold a large
ownership in the merged firm. Therefore, the shareholders of privately held
firms send a positive signal to the market if they accept a stock offer.

Similarly, more recently, Fuller et al. (2002) showed, through a sample of
3,135 deals, that when target firms are subsidiaries or privately held firms, the
bidders’ returns are significantly higher than when the target is a nonpublic
firm, whatever the payment method. They also confirmed that the bidder’s
returns are higher when the deal is financed with stocks than when it is fi-
nanced with cash. The authors also showed that, for public firms, when the
relative size of the targets increases, the returns increase in cash offers and
decrease in stock offers and that they are not changed in mixed offers. On
the contrary, concerning subsidiaries and privately held acquisitions, there is
a positive relation between the relative size of the target and the positive
abnormal returns of the bidding firm. According to these authors, this dif-
ference between the market’s reaction in nonpublic acquisitions and in public
acquisitions is due to the creation of blockholders, to a liquidity effect, and
to taxation. The liquidity effect comes from the fact that the privately held
firms and the subsidiaries cannot be sold as easily as public firms. This poor
liquidity makes these investments less attractive and less valuable than similar
investments (Koeplin et al., 2000).

According to Hansen and Lott (1996), public firms’ shareholders own di-
versified portfolios holding stocks from other firms, but these portfolio cannot
include privately held firms’ stocks. This is why they thought that given the
rule of value conservation, shareholders do not care if managers overpay public
firms’ acquisitions, because the losses suffered by the bidders are wealth trans-
fers to the target’s shareholders. The acquisition of a nonpublic firm is differ-
ent because the stocks of such firms are not part of the bidder’s shareholders
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portfolio, so that the shareholder of the bidding firm will demand that only
creating value acquisitions of privately held firms should be realized.

Faccio et al. (2006) tested these different hypotheses. First, they tested if
the public firm effect could be due to the creation of blockholders. Using a
proxy for the creation of blockholders, they showed that contrary to Chang’s
hypothesis, in a slightly higher proportion, the acquirers of nonpublic firm
structure their deal so as to create blockholders in the bidding firm more often
than the acquirers of nonpublic firms do. Whether a blockholder is created or
not, the abnormal return of the nonpublic firms is positive and is significantly
different from zero. It is also significantly higher than the abnormal return
of public target firms. Moreover, the average abnormal return of the bidding
firm is not statistically different from zero whether there is a blockholder or
not. The public firm effect is therefore not a blockholder creation effect.

Faccio et al. (2006) then tested the bidder size effect, according to which
large bidders try to acquire public firms, whereas smaller bidders try to acquire
nonpublic firms. Not surprisingly, they showed that the acquirers of public
firms tend to be larger than the acquirers of nonpublic firms. Although small
acquirers as well as large acquirers suffer losses when they acquire public firms,
small acquirers have lower performance in their sample. On the contrary,
small acquirers have better performance than large acquirers when they buy
nonpublic firms. However, both small and large acquirers have positive and
significant abnormal returns when they acquire nonpublic firms. Finally, both
small and large nonpublic bidding firms earn significantly higher returns than
those earned by small and large acquirers of public firms. The public firm
effect is not a disguised size effect.

Faccio et al. (2006) also offered a test of the Hansen and Lott theory (1996).
According to this hypothesis, shareholders should not worry about the fact
that managers overpay their acquisition of public firms’ subsidiaries. In their
sample, 95% of the parent companies of subsidiaries are public. However, they
showed a significantly positive average return for the subsidiaries. The result
is inconsistent with the Hansen and Lott theory (1996).

Since the results are not consistent either with Fuller et al.’s hypothesis
of illiquidity premium (2002), the study carried out by Faccio et al. (2006)
contradicted one whole theories allowing to explain the abnormal returns ob-
served in the acquisitions of nonpublic firms. Thus, until now, research has not
succeeded in understanding why the abnormal returns are higher in nonpublic
acquisitions than in public acquisitions.

10 Conclusions

Since the late 1970s, finance researchers have been studying the elements in-
fluencing the choice of the payment methods in mergers and acquisitions. This
study aimed at presenting the main theories developed until now concerning
this issue and their main empirical tests.
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A first group of theories is linked to the debt of the two merging firms.
Thus, some authors have suggested that the payment method was chosen
to optimize the capital structure of the merged firm after the completion
of the deal. Others such as Jensen have shown the positive role that debt
could play on the actions of the managers. Thus, in addition to the outside
monitoring and the managerial ownership, debt may encourage managers to
act in the interest of the shareholders. The legislature also has a large impact
on the choice of the payment method. Indeed, in some countries, taxation
on the capital gains realized is immediate in cash offers and postponed in
stock offers, which makes cash less attractive for the target’s shareholders,
who are unwilling to be taxed immediately. On the contrary, the legislature
makes stock offers less interesting for the bidding firm, which is impatient to
realize its acquisition, because in this case, the delays are higher. The past
and future performances of both firms, as well as those of the market, are also
elements that can influence this choice. Finally, the informational asymmetry
problems between the managers of both firms and the competition between
the different bidders are also supposed to influence the choice of the payment
method, because in these two cases, the use of stocks is a disadvantage in
comparison with the use of cash.

The main result of this survey is that empirical studies often do not al-
low one to validate these different theories because they show contradictory
results. The need for knowledge concerning this issue is therefore very impor-
tant, all the more so as the last research has raised more questions than it has
solved problems. Thus, for example, the different theories designed to explain
why the abnormal returns are higher in nonpublic acquisitions than in public
acquisitions are not empirically validated. Future research will therefore have
to answer this question.

The choice of the payment method in mergers and acquisitions is a very
difficult issue because it is influenced by a lot of variables. Before he makes
a decision, the manager has to take into consideration his own interests, the
legislation, and the past and future performance of both firms. This could
probably explain why empirical studies are often contradictory.

Rejecting all existing theories on account of the fact that some empirical
studies do not allow one to validate them would without doubt be a mistake.
On the contrary, studying the reasons why in some cases those theories are
validated and in other cases rejected (by examing the composition of the
sample in terms of friendly/hostile mergers and acquisitions, target status,
value of the deal, etc.) would certainly be fruitful.
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1 Introduction

In recent years, support vector machines (SVMs) have been applied in several
problems in finance and accounting, such as credit rating (Huang et al., 2004;
Hardle et al., 2004; Lee, 2007), bankruptcy prediction (Hardle et al., 2005;
Min and Lee, 2005; Salcedo-Sanz et al., 2005; Shin et al., 2005; Gaganis et al.,
2005; Min et al., 2006; Wu et al., 2007), financial time-series forecasting (Tay
and Cao, 2001, 2002; Cao, 2003; Huang et al., 2005; Pai and Lin, 2005), and
auditing (Doumpos et al., 2005). In general, the results from these studies are
quite promising. The purpose of the present study is to illustrate the appli-
cation of SVMs in the development of classification models for the prediction
of acquisition targets.

Over the last 30 years, a number of empirical studies have developed clas-
sification models using publicly available information to identify potential
acquisition targets. From a methodological perspective, discriminant analysis
(Simkowitz and Monroe, 1971; Stevens, 1973; Barnes, 1990) and logit analysis
(Dietrich and Sorensen, 1984; Barnes, 1998, 1999; Powell, 2001) have domi-
nated the field. Other techniques that have been applied are artificial neural
networks (Cheh et al., 1999), rough sets (Slowinski et al., 1997), the recursive
partitioning algorithm (Espahbodi and Espahbodi, 2003), and multicriteria
decision aid (MCDA) (Zopounidis and Doumpos, 2002; Doumpos et al., 2004;
Pasiouras et al., 2006).

SVMs were only recently introduced in the field by Pasiouras et al. (2005),
who developed a nonlinear model using the RBF kernel and compared it
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with models developed with various other techniques.1 Hence, the use of the
methodology in the prediction of acquisition targets is still in its infancy. In
the present study, we use a sample of EU banks to investigate the relative
performance of both linear and nonlinear SVMs models with a polynomial
and an RBF kernel.

We focus on the EU banking industry for two reasons. First, only a few
recent studies (Pasiouras et al., 2005, 2006) have developed prediction models
specifically designed for banks, whereas previous studies that focused on non-
financial sectors excluded banks from the analysis due to differences in their
financial statements and the environment in which they operate. Second, over
the last decade the European financial sector has witnessed a large number of
mergers and acquisitions (M&As) that significantly transformed the market.
As Altunbas and Ibanez (2004) pointed out, “According to most bankers and
academics, [...], the process of banking integration seems far from completed
and is expected to continue reshaping the European financial landscape in the
years to come” (p. 7). Hence, several parties could be interested in the de-
velopment of classification models capable of predicting acquisition targets in
the banking industry. For instance, Tartari et al. (2003) pointed out that the
prediction of acquisitions is of major interest to stockholders, investors, and
creditors, and generally to anyone who has established a relationship with the
target firm. Obviously, the managers of the banks are also among those who
have an increased interest in the development of prediction models. Further-
more, the results of this study would be of particular interest to academics
and researchers who work on the prediction of acquisitions and bankruptcy,
and other classification problems in finance.

The rest of the chapter is organized as follows. Section 2 discusses the
recent trends in M&As in the EU banking industry. Section 3 provides a
review of the literature. Section 4 outlines the main concepts of support vector
machines, while Section 5 describes the data and variables. Section 6 presents
the empirical results, and Section 7 discusses the concluding remarks.

2 M&As Trends in the EU Banking Industry

The level of M&As in the European banking sector has been relatively high
in recent years, resulting in the number of banks operating in the EU being
reduced by 25% between 1997 and 2003 (European Central Bank-ECB, 2004).
The M&A activity was very intense during the late 1990s, although it became
considerably weaker since 2001. More detailed, ECB (2005a) indicates that
over the entire period between 1992 and 2004, the highest activity, with respect
to the number of M&As, was recorded during 1999 followed by 2000. Not
surprisingly, the value of M&As also reached a peak in 1999, with 1998 and

1 Discriminant analysis, logit analysis, utilities additives discriminants, multi-group
hierarchical discrimination, nearest neighbors, classification and regression trees.
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2000 recording relatively high figures as well. However, both the number and
especially the value of M&As declined after 2000. Campa and Hernando (2006)
indicated that the average monthly volume fell from 21.1 billion Euros in 2000
to 5.5 billion Euros in 2003, although it slightly increased to 6.6. billion Euros
in 2004.

Panel A of Table 1 provides a breakdown of 2,153 M&As of credit institu-
tions in the EU-15 that were recorded by the European Central Bank (ECB)
between 1995 and the first half of 2000 (ECB, 2000). Panel B provides simi-
lar data from ECB (2006a) for 694 M&As in the EU-25 banking sector that
occurred between 2000 and the first half of 2006. Direct comparisons between
the data in Panels A and B should be treated with some caution; first, due
to the different countries that they cover; second, because data for the 2000
report (Panel A) were collected from EU central banks and supervisory au-
thorities, while data for the 2006 report were obtained from the Bureau Van
Dijk data provider.

Table 1. Number of M&As in the EU Banking Sector

Panel A: M&As Among EU-15 Credit Institutions, 1995–2000

1995 1996 1997 1998 1999 2000A Total

Domestic M&As 275 293 270 383 414 172 1,807
M&As within EEA 020 007 012 018 027 023 0,107
M&As with third country 031 043 037 033 056 039 0,239
Total 326 343 319 434 497 234 2,153

Panel B: M&As in the EU Banking Sector, 2000–2006

2000 2001 2002 2003 2004 2005 2006H1 Total

Domestic M&As
MU-12 058 045 069 068 45 058 16 359
EU-25 070 065 074 073 61 065 21 429

Cross-border EU M&As
MU-12 027 017 019 018 18 021 09 129
EU-25 054 032 036 027 28 031 13 221

M&As with third country
MU-12 001 005 002 003 01 008 03 023
EU-25 004 007 005 008 02 012 06 044

Total
MU-12 086 067 090 089 64 087 28 511
EU-25 128 104 115 108 91 108 40 694

Sources: Panel A: ECB (2000), p. 10; Panel B: ECB (2006a), p. 66.

However, irrespective of the panel and the initial source of information, the
data indicate that during both periods domestic M&As were more common
than cross-border ones. In more detail, ECB (2006a) indicated that between
1993 and 2003, the number of domestic M&As accounted for 80% of total
consolidation activity within the EU. As Walner and Raes (2005) pointed out,
the dominance of domestic consolidation in total was even more remarkable
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in terms of value, accounting for a share of about 90% or more in 13 out of the
17 years between 1987 and 2003 and falling below 70% only in 1989. However,
a substantial number of EU cross-border M&As were recorded in 2005 and
early 2006 (ECB, 2006a).

As it concerns the disaggregation of cross-border deals, the ECB (2000)
report indicated that between 1995 and 2000, 5% of the total M&As oc-
curred within the European Economic Area (EEA) and 11% with banks from
a third country. During this period, most European banks have chosen to
expand into Latin America (e.g., banks from Netherlands, Spain, Portugal,
and Italy), Southeast Asia (e.g., banks from Netherlands), and Central and
Eastern Europe (e.g., banks from the Netherlands, Ireland) probably in the
search for markets offering higher margins or because of historical connec-
tions (ECB, 2000). Nevertheless, in some cases they have also expanded into
developed markets such as the United States (e.g., banks from Germany).
However, Panel B from the 2006 report shows that over the most recent years
the number of EU cross-border deals was higher than the one of deals with
third countries. In more detail, as the ECB (2006a) report indicated a sub-
stantial number of EU cross-border M&As were completed in 2005 such as
the ones of Unicredit-HypoVereinsbank, ABN-AMRO – Banca Antonveneta,
and Foreningssparbanken-Hansabank. Nevertheless, M&As involving institu-
tions outside the EU also played a significant role in 2005 and early 2006. For
example, British banks were involved in deals in South Africa, Malaysia, and
Korea, while Austrian banks were involved in deals in Romania.

3 Literature Review

Prior literature related to the present chapter can be classified in two broad
categories. The first consists of studies that focus on the prediction of acqui-
sition targets. The second consists of studies that examine various aspects of
M&As among banking institutions in the EU. In the sections that follow, we
discuss in turn each category.

