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Preface

This is a book on multimedia information processing and multimedia sys-
tems. It grew out of a four-year collaboration among research groups partici-
pating in the European Network of Excellence on Multimedia Understanding
through Semantics, Computation and Learning, abbreviated as “MUSCLE”.
It focuses on thematic areas that are scientifically and technologically impor-
tant for multimodal processing and interaction. Specifically, it addresses the
state-of-the-art research and new directions on the theory and applications
of multimedia analysis, approaches that improve robustness and performance
through cross-modal integration. It also focuses on interaction with multi-
media content, with special emphasis on multimodal interfaces for accessing
multimedia information.

This volume contains contributions by experts in the ubiquitous scientific
and technological field of multimedia. The purpose of this book is twofold:
(i) to present the state-of-the-art in the areas of multimedia processing and
interaction from the theoretic, algorithmic and application viewpoints, and
(ii) to present in-depth novel perspectives, analytic tools, algorithms, design
practices and applications in selected areas of multimedia processing and in-
teraction. Emphasis is given on multimodal information processing aspects
of multimedia and cross-integration of multiple modalities. This book can be
used either as an additional textbook for an advanced multimedia course or
as a research aid for investigators in the area of multimedia processing and
interaction.

The MUSCLE Network of Excellence is a microcosm of the multimedia
world and contains members from the multimedia signal processing, computer
systems, machine learning and human-computer interaction areas. However,
MUSCLE by design is somewhat biased towards the media processing and
machine learning communities. One of the main goals of the MUSCLE Net-
work of Excellence is to integrate and synthesize the work of researchers with
different media processing backgrounds and multimedia systems expertise.
This is especially evident in the research area of multimodal processing and
interaction of which this book is an outgrowth. Our goal in this book is to
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bring together the multimedia processing and multimedia systems commu-
nities, identify common problems and synergies, and propose solutions that
significantly improve on the state-of-the-art. This book demonstrates these
views and this synthesis. However, due to the vast area that this book covers,
exposition will not be complete; not all multimedia research and application
areas will be covered.

The authors would like to thank the members of the EU-IST INFSO.E2
unit, and especially Dr. Stefano Bertolo, for providing their support in this
effort. We also would like to thank members of the MUSCLE Network of
Excellence, especially, Dr. Eric Pauwels who served as the network coordi-
nator during the formation of this book. Several people have provided addi-
tional editorial support for this book, notably, Nassos Katsamanis, George
Papandreou, and Manolis Perakakis. In particular, we wish to thank Nas-
sos Katsamanis and George Papandreou for setting up and maintaining an
automated LATEX collaboration system and for their editorial processing of
the bibliography and other typesetting details of this book. Many thanks to
Nancy Zlatintsi for designing the book cover figure. We also acknowledge help
from many people from our research groups who have provided proofreading
comments for chapters. Finally, we wish to thank Susan Lagerstrom-Fife and
Sharon Palleschi at Springer for their support, valuable edits and the timely
publication of this book.

Petros Maragos, Alexandros Potamianos, Patrick Gros

January 2008



Introduction

“Tell me, O Muse, of the multimodal1 man, who wandered full many ways
after he had conquered the sacred castle of Troy. Many were the men whose
cities he saw and whose mind he learned, and many the woes he suffered in
his heart upon the sea ...” (Homer, Odyssey).

In multimedia analysis, most of the tools are devoted to a single modal-
ity, the other ones being treated as illustrations or complementary compo-
nents. For example, web search engines and image retrieval systems barely
mix textual and visual descriptions; video processing is usually done sepa-
rately on sound and images. The main reason for this is that the different
media concern different and sometimes very separate scientific fields. How-
ever, even without learning, performance of multimedia analysis and under-
standing systems (especially in terms of robustness) can be greatly enhanced
by combining different modalities through interaction or integration. Thus,
one of the goals of this book is to present algorithms and systems processing
several different media present in multimedia and exploit their interaction.
This requires a strong synergy between various scientific fields and many re-
search methodologies. Examples of modalities to integrate include all possible
combinations of: (i) vision and speech/audio; (ii) vision (or speech) and tac-
tile; (iii) image/video (or speech/audio) and text; (iv) multiple-cue versions
of vision and/or speech; (v) other semantic information or meta-data.

1 The word “multimodal” is a free (but etymologically precise) translation of the
greek adjective “πoλυτρoπoν”, which, for Homer’s Odysseus or any man, means
the “man of many ways” or the “man of many devices”.
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Multimedia information retrieval via an interactive human-computer in-
terface is a complex task that requires feedback from the user and a complex
negotiation between the user and the machine. The grand challenges are to
research, design and build natural and efficient human-computer interfaces
for performing multimedia information retrieval tasks that allow for negotia-
tion (dialogue) between the user and the system. Three broad thematic areas
in research on human-computer interfaces are multimodality, adaptivity and
mobility.

The field of multimedia is truly interdisciplinary and so is this book. Two
diverse research communities are the main drive behind multimedia technol-
ogy and applications. One driver is the media processing community that
produces algorithms for analyzing, encoding and recognizing patterns in mul-
timedia streams. This community is in itself diverse and its members are iden-
tified by their specialization into speech processing, audio processing, image
processing, video processing, and natural language processing. Some commu-
nity members work on multiple media, e.g., speech and text, speech and audio,
image and video, or more rarely, speech and video. The second driver behind
multimedia technology and applications is the computer systems community
that combines media processing algorithms with its own building blocks to
create multimedia systems. Again a diverse number of research areas are in-
volved in multimedia systems from this community, namely, agents and web
technologies, ontologies and semantic web, databases, human-computer inter-
action. This community deals with a number of important problems, such as
data and meta-data formalisms, semantic representation and inference, multi-
media indexing and search, interface design. Last but not least, a community
that significantly contributes to multimedia processing is the machine learn-
ing community that provides general purpose algorithms for modeling of the
media, but also multimedia application control and interfaces to multimedia.

Fundamental Concepts

The field of multimedia processing gained momentum in the early 1990’s when
video processing experts began to realize the advantages of joint processing of
the audio and visual streams. It is not surprising that the problem of modality
combination or fusion remains central to the multimedia community to this
day. Fusion, or the merging of various input or information streams, can be
performed at the feature or model level, known as early and late fusion, respec-
tively. Multimodal (or cross-modal2) fusion is important for many multimedia
applications because of the big gains that can be achieved in performance due
to the complementarity of the information available in the different modali-
ties; consider the examples of audiovisual speech recognition, movie indexing,
content-based image retrieval. Since multimodal interaction is the focus of

2 In this book, the terms multimodal and cross-modal are often used interchange-
ably.
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this book the problem of fusion will be encountered throughout, starting from
the basic concepts introduced in Chapter 1. The combination of output (in-
stead of input) media for the purposes of presentation is known as the fission
problem and is introduced in Chapter 2.

A fundamental issue in multimedia processing is that, although each
modality is different, the major interaction modalities, namely audio, video,
text, have a sequential nature. The notion of time is fundamental in audio,
music and video data; text is a sequence of words. In addition, images and
video have the notion of space. Inadvertently multimedia data demonstrate
relationships in both time and space. Thus, multimedia processing deals with
extracting features and modeling multidimensional sequences of data. An-
other characteristic of multimedia data is variability. There are many ways to
convey the same (semantic) message using low-level instances of multimedia
data, e.g., there is an infinite number of speech signals that all signify the
same phoneme /ah/. Given this variability, it is not surprising that the most
popular modeling tools for multimedia data are statistical, and specifically,
Markov chains and hidden Markov models; these models are computationally
simple and can model dependencies in sequences of data. Another important
concept is that multimedia data exhibit different (time) scales. For example
in digital video data, the audio stream is sampled typically at 44.1 kHz, while
the visual stream is sampled at 25 Hz; a difference of over three orders of
magnitude.

Multimedia data convey mostly high-level semantic information, i.e., hu-
man perception has mechanisms that abstract the signal to corresponding
patterns and semantic representations. Humans transform automatically au-
dio signals to text, and then text to semantics. Similarly video information
is processed into audiovisual semantics, such as, actor identity, dialogue, plot
line. Turning multimedia signals into semantics is the ultimate goal of mul-
timedia processing. However, most of the multimedia processing applications
today, ranging from translation to movie summarization, extract features at
the raw signal level and are often agnostic to semantics. Nevertheless, the
notions of saliency, i.e., parts of the multimedia stream where information
resides, information content and multimedia semantics remain important for
multimedia processing.

We have left for last the important role that human perception and cog-
nition plays in multimedia processing and multimedia systems in general.
Multimedia information is obtained and processed in the human brain in a
fixed, often “hard-coded” way. Multimedia processing by humans is surpris-
ingly robust, yet has some limitations that can be useful. For example, audi-
tory masking has been extensively exploited in music processing to improve
audio coders. In addition, interfaces to multimedia content have to respect
basic human-computer interaction principles that are based on cognitive con-
siderations. For example the magical number 7 that relates to the short-term
human memory, as discussed in Chapter 2. Also multimedia presentation and
interfaces to multimedia content have to respect human processing abilities
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and not incur disproportionate cognitive load. Multimedia processing and in-
teraction that combines cognitive and perceptual considerations is an active
research area.

The Book at a Glance

There are four parts to this book. Part I serves as an introduction to the areas
of multimedia processing and interaction. It contains a review of the state-of-
the-art in multimedia signal processing and interfaces to multimedia content.
The focus of the review chapters is on multimedia theory, algorithms and ap-
plications. Basic concepts such as perception, feature extraction, statistical
modeling, pattern recognition and multimodal fusion are presented together
with corresponding multimedia processing applications. The basic notions em-
ployed in multimedia system and interface design are presented in the second
review, namely, usability, fusion and fission, multimodality, adaptivity.

Part II, III and IV contain original contributions by multimedia experts in
the areas of multimedia processing, systems and interaction. Each contribu-
tion deals with a specific area of applications, e.g., sports videos, multimodal
dialogue interfaces. Most chapters start with a brief review of the state-of-the-
art for the specific application area and then present original research results
and future research directions.

The focus of Part II of this book is on integrated multimedia analysis and
recognition. It contains seven chapters that cover a broad area of multimedia
processing applications. A common theme in all of these chapters is multi-
modal processing, especially the problem of fusion of different media streams,
features and models. The thematic areas covered in this part of the book
are: multimodal video analysis, audiovisual speech recognition with empha-
sis on audiovisual fusion, action recognition in multimedia streams, dialogue
and action scene detection in movies, audiovisual salient event detection with
application to multimedia summarization and skimming and, finally, the fu-
sion of acoustic and linguistic information in speech recognition. Almost all
of these chapters deal with the visual and audio modalities, while the last
chapter also deals with text. Most of the chapters attack the problem of au-
diovisual fusion for different end-user applications; both early and late fusion
methods are presented and evaluated.

Part III of the book contains three chapters on search and retrieval of
multimedia content. There are two chapters on image retrieval and one more
chapter on music information retrieval. All contributions use more that one
source of information to retrieve multimedia content. For example in the first
chapter, visual and text/semantics are used for image retrieval, while in the
last chapter text and web link information is used for a similar task. For
the problem of music information retrieval, audio and lyric information is
used. Experts from both the multimedia processing and multimedia systems
communities contribute to these chapters, demonstrating different angles of
attack to the problem of information retrieval.
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Finally, Part IV of this book consists of three chapters that present in-
terfaces to multimedia content. The area of human-computer interfaces to
multimedia content is large and very diverse. The three contributions included
here have a high tutorial value and as included in order to familiarize the mul-
timedia processing expert with some aspects of interface design. The topics
covered are: multimodal dialogue interfaces, eye-tracking interfaces for image
retrieval, and mobile interfaces. In the first chapter, the idiosyncratic nature of
speech interfaces is pointed out and guidelines of how to combine the speech
modality with traditional keyboard and mouse input are discussed. In the
second chapter, eye-tracking technology is reviewed, and the advantages of
the eye-gaze modality as a mechanism to provide relevance feedback in image
retrieval applications are presented. The book concludes with an extensive
review of mobile interfaces that focuses on the consumption of multimedia
content on the go.

A Detailed Look at the Book

Next we give a short description for each of the chapters of this book. We
focus on the original contributions that identify new research directions, i.e.,
Parts II, III and IV, rather than the introductory two chapters that review
the state of the art in multimedia processing and interaction.

Integrated Multimedia Analysis and Recognition

In Chapter 3, multimodal analysis of video data is performed in order to
extract high-level information, e.g., structure or genre, from raw video data.
Video is by nature multimodal as both the visual and audio modalities encode
semantic information. Therefore, modality fusion either at the feature or the
model level is essential to achieve state-of-the-art performance. In this work,
multimodal extensions of hidden Markov models (HMMs) are evaluated for
video analysis and indexing, e.g., multi-stream HMMs, product HMMs. How-
ever, multimodal HMMs suffer from shortcomings, most notably the require-
ment for synchronization between modalities. The authors propose a segment
model (SM) that achieves more efficient and versatile multimodal fusion by
relaxing synchrony constraints between modalities. Extensive experimental
results are supplied comparing HMMs and SMs for a sports video structuring
application. The authors also present a new decoding algorithm for SMs that
improves on the state-of-the-art. This chapter provides a good review of popu-
lar models used in multimodal video analysis along with experimental results
for tennis video structuring. An important message here is how to select the
model that best matches your data; the authors maximize performance by
selecting a model that takes advantage of the hierarchical structure of tennis
video data.

The problem of multimodal fusion is attacked once more in Chapter 4; this
time the application area is audiovisual speech recognition. The approach pro-
posed here, however, is pretty general and is based on the concept that for each
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of the modalities there is uncertainty (or estimation errors) during both fea-
ture extraction and modeling. Classification and learning rules are adjusted to
compensate for the effects of feature measurement uncertainty. This approach
is particularly fruitful in multimodal fusion scenarios, such as audiovisual
speech recognition, where multiple streams of complementary time-evolving
features are integrated. For such applications, the proposed framework leads to
highly adaptive multimodal fusion rules which are widely applicable and easy
to implement. The authors show that established multimodal fusion methods
relying on stream weights fall under the proposed scheme under certain as-
sumptions. The potential of the proposed fusion algorithm is demonstrated
for audiovisual speech recognition using synchronous or asynchronous HMM
models. This chapter contains more advanced research material and provides
a new perspective into the problem of multimodal fusion.

In Chapter 5, a broad range of applications are presented related to
the problem of action recognition in multimedia streams. Parsing multime-
dia streams with the end-goal of detecting and classifying actions implies
modeling the dynamic nature of visual and audio features as they evolve in
time. Hidden Markov Models are used to capture complex behavior and to
model the non-stationarity inherent in the video signals. The subtleties in the
application of HMMs to visual processing are often unclear, and the latter
portion of this chapter sets out to expose some of these. Three applications
are considered to motivate the discussion: actions in sports, observational psy-
chology and illicit video content. Experimental results are also supplied for
these applications. This chapter is good review of the state-of-the-art in action
recognition of audiovisual content and also offers new insights into the use of
statistical models for such applications.

In Chapter 6, the application area of intelligent surveillance using both au-
dio and visual cues is reviewed and new methods and algorithms are proposed.
Recently, intelligent video analysis systems have been developed for surveil-
lance applications that are capable of extracting various semantic knowl-
edge from video data, e.g., detecting humans and cars. Typically such video
based analysis systems detect important events using only features extracted
form the visual stream. However, most cameras used in video-surveillance are
equipped with built-in microphones. The sound signal captured with these
microphones can be analyzed and used to model audio events such as bro-
ken glass sounds, car crash sounds and screams. By doing joint analysis and
modeling of audio and visual events, the performance and robustness of state-
of-the-art surveillance systems can be improved. This chapter provides good
insight into the problem of multimodal event detection in audiovisual data for
surveillance applications.

In Chapter 7, the problem of multimodal analysis and modeling of movies is
presented. Among the many applications of movie analysis, emphasis is given
to dialogue and action scene detection. As online distribution and consump-
tion of movies becomes increasingly popular, multimedia data management
becomes a necessity, i.e., users should be able to organize, navigate, browse,
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search, and consume their multimedia content. Semantic content-based video
indexing offers a promising solution for efficient digital movie management.
Semantic video indexing aims at extracting, characterizing, and organizing
video content by analyzing the visual, aural, and textual information sources
of video. The current approaches for automatic movie analysis and annotation
mostly focus on the visual information, while the aural information receives
little or no attention. However, the integration of the aural information with
the visual one can improve semantic movie content analysis as discussed here.
This chapter offers a good review of algorithms used in movie analysis and in-
dexing. Detailed evaluation results are given over a broad range of competing
algorithms for the problem of scene detection and classification.

Audiovisual attention modeling and salient event detection is addressed in
Chapter 8. Audiovisual saliency is relevant for a variety of video processing ap-
plications, e.g., movie summarization and skimming. Based on recent studies
on perceptual and computer attention modeling, the authors extract atten-
tion curves using features around the spatiotemporal structure of video and
sounds. Audio saliency is captured by modulation-domain signal modeling,
while visual saliency is measured by means of spatiotemporal attention mod-
els that combine various features such as intensity, color and motion. Audio
and visual saliency curves are fused, and events are detected on the resulting
audiovisual saliency curve by computing local extrema and sharp transition
points. The potential of intra-module fusion and audiovisual event detection
is demonstrated in applications such as key-frame selection, video skimming
and summarization and audio/visual segmentation. Although, both this and
the previous chapter deal with multimodal processing of movies, the material
here is complementary to Chapter 7. The analysis here is purely frame-based
and low-level features, e.g., energy, motion, are used successfully to detect
high-level semantic events. This chapter serves as a good introduction to the
concept of multimodal saliency and its many applications in multimedia pro-
cessing.

In Chapter 9, the problem of combining acoustic and linguistic information
for speech recognition is reviewed. Although speech recognition is a unimodal
problem, speech recognition models combine information collected through
both audio and text corpora. Combining these two sources of information is
usually done at the probability computation level. This chapter focuses on
recent research work toward a better integration between automatic speech
recognition (ASR) and natural language processing (NLP) for the analysis of
spoken documents. The problem of combining audio and text is an important
problem that is often overlooked in the framework of multimedia analysis and
interaction.

Searching Multimedia Content

In Chapter 10, the problem of image retrieval using both visual and seman-
tic information is presented. The authors use keyword annotations available
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from an image database to create a feature vector. The features are combined
with low level visual features. Support vector machines are used to model rel-
evance feedback in a query by visual example context. The proposed method
is supported by extensive experimentation.

Music analysis and retrieval is investigated in Chapter 11. Both audio and
text features extracted from a song’s lyrics are used for music analysis and
modeling. Although text might be easier to search and conveys information
about the semantics of a song, it does not provide much information about
sonic similarity. Thus, audio and text features are complementary and can
improve the performance of music retrieval algorithms. The authors propose
a visualization method, i.e., a music map, that uses both audio and lyric data,
and self-organizing map clustering. The map can be used to automatically
create play-lists or for music retrieval. The proposed algorithms are evaluated
on an extensive audio collection.

In Chapter 12, a review of content-based image retrieval algorithms for the
web is presented. The author first reviews the feature extraction process both
for text and images, and then moves on to review image retrieval models. An
additional source of information, popular within the web information retrieval
community, is provided by link analysis. The author reviews a system that
utilizes also web link information for the problem of content-based informa-
tion retrieval. The chapter concludes with an investigation of the problem of
relevance feedback and an extensive evaluation. This chapter gives a good
overview of the state-of-the-art in multimodal content-based image retrieval.

Interfaces to Multimedia

In Chapter 13, the authors review design principles for building multimodal
interfaces with emphasis on the speech modality. It is shown that some of the
basic human-computer interaction principles are violated by speech interfaces,
e.g., consistency, while other principles should be updated for multimodal di-
alogue design. Two important issues with multimodal systems design, is the
selection of appropriate modalities in a given context and the exploitation
of the synergies between the modalities in order to design a consistent and
efficient interface. The authors introduce the concept of mode synergy that
measures the added value from efficiently combining multiple input modali-
ties. A mobile multimodal system that combines pen and speech input is used
as a design case study. User behavior and system evaluation results on this
prototype system demonstrate how users and multimodal systems can (and
should) adapt to maximize mode synergy to create efficient, natural and in-
telligent multimodal interfaces. This chapter serves as a good introduction to
spoken dialogue and multimodal interface design.

Eye-tracking interfaces for visual exploration are reviewed in Chapter 14.
Eye-tracking technology offers a natural and immediate way of communicating
human intentions to a computer. Eye movements reflect interests and may be
analyzed to drive computer functionality in games, image and video search,
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and other visual tasks. Experiments show that target images can be identified
more rapidly by eye tracking than by using a mouse interface. Further, results
show that eye tracking technology provides an efficient interface for locating
images in a large database. Finally, the authors speculate about how the
technology may enter the mass market as costs decrease. This chapter is a
good review of eye-tracking technologies and interfaces.

The final chapter of this book, Chapter 15, is a review of mobile interfaces.
Mobile interfaces are becoming increasingly important as the capabilities of
devices improve and users access multimedia data on the go. The authors re-
view the state-of-the-art in mobile devices and mobile displays and then move
on to review the main interaction modalities. Differences between desktop and
mobile interfaces are outlined. Then a number of applications are reviewed,
e.g., interfaces to audio content, content aware applications, augmented re-
ality applications. Mobile interfaces pose unique challenges, but also present
new opportunities as these challenges are overcome. This chapter offers good
insight on what the future holds for mobile applications and interfaces.
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Cross-Modal Integration for Performance
Improving in Multimedia: A Review

Petros Maragos1, Patrick Gros2, Athanassios Katsamanis1, and George
Papandreou1

1 National Technical University of Athens, Greece
2 Institut National de Recherche en Informatique et Automatique, France

Our surrounding world is abundant with multimodal stimuli which emit multi-
sensory information in the form of analog signals. Humans perceive the natural
world in a multimodal way: vision, hearing, touch. Nowadays, propelled by our
digital technology, we are also witnessing a rapid explosion of digital multime-
dia data. Humans understand the multimodal world in a seemingly effortless
manner, although there are vast information processing resources dedicated
to the corresponding tasks by the brain. Computer techniques, despite re-
cent advances, still significantly lag humans in understanding multimedia and
performing high-level cognitive tasks. Some of these limitations are inborn,
i.e., stem from the complexity of the data and their multimodality. Other
shortcomings, though, are due to the inadequacy of most approaches used
in multimedia analysis, which are essentially monomodal. Namely, they rely
mainly on information from a single modality and on tools effective for this
modality while they underutilize the information in other modalities and their
cross-interaction. To some extent, this happens because most researchers and
groups are still monomedia specialists. Another reason is that the problem of
fusing the modalities has not still reached maturity, both from a mathemati-
cal modeling and a computational viewpoint. Consequently, a major scientific
and technological challenge is to develop truly multimodal approaches that
integrate several modalities toward improving the goals of multimedia under-
standing. In this chapter we review research on the theory and applications
of several multimedia analysis approaches that improve robustness and per-
formance through cross-modal integration.

1.1 Motivations and Problems

Digital technology provides us with multimedia data whose size and complex-
ity keeps rapidly expanding. To analyze and understand them we must face
major challenges which include the following:

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 1, c© Springer Science+Business Media, LLC 2008
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Data are Voluminous: Nowadays we are witnessing a rapid explosion of dig-
ital multimedia data. They are produced by a variety of sources includ-
ing: video cameras, TV, digital photography (personal and professional
albums, photo agencies), digital audio and other digital entertainment
devices, digital audiovisual libraries, multimodal Web. As a numeric ex-
ample, 24 hr of TV produces 430 Gb (raw, uncompressed) data, 2.160.000
still (frame) images.

Data are Dynamic: Dynamic websites, TV and other broadcast news quickly
get obsolete.

Different Temporal Rates are of importance in the various media. For exam-
ple, 25-30 image-frames/sec in video, 44.000 sound samples/sec in audio,
100 feature-frames/sec in speech, 4 syllables/sec in language processing.

Cross-Media asynchrony, since image and audio scene boundaries may be
different. Examples include possible asynchrony between the voice heard
and the face seen, or between a sports visual event (e.g., a goal in soccer)
and the speaker’s comment that comes later.

Monomedia specialization: Most researchers and groups are specialists in a
single modality, e.g., speech processing and recognition, or image/video
processing and computer vision, or natural language processing.

The rapid explosion of multimedia data creates an increasing difficulty in
finding relevant information, which has spurred enormous efforts to develop
tools for automatic detection, recognition, and semantic analysis of multime-
dia content. The overall goal is multimedia understanding, which requires to
use content in a nontrivial way. For example, understanding goes beyond just
displaying images or playing a music CD, for which we do not need to analyze
the content of the data. In contrast, examples that require understanding in-
clude multimedia archiving, re-purposing, making websites from TV streams.
This multimedia explosion also poses the need to develop efficient solutions for
problems in several ambitious technology areas. Two such grand challenges3

are: (i) Natural access and high-level interaction with multimedia databases,
and (ii) Detecting, recognizing and interpreting objects, events, and human
behavior in multimedia videos by processing combined audio-video-text data.

Thus, as mentioned in this book’s Introduction, one of the grand goals
in multimedia understanding is cross-media integration for improving perfor-
mance in the various scientific and technological problems that arise in systems
dealing with multiple modalities. And this is exactly the central topic of this
review chapter. Among the features of this chapter, we include brief reviews of
ideas and results from cross-modal integration in human perception, since the
multimodal human brain is a great source of inspiration. Further, we survey
several types of probabilistic approaches and models for multimodal fusion.
Examples of modalities to integrate include combinations of:

• vision and speech/audio

3 These challenges were also identified at http://www.muscle-noe.org/
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• vision (or speech) and tactile
• image/video (or speech/audio) and text
• multiple-cue versions of vision and/or speech
• other semantic information or metadata.

Many previous research efforts in (human or machine) cross-modal integra-
tion deal with combining multiple cues, i.e., multiple streams of information
from the same modality. A frequent example is vision, where multiple cues
are often combined to increase the robustness in estimating properties of the
visual world scene; e.g., stereo disparity is combined with texture to estimate
depth. In general, if we wish to refine the definition of multimodality, we shall
call multicue the intramodal integration of several cues within the same
modality and multimodal the intermodal integration of several modalities.
For example, to estimate the depth of object surfaces by combining stereo
and texture is a multicue approach, whereas combining vision and haptics is
a multimodal approach. However, for expressional simplicity, we may often
use only the term ‘multimodal’ to refer to both intermodal and intramodal
approaches.

The combinations of modalities (or cues) can be either of the cross-
interaction type or of the cross-integration type. Interaction implies an in-
formation reaction-diffusion among modalities with feedback control of one
modality by others. Integration involves exploiting heterogeneous informa-
tion cumulatively from various modalities in a data feature fusion toward
improved performance. A simpler way to see this differentiation is to consider
strong- versus weak-coupling of modalities (discussed later in Section 1.3).
Some broad areas of research problems in multimedia where integration of
(strongly-coupled or weakly-coupled) modalities occurs include the following:

• Features: The extraction of critical features in each modality, e.g., au-
dio, vision, text, is in a well-advanced state and is served by the fields
of signal processing and pattern recognition. See Section 1.4 for a brief
survey. However, when combining several modalities, it is quite challeng-
ing to integrate monomodal4 features in a way that is robust (since in-
dividual stream reliabilities may vary dynamically), efficient in terms of
size and synchrony, and optimum in terms of overall performance. Thus,
some ongoing research challenges in this classic problem of multimedia
include: (i) Selection, robust extraction, and dimensionality reduction of
each modality’s features, given the presence of other modalities and their
corresponding features. (ii) Optimal fusion of the separate feature streams
(from different modalities or cues). A typical example is the area of audio-
visual speech recognition, where the audio feature extraction has advanced,
but there is still ongoing research for robust extraction of low-dimensional
visual speech features and optimal fusion of the audio and visual features.

4 In this chapter, the term monomodal is used as equivalent to unimodal.
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• Models: Most aspects of multimedia understanding involve problems
in pattern recognition and machine learning. One can select appropriate
methodologies and algorithms from the vast arena of these fields, includ-
ing both static and dynamic classification models. However, in multimodal
processing and integration, the big challenge is how to adapt or extend
these models so that they can work with and decide optimally for multi-
modal data. For instance, an important issue is whether to fuse the data at
an early, intermediate, or late stage of the integration procedure. Another
challenge is to deal with the time-dependent nature of these data when the
modalities are not synchronous. These issues are discussed in Section 1.5.

• Applications: The application areas of multimedia are numerous and
keep growing. Examples that involve cross-modal integration include the
following: (See also Section 1.7 for a brief survey of some applications.)

– Audiovisual Speech: The two problems of automatically recognizing
speech and inverting speech, i.e., recovering the geometry of the vocal
tract, are ill-posed. Integrating the auditory information with visual
information (e.g., video features around the speaker’s mouth area) im-
poses additional constraints which may help regularizing the solution
of these problems.

– Cross-Media Interaction Scenarios in Human Computer Interfaces
(HCIs): Human-computer interaction has started becoming a reality
due to recent advances in speech recognition, natural language process-
ing, object detection-tracking using vision and tactile sensors. However,
building a natural and efficient HCI that combines all the required dif-
ferent modalities (e.g., speech, vision, graphics, text, tactile) toward
improving the overall performance becomes a significant technical chal-
lenge in this case where the modalities can interact strongly. A review
of this area is given in the book’s Chapter 2.

– Multimodal Saliency: Audiovisual Attention Modeling and Salient
Event Detection is a significant research problem with applications
in audiovisual event detection, bimodal emotion recognition, dialogue
detection, and video summarization. A significant effort in this area is
spent on multimodal feature extraction and fusion for attention mod-
eling. (See Chapter 8.)

– Video Analysis and Integration of Asynchronous Time-Evolving Modal-
ities: Video processing is usually done separately on sound and on
images. However, the solution of many video analysis tasks can be im-
proved and become more robust by integrating these two modalities
and possibly text. Major difficulties exist, however, because the vari-
ous media are not temporally coherent and provide different kinds of
data. Several chapters in this book deal with these problems.

– Combining Text and Vision or Text and Audio for Semantic Labeling:
The challenging research goal here is to use structural and textual
information for semantic interpretation of image or audio data. Such
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technologies will empower a full semantic analysis and classification of
data for which currently almost everything beyond text is ignored.

The areas of human or machine cross-modal integration are both huge, and
hence our coverage in this chapter will not be exhaustive. Instead, we sample
key ideas and survey indicative applications. The rest of this chapter is orga-
nized as follows. In Section 1.2 we briefly summarize how various branches of
psychology view perception, how certain aspects of perceptual inference can
be modeled via Bayesian estimation and decision theory, and then we present
examples of multicue or multimodal perception from psychophysics. In Sec-
tion 1.3 we classify sensor data fusion schemes using a Bayesian formulation.
The following four sections review the main problem areas in multimedia
analysis and integration: feature extraction from the three main modalities
(speech-audio, image-video, and text) in Section 1.4; stochastic models for
cross-modal integration in Section 1.5; integrated multimedia content analy-
sis beyond descriptors in Section 1.6; and a few sample applications areas in
Section 1.7. Finally, we conclude in Section 1.8 by outlining promising future
directions.

1.2 Multimodality in Human Perception

Humans need to extract multi-level information about the structures and their
spatio-temporal or cognitive relationships in their world environment. This
information processing could either be innate (inborn) and possibly learned
via evolutionary processes or stimulated by sensory data. This chapter mainly
focuses on the latter. The polarity between innate vs data-driven inference is
conceptually similar to (or inspired by) Plato’s rationalism versus Aristotle’s
empiricism.

Three stages in sensory information processing are sensation, perception
and cognition. Sensation is signal formation caused by the sense organs (i.e.,
the sensors) when excited by the external world stimuli. Perception is the
collection of processes by which we filter, select, organize, recognize, and un-
derstand the sensations. There is an overlap between sensation and percep-
tion, but as broadly stated in [185], “sensations are usually viewed as simple,
basic experiences caused by simple stimuli, whereas perceptions are usually
considered as more complicated experiences elicited by complex, often mean-
ingful, stimuli”. Even more complicated is cognition which refers to infor-
mation analyzing mental processes such as comprehension, learning, memory,
decision-making, planning. A causal hierarchy may be the following:

Sensation −→ Perception −→ Cognition

Since the dividing line is usually hard to draw between sensations and percep-
tions as well as between perception and cognition, henceforth, we shall loosely
refer to perception as the sensory-based inference about the world state, i.e.,
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the process through which the mapping from world stimuli to sensory sig-
nals is inverted. Herein, inference is meant broadly as the collection of the
main tasks of sensory information processing, e.g., spatio-temporal detection
of objects and events, estimation of their properties, localization, recognition,
organization.

Human perception as a means of daily exploration and survival in nature
has been of vital importance since the dawn of humanity. As a physical process
or result of sensor operation, it has attracted the interest of great scientists in
the physical sciences (acoustics, optics, neurobiology). As a main ingredient of
human awareness and consciousness, its understanding has also occupied the
minds of great philosophers, artists and psychologists. Approaches to study
perception range from physiology and neurobiology through cognition-related
psychology disciplines to philosophy disciplines centered around the mind-
body problem. A practical blend of the first two viewpoints is presented by
psychophysics, a subdiscipline of psychology, which explores the relationships
between the external world’s physical stimuli and their induced percepts in
the human mind.

In the rest of this section we summarize how various branches of psychology
view perception, how certain aspects of perceptual inference can be modeled
via Bayesian estimation and decision theory, and then we present examples of
multicue or multimodal perception from psychophysics. Obviously, since this
is a huge area, here we only summarize some indicative cases that have proven
useful in monomodal or multimodal information processing.

1.2.1 Psychology Approaches to Human Perception

For the aspects of sensory-based human perception that we will need in this
review chapter on multimodal integration, most important are the disciplines
of gestalt psychology and cognitive psychology. Before we summarize their
main ideas, we outline a few of their origins from philosophy.

Much like the mind-body debate, ideas and approaches in psychology
evolved from the poles of philosophy and physiology. The former relies primar-
ily on reasoning and introspection, whereas the latter on empirical methods
and observations. As in other sciences, the evolution of ideas in philosophy
[453] often followed a dialectic path, where a new theory was proposed (a
thesis), soon countered by an opposite theory (an antithesis), until a synthe-
sis of the best ideas was formed. This synthesis formed a new thesis, to be
followed by a new antithesis, and so on dialectically. A classic pair of the-
sis and antithesis is Plato’s rationalism versus Aristotle’s empiricism. In the
former we are supposed to acquire most knowledge mainly via theoretical
analysis (understanding and reasoning) independently of the senses, in the
latter mainly via empirical evidence (experience and observations, especially
sensory perception) independently of innate ideas. A similar contrasting con-
troversy continued in modern philosophy between the rationalist Descartes,
whose assertion “I think, therefore I am” cannot be doubted and views the



1 Cross-Modal Integration 9

mind as more certain than matter, versus the empiricist Locke, who empha-
sized experience and learning and believed that everything knowable (with
the possible exception of logic and mathematics) is derived from perception.
Kant synthesized both their views. Such a synthesis is used in most modern
theories of knowledge, where elements from both rationalism and empiricism
are encountered.

Along the route of empiricism, behaviorism in psychology developed as
a discipline that focuses on observable behaviors as responses to the envi-
ronment, without any consideration to internal processes or mind theories.
According to behaviorism, all what humans do, both externally (actions) and
internally (thoughts), are behaviors.

An avid rival to behaviorism, Gestalt psychology is a mind-brain theory
for which the most important process is the formation of perceptual groups of
observations that correspond to conceptual equivalence classes. An abstraction
of the justification for preferring this grouping is the Latin adage multum non
multa, which distinguishes two meanings of ‘much’: The former emphasizes
how a deeper understanding can grow from analyzing and grouping of fewer
items, whereas the latter is based on quantitative detailed analysis of many
data. Thus, the gestalt theory is a global, holistic approach (as opposed to
the local, atomistic observations of behaviorism). It is concerned with molar
behavior instead of molecular behavior, the former being a coarse-granule
grouping of behavior in external settings, whereas the latter is the fine-granule
behavior taking place internally inside an organism initiated by environmental
stimuli. The gestalt thesis that the whole is greater than the sum of its parts
is particularly relevant for multimodal processing. It implies that grouping in
the sense of fusing modalities creates a unifying percept that subsumes their
simple concatenation.

Founded by Wertheimer, Köhler and Koffka [269, 270] during 20th cen-
tury’s first half, gestalt psychology distinguishes between the geographical
environment versus the behavioral environment and emphasizes that percep-
tion occurs in the latter. However, the behavioral environment B by itself is
not sufficient to account for all processes and needs to be complemented by the
physiological processes P active during perception. B and P are psychophys-
ically isomorphic. Wertheimer’s principle of psychophysical isomorphism is to
think of physiological processes not as molecular but as molar phenomena.
Köhler [270] refined this principle and proposed the following in the cases of
spatial and temporal order: “(i) Experienced order in space is always struc-
turally identical with a functional order in the distribution of underlying brain
processes. (ii) Experienced order in time is always structurally identical with
a functional order in the sequence of correlated brain processes.”

The main ideas in gestalt psychology have been inspired by or geared
toward problems in visual perception. The perceptual grouping forms objects
by starting from local data or features who satisfy or share several grouping
principles and recursively builds larger visual objects, the Gestalts. The most
important of these principles is the law of Prägnanz, according to which we
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perceive a collection of visual parts in the simplest way that can organize
the partial elements into a stable and coherent form. Other gestalt principles
include proximity, figure-ground, closure, continuity, similarity, and symmetry.
Additional characteristics of the gestalt theory are that, it focuses on a parallel
and continuous processing and favors self-organization.

An outgrowth of gestalt psychology and Piaget’s stage theory for child cog-
nitive development is the field of Cognitive psychology, which (according to
Neisser who introduced the term in 1967) is “the study of how people learn,
structure, store and use knowledge.” A comprehensive introduction can be
found in [508]. This school of psychology is concerned with how humans pro-
cess information for general tasks such as perception, learning, memory, lan-
guage, problem-solving. Unlike behaviorism, it accepts innate mental states,
but it also uses scientific methods of experimentation and observation with-
out resorting to introspection. Due to its emphasis on the mental processes
associating stimuli and responses, it uses computational concepts, like input
and output of mental processes, algorithms and knowledge representation.
As such, it is closer to artificial intelligence, and the two fields have bene-
fited from cross-fertilization. Actually, cognitive psychology has contributed
to artificial intelligence the very useful concept and tool of semantic networks.
For example, WordNet [157] is a semantic network used in natural language
processing.

The most often used practical tools to test gestalt and cognitive theories of
human perception stem from psychophysics and statistics. The psychophysical
methods deal with determination of sensory thresholds, measurements of sen-
sitivity, and signal detection theory. From statistics, the Bayesian framework
has gained popularity and is briefly summarized next.

1.2.2 Bayesian Formulation of Perception

Bayesian statistics provides a general framework for modeling and solving
problems in pattern recognition and machine learning [145, 66, 519] and in
computer vision [189, 180, 323, 99]. Its success in vision has also propelled
its use for modeling perception as Bayesian inference [267, 583]. Elements
of the Bayesian framework for perception can be found in Helmholtz’s be-
lief that retinal images alone do not carry sufficient information and need to
be supplemented with prior knowledge; hence, he viewed perception as un-
conscious inference [204]. Although the Bayesian approach to perception has
been mainly developed for vision, we shall use herein the Bayesian formal-
ism to model multimodal sensory information processing, where ‘multimodal’
may mean ‘multi-sensory’. A unifying Bayesian approach to computer vision,
speech and signal processing and their associated pattern analysis and recog-
nition tasks is also offered by the ‘Pattern Theory’ field [189, 348].

For intuition and simplicity, we will often restrict to the two main senses,
vision and hearing, and use the term ‘audiovisual’ instead of ‘multimodal sen-
sory’ stimuli/data. Let S be a configuration (of the properties) of an auditory
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and/or visual scene of the external world (e.g., a vector of variables repre-
senting numeric or symbolic features-parameters) that represents the state of
external audiovisual stimuli. Let D be the monomodal or multimodal data
representing signals collected by auditory and/or visual sensors; at a higher
level, D may also represent features extracted from the raw signals. If we view
the sensory signal formation as a mapping S 7→ D from world state S to sen-
sory data D, then perception is essentially the inverse problem of estimating
the world audiovisual state from the sensory observations. If the variations of
the audiovisual state are random in nature, or there is uncertainty in mod-
eling the signal formation or there is observation noise, then we can use a
probabilistic interpretation of the above problem. In this case, Bayes’ formula
offers us a convenient decomposition of the probabilities involved into prior
(before observing the data) and posterior (after observing the data) terms:

P (S|D) =
P (D|S)P (S)

P (D)
(1.1)

where P (·) denotes probability distributions (i.e., probability densities or
probability masses according to the case). The prior distribution P (S) ex-
presses the a priori probability of how likely is the world state S before ob-
serving the data; it models prior knowledge about the random nature (e.g. reg-
ularities) of the scene structure and may include various a priori constraints.
The conditional distribution P (D|S) expresses the probability of observing D
given the world state S; if it is viewed as function of S for fixed D, then it is
called the likelihood function of S. It statistically models the overall causal
generation process of signal data formation from the world state (audiovisual
scene); thus, this probabilistic mapping S 7→ D is called a generative model
in Bayesian networks. The likelihood embodies the reliability of the observed
signal or feature data D which can vary due to possible model uncertainty
and observation noise. The marginal distribution P (D), usually called the
evidence, expresses the probability of observing the data under all mutually
exclusive state configurations; it can be computed by summing the product of
the likelihood times the prior over all such S. Herein, we shall assume that the
world state variables vary continuously and hence P (D) =

∫
P (D|S)P (S)dS.

The distribution P (D) encapsulates data regularities that arise from similar-
ities among audiovisual scenes in nature. Finally, the posterior conditional
distribution P (S|D) expresses the a posteriori probability of the audiovisual
scene S after observing the data D.

The posterior distribution is the main tool for Bayesian inference since it
allows us to use the data as observations to update the estimate of S based on
Bayes’ formula. This updating, applied to perception, agrees with cognitive
psychology’s view that, as we move in the environment we sense the world and
our sensations get mapped to percepts which are accompanied by degrees of
belief; these percepts may change as we acquire new information. In addition
to the posterior, to complete the inference process, we also need a decision
rule. For example, one of the most well-known solutions for finding S is to
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select the Maximum-A-Posteriori (MAP) estimate:

ŜMAP = argmax
S

P (D|S)P (S) (1.2)

The marginal P (D) is viewed as a normalization factor and hence is ignored in
this maximization. The MAP estimate is influenced both from prior knowledge
and from the data observed. Thus, assuming a uniform prior reduces the above
to the equally well-known Maximum Likelihood (ML) estimate

ŜML = argmax
S

P (D|S) (1.3)

A unifying way to view these and other solutions is through Bayesian deci-
sion theory. First, we specify a loss (negative utility) function L(S,A) that
associates a cost L to the decision that assigns a solution A to the true scene
state S. The risk is the expected loss over all possible scenes:

Risk(A) =

∫
L(S,A)P (S|D)dS (1.4)

Then, we find an optimum Bayesian decision, i.e., solution Ŝ, by minimizing
this risk:

Ŝ = argmin
A

Risk(A) (1.5)

If we set L(S,A) = c − δ(S − A) where δ is the Dirac function, which means
that we penalize equally (by a cost c) all wrong decisions, then Risk(A) =
c − P (A|D) and risk minimization yields the MAP estimate as the optimum
Bayesian decision. Other well-known choices for the loss function include the
quadratic error and the absolute error; i.e., assuming scalar S,A, we can select
L(S,A) = |S − A|b with b = 1, 2. For b = 2 the risk is the Mean Square
Error (MSE) and the optimum solution becomes the mean of the posterior
distribution (i.e., the conditional mean given the data), whereas for b = 1
the risk is the Mean Absolute Error (MAE) and the optimum solution is the
median of the distribution.

Returning to the view of perception as the process of inverting the world-
to-signal mapping, this is generally an ill-posed problem. Thus, we need con-
straints to make it well-posed, i.e., to have a unique solution and the solution
to depend continuously on the data. This approach is partially inspired by
Tikhonov’s regularization theory [520], which, to make inverse problems well-
posed, proposes that we introduce some constraints by forcing the solution
to lie in a subspace of the solution space where the problem is well-defined.
For multimodal sensory perception, constraints can be of the following three
types [99]: (i) Physical constraints, which stem from physical laws governing
the multimodal world and are universally valid; (ii) Natural constraints that
depend on the specific tasks (e.g., the smoothness constraints used in com-
puter vision); and (iii) Artificial constraints that are imposed at some higher
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cognitive level. Two important problems are to determine which constraints
to use and how to embed them into the information processing algorithms.

An intuitive approach to incorporate constraints is the Bayesian formalism,
where the plausibilities of different solutions are quantified by probabilities
based on stochastic sensor models for the signal formation and prior expecta-
tions of the world state; the latter are influenced by previous measurements
(as in active vision or ecological optics) and by the constraints we impose on
the system. Then, as true solution we choose the one with the highest proba-
bility. As described in [267], in psychophysics, ideal observers are considered
the theoretical observers who use Bayesian inference to make optimal inter-
pretations. Usually ‘optimality’ is the MAP criterion since this allows an ideal
observer to take into consideration both prior knowledge about the world’s
audiovisual structure as well as knowledge about the audiovisual signal for-
mation by the sensors. In psychophysical tests, the ideal observer’s optimum
performance is a useful reference that is compared with the performance of a
human observer.

Another convenient way to embed constraints for making the inversion of
the world-signal mapping well-posed is via the energy minimization approach,
which has become quite popular in computer vision and is closely related to
regularization [215, 405, 180, 323, 349, 582]. Here the optimum audiovisual
scene state Ŝ is found as the minimizer of the energy functional

E(S;D) = Edata(S;D) + Esmooth(S) (1.6)

where the energy term Edata expresses a norm of the deviation of the scene
S from the data D, whereas the term Esmooth measures the non-smoothness
of S and hence imposes regularization constraints on the solution. The min-
imization of E is equivalent to maximizing the following Gibbs probability
distribution for the posterior

P (S|D) =
exp[−E(S;D)]

Z
(1.7)

where Z is a normalization factor (the partition function). In this case, so-
lutions that are consistent with the constraints correspond to lower energy
states, which are chosen by the minimization process. We can see several
correspondences between the energy and the Bayesian approach if we take
logarithms on both sides of the Bayes formula (1.1): the data-fitting error en-
ergy Edata corresponds to the log likelihood −P (D|S) and the regularization
energy Esmooth is the log prior −P (S). Obviously, the Bayesian formulation
subsumes the energy minimization approach and offers a richer interpreta-
tion using statistical tools. For example, using the popular quadratic energy
functions corresponds to assuming Gaussian distributions. Further, regular-
ization problems that use multiple energy constraint terms correspond to a
Bayesian prior that is the product of the individual priors assuming indepen-
dent sources.
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1.2.3 Examples of Multicue or Multimodal Perception Research

In this section we outline the main findings from a few selected works on mul-
timodal perception. The particular papers were selected either because they
have become classic in the field, like [334] that presents an archetypal exam-
ple of (i) the brain combining sound and vision, or because they represent
different viewpoints of research in multimodal perception that are directly re-
lated to this chapter’s scope, like (ii) promoting individual visual cue features
in weak fusion to facilitate their integration [284]; (iii) exploring the differ-
ence between intramodal versus intermodal fusion [210]; (iv) integrating audio
and visual modalities to improve spatial localization [44, 143, 555]; (v) inves-
tigating the temporal segmentation of multimodal time-evolving scenes into
perceptual events [585]; and (vi) using gestalt principles to group audio and
visual modalities [342].

McGurk effect: Hearing Lips and Seeing Voices

McGurk and MacDonald’s 1976 paper [334] is a classic on human sensory
integration. The McGurk effect is elicited when a listener’s perceptual re-
port of a heard syllable is influenced by the sight of the speaker mouthing a
different syllable, inducing the report of another syllable. This effect can be
explained by assuming that the finally perceived syllable is the one mostly
compatible with both conflicting stimuli. Specifically, by synchronously com-
bining the original vocalizations and lip movements, dubbed videos of the
type [ba-audio/ga-visual] and [ga-audio/ba-visual] were shown to subjects un-
der audiovisual and audio-only conditions. The audiovisual presentations of
speech caused two distinct types of responses: ‘Fusion’ where the information
from the two modalities is transformed into something new with an element
not presented in either modality, and ‘Combination’ where a composite is
formed comprising relatively unmodified elements from each modality. To [ba-
audio/ga-visual] presentations, almost all adults gave fused responses [da]. To
its complement, [ga-audio/ba-visual], more than half gave combination re-
sponses like [gabga]. The effect is generalizable to other stop consonants.

To explain the [ba-audio/ga-visual] case, first note that /ba/ sounds some-
what similar to /da/. Further, there is some visual similarity between (the ar-
ticulation of) the back consonant in /ga/ and the middle consonant in /da/,
whereas there is no such similarity between /ga/ and the front consonant in
/ba/. If we assume that, when presented with the two modalities, perceivers
attempt to interpret an event by searching for something that has the most
common features or best matches with both modalities, then the unifying per-
cept is /da/. However, in a [ga-audio/ba-visual] presentation, the modalities
share no common features and hence are in conflict. The listener cannot de-
cide between the two modalities and oscillates between them, hearing various
combinations [bagba, gabga, baga, gaba].
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The main conclusions from [334] include: (1) Speech perception seems
to also take into consideration the visual information. Audio-only theories
of speech are inadequate to explain the above phenomena. (2) Audiovisual
presentations of speech create fusion or combination of modalities. (3) One
possible explanation of the two response types is that a human attempts to
find common information in both modalities and achieve a unifying percept.

The above paper has inspired much work in exploring and reaffirming
the bimodality of speech perception. An interesting issue is that of comple-
mentarity, stated in [328] as: “Not only audible and visible speech provide
two independent sources of information, but each also provides strong infor-
mation where the other is weak.” For example, /bi/ and /pi/ are visually
indistinguishable but can be distinguished acoustically based on features such
as voice onset time. In contrast, /mi/ and /ni/ sound very similar but differ
visually in the place of articulation. In both cases, audiovisual speech can aid
detecting the differences.

Modeling Depth Cue Combination using Modified Weak Fusion

Landy et al. [284], taking the application of scene depth reconstruction from
various visual cues as a showcase, examined in detail how the different cues
can be combined to yield a fused final result. For scene depth reconstruction,
the different cues examined are motion parallax (with known camera ego-
motion), stereo, kinetic depth effect, texture, and shading. These alternative
cues are quite different in nature: first of all, motion parallax can provide ab-
solute depth estimates, whereas the other cues provide stereo measurements
up to some unknown parameters, for example up to the unknown viewing dis-
tance parameter. Inter-cue interaction can be employed then to resolve these
parameters and make the measurements from different cues commensurate, in
a process the authors call cue promotion. After cue promotion, all measure-
ments are on the same scale and in common units. Then, promoted cues can
be directly fused in a modified weak fusion scheme. (The simple weak fusion
scheme of [99] does independent processing of each cue followed by a weighted
averaging; see also Section 1.3.)

Beyond cue promotion, the authors introduce in their modified weak fu-
sion scheme two further important enhancements relative to [99]: First, they
underline the importance of dynamic cue weighting, in response to the spatial
(presense or absense of certain cues in the scene) and temporal relative relia-
bility of each cue. Second, they highlight the issue of robustness in combining
the different cues, proposing that an explicit mechanism should be present
for outlier detection and down-weighting. The three constituents, namely cue
promotion, dynamic weighting, and robustness constitute the main aspects of
what they term the modified weak fusion scheme. This scheme generalizes
the weak fusion scheme of [99] in the sense that it allows limited interactions
between the different cues (most notably for cue promotion), while at the same
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time being modular and clearly more easy to verify than arbitrary strong fu-
sion schemes. The authors give a methodology to assess the validity of the
proposed fusion mechanism, as well as sufficient physiological experimental
results in defense of their scheme.

Intramodal versus Intermodal Fusion of Sensory Information

Hillis et al. [210] explored human perception’s capabilities for multimodal
fusion to improve estimation of object properties (such as shape surface per-
ception) both in an intramodal (within-senses) scenario of integrating the two
visual cues of stereopsis-disparity and texture as well as in an intermodal
(between-senses) scenario of integrating the two senses of vision and haptics.
As optimal cue integration, they used a simple weak fusion [99, 583] where
(under the Gaussian noise assumption) the Maximum Likelihood Estimate
(MLE) becomes a linear weighted averaging with cue weights being inversely
proportional to the variance of each cue noise. By performing psychophysi-
cal experiments and comparing the three cases of having (i) only single-cue
estimators, (ii) only fused estimators (MLE), and (iii) both single-cue and
fused estimators, they concluded to the following: Fusing cues (and losing
information about the individual estimates) is more likely in the intramodal
(disparity-texture) case than in the visual-haptic case. In the intermodal case,
there may be natural circumstances where it is not beneficial to combine the
two modalities (e.g., when one touches one object while looking at another).

Integration of Visual and Auditory Information for Spatial
Localization

There is ample evidence that the human brain integrates multiple sensory
modalities to accomplish various inference tasks such as spatial localization.
In general, this integration improves performance. However, it may also lead
to illusionary perception phenomena such as the “ventriloquist effect”, where
the movement of a dummy’s mouth alters the perceived location of the ven-
triloquist’s voice and hence creates a localization bias. Such phenomena are
caused when there exist appropriate spatial and temporal disparities between
the visual and auditory modalities. Experimental evidence [59, 555] has shown
that the cross-modal localization bias decreases with increasing spatial and/or
temporal disparity in the two stimuli.

Driver [143] explored variations of the ventriloquist illusion in the presence
of a single visual and two auditory stimuli (target and distractor messages).
He found that, under certain spatial combinations of the stimuli, the ventril-
oquist effect can actually help to enhance selective listening. Specifically, the
simultaneous presence of a human face visually mouthing the target message
and a mislocated sound source generating target and distractor messages can
create an apparent visual source of the target sounds. Thus, before attentional
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selection is completed, ventriloquism causes a cross-modal matching that spa-
tially shifts the target sounds to a virtual instead of the actual location. This
enhances the selective listening of the target message by focusing attention
on the virtual source.

In several controlled experiments on integration of auditory and visual
stimuli with spatio-temporal disparities, Wallace et al. [555] explored the re-
lationship between two important aspects of multisensory integration, the
perceptual unification of the two stimuli and the dependence of localization
bias on their spatio-temporal disparities. They found that: (i) “regardless of
their disparity, whenever the auditory and visual stimuli were perceived as
unified, they were localized at or very near the light. In contrast, when the
stimuli were perceived as not unified, auditory localization was often biased
away from the visual stimulus”; (ii) “localization bias was a reliable, significant
predictor of whether perceptual unity would be reported”.

Battaglia et al. [44] compared two theories of how human observers fuse
the visual and auditory modalities for spatial localization. One theory pre-
dicts a nonlinear integration where the modality whose signal is more reliable
dominates over the other in a winner-take-all scheme. This model is known
as visual capture, because human perception is usually dominated by vision
over hearing. A typical example is watching a film in a movie theater where
the visual information comes from the screen whereas the auditory informa-
tion (loudspeakers’ sound) originates from the sides, but human observers
usually perceive the sound origin as coincident with the location of the vi-
sual stimulus. The other theory advocates for a linear integration of the two
modalities through a weighted visual-auditory average, which corresponds to
a weak fusion scheme [99, 583]. The authors conducted experiments where hu-
man subjects heard broadband noise from several locations and viewed noisy
versions of a random-dot stereogram of a Gaussian bump. In the multimodal
phase of the experiments, a difference in location was introduced between
the visual and auditory stimuli. The results indicate that, in low-noise condi-
tions, the observers’ judgement was usually dominated by vision only. But at
large noise levels, the observers’ judgement shifted to an averaging of the two
modalities. The authors also investigated a hybrid approach and proposed a
Bayesian model that combines both the linear weighted averaging and a prior
expressing an overall bias to vision.

Temporal Segmentation of Videos into Perceptual Events by
Human Brain

Given the major role that the temporal structure has in human perception,
Zacks et al. [585] addressed the two fundamental questions of whether and
how the human perceptual system performs temporal segmentation into per-
ceptual events. Their experimental method involved participants who watched
short videos of daily activities while brain images were acquired with fMRI
scanning. All participants watched each video in three corresponding modes:
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naive passive viewing, intentional viewing seeking active segmentation into
coarse time units and active segmentation into fine time units. The hierarchy
between segmentation into coarse events and fine segmentation into subevents
is conceptually similar to the spatial vision task of segmentation into objects
and subparts. The main authors’ conclusions are that there is significant and
detectable neural activity in the human brain during both intentional and
passive viewing, and this activity occurs around the perceptual event bound-
aries. Further, there is a hierarchical structure between the coarse and fine
levels of segmentation, which are aligned. Finally, the segmented events are
well correlated with environmentally meaningful parts of the video activity.
Regarding this chapter’s scope, we emphasize that, one open research direc-
tion in the above area is to investigate the separate roles of the individual
audio and visual modalities as well as their integrated multimodality in the
above temporal percept segmentation.

Audiovisual Gestalts

Nowadays, gestalt psychology principles have become an inspiration for sev-
eral approaches in computer vision. In a relatively new direction, Desolneux,
Moisan and Morel [133] detect visual gestalts based on a perceptual princi-
ple due to Helmholtz by finding statistically meaningful parts to be grouped
through searching for geometrical structures that largely deviate from ran-
domness. This work was extended by Monaci and Vandergheynst [342] to
detecting audiovisual events. The authors’ work in [342] is motivated by
strong evidences from previous computational (e.g., in [209, 122, 494]) and
psychophysical experiments (e.g., in [143, 555]) that the integration of audio-
visual information by humans is strongly assisted by the temporal synchrony
of events in the two modalities. It uses the Gestalt psychology principle of time
proximity to relate audiovisual fusion with gestalt detection where the audio-
visual gestalts are co-occurrences of auditory and visual events. To develop a
computational algorithm the authors used the Helmholtz principle, introduced
in image analysis by [133]. By combining sequences of energy features for the
audio and displacement features for the visual stream, they derive synchro-
nization indicator sequences from which they detect statistically meaningful
audiovisual events. Their results re-confirm the significance of the temporal
proximity between audio and visual events for integrating the two modalities.
Computational studies with a similar goal (i.e., the importance of audiovisual
synchrony) have also been done in [209, 122, 494, 43, 255, 462].

1.3 Bayesian Formulation of Fusion

As discussed in Section 1.2.2, inference about the world state is the pro-
cess through which the world-to-signal mapping is inverted. Since this inverse
problem is generally ill-posed, we need constraints to make it well-posed.
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Sensor fusion is needed to: (a) Reduce the dependence of a sensor on
possibly invalid a priori (natural or artificial) constraints. (b) Reduce the
uncertainty in parameter estimation due to errors in the sensor modeling
of the world-to-signal mapping. (c) Reduce uncertainty due to measurement
noise contaminating the noise free data. The book [99] dealt mainly with (a).
An approach to incorporate uncertainty estimation into the fusion problem is
proposed in Chapter 4 of this book.

Let S be the world state to be estimated, e.g., a vector of numeric or
symbolic features-parameters representing properties of an audiovisual scene
of the external world. Let D be the multimodal data representing signals
collected by auditory sensors, visual sensors and other information sources
(e.g., text), or D may represent features extracted from the raw signals. We
write D = (D1,D2,D3, ...) to separate the modalities. For simplicity, in this
section we assume only two modalities, aural and visual, producing data sets
DA and DV , respectively; hence, D = (DA,DV ).

Clark and Yuille [99] have proposed a classification of fusion cases in terms
of weak and strong coupling, which we shall call simply ‘weak fusion’ and
‘strong fusion’. Next we summarize the main ideas for both cases in the
Bayesian framework.

Weak Fusion

A clear case of weak fusion [99] occurs if the aural and visual information
processing modules are independent and have their own likelihoods PA(DA|S),
PV (DV |S) and priors PA(S) and PV (S) and produce two separate posterior
distributions

audio : PA(S|DA) =
PA(DA|S)PA(S)

PA(DA)
(1.8)

vision : PV (S|DV ) =
PV (DV |S)PV (S)

PV (DV )
(1.9)

See Fig. 1.1, where for simplicity we denote the audio data DA by A and the
video data DV by V . Each monomodal posterior could give its own MAP
estimate of the world scene:

Ŝi = argmax
S

Pi(Di|S)Pi(S), i ∈ {A, V }, (1.10)

Afterwards, for fusion, the two separate estimates can be combined somehow
to give a combined audiovisual estimate:

ŜAV = fusion(ŜA, ŜV ) (1.11)

where the fusion function can be either linear (e.g., a weighted average) or
nonlinear (e.g., a max or min combination).
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Consider the above case of weak fusion and suppose we wish to find the
joint maximum a posteriori (MAP) estimate from the combined prior

PAV (S|DA,DV ) = PA(S|DA)PV (S|DV ) =
PA(DA|S)PV (DV |S)PA(S)PV (S)

PA(DA)PV (DV )
(1.12)

If the two monomodal MAP estimates ŜA and ŜV are close, then Yuille and
Bülthoff [583] have shown that the joint MAP estimate is a weighted average of
the two single monomodal MAP estimates ŜA and ŜV . Specifically, assuming
that the two single MAP estimates are close, expanding in Taylor series the
log posterior around the point ŜA ≈ ŜV and keeping up to second order terms
yields

log PAV (S|DA,DV ) ≈ log PA(ŜA|DA) + log PV (ŜV |DV ) (1.13)

−[wa(S − ŜA)2 + wv(S − ŜV )2]/2

where wi = −(d2 log Pi(S|Di)/dS2)(Ŝi), i ∈ {a, v}. Maximization of (1.13)
yields the following MAP estimate for the audiovisual problem:

ŜAV =
waŜA + wvŜV

wa + wv
(1.14)

Since wa, wv > 0, the combined MAP estimate (after weak fusion) is approx-
imately a linear convex combination of the monomodal estimates.

For Gaussian distributions, the second-order expression in (1.13) becomes
exact and the assumption about ŜA ≈ ŜV is not needed. In this case the
weights are inversely proportional to each modality’s variance σ2

i , i ∈ {a, v}.
Since 1/σ2

i measures the reliability of each modality, the weights in the above
scheme are proportional to each modality’s reliability.

A similar situation, i.e., the combined optimum estimate to be the weighted
average of monomodal estimates, would occur again in a weak fusion scheme
where we wish to obtain maximum likelihood (ML) estimates. In this case
too, the combined likelihood factors into two terms

PAV (DA,DV |S) = PA(DA|S)PV (DV |S) (1.15)

Then, by working as in the MAP case, a second-order Taylor series expansion
of the logarithm of (1.15) would yield as optimum multimodal estimate again
a weighted average as in (1.14), but the Ŝ symbols would mean ML estimates
and the weights wi would result from the values of the second derivative of
the monomodal likelihoods at their maxima (which should be close).

Strong Fusion

In the previous weak fusion scheme, the two modalities are processed indepen-
dently, their monomodal optimal (with respect to the MAP or ML criterion)
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estimates are found, and then fusion occurs by combining the two single esti-
mates into a multimodal estimate with a linear or nonlinear function.

In contrast, we have strong fusion [99] if we have a non-separable joint
likelihood and a single prior; this gives as posterior

(a)

(b)

Fig. 1.1. Bayesian formulation of (a) Strong fusion and (b) Weak fusion schemes
for two modalities, audio and vision.
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PAV (S|DA,DV ) =
PAV (DA,DV |S)PAV (S)

PAV (DA,DV )
(1.16)

See Fig. 1.1 for diagrammatic illustration of strong fusion.
An intermediate case between weak and strong coupling is when the like-

lihood is separable and factors into two terms:

PAV (S|DA,DV ) =
PA(DA|S)PV (DV |S)PAV (S)

PAV (DA,DV )
(1.17)

In this case, if the two modalities have the same prior, i.e., PAV (S) = PA(S) =
PV (S), then we have a weak fusion scheme; otherwise we get a strong fusion.

Multi-stream Weights

In several cross-modal integration schemes used in multimedia applications,
such as audiovisual speech recognition, the two modalities (or cues) are simply
fused in the statistical models used for recognition by raising the respective
monomodal likelihoods to various exponents, called stream weights. Without
loss of generality, let us assume that we have two streams, say audio and
video, with data or features DA,DV . The posterior probability of a property
of an audiovisual scene S to be estimated given the multi-stream data D =
(DA,DV ) is given by (1.16). If the two streams are statistically independent,
the joint likelihood PAV (D|S) and marginal distributions PAV (D) become
separable and we obtain (1.12). If needed, we can relax the independence
assumption and assume only that the joint likelihood PAV (D|S) factors into
the two corresponding monomodal likelihoods, in which case we obtain (1.17).
The first case corresponds to simple weak fusion, whereas the second case is
the aforementioned intermediate between weak and strong coupling. In both
cases, raising each monomodal likelihood to a positive power, as usually done
in multi-stream feature combination, creates a modified posterior-like function

B(S|DA,DV ) = [PA(DA|S)]q1 [PV (DV |S)]q2
P (S)

P (D)
(1.18)

This may not even be a proper probability. Another artifact is the following:
Since the rational numbers are dense in the set of reals, we can assume that the
weights are rationals qi = ni/n, i = 1, 2, where n, n1, n2 are positive integers.
If we ignore the common denominator n the integer stream weights correspond
to replacing the product PAPV of the marginal likelihoods with the power-
weighted version Pn1

A Pn2

V . This corresponds to augmenting the multi-stream
data (DA,DV ) by replacing the ith stream with its ni-fold repetition and
treating the repetitions as independent. This repetition builds artificial corre-
lations among subsets of the augmented data and may destroy any assumed
independence of the separate streams. A better approach than power-raising
the stream probabilities is proposed in this book’s Chapter 4.
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1.4 Monomodal Features

For multimodal integration, a proper representation of each single modality
is very crucial. Multimedia description standards such as the MPEG-7 par-
ticularly emphasize the role of monomodal descriptors [319]. Two main types
of elements that MPEG-7 uses to describe and manage audio-visual content
are descriptors and descriptor schemes. The Descriptors convey information
about low-level audio features (e.g. temporal and spectral envelopes, pitch,
energy, and descriptors about musical timbre, spoken content and melody
contour) or visual features (e.g. color, edges, shape, texture, motion), as well
as attributes of audio-visual content (e.g. location, time, quality). The De-
scription Schemes convey information about high-level features such as audio
segments and events or visual regions and objects; they consist of a set de-
scriptors and their relationship for a particular task or application, arranged
in a tree structure. The domain of descriptor schemes categorizes them into
three types: audio, visual, and multimedia. The latter combine content de-
scriptions of audio, visual, and possibly text data. Overviews of the MPEG-7
audio, visual, and multimodal descriptors and descriptor schemes can be found
respectively in [417], [488], [455].

Next we discuss some of the most popular techniques to extract features
from the audio, visual, and text data for multimodal applications.

1.4.1 Audio Features

Information carried by the audio modality is certainly polymorphous and
multi-level. Thus, choosing a proper audio representation is not always straight-
forward and depends on the specific application. For multimodal integration,
the need to also compactly capture properties that are complementary to the
other modalities poses additional requirements. This has led to the utilization
of simpler and more focused audio feature extraction schemes in many multi-
modal scenarios. Alternatively, the audio frontend is adopted ‘as-is’ from the
corresponding audio-only application, e.g., speaker identification.

From a different viewpoint, audio descriptions in the multimodal context,
inspired from single modality approaches or not, can be either generic or spe-
cific [326]. Specific refers to high-level representations of audio content, as
for example obtained by applying speech recognition or audio segmentation
and classification; knowledge of the audio class, e.g., music, noise, speech,
or of the words that have been uttered in the case when the audio contains
speech, can be used in a successive multimodal analysis and fusion scheme as
sketched in Section 1.5.1. Such representations can be very useful in multi-
media applications and are usually devised via the employment of advanced
pattern recognition techniques. The focus of the current discussion is however
mainly on the generic, low-level audio features as they are extracted by a
signal-processing front-end. These may be further categorized into spectral or
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temporal features or alternatively, according to [559], into short or long term
audio representations.

Short-Term Features

Short-term features are normally extracted at a high rate and correspond
to short audio segments, typically referred to as frames. They are advanta-
geous in the sense that they allow the description of non-stationary audio
signals whose properties vary quickly, e.g., speech. They cannot represent
however long-term properties, as for example speech prosody. Probably the
most widely used frame-level features are the short-term energy and variants
as well as the zero-crossing rate [559, 575]. Their estimation is performed in
the time-domain and when combined they can provide valuable information
for speech/silence discrimination. Pitch, on the other hand, is extracted ei-
ther by time or frequency analysis. It is the fundamental frequency of an audio
waveform and it is very informative for speech and harmonic music. In speech,
it mainly depends on the speaker’s gender while in music it is influenced by
the strongest note being played. In [333] the pitch is used, along with other
features, for automatic meeting action analysis.

In applications such as audiovisual automatic speech recognition or audio-
visual speaker identification, spectrum related representations are commonly
preferred. This is justified by the relative success of the spectral feature sets
in the corresponding audio-only based applications. Log-Mel filter-bank ener-
gies, Mel-frequency cepstral coefficients (MFCCs), linear prediction cepstral
coefficients (LPCCs) [421], or perceptual linear prediction coefficients (PLP)
are possible variants that have been successfully applied in various multi-
modal contexts [22, 147]. They practically provide a compact representation
of smooth spectral information and their extraction is quite straightforward.
For the most common ones, namely the MFCCs, the extraction process in-
volves filtering the signal with a specially designed filterbank that comprises
triangular or more elaborate filters properly localized in the frequency do-
main. The MFCCs are extracted as the first few Discrete Cosine Transform
(DCT) coefficients of the log-energies of the signals at the filterbank output.
Their efficacy is demonstrated in the context of audiovisual speech recogni-
tion in Chapter 4. Usually, to capture speech dynamics, these features are
also accompanied by their first and second derivatives. These derivatives are
approximated using information from neighboring frames as well and so they
would be more appropriately characterized as long-term features.

Long-Term Features

Long-term feature estimation is based on longer audio segments, usually com-
prising multiple frames. In a sense, long-term features capture variations of the
short-term ones and may be more closely related to audio semantic content.
Many such features were originally applied for audio analysis in single-stream



1 Cross-Modal Integration 25

approaches and were or can be further customized for multimedia applications
[591, 402]. Examples include various statistics of the short-time energy and
the Zero Crossing Rate (ZCR), such as their average value or standard devi-
ation. These indicate temporal changes of the corresponding quantities which
in turn facilitate audio segmentation or classification in various classes, e.g.,
sports or news clips [559]; a sports clip would have a smoother ZCR contour
than a news clip, since it is characterized by an almost constant noise back-
ground while clean speech during news exhibits a widely and quickly varying
ZCR.

Long-term features based on pitch statistics can be equally useful. Only
voiced speech and music have smooth pitch and thus pitch variations can help
detecting voiced and music frames within an audio segment [559]. In a similar
manner, spectral variations in time can help determining between speech and
music; speech is expected to have much faster varying spectral characteristics.
Indeed, temporal stability, i.e., a feature measuring these variations has been
successfully applied in this direction at the first stage of a broadcast news
multimedia indexing framework [375]. It is estimated as the variance of the
generalized cross-correlation of the spectra of adjacent frames. At a different
level, the speaking rate, i.e., how fast speech is uttered, can also be important;
it may change a lot depending on speech pragmatics, namely the goal the
specific speech utterance serves in communication. Being much different in a
monologue or a presentation than during a conversation, the speaking rate
has been exploited in [333] for multimodal meeting analysis.

