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Abstract In this article, we consider new trends in the design of ultra-lightweight
symmetric encryption algorithms. New lightweight designs for both block and
stream ciphers as well as the underlying hardware design rationale are discussed.
It is shown that secure block ciphers can be built with about 1,500 gate equivalences
and, interestingly, it seems that modern lightweight block ciphers can have similar
hardware requirements to lightweight stream ciphers.

1 Introduction

The bulk of cryptographic work is done using symmetric primitives. While we might
appeal to asymmetric cryptography to establish a shared key [39], cryptographic
data processing is almost always done using a symmetric encryption, authentication,
or hashing algorithm.

In this article, we will consider some new trends in the design of lightweight sym-
metric encryption algorithms. There are two distinct types of symmetric encryption;
stream ciphers and block ciphers and the essential difference between them can be
described as follows:

• A block cipher transforms blocks of plaintext into ciphertext under the action of
a key. This is typically a relatively complicated transformation but, apart from
the reused key, the encryption of one block is independent of another.

• A stream cipher generates a keystream by sampling a constantly evolving cipher
state. The state is typically initialized under the action of a key and an initializa-
tion vector. The sampling operation and the operation used to update the state are
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usually computationally lightweight. The plaintext stream is then encrypted by
combining it directly – typically using bitwise exclusive-or – with the keystream
to give the ciphertext stream

Stream ciphers themselves can be divided into synchronous and self-synchronizing
stream ciphers. For the first, the cipher state is updated independently of the gen-
erated ciphertext. For the second, the self-synchronizing stream cipher state update
includes the generated ciphertext. The two types of stream cipher have very differ-
ent error-propagation and synchronization properties [39] but, for the purposes of
this article, we need no more detail. The vast majority of contemporary proposals
are synchronous, but (secure) self-synchronizing stream ciphers appear to be rather
difficult to design [17].

It is well established that a block cipher can be used to give a stream cipher. The
NIST modes of operation provide three ways of doing this and are known as the
cipher feedback, output feedback, and counter modes [42]. Interestingly, the crypto-
graphic folklore suggests that stream ciphers of a dedicated design should be more
efficient than block ciphers and, therefore, more efficient than stream ciphers based
on block ciphers. Such an advantage might manifest itself in increased encryption
speeds, or more compact and power-efficient implementations. However, as stream
cipher cryptanalysis and block cipher design have advanced, this advantage has been
somewhat eroded. This is something we will return to in our conclusions.

Since there is an algorithmic distinction between block and stream ciphers, we
will address the two primitives separately. First, we will consider the state of the art
in low-cost block cipher design. Then we will consider low-cost stream cipher de-
signs. Since block ciphers can be used to give stream ciphers, the most efficient
block cipher proposals will, in some sense, set the bar against which the most effi-
cient stream cipher proposals should be compared. To set the stage, we will consider
some of the basic building blocks for cryptographic primitives and compare their ef-
ficiency in hardware.

Before starting out we mention some particular considerations that apply to de-
ployments in constrained environments such as low-cost tags for RFID applications.
Very often, such applications require only a moderate level of security and reflect
the very limited financial gains available to an attacker. The security demanded for
typical industry applications such as electronic commerce or internet communica-
tion may not be suitable for some constrained devices and, since increased security
levels translate directly into more physical space in silicon and increased deploy-
ment costs, security in excess of what is required is both costly and unwelcome. An
appropriate security level will only be revealed by risk assessment and cost–benefit
analysis, but 80-bit security may well be adequate in many such applications.

Generally speaking, applications for constrained devices are unlikely to require
the encryption of large amounts of data. Implementations can therefore be optimized
for the space they occupy or the power they consume without too much practical im-
pact. So while security will often be the main consideration for some cryptographic
primitive, the physical space required for an implementation will typically be the
primary physical consideration, closely followed by peak and average power con-
sumption, and timing requirements being a less-important third metric. Interestingly,



New Designs in Lightweight Symmetric Encryption 351

the lack of large amounts of encrypted data helps reduce exposure to a range of at-
tacks that manipulate time–memory–data trade-offs [1, 9, 11]. Further savings can
be made in some applications when the cryptographic key is fixed at the time of
device manufacture. In such cases there would be no need to rekey a device which
rules out both a range of key manipulation attacks [7] as well as the consumption of
additional resources.

2 Hardware Efficiency of Cryptographic Building Blocks

Hardware efficiency can be measured in many different ways; the length of the criti-
cal path (or maximum frequency), latency, clock cycles, power/energy consumption,
throughput, and area requirements all have a significant influence on the viability of
an implementation.

One particular problem in passive RFID applications is that the tags face strict
power constraints. A rule-of-thumb is that the power consumption should be less
than 15µW and the power consumption is given by the voltage times current con-
sumption. For chips built in CMOS1 technology the power consumption is the sum
of two parts: static and dynamic power consumption. The static power consump-
tion is roughly proportional to the area, i.e., the larger the area the higher the power
consumption. The dynamic part is proportional to the switching activity, which is
proportional to the operating frequency.

To lower power consumption, RFID applications are typically clocked at a low
frequency, e.g., 100 kHz or 500 kHz. In this frequency range the static power con-
sumption is dominant. RFID applications usually have harsh cost constraints and the
silicon area of the chip is directly proportional to the cost. Therefore, a good way to
minimize both the cost and the power consumption is to minimize the area require-
ments. It has become common to use the term hardware efficient as a synonym for
small area requirements.