3.1 Predicting Acquisition Targets

Over the last years around 30 studies have proposed the development of quan-
titative models to predict acquisition targets. These studies were published
between 1971 and 2006, and more than half of them appeared over the last
10 years. With the exception of Pasiouras et al. (2005, 2006), which pooled a
sample of banks over the 15 EU member states, all the remaining studies have
focused on individual countries. Obviously the most widely studied country
is the United States (13), followed by the UK (10). The only other individual
counties that have been examined are Greece (3) and Canada (2).

Some of these studies search for the best predictive variables of acquisitions
(Bartley and Boardman, 1990; Walter, 1994; Cudd and Duggal, 2000), develop
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industry-specific models (Kim and Arbel, 1998), or reexamine methodological
issues, and usually employ a single classification technique (Palepu, 1986;
Barnes, 1998, 1999). They have considered, inter alia, the impact of alternative
forms of variables, such as raw versus industry-adjusted (Cudd and Duggal,
2000; Barnes, 2000; Pasiouras et al., 2005) or historical versus current cost
data (Bartley and Boardman, 1990; Walter, 1994); the impact of alternative
ways of calculating the cutoff point (Palepu, 1986; Barnes, 1998, 1999; Powell,
2001; Pasiouras et al., 2005); and the impact of the proportion of acquired and
non-acquired firms in training and validation samples (Palepu, 1986; Pasiouras
et al., 2005).

Other studies have searched for the most effective empirical method for
prediction. Hence, alternative methods have been compared on the basis of
their prediction accuracy (Barnes, 2000; Doumpos et al., 2004), or new meth-
ods have been introduced in the prediction of acquisition targets and compared
with existing methods (Cheh et al., 1999; Slowinski et al., 1997; Zopounidis
and Doumpos, 2002; Espahbodi and Espahbodi, 2003; Pasiouras et al., 2005).

Table 2 presents the distribution of the methods these studies have used to
develop the acquisition prediction models. As mentioned above, some studies
have employed more than one method of prediction, and so the total fre-
quency of methods exceeds the number of studies. Following the pioneering
studies in bankruptcy predictions, researchers in the prediction of acquisition
targets initially employed discriminant analysis (DA). The statistical assump-
tions of DA motivated other researchers to employ logit analysis (LA), while
more recently, nonparametric techniques such as rough sets (RS), artificial
neural networks (ANN), probabilistic neural networks (PNN), multicriteria
decision aid (MCDA), recursive partitioning algorithm (RPA), support vec-
tor machines (SVMs), and nearest neighbors (NN) were used. Finally, more
recently, Cheh et al. (1999), Tartari et al. (2003), and Pasiouras et al. (2005)
proposed the combination of individual models into integrated ones. While
DA and LA have been most frequently employed for comparing prediction
models, it is worthwhile pointing out that very few studies have attempted to
simultaneously compare several classification techniques in predicting acquisi-
tions (Espahbodi and Espahbodi, 2003; Pasiouras et al., 2005). The common
consensus emerging from these studies, despite the advanced nature of clas-
sification techniques that have been recently used, is that the prediction of
acquisition targets remains a difficult task, since no technique has been found
to clearly outperform the others.

3.2 Acquisitions in the EU Banking Industry

Recent studies on the EU banking sector have focused on examining the scale
and operating efficiency of the merging institutions (Vander Vennet, 1996;
Altunbas et al., 1997; Huizinga et al., 2001; Diaz et al., 2004; Altunbas and
Ibanez, 2004; Campa and Hernando, 2006), the effect of M&A announcements
on the share prices of the financial institutions (Tourani-Rad and Van Beek,
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Table 2. Frequency of Appearance of Classification Techniques

Method Freq. Method Freq.

Discriminant analysis 20 Support vector machines 1
Logistic regression 14 PAIRCLAS 1
UTADIS 05 Probit analysis 1
MHDIS 03 Probabilistic neural networks 1
Artificial neural networks 03 Nearest neighbors 1
Recursive partitioning algorithm 02 Mahalanobis distance 1
Rough sets 02 Majority voting 1
Stacked generalization 02

1999; Cybo-Ottone and Murgia, 2000; Beitel and Schiereck, 2001; Beitel et al.,
2004; Lepetit et al., 2004; Campa and Hernando, 2006), and the impact on
the takeover premium paid (Dunis and Klein, 2005).

In one of the earliest studies, Vander Vennet (1996) reported that domestic
mergers among equal-sized partners significantly increased the performance
of the merged banks, while improvement in cost efficiency was also found in
cross-border acquisitions. Furthermore, domestic takeovers were found to be
influenced predominantly by defensive and managerial motives such as size
maximization. Altunbas et al. (1997) examined the cost implications from
hypothetical cross-border bank mergers in the EU. They indicated that the
greatest opportunities for cost savings would appear to be generated by merg-
ers between German and Italian banks, while mergers between French and
German banks would likely result in substantial cost increases. Huizinga et al.
(2001) found evidence of substantial unexploited scale economies and large
X-inefficiencies in European banking. Comparing merging banks with their
nonmerging peers, they found that large merging banks exhibit a lower degree
of profit efficiency than average, while small merging banks exhibit a higher
level of profit efficiency than their peer group. Their dynamic merger analysis
indicated that the cost efficiency of merging banks is positively affected by
the merger, while the relative degree of profit efficiency is only marginally
improved. Finally, they found that deposit rates tend to increase following
a merger, suggesting that the merging banks were unable to exercise greater
market power. Diaz et al. (2004) examined the bank performance derived from
both the acquisition of another bank and the acquisition of nonbanking finan-
cial entities in the EU. The results show an increase in the acquirer’s long-term
profitability, which is more significant for bank acquisitions than for nonbank
acquisitions. Altunbas and Ibanez (2004) found that, on average, bank merg-
ers in the EU result in improved return on capital. The results also indicate
that, for domestic deals, it could be quite costly to integrate dissimilar insti-
tutions in terms of their loan, earnings, cost, deposits, and size strategies. For
cross-border deals, differences in merging banks in their loan and credit risk
strategies are conducive to higher performance, while diversity in their capital,
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cost structure, as well as technology and innovation investment strategies are
counterproductive from a performance standpoint.

Using event study methodology, Tourani Rad and Van Beek (1999) found
that targets’ shareholders experience significant positive abnormal returns,
while abnormal returns to bidder’s shareholders are not significant. Further-
more, the results suggest that returns to bidders are more positive when the
bidder is larger and more efficient. Cybo-Ottone and Murgia (2000) found a
positive and significant increase in value for the average merger at the time
of the deal’s announcement. However, the results are mainly driven by the
significant positive abnormal returns associated with the announcement of do-
mestic deals between two banks and by product diversification of banks into
insurance. Deals that occur between banks and securities firms and between
domestic and foreign institutions do not gain a positive market’s expectation.
In a recent study, Beitel and Schiereck (2001) found that the shareholders of
the targets obtain a positive and significant revaluation of their shares, while
effects for bidders are mostly insignificant. Taken as a whole, M&As create
value on an aggregate basis. In a latter study, Beitel et al. (2004) examined the
same data set but with a different objective. The authors analyze the impact
of 13 factors such as relative size, profitability, stock efficiency, market-to-book
ratio, prior target stock performance, stock correlation, M&A experience of
bidders, and method of payment on M&As success of European bank mergers
and acquisitions, in an attempt to identify those factors that lead to abnormal
returns to target shareholders, bidders, shareholders, and the combined entity
of the bidder and the target around the announcement date of the M&A. Their
results show that many of these factors have significant explanatory power,
leading the authors to conclude that the stock market reaction to M&A an-
nouncements can be at least partly forecasted. Lepetit et al. (2004) examined
stock market reactions to bank M&As, by distinguishing between different
types of M&As. The results showed that there is, on average, a positive and
significant increase in the value of target banks and that the market distin-
guishes among the different types of M&As. In another relatively recent study,
Scholtens and Wit (2004) investigated the announcement effect of large bank
mergers on the European and U.S. stock markets. They found that mergers
result in small positive abnormal returns, as well as that target banks realize
significantly higher returns than bidders. They also documented the existence
of differences between the announcement effects of European and U.S. bank
mergers.

Campa and Hernando (2006) examined both the shareholder returns and
changes in the operating performance of financial institutions. They found
that merger announcements imply positive excess returns to the shareholders
of the target firm around the announcement date, and a slight positive excess
return during the three months prior to the announcement. Returns to share-
holders of the acquiring firms were essentially zero around the announcement,
while one year after the announcement excess returns were not significantly
zero for either targets or acquirers. With regard to the change in the operating
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performance of the acquired banks, Campa and Hernando (2006) found ev-
idence of substantial improvements in their return on equity and efficiency;
however, they pointed out that these improvements are not correlated with
the excess returns earned by shareholders upon announcement of the deal.

Dunis and Klein (2005) followed a somewhat different underlying ap-
proach. They consider an acquisition as an option of potential benefits and
applied a real option pricing theory model to examine whether mergers in
their sample were possibly overpaid. The results show that the option pre-
mium exceeds the actual takeover premium, suggesting that the acquisitions
in the sample are not, on average, overpaid. Their further analysis shows, as-
suming that the option premium equals the takeover premium, that at least
one of the following is true: (1) The implicitly assumed volatility is too low;
(2) the assumed time to maturity is very short; and (3) the assumption of
subsequent market performance is too optimistic.

4 Support Vector Machines

While the preceding literature review serves to highlight a complex set of
factors influencing mergers and acquisitions, the approach in developing pre-
diction models rests on determining whether information from the outcomes,
as reflected in the data prior to an acquisition, can provide signals of that
impending event. In a dichotomous classification setting, that is, to predict
one or the other class from a combined set of two classes (e.g., acquisitions
and non-acquisitions), the development of a support vector machines model,
as with other models of prediction, begins with the design of a training sam-
ple T = {xi, di}, i = 1, 2, . . . , n, where xi ∈ R

m is the input information for
the training object i on a set of m independent variables and di ∈ {−1,+1}
is the corresponding outcome (dependent variable). Formally, the aim of the
analysis is the development of a function f(x) → d that distinguishes between
the two classes. In the simplest case, f(mathbx) is defined by the hyperplane
xw = γ as follows:

f(x) = sgn(xw − γ),

where w is the normal vector to the hyperplane and γ is a constant. Since f
is invariant to any positive rescaling of the argument inside the sign function,
the canonical hyperplane is defined by separating the classes by a “distance”
of at least 1. The analysis of the generalization performance of the decision
function f(x) has shown that the optimal decision function f is the one that
maximizes the margin induced in the separation of the classes, which is 2/‖w‖
(Vapnik, 1998).

Hence, given a training sample of n observations, the maximization of
the margin can be achieved through the solution of the following quadratic
programming problem:
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min 1
2w


w + Ce
y,
s.t. D(Xw − eγ) + y ≥ e,

y ≥ 0, w, γ ∈ R,
(1)

where D is an n× n matrix such that Dii = di and Dij = 0, ∀i 
= j, X is an
n×m matrix with the training data, e is a vector of ones, y is an n×1 vector
of positive slack variables associated with the possible misclassification of the
training objects when the classes are not linearly separable, and C > 0 is a
parameter used to penalize the classification errors.

From the computational point of view, instead of solving the primal prob-
lem (1), it is more convenient to consider its dual Lagrangian formulation:

max e
u− 1
2u


DXX
Du,
s.t. e
Du = 0,

0 ≤ u ≤ Ce.

The decision function is then expressed in terms of the dual variables u as
follows:

f(x) = sgn(xX
Du− γ).

Burges (1998) highlighted two reasons for using the Lagrangian formula-
tion of the problem. The first is that the inequality constraints will be replaced
by constraints on the Lagrange multipliers themselves, which will be easier to
handle. The second is that in this reformulation of the problem, the training
data will only appear (in the actual training and test algorithms) in the form
of dot products between vectors. The latter is a crucial issue allowing general-
izing of the procedure to the nonlinear case. Therefore, to generalize a linear
SVMs model to a nonlinear one, the problem data are mapped to a higher-
dimensional space H (feature space) through a transformation of the form
xix


j → φ(xi)φ
(xj). The mapping function φ is implicitly defined through a
symmetric positive definite kernel function K(xi,xj) = φ(xi)φ
(xj). Various
kernel functions exist, such as the polynomial kernel, the radial basis function
(RBF) kernel, the sigmoid kernel, etc. (Schölkopf and Smola, 2002). The rep-
resentation of the data using the kernel function enables the development of
a linear model in the feature space H . Since H is a nonlinear mapping of the
original data, the developed model is nonlinear in the original input space.
The model is developed by applying the above linear analysis to the feature
space H .

Several computational procedures have been proposed to enable the fast
training of SVMs models. In this study we use the proximal SVMs method-
ology proposed by Fung and Mangasarian (2001), where the primal problem
(1) is transformed to the following optimization problem:

min 1
2

(
w
w + γ2

)
+ 1

2Cy
y,
s.t. D(Xw − eγ) + y = e.

(2)
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This new formulation only involves equality constraints, thus enabling the
construction of a closed-form optimal solution directly from the training data,
without requiring the use of any quadratic programming algorithm.

As previously mentioned, we explore the development of both linear and
nonlinear SVMs models with a polynomial and an RBF kernel. The width
of the RBF kernel was selected through a cross-validation analysis to ensure
the proper specification of this parameter. A similar analysis was also used to
specify the trade-off constant C. All the data used during model development
were normalized to zero mean and unit variance.

5 Data and Variables

5.1 Data

The data set we employ consists of 168 commercial banks, operating in the
EU-15, that were acquired between 1998 and 2002, as well as of 566 non-
acquired ones.2 Table 3 presents the number of observations by country and
year. This data set was constructed as follows.