1.4.2 Visual Features

The visual modality is an extremely rich source of information. Although
high-level visual scene understanding of arbitrary scenes is beyond the reach
of current technology, visual information processing plays a key role in various
application areas, especially in domains where the image/video content is
structured according to well-defined rules. In particular, visual information
processing has proven beneficial in commercially-interesting domains involving
sports video, broadcast news, and movies data, where it has been utilized in
conjunction with audio and text for automatic content analysis, indexing,
summarization, and re-purposing, among others.

A wide range of visual features has been proposed in the literature to ad-
dress the requirements of different multimodal applications. We can categorize
different visual information representations into two broad classes, low and
mid-level generic visual features on the one hand, and high-level application-
specific visual features on the other hand. We discuss next representative
approaches from both categories.

Low and Mid-Level Visual Features

In the first category, low and mid-level visual features have been used to
characterize basic image and video properties, such as color, texture, and
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motion. This class of features are broadly used as generic image descriptors,
most notably for applications such as content-based image/video retrieval
[222, 450, 559], see also Section 1.7.6, and variants of them have been included
as descriptors in the visual part of the MPEG-7 standard [319, 488].

Among the generic visual features, color is perhaps the most widely used.
Color is typically represented in one of standard color-spaces, such as the
RGB or the perceptually better motivated HSV and L∗u∗v∗. The color con-
tent of an image or video frame is typically summarized in a low-dimensional
color histogram signature, and color-based similarity metrics are defined in
terms of these histograms. Since color is a per-pixel attribute, color represen-
tations can be computed very efficiently and are invariant to image scaling
or view-point changes. However, color histograms can be significantly affected
by illumination changes and, most importantly, completely discard geomet-
ric image information since they do not represent the spatial configuration of
pixels. Color features are typically most appropriate either for applications in
which their efficiency is crucial, such as real-time (audiovisual) face and hand
tracking, or for scenarios in which a single color, such as grass’ green in field
games, dominates the scene and thus its detection safely identifies the video
shot.

Another universal image attribute is its texture, roughly corresponding
to a description of its periodic patterns, directional content, and struc-
tural/stochastic complexity. A popular way to describe texture is by the image
response of a multi-scale, oriented transform, such as the Gabor or wavelet
filterbanks. The textural content can then be characterized by the most dom-
inant filterbank responses at each point, or by filterbank channel response
moments across the whole image. Alternative textural representations, such
as Markov-Random-Fields or co-occurrence matrices can also serve as pow-
erful texture descriptors. Another successful recent advance in image texture
modeling encompasses the mid-level vision class of distinctive image features
popularized by the Scale-Invariant Feature Transform (SIFT) representation
[308]. In the SIFT representation, a sparse set of salient scale-space image
points is first selected, and then the image textural content around each salient
point is described in a compact representation. This class of features has built-
in scale invariance properties and has proven particularly effective for reliable
image matching and higher-level object recognition.

The last large class of low and mid-level visual features represents mo-
tion in video, typically computed with block-matching or other optical flow
techniques [42]. On the one hand, global scene motion can be used to recover
camera attributes such translation, rotation, panning, and zooming, as well
as detect scene changes. On the other hand, local object motion is often re-
lated to object saliency; motion features have thus been used widely as event
detectors in surveillance and sports analysis applications. The down-side of
motion-based features is that optical flow computation is a computationally
demanding task.
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We should note here that each of the low and mid-level visual feature
classes described above is typically not adequate for describing by itself the
semantic content of image and video. Thus, most applications typically utilize
more than one visual cues in tandem (intramodal fusion), apart from combin-
ing them with audio or text information (intermodal fusion), or even allow the
user participate in the processing loop, as in the relevance feedback approach
of [452].

High-Level Visual Features

In certain domains high-level image and video understanding is indispensable
and this is usually beyond the reach of the low and mid-level visual descriptors
just described. Typical example applications are audiovisual speech/emotion
recognition or face recognition, which all require high-level models for object
analysis and recognition. We describe next representative models of object
shape and appearance which are carefully tailored for the needs of high-level
object understanding.

An important high-level visual attribute is the object’s shape. Examples of
generic shape representations are the region-based ‘shape context’ [52], which
yields a histogram shape descriptor, and the classical contour-based Fourier
shape descriptor which approximates a closed contour using the coefficients
of a truncated Fourier series; variants thereof are included in the MPEG-7
standard [488]. A more powerful class of object-centric shape features are the
parametric representations of [394] and [106]. Both these techniques capture
shape deformation in a compact parametric shape model which is specifically
tailored for a single class of objects. This object-specific shape model is derived
either by a physics-based Finite Element Modeling (FEM) analysis in [394]
or by a training procedure using a hand-annotated set as in the Active Shape
Model (ASM) [106]. Given such a model, a target shape can then be described
in terms of its first few eigen-modes or eigen-shapes, yielding a highly compact
and specific representation. Such models have been used extensively in the past
for applications such as tracking and feature extraction from human faces.

In parallel to shape, an important class of computer vision models is
concerned with object appearance description. Popularized by the success-
ful “eigen-face” model of [531], this class of models strives for accurate and
compact representation of image appearance content. Such representations are
typically learned from representative training images by means of principal
component analysis or other unsupervised/supervised dimensionality reduc-
tion techniques. A significant recent advance in appearance models is the
Active Appearance Model (AAM) [107] which combines the compact shape
representation of the ASM and the PCA-based appearance modeling of eigen-
faces in a new powerful blend, while at same time being amenable to efficient
calculations. An application of the AAM model in audiovisual speech recog-
nition is illustrated in the book’s Chapter 4.
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1.4.3 Text Features

The basics of text description

Text is a major medium carrying semantic information. In this section, we
focus on the textual features that can be used to describe the content of a
document for applications such as information retrieval for example. The basic
paradigm consists in associating with each document a descriptor, called index
in this domain, composed of a set of words called indexing terms. Such terms
can be chosen from a predefined list (e.g., in a thesaurus) – in this case the
correspondence between a document and this list is not trivial and is often
done manually – or directly from the text itself. The latter is the usual way
to proceed when large collections are to be processed automatically, i.e., in
most search engines on the web.

To develop such a system implies first to choose the terms that should be
extracted. The first stage in this process transforms the text in a sequence of
words or tokens. If this is not too difficult in English, the absence of white
spaces in Chinese for example can make this first step a rather difficult one.
Next, the indexing terms are to be chosen among all the extracted tokens.
They should be discriminant, and thus not appear in all documents, but they
should not be too specific: they must appear in several texts and be infor-
mative [459]. The set of unordered words obtained by this process is called a
bag-of-words.

Many systems associate a weight with each of the indexing terms, in order
to designate which terms are more important or more meaningful. Three crite-
ria are used: the importance of the term within the document, the importance
of the term within the document collection, and the size of the document [456].
The first factor corresponds to a local weight and is usually based on the term
frequency in the document. The second one is global and is often chosen as
the inverse document frequency or one of its variants. The last factor tries to
correct the effects of the size of the document.

Finally, a representation model defines the way the terms should be used
or interpreted and how the query index should be compared to the collection
indexes. Classical families of such models are the set-theoretic models like the
Boolean model, where the documents are represented as sets of terms and
where the comparisons are done using basic set-theoretic operations, the alge-
braic models like Salton’s vector space model [458], where the documents are
represented as vectors and the similarity is expressed as a scalar number, and
probabilistic models [503] where the retrieval problem is seen as a probabilistic
inference problem, making use of tools like Bayes’ theorem.

Natural language processing for enhanced descriptions

The basic tools presented above fail to represent all the details and subtleties
of natural languages, and natural language processing methods have been
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proposed in order to acquire linguistic information and to improve the per-
formance of the description. These tools can work at various levels: at the
morphological level, at the syntactic level or at the semantic level.

Morphology is concerned by the structure of the words, and explains the
links between words like transform, transforms, and transformation. A basic
idea, called lemmatization, is thus to replace all these words in the document
index by the simplest one or the most basic one of the series: goes can be
replaced by go, bikes by bike. According to experiments, such a technique
allows to improve the precision and recall of an information retrieval system
up to 20 %. A second technique pushes the idea further and replaces every
word in the index by its stem, but the results are much dependent on the
quality of the stemming algorithm used and on the language [31]: Swedish or
Slovenian provide more convincing results than English.

The structure of the sentences and of the syntagms are the subject of
syntax. Its use mainly consists in using syntagms as complex indexing terms.
Although they present even more variations than simple terms, their use has
been proven successful when they come in addition to the simple terms, di-
rectly in the same index [459] or in a separate index [278]. The gain in per-
formance can reach 5 to 30 %.

At the semantic level, information about the meaning of words and re-
lations between words can be taken into account. Possible relations are syn-
onymy, hypernymy, or more complex relations like the one that links ‘pro-
fessor’ with ‘to teach’ [100]. Such information can be used to expand the
queries. Automatically extracted co-occurring words added to queries have
been proved to improve the results [179], while the use of WordNet [157] leads
to more deceiving results [549]. Another alternative is to use the semantic
information in the index itself, by employing the meaning of the words as
indexing criterion instead of viewing each word as a sequence of letters. Dis-
ambiguation is also an option [258]. In this case also, the use of WordNet does
not clearly improve the results.

As a conclusion, if the basic ways to integrate linguistic information pre-
sented here have largely proven their relevance, really taking into account
word meaning is still a challenge for which no universal technique is yet avail-
able. Tools developed for restricted domains (e.g., more restricted collections
or specific languages) appear however very promising.

1.5 Models for Multimodal Data Integration

What tools can be used to analyze jointly the several media present in a doc-
ument? Many authors tried to avoid developing ad-hoc methods for each new
combination they encountered and relied on the classical techniques that were
available in fields like data analysis, machine learning or signal processing. As
a matter of fact, multimedia is yet another application domain for pattern
recognition techniques.
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Let us first categorize the tasks to be solved in four elementary problems.
Segmentation aims at delimiting events. These events can be shots, scenes or
sequences in an audiovisual stream. Event detection consists in finding pre-
defined events in a document, such as advertisement, dialogues, and goals in
soccer matches. Structuring is close to a complete segmentation of a document.
Its goal is to provide the complete structure of a document, structure that can
include some hierarchy (e.g., shots are gathered in scenes), or some classifica-
tion (e.g., the various segments may be labeled). Finally, classification aims
at providing labels to document parts. Of course, one major application of
classification consists in associating more semantic labels to documents, but
this leads to a very wide variety of problems, e.g., determining the language
of a document, what is its genre, and what sport is shown.

These four categories have close links and many algorithms both segment
and structure, or detect events and classify at the same time. It should be no-
ticed that the first three tasks, as far as multimedia documents are concerned,
deal most of the time with temporal documents and have to take this tempo-
ral dimension into account. On the other hand, the classification often arrives
after other description steps and can be stated as a static problem. As written
above, many temporal or dynamic algorithms also achieve classification tasks.

Several categorizations can be made of the various techniques. Section 1.5.1
introduces the distinction between early, intermediate, and late fusion. In [501],
the authors present other typologies and separate statistical methods, ranging
from rule-based techniques, or simultaneous methods where all the media are
considered at the same time to methods where the media are processed one
after the other. In Section 1.5.2 we describe appropriate representations, as
well as classification tools for static modeling of multimodal data, while in
Section 1.5.3 we describe tools suited for dynamic time-evolving modalities,
including the Hidden Markov Model and its variants, as well as more general
Dynamic Bayesian Networks.

1.5.1 Levels of Integration: Early, Intermediate, and Late Fusion
Approaches

Integration of features extracted from diverse sources is not a trivial task. The
two main problems encountered in this process are the following:

• A decision problem: what should be the final decision when the various
media or sources of information provide contradictory data? Although the
decision problem is common to all systems based on information fusion,
it gets more difficult in the case of multimodal data because the different
modalities are affected dissimilarly by environmental noise, and thus their
relative reliability is time-varying.

• A synchronization problem, which is specific to multimodal integration of
time-evolving data. Synchronization issues arise for two reasons. First, the
natural representation granularity for heterogeneous modalities is differ-
ent. For example, the elementary unit of video signal is the image frame,
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typically sampled at 20-30 Hz, while audio features for speech recognition
are usually extracted at 100 Hz, and the elements of text (words) are gen-
erated at roughly a 1 Hz rate. Second, the boundaries induced by a certain
semantic event to different modalities are only loosely aligned. For exam-
ple, applause (acoustic evidence) and score label update (textual evidence)
typically lag scoring in sports, while visual evidence is concurrent to it.

One can generally classify the various approaches to multimodal integra-
tion into three main categories [205], depending on the stage that the involved
streams are fused, namely early, intermediate and late integration techniques.
In the early integration paradigm, corresponding to the strong fusion model
of Section 1.3, we first concatenate all modality descriptors into a single mul-
timodal feature vector; afterwards, processing proceeds by using conventional
monomodal techniques. Late integration techniques, following the weak fu-
sion model of Section 1.3, largely handle each modality independently using
separate models; the corresponding partial results are subsequently combined
to yield the final decision. While both early and late integration approaches
build on established monomodal modules and are thus easily applicable, they
cannot fully account for the loose synchronization and the fine interaction
between the different modalities. Intermediate integration methods try to ad-
dress this shortcoming by employing novel techniques specifically devised to
handle multimodal data and properly account for multimodal interaction.

Early Integration

For early integration, it suffices to concatenate all monomodal features into
a single aggregate multimodal descriptor, possibly compacted by a dimen-
sionality reduction process. Since early integration corresponds to the strong
fusion model of Section 1.3, it is theoretically the most powerful scheme for
multimodal fusion. In practice, however, early integration schemes can only
be effective if all individual modalities are synchronized. Moreover, early inte-
gration lacks flexibility due to its non-modular nature, and the whole system
needs to be re-built in case the conditions affecting even a single constituent
modality change. For example, in the case of audiovisual speech recognition
based on early integration models, it is necessary to retrain all models for each
acoustic noise condition.

Late Integration

In this approach, each modality is classified independently. Integration is done
at the decision level and is usually based on heuristic rules. For example,
audio and video streams are segmented and classified by two separate Hidden
Markov Models. Dialogues are identified as segments where audio signal is
mainly speech while visual information is an alternation of two views. The
detection of such particular scenes is done by fusion of the decisions.
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A particular instance of late integration techniques is based on the suc-
cessive analysis approach. The principle of this scheme, as illustrated in video
analysis applications, is the following: The audio or textual signal is employed
in a first stage to detect interesting segments. Image analysis (tracking, spatial
segmentation, edge/line/face detection) is then used in the regions previously
detected to identify a particular event, or more simply to identify the video
segment boundaries. In this first case, audio, or text, are used to restrict the
temporal window where video analysis will be used. An implicit assumption
of such a method is that interesting segment detection is faster with these
modalities (applauds in the sound track or keywords in the textual stream).
This constitutes the first stage of a prediction verification method, whose
second stage is a verification and localization step done on the audio or on
the visual stream. The use order of the various media may be inverted: in a
first stage, visual features are used to detect interesting events. In a second
stage, the state of excitement of the speaker or the public is measured to filter
the most interesting shots. This process is no more a prediction/verification
process, but the audio signal is used to order the visual segments by level of
importance.

Intermediate Integration

Intermediate integration techniques lie in-between early and late integra-
tion methods and are specifically geared towards modeling multimodal time-
evolving data. They achieve a good compromise between modularity and close
intermodal interaction. Specifically, they are modular enough in the sense that
varying environmental conditions affecting individual streams can be handled
by treating each stream separately. Moreover, they allow modeling the loose
synchronization of heterogeneous streams while preserving their natural cor-
relation over time. This class of techniques has proved its potential in var-
ious application areas, such as audiovisual speech recognition presented in
Chapter 4. Various intermediate integration architectures for handling time-
evolving modalities are discussed in Section 1.5.3.

1.5.2 Static Models for Multimodal Data

We first consider static models for processing multimodal information. These
are designed for data that are static themselves, but can also often handle
satisfactorily dynamic data on a frame-by-frame basis.

Modeling Interrelated Multimodal Events

Multimodal data stemming from a common cause often have strong inter-
dependencies. In the case of two sets of continuous vector variables, x and
y, canonical correlation analysis (CCA) provides a natural representation for
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analyzing their co-variability [322]. Similarly to the better-known principal
component analysis (PCA), CCA reduces the dimensionality of the datasets,
and thus produces more compact and parsimonious representations of them.
However, unlike PCA, it is specifically designed so that the preserved sub-
spaces of x and y are maximally correlated. Therefore CCA is especially
suited for studying the interrelations between x and y. In the case that x
and y are Gaussian, one can prove that the subspaces yielded by CCA are
also optimal in the sense that they maximally retain the mutual information
between x and y [464]. Canonical correlation analysis is also related to linear
discriminant analysis (LDA): similarly to LDA, CCA performs dimensional-
ity reduction to x discriminatively; however the target variable y in CCA is
continuous, whereas in LDA is discrete.

More specifically, in CCA we seek directions, a (in the x space) and b
(in the y space), so that the projections of the data on the corresponding
directions are maximally correlated, i.e. one maximizes with respect to a and
b the correlation coefficient between the projected data aT x and bT y

ρ(a,b) =
aT Rxyb√

aT Rxxa
√

bT Ryyb
. (1.19)

Having found the first such pair of canonical correlation directions (a1,b1),
along with the corresponding canonical correlation coefficient ρ1, one contin-
ues iteratively to find another pair (a2,b2) of vectors to maximize ρ(a,b),
subject to aT

1 Rxxa2 = 0 and bT
1 Ryyb2 = 0; the analysis continues iteratively

and one obtains up to k = rank(Rxy) direction pairs (ai,bi) and CCA co-
efficients ρi, with 1 ≥ ρ1 ≥ . . . ≥ ρk ≥ 0, which, in decreasing importance,
capture the directions of co-variability of x and y. For further information on
CCA and algorithms for performing it, one is directed to [322].

Canonical correlation analysis and related ideas have proven fruitful in
several multimodal fusion tasks. By searching in videos for the image areas
that are maximally correlated with the audio one can spot audiovisual salient
events. Applications include speaker localization and tracking, as well as video-
assisted audio source separation (cocktail party effect) [209, 122, 255]. By
maximizing the canonical correlation over a small shift window, one can also
time-align asynchronous data streams, as demonstrated in [462]. Moreover,
CCA is closely related to the optimal Wiener filter for linear regression [464];
this connection has been employed by [247] in recovering speech articulation
from audiovisual data.

Classification of Static Multimodal Data

In the matter of classification with multimedia data, many techniques coming
from classic pattern recognition can be used. Before discussing these tech-
niques, several specificities should be outlined.

The algorithms can be employed at several levels. Their input can be de-
scriptors or the output of monomodal classifiers [262]. Of course, the way the
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various media are mixed is important. The descriptors can be simply con-
catenated. When the various descriptors are of the same nature, the resulting
vector can be reduced through a PCA or discriminant linear analysis. Con-
catenating descriptors of different nature like words with numeric descriptors
is problematic since they correspond to very different kinds of distributions
and metrics.

Simple Bayesian classifiers are a first class of possible classifiers for mul-
timedia data. Support vector machines (SVMs) [540] are heavily used for at
least three reasons. They are quite efficient in dealing with high dimensional
data, they can manage non-linear separation boundaries, and, last but not
least, free implementations are available which are quite simple to use5.

Neural networks of different kinds, like multilayer perceptrons, are also
classical tools in the domain. Convolutional networks have been used for face
detection and proven to be well-suited tools for dealing directly with the sig-
nal [178]. Even if their use is more efficient in some cases, they remain difficult
to apply, because of the complexity of the algorithms that are associated with
them for training and because no widely available implementation exists (for
the convolutional networks in particular).

Finally, Bayesian networks appear to be very flexible tools. Such networks
allow to model any graph of dependency between random variables. The vari-
ables are simply represented as nodes in a graph where edges represent some
dependence between two variables. One of the major advantages of Bayesian
networks comes from the possibility to learn the structure of the network
directly from data, e.g., using the K2 algorithm [104]. Of course, if many vari-
ables are to be taken into account and no hint is given to the algorithm, this
requires lots of training data and the complexity becomes very high. This is a
major difference with Markov models where the structure has to be a priori
defined.

1.5.3 Models for Dynamic Data: Integration of Asynchronous
Time-Evolving Modalities

In the case of dynamic data, two additional difficulties appear: The various
data streams can have different rates and can also lack precise synchroniza-
tion. As an example, movies can have 24, 25 or 30 images per second when
sound frames have a rate of 16 kHz or 48 kHz and speech corresponds to four
syllables per second. It is also clear that TV and radio commentators usually
describe events that have already passed, for example, in live sport programs.
Even if the interval between the event and its comments is rather small for
human perception, it will be translated in terms of dozens of image frames
and hundreds of sound frames. Choosing what part of each stream should be
considered at a given instant is thus quite a complex problem. The two basic
formalisms used in the domain are Markov models and Bayesian networks,
the former being a particular case of the latter.

5 A list is provided on the Wikipedia webpage on SVMs.
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The Principle of Markov Models

Markov models are composed of a graph of states linked by oriented edges.
Each edge represents a possible transition between two states or the possibility
to stay at the same state for several periods of time. Time being assumed to be
discrete, at each instant, the process makes a transition from its actual state
to another one and emits an observation. Such a system is parameterized by
several sets of probabilities. A first set provides the probability distribution
of the initial state from where the process starts at t = 0. The second set
provides the state transition probabilities. The last set provides the probability
distributions of the observations emitted at each state.

Many variants of the basic model have been developed [413, 556]. The
probabilities are usually constant over time, but one could use varying prob-
abilities. The basic Markov hypothesis states that the observation emitted
and the transition only depends on the current state: Past is reduced to the
current situation. But here also, a variant is possible where the past could
be reduced to the knowledge of a given number of past instants. That is for
example what happens when using n-gram models.

A Markov model is said to be hidden when the sequence of states is
unknown. This is the case for example when a sequence of observations is
known, and the issue is then to determine the most probable sequence of
states s = (s1, s2, . . . , sT ) which could emit this sequence of known observa-
tions (o1, o2, . . . , oT ). Mathematically, the problem is thus to find the optimal
sequence of states s∗ such that:

s∗ = arg max
s1:T

(log P (o1:T |s1:T ) + log P (s1:T ))

The Viterbi algorithm [169] is used to solve this problem and provides a global
optimum.

It should be noticed that the structure of the hidden Markov model should
be defined a priori. The parameters can either be predefined or estimated by
the Baum-Welch algorithm from example data.

The Principles of Bayesian Networks

As mentioned earlier, the Bayesian networks allow a set of random variables
and their dependencies to be represented by an oriented acyclic graph. Each
node corresponds to an observed or hidden variable and the edges represent
the dependencies. An edge between a node A and a node B indicates that
the variable represented by B depends upon the variable represented by A.
Of course, the absence of any edge between two nodes means these nodes are
independent, or conditionally independent if they share a common parent.

The parameters of such a network are the conditional distributions of each
node. These distributions provide the probabilities of each variable condition-
ally on its parent variables. The global joint probability of all variables can
be computed:
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Pθ(x) =
∏

i

Pθi
(xi|Ai)

where Ai is the set of parents of node i in the graph. The parameters θi

correspond to the parameters of the conditional distribution at node i. The
factorized form of this joint probability is the starting point of the algo-
rithms that allow to learn the structure [104] and the parameters of such
networks [260, 236].

Such Bayesian networks are called dynamic Bayesian networks when they
represent a random process. Such a denomination is quite improper in fact,
but it is largely accepted by the community. Dynamic networks are in fact
static, but they present a pattern repeated over time. On the other hand,
the parameters are time independent. As a consequence, the same training
algorithms can be used, but learning the structure of such a network becomes
intractable in most situations.

Hidden Markov Models for Multimedia Processing

When several streams of observations are to be taken into account, Hidden
Markov Models (HMMs) can be adapted. If the streams are synchronized and
share the same rate, a first solution is to fuse the descriptors at each instant
in order to create larger multimodal descriptors. Such a method is restricted
to the fusion of descriptors of the same nature. Mixing words with numeric
descriptors makes it difficult to define a metric between descriptors. Further-
more, the constraint on the rate often implies to align one of the streams
on the other one (e.g., to reduce the audio information to one descriptor per
visual shot) (see Fig. 1.2).

There are many Markov model variants for processing multimodal data; a
unified presentation of the most popular architectures can be found in [362].
Multistream HMMs were introduced to process several streams, using one
HMM per stream and by adding synchronization points [77, 208, 147] (see
Fig 1.3). Between two such synchronizations, the two streams are assumed to
be independent and are modeled by their own HMM. In this case the observa-
tions of the various streams are supposed to be independent (conditionally to
the hidden process). At each synchronization point, the scores corresponding
to each stream have to be combined.

Two extreme cases of multistream HMMs are the synchronous and the
asynchronous models. In the former, the two Markov models have a shared
state sequence, and can be considered as synchronized at every instant. In the
latter, there is no synchronization (except at the beginning and at the end
of the process) and the model is equivalent to a synchronous model in the
product state space. As a consequence, such a model is often called a product
model. More specifically, let us consider a pair of bimodal sequences y(1) and
y(2), each consisting of T (discrete or continuous) observation samples y(i) =

(y
(i)
1 , y

(i)
2 , . . . , y

(i)
T ). Then, in the synchronous multistream HMM model the
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Fig. 1.2. Descriptor fusion with hidden Markov models. Grey arrows correspond to
conditional probabilities and provide an exemple of alignment between states and
observations. (Credits: G. Gravier)

Fig. 1.3. Multistream hidden Markov model. The states represented by a double
circle correspond to synchronization points. (Credits: G. Gravier)
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data are explained by a common hidden state sequence x = (x1, x2, . . . , xT ),
with xt taking values in the single label set L, yielding the overall probability

p(y(1),y(2)|x) = p(x0)

T∏

t=1

p(xt|xt−1)p(y
(1)
t |xt)p(y

(2)
t |xt). (1.20)

In the case of the asynchronous multistream HMM model, however, each

modality has its own dedicated hidden state sequence x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
T ),

with x
(i)
t taking values in the possibly separate label sets L(i), yielding

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 , x

(2)
0 )·

T∏

t=1

p(x
(1)
t , x

(2)
t |x

(1)
t−1, x

(2)
t−1)p(y

(1)
t , y

(2)
t |x

(1)
t , x

(2)
t ). (1.21)

The resulting product HMM allows for state asynchrony, since at each time
instance one can be at any combination of unimodal states.

The Bayesian network framework allows to represent easily other vari-
ants by introducing new possibilities of dependency between the states of the
model. For example, Fig. 1.4 represents a coupled multistream model with a
coupling between the chains associated to each stream. The associated obser-
vation sequence probability is

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 )p(x

(2)
0 )·

T∏

t=1

p(x
(1)
t |x

(1)
t−1, x

(2)
t−1)p(x

(2)
t |x

(1)
t−1, x

(2)
t−1)p(y

(1)
t |x

(1)
t )p(y

(2)
t |x

(2)
t ). (1.22)

Figure 1.5 represents yet another popular alternative, the factorial model. In
this model, at a given instant, all hidden states depend upon all observations,
yielding

p(y(1),y(2)|x(1),x(2)) = p(x
(1)
0 )p(x

(2)
0 )·

T∏

t=1

p(x
(1)
t |x

(1)
t−1)p(x

(2)
t |x

(2)
t−1)p(y

(1)
t |x

(1)
t , x

(2)
t )p(y

(2)
t |x

(1)
t , x

(2)
t ). (1.23)

The relative merits of both multistream HMM variants, as well as the coupled
and factorial HMM models, are examined by [362] in the context of audiovisual
speech recognition.

Segment Models

In all the models presented so far, both Markov models and Bayesian networks
associate a hidden variable to each observation. As a consequence, modeling a
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Fig. 1.4. Graphic representation of the coupled Markov model for two streams.
States in grey correspond to observed states (the corresponding observations are
not represented). (Credits: G. Gravier).
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Fig. 1.5. Graphic representation of the factorial Markov model (Credits: G.
Gravier).

process that should stay for some time in a given state implies an exponential
distribution for this duration. This is not always realistic.

Segment models [136, 379] are a variant of Markov models in which every
state can be associated to several observations. Their number is modeled by
an explicit duration model, which can be parametric or not. The use of such
a model is for example, explained in the book’s Chapter 3.
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1.6 Integrated Multimedia Content Analysis (Beyond
Descriptors)

Although descriptor computation has attracted most of the attention of the
video processing community, other aspects have also to be taken into account
in order to derive complete systems. Several of these aspects are presented
in this section, including metadata and the normalization problem, indexing
techniques, and performance evaluation.

1.6.1 Metadata and Norms

The increasing number of digital photo and video collections raised the prob-
lem of describing them in a uniform way to allow an easier querying of these
collections. One difficulty comes from the number of different communities
that are concerned and have different habits and standards to describe their
documents: documentalists used to manage libraries, the video community
that developed the MPEG standards and wanted to enlarge their scope to
include metadata through the MPEG-7 standard, the Web community which
was confronted to the increasing number of images and videos and is work-
ing on the semantic web standards like RDF and OWL, some users like the
American government defined their own system (the Dublin Core [125]). All
these communities have their own standardization bodies like ITU for the
telecommunication domain, ISO, IEC, the W3C, and this leads to a certain
cacophony.

Another problem comes from the nature of the digital documents to be
annotated. While books are material objects that do not change once pub-
lished, even if a “book” may have several versions with differences between
them, digital documents usually do not exist in a directly readable form but
in compressed formats. They can be read through several software packages
that provide different results which depend upon many factors like the screen
used and the network bandwidth. Furthermore many versions of an original
document can exist with various formats and resolutions. As a consequence,
the concept of document has become quite fuzzy.

As far as digital videos are concerned, metadata can be separated into sev-
eral categories. Some metadata describe the container of the document (e.g.,
name file, URL, compression format), some describe the physical aspects of the
document when viewed (e.g., resolution, grey levels or color), others describe
the content at various level: at low level with color histograms, at medium
level with regions and spatial relations, at high level with faces / speakers and
events. Another class of metadata is devoted to describing external elements:
author, actors, how created, when broadcasted. Finally, some metadata de-
scribe the content from a human point of view, i.e., the story or the event.
Such an annotation is not automatic because it requires some understanding
of the document which is still impossible to achieve automatically with the
current techniques.
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The metadata normalization effort has led to different kinds of norms.
First, some very general ones like the Dublin Core [125] which can be used
for any digital document in fact. Although there are many variants, they all
share a common basis and simplicity. Second, some attempts have been made
to build a complete norm and led to MPEG-7 [319]. Such a norm suffers from
several drawbacks: too general on the one hand, but not extensible on the
other hand, not modular, based on a language that is not completely object-
oriented and thus does not support inheritance although these properties were
parts of the requirements [346]. MPEG-7 is a source of inspiration for many
usages, but will probably not be used as such in practice.

Another norm very similar to MPEG-7 is nevertheless successful. TV-
Anytime was developed at the same time but for a more focussed objective
(the description of programs in TV streams) and, although based on the same
concepts, was adopted and is used by many companies.

It is now accepted that conceiving a universal metadata norm is impossible
and most standards plan to integrate and synchronize metadata with docu-
ments, but without specifying how these metadata should be written. This is,
for example, the case of the MPEG-21 norm [345] or MXF [566].

1.6.2 Indexing Algorithms

Because in most libraries documents are described by words (authors, titles)
and these words are sorted by alphabetic order, most persons fail to see the
difference between a descriptor and an index which is a way to organize the
metadata in order to retrieve easily the documents. As a matter of fact, the
descriptors are used as indexes, and the alphabetic order is not seen as an
external way to arrange them.

With images or sounds, the situation is different. Many descriptors are
high dimensional numeric vectors subject to noise. Many of them cannot be
compared directly, but through a distance or dissimilarity function and small
differences may be considered as not significant. On the other hand, sorting
such vectors in lexicographic order does not help to find the most similar vec-
tors, whatever distance and search algorithm (ε-range or k-nearest neighbors
searches) are used. Traditional database indexes of the B-tree family also fail
to handle correctly such vectors for which all dimensions should be taken into
account [26] at the same time.

A basic algorithm to solve this problem is the sequential and exhaustive
search where all vectors are compared to the query vector. Such a simple
algorithm has the major advantage to be absolutely linear in complexity.
Many attempts have been made to improve this algorithm. A simple idea is
to group the vectors in cells, and to be able to select the cells that should be
read based on geometric properties.

Based on this idea, two main categories of algorithms have been proposed.
Based on the seminal R-tree [192], some techniques called R+-tree [471], R*-
tree [48], X-tree [56], SS-tree [564] and SR-tree [48] try to build the cells
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with respect to the data distribution. All these cells are organized in a tree
structure. On the other hand, other algorithms based on the KD-tree [55], like
the K-D-B-Tree [438], the LSD-Tree or the LSDh-Tree [206], build the cells by
cutting the vector space in hyperrectangular regions. These regions are also
organized in a tree. All these techniques appear to have a time complexity
that grows exponentially with the size of the vector space, and none can be
used in practice as soon as the space has more than 10 or 15 dimensions. This
is one of the effects of the dimensionality curse.

New techniques are appearing that solve this problem. First, they imple-
ment an approximate search: Although finding close vectors to a query vector
is not so long and difficult, proving that they are the nearest is time con-
suming. It was thus proposed to avoid this second stage. The tree structures
have been abandoned in favor of linear structures (projection on random lines
or on space filling curve, hash tables). Finally, distance computations can
be replaced by rank aggregation techniques, following ideas developed in the
OMEDRANK algorithm [154]. Grouping all these ideas into a single algorithm
led to the PvS algorithm [289] which has a complexity close to constant in
time and can be used in practice with billions of descriptors.

1.6.3 Performance Evaluation

Performance evaluation is a twofold concept. Firstly, it consists in assessing
the quantitative and objective properties of a system, in a way that allows
comparison with competing systems. Secondly, its goal is to verify to which
extent a system fulfills the users’ needs. These two kinds of evaluation give
rise to very different techniques and methods.

Quantitative evaluation is now organized along a well established and rec-
ognized protocol through competitive campaigns. A set of experts firstly es-
tablish a test corpus and a learning corpus. For the first one, the experts
establish a reference, i.e., they manually provide what is considered as a per-
fect result to which the systems will be compared. The second one is provided
to the participants in order to develop, tune and test their systems. Secondly,
a metric is chosen in order to compare the reference to the results that will
be provided by each system. Finally, each participant runs their system on
the test corpus and the results are compared to the reference using the cho-
sen metrics. A workshop is often organized where all results are published
and discussed. Many such campaigns are annual such that participants can
improve their system and that new tasks can be addressed.

For example, the National Institute for Standards and Technology in the
US organizes lots of such campaigns on various topics like information re-
trieval (TREC campaigns), machine translation, speech recognition, language
recognition, speaker recognition, and video analysis.

This existing protocol nevertheless does not suppress the difficulties. A
large community has to agree on one common task to be solved when lots of
systems can solve slightly different problems. A metric should be agreed on.
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Gathering the data and establishing the reference can be extremely difficult
and expensive, because most multimedia data are copyrighted and because the
manual annotation process for the reference is an extremely long and boring
process (imagine you have to annotate every pixel of a long video!)

User evaluation is a completely different problem. Since it should involve
users in real conditions, it can be achieved only on complete systems with in-
terfaces and thus requires more development most of the time. Furthermore,
the actions and reactions should be recorded and analyzed without perturb-
ing its use of the system. Finally, questionnaires and spoken debriefings can
complete the analysis.

Here also, the difficulties are numerous. Most computer scientists are not
trained to manage such evaluations. Establishing any result often takes a lot
of time and needs to involve many users to reduce any bias due the order of the
data presented to each of the users and to the order of the tasks proposed to
the user. Eventually, quantitative results can be obtained on only few simple
questions, although the oral debriefing can bring more qualitative pieces of
information.

1.7 Application Areas

Next we describe some indicative application areas in which multimodal inte-
gration techniques have proven particularly beneficial.

1.7.1 Audio-Visual Automatic Speech Recognition

Commercial Automatic Speech Recognition (ASR) systems are monomodal,
i.e., only use features extracted from the audio signal to perform recognition.
Although audio-only speech recognition is a mature technology [421], current
monomodal ASR systems can work reliably only under rather constrained
conditions, where restrictive assumptions regarding the amount of noise, the
size of vocabulary, and the speaker’s accents can be made. These shortcomings
have seriously undermined the role of ASR as a pervasive Human-Computer
Interaction (HCI) technology [382] and have delayed the adoption of speech
recognition systems in new and demanding domains.

The important complementary role that visual information plays in hu-
man speech perception, as elucidated by the McGurk effect discussed in Sec-
tion 1.2.3, has provided strong motivation for the speech recognition commu-
nity to do research in exploiting visual information for speech recognition,
thus enhancing ASR systems with speechreading capabilities [510, 413]. The
key role of the visual modality is apparent in situations where the audio signal
is either unavailable or severely degraded, as is the case of very noisy environ-
ments, where seeing the speaker’s face is indispensable in recognizing what
has been spoken. Research in this relatively new area has shown that multi-
modal ASR systems can perform better than their audio-only or visual-only



44 P. Maragos, P. Gros, A. Katsamanis, G. Papandreou

counterparts. The first such results where reported back in the early 80’s by
Petajan [398]. The potential of significant performance improvement of au-
diovisual ASR systems, combined with the fact that image capturing devices
are getting cheaper, has increased the commercial interest in them.

The design of robust audiovisual ASR systems, which perform better than
their audio-only analogues in all scenarios, poses new research challenges, most
importantly:

• Selection and robust extraction of visual speech features. From the ex-
tremely high data rate of the raw video stream, one has to choose a
small number of salient features which have good discriminatory power
for speech recognition and can be extracted automatically, robustly and
with low computational cost.

• Optimal fusion of the audio and visual features. Inference should be based
on the heterogeneous pool of audio and visual features in a way that en-
sures that the combined audiovisual system outperforms its audio-only
counterpart in practically all scenarios. This is definitely non-trivial, given
that the audio and visual streams are only loosely synchronized, and the
relative quality of audio and visual features can vary dramatically during
a typical session.

These issues are discussed in detail in [413] and also in the book’s Chapter 4.

1.7.2 Sports Video Analysis, Indexing and Retrieval

Sport videos, as well as news reports, have motivated lots of research work
due to their large number of viewers and possible applications [274]. The main
challenge is to structure such videos in order to retrieve their structure or the
main events they contain in order to navigate more easily, to index them or
to derive new services from these videos.

Two categories of sport were especially studied: score oriented sports like
tennis or volley-ball, which are organized depending on the score, and time
oriented sports like soccer or rugby which are mainly organized in time periods
with a variable number of events in each period. For the former case, the main
goal is to recover the structure of the game and to evaluate the interest of
each action [131]. For the latter case, the goal is to detect the interesting
events [149].

Another usual problem is to separate the parts of video where the game
is going on from all other instants like commercials, views on the public, and
breaks. Sport video analysis thus combines some processing tools at various
levels. Detecting the playing area is often the first step, but many other indices
can be used according to the concerned sport: detecting players, detecting
lines or areas on the playing area, detecting text, extracting the ball and
tracking it. The sound track can be of great help, especially for event detection:
applauds, pitch variation, keywords are usual cues. All these detectors are to
be assembled in a global system. Stochastic models like HMMs or Bayesian
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networks are a typical choice to fuse all the partial results in a global frame
which allows recovering the structure of the video [257].

1.7.3 TV Structuring

TV structuring considers long and continuous TV streams of several days,
weeks, or even months. In this case, the main goal is to compute an exact
program guide, i.e., to segment the stream in smaller units and to characterize
them by their start and end times and their title. These units are usually
categorized into programs (e.g., weather forecast, news programs, movies)
and non-programs (commercials, trailers, self-promotion of the TV channels,
and sponsoring) TV structuring have mainly applications in the professional
world for people working on TV archives, statistics or monitoring.

Two main methods have been proposed in the literature. A top-down
approach [407] uses the regularity of program grids over years, and learns
their structure from annotated data. The predicted grid is then compared
to the stream to refine the detection of program separation. Such a method
requires huge annotated data and was developed for TV archivers.

On the other hand, a bottom-up approach [359] tries to infer the stream
structure directly from the stream itself. Most programs share no common
information or structure that could be used to detect them. The segmentation
thus starts by detecting the non-programs that have the common property to
be heavily repeated in the stream. This can be achieved using a reference
database or by directly comparing the stream with itself. Once the repetition
are discovered and organized, the programs appear as the remaining segments.
Their annotation can be done by comparing the stream with an Electronic
Program Guide or the EIT tables associated with digital TV.

1.7.4 Multimedia Indexing of Broadcast News

Multimedia indexing of TV broadcast news programs is a very active applica-
tion domain for the technologies of multimedia processing. There is significant
interest in the potential of exploiting the vast amount of information carried
over the TV networks on a daily basis. Exploitation in this context can be
interpreted as the ability to efficiently organize, retrieve and reuse certain
parts of the broadcasted information. This still poses various technological
and scientific challenges and certainly effective multimodal integration of the
involved audio, speech, text and video streams is one of the most important
[87, 500, 375].

To classify broadcast news videos into various categories, in [87] they fuse
low-level visual features such as color-histogram with audio class labels and
high-level visual properties such as the number of faces appearing in the im-
age. Classification is achieved via decision trees and the incorporation of mul-
tiple modalities is shown to play a key role in the achieved performance im-
provement. A similar conclusion is drawn from the evaluation results for the
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multimedia indexing system presented in [375]. Initial story boundaries are
localized using audio, visual and speech information and these are then fused
in a weighted voting scheme to provide the final news story segmentation.
A more elaborate fusion scheme, which unfolds at the semantic level, is pro-
posed in [500]. Essentially, the concepts conveyed by the involved modalities,
video and speech, are constrained to have certain relations between them. The
‘Semantic Pathfinder’, as the corresponding system is termed, exhibits quite
promising properties in broadcast news indexing experiments.

1.7.5 Biometrics, Person Recognition

Automatic person recognition or identification processes have nowadays be-
come indispensable in various transactions which involve human-machine in-
teraction. Commonly, as for example at bank ATMs (Automated Teller Ma-
chines) or in transactions performed online, identification processes require
issuing a certain token such as a card or just its number and then a password
or a PIN (Personal Identification Number). To achieve increased security and
naturalness, the utilization of physiological and behavioral characteristics such
as the person’s fingerprints, iris, voice, face or signature for identification, i.e.,
biometric recognition, is considered to be a much more promising alternative.
However, fingerprint, iris and signature recognition, though quite reliable, in-
volves high-cost sensors in many cases and is regarded as obtrusive. On the
other hand, audio-only (voice) recognizers are cheap and quite user-friendly
but vulnerable to microphone and acoustic environment changes. Similarly,
visual-only (face) recognizers can be quite sensitive to lighting conditions
and appearance changes. Integrated exploitation of two or more biometric
modalities, appears to give the solution that satisfies requirements in each
case [445, 22, 444, 499, 233, 356]. Audiovisual person recognizers for exam-
ple significantly outperform the single-audio or visual recognizers in terms of
reliability while at the same time feature low cost and non-obtrusiveness [22].

1.7.6 Image Retrieval and Photo-Libraries

The management and use of photo libraries has motivated a very large litera-
ture that is impossible to fully reference here. Several technologies have to be
assembled in order to build a complete system. The choice of the components
of the system depends upon the context of use of the system: Is the photo col-
lection to be managed homogeneous or heterogeneous? Is the user a specialist
or not? How the queries will be formulated?

Images cannot be compared or matched to the query directly in most
applications. They have to be described or annotated first and comparison or
matching will be performed on that description or annotation. This can be
done using low level descriptors based on the image signal itself (color, texture
or shape descriptors) [74] or using only part of this signal (interest point,
region descriptors) [308], using higher level processing tools (face detection,
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object recognition) [178], or keywords and text (coming from the image itself,
associated to the image on a same web page or given by a human annotator).
In association with these descriptors, a function must be defined in order to
compare the image description with the query.

Another important question is the management of very large collections.
When the descriptors are numeric, they are often represented as high dimen-
sional vectors. Searching such vectors is a complex problem that is not solved
by the use of database management systems [26].

Another key aspect is the user interface: this interface should allow the user
to formulate its query and to see the results provided by the system. The user
usually queries the system by presenting an image to the system (query by
example) or by using words. Of course, the image descriptors used should be
adapted to the queries; the matching between words and numeric descriptors
remains a difficult challenge. Finally, the way the results are usually presented
is a list of ordered images, although many works have also tried to develop
other presentations.

1.7.7 Automated Meeting Analysis

Automated meeting analysis has lately come into the focus of interest in
many diverse research fields, such as speech and speaker recognition, natural
language processing and computer vision. The goal is to achieve systematic
meeting indexing and structuring that would facilitate meeting information
retrieval and browsing and would significantly favor remote meetings. In this
direction, though speech is the predominant information carrying modality
in this context, it has become clear that a meeting is essentially a sequence
of multimodal human-human interaction processes and should be treated as
such. Exploitation of video can help speaker and role identification in the
meeting while the text of notes kept during the meeting may allow easier
topic recognition and meeting segmentation. Proper consolidation of these
modalities, i.e., video and text, in the analysis framework can lead to signifi-
cant gains [333, 134, 73].

1.8 Conclusions and Future Directions

In this chapter we have surveyed some key ideas and results from research on
cross-modal integration in multimedia analysis. We sampled problems from
three major areas of research in multimedia: multimodal feature extraction,
stochastic models for integrating dynamic multimodal data, and applications
that benefit from cross-modal integration. In addition, we emphasized fusion
of modalities or cues in various ways: explaining its weak- and strong-coupling
versions with a Bayesian formulation, classifying it at various levels of inte-
gration in conjunction with the stochastic classification models, and seeing it
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at work in various applications. As a useful supplement, we also reviewed a
few ideas and results from human perception and its Bayesian formulation.

Some interesting future directions include the following:

Optimal Fusion: What is the best way to fuse multiple cues or modalities
for various tasks and noise environments? Which should be the optimality
criteria?

Fusing numeric and symbolic information: Multimodal approaches are now
common for audio and video, for still images and text (or at least key-
words). Mixing text or transcribed speech with video and audio is still a
challenge, since it brings together numeric information coming from sound
or images with symbolic information.

Investigate how the cross-modal integration algorithms scale and perform on
large multimedia databases.

Cross-modal integration for performance improving in two grand challenges:
(i) Natural access and high-level interaction with multimedia databases,
and (ii) Detecting, recognizing and interpreting objects, events, and hu-
man behavior in multimedia videos by processing combined audio-video-
text data.

Anthropocentric system: The interaction with the system and taking the hu-
man user into account are still open issues. And they are very important,
since in most multimedia applications it is humans who will ultimately
evaluate and use the system. Many aspects of human-computer interfaces
are reviewed in this book’s Chapter 2.

Looking back at this chapter’s journey, we attempted to take a few glimpses
at a huge and fascinating field, that of multimedia understanding through
cross-modal integration. We are still feeling that it is a very complex dynamic
area. The understanding of each of the major sensor modalities, i.e., speech
or vision, has not been “conquered” yet by science and technology, neither
perceptually nor computationally. Imagine now their fusion! Nevertheless we
must be brave and dare to keep researching this remarkable mapping from
the combined audiovisual world to our multimodal percepts and inversely.
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In the past few decades, there has been an explosive growth of multimedia con-
tent available both online and offline, in the personal collections of users. The
majority of online content [522] is authored by individuals that are part-time
content creators and is very diverse in style, often lacking semantic annota-
tion and user quality ratings, e.g., blogs, home videos, personal images. In
addition, multimedia content created by professionals often also lacks seman-
tic and rating information, e.g., podcasts, mp3 music files, TV video clips.
As a result, the user is faced with a tremendous amount of raw multimedia
data that lacks annotation and cannot be possibly consumed within a life-
time, if accessed sequentially. It is not surprising that designing interfaces for
creating, searching, retrieving and -most importantly- consuming multimedia
content is quickly emerging as a top priority in both research and commercial
product development.

Interface design is interdisciplinary by nature and requires both scientific
expertise and creativity. Modality experts, multimedia experts, device experts,
human factors experts, software designers, cognitive psychologists and graphic
artists have to collaborate to create a successful interface. Creative thinking
is needed in order to select the appropriate design among the numerous in-
terface implementations possible for a specific task. An important interface
design choice is the selection and mixing of input and output modalities, i.e.,
channels of communication, between the user and the system. In addition to
traditional human-computer interaction (HCI) modalities, such as keyboard
and mouse for input, and text and graphics for output, numerous “novel”
modalities are available to today’s interface designer, e.g., speech, gestures,
haptics. New devices are becoming increasingly mainstream that can support
multi-touch input, augmented reality displays, force feedback gloves, virtual
keyboards and eye-tracking. The improved device capabilities and available
interaction modalities have increased the freedom of choice for the designer,
but also the complexity and challenges of interface design.

The purpose of this chapter is to familiarize the reader with fundamental
concepts, review the state-of-the-art in multimedia interfaces and identify the
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most promising open research problems. The list of subjects covered is by no
means exhaustive and is meant as an introduction to the more advanced top-
ics covered in contributed research chapters. First, a short overview of human
computer interaction is given, followed by a review of the various interaction
modalities. Input and output modalities covered include graphical user inter-
faces (GUI), speech, gestures, eye-tracking, augmented reality, and haptics.
Most interfaces are multimodal, i.e., employ more than one input or output
interaction modalities. Multimodal interfaces pose interesting challenges re-
lated to the combination or fusion of input modalities, and the combination
or fission of output media streams and are reviewed in Section 2.3. As in-
terfaces to multimedia are becoming increasingly complex, personalization or
adaptation of the interface to the user’s needs and preferences is becoming a
necessity. Adaptive interfaces use information from user profiles, user ratings
or past user interaction patterns to update their behavior and to better serve
the user or group of users, as discussed in Section 2.4. Mobile interfaces are
becoming increasingly important as multimedia data is more and more stored
and consumed from mobile devices. Mobile interfaces have to cope with small
device size, limited processing power, and communication bandwidth, but also
can take advantage of sensor input to improve context awareness, e.g., global
position information, accelerometers, ambient light sensors. These issues are
reviewed in Section 2.5. Example applications of interfaces to multimedia con-
tent are presented in Section 2.6. We conclude with a review of architectures,
tools, and standards available for the design of multimedia interfaces.

2.1 Human Computer Interaction Basics

Human Computer Interaction (HCI) is the study of interaction between users
and computer systems. HCI is a multi-disciplinary subject, combining topics
such as: psychology and cognitive science that studies user’s perceptual, cog-
nitive, and problem solving skills, ergonomics (i.e., the study of the physical
capabilities of the user), design, as well as computer science, and engineering.
HCI is concerned among others with theories of interaction, development of
new interfaces and interaction techniques, e.g. for mobile computing, method-
ologies for designing interfaces, implementation of software toolkits, design of
hardware devices, and techniques for evaluating and comparing interfaces.

As the number, diversity, and complexity of interactive applications in-
creases users need to continuously learn, adapt, and cope with new interfaces.
As stated in [3]: “a long term goal of HCI is to design systems that minimize
the barrier between the human’s cognitive model of what they want to ac-
complish and the computer’s understanding of the user’s task.” The call for
interfaces that will be easier to learn and use is popularized by pioneers such
as Dertouzos [132], and Shneiderman [484].
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2.1.1 Theories of Interaction

The study of human beings in the context of HCI draws mainly from cognitive
psychology that studies the capabilities and limitations of humans, how they
perceive the world around them, how they store or process information and
solve problems. Input-output channels (vision, hearing, touch, movement),
human memory (sensory, short-term/working, and long-term memory), and
processing capabilities (reasoning, problem solving, skill acquisition) should
all be considered when designing computer systems with usability in mind.
For more details refer to [139, 565, 460, 483].

Usability concerns the design of a system with the user’s psychology and
physiology in mind. The end-result should be a system that is easy to learn,
efficient to use and promotes user satisfaction (refer also to Section 2.1.2).
Based on cognitive psychology, ergonomics, and empirical results, descriptive
or predictive models of human computer interaction have been devised to help
designers analyze interaction and build efficient interfaces.

A fundamental empirical result concerns the limited capacity of working
memory. Human memory consists of sensory buffers, short-term or working
memory, and long-term memory. Short-term memory can be accessed rapidly
but it also has a limited capacity. Miller in his classic article “The Magical
Number Seven Plus or Minus Two” [340] found that human working memory
can hold 7±2 chunks of information. This finding has direct implications in the
design of interactive systems; a complex interface may overload the short-term
memory, resulting in poor and inefficient user interaction.

Another well-known result concerns information processing in choice reac-
tion tasks. Reaction time increases logarithmically as the number of alterna-
tives increases (Hick-Hyman law), while movement time to a target (ignoring
initial reaction time) increases logarithmically with distance to target and in-
verse logarithmically with target’s width (Fitts’ law). These rules apply, for
example, to the design of menu hierarchies. Another result concerning mul-
timodal interaction is the “visual dominance” effect [506, 504], which states
that “if percepts of varying modalities are of the same relative intensity, then
information gathered via vision tends to have greater influence on perception,
as compared to other modalities”. The visual dominance effect applies, for
example, to multimodal interface design and audiovisual speech recognition.

An early example of a descriptive/predictive model is the Human Model
Processor [84], which is a simplified model of human processing when interact-
ing with computer systems. The model comprises of three subsystems, namely:
the perceptual system handling sensory stimulus from the outside world, the
motor system that controls actions and the cognitive system that provides the
necessary processing to connect the two [139]. “It is a synthesis of the litera-
ture of cognitive psychology of that time and sketches the framework around
which a cognitive architecture could be implemented” according to [82]. It
is also the basis of contemporary cognitive architectures that are used in
HCI, such as EPIC (Executive Process Interactive Control), and ACT-R/PM
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(Adaptive Control of Thought-Rational/Perceptual Motor) [82]. The Goals,
Operators, Methods and Selection (GOMS) rules model analyzes routine hu-
man computer interactions and is used to make quantitative predictions about
execution time for a particular task. The interested reader may refer to [84]
for more details.

2.1.2 User Interface Design

The design of interactive systems follows the iterative process of the software
life cycle, e.g., an iterative waterfall model, consisting of stages such as re-
quirements specification, architectural design, implementation, and testing.
For interactive systems, however, requirements specification is much harder
to accurately define in advance. In order to achieve a highly usable system,
designers continuously enhance the interface based on the feedback that eval-
uators provide on early prototypes. Various studies have shown that for in-
teractive systems a large part of the development resources (up to 50% of
total) are spent on the user interface. The design of interactive systems is not
only highly demanding in terms of development efforts; it should also support
usability to a high level in order to be successful.

When designing interactive systems, the notion of usability is central to
the design process. ISO 9241 standard (Ergonomics of Human System Interac-
tion) defines usability in terms of three attributes: the “effectiveness, efficiency
and satisfaction with which users achieve specified goals using the system”.
According to this definition, effectiveness is the accuracy and completeness
in achieving the user specified goals using the system. Efficiency relates to
the resources expended in relation to the accuracy and completeness of goals
achieved. Satisfaction is a measure of the user’s comfort and acceptability
towards the system. It is common to use objective metrics such as “task com-
pletion” and “time to completion” to measure the effectiveness and efficiency
of a system, respectively, while satisfaction is measured using subjective met-
rics, e.g., evaluation questionnaires.

To make the development of interactive systems easier and ensure high lev-
els of usability, a designer should create the interface with usability principles
in mind. Since usability principles are essential but rather abstract properties,
designers usually try to follow specific design rules such as user interface (UI)
guidelines and standards. Applying design methodologies that promote usabil-
ity such as “usability engineering” [139], using appropriate software toolkits
and applying efficient designs such as the Model-View-Controller (MVC) ar-
chitectural principle, are essential to successful design of interactive systems.
The rest of this section focuses on usability principles, design rules, and the
MVC paradigm.

Usability Principles

In [139], the authors list attributes that support usability under three different
categories:
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• Learnability: the ease with which new users can begin effective interaction
and achieve best performance.

• Flexibility: the multiplicity of ways the user and the system exchange
information.

• Robustness: the level of support provided to the user in the process of
achieving his goals.

Learnability encompasses attributes such as predictability, i.e., determining
the effect of future actions based on past interaction history, familiarity, i.e.,
the extend to which a user’s knowledge or experience with other interactive
systems can be applied when interacting with a new system, and consistency.
Consistency, i.e., the likeness in behavior arising from similar situations, is
the most important principle in user interface design, because users rely on
interface consistency to carry out specific tasks. For example [175], to support
internal consistency, the same conventions and rules for all aspects of an inter-
face screen (GUI or web pages) should be followed, such as the organization,
presentation, usage and location of screen components.

Related to flexibility is customizability, which refers to modifiability of
the interface by the user (adaptable interfaces) or the system itself (adaptive
interfaces); refer to Section 2.4 for more information on adaptive interfaces.
Related to robustness are observability and transparency that allow the user
to monitor the internal state of the system, and recoverability that allows the
user to easily recover from errors, for example through “redo” and “undo”
actions.

Design Rules: Guidelines and Standards

Design rules restrict the space of design options and prevent the designer from
pursuing options that would likely result in less usable systems [139]. Design
rules are often supported by psychological, cognitive or ergonomic theory,
areas that the designer (typically a software engineer) might not be familiar
with. Following design rules such as guidelines, style guides (e.g., look and
feel for GUIs) and standards throughout the design process, is essential for
the usability of the interactive system. An extensive list of guidelines for a
broad range of topics such as data entry, screen design, graphics/icon design
and proper use of GUI components exist in literature, e.g., [175]. An example
of standards is ISO 9241, a multi-part standard covering many aspects of
interaction such as menu and form-filling dialogues.

The MVC Design Paradigm

A computer system used to access multimedia information, or any HCI sys-
tem for that matter, consists of three major parts: (i) the model or application
semantics, (ii) the view or interface implementation and (iii) the control or
application logic. The term model-view-controller has been extensively used in
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the HCI literature. The separation of these three key components both archi-
tecturally and in the system design process is known as the MVC paradigm
[177]. The MVC paradigm goes beyond the traditional GUI community and
extends also to state-of-the-art multimodal systems, see for example the lat-
est W3C recommendations in [11]. Consider for example a spoken dialogue
system: the term “model” could refer to the modules that perform speech un-
derstanding, i.e., turning speech into concepts, the term “control” could refer
to the application manager that determines the next state of the interaction
and the term “view” could refer to the implementation of the communication
goals via the spoken dialogue interface.

2.1.3 Evaluation

An important step during the development of an interactive system is the eval-
uation of the interface design and implementation [139]. Although in practice
evaluation takes place as the last step of the development process, ideally it
should be integrated as soon as possible in order to provide feedback during
the design life cycle, i.e., evaluation should be integrated in the iterative design
process. Evaluation helps to ensure that the system functionality fulfills the
intended requirements of the various tasks supported. It also allows the system
designer to measure the effectiveness of the system in supporting the tasks,
by measuring user performance. Finally, evaluation helps ensure that certain
usability principles and guidelines have been followed, while common usability
problems have been avoided, resulting in high levels of user satisfaction.

A variety of evaluation methods exist to test the design and the implemen-
tation of an interactive system. Methods that focus on the design can be used
before implementation takes place to identify and eliminate possible interface
related problems early in the design cycle. In heuristic evaluation [366, 368],
usability criteria called heuristics, which are based on usability principles and
guidelines, are used to identify usability problems, debug and effectively alter
the design.

Actual testing of the interfaces with users (user-centered evaluation) in-
cludes a number of methods such as experimental evaluation and query meth-
ods, which use objective performance metrics and user satisfaction subjective
metrics , respectively. With experimental evaluation, performance of different
design options can be computed in order to decide the best alternative, e.g., “is
interface A better than interface B”? Objective metrics such as speed, number
of errors, task completion, are computed for the various system configurations
and are statistically analyzed to determine the best system, for examples refer
to [327, 351]. Alternatively, query methods can be used to elicit direct user
feedback using either interviews or questionnaires. Query methods are simpler
to carry out and analyze, and can provide useful information if well designed.
Note, however, that the elicited information is subjective and may be less
accurate than for objective evaluation methods.
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We conclude with the notion of participatory design where users are not
only involved in the evaluation phase of the system, but are also included as
active participants during the design phase.

2.2 Interaction Modalities

Although GUIs have been the dominant user interface technology for the past
two decades, today’s computing platforms (ranging from mobile devices to
large wall displays) call for new, more natural and efficient ways of inter-
action. Recently, there has been much interest in investigating alternative
input/output interaction modalities that go beyond the traditional keyboard
and mouse input, and text and graphics output. Such modalities may include
speech, eye-tracking and haptics. In addition, various input/output devices
[481, 83], such as glove mounted devices [586] and sensors ranging from ac-
celerometers to GPS (global positioning system), open the door to new inter-
faces and applications.

In this section, various interaction modalities are reviewed such as speech,
gestures, eye-gaze, augmented reality and haptics. First, graphical user in-
terfaces are briefly reviewed. Speech is considered the most natural form of
communication and although there are several limitations in speech recogni-
tion technology much progress in both system architectures and applications
have been achieved in recent years. Visual based modalities, such as gestures
and eye-gaze, are also quickly emerging as important complementary input
modalities, especially given the recent progress in gesture recognition and
eye-tracking technologies. Augmented reality environments offer visualization
capabilities that are very rich and merge the physical with the virtual world.
The review concludes with haptic interfaces that incorporate touch and/or
force-feedback.

2.2.1 Graphical User Interfaces

Following the command-line and text-based interfaces, graphical user inter-
faces emerged and eventually dominated the past two decades. The Xerox
Alto and Star (1981) [39] was one of the first personal workstations having
significant local processing power and memory, networking capabilities, a high
resolution bit-mapped display, a keyboard and a mouse. The user interface
incorporated windows, menus, scrollbars, mouse control, and selection mech-
anisms (WIMP interface - windows, icons, menus and pointers) and views
of abstract structures all presented in a consistent manner. These systems
introduced several innovative concepts found in todays personal computers:
the desktop metaphor, direct manipulation and WYSIWYG (what you see is
what you get), where a user sees and manipulates on screen a representation
of a document that looks identical to the eventual printed one. By offering
a rich set of graphical elements (widgets) upon which users perform actions
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(direct manipulation), GUIs are easier to learn and operate compared to their
command-line counterparts.

GUIs are the dominant interface technology in part due to the high band-
width they provide on the output side. In general, information can be better
organized and presented to the user using graphical output compared to other
modalities. Thus GUIs today are used not only in desktop computers but also
in a variety of other platforms such as intelligent information kiosks, portable
and mobile devices and automated teller machines (ATMs). On the input side,
GUIs use for selection, pointer devices such as mouse on desktop computers
or pen devices on portable systems with touch-screens. Some touch-screens
support touch or multi-touch sensing, allowing input through one or more
fingers which is considered more natural than using a pen. A recent example
is the Apple iPhone1 that supports various gestures, e.g., the user can zoom
in/out by spreading the two fingers closer together or farther apart. For text
input, desktop computers use keyboard, while portable and mobile devices use
methods such as miniaturized physical keyboards, keypads, virtual keyboards,
or various handwriting recognition methods such as graffiti input.

Some recent advances in GUI interfaces include 3D interfaces and Zooming
User Interfaces (ZUI). With the advent of powerful graphic processing power,
3D desktop environments have emerged as a replacement to their 2D coun-
terparts. Other notable efforts include the Croquet project2, a free software
platform and a network operating system for developing and delivering deeply
collaborative multi-user on-line applications. ZUIs extend GUIs by laying out
information elements on a infinite virtual surface instead of windows. The
user can pan across the surface and zoom into areas of interest. Examples of
ZUI applications are mapping applications such as Google earth/maps and
desktop-like environments such as the Sugar ZUI found in One Laptop Per
Child initiative3. ZUIs are especially promising for mobile applications where
screen real estate is limited.

2.2.2 Speech Modality

Speech is the most natural form of communication among humans, but it has
several limitations when used in HCI. Although speech recognition technology
has been studied actively during the past decades and highly sophisticated
recognizers have been constructed, machines are far from matching human
speech recognition performance, especially in adverse recording conditions. A
second hurdle is the complexity of spontaneous human speech communication
because it may contain a lot of ungrammatical elements such as hesitations,
false starts and repairs. Finally, another issue is that people are used to talking
differently to computers than to other people and often alter their speaking
styles when talking to machines.

1 http://www.apple.com/iphone/
2 http://en.wikipedia.org/wiki/Croquet project/
3 http://wiki.laptop.org/go/HIG/
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Spoken Dialogue Component Technology

Spoken Dialogue Systems (SDS) form the majority of speech applications.
The main components of an SDS are: speech recognition, natural language
understanding, dialogue manager, response generation and speech synthesis.
Next a brief review of these technologies is presented. For more details refer
to [98, 421, 217, 579, 541, 335].

Automatic speech recognition (ASR), is the process of transforming a spo-
ken utterance into words. The audio signal is digitized and is transformed
into a series of acoustic vectors Y = y1, y2, . . . , yt (feature extraction) at a

fixed rate [579]. To determine the most probable word sequence Ŵ given the
observed signal Y the following Bayesian formulation is used:

Ŵ = arg max
w

P (W |Y ) = arg max
w

P (W )P (Y |W ) (2.1)

where P (W ) is the a priori probability of observing W , determined by the
language model, and P (Y |W ) is the probability of observing the sequence Y
given a word sequence W , determined by the acoustic model. For acoustic
modeling, each phone (or sequence of phones) is usually modeled by a Hidden
Markov Model (HMM). An HMM can be though as a random generator of
acoustic vectors which consists of a sequence of states connected by probabilis-
tic transitions. The language model provides a mechanism of estimating the
probability of a word wk in a utterance given the preceding words w1 . . . wk−1.
This is usually achieved by using N -grams, which assume that wk depends
only on the preceding N -1 words. Due to data sparseness problem, models
with N equal to two (bigrams) or three (trigrams) are used in practice.

The output of the speech recognizer is analyzed by the Natural Language
Understanding (NLU) component to derive meaning representations that will
be used by the Dialogue Manager (DM). This involves syntactic and semantic
analysis to elicit attribute-value pairs in a symbolic representation. A grammar
that consists of hand crafted rules is sometimes used to produce a complete
parsing of grammatically correct sentences. Techniques such as robust seman-
tic parsing are often used instead, where only the essential items of meaning
are extracted from the text.

The dialogue manager is responsible for the communication flow with the
user. At each turn, the DM determines if sufficient information has been
elicited in order to complete the user’s request, e.g., information seeking. The
DM is often implemented as a finite state machine (FSM) with conditions
residing on the arcs and system actions residing on the nodes of the FSM.
Various techniques are used for resolving errors and ambiguity in user input,
such as implicit or explicit verification/confirmation.

Response generation deals with the construction of the message that will
be sent to the user. Although complex natural language generation methods
can be used, usually simpler methods such as template filling (insertion of
retrieved data into predefined slots in a template) are the norm. The message
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is then send to the text-to-speech synthesis (TTS) component, which first
analyzes the text message (text to phoneme conversion) and then generates
the speech signal (phoneme-to-speech conversion).

Speech as an Input/Output Modality

Speech and GUI interfaces has been extensively studied and compared in the
literature, e.g., [191, 283]. With GUIs everything the user wants to do at
any given time must be presented at the screen, while speech interfaces lack
visual information and require users to memorize all meaningful information.
In addition, the sequential nature of speech loads the short-term memory and
takes up the linguistic channel, which makes speech interfaces unsuitable for
some tasks.

As an output channel, speech is too slow because of its sequential nature,
while GUIs convey information in parallel thus making them suitable for pre-
senting a large amount of information. Speech output may be more appropri-
ate for grabbing attention and offering an alternative feedback mechanism to
the user, rather than conveying a large amount of information [283].

Spoken interaction may be faster when users immediately say what they
want to achieve without going through menu hierarchies. Spoken messages
may also be more expressive and convey richer information compared to GUI
actions, such as the selection of similar objects among a large number of
them. However the freedom and efficiency that speech gives to user, makes
speech harder for the computer to handle. It is also hard for users to know
the limitations of what they can say and how to explore the set of possible
tasks they can perform [283].

Finally, users interacting with speech interfaces do not have the same feel-
ing of control usually offered by GUI interfaces. This is because speech input
may be inconsistent due to recognition errors, i.e., the recognition result may
be different for the same sentence spoken twice. Handling speech errors effi-
ciently is a key issue for successful speech applications. Well designed spoken
dialogue systems or the use of extra modalities in multimodal systems can al-
leviate these problems and allow for efficient and natural speech interaction.

How Speech Recognizer Features Affect Speech Applications

The capabilities and features of a speech recognition system can affect the
design and interaction of a speech application [532]. Vocabulary size and
recognition grammars characterize the interaction possibly better than other
properties. For example, it is possible to construct a speech-only e-mail appli-
cation with a dozen of words, but for building an information retrieval system
at least a few hundred word vocabulary is needed. The possibility to change
or dynamically construct vocabularies and grammars also affects interaction;
e.g., allow the system to be context-sensitive and use user profiles with per-
sonalized recognition grammars.
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Communication style can vary from speaker-dependent, discrete, read
speech to speaker-independent, continuous, spontaneous speech. Speaker-
dependent or adaptive models are suitable for some applications, e.g., dicta-
tion, while speaker-independent models are the norm. Although with current
recognizers there is no need to speak in a discrete manner, it usually helps
if words are pronounced clearly and properly. Most SDSs have to deal with
various degrees of spontaneity in speech input, which is still a challenge for
state-of-the-art speech recognition systems. Finally, capabilities like barge-in
that can be used to interrupt the system output can influence the design and
allow the system to generate longer and more informative responses.

Usage conditions can vary from clean to hostile environments, and low
(public mobile phone usage) to high quality channels (close-talking micro-
phones). Even with state-of-the-art recognizers, performance can dramatically
suffer if usage conditions do not match recognizer training ones. This is usually
compensated by using different acoustic models for each condition.

Speech Applications

Early speech applications included telephone-based interactive voice response
(IVR) systems that used speech output and telephone keys for interaction.
Such applications were designed to replace human operators. In the past
decade, numerous spoken dialogue systems have been designed and deployed
that fully automate simple interactive tasks usually performed over the tele-
phone. Example applications that have dominated the field are information
services (timetables, weather forecasting, e-banking), e-mail applications, tick-
eting and voice portals. Today’s systems are fairly sophisticated and include
state-of-the art recognizers, natural language understanding and response gen-
eration components, but still integration and interface design are the impor-
tant factors for building successful applications [335, 532]. Recently, systems
with more advanced natural language and spoken dialogue capabilities have
been deployed for customer service applications, e.g., for telephony, cable TV4,
software retailers. Such systems automate complex interactions with com-
plicated call-flows, but often run into miscommunication or other problems.
When the system detects such problems a human operator is used as a bail-
out.

Desktop applications such as dictation systems and command and con-
trol applications have also been deployed. Dictation systems5 are popular
for special user groups. Command and control applications usually con-
trol existing graphical applications, without using (or in conjunction with)
mouse/keyboard, which can be very useful for mobile devices such as per-
sonal digital assistants (PDAs). Other spoken dialogue applications include
automotive applications, e.g., navigational aids, gaming, and human-robot
interaction.
4 http://www.speechcycle.com/
5 http://www.nuance.com/naturallyspeaking/
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2.2.3 Visual Based Modalities

Gestures

Gesture based interfaces augment traditional graphical user interfaces, which
are based on direct manipulation, by incorporating 2D and 3D gestures like
manual gestures, head and body movements. Although people may occasion-
ally use gestures as the only means of communication, e.g., to indicate dis-
agreement by a head or hand gesture, in most cases gestures occur along with
other modalities such as speech, as demonstrated in Bolt’s “Put-That-There”
prototype [69]. Apart from deictic gestures, iconic gestures that refer to ob-
jects or actions by describing them visually using familiar representations and
symbolic gestures, e.g., thumbs-up, are also exploited in typical gesture inter-
faces. Gestures may be used to specify attributes, e.g., location, size, category
of actions, or commands, e.g., creation, confirmation, selection.