Area requirements are usually measured in µm2, but this value depends on the
fabrication technology and the standard cell library. In order to compare the area
requirements independently it is common to state the area as gate equivalents (GE).
One GE is equivalent to the area which is required by the two-input NAND gate
with the lowest driving strength of the appropriate technology. The area in GE is
derived by dividing the area in µm2 by the area of a two-input NAND gate.

2.1 Architecture Strategies

Generally speaking, there are three major hardware architecture options for block
ciphers: parallel (loop unrolled), round-wise, and serial. A parallel, or loop unrolled,

1 Complementary Metal Oxide Semiconductor, the most widely used technology.



352 C. Paar et al.

block cipher implementation performs several round operations of the encryp-
tion/decryption process within one clock cycle. Usually parallel implementations
are pipelined, i.e., registers are inserted in the critical path so as to increase the max-
imum clock frequency. While parallel implementations have high throughput rates,
this is rarely the focus for RFID applications. Rather, the high area and power de-
mands mean that parallel implementations of block ciphers and stream ciphers are
rarely suited for passive RFID applications.

In a round-wise implementation, one round function of a block or a stream cipher
is processed within one clock cycle. The decreased throughput comes at the benefit
of decreased area and power consumption. From a low power and low area per-
spective, round-wise implementations are best suited for stream ciphers and make
a reasonable option for block ciphers. For example PRESENT [13] has been imple-
mented in a round-wise manner.

To lower power consumption and area requirements, implementations can be se-
rialized; here only a fraction of one round is processed in a clock cycle. Up to a
certain point this strategy can significantly decrease the area and the power con-
sumption and the impressive results by Feldhofer et al. on the AES [41] are achieved
by serialization [23]. However, it might not always be a suitable implementation
strategy since the savings can sometimes be canceled by the overheads in additional
control logic. Nevertheless, from a low-power and low-area perspective, serial im-
plementations appear to be best suited for RFID-like implementations in the case
of block ciphers. The natural way of implementing stream ciphers is in a bit serial
fashion.

2.2 Internal State Storage

Ciphers have an internal state which we might refer to as cipher state and key state.
When a block cipher is used, the cipher state is initialized by the plaintext (or cipher-
text) and modified under the action of the key (and therefore the key state). When
a stream cipher is used, the cipher state is initialized by the initialization value and
the key. Stream ciphers then use the initialized cipher state to output the keystream.
Block ciphers have a fixed number of rounds and the final internal state serves as
the ciphertext. Note that independent of the implementation strategy, see above, the
internal cipher state has to be saved at each round.

In software environments kilobytes of RAM and ROM are available. In low-
cost tag applications this is not the case. Although most RFID tags have a memory
module, for cryptographic algorithms there is only the barest minimum of storage
capacity available. Furthermore, read and write access to the memory module (usu-
ally EEPROM) is very power consuming. As a consequence it is preferable to store
all intermediate values and variables in registers rather than in external memory.

Registers typically consist of flipflops. Compared to other standard cells, flipflops
have a rather high area and power demand. For example, when using the Virtual Sili-
con (VST) standard cell library based on the UMC L180 0.18µ 1P6M Logic process
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(UMCL18G212T3), flipflops require between 6 and 12 GE to store a single bit. As
a consequence, to store an internal state of say 144 bits (64-bits block state and
80-bits key state), at least 864 GE are required. Storage of the internal state typi-
cally accounts for at least 50% of the total area and power consumption. Therefore
stream and block cipher implementations for low-cost tag applications should aim
to minimize the storage required.

2.3 Combinatorial Elements

The term combinatorial elements includes all the basic Boolean operations such as
NOT, NAND, NOR, AND, OR, and XOR. It also includes some basic logic func-
tions such as multiplexers (MUX). The gate count for these basic operations is typ-
ically independent of the library used. For the Virtual Silicon (VST) standard cell
library based on the UMC L180 0.18µ 1P6M Logic process (UMCL18G212T3) the
figures for two-input gates with the lowest driving strength is given below. Note that
in hardware XOR and MUX are rather expensive when compared to the other basic
Boolean operations.

Gate NOT NAND NOR AND OR XOR MUX
GE 0.5 1 1 1.33 1.33 2.67 2.67

2.4 Feedback Shift Registers

A common building block for stream ciphers is the Feedback Shift Register (FSR).
An FSR inputs and outputs one bit per cycle and the input bit is a function of the
previous state. Depending on the feedback function FSRs are either Linear Feedback
Shift Registers (LFSR) or Non-linear Feedback Shift Registers (NFSR).

The hardware implementation of a bit-wise LFSR will consist of flipflops, to hold
the register state, and XOR gates to compute the feedback. An LFSR is a reason-
ably hardware efficient building block. The feedback path, which often consists of a
moderate number of binary XOR gates, will typically account for a few dozens GE,
while the shift register consisting of flipflops cause a larger gate count. It is impor-
tant to mention that while hardware efficiency will strive to minimize both the size
of the register state and the number of XORs in the feedback path (sometimes called
feedback taps), a cipher design using short registers or very few feedback taps may
become susceptible to cryptanalysis.