Table 3. Observations in Sample by Country and Year

1998 1999 2000 2001 2002 Total
A NA A NA A NA A NA A NA A NA

Austria 2 10 0 10 0 30 1 20 1 13 4 20
Belgium 3 30 0 10 3 10 0 10 3 13 9 19
Denmark 0 00 2 30 2 80 3 20 3 28 10 41
Finland 0 00 0 00 1 00 1 00 0 3 2 3
France 10 40 9 90 7 150 3 80 6 105 35 141
Germany 3 30 3 20 4 120 5 30 1 68 16 88
Greece 0 00 3 00 4 00 0 00 1 6 8 6
Ireland 0 10 1 10 0 00 0 10 0 8 1 11
Italy 1 00 5 40 14 40 3 20 9 37 32 47
Luxembourg 1 30 1 20 7 60 7 40 2 42 18 57
Netherlands 0 40 1 00 1 10 0 00 0 18 2 23
Portugal 0 10 0 00 4 00 2 00 0 8 6 9
Spain 3 20 3 20 6 40 1 10 4 32 17 41
Sweden 0 00 0 00 0 00 1 00 0 4 1 4
UK 1 20 1 40 3 20 1 40 1 44 7 56

Total 24 240 29 290 56 560 28 280 31 429 168 566

A=acquired, NA=non-acquired.

The acquired banks were first identified in three databases: Bankscope,
Zephyr, and BANKERSalmanac.com. In order to be included in the sample,
2 This sample or subsamples thereof has been used in the past in the studies of

Pasiouras et al. (2005, 2006).



Support Vector Machines in the Prediction of Acquisition Targets 441

acquired banks had to meet the following criteria: (1) They were acquired
between January 1, 1998, and December 31, 2002. This time period was chosen
because it offers a large sample without sacrificing the stability of a short
time period, thereby minimizing the effect of economic variations that could
bias the study;3 (2) the acquisition represented the purchase of 50% or more
of ownership of the acquired bank;4 (3) they operated in one of the 15 EU
countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, UK); (4)
all were classified as commercial banks in the Bankscope database;5 (5) all
had financial data available for two years6 before the year of acquisition (i.e.,
for acquisitions that occurred in 1998, the earliest year considered would be
1996) in Bankscope.

In order to be included in the sample, non-acquired banks had to (1)
operate in one of the 15 EU countries, (2) be classified as commercial banks
in the Bankscope database, (3) financial data available (in Bankscope) for the
entire period 1996–2002. This requirement was placed for two reasons. First, it
ensures than an acquired bank, if not identified in the sources of acquisitions,
could not be wrongly considered as non-acquired. (It is obvious that if a bank
was 100% acquired in a given year, e.g., 1998, it could not have had data from
the following years, i.e., 1999, 2000, etc.). Second, with available data for all
non-acquired banks for all years, the possibility of randomly matching with
an acquired bank in any fiscal year is ensured.

An important issue of concern in evaluating the classification ability of a
model is to ensure that it has not overfit the training (estimation) data set.
As Stein (2002) mentioned, “A model without sufficient validation may only
be a hypothesis.” Prior research shows that when classification models are

3 In general, collecting a large sample requires a long time span. However, the litera-
ture suggests that acquisition likelihood models are not robust over time (Barnes,
1990; Powell, 1997), as the economic environment, the characteristics of firms, and
the motives for acquisitions change over time. Espahbodi and Espahbodi (2003)
argued that in order to minimize the time-series distortion in the models, it would
be essential to limit the analysis to the shortest period of time possible. Neverthe-
less, an adequate number of acquired banks for development and validation of the
models is required. As Beitel and Schiereck (2001) pointed out, during the period
1998–2000, more M&A deals occurred in the EU banking industry than during
the previous 14 years. Therefore, because of the large number of mergers during
the selected period, it is possible to obtain an adequate set of recent observations
that does not span an extremely large period of time.

4 The Bankscope and BANKERSalamanac.com provide information only for full
acquisitions and, therefore, we had to rely only on Zephyr for the selection of
data relative to majority acquisitions. Consequently, whether our list is complete
or not depends highly on the availability of information in Zephyr.

5 The reason only commercial banks are included is to avoid comparison problems
between different types of banks (e.g., cooperative, investment, etc.).

6 Data for two years prior to the acquisition were necessary to allow us to calculate
the variable GROWTH discussed in Section 5.2.
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used to reclassify the observations of the training sample, the classification
accuracies are “normally” biased upward. Thus, it is necessary to classify a
set of observations that were not used during the development of the model,
using some kind of testing sample.

As Barnes (1990) pointed out, given inflationary effects, technological, and
numerous other reasons, including changing accounting policies, it is unrea-
sonable to expect the distributional cross-sectional parameters of financial
ratios to be stable over time. Thus, a superior approach would require that
the model be tested against a future period, as this approach more closely re-
flects a “real-world” setting. As Espahbodi and Espahbodi (2003) mentioned
“After all, the real test of a classification model and its practical usefulness
is its ability to classify objects correctly in the future. While cross-validation
and bootstrapping techniques reduce the over-fitting bias, they do not indicate
the usefulness of a model in the future.” Therefore, in the present study, in
order to consider the case of a drifting population (i.e., change of population
over time) and determine if the variables in the prediction model and their
coefficients remain stable over other time periods, the data set was split into
two distinct samples.

The first set includes 137 banks that were acquired between 1998 and
2001 and an equal number of randomly selected, non-acquired banks matched
by fiscal year.7 This set of companies was used to estimate the model (i.e.,
training sample). The second set includes 31 banks acquired during 2002 and
the remaining 429 non-acquired banks not used for model development (i.e.,
566 non-acquired banks in the initial observation set minus 137 banks used in
the training sample). This set was used to examine the out-of-time and out-
of-sample performance of the models (i.e., validation). Financial statements
from the most recent year prior to the acquisition were used in the analysis
(i.e., the first year before acquisition for the acquired banks and the same
fiscal year for the non-acquired ones).

5.2 Selection of Variables

Table 4 presents a list of the variables included in the models, while in the
discussion that follows we outline the relevance between these variables and
banks’ M&As.

EQAS is a bank’s equity to assets ratio, used as a measure of capital
strength. Prior literature suggests that capital strength may be of particular
importance in the acquisition decision, with most empirical studies indicating
7 In addition to time, researchers usually match firms on the basis of their size.

However, if a characteristic is used as a matching criterion, its effects are obviously
excluded from the analysis (Hasbrouck, 1985). For example, matching by size
prevents analysis of the effects of size on the likelihood of acquisition. Since the
literature suggests that size is an important explanatory variable in acquisitions,
it was preferred in this study to use it as an independent variable rather than as
a matching characteristic.
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Table 4. Financial Variables Used in the Models

Category Acronym Calculation

Capital strength EQAS Equity/total assets
Profit efficiency ROAA Return on average assets
Cost efficiency COST Cost to income ratio
Loan activity LOANS Net loans/total assets
Liquidity LIQCUST Liquid assets/customer & short-term funding
Growth GROWTH Total assets annual change
Size TASSET Total assets
Market power MSHARE Deposits market share

a negative relationship between capital ratios and the probability of being
acquired (Hannan and Rhoades, 1987; Moore, 1996; Wheelock and Wilson,
2000). Harper (2000) argued that “the key factor driving mergers and acqui-
sitions in financial systems is the industry’s need to rationalize its use of cap-
ital” (p. 68). This argument is based on the belief that today risks are traded
on markets rather than absorbed through capital held on a balance sheet.
Hence, in order to remain competitive, banks face the need either to release
surplus capital or to raise the rate of return to the capital they retain. This
can be achieved through M&As. Banks may also undertake M&As to meet
capital regulatory requirements. In a recent study, Valkanov and Kleimeier
(2007) examined a sample of 105 U.S. and European bank mergers from 1997
to 2003 and found that U.S. target banks are better capitalized than their
acquirers and non-acquired peers and that U.S. banks maintain higher capital
levels than European banks. They suggest that U.S. banks strategically raise
their capital levels to avoid regulatory scrutiny.

ROAA is a bank’s return on average total assets and is a measure of prof-
itability. The inefficient management hypothesis states that acquisitions serve
to drive out bad management that is not working in shareholder interests
(Manne, 1965). Hence, poorly managed banks are likely targets for acquirers
who think that they can manage more efficiently the assets of the acquired
bank and increase profits and value (Hannan and Rhoades, 1987). The re-
sults from empirical studies are mixed. Hannan and Rhoades (1987) for the
United States, and Pasiouras and Zopounidis (2008) for Greece, found no ev-
idence to support the argument that poorly managed banks are more likely
to be acquired. Pasiouras and Gaganis (2007a) found a positive relationship
between profitability and banks’ acquisition likelihood for Germany, and a
negative one for France, UK, Italy, and Spain. However, only the latter two
were statistically significant. Pasiouras and Gaganis (2007b), who examined
Asian banking, estimated three binary logistic models to determine the prob-
ability, respectively, of being acquired (i.e., target) versus not being involved
in an acquisition, of being an acquirer versus not being involved in an acqui-
sition, and of being an acquirer rather than a target. While ROAA was not
significant in the first two models, it was positive and significant in the third,
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indicating that banks with low profitability would be likely acquisition targets
of a bank that could operate them differently from the current managers and
produce higher profits. Other studies, such as the ones of Moore (1996) and
Wheelock and Wilson (2000) for the United States, found profitability to be
negatively related to the acquisition probability.

COST is a bank’s cost to income ratio and serves as a measure of effi-
ciency in expense management.8 A bank characterized by efficient expense
management will have a low cost to income ratio, while a bank with poor cost
efficiency will be characterized by a high cost to income ratio. This variable
is also related to the inefficient management hypothesis, as profits are not
only affected by the ability of managers to generate revenue but also by their
ability to manage expenses. Focarelli et al. (1999) for Italy and Wheelock and
Wilson (2000) for the United States found that less cost-efficient banks are
more likely to be acquired. Similar results were obtained by Pasiouras and
Gaganis (2007a) for the French and German banking sectors.

LOANS is a bank’s net loans to total assets ratio and is a measure of loan
activity. Under the intermediation approach (Sealey and Lindley, 1977), loans
are considered the first of a bank’s basic outputs (securities being the second)
and usually make up a great percentage of total assets.9 Hannan and Rhoades
(1987) argued that a high level of loans might be an indicator of aggressive
behavior by the target bank and strong market penetration, hence making the
bank an attractive target. On the other hand, a low level of loan activity may
indicate a bank with conservative management that an aggressive acquiring
bank could turn around to increase returns. The results of previous studies
are mixed. While most of the studies suggest a negative relationship (Hannan
and Rhoades, 1987; Moore, 1996; Pasiouras and Zopounidis, 2008), this is
not significant in all cases. The results in Wheelock and Wilson (2000, 2004)
are also mixed, with total loans to total asset being negatively correlated,
but not statistically significant in some instances, and positively correlated
but not always statistically significant in other instances, depending on the
specification of the estimated model.

8 An alternative would be to use the cost to average assets ratio. We reestimated
the models with the use of the cost to average assets ratio, but this has not
significantly affected the classification accuracies. We report the results with cost
to income ratio, which is the one used in most previous studies. The importance
of the cost to income ratio is also highlighted by its use as a key indicator of
efficiency in expense management in the reports of the European Central Bank
(2004, 2005a, b, 2006a, b, c, d). The results with the cost to average assets ratio
are available from the authors upon request.

9 Data from the European Central Bank report (2004) on the stability of the EU
banking sector indicate that the share of customers’ loans in total assets was
approximately 50% in 2003, highlighting the importance of loans for EU banks.
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LIQCUST is a bank’s liquid assets10 to customer and short-term funding
ratio and is a measure of liquidity. Liquidity can be an additional factor influ-
encing the attractiveness of a bank as acquisition target; however, it is difficult
to determine a priori what the direction of the influence will be. Excess liquid-
ity may signal a lack of investment opportunities or a poor allocation of assets,
making these banks targets because of their good liquidity position (Walter,
1994), while it is also possible that banks are acquired because they have
moved into liquidity difficulties. Consequently, the empirical results are mixed.
Wheelock and Wilson (2000) indicated that low liquidity makes U.S. banks
less attractive takeover targets. Pasiouras and Gaganis (2007b) also found
that acquired banks in Asia were in a position to meet a higher percentage of
customer and short-term funds (i.e., more liquid). By contrast, Pasiouras and
Gaganis (2007a) found a negative relationship between banks’ liquidity and
their acquisition likelihood, which is statistically significant in four of the five
banking sectors in their study. Finally, Pasiouras and Zopounidis (2008) in
their study on Greece also reported a negative relationship between liquidity
and acquisition likelihood, although not a statistically significant one.

GROWTH is the annual change in a bank’s total assets and is a mea-
sure of growth. Again, there is no conclusive evidence as to whether growth
has a positive or negative impact on the acquisition likelihood. For instance,
Kocagil et al. (2002) referred to previous empirical evidence that suggests that
some banks whose growth rates were relatively high have experienced prob-
lems because their management and/or structure was not able to deal with
and sustain exceptional growth. Hence, it is possible that a firm constrained
in this way could be an attractive acquisition target for a firm with surplus
resources or management available to help (Barnes, 1999). On the other hand,
Moore (1996) argued that a slow-growing bank may attract a buyer seeking
to increase the value of the franchise by accelerating the bank’s growth rate.
Hannan and Rhoades (1987) found growth to be positively correlated to inside
market acquisitions and negatively correlated to outside market characteris-
tics but insignificant in all cases. Pasiouras and Gaganis (2007b) did not find
a statistically significant relationship between growth and the probability of
being involved in an acquisition, either as a target or as an acquirer. However,
Moore (1996) and Pasiouras and Zopounidis (2008) found asset growth to
be negatively correlated to the acquisition likelihood. Pasiouras and Gaganis
(2007a) also found growth to be negatively correlated to the acquisition like-
lihood but statistically significant only in the case of Germany and Spain.

TASSET corresponds to a bank’s total assets and is a measure of size.
Size is related to both synergy (i.e., economies of scale and scope) and agency
M&A motives (i.e., managers’ self-interest, such as empire building, salary,
prestige, etc.) and can influence acquisitions through several channels. The

10 According to BankScope definitions, liquid assets refer to assets that can be easily
converted to cash such as cash itself, balances with central banks, as well as
government bonds.
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bank’s size may also have a negative influence on the acquisition likelihood
because large banks are more expensive to acquire, with greater resources
to fight an unwanted acquisition, while once acquired, it is more difficult to
absorb in the existing organization of the acquirer. The empirical results of
previous studies are mixed. Hannan and Rhoades (1987) and Moore (1996)
found size to be insignificant; however, Wheelock and Wilson (2000) found
that smaller banks were more likely to be acquired than larger banks, while
Wheelock and Wilson (2004) found that that the probability of engaging in
mergers increases with bank size. Pasiouras and Zopounidis (2008) found total
assets to be negatively related to the acquisition likelihood but not statistically
significant in all cases.