Devices to capture 2D gestures include touch sensitive displays, digitizing
tablets and light pens. Recognition of 2D gestures is either template-based,
in which case gesture recognizers compare input patterns with prototypical
templates to choose the best matched one, or feature-based where features
extracted from the stream of input coordinates are first processed and then
classified to a gesture class. 3D gestures such as hand and head or body move-
ments can be incorporated either in active or passive mode. In active mode,
dedicated devices are used, such as position trackers and sensing data gloves.
In passive mode, user input is unobtrusively monitored using one or more
cameras and computer vision algorithms are used to segment and classify the
image data. In passive mode, no intrusive devices are necessary but recogni-
tion is much less accurate compared to the active approach. For a review of
gesture-based interfaces refer to [54].

Eye-Tracking

Eye-tracking technology is mainly used as a way of revealing user’s intention
and attention. Thus it can be used as a replacement for the mouse in various
applications such as visual search tasks. Recent technological advancements in
the field have resulted in video based eye-tracking systems (apart from head
mounted based ones) that unobtrusively monitor the user. These systems use
infrared light to illuminate the eyes and an optical sensor such as a CCD
(Charge Coupled Device) device to capture a reflection of the user’s eyes in
order to measure eye motion. Eye movements consist of abrupt fast movements
called saccades followed by short stops called fixations, during which the eye
acquires content. During fixations the eye-tracking system can identify what
a user is looking at, and for how long. The data acquired (series of fixations
and saccades) in the form of a scanpath or a gaze plot can then be used to
analyze user gaze behavior.
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Eye movement can be used in real-time interactive applications as a pointer
to replace the mouse, which is especially useful for disabled people. When us-
ing eye-tracking to control an interface the problem of accidentally activating
objects by looking at them (the “Midas Touch Problem” [230]) has to be ad-
dressed. By avoiding the extra muscular movement effort required in mouse
usage, eye gaze may yield faster and more “natural” interaction. This has been
confirmed in various studies (refer to Chapter 14) in which authors compared
eye gaze with mouse performance in a image target identification task.

Eye-tracking has also found application in web usability studies because
it allows to analyze user behavior between the clicks. Analysis of gaze data
can identify the portions of a web page that attracted user attention. In [367],
it was found that users read web pages in an F-shaped pattern; that is users
focus on the left side of the body of a web page and fixate less on the right
side.

Virtual and Augmented Reality

Head mounted displays (HMD) are devices worn on the head that include
one or two miniaturized displays. HMDs are usually used in virtual or aug-
mented reality environments. According to [34], virtual reality is defined as
“a computer generated, interactive, three-dimensional environment in which
a person is immersed”. With the use of HMDs in virtual environments, the
real world is replaced with a simulated world by accurately sensing how the
user is moving in order to update the rendering on the HMD.

An augmented reality system generates a composite view where computer
generated graphics are augmented in real world scene to provide additional
information (contextual data). This is done with HMDs that support see-
through functionality, by projecting the computer generated graphics through
a partially reflective mirror. Various augmented reality applications that en-
hance the user’s perception and performance are described in [539]. Aug-
mented reality applications have been developed for the medical, e.g., super-
imposing MRI scans for surgeons, entertainment, manufacturing and main-
tenance/repair (access repair manuals and images of the equipment) sectors
among others.

2.2.4 Tactile/Haptic Modalities

As noted in [226], haptics are difficult to synthesize compared to visual or
auditory sensations. Unlike vision where the sensory input is gathered by
specialized organs (eyes), the sensation of force can occur at any part of the
human body and is therefore inseparable from actual physical contact. Accord-
ing to [479], the computer sensing of touch and force is especially important
for building a proper feel of realism in virtual reality environments, adding
an extra sense to previously visual-only solutions. The key idea is that by



62 A. Potamianos, M. Perakakis

exerting force or touch on virtual objects the user will be able to manipu-
late the virtual environment in a “natural” manner. High-end wired gloves
used in virtual reality systems can act as output devices by providing haptic
feedback, e.g., the Rutgers force-feedback tactile glove [324] provides the user
additional information about grasped objects (semantic association). Other
common applications of haptic feedback is found in games (force feedback
joysticks), telerobotics and teleoperators (exploration devices controlled from
a remote location), and medicine (medical training simulation).

2.3 Multimodal Interfaces

Multimodal systems (or multimodal input/multimedia output systems) em-
ploy two or more input modalities and presentation media to interact with
the user. Examples of input modalities include keyboard, pointing devices
(mouse, pen), speech, eye-gaze, gestures, haptics. Examples of presentation
media include text, audio, images, video, animation. Multimodal interfaces
pose two fundamental challenges namely: the combination of multiple input
modalities, known as the fusion problem, and the combination of multiple
presentation media, known as the fission problem. “Optimal” solutions to the
fusion and fission problems can significantly improve performance of multi-
modal systems over their corresponding unimodal constituents, both in terms
of efficiency and user satisfaction. The improvement in performance of a mul-
timodal interface over the “sum” of its unimodal parts is often referred to as
multimodal synergy.

The most common multimodal interface is that of the personal computer
that combines, since the 80’s, keyboard entry with a pointing device (usually
mouse). Although the two input modalities can typically be used only sequen-
tially, the fundamental concepts of fusion, fission and synergy are still very
relevant. Extensive experimentation (as well as cognitive considerations) have
determined the rules and guidelines for the design of graphical user interfaces
(GUIs). These guidelines are related to the fusion and fission problems. For
example, guidelines about when and how to use “text entry” vs “pull down
menus” are related to the keyboard and mouse fusion problem, while recom-
mendations on the combination on text and graphics are related to the fission
problem.

Recent bibliography on multimodal interfaces and systems focuses on novel
interaction modalities, such as speech, gestures, eye-gaze or haptics. New
modalities introduce new opportunities and challenges, e.g., speech interfaces
are more natural but are prone to recognition errors. According to Oviatt
[382], multimodal interfaces should be a paradigm shift away from conven-
tional WIMP interfaces towards more flexible, efficient and powerfully ex-
pressive means of human computer interaction. Investigating new interaction
modalities and concurrent multimodal interaction are active research direc-
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tions in the field. Next the basic concepts of multimodal interaction, fusion,
fission and design are presented.

2.3.1 Multimodal Interaction

In [12], multimodal interaction is categorized into: (i) sequential when at a spe-
cific point in the interaction only one input modality in active, e.g., keyboard
and mouse on a typical desktop interface, (ii) simultaneous or concurrent when
“simultaneous” input is received from multiple modalities but can be treated
separately by the fusion module, e.g., eye-gaze combined with keyboard in-
put, and (iii) composite (or synergistic [369]) when “simultaneous” input from
multiple modalities has to be processed as a compound entity by the fusion
module, e.g., the synchronized speech and gestural input “Put that [gesture
pointing] there [gesture pointing]” from Bolt’s famous demo [69].

Sequential multimodality is by far the most common in human-computer
interaction. With the advent of “novel” modalities, such as eye-gaze and
speech input, it is becoming increasingly common to have simultaneous in-
put from different modalities. Composite multimodal interaction is especially
relevant for a range of applications such as map navigation, course plotting
etc. Although the basic principles of fusion are the same for all three inter-
action modes, the fusion module becomes more complex when allowing for
simultaneous and (more so for) composite input.

According to [12], multimodal interfaces can alternatively be categorized
into supplementary or complementary depending of whether all input and
output tasks can be carried out by every modality or not. Supplementary
interface design is the rule, because it results in a consistent user interface
and improves usability. However, for modalities with limited interaction scope,
e.g., eye-gaze or gestures, or for interaction tasks where one modality is clearly
superior (in terms of efficiency) a complementary approach might be taken.
Finally, symmetric multimodality [554] refers to interface design that has the
same modalities available for both input and output.

2.3.2 Fusion Techniques and Data Integration

Multimodal systems require fusion in each of the three layers of the MVC
paradigm, namely at the data (semantic fusion), at the view (interface fu-
sion) and at the control level. It is customary in the literature for the term
fusion to refer to data fusion or semantic fusion. However, interface fusion or
modality fusion, i.e., the problem of fusing (or blending) the modalities at the
interface level, is an equally important problem for interface design. Fusion
at the control level is usually tackled by designing a multimodal application
manager that manages all modalities. In fact, if the MVC paradigm is followed
the application logic should be modality-independent and little integration is
needed. Next we focus on the problems of data fusion and interface fusion.
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Data fusion is usually categorized as early fusion, or late fusion [151]. The
most common example of early fusion, also known as feature-level fusion, is
the combination of the audio and video feature streams in audiovisual speech
recognition. As discussed in [382], multimodal systems based on late fusion
integrate common meaning representations derived from different modalities
into a combined final interpretation. This requires a common meaning repre-
sentation framework for all available modalities and a well-defined operation
for integrating the partial meanings. Late fusion is more common in multi-
modal systems.

Depending on the multimodal interaction style (sequential, simultaneous
or composite), the internal data representation, and the point of integration
in the semantic chain, different fusion algorithms can be implemented. For
sequential or simultaneous multimodal interaction the semantic information
acquired from each modality can be processed more or less independently
and thus late integration is the rule. The semantics extracted from each input
stream are combined, often using a probabilistic framework, to resolve ambigu-
ous or conflicting input. For composite multimodal interaction, integration
typically occurs earlier in the process because input from various modalities
has to be processed jointly. One popular approach is to design multimodal
semantic grammars. For example, to handle composite speech and pen input
a three-tape finite-state machine was proposed in [238].

According to [532, 369] one can consider fusion earlier or later in the
semantic chain, i.e., at the lexical, syntactic or semantic levels. Lexical fusion is
used when primitives, e.g., words, are mapped to application events. Syntactic
fusion synchronizes different modalities and forms a complete representation.
Semantic fusion represents functional aspects of the interface by defining how
interaction tasks are represented using different modalities. Most advanced
multimodal systems perform syntactic or semantic fusion.

Fusion also depends on the internal data representation. Application data
can be represented in structures such as frames [341], feature structures [249]
or typed feature structures [85]. Frames represent objects and relations as con-
sisting of nested sets of attribute/value pairs, while feature structures go fur-
ther to use shared variables to indicate common substructures. Typed feature
structures are pervasive in natural language processing, and their primary op-
eration is unification, which determines the consistency of two representational
structures and, if consistent, combines them. As the data structures used
become more complex and interdependent, the complexity of the fusion algo-
rithm also increases. Various integration techniques have been devised: frame-
based integration techniques use a strategy of recursively matching and merg-
ing attribute/value data structures (e.g., [478]) while unification-based inte-
gration techniques use logic-based methods for integrating the partial meaning
fragments. Unification-based architectures have been applied to multimodal
system design [239, 237]. Some important unification-based integration tech-
niques include feature-structure and symbolic unification. Feature-structure
unification is considered well suited to multimodal integration, because unifi-
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cation can combine complementary or redundant input from both modes, but
it rules out contradictory input. Symbolic unification when combined with
statistical processing techniques results in hybrid symbolic/statistical archi-
tectures that achieve very robust results.

Recently, with the advent of the semantic web, there has been much inter-
est in using semantic mark-up languages such as DAML+OIL6 to represent
application semantics and perform discourse modeling. Such mark-up lan-
guages can be combined with reasoners that can perform automatic inference
and consistency checking; refer to [554] for an example of a multimodal dia-
logue systems that uses these tools.

Example: QuickSet Fusion Mechanism

As an example of how fusion and semantic unification of two recognition based
modalities is achieved in multimodal systems, the QuickSet multimodal sys-
tem is described next [101, 380]. QuickSet supports both speech and pen
(gesture) input. For pen input each stroke is timestamped and an internal
data structure holding the x,y coordinates is sent to the gesture recognition
component. The recognizer produces a N-best list of possible interpretations,
each associated with a probability. These signal-level interpretations are then
sent to the natural language agent to create a gestural parse N-best list before
being integrated with the parallel speech interpretation. Like gesture process-
ing, the speech recognizer generates an N-best list of interpretations, each
associated with a probability estimate. These signal-level interpretations then
are filtered by the natural language parser, which forms a spoken language
N-best list.

To interpret a whole multimodal command, the time-stamps for speech
and gestural input are compared by the integrator. Based on synchronization
patterns typical of speech and pen input, an integration rule is applied to these
time-stamped signals. The integrator will combine speech and pen signals and
attempt to process their multimodal meaning when either a temporal overlap
between signals exist or a speech signal begins within four seconds of the end
of gesture (sequential signals). If synchronization rules permit joint processing,
semantic unification will take place. The common meaning representation for
speech and pen input, represented as typed feature structures are combined
into a single complete semantic interpretation if compatible. Each item in
the N-best list for both speech and pen input is processed by the unification
parser to produce the feature structure representations which are combined
during multimodal integration to produce full representations. The combined
interpretations that do not unify are left out while the remaining ones are
assigned probability estimates (by combining the unimodal scores) to build
the final multimodal N-best list.

6 http://www.daml.org/
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2.3.3 Multimodal Interface Fusion and Fission

Interface designers can force or imply to the user what modality (or com-
bination of modalities) should be used at each point of the interaction. For
example, in GUI design, “radio buttons” and “combo boxes” imply mouse
(or pen) input, while text fields imply keyboard input. This is also true for
“novel” interaction modalities, e.g., for speech and pen interfaces a “click-to-
talk” interaction mode biases the user towards the pen modality (refer also
to Chapter 13). Designing interfaces that guide the user towards using the
“optimal” input modality mix is the problem of multimodal interface fusion
or fusion at the interface level. Few guidelines exist for selecting the “optimal”
mix of modalities [58, 63]; these guidelines are mostly based on efficiency con-
siderations. Overall, multimodal interface designers should respect all avail-
able input modalities, offer the user the flexibility to select (or override the
default) input modality, and blend modalities having cognitive, efficiency and
user satisfaction considerations in mind. The end goal is to create a truly
multimodal experience, a user interface that maximizes synergies among the
input modalities, by improving efficiency and robustness (error-correction ca-
pabilities).

The problem of multimodal fission is symmetric to that of fusion. Fission
is the process of communicating an internal representation of the system to
the user, via the co-ordinated action of multiple output modalities and output
media. Selecting the appropriate output media, their relative importance for
each communication act, and, most importantly, co-ordinating the presenta-
tion in time and space are some of the important issues in fission [532, 408].
Fission has not attracted as much research interest as fusion, and often ad
hoc solutions are adopted for the fission problem. According to [532], most of
the work in this area has been done by the multimedia research community,
e.g., in the area of automated multimedia systems [27]. Such systems often
focus more on how to render the information for different media and devices,
rather than investigating the “optimal” blending of media or the selection of
appropriate output modalities.

According to [408], fission algorithms should respect the MVC paradigm
and separate communication acts from the interface implementation of these
acts. In addition, there should always be output presentation for internal sys-
tem representations (system states) and vice versa. This later principle is re-
ferred to as “no presentation without representation” [553]. Co-ordination and
synchronization of the various output modalities is also an important prob-
lem. For example, for embodied conversational agents (also known as talking-
heads) [86, 191] system output is presented via both audio and video streams
that have to be synchronized to achieve a realistic effect (lip-syncing). Over-
all, selecting the appropriate mix of media to visualize system information
and communicate with the user is an important open research problem that
requires contributions from researchers, technologists and artists.
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2.3.4 Multimodal Interaction Patterns and Usage

An important issue when implementing multimodal systems is the choice of
interaction style (simultaneous vs. sequential), but also the internal implemen-
tation of input and output events in a synchronous or asynchronous manner.
According to [12], synchronization of input events can occur instantaneously
at the event level, at the field (concept) level or at the form (groups of concept)
level. User behavior can serve as a guide for the selection of interaction style
and synchronization granularity. In [383], the authors found that users adopt
either a simultaneous or a sequential integration pattern during speech and
pen multimodal input (70% simultaneous and 30% sequential). Their findings
also show that user’s dominant integration pattern is predictable early and
remains consistent (89-97%) over time.

As discussed also in [102], multimodal interfaces may have many advan-
tages: error prevention, robust user interface, easy error correction or recov-
ery from errors, increased communication bandwidth, flexibility and alterna-
tive communication methods. Disambiguation of error-prone modalities is the
main motivation for using multiple modalities in many systems. Multimodal
interfaces offer improved robustness to errors due to both user behavior and
system support [380]. During the evaluation of the QuickSet system, it was
found that users tend to use simplified language (briefer utterances, fewer
referring expressions) when interacting multi-modally than when interacting
using a unimodal spoken dialogue interface. It is also reported that users tend
to use the less error-prone modality in a certain context (error avoidance) and
switch modes after system errors, thus facilitating error recovery. As far as
system support is concerned, temporal, semantic and other constraints can be
exploited to rule out candidates. This mutual disambiguation and synergistic
error correction features make multimodal interfaces more robust compared
to unimodal ones.

It should be noted, however, that multiple modalities alone do not bring
these benefits to the interface: currently there is too much hype in multimodal
systems, and the use of multiple modalities may be ineffective or even disad-
vantageous in some cases [381]. Following good system and interface design
principles is essential for building successful multimodal applications.

2.3.5 Multimodal Applications

Numerous multimodal systems have been reported in the literature, a large
number of which are cited in [382]. In [54], multimodal applications are cate-
gorized according to application domain, input/output modalities and fusion
type. ¿From the historical perspective, multimodality offers promising oppor-
tunities, as presented in Bolt’s “Put-That-There” system [69]. Bolt’s system
combined pointing and speech input as a natural way to communicate; gaze
direction tracking was added in a later prototype and used for disambiguation.
Other early systems used speech input along with keyboard and mouse in an
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effort to support better complex visual manipulation. Technology advances in
late 1980s allowed speech to become an alternative to keyboard, leading to
map and tourist information systems such as CUBRICON [360] and Georal
[492]. For a more detailed analysis of multimodal spoken dialogue systems
refer to Chapter 13.

Bimodal systems that combine speech and pen-input, or speech and lip-
movements emerged in 1990s leading to work on integration and synchroniza-
tion issues and the development of new architectures to support them. Speech
and pen-input (2D or 3D gestures) involving hundreds of different interpreta-
tions beyond pointing have advanced rapidly both in research, e.g., Quickset
[101], and commercial systems. Speech and lip movement systems exploit the
detailed classification of human lip movements (visemes) and offer speech
recognition robustness in noisy environments. Lip movement is also used in
coordination with text-to-speech output in animated character systems (talk-
ing heads or speaking agents). Examples of such systems include include the
Rea system [86], KTH’s August, Adapt and Pixie systems [191]. These sys-
tems use audiovisual speech synthesis and anthropomorphic figures to convey
facial expressions and head or body movements. Systems with animated in-
teractive characters have also been constructed [27, 7]. These systems mainly
focus on multimedia presentation techniques and agent technologies. Infor-
mation kiosks (intelligent kiosks), such as SmartKom, use speech and haptics
to provide an interface for users in public places, e.g., museums. Animated
characters may have a strong motivational impact, since they are considered
as being more lively and engaging for many users [347].

As noted in [382], systems combining three or more modalities such as
biometric identification and verification systems [234], which use both physio-
logical (retina, fingerprints, face or facial thermograms) and behavioral (voice,
handwriting) modalities have also been developed. There is also increased in-
terest in passive input modes [382], which refer to naturally occurring user
behaviors that are unobtrusively monitored by a computer, e.g., eye gaze or
facial expressions. Ambient intelligence and blending of active and passive
modes is a promising direction to this end.

2.4 Adaptive Interfaces and User Modeling

As applications are becoming increasingly complex both in terms of func-
tionality and interface design, it is also becoming increasingly hard to build
applications and interfaces that satisfy the needs of all users. For example,
users have different capabilities and preferences when multiple modalities are
made available to them. New applications and interaction modes make user
diversity even more apparent. As a result the need for adaptation, i.e., mod-
ification of the data model, application control and/or application interface
to the specific user characteristics, needs, capabilities and preferences, is be-
coming increasingly apparent. Adaptation has been used for a large variety of
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tasks and applications, often successfully, improving the interaction efficiency
and the user experience. However, despite the promise that adaptive interfaces
hold, designing interfaces that are adaptive and also appear consistent to the
user is a challenging task. In addition, adaptive interfaces are complex and the
consequences of adaptivity on the user experience is sometimes unpredictable.
As a result, system designers often opt for adaptable interfaces, i.e., interfaces
that can be modified/adapted explicitly by the user, or limit the functionality
of the adaptive algorithms.

2.4.1 A High Level View of User Adaptive Systems

The literature on adaptive interfaces is rich and very diverse, as researchers
with different research backgrounds attack the problem. A number of defini-
tions for adaptive systems can be found in the literature [446]. The definition
of a user adaptive system given in [235] follows: “An interactive system that
adapts its behavior to individual users on the basis of processes of user model
acquisition and application that involve some form of learning, inference, or
decision making.” Thus, in a user adaptive system, the system gathers infor-
mation about certain aspects of user interaction (user model acquisition) and
performs learning and/or inference based on that information in order to cre-
ate or update a user model. The system then applies the user model in order
to determine how to adapt its behavior to the user (user model application).
Although much of the adaptation literature focuses on user adaptation, there
are also other aspects of adaptation, e.g., adaptation (or updating) of the
system model or adaptation of the user interface that are equally important
(refer to Section 2.4.3).

User model adaptation algorithms can be categorized based on the ways
in which information about users is acquired. As discussed in [235], informa-
tion about users can be acquired either as explicit input to the system or in a
implicit way. In the first case, the system requests information relevant to the
adaptation that may be difficult to elicit otherwise, e.g., location, user’s age,
topics of interest. In the second case, the system collects relevant naturally
occurring actions or past interaction information and exploits it in the adap-
tation process. Examples include user location information extracted using
GPS-capable mobile devices, or emotion detection, such as anger or atten-
tion. Often a pattern recognition system is used to extract this information
leading to unsupervised adaptation algorithms, e.g., emotion recognition.

Another way to categorize adaptation is based on the learning, inference
and decision making algorithms used, i.e., model acquisition and application.
According to [235], these adaptation algorithms can be categorized into clas-
sification algorithms that employ no general knowledge about users and goals,
and decision theoretic methods, e.g., Bayesian networks. Classification meth-
ods range from simple ones, such as naive Bayes, to more complex ones, such
as advanced probabilistic classifiers, decision trees, and neural networks. For
example, the SwiftFile system [470] classifies incoming email messages to user
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folders and uses text classification methods from the information retrieval
field for archiving. Decision-theoretic systems explicitly define models of in-
teraction, using tools such as Bayesian Belief Networks (BBNs). The models
incorporate variables, for which the system has only an uncertain belief to
begin with, and are connected in a probabilistic network in which the re-
lationships among them can be interpreted as causal effects. As the system
acquires new information, beliefs about network nodes are updated. For exam-
ple, in the Lumiere project [216], the authors use a BBN to decide whether a
user may need assistance based on user’s expertise and task complexity. Other
approaches include the use of stereotypes and plan recognition. A stereotype
is a class of categories that a user may belong to. The system employs rules
to assign users to classes and takes actions based on this classification. Plan
based approaches consider user actions as steps towards achieving a certain
goal; such techniques are employed in dialogue and help/tutoring systems.

User Adaptable Systems

There is a clear distinction between user adaptive and user adaptable systems.
User adaptive systems implicitly adapt their user model to user preferences.
An adaptable system, on the other hand, allows the user to explicitly tailor
the interface to his preferences. A number of systems are adaptable but not
adaptive. The main advantage of adaptable interfaces is that the user is in
control and unwanted side-effects of adaptation can be avoided. The main
drawback is that the user might not know how to effectively tune the system
to his preferences. Next we focus on user adaptive multimedia systems.

2.4.2 A Probabilistic Framework for Adaptive Multimedia
Systems

Multimedia retrieval and recommender systems search for the most rele-
vant multimedia content based on information extracted by one (or more)
queries from the user. Examples include web search engines that retrieve doc-
uments, images, music or video, and recommender systems for music, books
and movies. Adaptive multimedia systems use implicit information extracted
from past user behavior or explicit information provided by the user, such as
user ratings, to improve retrieval performance. In essence, adaptive multime-
dia systems adapt their retrieval or content ranking model using information
that is specific to a user or a group of users.

To better understand the adaptation process it is useful to pose the mul-
timedia content retrieval and recommendation problem in a probabilistic
Bayesian framework as follows:

d̂ = arg max
d

p(d|q̂, u) = arg max
d

p(d, u|q̂) (2.2)

where d is the multimedia content available, d̂ is the retrieved (or recom-
mended) content, u is the user identity, and q̂ is the user query. Note that
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q̂ signifies the internal system representation of the user request r. In many
cases, the mapping from r to q̂ is not deterministic due to using error-prone
interfaces or due to inherent ambiguity in input semantics, e.g., for speech or
natural language input respectively. In such cases, the problem of semantic
interpretation of user input can be also expressed in a Bayesian framework as
follows7

q̂ = arg max
q

p(q|r, u) = arg max
q

p(q, u|r) (2.3)

where q are the possible interpretations of the user input and r is the user
input, e.g., features extracted from the speech signal for a spoken dialogue
interface.

Most multimedia systems ignore the user term u in the probability max-
imization formulas shown above. In essence, for user adaptation systems
the user u term is not dropped and the joint probability is maximized in
Eqs. (2.2), (2.3). User adaptation can be applied either to the problem of
user input interpretation (refer to Eq. (2.3)) or to the problem of multimedia
retrieval (refer to Eq. (2.2)) or to both. Adaptation of the user input model
is very much input modality dependent, for examples refer to the literature
on acoustic model adaptation for speech input [454] or language model adap-
tation for natural language input [50]. We focus next on the problem of user
model adaptation for multimedia content retrieval, i.e., on Eq. (2.2).

Most information retrieval systems ignore the u term and maximize p(d|q̂),
while user adaptive systems attempt to compute the joint distributions p(d, u)
instead. However, the joint distribution of “documents” d and users u is hard
to compute due to the very large number of multimedia documents and the
sparse information available about user preferences or ratings of these doc-
uments. A variety of smoothing techniques have been devised to estimate
the joint probability p(d, u) and overcome the information sparseness on the
(d, u) manifold. These smoothing techniques are rather elaborate because it is
hard to define a distance metric between multimedia documents (or between
users for that matter). As a result smoothing techniques well-known for metric
spaces cannot be easily applied for multimedia content retrieval, e.g., spline
interpolation. Instead document and user similarity is used to classify docu-
ments and users into groups, and the joint probability distribution is typically
computed for groups of documents and users.

There are two main groups of algorithms for user model adaptation of
multimedia systems. One group of algorithms that is employed mostly by
multimedia content retrieval systems uses user “document” ratings to com-
pute the joint distribution p(d, u) by smoothing along the d “dimension”;
relevance feedback belongs in this group of algorithms. The second group of
algorithms, employed mostly by multimedia content recommender systems,

7 Note that one should actually preform a joint probability maximization over
both d and q. However, in practice, most systems solve the query and content
maximization problems separately as shown here.
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uses user “document” ratings to compute the joint distribution by smooth-
ing along the u “dimension”; collaborative filtering belongs in this group of
algorithms. Examples of these algorithms are discussed next. It is important
to keep in mind though that (independent of whether a probabilistic model
is employed by the multimedia system or not): (i) user model adaptation for
multimedia systems involves the estimation of joint functionals of documents
and users, and (ii) due to the sparseness of available user-specific data, a
variety of smoothing techniques are employed to estimate these functionals.

2.4.3 Adaptation Examples in the Context of the MVC Paradigm

An alternative view of adaptivity is through the model-view-controller (MVC)
paradigm. Although adaptivity may cut through all the components of the
MVC model, usually the adaptation algorithm may concern only one of the
three components of the system architecture. As discussed next, adaptivity
may focus on the interface (view) level of the application, the data (model) or
the application control (controller). Most of the discussion up to this point has
been on user model adaptation. Next we present examples of the two major
applications of user adaptation, namely relevance feedback and collaborative
filtering, but also present adaptation examples at the interface and controller
level.

Adaptation at the Interface Level

An example of interface adaptation is the Smart Menus feature introduced
in Windows 2000. The idea is to hide infrequently used menu items, so the
user can faster access one of the most frequent used ones. For hidden menu
items, the user has to fully extend the menu in order to view and select
them. Clearly, there is a trade-off between accessing frequent items faster and
“missing” infrequent menu items. The effect might be frustrating or confusing
to some users; the list of items in each menu changes over time, which is highly
inconsistent. For users that prefer to have the full list of menu items showing
at all times this feature can be disabled.

Since many applications have become too complex and feature rich, help
systems are needed that can guide users to effectively use the application.
Adaptive help systems can potentially detect when the user needs advice,
introduce concepts or features relevant to the given situation or even directly
propose a solution to a given problem. An example of an adaptive help system
is the Office Assistant agent, a derivation of Lumiere research prototype [216].
Lumiere uses decision theoretic methods (Bayesian networks) to decide if help
should be given spontaneously. This is done if the computed likelihood that
a user needs help, exceeds a given threshold. In the Office Assistant, the
decision theoretic methods have been replaced by a relative simple rule-based
mechanism. For an example system that adapts the default interaction mode
of a multimodal spoken dialogue interface refer to Chapter 13.



2 Interfaces to Multimedia Content 73

Adaptation at the Model Level : Collaborative Filtering

Another example of adaptation is collaborative filtering for recommender sys-
tems, where the system tries to predict the user’s interests based on the inter-
ests of groups of users, e.g., for recommendation of books, music, movies. The
main idea is that, users sharing similar interests would give similar ratings for
a given item. Such systems initially require the user to rate a small number of
items in order to classify the user to a class of users with similar interests. Thus
the rating of items is only indirectly used in order to propose similar items to
the user. As discussed above collaborative filtering, in essence, smooths the
joint functional of “documents” and users by grouping users together. Note
that the interaction paradigm of recommender systems differs from that of
information retrieval systems or web browsing discussed next.

Adaptation at the Model Level: Relevance Feedback

Information retrieval is usually an iterative process in which successive query
re-formulations and retrievals alternate until the intended result is accom-
plished. A technique called relevance feedback is often employed in which the
user is asked to rate the relevance of some of the retrieved documents in order
to improve the performance of subsequent queries. Thus relevance feedback is
a query alternation technique, which exploits previous retrieved results to add
or modify the query terms according to user’s rating of documents as rele-
vant or not. Each step in this iterative process reduces the “distance” between
the relevant documents and the reformulated query, until the intended result
is accomplished. However, as the number of documents rated by the user is
relatively small, smoothing techniques have to be employed in the document
space. The relevance feedback algorithm described in the SMART informa-
tion retrieval system [457] has been shown to substantially increase retrieval
effectiveness and is used in a broad range of multimedia retrieval systems.
For examples of relevance feedback algorithms for image information retrieval
refer to Chapters 12 and 10.

Adaptation at the Controller Level: Spoken Dialogue Systems

Adaptation has also been applied to spoken dialogue systems at the dialogue
manager (controller) level to improve on existing strategies and find optimal
application control policies. For example, as noted in [235], the TOOT dia-
logue system [303] can appropriately adapt its dialogue strategies according
to different situations. If the user’s speech is poorly understood the system
can adopt its strategy by acquiring just one piece of information at a time and
by frequently requesting confirmation. Dialogue control for error prevention
and correction is a challenging problem that can be formulated as a Markov
Decision Process (MDP). Techniques such as reinforcement learning can be
applied to find the optimal control policies, as described, for example, in the
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RavenClaw system [68]. In practice, many multimodal systems implement two
application control logics or interfaces, one for novice and one for expert users.
Often the choice or novice or expert is left to the user leading to an adaptable
(rather than an adaptive) system.

2.4.4 Usability Issues

One of the main concerns of adaptive interfaces is related to usability issues
that may arise from adaptation. According to [235]: “some of the typical
properties of user adaptive systems can lead to usability problems that may
outweigh the benefits of adaptation.” Some of these usability problems are
outlined next.

“Predictability” refers to the extent to which a user can predict the effects
of his actions. SmartMenus (refer above) can be thought as an example of
lack of predictability, since the low usage of a menu item (or high usage
of other items) will result in the disappearance of that item. Predictability
is closely associated with “transparency” or visibility. When the adaptation
mechanism is invisible (not allowing the user to understand how it works),
the user will be unable to understand or explain system actions. A way to
achieve “controllability”, a degree of control over system actions, is to allow
the user to confirm any action that may have significant consequences on
the interface. Distractive or irritating system behaviors are against the goal
of “unobtrusiveness”. For example, the distracting ways in which the Office
Assistant agent is used to pop up, violates the principles of unobtrusiveness
and controllability.

Usually model level adaptation is hidden from the user and does not violate
basic usability principles. However, adaptation at the interface and control
level are directly observable by the user and often lead to an inconsistent look
and feel of the application. For an example of how inconsistencies in adaptive
interfaces can increase cognitive load and outweigh the benefits of adaptation
refer to Chapter 13.

2.5 Mobile Interfaces

As mobile devices are becoming increasingly ubiquitous, mobile interface de-
sign is emerging as an important research area of human-computer interaction.
Designing and implementing interfaces on mobile devices, such as PDAs and
mobile phones, is a challenging task because the designer has to operate un-
der various constraints including device size, network bandwidth and power
consumption. In addition, the requirements and usage of mobile devices varies
significantly among users and is situation-dependent. As a result, mobile user
interface design poses unique usability challenges, but also offers new opportu-
nities, e.g., context-aware services. Next the main differences between mobile
and desktop interfaces are outlined [14]:
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• Input modality: an important difference between mobile and desktop
interfaces is that the “physical” keyboard is no longer the dominant input
modality. Although keypads and mini-keyboards are still extensively used
on mobile devices, alternative input modalities such as touch-screens, pen,
speech, virtual keyboards are becoming increasing popular and competitive
in terms of efficiency to physical keyboard input.

• Screen size: Mobile devices typically suffer from limited screen real es-
tate, screen resolution and screen brightness (the later is important for
achieving increased battery life). As a result, the amount of information
that can be displayed using the screen is significantly decreased compared
to the desktop. Alternative modalities, e.g., spoken output, or devices,
e.g., augmented reality goggles, can be used to improve the system output
communication efficiency for mobile interfaces.

• Network bandwidth and device limitations: Although the cost of
network bandwidth for mobile devices is continuously decreasing, band-
width remains an important factor when designing mobile interfaces. Mo-
bile applications should adapt to bandwidth considerations, e.g., changing
signal strength. Mobile interface design is also affected by device limita-
tions such as processing power and energy consumption. Bandwidth and
processing power considerations affect architectural design decisions, e.g.,
if there is not enough computing power for an application to run locally
on the device a client-server architecture might be used.

• Location: Location information is available to an increasing number of
mobile devices. Location information is obtained either from cell tower tri-
angulation or by using a GPS receiver. This information can be a valuable
feature for new services that employ the user’s location as a “information
filter”, in essence adapting the user’s list of preferences to match what is lo-
cally available. An important subset of location-aware mobile applications
are geographical information systems (GIS) applications that typically use
GPS-capable mobile devices.

• Environmental conditions: A mobile device has to face variable and
often extreme environmental conditions, e.g., changing levels and patterns
of background noise. Mobile interfaces should adapt to new conditions
and allow the user to use appropriate input and output modalities for
each condition. For example, speech might be the input modality of choice
for a low-noise, hands-busy task, e.g., driving in the car, while visual input
would be preferable in a “quiet” place, e.g., library.

• Attention and cognitive load: In contrast to the desktop, mobile users
often show reduced attention (especially visual attention), because the
user may be on the move or focusing on other activities. Tactile or audio
feedback can be used to draw the user’s attention without distracting
him from his main task. In general, mobile interfaces should incur limited
cognitive load, especially for applications where the user is multi-tasking,
e.g., car navigation applications.
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These fundamental differences between mobile and desktop interfaces call
for updated design principles for mobile interface design and create new oppor-
tunities for mobile applications. Next we briefly review guidelines for mobile
interface design and present examples of mobile applications.

2.5.1 Mobile Interface Design: Issues and Guidelines

“Mobile Web Best Practices” [10] is a W3C recommendation that specifies
best practices for delivering Web content to mobile devices. It includes a
list of 60 recommendations addressing issues such as page layout and content,
navigation and links, input and overall behavior. For example, images in a web
page should be properly resized and rendered for the mobile device, preferably
on the server side. Alternatively, a text equivalent for every non-text element,
e.g. images, should be provided so that devices with limited capabilities can
display this information.

Information presentation in the limited screen displays of mobile devices is
an important issue. Information should be hierarchically organized in a num-
ber of displays containing short lists of options. Displays should be properly
designed to minimize clutter and navigation effort. When a large number of
items is required in a list, a method to navigate efficiently between the items
should be made available. To facilitate scrolling through large menu items a
click wheel operated in a rotational manner can be used, e.g. iPod devices.

Another important issue is the high degree of diversity among mobile de-
vices, which makes consistency of applications among platforms and devices
a challenging task. For example, PDA devices have a miniaturized desktop-
like interface with pen input and various methods of text input such as vir-
tual/physical keyboard or graffiti recognition. Most mobile phones, on the
other hand, have a list-based interface that has to be operated with just a nu-
meric keypad for navigation among screens. One solution for the deployment
of an application is to use the lower common denominator as far as device
capabilities are concerned; another approach is to exploit capability profiles
for groups of devices.

2.5.2 Example Applications

Despite the limitations in screen size and processing power of mobile devices,
the always-on connectivity and the increased bandwidth available in 3G mo-
bile data networks allows for the deployment of sophisticated network based
applications and services. Examples include mobile browsing and map appli-
cations.

An example of a mobile phone browser is the Opera Mini micro-browser8

that is available for a wide variety of mobile phones. The browser follows a
client-server architecture to overcome the limited device capabilities. Opera

8 http://www.operamini.com/features/
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Mini requests web pages through proxy servers, which retrieve the web page,
process it, compress it, and send it back to the user’s mobile phone. The
architecture and interface design emphasizes simplicity, speed and bandwidth
conservation. Most importantly the Web page information is rendered on the
server to match phone capabilities with very good results.

An example of a location-aware service is “Google Maps for mobile”, a
web mapping service that can be used both by GPS-enabled devices and by
mobile phones (using the “My Location” feature, which exploits cell tower
triangulation for approximate positioning). The service offers street maps,
route planning (driving directions) and allows the user to find a variety of
nearby businesses, such as theaters, restaurants and hotels. Although “Google
Maps” uses a keypad and pen interface, a variety of research prototypes exist
for obtaining location-aware information using a multimodal spoken dialogue
interface [101].

The constraints and new opportunities that arise in mobile computing
have lead to significant innovation in the research area of mobile interfaces.
For a more detailed review of mobile interfaces refer to Chapter 15 of this
book.

2.6 Multimedia Applications

The domain of multimedia applications is very large. One way to categorize
such applications is based on their functionality, namely: multimedia search
and retrieval, multimedia recommendation systems, multimedia content vi-
sualization and consumption, and multimedia content authoring. Example
applications for each of these categories include web-based image search and
retrieval, movie recommendation systems, music players with music maps and
movie editing tools. Another way to categorize multimedia applications is
based on the media that are being accessed or processed, e.g., interfaces to
music, images, video, text, lectures, meetings. Applications are also catego-
rized based on the device or mode of access, e.g., mobile applications, desktop
applications or telephony applications. Finally, interfaces to multimedia can
be categorized based on the main interaction modalities, e.g., spoken dialogue
applications or multimodal applications. Our goal in this section is to provide
example applications for each of these categories that focus on the human-
computer interaction aspects of multimedia applications. The multimedia pro-
cessing aspects of some of these applications have already been presented in
Chapter 1.

2.6.1 Multimedia Search and Retrieval Applications

Multimedia content is hard to access unless it is organized in a way that
allows for efficient browsing, search and retrieval [488, 319]. An early approach
was to annotate images and videos with textual descriptions and use this
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information for retrieval. This approach has the disadvantage that semantic
annotation of multimedia data is a complex, labor intensive task. Since the
early 1990s, content-based approaches have been developed for describing and
retrieving image and video using features such color, texture, shape, object
and camera movements. The MPEG7 standard defines descriptors that allow
users or agents to identify, filter and browse audiovisual content [488, 319].

Various studies have described and compared the most notable content
based image retrieval systems, such as [450]. The first notable example is the
QBIC (query by image content) system [165] that supports queries based on
example images, user-constructed sketches and drawings, and selected color
and texture patterns. Virage [37] supports visual queries based on color, com-
position (color layout), texture, and structure (object boundary information)
as well as weighted combinations of the above. Other systems include Visu-
alSeek [496] that also allows queries based on both visual features and their
spatial relationships and MARS [451], which exploits relevance feedback to
enhance retrieval performance. For a review of image retrieval systems refer
to Chapter 12.

As noted in [357], users expect content-based retrieval systems to perform
analysis at the same level of complexity and semantics that humans do. For
example, 95% of queries for the VisualSeek [496] system were semantic and
key-word based. In practice, however, most multimedia retrieval systems use
low level features to perform search [97]. As a result, a “good” match in terms
of a feature metric may yield poor results as far as the user is concerned. As
defined in [495], the semantic gap is the lack of coincidence between infor-
mation that one can extract from the visual data and the interpretation that
the same data have for a user on a given situation. Although some promising
efforts have emerged such as Semantic Visual Templates [97], and the prob-
abilistic framework of multijects and multinets [357], semantic multimedia
understanding is indeed the final frontier in multimedia retrieval.

2.6.2 Multimedia Recommender Systems

Recommender systems propose to the user multimedia content that is likely
to be of interest. Such systems allow the user to explore “new” content, as
opposed to multimedia search systems where the user mostly exploits known
content. Recommender systems are based on multimedia content similarity
(content-based approach) and/or user preferences similarity (collaborative fil-
tering or social networking).

Examples of recommender systems for music are the popular Last.fm9 and
Pandora10 services, where continuous streams of music, similar to a radio sta-
tion, can be created based on the systems recommendations. StumbleUpon11

9 http://www.last.fm/
10 http://www.pandora.com/
11 http://www.stumbleupon.com/
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is a popular web discovery service that also specializes in recommending web-
pages containing multimedia content. These services use a simple one-click
interface to rate “discovered” content and to improve on the user model.
The user experience of continuously exploring (and rating) new content is
very different from the traditional sequential browsing experience or the well-
structured web search user experience. Exploratory interfaces to multimedia
have been successful due to the large number of available content and the “se-
mantic” gap between multimedia retrieval and user expectations. The trend
is to create interfaces to multimedia that contain elements from both rec-
ommender and retrieval systems, effectively creating interfaces that balance
exploration and exploitation of multimedia data.

2.6.3 Multimedia Content Consumption Applications

Traditionally content consumption refers to viewers and players of multime-
dia content. In addition to the basic ability of displaying images and playing
back audio and video, state-of-the-art applications also contain graphical user
interfaces for creating slide-shows, play-lists as well as elaborate visualization
tools. Recently content consumption applications also contain rudimentary
multimedia search and retrieval capabilities. Multimedia consumption on mo-
bile devices is a important application area, especially with the advent of
mobile multimedia players and multimedia phones, e.g., the iPhone.

An important area of applications is the visualization of multimedia data,
often using multimedia maps. Maps are created by computing the pairwise
similarity between multimedia content or groups of multimedia content, e.g.,
between two songs or two artists, and then mapping this similarity to a 2D
Euclidean space. Multimedia maps can be used as a one-click search interface
or for the automatic creation of play-lists, e.g., refer to Chapter 11. Auto-
matic play-list creation is very important for music and image content where
typically there are thousands of options available to the user and manual
creation of play-lists is a time-consuming task. Multimedia visualization in-
terfaces often serve the function of a personalized recommender system that
uses a content-based approach to organize data.

Another important group of applications are multimedia summarization
and multimedia skimming interfaces. Linear consumption of multimedia is
quickly becoming inefficient, e.g., consider the amount of audio podcasts that
you would like to skim through daily. The ability to summarize multime-
dia content, keeping the most salient information, while retaining production
quality is an important emerging application area, e.g., refer to Chapter 8
on movie summarization. Interfaces to multimedia skimming that go beyond
the traditional “VCR-fast forward” interface can be used in conjunction with
multimedia summarization technology to significantly enhance the content
consumption experience.

The future of multimedia content consumption holds an immersive mul-
timedia experience. Content consumption applications will be able to model
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the preferences and track the behavior of the user, e.g., eye-gaze detection
as described in Chapter 14. Content will then be automatically selected, ren-
dered and played based on the wishes and the mood of the user, creating a
new multimedia consumption user experience.

2.6.4 Multimedia Authoring Applications

As the Internet is quickly becoming the de facto multimedia content distri-
bution channel, amateur content creators have created a new need for simple,
easy-to-use tools for multimedia content authoring. Today there are numerous
such tools available both online and offline for creating and editing web pages,
text, paintings, images, movies, audio, and music. Such programs use a graph-
ical user interface and employ multimedia signal processing technologies and
templates to semi-automate the content creation process and ease the heavy
work-load that multimedia authoring entails.

Two important new author creation paradigms have emerged, mostly on
the Internet, namely collaborative authoring and authoring by consensus. Real-
time collaborative authoring is an emerging technology that allows users to
create and simultaneously edit multimedia content online, e.g., Google docs12

allows for online editing of documents containing text and graphics in near
real-time. Authoring by consensus refers to the process of allowing a (poten-
tially large) group of non-experts to edit multimedia content until a consen-
sus is reached, e.g., the Wikipedia paradigm13, while in democratic content
creation the most popular multimedia content is selected by the user group
using voting or feedback aggregation, e.g., in massive online computer games.
Other important directions in multimedia authoring include interactive me-
dia, embedding semantics into multimedia and the emerging area of adaptive
multimedia, i.e., multimedia content that is automatically rendered to user
preferences.

2.7 Architectures

Most multimedia and multimodal systems are very complex in terms of ar-
chitecture and software design, and usually mix and exploit many software
architectural styles and models like the pipe-and-filter, finite-state machine,
event-based model, client-server, object-oriented and agent-based ones. For
example, spoken dialogue systems are usually structured either in a pipeline
fashion or use the client-server model with a central component, which fa-
cilitates the interaction between other components, like the Galaxy-II archi-
tecture [472, 473]. Multimodal systems are based on even more sophisticated
architectures like [281] or agent architectures. Some of these architectures fol-
low the MVC paradigm and separate the model from the control logic and

12 http://docs.google.com/
13 http://en.wikipedia.org/
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the interface specification, although, in spoken dialogue systems, it is not un-
common to combine the control logic and speech interface specification into
a single module, the dialogue manager. Next we briefly examine the differ-
ences in requirements between GUI and multimodal architectures, and review
some typical architectures employed in multimodal input/multimedia output
systems.

GUIs vs Multimodal architectures

As noted in [382], the design of multimodal/multimedia systems should ad-
dress several challenging architectural issues not found in the design of GUIs.
First, unlike GUI systems that assume that there is a single event stream that
controls the underlying event loop, multimodal interfaces process continuous
and simultaneous inputs and outputs from parallel streams. Also GUIs assume
that the basic interface actions, such as selection of an item, are atomic and
unambiguous events, while multimodal systems process input modes using
recognition-based technologies that are designed to handle uncertainty and
entail probabilistic methods of processing. Finally, multimodal interfaces that
process two or more recognition-based input streams require time-stamping
of input, and the development of temporal constraints on mode fusion opera-
tions.

Multimodal Architectures and Frameworks

One popular architecture among the members of the multimodal research
community is the multi-agent architecture, exemplified by the Open Agent
Architecture [325] and Adaptive Agent Architecture [281]. As described in
[532, 382], multi-agent architectures provide essential infrastructure for coor-
dinating the many complex modules needed to implement multimodal system
processing, and permit doing so in a distributed manner. According to the au-
thors, in a multi-agent architecture, the many components needed to support
the multimodal system, e.g., speech recognition, gesture recognition, natu-
ral language processing, multimodal integration, may be written in different
programming languages, on different machines, and with different operating
systems. Agent communication languages are being developed that can han-
dle asynchronous delivery, triggered responses, multi-casting and other con-
cepts from distributed systems. Using a multi-agent architecture, for exam-
ple, speech and gestures can arrive in parallel or asynchronously via individual
modality agents, with the results recognized and passed to a facilitator. These
results, typically an N-best list of conjectured lexical items and related time-
stamp information are then routed to appropriate agents for further language
processing. Next, sets of meaning fragments arrive at the multimodal integra-
tor which decides whether and how long to wait for recognition results from
other modalities, based on the system’s temporal thresholds. The meaning
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fragments are fused into a semantically-and temporally-compatible whole in-
terpretation before passing the results back to the facilitator. At this point,
the system’s final multimodal interpretation is confirmed by the interface,
delivered as multimedia feedback to the user, and executed by any relevant
applications.

Despite the availability of high-accuracy speech recognizers and other ma-
ture multimodal technologies such as gaze trackers, touch screens, and gesture
trackers, few applications take advantage of these technologies. One reason
for this is that the cost of implementing a multimodal interface is prohibitive.
The system designer must usually start from scratch, implementing access to
external sensors, developing ambiguity resolution algorithms, etc. However,
when properly implemented, a large part of the code in a multimodal system
can be reused. This aspect has been identified and many multimodal appli-
cation frameworks have recently appeared such as VTT’s Jaspis and Jaspis2
frameworks [532, 533], Rutgers CAIP Center framework [166] and the embassi
system [150].

2.8 Standards and Tools

The majority of multimedia standards refer to multimedia content encoding
and description. Most notable examples of such standards are the MPEG-
1,2,3 standards for video, audio and multimedia encoding, the MPEG-1 Audio
Layer 3 (referred to as mp3) standard for audio encoding, the JPEG standard
for image encoding, the G.xxx series of ITU standards for audio/speech, and
the H.xxx series of ITU standards14 for image/video. Recently there has been
a flurry of activity on standardization of multimedia content descriptors; these
standards go beyond the “physical layer” and attempt to describe the seman-
tics of multimedia. This activity grew out of the SGML15 and HTML16 ISO
web standards, and is championed by the semantic web research community
and W3C17 (World Wide Web Consortium), a standardization body for web
activities. One outcome of these activities is RDF18, a language based on
XML that is able to express “metadata” in a standard form, and could al-
low machines to communicate not only at the physical level (lexical or signal
sample level), but also at a higher “semantic” level. SMIL19 (Synchronized
Multimedia Integration Language) is an XML language also recommended by
W3C for describing multimedia presentations. Finally the MPEG7 standard
is destined to provide a multimedia content description interface (mostly for)

14 http://www.itu.int/ITU-T/
15 http://www.w3.org/MarkUp/SGML/
16 http://www.w3.org/MarkUp/
17 http://www.w3.org/
18 http://www.w3.org/RDF/
19 http://www.w3.org/TR/SMIL/
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image/video/audio content [488, 5]. For a more detailed review of multime-
dia content description standards refer to Chapter 1 and [5]. Next we focus
on multimedia interaction standards most notably on graphical user interface
recommendations, spoken dialogue and multimodal interaction standards.

Graphical User Interfaces

In contrast to web development for which widely used standards exist, e.g.,
HTML, GUI development is characterized by the lack of a single dominant
standard. Instead, a multitude of GUI toolkits, along with their corresponding
style guides, exist for various platforms, e.g., mobile or desktop, and different
desktop operating systems, e.g., MacOS, Windows, Linux. Nevertheless all
these GUI toolkits are very similar in appearance and functionality. This
makes the application of common design rules and guidelines easier to follow,
in practice, regardless of the toolkit choice. Such guidelines, style guides, e.g.,
the Apple Human Interface Guidelines for desktop [1] or iPhone [2], standards,
e.g., ISO 9241, and toolkits promote usability principles such as consistency
and user satisfaction. However, following these guidelines is not always easy
for non-HCI expert developers as reported in [175].

The appearance of cross-platform GUI toolkits and development tools that
ease GUI development, e.g. automatic creation of GUI related code, helps de-
velopers and designers focus on application functionality and design principles,
rather than on low-level details. The diversity of GUI toolkits is not expected
to vanish any time soon, especially as new devices and platforms keep emerg-
ing. This is especially true in the mobile/embedded space where new devices
and interaction paradigms appear, posing new challenges and creating new
opportunities for system designers.

Spoken Dialogue Interfaces

The VoiceXML Forum20 an organization founded by Motorola, IBM, AT&T,
and Lucent to promote voice-based development, introduced the VoiceXML
language based on the legacy of languages already promoted by these four
companies. In March 2000, version 1.0 was released and in October 2001,
the first working draft of the latest VoiceXML 2.0 was published as a W3C
recommendation21. The VoiceXML standard has simplified the development
of voice-based applications much like HTML did for the development of web-
based applications. The main features of VoiceXML are the familiar HTML-
like syntax, the logic that an application consists of a series of pages (similar
to familiar GUI interface logic) and the ability to provide web content using
only voice as an input modality, making web information accessible from fixed
or mobile phones.

20 http://www.voicexml.org/
21 http://www.w3.org/TR/voicexml20/
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VoiceXML browsers consist of an interpreter and a set of VoiceXML doc-
uments. VoiceXML supports dialogues that include menus and forms, sub-
dialogues and embedded grammars. The voice browser renders the VoiceXML
documents as a sequence of the two-way interaction between the system and
the end user. Core VoiceXML interpreter and software components are used
for this purpose such as automatic speech recognition and text-to-speech. Many
companies build spoken dialogue development toolkits that include building
blocks such as sub-dialogues and grammars. Such toolkits often introduce cus-
tom tags of objects in addition to the VoiceXML standard ones. Using such
complete solutions a system designer can implement and test VoiceXML-based
applications and voice portals, e.g., the Nuance Voice Platform22 provides an
easy-to-use, complete development environment for voice applications. Other
commercial offerings include servers for deploying these applications [4], voice
browsers, and VoiceXML editors and grammar development tools. There are
also open source VoiceXML tools, such as Carnegie Mellon’s OpenVXI inter-
preter23.

Multimodal Interaction Standards

The number and diversity of devices that can access the Internet has grown
tremendously in the past years. The capabilities and modes of access of these
devices varies; consider for example mobile phones, smart phones, personal
digital assistants, multimedia players, kiosks, automotive interfaces. The W3C
Device Independence Working Group main focus is on standards that make the
characteristics of the device available to the network and, most importantly,
on standards that assist authors in creating sites and applications that can
be supported on multiple devices. The group coordinates its work with the
Web Accessibility Initiative24 and MultiModal Interaction Working Group25

activities as discussed next.
The main goal of the Multimodal Interaction Activity is to extend the

Web user interface to multiple modes of interaction (aural, visual and tac-
tile), offering users the means to provide input using their voice or their hands
via a key pad, keyboard, mouse, or stylus. For output, users will be able to
listen to spoken prompts and audio, and to view information on graphical
displays. By allowing multiple modes of interaction on a variety of devices
the activity aims for accessibility to all. The Working Group was launched
in 2002 following a joint workshop between the W3C and the WAP Forum
with contributions from SALT26 (Speech Application Language Tags ) and
XHTML+Voice27 (X+V). Major contributions of this activity include: the

22 http://www.nuance.com/voiceplatform/
23 http://www.speech.cs.cmu.edu/openvxi/
24 http://www.w3.org/WAI/
25 http://www.w3.org/2006/12/mmi-charter.html
26 http://www.saltforum.org/
27 http://www.voicexml.org/specs/multimodal/x+v/12/
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Multimodal Interaction Use Cases, the Multimodal Interaction Use Require-
ments and the W3C Multimodal Interaction Framework [14]. Work has also
been done on: (i) dynamic adaptation to device configurations, user prefer-
ences and environmental conditions (System and Environment Framework)
[15], (ii) integration of composite multimodal input and modality component
interfaces such as interfaces for ink and keystrokes, and (iii) context sensitive
binding of gestures to semantics (note that speech and DTMF modalities are
developed by the Voice Browser Working Group28).

The group’s work has also stimulated the creation of mark-up languages
such as EMMA, and InkML. The Extensible MultiModal Annotation Markup
Language (EMMA) [8], is a markup language intended to represent seman-
tic interpretations of user input (speech, keystrokes, pen input etc.) together
with annotations such as confidence scores, timestamps, input medium. The
interpretation of the user’s input is expected to be generated by signal inter-
pretation processes, such as speech and ink recognition, semantic interpreters,
and other types of processors. InkML [9], defines an XML data exchange for-
mat for ink entered with an electronic pen or stylus as part of a multimodal
system, which will enable the capture and server-side processing of handwrit-
ing, gestures, drawings and other specific notations.

Other related efforts for multimodal interaction standardization are the
SALT and XHTML + Voice efforts. SALT, is a lightweight set of extensions
to existing markup languages, allowing developers to embed speech enhance-
ments in existing HTML, XHTML and XML pages. XHTML+Voice, by IBM,
Motorola and Opera Software, is another effort exploiting the combined use
of XHTML and parts of VoiceXML through XML events to support for visual
and speech interaction.

2.9 Summary

In this review, we have presented the fundamental concepts behind inter-
faces to multimedia content and multimedia applications. Our brief intro-
duction to HCI focused on the definition and principles of usability, namely
learnability, flexibility and robustness. We also introduced the MVC (model-
view-controller) paradigm that serves today as the basis for the architectural
design of many unimodal and multimodal systems. We concluded our HCI
review with the definition of the concepts of iterative design, objective and
subjective evaluation and participatory design.

We then moved on to reviewing some of the input and output modali-
ties that are involved in modern interface design, namely GUI, speech, ges-
tures, eye-tracking, augmented reality and haptics. Much of our review fo-
cused on speech interfaces, both because of the idiosyncratic nature of the
speech modality and the breadth of technologies involved in speech recogni-
tion and synthesis. Then the discussion turned to the interesting problem of

28 http://www.w3.org/voice/
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how to combine different modalities to built a multimodal input/multimedia
output interface. The review focused on the problems of multimodal fusion
and multimedia fission, as well as the potential rewards and pitfalls of multi-
modal interface design. The main advantages of multimodality are increased
interface robustness and usability, especially in adverse conditions. Be warned
however that the inclusion of additional modalities does not always lead to
better applications.

Adaptive interfaces are especially relevant for multimedia, because the
preferences and mode of access varies among users and even (over time) for the
same user. In our review of adaptive multimedia systems, we followed a more
formal approach that unifies much of the relevant algorithms under a single
concept, the user-content preferences matrix. We showed how this matrix is
both sparse and does not live in a Euclidean space, and how algorithms like
collaborative filtering and relevance feedback attempt to “smooth” this sparse
matrix. In our discussion, we outlined some of the pitfalls of adaptivity and
explained why application designers often opt for user adaptable rather than
adaptive systems.

An especially important category of multimedia interfaces were reviewed
next, namely mobile interfaces and applications. Our exposition here was brief
given that more details are given in Chapter 15. However, the basic differences
between desktop and mobile interfaces were outlined, namely the available
input and output modalities, screen size, network bandwidth, device capabil-
ities, context, and environmental conditions. Examples applications were also
given. The main categories of multimedia applications were briefly reviewed
next, namely multimedia search and retrieval, recommender systems, content
consumption and content authoring applications.

We concluded with a review of architectures, tools and standards. Archi-
tectures that extend the MVC paradigm and agent-based architectures were
reviewed specifically for multimodal systems. Our review of standards focused
on multimedia interaction rather than multimedia content description. How-
ever, as content description standards emerge that include semantic and in-
teraction information, e.g., RDF, MPEG7, the boundaries between the two
categories are becoming blurry. The review of interaction standards included
VoiceXML for speech interaction; EMMA, InkML and SALT for multimodal
interaction.

These are exciting times for multimedia interfaces and applications design-
ers. The explosion of multimedia content available online, improved device
capabilities, novel multimedia signal processing algorithms, new interaction
modalities and interaction paradigms have created possibilities that we are
only now beginning to understand. Technologies and interfaces that were up
to now locked up in the research lab are slowly becoming part of our everyday
life, e.g., multi-touch interfaces, zoomable interfaces, multimedia semantic de-
scriptors, multimedia recognition and multimedia summarization. To realize
the great promise that interfaces to multimedia content hold, the collabora-
tion of many people is needed. Researchers and technologists involved in the
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physical (signal processing), semantic, application and interface layers of mul-
timedia systems have to create synergies that will radically change the way
that we create and consume multimedia.
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Video analysis, which aims at extracting high-level information such as a
structure or a genre from raw video data, is by nature multimodal as both the
visual and audio modalities are used to carry the semantic meaning of a video.
In addition, in some types of videos, the textual modality is also used with
information displayed on screen – such as scores, statistics or player’s names
in sports videos – or automatic transcription of the soundtrack. Therefore,
semantic analysis of videos requires multimodal analysis and, in particular,
multimodal models to integrate all the sources of information available. Due
to the non-deterministic nature of images and sounds, stochastic models are
first choice candidates for the analysis of videos. In particular, multimodal ex-
tensions of hidden Markov models (HMM) have been extensively used for the
purpose of video analysis and other multimodal applications such as audio-
visual speech recognition (see e.g., Chapter 4). However, as we will illustrate
in this chapter, the HMM approach suffers some strong limitations, in partic-
ular due to the integration scheme which requires a perfect synchronization
between the various streams of information.

This chapter presents video indexing with segment models (SM), aiming
at a more efficient and versatile multimodal fusion. In segment models, syn-
chrony constraints between modalities can be relaxed to the scene boundaries,
thus enabling to process each modality with their native sampling rates and
models within each scene. We illustrate the many possibilities of audiovisual
integration that SM can offer in the context of tennis video structuring. We
first briefly review stochastic models that have been used for multimodal video
analysis. We then present the task of tennis video structuring and the cues
and related features that we want to incorporate in a stochastic model. We
show how HMM can be used for multimodal integration before generalizing
the HMM approach based on the segment model framework. We finally show
that the hierarchical structure of a tennis video can be taken into considera-
tion in both frameworks and present a new decoding algorithm to take into
account textual score information displayed on screen.

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 c© Springer Science+Business Media, LLC 20083,
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3.1 An overview of multimodal fusion models

Hidden Markov models are widely used to exploit the temporal aspect of
video data. Indeed, depending on the video genre and the production rules,
video events occur with a temporal order that will finally reveal the semantics.
Hidden Markov models provide a powerful statistical framework for handling
sequential data and they are thus a natural candidate for learning temporal
dependencies in video. Many extensions of HMM have been studied to deal
with the integration of multimodal data.

A straightforward extension of HMM for multimodal integration is based
on early fusion to generate multimodal features which are then modeled using
HMM. This simple fusion scheme has been widely used for video segmenta-
tion [71, 38] and TV broadcasts classification (see, e.g., [138, 148, 225]) on
top of visual and audio features. Early fusion has also been widely studied in
the field of audiovisual speech recognition [414]. The underlying assumption
however of the early fusion scheme is that all the modalities are synchronous
– in particular, the features from the different modalities in order to combine
them into multimodal features – and exhibit the same model topology, which
does not generally hold. A number of HMM variants have been proposed to
address this problem and relax the synchrony constraints, such as multistream
HMM, asynchronous HMM and layered HMM.

The idea of multistream HMM [77] is to model each modality – or stream –
independently with HMM, forcing synchrony between the HMM at some pre-
defined points. In synchronous multistream HMM, the states themselves are
the synchronization points. In practice, a single HMM is used and this model
does not differ from the early fusion scheme presented above, except for the
explicit assumption of conditional independence of the observation streams
and the possibility of introducing stream weights as discussed in Section 4.1.
In asynchronous multistream HMM, the synchronization points are extended
beyond the states, like the end of phonemes in audiovisual speech recogni-
tion, in order to allow different topologies for each modality. Between the
synchronization points, the streams are considered independent and modeled
by unimodal HMM whose likelihoods are recombined at the synchronization
points. For practical reasons however, the model is often implemented as a
product HMM, i.e.,, a synchronous multistream model where each state rep-
resents a product of state in the monomodal HMMs, where all the HMMs
share the same topology.

Asynchronous HMM [53] is a special HMM architecture designed to jointly
model a pair of lightly asynchronous streams containing different number of
samples. The idea is to enable stretching of the shortest stream in order to
meet a better match with the longer one. Viterbi decoding aims at finding
out the best alignment between the two streams in addition to the best state
sequence. This model has been used with success for audiovisual speech recog-
nition and recognition of group action meetings [333].
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Sharing with multistream HMM the idea of synchronization points and
the use of independent models, layered architectures of HMM can be built. A
video is segmented according to some fixed synchronization points, for exam-
ple at the end of every second or at the shot boundaries. The respective video
portion of each modality is then processed independently with some HMM.
The outcomes from the HMM of the first layer are concatenated and given
as input to a second layer HMM. Layered HMM were first used in a task
of office activity inference [376] and has been used for recognition of group
actions [588] and structure analysis of soccer videos [571].

Segment models, discussed in this chapter, unify multistream and layered
HMM into a novel framework for multimodal integration and allow overcoming
some of the problems related to the HMM variants presented here. Synchro-
nization points between the modalities are part of the optimization problem
as in asynchronous HMM, rather than fixed as in multistream HMM, thus en-
abling the use of different topologies for the different modalities. Secondly, be-
tween two synchronization boundaries, observations from the different modal-
ities are assigned to a common “multimodal” hidden state, corresponding to
a higher semantic level as in layered HMM. Finally, an explicit state duration
model is added in SMs.

3.2 The framework of tennis video structuring

Before describing SMs for video analysis, we first briefly describe the task of
tennis video structuring that we will use to experimentally validate SMs. In
this section, we formally define the task of tennis video structuring. We first
define typical scenes that occur in tennis video before discussing the relevant
cues in the audio and image modalities that can be used to structure the video
into scenes. We also briefly introduce the features used to represent such cues.
As this chapter focuses on the model rather than the features, few details are
given on the feature extraction process and the interested reader is referred
to [128] for more details.

3.2.1 Tennis video parsing

Tennis videos can be described based on four major scenes, namely missed
serve plus rally, rally, replay and break. The scene characteristics, in terms of
audio and visual content of each scene, are mainly determined by the produc-
tion style of the broadcaster. How these scenes are interleaved in the video is
governed by the rules of tennis and also by the production style of the broad-
caster. For example, tennis rules state that a match is composed of at least
two games (three for male players), a game of at least 6 sets which contains
4 or more points. Moreover, a break occurs after the first set of a game and
every two sets afterward.
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Fig. 3.1. Outline of the feature extraction process.

Video tennis parsing aims at segmenting the video according to some pre-
defined scene-based structure. In our shot-based system, the problem is there-
fore to classify shots according to the structure elements and to detect the
boundaries between these elements. In a first simple version of the parser,
the elements are the scene themselves and the parser aims at segmenting the
video according to the four previously listed scenes. A more complex version
of the parser, described in Section 3.6, aims at finding out the structure of
the game in terms of sets and points in addition to the scene structure.

3.2.2 Audio, visual and textual cues

There are a number of invariant characteristics that occur in every tennis video
as a result of the game rules and the work of the producer. Fortunately, the
producer’s style vary little from one channel to another. For instance, when
game action occurs, a global view of the court is displayed. It is extremely
rare, although still possible, to present game action by a non global court
view, like a side view. On the other hand, game idleness usually corresponds
to non global court views. Special transitions, mostly dissolves, are used to
delimit replays. From the audio point of view, it is obvious that sounds of ball
hits are present mostly for shots representing a game action4.

These characteristics enable the design of a system based on shots. Shot
boundaries are first automatically detected based on hard cuts before detect-
ing dissolve transitions based on the algorithm described in [528]. A special
shot is defined for the latter. Simple cues as those discussed in the previous
paragraph can be used to characterize each video shot. For example, the scene
“missed serve plus rally” starts with a global court view with ball sounds
where the missed serve occurs. A number of non game shots follow until a

4 Although some advertisement broadcasted during breaks may include sounds of
ball hits.
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rally (or an ace) takes place, the latter being characterized by game action
shots. Finally, a number of non game shots optionally appear, until a new
scene begins. There is also the possibility of repetitive missed serves before
the rally.

Visual cues are mostly related to production rules which state that, most
of the times, global views of the tennis court are displayed while the players
are playing. Shot length and the presence of dissolve transitions are also rel-
evant cues. We therefore used three simple features to characterize the image
modality for a shot: similarity to a global court view of the middle frame,
duration, and dissolve. The first feature measures the distance between the
middle frame of the current shot and a reference global view shot automati-
cally extracted from each video based on dominant color. The distance feature
characterizes a shot as a global court view or not. The dissolve feature is a
binary feature indicating whether a shot corresponds to a dissolve or not. In
the experiments described in this chapter, the visual similarity and duration
features were quantized into 10 bins, where the number of bins was experi-
mentally determined.

Audio cues are used to characterize the content of the sound track in each
shot. For this purpose, we track the presence of three sound classes of interest,
ball hits, applause and music. Ball hits occur during rallies while applause usu-
ally acknowledge points. Music only appears in commercials. Tracking sound
classes is based on a segmentation step into small homogeneous segments fol-
lowed by a classification step to detect whether a particular sound class is
present or not in a segment [60]. This tracking process results in a map of the
occurrences of each of the three events in the video as illustrated in Fig. 3.1.

Occasionally, points are acknowledged by scores displayed on screen. These
scores constitute highly informative textual features that can be exploited
for the purpose of video structuring. In this study, the displayed scores are
extracted manually in the shots where they appear. Some shots have therefore
an associated score label while others not. We discuss in Section 3.7 how those
labels are used and the robustness to score detection errors.

3.2.3 Corpus

Experiments reported in this chapter were carried out on a corpus of 6 com-
plete tennis videos, including an outdoor match, recorded between 1999 and
20015. Every video contains a single tennis match, i.e., there are no court views
that are split in order to display two or more tennis matches. Even though
heading and trailing events not related to tennis were manually removed, the
programs still contain commercials and interviews that occasionally appear
during the match. The total duration of the videos is approximately 15 hours.
Three games, including the outdoor one, were used for training and three for

5 Videos were kindly provided by the Institut National de l’Audiovisuel (INA),
France.
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testing. In our experiments, we did not notice significant performance varia-
tions when switching matches between the test and training sets. Each video
was automatically segmented into shots before manually labeling the resulting
shots according to the scene defined above and the HMM states defined in
the next section. HMM state labeling is used for the purpose of parameter
estimation in the various models studied in this chapter.

3.3 Structuring with hidden Markov models

As mentioned in the introduction to this chapter, state-synchronous multi-
stream HMMs can be used for video structuring using the audio and video
features described in the previous section. This section introduces notations
for HMM applied to our video structuring problem and discusses modality
integration in the HMM framework. We extend this formalism to SMs in the
next section.

3.3.1 Video structure parsing

As we have discussed in Section 3.2, the four characteristic scenes can be
represented as sequences of typical shots which can in turn be represented
using HMMs where the observations are the shot-based feature vectors.

For example, the scene missed serve plus rally can be represented with a
four state Markov model: the first state, representing the first serve, corre-
spond to a global view with ball hits; the second state accounts for non global
court views with neither applause nor ball hits before the player serves again;
the third state represents a global court view with ball hits corresponding to
the rally itself; finally, the fourth state correspond to non global court views,
possibly with applause after the rally is over. Transitions represent the pos-
sible evolution of the game between these states. For example, the transition
from state 2 back to state 1 accounts for multiple missed serve.