NFSRs might use more complex Boolean functions or even substitution boxes
(see below) in the feedback function. These tend to have a higher gate count then a
series of XORs but it is the size of the register, and therefore the number of flipflops,
that accounts for the bulk of the area. Therefore the hardware complexity of NFSRs
is typically only slightly higher than that of LFSRs.
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2.5 Confusion and Diffusion

Shannon [45] was the first to formalize the ideas of confusion and diffusion as two
attractive properties in the design of a secure cipher. In practice, almost all block
ciphers are product ciphers, i.e., they are based on subsequent operations of confu-
sion and diffusion. In a block cipher, confusion is often identified with a substitution
layer (see below) while diffusion is usually identified with a permutation or “mix-
ing” layer. In reality is not always easy to separate and identify the components that
contribute to confusion or diffusion.

Some ciphers use arithmetic operations as a diffusion and confusion technique,
but this can significantly increase the area and power consumption. Arguably the
most common confusion method is based on S-boxes (see Sect.2.6). A small change
in the input to an S-box leads to a complex change in the output. In order to spread
these output changes over the entire state quickly, a dedicated diffusion layer has to
be applied. The classical way of doing this is to use bit permutation. In hardware,
bit permutations can be realized with wires and no transistors are involved. They are
therefore a very efficient component. Note that more complex diffusion techniques,
such as the mix-column layer used in the AES, are also possible. Even though they
have cryptographic advantages, they come at a higher hardware cost.

2.6 S-box Design

Many block ciphers, and some stream ciphers, use S-boxes to introduce nonlinearity.
In software S-boxes are often implemented as look-up tables (LUT). In hardware
these LUT can have a large area footprint2 or they pose technological problems
since a mix of combinatorial logic and ROM cannot always be easily achieved with
a standard hardware design flow. Hence a purely combinatorial realization is often
more efficient.

If combinatorial implementations do not exploit any internal structure in the
S-box, then the area requirements will grow rapidly with the number of input and
output bits. The more output bits an S-box has, the more Boolean equations will
be required. And the more input bits an S-box has, the more complex these equa-
tions are likely to be. An interesting interaction between cryptography and hardware
implementation can be observed here: In order to withstand differential and linear
cryptanalysis [8, 38], high nonlinearity of S-boxes is required, which directly trans-
lates into a high gate count. A close look on the hardware efficiency of the S-boxes
in AES [41], DES [40], and PRESENT [13] illustrates this.

AES uses a bijective 8-bit S-box, i.e., eight input bits are mapped to eight output
bits. In [47], the hardware properties of several implementations of AES S-boxes, each
illustrating different design goals, are compared. It turns out that the AES S-box

2 Note that LUTs with a large memory footprint in software can be vulnerable to side-channel
attacks based on cache misses.
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realized as Boolean logic requires about 1,000 GE while there is no implementation
that requires less than 300 GE. These figures also include the inverse S-box.

DES uses eight different S-boxes that map six input bits to four output bits.
In [35], the authors state that in their DES ASIC design the S-boxes require in total
742 GE. However, taking into account that Boolean terms can be shared between
the eight different S-boxes, it is not surprising that the area requirements for a sin-
gle 6-bit to 4-bit S-box typically is around 120 GE. This can also be observed in
implementations of DESXL and DESL, which will be introduced below. Both algo-
rithms use 6-bit to 4-bit S-boxes but, in contrast to DES, a single S-box is repeated
eight times. Therefore only one instance of the S-box has to be implemented in a
serialized design, which requires 128 GE.

In [34], the area requirements of so-called SERPENT-type S-boxes are described.
These are a special subset of 4-bit to 4-bit S-boxes fulfilling certain criteria and the
authors found that the area requirements for this type of S-box varied between 21
and 39 GE. As an example, PRESENT uses a single, bijective 4-bit to 4-bit S-box
which can be implemented with 21 GE. However, in [13], the authors state that
a single S-box requires 28 GE. This deviation is caused by the fact that synthesis
results depend heavily on the technology of the standard cells that are used.

3 Lightweight Block Ciphers

A block cipher can be viewed as a family of permutations indexed by a key k. For
a block cipher that operates on b-bit blocks, the permutations are of the set of all
b-bit inputs. There is a wide variety of design philosophies for block ciphers and
the state of the art is well advanced. All the block ciphers of interest to us in this
chapter are iterated and consist of the repeated application of a round function. At
each round some key-related information is used to influence the computation, and
this key information is derived from the user-supplied key k using a key schedule.

The computation in a single round usually follows one of two topologies. These
have been termed a Feistel cipher or a substitution–permutation network which we
will denote by SPN. This article is not an appropriate place to discuss block cipher
design in detail, but since the choice of topology has some influence on the efficiency
of an implementation, we briefly distinguish between them.