MSHARE is the market share of the bank and is calculated by dividing the
deposits of the bank by the total deposits of the banking sector over the same
year. Moore (1996) argued that regulatory concerns about anticompetitive
effects could reduce the probability of acquiring of banks with a high market
share. Furthermore, there might not be large enough acquirers to take over
banks with a considerable market share. Finally, a small share could reflect a
lack of success in the market and thereby increase the acquisition likelihood,
consistent with the inefficient management hypothesis. The Group of Ten
(2001) also pointed out market share as one of the most important motivat-
ing factors for within-country, within-segment mergers in the financial sector.
The empirical results are mixed. Hannan and Rhoades (1987) found that mar-
ket share has a positive and highly significant impact on the probability of
acquisition from outside the market, but plays no statistically significant role
in explaining the likelihood of a within-market acquisition. However, Moore
(1996) found market share to be statistically significant and negatively related
with the probability of acquisition in both in-market and out-of-market ac-
quisitions. Finally, Pasiouras and Zopounidis (2008) also found market share
to be statistically significant and negatively correlated to the acquisition like-
lihood in the Greek banking sector.

5.3 Country-Relative Financial Variables

Following Barnes (1990, 1999, 2000), Cudd and Duggal (2000), and Asterbo
and Winter (2001), we use industry-relative variables to account for industry
differences. However, since all the firms in our sample are drawn from one
industry (i.e., commercial banking) but from various countries, we actually
use country-relative variables, which, as in Pasiouras et al. (2005, 2006), are
calculated by dividing the ratios of a specific bank with the corresponding
averages of the commercial banking sector for the country where the bank
operates.

Standardizing by country average enhances comparability, particularly as
the levels of profitability, liquidity, cost efficiency, and other aspects of banks’
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performance vary across EU countries.11 Furthermore as Platt and Platt
(1990, 1991) and Barnes (1990) mentioned since the values of the ratios are
computed over different years, standardizing controls for the mean shift in the
ratios from year to year.

6 Empirical Results

Table 5 presents descriptive statistics (mean and standard deviation) and the
results of of the Kruskal–Wallis test for mean differences in the variables be-
tween the two groups of banks (i.e., acquired and non-acquired). These results
correspond to the training sample and indicate that non-acquired banks were
better capitalized, on average, over the period 1998–2001. This might sug-
gest that acquired banks were characterized by a lack of financial strength
that attracted buyers capable of infusing capital (Moore, 1996; Wheelock and
Wilson, 2000) or that they had skilful managers capable of operating success-
fully with high leverage, thus making them attractive targets (Wheelock and
Wilson, 2000). However, the lower profitability (ROAA) and lower efficiency
in expense management (COST) of the acquired banks seem to support the
inefficient management hypothesis.

Table 5. Descriptive Statistics and Kruskal–Wallis Test (Training Sample)

Non-acquired Acquired Kruskal–Wallis
Mean Std. Dev. Mean Std. Dev. Chi-square

EQAS 2.064 1.47900 1.819 1.46500 7.588*)
(0.006)*

ROAA 1.800 1.62900 1.054 1.63200 20.287*)
(0.000)*

COST 0.956 0.25300 1.122 0.29700 19.997*)
(0.000)*

LOANS 1.040 0.55000 0.987 0.53700 0.114)*
(0.736)*

LIQCUST 1.317 0.97300 1.223 0.98800 1.528)*
(0.216)*

GROWTH −0.124 3.18400 −0.763 3.82100 0.099)*
(0.753)*

TASSET 0.456 0.87000 0.563 1.07700 0.005)*
(0.944)*

MSHARE 0.580 1.18800 0.828 1.51200 0.070)*
(0.791)*

Notes: p-values in parentheses.
* Statistically significant at the 1% level.

11 For further discussion on the reasons for using industry-related ratios and how
they adjust for industry differences, see Barnes (1999, 2000).
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While the remaining variables do not appear to be significantly different
between the two groups of banks, we include them all in the development
of the SVM models. We follow this approach because univariate statistical
significance does not necessarily predict how a variable will contribute in a
multivariate model. Table 6 presents the classification results of the three SVM
models, showing that they all achieve average classification accuracies slightly
above 65% in the training sample and only slightly below 65% in the holdout
sample, thus confirming the overall robustness of the results. However, all the
models correctly predict a higher percentage of the acquired banks in both
samples, the only exception being the SVM model with the RBF kernel, which
correctly classifies a higher percentage of non-acquired banks rather than the
acquired ones. In general, the models exhibit more balanced Type I and Type
II errors in the holdout sample.

Table 6. Classification Results (in %)

Kernel Type Non-acquired Acquired Average

Training Linear 58.28 74.19 66.23
Polynomial 58.04 74.19 66.12
RBF 62.70 67.74 65.22

Validation Linear 60.58 68.61 64.60
Polynomial 60.58 68.61 64.60
RBF 67.15 61.31 64.23

However, the results do indicate a fair amount of misclassification, around
35% in all cases, although it should be noted that this is not inconsistent
with previous studies that have in general found the prediction of acquisi-
tions to be a difficult task (Palepu, 1986; Barnes, 1998, 1999, 2000; Powell,
2001; Espahbodi and Espahbodi, 2003; Pasiouras et al., 2005, 2006). A direct
comparison with the results of previous studies is not appropriate because of
differences in the data sets (Kocagil et al., 2002; Gupton and Stein, 2002), the
industry under investigation, the methods used to validate the models, and so
on. Nevertheless, a tentative comparison indicates that the range of accuracy
in our study is comparable to other studies that validate the models in a period
later than the one used for development. Pasiouras et al. (2005) summarized
the results of seven such studies12 and indicated that the average classification

12 These studies are the ones of Palepu (1986), Walter (1994), Barnes (1998, 2000),
Cudd and Dougal (2000), Powell (2001), and Espahbodi and Espahbodi (2003).
For some studies, the average classification accuracy was calculated by Pasiouras
et al. (2005) on the basis of the reported data, for comparison reasons because
only the overall accuracy was reported in the original articles. Some of these
studies developed only one model (Palepu, 1986), while others developed several
models using various techniques (Espahbodi and Espahbodi, 2003; Barnes, 2000)
or data specifications (Walter, 1994; Cudd and Dougal, 2000).
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accuracy is between 42.6% and 67%. In their study, Pasiouras et al. (2005) re-
ported average classification accuracies between 47.9% and 61.7%, while in a
latter study (Pasiouras et al., 2006) the corresponding figures are 61.6% and
65.7%.13

It should be mentioned at this point that perfect prediction models are
difficult to be developed even in the bankruptcy prediction literature where, as
Barnes (1999) noted failing firms have definitely inferior or abnormal perfor-
mance compared to healthy firms. The identification of acquisition targets is
potentially much more difficult because there might not be consistency across
firms and across time as to the characteristics of targets (Barnes, 1999).

Figure 1 presents the receiver operating characteristic (ROC) curves for
the three models.14 The ROC curve plots the percentage of “hits” (i.e., true
positives) of the model on the vertical axis, and the 1-specificity, or percentage
of “false alarms” (i.e., false positives), on the horizontal axis. Hence, it offers
a comprehensive analysis of all possible errors and all cutoff points. The result
is a bowed curve rising from the 45-degree line to the upper left corner. The
sharper the bend and the closer to the upper left corner, the higher the ac-
curacy of the model. The area under the curve (AUC) measure (Table 7) can
be considered as an averaging of the misclassification rates over all possible
choices of the various cutoff points and can therefore be used to compare differ-
ent classification models when no information regarding the costs or severity
of classification costs is available. The three curves are almost identical, while
the AUC equals 0.683 in the case of the linear and polynomial models and
is slightly lower in the case of the RBF model (i.e., 0.679). Hence, no matter
which evaluation method is being used, the differences among the models are
only marginal.

Table 7. Area Under the Curve (AUC) Statistics

AUC Standard Asymptotic Asymptotic 95%
Error Sig. Confidence Interval

Linear 0.683 0.046 0.001 [0.592, 0.774]
Polynomial 0.683 0.046 0.001 [0.592, 0.774]
RBF 0.679 0.048 0.001 [0.584, 0.773]

13 However, Pasiouras et al. (2006) used a cross-validation technique for testing the
models and consequently did not consider the population drifting over time.

14 The ROC curves were initially used in signal detection theory by Peterson et al.
(1954) and psychology by Tanner and Swets (1954). They were latter applied in
numerous studies in medicine, while more recently Sobehart and Keenan (2001)
suggested their use in rating models. Other studies in accounting and finance
that have used ROC curves to evaluate their models are those of Nargundkar and
Priestley (2003) and Hayden (2003) in credit risk modeling, Gaganis et al. (2005)
in bankruptcy prediction, Rodriguez and Rodriguez (2006) in the prediction of
sovereign debt rescheduling, and Gaganis et al. (2007) in auditing.
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7 Conclusions

In this study we examined the relative efficiency of both linear and nonlinear
support vector machines (SVM) models with polynomial and RBF kernels in
the development of classification models for the prediction of bank acquisition
targets.

The data set consisted of 168 commercial banks, operating in the EU-15,
that were acquired between 1998 and 2002, as well as of 566 non-acquired ones.
This data set was split in two subsets. The first one, consisting of acquisitions
from the 1998–2001 period, was used for the development of the models (i.e.,
training). The second one, consisting of acquisitions from 2002, was used to
test the out-of-time and out-of-sample performance of the models (i.e., vali-
dation). We used eight financial variables reflecting the following bank char-
acteristics: capital strength, profitability, efficiency in expense management,
loan activity, liquidity, size, growth, and market power. Since the sample was
drawn from 15 EU countries, the ratios were transformed to country-relative
ratios (by dividing the values of the variables of the individual banks with
the corresponding average values of the commercial banking industry in the
country where the banks operated). The models were evaluated in terms of
their classification accuracy as well as with ROC analysis. In both cases the
differences between the models were only marginal.
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Future research could be directed in at least three directions. The first
involves the inclusion of additional nonfinancial variables, such as ownership
type, manager’s experience, or technological capacity that were not available
in the present study. The second could be the employment of alternative
techniques that have been applied recently in other classification problems in
finance, such as multidimensional scaling and probabilistic neural networks,
but whose efficiency in the prediction of acquisition targets has not yet been
examined. The third avenue for further research could be to combine SVMs
with alternative classification techniques into an integrated model that has re-
ceived limited attention, despite the promising results of Tartari et al. (2003)
in acquisitions prediction, McKee and Lensberg (2002) in bankruptcy predic-
tion, and Doumpos (2002) in credit risk assessment.
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1 Introduction

The credit industry has experienced a rapid growth during the last two
decades. The fulfillment of modern economic needs has been a lucrative op-
portunity for credit institutions. Having redefined their credit policy, creditors
offer a series of credit products, from credit cards to a wide range of loans.
However, the potential losses from the excessive credit play a crucial role in a
bank’s viability and profitability perspectives. The recent bank failures in the
United States, East Asia, and Latin America have raised the level of concern.
As defined by the Basel Committee on Banking Supervision (BCBS, 2003),
one category of credit exposures is the corporate ones, which today constitute
one of the major issues of risk management for the banking industry.

Debt financing is perhaps the most popular organizational policy for rais-
ing capital. This capital is either invested, aiming at corporate growth, or is
used to fulfill corporate obligations. Thus, credit institutions are called upon
on a daily basis to decide whether or not to finance a finite number of firms.
However, the problem of credit risk assessment is clearly more complex. Credit
risk does not automatically cease to exist by rejecting the applications of firms
that do not fulfill capital granting requirements. Most firms are classified as
medium-grade debtors. Therefore, the assessment of an obligor’s probability of
default is a crucial input in order to estimate the potential future credit losses.

The aforementioned issue is addressed by employing quantitative tech-
niques usually referred to as credit scoring techniques. These methodolog-
ical approaches are used to develop models that classify the obligors into
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homogeneous groups representing different levels of credit risk while they are
providing a score1 for every firm being evaluated. Numerous quantitative tech-
niques are currently employed by the credit scoring industry today.

In the present study, the relative performance of several classification tech-
niques from different scientific fields is being evaluated. The conducted com-
parative analysis also investigates some important aspects of the process used
to develop credit rating systems, including the predictive performance of the
models, the variable selection process, the robustness of the models, and the
sample selection effects. The objective is to analyze the development procedure
of credit scoring models and consequently draw useful conclusions regarding
the parameters that affect the efficiency of such models.

The rest of the chapter is organized as follows. Section 2 gives an introduc-
tion to credit rating systems. The theoretical background and the definitions
related to credit risk and credit rating systems are discussed, the development
process of a credit scoring model is analyzed, and the regulatory framework
concerning credit risk assessment and management, as defined by the Basel’s
Committee on Banking Supervision provisions, is presented. Section 3 de-
scribes the experimental setup. The data and the methodologies used are
presented together with a literature review of prior studies in the credit scor-
ing. The obtained results are also discussed. Finally, Section 4 concludes the
chapter, summarizes the main findings of this research, and proposes some
future research directions.

2 Credit Rating Systems

2.1 The Basel Committee Scope

The Basel Committee on Banking Supervision consists of senior representa-
tives of bank supervisory authorities and central banks from Belgium, Canada,
France, Germany, Italy, Japan, Luxembourg, Spain, Sweden, Switzerland, the
United Kingdom, and the United States. Issuing a series of provisions, the
Committee has set a regulatory framework, aiming to secure the international
convergence of the supervisory regulations governing the capital adequacy of
banks. The framework consists of three mutually related pillars designed and
defined to contribute to safer and more stable banking systems at national
and international levels.

The first pillar (Minimum Capital Requirements) is related to the proce-
dure of calculating the required level of capital, which must be reserved by
financial institutions, as a security against the different undertaken risks. The
second pillar (Supervisory Review Process) defines the procedures that must
be adopted (1) from the supervisors in order to evaluate how well banks are

1 This score can be accordingly processed in order to represent the firm’s probability
of default.
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assessing their capital needs and (2) from the bank’s risk managers for ensur-
ing that the bank has reserved a sufficient capital to support its risks. Finally,
the third pillar (Market Discipline) requires banks to provide disclosures with
how senior management and the board of directors assess and manage the
various types of risk.