Based on this principle, we defined the topologies illustrated in Fig. 3.2 for
the four scenes, with a total of 12 states. Note that the transitions depicted in
the figure correspond to the most frequent transitions. However, to account
for variations in the producer’s style, the individual scene HMM have in fact
an ergodic topology with a small probability for those transitions unobserved
in the training data. Assuming an ergodic structure between the four scene
HMM6, the tennis match is therefore represented by a 12 state HMM.

Let us denote the visual feature vector for the shot i by

o
(v)
i =

[
oc

i ol
i od

i

]
, (3.1)

6 Except for the self loops between replays and breaks. This is because, by defini-
tion, multiple repeated replays or breaks result into a larger and unique replay
or break, respectively. In the same way, breaks following replays or vice versa are
fused into a single break.
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Fig. 3.2. HMM topology for the four main scenes.

where oc
i , ol

i, od
i respectively correspond to the visual similarity, the shot length

and the dissolve features. Assuming the features in a feature vector are inde-
pendent, segmentation into scenes of a sequence of N shot-based video feature

vectors o
(v)
1:N is classically solved by finding out the best state sequence accord-

ing to

Q∗
1:N = arg max

Q1:N

lnP (Q1:N ) +

N∑

i=1

∑

r∈{c,l,d}

lnP (or
i|Qi) . (3.2)

This baseline video only HMM based system achieves a shot classification
rate of 76.3 % with recall and precision rates of respectively 73.4 % and 82.0 %
(F-measure=77.5) for scene boundary detection.

3.3.2 Audiovisual integration

Audiovisual integration in the HMM framework can only be performed using
the state synchronous multistream approach. To this end, three audio shot
based features are extracted for each shot, based on the output of the sound
class tracking algorithm. Hence, for each shot i, an audio feature vector

o
(a)
i =

[
ob

i oa
i om

i

]
(3.3)

is determined, where ob
i = 1 if ball hit sounds are present in the shot or 0 oth-

erwise. The remaining features oa
i and om

i represent the presence of applause
and music respectively. Assuming the audio and visual features are indepen-
dent, scene segmentation is carried out as previously with audiovisual feature
vectors

o
(av)
i =

[
o
(v)
i o

(a)
i

]
(3.4)

and the summation in (3.2) is extended to r ∈ {c, l, d, b, a,m}.
Using this state synchronous approach, a shot classification rate of 80.2 %

was achieved with recall and precision rates of respectively 79.7 % and 84.7 %
(F-measure=82.1).
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Fig. 3.3. Conceptual observation generation according to HMM (left) and to SM
(right) (from [378]).

3.4 Segment models for video structuring

Apart from the fact that the audio description is rather crude and might con-
tain errors from the sound tracking algorithm, shot based state synchronous
feature fusion as introduced in the previous section has two main drawbacks.
First, audio features are assumed to be synchronous with the shot boundaries.
This is particularly problematic with the applause sound class since applause
might start slightly before the end of a global court view. This results in
oa

i = 1 for a shot which is not characterized by applause sounds that accounts
for a small fraction of the shot duration. Second, and more importantly, the
temporal order of the audio features cannot be taken into account. Indeed,
from the audio feature vector point of view, a shot containing ball hit sounds
followed by applause shares the same representation as a shot containing ap-
plause followed by ball hit sounds. Moreover, the temporal order of the audio
features cannot be taken into account at the scene level.

Segment models offer a framework to overcome these limitations. We de-
scribe in this section the principle of SMs and the related decoding algorithm
before discussing audiovisual integration in the following section.

3.4.1 Principle

Segment models were first introduced in speech recognition to overcome the
known limitations of HMM [135, 378]. The main idea behind SMs is that a se-

quence of observations o
(v)
a:b, called segment , is associated to a state rather than

a single observation o
(v)
i as in HMM. This principle is illustrated in Fig. 3.3.

The state conditional density is therefore defined over a segment, conditioned

on the segment length l, p(o
(v)
a:b|l, i). Associating sequences of observations with

states also enables the use of a duration model p(l|i) associated to each state
i of a segment model. From a generative point of view, a segment model can
be seen as a Markovian process where a hidden state emits a sequence of ob-
servations whose length is governed by a duration model before transiting to
another state.
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Decoding with SMs involves finding out the most likely state sequence and
segmentation. Formally, the maximization problem to solve is defined as

(L∗
1:M∗ , Q∗

1:M∗) = arg max
L1:M ,Q1:M

ln p(Q1:M ) + ln p(L1:M |Q1:M ) (3.5)

+ ln p(o
(v)
1:N |L1:M , Q1:M ) ,

where N is the number of shots in the video, M∗ is the number of segments
found after optimization. Note that, as opposed to (3.2), the number of states
– or, equivalently, segments – is also part of the optimization problem. The
sequence L∗

1:M∗ represents the optimal segmentation where Li represents the
length of segment i, and Q∗

1:M∗ is the most likely state sequence. In prac-
tice, the segments are assumed to be independent conditionally to the state
sequence and segmentation, as in HMM, and thus

ln p(o
(v)
1:N |L1:M , Q1:M ) =

M∑

i=1

ln p(o(v)
si:ei

|Li, Qi) (3.6)

where si and ei denotes the start and end shots of segment i. The maximiza-
tion problem (3.5) is solved via a straightforward extension of the Viterbi
algorithm to account for explicit state duration [420].

3.4.2 Modeling tennis videos with segment models

In the case of tennis videos, a scene corresponds to a segment. The segment
model associated with an ergodic scene structure has therefore 4 states, each
state corresponding to one of the scenes defined in Section 3.2. As in the case
of HMM, there is a full ergodic scene structure, except for the non-allowed
self-transitions for the replay and break scenes. This model is illustrated in
Fig. 3.4 where a segment containing four shots is represented for the missed
serve plus rally scene.

To fully define a segment model, one has to define the duration model and
the state conditional probabilities. The former is straightforwardly defined
on top of the segment duration in seconds, quantized into 30 bins in our
experiments. For a SM with visual only attributes, one can define the state

conditional probabilities p(o
(v)
a:b|l, i), for a sequence o

(v)
a:b of length l, using a

HMM Λi to provide the probability of a sequence for the scene i according to

P (o
(v)
a:b|l, i) ≡ P (o

(v)
a:b|Λi) =

∑

S1:l

P (o
(v)
a:b, S1:l|Λi) , (3.7)

where the sum, carried out over all the possible state sequences in the model
Λi, is computed using the forward-backward algorithm [420]7.

7 For efficiency reasons during decoding, this score is computed using only the
backward pass of the Baum-Welch recursion. Indeed, in SMs, one has to compute
the state conditional probabilities for various segments which share the same end
time. Using the backward pass, the result of the backward pass for the shortest
segment can be cached and reused for the next segment and so on.
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Fig. 3.4. SM-based modeling of the visual content as a succession of scenes.

It is important to note that the models Λi should not be confused with the
HMM used in the previous section. Indeed, the models Λi are used essentially
as observation scorers, i.e., to provide a probability for a sequence, as opposed
to the HMM used in the previous section to provide a segmentation. The first
ones are used to provide a probability while the second ones provide a state
sequence. However, we used the same topology for the HMM scorers in the
SMs as the topology used in the HMM-based parser of Section 3.3.1. But
parameter estimation is obviously different where the Baum-Welch algorithm
is used in the first case while reference manual state alignments are used in
the second case.

Based on this visual-only segment model, we achieved a shot classification
rate of 79.7 %. The scene boundary recall and precision were respectively
74.8 % and 83.5 % (F-measure=78.9). These results are much better than the
one obtained with the visual-only HMM approach which, we recall, yielded a
classification rate of 76.3 % and a F-measure of 77.5. Additional experiments
show that this gain is mostly due to the scene duration model in segment
models.

3.5 Audiovisual integration with segment models

Now that we have defined a segment model approach for tennis structure
analysis based on video only features, we present audiovisual fusion strategies
in the segment model framework. In the scope of this chapter, we present only
some of the possibilities that were studied to illustrate the potential of SMs
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for multimodal integration of loosely synchronous streams. More results and
a deeper analysis of the results can be found in [128]. Results for the various
approaches presented here are given at the end of the section.

A first straightforward approach for audiovisual integration in segment
model implements the early fusion scheme discussed in Section 3.3.2. Indeed,

rather than defining the segment models on the features o
(v)
i , one can directly

use the feature space o
(av)
i as the observation space of the SMs.

However, interestingly, SMs offer the potential of fusion at the scene level
rather than at the shot level, following the multistream model paradigm with
synchronization points at scene boundaries. A crucial difference with multi-
stream HMM is that the synchronization points are no longer a priori fixed
but left to the optimization problem. If we assume state conditional indepen-
dence between the audio and visual information streams, we can recombine
the conditional probabilities at the state level according to

p(o
(av)
a:b |l, i) = p(o

(v)
a:b|lv, i) p(o

(a)
a:b|la, i) , (3.8)

where lv is the (quantized) segment length in seconds and la the number of
samples in the audio stream in the segment [a, b]. Note that we allow the
segment to have different length in each modality. Also note that, in practice,
a weighted combination of log-probabilities can be used though we did not

apply it in this study. The probability p(o
(v)
a:b |lv, i) can be defined as previously

for the visual-only segment model. We present results for three models for the

computation of the audio conditional probability p(o
(v)
a:b|la, i) based on bigrams

of audio events and on cepstral or discrete audio features HMM.

3.5.1 Scene-based discrete audio models

As discussed in the introduction to this section, one of the problems related
to the early fusion scheme is the impossibility of representing the dynamics
of the audio features within a scene. The fusion at the scene level enables to
capture the temporal nature of the audio stream. Two models were studied for
the scene-based integration of discrete audio features derived from the output
of the sound class tracking algorithm.

A first approach consists in representing p(o
(a)
a:b|la, i) using HMM scorers

Λ
(a)
i as for the visual modality. Basically, the models used here correspond to

the audio part of the audiovisual models used for early integration, the feature
vectors being defined as in (3.3). The key difference with early integration is
that the audio and visual HMM are now completely independent – and thus
asynchronous – within a scene.

A second approach is based on a bigram model of the sequences of audio
events, where the conditional probability is given by

p(o
(a)
a:b|la, i) =

la∏

k=1

p(o
(a)
a:b(k) | o

(a)
a:b(k − 1), i) , (3.9)
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where o
(a)
a:b(k) denotes the kth audio event in the segment o

(a)
a:b and la the

number of audio events. For example, if a segment contains tennis sounds
followed by claps, the probability is given by

p(tennis, claps|la, i) = p(tennis|<s>, i) p(claps|tennis, i) p(</s>|claps, i) .

The two symbols <s> and </s> denotes respectively the start and end of
the segment. The probabilities are estimated from the training corpus using
a simple back-off scheme to avoid null probabilities for unobserved events.

3.5.2 Low-level audio models

So far, modeling the audio stream relies on the output of the sound class
tracking algorithm. However, the tracking algorithm is error-prone and im-
precise. First, the boundaries of the audio segments are not as clearly defined
as hard cuts in the video and their detection is not precise. Second, simul-
taneous events, like ball hits simultaneously with speech, makes the decision
process more fragile. To circumvent these problems, scene-level integration
with segment models enable to directly model low-level audio features such as
cepstral coefficients, thus avoiding the necessity for an error-prone pre classi-
fication step. In order to model the audio content on top of generic cepstral
features, continuous density HMM are used.

Because of the fair amount of prior information embedded in the sound
class detection process (see Section 3.5.3), we do not expect this approach to
outperform the previous ones. However, this model illustrates the potential of
SMs for the integration of asynchronous heterogeneous streams of information.
Indeed, the audio stream is sampled now at 100 frames per second while the
visual stream exhibits a classical shot rate. The length la of the auditory
segment is now equal to the total number of audio frames within the scene
boundaries.

3.5.3 Results

Results for the various audiovisual fusion approach are reported in Table 3.1.
The first two lines report results obtained with HMM and SM using an early
integration scheme. As previously for visual only models, SMs outperform
significantly HMMs.

The results in the next two lines correspond to the scene level integration
using discrete audio events using either audio HMM or a bigram model. Both
approaches are roughly equivalent in terms of performance with a slight advan-
tage to discrete audio HMM scorers. However, scene-level integration exhibits
poorer results than early integration. Additional experiments demonstrated
that this result is due to the fact that some important correlations at the
shot level between the audio and visual features are lost in the asynchronous
approaches. Indeed, the asynchrony hypothesis between the two streams does
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model % C F % R % P

HMM early integration 80.2 82.1 79.7 84.7
SM early integration 84.4 82.6 79.3 86.2

SM + audio HMM 81.5 82.3 77.5 87.8
SM + audio bigram 81.7 81.7 79.4 84.1
SM + cepstral HMM 79.9 79.6 75.2 84.6

SM early int. + audio bigram 84.7 82.9 81.7 84.1

Table 3.1. Classification and segmentation results for the various audio visual in-
tegration approaches in HMM and SM. Results are given for shot classification rate
(%C), F-measure (F), recall (%R) and precision (%P).

not really hold in the case of tennis videos. However, these results demonstrate
that SMs provide a powerful framework for modeling asynchronous streams.
Moreover, SMs allow the combination of early and late (scene-level) integra-
tion where a bigram model of audio event is combined at the scene level with
the output of an audiovisual HMM scorer. Results show that an interesting
performance gain can be obtained by combining early and late integration
(SM early int. + audio bigram in Table 3.1).

Finally, results obtained with an audio model on low level audio fea-
tures demonstrate the ability of SMs to incorporate heterogeneous informa-
tion streams with different sample rates, even though the results are not as
good as those obtained with a preprocessing of the audio track using the
sound class tracking algorithm. Indeed, preprocessing introduces a great deal
of prior information on what the useful information is, prior knowledge that is
not present in the cepstral HMM approach. However, performance obtained
with low level audio features are close to the performance obtained with seg-
ment models and discrete audio HMM, in spite of the loss of prior information.

3.6 Hierarchical models

On top of the scene structure that we have tried to recover so far, tennis games
exhibit a highly hierarchical structure with transitions between games, sets
and points, with pauses between points at regular intervals as directed by the
tennis rules. This structural information can be used in both the HMM and
SM framework to help scene segmentation and recover the game structure in
terms of sets and points.

The hierarchical structure of a tennis match can be represented as a di-
rected graph as depicted in Fig. 3.5, where, for sake of legibility, only one
node is expanded at each level. Note that this graph is a simplified version
of the true structure imposed by the tennis rules. At the highest level is the
match. At the next level, a match is composed of sets, eventually followed by
a break scene. At the third level, a set is composed of games and break scenes,
where tennis rules instruct that there should be a break after the first game of
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Fig. 3.5. Hierarchical structure of a tennis match in terms of game, sets and points.

the set or, subsequently, after any two consecutive games so that the players
change positions. A game is composed of at least four points where a point
corresponds to one of the scenes missed serve plus rally or rally, optionally
followed by a break scene.

Based on this structural representation of the match as a graph, we can
replace the scene ergodic topology that was previously used by the hierarchic
one. In the HMM framework, the states corresponding to actual scenes (circled
states in Fig. 3.5) are further expanded with the respective HMM as defined
in Fig. 3.2. In the SM framework, these states are directly the emitting states.

Experimental results demonstrated that the hierarchical approach enables
to partially recover the structure of the tennis match but does not improve
the scene classification and segmentation results. For example, with SMs, we
achieved a scene classification rate of 81.2 % with the hierarchical topology
as opposed to 81.7 % with an ergodic scene structure whereas F measures
are comparable. We believe that results with the hierarchical topology could
be improved using probabilistic transitions in the hierarchical structure. In-
deed, due to the limited amount of training data, we did not use stochastic
transitions in the graph representing the tennis match structure.

3.7 Integrating symbolic text information

In sports videos, the score is often displayed on screen from time to time. For
example, in tennis videos, the score in the current set is regularly displayed,
usually – but not always – after a point. Assuming the displayed scores have
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15-0 15-15 30-15

t1 t2 t3

Video
Ground
Truth
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Fig. 3.6. Typical setting for the appearance of score labels w.r.t. game events and
scenes. State numbers in the video ground truth refers to Fig. 3.2 where states 3
and 5 correspond to actual points. The dotted lines show the actual rally to which
the score display correspond.

been recognized by some automatic optical character recognition system, the
resulting symbolic stream of information provides useful hints on the game
structure that we wish to exploit. However, due to the symbolic and spo-
radic nature of this information stream, integrating the score information in
a stochastic model is not straightforward. Indeed, score labels are sporadic
in the sense that they are displayed from time to time and at no particular
instant.

A straightforward and somewhat naive solution to take into account score

labels is to enhance the shot based audiovisual feature vectors o
(av)
i with a

new binary feature indicating whether a score is displayed in the shot or not.
In SMs, this additional feature can be integrated at the scene level rather than
at the shot level where the conditional probability (3.8) is replaced by

p(o
(av)
a:b |l, i) = p(o

(v)
a:b|lv, i) p(o

(a)
a:b|la, i) pl(o

(s)
a:b|l, i) , (3.10)

where the probability p(o
(s)
a:b|l, i) that a score label appears in the scene i is

raised to the power l so that it scales with the segment length in the same
way as the other two probabilities. Using a binary score indicator feature
slightly improves the results both with HMMs and SMs. In the first case, the
shot classification rate improved from 80.2 % to 80.8 % and the F measure on
scene boundaries from 82.1 to 83.0, with an increase in both precision and
recall while for SMs only a marginal improvement was observed.

In the previous approach, the semantic meaning of the label, i.e., the score
itself, is ignored and the label is merely used as an indicator that a point has
been scored. We propose an algorithm, called score-oriented Viterbi search, to
use the score labels themselves as constraints in the search for the best path
in order to find a segmentation consistent with the score labels available. As
it operates on the search space, this algorithm can be used both with HMM
and SMs.

3.7.1 Score-oriented Viterbi search

Before proceeding to the description of the algorithm, let us examine how
score labels are displayed (when they are). Score labels appear after the cor-
responding game event has happened and also before the next game event. A
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typical setting is illustrated in Fig. 3.6, where we see three score labels and the
corresponding rallies. Clearly, the point acknowledged by the label appearing
at t2 lies in [t1, t2]. The complete scene that contains the rally, in turn, ends
somewhere in [t1, t3].

The key idea of score-oriented decoding is to perform a local Viterbi for-
ward pass between t1 and t3 with an N-best like scheme in order to keep track
of the paths resulting in respectively one point, two points, up to N points.
All the paths in the time interval [t1, t3] that are inconsistent with the score
indication are then penalized. In the example of Fig. 3.6, exactly one scoring
event must occur between the labels ‘15-0’ and ‘15-15’. All the paths between
t1 and t3 containing zero or more than one point are therefore penalized. We
refer to this first step, consisting of the local forward Viterbi pass and the
penalization of the inconsistent paths, as local search. After performing the
local search corresponding to the label occurring at time t2 between t1 and
t3, the algorithm proceeds with the label occurring at time t3. The new local
search relies on the best paths up to t3 and on the results of the previous local
search between t2 and t3. The decoding algorithm can therefore be seen as a
pipeline of local searches where the surviving paths are further developed. A
formal description of the algorithm is given in [127].

Upon reaching the end of the video, backtracking is used to obtain a seg-
mentation consistent with all the score labels available. It can be shown that
this algorithm is optimal in the sense that it finds out the most likely seg-
mentation consistent with the score labels, assuming N, the maximum allowed
number of points scored between two label appearances, is large enough. We
observed that a maximum of five points between two score display turned out
sufficient.

In practice, the exact number of points between two labels is not deter-
ministic8 and the penalty depends on the estimation of the probability that n
points are scored between two specific labels. These probabilities are estimated
from the training corpus. It is interesting to note that if these probabilities
are estimated using score labels extracted with an automatic algorithm rather
than manually, then they are able to partially compensate for errors in the
automatic detection algorithm. Indeed, in this case, detection errors are taken
into account in the penalty function which tends to be more uniform as more
errors occur.

3.7.2 Results

Table 3.2 reports the results for score-oriented Viterbi search with hierarchic
and ergodic scene structure for the HMM and SMs where, in the latter, a
bigram model of discrete audio events is used to model the audio stream.
These results are to be compared with those of Table 3.1, rows 1 and 4 re-
spectively. Clearly, in all the cases, a significant performance gain is obtained

8 For example, between two consecutive occurrences of the label ‘equality ’, there
can be two, four, six, . . . points.
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HMM segment models
%C F %R %P %C F %R %P

hierarchical 82.7 82.4 80.5 84.3 85.8 84.0 82.9 85.2
ergodic 82.2 82.9 82.4 83.4 86.0 84.1 83.4 84.9

error rate = 10 % 81.6 83.0 82.2 83.9 85.6 84.1 82.8 85.5
error rate = 50 % 81.1 82.5 80.7 84.4 84.2 83.5 80.2 87.0

Table 3.2. Classification and segmentation results for score-oriented Viterbi decod-
ing.

using score information as proposed. Two interesting points are worth noting.
Firstly, the improvement is larger with SMs than with HMMs. This can be
explained by the fact that the positions of the occurrences of the score labels
provide some rough approximations of the scene boundaries, giving some ex-
tra valuable information for Viterbi decoding in SMs. Secondly, although the
results obtained with the hierarchical scene structure do not outperform those
obtained with the ergodic one (for reasons discussed earlier in the chapter),
the gap between the two structures is obviously reduced with score-oriented
decoding, due to the additional information on the game structure carried by
the score labels.

So far, we have considered error-free extraction of score labels from the
video frames. The only source of uncertainty on the number of points scored
between two labels is therefore due to the scoring scheme of tennis (for exam-
ple between two ’equality ’ labels) combined with the fact that not all labels
are displayed. We therefore simulated score label recognition errors with an
error rate of respectively 10 % and 50 %. Recall that the penalties applied to
inconsistent paths in score-oriented decoding are re-estimated on the erro-
neous labeling to compensate for label recognition errors. Results reported in
the last two rows of Table 3.2 show that performance slowly degrades toward
those obtained with the standard Viterbi algorithm as more recognition er-
rors occur, hence demonstrating a strong robustness of our algorithm to label
recognition errors.

3.8 Discussion

This chapter has presented a new statistical framework for multimodal inte-
gration based on multistream segment models, a generalization of multistream
hidden Markov models. Experimental results on a tennis video structuring
task show that segment models offer an increased flexibility for audiovisual
integration of loosely synchronous modalities. However, the visual and audio
tracks in tennis videos are strongly synchronous and most of the gain obtained
with segment models is due to the introduction of a scene duration model.
Even though, we have seen that the increased flexibility offered by segment
models enable to combine synchronous (early) and asynchronous (late) inte-
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gration of the modalities, which resulted in the best system. In this sense,
segment models unify multistream and layered approaches and are thus able
to overcome most of the limits observed with hidden Markov models, in par-
ticular the need for synchronization between the information streams and the
difficulty to capture information at various semantic levels.

Some sporadic and very loosely synchronized information streams, such
as the score labels displayed in sport videos, are however still difficult to
integrate as features in the segment model framework. The score-oriented
Viterbi search discussed in this chapter addresses this problem by proposing
a framework to take this information into account at the search level in a
rather efficient way. We believe that this search-level integration scheme is
suited for various type of sporadic information streams. For example, we have
used a similar idea in [188] to drive a speech recognition Viterbi decoder
with broad phonetic landmarks used as constraints on the search for the best
path in the decoding graph. Clearly, integrating information as constraints on
the search can be seen as a late integration fusion scheme where information
obtained from a first system are used as constraints in the second system.
Confidence measures associated with the decisions from the first system should
be able to circumvent problems due to error propagation across systems in late
integration schemes. We plan to investigate this integration scheme further in
several domains.

An interesting feature of segment models is that the model can be ex-
pressed as a dynamic Bayesian network (DBN) as shown in [350]. We believe
that DBN provide an interesting framework for the joint modeling of heteroge-
neous, loosely synchronized streams of information as arbitrary dependencies
between the variables of a problem can be expressed in this framework (as long
as cycles are avoided). However, the lack of generic algorithms for parameter
estimation and the rapidly increasing complexity of the decoding algorithm
when complex models are used has limited so far the use of DBN models
for complex multimodal integration problems. We hope that segment models
will provide a bridge toward DBN-based models for multimodal integration,
enabling to go beyond segment models.

Finally, let us conclude this discussion by stating the obvious: the use
of multistream segment models for multimodal integration is not limited to
sport videos. Neither is multimodal fusion using information integration at
the search level. In fact, segment models provide an interesting framework
in many applications where limited correlation and synchrony between the
streams of information is observed. A first example is audiovisual speech recog-
nition where segment models can provide extended asynchrony at the phone
or viseme boundaries thus providing a powerful framework for the integration
of fast changing audio features with visual features which tends to change
at a slower rate due to the inertia of the facial muscles. A second example
is the use of segment models for natural language processing and integration
in a multimodal multimedia application. For example, Utiyama and Isahara
defined a model which can be formulated as a segment model for the seg-
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mentation of texts into topics [537]. This approach enables the integration
of textual information streams into segment models, for example for spoken
document segmentation and structuring based on lexical, acoustic and maybe
visual cues, as illustrated in Chapter 9.
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While the accuracy of feature measurements heavily depends on changing
environmental conditions, studying the consequences of this fact in pattern
recognition tasks has received relatively little attention to date. In this chapter
we discuss the effects of feature measurement uncertainty on classification and
learning rules. Such an approach can be particularly fruitful in multimodal fu-
sion scenarios, such as audiovisual speech recognition, where multiple streams
of complementary time-evolving features are integrated. For such applications,
provided that the measurement noise uncertainty for each feature stream can
be estimated, this framework leads to highly adaptive multimodal fusion rules
which are widely applicable and easy to implement. We further show that more
traditional multimodal fusion methods relying on stream weights fall under
this scheme under certain assumptions; this provides novel insights into their
applicability for various tasks and suggests new practical ways for estimating
the stream weights adaptively. The potential of the approach is demonstrated
in audiovisual speech recognition experiments using either synchronous or
asynchronous models.

4.1 Multimodal Fusion: Benefits and Challenges

Motivated by the multimodal way humans perceive their environment, com-
plementary information sources have been successfully utilized in many appli-
cations. Such a case is audiovisual speech recognition (AV-ASR) [413], where
fusing visual and audio cues can lead to improved performance in comparison
to audio-only recognition, especially in the presence of audio noise.

However, successfully integrating heterogeneous information streams is
challenging, mainly because multimodal schemes need to adapt to dynamic
environmental conditions, which can dissimilarly affect the reliability of the
separate modalities by contaminating feature measurements with noise. For
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example, the visual stream in AV-ASR should be discounted when the visual
front-end momentarily mistracks the speaker’s face.

A common theme in many stream integration methods is the utilization
of stream weights to equalize the different modalities. These weights operate
as exponents to each stream’s probability density and have been employed in
fusion tasks of different audio streams [344] and audiovisual integration [147,
412]. Such stream weights have been applied not only in conventional Hidden
Markov Models, but also in conjunction with Dynamic Bayesian Network
architectures which better account for the asynchronicity of audiovisual speech
[362]. Despite its favorable experimental properties, stream weighting requires
setting the weights for the different streams; although various methods have
been proposed for this purpose [184], a rigorous approach to adapt the stream
weights is still missing.

In this chapter, building on the recent work of [248, 404, 389], we ap-
proach the problem of adaptive multimodal fusion by explicitly taking feature
measurement uncertainty of the different modalities into account, both dur-
ing model training and testing. In single modality scenarios, modeling feature
noise has proven fruitful for noise-robust ASR [135, 442, 577, 130] and has
been further pursued in applications such as speaker verification [578] and
multi-band ASR [344]. We show in a probabilistic framework how multimodal
learning and classification rules should be adjusted to account for feature mea-
surement uncertainty. Gaussian Mixture Models (GMM) and Hidden Markov
Models (HMM) are discussed in detail and modified algorithms for classi-
fication and EM maximum-likelihood estimation under uncertainty are de-
rived. Uncertainty compensation leads to adaptive multimodal fusion rules
which are widely applicable and easy to implement. We demonstrate that
previous stream weight-based multimodal fusion formulations can be derived
from the uncertainty-aware scheme under certain assumptions; this unveils
their probabilistic underpinnings and provides novel insights into their appli-
cability for various tasks. In this context, new practical ways for estimating
stream weights adaptively are suggested. Regarding audiovisual speech, we
describe techniques to extract uncertainty estimates for the visual and audio
features and evaluate the method in AV-ASR experiments utilizing multi-
stream HMM, demonstrating improved performance. Applying the proposed
technique in conjunction with Product HMMs (P-HMM) [147, 312], which
better account for cross-modal asynchrony, can yield further improvements.

4.2 Feature Uncertainty and Multimodal Fusion

Let us consider a pattern classification scenario. We measure a property
(feature) of a pattern instance and try to decide to which of N classes
ci, i = 1 . . . N it should be assigned. The measurement is a realization x of a
random variable X, whose statistics differ for the N classes. Typically, for each
class we have trained a model that captures these statistics and represents the
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class-conditional probability functions p(x|ci), i = 1 . . . N . Our decision is then
based on some proper rule, e.g ., the Maximum A Posteriori (MAP) criterion
ĉ = argmax p(ci|x) = argmax p(x|ci)p(ci).

One may identify three major sources of uncertainty that could perplex
classification. First, class overlap due to improper modeling or limited dis-
criminability of the feature set for the classification task. For instance, visual
cues cannot discriminate between members of the same viseme class (e.g .,
/p/, /b/) [413]. Better choice of features and modeling schemes can reduce
this uncertainty. Second, parameter estimation uncertainty that mainly orig-
inates from insufficient training. Using the Bayesian Predictive Classification
rule can possibly alleviate it [220]. Third, feature observation uncertainty due
to errors in the measurement process or noise contamination. This is the type
of uncertainty we mainly address in this chapter.

4.2.1 Feature Observation Uncertainty and its Compensation in
Classification

We can formulate feature observation uncertainty considering that the actual
feature measurement y is just a noisy/corrupted version of the inaccessible
clean feature x. More specifically, we adopt the measurement model

Y = X + E , (4.1)

which is graphically depicted in Fig. 4.1 and assume that the noise den-
sity pE(e) is known. This scenario of contaminated measurements corre-
sponds to the so-called measurement error models in statistics [172]. Un-
der the observation model of Eq. (4.1), classification decisions must rely on
p(ci|y) ∝ pY (y|ci)p(ci), and thus pY (y|ci) needs to be computed.

X

C C

X

Y

Fig. 4.1. Pictorial representation of feature measurement scenarios, with hidden
variables denoted by squares and observed by circles. Left : Conventional case – we
observe the features x directly. Right : Noisy measurement case – we only observe
noisy features y.

To determine the desirable noisy feature probability density function
pY (y|ci), we need to integrate out the clean feature variable x
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pY (y|ci) =

∫
pX(x|ci)pE(y − x) dx. (4.2)

Although the integral in Eq. (4.2) is in general intractable, we can ob-
tain a closed-form solution in the important special case of Gaussian data
model, pX(x|ci) = N(x;µi, Σi), with Gaussian observation noise, pE(e) =
N(e;µe, Σe). Then one can show that pY (y|ci) is given by

pY (y|ci) = N(y;µi + µe, Σi + Σe), (4.3)

implying that we can proceed by considering our features y clean, provided
that we shift the model means by µe and increase the model covariances Σi

by Σe. A similar approach has been previously followed in [442, 578, 130].
To illustrate Eq. (4.3), we discuss with reference to Fig. 4.2 how ob-

servation uncertainty influences decisions in a simple 2-class classification
task. The two classes are modeled by 2D spherical Gaussian distributions,
N(µ1, σ

2
1I), N(µ2, σ

2
2I) and they have equal prior probability. If our obser-

vation y contains zero mean spherical Gaussian noise with covariance ma-
trix σ2

eI then the modified decision boundary consists of those y for which
N(y;µ1, σ

2
1I + σ2

eI) = N(y;µ2, σ
2
2I + σ2

eI). When σ2
e is zero, the decision

should be made as in the clean case. If σ2
e is comparable to the variances of

the models, then the modified boundary significantly differs from the original
one and neglecting observation uncertainty in the decision process increases
misclassifications.

σ
e
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σ
e
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Fig. 4.2. Decision boundaries for classification of a noisy observation (square
marker) in two classes, shown as circles, for various observation noise variances.
Classes are modeled by spherical Gaussians of means µ1, µ2 and variances σ2

1I,
σ2

2I respectively. The decision boundary is plotted for three values of noise variance
(a) σe = 0 (i.e., no observation uncertainty), (b) σe = σ1, and (c) σe = ∞. With
increasing noise variance, the boundary moves away from its noise-free position.
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4.2.2 Multimodal Fusion

For many applications one can get improved performance by exploiting com-
plementary features, stemming from a single or multiple modalities. Let us
assume that one wants to integrate S information streams which produce
feature vectors xs, s = 1, . . . , S. If the features are statistically independent
given the class label c, the conditional probability of the full observation vec-
tor x1:S ≡ (x1; . . . ;xS) is given by the product rule; application of Bayes’
formula yields the class label probability given the features:

p(c|x1:S) ∝ p(c)
S∏

s=1

p(xs|c) . (4.4)

In an attempt to improve classification performance, several authors have
introduced stream weights ws as exponents in Eq. (4.4), resulting in the mod-
ified expression

b(c|x1:S) = p(c)

S∏

s=1

p(xs|c)
ws , (4.5)

which can be seen in a logarithmic scale as a weighted average of individual
stream log-probabilities. Such schemes have been motivated by potential dif-
ferences in reliability among different information streams, and larger weights
are assigned to information streams with better classification performance.
Using such weighting mechanisms has been experimentally proven to be ben-
eficial for feature integration in both intra-modal (e.g ., multiband audio [344])
and inter-modal (e.g ., audiovisual speech recognition [147, 184, 362]) scenar-
ios.

The stream weights formulation is however unsatisfactory in various re-
spects. From a theoretical viewpoint, the weighted score b in Eq. (4.5) no
longer has the probabilistic interpretation of Eq. (4.4) as class probability
given the full observation vector x1:S . Therefore it becomes unclear how to
conceptually define, let alone implement, standard probabilistic operations,
such as integrating-out a variable xs (in the case of missing features), or con-
ditioning the score on some other available information. From a more practical
standpoint, it is not straightforward how to optimally select stream weights.
Most authors set them discriminatively for a given set of environment con-
ditions (e.g ., audio noise level in the case of audiovisual speech recognition)
by minimizing the classification error on a held-out set, and then keep them
constant throughout the recognition phase. However, this is insufficient, since
attaining optimal performance requires that we dynamically adjust the share
of each stream in the decision process, e.g ., to account for visual tracking
failures in the AV-ASR case. Although there have been some efforts towards
dynamically adjustable stream weights [184], they are not rigorously justified
and are difficult to generalize.

We will now show that accounting for feature uncertainty naturally leads to
a novel adaptive mechanism for fusion of different information sources. Since
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in our stochastic measurement framework we do not have direct access to the
features xs, our decision mechanism depends on the noisy version ys = xs +es

of the underlying quantity. The probability of interest is thus obtained by
integrating out the hidden clean features xs, i.e.,

p(c|y1:S) ∝ p(c)
S∏

s=1

∫
p(xs|c)p(ys|xs)dxs . (4.6)

In the common case that the clean feature emission probability is modeled as
a Gaussian mixture model (GMM), i.e.,

p(xs|c) =

Ms,c∑

m=1

ρs,c,mN(xs;µs,c,m, Σs,c,m), (4.7)

and the observation noise at each stream is considered independent across
streams and Gaussian, p(ys|xs) = N(ys;xs + µe,s, Σe,s), it directly follows
that

p(c|y1:S) ∝ p(c)

S∏

s=1

Ms,c∑

m=1

ρs,c,mN(ys;µs,c,m + µe,s, Σs,c,m + Σe,s) , (4.8)

which, as in the single-stream case (4.3), involves considering our features ys

clean, while shifting the model means by µe,s, and increasing the model covari-
ances Σs,c,m by Σe,s. Using mixtures of Gaussians for the measurement noise
p(ys|xs) is straightforward and could be useful in case of heavy-tailed noise
distribution or for modeling observation outliers. Also note that, although
the measurement noise covariance matrix Σe,s of each stream is the same
for all classes c and all mixture components m, noise particularly affects the
most peaked mixtures, for which Σe,s is substantial relative to the modeling
uncertainty due to Σs,c,m. The adaptive fusion effect of feature uncertainty
compensation in a simple 2-class classification task using two streams is illus-
trated in Fig. 4.3.

Although Eq. (4.8) is conceptually simple and easy to implement, given an
estimate of the measurement noise variance Σe,s of each stream, it actually
constitutes a highly adaptive rule for multisensor fusion. To appreciate this,
and also to show how our scheme is related to the stream weights formulation
of Eq. (4.5), we examine a particularly illuminating special case of our result.
We make two simplifying assumptions:

1. The measurement noise covariance is a scaled version of the model covari-
ance, i.e., Σes = rs,c,mΣs,c,m for some positive constant rs,c,m interpreted
as the relative measurement error. Intuitively, as the SNR for the s-stream
drops, the corresponding relative measurement error rs,c,m increases.

2. For every stream observation ys the Gaussian mixture response of that
stream is dominated by a single component m0 or, equivalently, there is
little overlap among different Gaussian mixtures.
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Fig. 4.3. Multimodal variance compensation leads to adaptive fusion. Figures de-
scribe a 2-class classification scenario, using two Gaussian feature streams, y1 and
y2, with equal model covariances Σs,c = σ2. The 1-D plots on the y1 and y2 axes
represent the measurement uncertainty in the corresponding stream. Left : Conven-
tional negligible measurement uncertainty scenario; the decision boundary lies on the
axes’ diagonal. Right : Significant measurement noise at the y2 stream, Σe,2 ≫ Σe,1,
in which case p(yS |c) (solid surfaces) differ significantly from p(xS |c) (transparent
surfaces); the decision boundary moves and classification is mostly influenced by the
reliable y1 stream.

Under these conditions the Gaussian densities in Eq. (4.8) can be approxi-
mated by N(ys;µs,c,m0

+µes, (1+rs,c,m0
)Σs,c,m0

); using the power-of-Gaussian
identity N(x;µ,w−1Σ) = (det(w(2πΣ)w−1))1/2N(x;µ,Σ)w ∝ N(x;µ,Σ)w

yields

p(c|y1:S) ∝ p(c)

S∏

s=1

[
ρ̃s,c,m0

N(ys;µs,c,m0
+ µe,s, Σs,c,m0

)

]ws,c,m0

, (4.9)

where
ws,c,m0

= 1/(1 + rs,c,m0
) (4.10)

is the effective stream weight and ρ̃s,c,m0
is a properly modified mixture weight

which is independent of the observation ys. Note that the effective stream
weights are between 0 (for rs,c,m0

≫ 1) and 1 (for rs,c,m0
≈ 0) and discount the

contribution of each stream to the final result by properly taking its relative
measurement error into account; however they do not need to satisfy a sum-
to-one constraint

∑S
s=1 ws,c,m0

= 1, as is conventionally considered by other
authors.

This is an appealing result. Our framework unveils the probabilistic as-
sumptions under stream weight-based formulations; furthermore, Eq. (4.10)
provides a rigorous mechanism to select for each new measurement ys and
uncertainty estimate (µe,s, Σe,s) all involved stream weights fully adaptively,
i.e., with respect to both class label c and mixture component m.
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4.3 Uncertainty in Expectation-Maximization Training

In many real-world applications requiring big volumes of training data, very
accurate training sets collected under strictly controlled conditions are very
difficult to gather. For example, in audiovisual speech recognition it is unre-
alistic to assume that a human expert annotates each frame in the training
videos. A usual compromise is to adopt a semi-automatic annotation tech-
nique which yields a sufficiently diverse training set; since such a technique
can introduce non-negligible feature errors in the training set, it is important
to take training set feature uncertainty into account in learning procedures.

4.3.1 GMM Training Under Uncertainty

Under our feature uncertainty viewpoint, only a noisy version y of the under-
lying true property x can be observed. Maximum-likelihood estimation of the
GMM parameters θ from a training set Y = {y1, . . . , yN} under the EM algo-
rithm [129] should thus consider the corresponding clean features X , besides
the class memberships M, as hidden variables. The expected complete-data
log-likelihood Q(θ, θ′) = E[log p(Y, {X ,M}|θ)|Y, θ′] of the parameters θ in
the EM algorithm’s current iteration given the previous guess θ′ in the E-
step should thus be obtained by summing over discrete and integrating over
continuous hidden variables. In the single stream case this translates to

Q(θ, θ′) =

N∑

i=1

M∑

m=1

log πmp(m|yi, θ
′)+

N∑

i=1

M∑

m=1

∫
log p(yi|xi)p(xi,m|yi, θ

′)dxi+

N∑

i=1

M∑

m=1

∫
log p(xi|m, θ)p(xi,m|yi, θ

′)dxi . (4.11)

We get the updated parameters θ in the M-step by maximizing Q(θ, θ′)
over θ, yielding

rm =

N∑

i=1

ri,m, πm =
rm

N
, µm =

1

rm

N∑

i=1

ri,mx̂i,m,

Σm =
1

rm

N∑

i=1

ri,m

(
Σxi,m

+ (x̂i,m − µm)(x̂i,m − µm)T
)

, (4.12)

where (the prime denotes previous-step parameter estimates)

ri,m = p(m|yi, θ
′) ∝ π′

mN(yi;µ
′
m + µe,i, Σ

′
m + Σe,i) (4.13)

x̂i,m = Σxi,m

(
(Σ′

m)−1µ′
m + (Σe,i)

−1(yi − µe,i)
)
, (4.14)

Σxi,m
=
(
(Σ′

m)−1 + (Σe,i)
−1
)−1

. (4.15)
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Two important differences w.r.t. the noise-free case are notable: first, error-
compensated scores are utilized in computing the responsibilities ri,m in
Eq. (4.13); second, in updating the model’s means and variances, one should
replace the noisy measurements yi used in conventional GMM training with
their model-enhanced counterparts, described by the expected value x̂i,m

and variance Σxi,m
. Furthermore, in the multimodal case with multiple

streams s = 1, . . . , S, one should compute the responsibilities by ri,m ∝

π′
m

∏S
s=1 N(ys,i;µ

′
s,m + µs,e,i, Σ

′
s,m + Σs,e,i), which generalizes Eq. (4.13) and

introduces interactions among modalities.

4.3.2 HMM Training Under Uncertainty

For the HMM, similarly to the GMM case just covered, the expected complete-
data log-likelihood Q(θ, θ′) = E[log p(O, {Q,X ,M}|θ)|O, θ′] of the parame-
ters θ in the EM algorithm’s current iteration, given the previous guess θ′, is
obtained in the E-step as:

Q(θ, θ′) =
∑

q∈Q

T∑

t=1

log aqt−1qt
P (O, q|θ′)+

∑

q∈Q

T∑

t=1

∫
log p(ot|xt, qt, θ

′)P (O, q, xt|θ
′)dxt+

∑

q∈Q

T∑

t=1

M∑

m=1

∫
log p(xt|mt, qt, θ

′)P (O, q,m, xt|θ
′)dxt+

∑

q∈Q

T∑

t=1

M∑

m=1

p(m|qt, θ
′)P (O, q,m|θ′) +

∑

q∈Q

log πq0
P (O, q|θ′) . (4.16)

The responsibilities γt(i, k) = p(qt = i,m = k) are estimated via a forward-
backward procedure [420] modified so that uncertainty compensated scores are
utilized:

at+1(j) = P (o1:t, qt = j|θ′) =
[ N∑

i=1

αijat(i)
]
b′j(ot+1) (4.17)

βt(i) = P (ot+1:T |qt = i, θ′) =

N∑

j=1

αijb
′
j(ot+1)βt+1(j), (4.18)

where b′j(ot) =
∑M

m=1 ρmN(ot;µ
′
j,m + µet

, Σ′
j,m + Σet

). Scoring is done sim-
ilarly to the conventional case by the forward algorithm, i.e., P (O|θ) =∑N

i=1 aT (i). The updated parameters θ are estimated using formulas simi-
lar to the GMM case in Section 4.3.1. For µq,m, Σq,m the filtered estimate for
the observation is used as in (4.12).



120 G. Papandreou, A. Katsamanis, V. Pitsikalis, P. Maragos

4.3.3 Some Insights into Training Under Uncertainty

Focusing on the simpler GMM model and similarly to the analysis in Sec-
tion 4.2, we can gain insight into the previous EM formulas by considering
the special case of constant and model-aligned errors Σe,i = Σe = λmΣm.
Then, after convergence, the covariance formula in Eq. (4.12) can be written
as

Σm =
1

1 + λm
Σ̃m, or, equivalently, Σm = Σ̃m − Σe , (4.19)

where we just subtract from the conventional (non-compensated) covariance

estimate Σ̃m = 1
rm

∑N
i=1 ri,m(yi−µm)(yi−µm)T the noise covariance Σe. The

rule in Eq. (4.19) has been used before as heuristic for fixing the model covari-
ance estimate after conventional EM training with noisy data (e.g ., [117]). We
see that it is justified in the constant and model-aligned errors case; otherwise,
one should use the more general rules in Eq. (4.12).

Another link of our training under uncertain measurements scenario is
to neural network training with noise (or noise injection) [487], where an
original training set is artificially supplemented with multiple noisy instances
of it and the resulting enriched set is used for training. Monte-Carlo-based
noise injection training should be contrasted to the analytic integration over
the noise distribution suggested by our approach. Our interpretation thus
shows that noise injection can be motivated under the noisy measurements
viewpoint. Training with noise is also related to Tikhonov regularization [65]
and is known to be relatively immune to over-fitting, thus leading to classifiers
with improved generalization ability. Similar advantageous properties should
be expected for our training under uncertain measurements technique.

4.4 Audio-Visual Speech Recognition

A challenging application domain for multimodal fusion schemes is Audio-
visual Automatic Speech Recognition (AV-ASR), since it requires modeling
both the relative reliability and the synchronicity of the audio and visual
modalities. We demonstrate that the proposed fusion scheme can be naturally
integrated with multi-stream HMMs or other multimodal sequence processing
techniques and clearly improve their performance in AV-ASR.

4.4.1 Visual Front-End

Salient visual speech information can be obtained from the shape and the
texture (intensity/color) of the speaker’s visible articulators, mainly the lips
and the jaw, which constitute the Region Of Interest (ROI) around the mouth
[413].

We use Active Appearance Models (AAM) [107] of faces to accurately track
the speaker’s face and extract visual speech features from it, capturing both
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Fig. 4.4. Visual Front-End. Upper-Left : Mean shape s0 and the first eigenshape
s1. Upper-Right : Mean texture A0 and the first eigenface A1. Lower : Tracked face
shape and feature point uncertainty.

the shape and the texture of the face. AAM, which were first used for AV-
ASR in [329], are generative models of object appearance and have proven
particularly effective in modeling human faces for diverse applications, such as
face recognition or tracking. In the AAM scheme an object’s shape is modeled
as a wireframe mask defined by a set of landmark points {xi, i = 1 . . . N},
whose coordinates constitute a shape vector s of length 2N . We allow for
deviations from the mean shape s0 by letting s lie in a linear n-dimensional
subspace, yielding s = s0 +

∑n
i=1 pisi. The deformation of the shape s to the

mean shape s0 defines a mapping W (x; p), which brings the face exemplar
on the current frame I into registration with the mean face template. After
canceling out shape deformation, the face appearance (color values) registered
with the mean face can be modeled as a weighted sum of “eigenfaces” {Ai},
i.e., I(W (x; p)) ≈ A0(x) +

∑m
i=1 λiAi(x), where A0 is the mean texture of

faces. Both eigenshape and eigenface bases are learned during a training phase.
The first few of them extracted by such a procedure are depicted in Fig. 4.4.

Given a trained AAM, model fitting amounts to finding for each video
frame It the parameters p̃t ≡ {pt, λt} which minimize the squared texture
reconstruction error It(W (pt))−A0−

∑m
i=1 λt,iAi; efficient iterative algorithms

for this non-linear least squares problem can be found in [107]. The fitting
procedure employs a face detector [158] to get an initial shape estimate for the
first frame. To extract information mostly related to visual speech, we utilize
a hierarchy of two AAM. The first ROI-AAM spans only the area around the
mouth and is used to analyze in detail the ROI’s shape and texture; however,
the ROI-AAM covers too small an area to allow for reliable tracking. To
pinpoint the ROI-AAM we use a second Face-AAM which spans the whole
face and can reliably track the speaker in long video sequences. As visual
feature vector for speech recognition we use the parameters p̃t of the fitted
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ROI-AAM. We employ as uncertainty in the visual features the uncertainty
in estimating the parameters of the corresponding non-linear least squares
problem [415, Chapter 15]; plots of the corresponding uncertainty in localizing
the landmarks on the image for two example faces are illustrated in Fig. 4.4.

4.4.2 Audio Front-End

We use the Mel Frequency Cepstral Coefficients (MFCC) to represent audio,
as it is common in contemporary ASR systems. Uncertainty is considered
to originate from additive noise to the audio waveform. To get estimates of
the clean features we employ the speech enhancement framework proposed in
[130], adapted to work with MFCCs along the lines of [186]. The enhanced
features are derived from the noisy ones by iteratively improving a guess
based on a prior clean speech model and Vector Taylor Series approximation
[171]. The uncertainty of the resulting clean feature estimates is assumed to
be zero-mean Gaussian and for each such feature estimate a rough approxi-
mation of its uncertainty is also available at the output of the enhancement
module. In this way, fusion by uncertainty compensation is facilitated. Alter-
native enhancement procedures could equivalently be applied provided that
the variance of the enhanced features could also be roughly estimated.

4.4.3 Experiments and Discussion

The novel fusion approach proposed above is evaluated via classification ex-
periments on the Clemson University Audiovisual Experiments (CUAVE)
database [391]. Experiments are performed on the section of the database
comprising audiovisual recordings of 36 speakers uttering 50 isolated digits
each. The speakers are standing naturally still and they are framed including
their shoulders and head, as shown in Fig. 4.5. Digit models are trained on
data from 30 speakers who have been randomly selected. The rest of the data
is held out for testing. For the tests in noise, the audio recordings in this test-
ing subset have been contaminated with babble noise from the NOISEX-92
database at various SNR levels.

Mel frequency cepstral coefficients (MFCC) are extracted from 25 ms Ham-
ming windowed frames of the preemphasized (factor: 0.97) audio stream at
a rate of 100 Hz. Per audio frame, 13 coefficients are extracted. A visual fea-
ture vector is estimated per video frame, consisting of 6 shape and 12 texture
features and the visual feature stream is upsampled from the video frame
rate (29.97 FPS) to the audio rate of 100 Hz by linear interpolation. Mean
Normalization is applied to both the audio and visual features.

To demonstrate the benefits of compensating for feature uncertainty for
multimodal fusion we performed a series of digit classification experiments
and the results are summarized in Fig. 4.6. For these experiments, the first
derivatives of the audio and visual features have also been included in the
corresponding feature vectors. Uncertainty estimates for the visual features
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Fig. 4.5. Sample speaker images from the CUAVE database.

are acquired as discussed in Section 4.4.1. For the audio features, uncertainty
is computed as the squared difference between each feature and the corre-
sponding clean feature, which is considered to be available as well in this
proof-of-concept scenario.
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Fig. 4.6. Classification results with or without Uncertainty Compensation (UC)
for fusion. Simple multistream models (AV) and product-HMMs (P-AV) have been
evaluated at various SNR levels.

Audiovisual observations are modeled by digit left-right multistream Hid-
den Markov Models (AV), each with 8 states and with a single multidimen-
sional Gaussian observation probability distribution per stream and per state.
Single modality 8-state digit HMMs have also been evaluated for reference.
Further, to better account for asynchrony between the modalities, these single-
modality HMMs have been merged in product-HMMs (P-AV) as described in
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[312]. Asynchrony has been limited to two states only, while stream weights
are assumed to be equal to unity in all cases (multistream or product-HMMs).
The multimodal models have been evaluated both with and without uncer-
tainty compensation. Compensation has been implemented in the HMM de-
coder by increasing the observation variance in the modified forward algorithm
described in Section 4.3.3.

Models with uncertainty compensation in general outperform those with-
out. The best overall performance is demonstrated by the uncertainty com-
pensated product HMMs (P-AV-UC), which at 5 dB SNR yields 89.1% accu-
racy, an absolute 2.3% over the conventionally decoded product HMM. The
corresponding results for state-synchronous multi-stream HMMs are 87.2%
for uncertainty compensated decoding and 84.5% for conventional decoding.
We see that accounting for uncertainty clearly favors multimodal fusion, by
approximately 2.5% absolute, and has a cumulative beneficial effect when
combined with asynchrony modeling through product HMMs, which give an-
other 2% absolute accuracy improvement. As expected, the beneficial effect
of uncertainty compensation gets increasingly important for decreasing audio
SNR.

In a separate series of experiments we evaluate uncertainty compensation
for fusion in the training phase. The compensated models are trained on clean
audio data, while for the visual training data their corresponding variances
are taken into account into the modified EM algorithm of Section 4.3.3. This
time, both the first and the second derivatives of the audiovisual features are
also utilized. Testing with uncertainty compensation is implemented as before.
In this case however we have utilized more realistic estimates of the uncer-
tainty of the audio features following the procedure sketched in Section 4.4.2
Our experimental results summarized in Table 4.1 show that accounting for
uncertainty in the case of audiovisual fusion, either solely in testing or both
in training and testing, AV-UC and AV-UCT, respectively, improves AV-ASR
performance in most cases. Again, for the baseline audiovisual setup we used
multistream HMMs with stream weights equal to unity for both streams. The
proposed approach (AV-UC, AV-UCT) seems particularly effective at lower
SNRs.

4.5 Conclusions

The chapter has shown that taking the feature uncertainty into account con-
stitutes a fruitful framework for multimodal feature analysis tasks. This is
especially true in the case of multiple complementary information streams,
where having a good estimate of each stream’s uncertainty at a particular
moment facilitates information fusion, allowing for proper training and fully
adaptive stream integration schemes. In order for this approach to reach its
full potential, reliable methods for dynamically estimating the feature obser-
vation uncertainty are needed. Ideally, the methods that we employ to extract



4 Adaptive Multimodal Fusion by Uncertainty Compensation 125

SNR A V AV AV-UC AV-UCT

clean 99.3 75.7 90.0 - -

15 dB 96.7 - 88.0 88.3 88.0

10 dB 91.3 - 88.3 88.7 87.7

5 dB 82.0 - 87.0 88.0 87.7

0 dB 62.7 - 84.3 87.0 87.3

-5 dB 40.3 - 81.7 82.0 83.0

Table 4.1. Word Percent Accuracy (%) of classification experiments on CUAVE
database for various noise levels on the audio stream; experiments have been con-
ducted for: Audio (A), Visual (V) and Audio-Visual (AV) features, with stream
weights equal to unity, with Uncertainty Compensation in the testing phase (UC),
and with Uncertainty Compensation both in the testing and training (UCT).

features in pattern recognition tasks should accompany feature estimates with
their respective errorbars. Although some progress has been done in the area,
further research is needed before we fully understand the quantitative behav-
ior under diverse conditions of popular features commonly used in pattern
analysis tasks such as speech recognition.
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It is well accepted that the rise in the proliferation of inexpensive digital
media collection and manipulation devices has motivated the need to access
this data by content rather than by keywords. The requirements of content
based access are well understood by the digital media research community
and there is no need to elaborate further here. Parsing multimedia streams by
detection and classification of action implies modeling the dynamic nature of
visual and audio features as they evolve in time. The Hidden Markov Model
(HMM) has long been used to model dynamic behavior in audio signals. Its
power to capture complex behavior in that domain has led to widespread use
in visual content analysis because of the non-stationarity inherent in those
signals. However, subtleties in the application of HMMs are often unclear in
the use of the framework in the visual processing community and the latter
portion of this chapter sets out to expose some of these. Three applications
are considered to motivate the discussions: actions in sports, observational
psychology and illicit video content.
Sports: Work in sports media analysis and understanding has been con-
ducted for a decade now with clear motivation provided by the huge amount
of sports media broadcasting on Internet and digital television. An overview
of content analysis for sports footage in general can be found in [274]. Action
recognition here involves detection of certain plays and situations as dictated
by the game domain, e.g., pots, goals, wickets and aces.
Illicit Content: The distribution of pornographic materials has also bene-
fited from the digital revolution [105]. This kind of material is illegal in the
workplace and is referred to as illicit content in this chapter. The issue of
filtering this material has been of major concern since the introduction of the
web in the early 1990’s. Pixalert’s ‘Auditor’ and ‘Monitor’1, FutureSoft’s ‘Dy-
naComm i:scan’ 2 and Hyperdyne Software’s ‘Snitch’3 all provide image and

1 http://www.pixalert.com/product/product.htm
2 http://www.futuresoft.com/documentation/dciscan/imagerecognition.pdf
3 http://www.hyperdynesoftware.com/clean-porn.html
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128 R. Dahyot, F. Pitié, D. Lennon, N. Harte, A. Kokaram

text filtering for remote scanning of e-mail, hard disks and peripheral storage
devices (e.g., USB memory keys). While there has been noteworthy activity in
research into content-based analysis of illicit images [163, 240, 88, 557, 72, 33],
there has been little work in spotting illicit activity in video streams. The need
for such work has become stronger with the popularity of media sharing (via
YouTube and Google Video for instance) and the requirement for host sites to
police usage. Action recognition in this context requires multimodal analysis
of motion and audio features.
Scientific: Observation of people occupies much of the time of the behav-
ioral psychologist. The digital revolution has allowed video to be recorded
easily enough so that behavioral assessments are in principle more scientifi-
cally recorded and analyzed. In the experiment discussed in this paper, over
300 hours of video of children undertaking specific movement therapies were
recorded . Reviewing and scoring the video of each subject is therefore an
arduous task made difficult by the lack of easy indexing to the key actions of
interest. Action recognition in this context involves the detection and parsing
of video showing rotational motion in the region of the subject’s head (see
Fig. 5.8). This example illustrates a little known use of HMMs, i.e., not only
to classify temporal activity, but also to parse a sequence according to that
activity.

Broadly speaking there are two approaches to parsing through action. In
certain cases (Direct Parsing), specific features can be directly connected to
the action of interest and a relatively thin inference layer then yields decisions
and hence a parsed stream. In other situations (Model Based Parsing), the
connection between features and actions is not straightforward and a heavier
inference layer is needed to articulate the feature information in order to yield
a decision. In all cases, motion of objects or the camera itself is important for
action parsing, and so motion estimation and object tracking are key tools in
the content analysis arsenal. In broadcast footage, where the editing itself is
an indication of action, preliminary shot cut detection allows visual material
in each shot to be analyzed in separate units. In scientific or surveillance type
footage the actions of interest occur as impulsive events in a continuously
changing stream of material.

5.1 Direct Parsing for Actions

Both sports analysis and illicit content identification contain good material for
discussing Direct Parsing. When features are strong enough to yield detection
directly, a useful pre-processing step is the delineation of media portions which
are most likely to contain that action. In illicit content analysis, the presence
of large amounts of skin colored regions is a strong indicator of video clips of
interest. Skin regions occupy a relatively narrow range in the color spectrum
and Dahyot et al [431] compute the posterior probability p(skin|z) that each
pixel z belongs to the skin class. This p.d.f. is obtained empirically using
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skin and non-skin reference histograms from the open-source filtering Poseia
project4. While this formulation treats pixels independently, it is a sufficient
model for the initial skin segmentation. A skin binary map is then generated
by thresholding the probability map.

Sport videos usually show a finite number of different views and the actions
of interest are only contained in a subset of views. View classification can be
achieved in sports with either low level, direct feature manipulation or model
based recognition. Since the principal actions usually take place in views that
contain mostly the playing area, and the playing area is usually of a predefined
high contrast color, color features from each frame allow quick identification
of the shots that contain player action. This is a well established idea used to
good effect by several early authors [131, 187, 256, 90, 149]. Fig. 5.1) shows
example frame segmentations using color thresholding of the average frame
color used to good effect in [121]. The playing area segmentation implicit in

Fig. 5.1. Top row: Tennis frame showing unsupervised segmentation of the playing
areas using color information, and calibration of the playing area (far right). Bottom
row: The same information for snooker.

this shot segmentation exercise then yields the geometry of the view, and the
delineation of the playing area itself within the view. The Hough Transform
is typically used to do this [131, 256]. See Fig. 5.1 for an example.

5.1.1 The actions

Having delineated the important video material and the active area in the
frames, motion or change analysis can directly be matched to certain actions.

4 http://www.poesia-filter.org/
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For instance, Denman [131] observed that the position of the pots in the
snooker table were fixed in the relevant view, and the location of the pots
could be accurately determined in the calibration stage. Hence color histogram
change analysis in the region around each pot could detect a ball pot action
event. Dahyot et al [120] observed that racket hits in tennis and bat hits in
cricket are unique impulsive sounds in the audio stream. Principal Component
Analysis (PCA) from the audio tracks associated with relevant views, can
be used to design specific filters (thresholding of the PCA feature distance
from the training cluster) to perform detection of these sounds to near 100%
accuracy. As the sound is associated with a specific dynamic action, this means
that the action can be detected with high reliability, in effect by thresholding
a single PCA-derived feature.

Motion analysis of course yields a much richer action detection process.
For instance, although collision of snooker balls can be heard through the
audio track, the strength of that sound is not significantly higher than the
background noise and snooker ball collision through audio alone is unsuccess-
ful. Both global/camera motion and local object motion yield information
rich features. Global motion estimation (6-parameter affine motion) can be
achieved with weighted least squared methods, e.g., [373, 146, 112]. Kokaram
et al [273] show that global motion can be directly connected to bowler run
up and offside/onside shot actions. This is because in cricket broadcasting
the camera zooms in as the bowler runs in to throw the ball, and then zooms
out and pans left or right to follow the ball after it is hit. The rough run of
play action in soccer can also be characterized by the global translation of the
camera move [294].

Local motion information contains the motion of the players and sport
objects and hence is directly relevant to the play. Typically the objects of
interest are first segmented from the playing area in the field of view and
then tracking is instantiated in some way. Both Ekin [149] and Rea et al [430]
exploit schemes based on color histograms. However, Rea et al adopt the
popular (at the time) particle filter tracking approach while Ekin adopted a
deterministic matching scheme that selected the matching tiles on a fixed grid
over the playing area which contained the object in question. Rea et al also
introduced the notion that, given the calibrated view provided from Denman
et al [131], it is possible to alter the size of the bounding box containing the
object to be tracked, so that it compensates for the view geometry. This is
quite an important idea for sport action tracking where the view geometry
will affect the size of the object and hence the ability to match any template
color histogram. Nevertheless, Pitié et al [403] point out that color based
segmentation in sport is able to remove much of the ambiguity inherent in
many hard tracking problems. In other words, the regions of the playing area
that are not part of the playing area color are likely to be positions of objects
to be tracked. This idea leads to a Viterbi scheme for tracking that selects
the best path through candidate “blobs” of interest in each frame of the
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sequence. This latter idea is much more computationally efficient and robust
than particle filters in the sport application.

Given motion trajectories of objects it is possible to directly classify object
actions in some applications. For instance, in snooker, loss of tracking “lock”
near a pot in the table indicates that a ball has been potted. Loss of lock
can be established by thresholding the likelihood energy of the tracker in
each frame for each object [429]. In that work, a ball collision is detected by
identifying changes in the ratio between the current white ball velocity and
the average previous velocity. If the ball is in the vicinity of the cushion, a
cushion bounce is inferred. Given that the physics of colliding bodies implies
that at collision, changes in velocity in one direction are typically larger than
another, a change in velocity of 50% is used to indicate of a collision. A flush
collision is inferred when velocity changes in 50% in both directions.

5.1.2 Exploiting the Motion Field

In illicit content analysis the situation demands a more implicit motion feature
extraction approach. The problem is that only a portion of the skin covered
regions would yield information amenable to further analysis and it is not
possible to easily further delineate any obvious feature for tracking on the
basis of color or texture alone. Instead, local motion over the entire detected
skin area can be used as a feature to segment objects or regions for further
analysis. Using motion extracted from the MPEG compressed stream leads to
a computationally efficient procedure.

In order to segment the local motion regions, global motion must be com-
pensated for. Macroblocks that contain less than 30% skin pixels are cited as
non-skin blocks and are used to estimate this motion. The blocks containing
low texture (with low DCT coefficient energy) are removed from further anal-
ysis as they will contain unreliable motion information. The mode of the 2D
motion histogram of these motion vectors yields an estimate for global mo-
tion. Segmentation using the raw MPEG vectors is likely to lead to temporally
inconsistent masks because MPEG motion, based on block matching, is likely
to be temporally poor. To somewhat alleviate this , the motion field is filtered
with a 3D vector median operation using the ML3D filter outlined in Alp et
al. [24]. Once the vectors have been compensated for global motion, they are
clustered using K-means, assuming only two clusters are required for fore-
ground/background. K-means is used because it is a computationally efficient
clustering algorithm and gives satisfactory results compared to the watershed
segmentation used by [113]. The region of interest is then the logical ’and’ of
the skin map and this foreground motion map.

Fig. 5.2 shows the binary skin image and the motion compensated segmen-
tation with overlaid motion vectors for a still from When Harry met Sally.
Use of motion information helps to segment relevant skin region with higher
accuracy. Detecting periodic motion behavior has become increasingly popu-
lar for retrieval in video [119, 304, 156, 79]. The motion estimated here can



132 R. Dahyot, F. Pitié, D. Lennon, N. Harte, A. Kokaram

be directly associated with periodicity of that skin region and thus a notion
of illicit video [431].

(a) (b) (c)

Fig. 5.2. (a) Binary map of the skin segmentation; (b) Motion segmentation with
overlaid motion vectors; (c) Binary ‘and’ of motion and skin segmentations.

5.1.3 Exploiting audio

Even when not watching the video content from a multimedia stream, the
nature of the stream can still be understood from the audio information alone.
Examples of applications can be found in sport video indexing as discussed
above. This is true also of pornographic content. Periodic audio signals can
be indicative of illicit content. The famous scene from the movie When Harry
met Sally (Sally’s simulation of an orgasm, which is a series of moans and
screams) serves to illustrate the point. The scene starts with a conversation
between Sally and Harry. The loudness of the audio signal is computed over
non-overlapping temporal windows of 0.04s (duration of a 25fps video frame).
For analysis of periodic patterns, a 5-second period is used corresponding
to 125 measurements of volume. Fig. 5.3 presents two 5 second periods and
confirms that a periodic pattern is exhibited during the illicit extract (b)
more than during the conversation (a). Periodicity in the signal is usually
analyzed by autocorrelation, circular correlation or periodogram [548, 476].
Autocorrelation is used here and the autocorrelation for the two signals in
Fig. 5.3 is given in Fig. 5.4. Peaks appearing in (b) show that the signal is
periodic.

The key is to define a measure to discriminate autocorrelations of classes
similar to (a) and (b) (cf. Fig. 5.4). A simple measure is to compute the
difference between the surface defined by the minima and the maxima of the
autocorrelation. This is illustrated in Fig. 5.5 for the same audio extracts (a)
and (b).

Fig. 5.6 shows this periodicity measure during the whole scene of When
Harry met Sally. The measure is low at the start as only a conversation occurs
between the two main characters. Then starting at 95 seconds, the periodic
pattern begins. In this case, periodic moaning and screaming appears on the
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Fig. 5.3. Audio energy computed over 5s when Sally talks to Harry (a), and when
Sally is simulating (b).
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Fig. 5.4. Autocorrelation of the energy in the audio data with their maxima (circles)
and minima (squares).

audio data. By the end of the scene, standard conversation takes place again
and the measure of periodicity decreases.

Using a threshold of 4 to detect illicit content when the measure exceeds
this value, leads to a usable action spotting algorithm. It performs a perfect
segmentation in the scene of When Harry met Sally (cf. Fig. 5.6). The method
has been assessed first on non-illicit materials (20 minutes of extracts from
movies and music videos) to evaluate the false alarm rate of the method.
Various audio sources was used (music, speech, explosion, scream etc.), and
in all those, the false alarm rate is rather low at 2%. The detection rate is more
difficult to assess as periodic sounds do not occur all the time in the audio
stream. Ten minutes of eight different extracts of illicit material containing
periodic sounds have been used. Five extracts corresponding to 9 minutes of
the test have been properly detected. Three short extracts (representing 1
minute of recording) are missed. On those three files, a mixture of sounds is
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Fig. 5.5. The measure of periodicity on the half-autocorrelation is computed by the
surface between the dashed upper curve (defined by the maxima in Fig. 5.4) and
the lower dashed curve (defined by the minima in Fig. 5.4).

Fig. 5.6. Measure of periodicity in the scene of When Harry met Sally w.r.t the
time (in seconds).

occurring (speech or music) masking the relevant periodicity on the loudness
feature.

5.2 Model Based Parsing

To gain deeper access to action semantics some form of inference layer is
needed for processing the temporal evolution of the motion feature. The HMM
has been heavily exploited for this purpose. Traditionally, HMMs are well es-
tablished as a means of modeling the evolution in time of spectral features in
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the speech envelope. The underlying IID (Independent and Identically Dis-
tributed) assumption of HMMs for audio is that there is no correlation be-
tween successive speech vectors. This has strongly motivated the use of fea-
tures such as cepstrum that inherently capture the dynamic characteristics in
speech. Feature vectors are generally augmented with first and second order
derivatives to further improve speech recognition rates.

To clarify, the HMM is essentially a state machine describing the underly-
ing temporal evolution of a data sequence. In the problem of temporal analysis,
at each time index, the underlying (hidden) system is in some state and that
state generates the observed signal or feature vector. An HMM is therefore
defined through a combination of the geometry of the state machine (con-
nectivity and number of states), transition probabilities between each state
and the generating function that creates the observed signal in each state.
This is a powerful idea and can be used to statistically model inhomogeneous
signals through the transition between states. Discrete HMMs create observ-
able sequences that are quantized symbols, for example a sequence of letters
in a word, while continuous HMMs create observable sequences which are
continuous signals, for instance speech itself. The value of HMMs as a mod-
eling framework for content analysis is clear: it allows us to combine different
phases of behavior under the same process. Adapting the use of HMMs from
the audio community to the visual community is challenging.

The choice of features for visual applications is extremely diverse and in
many cases ad-hoc. Visual HMM frameworks can be better designed by ex-
amining whether discrete or continuous density models are suitable for the
application, whether feature sets are truly independent and hence full co-
variance models are not needed, and whether the HMMs are to be used for
classification or recognition purposes. This is analogous to defining whether a
speech recognition task is the classification of isolated units, or full recognition
where both unit classification and parsing are jointly performed. To under-
stand how HMMs can be used for action classification, consider the following
two examples.

5.2.1 Action in Sports

Given the extraction of the motion trajectories of objects explained previ-
ously, it is clear that the shape of that trajectory contains information about
what is happening. A simple example is the trajectory of the white ball in
snooker, if it traverses the whole table and comes to rest near a cushion, which
is probably a conservative play. Trajectory classification then is very similar
to handwriting recognition. Analogous to the approach used for on-line hand-
writing recognition [286], active regions are delineated in the tennis court and
on the snooker table (see Fig. 5.7). Those regions represent the discrete states
on which the trajectories of the balls in snooker and the players in tennis are
encoded. Hence, as the ball and players move around on the playing surface,
they generate a time series of symbols.
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(a) (b)

Fig. 5.7. Spatial encoding of the playing area.

Rea et al [430, 429] use a first order HMM to classify these sequences.
By their nature, the sequences are discrete, and hence a discrete HMM is
employed. A different model is trained using the Baum-Welch algorithm. As
the actions are well understood in terms of the geometrical layout of the table,
the models can be trained using user inputs or training videos with ground
truth. The types of actions amenable to analysis in this fashion are as follows.