Suppose that we denote the cipher state at the start of round i by Li||Ri where ||
denotes bitwise concatenation, and the round key to be used as ki+1. If we further
denote the round function in a Feistel cipher by f and the round function in an SPN
cipher by g, then loosely speaking we have the following equations for a single
round of encryption where the two arguments to f and g are the cipher state and the
round key:

FEISTEL CIPHER: Li+1 = Ri Ri+1 = Li ⊕ f (Ri,ki+1)

SPN CIPHER: Li+1||Ri+1 = g(Li||Ri,ki+1).
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At first sight, if our goal is compact hardware implementation then there appear
to be two major advantages of Feistel ciphers when compared to SPN ciphers:

1. The round function f would be identical for encryption and decryption
2. Only part of the cipher state – one half in a classical Feistel cipher – is processed

each round

The first property suggests that hardware implementations of Feistel ciphers would
reuse the same datapath for encryption and decryption, with only the control logic
being adapted. The second property suggests that fewer gates will be required to
realize one round of encryption since only part of the cipher state is processed.
However, it is notable that the many important block cipher today, e.g., the Advanced
Encryption Standard (AES) [41] and the most compact block cipher, PRESENT [13],
are both SPN ciphers. So do Feistel networks really hold an intrinsic advantage?

It appears not. The first potential advantage of a Feistel cipher, given above, is
rarely relevant since for many tag-based applications decryption is not required. For
example, when used for authentication in a challenge–response protocol the block
cipher needs only to be used in the encryption direction. Also, if a block cipher were
to be used as a stream cipher, e.g., when operating in counter or output feedback
mode [42] then again, it is only used in the encryption direction. As for the second
advantage given above, while it is true that the function f in a Feistel cipher might
be more compact than the function g in a substitution–permutation network, this is
a little misleading. Feistel ciphers will probably require more encryption rounds to
achieve the same level of mixing as an SPN cipher and this can lead to a signifi-
cant increase in execution time and energy requirements. But, in addition, Feistel
ciphers also require additional gates after the application of f to mix the untrans-
formed state with the transformed state. Usually the bitwise-XOR is used for this
which costs approximately 2.5–3 GE per bit. This is an implementation overhead
not required by SPN ciphers and further suggests that the minimum datapath for
a serialized implementation is likely to be better with an SPN cipher than with a
Feistel cipher. However, it should be noted that the state is the overwhelming pro-
portion of the space requirements for both types of cipher. Thus any difference in
the implementation of the round functions is likely to have a limited overall effect.

3.1 State of the Art

There has been an increased interest in the design of lightweight block ciphers.
The benchmark implementation against which all others should be measured is the
implementation of the AES by Feldhofer et al. [23]. This works show that it is
possible to implement the AES in about 3,400 GE, a significant achievement. Yet
this is well above the amount of space that we would like to devote to an encryption
primitive in many RFID applications. At the same time, the AES arguably offers
more security in an RFID-based application than we really need. A new dedicated
design might provide a more suitable cost/security trade-off.
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Table 1 Comparison of some particularly compact block cipher designs

Key Block Cycles per Throughput at Logic Area
size size block 100 kHz (kbps) process GE Rel.

DES [35] 56 64 144 44.4 0.18 µm 2,309 1.47
AES-128 [22] 128 128 1,032 12.4 0.35 µm 3,400 2.17
DESL [35] 56 64 144 44.4 0.18 µm 1,848 1.18
DESX [35] 184 64 144 44.4 0.18 µm 2,629 1.67
DESXL [35] 184 64 144 44.4 0.18 µm 2,168 1.38
PRESENT-80 [13] 80 64 32 200 0.18 µm 1,570 1
PRESENT-128 [13] 128 64 32 200 0.18 µm 1,886 1.20

A look at some older ciphers is quite illuminating. It is well known that DES
was designed with hardware efficiency in mind, and DES still has very competitive
hardware implementation properties. Implementations of around 3,000 GE [48] ex-
ist while a serialized implementation can be realized with around 2,300 GE [35].
The key length of DES limits its usefulness in many applications and makes pro-
posals such as DESXL (2,168 GE) of some considerable interest [35]. This will be
discussed further below. Implementation requirements for the Tiny Encryption Al-
gorithm TEA [49,50] are not known, but a crude estimate is that TEA needs at least
2,100 GE while XTEA needs at least 2,000 GE. These are “back-of-an-envelope”
figures where we assume that a 32-bit bitwise exclusive-or requires 80 GE, a 32-bit
integer addition requires 148 GE, and a 192-bit flipflop requires 1,344 GE. All these
estimated figures do not take into account control logic which might significantly
increase the required area. Four dedicated proposals for low-cost implementation
are MCRYPTON [37], HIGHT [29], SEA [46], and CGEN [44], though the latter is not
primarily intended as a block cipher. MCRYPTON has a precise hardware assessment
and requires 2,949 GE, HIGHT requires around 3,000 GE while SEA with parame-
ters comparable to PRESENT requires around 2,280 GE. All these figures are given
in Table 1.

3.2 Two Dedicated Proposals: DESXL and PRESENT

3.2.1 DESXL

DESXL [35] is, as the name suggests, based on the Data Encryption Standard
(DES) [40]. DES is a 64-bit block cipher with a 56-bit key. Both its history and
structure are well known and details of the algorithm can be found in [40]. Unlike
many modern ciphers DES was designed with good hardware properties in mind.
However, even when adopted in the mid-1970s, DES was criticized for its short
key length of 56 bits and this has only become a more pressing problem over the
years [33]. Therefore, DESX was proposed by Rivest as a DES variant with higher
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resistance to brute-force attacks. This involves a process of prewhitening and post-
whitening. DESX encryption using the 184-bit key k||k1||k2 can be described as

DESXk||k1||k2(x) = k2 ⊕DESk(k1 ⊕ x).

The effectiveness of this simple technique was demonstrated by Kilian and
Rogaway [32].