Concerning corporate credit risk, under the New Basel Capital Accord
(BCBS, 2001a), the financial institutions may choose between two approaches
for calculating their capital needs: the standardized approach and the internal
ratings-based (IRB) approach. In the IRB approach, institutions are allowed
to use their own measures for the key drivers of credit risk as primary inputs
to the capital calculations; thus, this approach aligns capital requirements
to banks’ internal risk measurement and management practices more closely
(BCBS, 2001b).

2.2 Credit Rating Systems

A corporate credit rating system initially helps a financial institution in decid-
ing whether or not to finance a specific firm, providing the firm’s probability
of default (PD). This probability is a measurement of the firm’s creditwor-
thiness. The system analyzes some predetermined characteristics of the firm
(financial and nonfinancial) and classifies it into one of some predefined credit
risk grades. Each grade is defined by a range of PD’s values or by an average
PD and represents a specific level of credit risk.2 The Basel Committee states
that a qualifying credit rating system must effectively distinguish the level
of credit risk across the entire spectrum – from borrowers that are virtually
risk-free to those in default. Thus, such a system must have a minimum of six
to nine grades for performing borrowers and a minimum of two for nonper-
forming borrowers (BCBS, 2001b).

Once the firm’s probability of default has been defined, the system pro-
vides an estimation of the losses that the bank would likely suffer if the firm
proves to be inconsistent with its loan obligations. These losses are defined not
only by the borrower’s probability of default but also by the transaction char-
acteristics. Thus, credit rating systems developed under the IRB approach
are also called two-dimensional systems, since they provide an estimate of
the borrower’s probability of default at a first stage, and an estimate of the
possible loan losses at a second one.

The New Basel Capital Accord provides quite a standardized procedure
for calculating the possible loan losses in contrast with the rating assignment
process that can be accomplished by (BCBS, 2001a) (1) expert judgment-
based processes, (2) using external ratings (by rating agencies), and (3)
quantitative techniques (scoring models). The distinctions among these three

2 If average PDs are used, all borrowers within the same grade are assigned the same
PD. The Basel Committee claims that average PD estimations are preferable to
using PD ranges for each grade (BCBS, 2001b).
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approaches may be less precise in practice. For example, personal expertise
plays a crucial role in developing a credit scoring model, whereas external rat-
ings can be the starting point or a benchmark in an expert’s rating assignment.

Regarding internal credit analysts’ rating assignments, they may some-
times prove to be extremely sound, but actually they cannot be adequately
evaluated within a specific framework due to the subjectiveness of the process.
Concerning the external ratings, even if considered to be quite reliable, they
are available only for large corporations. However, this type of firm is rarely
included in the loan portfolio of a commercial bank. The usual customers of
such banks are small or middle-size firms (SMEs). In addition, the substantial
difference between internal and external rating assignments is that agencies
keep a neutral attitude toward the transactions between a borrower and a
lender (Treacy and Carey, 2000).

Therefore, via an efficiently developed credit scoring model, the aforemen-
tioned problems cease, to some extent, to exist. The advantage of these models
is that they provide a “score” for every firm being evaluated. In fact, this score
can be accordingly calibrated to represent the firm’s probability of default.
In addition, credit scoring models are “embedding” all the past information
in a mathematical model, which can numerically establish which factors are
important in explaining credit risk (Saunders and Cornett, 2003). Finally, a
credit scoring model is developed under a more subjective manner, reflecting
the bank’s policy in managing credit risk.

2.3 The Development Process

The development framework of a credit rating system that assigns ratings
based on a credit scoring model consists of three stages, which are governed
by a bidirectional relationship (Figure 1). The first stage is related with data
collection and preparation. The database is originated by observed borrow-
ers’ characteristics with known creditworthiness. These characteristics or al-
ternative criteria are defined by the bank’s credit experts and must clearly
demonstrate the firm’s financial condition. The evaluation criteria should be
both quantitative and qualitative. Financial ratios, measuring the company’s
profitability, liquidity, leverage etc., are usually considered to be the quanti-
tative criteria. Qualitative criteria are related to the company’s commercial
activity, management quality, development perspectives, position in the firm’s
industry sector, credit history, etc. The Basel Committee states that a credit
scoring model should be developed, irrespective of the data source employed,
using a minimum observation period of at least five years (BCBS, 2001b),
so as to incorporate the specific conditions that govern the general economic
environment.

Credit scoring can essentially be considered as a classification problem.
The objective is the development of a model that optimally classifies the
credit customers into different risk groups. The criteria are the independent
variables of the problem, while the customer’s given creditworthiness is the
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Data collection 
and preparation

Model building 
and evaluation

Integration of the 
minimum capital 

requirements 
calculation process 

and model application

Fig. 1. The development process of a credit rating system.

dependent one. The final step before the implementation of the second stage of
the development process is the segregation of the database into two samples:
the training and the test sample.

In the second stage, the credit scoring model is built and evaluated for its
predictability. First, it must be determined which quantitative technique will
be used for the model’s development. The technique can be a statistical one
(i.e., linear discriminant analysis), a nonparametric one (i.e., neural networks),
or an expert system which tries to simulate a credit analyst’s decision making
(Comptroller of the Currency Administrator of National Banks, 2001). The
method’s choice is driven by several factors (i.e., by the ability of the system’s
developers and users to comprehend the method’s functionality and outputs,
by the available data, etc.). A common approach for selecting the most suitable
method is to develop various models based on different quantitative techniques
and finally choose the one that satisfies some specific criterion.

In the training phase, the tuning of the method’s parameters is accom-
plished, aiming primarily to achieve the highest classification accuracy. Ac-
tually, the training sample is used for the development of a model that tries
to accurately address the relationship between credit risk and the observed
borrowers’ characteristics. In the evaluation phase, the test sample is used in
order to derive useful conclusions for the model’s performance and stability.
A potential model must minimize the deviations between the given and the
estimated classification of the test sample’s observations.

The second stage of the development process is considered to be the most
important. The model is built through a series of choices, and many expert
interventions are involved in order to derive the “optimal solution” (Liu and
Schumann, 2002). For example, it must be decided which variables will be used
as the input ones, which quantitative technique will be selected for the model’s
training, how the database will be split, under which evaluation criteria the
analysis of the model’s performance will be conducted, etc.

Once the model that produces scores and ordinally ranks the companies
in the database is constructed, the next step is to define the rating system’s
grades and associate an estimated average PD to its grade. This can be accom-
plished empirically by the credit analysts and the developers of the system,
through a proper processing of the model’s outputs or via mapping techniques.
In mapping approaches, an agency’s (i.e., Moody’s or S&P’s), grades and the
corresponding default rates are used as a benchmark. Usually each internal
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grade is equated with an external one and the model’s outputs are associated,
in various ways, with the external default rates in order to derive average PD
estimations for each internal grade (in Moody’s Investor Services, 2000, vari-
ous mapping approaches are presented). Work related to the aforementioned
problem was conducted by Fernades (2005), while Carey and Hrycay (2001)
examined the properties of the major methods currently used to estimate
average default probabilities for each grade.

In the third stage, the calculation procedure of the minimum capital re-
quirements, which is analyzed in the following paragraph, is intergraded in
the model and the developed rating system is finally applied in practice. Dur-
ing the system’s operation in real situations, the experts must monitor its
functionality, interfering when a problem occurs.

2.4 Calculating the Minimum Capital Requirements

As already mentioned, credit risk assessment involves two major issues: the
estimation of the potential borrower’s PD and the calculation of the possible
losses that may be incurred due to the credit granting. The implementation
process of the latter issue is clearly defined by the Basel Committee’s revised
framework on international convergence of capital measurement and capital
standards (BCBS, 2004).

A bank can usually forecast the average level of credit losses it expects to
experience. These losses are referred to as expected losses (EL) and can be
estimated by multiplying the obligor’s PD with the exposure at default (EAD)
and the the loss given default (LGD, expressed as a percentage of EAD):

EL = PD × LGD × EAD. (1)

The IRB approach can be implemented under the foundation or the evo-
lutionary methodology. When the former one is adopted, LGD and EAD are
determined through the application of standard supervisory rules, while in the
evolutionary approach a bank is allowed to use its own internal assessments
of these components.

Losses above expected levels are usually referred to as unexpected losses
(UL). The Basel Committee requires banks to hold capital only against the
unexpected losses. However, they have to demonstrate in the supervisory au-
thority that they have built adequate provisions against expected ones (BCBS,
2005). In the IRB approach, regulatory capital requirements for unexpected
losses are derived from risk weight functions, which are based on the so-called
asymptotic risk factor (ASFR) model (Gordy, 2003; Aas, 2005).

The ASFR model framework assumes that a bank’s credit portfolio is
completely diversified. This means that idiosyncratic risks associated with in-
dividual exposures tend to cancel out one another and that only systematic
risk has a material effect on portfolio losses. The great advantage of the ASFR
model is that it allows banks to calculate capital charges on a decentralized
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loan-by-loan basis and then aggregate these in a portfolio level. This charac-
teristic has been deemed vital for making the IRB framework applicable to a
wide range of countries and institutions (BCBS, 2005).

Total credit risk-weighted assets, which are a crucial input for calculat-
ing minimum capital requirements,3 are computed at an exposure level as a
function of the three aforementioned parameters (PD, LGD and EAD) plus a
maturity (M) and an asset correlation (R) parameter:

RWA = K(PD,LGD,M,R) × 12.5 × EAD.

The term K represents the capital requirement for a specific exposure and
is calculated using the following formula:

K =

[
LGD ×N

(
G(PD)√

1 −R
+N−1(0.999)

√
R

1 −R

)
− PD × LGD

]

× 1 + (M − 2.5)β
1 − 1.5β

,

where N is the cumulative standard normal distribution function and N−1

its inverse, R the asset correlation parameter, and β a smoothed maturity
adjustment:

β =
[
0.11852− 0.05478 log(PD)

]2
.

The asset correlation term is needed as an input in the ASFR model in
order for the borrower’s dependence on the general state of the economy to be
specified, and it is computed by a specific formula defined by the Basel Com-
mittee (see BCBS, 2005, for details). The formula incorporates two empirical
observations (BCBS, 2005). First, asset correlations decrease with increas-
ing PD, which means that the higher the probability of default, the higher
the idiosyncratic risk components of an obligor. Second, asset correlations in-
crease with firm size, which means that larger firms are more closely related
to the general conditions in the economy, while smaller firms are more likely
to default due to idiosyncratic reasons.

Maturity effects are incorporated in the Basel Committee’s model as a
function of both maturity and probability of default. The function’s form is
based on the following considerations (BCBS, 2005). First, long-term borrow-
ers are riskier than the short-term borrowers; downgrades are more likely to
happen for long-term borrowers. As a consequence, the capital requirement
should increase with maturity. Second, low-PD borrowers have more potential
to downgrade than high-PD borrowers. Thus, maturity adjustments should be
higher for low-PD borrowers.
3 A bank must hold capital equivalent to at least 8% of its total risk-weighted

assets, which are determined by multiplying the capital requirements for market
risk and operational risk by 12.5 (i.e., the reciprocal of the minimum capital ratio
8%) and adding the resulting figures to the sum of risk-weighted assets for credit
risk.
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As mentioned above, the asymptotic capital formula has been derived un-
der the assumption that the bank’s credit portfolio is perfectly diversified.
In real-world portfolios, though, there is always a residual of undiversified
idiosyncratic risk components. If this residual risk is ignored, then the true
capital requirements will be underestimated. Therefore, the Basel Commit-
tee proposes the calculation, on a portfolio level, of the so-called granularity
adjustments (the calculation procedure is presented in BCBS, 2001b). Gran-
ularity is a measurement of the portfolio’s concentration risk; the additional
risk resulting from increased exposure to one-obligor or groups of correlated
obligors. These adjustments can be either negative or positive, depending on
the portfolio’s diversification level.

2.5 The Specifications for a Qualifying System

This section presents the basic specifications that a system must meet. The
analysis is mainly based on the requirements set in the Basel Committee’s
consultative document, “The Internal Ratings-Based Approach” (2001b).

1. Meaningful differentiation of risk. A credit rating system must be primar-
ily designed to distinguish risk rather than to minimize regulatory capital
requirements. The grades of the rating system must be properly defined so
as to represent different levels of credit risk. In addition, borrowers within
the same grade must be treated differently according to their transaction’s
characteristics. Finally, the exposures must be meaningfully distributed
across grades in order for excessive concentration in any particular grade
to be prevented.4

2. Continuous evaluation of borrowers. Companies that are included in the
bank’s credit portfolio should be, at a minimum, annually rerated. Banks
must be capable of gathering, prioritizing and analyzing new information
about their customers’ economic progress.

3. Oversight of the rating system’s operation. The involved parties in bank’s
credit risk management must constantly monitor the credit rating sys-
tem for its proper functioning and correctness. A firm’s estimated PD
should not be significantly different from the actual/realized PD. In addi-
tion, the system must be subjected to sufficient and efficient controls (i.e.,
stress tests). Furthermore, an adequate feedback mechanism between the
responsible parties should exist in order to accomplish system integrity.

4. Correct selection of the evaluation criteria. The bank must demonstrate
to the regulatory authority that under the assessment criteria used, it can
properly analyze and estimate a firm’s creditworthiness. In the credit risk
assessment process, a firm is evaluated for its future performance based
on current information. Therefore, a bank must take into consideration

4 Specifically, the Committee is proposing that no more than 30% of the gross
exposures should fall in any single borrower grade.
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other criteria that are related to the perspectives of the company’s opera-
tional sector or to the business’s ability to overcome a probable economic
instability.

5. Collecting a substantial database. The database used for the development
and evaluation of a credit rating system must be extremely representative.
It must incorporate historical data on borrowers’ characteristics (account-
ing as well as qualitative data), past ratings, past PDs estimations, credit
migrations, actual creditworthiness, payment history, etc. A diverse data-
base enables a bank to develop an efficient credit rating system, to enhance
the predictive power of the used one, and to address the key factors that
are strongly related to the credit risk estimation process.