Snooker Tennis
Break building Aces

Conservative play Faults
Snooker escape Double Faults
Shot to nothing Serve and volleys

Open table Rallies
Foul

5.3 Action in Psychological Assessment

Action classification using HMMs in sport relies strongly on the pre-processing
mechanisms and domain specific knowledge which allow that portion of the
video containing the action to be pre-segmented for analysis. In the Dysvideo
project (www.dysvideo.org) [274] the video recorded is of a single view in
which a stream of actions is being performed continuously. Action recognition
here involves the detection and parsing of video showing rotational motion
in the region of the subject’s head (see Fig. 5.8). What is required here is
a process not only to identify the onset of the rotation exercise, but also
to qualify when the head is rotating to the right or the left. This implies
recognizing the action and also using it to parse the video and it is possible to
use the HMM here as well. This is a subtle variation in the use of the HMM
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Fig. 5.8. Top row: a demonstration of a child performing the psychological exercise.
Bottom row: detection of the hands positions (diamonds) [403]. The solid line shows
the skin color projection and the peaks give the candidate positions (circles).

and here two continuous density HMMs are used - one representing rotation
events, the other non-rotation events. Using classic Viterbi-based recognition,
periods of rotation and non-rotation can automatically be distinguished [292].

5.3.1 Motion based features for human movement assessment

The rotation of the head is detected by analyzing features of the motion flow in
the video. To avoid dealing with the movements of the instructor, the analysis
is restricted to the region around the head of the child. Head tracking is thus
required, and a similar technique as previously discussed in this chapter has
been implemented. Skin color segmentation is first performed to isolate the
child from the background. As part of the experiment, the child is required to
wear T-shirt and shorts so a good part of visible skin belongs to the child. As
shown in Fig. 5.8, the arms are well exposed in the view. In addition they are
near vertical. Hence a vertical sum (integration) of the skin label field yields a
1D projection whose modes correspond to the horizontal position of the arms.
The head position can then be found in between both arms.

As illustrated in Fig. 5.8, occlusions by the instructor can create spurious
peaks in the projection. To find the correct peaks, a Bayesian approach is
adopted. At every frame, all the peaks of the 1D projection are collected as
candidate positions. The ensemble of these candidate positions constitutes a
trellis. The positions of the hands are retrieved by imposing some prior on the
motion of the hands and running the Viterbi algorithm through this trellis to
extract the most likely path.

With the child head isolated, features can now be derived to model the
motion of the child. These features have to be capable of determining when
the head of the child is rotating. Since rotation is a unique type of motion,
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gradient based motion estimation was performed [275] and the motion vectors
for each frame were calculated for each exercise sequence. The calculated mo-
tion vectors are only capable of showing locally translational motion. However,
looking at a larger scale, the spatial variations of the vector field can be used
to identify non-translational motion. In particular, the rotational component
of a vector field can be obtained by measuring the curl of the motion vector
field. Denote as u(x, y) and v(x, y) the x and y components of the motion
field between frames In and In+1. The locally translational motion equation
at pixel (x, y) is given by:

In+1(x + u(x, y), y + v(x, y)) = In(x, y) (5.1)

The corresponding amplitude of the curl for this 2D motion field is then
defined as:

C(x, y) =
dv(x, y)

dx
−

du(x, y)

dy
(5.2)

The curl yields an implicit measure of rotation. An example of the curl field for
an head rotation exercise is displayed on Fig. 5.9. The main peak in the curl
corresponds to the centre of rotation and its position remains stable during
the rotation.

From the curl surface, it is possible to infer two essential features: the
rotation centre and the size of the rotating object. The centre of rotation is
given by the main peak in the curl. The estimation of the rotating object
area requires delineating the head with a watershed segmentation on the curl
surface. The set of features is completed by adding the temporal derivative of
the position and the size. The reasoning behind this is that during rotation and
non-rotation events, temporal variations of the object position and size are
radically different. These four features are combined with two other features,
which are described thoroughly in [293]. A total of six features are therefore
used to characterise the rotation movement of the head.

5.3.2 Event recognition in psychological assessment

Using the feature set discussed, continuous density HMMs are trained and
used in Viterbi-based recognition to parse unseen video into periods of rotation
and non-rotation. The rotation model, denoted as R, is associated with a
dedicated continuous fully connected 4-state HMM (see Fig. 5.10). Other non-
rotation events are modeled by another model R, which is also associated with
a continuous fully connected 4-state HMM. For both HMMs, the likelihood
of being in a particular state is defined by a single Gaussian distribution.
Evaluating the Maximum A Posteriori probability (MAP) of a sequence of
observations can be done using the Viterbi algorithm. To decide if a sequence
is a rotation or non-rotation event, it is then sufficient to compute the MAP
for each model and choose the most likely.

A naive approach would be to pre-segment the video into different shots
and compare both models on these shots. In fact this is the kind of approach
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Fig. 5.9. The top four images show a selection of frames used to demonstrate a
sequence of head rotation. The bottom four images show the sequence for the curl
matrix. All of the above images have been zoomed in to improve clarity.

adopted for many sports action recognition tasks using the HMM. However,
since both events are particularly hard to differentiate, this segmentation is
not practical. A small variation in the use of the HMMs can however avoid pre-
segmenting the video and allow analyzing the stream directly. Consider the
layout of Fig. 5.10. By stacking both HMMs in a single network of HMMs, it
becomes possible to parse for R and R simultaneously. Now for each frame of
the video, the likelihood for the eight states of both HMMs is evaluated at the
same time. The extra links between exit states S8,S4 and entry states S1,S5

are the glue which allows switching between both models. They define how
likely it is to switch from a rotation model to a non-rotation model, and vice-
versa. Running Viterbi on this network of HMMs returns the MAP sequence
of states, that, by looking at which HMM they belong to, can be simply
translated in a sequence of R and R events. Thus, this HMM framework does
not simply classify previously parsed segments of video but jointly parses and
classifies the events.

Twenty three exercise videos have been selected for evaluating this frame-
work, totaling approximately 20 minutes of footage. All twenty three videos
have rotational events manually noted for ground truth used in testing. Six-
teen videos have been selected at random for training purposes and seven
selected for testing. Both HMMs for R and R are trained individually using
the Baum-Welsh algorithm. The state transitions are reported on Fig. 5.10
and the details of the Gaussian distributions parameters are listed in [293].
The transitions between both models have been obtained by looking at the
relative frequency of transitions between the models in the ground truth se-
quences. Note that these inter-model transitions can also be refined using an
iterative Viterbi re-estimation scheme [580]. Note that different HMMs topolo-
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Fig. 5.10. Topology of the HMM network. On the top, the fully connected 4-
state HMM for the non-rotational model, on the bottom the fully connected 4-state
HMM for the rotational model. Both HMMs are linked to each other to allow a
simultaneous segmentation of both models in the sequence.

gies have been examined, and it seems that the fully connected 4-state model
is optimal for this application.

The Viterbi algorithm has then been run using the two trained HMMs R
and R to recognise rotation events. The comparison between the estimates cal-
culated by the network of HMMs and the manual segmentations is presented
in Table 5.1. Table 5.1 reports the average Recall and Precision as well as
the standard deviation of the Recall and Precision for all 23 video sequences,
the 16 training sequences alone and the 7 testing sequences. A tolerance of
14 frames, roughly half a second, is allowed between the HMM estimates
and manual segmentations. This is to allow for human error in noting rota-
tion events, as a human observer can sometimes misclassify pre-rotation head
translation as rotation.
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videos Recall Precision Recall Standard Precision Standard
Deviation Deviation

All (23) 91.78 90.68 7.14 7.72
Training (16) 92.12 90.21 6.78 8.80

Test (7) 91 91.77 8.42 4.80

Table 5.1. Rotation/non-rotation segmentation results for psychological exercises.

Videos Tennis Snooker

Recall 87.89% 92.75%
Precision 94.45% 90.16%

Table 5.2. View classification results
using combined shape and color fea-
tures for tennis and snooker [432].

Videos Fault Rally

Recall 100% 100%
Precision 87.5% 89.47%

Table 5.3. Event classification re-
sults. Precision/recall for fault and
rally phases in tennis, based on mo-
tion [432].

5.4 Discussion

It is generally the case that action recognition based on specific observed fea-
tures is computationally cheaper than the use of HMMs for the same perfor-
mance gain. This is not to say that HMMs as a framework is a poor idea, only
that simple actions that can be addressed by analysis of a single feature are
better addressed as such. However, more complex actions cannot be addressed
simply and the HMM is the natural solution. Hence HMMs and Direct Pars-
ing tend to be applied to different problems. Thus pot-detection with simple
histograms achieves a recall/precision rate (100%/74%) comparable with the
HMM framework used for tennis trajectory analysis (100%/80%), yet with a
fraction of the computational load. What is interesting is that most results
published in the literature show better than 80% accuracy for both Recall and
Precision when using HMMs for action parsing (see for instance our results
in Tennis and Snooker view and event classifications on Table 5.2 and 5.3).
This is probably because the HMM framework is good at combining differ-
ent features to achieve a coherent process description. In visual media, where
extracting the ‘key feature’ is most likely impossible, this is an important
strength of HMMs. For instance, in our psychological parsing example, it is
surprising that even though we were clear about the important feature, the
measurement process was simply too noisy for anything other than the HMM
to model the process. In that example, the recall/precision of more than 90% is
encouraging. Training however remains an issue, and for complex actions long
training data sequences are needed. Perhaps this observation reflects what is
already well acknowledged in the real world of industrial design, that it is
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relatively simple to get performance up to 80%, but then extremely difficult
to create systems that are 100% reliable. HMMs help to approach this ceiling.

To assess how usable in general this technology is, it is possible to seek
evidence of exploitation of these ideas in everyday consumer equipment. No
doubt a Tivo or Sky set top box would be the ideal place to exploit action
meta-data encoded into the transmitted sports bit stream, and behavioral
psychologists attempting to use hundreds of hours of video would benefit from
these ideas. However, right now, action spotting for the everyday consumer or
scientific user is non existent. This would imply that the ideas are still new and
not robust enough for operation in the marketplace. One of the main problems
remains the generalizability of the algorithms. Direct Parsing seems to work
well, but in much of the published work, many more hours of testing seem
to be necessary. In addition, Direct Parsing requires quite a deal of domain
knowledge and the ideas seem to be very good for sports, but little else.

The future of action recognition in multimedia streams must therefore lie in
the proper exploitation of dynamic inference engines like the HMM. In speech
recognition, the use of statistical context-free grammars is widely spread [581].
We can imagine similar visual applications in which semantic parsing of videos
without shot cut detection is possible. In a sense, the community should as-
pire to the level of achievement of the speech recognition community. That
community has benefited greatly from the discovery of features (e.g., cepstral)
which give good information for speech content. In a similar way the notion of
visual words (e.g., as established by Zisserman et al [493]) could be exploited
in an HMM for temporal parsing. This is certainly not a simple task but one
step in that direction is placing more effort in unraveling the many subtleties
of the HMM. Some discussion along these lines is undertaken elsewhere in this
book.
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It is now possible to install cameras monitoring sensitive areas but it may not
be possible to assign a security guard to each camera or a set of cameras. In ad-
dition, security guards may get tired and watch the monitor in a blank manner
without noticing important events taking place in front of their eyes. Current
CCTV surveillance systems are mostly based on video and recently intelligent
video analysis systems capable of detecting humans and cars were developed
for surveillance applications. Such systems mostly use Hidden Markov Models
(HMM) or Support Vector Machines (SVM) to reach decisions. They detect
important events but they also produce false alarms. It is possible to take
advantage of other low cost sensors including audio to reduce the number of
false alarms. Most video recording systems have the capability of recording
audio as well. Analysis of audio for intelligent information extraction is a rela-
tively new area. Automatic detection of broken glass sounds, car crash sounds,
screams, increasing sound level at the background are indicators of important
events. By combining the information coming from the audio channel with
the information from the video channels, reliable surveillance systems can be
built. In this chapter, current state of the art is reviewed and an intelligent
surveillance system analyzing both audio and video channels is described.

6.1 Multimodal Methods for Surveillance

Multimodal methods have been successfully utilized in the literature to im-
prove the accuracy of automatic speech recognition, human activity recog-
nition and tracking systems [355, 595]. Multimodal surveillance techniques
are discussed in a recent edited book by Zhu and Huang [595]. In [597], sig-
nals from an array of microphones and a video camera installed in a room
are analyzed using a Bayesian based approach for human tracking. A speech
recognition system comprising of a visual as well as a audio processing unit is
proposed in [147]. A recent patent proposes a coupled hidden Markov model
based method for audiovisual speech recognition [361].

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 c© Springer Science+Business Media, LLC 20086,
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Other abnormal human activities including falling down can also be de-
tected using multimodal analysis. In [525], an audiovisual system is proposed
for fall detection. They use wavelet based features for the analysis of audio-
visual content of video. Detection of the falling people is achieved by HMM
based classification. An alternative method using several other sensor types
is described in [526]. Audio, Passive Infrared (PIR) and vibration sensors in-
stalled in a room are used to detect falling people in [526].

Similar to background/foreground segmentation in video applications,
Cristani et al. propose an adaptive method to build background and fore-
ground models for audio signals [115]. The method is based on the probabilistic
modeling of audio channel with adaptive Gaussian mixture models. In another
work, authors extend their unimodal audio based background/foreground
analysis and event detection system to an audiovisual (AV) based one [116].
They propose a method to detect and segment AV events based on the com-
putation of the so-called “audio-video concurrence matrix”.

Zhang et al. propose an approach to automatic segmentation and classi-
fication of audiovisual data based only on audio content analysis [591]. They
use simple audio features like the energy function, the average zero-crossing
rate, the fundamental frequency, and the spectral peak tracks for real-time
processing. A heuristic rule-based procedure is proposed to segment and clas-
sify audio signals and built upon morphological and statistical analysis of the
time-varying functions of these audio features.

Nam et al. present a technique to characterize and index violent scenes in
general TV drama and movies by identifying violent signatures and localize
violent events within a movie [354]. Their method detects abrupt changes in
audio and video signals by computing energy entropies over time frames.

6.2 Multimodal Method for Detecting Fight among
People in Unattended Places

Detecting fighting people in unattended places is an important task to save
lives and protect properties. Today most of the public places are under contin-
uous surveillance with cameras. However, the recordings are generally saved
to tapes for later use only after a forensic event. With the help of low cost
digital signal processing systems surveillance video can be processed online to
trigger alarms in case of violent behavior and unusual events. This will help to
reduce the time it takes to respond to such events that threaten public safety
and will prevent casualties. Performances of the video processing algorithms
generally degrade due to the inherent noise in the video data and/or camera
motion due to wind etc. Hence, it is desirable to support the decision systems
with other sensors such as audio to increase the success rate.

In this chapter, we present a system using both video and audio providing
information about violent behavior in a scene monitored by a camera and
a microphone. Both of the sensor channels are processed in real-time and
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Fig. 6.1. Overview of multimodal fight detection system.

their output are fused together to give the final decision. The overview of
our method is shown in Fig. 6.1. In this multimedia system video and audio
is processed independently and their decision results of individual processing
systems are fused to reach a final decision. In the next subsections we discuss
the video processing part of the proposed system.

6.2.1 Video Analysis

Video processing unit of the system analyzes the motion characteristics of
humans present in the monitored area in real-time to detect a fight event. In
order to accomplish this we need fast and reliable algorithms to detect humans
and analyze their actions. In our method, first, moving objects are segmented
from the scene background by using an adaptive background subtraction al-
gorithm and then segmented objects are classified into groups like vehicle,
human and human group using a silhouette based feature and SVM classifi-
cation method. After distinguishing humans from other objects, we analyze
the motion of the human groups. In case of a fight or a violence, the limbs
of the people involved in the violent action generate high frequency motion
characteristic. We decide on a fight if the motion characteristic of a human
group matches that of a fight action.

Learning Scene Background for Segmentation

There are various methods for segmenting moving objects in video. Back-
ground subtraction, statistical methods, temporal differencing and optical flow
techniques are commonly used ones. For a discussion on the details of these
methods, the reader is referred to [126]. One of the statistical methods ex-
tensively used due to its ability to robustly deal with lighting changes, repet-
itive motions, clutter, introducing or removing objects from the scene and
slowly moving objects is presented by Stauffer et al. [505]. It uses a mixture
of Gaussian models to represent each pixel on the video stream. Although
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this method gives good results, it is computationally more demanding than
an adaptive background subtraction method. Hence, we use a combination of
a background model and low-level image post-processing methods to create a
foreground pixel map and extract object features at every video frame. Our
implementation of adaptive background subtraction algorithm is partially in-
spired by the study presented in [103] and works on grayscale video imagery
from a static camera. Background subtraction method initializes a reference
background with the first few frames of video input. Then it subtracts the
intensity value of each pixel in the current image from the corresponding
value in the reference background image. The difference is filtered with an
adaptive threshold per pixel to account for frequently changing noisy pixels.
The reference background image and the threshold values are updated with
an Infinite Impulse Response (IIR) filter to adapt to dynamic scene changes.
Let In(x) represent the gray-level intensity value at pixel position (x) and
at time instance n of video image sequence I which is in the range [0, 255].
Let Bn(x) be the corresponding background intensity value for pixel position
(x) estimated over time from video images I0 through In−1. As the generic
background subtraction scheme suggests, a pixel at position (x) in the current
video image belongs to foreground if it satisfies:

|In(x) − Bn(x)| > Tn(x) (6.1)

where Tn(x) is an adaptive threshold value estimated using the image
sequence I0 through In−1. The above equation is used to generate the fore-
ground pixel map which represents the foreground regions as a binary array
where a 1 corresponds to a foreground pixel and a 0 stands for a background
pixel. The reference background Bn(x) is initialized with the first video image
I0, B0 = I0, and the threshold image is initialized with some predetermined
value (e.g., 15).

Since this system will be used in outdoor environments as well as indoor
environments, the background model needs to adapt itself to the dynamic
changes such as global illumination change (day night transition) and long
term background update (parking a car in front of a building). Therefore
the reference background and threshold images are dynamically updated with
incoming images. The update scheme is different for pixel positions which are
detected as belonging to foreground (x ∈ FG) and which are detected as part
of the background (x ∈ BG):

Bn+1(x) =

{
αBn(x) + (1 − α)In(x), x ∈ BG
βBn(x) + (1 − β)In(x), x ∈ FG

(6.2)

Tn+1(x) =

{
αTn(x) + (1 − α)(γ × |In(x) − Bn(x)|), x ∈ BG
Tn(x), x ∈ FG

(6.3)
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Fig. 6.2. Detected regions and silhouettes. Left : Detected and labeled object re-
gions. Right : Extracted object silhouettes.

where α, β (∈ [0.0, 1.0]) are learning constants which specify how much
information from the incoming image is put to the background and threshold
images.

The output of foreground region detection algorithm generally contains
noise and therefore is not appropriate for further processing without special
post-processing. Morphological operations, erosion and dilation [203], are ap-
plied to the foreground pixel map in order to remove noise that is caused by
the first three of the items listed above. Our aim in applying these operations
is to remove noisy foreground pixels that do not correspond to actual fore-
ground regions and to remove the noisy background pixels near and inside
object regions that are actually foreground pixels.

Calculating Object Features

After detecting foreground regions and applying post-processing operations to
remove noise and shadow regions, the filtered foreground pixels are grouped
into connected regions (blobs) and labeled by using a two-level connected com-
ponent labeling algorithm presented in [203]. After finding individual blobs
that correspond to objects, spatial features like bounding box, size, center of
mass and silhouettes of these regions are calculated. In order to calculate the
center of mass point, cm = (xcm

, ycm
), of an object O, we use the following

formula [463]:

xcm
=

∑n
i xi

n
, ycm

=

∑n
i yi

n
(6.4)

where n is the number of pixels in O. Both in offline and online steps of
the classification algorithm, the silhouettes of the detected object regions are
extracted from the foreground pixel map by using a contour tracing algorithm
presented in [203]. Fig. 6.2 shows sample detected foreground object regions
and the extracted silhouettes. Another feature extracted from the object is



148 Y. Dedeoglu, B.U. Toreyin, U. Gudukbay, A.E. Cetin

the silhouette distance signal. Let S = {p1, p2, . . . , pn} be the silhouette of an
object O consisting of n points ordered from top center point of the detected
region in clockwise direction and cm be the center of mass point of O. The
distance signal DS = {d1, d2, . . . , dn} is generated by calculating the distance
between cm and each pi starting from 1 through n as follows:

di = Dist(cm, pi), ∀ i ∈ [1 . . . n] (6.5)

where the Dist function is the Euclidean distance between two points a and
b.

Different objects have different shapes in video and therefore have silhou-
ettes of varying sizes. Even the same object has altering contour size from
frame to frame. In order to compare signals corresponding to different sized
objects accurately and to make the comparison metric scale-invariant we fix
the size of the distance signal. Let N be the size of a distance signal DS and
let C be the constant for fixed signal length. The fix-sized distance signal D̂S
is then calculated by sub-sampling or super-sampling the original signal DS
as follows:

D̂S[i] = DS[i ∗
N

C
], ∀ i ∈ [1 . . . C] (6.6)

In the next step, the scaled distance signal D̂S is normalized to have
integral unit area. The normalized distance signal DS is calculated with the
following equation:

DS[i] =
D̂S[i]

∑n
1 D̂S[i]

(6.7)

Fig. 6.3 shows a sample silhouette and its original and scaled distance sig-
nals. Before using Support Vector Machine algorithm, we transformed contour
signals to frequency domain in order to both reduce the amount of data for
representation of objects and gaining robustness against rotation. The char-
acteristic features of most objects are hidden in the lower frequency bands
of contour signals. We used three different transformations, Discrete Cosine
Transform (DCT), Fast Fourier Transform (FFT) and block wavelet. From
FFT, DCT and wavelet transformations, we take the first 3-15 coefficients ex-
cept the first coefficient and use these coefficients as the feature vector while
training and testing an SVM.

Classifying Objects

In order to detect fight among people, we need to identify humans in a scene
and especially we need to detect the formation of human groups. Categorizing
the type of a detected video object is a crucial step in achieving this goal. The
process of object classification method consists of two steps:
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Fig. 6.3. Feature extraction from object silhouette. Left : Silhouette extraction.
Upper-Right : Calculated distance signal, DS. Lower-Right : Scaled distance signal,
dDS.

• Offline step: A template database of sample object silhouettes is created
by manually labeling object types (one from human, human group and
vehicle) and an SVM model is created using the features obtained from
the sample objects as explained in previous section.

• Online step: The silhouette of each detected object in each frame is ex-
tracted and its type is recognized by using the SVM trained using the
sample objects in offline step.

Detecting Fight

During a fight and especially when a person is hitting another person, whole-
body displacement is relatively small whereas motion of the limbs of the people
is high. Hence, we analyze the motion track of a human group and the motion
inside the moving region of the human group. Sample silhouettes of people
during a fight are shown in Fig. 6.4.

For each object region R we calculate the number of moving pixels ∈ R by
using frame differencing method to approximate the motion inside the region.
The pixels which satisfy the following condition are considered as moving:

|In(x) − In−1(x)| > Tn(x) (6.8)
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Fig. 6.4. Silhouettes of people during a fight.

where In and Tn correspond to image frame and adaptive threshold at
time n respectively as explained in Section 6.2.1. Let αR be the ratio of the
number of moving pixels to the total number of pixels inside the region R.
Then for object regions where αR ≥ γ a violent action is possible, where γ is
a threshold constant obtained by tests.

6.2.2 Audio Analysis

In a typical surveillance environment, microphones can be placed near the
cameras. Audio signals captured by sound sensors can be used to detect
screams in audio stream as a possible indication of violent actions. Shouting
has a high amplitude, non-stationary characteristic sound, whereas talking
has relatively lower amplitude peakiness. Typical shouting and talking audio
recording samples are shown in Fig. 6.5. In this case, the two sound waveforms
are clearly different from each other. However, these waveforms may “look”
similar as the distance from the sensor increases. For some other cases such
as when there is background noise it may become even harder to distinguish
different sound activities. In addition, the difference between these two types
of signals becomes obvious after wavelet domain signal processing.

Typically audio recordings are due to regular chatting between people
and background noise. When there is shouting or broken glass sounds etc
this indicates an unusual event. Significantly loud voice or sound activity is
detected using the Teager Energy operator based speech features originally
developed by Jabloun and Cetin [229]. The sound data is divided into frames
as in any speech processing method and the Teager energy based cepstral
(TEOCEP) [229] feature parameters are obtained using wavelet domain signal
analysis. The sound signal is divided into 21 non uniformly divided subbands
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Fig. 6.5. Sample audio signals. Left : Shouting signal. Right : Talking signal.

similar to the Bark scale (or mel-scale) giving more emphasis to low-frequency
regions of the sound.

To calculate the TEOCEP feature parameters, a two-channel wavelet filter
bank is used in a tree structure to divide the audio signal s(n) according to
the mel-scale as shown in Fig. 6.6, and 21 wavelet domain sub-signals s1(n),
l = 1, . . . , L = 21, are obtained [152]. The filter bank of a biorthogonal
wavelet transform is used in the analysis [259]. The lowpass filter has the
transfer function

Fig. 6.6. The subband frequency decomposition of the sound signal.

Hl(z) =
1

2
+

9

32
(z−1 + z1) −

1

32
(z−3 + z3) (6.9)

and the corresponding high-pass filter has the transfer function

Hh(z) =
1

2
−

9

32
(z−1 + z1) +

1

32
(z−3 + z3) (6.10)

For every subsignal, the average Teager energy el is estimated as follows:

el =
1

Nl

Nl∑

n=1

|Ψ [sl(n)]| ; l = 1, . . . , L (6.11)

where Nl is the number of samples in the lth band, and the Teager energy
operator (TEO) is defined as follows:
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Ψ [s(n) = s2(n) − s(n + 1)s(n − 1) (6.12)

The TEO-based cepstrum coefficients are obtained after log-compression
and inverse DCT computation as follows:

TC(k) =
L∑

l=1

log el cos

[
k(l − 0.5)π

L

]
; k = 1, . . . , N (6.13)

The first 12 TC(k) coefficients are used in the feature vector. The TEO-
CEP parameters are fed to the sound activity detector algorithm described in
[525] to detect significant sound activity in the environment.

When there is significant sound activity in the room, another feature pa-
rameter based on variance of wavelet coefficients and zero crossings is com-
puted in each window. The wavelet signal corresponding to the [2.5 kHz, 5.0
kHz] frequency band is obtained after a single stage wavelet filterbank. The
variance, σ2

i of the wavelet signal and the number of zero crossings, Zi, in
each window i is computed.

Broken glass and similar sounds are not quasi-periodic in nature. As talk-
ing is mostly quasi-periodic because of voiced sounds the zero crossing value,
Zi, is small compared to noise like sounds. When a person shouts the vari-
ance of the wavelet signal σ2

i increases compared to the background noise and
regular chatting. So we define a feature parameter κi in each window i as

κi =
σ2

i

Zi
, where the index i indicates the window number. The parameter κi

takes non-negative values.

Fig. 6.7. Three state Markov model. Three Markov models are used to represent
speech, walking, and fall sounds.

Activity classification based on sound information is carried out using
HMMs. Three three-state Markov models are used to represent shout and
talking sounds as shown in Fig. 6.7. In Markov models, S1 corresponds to the
background noise or no activity. If sound activity detector (SAD) indicates
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that there is no significant activity, S1 is selected. If SAD detects sound ac-
tivity in a sound frame, then either S2 or S3 is chosen as the current state
according to the value of κ.

A non-negative threshold value, T , that is small enough to reflect the peri-
odicity in step sounds is introduced in the κ-domain. If |κ| < T , S2; otherwise,
S3 is attained as the current state. The classification performance of HMMs is
based on the number of state transitions, rather than specific κ values. Hence,
choice of T does not affect the values of the transition probabilities in different
models.

In order to train HMMs, the state transition probabilities are estimated
from 20 consecutive κi values corresponding to 20 consecutive 500-sample-long
wavelet windows covering 125 msec of audio data.

During the classification phase a state history signal consisting of 20 κi

values are estimated from the sound signal acquired from the audio sensor.
This state sequence is fed to Markov models corresponding to shouting and
talking cases in running windows. The model yielding the highest probability
is determined as the result of the analysis of the sound sensor signal.

Feature parameter κ takes high values for a regular speech sound. Conse-
quently, the value of a33 is higher than any other transition probabilities in
the talking model. For the shout case, a relatively long noise period is followed
by a sudden increase and then a sudden decrease in κ values. This results in
higher a11 value than any other transition probabilities. In addition to that,
the number of transitions within, to and from S2 are notably fewer than those
of S1 and S3. The state S2 in the Markov models provides hysteresis and it
prevents sudden transitions from S1 to S3 or vice versa, which is especially
the case for talking.

6.2.3 Deciding on a Fight or Violent Behavior

Audio and video analysis results are combined at each frame of the video
sequence in the proposed system. In order to accomplish this audio sample
frames are matched to video frames by combining the video frame rate and
audio signal sampling rate.

For each time frame, video processing results and audio processing results
are combined with the simple AND operator and the final decision is given on
the result of this operator. In other words, we require both of the processing
channels to decide on fight action to raise an alarm.

6.2.4 Experimental Results

Experimental results on sample video sequences containing violent action sce-
narios are presented in this section. All of the tests are performed by using
a video player application, vPlayer, on Microsoft Windows XP Professional
operating system on a computer with an Intel Pentium dual core 3.2GHz CPU
and 1 GB of RAM.
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Human Human Group Vehicle Success Rate

Human 20 0 0 100 %

Human Group 1 18 1 90 %

Vehicle 0 2 18 90 %

Table 6.1. Confusion matrix for object classification.

We tested our object classification algorithm on sample video clips. After
collecting sample silhouettes and applying transformations to create feature
vectors, we obtained an SVM model. In support vector machine training al-
gorithm, we used Radial Basis Function (RBF) kernel with gamma=1, and
tested the performance of SVM algorithm with different types transforma-
tions (FFT, DCT and wavelet) and different coefficient numbers. In our tests,
feature vectors obtained by wavelet transform slightly outperformed other
transformation methods. We used three object classes in our tests: human,
human group and vehicle. We used 248 random objects for training the SVM
model (93 human, 102 human group and 53 vehicle pictures) and 60 different
objects (20 from each group) for testing the algorithm. The confusion matrix
is shown in Table 6.1.

We also tested our multi-model fight detection algorithm on sample video
clips with audio. The results are shown in Tables 6.2, 6.3 and 6.4 as confusion
matrices. In both audio-only and video-only processing, the success rate for
detecting fight is high. However, the false alarm rate which is calling a normal
action as fight is high in both cases. When we fuse the results of these two
channels together we get a lower false alarm rate and thus a higher average
success rate.

Fight Normal Success Rate

Fight 13 2 86.7 %

Normal 8 13 61.9 %

Average 74.3 %

Table 6.2. Confusion matrix for multimodal fight detection using both Audio &
Video.

6.3 Conclusion

In this chapter, we proposed a novel multimodal system for real-time violence
detection. Video data and audio signals are analyzed independently with the
proposed algorithms and the analysis results from these two signals are fused
together to reach a final decision. The test results show that the presented
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Fight Normal Success Rate

Fight 14 1 93.3 %

Normal 10 11 52.3 %

Average 72.9 %

Table 6.3. Confusion matrix for multimodal fight detection using only Audio.

Fight Normal Success Rate

Fight 13 2 86.7 %

Normal 9 12 57.1 %

Average 71.2 %

Table 6.4. Confusion matrix for multimodal fight detection using only Video.

method is promising and can be improved with some further work to reduce
false alarms. The use of audio signals in parallel with video analysis helps us
to detect violent behavior with less false alarms.

A weakness of the proposed video analysis algorithm is that it is view
dependent. If the camera setup is different in training and testing, the success
rate will be lower. Automating video object classification method with online
learning would help to create an adaptive algorithm.
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Movies constitute a large portion of the entertainment industry, as over 9.000
hours of video are released every year [21]. As the bandwidth available to
users increases, online movie stores – the equivalent of popular digital mu-
sic stores – are emerging. They provide users an opportunity to build large
personal movie repositories. The convenience of digital movie repositories will
be in doubt, unless multimedia data management is employed for organizing,
navigating, browsing, searching, and viewing multimedia content. Semantic
content-based video indexing offers a promising solution for efficient digital
movie management.

Semantic video indexing aims at extracting, characterizing, and organizing
video content by analyzing the visual, aural, and textual information sources
of video. The need for content-based audiovisual analysis has been realized by
the MPEG committee, leading to the creation of the MPEG-7 standard [16].
The current approaches for automatic movie analysis and annotation mostly
focus on the visual information, while the aural information receives little or
no attention. However, the integration of the aural information with the visual
one can improve semantic movie content analysis.

The predominant approach to semantic movie analysis is to initially ex-
tract some low-level audiovisual features (such as color and texture from im-
ages or energy and pitch from audio), derive some mid-level entities (such
as video shots, keyframes, appearance of faces and audio classes), and finally
understand video semantic content by analyzing and combining these entities.
A hierarchical video indexing structure is displayed in Fig. 7.1.

Movie analysis aims at obtaining a structured organization of the movie
content and understanding its embedded semantics like humans do. It has
been handled in different ways, depending on the analysis level and the as-
sumptions on the film syntax described in Section 7.1. Most movie analysis
efforts concentrate on movie scene or shot detection, while other works focus
on the separation of dialogue and non-dialogue scenes. Several efforts have
been made for dialogue scene detection, some efforts have concentrated to

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
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Video

p Visual Features

Colour, Texture,

Motion, etc

p AudioFeatures

Energy, Pitch,
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p Video Shots

p Keyframes
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p Audio Classes

p Video Scenes

p Video Events

p Speaker Identity

Fig. 7.1. Generic video indexing structure, where arrows between nodes indicate a
causal relationship (adapted from [300]).

action scene detection, and limited work has also been performed for movie
genre categorization.

In this chapter, we put emphasis on the detection of dialogue and action
scenes in a video sequence using visual and aural cues. Dialogue and action
scenes can be interpreted as high-level semantic features that are appropriate
for inclusion in more sophisticated organization, browsing, and retrieval tech-
niques applied to movies and television programs. Their successful detection
provides significant semantic information for the video sequence, that is espe-
cially useful for managing certain classes of video content. Dialogue detection
in conjunction with face or speaker identification methods could also identify
the scenes where two (or more) particular persons are conversing. Further-
more, a quantitative comparison between the duration of dialogue scenes and
the duration of non-dialogue scenes in a movie can be used for movie genre
classification. As far as action scene detection is concerned, it can be applied
to a film summarization system, where users can quickly and easily browse
the content of a film. Dialogue and action scenes follow specific patterns con-
cerning their constituent shots, a fact that makes their detection in a video
sequence feasible.

The main aim of this chapter is to review the research related to dia-
logue and action scene detection and to assess qualitatively and quantitatively
the various methods. These methods can be broadly classified as video-only,
audio-only, or audiovisual ones. A second classification distinguishes them to
deterministic methods and probabilistic ones.

The remainder of the chapter is organized as follows. In Section 7.1, the ba-
sic principles of film structure and video editing rules for constructing dialogue
and action scenes are discussed. The most commonly employed figures of merit
are defined in Section 7.2 along with the datasets utilized in movie analysis
literature. Sections 7.3 and 7.4 review the basic principles and state-of-the-art
algorithms for visual-only, audio-only, and audiovisual dialogue-action scene
detection, respectively. Conclusions are drawn in Section 7.5.

7.1 Film Syntax Basics

A movie or television program can be divided into shots and scenes. A shot is
defined as a single continuous camera recording, whereas a scene consists of a
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concatenation of shots, which are temporally and spatially cohesive in the real
world, however not necessarily cohesive in the projection of the real world on
film [20, 111]. Rasheed and Shah give a similar definition, stating that similar
shots of a movie must be combined in order to form a scene or a story unit
[424]. The notion of computable scenes (c-scenes) is proposed to characterize
scenes that can be reliably computed using only low-level features [514]. They
are derived by fusing information from audio and visual boundary detectors.
Another term that has been proposed is the logical story unit (LSU) which is
a high-level temporal movie segment characterized by a single event (dialog,
action scene). The LSU segmentation is based on the investigation of visual
information and its temporal variations in a video sequence. A movie can be
modeled as a sequence of states and events, organized in space and time, by
creating a state graph representing the film story [542].

(a) (b) (c)

Fig. 7.2. Sample frames from shots usually employed in dialogue scenes. (a) Side
view of two persons. (b) Frontal view of one person. (c) Over-the-shoulder shot (a
shot of one person taken from over the shoulder of another person).

As far as dialogues are concerned, a dialogue scene can be defined as a set of
consecutive shots, which contain conversations of people [20, 277]. In Fig. 7.2,
frames from shots broadly employed in dialogue scenes are depicted. In such
a scene, the persons who participate in the dialogue will be present either one
at a time (Fig. 7.2(b)) or all in the same image frame, in frontal or side view
(Fig. 7.2(a) and 7.2(c)). In general, a dialogue scene includes a significantly
repetitious structure of shots depicting the dialogue participants. However, a
dialogue scene might include shots which do not contain any conversation or
do not even depict a dialogue participant. For example, shots of other persons
or objects might be inserted in the dialogue scene. In addition, the shot of
the speaker may depict the rear view of his head. Evidently, these shots add
to the complexity of the dialogue detection problem. According to Chen and
Özsu, the elements of a dialogue scene are: the people, the conversation, and
the location where the dialogue takes place [94]. The basic shots in a 2-person
dialogue scene are:

• Type A shot: Shot of actor A’s face.
• Type B shot: Shot of actor B’s face.
• Type C shot: Shot with both faces visible.
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Fig. 7.3. The concept of the 180◦ line (adapted from [288]).

• Type # shot: Shot displaying something relevant to the dialogue, or not
covered by the three previous types of shots.

Lehane et al. state that usually in a 2-person dialogue, an A-B-A-B struc-
ture of camera shots exists [288]. Moreover, the camera must remain fixed on
the focus of interest. The most widely used dialogue scene convention is the
concept of the 180◦ line. The line is set up at the start of the scene and it is
typically followed in the remainder of the scene so that viewers can follow the
action. Generally, this means that the camera must remain on the same side
of the actors, as illustrated in Fig. 7.3.

Concerning film syntax for action sequences, Lehane et al. mention that it
is a general concept meant to keep the audience’s attention at all times [287].
The objective of the director is to excite the viewer by a rapid succession of
shots, strong movement within shots, and variation in the length of shots.
Pans, tilts, and zooms are used to follow characters moving within shots.
According to Chen and Özsu, the rules governing the actor arrangement and
camera placement in simple action scenes are the same to those applied to
simple dialogue scenes, even though, actors move rapidly and cameras follow
the actors in action scenes [94].

A 2-person dialogue scene, from the audio point of view, can be defined
as a proper alternation between two speakers [277]. Dialogues in an audio
framework can be detected by using the cross-correlation function between
the speaker indicator functions or their respective cross-power spectra. A set
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of recognizable dialogue acts, according to semantic content, based on audio
analysis, is proposed in [279]: (i) Statements (ii) Questions (iii) Backchannels
(iv) Incomplete utterance (v) Agreements (vi) Appreciations.

In contrast with dialogue scenes, the audio channel in an action scene
usually consists of less speech and more environmental sounds or music [95].
The soundtrack of an action scene is chosen in a way to create tension and
suspense to the viewers. It is much different than the soundtrack of a dialogue
scene, where, if music accompanies the dialogue, it is discrete and unobtrusive.
Hence, action scenes exhibit a higher audio energy due to tense music, explo-
sions, people fights, etc. A more detailed description of the basic principles of
film syntax can be found in [46, 70].

7.2 Figures of merit and movie datasets

The most commonly used figures of merit in dialogue and action scene de-
tection experiments are recall (R), precision (P ), and F1 measure, defined
as

P =
hits

hits + false alarms
, R =

hits

hits + misses
, F1 =

2R · P

R + P
. (7.1)

Hits are defined as correctly detected dialogue or action scenes. False alarms
should not have been detected as dialogue/action scenes, but are nevertheless
detected as such. Misses are defined as scenes that should have been identified
as dialogue/action scenes, but were not. Other performance metrics used for
the evaluation of dialogue/action scene detection algorithms are the hit rate,
the miss rate, and the false hit rate [401]. The authors employing these figures
of merit, argue that scene determination is equivalent to eliminating the shot
boundaries which do not correspond to scene boundaries. The hit rate is the
ratio of correctly eliminated shot boundaries plus the correctly detected scene
boundaries over the number of all shot boundaries. The miss rate is the ratio
of missed scene boundaries to the number of all shot boundaries. The false hit
rate determines the ratio of falsely detected scene boundaries to the number of
all shot boundaries. Finally, Alatan et al. [19, 20, 21] employ the shot accuracy
measure, which is defined as the ratio of correct shot assignments to the total
number of shots.

The movies and TV shows used for dialogue and action scene detection
are listed in Table 7.1. It should be noted that there is no common database
used for dialogue and action scene detection experiments.

7.3 Visual-only and Audio-only Dialogue and Action
Scene Detection

In this section, a review of the recent advances in dialogue and action scene de-
tection techniques, using only the visual information or the aural one, will be
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Table 7.1. Movies and TV shows used in scene analysis and dialogue detection
experiments.

Movie Reference Movie Reference

MPEG-7 Data Set (CDs 20-22)1 [21][19][20] Braveheart [300]

Crouching Tiger, Hidden Dragon [94][95] When Harry Met Sally [300]

Gladiator [94][95] Forrest Gump [401]

Patch Adams [94] Groundhog Day [401]

Analyze That [277] A Beautiful Mind [424]

Cold Mountain [277] Goldeneye [424]

Jackie Brown [277] Gone in 60 Seconds [424]

Fellowship of the Ring [277] Terminator II [424]

Platoon [277] Top Gun [424]

Secret Window [277] Four Weddings and a Funeral [514]

Dumb and Dumberer [287][288] Pulp Fiction [514]

Kill Bill vol. 1 [287][288] Sense and Sensibility [514]

Reservoir Dogs [287][288] CNN Headline News [587]

Snatch [287][288] Dr. No [587]

American Beauty [288] Jurassic Park III [587]

High Fidelity [288] Larry King Live [587]

Shaft [288] Mission Impossible II [587]

Life of Brian [288] Scream [587]

Legends of the Fall [299][300] The Others [587]

1 The MPEG-7 Data Set CDs 20, 21, and 22 contain a Spanish TV movie, a Spanish
TV sitcom, and a Portuguese TV sitcom, respectively.

undertaken. The features extracted from the video and audio are described,
selected algorithms are examined, and their results are presented and dis-
cussed.

The proposed approaches for dialogue and action scene detection can be
classified into two main categories: deterministic and probabilistic ones. Deter-
ministic techniques exploit the repetitive structure exhibited by visually sim-
ilar shots that are temporally close to each other [29, 94, 277, 287, 288, 401,
514], whereas probabilistic techniques use Hidden Markov Models (HMMs)
to assign semantically meaningful scenes to model states. The video content
is segmented into dialogue or action scenes using the state transitions of the
HMM [161, 568].

7.3.1 Deterministic Approaches

The deterministic approaches to visual-only or audio-only dialogue and ac-
tion scene detection are based on the extraction of low-level features such as
color, motion, texture, silence ratio, and audio energy. Shots which exhibit
similar attributes and are temporally close to one another are clustered to-
gether. The presence of a dialogue scene is revealed by a repetitious structure
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of similar shots or a repetitive change of speakers. However, errors emerge in
methods where only low-level information is used. A scene simply exhibiting
a repetitive shot structure could be classified as a dialogue scene. Further-
more, errors might appear when a speaker dominates the dialogue and the
other participants are less frequently shown. Hence, most recent methods in-
clude post-processing steps in order to eliminate the errors and improve their
performance. For action scene detection, dialogue detection is extended by
employing the average shot length and measuring motion activity.

In [514], dialogues are detected by exploiting the local topology of an image
sequence and employing statistical tests. A topological framework examining
the local metric relationships between images is introduced. The analysis as-
sumes that each shot in the video is represented by a single keyframe. The
topological graph TG = {V,E} of a sequence of K images is a fully connected
graph with vertices being the video sequence images and edges specifying the
metric relationship between the images. Let TMAT be the K × K adjacency
matrix of TG. An ideal dialogue is a structure, where every 2nd keyframe is
alike, while adjacent keyframes differ. In such a case, TMAT contains ones in
the 1st off-diagonal elements, zeros in the 2nd off-diagonal elements, ones in
the 3rd off-diagonal elements, and so forth. The following periodic analysis
transform ∆(n) is proposed to identify the aforementioned structure in a se-
quence of N shot keyframes. If oi, i ∈ {0, N − 1}, is a time-ordered sequence
of keyframes, then

∆(n) = 1 −
1

N

N−1∑

i=0

d(oi, omod(i+n,N)), (7.2)

where d() is a color histogram-based distance function. The system detects
dialogues by determining whether ∆(2) > ∆(1) and ∆(2) > ∆(3) are statisti-
cally significant decisions. The dialogue detection algorithm applies a sliding
window to the entire video sequence. Experiments performed in three movies
(cf. Table 7.1) have produced a recall rate between 80% and 91% at a pre-
cision rate fluctuating between 84% and 100%. However, the system under
discussion is operating at its full potential only when the dialogue exhibits a
periodic structure.

In [29], shot interactivity is introduced. It expresses how actively shots
relate to one another in a particular time segment. The algorithm is based on
the observation of repetitive appearances of similar shots. Similar shots are
determined with respect to the characteristics of the included frames, such as
the color histogram and the luminance layout of mosaic picture [30]. Dialogue
scenes are identified by clustering groups of neighboring shots whose shot
interactivity exceeds a threshold. Two parameters, dialogue density δ, which
expresses the sum of shot durations, and dialogue velocity v, which expresses
how frequently the speakers change, are defined:
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δαb =

b∑
i=α

ραb,iλi

b∑
i=α

λi

vαb =

b∑
i=α

ραb,i

b∑
i=α

λi

(7.3)

where λi is the duration of shot i, and ραb,i is a binary variable which admits
the value 1, when shot i contains a dialogue in the shot range [α, b]. The shot
interactivity from shot α to shot b, is the product of δαb and vαb, which in-
creases either with the increase of the length of shots which include a dialogue
or when frequent transitions between the speakers occur. Experiments were
conducted in 4 news shows and 3 variety shows. On average, the recall rate
for news programs was 86% and the corresponding precision was 94%. For
variety shows, both rates were found to be 100%.

In [288], a dialogue detection system is described, that employs low and
mid-level visual features. The system is depicted in Fig. 7.4. The first level
of the system involves the processing of low-level visual data, determining
the shot boundaries and the motion present within each shot of a video se-
quence. Histogram-based shot boundary detection is applied in order to ex-
tract keyframes, whereas the motion extraction block employs the motion vec-
tors exported from the MPEG-1 bitstream. In the second level of the system,
visually similar shots, that are temporally close, are clustered together. The
clustering method is based on the difference of the average color histogram
between the shot keyframes [573]. At the same level, camera motion analysis
is performed determining if significant motion is present in a shot. In the third
level of the system, dialogue detection is performed. First, potential dialogue
sequences (PDS) are identified solely from the camera motion analysis output.
Hence, when a number of consecutive static shots is encountered, a PDS is
declared. When non-static shots begin to dominate over the static ones, the
PDS ends. After having identified all PDS, a further processing step is applied
in order to verify whether these scenes are indeed dialogue scenes or not. This
process involves the calculation of the so-called cluster to shot ratio ̺ = C/S
(denoted as C : S in [288]) in the PDS, which determines the percentage of vi-
sually unrelated shots in the PDS. The ratio ̺ is simply the number of clusters
that have shots within the PDS to the total number of shots in the PDS. The
authors argue that a low value of ̺ is consistent with a dialogue scene, since
it reveals a repetitive structure of similar shots. Five movies with a total of
171 manually marked-up dialogues were used to evaluate system performance
(cf. Table 7.1). Scenes marked as a dialogue by the authors were sequences of
five or more shots containing at least two people conversing, where the main
focus of the sequence is conversation. For instance, two people conversing in
the middle of a car chase would not apply to that rule, as the main focus
was considered to be in the chase. The average recall and precision rates were
86% and 77.8%, respectively. However, as the authors state, an improvement
in the exact start and end points of dialogues is necessary.
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Fig. 7.4. Dialogue detection system proposed by Lehane et al. [288].

The same authors have extended the work in [288] by proposing a similar
configuration for detecting action sequences in movies, where the final level
of the system differs [287]. The detection of action sequences is performed by
using a state machine that was created to search for sequences that match the
structure of action scenes. In particular, the state machine looks for sequences
in which temporally short shots with high motion activity are dominant. These
potential action sequences (PAS) are either accepted or rejected as being true
action sequences based on the clustering input. The authors consider that an
action scene should lead to a quite high ratio ̺. For this reason, they apply
an empirically chosen threshold to this ratio. Experiments were performed in
4 movies (cf. Table 7.1), and the reported recall and precision rates exceeded
80% and 40%, respectively.

Chen and Özsu proposed a rule based model to extract simple dialogue
and action scenes instead of clustering shots into scenes using image features
[94]. The rules utilized the four types of shots defined in Section 7.1, which
determine whether participants’ faces are visible in the shot of a 2-person
dialogue scene or not and define what type of shot may follow an A, B, or C-
type shot. Based on these rules, a finite state machine (FSM) was developed,
being able to extract simple (2-person) dialogue or one-on-one fighting scenes.
More specifically, a small number of consecutive shots, used to establish a
dialogue scene, was characterized as elementary dialogue scene. The authors
empirically identified 18 different types of elementary dialogue scenes.

The concept of a video shot string (VSS) is introduced, in order to repre-
sent the temporal occurrence of the different shot types in a video sequence.
A VSS is a set of video shots whose types belong to one of the four video shot
types defined in Section 7.1. A VSS of a dialogue scene (VSSDS) is defined
as a VSS whose prefix is the one for the elementary dialogue scenes expanded
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by appending some of the three types of shots which include the dialogue
participants’ faces. An elementary dialogue scene ending with a shot A can
be expanded by appending either shot B or C. An elementary dialogue scene,
with no additional shots appended to it, is classified as a VSSDS as well. In
order to extract VSSDS, the VSS is input to a deterministic FSM. A dialogue
scene is extracted when a path corresponding to a VSSDS is encountered.
The differentiation between dialogue and action scenes was based on the av-
erage shot length in a scene, considering that the average shot length in action
scenes is smaller than that in dialogue scenes. Experiments were conducted in
3 movies for dialogue detection and 2 movies for action detection (cf. Table
7.1). The movies were first segmented into shots and the actor appearances
were manually marked and used as input to the FSM. For the three movies,
the dialogue scene detection algorithm exhibited a recall rate equal to 96.6%,
90.51%, and 97.28% at precision rate of 89.47%, 80.52%, and 91.79%, respec-
tively. Correspondingly, the action scene detection algorithm had a recall rate
equal to 84% and 81.6%, at a precision rate of 84%, 76.56%, respectively.

In [401], a technique for clustering shots into settings or dialogues is de-
scribed. The dialogue scenes are considered to have alternating shots of the
participants with only one character displayed at any given time in frontal
view. A face detector [448] and a face recognition method are also employed.
Faces in neighboring frames, which exhibit similarity in position and size,
are assigned to groups called face-based classes. In a second step, face-based
classes with similar faces within the same shot are merged by the eigenfaces
[393] in order to obtain the largest possible face-based classes. A sequence
of at least three consecutive shots is identified as a dialogue when the fol-
lowing conditions apply. At least one face-based class should be present in
each shot, being no more than 1 s apart from its neighbor. Additionally, the
eigenface merged face-based classes should alternate within the shot sequence.
Experiments performed in two movies for the determination of dialogue scene
boundaries yielded hit rates equal to 80% and 86%, miss rates equal to 7%
and 4%, and false hit rates 13% and 10%, respectively.

In [277], 2-person dialogue detection using audio-only information is pre-
sented. Each speaker is characterized by an indicator function that defines
that he or she is present at each time instant. Two dialogue detection rules
were developed and assessed. The first rule relies on the value of the cross-
correlation sequence of a pair of indicator functions at zero time lag that is
compared to a threshold. The second rule is based on the cross-power in a
particular frequency band that is also compared to a threshold. Experiments
have been carried out in order to validate the feasibility of the aforementioned
dialogue detection rules by using ground-truth indicator functions determined
by human observers hearing the audio channel from six different movies. A
total of 25 dialogue scenes and another 8 non-dialogue scenes were employed.
Experiments were performed in 6 movies, exhibiting a precision rate of 100%
at a recall rate of 85.7%, yielding an F1 measure of 0.922. Moreover, in [276] a
variety of artificial neural networks has also been tested for dialogue detection
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on a larger set than that in [277]. This set includes 27 dialogue scenes and
another 12 non-dialogue ones extracted from the same 6 movies. All artificial
neural networks are fed by the entire cross-correlation sequence and the cross-
power spectral density. In particular, multilayer perceptrons (MLPs), voted
perceptrons, radial basis function neural networks, support vector machines
(with and without application of AdaBoost and MultiBoost), and 3-layered
particle swarm optimization-based MLPs were employed. The experimental
results indicate that, the highest F1 measure achieved by the three-layered
particle swarm optimization-based MLP is equal to 0.934. The reported F1

measure can be treated as an upper bound of the actual figure of merit for
dialogue detection in movies that could be obtained by employing speaker
turn detection, speaker clustering, and speaker tracking.

7.3.2 Probabilistic Approaches

In addition to deterministic approaches, probabilistic ones using HMMs have
been proposed and implemented for the efficient characterization of dialogue
scenes [420, 421]. The design of an HMM consists in defining its states, spec-
ifying its topology, and determining the parameters at each state. Then, the
HMM parameters are computed using the Baum-Welch algorithm and the best
state sequence for a given input is determined using the Viterbi algorithm.

HMMs were used by Ferman and Tekalp for extracting the semantic con-
tent of a video sequence [161]. The HMM models the time-varying structure
of a video sequence. It is characterized in terms of its component shots, as
depicted in Fig. 7.5(a) and is used to classify each shot of the sequence into
one among three categories represented by HMM states. The Dialogue state
represents self-repetitive shots that reoccur over a temporal window, while the
Progression state encompasses the shots introducing new camera setups. The
Misc state accounts for miscellaneous entries, not included in the two other
states. The HMM used to model the dialogue state is illustrated in Fig. 7.5(b).
The Est state represents an establishing shot, used to determine the location
of the action, whereas the Master state refers to master shots which provide
a view of all characters in the scene. The states 1-Shot and 2-Shot correspond
to shots including the respective number of people.

Each shot of the video sequence is characterized by a single feature vector
given as input to the HMMs. The necessary features include the normalized
distance of the median histograms of two successive shots, the normalized pixel
differences between the last frame of a shot and the first frame of its immedi-
ate successor, and the normalized distance between the direction histograms
of the last few frames of a shot and the first few frames of its neighbor. The di-
rection histogram is comprised from the orientations of the individual motion
vectors. Furthermore, shot duration, shot activity, as well as shot transition
type (cut, fade, or dissolve) are incorporated in the feature vector. After hav-
ing computed the feature vectors for each shot, the Baum-Welch algorithm is
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Progressi-

on
MiscDialogue

(a)

Misc2-Shot1-ShotMasterEst

(b)

Fig. 7.5. HMMs proposed in [161]: (a) HMM for characterizing video sequences (b)
HMM for dialogue sequences.

employed to train the HMMs, and shot labeling is performed using the Viterbi
algorithm.

7.3.3 Performance Assessment

The results achieved for visual-only or audio-only dialogue and action scene
detection techniques, we have reviewed, are summarized in Table 7.2. When
the authors provide results for each movie or TV program separately, the
average results, measured over the total number of dialogue and action scenes
in all movies, have been included in Table 7.2. In addition, we have computed
the F1 metric for all the methods described. It should be noted however, that,
since most of these results have been obtained on different test sets, they are
not directly comparable and are included only to provide a rough comparison
between the various methods.

Table 7.2. Results for visual-only and audio-only dialogue or action scene detection.

Reference Recall Precision F1

Aoki (dialogue detection - news) [29] 86.0% 94.0% 0.898

Aoki (dialogue detection - variety) [29] 100.0% 100.0% 1.000

Chen and Özsu (dialogue detection) [94] 94.8% 87.4% 0.909

Kotti et al. (dialogue detection) [277] 85.7% 100.0% 0.922

Lehane et al. (dialogue detection) [288] 86.0% 77.8% 0.816

Sundaram and Chang (dialogue detection) [514] 86.0% 95.0% 0.903

Chen and Özsu (action scene detection) [94] 82.3% 78.6% 0.804

Lehane et al. (action sequence detection) [287] 92.6% 59.4% 0.533

Reference Hit Rate Miss Rate False Hit Rate

Pfeiffer et al. (dialogue detection) [401] 84% 12% 3.9%
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Fig. 7.6. Movie analysis framework proposed by Li et al. (adapted from [300]).

7.4 Audiovisual Dialogue and Action Scene Detection

In this section, methods are discussed, which exploit both video and audio in-
formation, for efficient detection of dialogue and action scenes. Some methods
are extensions of those described in Section 7.3, incorporating the informa-
tion contained in both the video and the audio channels. The techniques for
audiovisual dialogue and action scene detection are classified as deterministic
[95, 288, 300, 587] or probabilistic [21, 19, 20, 299, 572], like in Section 7.3.
While the deterministic methods usually cluster consecutive shots by utilizing
appropriate measures, most probabilistic approaches use HMMs representing
the semantic events in their states. The deterministic methods are presented in
Section 7.4.1, whereas the probabilistic methods are described in Section 7.4.2.

7.4.1 Deterministic Approaches

Dialogue detection using audiovisual cues is performed in [300], where three
types of events are identified: 2-speaker dialogues, multiple-speaker dialogues,
and hybrid events, which are defined as events containing less speech and more
visual action. The framework proposed by Li et al. is depicted in Fig. 7.6.
At first, shot detection is employed using a color histogram-based method
[297]. Visually related shots, that are close to each other, are grouped into
shot sinks. The similarity between two shots is determined by the Euclidean
distance or the histogram intersection between the color histograms of the
two shot keyframes.

In the next stage, each sink is assigned into one of three predefined classes:
periodic, partly-periodic, and nonperiodic. The categorization of each sink is
based on the so-called shot repetition degree, which is determined by the dis-
tance between each pair of neighboring shots. Therefore, a distance sequence
is determined for each sink. Intuitively, a distance sequence corresponding to
a periodic class would exhibit a smaller standard deviation than the one be-
longing to a nonperiodic class. The k-means algorithm is employed to group
all sinks into the 3 classes based on the distance sequences characteristics.

All the temporally overlapping sinks are grouped into one event. Dur-
ing the event grouping procedure, a boundary between two events is de-
clared, when a progressive scene appears that consists of some sequential
nonrepetitive shots. The events extracted are organized into 2-speaker dia-
logues, multiple-speaker dialogues, and hybrid events based on the number
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of periodic, partly-periodic, and nonperiodic shot sinks included in the event.
In addition, two more features are computed for each event in order to vali-
date the aforementioned classification: the event length, which should exceed
a certain threshold, and the temporal variance, which is defined as the average
variance of the color histogram of all shots within the event. The temporal
variance indicates the amount of motion included in the event.

In order to reduce the errors inherent in the deterministic approaches, a
post-processing step is included, where audio and face characteristics are in-
corporated. 5 audio features, namely the short-time energy, average short-time
zero-crossing rate, fundamental frequency, energy band ratio, and silence ra-
tio are extracted. A rule-based heuristic procedure incorporating these audio
features is performed aiming at classifying the shots into one of the following
classes: silence, speech, music, and environmental sounds. An event is con-
firmed as a dialogue, if at least 40% of its shots contain speech. The facial
analysis includes the detection of frontal faces. A simple face tracking sys-
tem is employed, that retains only the faces appearing in several consecutive
frames. A 2-speaker dialogue is considered as not having more than one face in
most of its component shots. Hence, when more faces are detected, the event
is relabeled as multiple-speaker dialogue. The system was evaluated with en-
couraging results in three movies, containing 80 events in total. When audio
and facial cues were integrated, the false alarms were eliminated yielding a
precision rate of 100% and a recall rate higher than 83% in all movies. How-
ever, the amount of heuristic rules and employed thresholds requires a large
validation set in addition to the test set in order to experimentally verify the
rules and the corresponding thresholds associated to the rules.

A deterministic FSM for classifying video scenes is employed in [587].
Three different categories of scenes are identified: conversation, suspense, and
action. The proposed method exploits the structural information of the scenes
based on shot motion and audio energy as well as mid-level features, i.e., per-
son identity based on face detection [547]. The weighted sum of the extracted
low-level features constitutes the activity intensity parameter, which is con-
sidered to admit low values in conversation scenes. The activity intensity
parameter is used as an input to the FSM. The other input, person identity,
stems from the face detection process. The middle frame of each shot is se-
lected as its keyframe and the face detector is applied, which is expanded in
order to include the torso of the detected person. The similarity between two
shots is measured by the color histogram intersection between the detected
bodies. The shots are then clustered based on the body similarity using the
k-means algorithm.

The FSM for classifying conversational scenes is shown in Fig. 7.7. The
character having the largest cluster is denoted as Primary Speaker and the
character with the second largest cluster is the Secondary Speaker. The tran-
sitions of the FSM are determined from the feature values of the shots in the
scene. The state Accept of the FSM is reached and a Conversation scene is
declared, when there are at least two main speakers with more than three ap-
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pearances in the scene. Similar structures are proposed for the FSMs defining
the other types of scenes. The FSM for classifying action scenes is depicted
in Fig. 7.8. To classify a scene as an action scene, the scene must contain a
certain number of shots with action intensity greater than a defined thresh-
old level. The FSMs for conversational, suspense, and action scene detection
have been tested in a number of movies and TV shows, where a total of 35
conversational, 16 suspense, and 33 action scenes were included. The dialogue
scene detection method yielded a recall rate of 94.3% and a precision rate of
97.1%. The precision and recall rates for the suspense scenes were 100% and
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93.7%, respectively, whereas the action scenes exhibited precision and recall
rates equal to 91.4% and 97%, respectively.

Lehane et al. extended their work [288], described in Section 7.3, by in-
corporating audio analysis [288]. Low-level audio features are extracted: high
zero-crossing rate, silence ratio, and short-time energy. A filter determines if
an audio clip contains only silence by using the silence ratio and the short-
time energy. Afterwards, in order to detect the presence of speech or music,
a Support Vector Machine (SVM) that uses the zero crossing rate and the
silence ratio is employed. Audio information is fed to an audio-only FSM and
color and motion information is input to a video-only FSM. The output of the
two FSMs is combined in order to classify the scenes. The combined system
delivered a recall rate of 96.5% and a precision rate of 81.33%. The average
precision using the combined audio and visual system is 3% lower than the
average precision of the visual system, but there is a 12.5% improvement in
recall. However, the performance evaluation assumed that a correct decision
was taken, even when a part of the dialogue sequence was identified or a
manually marked dialogue scene was split into two separate conversations.

Chen et al. have also extended their work [94] to dialogue and action scene
extraction by incorporating audio cues in their system presented in Section 7.3
in order to improve accuracy [95]. The underlying model is an FSM coupled
with audio features that are determined using an audio classifier. The audio
features employed are the zero-crossing rate variance, the silence ratio, and
the harmonic ratio. An SVM is trained to classify the audio channel as either
speech with environmental sound or music encountered in dialogue scenes or
environmental sound mixed with music encountered in action scenes. Hence,
if the audio channel of a scene has more speech segments than enviromen-
tal/music segments, then the corresponding scene will be considered as a
dialogue scene. The experiments performed in 2 movies (cf. Table 7.1). The
dialogue scenes exhibited a recall rate equal to 96.60% and 90.51% for the
2 movies respectively, whereas the corresponding precision rates were 93.4%
and 86.11%. The recall rate for action scenes was 100% in both movies and
the precision rates were 86% and 81.08%, respectively.

7.4.2 Probabilistic Approaches

An approach for multimodal dialogue detection using HMMs has been pro-
posed by Alatan et al. [19, 20, 21]. Each shot is classified into speech, silence,
or music based on the audio content and at the same time face occurrences
and location changes are detected by analyzing the video content. Face anal-
ysis is limited to declaring the existence or not of a face in the shot, whereas
the location analysis uses histogram-based methods. Each shot is assigned a
token based on the analysis of the audiovisual features, i.e., ‘SFC’ for silence,
face existence, and location change. The tokens are used to identify dialogue
scenes. More specifically, they are used as input, in order to obtain the state
sequence that is most likely to have generated that sequence of tokens. At the
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output of the HMM, each shot of the input sequence is labeled according to
the type of scene that best fits it. The block diagram of the system is depicted
in Fig. 7.9.
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Fig. 7.9. Block diagram of the proposed system in [20]. T – speech; S – silence; M –
music, F – face existence; N – no face; C – location change; U – location unchanged.

Two different topologies for the HMM are proposed, as shown in Fig. 7.10a
and 7.10b. The left-to-right topology (Fig. 7.10a) includes three state types,
called establishing scene, dialogue scene, and transitional scene. The circu-
lar topology (Fig. 7.10b) has only two states, the dialogue scene and the
non-dialogue scene. The left-to-right topology requires the knowledge of the
number of scenes in the content as a prerequisite; hence, its practical use is in
doubt, since this information is not usually available a priori. The HMMs are
trained by a video data set to determine the state-transition probabilities.

Two TV sitcoms and one movie were used to compare the two different
HMM topologies. The ground truth was obtained by manually by assigning ev-
ery shot to a scene type (establishing, dialogue, transitional, or non-dialogue),
depending on the HMM topology. Furthermore, the audiovisual features, used
to produce the tokens, were also manually obtained. The system performance
was evaluated using the shot accuracy measure. The left-to-right topology per-
formed better compared to its circular counterpart, obtaining a shot accuracy
measure for each video sequence equal to 92%, 98%, 99% against 71%, 82%,
94% respectively. It is worth mentioning that the input data in the left-to-
right topology had to be manually pre-segmented, so that they contained one
establishing scene, one dialogue scene and one transitional scene. Otherwise,
it is not possible to use the left-to-right topology. Obviously, this process is
not feasible in practice.

As a next step, different observation and training sets are applied to the
circular topology, in order to further examine its performance. In addition to
the shot accuracy measure, a scene accuracy measure was introduced, which
was defined as the ratio of correct scene assignments to the total number of
scenes being either dialogue or non-dialogue ones. Three different sets of ob-
servation symbols were used, audio only, audio and face as well as audio, face,
and location. These different data sets were also tested for different training
data. The best results (scene accuracy around 91%) were obtained when face
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Fig. 7.10. (a) Left-to-right and (b) circular HMM state diagram for dialogue scenes
in movies (adapted from [21]).

and audio were the observed features. The location change detection had no
impact or even negative impact to the system. The system was unable to dis-
tinguish between dialogue and monologue scenes, since it did not incorporate
any information about the occurrences of the detected face, i.e., if a face had
appeared before in the sequence.

Another work on movie scene segmentation was performed by Yaşaroǧlu
and Alatan. [572]. In particular, an algorithm for automatic multimedia con-
tent summarization by segmenting a video into semantic scenes using HMMs
was proposed. Two different content types with different properties are de-
fined: dialogue-driven content and action-driven content. Several visual and
audio descriptors are extracted, such as face detection descriptors using sim-
ple heuristics in the YUV color space and audio features including the zero-
crossing rate and the autocorrelation function. In addition, location change
analysis is performed using a windowed histogram comparison method. Fi-
nally, frame motion vectors are analyzed for detecting motion activity. The
variance of magnitudes of these vectors is calculated for each frame and vari-
ances are averaged for each shot. The HMM, which has a 2-state topology
(the states are labeled as “Dialogue” and “Non-dialogue”), is trained using
the Baum-Welch algorithm and the above low-level features as input. Exper-
iments were performed on TV series and family movies yielding recall and
precision rates 95% and 80%, respectively.

7.4.3 Performance Assessment

The results obtained by the reviewed deterministic and probabilistic audiovi-
sual dialogue detection methods are summarized in Table 7.3, along with the
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performance measure used. Again, since these results have been obtained on
different data sets, they are not directly comparable and should be treated as
such.

Table 7.3. Results for audiovisual dialogue, action scene, or suspense scene detec-
tion.

Reference Recall Precision F1

Chen et al. (dialogue detection) [95] 92.9% 88.9% 0.909

Lehane et al. (dialogue detection) [288] 96.5% 81.3% 0.882

Li et al. (dialogue detection) [300] 94.2% 100.0% 0.970

Yaşaroǧlu and Alatan (dialogue detection) [572] 95.0% 80.0% 0.868

Chen et al. (action scene detection) [95] 100% 82.5% 0.904

Zhai et al. (action scene detection) [587] 97.0% 91.4% 0.941

Zhai et al. (suspense scene detection) [587] 93.7% 100% 0.967

Reference Shot Accuracy

Alatan (dialogue detection - Left-to-Right) [21] [20] 0.96

Alatan (dialogue detection - Circular) [21][20] 0.82

7.5 Conclusions

As the amount of multimedia content available in the web, broadcast data
streams or personal collections grows exponentially, multimedia data manage-
ment becomes an indispensable tool for efficient and user-friendly information
browsing and retrieval. Dialogue and action scene detection techniques aim at
segmenting a video into semantically meaningful units with respect to these
particular semantic concepts, i.e., the existence or not of either a dialogue or
an action scene.

Low and mid-level features, extracted from visual and audio analysis, are
exploited. The predominant approach is to classify temporally close shots that
demonstrate similar low level features and search for repetitive shot patterns.
However, this strategy may cause semantically unrelated shots to be clustered
together, based on their low-level similarity. In addition, visually dissimilar
shots that are commonly inserted in semantically coherent scenes, introduce
a non-deterministic nature to these scenes. Hence, statistical models, employ-
ing HMMs, have also been applied. It has been observed that probabilistic
techniques exhibit improved performance over deterministic classifiers. In ad-
dition, techniques integrating visual and audio information, using either low
or mid-level features, yield more accurate dialogue and action scene detection
than those employing video only or audio only information. This comes as
no surprise, since both channels are rich in information in what concerns di-
alogue and action scene detection. Joint analysis of audio and video not only
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increases accuracy but also helps in resolving challenging situations, e.g., cases
where the audio channel in a dialogue scene is noisy, or when shots that are
not related to the dialogue are inserted between shots depicting the conversing
persons.

A major problem in this area of research is that a universal and commonly
accepted definition of a “dialogue scene” or an “action scene” does not ex-
ist, and most authors introduce their own perspective. Nor does a common,
annotated database for the performance evaluation of the proposed methods
exists. Every method is tested in a different relatively small data set, where
the ground truth is subjectively defined. Hence, the comparison of the pre-
sented results can not lead to a safe conclusion. The creation of a common
annotated database for scene analysis and dialogue detection experiments,
that would enable comparative evaluation of different methods, is necessary.
This database could include the movies and TV shows enlisted in Table 7.1.
A standardization of the experimental protocols and figures of merit will also
help to establish a common baseline for method comparison and evaluation.