DESXL is derived from DESX but has two modifications. First the initial and
final permutations (IP and IP−1) in DES are omitted. Second, and more crucially,
the eight original S-boxes of DES are replaced by a single S-box that is used eight
times. The new S-box was chosen by randomly generating all S-boxes that fulfilled
the original DES criteria with some additional conditions being added [35]. The
goal was a single S-box that offers greater resistance to attacks such as differential
and linear cryptanalysis than the original eight S-boxes of DES. The S-box is given
below and more details are available in [35].

DESL (and DESXL) S-box: S
14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

3.2.2 Implementation of DESXL

Since DESXL is built around DES, an implementation of DES optimized for con-
strained environments is needed. An example is given in Fig. 1. This design, which
is presented in [35], consists of five core modules: mem left, mem right, keysched-
ule, controller, and sbox.

Controller. The controller manages all control signals in the ASIC based on a finite
state machine.

Keyschedule. This module generates the round keys of DES and consists of a 56-bit
register, an input multiplexer, and an output multiplexer.

mem left. This module consists of eight 4-bit registers, each composed of D-
flipflops. Here the memory modules were designed as a shift register so that
the output of a 4-bit block can be used as the new input to the following block.
At the end of the chain, the current 4-bit block is provided and can be processed
without an additional output multiplexer. This results in a saving of 48 GE.

mem right. This module is similar to the mem left. It consists of eight 4-bit wide
registers, but it has different input and output signals. Instead of a 4-bit wide
output it has a 6-bit wide output which accounts for the expansion function in
DES. This design in a shift register manner saves even more area (72 GE) than
in the mem left module because, in this case, a 6-bit wide output multiplexer
can be saved. Altogether 120 GE can be saved using this memory design when
compared to regular approaches.
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Fig. 1 Datapath of a serialized DES ASIC

sbox. For DES this module consists of the eight DES S-boxes and an output mul-
tiplexer. The S-boxes are realized in combinatorial logic, i.e., as a sum of prod-
ucts [20].

In the description that follows, it is assumed that the reader is familiar with the
specifications of DES [40]. The 56-bit key is stored in the key flipflop register, after
the PC1 and LS1 permutations have been applied, while the plaintext is mixed using
the DES initial permutation and split into two 32-bit inputs to the modules mem left
and mem right, respectively. The input of mem left is modified by the inverse of the
P permutation and stored in the registers of the modules mem left and mem right in
one cycle. The output of the last register in mem right is both stored in the first reg-
ister of mem right and expanded to six bits. After a bitwise exclusive-or operation
with the appropriate block of the current round key, the expanded value is processed
by the sbox module, which is selected by the count signal provided by the controller
module. The result is bitwise exclusive-ored with the output of the mem left module
and stored in the first flipflop of the mem left module. This is repeated eight times
until all 32 bits of the right half are processed. By reducing the datapath from a 32-
bit bus to a 4-bit bus, only (6×10)+(4×10) = 100 transistors (25 GE) are needed
for the bitwise exclusive-or operations, compared to (48× 10) + (32× 10) = 800
(200 GE) transistors in a nonserial design. This saving comes at the cost of two
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additional multiplexers, one for the round key (72 GE) and one for the S-box output
(48 GE). However, the second multiplexer is avoided in the final specification of
DESXL.

Once all eight 4-bit blocks of both halves have been processed, they are con-
catenated to two 32-bit wide outputs of the modules mem left and mem right. The
output of the module mem left is transformed by the P permutation and stored as the
new content of the mem right module, while the output of the mem right module is
stored as the new content of the mem left module. This execution flow repeats for
another 15 rounds. Finally, both outputs from mem left and mem right are concate-
nated to give a 64-bit wide output and after IP−1 the ciphertext is generated.

The results of implementing this DES architecture are given in [35,43] and sum-
marized in Table 1. The registers comprise the majority of the chip size (33.78%),
followed by the S-boxes (32.11%) and multiplexers (31.19%). Since the chip size of
registers and multiplexers cannot be reduced it is natural to consider the space oc-
cupied by the S-boxes. And since there are no better logic minimizations of the
original DES S-boxes, the designers of DESXL decided to use a new, single S-box
repeated eight times. This resulted in a proposal called DESL.

For implementation, the main difference between DESL and DES lies in the
f -function. The eight original DES S-boxes are replaced by a single S-box (see
Table in Sect. 3.2.1) which is repeated eight times. This has implications for the
design of the sbox module. As can be seen in Fig. 2, in a serialized design the S-box
module is dramatically simplified. Another minor difference is that DESL omits the
initial permutation IP and its inverse IP−1 for the sake of simplicity.

Adding the prewhitening and postwhitening to these algorithms obviously has an
impact on the space required. Since we assume that all keys have to be stored on the
RFID-tag in a nonvolatile memory and both the prewhitening and the postwhitening
key never change, no additional flipflops are required for this operation. Therefore
only two additional XOR-gates of 64 bits are required to perform the prewhitening
and postwhitening. The gate count difference between DESXL and DESL (and also
between DESX and DES) is 320 additional GEs. Figure 2 depicts the datapath of a
serialized DESXL ASIC.