2.6 Current Models for Estimating Private Firms’ PDs

Rating agencies, apart from evaluating large or publicly traded corporations,
have also designed models for estimating private firms’ default risk. The most
known credit scoring models are the RiskCalc developed by Moody’s and the
CreditModel developed by S&P. Both of them require as input only financial
ratios and can be accordingly calibrated in order to operate in specific indus-
tries and regions. Actually, the aforementioned models are suites of localized
credit scoring models, functioning under a common framework. RiskCalc uses
the probit model as a quantitative tool (Moody’s Investor Services, 2000),
while CreditModel uses Proximal Support Vector Machines as a rating esti-
mator (Standard and Poor’s, 2006b).

Another known model, which assesses a private firm’s credit risk under
a market-based approach, is the KMV’s Private Firm Model (KMV, 2001).
Market or structural models are based on the pioneer work of Merton (1974).
Generally, a Merton-based model incorporates the option nature of a firm’s
equity to derive the market value and the volatility of the firm’s assets, using
the Black–Scholes formula (1973). Once these two parameters have been es-
timated, they are combined with the firm’s contractual liabilities (considered
as the firm’s debt), leading to a single measurement that represents the firm’s
probability of default.

The Private Firm Model is based on the structural framework used by
KMV for producing public firms expected default frequencies, alternative de-
fault rates, or PDs. The market value and the volatility of the firm’s assets
are estimated under the Merton approach, in order for the firm’s “distance
to default” to be determined. The distance to default measure represents the
number of standard deviations (or distance) between the market value of a
firm’s assets and its relevant liabilities (Moody’s KMV, 2004). Then a de-
fault database is used to derive an empirical distribution relating/mapping
the distance to default to an expected default frequency.

Since, by definition, private firms do not have publicly traded equity and
debt, price series of these financial assets are not available; thus, the market
value and the volatility of a public firm’s assets cannot be estimated. For this
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reason, Private Firm Model uses public market information from compara-
ble/similar public firms together with the firm’s financial statement in order
to estimate the aforementioned parameters (Moody’s Investor Services, 2003).

After the merger of Moody’s Investor Services and KMV in 2002, a new
model was developed (Moody’s KMV, 2004). The new model incorporates
both the market-based approach, as used in the KMV’s Private Firm Model,
and the financial statement-based approach of the original RiskCalc model.
Firm-specific (idiosyncratic) information, more predominant in RiskCalc, is
blended with market-sector based information, more predominant in Private
Firm Models, leading to more accurate credit risk assessments.

2.7 Benefits from the Use of Credit Rating Systems

The development and the implementation of efficient credit rating systems
provide some important benefits to a financial institution. The most important
ones are cited bellow.

1. They are a reliable supplemental tool for the loan approval process.
2. They confine the credit analyst’s subjectiveness.
3. Through them the credit institutions can estimate the future loan losses

and proceed to the appropriate hedging activities.
4. They are embedding a bank’s credit culture, defining a common frame-

work for the evaluation of all customers. This characteristic is quite es-
sential because small business loan applications are usually evaluated on
a regional level.

5. Through them a bank can define the transaction’s characteristics (i.e.,
the type or the amount of the impeding financing), minimizing the level
of risk undertaken.

6. They reduce the time and cost needed for the loan approval process. The
credit analysts are intensively evaluating only those customers with spe-
cific characteristics.

To sum up, credit rating systems can contribute to the increment of a
bank’s profitability. Through them a bank can monitor the progress of its
loan portfolio and redefine its credit policy, whatever that implies.

3 Comparison of Classification Methods
for the Development of Credit Rating Models

3.1 Literature Review

Several methods have been proposed in the literature for the development of
credit scoring models; thus, many comparative studies have been conducted
investigating the relative performance of these techniques. It is generally
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accepted that the dominant statistical techniques include linear discrimi-
nant analysis (LDA) and logistic regression (LR), while artificial neural net-
works (NN) is the most frequently used nonparametric approach (Altman and
Saunders, 1998).

Desai et al. (1996) compared NN with the two aforementioned statistical
techniques for scoring loan applicants and concluded that NN significantly
outperforms LDA but is only marginally better than logistic regression. West
(2000) conducted a more thorough research, investigating the relative perfor-
mance of NN. He compared five neural network models with a set of commonly
used classification techniques (see Table 1), claiming that while the multilayer
perceptron is the most commonly used neural network model, the mixture-
of-experts and radial basis function neural networks should be considered for
credit scoring applications.

Malhotra and Malhotra (2002) analyzed the beneficial aspects of using a
neuro-fuzzy system in credit risk assessment. The authors performed a com-
parison with LDA, reporting that the neuro-fuzzy model achieves higher clas-
sification accuracy regarding the potential loan defaulters. They also referred
to a critical issue of the credit scoring procedure, the interpretability of the
decision-making process. They claimed that a user can easily understand the
output of a neuro-fuzzy model, an advantage offered by the embedded fuzzy
rules. Baesens et al. (2003b) also developed interpretable credit scoring models
by applying three neural networks rule extraction approaches. They investi-
gated the performance of the developed models using as a benchmark the pop-
ular C4.5 decision-tree algorithm and logistic regression. The results obtained
show that two rule extraction techniques yield higher test set classification
accuracy than the benchmark models.

Ong et al. (2005) used genetic programming to develop a decision tree and
compared it with other commonly used classification techniques using two real
world data sets. The authors concluded by claiming that genetic programming
is more suitable for tackling credit scoring problems because (1) no assump-
tions need to be made regarding the available data and (2) it automatically
selects the important variables. Huang et al. (2004) applied support vector ma-
chines and backpropagation neural networks into two bond rating data sets.
They demonstrated that support vector machines can achieve accuracy com-
parable to that of neural networks. Callindo and Tamayo (2000) applied probit
analysis, k-nearest neighbors, neural networks, and classification and regres-
sion trees to a mortgage loan data set, concluding that the latter approach
provides the best results. Finally, Doumpos et al. (2002) applied the MHDIS
method (Zopounidis and Doumpos, 2000) to a corporate loan database and
compared the developed model with traditional statistical and econometric
techniques. The results obtained illustrate that the MHDIS method can be
considered an efficient approach for developing credit risk assessment models.
Other comparative studies have been conducted by Piramuthu (1999) and Liu
and Schumann (2002).
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In most of the aforementioned research either a limited number of classi-
fication techniques are being evaluated or the data sets used are significantly
small. Hence, the issue of identifying the appropriate technique for developing
a credit scoring model has not been thoroughly examined. The most extensive
research has been conducted by Baesens et al. (2003a). Various classification
techniques have been compared using an adequate number of data sets of
sufficient size (see Table 1). The authors concluded that a few techniques
were clearly inferior to others, while least-squares support vector machines,
neural networks, linear discriminant analysis, and logistic regression provide
very good results.

Except for studies in which the performance of several methods is being
compared, some studies have investigated other important aspects of a credit
scoring model’s development process. For example, Liu and Schumann (2005)
applied four feature selection techniques in order to improve the model’s sim-
plicity, speed, and accuracy. The experiment was conducted using four classi-
fication methods, concluding that after feature selection only the accuracy of
the k-nearest-neighbors model was improved. The authors claimed that this
result may be caused by the nature of the classification techniques. The M5
decision-tree algorithm selects the most important features during its building
process, while neural networks and logistic regression assign small weights to
the irrelevant variables. In addition, the results obtained show that, in general,
the reduction in the number of features decreases the training time and sim-
plifies the final models. The aforementioned issue was also addressed by Fritz
and Hosemann (2000). After having applied some variable reduction tech-
niques, whether based on the classification algorithm used or not, they stated
that better results should be achieved with variable sets selected depending
on the specific training method.

3.2 Methods

Since the pioneer works of Altman (1968) and Ohlson (1980), traditional and
econometric techniques have been widely used in credit risk assessment and
financial distress prediction problems. Their deficiencies, however, with regard
to the progress made in other fields have led to the development of a plethora
of new classification approaches. This Section analyzes the methods used in
the present study.

Linear Discriminant Analysis

Given a training data set, linear discriminant analysis (LDA) leads to the
development of a linear combination of the input variables, maximizing the
ratio of between-group to within-group variance. The model takes the follow-
ing form:

f(x) = w0 + w1x1 + w2x2 + · · · + wnxn, (2)
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where f(x) represents the discriminant score, w0 is a constant factor, and wj is
the associated coefficient of the corresponding input variable xj (j = 1, . . . , n).
Each firm is classified into one of the two groups by comparing the firm’s
discriminant score with a cutoff value.

In order to determine the optimal cutoff point, the prior probabilities of
class membership and the misclassification costs must be specified. However,
the specification of these parameters is a very subjective decision. Therefore,
most researchers assume that the misclassification costs are equal and that the
prior probabilities are equal with the proportion of the default and nondefault
firms in the sample (Balcaen and Ooghe, 2004). An alternative approach is to
determine the optimal cutoff point via trial-and-error procedures (Doumpos
and Zopounidis, 2002), choosing as optimal the cutoff value at which a crite-
rion regarding classification accuracy is maximized. In this study, the optimal
cutoff point was determined by applying the Kolmogorov–Smirnoff distance.

The constant term w0 and the coefficient vector w = (w1, w2, . . . , wn)
 are
obtained with the assumption that the input variables follow a multivariate
normal distribution and that the covariance matrices of the groups are equal.
Empirical evidence has shown that especially for default firms the normal-
ity condition is violated (Min and Lee, 2005). Furthermore, if the covariance
matrices are not equal, quadratic terms are incorporated in the discriminant
function; hence, quadratic discriminant analysis needs to be used. However,
linear discriminant analysis has been reported to be a more robust approach
than quadratic discriminant analysis even when the aforementioned assump-
tion is violated (Lee et al., 2002).

Logistic Regression

The fundamental assumption of the logistic approach to discrimination is
that the log of the group-conditional densities can be expressed as a linear
combination of the input variables as follows:

log
p

1 − p
= f(x) = w0 + w1x1 + w2x2 + · · · + wnxn.

After taking exponentials on both sides, it is assumed that the probability
of a dichotomous outcome follows the cumulative logistic distribution function:

p =
1

1 + e−f(x)
.

The model’s parameters (i.e., the intercept term w0 and the coefficient
vector w) are estimated using maximum-likelihood procedures.

The major advantage of logistic regression is that it overcomes the statis-
tical assumptions of linear discriminant analysis. In addition, because a logit
model’s outputs are between 0 and 1, it is considered to have a nice probabilis-
tic interpretation. However, logistic regression has a serious drawback. Logit
models are extremely sensitive to the problem of multi-collinearity; therefore,
the inclusion of highly correlated variables must be avoided.
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Neural Networks

Despite the fact that neural networks originate from the field of artificial intel-
ligence, there is an enormous amount of cited work applying neural networks
to business-related problems (see Vellido et al., 1999, and Smith and Gupta,
2000, for an extensive review). The most commonly used neural networks for
classification problems are the multilayer feed-forward ones. The aforemen-
tioned neural networks are typically composed of an input layer, one or more
hidden layers, and an output layer, each consisting of several neurons or al-
ternative units (Figure 2). Each neuron receives a total input of the weighted
sum of the incoming signals sk multiplied by interconnection weights wk plus a
bias term w0. The neuron’s output is computed by transforming the neuron’s
input using an activation function F , and it is transmitted to the neurons of
the subsequent layer:

output = F

(
∑

k

wksk + w0

)
.

.

.
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.
.
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Fig. 2. The architecture of a multilayer perceptron network with two hidden layers.

Previous studies have shown that for classification problems, neural net-
works with one hidden layer are capable of achieving a desired level of accuracy
(Patuwo et al., 1993; Subramanian et al., 1993; Bishop, 1995).

In the present study the known sigmoid function was used as the
transfer one, while the popular backpropagation algorithm (Rumelhart et
al., 1986) was used for the training of the developed models. The name
“back-propagation” stems from the fact that network’s error is propagated
backwards, via an iterative process, in order for the “optimal” network’s
weights to be determined. Six multilayer feed-forward neural models were
applied to the available data sets; with 1 hidden layer and 8, 12 and 16
neurons and with 2 hidden layers with 6, 8 and 12 neurons in each layer.
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The main advantages of neural networks are considered to be (1) their
ability to model complex, nonlinear data relationships and (2) the fact that
they do not require any assumptions about the distribution of the data used.
However, their inabilities (1) to address the relevance between the independent
variables and the model’s output and (2) to generate a set of rules to express
the model’s operation have been reported as their main drawbacks (Vellido et
al., 1999). For these reasons, neural networks are often characterized as “black
boxes.”

Classification and Regression Trees

Classification and regression trees (CART; Breiman et al., 1984), is a nonpara-
metric technique based on the philosophy of recursive partitioning algorithms.
The studies of Frydman et al., (1985), Marais et al. (1985), and Srinivasan
and Kim (1986) are the first ones in which the CART methodology had been
applied in financial classification problems.

Given a training data set, the nonparametric approach leads to the devel-
opment of a classification tree that consists of a finite number of nodes. In each
node a decision rule is assigned (Figure 3). Before the development process,
the prior probabilities and the misclassification costs must be determined. The
tree-building process starts at the root node. The CART approach tries to find
the best variable from the input ones and the corresponding split point, which
will be assigned in the root node in order for two child nodes to be created.
All the values that a variable takes in the training sample are considered as
possible split points. The variable that maximizes a splitting function, a for-
mula that measures the “purity” of the two child nodes, is selected as the
best one. The most commonly used splitting functions are the Gini criterion
and the Twoing rule. Then, each child node is assigned a class according to
the rule used that minimizes the misclassification costs. The process of node
splitting, followed by the class assignment procedure, is repeated for each new
developed node (child node) until the final tree is developed.

The constructed final tree is generally very overfit; either there is only
one observation or there are just a few observations in each terminal node.
Although large trees are highly accurate for the training data, they provide
poor results when applied in new/different data sets. In order to reduce the
number of tree nodes, usually pruning techniques are employed (see Espos-
ito et al., 1997, for a comprehensive review). The “cost-complexity” pruning
method, in conjunction with a 10-fold cross-validation (Stone, 1974), was used
in this study.

The main advantages of the CART approach are that (1) it can handle cat-
egorical/qualitative variables, (2) it leads to the development of interpretable
models, (3) it makes no distributional assumptions about the dependent and
independent variables, and (4) it can handle data sets with missing values.
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Fig. 3. The representation of a CART tree.