Generally speaking, limited research has been performed so far in the fields
of dialogue and action scene detection, especially when compared to other re-
lated fields, e.g., shot boundary detection or event detection in sports videos.
Although the existing methods seem to achieve satisfactory performance, the
rather limited test corpora used to benchmark most of the algorithms, com-
bined with the lack of standardization mentioned above, does not allow one
to reach safe conclusions on whether these algorithm would be able to per-
form sufficiently well on a real world application. It seems, however, that most
methods would rather fail to operate consistently, efficiently and robustly in
such a case. For example, most methods would definitely face difficulties in
identifying dialogue scenes whose structure or style of filming does not fol-
low the standard patterns. In addition, a large number of methods are based
on information derived from other video and audio analysis tasks, such as
face detection and recognition, shot boundary detection, audio classification,
speaker clustering, or speaker identification. The limitations of these “auxil-
iary” techniques, inevitably reflect onto the performance of the corresponding
dialogue or action scene detection algorithms.

As a conclusion, one can state that the problem of dialogue and action
scene detection is far from being considered as solved, making it a promising
research field and leaving ample room for innovative research, especially to-
wards the direction of joint analysis of audio and visual information, which
seems to be the most natural and fruitful one.

Further Reading

For further information on video content analysis techniques and their appli-
cation in multimedia mining, retrieval and organization, one can consult the
books [67, 173, 298, 443] or the articles in the special issue [28]. A recently
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proposed method for dialogue detection is presented in [280], whereas a tool
for the annotation of audiovisual data (including dialogue scenes) is reported
in [261].
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Although human perception appears to be automatic and unconscious, com-
plex sensory mechanisms exist that form the preattentive component of un-
derstanding and lead to awareness. Considerable research has been carried
out into these preattentive mechanisms and computational models have been
developed for similar problems in the fields of computer vision and speech
analysis. The focus here is to explore aural and visual information in video
streams for modeling attention and detecting salient events. The separate au-
ral and visual modules may convey explicit, complementary or mutually ex-
clusive information around the detected audiovisual events. Based on recent
studies on perceptual and computational attention modeling, we formulate
measures of attention using features of saliency for the audiovisual stream.
Audio saliency is captured by signal modulations and related multifrequency
band features, extracted through nonlinear operators and energy tracking.
Visual saliency is measured by means of a spatiotemporal attention model
driven by various feature cues (intensity, color, motion). Features from both
modules mapped to one-dimensional, time-varying saliency curves, from which
statistics of salient segments can be extracted and important audio or visual
events can be detected through adaptive, threshold-based mechanisms. Au-
dio and video curves are integrated in a single attention curve, where events
may be enhanced, suppressed or vanished. Salient events from the audiovisual
curve are detected through geometrical features such as local extrema, sharp
transitions and level sets. The potential of inter-module fusion and audiovi-
sual event detection is demonstrated in applications such as video key-frame
selection, video skimming and video annotation.

8.1 Approaches and Applications

Attention in perception is formally modeled either by stimulus-driven, bottom-
up processes, or by goal-driven, top-down mechanisms that require prior
knowledge of the depicted scene or the important events [314]. The former,

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
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bottom-up approach is based on signal-level analysis with no prior information
acquired or learning incorporated.

In analyzing the visual and aural information of video streams the main
issues that arise are: i) choosing appropriate features that capture important
signal properties, ii) combining the information corresponding to the different
modalities to allow for interaction and iii) defining efficient salient event de-
tection schemes. In this chapter, the potential of using and integrating aural
and visual features is explored, to create a model of audiovisual attention,
with application to saliency-based summarization and automatic annotation
of videos. The two modalities are processed independently with the saliency
of each described by features that correspond to physical changes in the de-
picted scene. Their integration is performed by constructing temporal indexes
of saliency that reveal dynamically evolving audiovisual events.

Multimodal video analysis (i.e., analysis of various information modali-
ties) has gained in popularity with automatic summarization being one of the
main targets of research. Summaries provide the user with a short version of
the video that ideally contains all important information for understanding
the content. Hence, the user may quickly access and evaluate if the video is
important, interesting or enjoyable. The tutorial in [574] classifies video ab-
straction into two main types: key-frame selection which yields a static small
set of important video frames and video skimming (loosely referred to in this
chapter as video summarization) which results in a dynamic short subclip
of the original video containing important aural and visual spatiotemporal
information.

Earlier works were mainly based on processing only the visual input.
Zhuang et al. [596] extracted salient frames based on color clustering and
global motion, while Ju et al. [242] used gesture analysis in addition to the
latter low-level features. Furthermore Avrithis et al. [35] represent the video
content by a high-dimensional feature curve and detect key-frames at the
curvature points. Another group of methods is based on frame clustering to
select representative frames [425, 536]. Features extracted from each frame
of the sequence form a feature vector and are used in a clustering scheme.
Frames closer to the centroids are then selected as key-frames. Other schemes
based on sophisticated temporal sampling [513], hierarchical frame clustering
[425, 183], where the video frames are hierarchically clustered by visual simi-
larity, and fuzzy classification [140] have also proposed summarization schemes
with encouraging results.

In an attempt to incorporate multimodal or/and perceptual features in
the analysis and processing of the visual input, various systems have been de-
signed and implemented within a variety of projects. The Informedia project
and its offsprings combined speech, image, natural language understanding
and image processing to automatically index video for intelligent search and
retrieval [498, 201, 200]. This approach generated interesting results. In the
Video Browsing and Retrieval system (VIRE) [428] a number of low-level
visual and audio features are extracted and stored using MPEG-7, while Me-
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diaMill [419] provides a tool for automatic shot and scene segmentation for
general content. IBMs CueVideo system [17] automatically extracts a number
of low- and mid-level visual and audio features. The visually similar shots
are clustered using color correlograms. Going one step further towards human
perception, Ma et al. [313, 314] proposed a method for detecting the salient
parts of a video that is based on user attention models. They used motion, face
and camera attention along with audio attention models (audio saliency and
speech/music) as cues to capture salient information and identify the audio
and video segments to compose a summary.

We present a saliency-based method to detect important audiovisual seg-
ments and focus more on the potential benefits of feature-based attention
modeling and multi-sensory signal integration. As content importance in a
video stream is quite subjective, it is not easy to evaluate methods in the field.
Hence, in an attempt to assess the proposed method both quantitatively and
qualitatively, we present video summarization results on commercial videos
and samples from the MUSCLE movie database3, annotated with respect to
saliency of the scene evaluated by human observers. The reference videos are
clips from the movies “300” and “Lord of The Rings I”. Automatic and man-
ual annotations are studied and compared on the selected movie clips with
respect to audiovisual saliency of the depicted scenes.

The remaining of the chapter is organized as follows: Section 8.2 and Sec-
tion 8.3 describe the audio saliency and the visual saliency modules, respec-
tively. Schemes for detecting salient events are proposed in Section 8.4 and
experimental evaluation and applications are given in Section 8.5. Conclusions
are drawn and open issues for future work are discussed in Section 8.6.

8.2 Audio Saliency

Streams of audio information may be composed from a variety of sounds, like
speech, music, environmental sounds (nature, machines, noises), a result of
multiple sources that correspond to natural, artificial, man-made, on purpose
or randomly occurring phenomena. An audio event is a bounded region in
the time continuum, in terms of a beginning and end, that is characterized
by a variation or transitional state to one or more sound-producing sources.
Events are “sound objects” that change dynamically with time, while retaining
a set of characteristic properties that identify a single entity. Perceptually,
event boundaries correspond to points of maximum quantitative or qualitative
change of physical features [584].

Aural attention is triggered perceptually by changes in the involved events
of an audio stream. These may be changes of the nature/source of events,
newly introduced sounds, or transitions and abnormalities in the course of a
specific event, in real-life or synthetic recordings. Such transitions correspond

3 http://poseidon.csd.auth.gr/EN/MUSCLE_moviedb
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to changes of salient audio properties, e.g. invariants, whose selection is crucial
for efficient audio representations for event detection and recognition.

Biological observations indicate that one of the segregations performed
by the auditory system in complex channels is in terms of temporal modula-
tions, while according to psychophysical experiments, modulated carriers seem
more salient perceptually to human observers compared to stationary signals
[250, 529]. Moreover, following Gestalt theories, the salient audio signal struc-
tures constitute meaningful audio Gestalts which in turn define manifestations
of audio events [342]. Thus, we formulate a curve modeling audio attention
based on saliency measures of meaningful temporal modulations in multiple
frequencies.

8.2.1 Audio Processing and Salient Features

Processing the audio stream of multimodal systems, involves confronting a
number of subproblems that compose what may be thought of as audio un-
derstanding. In that direction, the notions of audio events and salient audio
segments are the backbone of audio detection, segmentation, recognition and
identification. Starting from lower and going toward higher level, i.e., more
complicated problems, the subproblems of audio analysis can be roughly cate-
gorized as: a) detection, where the presence of auditory information is verified
and separated from silence or background noise conditions [153]; b) atten-
tion modeling and audio saliency, where the perceptual importance is valued
[313, 314]; c) source separation, where the auditory signal is decomposed to
different generating sources and sound categories (e.g. speech, music, natural
or synthetic sounds); d) segmentation and event labeling, where the aural ac-
tivity is assigned boundaries and dynamic events are sought after [310]; and e)
recognition of sources and events, where the sources and events are matched
to stored lexicon representations.

Descriptive signal representations are essential for all the above subprob-
lem categories and much work has been devoted in robust audio feature ex-
traction for applications [421, 245, 310, 314]. Psychophysical experiments indi-
cate the nature of features responsible for audio perception [331, 529]. These
are representations both in the temporal and spectral domain, that incor-
porate properties and notions such as scale, structure, dimension and per-
ceptual invariance. Well-established features for audio analysis, classification
and recognition include time-frequency representations (e.g., spectrograms),
temporal measurements (e.g., energy, zero-crossings rate, pitch, periodicity),
spectral measurements (e.g., component or resonance position and variation,
bandwidth, spectral flux) and cepstral measurements like the Mel-Frequency
Cepstral Coefficients (MFCCs).

Recent advances in the field of nonlinear speech modeling relate salient
features of speech signals to their inherent non-stationarity and the presence
of micro-modulations in the amplitude and frequency variation of their con-
structing components. Experimental and theoretical indications about mod-
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ulations in various scales during speech production led to proposing an AM-
FM modulation model for speech in [320]. The model was then employed for
extracting various “modulation-based” features like formant tracks and band-
width, mean amplitude and frequency of the components [411] as well as the
coefficients of their energy-frequency distributions (TECCs) [137].

This model can be generalized to any source producing oscillating signals
and for that purpose it is used here to describe a large family of audio sig-
nals. Speech, music, noise, natural and mechanical sounds are the result of
resonating sources are modeled as sums of amplitude and frequency (AM-FM)
modulated components. The salient structures then are the underlying modu-
lation signals and their properties (i.e., number, scale, importance) define the
audio representation.

Audio AM-FM Modeling and Multiband Demodulation

Assume that a single audio component is modeled by a real-valued AM-FM

signal of the form x(t) = a(t) cos
(∫ t

0
ω(τ)dτ

)
, with time-varying amplitude

envelope a(t) and instantaneous frequency ω(t) signals. Demodulation of x(t)
can be approached via the use of the Teager-Kaiser nonlinear differential en-
ergy operator Ψ [x(t)] ≡ [ẋ(t)]2 − x(t)ẍ(t), where ẋ(t) = dx(t)/dt [518, 244].
Applied to an AM-FM signal x(t), Ψ yields the instantaneous energy of the
source producing the oscillation, i.e., Ψ [x(t)] ≈ a2(t)ω2(t), with negligible
approximation error under realistic constraints [320]. The instantaneous en-
ergy is separated to its amplitude and frequency components by the energy
separation algorithm (ESA) [320] using Ψ as its main ingredient.

In order to apply ESA for demodulating a wideband audio signal, mod-
eled by a sum of AM-FM components, it is necessary to isolate narrow-
band components in advance. Bandpass filtering decomposes the signal in
frequency bands, each assumed to be dominated by a single AM-FM compo-
nent in that frequency range. In the multiband demodulation analysis (MDA)
scheme, components are isolated globally using a set of frequency-selective
filters [78, 411, 153]. Here MDA is applied through a filterbank of linearly-
spaced Gabor filters h (t) = exp(−α2t2) cos(ωct), with ωc the central filter
frequency and α its rms bandwidth. Gabor filters are chosen for being com-
pact and smooth while attaining a minimum joint time-frequency uncertainty
[174, 320, 78].

Demodulation via ESA of a single frequency band, obtained by one Gabor
filter, can be seen in Fig. 8.1(b). The choice of the specific band corresponds
to an energy-based dominant component selection criterion that will be fur-
ther employed in the following for audio feature extraction. Postprocessing by
median filtering may be used to alleviate singularities in the resulting demod-
ulation measurements.
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Fig. 8.1. Short-time audio processing and dominant modulation extraction. (a) a
vowel frame (20ms) from a speech waveform is analyzed in multiple bands (bot-
tom) and (b) the dominant, w.r.t average source energy, band is demodulated in
instantaneous amplitude and frequency (smoothed by 13-pt median) signals.

Audio Features

The AM-FM modulation superposition model for speech [320], motivated by
the presence of multi-scale modulations during speech production [518], is
applied here to generic audio signals. Thus an audio signal is modeled by
a sum of narrowband amplitude and frequency varying, non-stationary si-
nusoids s(t) =

∑K
k=1 ak(t) cos (φk(t)), whose demodulation in instantaneous

amplitude ak(t) and frequency ωk(t) = dφk(t)/dt is obtained in the output
of a set of frequency-tuned Gabor filters hk(t) using the energy operator Ψ
and the ESA. The filters globally separate modulation components assuming
a priori a fixed component configuration.

To model a discrete-time audio signal s[n] = s(nT ), we use K discrete
AM-FM components whose instantaneous amplitude and frequency signals are
Ak[n] = ak(nT ) and Ωk[n] = Tωk(nT ), respectively. The model parameters
are estimated from the K filtered components using a discrete-time energy
operator Ψd(x[n]) ≡ (x[n])2 − x[n − 1]x[n + 1] and a related discrete ESA,
which is a computationally simple and efficient algorithm with an excellent,
almost instantaneous, time resolution [320]. Thus, at each sample instance n
the audio signal is represented by three parameters (energy, amplitude and
frequency) for each of the K components, leading to 3 × K feature vector.

A representation in terms of a single component per analysis frame emerges
by maximizing an energy criterion in the multi-dimensional filter response
space [78, 153]. For each frame m of N samples duration, the dominant mod-
ulation component is the one with maximum average Teager energy (MTE):

MTE[m] = max
1≤k≤K

1

N

X

n

Ψd((s ∗ hk)[n]), (m − 1)N + 1 ≤ n ≤ mN (8.1)
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where ∗ denotes convolution and hk the impulse response of the kth filter.
The filter j = arg maxk(MTE) is submitted to demodulation via ESA and
the instantaneous modulating signals are averaged over a frame duration to
derive the mean instant amplitude (MIA) and mean instant frequency (MIF)
features:

j = arg max
1≤k≤K

(Ψd[(s ∗ hk)(n)]), MTE[m] = (Ψd[(s ∗ hj)(n)]) (8.2)

MIA[m] = (|Aj [n]|) , MIF[m] = (Ωj [n]). (8.3)

Thus, each frame yields average measurements for the source energy, instant
amplitude and frequency from the filter that captures the “strongest” mod-
ulation signal component. In this context strength refers to the amount of
energy required for producing component oscillations. The dominant compo-
nent is the most salient signal modulation structure and energy MTE may
be thought of as the salient modulation energy, jointly capturing essential
amplitude-frequency content information.

The resulting three-dimensional feature vector of the mean dominant mod-
ulation parameters

Fa[m] = [Fa1, Fa2, Fa3] [m] = [MTE,MIA,MIF] [m] (8.4)

is a low dimensional descriptor, compared to the potential 3×K vector from all
outputs, of the “average instantaneous” modulation structure of the audio sig-
nal involving properties such as level of excitation, rate-of-change, frequency
content and source energy.

In discrete implementation, audio analysis frames usually vary between
10-25 ms. For speech signals, such a choice of window length covers all pitch
duration diversities between different speakers. Sequentially, the discrete en-
ergy operator is applied to the set of filter outputs and an averaging operation
is performed. Central frequency steps of the filter design varying between 200-
400 Hz, yield filterbanks consisting of 20-40 filters.

An example of the short-time features extracted from a movie audio stream
(1024 frames from “300”) can be seen in Fig. 8.2. The chosen segment was
manually annotated by a human observer, with respect to the various sources
present and their boundaries. These are indicated by the vertical lines in the
signal waveform. The different sources include speech (2 different speakers),
music, noise, sound effects and a general “mix-sound” category. The wide-
band spectrum is decomposed using 25 filters, of 400 Hz bandwidth, and the
dominant modulation features are shown in (b), after median (7-point) and
Hanning (5-point) post-smoothing. Features are mapped from audio-to-video
temporal index by keeping maximum intraframe values. Note how a) the en-
velope features complement the frequency measure (i.e high-frequency sounds
of low energy and the opposite), b) manual labeling matches sharp transitions
to one or more features and c) frequency is characterized by longer, piece-wise
constant “sustain periods.”
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Fig. 8.2. Feature extraction from multi-source audio stream. (a) Waveform with
manual labeling of the various sources/events (vertical lines) and wideband spec-
trum with filterbank, (b) top: MTE (solid) and MIA (dashed), bottom: MIF with
dominant carrier frequencies superimposed (1024 frames from “300” video).

This representation in terms of the salient modulation properties of sounds,
is additionally supported by cognitive theories of event perception [331]. For
example, rapid amplitude and frequency modulations are related to temporal
acoustic micro-properties of sounds that appear to be useful for recognition
of sources and events. A simplistic approach for the structure of audio events
involves three parts: an onset, a relatively constant duration and an offset
portion. Event onset and decay are captured by the envelope variations of the
amplitude and energy measurements. On the other hand, spectral variations,
retrieved perceptually from the sustain period, and variations in the main
signal component are captured by the dominant frequency feature.

8.2.2 Audio Attention Curve

The attention curve for the audio signal is constructed by the saliency values,
provided by the set of audio features (8.4). Conceptually, salient information is
modeled through source excitation and average rate of spectral and temporal
change.

The simplest scenario of an audio saliency curve is a weighted linear com-
bination of the normalized audio features

Sa[m] = w1Fa1[m] + w2Fa2[m] + w3Fa3[m], (8.5)

where [w1, w2, w3] is a weighting vector. Normalization is performed by least
squares fit of their individual value ranges to [0, 1]. For this chapter we use
equal weights w1 = w2 = w3 = 1/3, which amounts to uniform linear averag-
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Fig. 8.3. Audio saliency curves. Top: audio waveform and threshold-based saliency
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Indicator functions correspond to the two audio fusion schemes, (512 frames from
the “Lord of the Rings I” stream).

ing and viewing the normalized features Fai as equally important for the level
of saliency and the attention provoked by the audio signal.

A different, perceptually motivated approach is a non-linear feature fusion,
based on time-varying “energy weights.” According to the structure and repre-
sentation by the auditory system of audio events [331], temporal variation in-
formation is extracted by the onset and offset portions, while spectral change,
from the intermediate sustain periods. As the energy measurement has been
previously used for detecting speech event boundaries [153], we incorporate it
as an index of event transitional points. Using the average source energy gra-
dient as a weighting factor, we acquire the following nonlinear audio-to-audio
integration scheme

Sa[m] = we[m]Fa2[m] + (1 − we[m])Fa3[m], we =

∣∣∣∣
dFa1

dm

∣∣∣∣ (8.6)

The effect of this gradient energy weighting process is that, in sharp event
transitions (modeling beginning, ending or change of activity) the amplitude
feature is employed more (hence, the temporal variation is more salient). The
frequency is weighted more at relatively constant activity periods where the
spectral variation is perceptually more important.
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An example of the feature integration for saliency curve construction is
presented in Fig. 8.3. Audio features, normalized and mapped to the video
frame index, are combined linearly by (8.5) or nonlinearly by (8.6) to yield the
corresponding saliency curves. A saliency indicator function is then obtained
by applying on the resulting curves an adaptive threshold-based detection
scheme.

8.3 Visual Saliency

The visual saliency computation module is based on the notion of a cen-
tralized saliency map [268] computed through a feature competition scheme.
The motivation behind this scheme is the experimental evidence of a bio-
logical counterpart in the Human Visual System (interaction/competition
among the different visual pathways related to motion/depth (M pathway)
and gestalt/depth/color (P pathway) respectively) [246]. An overview of the
visual saliency detection architecture is given in Fig. 8.4. In this framework, a
video sequence is represented as a solid in the 3D Euclidean space, with time
being the third dimension. Hence, the equivalent of a spatial saliency map is a
spatiotemporal volume where each voxel has a certain value of saliency. This
saliency volume is computed with the incorporation of feature competition
by defining cliques at the voxel level and use an optimization procedure with
both inter- and intra- feature constraints.

8.3.1 Visual Features

The video volume is initially decomposed into a set of feature volumes, namely
intensity, color and spatiotemporal orientations. For the intensity and color
features, we adopt the opponent process color theory that suggests the control
of color perception by two opponent systems: a blue-yellow and a red-green
mechanism. The extent to which these opponent channels attract attention
of humans has been previously investigated in detail, both for biological [527]
and computational models of attention [313]. According to the opponent color
scheme, if r, g, b are the red, green and blue volumes respectively, the lumi-
nance and color volumes are obtained by

I = (r + g + b)/3, RG = R − G, BY = B − Y, (8.7)

where R = r − (g + b)/2, G = g − (r + b)/2, B = b − (r + g)/2, Y =
(r + g)/2 − |r − g|/2 − b.

Spatiotemporal orientations are computed using steerable filters [170]. A
steerable filter may be of arbitrary orientation and is synthesized as a linear
combination of rotated versions of itself. Orientations are obtained by mea-
suring the filter strength along particular directions θ (the angle formed by
the plane passing through the t axis and the x − t plane) and φ (defined on
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Fig. 8.4. Visual saliency module

the x − y plane). The desired filtering can be implemented using the three

dimensional filters Gθ,φ
2 (e.g. second derivative of a 3D Gaussian) and their

Hilbert transforms Hθ,φ
2 , by taking the filters in quadrature to eliminate the

phase sensitivity present in the output of each filter. This is called the oriented
energy:

E(θ, φ) = [Gθ,φ
2 ∗ I]2 + [Hθ,φ

2 ∗ I]2, (8.8)
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By selecting θ and φ as in (8.9), 20 volumes of different spatiotemporal ori-
entations are produced, which must be fused together to produce a single
orientation volume that will be further enhanced and compete with the rest
of the feature volumes. We use an operator based on Principal Component
Analysis (PCA) and generate a single spatiotemporal orientation conspicuity
volume V . More details can be found in [422].

8.3.2 Visual Attention Curve

We perform decomposition of the video at a number of different scales. The
final result is a hierarchy of video volumes that represent the input sequence
in decreasing spatiotemporal scales. Volumes for each feature of interest, in-
cluding intensity, color and 3D orientation (motion) are then formed and
decomposed into multiple scales. Every volume simultaneously represents the
spatial distribution and temporal evolution of the encoded feature. The pyra-
midal decomposition allows the model to represent smaller and larger “events”
in separate subdivisions of the channels.

Feature competition is implemented in the model using an energy-based
measure. In a regularization framework the first term of this energy measure
may be regarded as the data term E1 and the second as the smoothness one E2,
since it regularizes the current estimate by restricting the class of admissible
solutions [423]. The energy involves voxel operations between coarse and finer
scales of the volume pyramid, which means that if the center is a voxel at level
c ∈ {2, ..., p − d}, where p is the maximum pyramid level and d is the desired
depth of the center-surround scheme, then the surround is the corresponding
voxel at level h = c+δ with δ ∈ {1, 2, ..., d}. Hence, if we consider the intensity
and two opponent color features as elements of the vector Fv = Fv1

, Fv2
, Fv3

and if F 0
vk

corresponds to the original volume of each of the features, each level
ℓ of the pyramid is obtained by convolution with an isotropic 3D Gaussian G
and dyadic down-sampling:

F ℓ
vk

=
(
G ∗ F ℓ−1

vk

)
↓2, ℓ = 1, 2, ..., p. (8.10)

where ↓2 denotes decimation by 2 in each dimension. For each voxel q of a
feature volume F the energy is defined as

Ev(F c
vk

(q)) = λ1 · E1(F
c
vk

(q)) + λ2 · E2(F
c
vk

(q)), (8.11)

where λ1, λ2 are the importance weighting factors for each of the involved
terms. The first term of (8.11) is defined as

E1(F
c
vk

(q)) = F c
vk

(q) · |F c
vk

(q) − Fh
vk

(q)| (8.12)

and acts as the center-surround operator. The difference at each voxel is ob-
tained after interpolating Fh

vk
to the size of the coarser level. This term pro-

motes areas that differ from their spatiotemporal surroundings and therefore
attract attention. The second term is defined as
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E2(F
c
vk

(q)) = F c
vk

(q) ·
1

|N(q)|
·
∑

r∈N(q)

(
F c

vk
(r) + V (r)

)
, (8.13)

where V is the spatiotemporal orientation volume that may be regarded as an
indication of motion activity in the scene and N(q) is the 26- neighborhood of
voxel q. The second energy term involves competition among voxel neighbor-
hoods of the same volume and allows a voxel to increase its saliency value only
if the activity of its surroundings is low enough. The energy is then minimized
using an iterative steepest descent scheme and a saliency volume S is created
by averaging the conspicuity feature volumes F 1

vk
at the first pyramid level:

S(q) =
1

3
·

3∑

k=1

F 1
vk

(q). (8.14)

Overall, the core of the visual saliency detection module is an iterative mini-
mization scheme that acts on 3D local regions and is based on center-surround
inhibition regularized by inter- and intra- local feature constraints. A detailed
description of the method can be found in [422]. Figure 8.5 depicts the com-
puted saliency for three frames of “Lord of the Rings I” and “300” sequences.
High values correspond to high salient areas (notice the shining ring and the
falling elephant).

In order to create a single saliency value per frame, we use the same fea-
tures involved in the saliency volume computation, namely intensity, color and
motion. Each of the feature volumes is first normalized to lie in the range [0, 1]
and then point-to-point multiplied by the saliency one in order to suppress
low saliency voxels. The weighted average is taken to produce a single visual
saliency value for each frame:

Sv =

3∑

k=1

∑

q

S(q) · F 1
vk

(q), (8.15)

where the second sum is taken over all the voxels of a volume at the first
pyramid level.

8.4 Audiovisual Saliency

Integrating the information extracted from audio and video channels is not a
trivial task, as they correspond to different sensor modalities (aural and vi-
sual). Audiovisual fusion for modeling multimodal attention can be performed
at three levels: i) low-level fusion (at the extracted saliency curves), ii) middle-
level fusion (at the corresponding feature vectors), iii) high-level fusion (at the
detected salient segments and features of the curves).

In a video stream with both aural and visual information present, au-
diovisual attention is modeled by constructing a temporal sequence of au-
diovisual saliency values. In this saliency curve, each value corresponds to a
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Fig. 8.5. Original frames from the movies “Lord of the Rings I” (top) and “300”
(bottom) and the corresponding saliency maps (better viewed in color).

measure of importance of the multi-sensory stream at each time instance. In
both modalities, features are mapped to saliency (aural and visual) curve val-
ues (Sa[m], Sv[m]), and the two curves are integrated to yield an audiovisual
saliency curve

Sav[m] = fusion(Sa, Sv,m), (8.16)

where m the frame index and fusion(·) is the process of combining or fusing
the two modalities. This is a low-level fusion scheme. In general, this pro-
cess of combining the outputs of the two saliency detection modules may be
nonlinear, have memory or vary with time. For the purposes of this chapter,
however, we use the following straightforward linear memoryless scheme

Sav[m] = wa · Sa[m] + wv · Sv[m]. (8.17)

Assuming that the individual audio and visual saliency curves are normalized
in the range [0, 1] and the weights form a convex combination, this coupled
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audiovisual curve serves as a continuous-valued indicator function of salient
events, in the audio, the video or a common audiovisual domain. The weights
can be equal, constant or adaptive depending for example on the uncertainty
of the audio or video features. Actually, the above weighted linear scheme cor-
responds to what is called in [99] “weak fusion” of modalities and is optimum
under the maximum a posteriori criterion, if the individual distributions are
Gaussian and the weights are inversely proportional to the individual vari-
ances, as explained in Section 1.3 of Chapter 1.

The coupled audiovisual saliency curve provides the basis for subsequent
detection of salient events. Audiovisual events are defined as bounded time-
regions of aural and visual activity. In the proposed method, events correspond
to attention-triggering signal portions or points of interest extracted from the
saliency curves. The boundaries of events and the activity locus points, corre-
spond to a maximum change in the audio and video saliency curves and the
underlying features. Thus, transition and reference points in the audiovisual
event stream can be tracked by analyzing the geometric features of the curve.
Such geometric characteristics include:

• Extrema points: these are the local maxima or minima of the curve and
can be detected by a ‘peak-peaking’ method.

• Peaks & Valleys: the region of support around maxima and minima,
respectively. These can be extracted automatically (e.g., by a percentage
to maximum) or via a user-defined scenario depending on the application
(e.g., a skimming index).

• Edges: One-dimensional edges correspond to sharp transition points in the
curve. A common approach is to detect the zero-crossings of a Derivative-
of-Gaussian operator applied to the signal.

• Level Sets: points where the values of the curve exceed a learned or
heuristic level-threshold. These sets can define indicator functions of salient
activity.

Saliency-based events can be tracked at the individual saliency curves or at
the integrated one. In the former case, the resulting geometric feature-events
can be subjected to higher-level fusion (e.g., by logical OR, AND operators).
As a result, events in one of the modalities may suppress or enhance the events
present in the other. A set of audio, visual and audiovisual events can be seen
in the example-application of Figs. 8.6 and 8.7. The associated movie-trailer
clip contained a variety of events in both streams (soundtracks, dialogues,
effects, shot-changes, motion), aimed to attract the viewer’s attention. Peaks
detected in the audiovisual curve revealed in many cases an agreement between
peaks (events) tracked in the individual saliency curves.

8.5 Applications and Experiments

The developed audiovisual saliency curve has been applied to saliency-based
video summarization and annotation. Summarization is performed in two di-
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Fig. 8.6. Saliency curves and detected features (maxima, minima, lobes and levels)
for audio (top), video (middle) and audiovisual streams (bottom) of the movie trailer
“First Descend”.

Fig. 8.7. Key-frames selection using local maxima (peaks) of corresponding audio-
visual saliency curve. Selected frames correspond to the peaks in the bottom curve
of Fig. 8.6 (12 out of 13 frames, peak 4 is not shown).
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rections: key-frame selection for static video storyboards via local maxima
detection and dynamic video skimming based on a user-defined skimming
percentage. Annotation refers to labeling various video parts with respect to
their attentional strength, based on sensory information solely. In order to
provide statistically robust and as far as possible objective results, the results
are compared to human annotation.

8.5.1 Experimental setup

The proposed method has been applied both to videos of arbitrary content and
to a human annotated movie database, that consists of 42 scenes extracted
from 6 movies of different genres. For demonstration purposes we selected
two clips (≃10 min each) from the movies “Lord of the Rings I” and “300”
and present a series of applications and experiments that highlight different
aspects of the proposed method.

The clips were viewed and annotated according to the audio, visual and
audiovisual saliency of their content. This means that parts of the clip were
labeled as salient or non-salient, depending on the importance and the atten-
tion attracted by their content. The viewers were asked to assign a saliency
factor to any part according to loose guidelines, since strict rules cannot be
applied due to the high subjectivity of the procedure. The guidelines were
related to the audio-only, visual-only and audiovisual changes and events, but
not to semantic interpretation of the content. The output of this procedure is
a saliency indicator function, corresponding to the video segments that were
assigned a non-zero saliency factor. For example, Fig. 8.8 depicts the saliency
curves and detected geometric features, while Fig. 8.9 the indicator functions
obtained manually and automatically on a frame sequence from one movie
clip.

8.5.2 Key-frame Detection

Key-frame selection to construct a static abstract of a video, was based on
the local maxima, through peak detection on the proposed saliency curves.
The process and the resulting key-frames are presented in Figs. 8.6 and 8.7
respectively for a film trailer (“First Descend”)4 rich in audio (music, narra-
tion, sound effects, machine sounds) and visual (objects, color, natural scenes,
faces, action) events. The extracted 13 key-frames out of 512 of the original se-
quence (i.e., summarization percentage 2.5%) based on audiovisual saliency
information, summarize the important visual scenes, some of which were se-
lected based on the presence of important, aural attention-triggering audio
events.

4 http://www.firstdescentmovie.com
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Fig. 8.8. Curves and detected features for audio saliency (top), video saliency
(middle) and audiovisual saliency (bottom). The frame sequence was from the movie
“Lord of the Rings I”.

8.5.3 Automated Saliency-based Annotation

A method to derive automatic saliency-based annotation of audiovisual streams
is by applying appropriate heuristically defined or learned thresholds on the
audiovisual attention curves. The level sets of the curves thus define indicator
functions of salient activity; see Fig. 8.9. A comparison against the available
ground-truth is not a straight-forward task. On performing annotation, the
human sensory system is able to almost automatically integrate and detect
salient audiovisual information across many frames. Thus, such results are
not directly comparable to the automatic annotation, since the audio part de-
pends on the processing frame length and shift and the spatiotemporal nature
of the visual part depends highly on the chosen frame neighborhood rather
than on biological evidence.

Comparison against the ground-truth turns into a problem of tuning two
different parameters, namely the extent (filter length) w of a smoothing oper-
ation and the threshold T that decides the salient versus the non-salient curve
parts, and detecting the optimal point of operation. Perceptually, these two
parameters are related, since a mildly smoothed curve (high peaks) should
be accompanied by a high threshold, while a strongly smoothed curve (lower
peaks) by a lower threshold. We relate these parameters using an exponential
function
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Fig. 8.9. Human and automated saliency-based annotations. Top row: Audiovisual
saliency curve and manual annotation by inspection superimposed. Saliency indica-
tor functions obtained with a median filter of variable size (7, 19, 39) in all other
plots. The frame sequence was the same as in Fig. 8.8.

T (w) = exp(−w/b), (8.18)

where b is a scale factor, set to b = 0.5 in our experiments. Thus, a variable
sized median filter is used for smoothing the audiovisual curve.

Fig. 8.9 shows a snapshot of the audiovisual curve for a sequence of
600 frames, the ground-truth, and the corresponding indicator functions and
threshold levels computed by (8.18) for three different median filter lengths.
We derive a precision/recall value for each filter length as shown in Fig. 8.10 for
the whole duration of the two reference movie clips. Values on the horizontal
x- axis relate to the size of the filter. As expected, the recall value is continu-
ously increasing, since the thresholded, smoothed audiovisual curve tends to
include an ever bigger part of the ground-truth. As already mentioned, the
ability of the human eye to integrate information across time makes direct
comparisons difficult. The varying smoothness imposed by the median filter
simulates this integration ability in order to provide a more fair comparison.
Note that although all presented experiments with the audiovisual saliency
curve used the linear scheme for combining the audio features, prior to audio-
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Fig. 8.10. Precision/Recall plots using human ground truth labeling on two film
video segments. Left: “300”, right: “Lord of the Rings I”

visual integration, preliminary experiments with the non-linear fusion scheme
(8.6) for the audio saliency yielded similar performance in the precision/recall
framework.

8.5.4 Video Summarization

The dynamic summarization of video sequences involves reducing the content
of the initial video using a seamless selection of audio and video subclips. The
selection here is based on the attentional importance given by the associated
audiovisual saliency curve. In order for the resulting summary to be percep-
tible, informative and enjoyable by the user, the video subsegments should
follow a smooth transition, the associated audio clips should not be truncated
and important audiovisual events should be included. One approach to creat-
ing summaries is to select, based on a user- or application- defined skimming
index, portions of video around the previously detected key frames and align
the corresponding “audio sentences” [314].

Here, summaries were created using a predefined skimming percentage c.
In effect, a smoother attention curve is created using median filtering from
the initial audiovisual saliency curve, since information from key-frames or
saliency boundaries is not necessary. A saliency threshold Tc is selected so
that the required percent of summarization c is achieved. Frames m with
audiovisual saliency value Sav[m] > Tc are selected to be included in the
summary. For example, for 20% summarization, c = 0.2, the threshold Tc is
selected so that the cardinality of the set of selected frames D = {m : Sav[m] >
Tc} is 20% of the total number of frames. The result from this leveling step
is a video frame indicator function Ic for the desired level of summarization
c. The indicator function equals 1, Ic[m] = 1, if frame m is selected for the
summary and 0 otherwise.
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The resulting indicator function Ic is further processed to form contigu-
ous blocks of video segments. This processing involves eliminating isolated
segments of small duration and merging neighboring blocks in one segment.
The total effect is equivalent to 1D morphological filtering operations on the
binary indicator function, where the filter’s length is related to the minimum
number of allowed frames in a skim and the distance between skims that are
to be merged.

The movie summaries, obtained by skimming 2, 3 and 5 times faster than
real time, were subjectively evaluated in terms of informativeness and enjoya-
bility by 10 naive subjects. Preliminary average results indicate that the sum-
maries obtained by the above procedure are well informative and enjoyable.
However, more work is needed to improve the “smoothness” of the summary
to improve the quality and enjoyability of the created skims.

8.6 Conclusions

In this chapter we have presented efficient audio and image processing algo-
rithms to compute audio and visual saliency curves, respectively, from the
aural and visual streams of videos and explored the potential of their inte-
gration for summarization and saliency-based annotation. The involved audio
and image saliency detection modules attempt to capture the perceptual hu-
man ability to automatically focus on salient events. A simple fusion scheme
was employed to create audiovisual saliency curves that were applied to movie
summarization (detecting static key-frames and create video skims). This re-
vealed that successful video summaries can be formed using saliency-based
models of perceptual attention. The selected key-frames described the shots
or different scenes in a movie, while the formed skims were intelligible and
enjoyable, when viewed by different users. In a task of saliency-based video
annotation, the audiovisual saliency curve correlated adequately well with the
decisions of human observers.

Future work involves mainly three directions: more sophisticated fusion
methods, improved techniques to create video summarization, and incorpora-
tion of ideas from cognitive research. Fusion schemes should be explored both
for intra-modality integration (audio to audio, video to video) to create the
individual saliency curves and inter-modality integration for the audiovisual
curve. Different techniques may proven to be appropriate for the audio and
visual parts, like the non-linear audio saliency scheme described herein. To de-
velop more efficient summarization schemes, attention should be paid to the
effective segmentation and selection of the video frames, aligned with the flow
of audio sentences like dialogues or music parts. Here, temporal segmentation
into perceptual events is important, as there is evidence from research in cog-
nitive neuroscience [585]. Finally, summaries can be enhanced by including
other cues besides saliency, related to semantic video content.
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In the framework of multimedia analysis and interaction, speech and language
processing plays a major role. Many multimedia documents contain speech
from which high level semantic information can be extracted, as in broadcast
news or sports videos, with typical applications such as spoken document
indexing, topic tracking and summarization. Hence, many multimedia docu-
ment analysis applications require a collaboration between speech recognition
and natural language processing (NLP) techniques. As NLP techniques are
traditionally designed for text analysis, this combination can be seen as a mul-
timodal fusion issue where the two modalities are audio and text. However,
most of the time, both modalities are considered sequentially. A typical ap-
proach consists in automatically transcribing the audio track before analyzing
the output—here considered as a regular text—with NLP methods. Indepen-
dently processing the two modalities clearly seems suboptimal. This chapter
focuses on recent research work toward a better integration between auto-
matic speech recognition (ASR) and NLP for the analysis of spoken multime-
dia documents with the goal of achieving a better transcription of multimedia
streams.

The speech processing and text processing communities have had a long
history of misunderstanding, mostly due to two different approaches to natural
language: a pure statistical one vs. a more symbolic, rule-based one. But
the last 15 years have begun to re-appropriate the joint use of ASR and
NLP. If using ASR and NLP is now a clear will, the cooperation is not that
simple. First, oral output has characteristics, such as repetitions, revisions
or fillers, known as disfluencies, that make it difficult. Moreover, additional
difficulties come from the fact that automatic transcriptions are not segmented
into sentences—the equivalents of shots for texts—, lack punctuation and, in
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the case of some ASR systems, capitalization. Finally, transcription errors
might impact text processing techniques.

The problem of combining the ASR and NLP can be tackled in several
ways. A popular one consists in reformatting the automatic transcription to
look like a regular text using re-punctuation techniques and correcting disflu-
encies [306]. A second possibility is to adapt NLP techniques to take into ac-
count additional information provided by the ASR system, such as word-level
confidence measures or word graphs [47]. We believe that these approaches
cannot replace a better and deeper integration between ASR and NLP: for
example, re-punctuation cannot help NLP recover from transcription errors.
This chapter proposes a reflection and research tracks toward this goal, con-
sidering the use in ASR of linguistic knowledge that are mostly absent from
current transcription systems.

Different kinds of linguistic knowledge have been considered for integration
into ASR systems, namely morphological, syntactic, semantic and pragmatic,
as reviewed in Section 9.2. However, most approaches consider minor changes
of the ASR system (e.g., by modifying the language model) rather than a
real in-depth integration. We explore in this chapter two instances of a better
combination of ASR and NLP, considering morpho-syntactic information in
Section 9.3 and pragmatic information for unsupervised language model adap-
tation in Section 9.4. Clearly, the main idea underlying this work is to take
into account multimodal cues at each step of the spoken document analysis
process, for example to correct transcription errors using NLP knowledge, to
segment multimedia streams into topics (see Section 9.4.2) or to adapt the
ASR system to the current topic.

9.1 The basic principles of automatic speech recognition

Before considering the use of linguistic information in ASR systems, we review
the fundamentals of speech recognition and briefly describe the experimental
framework common to the two experiments described in Sections 9.3 and 9.4.

9.1.1 General principles

Most automatic speech recognition systems rely on statistical models of speech
and language to find out the best transcription, i.e., word sequence, given a
(representation of the) signal y, according to

ŵ = arg max
w

p(y|w) P [w] . (9.1)

Language models (LM), briefly described below, are used to get the prior
probability P [w] of a word sequence w. Acoustic models, typically continu-
ous density hidden Markov models (HMM) representing phones, are used to
compute the probability of the acoustic material for a given word sequence,
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p(y|w). The relation between words and acoustic models of phone-like units
is provided by a pronunciation dictionary which lists the words known to the
ASR system along with the corresponding pronunciations. Hence, ASR sys-
tems operate on a closed vocabulary whose typical size is between 60,000 and
100,000 words or tokens. Because of the limited size of the vocabulary, word
normalization, by ignoring the case for example or by breaking compound
words, is often used to limit the number of out-of-vocabulary words. The con-
sequence is that the vocabulary of an ASR system is not necessarily suited
for natural language processing.

As mentioned previously, the role of the language model is to define a
probability distribution over the set of possible sentences according to the
vocabulary of the system. As such, the language model is a key component
for a better integration between ASR and NLP. ASR systems typically rely on
N-gram based language models because of their simplicity which makes the
maximization in (9.1) tractable. The N-gram model defines the probability of
a sentence wn

1 as

P [wn
1 ] =

n∏

i=1

P [wi|w
i−1
i−N+1] , (9.2)

where the probabilities of the sequences of N words P [wi|w
i−1
i−N+1] are esti-

mated from large text corpora. Because of the large size of the vocabulary,
observing all the possible sequences of N words is impossible. A first approach
to circumvent the problem is based on smoothing techniques, such as dis-
counting and back-off, to avoid null probabilities for events unobserved in the
training corpus. Another approach rely on N-gram models based on classes
of words [80] where a N-gram model operates on a limited set of classes, and
words belong to one or several classes. The probability of a word sequence is
then given by

P [wn
1 ] =

∑

t1∈C(w1)...tn∈C(wn)

n∏

i=1

P [wi|ti]P [ti|t
i−1
i−N+1] , (9.3)

where C(w) denotes the set of possible classes for a word w.
In practice, (9.1) is evaluated in the log-domain and the LM probabilities

are scaled in order to be comparable to acoustic likelihoods, thus resulting in
the following maximization problem

ŵ = arg max
w

ln p(y|w) + β lnP [w] + γ |w| , (9.4)

where the LM scale factor β and the word insertion penalty γ are empirically
set.

The ultimate output of an ASR system is obviously the transcription.
However, additional information, such as confidence measures or transcription
alternatives, can also be obtained. This information might prove useful for
NLP as it can help to avoid error-prone hard decisions from the ASR system.
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Rather than finding out the best word sequence maximizing (9.4), one can
output a list of the N -best word sequences thus keeping track of the alternative
transcriptions that were discarded by the system. For a very large number of
transcription hypotheses, these N -best lists can be conveniently organized as
word graphs where each arc corresponds to a word. From the set of alternative
hypotheses, confidence measures can be computed for each word, where the
measures reflect how confident is the system.

9.1.2 The IRENE broadcast news transcription system

The IRENE broadcast news transcription system, jointly developed by IRISA
and ENST for the ESTER broadcast news transcription evaluation cam-
paign [176], implements the basic principles described in the previous sec-
tion after a partitioning step which aims at segmenting the input stream into
pseudo-sentences. The system has a vocabulary of 64,000 words.

Regions containing speech are first detected before performing a further
partitioning into speaker turns. Since (9.4) can only be solved for short utter-
ances, the speech stream is finally segmented into breath-groups based on the
energy profile in order to detect breath intakes4. Let us stress the fact this
segmentation is not based on syntactic and grammatical considerations, even
though breath pauses and grammar are related.

Transcription itself is carried out in three passes. A first pass with fairly
simple context-independent acoustic models and a 3-gram word based LM
aims at generating large word graphs. These word graphs are then rescored
with more complex context-dependent acoustic models and a 4-gram LM.
Rescoring word graphs is based on (9.4) where the maximization is limited
to the set of word sequences encoded in the word graph, thus making the use
of more complex models tractable. Finally, based on the transcription from
the second pass and the speaker partition obtained in the segmentation step,
the acoustic models are adapted for each speaker and final word graphs are
obtained by rescoring the initial word graphs with speaker-adapted acoustic
models.

Experiments reported in this chapter were carried out on the ESTER
French broadcast news transcription task. A corpus of about one hundred
hours of manually transcribed data was used and divided into three parts:
a large part was reserved for the purpose of acoustic and language model
training while two sets of four hours each, from four different broadcasters,
were used as development and test sets respectively. The development set was
used to tune the many parameters of the ASR system such as the language
model scale factor. The language model was obtained by interpolating a LM
estimated on 1 million words from the manual transcriptions of the training
set with a LM estimated from 350 million words from the French newspaper
Le Monde.
4 To avoid problems due to segmentation errors, the entire partitioning process was

done manually in the experiments reported in this chapter.
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9.2 Fusion of text and speech modalities: an overview

Let us come back to the problem of combining the text and audio modalities.
We review in this section the literature concerning the use of linguistic knowl-
edge in ASR systems successively considering morphology, syntax, semantics
and pragmatics.

Morphology considers the structure of words. Morphological analyzers can
be used to convert words into their canonical form, e.g., a lemma or a stem.
Such knowledge is incorporated in ASR systems by defining a LM over canon-
ical forms rather than words, which is convenient in order to reduce the vo-
cabulary size in particular for agglutinative or morphologically rich languages.
Factored models5 have been specifically developed to integrate morphologi-
cal components as factors in the language model probability computation,
where the factors can be stems, morphological classes or even the words them-
selves [544].

Syntax considers the structure of sentences and syntagms, e.g., nominal or
verbal groups. A first possibility relies on part-of-speech (POS) information,
i.e., grammatical classes such as noun, verb, and preposition, associated with
each word, known as POS tags. A class-based LM can be defined over POS
tags and combined with a word-based LM [317]. The main interest of POS-
based LMs is the limited number of tags with respect to the number of words
and their ability to point out ungrammatical word (actually tag) sequences.
Moreover, morphological knowledge can also be included in the tags leading
to morpho-syntactic information. A second use of syntactic information is to
extract locutions based on the statistical study of co-occurrences [512] or the
use of regular expressions [358]. Such locutions are included in the vocab-
ulary of the ASR system as multi-word units. Finally, syntactic analysis of
transcription hypotheses can also be done in order to choose the most gram-
matical ones. As designing generic syntactic parsers robust to transcription
errors is an awfully difficult task, systems either complex [91] or limited to a
specific domain [474] have been proposed.

Semantics considers the meaning of the words and the relations between
words. Few works include semantic information in ASR systems but relations
between words can be incorporated in long-span language models as in [521]
and [49]. The idea is to put forward sentence hypotheses containing words
with related meanings. Relations between words are automatically acquired
either considering co-occurrences in syntagms or text windows, or considering
words sharing the same neighbors. However, long-span language models are
difficult to integrate in an ASR system.

Finally, pragmatics considers the context, shared by the redactor and the
reader, so that the document makes sense. The topic of the document is a
typical example of pragmatic knowledge which can be used in ASR systems,

5 Factored model are similar to factorial Markov models where the state space is
distributed over a set of factors.
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for instance for LM and vocabulary adaptation. One approach for LM topic
adaptation relies on a set of predefined domain-specific LMs [227, 182]. How-
ever, this method requires the a priori definition of the set of possible topics.
Another solution is to gather a specific adaptation corpus for each document,
either by selecting a subset of a very general corpus [263] or by collecting texts
on the Internet [515].

Whatever the type of knowledge, most techniques naturally rely on an
integration at the language model level. A typical approach consists in modi-
fying the word-based N-gram LM, for example using interpolation techniques.
However, this approach implies only minor modifications of the architecture
of the ASR system and thus often only yield marginal improvements.

In this chapter, we report on work targeting a better integration of the text
and speech modalities for two different sources of knowledge, namely morpho-
syntax and pragmatics, where topic adaptation is considered in the latter.
These two types of linguistic information are crucial for multimedia applica-
tions. Morpho-syntactic knowledge enables more grammatical transcriptions,
thus facilitating the use of a posteriori NLP techniques on the output. Topic
adaptation is vital for the accurate transcription of multimedia streams where
various topics can be found.

9.3 Morpho-syntactic knowledge integration

In this section, we present our method to integrate morpho-syntactic informa-
tion in the ASR process. As mentioned in the previous section, part-of-speech
tags along with morphological knowledge about gender, number, tense, mode
or case are used to convey morpho-syntactic information. Previous work com-
bining class-based LMs and word-based ones have demonstrated a limited
effectiveness [563]. In [202], a 3-gram LM is built over word/tag pairs rather
than words and the recognition problem is redefined as finding the best joint
word and POS tag sequences. This approach results in a significant reduction
of the word error rate (WER) but requires very large amount of training data
for the LM and heavily relies on smoothing techniques.

We propose a different approach where POS information is combined with
the LM score in a post-processing stage of a N -best list of hypotheses rather
than integrated in the LM as in previous approaches. The basic idea is to
tag the output of the ASR system in order to favor the hypotheses with
correct POS sequences, like a singular noun following a singular adjective.
Closely related to [202], our method does however not require a large amount
of annotated training data. In this section, we demonstrate that POS tagging
can be reliably applied to automatic transcriptions and that the resulting tags
can actually improve the word error rate and confidence measures.
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9.3.1 Morpho-syntactic tagging of automatic transcriptions

Morpho-syntactic tagging is a widely used technique in NLP and taggers are
now considered as reliable enough to automatically tag a text according to
POS information. However, most experiments were carried out on written
text, and spoken corpora on the contrary have been seldom studied. As oral
output has specificities that are likely to disturb taggers, we first demonstrate
that such noisy texts can be reliably tagged.

We built a morpho-syntactic tagger based on the popular technique of
HMM [336], where tagging is expressed as finding out, for each sentence, the
most probable POS tag sequence, among all the possible sequences according
to a lexicon. In order to adapt the model to the characteristics of oral, we used
a 200,000-word training set from the manual transcriptions of the training
corpus. Moreover, we removed all capital letters and punctuation marks to
obtain a format similar to a transcription and segmented the set into breath-
groups. We also restrained the vocabulary of the tagger to the one of our ASR
system. We chose our POS tags in order to distinguish the gender and the
number of adjectives and nouns, and the tense and the mood of verbs, which
led to a set of 93 tags.

To quantitatively evaluate morpho-syntactic tagging, we manually tagged
a one hour broadcast. We first investigated the behavior of the tagger on
manually transcribed text by comparing the tag found for each word with the
one of the reference. For automatic transcriptions, evaluating the tagger is
more problematic than for manual transcriptions since ASR output contains
misrecognized words; for the hypotheses containing grammatical errors, it be-
comes impossible to know which sequence of POS would be right. We therefore
compute the tag rate only for the words that are correctly recognized.

Table 9.1, first line, reports results obtained on the one hour corpus with
our tagger, where the WER on the transcription is 22.0 %. We achieved a
tag accuracy over 95 % which is comparable to the results usually given on
written corpora. Furthermore, similar performance level are obtained on both
the manual and automatic transcriptions, which establishes therefore that
morpho-syntactic tagging is reliable, even for text produced by an ASR sys-
tem whose recognition errors are likely to jeopardize the tagging of correctly
recognized words. The robustness of tagging is explained by the fact that tags
are locally assigned. We compared the performances of our tagger with those
of Cordial6, one of the best taggers available for written French and which has
already produced good results on a spoken corpus [538]. Results reported in
the last line of Table 9.1 are comparable with our HMM-based tagger when
we ignore confusion between proper names and common names. Indeed, the
lack of capital letters is particularly problematic for Cordial, which relies on
this information to detect proper names.

6 Distributed by the Synapse Développement corporation.
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transcription manual automatic

HMM tagger 95.7 (95.9) 95.7 (95.9)
Cordial 90.7 (95.0) 90.6 (95.2)

Table 9.1. Tag accuracy (in %), where results between parentheses are computed
when confusion between common names and proper names is ignored.

9.3.2 Reranking of N -best lists

Morpho-syntactic information is here used to post-processing N -best sentence
hypothesis lists. Although N -best lists are not as informative as word graphs,
each entry can be seen as a standard text, permitting thus POS tagging.

To combine morpho-syntactic information with the LM and acoustic
scores, we first determine the most likely POS tag sequence tm1 correspond-
ing to a sentence hypothesis wn

1 . Based on this information, we compute the
morpho-syntactic probability of the sentence hypothesis

P [tm1 ] =

m∏

i=1

P [ti|t
i−1
i−N+1] . (9.5)

Note that the number m of tags may differ from the number n of words as we
associate a unique POS with locutions, consecutive proper names or cardinals.
To take into account longer dependencies than the 4-gram word-based LM,
we chose a 7-gram POS-based LM.

We propose a new global score of a sentence [219] by adding the morpho-
syntactic score to the score given in (9.4) with an appropriate weight. The
combined score for a sentence wn

1 , corresponding to the acoustic input yt
1, is

therefore given by

s(wn
1 ) = log p(yt

1|w
n
1 ) + α log P [wn

1 ] + β log P [tm1 ] + γn . (9.6)

Integrating POS information at the sentence level allows us to differently
tokenize sequences of words and tags and to more explicitly penalize unlikely
sequences of tags like a plural noun following a singular adjective.

Based on the score function defined in (9.6), which includes all the available
sources of knowledge, we can reorder N -best lists using various criteria. We
considered three criteria, namely maximum a posteriori (MAP), minimum
expected word error rate [509] and consensus decoding on N -best lists [318].
The two last criteria, often used in current systems, aim at reducing the word
error rate at the expense of an increased sentence error rate (SER).

MAP criterion

The MAP criterion selects among the N -best list generated for each breath-
group the best hypothesis w(i) which maximizes s(w(i)) as given by (9.6).
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baseline contextual lexical and contextual class-based LM
ASR system probabilities probabilities

19.9 19.1 19.0 19.5

Table 9.2. WER (in %) on test data obtained with a LM limited to a word-based
LM (1st column) or with an ASR system including POS according to equations (9.6),
(9.7) or (9.8) (last three columns).

Results on the test corpus show that our approach achieves an absolute de-
crease of 0.8 % of the WER as reported in Tab. 9.2, columns 1 and 2. By taking
into account lexical probabilities P [wi|ti], which are usually included in class-
based LM, we observed a minor additional decrease (Tab. 9.2, column 3) of
the WER. The score in this last case is computed by linearly interpolating
log-probabilities by

s′(wn
1 ) = log P (yt

1|w
n
1 ) + α log P [wn

1 ]

+β

(
n∑

i=1

log P [wi|ti] + log P [tm1 ]

)
+ γn (9.7)

and tends to penalize words that are rarely associated with the proposed tag.
We compared our approach with class-based LM incorporated in the tran-

scription process by linear interpolation with a word-based LM according to

P [wn
1 ] =

n∏

i=1

(
λ Pword[wi|w

i−1
1 ] + (1 − λ) Ppos[wi|w

i−1
1 ]

)

with
Ppos[wi|w

i−1
1 ] =

∑

ti−N+1...ti

P [wi|ti] P [ti|t
i−1
i−N+1] . (9.8)

We reevaluated the N -best lists by interpolating the N-class based POS tagger
and the word level language model, the interpolation factor λ being optimized
on the development data. We noticed an absolute decrease of 0.4 % with re-
spect to the baseline system, i.e., half of the decrease previously observed
(Tab. 9.2, last column). The better improvement of WER with our method
clearly establishes that linear interpolation of log probabilities is more effective
than that of probabilities.

Word error minimization criteria

Combined scores incorporating morpho-syntactic information can be used to
reorder N -best lists using decoding criteria that aim at minimizing the word
error rate, rather than the sentence error rate as the MAP criterion does.
Two popular criteria can be used to explicitly minimize the WER: the first
one consists in approximating the posterior expectation of the word error rate
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WER SER
MAP dec. min. WE cons. dec. MAP dec. min. WE cons. dec.

without POS 19.9 19.8 19.8 61.8 62.2 62.4
with POS 19.0 18.9 18.9 59.4 59.6 59.7

Table 9.3. Word (WER) and sentence (SER) error rates (in %) on the test data
for various decoding techniques.

by comparing each pair of hypotheses in the N -best list [509]; the second
one, consensus decoding, is based on the multiple alignment of the N -best
hypotheses into a confusion network [318].

Both criteria rely on the computation of the posterior probability for each
sentence hypothesis w(i)

P [w(i)|yt
1] =

es(w(i))/z

∑

j

es(w(j))/z
(9.9)

where the posterior probability is obtained from a score including morpho-
syntactic knowledge, the one given by Eq. (9.7) in our case. The combined
score is scaled by a factor z in order to avoid over-peaked posterior probabil-
ities.

Results are reported in Tab. 9.3 for the three decoding criteria, namely
MAP, WER minimization and consensus, with and without POS knowledge.
In both cases, we observe a slight WER improvement when using word error
minimization criteria, along with an increased SER. However, the gain ob-
served is marginal because of the limited size of the N -best lists (N=100).
Indeed, with N = 1000 the WER decreased from 19.7 % to 19.4 % without
POS. A more limited gain was observed when using POS with a decrease from
18.7 % to 18.6 %.

Discussion on the results

Statistical tests were carried out to measure the significance of the WER
improvement observed, assuming independence of the errors across breath-
groups. For all the decoding criteria, both the paired t-test and the paired
Wilcoxon test resulted in a confidence over 99.9 % that the difference of WER
by using or not POS knowledge is not observed by chance. Besides, for the
MAP criterion, the same tests indicate that global scores computed as (9.6)
or (9.7) led to a significant improvement with respect to the interpolated
class-based LM with a confidence over 99 %.

We observed that our method is robust for spontaneous speech. Indeed,
we measured performance on a short extract of 3,650 words containing in-
terviews with numerous disfluencies and observed that the baseline WER of
46.3 % is reduced to 44.5 % with (9.6) and to 44.3 % with (9.7) using the



9 Integration of NLP and ASR techniques 211

WER NCE without POS NCE with POS

decoding without POS 19.7 0.307 0.326
decoding with POS 18.7 0.265 0.288

Table 9.4. WER (in %) and normalized cross entropy for MAP decoding with and
without POS score.

MAP criterion. This 4% relative improvement is consistent with the relative
improvement obtained on the entire test set. Additional experiments with au-
tomatic segmentation also demonstrated the validity of our approach in that
case.

Experiments reported here were carried out on the French language, whose
nouns, adjectives and verbs are very often inflected for number, gender or tense
into various homophone forms. However, experiments conducted to improve a
hand-writing recognition system in the English language, show that morpho-
syntactic knowledge still brings an WER improvement, even though English
is less inflected than French.

To conclude this section, we observed that introducing morpho-syntactic
knowledge in the ASR system yield more grammatically correct utterance
transcriptions as indicated by the SERs reported in Tab. 9.3. In particular,
we noticed several corrections of agreement or tense errors such as “une date
qui À DONNER le vertige à une partie de la France” (“a date which TO
GIVE a part of France fever”).

9.3.3 Confidence measures

We have shown how POS knowledge can reduce transcript errors. Another
interest of morpho-syntactic information for ASR systems is that it can bring
new information to compute confidence measures.

Plots of the conditional probabilities P [ti|t
i−1
i−N+1] for POS sequences and

P [wi|w
i−1
i−M+1] for word sequences show that P [ti|t

i−1
i−N+1] exhibits a signifi-

cant decrease on erroneous words where language model may show the same
behavior on correct words due to smoothing or back-off. This property is par-
ticularly interesting to compute confidence measures. As sentence posterior
probabilities are commonly used to derive confidence measures from N -best
lists or lattices, we compute them as in [449].

Confidence measures are obtained from 1, 000-best lists using the combined
score (9.7). We limit the study to the lists obtained with MAP decoding for
which the lowest SER was achieved. The scaling factors and insertion penalty
used for the computation of the sentence posteriors are different from those
used for reordering the N -best lists and were optimized on the development set
to maximize the normalized cross entropy (NCE), a commonly used indicator
to evaluate confidence measure on the correctness of a word.

Table 9.4 summarizes the results, where the higher the NCE, the better
the confidence measure. WER with and without POS information are given
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in the first column. The next two columns report NCE obtained when com-
puting confidence measures respectively without and with morpho-syntactic
information. Results show that POS improves confidence measures in both
cases.

9.3.4 Summary

Experiments reported in this section clearly demonstrated that combining
morpho-syntactic knowledge in an ASR system at the sentence level is an effi-
cient strategy, resulting in improved transcriptions and confidence measures.
It is worthwhile to note that the combined score defined in (9.6) implements
a linear combination of log-scores similar to score combination in multistream
HMMs as discussed in chapter 4. Moreover, we observed that the output after
morpho-syntactic rescoring is more grammatical, a fact from which further
NLP algorithms applied to the text resulting from the transcription should
benefit.

9.4 Pragmatic knowledge integration

In this section, we present another step toward a better integration between
ASR and NLP, focusing on pragmatic knowledge. In this framework, we con-
sider topic-related information in order to adapt the LM of the ASR system
in an unsupervised way.

Usually, LMs are trained once and for all on large multi-topic corpora. Ev-
ery (part of the) document is then processed using the same general-purpose
LM, whatever the actual topic, even though word frequencies depend on the
theme. Topic-specific LMs are therefore a good way of improving ASR based
on pragmatic knowledge. NLP methods precisely able to locate and charac-
terize topics can be applied to update the vocabulary of an ASR system or
its general-purpose LM [23, 62]. In this section, we focus on the adaptation of
the LM, leaving the vocabulary untouched.

As presented in Fig 9.1, the basic idea of our approach is, first, to segment
a broadcast transcript obtained with a baseline, general-purpose, LM into
thematically coherent successive parts. For each segment, topic-specific data
are then retrieved from a large collection of texts, i.e., the Internet, and used
to modify the initial LM. To achieve this goal, an adaptation LM is obtained
from the topic-specific data and linearly combined with the general-purpose
LM thus resulting in an adapted LM. The latter is used to get a new, hopefully
better, transcription for the corresponding segment. This adaptation process
is repeated for each part of the document resulting from the segmentation
step.

Note that for multimedia documents for which text data are already avail-
able, gathering topic-specific data can be done according to the available tex-
tual modality rather than based on a first transcription result. In the typology
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Fig. 9.1. Main scheme of a topic-based adaptation.

of fusion methods of Snoek and Worring [501], the proposed approach can be
seen as an iterative fusion scheme where the audio and text modalities are
considered sequentially. To achieve a better cascading of the modality, we
present some adaptation of NLP algorithms to deal with the specificities of
automatic transcriptions.

We first briefly review related works before presenting our approaches for
the topic segmentation of transcriptions and for the creation of a topic-specific
corpus from the Internet.

9.4.1 Related works

Most related works focus on only one subtask of the entire adaptation
process—such as thematic segmentation, topic-specific data collecting or LM
adaptation—and the combination of these subtasks as a whole topic-based
LM adaptation process is still marginal [93].

The most popular indicator for the segmentation of texts into thematically
consistent sections is lexical cohesion [537] which focuses on the vocabulary
used in a text block and studies the numbers of word occurrences. Indeed, the
frequent use of the same words in a given text section tends to demonstrate
a thematic coherence of the text. This method can be enriched by the knowl-
edge of more complex relations between words, such as synonymy. On top of
lexical cohesion, other useful indicators of a topic change can be considered.
For example, discourse markers [321], like “however” and “furthermore”, can
be used. In the case of multimedia documents, cues from the other modali-
ties [530], e.g., shot boundaries, speaker changes or silences, provide valuable
information.

Existing approaches for topic-specific data retrieval mainly differ according
to the type of data collection used and the criterion chosen to select the rele-
vant documents. Some studies are based on static sets of articles from which
topic-specific texts can only be found for a restricted number of domains [263]
while other, more recent, works seek to retrieve texts from the Internet [515].
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This last source is more interesting, being an open resource which contains
texts whose style is closer to speech than in typical written documents [543].
As for the method used to select topic-related texts, several criteria based on
the word distributions can be considered to compare documents, as is classi-
cally done in the information retrieval (IR) domain [93].

Finally, language model adaptation given a topic-specific corpus of texts
has been widely studied. A simple approach consists in training a LM from the
corpus before interpolating the adaptation LM with the general-purpose one,
either linearly or log-linearly. The N-gram probabilities of each LM are thus
directly mixed. Other more complex techniques do not rely on an intermediate
adaptation LM but rather search for a final N-gram distribution which mini-
mizes an information quantity, like entropy or mutual information, according
to constraints derived from the adaptation corpus. It has been shown that
these methods outperform the interpolation-based ones [93].

As opposed to previous works, we study the complete adaptation process
and propose a fully unsupervised approach, for which no restricting hypothesis
on the domain or the number of topics is made. To this end, we first combine
acoustic and text features for the segmentation of transcribed text. We then
adapt NLP techniques to take into account confidence measures in order to
gather topic-specific corpora from the Internet. Finally, we demonstrate that
the cascaded use of NLP on transcriptions can benefit to the ASR system
by providing adaptation data. The following sections describe each of these
steps.

9.4.2 Transcript segmentation

Transcript segmentation is primarily based on the statistical lexical cohesion
method described in [537]. In this method, a graph of all the possible segmen-
tations is constructed where the vertex values represent the lexical cohesion
for the segment represented by the vertex. Although originally designed for
written documents, we observed that this method is quite robust to misrec-
ognized words and segmentation into breath-groups [218]. However, the vol-
untary absence of word repetitions—for obvious stylistic reasons—limits the
performance. We therefore extend semantic links between words by studying
co-occurrences of lexical units in the French corpus Le Monde. On top of
lexical cohesion, syntactic and acoustic cues were also considered. Syntactic
cues are based on the sequences of words and POS tags to determine hidden
boundaries between words. Moreover, as spoken documents are multimodal by
nature, we take advantage of audio cues such as male/female speaker changes
or jingles7. To accommodate the additional features, we extended the sta-
tistical lexical cohesion method by adapting the vertex weights to take into

7 Surprisingly, pause duration turned out to be quite uninformative for the segmen-
tation contrary to many previous studies on spoken document segmentation. This
is mostly due to the nature of the documents, as radio broadcast news exhibit
very few pauses.
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account the syntactic and acoustic cues. To predict segment boundaries at
the end of an hypothesized segment, a decision tree is used for the acoustic
cues while a hidden N-gram models the syntactic information [218]. Vertex
weights are modified so as to be a linear combination of the lexical cohesion,
syntactic and acoustic log-scores.

Using only lexical cohesion leads to a recall of 57.4 % for a precision of
36.1 % on segment boundaries, resulting in 78.8 % of the segments containing
a single topic. With the addition of semantic information plus syntactic and
acoustic cues, we achieved a recall of 67.2 % with a precision of 43.2 %, yielding
83.5 % of pure segments.

To validate the other steps of our adaptation method without the bias of
non thematically homogeneous segments, we consider manual topic segmen-
tation in the rest of this section.

9.4.3 Language model adaptation

In order to train an adaptation LM for a thematically consistent section, key-
words are automatically selected and submitted to a Web search engine, the
resulting pages forming the adaptation corpus from which a LM is estimated.
This adaptation LM is combined with the general-purpose baseline LM using
linear interpolation, to obtain an adapted LM which is then used to rescore
word graphs and generate a new transcription.

However, gathering an adaptation corpus from the transcription of a the-
matically homogeneous segment is far from trivial. First, keywords must be
significant enough to fully characterize the content of the segment. On the
other hand, too specific keywords are problematic as they usually result in
few matches on the Internet. This remark raises questions about the “opti-
mal” size of the adaptation corpus and its homogeneity. These many issues
are discussed below.

Keyword spotting

Keywords are selected based on the well-known IR score tf*idf , where tf rep-
resents the frequency of a term w and idf is a value related to the inverse
number of documents containing w in a text collection. Terms with the higher
tf*idf scores are considered as characteristic terms and selected. In practice,
the scores are computed on stems rather than words.

The standard tf*idf keyword selection method was adapted to take into
account specificities of the documents at hand. First, proper names tend to
result in very small and too specific adaptation corpora. A penalty is therefore
applied to their tf*idf score which is scaled by a coefficient empirically set to
0.75. Because of the lack of cases in the transcribed texts, proper names are
detected based on morpho-syntactic tags (see Section 9.3) combined with a
dictionary: nouns with no definition in the dictionary are considered as proper
names. Second, the tf*idf score of a term w is biased based on the confidence
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Fig. 9.2. Details of measured perplexity before and after our topic-based adaptation.

measure c of w in order to limit the impact of misrecognized words, according
to

score(w) = tf*idf × λ + tf*idf × (1 − λ) × c , (9.10)

where λ limits the influence of c.

Adaptation corpus creation

Even if the number of selected keywords is limited to five, combining them in a
single query is not relevant for the task of gathering topic-related documents.
Two main problems occur: a single query often results in very small amounts of
adaptation data; moreover, the impact of transcription errors is detrimental.
We rather rely on a fixed number of queries combining subsets of the whole
keyword set. For example, a first query can be composed of the two best-
scored keywords while the second one combines the first and third keywords.
This strategy maximizes the probability of having at least one relevant query,
even when transcription errors are present.

As queries can return several thousands of documents, the number of
matching documents must be limited. In our study, it was experimentally
observed that at least fifty documents are required to get a good adapta-
tion LM. However, increasing the number of considered documents linearly
increases runtime for a limited gain. Consequently, two hundred Web pages
are kept. A cosine similarity distance between the initial transcription of the
segment and each Web page is used to filter out irrelevant matches.

Results

Experiments were carried out on a subset of 22 manually selected segments
from our broadcast news corpus. Perplexity before and after interpolation of
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the baseline LM with the one obtained from the adaptation data are reported
in figure 9.2 for each of these segments. Perplexity measures how well a LM can
predict the next word given the word history, where the lower the perplexity,
the better. These results indicate that adaptation always reduces perplexity,
even for texts with a low initial perplexity (texts 13, 19 and 20).