For the implementation of all these variants [35, 43] Synopsys Design Vision V-
2004.06-SP2 was used to map the design to the Artisan UMC 0.18µm L180 Process
1.8-Volt Sage-X Standard Cell Library and Cadence Silicon Ensemble 5.4 for the
Placement & Routing-step. Synopsys NanoSim was used to simulate the power con-
sumption of the back-annotated verilog netlist of the ASIC. The implementation
of DES requires 2,309 GE and 144 clock cycles are required to encrypt one 64-bit
block of plaintext. For one encryption at 100 kHz the average current consumption is
1.19 µA and the throughput reaches 5.55 kB s−1. For the serialized DESL ASIC im-
plementation, the area requirement was 1,848 GE and, again, 144 clock cycles were
needed to encrypt one 64-bit block of plaintext. For one encryption at 100 kHz the
average current consumption was 0.89 µA with throughput reaching 5.55 kB s−1.
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Fig. 2 Datapath of a serialized DESXL ASIC

3.2.3 Description of PRESENT

The block cipher PRESENT was designed with security, efficient implementation,
and simplicity in mind. PRESENT is a 64-bit SPN block cipher with an 80-bit key.
This is sometimes referred to as PRESENT-80 to differentiate it from PRESENT-128
which uses 128-bit keys. Encryption and decryption with PRESENT have roughly the
same physical requirements and the encryption subkeys can be computed on-the-fly.
PRESENT is described in pseudocode in Fig. 3 while details and design rationale can
be found in [13]. The topology over two rounds is illustrated in Fig. 4.

PRESENT uses a single 4-bit to 4-bit S-box which is applied 16 times in parallel
in each round. This was a direct consequence of the pursuit of hardware efficiency.
Since a bit permutation is used as a linear diffusion layer, AES-like diffusion tech-
niques [15] were not an option for PRESENT. Therefore some additional conditions
were placed on the S-boxes to improve the so-called avalanche of change. Despite
this, the S-box is particular well suited to efficient hardware implementation and is
given below in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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generateRoundKeys()
for i = 1 to 31 do

addRoundKey(STATE,Ki)
sBoxLayer(STATE)
pLayer(STATE)

end for
addRoundKey(STATE,K32)

plaintext

�
�

sBoxLayer

pLayer

�...
�

sBoxLayer

pLayer

�
�

ciphertext

key register

�
addRoundKey�

...

update

�

�
update

addRoundKey�

Fig. 3 A top-level algorithmic description of PRESENT

ki+1

S S S S S S S S S S S S S S S S

ki

S S S S S S S S S S S S S S S S

Fig. 4 Two round topology of PRESENT

3.2.4 Implementation of PRESENT

PRESENT-80 was implemented in VHDL and synthesized for the Virtual Silicon
(VST) standard cell library based on the UMC L180 0.18µ 1P6M Logic process.
The authors used Mentor Graphics Modelsim SE PLUS 5.8c for simulation and Syn-
opsys Design Compiler version Y-2006.06 for synthesis and power simulation [13].
Figure 5 shows the datapath of an area-optimized encryption-only PRESENT-80,
which performs one round in one clock cycle, i.e., a 64-bit width datapath. The
implementation requires 32 clock cycles to encrypt a 64-bit plaintext with an 80-bit
key, occupies 1,570 GE and has a simulated power consumption of 5µW.
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Fig. 5 The datapath of an area-optimized version of PRESENT-80

Module GE (%) module GE (%)

Data state 384.39 24.48 KS: key state 480.49 30.61
s-Layer 448.45 28.57 KS: S-box 28.03 1.79
p-Layer 0 0 KS: Rotation 0 0
Counter: state 28.36 1.81 KS: counter-XOR 13.35 0.85
Counter: combinatorial 12.35 0.79 Key-XOR 170.84 10.88
Other 3.67 0.23

sum 1,569.93 100

The bulk of the area is occupied by flipflops for storing the key and the data state,
followed by the S-layer and the key-XOR. Bit permutations are simple wiring and
will increase the area only when the implementation is taken to the place and route-
step. The main goal of the implementation was a small footprint in hardware,
however, it has also been synthesized in a power-optimized implementation. For
an additional 53 GE the power consumption is only 3.3µW. Estimates also suggest
that PRESENT-128 would occupy an approximate area of 1,886 GE. Beside a very
small footprint PRESENT has a rather high throughput giving good energy-per-bit.

4 Lightweight Stream Ciphers

As was mentioned in Sect. 1, it is often suggested that stream ciphers of a dedicated
design might be well suited to exacting conditions. Perhaps they offer particularly
aggressive performance on some platform or perhaps they offer a particularly com-
pact footprint in hardware. While the advanced state of block cipher research is
beginning to challenge this view – it is not clear that a well-designed block cipher
might not outperform a stream cipher in both regards – there have been considerable
recent advances in the design of stream ciphers.

A stream cipher generates a keystream by sampling an evolving cipher state.
Typically, for a dedicated stream cipher, the state is initialized under the action of
a secret key k and an initialization vector (IV) v. By using an initialization vec-
tor different keystreams can be generated without a change of key and there is
a mechanism – sending a new public value v – by which sender and receiver can



364 C. Paar et al.

synchronize with one another. Depending on the design of the stream cipher, state
initialization might be closely related to keystream generation or it might be an en-
tirely different process. It is well known that a keystream generated by a stream
cipher with a finite cipher state must (eventually) repeat and its period must be suf-
ficiently large. In practice, many stream ciphers come with an explicit upper-bound
on the amount of keystream that can be generated after which the initialization vec-
tor, the key, or both are changed.