Linear Programming

Linear programming (LP) is probably one of the most commonly used tech-
niques in the credit scoring industry today. Mangasarian (1968) was the first
to propose the use of linear programming for solving classification problems,
while Freed and Glover (1981a and 1981b) and Hand (1981) proposed that
linear programming can be used even when the two groups are not linearly
separable, using as objectives the minimization of the maximum error or the
sum of absolute errors.

In the present study the following linear programming formulation was
used:

min
1
m1

∑

i∈C1

σi +
1
m2

∑

i∈C2

σi,

s.t. w
xi + w0 + σi ≥ 1, ∀ i ∈ C1,

w
xi + w0 − σi ≤ −1, ∀ i ∈ C2,

w ∈ R, σi ≥ 0,

where σi is the classification error for the firm i, and mk is the number of
training examples from class Ck.

By solving the above linear program, a discriminant hyperplane of the
following form is constructed:

f(x) = w0 + w
x.

If the score for a firm is below (above) zero, then the firm is classified in
the default (nondefault) group.
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Proximal Support Vector Machines

Classical support vector machines (SVM) were proposed by Vapnik (1995) to
solve classification and function estimation problems. The SVM approach to
a two-class classification problem attempts to create a boundary (solid line)
between the two different classes (Figure 4). The boundary is oriented by two
linear planes, which are defined in such a way so that the distance between
them (margin) is maximal. Given a training data set {xi, yi}m

i=1 with input
data xi ∈ R

n and corresponding class labels yi ∈ {−1,+1}, the following
quadratic program is solved:

min
1
2
w
w + C

m∑

i=1

σi,

s.t. yi[w
φ(xi) + w0] ≥ 1 − σi, i = 1, . . . ,m,
w, w0 ∈ R, σi ≥ 0.

The variables σi are slack variables that are needed in order to allow
misclassifications, while the positive real constant C is a trade-off parameter
between the classification errors and the margin. In the nonlinear separable
case, a transformation function φ(x) is used. This is referred as the kernel
function and is used to map the input data to a high-dimensional feature
space where linear separation can be accomplished.

By solving the above quadratic programming, a separating plane (classi-
fier) is created in the primal weight space which takes the following form:

f(x) = sgn[w
φ(x) + b].

SVMs have been reported as a robust approach, especially when large
data sets are used. This advantage stems from the fact that only a subset of
the training data (called the support vectors) is used to define the decision
function while the rest of the points can be discarded.

In this study, proximal support vector machines were used instead of the
classical ones. Proximal SVMs were introduced by Fung and Mangasarian
(2001). By modifying the quadratic programming problem of the standard
SVMs, a simpler alternative approach is developed that requires smaller com-
putational effort, since proximal SVMs require only the solution of a system
of linear equations. In addition, in proximal SVMs the two linear planes cease
to be bounded, are pushed as far as possible, and are placed where the points
of each class are clustered:

min
w,w0,σi

1
2
(
w
w + w2

0

)
+

1
2
C

m∑

i=1

σ2
i ,

s.t. yi[w
φ(xi) + w0] = 1 − σi, i = 1, . . . ,m.

In the analysis we use proximal SVMs with linear, quadratic, and RBF kernels
(these will be denoted as LPSVM, QPSVM, and RBF PSVM, respectively).
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0 1w+ = −w x

0 0w+ =w x

0 1w+ = +w x

Fig. 4. The standard support vector machine classifier.

UTADIS

The UTADIS method (Zopounidis and Doumpos, 2002) originates from the
field of multicriteria decision aid. The objective of the UTADIS methodology
is to develop an ordinal classification model in the form of an additive value
function:

V (x) =
n∑

j=1

wjvj(xj),

where wj ≥ 0 is weight of attribute j, vj(xj) is the marginal value function of
the attribute j, and V (x) ∈ [0, 1] is the global value (score) of the evaluated
observation. The marginal value functions can be either linear or nonlinear
and provide two main advantages. First, they allow the modeling of nonlin-
ear data relationships; second, the developed model can handle qualitative
variables. For the simple two-class classification problem, an observation is
assigned to one of the predetermined classes by comparing its global utility
value with a cutoff point. The estimation of the marginal value functions, the
weights of the attributes, and the cutoff value are accomplished through lin-
ear programming techniques. A detailed analysis of the linear programming
formulation incorporated in the UTADIS method can be found in Doumpos
and Zopounidis (2002).
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3.3 Data

The data used in this study include 38,105 firms from two different business
sectors (industrial and construction firms) corresponding to the period 1998–
2003. The firms have been classified in two groups, default and nondefault
ones, while 33 financial and nonfinancial variables were used in the analysis
(see Table 2). The initial data were split in two databases according to the
firms’ operational sector. From each database, five data sets were created.
The training sample for the first data set includes the observations from year
the 1998 and the test sample the observations from the years 1999–2003.
The observations from the years 1998–1999 are considered to be the training
sample for the second data set, while the observations from the years 2000–
2003 are considered to be the test sample. Following the above repetitive
procedure, the five data sets for each business sector were constructed. Table 3
presents the number of default and nondefault firms for each year and for
each business sector. It is clearly demonstrated that the samples used are
considerably unbalanced regarding the proportion of default and nondefault
observations.

The initial data were split in two databases according to the firm’s type
mainly for the following reasons. First, through the development of industry
specific credit rating systems, the homogenous firms are being evaluated under
a common framework. Firms within the same sector appear to have similar
characteristics and business activities. Second, the sample size of the two
sectors is quite different; for the industrial sector it is quite large, while for
the construction sector it appears to be rather small. So, data segregation
enables us to examine the methods’ performance in conjunction with the size
of the data used.

3.4 Experimental Setup

For data sets for each of the two business sectors, the experimental analysis
is performed in five steps, each of which focuses on different aspects of the
model development process. The experimental settings used in the analysis
are summarized in Table 4.

Step 1: Initially, all methods were tested using the initial data sets, with
the available attributes (henceforth, the complete set of attributes will be
denoted as A1).

Step 2: At a second stage, the effectiveness of a simple attribute selection
process is tested. In order to reduce the number of the initial variables, a
simple univariate test was performed to select variables with high discrim-
inating power. The test was based on the area under the receiver operating
characteristic curve of each variable (AUC). Using the test of DeLong et
al. (1988), for each data business sector, we selected variables with AUC
significantly different than 0.5, at the 5% confidence level. Henceforth, this
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Table 2. Attributes of the analysis

Attributes Sign Type

x1 Imports + B
x2 Exports + B
x3 Representations + B
x4 Premises + I
x5 Banks + I
x6 Age + I
x7 Personnel in year t− 1 + I
x8 Return on equity + C
x9 Profit before income tax/total assets + C
x10 Gross profit margin + C
x11 Operating profitability + C
x12 Net profit margin (before income tax) + C
x13 Depreciation/net fixed assets + C
x14 Equity/total assets + C
x15 Interest expenses/net sales − C
x16 Collection period − C
x17 Payable period − C
x18 Inventory turnover − C
x19 Net sales/total assets + C
x20 Net sales/current liabilities + C
x21 Current ratio + C
x22 Quick ratio + C
x23 Net sales + C
x24 Value of default events over the last three years/most recent sales − C
x25 Number of default events over the last three years − I
x26 Protested bills over the last three years − B
x27 Uncovered checks over the last three years − B
x28 Payment orders over the last three years − B
x29 Seizures over the last three years − B
x30 Real estate auctions over the last three years − B
x31 Movable property auctions over the last three years − B
x32 Bankruptcy petitions over the last three years − B
x33 Most recent year with default events − B

Notes: The sign represents the attribute’s relationship with credit risk. Attributes
with a positive sign are positively correlated with the creditworthiness of an obligor
(as the value of the attribute increases, the probability of default decreases). In
contrast, attributes with a negative sign are negatively correlated with the level
of creditworthiness. The type of the attributes is defined as follows: B= binary,
I= integer, C =continuous.

reduced set of variables will be denoted as A2. The selected variables were
used to build and test new models in order to compare the differences as
opposed to the full models of step 1.
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Table 3. Sample Observations by Sector, Year and Default Group

Sector 1998 1999 2000 2001 2002 2003 Total

Industrial Nondefault 4,428 4,852 5,226 5,428 5,529 5,484 30,947
Default 0,234 0,296 0,262 0,220 0,179 0,142 01,333
Total 4,662 5,148 5,488 5,648 5,708 5,626 32,280

Construction Nondefault 0,799 0,875 0,965 1,036 0,956 0,949 05,580
Default 0,041 0,053 0,045 0,044 0,031 0,031 00,245
Total 0,840 0,928 1,010 1,080 0,987 0,980 05,825

Table 4. Summary of the Experimental Settings

Setting Scope Input Attributes

1 Full models developed with the complete data Full attribute set
2 Univariate attribute selection Full attribute set
3 Multivariate attribute selection Full attribute set

From step 2
4 Effect of balanced samples From step 2
5 Stability analysis From step 2

Step 3: In this step the most important variables were selected by employing
attribute selection procedures that take into account the method used to
build the models. The goal of this procedure was to examine if the methods
are capable of identifying the relevant variables and if the use of these
variables improves the predictive power of the developed models. For LDA
and LR, the forward stepwise selection process was performed. Regarding
NN, a sensitivity analysis as described in Masters (1993) and Noble et al.
(2000) was implemented. For LP and proximal SVMs, a bootstrapping
was used to estimate the confidence intervals for the coefficients of the
models’ variables (500 bootstrap samples). Variables with coefficients not
significantly different from zero at the 5% level were excluded as being not
important. Finally, regarding UTADIS, as mentioned before, the method
has the advantage of producing the weights of the variables used. By
ranking the weights from the highest to the lowest, the most important
variables with a total weight of at least 85% were selected.5 For each of
the above methodologies, the process is repeated twice: First, using the
initial variables and, second using the set of variables A2. Henceforth,
the corresponding sets of variables resulting from these two steps will be
denoted by A3 and A4.

Step 4: As already noted, the samples used in the analysis are consider-
ably imbalanced with regard to the number of cases in default and the
nondefault observations. This imbalance may affect the accuracy of the
resulting models. The objective of this step was to examine if the use

5 Step 3 is not implemented for CART, because the use of pruning implicitly per-
forms variable selection.
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of balanced samples leads to the development of more accurate models.
Using each data set’s training samples (with the A2 sets of variables),
50 new balanced training data samples were created (at random) while
their test samples have remained the same. Each of these new samples
includes all the default observations, matched to an equal number of ran-
domly selected nondefault observations. Henceforth, these tests on the use
of balanced samples will be denoted as BS.

Step 5: In this step the stability of the developed models is examined to
perturbations of the test data. In this analysis the test data are perturbed
with normally distributed multiplicative noise for the nonbinary variables
x4 − x25. Four levels of noise were selected, with zero mean and standard
deviation 0.1, 0.2, 0.3, and 0.5. A noise level k (10, 20, 30, 50%) indicates
that 99% of the time a variable will be randomly increased or decreased by
between 0 and 2.58k%. For the binary variables x1−x3, the corresponding
noise was introduced with random perturbation of the data, whereas the
variables x26 − x33 have been left unchanged. For each noise level, 100
tests were performed. Similarly to step 4, this analysis is performed for
the A2 set of variables, which was found to produce better models.

3.5 Results

The results of the experimental evaluation are analyzed in terms of both the
average classification accuracy and the AUC of the resulting models. To facil-
itate the presentation, the results are averaged over the five tests described in
Section 3.3. In all the following tables, the results of the best methodology are
denoted in boldface. To check the statistical significance of the best methodol-
ogy’s results, a t-test was performed. The results that are significantly different
at the 5% level are marked with an asterisk.

Industrial Sector

Concerning the average classification accuracy, it can be seen from Table 5 that
NN with one hidden layer and eight neurons provides the best results when
the complete set of variables is used (column A1), while quadratic PSVMs ap-
pears to be the least efficient methodology. The aforementioned neural model
is significantly superior only to CART and the nonlinear PSVMs. The rest of
the columns report the differences observed for the different settings used in
the analysis. As illustrated in the second column of the same table, the use of
the A2 set of variables improved the accuracy of most models. In contrast, the
variable selection process that was employed in the third step of the experi-
ment gave improved results only in the case of RBF PSVMs (columns A3-A1
and A4-A2). Finally, observe that the development of the models via the bal-
anced samples provides less accurate results in most cases (an improvement
is observed only in the case of nonlinear PSVMs).
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Table 5. Average Classification Accuracy (Industrial Sector)

Method A1 A2-A1 A3-A1 A4-A2 A4-A1 BS-A2

NN (1, 8) 81.64 0.08 −1.26 −1.13 −1.05 −0.70
NN (1, 12) 81.36 0.32 −1.04 −1.03 −0.71 −0.78
NN (1, 16) 81.38 0.05 −0.93 −0.68 −0.63 −0.72
NN (2, 6) 81.48 0.16 −0.99 −0.61 −0.46 −0.49
NN (2, 8) 81.43 0.42 −0.88 −1.00 −0.58 −0.82
NN (2, 12) 81.48 0.24 −1.10 −0.86 −0.62 −0.97
CART 80.44∗ 0.22 - - - −0.50
LDA 80.95 0.46 0.67 −0.02 0.44 −0.32
LR 81.49 0.06 −0.06 −0.11 −0.05 −0.42
LP 81.46 −0.05 −1.32 −0.67 −0.72 −0.42
LPSVM 81.32 −0.18 −0.20 0.03 −0.15 −0.06
QPSVM 74.86∗ 0.32 4.49 4.39 4.71 0.57
RBF PSVM 79.85∗ 0.09 0.70 0.88 0.97 1.29
UTADIS 81.19 0.12 −0.60 −1.15 −1.03 −0.29

Average 80.74 0.16 −0.19 −0.15 0.01 −0.33

As far as the AUC is concerned, UTADIS exhibits the best performance
(Table 6). In addition, similarly to the average classification accuracy, the
univariate selection process based on the ROC curves improves the results of
most models (column A2-A1). Furthermore, the use of variable sets A3 and
A4 provides better results compared to the use of sets A1 and A2, respectively,
in the cases of LR and nonlinear PSVMs, while the use of balanced samples
generally leads to the development of inferior models.