However, due to the complex interactions between all the components of
an ASR system, decreasing the perplexity of a LM does not necessarily result
a decrease of the word and sentence error rates. In two out of three segments,
the perplexity falls by over 10 % which translates into a global absolute WER
decrease of 0.2%. This small global WER reduction is mostly due to the fact
that the WER increases in 33 % of the sections while limited WER reductions
are observed in the remaining ones.

Though mitigated, these first results are encouraging as they demonstrate
the validity of the proposed unsupervised adaptation scheme. A detailed anal-
ysis of the transcriptions after adaptation shows that while topic-specific terms
are better recognized, more new errors appear on grammatical words (prepo-
sitions, determiners, etc.). This can be partially explained by the fact that
the adaptation LM is poor on grammatical words due to the limited size of
the training corpus. We believe that better LM adaptation techniques than
interpolation should be considered to circumvent this problem.

Summary

Even if segmentation has not been yet coupled with adaptation, this section
illustrates the use of pragmatic information in combination with ASR system
for unsupervised topic adaptation. The proposed approach mixes information
from the text and audio modalities at various levels. For example, segmenta-
tion of transcriptions rely on lexical, syntactic, semantic and acoustic cues.
Acoustic based confidence measures are used in the keyword selection process
which is by itself based on the text modality. The sequential use of transcrip-
tion, text analysis and again transcription is another example of multimodal
fusion.

9.5 Conclusion

In this chapter, we presented experiments toward a better integration be-
tween automatic speech recognition and natural language processing tech-
niques in order to improve multimedia (or spoken) document processing tech-
niques based on a fusion of information from the audio and text modalities. In
particular, we investigated the fusion of morpho-syntactic and of pragmatic
knowledge in an ASR system and demonstrated the benefits of it. We have
seen that traditional multimodal fusion schemes such as the combination of
log-scores or sequential processing of the modalities successfully apply to the
text and audio modalities.
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Many other research directions have to be investigated towards a full in-
tegration of these two modalities. For example, we have used N -best lists
at the interface between speech and natural language. This is convenient be-
cause each entry can be considered as a regular sentence thus enabling the
use of standard NLP algorithms and a combination of knowledge sources at
the sentence level. However, alternate transcription hypotheses are lost and
NLP techniques can hardly recover from errors made by the ASR system. Us-
ing other interfaces, such as word graphs or confusion networks, might prove
interesting but requires a deeper modification of standard NLP techniques.
Finally, many other sources of linguistic knowledge not considered in this
chapter can also benefit to ASR transcriptions, such as syntactic analysis or
a more extensive use of semantic relations.



Part III

SEARCHING MULTIMEDIA CONTENT



10

Interactive Image Retrieval Using a Hybrid
Visual and Conceptual Content Representation

Marin Ferecatu1, Nozha Boujemaa1, and Michel Crucianu1,2

1 INRIA Rocquencourt
2 Conservatoire National des Arts et Métiers

Many image databases available today have keyword annotations associated
with images. State of the art low-level visual features reflect well the “physical”
content and thus the visual similarity between images, but retrieval based
on visual features alone is subject to the semantic gap. Alternatively, text
annotations can be linked to image context or semantic interpretation but are
not necessarily related to the visual appearance of the images. Keywords and
visual features thus provide complementary information regarding the images.
Combining these two sources of information is an advantage in many retrieval
applications and recent work in this area reflects this interest.

We present here a new feature vector, based on the keyword annotations
available for an image database and making use of the conceptual information
extracted from an external knowledge database. We evaluate the joint use of
the proposed conceptual feature vector and the low level visual features both in
a Query By Example (QBE) context and with SVM-based Relevance Feedback
(RF). Our experiments show that the use of the conceptual feature vectors
can significantly improve the effectiveness of both retrieval approaches.

10.1 Hybrid search

The remarkable success of keyword-based search encouraged the extension of
this paradigm from text to image retrieval. In this case, keywords are ex-
tracted either from the text found in the neighborhood of images or from the
annotations explicitly provided for the images. However, the use of keywords
for text retrieval has some well-known limitations: words are language depen-
dent, words are often ambiguous and matching based on words is brittle. For
image retrieval, yet other limitations add up. First, the relevant keywords as-
sociated to an image can be scarce, since the surrounding text can have little
relevance, while manually providing annotations is expensive. Then, the an-
notations or the surrounding text seldom describe the visual aspect of images.

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 10, c© Springer Science+Business Media, LLC 2008
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Furthermore, they are often inherently incomplete with respect to the higher
level semantics of the image (one can usually add new relevant keywords).

As an alternative to keyword-based image retrieval (KBIR in the follow-
ing), the recent years witnessed the development of methods for image re-
trieval relying on automatically extracted visual features (content-based im-
age retrieval, CBIR), see [123], [295], [76], [181] and references therein. But
CBIR faces the well-known challenge of the semantic gap between low-level
visual features and high-level semantics. Furthermore, while image analysis
and recognition techniques (see Part II of this book) are in some cases able to
detect the presence of specific objects or persons in an image, they cannot be
expected to provide relevant information that is more related to the context
than to the visual content of an image.

We note that each of the two general image retrieval paradigms men-
tioned above—employing keywords or employing the visual content—has spe-
cific limitations and is better adapted to a certain type of search target. KBIR
is more adequate when the user is looking for images associated to a high-
level, unambiguous concept, and the visual appearance has little relevance.
CBIR performs best when the user is searching for images illustrating a con-
cept that translates to low or intermediate level visual features (e.g., color,
texture, shape). Keywords and visual features are complementary sources of
information, but neither KBIR nor CBIR in their original formulations take
advantage of both sources.

In many cases, the user is interested in finding images corresponding to
a semantic concept that combines high-level descriptions and visual compo-
nents. For the search to be effective, contributions from both keywords and
visual features are welcome. With existing keyword-based search engines, the
user relies on the engine for the higher-level component and on his own visual
evaluation capabilities for the subsequent selection stage; this results in a long
time spent in the search process and in a low recall rate. A simple automatic
alternative, present in some prototype content-based image search engines, for
performing such combined searches relies on a filtering approach. Here, the
keywords in the query are employed for filtering out all the candidates that
do not contain them, either before or after performing the search using the
visual component; the brittleness of keyword matching has a negative impact
on the recall rate.

If more appropriate representations are devised for the image annotations,
hybrid search taking into account both visual and textual features becomes
possible. Among the early proposals along this line we mention [282], [497],
[590] and [593]. But these proposals do not completely meet the high expec-
tations one has for hybrid search, mainly because of the solutions employed
for representing image annotations. We consider that the descriptors of the
annotations should have several desirable properties: refer to concepts rather
than keywords (to avoid the ambiguousness of word-based matching), have
the same type of representation as the visual features in order to enable the
same retrieval mechanisms (including the use of database summaries, query
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by example and relevance feedback), have a relatively low dimension (to main-
tain the effectiveness of multidimensional index structures) and be as “inter-
pretable” as possible (to enable other query methods).

In the following we focus on hybrid retrieval from fully annotated image
databases and we put forward a new descriptor that is a convenient repre-
sentation for the information provided by the set of keywords associated to
an image. The design of this descriptor takes into account the fact that such
annotations typically contain only a few keywords, which makes statistical
descriptions unreliable. On the complementary topic of retrieval of images on
the Web, an overview is presented in the chapter “Intelligent Search for Text
and Image Information on the Web” of this book.

We rely on an external ontology to derive a set of semantic “key concepts”
linked with the keywords employed for annotating the images in the database.
We then project the keywords of each image on the selected key concepts
to obtain a vector representation of fixed and rather low dimension, that
has interpretable components. The resulting conceptual feature vector can be
directly used for enhancing the results of a query by visual example or to
improve retrieval with relevance feedback.

In Section 10.2 we introduce the new keyword-based feature vector and
show all the stages required to obtain these feature vectors for a database
of annotated images. The SVM-based active relevance feedback method we
employ is described in Section. 10.3, with an emphasis on the choice of the
kernel and on the selection criterion. In Section 10.4 we present the real-
world annotated image database, taken from the Alinari Picture Library3, and
the visual content descriptors we employ. We then provide evaluation results
obtained with query by example and with relevance feedback. We conclude
by a discussion of our results and a set of promising research directions.

10.2 From keywords to conceptual feature vectors

We describe in this section a new feature vector based on keywords associated
to each image in the database and taking advantage of an external ontology.
Since keywords are a different source of information compared to the visual
content of the images, with a higher level of semantic abstractness, this type
of feature can be used to complement the visual descriptors and increase
the quality of the results returned by an image search engine. By converting
keywords to a standard vector feature form we reduce the impact of hybrid
search on the architecture of the image search engine and on the retrieval
methods. We can thus take advantage of the already existing work, especially
for relevance feedback.

Our approach in building the new feature vector consists in represent-
ing the conceptual content associated to the keywords and in exploiting the

3 Annotated image database kindly provided by Alinari, http://www.alinari.com
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conceptual similarity. This allows us to avoid to a large extent the problems
associated to word matching, caused by word ambiguousness, by the extensive
use of synonyms or by neglecting similarities between different concepts. In or-
der to have a reference for the concepts and to measure conceptual similarity,
we rely on an external knowledge database. Such an approach, using a priori
conceptual relations, is better adapted to the representation of image anno-
tations than methods based on empirical corpus statistics, which can only be
reliable for very large datasets and extensive annotations. We employ Word-
Net4, a lexical reference system inspired by current psycholinguistic theories of
human lexical memory and largely employed by many research communities.

10.2.1 Semantic knowledge database and conceptual similarity

In WordNet, English nouns, verbs, adjectives and adverbs are organized into
synonym sets, each representing one underlying lexical concept. Different re-
lations link the synonym sets. Each word has a different number of meanings
depending on its morphological category (noun, verb, adjective or adverb).
It is organized as a graph and offers the possibility to extract local seman-
tic trees according to predefined semantic relations. The types of semantic
relations defined in WordNet include synonymy, antonymy, hypernymy, hy-
ponymy, holonymy, meronymy, “member of” relation, “cause to” relation, etc.

We are most interested here in hypernymy, i.e., the “X is a kind of Y”
relation between words. Y is a hypernym of X if Y carries the meaning of X,
that is X can be replaced by Y without a change in meaning, but the inverse
is not necessarily true. For a given keyword, using hypernyms, we can build
a directed graph of ascending semantic dependencies, higher levels nodes cor-
responding to more abstract concepts, while lower levels nodes corresponding
to more specific concepts.

More detailed information on WordNet can be found in [157]. Available
alternatives to WordNet as a general-purpose semantic knowledge database
include Cyc [291] and ConceptNet [305], but they are not as mature as Word-
Net, nor as widely employed. While WordNet does not yet offer general lateral
connections between any two concepts (e.g., “doctor” and “hospital”), we do
obtain very good results that could certainly be improved by the use of a more
complete knowledge database. Nevertheless, our method is in no way specific
to WordNet and can be employed with the ontology that is most appropriate
for the field of application.

Distance measures. Following Budanitsky and Hirst [81], we present a brief
outline of several measures of similarity between concepts, which we employ
in the definition of the keywords feature vector. The results obtained with
descriptors based on these different measures are compared in Section 10.4.

4 http://wordnet.princeton.edu
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The evaluation of the semantic relatedness between concepts using net-
works such as WordNet is based on multiple aspects of the ontology, such as
the length of the path, the directions of links, the relative depth or density. A
number of hybrid approaches have been proposed, which combine knowledge-
rich sources, such as a thesaurus, with knowledge-poor sources, such as corpus
statistics (Resnik [436], Lin [302]).

Leacock and Chodorow [285] rely on the length of the shortest path,
len(c1, c2), between two synsets c1 and c2, to measure the semantic similarity.
They use the IS-A relation and scale the path length by the overall depth D
of the taxonomy: simLC(c1, c2) = − log[len(c1, c2)/2D].

Resnik [436] brings ontology and corpus together. The insight is that the
similarity between two concepts can be judged by the extent they share infor-
mation. They define the similarity of two concepts as the information content
of their lowest super-ordinate (most specific common sub-summer), lso(c1, c2):
simR(c1, c2) = − log p(lso(c1, c2)), where p(c) is the probability of encounter-
ing an instance of a synset c in some specific corpus.

Lin [302] propose a measure inspired by the theory of similarity between
arbitrary objects: distL(c1, c2) = 2 log p(lso(c1, c2))/[log p(c1) + log p(c2)].

Wu and Palmer [570] propose a definition of the similarity related to how
closely they are situated in the hierarchy: sim(C1, C2) = 2N3/(N1+N2+2N3),
where C3 is the least common super-concept of C1 and C2, N1 is the number
of nodes in the path from C1 to C3, N2 from C2 to C3 and N3 from C3 to the
root node.

10.2.2 Hypernym graphs and semantic generalization

Directly computing the distance between the concepts corresponding to key-
words is one possible approach and WordNet already provides several possi-
bilities to determine semantic similarities. However, since we cannot store all
distances for all pairs of images in the database, directly computing distances
between keywords or sets of keywords requires using WordNet at query time.
Accessing WordNet many times for every query would slow down the image
retrieval process; while acceptable for small databases, this is computation-
ally prohibitive for medium or large size databases. This effect tends to worsen
when the number of keywords per image increase. Moreover, many algorithms
used in information retrieval, such as relevance feedback, employ a vector rep-
resentation of each document. Our approach is to convert the available text
annotation for every image into a feature vector. We can use this vector for
querying the database or for learning (as with relevance feedback). Moreover,
as explained later, new images can be incrementally added to the database
without having to recompute the features of all the others.

Let B = {I1, I2, . . . , IN} be the image database. For each image Ik ∈ B,
we consider the set of keywords associated to it, K(Ik). Our goal is to design
a feature vector based on keywords: to each image Ik in the database we
associate a vector in an n-dimensional vector space, vk ∈ R

n. The vector vk
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is computed from the keywords annotation of the image Ik, using a semantic
generalization network extracted from WordNet.

The feature vector we propose is based on the hypernym graphs associated
with every keyword that annotates some images in the database. A hypernym
graph, as generated by WordNet, starts with a word and for each of its mean-
ings, describe all paths in the ontology that lead to more general concepts.
This is a directed graph in which the nodes are connected by arrows indicat-
ing a hypernymy relation between them. As an example, Fig. 10.1 shows the
hypernym graph generated from WordNet starting from the word “statue”.

abstraction

attribute

shape, form

figure

solid figure, three-dimensional figure

sculpture

statue

entity

object, physical object

artifact, artefact

whole, whole thing, unit

creation

art, fine art

plastic art

Fig. 10.1. Hypernym graph generated by WordNet for the word “statue”.

Given a keyword, k, and the set of the most generic concepts linked to
it as explained above, Tk, we denote by Ck the set of all chains connecting k
and any element e ∈ Tk. The hypernym graph associated to the keyword k,
denoted by Gk, is completely described by the set of chains Ck.

Let K = {k1, k2, . . . , kp} be a set of given keywords and G = {G1, . . . , Gp}
the corresponding set of hypernym graphs associated to them. We build the
hypernym graph G for the set K as the union of individual graphs Gk:

G =

p⋃

k=1

Gk
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The set of chains C corresponding to the final graph G is the union of the set
of chains, {C1, . . . , Cp}, corresponding to the individual graphs {G1, . . . , Gp}:

C =

p⋃

k=1

Ck

Any graph Gk ∈ G is a subgraph of G, Gk ⊆ G, and correspondingly, any
chain-set Ck is included in the final chain-set C, Ck ⊆ C.

The graph corresponding to a set of keywords has several interesting prop-
erties, making it an appropriate hierarchical representation of the semantic
content derived from keywords annotating an image database:

• It is a directed graph: given two nodes on the same chain, there is always
one of them that can be identified as “more abstract” than the other.

• It can be viewed or organized as a pseudo-tree structure having at the
lowest levels the concepts associated to the keywords used in annotation
(considered as leaves) and at the highest level the most generic concepts
found in the ontology.

• It can be traversed top to bottom starting from the most generic concepts,
going down through intermediate level concepts and ending in the most
specific concepts (corresponding to the keywords).

Associating to each image a vector where each component corresponds to
a keyword may work in situations where the number of keywords is small,
but it becomes quickly prohibitive for real databases, where the number of
keywords is large. Having a feature vector of several thousands dimensions
slows down by a large factor the speed of the queries, hinders the application
of multidimensional indexing methods and also makes learning and relevance
feedback very difficult. Also, since the distance between two vectors is com-
puted component-wise, it can not reflect the fact that two different concepts
(associated to two different components) may be semantically related. Our
aim is to store the essential information about the keywords in an organized
and easy to interpret manner, reducing the dimension of the feature vector at
the same time.

We use the hypernym graph associated to all the keywords that annotate
images in the database to find a set of higher level concepts, called key con-
cepts, which are relevant to the annotation. Each such concept corresponds to
a component of the feature vector. The selected concepts are usually different
from the keywords used for annotating the the images. To build the feature
vector of a image Ik, we project the set of keywords K(Ik) to the key concepts
and obtain for each dimension a measure indicating the degree of relevance of
the given set of keywords to the respective semantic concept.

When selecting the set of key concepts, a balance must be maintained with
respect to the semantic coverage: nodes that are too close to the keywords do
not contribute much to a reduction of the dimension of the feature vector,
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while nodes that correspond to too generic concepts diminish the discrimi-
nation power. The selection is a delicate task with a significant impact on
the quality of the feature vector. Thus, at present we choose them by direct
inspection of the hypernym graph. One of the future improvements of our
method will be the definition of a robust method for the automatic selection
of the key concepts. Several criteria can be used for this purpose, such as the
weight (number of elements) of the subgraph of each internal node, the mean
distance of a node to its children or the number of children keywords for each
node.

The use of key concepts for defining the keyword-based feature vectors
also makes this description relatively stable to the addition of new images to
the database: the set of key concepts must be redefined (so the features of
the existing images need to be recomputed) only when the existing set is no
longer an appropriate representation for the annotations of the new images.

10.2.3 Computation of the conceptual feature vectors

Let Ik ∈ B be an image, K(Ik) the set of keywords annotating the image
and C = (C1, . . . , Cp) the set of key concepts chosen as described above.
We project the set K(Ik) on each concept Ci, obtaining a scalar value
sim(K(Ik), Ci) that is a measure of the semantic similarity between K(Ik)
and Ci. This measure, more precisely described in the following, can also be
seen as the degree of confidence that a user will find the concept Ci pertinent
to describe the image Ik, given the set of keywords K(Ik).

In our experiments, we tested several methods for projecting keywords on
the concepts selected for the feature vector:

• Projection only on parent key concepts: this emphasizes consistency with
the hypernym graph and we put to zero all dimensions corresponding to
concepts which are not parents for the keyword under focus.

• Projection on all key concepts: even if a keyword is not connected in the
hypernym graph with a concept, using a semantic similarity function (pre-
viously described) may provide useful information since they are based on
additional relations, such as synonymy, IS-A relation, etc.

As semantic similarities, we tested the four measures described in the
previous section (Leacock and Chodorow, Lin, Resnik, Wu and Palmer). We
also tested the binary measure given by:

sim(k,C) =

{
1, if C is a parent of k

0, otherwise

This measure simply turns ON the concept if an underlying keyword is
present. This is motivated by the fact that sometimes the association of a
concept to an image can not be modeled by a continuous variable, e.g., an
image may be more or less “green”, but a concept like “animal” cannot be



10 Image Retrieval Using a Hybrid Content Representation 229

52% present in the image. There are also other quantification issues in the
semantic description of images that make continuous variables inappropriate,
see, e.g., Fig. 10.2.

placental mammal

carnivore hoofed mammal

feline, felid canine, canid operissodactyl mammal

big cat, cat dog

lion

equine, equid

horse

Fig. 10.2. A “dog” is not more or less a “mammal” than a “horse” just because the
computed semantic similarity between the two keywords and their common parent
is different.

When an image I is annotated with a set of keywords K(I), we define the
following measure for the semantic similarity between the given image and a
concept C:

sim(K(I), C) = max
k∈K(I)

sim(k,C) (10.1)

Taking the maximum from the individual similarities guarantees that an image
will be considered semantically close to a concept only if it is annotated with
keywords semantically similar to the given concept. Conversely, suppose we
take the sum of individual similarities instead of the maximum. In this case
it is possible to end up with a high value for the overall similarity, even if all
the individual similarities are small, which is undesirable.

10.3 SVM-based active relevance feedback

When searching generic image databases, the results are affected by the se-
mantic gap which reflects the difference between the low level image signatures
employed by the system and the high level descriptions expected by the users.
One solution to this problem is to cut a search session into several consecutive
retrieval rounds and let the user provide feedback regarding the results of ev-
ery retrieval round, e.g., by qualifying images returned as either “relevant” or
“irrelevant”. The engine progressively learns the visual features of the “target
class”; thus, relevance feedback (RF) can be used as a tool to interactively
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define complex visual categories that are often difficult to describe by other
means (see [594] for a review).

An RF method is defined by two components, a learner and a selector.
At every feedback round, the learner uses the images marked by the user to
re-estimate the search target. Given an estimation of the target, the selector
chooses which images the user is asked to provide feedback at the next round.
The task of the learner is very difficult [89], [594] because the training set is
small and heavily imbalanced and the evaluation must be performed in real
time. Much recent work is based on support vector machines (SVMs, [469])
because they avoid too restrictive assumptions regarding the data (e.g., that
classes should have elliptic shape), are very flexible (can be tuned by kernel
engineering) and allow fast learning and evaluation.

Support Vector Machines. SVMs belong to the family of kernel methods
[469], who first map the data from the original (input) space I to a higher-
dimensional feature space H and then perform linear algorithms in H. The
nonlinear mapping φ : I → H is implicitly defined by a kernel function K :
I ×I → R endowing H with a Hilbert space structure if the kernel is positive
definite [57]. The inner product 〈·, ·〉 : H × H → R can be expressed as
〈φ(x), φ(y)〉 = K(x,y). This “kernel trick” allows to reduce inner products
in H to ordinary kernel computations in I and thus extend linear algorithms
relying on inner products in H to nonlinear algorithms based on more ordinary
computations in I. For all the experiments presented in Section 10.4, I = R

d,
but the method described here is not restricted to this case. The input space
I does not even need to be a vector space, as long as a positive definite kernel
can be defined [57]. The class of kernels for which SVM algorithms hold can
actually be enlarged to the conditionally positive definite (CPD) kernels [468].
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Fig. 10.3. Discrimination with 2-class SVM. φ maps input space (left) to feature
space (right).

One-class SVM were put forward as a means to describe the domain of a
data distribution having a potentially complex description in an input space
I. The data is first mapped to the feature space H. Then, according to the
first formulation [516], the smallest sphere in H that contains the images of
the data items is taken as the feature space representation of the domain
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of the distribution. One-class SVM were used for relevance feedback, e.g., in
[392] to model the distribution of the positive examples (images marked as
“relevant”) and return the unmarked items whose images in feature space are
the nearest to the center of the sphere (potentially the most “relevant”); the
information provided by the negative examples (items marked as “irrelevant”)
is ignored.

A 2-class SVM aims to identify a frontier between two classes, based on
a set of learning (labeled) examples. The 2-class SVM (Fig. 10.3) chooses as
discrimination frontier the hyperplane in feature space that maximizes the
margin to the examples from each of the 2 classes. This hyperplane is the fea-
ture space image of a usually nonlinear frontier in input space (depending on
the kernel employed). The hyperplane is defined by an orthogonal vector and
a position threshold. Since the orthogonal vector is in the subspace spanned
by the n vectors φ(xi) (xi being the original data points), it is expressed
as a linear combination of the “support vectors”, i.e., of those vectors who
are within the margin. Learning consists in identifying the support vectors
and computing the linear coefficients, which is done by a fast procedure for
constrained quadratic optimization.

When used for relevance feedback, a 2-class SVM learns at every feedback
round to discriminate the target class from the rest of the database. The SVM
learner is trained using all the available examples, both positive (items marked
as “relevant” by the user) and negative (items marked as “irrelevant”). Then,
the selector must choose yet unmarked items for which the user should provide
feedback during the next round.

In much of the work on RF, the selector returns those images that were
currently considered by the learner as (potentially) the most relevant; also,
in some cases these images are randomly selected. An important step ahead
was the introduction in [524] and [523] of an active learning framework for
RF using SVMs. We present here an improved RF mechanism that tries to
minimize the amount of interaction needed from the user. First, since insen-
sitivity to the spatial scale of the data is a desirable feature for the SVMs
employed as learners, we employ a specific kernel function that provides this
insensitivity. Second, to optimize the transfer of information between the user
and the system, we use an improved active learning selection criterion that
minimizes redundancy between the candidate images shown to the user.

Scale invariance. During the study of several ground-truth databases we
found that the size of the various classes often covers an important range
of different scales in the space of low level descriptors. We expect yet more
significant changes in scale to occur from one database to another, from one
user-defined image class to another within a large database or between parts
of the frontier of some classes. A too strong sensitivity of the learner to the
scale of the data could then limit its applicability in an RF context.

The kernels usually employed in SVM-based RF depend on a scale parame-
ter that makes difficult to adapt to the scale of the data. These kernels include
the RBF kernel, K(xi, xj) = exp

(
− γ‖xi − xj‖

2
)
, and the Laplace kernel,
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K(xi, xj) = exp
(
−γ‖xi−xj‖

)
. The angular kernel, K(xi, xj) = −‖xi−xj‖, is

a conditionally positive definite kernel, but the convergence of SVMs remains
guaranteed with this type of kernel [468]. Fleuret and Sahbi [164] show that
the angular kernel makes the frontier found by SVMs invariant to the scale of
the data. In real applications, the scales of the user-defined classes cannot be
known a priori and the scale parameter of a kernel cannot be adjusted online.
The scale-invariance obtained by the use of the angular kernel becomes then
a highly desirable feature and experiments on several image databases prove
this kernel to be a very good alternative. Note that for very small values of γ
the Laplace kernel behaves much like the angular kernel.

Active learning. In order to maximize the ratio between the quality (or
relevance) of the results and the amount of interaction between the user and
the system, the selection of images for which the user is asked to provide
feedback at the next round requires careful consideration. Tong and Köller
[524] present several selection criteria for SVM-learners applied to content-
based text retrieval with relevance feedback. The simplest criterion consists
in selecting the texts whose representations (in the feature space induced by
the kernel) are closest to the hyperplane currently defined by the SVM. We call
this simple criterion the selection of the “most ambiguous” (MA) candidate(s).
This selection criterion is justified by the fact that knowledge of the label of
such a candidate halves the version-space. While the MA criterion provides
a computationally effective solution to the selection of the most ambiguous
images, when used for the selection of more than one candidate image it does
not remove the redundancies between the candidates.

In our approach we require, for any two candidates images xi and xj , a low
value for K(xi, xj). If all the images of vectors in the input space have con-
stant norm and if the kernel K is inducing a Hilbert structure on the feature
space, then this condition corresponds to a requirement of quasi-orthogonality
between the vectors representing the images in the feature space. We call
this criterion the selection of the “most ambiguous and orthogonal” (MAO)
candidates. The MAO criterion has a simple intuitive explanation for kernels
K(xi, xj) that decrease with an increase of the distance d(xi, xj) (which is the
case for most common kernels): it encourages the selection of unlabeled exam-
ples that are far from each other in input space, allowing to better explore the
current frontier. To implement this criterion, we first perform an MA selection
of a larger set of unlabeled examples. If S is the set of images not yet included
in the current MAO selection and xi, i = 1 . . . n are the already chosen candi-
dates, then we choose as a new example the vector xj ∈ S that minimizes the
highest of the values taken by K(xi, xj): xj = argminx∈S maxi K(x, xi). For
more details and evaluation results of this RF scheme please refer to [160].
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10.4 Evaluation of the hybrid representation

In this section we present an experimental evaluation of image retrieval using
both visual features and the proposed conceptual image descriptor. We begin
by introducing the experimental setup and the performance measures we use,
after which we provide results for both query by visual example (QVBE)
and for image retrieval using relevance feedback. These results show that the
proposed conceptual descriptor can significantly improve the quality of the
returned results when used jointly with the visual features.

10.4.1 Ground-truth database

To obtain a test database we started from an image database kindly provided
by Alinari5. The test database has 3585 images for a total of 6664 annotations
using 90 keywords. Each keyword can be viewed as defining a class of images.
The image classes are coherent from a semantic perspective, but there is a high
diversity in visual content for each class. Here are some examples of keywords
and the corresponding number of files annotated with the respective keyword:
“fresco” (274 files), “city” (206 files), “farming”(162 files), “statue” (121 files),
“Gothic” (69 files). Class sizes vary between 26 and 274 images per class.

To allow a fair evaluation, we built by hand a ground truth (GT), inde-
pendent from the keywords and which is not easily reduced to a combination
of keywords (thus, no GT class is the union, the intersection or the differ-
ence of several initial classes). Examples of the GT classes of images include:
“Madonna and child”, “aerial view”, “group of people”, “horse statue”, etc.
We selected 20 classes in the GT, having between 15 and 174 images/class.
The number of files included in the ground-truth is 1073 and the degree of
overlapping between classes is about 10%. A certain degree of overlapping
between GT classes corresponds better to real situations where an image may
belong to different image classes, depending on the target of the user.

While the ground truth is smaller than the database, we perform all the
tests on the entire database of 3585 images. This may bias the results, making
them look worse (because of images that may belong to a GT class but were
not included there), but it corresponds better to a real world situation, where
the user is searching for classes of images without having prior knowledge
of the image database. We build precision/recall diagrams for the query by
example evaluation, and mean precision vs. iteration diagrams for retrieval
with relevance feedback.

10.4.2 Content description

Visual features. To describe the visual appearance of the images we use image
descriptors that take into account global characteristics such as color, texture

5 http://www.alinari.com
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and shape. While less precise than local descriptions, these have the advan-
tage of being much faster to use, while offering good results with interactive
retrieval based on relevance feedback.

Classical color histograms are first order statistics that do not keep spa-
tial information: all pixels are considered equally important. However, pixels
having the same color are not similar if we consider their neighborhood in the
image [545], [75]. Follows the idea of weighting each color by a measure giving
its importance in the local context:

h(c) =
1

MN

M−1∑

i=0

N−1∑

j=0

w(i, j)δ(f(i, j) − c)

where h(c) is the histogram value for the color c, M and N are the dimensions
of the image (in pixels), f(i, j) is the (image) color for the pixel (i, j), w(i, j) is
the weighting function and δ(·) is the Dirac distribution. Here we use w(i, j) =
∆2(i, j), where ∆ is the Laplacian, to emphasize corners and edges in the
image (Laplacian weighted histogram) and w(i, j) ≈ 1/p(i, j), where p(i, j) is
the probability of the current pixel in a local neighborhood, to measure the
local color dominance (probability weighted histogram).

The texture feature vectors employed here are based on the Fourier trans-
form, obtaining a distribution of the spectral power density along the fre-
quency axes [75]; if the spectrum is important at high frequencies then the
small scale details are relevant and there are many textured regions in the
image.

To describe the shape content, a signature based on the Hough transform
is employed: the gray-level image is first computed, then the direction of the
gradient is found for every pixel and a reference point is considered; for every
pixel, the angle of the gradient and the length of the projection of the reference
point along the tangent line going through the pixel position are counted in
a joint histogram that is the shape feature [159].

The visual features employed here are: the Laplacian weighted histogram,
the probability weighted histogram, the Hough histogram, the Fourier his-
togram and a classical color histogram computed in HSV color space. The
joint feature vector has more than 600 dimensions. The high number of di-
mensions of the joint feature vector may make relevance feedback impractical
for large datasets. Also, the high dimensional feature spaces make learning
more difficult (curse of dimensionality). In order to reduce the dimension of
the feature vectors, we use linear principal component analysis (PCA) to ob-
tain reduction in dimension of about 5 times, with an overall loss of quality
of less than 3% for query by example.

Conceptual features. We built, as presented in Section 10.2, the hypernym
graph associated with the whole database and we selected 28 representative
key concepts. Examples of the chosen concepts include “vertebrate”,“religious
person”, “location”, “geographical area”, etc. The keywords based feature



10 Image Retrieval Using a Hybrid Content Representation 235

vector has 28 dimensions, and no keyword was included as a key concept. We
call the resulting feature vector WNS (WordNet Signature).

10.4.3 Evaluation for query by example

We first present the evaluation of the combined use of visual features and the
keyword based WNS signature. We tested several types of WNS signatures,
to have a better idea which one to use with relevance feedback:

• WNS-BINARY — this signature is the binary projection of the keywords
annotating an image only on concepts linked through a chain in the hyper-
nym graph, i.e the projection has value 1 if one of the keywords belongs
to the children set of the concept, and has the value 0 otherwise. This cor-
responds to using the binary similarity function described in Section 10.2

• WNS-{LCH, LIN, RES, WUP} — these signatures correspond to project-
ing the keywords on the parent concepts, as above, but using as similarity
functions Leacock and Chodorow, Lin, Resnik or Wu-Palmer.

• WNS-{LCH, LIN, RES, WUP}-ALL — the same as above, with the differ-
ence that the keywords are projected on all key concepts. For the binary
similarity function this corresponds to a signature identical with WNS-
BINARY, but the other similarity functions generate different signatures
because they can provide fractional values for the similarity measure.
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Fig. 10.4. Precision recall diagrams for the WNS signatures alone (a) and in com-
bination with the visual features (b).

In Fig. 10.4(a) we show precision vs. recall diagrams for the WNS signa-
tures. The binary measure is not as good as other measures for most of the
recall values and the Lin measure is sometimes 3–7% better than the others on
our ground truth. Fig. 10.4(b) presents the combined VISUAL–WNS signa-
ture vs. VISUAL alone. Combining the visual features with WNS signatures
adjusts the differences between different similarity measures, but the overall
result is most of the time 10–15% better than with visual features alone.
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Fig. 10.5. Precision vs. recall diagrams for (a) the VISUAL and WNS-ALL signa-
tures and (b) the VISUAL and WNS-LIN signatures.

Fig. 10.5(a) shows precision vs. recall diagrams for the combined visual–
WNS-ALL signatures vs. visual alone. As we see, in this case also, the WNS
signature brings large improvements in the results (on the order of 20%).
In Fig. 10.5(b) we notice the difference between the WNS-ALL and WNS
signatures for the Lin similarity measure. The WNS-LIN-ALL signature per-
forms clearly better than WNS-LIN when combined with the visual features
and much better than the visual alone. We obtained similar diagrams for the
LCH, RES and WUP measures.

Projecting the keywords on all concepts allows the use of semantic relations
in WordNet, other than hypernymy, through the similarity functions, fact
which reflect positively in the results returned by the system. However, we
could not obtain experimental evidence to favor any of the similarity measures
presented in Section 10.2; for further tests, we employed the Lin similarity
measure since in [81] it was shown to be the closest to the way human subjects
judge conceptual similarity.

10.4.4 Evaluation with relevance feedback

We tested the new WNS signatures using relevance feedback on our ground-
truth database. All the comparisons were performed using the MAO selection
criterion, described in Section 10.3. For the SVM, we employed the angular
kernel, K(xi, xj) = −‖xi − xj‖, because in our experiments it performed
better than other kernels. Also, it produces a separating hyper-surface that is
invariant to the scale of the data. This is particularly important for the classes
of images in our ground-truth, which are based on a semantic definition and
are very heterogeneous in their visual content.

At every feedback round the (emulated) user must label as “relevant” or
“irrelevant” all the images in a window of size WS = 9. A search session
is initiated by considering one “relevant” example and WS − 1 “irrelevant”
examples. Our evaluation is exhaustive: every image in every class serves as
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the initial “relevant” example for a different RF session, while the associated
initial WS−1 “irrelevant” examples are randomly selected. The MAO criterion
is computed on a window of size 2 × WS. Following common practice in the
image retrieval literature, we pursue each relevance feedback session for 30
iterations and we measure the precision within a window of size equal to the
size of the class to which the initial positive example belongs. We present in
Fig. 10.6 and 10.8 the mean value of all precision vs. iteration for all feedback
sessions. This provides a measure of how well relevance feedback performs,
iteration by iteration, in its task of finding the target class.
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Fig. 10.6. Mean precision vs. iteration for (a) the WNS-BINARY signature and for
(b) the WNS-LIN signature.
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Fig. 10.7. Mean precision vs. iteration for (a) the WNS-LIN-ALL signature and
for (b) the WNS-LIN(-ALL), WNS-BINARY and VISUAL features.

In Fig. 10.6(a) we can see that the visual feature vector and the WNS-
BINARY signature have a similar behavior when used with relevance feedback
on the proposed ground-truth. However, their joint use drastically improves
the results starting from the very first iterations (sometimes with as much as
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25%). A similar behavior can be seen in Fig. 10.6(b) and in Fig. 10.7(a) for
the WNS-LIN and WNS-LIN-ALL signatures. Combining the visual feature
vector with the keywords signature improve considerably the quality of the
results in all tests we performed. This is due to the complementary nature of
the information provided by the two feature vectors. Relevance feedback, as
an interactive process guided at every iteration by the user, can make very
good use of this complementarity.

In Fig. 10.7(b) we present results obtained using the visual feature vector
in combination with WNS-BINARY, WNS-LIN and WNS-LIN-ALL vs. using
visual alone. Using a similarity function instead of a binary projection improve
the results, and that projection on all the coordinates instead of projecting
just on parent coordinates may improve the results even further.

(a) (b)

Fig. 10.8. First page of QBE retrieval results with (a) the visual descriptor and (b)
the conceptual descriptor.

Fig. 10.9. First page of QBE retrieval results with the combined visual and the
conceptual descriptor.
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As an illustration, in Fig. 10.8 and Fig. 10.9 we present some screens of
results returned by our system in a QBE scenario: the query image is in the
top-left corner and the user is searching for images featuring bell towers. In
Fig. 10.8(a) we see the results when the system is using only the visual fea-
tures; in this case the system is confused by too many images in the database
having similar visual descriptors with the query image (the semantic gap).
The results in Fig. 10.8(b) correspond to the use of the WNS-LIN-ALL sig-
nature alone: while the returned images are conceptually related to the query
image, many of them do not represent well the query subject. Fig. 10.9 shows
the results obtained when employing both the visual and concept-based de-
scriptors. In this case, the system return many images that are not present
in the previous situations and which clearly correspond better to the target
class.

10.5 Conclusion

Although image retrieval using low-level visual features works well in many
situations, the semantic gap limits its application to generic image databases.
Alternatively, text annotations are more directly related to the high-level se-
mantics of the images, but do not usually reflect visual similarities. Keywords
and visual features thus provide complementary information and using both
of them can be an advantage in retrieval applications.

We introduced here a new keyword-based feature vector that makes use
of an external source of knowledge to induce a semantic generalization of
the concepts corresponding to the keywords. The proposed conceptual feature
vector can be used as a generic image feature and requires no modification in
the architecture of the image search engine. Its dimension is much smaller than
the number of keywords used to annotate the database and it is suitable for
use with relevance feedback on large image databases. Evaluations performed
on a ground truth build from a generalist database confirm that this feature
vector can significantly improve the quality of the results both for query by
example and with relevance feedback.

Our retrieval framework is primarily intended for datasets fully indexed
with text annotations. To deal with partially annotated image databases, the
solution we advocate consists in using off-line methods, such as those pre-
sented in the introduction, for extending existing annotations to the images
that are not annotated. Such annotations can provide additional information
coming from the use of, e.g., object detectors obtained by supervised learn-
ing on another, specific database; however, unlike user-provided annotations,
these automatically generated annotations cannot bring in information that
is complementary to the visual content.

Given the potential complexity of the hypernym graph, empirical selec-
tion of the key concepts is feasible for rather small databases; an automatic
method is needed for large datasets. This is a difficult task: by choosing too
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general concepts the precision of the system will degrade, while by select-
ing too specific concepts the indexing set will remain large, preserving some
distinction between words with rather similar meanings, with a negative im-
pact on recall. An interesting criterion, minimum redundancy cut, was put
forward in [477] and is based on information theory; the idea is to select the
appropriate level of conceptual indexing by considering minimal cuts in the
hypernym graph, i.e., cuts defining a well-balanced coverage of all the rel-
evant nodes (corresponding to the keywords). While an interesting starting
point, this entropy-based criterion is more appropriate for large texts than for
annotations, so we pursue the investigation of alternative solutions.



11

Multimodal Analysis of Text and Audio
Features for Music Information Retrieval

Robert Neumayer and Andreas Rauber
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Multimedia content can be described in different ways as its essence is not
limited to one view. For audio data those multiple views are, for instance,
a song’s audio features as well as its lyrics. Both of those modalities have
their advantages: text may be easier to search in and could cover more of the
“semantics” of a song while it does not say much about “sonic similarity”.
Psychoacoustic feature sets, on the other hand, provide the means to identify
tracks that “sound” similar while they provide little information for seman-
tic categorization of any kind. Discerning requirements for different types of
feature sets are expressed by users’ differing information needs. Particularly
large collections invite users to explore them interactively in a loose way of
browsing, whereas specific searches are much more feasible, if not only possible
at all when supported by textual data.

This chapter describes how audio files can be treated in a multimodal
way, pointing out the specific advantages of two kinds of representations. A
visualization method based on audio features and lyrics data and the Self-
Organizing Map is introduced. Moreover, quality metrics for such multimodal
clusterings are introduced. Experiments on two audio collections show the
applicability of our techniques.

11.1 Accessing and Presenting Audio Collections

Over the last decade, multimedia content has come a long way towards end
users. Digital cameras, for instance, have become very common and are now
used by vast numbers of people compared to just a few years ago. In addi-
tion, huge amounts of digital audio made their way into everyones life. The
transition to digital media has been, and still is, progressing at high speed.
The growing success of online music stores as well as the masses of users
getting accustomed to digital media have been the driving force behind this
development.

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 11, c© Springer Science+Business Media, LLC 2008
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Large amounts of audio content available in digital form pose new chal-
lenges for both private users and commercial music vendors. The main ques-
tion for online shops is: “How do we present our collection to customers?” For
the consumer side the main interest lies in “How do I find the music I want
to listen to in an easy way?”. Hierarchical meta data categories have proved
to be a very efficient means of search and access – when the user knows ex-
actly what he is looking for. Personal listening behaviors often can only be
insufficiently described by predefined genre tags. Similarity search, however,
essentially allows to retrieve songs similar to a given query, where similarity
may be defined on several levels. Multimodal analysis of audio content may
involve the following:

• Audio data (the song itself).
• Meta data.
• Web-Enriched meta data.

Whereas for the audio data itself often at least some meta data are avail-
able, additional data can be retrieved from the Web. In the course of this
chapter, we will make use of audio data, provided meta data, and additional
information in terms of song lyrics – partly manually assigned and partly
fetched automatically from the Internet.

Personal similarity perception is not only defined by individual hearing
sensation but also, to a large degree, by the users’ cultural background. Par-
ticularly, song lyrics and other cultural information are feasible means for
navigation within and access to audio collections. Users are often interested
in songs that cover similar topics, such as “love songs”, or “Christmas Car-
ols”, which are not acoustic genres per se, i.e., songs about these particular
topics might cover a broad range of musical styles. In contrast with users
interested in songs that “sound” similar to a given query song, similarity is
herein defined differently. Even advances in audio feature extraction will not
be able to overcome the fundamental limitations of this kind, i.e., overcoming
the so called semantic gap between low-level features and high-level, seman-
tically embedded, user expectations. Song lyrics therefore play an important
role in music similarity. This textual information thus offers a wealth of addi-
tional information to be included in music retrieval tasks, which may be used
to complement both acoustic as well as meta data information for pieces of
music.

The remainder of this chapter is structured as follows. First, we introduce
a range of techniques from the areas of machine learning, music information
retrieval as well as user interfaces to digital libraries. Further, we introduce
fundamentals as well as advanced techniques for the visualization of audio
collections according to multiple dimensions. We then describe experiments
performed on two test collections – one of small, one of large size – to un-
derscore the applicability of the presented approach. Finally we conclude and
give an outlook on future research in the area.
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11.2 Related Work

This section summarizes related work done in the areas of Self-Organizing
Map (SOM) mapping as well as in the areas of music information retrieval
(MIR).

The area of MIR has been heavily researched, particularly focusing on au-
dio feature extraction. First experiments based on and an overview of content-
based MIR were reported in [168] as well as [534, 535], the focus being on
automatic genre classification of music. Comprehensive overviews of MIR are
given in [141, 377]. In this work the Rhythm Patterns features are considered,
previously used within the SOMeJB system [427]. Based on that feature set,
it is shown that Statistical Spectrum Descriptors (SSDs) yield relatively good
results at a manageable dimensionality of 168 as compared to the original
Rhythm Patterns that comprise 1440 feature values [301]. In the remainder of
this chapter, SSDs are used as audio feature set and improvements in simi-
larity ranking are based thereon. Another example for a set of feasible audio
features is implemented in the Marsyas system [534].

In addition to features extracted from audio, several researchers have
started to utilize textual information for music information retrieval (IR).
A sophisticated semantic and structural analysis including language identifi-
cation of songs based on lyrics is conducted in [316]. Artist similarity based on
song lyrics is presented in [307]. It is pointed out that similarity retrieval using
lyrics is inferior to acoustic similarity, but it is also suggested that a combi-
nation of lyrics and acoustic similarity could improve results. A powerful ap-
proach targeted at large scale recommendation engines is lyrics alignment for
automatic retrieval as presented in [266]. Lyrics are fetched via the automatic
alignment of the results obtained by Google queries. An evaluation of the
combination of lyrics and audio information for musical genre categorization
is performed in [364].

Artist similarity based on co-occurrences in Google results is studied
in [465], creating prototypical artist/genre rankings, again, showing the im-
portance of text data. Different aspects like year, genre, or tempo of a song
are taken into account in [546]. Those results are then combined and a user
evaluation of different weightings is presented showing that user control over
the weightings can lead to easier and more satisfying playlist generation.

The importance of browsing and searching as well as the combination of
both is outlined in [118]. The work presented in this chapter deals with im-
proving those aspects, a combination approach can leverage both of them by
satisfying users’ information needs through offering advanced search capabil-
ities and improving the recommendations quality.

11.2.1 Self-Organizing Maps

The Self-Organizing Map (SOM) is an unsupervised neural network that
provides a mapping from a high-dimensional input space to usually two-
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dimensional output space [271]. The learning algorithm generally preserves
topological relations. A SOM consists of a set of i units arranged in a two-
dimensional grid, each attached to a weight vector mi ∈ ℜn. Elements from
the high-dimensional input space, referred to as input vectors x ∈ ℜn, are
presented to the SOM. Then, the distance of each unit to the presented input
vector is calculated (the Euclidean Distance is commonly used). The unit hav-
ing the shortest distance, i.e., the best matching unit (BMU) c (for iteration
t) is selected according:.

c(x, t) = arg min
i
{d(x(t),mi(t))}. (11.1)

In the next step, the weight vector of the BMU is moved towards the pre-
sented input signal by a certain fraction of the Euclidean distance as indicated
by a time-decreasing learning rate α. Furthermore, the weight vectors of units
neighboring the BMU, as described by a time-decreasing neighborhood func-
tion hci, are modified accordingly, yet to a smaller amount as compared to
the BMU:

mi(t + 1) = mi(t) + α(t) · hci(t)[x(t) − mi(t)]. (11.2)

Consequently, the next time the same input signal is presented, this unit’s
activation will be even higher. The result of this learning procedure is a
topologically ordered mapping of the presented input signals in the two-
dimensional space, that allows easy exploration of the given data set.

Several visualization techniques have been proposed for SOMs. These can
be based on the resultant SOM grid and distances between units, on the data
vectors itself, or on combinations thereof. In this chapter we make use of two
kinds of visualizations, one of which are the Smoothed Data Histograms [388].
Even if it is not necessary for clustering tasks per se, class information can
be used to give an overview of a clustering’s correctness in terms of class-wise
grouping of the data. A method to visualize class distributions on SOMs is
presented in [330]. This color-coding of class assignments will later be used in
the experiments to show the (dis)similarity of audio and lyrics clusterings.

SOM Based User Interfaces

Applications and user interfaces based on the SOM have been developed for
a wide range of domains. Several teams have been working on user interfaces
based on the SOM. This mapping technique has been extensively used to pro-
vide visualizations of and interfaces to a wide range of data, including control
interfaces to industrial processing plants [272] or access interfaces for digital
libraries of text documents. A SOM based interfaces for digital libraries of
music was first proposed in [426], with more advanced visualizations as well
as improved feature sets being presented in [388], evolving to the PlaySOM
system presented in [363]. Since then, several other systems have been cre-
ated based on these principles, such as the MusicMiner [343], which uses an
emergent SOM. A very appealing three-dimensional user interface is presented
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in [265], automatically creating a three-dimensional musical landscape via a
SOM for small private music collections. Navigation through the map is done
via a video game pad and additional information like labeling is provided
using web data and album covers.

11.2.2 Audio Features

For feature extraction from audio we rely on Statistical Spectrum Descrip-
tors (SSDs, [301]). The approach for computing SSDs features is based on the
first part of the Rhythm Patterns algorithm [427], namely the computation of
a psycho-acoustically transformed spectrogram, i.e., a Bark-scale Sonogram.
Compared to the Rhythm Patterns feature set, the dimensionality of the fea-
ture space is much lower (168 instead of 1440 dimensions), at a comparable
performance in genre classification approaches [301]. Therefore, we employ
SSD audio features, which we computed from audio tracks in standard pule
code modulation (PCM) format.

SSDs are composed of statistical descriptors computed from several criti-
cal frequency bands of a psycho-acoustically transformed spectrogram. They
describe fluctuations on the critical frequency bands in a more compact rep-
resentation than the Rhythm Patterns features. In a pre-processing step the
audio signal is converted to a mono signal and segmented into chunks of ap-
proximately 6 seconds. Usually, not every segment is used for audio feature
extraction. For pieces of music with a typical duration of about 4 minutes,
frequently the first and last one to four segments are skipped.

For each segment the audio spectrogram is computed using the Short Time
Fast Fourier Transform (STFT). The window size is set to 23 ms (1024 sam-
ples) and a Hanning window is applied using 50 % overlap between the win-
dows. The Bark scale, a perceptual scale which groups frequencies to critical
bands according to perceptive pitch regions [598], is applied to the spectro-
gram, aggregating it to 24 frequency bands.

The Bark scale spectrogram is then transformed into the decibel scale. Fur-
ther psycho-acoustic transformations are applied: Computation of the Phon
scale incorporates equal loudness curves, which account for the different per-
ception of loudness at different frequencies [598]. Subsequently, the values are
transformed into the unit Sone. The Sone scale relates to the Phon scale in the
way that a doubling on the Sone scale sounds to the human ear like a doubling
of the loudness. This results in a Bark-scale Sonogram – a representation that
reflects the specific loudness sensation of the human auditory system.

From this representation of perceived loudness a number of statistical de-
scriptors is computed per critical band, in order to describe fluctuations within
the critical bands extensively. Mean, median, variance, skewness, kurtosis,
min- and max-value are computed for each of the 24 bands, and a SSD is
extracted for each selected segment. The SSD feature vector for a piece of
audio is then calculated as the median of the descriptors of its segments.
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11.2.3 Text/Lyrics Features

In order to process the textual information of the lyrics, the documents were
tokenized, no stemming was performed due to unique style features of dif-
ferent musical genres (e.g., word endings in colloquial terms often found in
“Hip-Hop” lyrics). Stop word removal was done using the ranks.nl1 stop word
list. Additional stop words were removed based on their influence on the final
clustering and labeling, leading to the removal of the terms: “i, he, her, she,
his, and you”, for they do not convey content information. Further, all lyrics
were processed according to the bag-of-words model. Therein, a document is
denoted by d, a term (token) by t, and the number of documents in a corpus
by N . The term frequency tf(t, d) denotes the number of times term t appears
in document d. The number of documents in the collection that term t occurs
in is denoted as document frequency df(t). The process of assigning weights
to terms according to their importance or significance for the classification
is called “term-weighing”. The basic assumptions are that terms which occur
very often in a document are more important for classification, whereas terms
that occur in a high fraction of all documents are less important. The weigh-
ing we rely on is the most common model of term frequency times inverse
document frequency [456], computed as:

tf × idf(t, d) = tf(d) · ln(N/df(t)) (11.3)

This results in vectors of weight values for each document d in the collec-
tion. Based on this representation of documents in vectorial form, a variety
of machine learning algorithms like clustering can be applied. This represen-
tation also introduces a concept of distance, as lyrics that contain a similar
vocabulary are likely to be semantically related.

11.3 SOM Clustering of Audio Collections

This section describes the test collections in use as well as the basic SOM
techniques applied to both the audio and lyrics representations of the songs.

11.3.1 Test Collections

We compiled a parallel corpus of audio and song lyrics files for a music collec-
tion of 7554 titles organized into 52 genres, containing music as well as spoken
documents (e.g., Shakespeare sonnets). Genres were assigned manually. Class
sizes ranged from only a few songs for the “Classical” genre to about 1.900
songs for “Punk Rock”, due to both the distribution across genres in the col-
lection and difficulties in retrieving the lyrics for some genres like “Classical”.
The collection contains songs from 644 different artists and 931 albums.

1 http://www.ranks.nl/tools/stopwords.html
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Genre Number of Songs

Christmas Carol 15
Country 17
Grunge 16
Hip-Hop 16

New Metal 16
Pop 15
Rock 16

Reggae 14
Slow Rock 15

Speech 09

Table 11.1. Composition of the test collection.

To retrieve lyrics for songs, three portals were accessed, using artist
name and track title as queries. If the results from lyrc.com.ar were of rea-
sonable size, these lyrics were assigned to the track. If lyrc.com.ar failed,
sing365lyrics.com would be checked for validity by a simple heuristic, then
oldielyrics.com.

For better demonstrations in initial experiments we decided to use a some-
what smaller collection that is more easily comprehensible. We selected ten
genres only. Table 11.1 describes the composition of the test collection in de-
tail. It comprises of ten genres and 149 songs in total – the number of songs per
genre varies from 9 to 17. Spoken word is represented by Shakespeare sonnets
mostly and therefore yields a low number of “Speech” pieces. This collection
consists of songs from 20 artists and from the same number of albums. Also,
for the small collection, all lyrics were manually preprocessed as to have addi-
tional markup like “[2x]”, etc. removed and to include the unabridged lyrics
for all songs.

11.3.2 Clustering According to Audio Features

For each song, lyrics features as well as audio features (SSD) were computed.
The SOM clustering was finally performed on that data set. We then trained
two SOMs of size 8 × 8, i.e., 64 units, one on the audio feature set, one on
lyrics.

Fig. 11.1 displays the clustering of the small collection according to audio
features. In this case, class distribution is of interest and we therefore make use
of the Chessboard visualization to emphasize the regions covered by different
classes. With this visualization different areas of the map are colored according
to the dominant genre of songs mapped thereon.

Such a visualization makes it easy to comprehend the distribution of classes
on the map. The “Reggae” genre (marked as circle 1) for example is located on
the right lower part of the map, clustered on adjacent units only. “Christmas”
songs (2), on the other hand, are spread across large parts of the map. Affected
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Fig. 11.1. Chessboard visualization of a clustering according to audio descriptors
for the ten genres subset of the audio collection.

units within this area are marked by white dots. This corresponds to the very
differently sounding nature of these two genres. “Reggae” is clearly defined
by its very typical sound, whereas “Christmas” music is rather defined by its
lyrics.

11.3.3 Clustering According to Lyrics Features

The same collection clustered according to song lyrics is shown in Fig. 11.2.
The resultant high-dimensional feature vectors were further downscaled to
888 dimensions out of 5.942 using feature selection via document frequency
thresholding, i.e., omitting of terms that occur in a very high or very low
number of documents.

Among the most obvious differences are the better separation of “Hip-Hop”
songs in the lower right part of the map (1). This genre is easily identified by
terms like “shit”, “rap” or names of different rappers. “Christmas Carols” are
clearly separated in the lower left corner of the map, exclusively covering four
units (2). Tracks belonging to the genres “Grunge”, “Slow Rock”, or “New
Metal” are spread across large parts of the map, reflecting the diversity of
topics sung of within them (3).
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Fig. 11.2. Chessboard visualization of a lyrics clustering for the ten genres subset
of the audio collection.

11.4 Visualization and Evaluation of Clusterings in Both
Dimensions

This section introduces a visualization technique combining the two cluster-
ings. The main technique used is to display both clusterings in one illustration
along with links between identical songs in the two mappings.

Fig. 11.3 shows the main user interface of the prototype implementation.
The right part of the application is occupied by the display of the two SOMs.
The 3D display offers ways to rotate the view as well as pan and zoom in or
out. Controls to select particular songs, artists or genres are located on the
left side along with the palette describing the associations between colors and
line counts. Selections of artists or genres automatically update the selection
of songs on the left hand side.

11.4.1 Quantitative Evaluation

To quantitatively determine the quality of the resultant SOM clusterings we
want to capture the scattering of instances across the maps using meta infor-
mation such as artist names or genre labels as ground truth information. In
general, the more units a set of songs is spread across, the more scattered and
inhomogeneous this set of songs is. If the given ground truth values are ac-
cepted as reasonable, songs from ground truth sets should be clustered tightly
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Fig. 11.3. Overview of the visualization prototype. The left part of the user interface
is occupied by tools that select songs from the audio collection. The right part
displays the multimodal clusterings and connections in between.

on the map. In this section, the focus lies on distances between units in terms of
their position on the trained SOM. The abstraction from the high-dimensional
vector descriptions of instances to the use of unit coordinates instead of unit
vectors is feasible from a computational as well as a conceptual point of view.
Comparison of individual vectors does not take into consideration the very
nature of the SOM clustering algorithm, which is based on the preservation
of topological relations across the map. This approach therefore computes
the spread for genres or artists with respect to the SOMs clusterings. For
distances between units the Euclidean distance is used on unit coordinates,
which is also used for distances between data and unit vectors in the SOM
training process. All quality measurements are computed for sets of data vec-
tors and their two-dimensional positions on the trained SOMs. Particularly,
sets of data vectors refer to all songs belonging to a certain genre or from a
certain artist. Generally, a SOM consists of a number M of units ξi, the index
i ranging from 1 to M . The distance d(ξi, ξj) between two units ξi and ξj

can be computed as the Euclidean distance between the units coordinates on
the map, i.e., the output space of the SOM clustering. In this context, only
units that have data points or songs that belong to a given category, i.e., a
particular artist or genre, are considered. This holds for both maps; all quality
measurements can only be calculated with respect to a class tag, i.e., for songs
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belonging to a particular artist or genre. The average distance between these
units with respect to a SOM clustering is given as:

avgdist =

∑n
i=1

∑n
j=1 d(ξ(i), ξ(j))

n2
(11.4)

where n denotes the number of data points or songs considered, i.e., the songs
belonging to a given artist or genre. Further, the average distance ratio defines
the scattering difference between a set of two clusterings C = {caudio, clyrics},
caudio being an audio and clyrics being a lyrics clustering, is given as the ratio
of the minimum and maximum values for these clusterings.

Further, we define the ratio of the average distance across clusterings as the
ratio of the respective minimum and maximum values of the average distance
ratio:

adraudio,lyrics =
min(avgdistaudio, avgdistlyrics)

max(avgdistaudio, avgdistlyrics)
(11.5)

The closer to one the average distance ratio, the more uniformly dis-
tributed the data across the clusterings in terms of distances between units
affected. However, this measure does not take into account the impact of units
adjacent to each other, which definitely plays an important role. Adjacent
units should rather be treated as one unit than several due to the similarity
expressed by such results, i.e., many adjacent units lead to a small average
distance.

Therefore, the contiguity value co for a clustering c gives an idea of how
uniformly a clustering is done in terms of distances between neighboring or
adjacent units. The specifics of adjacent units are taken into account, leading
to different values for the minimum distances between units since distances
between adjacent units are omitted in the distance calculations. If, for ex-
ample, the songs of a given genre are spread across three units on the map
ξ1, ξ2, ξ3, where ξ1 and ξ2 are neighboring units, the distances between ξ1 and
ξ2 are not taken into consideration. Currently, no difference is taken between
units that are direct neighbors and units only connected via other units. The
contiguity distance cd is given as:

cd(ξi, ξj) =

{
0 if ξi and ξj are neighboring units
d(ξi, ξj) otherwise

(11.6)

The contiguity value co is consequently calculated similarly to the average
distance ratio based on contiguity distances as:

co =

∑n
i=1

∑n
j=1 cd(ξ(i), ξ(j))

n2
(11.7)

In the case of fully contiguous clusterings, i.e., all units that a set of songs
is mapped to are neighboring units, the co value is not defined and set to one.
The overall contiguity ratio for a set of clusterings is given as:
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craudio,lyrics =
min(cdaudio, cdlyrics)

max(cdaudio, cdlyrics)
(11.8)

This information can be used to further weigh the adr value from Eq. 11.5
and gives an average distance contiguity ratio value adrcr, i.e., the product
of average distance ratio and contiguity ratio, for a set of one audio and lyrics
map, as follows:

adrcraudio,lyrics = adraudio,lyrics · craudio,lyrics (11.9)

This considers both the distances between all occupied units as well as
takes into account the high relevance of instances lying on adjacent units of
the SOM.

Genre AC LC CR ADR ADR × CR

Christmas Carol .1240 1 .1240 .2982 .0370
Country .1644 .2169 .7578 .8544 .6475
Grunge .3162 .5442 .4714 .9791 .4616
Hip-Hop .2425 .1961 .8086 .6896 .5576

New Metal .1754 .1280 .7299 .9383 .6849
Pop .1644 .1644 1 .9539 .9538

Punk Rock .4472 .1280 .2863 .7653 .2191
Reggae .2774 .1810 .6529 .5331 .3480

Slow Rock .1715 .1240 .7232 .7441 .5382
Speech .3333 .1754 .5262 .3532 .1859

Table 11.2. Genres and the corresponding spreading values across clusterings. AC

denotes the audio contiguity, LC the lyrics contiguity, CR the contiguity ratio,
ADR the average distance ratio, and ADR × CR the product of ADR and CR.

Table 11.2 lists these quality measures for all the genres in the small col-
lection. Exceptionally high values for the ADR × CR were, for example, cal-
culated for the “Pop” and “Hip-Hop” genres, meaning that these genres are
rather equally distributed across clusterings. “Christmas Carol” songs have
an exceptionally low value, stemming from the fact that they form a very
uniform cluster on the lyrics map, the contiguity value is therefore set to one.
On the audio map, “Christmas Carols” are spread well across the map. Other
low values can be identified for “Punk Rock” or “Speech”, both of which are
more spread across the lyrics than the audio map.

Fig. 11.4 shows two examples of genre connections, the upper maps rep-
resent the audio clusterings, whereas the lower maps describe the data in the
lyrics space. Fig. 11.4(a) shows the connections for all songs belonging to the
“Christmas Carol” genre, clearly showing its dispersion as mentioned in the
previous paragraph. Songs belonging to the “Punk Rock” genre are shown in
Fig. 11.4(b). The strong dispersion of the distributions is clearly visible.
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(a) Multimodal visualization of “Christ-
mas Carols”

(b) Distribution of “Punk Rock” songs
on both maps

Fig. 11.4. Distribution of selected genres across maps.

11.4.2 Application to a Large Audio Collection

To prove the applicability of the proposed methods, we performed experiments
on a larger collection of digital audio, which is described in Section 11.3.1. In
these experiments, we use the Smoothed Data Histograms technique to visu-
alize the SOMs [388]. Both maps have size 20×20; dimensionality was 168 and
6579 for the audio and lyrics maps, respectively. For the lyrics experiments,
the feature vectors were downscaled from 63884 original features using term
selection via document frequency thresholding.

Notable Artists

Artist AC LC CR ADR ADR × CR

Sean Paul .3162 .1313 .4152 .4917 .2042
Good Riddance .0403 .0485 .8299 .7448 .6181

Silverstein .0775 .1040 .7454 .8619 .6424
Shakespeare .2626 1.000 .2626 .3029 .0795
Kid Rock .0894 .0862 .9640 .9761 .9410

Table 11.3. Artists belonging to the large collection having exceptionally high or
low spreading values. AC denotes the audio contiguity, LC the lyrics Contiguity,
CR the contiguity ratio, ADR the average distance ratio, and ADR × CR the
product of ADR and CR.
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Table 11.3 shows a selection of particularly interesting artists with respect
to their positions on the maps. A total of 18 “Sean Paul” songs are mapped on
each SOM. For the audio map, the songs are distributed among seven different
units, eleven being mapped onto one unit. On the lyrics map, all songs are
mapped onto two adjacent units, the first one covering 17 out of the 18 tracks.

The situation is different for “Good Riddance”, a Californian “Punk Rock”
band. For the lyrics map, their 27 songs are spread across 20 units. For audio,
the songs lie on 18 units, but some of them are adjacent units, a fact that is
represented by a rather high value for AC, the audio contiguity measure.

Shakespeare sonnets are clustered in a similar way. In terms of lyrics, the
six sonnets lie on two units, whereas the audio representations are mapped on
three units, none of which were adjacent (speech is read by different speakers).

“Kid Rock” songs, mainly “Country” tracks, lie on 13 units on the audio
map, including two adjacent units, compared to 11 units in the lyrics space,
none of which are adjacent. The spread is therefore almost identical on both
maps. Fig. 11.5 shows the 3D visualization for all “Kid Rock” songs. This
and the following illustration is also an example of how other techniques – in
this case we use the Smoothed Data Histograms – can be used as background
visualizations.

Notable Genres

Similarly to artists, we identified genres of interest in Table 11.4. “Rock” music

Genre AC LC CR ADR ADR × CR

Speech .0822 .0665 .8092 .3417 .2765
Christmas Carol .0393 .0677 .5800 .7779 .4512

Reggae .0392 .0413 .9495 .8475 .8047
Grunge .0382 .0466 .8204 .9974 .8182
Rock .0372 .0382 .9740 .9300 .9059

Table 11.4. Genres belonging to the large collection having exceptionally high or
low spreading values. AC denotes the audio contiguity, LC the lyrics contiguity,
CR the contiguity ratio, ADR the average distance ratio, and ADR × CR the
product of ADR and CR.

has proved to be the most diverse genre in terms of audio features and rather
diverse in terms of lyrics features alike. There were 690 songs assigned to that
genre in the test collection. The overall ADR × CR measure is still rather
high due to the impact of adjacent units on both maps. “Speech” as well
as “Christmas Carol” are rather diverse in terms of audio similarity, but are
more concentrated on the lyrics (or text) level, resulting in a low ADR × CR
value. Fig. 11.6 shows the connections between all “Christmas Carols”, giving
an interesting idea about the differences of the distributions on the maps.
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Fig. 11.5. Detailed view of connections for the almost equally distributed artist
“Kid Rock”. Dark lines denote a high number of connections.

The similarity of “Reggae” music is demonstrated by acoustic and lyrics
features to an equal amount. This genre has rather high values for ADR and
CR, caused by the many adjacent units and a low overall number of units.

A more detailed discussion about the experiments on the large collection
can be found in [365].

11.5 Conclusions and Outlook

We investigated a multimodal vision of MIR, taking into account both a song’s
lyrics as well as its acoustic representation, as opposed to concentrating on
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Fig. 11.6. Detailed view of connections for the genre “Christmas Carol”. Dark links
denote a high number of connections.

acoustic features only. We presented a novel approach to the visualization of
multimodal clusterings and showed its feasibility to introspect collections of
digital audio in the form of a prototype implementation for handling private
music collections, emphasized by concrete examples. Evaluation was done for
both a small test collection as well as a collection of larger size.

In addition, we introduced performance metrics for SOMs on a per-class
level (e.g., artist or genre classes), showing differences in spreadings across
maps. We introduced measurements for the comparison of multimodal clus-
terings and showed their application to identify genres/artists of particular
interest.
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Future work will mainly deal with the further exploitation of multi-faceted
representations of digital audio. The impact of lyrics data on classification per-
formance in musical genre categorization as well as possible improvements will
be investigated. Further, we plan to provide a more elaborate user interface
that offers sophisticated search capabilities.
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Intelligent Search for Image Information on the
Web through Text and Link Structure Analysis

Euripides G.M. Petrakis
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Searching for effective methods to retrieve information from the World Wide
Web (WWW) has been in the center of many research efforts during the
last few years. The relevant technology evolved rapidly thanks to advances in
Web systems technology [32] and information retrieval research [418]. Image
retrieval on the Web, in particular, is a very important problem in itself [254].
The relevant technology has also evolved significantly propelled by advances
in image database research [495].

Several approaches to the problem of content-based image retrieval on
the Web have been proposed and some have been implemented on research
prototypes (e.g., ImageRover [517],WebSEEK [496]) and commercial systems.
The last category of systems, includes general purpose image search engines
(e.g., Google Image Search1, Yahoo2, Altavista3) as well as systems providing
specific services to users such as detection of unauthorized use of images, Web
and e-mail content filters, image authentication, licensing and advertising.

Image retrieval on the Web requires that content descriptions be extracted
from Web pages and used to determine which Web pages contain images that
satisfy the query selection criteria. The methods and systems referred to above
differ in the type of content descriptions used and in the search methods
applied. There are four main approaches to Web image search and retrieval.

Retrieval by text content: Typically images on the Web are described by text
or attributes associated with images in html tags, e.g., filename, caption,
alternate text. These are automatically extracted from the Web pages and
are used in retrievals. Google, Yahoo, and AltaVista are example systems
of this category. The importance of the various text fields in retrieving
images by text content depends also on their relative location with regard
to the location of the images within the Web pages [480].

1 http://www.google.com/imghp
2 http://images.search.yahoo.com
3 http://www.altavista.com/image

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 12, c© Springer Science+Business Media, LLC 2008
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Retrieval by image annotations: The Web pages are indexed and retrieved
by keywords or text descriptions, which are manually assigned to images
by human experts. This approach does not scale-up easily for the entire
range of image types and the huge volumes of images on the Web. Its
effectiveness for general purpose retrievals on the Web is questionable due
to the specificity and subjectivity of image interpretations. This approach
is common to corporate systems specializing in providing visual content
to diverse range of image consumers, e.g., authentication, licensing and
advertising of logos, trademarks, artistic photographs.

Retrieval by image content: The emphasis is on extracting meaningful image
content from Web pages and in using this content in the retrieval process.
Image analysis techniques are applied to extract a variety of image features
such as histograms, color, texture measurements, shape properties. This
approach has been adopted mainly by research prototypes, e.g., [517, 496].

Hybrid retrieval systems These systems combine the above approaches such
as systems using image analysis features in conjunction with text and
attributes, e.g., [592, 551].

Effective image retrieval on the Web requires integration of text and image
content information into the retrieval process. A method is successful if it re-
trieves the images that the user expects to see in the answers with as few errors
as possible. This is a highly subjective processes, i.e., the same results may be
judged differently by different users. Query uncertainty and user subjectivity
may have a disastrous impact on the quality of the results. Query uncertainty
depends on users’ level of expertise or familiarity with the system and system
functions. Most commonly, users perceive image content in terms of high or
semantic level concepts while, in the system, image content is represented in
terms of low level image features, e.g., color, texture features. Consequently,
users cannot express their information needs in queries or, even worst, there
may exist a degree of uncertainty in queries as to what the users are really
looking for. Relevance feedback [589, 594] is the state-of-the-art approach for
adjusting query results to the needs of the users.

Queries on the Web are issued through the user interface by specifying
keywords or free text. The system returns Web pages with similar keywords
or text. The highest complexity of queries is encountered in the case of queries
by example, i.e., the user specifies an example image along with a set of
keywords (or annotation) expressing his or her information needs. Queries by
example image require that appropriate content representations be extracted
from images in Web pages and matched with similar representations of the
queries.