4.1 State of the Art

In contrast to block ciphers, the field of stream ciphers is very fragmented and there
are no stream ciphers with the international profile of DES and the AES. As a con-
sequence, the state of the art of the design and analysis of stream ciphers is not as
well-developed as that of block ciphers. At first sight this might be a little surpris-
ing. After all, there is a very rich theory [36] surrounding the use of Linear Feedback
Shift Registers (LFSRs) and for many years these have been used in the construc-
tion of stream ciphers. Yet, in some sense this has helped lead to the fragmentation
of the field. Since stream ciphers can be built component-wise using these build-
ing blocks, it can be tempting for application developers to design subtly different
stream ciphers that can be deployed in a proprietary manner. Despite this fragmenta-
tion, however, there are two stream ciphers of particular note. Somewhat ironically,
given the reputation of stream ciphers for compact implementation, these two ci-
phers both occupy more space than most contemporary block ciphers.

The first of these two stream ciphers has been, and continues to be, used in many
applications. RC4 was designed by Rivest in the mid-1990s and was provided as a
proprietary cipher by RSA Data Security. The adoption of RC4 in industry has been
widespread, e.g., [16, 30], and even though its confidentiality was compromised
nearly a decade ago it remains, at core, a sound cipher. That said, it is showing its
age and a variety of recommendations on how best to use the cipher help to protect
the user from some unfortunate irregularities in the keystream. But independently of
that, and in the applications of interest to us here, RC4 is completely unsuitable for
environments with very restricted space. It should be noted that RC4 was primarily
designed as a software-friendly cipher. The second stream cipher of note, SNOW
2.0 [18], is ISO-standardized and sports a contemporary design that meets modern
performance requirements. While SNOW 2.0 might not be found in many products
or applications, its success has lead to the design of variants such as SNOW 3G.
However, SNOW 2.0 is also unsuitable for applications when space is limited. Both
RC4 and SNOW 2.0 have a very large cipher state and rough estimates suggest that
they would occupy around 12,000 and 7,000 GE, respectively.

To look for more compact stream ciphers we might turn to a host of proposals
based on LFSRs and these typify the usual industry designs of the 1980s and 1990s.
With LFSRs, however, it is difficult to achieve good performance, compact design,
and good security at the same time. One of the most prominent stream ciphers of the
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era was A5/1. Its ensemble of three LFSRs with an irregular clocking mechanism
require a very satisfying 1,000 GE [3], though unfortunately its cryptanalysis was
equally impressive [10]. The cipher E0 [12] used in Bluetooth is another prominent
shift-register-based stream cipher and estimates for its implementation suggest that
over 1,600 GE are required.

The difficulty of designing a secure stream cipher is, to a great extent, a func-
tion of the way it operates. As well as a key the cipher typically uses an initializa-
tion value. Thus the cipher can be repeatedly initialized with different IVs that are
known to an attacker while the secret key remains unchanged. Also, the key and
IV are typically used to initialize the state of the stream cipher, and after this time
the state evolves without any influence from the secret key. These are very special
attributes to a cipher and it is not surprising that they lead to very special design de-
mands. These properties have also lead to a series of time–memory–data trade-offs
giving us lower bounds on the sizes of the state of a stream cipher. They also help
us understand better the relationship between the sizes of the key, the IV, and the
process of state initialization [1, 11, 19].

4.2 The eSTREAM Project

The eSTREAM project [17] is part of the ECRYPT Network of Excellence, and the
goal of the project is to deliver a small portfolio of promising stream ciphers. The
project is expected to end by May 2008.

At the start, the eSTREAM project identified stream ciphers for use in two very
different ways. The first, labeled Profile 1, was for stream ciphers that could provide
fast throughput in software. The second, labeled Profile 2, is of more interest to us
here and required that stream ciphers be suitable for use in highly constrained en-
vironments. For Profile 2 (compact hardware) submissions, the must-satisfy values
for the key and the IV lengths were 80 bits and at least one of 32 or 64 bits, respec-
tively. Note that these values reflect the reasonable belief that the security level can,
to some extent, be compromised so as to gain an implementation advantage.

The last round of the eSTREAM project featured 16 ciphers, eight for software
and eight for hardware. At the time of writing, all have resisted cryptanalysis though
some have been modified from their original submission. For entry in the final round
of eSTREAM the main criterion after security for the hardware ciphers was the
amount of space required for an implementation. For all eight final Profile 2 submis-
sions there was good evidence that their implementation would require less space
than an implementation of the AES and, in particular, the AES implementation of
Feldhofer et al. that requires around 3,400 GE [22]. It appears that the candidates
fall into three rough bands as shown in Table 2 : those that are slightly better than
the AES, those that are certainly better than the AES, and two that appear to offer
an exceptional performance profile.

Cryptanalysis may well take its toll on some of these finalists, but the space re-
quirements for Grain v1.0 and Trivium are striking. When looking beyond the space
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Table 2 Approximate gate count of some Profile 2 stream ciphers of the eSTREAM project

Algorithm ≈GE Algorithm ≈GE Algorithm ≈GE

Mickey v2.0 [2] 3,400 Decim v2.0 [4] 3,000 Grain v1.0 [28] 1,300
Pomaranch v3.0 [31] 3,300 Edon80 [24] 2,900 Trivium [14] 2,300
F-FCSR-H v2.0 [6] 3,200

requirements we also find that these two algorithms are particularly amenable to
low-cost hardware implementation; they offer great flexibility in their implementa-
tion so as to get a wide-range of performance metrics [25] as well as low-power
implementations [21].