Table 6. Area Under the ROC Curve (Industrial Sector)

Method A1 A2-A1 A3-A1 A4-A2 A4-A1 BS-A2

NN (1, 8) 89.38∗ −0.06 −1.20 −0.48 −0.54 −0.05
NN (1, 12) 89.48∗ 0.11 −1.34 −0.74 −0.63 −0.67
NN (1, 16) 89.50∗ 0.23 −1.26 −0.78 −0.54 −1.11
NN (2, 6) 89.20∗ 0.17 −0.86 −0.44 −0.27 0.21
NN (2, 8) 89.20∗ 0.01 −0.91 −0.33 −0.32 0.15
NN (2, 12) 89.41∗ −0.01 −1.24 −0.53 −0.55 −0.60
CART 84.21∗ 0.44 - - - 0.21
LDA 88.24∗ 0.65 0.36 −0.23 0.42 0.44
LR 89.63∗ 0.05 0.13 0.12 0.17 −0.36
LP 89.69∗ 0.02 −1.51 −0.30 −0.28 −0.40
LPSVM 89.47∗ 0.06 −0.10 −0.06 0.00 −0.20
QPSVM 82.17∗ 0.48 4.70 4.17 4.65 −0.89
RBF PSVM 86.25∗ 0.42 1.04 0.56 0.99 3.02
UTADIS 90.06 −0.04 −2.02 −4.08 −4.13 −0.23

Average 88.27 0.18 −0.32 −0.24 −0.08 −0.03
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The results on the stability of the classification results to perturbations
of the test data are given in Tables 7 and 8, for the classification accuracy
and the AUC, respectively. The results involve the changes compared to the
models developed with the variable set A2 without noise. The average rate of
change (column R) is also reported. The obtained results show that CART
is the most stable methodology both in terms of its classification accuracy as
well as in terms of the AUC. On the other hand, quadratic PSVMs appear
to be the least stable classifier. These findings are valid for both evaluation
criteria.

Table 7. Changes in Classification Accuracy with Different Noise Levels (Industrial
Sector)

Method 10% 20% 30% 50% R

NN (1, 8) −0.42 −0.86 −1.46 −2.77 −0.69
NN (1, 12) −0.18 −0.48 −1.07 −2.26 −0.57
NN (1, 16) −0.52 −1.01 −1.55 −2.58 −0.64
NN (2, 6) −0.31 −0.74 −1.30 −2.45 −0.61
NN (2, 8) −0.37 −0.78 −1.36 −2.54 −0.64
NN (2, 12) −0.28 −0.71 −1.32 −2.60 −0.65
CART −0.32 −0.49 −0.85 −1.78 −0.44
LDA −0.96 −1.36 −1.88 −3.24 −0.81
LR −0.15 −0.64 −1.23 −2.33 −0.58
LP −0.56 −1.01 −1.56 −2.65 −0.66
LPSVM −0.45 −0.90 −1.45 −2.66 −0.67
QPSVM −0.71 −2.09 −3.67 −7.75 −1.94
RBF PSVM −0.42 −1.00 −1.72 −3.31 −0.83
UTADIS −0.26 −0.63 −1.04 −2.02 −0.51

Average −0.42 −0.91 −1.53 −2.92 −0.73

Construction Sector

Concerning the classification accuracy of the models, neural networks with 2
hidden layers and 12 neurons in each layer yields the best results, whereas
quadratic PSVMs appears to be the least efficient approach. The aforemen-
tioned neural topology is significantly superior to LDA, LR, LP, nonlinear
PSVMs, and UTADIS (see Table 9). Regarding the univariate variable selec-
tion process based on the ROC analysis, no general conclusion can be drawn.
Furthermore, it is observed that in almost all cases the development of the
models using the sets of variables A3 and A4 bears no improvement (with
the exception of quadratic PSVMs). Finally, the process of model building
through balanced samples appears to be insufficient.

The results of Table 10 demonstrate that the neural network with two lay-
ers of six neurons yields the best performance regarding the AUC. Its perfor-
mance differs significantly compared to CART, LDA, LP, nonlinear PSVMs,
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Table 8. Changes in AUC with Different Noise Levels (Industrial Sector)

Method 10% 20% 30% 50% R

NN (1, 8) −0.17 −0.70 −1.30 −2.65 −0.66
NN (1, 12) −0.16 −0.70 −1.35 −2.81 −0.70
NN (1, 16) −0.21 −0.74 −1.35 −2.77 −0.69
NN (2, 6) −0.18 −0.65 −1.18 −2.38 −0.60
NN (2, 8) −0.18 −0.67 −1.22 −2.46 −0.62
NN (2, 12) −0.18 −0.70 −1.28 −2.61 −0.65
CART −0.30 −0.60 −0.95 −1.88 −0.47
LDA 0.22 −0.34 −0.98 −2.33 −0.58
LR −0.22 −0.69 −1.26 −2.66 −0.66
LP −0.26 −0.82 −1.49 −3.17 −0.79
LPSVM −0.25 −0.74 −1.33 −2.82 −0.71
QPSVM −0.64 −1.95 −3.91 −9.28 −2.32
RBF PSVM −0.12 −0.71 −1.58 −4.07 −1.02
UTADIS −0.24 −0.67 −1.24 −2.74 −0.68

Average −0.21 −0.76 −1.46 −3.19 −0.80

Table 9. Average Classification Accuracy (Construction Sector)

Method A1 A2-A1 A3-A1 A4-A2 A4-A1 BS-A2

NN (1, 8) 78.93 0.33 −0.03 −1.06 −0.73 −3.77
NN (1, 12) 79.16 −0.40 −0.36 −0.53 −0.92 −4.25
NN (1, 16) 78.27 0.44 0.49 −0.42 0.02 −4.85
NN (2, 6) 78.60 −0.06 0.00 −0.44 −0.50 −2.47
NN (2, 8) 78.99 −0.59 −0.29 −0.23 −0.82 −3.17
NN (2, 12) 79.63 −0.50 −0.80 −0.88 −1.38 −5.23
CART 78.15 0.30 - - - −1.96
LDA 78.73∗ 0.29 −1.31 −1.32 −1.03 −3.38
LR 77.64∗ −0.23 −0.25 0.00 −0.23 −1.97
LP 77.31∗ −0.14 −2.88 0.95 0.81 −1.48
LPSVM 76.68 −0.05 −4.23 −0.94 −0.98 −1.00
QPSVM 69.80∗ 1.63 1.87 3.36 4.99 −0.52
RBF PSVM 72.17∗ 4.28 −0.21 −1.94 2.34 1.05
UTADIS 77.20∗ −0.02 −0.19 −1.09 −1.11 −0.12

Average 77.23 0.38 −0.63 −0.35 0.03 −2.37

and UTADIS. It is further observed that quadratic PSVMs is substantially
inferior to other methodologies. However, in contrast to the accuracy rates,
the use of the A2 set of variables generally enhances the predictive power of
the initial models. In addition, it is noted that the process of selecting the
most important variables via procedures that depend on the training method
employed yields better results for the cases of NN, LR, and quadratic PSVMs.
Finally, it is observed that only UTADIS and non-linear PSVMs provide bet-
ter results when balanced samples are used.
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Table 10. Area Under the ROC Curve (Construction Sector)

Method A1 A2-A1 A3-A1 A4-A2 A4-A1 BS-A2

NN (1, 8) 84.74 0.26 0.14 0.49 0.74 −3.82
NN (1, 12) 84.11 0.61 0.71 0.77 1.38 −4.67
NN (1, 16) 83.35 1.45 1.25 0.65 2.10 −5.42
NN (2, 6) 85.04 0.06 0.07 0.40 0.46 −2.61
NN (2, 8) 84.92 0.08 0.07 0.50 0.58 −3.64
NN (2, 12) 84.95 −0.14 −0.06 0.66 0.52 −5.34
CART 81.81∗ −1.12 − − − −2.23
LDA 84.52∗ 0.23 0.00 −0.43 −0.20 −3.49
LR 83.07 0.73 0.78 0.64 1.36 −3.17
LP 82.04∗ 0.76 −4.52 −1.42 −0.66 −1.86
LPSVM 81.54 1.63 −4.83 −2.44 −0.81 −1.87
QPSVM 73.58∗ 1.45 1.29 4.46 5.91 0.50
RBF PSVM 79.81∗ 0.93 −3.72 −1.25 −0.32 3.64
UTADIS 83.06∗ −0.20 −2.43 −1.54 −1.74 0.14

Average 82.61 0.48 −0.87 0.11 0.72 −2.42

Regarding the average classification accuracy criterion, RBF PSVMs mod-
els appears to be the most stable (Table 11), whereas for the area under
curve criterion, UTADIS is the most stable methodology (Table 12). For both
measures, quadratic PSVMs seems to lead to models with the least stable
performance.

Table 11. Changes in Classification Accuracy with Different Noise Levels (Con-
struction Sector)

Method 10% 20% 30% 50% R

NN (1, 8) −0.24 −0.40 −0.59 −0.92 −0.23
NN (1, 12) −0.07 −0.20 −0.71 −0.96 −0.24
NN (1, 16) 0.05 0.10 0.12 −0.04 −0.01
NN (2, 6) −0.57 −0.87 −0.99 −1.18 −0.30
NN (2, 8) −0.14 −0.35 −0.48 −0.77 −0.19
NN (2, 12) −0.18 −0.60 −0.96 −1.28 −0.32
CART 0.01 0.03 0.05 0.04 0.01
LDA −0.49 −0.69 −0.88 −1.37 −0.34
LR −0.17 0.24 0.24 −0.54 −0.14
LP −0.16 −0.02 −0.06 −0.08 −0.02
LPSVM 0.73 0.72 0.59 −0.02 −0.01
QPSVM −1.19 −1.87 −3.19 −5.55 −1.39
RBF PSVM 0.76 1.88 1.95 1.23 0.31
UTADIS 0.62 0.81 0.87 0.80 0.20

Average −0.07 −0.09 −0.29 −0.76 −0.19
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Table 12. Changes in AUC with Different Noise Levels (Construction Sector)

Method 10% 20% 30% 50% R

NN (1, 8) −0.14 −0.24 −0.72 −0.74 −0.19
NN (1, 12) −0.06 0.09 −0.29 −0.24 −0.06
NN (1, 16) 0.13 0.24 −0.04 −0.63 −0.16
NN (2, 6) −0.07 −0.13 −0.35 −0.51 −0.13
NN (2, 8) −0.10 −0.16 −0.39 −0.52 −0.13
NN (2, 12) −0.07 0.00 −0.17 −0.30 −0.07
CART 0.01 0.03 0.05 0.04 0.01
LDA −0.06 −0.13 −0.47 −0.74 −0.19
LR −0.08 −0.16 −0.33 −1.13 −0.28
LP −0.10 −0.26 −0.57 −1.38 −0.34
LPSVM −0.05 −0.06 −0.22 −0.78 −0.19
QPSVM −0.80 −1.82 −3.15 −5.85 −1.46
RBF PSVM −0.25 −0.15 −0.53 −1.85 −0.46
UTADIS 0.11 0.26 0.54 0.31 0.08

Average −0.11 −0.18 −0.48 −1.02 −0.26

4 Conclusions and Future Perspectives

In developing a credit scoring model, the consistency of the evaluation criteria
is of high importance. The above analysis has led to the conclusion that no
methodology is clearly superior to the others. However, neural networks seems
to provide better results in several settings, while multicriteria additive mod-
els developed with the UTADIS method also provide competitive results and
stable performance. In addition, there are clear indications that the quadratic
PSVMs is the least stable and efficient methodology. In both sectors the afore-
mentioned approach exhibits the worst performance regarding the evaluation
criteria used.

No certain conclusions can be drawn concerning the variable selection
process through the training method employed. It must be noted that in sev-
eral cases the aforementioned variable selection process provided conflicting
results. In contrast, the implementation of a simple nonparametric univariate
test (ROC analysis) seems to enhance the predictive power of the developed
models. This finding is strengthened by the fact that in the majority of cases
the combined selection of the most important variables (on the basis of both
ROC analysis and the estimations of the methods themselves) yields better re-
sults compared to the selection of the variables based only on the estimations
of the methods themselves.

In addition, it must be noted that no set of variables or at least one variable
was found to be common in all sets provided by all methodologies. The fact
that the selection process was conducted differently for each method may
explain the above finding. Therefore, care should be taken when examining the
selection process of the most important variables. Even if a methodology can
select an adequate number of important variables, one must further examine



Credit Rating Systems 485

if the use of these variables yields better results. For instance, in the present
study, NN, LDA, and LR have in all cases selected an adequate number of
important variables; the use of these variables, however, did not provide better
results in most cases. In terms of the relative importance of the variables, the
ratio “interest expenses/net sales” and the variable “most recent year with
default events” have appeared as important ones in several cases in most
methodologies. Finally, the experiment conducted indicates that the use of
balanced samples does not lead to the development of more efficient models
(only the performance of RBF PSVMs models was consistently improved).

According to the results obtained, we conclude that the development
process of a credit rating system requires the thorough examination of all
parameters that can affect its efficiency. Since there are still interesting topics
to be examined, important future research perspectives appear in the field of
credit risk estimation. The Basel Committee on Banking Supervision is con-
tinuously revising its provision, aiming to provide the banking industry with
sounder practices for assessing credit risk. The move from the standardized
IRB approach to the advanced IRB approach requires banks to estimate the
LGD and EAD parameters themselves. However, research still needs to be
conducted regarding the assessment approaches of these parameters.

Moreover, the Basel Committee on Banking Supervision (BCBS, 2005)
reported that credit institutions can calculate their unexpected losses using
whichever credit risk model best fits for their internal risk measurement and
risk management needs. However, effective loan portfolio management tech-
niques are still an unresolved area (Altman and Saunders, 1998).

Furthermore, as Krahnen and Weber (2001) stated, a bank should develop
different credit rating systems, applying each of them to evaluate homogeneous
firms. In the present study homogeneity has been expressed on the basis of
the firm’s operational sector. Alternatively, systems that evaluate firms with
similar financial records can be developed (i.e., systems that will evaluate
firms with similar level of sales, liabilities, assets, etc.). Finally, the process of
estimating the average probabilities of default of each grade implies a further
specialized research topic. The properties of mapping techniques and scoring
model-based methods employed for this reason have not been systematically
examined (Carey and Hrycay, 2001).
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