4.3 Two Dedicated Proposals: Grain and Trivium

4.3.1 Grain

Despite its version number Grain v1.0 [28] is the second version of the cipher; the
first was broken [5] during the first phase of the eSTREAM project. Grain v1.0 con-
sists of two feedback shift registers, one of which uses linear feedback while the
other uses nonlinear feedback. Grain v1.0 offers 80-bit security, a level of security
that is widely viewed as appropriate for the lower value applications often associ-
ated with RFID tag-based deployments. There is a variant – referred to as Grain-
128 [27] – that offers 128-bit security as the name implies. A schematic overview
of Grain v1.0 is given below.

z

h(x)

�

�

� �

� �

REGISTER REGISTER

non-linear feedback linear feedback

��� �

Each register is 80 bits in length and the function h is a boolean function that takes
input bits from the two registers. It has been carefully chosen to provide particular
cryptographic properties; more details can be found in [26, 28].
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The hardware performance of Grain v1.0 has been studied closely in a variety of
papers. One particularly nice feature of the algorithm, and one that is shared to some
extent by Trivium, is the wide-ranging performance profile. In [25], for instance, it is
shown that implementations oriented toward RFID tags, where reduced space is the
driving metric, offer implementations requiring around 1,200 GE. Figures in [21]
are derived from implementations that strive to minimize energy consumption; here
the size might increase to 3,360 GE but with an electric current of merely 0.8 µA
when clocked at 100 kHz.

4.3.2 Trivium

A second promising candidate from the eSTREAM project is Trivium [14]. Like
Grain v1.0, it offers a wide rage of implementation options. A schematic overview
of Trivium is given below.

Trivium uses three shift registers of lengths 93, 84, and 11, 1 respectively. From
each register, internal bits are used as feedforward and feedback into the updating of
the state, more details can be found in [14]. This bit extraction naturally divides each
register into three parts and we have the following values which define the position
of the bit extraction; A1 = 66, A2 = 3, A3 = 24, B1 = 69, B2 = 9, B3 = 6, C1 = 66,
C2 = 21, and C3 = 24. The function f takes the third- and second-to-last bits of each
register, say x and y, and outputs the bitwise AND so f (x,y) = xy.

C1 C2 C3

B1 B2 B3

A1 A2 A3

f

f

f

st

st+1
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The total register size in Trivium is 288 bits and this translates into a larger im-
plementation than Grain v1.0. Implementations oriented toward RFID tags in [25],
for instance, offer implementations requiring around 2,300 GE, but the structure of
Trivium allows for greater parallelization and hence a greater throughput. Figures
in [21] are derived from implementations that strive to minimize energy consump-
tion; here the size might increase to around 3,090 GE but with a current consumption
of 0.68µA when clocked at 100 kHz.

5 Conclusions

In this article, we have considered some innovative approaches in the design of low-
cost symmetric encryption algorithms. This field of research is very active and much
progress is being made in the design and implementation of both compact block and
compact stream ciphers.

However, it is interesting to ask whether we really need both types of algorithms?
When looking at the performance of Grain v1.0 and Trivium, one is tempted to say
“yes.” We get what appears to be very good encryption at roughly half the cost in
space of using the AES. However, this is not necessarily a fair comparison since
the AES was designed to be suitable for both software and hardware and offers
three very high levels (128-, 192- and 256-bit) of security. By contrast Grain v1.0
and Trivium were exclusively designed with hardware implementation in mind and
intended to offer only a single level of 80-bit security. It seems that the block ci-
pher PRESENT offers a better point of comparison, but the space requirements for
PRESENT are around 1,500 GE (see earlier). This is very close to those for Grain
v1.0 and Trivium.

To be fair, a little more space is required to accommodate counter mode (say) if
we were to use PRESENT as a stream cipher, but even so it is a reasonable indication
that all three contemporary ciphers of a dedicated design require similar amounts of
space. Perhaps this is not too surprising. Any given security level gives immediate
requirements on the amount of state that we need. This means that we need to be
using around 900 GE as the working space for any symmetric cipher that aims to
offer, say, 80-bit security. We then need to add the space required for the different
cipher operations and it seems that optimized ciphers (either stream or block) are
able to make do with between 300 and 500 GE as an operational overhead.

Whether or not the specific proposals of Grain v1.0, Trivium, or PRESENT sur-
vive the efforts of cryptanalysts, there is no real reason to suppose that a compact
block cipher necessarily requires more space than a compact stream cipher offer-
ing comparable security. To the authors of this article, the distinguishing feature
between block and stream cipher implementation is unlikely to be the space re-
quired. Instead, any significant implementation difference may turn out to be the
levels of parallelism and opportunities for low-energy optimization that are afforded.
Depending on the design, these aspects appear to be more easily exploited with a
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stream cipher than with a block cipher. In the end, this may turn out to be the feature
that distinguishes the two classes of symmetric encryption most when considering
their design and implementation. Providing convincing evidence to the contrary is
left as an open problem for the reader.
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