Focusing mainly on image and text content, the work referred to above
does not show how to process queries by image example or how to select high
quality web pages on the topic of the query. This is achieved by link analysis
methods such as HITS [264] link analysis and PageRank [387]. Building upon
the same idea, PicASHOW [290] retrieves high quality web images on the topic
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of the query. However, PicASHOW does not show how to handle image content
and queries by image example. In general, existing methods and systems suffer
from one or more of the following drawbacks:

• Work only on annotated image collections without explicit use of image
content. Image descriptions or annotations are either manually inserted
or automatically computed from image file names, image captions and
surrounding text.

• Support only keyword queries as opposed to the most general case of
queries by example.

• Do not capture the notion of quality of Web pages. Text or image content
are the only cues for achieving high quality results.

• Do not always capture the notion of topic relevance with the users’ query.
• They are capable of detecting text similarities between Web pages and

queries containing lexicographically similar terms but not necessarily se-
mantically (conceptual) similar terms.

In this chapter, we show that it is possible to exploit text and image con-
tent characteristics of images in Web pages for enhancing the performance of
retrievals on the Web. Searching for important (authoritative) Web pages and
images is a desirable feature of many Web search engines and is also taken
into account. Also, searching by semantic similarity for discovering informa-
tion related to user’s requests (but not explicitly specified in the queries) is a
distinguishing feature of many retrieval methods and systems. An obvious en-
hancement for improving the effectiveness of retrieval methods on the Web is
relevance feedback. This work shows how the existing framework of image re-
trieval with relevance feedback on the Web can be enhanced by incorporating
text and image content into the search and feedback process.

As a case study and for demonstrating the efficiency of content-based im-
age retrieval methods, this work deals with the problem of retrieval of logo
and trademark images on the Web. Logos and trademarks, in particular, are
important characteristic signs of corporate Web sites or of products presented
there. A recent analysis of Web content [228] reports that logos and trade-
marks comprise 32,6% of the total number of images on the Web. Therefore,
retrieval of logo and trademarks is of significant commercial interest, e.g.,
Patent Offices provide services on unauthorized uses of logos and trademarks.

12.1 Web Content Representation

Typically, images are retrieved by addressing text associated with them (e.g.,
captions) in Web pages [551]. This is the state-of-the-art approach for achiev-
ing consistency of representation and high accuracy results. Image analysis
approaches for extracting meaningful and reliable descriptions for all image
types are not yet available. The adaptation of image descriptions to the dif-
ferent image types coexisting on the Web or to the search criteria or different
interpretations of image content by different users is also very difficult.
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12.1.1 Text Representation

Typically, images are described by the text surrounding them in the Web
pages [551]. The following types of image descriptive text are derived based
on the analysis of html formatting instructions:

Image filename: The URL entry (with leading directory names removed) in the
src field of the img formatting instruction.

Alternate text: The text entry of the alt field in the img formatting instruc-
tion. This text is displayed on the browser (in place of the image), if the
image fails to load. This attribute is optional, i.e., is not always present.

Page title: The title of the Web page in which the image is displayed. It is
contained between the TITLE formatting instructions in the beginning of
the document. It is optional.

Image caption: A sentence that describes the image. It usually follows or pre-
cedes the image when it is displayed on the browser. Because it does not
correspond to any html formatting instruction it is derived either as the
text within the same table cell as the image (i.e., between td formatting
instructions) or within the same paragraph as the image (i.e., between p

formatting instructions). If neither case applies, the caption is considered
to be empty. In either case, the caption is limited to 30 words before or
after the reference to the image file.

All descriptions are lexically analyzed and reduced into term (noun) vec-
tors. First, all terms are reduced into their morphological roots, a stemming
algorithm. Similarly, text queries are also transformed to term vectors and
matched against image term vectors [418]. More specifically, the similarity
between the query Q and the image I is computed as a weighted sum of
similarities between their corresponding term vectors

Stext(Q,T ) =
Sfile name(Q, I) + Salternate text(Q, I) +
Spage title(Q, I) + Simage caption(Q, I).

(12.1)

Each S term is computed as a weighted sum of tf · idf terms without nor-
malizing by query term frequencies (it is not required for short queries). All
measures above are normalized on [0,1].

12.1.2 Image Content Representation

Logo and trademark images are easier (than natural images) to describe by
low level features computed from raw images. For logo and trademark images
the following features are computed [502]:

Intensity histogram: Shows the distribution of intensities over the whole range
of intensity values, e.g., [0..255].
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Energy spectrum: Describes the image by its frequency content. It is com-
puted as a histogram showing the distribution of average energy over 256
co-centric rings (with the largest ring fitting the largest inscribed circle of
the DFT spectrum).

Moment invariants: Describes the image by its spatial arrangement of inten-
sities. It is a vector of 7 moment coefficients.

The above representations are used to solve the following two problems:

Logo-Trademark detection: Because images on the Web are not properly cat-
egorized, filters based on machine learning by decision trees for distin-
guishing logo and trademark images from images of other categories (e.g.,
graphics, photographs, diagrams, landscapes) are designed and imple-
mented. In our case, a five-dimensional vector is formed from each image:
Each image is specified by the mean and variance of its Intensity and En-
ergy spectrum plus a count of the number of distinct intensities per image.
A set of 1000 image examples is formed consisting of 500 logo-trademark
images and 500 images of other types. Images of other types can belong to
more than one class: non-logo graphics, photographs, diagrams etc. Their
feature vectors are fed into a decision-tree [567], which is trained to detect
logo and trademark images. The estimated classification accuracy by the
algorithm is 85%. For each image the decision computes an estimate of its
likelihood of being logo or trademark or “Logo-Trademark Probability”.

Logo-Trademark similarity: The similarity between two images Q, I (e.g.,
query and a Web image) is computed as

Simage(Q, I) =
Sintensity spectrum(Q, I) + Senergy spectrum(Q, I)+
Smoment invariants(Q, I).

(12.2)

The similarity between histograms is computed by their intersection
whereas the similarity between their moment invariant is computed as
1 - Euclidean vector distance.

All measures above are normalized to lie in the interval [0, 1]. To answer
queries consisting of both text and example image, the similarity between a
query Q and an image I is computed as

w = Simage(Q, I) + Stext(Q, I), (12.3)

12.2 Image Information Retrieval on the Web

Image retrieval search engines for the Web supports queries by free text and
keywords (the most frequent type of image queries in Web image retrieval
systems) addressing text or images in Web pages. Methods for computing
the text similarity between queries and Web page or image descriptions are
reviewed below.
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12.2.1 Vector Space Model (VSM)

Queries and texts are syntactically analyzed and reduced into term (noun) vec-
tors. A term is usually defined as a stemmed non stop-word. Very infrequent
or very frequent terms are eliminated. Each term in this vector is represented
by its weight. Typically, the weight di of a term i in a document is computed
as di = tfi · idfi, where tfi is the frequency of term i in the document and
idfi is the inverse frequency of i in the whole text collection. The formula is
modified for queries to give more emphasis to query terms.

Traditionally, the similarity between two documents (e.g., a query Q and a
document D) is computed according to the Vector Space Model (VSM) [418]
as the cosine of the inner product between their vector representations

S(Q,D) =

∑
i qidi√∑

i q2
i

√∑
i d2

i

, (12.4)

where qi and di are the weights in the two vector representations. Given a
query, all documents (Web pages or images) are ranked according to their
similarity with the query.

12.2.2 Semantic Similarity Retrieval Model (SSRM)

For queries by keywords or text, existing methods and systems (e.g., Google,
Yahoo) are capable of locating Web pages that contain terms that the users
specify in queries. However, the lack of common terms in Web pages and
queries does not necessarily mean that they are not related. Two terms can
be semantically similar (e.g., can have similar meaning) although they are
lexicographically different.

SSRM [212] (Semantic Similarity Retrieval Model ) works by discovering
semantically similar terms using WordNet4 to estimate the similarity between
different terms. The similarity between an expanded and re-weighted query q
and a text d is computed as

S(Q,D) =

∑
i

∑
j qidjsim(i, j)∑
i

∑
j qidj

, (12.5)

where i and j are terms in the query and the query Q and document D
respectively and sim(i, j) denotes the semantic similarity between terms i
and j [296, 400]. Query terms are expanded with synonyms and semantically
similar terms (i.e., hyponyms and hypernyms), while document terms dj are
computed as tf · idf terms (they are neither expanded nor re-weighted).

SSRM outperforms VSM, the classic information retrieval method and
demonstrates promising performance improvements over other semantic in-
formation retrieval methods in Web image retrieval based on text image de-
scriptions extracted automatically [212]. SSRM can work in conjunction with

4 http://wordnet.princeton.edu
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any taxonomic ontology and any associated document corpus. Current re-
search is directed towards extending SSRM to work with compound terms
(phrases), and more term relationships (in addition to the Is-A relationships).

12.3 Image Link Analysis Methods

Effective content-based image retrieval on the Web often requires that impor-
tant (authoritative) images satisfying the query selection criteria are assigned
higher ranking over other relevant images. This is achieved by exploiting the
results of link analysis for re-ranking the results of retrieval. Classical link
analysis methods such as HITS [264], and PageRank [387] estimate the qual-
ity of Web pages and the topic relevance between the Web pages and the
query. These methods estimate the importance of Web pages as a whole. Pi-
cASHOW [290], estimates the importance of images contained within Web
pages. However, PicASHOW does not show how to handle image content and
queries by image example. This is solved by WPicASHOW [551] (Weighted
PicASHOW) a weighted scheme for co-citation analysis that incorporates,
within the link analysis method of PicASHOW, the text and image content
of the queries and of the Web pages.

12.3.1 PicASHOW

Co-citation analysis is proposed as a tool for assigning importance to pages
or for estimating the similarity between a query and a Web page. A link from
page a to page b may be regarded as a reference from the author of a to b.
The number and quality of references to a page provide an estimate of the
quality of the page and also a suggestion of relevance of its contents with the
contents of the pages pointing to it.

HITS [264] exploits co-citation information between pages to estimate the
relevance between a query and a Web page, and ranking of this page among
other relevant pages. The analysis results into pages on the topic of the query
referred to as “authorities” and directory-like pages pointing to pages on the
topic, referred to as “hubs”. HITS computes authority and hub values by
link analysis on the query focused graph F , i.e., a set of pages formed by
initial query results obtained by VSM expanded by backward and forward
links. The page-to-page adjacency matrix W relates each page in F with the
pages it points to. The rows and the columns in W are indices to pages in
F . Then, wij = 1 if page i points to page j; 0 otherwise. The authority and
hub values of pages are computed as the principal eigenvectors of the page co-
citation WT ·W and bibliographic matrices W ·WT respectively. The higher
the authority value of an image the higher its likelihood of being relevant to
the query.

Building upon HITS, PicASHOW [290] handles pages that link to images
and to pages that contain images. PicASHOW demonstrates how to retrieve
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high quality Web images on the topic of a keyword-based query. It relies on
the idea that images co-contained or co-cited by Web pages are likely to be
related to the same topic. Fig. 12.1 illustrates examples of co-contained and co-
cited images. PicAHOW computes authority and hub values by link analysis
on the query focused graph F as in HITS. PicASHOW filters out from F
non-informative images such as banners, logo, trademarks and “stop images”
(bars, buttons, mail-boxes etc.) from the query focused graph utilizing simple
heuristics such as small file size.

P5

..........

co−contained images

images in co−cited
pages

P1

...........

P3

P2

P4

Fig. 12.1. The focused graph corresponding to query “Debian logo”.

PicASHOW introduces the following adjacency matrices defined on the set
of pages in the query focused graph:

W: The page to page adjacency matrix (as in HITS) relating each page in F
with the pages it points to. The rows and the columns in W are indices
to pages in F . Then, wij = 1 if page i points to page j; 0 otherwise.

M: The page to image adjacency matrix relating each page in F with the im-
ages it contains. The rows and the columns in M are indices to pages and
images in F respectively. Then, mij = 1 if page i points to (or contains)
image j.

(W + I)M: The page to image adjacency matrix (I is the identity matrix)
relating each page in F both, with the images it contains and with the
images contained in pages it points to.

Fig. 12.2 illustrates these matrices for the pages (P1, P2, . . . P5) and im-
ages of Fig. 12.1. Notice that in PicASHOW all non-zero values in M, W and
(W + I)M matrices are 1 (non normalized weights). Fig. 12.3.1 illustrates au-
thority and hub values computed by PicASHOW in response to query “Debian
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P1 P2 P3 P4 P5

P1 0 0 1 1 0

P2 0 0 0 1 1

P3 0 0 0 0 0

P4 0 0 0 0 0

P5 0 0 0 0 0

P1 0 0 1 1 0 0

P2 0 0 0 0 0 0

P3 1 1 0 0 0 0

P4 0 0 0 0 1 0

P5 0 0 0 0 0 1

P1 1 1 1 1 1 0

P2 0 0 0 0 1 1

P3 1 1 0 0 0 0

P4 0 0 0 0 1 0

P5 0 0 0 0 0 1

Fig. 12.2. Adjacency matrices W, M and (W + I)M for the focused graph of
Fig. 12.1.

logo”. Notice the high authority scores of pages showing logo or trademark
images of “Debian Linux”. Notice that the Mozilla trademark has higher au-
thority value than the Debian trademark.

Image

Authorities 0.492 0.492 0.339 0.339 0.519 0.117

Page P1 P2 P3 P4 P5

Hubs 0.519 0.0001 0.854 0.001 0

Fig. 12.3. Image authority (top) and hub values (bottom) computed by PicASHOW
in response to query “Debian trademark”.

Hub and Authority values of images are computed as the principal eigen-
vectors of the image co-citation [(W + I)M]T · (W + I)M and bibliographic
matrices (W + I)M) · [(W + I)M]T respectively. The higher the authority
value of an image the higher its likelihood of being relevant to the query.

PicASHOW can answer queries on a given topic but, similarly to HITS, it
suffers from the following problems [61]:

Mutual reinforcement between hosts: Encountered when a single page on a
host points to multiple pages on another host or the reverse (when multiple
pages on a host point to a single page on another host).

Topic drift: Encountered when the query focused graph contains pages not
relevant to the query (due to the expansion with forward and backward
links). Then, the highest authority and hub pages tend not to be related
to the topic of the query.

12.3.2 Weighted PicASHOW (WPicASHOW)

PicASHOW cannot handle image content or image text context. This problem
is addressed by WPicASHOW [551] (or Weighted PicASHOW ), a weighted



268 E. G.M. Petrakis

scheme for co-citation analysis. WPicASHOW relies on the combination of
text and visual content and on its resemblance with the query for regulating
the influence of links between pages. Co-citation analysis then takes this infor-
mation into account. WPicASHOW has been shown to achieve better quality
answers and higher accuracy results (in terms of precision and recall) than
PicASHOW using co-citation information alone [551].

WPicASHOW handles topic drift and mutual reinforcement as follows:
Mutual reinforcement is handled by normalizing the weights of nodes pointing
to k other nodes by 1/k. Similarly, the weights of all l pages pointing to the
same page are normalized by 1/l. An additional improvement is to purge all
intra-domain links except links from pages to their contained images. Topic
drift is handled by regulating the influence of nodes by setting weights on
links between pages. The links of the page-to-page relation W are assigned a
relevance value computed by VSM and Eq. 12.6 as the similarity between the
term vector of the query and the term vector of the anchor text on the link
between the two pages. The weights of the page-to-image relation matrix M
are computed by VSM and Eq. 12.7 (as the similarity between the query and
the descriptive text of an image).

WPicASHOW starts by formulating the query focused graph as follows:

• An initial set R of images is retrieved. These are images contained or
pointed-to by pages matching the query keywords according to Eq. 12.1.

• Stop images (banners, buttons, etc.) and images with logo-trademark prob-
ability less than 0.5 are ignored. At most T images are retained and this
limits the size of the query focused graph (T = 10000 in IntelliSearch).

• The set R is expanded to include pages pointing to images in R.
• The set R is further expanded to include pages and images that point to

pages or images already in R. To limit the influence of very popular sites,
for each page in R, at most t (e.g., t = 100) new pages are included.

• The last two steps are repeated until R contains T pages and images.

WPicASHOW then builds M, W and (W + I)M matrices for information
in R. Fig. 12.4 illustrates these matrices for the example set R of Fig. 12.1 with
weights corresponding to query “Debian logo”. Notice that in PicASHOW all
non-zero values in M and W are 1 (non normalized weights).

Fig. 12.3.2 illustrates authority and hub values computed by WPicAS-
HOW in response to query “Debian logo”. Notice the trademark images of
“Debian Linux” are assigned the highest authority values followed by the
images of “Mozilla Firefox”.

12.4 Relevance Feedback

Relevance feedback [589, 594, 399] is the state-of-the-art approach for adjust-
ing query results to the needs of the users. A common assumption is that
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P1 P2 P3 P4 P5

P1 0 0 .6 .1 0

P2 0 0 0 .1 .1

P3 0 0 0 0 0

P4 0 0 0 0 0

P5 0 0 0 0 0

P1 0 0 .1 .1 0 0

P2 0 0 0 0 0 0

P3 .8 .7 0 0 0 0

P4 0 0 0 0 .2 0

P5 0 0 0 0 0 .15

P1 .48 .42 .1 .1 .02 0

P2 0 0 0 0 .02 .015

P3 .8 .7 0 0 0 0

P4 0 0 0 0 .2 0

P5 0 0 0 0 0 .15

Fig. 12.4. Adjacency matrices M, W and (M + I)W for the focused graph of
Fig. 12.1 corresponding to query “Debian logo”.

Image

Authorities 0.751 0.657 0.0418 0.0418 0.008 0

Page P1 P2 P3 P4 P5

Hubs 0.519 0.0001 0.854 0.001 0

Fig. 12.5. Image authority (top) and hub values (bottom) computed by WPicAS-
HOW in response to query “Debian logo”.

there exists an ideal query (or matching method) that captures the infor-
mation needs of the users. Relevance feedback attempts to guess the ideal
query (or matching method) from answers that are initially obtained from
the database. The users mark relevant (positive) or irrelevant (negative) ex-
amples among the retrieved answers, these examples are processed to form a
new query, which is combined with the original query and is resubmitted to
the system. The process is repeated until convergence, i.e., the answers do not
change. A categorization of methods includes:

Query point movement methods assuming that the ideal query is a point in a
multi-dimensional space that the method approximates iteratively [440].

Term re-weighting methods that adjust the relative importance (weights) of
terms in image representations [452, 224]. Terms that vary less in the set of
positive examples are more important and should weigh more in retrievals.
The inverse of the standard deviation is usually used for re-weighting the
query terms.

Query expansion methods that attempt to guess an ideal query by adding
new terms into the user’s query [480, 96, 311].

Similarity adaptation methods that approximate the ideal matching method
by substituting the system similarity (or distance) function with one that
better captures the user’s notion of similarity [569].

There are also approaches combining the above ideas. MindReader [224]
combines query point movement and term re-weighting and handles correla-
tions between attributes. Weight estimation is formulated as a minimization
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problem. MARS [451] is a prototype image retrieval system implementing
a variation of the standard term re-weighting method. iFind [311] supports
keyword-based image search along with queries by image example. The main
idea behind this approach is that images, which are similar to the same query
represent similar semantics. Images are linked to semantics by applying data
mining on user’s feedback log [96].

In the following, the existing framework of image retrieval with relevance
feedback on the Web is extended to handle more sophisticated queries (e.g.,
queries by image example), by incorporating text and image content into the
image retrieval and relevance feedback processes [399]. To do so, the concepts
of text and image similarity of Sec. 12.1 are generalized as follows: The text
similarity between a query Q and an image I is computed as

Stext(Q, I) =
∑

i ∈ representation

wtext
i Stext

i (Q, I), (12.6)

where wtext
i are weights (inner weights) denoting the relative significance of

the above lists. Each Si component is computed as list similarity: The more
common terms (in the same order) two term lists have in common, the more
similar they are. Similarly, the image similarity between a query image Q and
an image I is computed as

Simage(Q, I) =
∑

i ∈ representation

wimage
i Simage

i (Q, I), (12.7)

where wimage
i are weights (inner weights) denoting the relative significance of

the above types of image content representations. The computation of each
Si component depends on feature type: The similarity between histograms
is computed by their intersection whereas the similarity between moment
invariants is computed by subtracting the Euclidean vector distance from its
maximum value.

To answer queries combining text and image example, the similarity be-
tween a query Q and a Web image I is computed as

S(Q, I) = W imageSimage(Q, I) + W textStext(Q, I), (12.8)

where W text and W image are weights (outer weights) denoting the relative
significance of image and text descriptions. All measures above are normalized
to lie in the interval [0,1].

The inner and outer weights of Eq. 12.1, Eq. 12.2 and Eq. 12.8 place differ-
ent emphasis on different features or representations respectively and can be
used to adapt the query results to user’s preferences. Typically, the weights are
user defined. However, weight definition is beyond the understanding of most
users. Relevance feedback is employed to estimate good weight values. Query
expansion, term re-weighting and similarity adaptation methods are consid-
ered as representatives of most important categories of methods. Query point
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movement methods assume vector representations and cannot be applied. In
the following, the basic steps of each method are discussed. The same steps are
applied iteratively until convergence (i.e., the results of the retrieval method
do not change). Initial results are obtained by applying either Eq. 12.1 for
text queries or Eq. 12.8 for queries combining text with image example. All
weights are initialized to 1.

12.4.1 Query Expansion

The query is expanded with new terms obtained from positive examples. Two
methods are evaluated. These methods work only with text.

Accumulation [480]: The most relevant image is selected from the answers
and its text representation (i.e., a list of descriptive terms) is extracted.
The query is matched with each term in this representation. A new query
is formed by merging the query representation with the most similar terms
of the most relevant image.

Integration and Differentiation [480]: Relevant and irrelevant images are se-
lected from the answers. From each relevant image, its text representation
(i.e., list of descriptive terms) is extracted and matched with the query.
The most similar terms are combined to form a new “positive query”.
Similarly, the most dissimilar (to the query) terms are extracted from all
irrelevant answers and combined to form a “negative query”. The positive
query is applied. Images which are more similar to the negative query
rather than to the positive query are removed from the the answer.

12.4.2 Term Re-Weighting

Term re-weighting adjusts the relative importance of query terms [452]. The
method is extended to accommodate for the definition of image similarity by
text and image content as follows [399].

Let R be the set of the NR most similar images, e.g., NR = 30. A relevance
score taking values -3 (for highly non-relevant answers) through 3 (for highly
relevant answers) is assigned to each answer in R (neutral or no-opinion an-
swers take score 0). R also denotes the query results at the beginning of each
feedback cycle.

The outer weights W j (j ∈ {text, image}) are dynamically updated during
each feedback cycle: The database is queried by each Sj separately (using
either Eq. 12.1 or Eq. 12.2) and its answer set Rj is sorted by similarity. The
weights are then updated according to the following formula

W j =

{
W j + scoreI if I ∈ R,

W j + 0 otherwise;
(12.9)

where scoreI is the score assigned to image I in R. Initially all W j = 0.
After iterating over the images in each Rj all weights W j

i are normalized by

W j
total =

∑
I∈Rj W j . Negative weights are set to 0.
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The inner weights wj
i (j ∈ {text, visual}) for each term i of the text or

image representation are also dynamically updated using the set R′ of relevant
answers in R (R′ ⊂ R): The smaller the variance of each Sj

i the larger the

significance of the i-th term (and the reverse). Therefore, wj
i = 1/σj

i , where

σj
i is the variance of the i-th feature in the j-th representation. Each weight

is normalized by wj
total =

∑
I∈R′ wj

i .

12.4.3 Similarity Adaptation

Falcon [569] estimates an ideal distance function DG that retrieves the best
results. Initially, Falcon searches the database using d(Q, I) = 1 − S(Q, I) as
distance function and the user adds positive examples to a set G (initially
empty). During a feedback cycle, Falcon searches the database again using a
new distance function DG while the user adds new positive examples to G.
The distance between the query Q and a Web image I is computed as the
distance of I from the current members of G. Falcon estimates DG iteratively
as follows

DG(I) =

{
0 if ∃i : d(gi, I) = 0,(

1
k

∑k
i=1 d(gi, I)α

)1/α

otherwise;
(12.10)

where k is the number of positive examples in G, gi is a member of G and α
is a user defined constant, e.g., α = −5.

12.5 IntelliSearch

All previously stated methods have been implemented and integrated into
IntelliSearch [550], a complete and fully automated system for retrieving text
pages and images on the Web. It provides an ideal test-bed for experimentation
and training and serves as a framework for a realistic evaluation of retrieval
methods for the Web. The system stores a crawl of the Web with 1,5 million
Web pages with images. The system is implemented in Java and is accessible
on the Web5. The architecture of IntelliSearch is illustrated in Fig. 12.6. It
consists of several modules, the most important of them being the following:

Crawler module: Implemented based upon Larbin6, the crawler assembled lo-
cally a collection of 1,5 million pages with images. The crawler started its
recursive visit of the Web from a set of 14000 pages, which is assembled
from the answers of Google image search to 20 queries on topics related to
Linux and Linux products. The crawler worked recursively in breadth-first
order and visited pages up to depth 5 links from each origin.

5 http://www.intelligence.tuc.gr/intellisearch
6 http://larbin.sourceforge.net
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Fig. 12.6. IntelliSearch Architecture.

Collection analysis module: The content of crawled pages is analyzed. Text,
images, link information (forward links) and information for pages that
belong to the same site is extracted.

Storage module: Implements storage structures and indices providing fast ac-
cess to Web pages and information extracted from Web pages, i.e., text,
image descriptions and links. For each page, except from raw text and im-
ages, the following information is stored and indexed: Page URLs, image
descriptive text (i.e., alternate text, caption, title, image file name), terms
extracted from pages, term inter document frequencies (i.e., term frequen-
cies in the whole collection), term intra document frequencies (i.e., term
frequencies in image descriptive text parts), link structure information
(i.e., backward and forward links). Image descriptions are also stored.

Retrieval module: Queries are issued by keywords or free text. The user is
prompted at the user interface to select mode of operation (retrieval of
text pages or image retrieval).

The Entity Relationship Diagram (ERD) of the database in Fig. 12.7 de-
scribes entities (i.e., Web pages) and relationships between entities. There are
many-to-many (denoted as N : M) relationships between Web pages implied
by the Web link structure (by forward and backward links), one-to-many
(denoted as 1 : N) relationships between Web pages and their constituent
text and images and N : M relationships between terms in image descriptive
text parts and documents and. The ERD also illustrates properties of entities
and relationships, i.e., page URLs for documents, titles for page text, image
content descriptions for images, stemmed terms, inter and intra document
frequencies for terms in image descriptive text parts.

The database schema is implemented in BerkeleyDB7 Java Edition. Berke-
leyDB is an embedded database engine providing a simple Application Pro-

7 http://www.sleepycat.com
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Fig. 12.7. The Entity Relational Diagram (ERd) of the database.

gramming Interface (API) supporting efficient storage and retrieval of Java
objects. The mapping of the ERD of Fig. 12.7 to database files (Java objects)
was implemented using the Java Collections-style interface. Apache Lucene8

is providing mechanisms (i.e., inverted files) for indexing text and link in-
formation. There are Hash tables for URLs and inverted files for terms and
link information. Two inverted files implement the connectivity server [61]
and provide fast access to linkage information between pages (backward and
forward links) and two inverted files associate terms with their intra and inter
document frequencies and allow for fast computation of term vectors.

12.6 Conclusions

This chapter presents comparative study of several retrieval methods for the
Web with emphasis on methods for retrieving images by content. Several
aspects of the problem of content-based image retrieval on the Web are exam-
ined including retrieval by text, text semantics, image content features and
retrieval by authority (importance) characteristics. Relevance feedback is also
discussed in this context is a tool for adjusting the retrieved results to the
actual needs of the users.

the query.

8 http://lucene.apache.org
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The experimental results [551] demonstrate that Web search methods uti-
lizing content information (or combination of content and link information)
perform significantly better than methods using link information alone. Link
analysis improved the quality of the results but not necessarily their accu-
racy (at least for data sets smaller than the Web). The analysis revealed that
content relevance and searching for authoritative answers can be traded-off
against each other. Giving higher ranking to important pages seems to reduce
the accuracy of the results, i.e., link analysis methods tend to assign higher
ranking to higher quality but not necessary relevant pages. High quality pages,
on the other hand, may be irrelevant to the content of the query. Weighted
link analysis methods (WHITS, WPicASHOW) attempted to compromise be-
tween text and link analysis methods.

Text searching methods like Vector Space Model (VSM), the same as se-
mantic retrieval methods are far more effective than link analysis methods
implying that text is a very effective descriptor of Web content itself. Between
the two, semantic retrieval methods demonstrated promising performance im-
provements over VSM [212]. However, text similarity methods tend to assign
higher ranking even to Web pages and images pointed to by very low quality
pages, e.g., pages created by individuals or small companies.

The size of the data set is also a problem. If the queries are very specific,
the set of relevant answers is small and within it, the set of high quality and
relevant answers are even smaller. The results may improve with the size of
the data set, implying that it is plausible for the method to perform better
when applied to the whole Web.

The evaluation of relevance feedback methods [399] demonstrated that
term re-weighting based on text and image content is the most effective ap-
proach. The results demonstrate that term re-weighting is the most effective
relevance feedback approach for all query types. Term re-weighting allows also
for much smaller iteration cycles (and therefore for faster retrieval with less
users effort) while maintaining good performance. All methods converge very
fast, i.e., after two iteration cycles.

Future work includes experimentation with larger data sets and more
elaborate detection and matching methods for more image types. Extract-
ing semantic information from Web pages (image concepts and relationships)
through automatic text analysis, combining text with image features as well as
representing this information by image ontologies, is another aspect of future
research. Image ontologies would not only serve as a means for bridging the
semantic gap between image features and concepts, but also as a means for
more effective image content representation and for supporting semantically
rich query answering on the Web.
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Speech is the primary form of human-human communication. In the past
decades, technological progress in the areas of speech recognition, text-
to-speech synthesis and natural language processing have made (the task-
oriented) communication between humans and machines a reality. However,
despite significant progress, speech interfaces are still very far from human
capabilities, especially in the areas of robust speech recognition and seman-
tic processing. Multimodal interfaces that combine speech input with other
modalities have been hailed as the solution to the robustness problem. How-
ever, despite the advent of multimodal dialogue systems, speech interfaces
have not been readily adopted by the user and their market penetration is still
relatively limited. Our goal in this chapter is to help us better understand the
shortcomings and challenges that are posed when the speech modality is incor-
porated in a multimodal interface both qualitatively and quantitatively. We
also wish to understand how traditional human-computer interaction (HCI)
principles should be adapted for multimodal dialogue interfaces.

A variety of efforts exist in the literature outlining the basic principles for
multimodal dialogue system design and speech interfaces. These principles
are motivated from technological, computer science, system design, human-
factors, cognitive modeling, psychology, and other considerations [433, 353,
554, 483, 175]. Most of these recommendations, however, talk abstractly about
multimodal interfaces and ignore the peculiarities of the speech modality. As
we shall see in our analysis, the distinction of speech interfaces as being the
“most natural” does not come “free-of-charge”.

In this chapter, we review efforts in defining design principles and creating
tools for building multimodal dialogue systems with emphasis on the speech
modality. General design principles for architecting and building such systems
are reviewed and challenges are outlined. The focus is on system architecture,
interface design, data collection, and evaluation tools. We also present a mul-
timodal system that combines pen and speech input as a design case study.
Two important issues with multimodal systems design, is the selection of ap-
propriate modalities in a given context and the exploitation of the synergies
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among the modalities in order to design a consistent and efficient interface.
We introduce the concept of modality synergy that measures the added value
from efficiently combining multiple input modalities. User behavior and sys-
tem evaluation results on the prototype system demonstrate how users and
multimodal systems can (and should) adapt to maximize modalities synergy
and create efficient, natural, and intelligent multimodal interfaces.

The organization of this chapter is as follows. First a brief review of the
most important interaction modalities and example applications of multi-
modal dialogue systems are given in Section 13.1. In Section 13.2, we review
an iterative application-centric design process for multimodal dialogue inter-
faces and present some fundamental architectural principles for such systems.
In Section 13.3, well-established design principles for graphical user interfaces
(GUI) are reviewed and adapted to the speech modality. Our discussion fo-
cuses on how these principles should be extended for multimodal dialogue
interfaces. These ideas are put to the test in a case study in Section 13.4. The
main conclusions of this study are presented in Section 13.5.

13.1 Interaction modalities and applications

Speech input can be combined with different modalities on a variety of de-
vices. The most common combination of spoken input is with keypad input
on fixed and mobile phones, with keyboard and mouse input on computer
desktops, and with pen input on personal digital assistants (PDAs) and mo-
bile phones. Speech can be also combined with gestures, eye-tracking, haptic
interfaces, virtual keyboards and specialized pointing devices for a variety of
applications. Note that speech input can also be captured audiovisually (lip-
reading). Speech input can be processed at various levels: lexical, syntactic,
semantic, pragmatic, emotions/affect.

Today a variety of multimodal dialogue applications exist, most of them
using speech and other modalities sequentially. Information-seeking applica-
tions on the phone and the PDA combine the speech and GUI modalities, e.g.,
travel reservation, stock quotes. Communication applications, such as name-
dialing, are also popular, especially on next-generation mobile phones. Text-
entry is an application where speech is the main input modality (combined
with pen input for robustness) on portable devices in “hands-busy” situations.
Dictation is the main text-entry application on desktop computers. Speech is
combined with other modalities in various gaming applications running on
desktop computers, home entertainment platforms and mobile devices. Fi-
nally, the car is a special mobile environment, where multimodal interaction
with heavy emphasis on speech input is an effective and safe alternative to
GUI interfaces.

For a brief review of the range of technologies that make spoken dialogue
interfaces possible, refer to Section 2.2.2.
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13.2 Multimodal Architecture and Design Process

The architecture of dialogue and multimodal systems has steadily evolved
from monolithic to modular, with well-defined communication protocols be-
tween modules. Clearly a modular architecture is important as it adds flexi-
bility, scalability, and robustness to the system. A good example of a highly-
modular architecture built using a distributed message-based, hub-and-spoke
infrastructure is the Galaxy Communicator Software Package [45]. In Galaxy,
all communication between modules is delegated by a central controller, the
hub. Alternatively, a peer-to-peer model can be used for communication be-
tween models, which is efficient for multimodal dialogue systems since pro-
cessing modules often are arranged in a processing chain (acoustic, lexical,
syntactic, semantic, pragmatic, and application processing). In practice, a
combination of peer-to-peer and hub-and-spoke architectures are used in most
systems, e.g., audio resources are often controlled by a separate controller in
a “hub-and-spoke” like architecture, while speech multimodal input process-
ing often follows a “peer-to-peer” architecture in a processing chain. There
are also agent-based architectures that are popular especially in the research
community. Communication between agents or modules can be done via a
shared communication space, a blackboard. For examples of such systems,
refer to [486, 554].

As discussed in Section 2.1, an interactive system consists of three main
conceptual parts: (i) the model or application semantics, (ii) the view or inter-
face implementation and (iii) the control or application logic. The separation
of these three key components both architecturally and in the system design
process is an important decision also supported in the latest W3C recom-
mendations [11]. Note that selecting the appropriate communication protocol
between modules, e.g., hub-and-spoke vs. peer-to-peer, does not guarantee
that the Model-View-Controller (MVC) paradigm is respected (see also Sec-
tion 2.1).

13.2.1 Multimodal Architecture Design Principles

There is a list of general system architecture design principles that also apply
to multimodal dialogue systems namely: encapsulation, distribution, extensi-
bility, scalability, recursiveness, modularity [11]. Next, we present two archi-
tecture design principles that are especially important for multimodal systems
and extend the MVC paradigm, namely:

• Separation of semantics, application and interface logic: This de-
sign principle is consistent with the MVC paradigm, where model (seman-
tics), view (interface), and control (application logic) are separated and
a well defined interface is defined among the three components. However
there are unimodal systems that do not follow this principle, e.g., in most
spoken dialogue systems application and interface logic is combined into
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a single module known as the dialogue manager. Separation of the appli-
cation and the interface is especially important for multimodal interfaces
where application states and communication goals have to be implemented
for multiple modalities. By separating the logic, a single application man-
ager can be built for all modalities that selects the communication goals,
while the implementation of these goals is separate for each modality1.

• Common semantic representation across modalities: By defining an
application ontology and separating the data from the interface, it is possi-
ble to build a common representation across modalities. This significantly
simplifies the communication between the various input and output modal-
ities and avoids writing filters that translate concepts between system
modules. This unified semantic framework should include not only sim-
ple attribute-value pair constructs, but also more complex typed feature
structures. In addition, having a common semantic representation makes
unification operations or inference operations truly modality-independent.
Note that it is acceptable to handle semantics that are modality-specific
locally at the interface level, e.g., “repeat this” only makes sense for a
speech interface.

In practice it is not always easy to impose these two important architec-
ture principles. Multimodal systems consist of unimodal modules that do not
always follow the MVC paradigm, i.e., sometimes combine semantics and ap-
plication logic, or application logic and interface. In other cases, a unimodal
module might not provide an interface for accessing each of the three com-
ponents (model, view, control). When faced with such “monolithic” modules
programmers often have to create filters that translate semantics among mod-
ules or write additional application (control) logic. However, when starting for
a clean slate these maxims should be followed.

These architectural principles can be found both in research work and mul-
timodal standards. For example, one of the six main design principles cited
in the SALT multimodal standard is the “separation of the speech interface
from business logic and data” [6]; the principle appears also in W3C’s mul-
timodal interaction requirements as requirement MMI-A3 [12]. Examples of
dialogue and multimodal systems that have used the MVC paradigm include
VxOne [251] and SmartKom [554]. For a common semantic representation
across modalities refer to [25, 554].

13.2.2 Design Process

As discussed in [410], data collection and analysis form a crucial part of mul-
timodal dialogue system development. In Fig. 13.1, the various stages of ap-
plication development are shown, as the interface evolves from GUI-only to

1 Separate, but not independent. The coordination of these modality-dependent
interface implementation is known as modality fusion and fission for system input
and output respectively.
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Fig. 13.1. Iterative dialogue system design using multi-stage data collection (from
[410]).

include also spoken input. Data can be collected at various stages of ap-
plication development either automatically or assisted by supervisors in a
“Wizard of Oz” scenario. Collected data include acoustic, lexical, semantic,
application/dialogue flow and user/evaluation data as shown in Fig. 13.1. The
quality and coverage of the collected data is very much dependent on the sys-
tem configuration and the application scenario. As a result, dialogue system
development is an iterative process: collected data are used to improve the
system, and more data are collected using the updated system configuration.

Designing a good application is the first step towards building a successful
multimodal system. The importance of application design is often overlooked
by the speech and multimodal community, where the emphasis is on the in-
terface rather than the functionality. In Fig. 13.1, an application-, data- and
user-centric approach to multimodal dialogue system design is outlined, where
the application evolves as the interface is augmented with natural language
and spoken language capabilities. The main advantages of this approach are
increased modularity and flexible multi-stage data collection.
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13.3 Design Principles for Multimodal Dialogue Systems

In this section, we review efforts in defining design principles and creating
tools for building multimodal dialogue systems with emphasis on the speech
modality. General design principles for architecting and building such systems
are reviewed and challenges are outlined. The focus is on system architecture,
application, speech interface design, and data collection.

13.3.1 Basic HCI principles

Most papers reviewing principles for designing spoken dialogue and multi-
modal systems follow a “tabula rasa” approach. Here instead, we reuse the
experience and expertise gained (mostly) from GUI interface design, show
which of these GUI-design principles apply to multimodal systems and present
new principles that are specific to multimodal system design.

Here is a (self-explanatory) list of the general principles of good user in-
terface design: aesthetically pleasing, clarity, compatibility, comprehensibility,
configurability, consistency, control, directness, efficiency, familiarity, flexibil-
ity, forgiveness, predictability, recovery, responsiveness, simplicity, and trans-
parency [175]. For a review of HCI principles see also Section 2.1.

13.3.2 Adapting HCI principles to speech interfaces

Next, we discuss how some basic HCI principles should be adapted for spoken
dialogue and multimodal system design. We focus on principles that need to
be modified or added for the case of multimodal dialogue systems. Specifically:

• Control: Traditional HCI design principles include the notion that the
“user should always be in control”. However, for spoken dialogue systems
it has been observed that (with the exception of gaming applications)
“mixed-initiative” systems ofter perform better than “user-initiative” sys-
tems, i.e., putting the user in control is not always a good idea2. This is
probably due to worse automatic speech recognition (ASR) performance
for “user-initiative” systems as well as the deviation from other basic
HCI principles in spoken dialogue system (SDS) design, e.g., consistency,
transparency, forgiveness. For multimodal dialogue systems this problem
is somewhat alleviated and the user can once again be in control.

• Efficiency: Speech input and (especially) speech output are rarely the
most efficient means of communication. In [175], the author reports hu-
man interaction speeds of various communication methods, as gathered
by a number of research studies. The average reader can proofread at ap-
proximately 180 words per minute (wpm) and read prose at speeds over
250 wpm. The average listener can consume approximately 150-160 wpm.

2 Note that for human-human verbal communication, initiative is also often held
by the agent rather than the customer.
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The average typist can type 60-70 wpm, while an experienced one over
150 wpm. Speech input can reach speeds of 105 wpm assuming that there
are no speech recognition errors; with errors (and correction via a GUI
interface) the speed for a dictation task can be as low as 25 wpm. Clearly
speech input is less efficient compared to keyboard input in most situa-
tions; unless speech recognition accuracy is close to 100%. Speech output
is almost always less efficient than text output. However, speech can com-
pete favorably with other input modalities, e.g., pen input, in the absence
of keyboard.

• Consistency: Speech interfaces are notorious for being inconsistent. The
user ofter repeats the same input, while the speech recognizer understands
two different things. Inconsistency in SDS systems is especially annoying
to the user who is often confused and frustrated by system errors. For
multimodal systems, this problem is less prominent, due to synergistic
error correction, but does not go away. The multimodal system designer
should be careful to point out these inconsistencies to the user right away,
by always displaying visually the belief state of the system and if possi-
ble highlighting beliefs that are probably erroneous (have low confidence
scores). Ambiguity should always be displayed visually and the user should
be prompted to correct it via the GUI.

• Familiarity and Transparency: Human-machine spoken dialogue inter-
action is very different than natural human-human interaction (for good
reason). Due to the “unnaturalness” of human-machine interaction, the
novice user is often surprised by the design of the speech or multimodal
interface and needs training to learn how to interact with the system. In
addition, speech interfaces are not transparent to the user. The function-
ality of the speech interface, i.e., what can be recognized or understood
by the system, is often a mystery to the user. To help the user become
familiar with the SDS or multimodal interface, tutorial, help messages and
example speech inputs should be provided to the novice user through-out
the interaction. Also, provided that the multimodal interface is consistent,
the user is guided by the GUI input options available to figure out what
speech input options are available at any point in the interaction.

• Forgiveness and Recovery: Speech interfaces are usually not forgiving
to the user. The inner workings of the speech recognizer produce errors
that seem both unexpected and unnatural to the the user. Recovering from
such errors is hard, due to the limited ability of todays spoken dialogue
systems to handle clarification sub-dialogues. Again these shortcomings of
SDS can be overcome by going multimodal: the GUI should be used to
provide clear paths for recovering from speech recognition errors.

Two additional concepts that are especially important for speech inter-
faces are the notion of turn-taking and persistence. Speech communication
is usually synchronous in nature, speakers take turns that are well-defined
in time. In spoken dialogue systems, a turn consists of human input and
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corresponding machine output (or vice-versa depending on who holds the
dialogue initiative). For other interaction modalities, the coupling between
input and corresponding output is not as strong or obvious; in fact, for the
GUI modality, input/output synchronization might occur at the event, field
and/or form levels. The implementation of “turn” in multimodal dialogue sys-
tems is non-trivial; a variety of interaction styles (concurrent vs. sequential
multimodality), interaction modes (“click-to-talk”,“open-mike”) and event-
handling (level of synchrony, blocking/non-blocking) have been devised to
address these issues.

For GUI interfaces, there is a clear notion of a session and there are well
defined ways to add, remove or clear the semantics of a session. In speech
communication, the semantics of a session might persist after a session is over
or be referenced in a side-conversation. For example, in a movie information
system, the user might make multiple requests assuming that the city value
persists from his initial query, while movie theater and title values expire af-
ter the first query. This selective semantic persistence makes speech interfaces
harder to design. Note that for multimodal dialogue interfaces this problem is
easier to solve using GUI output and input for visualization and disambigua-
tion.

In addition to these issues, speech is a unique modality since it is the
main means of communication among humans. Psychologists and cognitive
scientists have outlined over the years the basic principles of human-human
speech communication. For an excellent review of these principles and their
implications for SDS design refer to [353]. In summary, speech is a strong
correlate for gender, emotion, personality and speakers’ face. People expect
reciprocity, symmetry, and collaboration when they converse. People speak
multimodaly and attempt to convey their message as well as affect. Finally,
speech communication is a social act that implies presence, e.g., users are more
cautious when interacting with a SDS than with a GUI. These principles are
important to keep in mind when designing spoken dialogue systems.

It is clear from this discussion, that speech interfaces violate some basic
HCI design principles, including consistency, transparency and forgiveness, as
well as introduce new challenges. Given these short-comings it is not surpris-
ing that speech interfaces have not been adopted as readily as expected by
users. However, as discussed next, by combing speech and GUI input/output
modalities, most of these short-comings are alleviated.

13.3.3 HCI principles of multimodal dialogue systems

In addition to the aforementioned principles, there are also HCI principles
that are relevant mostly or have special meaning for multimodal systems (and
much less so for unimodal systems). Some of these issues are outline also in
[433]. Next we present such multimodal design principles:

• Consistency: In addition to the traditional notion of consistency in HCI,
consistency takes on new meaning for multimodal interfaces. The function-
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ality and semantic representation of the underlying spoken dialogue and
GUI systems should be identical. For example, if the speech interface can
interpret “round trip” to mean a trip with two legs from city A to city B
and back, the GUI should be able to handle such input (if possible have a
“round trip” check-box). Providing consistency between the various input
and output modes is not simple when speech input is involved. Speech in-
put is richer than GUI input and a variety of spoken language expressions
might not directly correspond to a GUI construct. In such cases, special
care should be taken to inform the user of the application functionality
and the speech interface functionality. Two important principles are also
related to the maxim of consistency, namely:
– Symmetric multimodality: The principle of “symmetric” multi-

modality [554] requires that the same modalities are used for both
input and output. Using the same modality for both input and output
reduces the cognitive load and improves efficiency [353].

– No representation without presentation: According to [553],
there should always be output presentation for internal system rep-
resentations (system states) and vice versa, output should correspond
to an internal semantic representation or communication act. This prin-
ciple emphasizes consistency between the interface and data model of
the system.

• Efficiency and Synergy: Synergy is a design principle that applies to
systems that have more than one input or output modalities. A synergistic
multimodal interface is more than the sum of its parts. To achieve high
synergy it is important not only to use the appropriate modality for each
part of the application, but also to allow for interplay between the modali-
ties, e.g., speech misrecognitions should be resolved via the GUI interface.
Synergistic multimodal interface design can achieve system performance
that is better than the performance of individual unimodal systems, thus
improving overall efficiency. Here is a short list of design principles that
bring out the “best” of the speech and GUI modalities:
a) the system semantic state is represented visually,
b) speech prompts are short, if any,
c) the user in prompted to correct speech recognition errors via the GUI,
d) ambiguity is displayed and corrected via the GUI,
e) the focus (or context) of the interaction is highlighted visually,
f) the GUI takes full advantage of speech-interface “intelligence”, and,
g) conflicting GUI and speech input is seamlessly integrated.

• Robustness: Novel “modalities” are based on new technologies and in-
teraction paradigms that might be error-prone, e.g., recognition errors for
speech input. As discussed in Section 2.3.4, multimodal interfaces offer
increased robustness and error correction capabilities against error-prone
modalities due to both user behavior and system design. It was found
[380, 382] that for multimodal dialogue systems users tend to use simpler
language when interacting multimodaly. Also users tend to use the less
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error-prone modality at each context (error avoidance) and switch modal-
ities after system errors (synergistic error correction). These behaviors can
be reinforced by appropriate user interfaces design, e.g., use pen input as a
default modality for resolving ambiguities that arise from speech recogni-
tion errors. System support, such as multimodal ambiguity resolution via
constraints or a probabilistic framework for multimodal fusion, can also
help reduce ambiguity and errors resulting in a more robust interface.

• Compositionality: The space of possible user interface configurations in-
creases exponentially as the number of modes increases. The same is true
for the space of possible semantic representations of user input, as well
as the space of possible presentations of system output. To handle this
world of possibilities, the principle of compositionality can be used, e.g.,
assume that the meaning of multimodal input is the sum of the mean-
ing of its parts (independent of the modality that each part comes from).
The principle of compositionality reduces the complexity of the problem of
optimal multimodal interface design; in essence, “linearizes” the problem.
Compositionality is in most cases a good approximation and can signifi-
cantly reduce the search space for the “best” multimodal system configu-
ration. Note that the extensible multimodal annotation markup language
(EMMA) proposed by W3C applies this principle to the description of
data semantics by building semantic tokens bottom-up starting from the
simplest conceptually token [8].

Overall, synergy, robustness, modularity, customizability and consistency
are some important features of successful multimodal dialogue systems and
design tools. Next we show how some of these principles are applied to the
design of a speech and pen multimodal travel reservation system running on
a PDA environment.

13.4 Multimodal Dialogue System Design: A Case Study

In this section, we describe a case study of a multimodal dialogue system that
combines the GUI and speech modalities. The system was built using the
multimodal spoken dialogue platform described in [409]. The form-filling part
of the travel reservation system is studied here3. The multimodal interface was
designed to emphasize consistency and synergies between modalities. The GUI
input modalities are keyboard and mouse input in a desktop environment,
or pen input in a personal digital assistant (PDA) environment. The GUI
output modalities are text and graphics. Three multimodal interaction modes
are presented and evaluated here namely “click to talk” (CTT), where GUI
input is the default modality, “open-mike” (OM), where speech input is the
default modality, and “modality-selection” (MS) where the system selects the

3 Note that travel reservation was one of the three scenarios studied in W3C’s
multimodal interaction user cases document [13].
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Fig. 13.2. MS interaction mode examples on a PDA. System is in OM mode in
the first frame receives user input “From New York to Chicago” and switches to
CTT mode in the second frame. Speech/pen default input mode is selected based
the large/small number of input options in the combo-box respectively.

modality that is most efficient for the typical user at each turn [396, 395].
Note that in all three multimodal modes only one modality is active at a
time, i.e., the system does not allow for concurrent multimodal input. Also,
for all multimodal modes, users are free to override the system’s proposed
input modality, that is, use a modality other than the system’s default, e.g.,
GUI input during OM mode.

Specifically, for CTT interaction pen is the default input; the user needs
to click the “Speech Input” button to override the default input modality and
use speech input. For OM interaction, speech is the default input modality;
the system is always listening and a voice-activity detection event activates
the recognizer. MS is a mix of CTT and OM interaction; the system switches
between the two interaction modes depending on efficiency considerations
(the number of input choices available for the current context). Speech input
is faster compared to pen input when many input choices are available on
the PDA; the threshold of 25 input choices was chosen based on the input
mode efficiency of the stereotypical user. For attributes with over 25 choices
the system defaulted to the OM mode, else the CTT mode was selected. In
Fig. 13.2, examples from the MS mode running on a PDA are shown. At the
screen-shot shown on the left, where the interaction context is “city”, speech is
selected as the default input modality by the system due to the large number
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of input choices. At the next screen-shot shown on the right of Fig. 13.2, pen
is selected as the default modality due to the limited number of choices (less
than 25).

13.4.1 Architecture and Interface Design

The main design principles presented in the previous section have been applied
to the design of this multimodal system. Specifically there is a clear separa-
tion between the task (application states and control flow) and the interface
(implementation of the application states in terms of input/output modali-
ties). The task manager and the spoken dialogue system have been designed
to be domain and modality-independent: consequently, adding new modalities
to the system requires only a few enhancements that are easy to design and
implement.

The semantic and pragmatic modules for the multimodal system are based
on the principles of compositionality and on a common semantic representa-
tion across modalities. The semantic representation used for both the GUI
and speech interfaces is identical. The semantics of the application (encoded
in the domain ontology) are identical since the GUI interface has the same
functionality as the speech interface (consistency). The basic semantic data
structures that encode system beliefs in the form of attribute-value pairs,
now encode the instantiated joined semantics of the GUI and speech input
modalities. The speech and GUI parsers are recursive finite-state parsers used
also for the unimodal systems. In addition to spoken forms the GUI parser
understands abbreviations such as “2/3/08” for date or “15:00” for time [25].

The semantic/pragmatic algorithm introduced in [25] is also used in our
system. The algorithm is designed to allow integration of any type of evidence
for or against candidate values and thus provides a very useful framework
for merging often conflicting information collected from the multiple input
modalities: given multiple candidates for a given attribute, we update the
pragmatic confidence score for each candidate using MYCIN style formulae
as in the single modality case [485, 25]. The principle of compositionality is
used: (i) the belief for the value of an attribute is computed by combining all
evidence from the user-system interaction, and (ii) beliefs are the composition
of attribute-values along with their corresponding pragmatic confidence.

The principles of consistency and synergy have been followed when design-
ing the interface. Specifically, the systems state is presented visually, the GUI
modality is used to correct speech recognition errors, the context (focus of the
interaction) is highlighted visually as well as communicated via audio output,
and all tasks (including semantic inference) that can be performed via speech
can also be performed via GUI input.

13.4.2 Evaluation

Five scenarios of varying complexity were used for evaluation: one/two/three-
legged flight reservations and round trip flights with hotel/car reservation.
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In Table 13.1, the usage of attributes in each scenario as well as cumulative
usage across scenarios are shown; attributes are ordered based on the number
of available values in the grammar. We refer to the three attributes listed,
namely “hotelname”, “city” and “airline”, that have more that 25 possible
values as “long” attributes while the rest are referred to as “short”. Note
that the cumulative attributes usage across all scenarios is about the same for
“long” and “short” attributes (20 vs 22). Eight non-native English-speaking
users evaluated all systems on all five scenarios. All users had prior limited
experience using a previous version of the system.

Table 13.1. Attribute usage for the five travel reservation scenarios and number
of values available in the application grammar for each attribute.

attribute name number of values total usage

hotelname 250 1

city 135 14

airline 93 5

date 22 10

car type 15 1

car rental 10 1

time 9 10

The evaluation procedure is described next. First, users are given a short
introductory document which explains the system functionality with emphasis
on the modes to be evaluated. In order to familiarize users with the system be-
fore actual evaluation takes place, users are asked to complete a demo scenario
using all different systems, for a maximum of 30 minutes. Finally evaluation
takes place, by asking users to complete all five scenarios using all ten systems
(a total of 50 sessions per user and 40 sessions per mode). Systems are evalu-
ated in random order and logs for each session are saved for later processing
by our analysis software (objective evaluation). Upon completion of all runs,
an exit interview is conducted (user feedback and overall subjective evalua-
tion). Next we present a subset of the evaluation results that are relevant for
our discussion. For a full list of the evaluation results refer to [396].

13.4.3 Modality Efficiency

We measure the modality efficiency of multimodal systems as a function of
interaction mode, interaction context and user. Modality efficiency is defined
here to be proportional to the inverse of the time required by that modality
to complete a task. Specifically, lets assume that Ts and Tg is the overall
time spent using the speech and GUI modality respectively for a form-filling
task using a multimodal interface. The number of fields (attributes) that are



292 A. Potamianos, M. Perakakis

filled correctly using each modality is Ns and Ng respectively4. The relative
efficiency of the speech modality (compared to the GUI modality) is defined
as

Ss =
Ns

Ts

Ns

Ts
+

Ng

Tg

=
NsTg

NsTg + TsNg
(13.1)

for a GUI and speech multimodal interface. Thus efficiency is proportional
to the number of tokens (filled fields) communicated correctly in unit time.
The quantity above can be computed as a function of the interaction mode,
interaction context or user by adjusting appropriately the modality times and
filled context per modality.

In Fig. 13.3, we show speech modality usage as a function of relative speech
modality efficiency. There are three free variables in these plots, namely, in-
teraction mode (CTT, OM, MS), interaction context (city, airline, date, time)
and user (u1 to u8). Due to data sparsity instead of showing all 96 data-
points we show: in Fig. 13.3(a), the combined data points for all contexts and
modes (12 data points) averaged over all eight users, and in Fig. 13.3(b), the
combined data points for all contexts and users (30 out of possible 32 data
points shown) averaged over all three modes. In both plots, there is significant
correlation between modality efficiency and modality usage. It can be seen in
Fig. 13.3(a), that the “average” user behavior is to select the modality which
maximizes efficiency, with a switch occurring in modality usage around the
50% relative speech efficiency line. However, for the OM mode there is clearly
a bias towards speech input. Thus, interface design can bias modality
usage and affect system efficiency.

In Fig. 13.3(b), the same trends exist as in (a), however, the variability
among speakers in modality usage is very significant. This is especially pro-
nounced for relative speech efficiencies between 35% and 60%; in that region
the user cannot properly gage which modality is more efficient. In [511], a
longitudinal study shows that users adapt their modality usage over time and
adopt more efficient strategies. In any case, the high variability in modality
usage patterns and relative modality efficiency among users clearly demon-
strates the importance of creating interfaces that adapt to users needs.
However, as discussed in Section 2.4, one should be careful when designing
adaptive interfaces to clearly communicate the system state to the user and
to keep interface changes to a minimum to avoid increased cognitive load.

4 We define as field any attribute defined in the GUI that has a label and gets
filled, thus a single field might contain variable numbers of concepts or words,
e.g., “date” field. Also note that there are cases where both modalities are used
to correctly fill a field, e.g., concurrent multimodality or correction of speech
recognition errors via the GUI, slightly biasing our estimator.
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Fig. 13.3. Speech modality usage as a function of relative speech modality efficiency.
Data points are shown for (a) context and interaction modes, and (b) context and
users.

13.4.4 Multimodal Synergy

Next we define modality synergy (or multimodal synergy) as the percent im-
provement in terms of time-to-completion achieved by our multimodal sys-
tem compared to a multimodal system that randomly combines the differ-
ent modalities. In our example, for the GUI and speech modalities, time-
to-completion for the “random” system is computed as the weighted linear
combination of the time-to-completion of the speech-only and the GUI-only
systems, with weights proportional to the usage of each modality in our ac-
tual multimodal system. Specifically, lets assume that Ts, Tg and Tm are the
time-to-completion of the speech-only, GUI-only and multimodal systems, and
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Ms and Mg are the relative usage of the speech and GUI modalities in the
multimodal system (normalized in [0,1] and summing to 1). Then the time-
to-completion of the multimodal system Tr that randomly selects a modal-
ity at each turn (respecting the a-priori probability of modality usage) is
Tr = MsTs +MgTg. In general, Tr =

∑
i MiTi, where i sums over all available

modalities. Modality synergy Ss,g is defined as:

Ss,g =
Tr − Tm

Tr
(13.2)

Note that modality synergy expresses the relative improvement in terms of
time-to-completion achieved by multimodal interfaces over the sum-of-its uni-
modal parts, thus the term synergy. Synergy can be computed for each inter-
action mode, interaction context or user by using the appropriate time and
modality usage measurements. As shown next, the achieved synergy is both
interface design dependent, context-dependent and user-dependent.

In Table 13.2, the synergy between the speech and GUI modality is com-
puted for the three multimodal interaction modes according to Eq. 13.2. Note
that modality synergy is almost double when using an “open-mike” mode
compared to a “click-to-talk” interaction mode. This is due both to differ-
ent modality usage patterns in each interaction mode, as well as increased
overhead related to switching between the two input modalities. Specifically
for the “click-to-talk” mode, the user often overrides the default GUI input
and uses speech instead. In any case, it is clear that achieved synergy de-
pends on interaction mode and, in general, on user interface design.
Designing interfaces that use efficiency and user preference considerations to
“optimally” mix the various modalities can maximize synergy, and, in effect,
the gain over unimodal interfaces.

Table 13.2. Gains from modality synergy for the three multimodal interaction
modes.

Interaction Mode click-to-talk open-mike modality selection

Modality Synergy (%) 11.4 21.0 17.5

In Table 13.3, the synergy between the speech and GUI modality is com-
pared across the eight users. Note the significant differences in achieved syn-
ergy for each user, in fact, modality synergy ranges from -18% to 38%! The
differences in synergy are due to user dependent input modality usage, vari-
able speech recognition rates, variable number of concepts per utterance for
speech input, variable ability/experience using pen for form-filling on a PDA,
and, most-importantly, to what degree users used efficiency considerations
when selecting the input modality at each part of the interaction5. In any

5 This last factor is directly related to synergy, random input modality selection
achieves zero synergy.
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case, the fact that synergy is highly user-dependent (can be even negative for
some users) clearly shows that:

(i) There is potentially high-reward in designing multimodal inter-
faces that adapt to the user. Creating multimodal interfaces that are
“optimal” for a stereotypical user does not grep all the reward (in terms
of synergy) over unimodal interfaces.

(ii)Multimodal dialogue interfaces will not work for all users. Just
as is the case for unimodal spoken dialogue systems, there might be catas-
trophic failures for some users (these users are referred to as “goats” in the
speech recognition slang). For these users, one or more modalities might
not work well at all, or the ability of the user to maximize modality synergy
might be limited. Some of these shortcomings might be cured over time
with training, but clearly multimodal interfaces will not work for everyone,
right off the bat.

Table 13.3. Gains from modality synergy for each user (over all modes).

User user1 user2 user3 user4 user5 user6 user7 user8

Modality Synergy (%) 23.7 38.0 -18.0 8.7 19.0 10.3 29.3 10.7

We conclude with a remark about adaptive multimodal interfaces. In Ta-
ble 13.2, the “modality-selection” interaction mode is compared with “click-
to-talk” and “open-mike” modes in terms of modality synergy. Note that
“modality-selection” is an interaction mode that has been designed to max-
imize efficiency (and thus synergy) for the stereotypical user; at each turn,
the system selects as the default input modality the one that is the most
efficient for the typical user. It is surprising to see in Table 13.2, that a mul-
timodal interface designed to maximize synergy performs (somewhat) worse
that the “open-mike” multimodal interaction mode in terms of synergy. This is
due to two reasons: (i) the stereotypical user model cannot capture the user-
dependent modality synergy behavior demonstrated in Table 13.3 that can
yield potentially high-rewards, and (ii) adaptivity creates additional cognitive
load to the user; users appear to be confused when the default input modality
changes adaptively from turn to turn. As a result, the small advantage gained
by using a stereotypical user model to design the multimodal interface is over-
shadowed by increased cognitive load. This is clearly demonstrated in [395]
where “modality-selection” is shown to achieve better interaction times but
worse inactivity times. Clearly adaptive interface behavior appears inconsis-
tent to the user and can increase cognitive load. All in all, adaptation and
consistency are two conflicting maxims that have to be balanced
properly in multimodal user interface design.
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13.5 Conclusions

In this chapter, we have exposed some important aspects of multimodal dia-
logue system design. The basic design principles of HCI design apply also in
the case of multimodal dialogue systems, however, multimodal dialogue sys-
tems are special in many ways. First, speech interfaces do not respect many
traditional HCI design principles, such as control, consistency, transparency
and recovery. Second, multimodality forces us to introduce new design prin-
ciples that are not strictly enforced in traditional HCI, such as, consistency
across interaction modes, synergy between modalities, separation of task and
interface, and the principle of compositionality. Finally, the design process of
multimodal dialogue systems is a multi-step iterative process.

The proposed design process and principles have been put to the test: a
multimodal travel reservation system was built that can handle both speech
and GUI input and output. The basic design principles employed in this sys-
tem include: consistency across modalities (common functionality and a com-
mon semantic representation), the principle of compositionality for seman-
tic/pragmatic understanding, a clear separation between task and interface
(where the task manager is modality-independent) and a synergistic multi-
modal interface design. The multimodal prototype system was evaluated on a
PDA with good results. Metrics for measuring efficiency and multimodal syn-
ergy were proposed and used for evaluation of the multimodal system. ¿From
the experiments it was clear that, although, on average users tended to use
the most efficient modality at each turn, modality usage patterns were highly
user dependent. Overall, we saw that: (i) multimodal interaction mode affects
interface efficiency and modality synergy, (ii) user adaptation can potentially
yield significantly higher interface efficiency and synergy, and (iii) multimodal
interaction will not work for all users from the start.

Based on these observations our future work will focus on adaptive al-
gorithms for selecting the appropriate mix of input and output modalities.
It is also important to focus our analysis on the problem of multimodal er-
ror correction. Other important research areas include fusion and fission at
the interface and data levels. More research is needed to better understand
when and why users use one input modality over another, and how adaptive
modality selection relates to interface efficiency.
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Eye Tracking: A New Interface for Visual
Exploration

Oyewole K. Oyekoya and Fred W. M. Stentiford

University College London

Widespread interest in discovering information has created a demand for
tools that capture users’ intentions. The popularity of search engines (such as
Google and Yahoo) has highlighted users’ requirements for rapid and effortless
access to relevant information. But there is now increasing research activity
in the categorization and retrieval of visual multimedia content for sharing
and entertainment purposes, as opposed to text-based mechanisms targeted
at improving access to written material.

Whereas key words form a convenient feature for characterizing docu-
ments, there is no such obvious attribute present in images and video mate-
rial. In addition, there is no agreement on what might constitute a universal
syntax for images that could capture the meaning that we all see in images.
In fact, every user possesses a different subjective perception of the world and
it is not therefore possible to capture this in a single fixed set of features and
associated representations. In this way, it is not possible to guarantee to an-
ticipate a user’s perception of the visual content and indeed users may change
their minds in the middle of a retrieval operation.

The mouse and the keyboard dominate the types of interfaces found in
computers today. Most people are happy to use them to interact with their
machines, but they present mental and physical barriers to communication.
The keyboard requires knowledge of a language of interaction and a chain of
events involving vision, thought and muscular movement, all of which require
a judgment whether initiating the effort will be worthwhile or not. The mouse
reduces keyboard interaction and enables simple visual selection, but still re-
quires the same physical and conscious mental processes to take place. Eye
tracking offers a valuable short cut in computer communications for visual
tasks [231]. Gaze behavior could provide information to the machine without
the essential need for extra co-ordinated muscular movement and the associ-
ated effort. Indeed, the reduced level of effort should allow users to convey
more relevant factors more easily to the machine and in a shorter time. In addi-
tion, there is scope for identifying users’ intentions from pre-attentive activity

P. Maragos et al. (eds.), Multimodal Processing and Interaction,
DOI: 10.1007/978-0-387-76316-3 14, c© Springer Science+Business Media, LLC 2008
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of which the user is not consciously aware and promises to yield extremely
rapid search performances.

The following sections present a background to this work. This is fol-
lowed by descriptions of our system and recent experiments in image retrieval
through an eye tracking interface. The final sections discuss and present some
conclusions and an indication of how eye tracking technology might enter the
mass market.

14.1 Eye Tracking Technologies

The first technologies up to the 1960’s were invasive and required tamper-
ing directly with the eyes. The search coil method [437] offers high accuracy
and large dynamic range but requires an insertion into the eye! Non-invasive
methods such as the Dual Purkinje Image eye tracker [114] require the head
to be restricted and are relatively expensive. More recently systems have ap-
peared that use video images with some using infrared cameras. The eye has
several key characteristics that makes gaze direction measurable from a video
camera image. Eye pointing is precise because there is a centralized region in
the retina, where there is increasing image resolution towards its center.

LC Technology’s Eyegaze system uses the Pupil-Centre/Corneal-Reflection
method to determine the eye gaze direction. A video camera located below
the computer screen remotely and unobtrusively observes the subject’s eye.
No attachments to the head are required in this setup. A small, low power,
infrared light emitting diode (LED) located at the center of the camera lens
illuminates the eye. The LED generates the corneal reflection and causes the
bright pupil effect, which enhances the camera’s image of the pupil. The ac-
curacy of eye tracking systems depends in large measure on how precisely the
image processing algorithms can locate the relative positions of pupil center
and the corneal reflection. To achieve the bright-eye effect, light is shone into
the eye along the axis of the camera lens. The eye’s lens focuses the light
that enters the pupil onto a point on the retina. Because the typical retina
is highly reflective, a significant portion of that light emerges back through
the pupil, and the eye’s lens serendipitously directs that light back along the
camera axis right into the camera. Thus the pupil appears to the camera as a
bright disk, which contrasts very clearly with the surrounding iris. Specialized
image-processing software in the Eyegaze computer identifies and locates the
centers of both the pupil and corneal reflection. Trigonometric calculations
project the person’s gazepoint based on the positions of the pupil center and
the corneal reflection within the video image.

Different eye tracking systems have variations in the design of their re-
spective algorithms for calculating gaze positions, with little or no difference
in the basic infrared technology. Some manufacturers have a head-mounted
as well as a remote version of their eye tracker and prices have gone down
considerably in the last few years.
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Several methods have been proposed for improving the accuracy of esti-
mating gaze direction and inferring intent from eye movement. Identification
and analysis of fixations [461] and saccades in eye tracking protocols has been
shown to be important for understanding visual behavior.

Privitera et al. [416] used 10 image processing algorithms to compare hu-
man identified regions of interest with regions of interest determined by an eye
tracker and defined by a fixation algorithm. The comparative approach used a
similarity measurement to compare two aROIs (algorithmically-detected Re-
gion of Interests), two hROIs (human-identified Region of Interests) and an
aROI plus hROI. The prediction accuracy was compared to identify the best
matching algorithms and different algorithms fared better under differing con-
ditions. They concluded that aROIs cannot always be expected to be similar
to hROIs in the same image because two hROIs produce different results in
separate runs. This means that algorithms are unable in general to predict
the sequential ordering of fixation points.

Jaimes, Pelz et al. [232] compared eye movement across categories and
linked category-specific eye tracking results to automatic image classification
techniques. They hypothesized that the eye movements of human observers
differed for images in different semantic categories, and that this informa-
tion could be effectively used in automatic content-based classifiers. The eye
tracking results suggested that similar viewing patterns occur when different
subjects view different images in the same semantic category. Hence, while
algorithms are unable to predict the sequential ordering of points of interest,
similarity in viewing patterns over images in the same category is possible.

14.2 Applications

Eye tracking equipments are used as interface devices in several diverse appli-
cations. The number of applications of eye tracking is increasing, as presented
in Duchowski’s review [144] of diagnostic and interactive applications based
on offline and real-time analysis, respectively. Interactive applications have
concentrated upon replacing and extending existing computer interface mech-
anisms, rather than creating a new form of interaction. The tracking of eye
movements has been employed as a pointer and a replacement for a mouse
[197], to vary the screen scrolling speed [372] and to assist disabled users [108].
Schnell and Wu [467] applied eye tracking as an alternative method for the
activation of controls and functions in aircraft. Dasher [560] used a method
for text entry that relies purely on gaze direction. Nikolov et al. proposed
[370] a system for construction of gaze-contingent multi-modality displays of
multi-layered geographical maps. Gaze contingent multi-resolutional displays
(GCMRDs) center high-resolution information on the user’s gaze position,
matching the user’s interest. In this system, different map information is chan-
neled to the central and the peripheral visual fields, giving real performance
advantage.
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In its diagnostic capabilities, eye-tracking provides a comprehensive ap-
proach to studying interaction processes such as the placement of menus
within web sites and to influence design guidelines more widely [332]. However,
the imprecise nature of saccades and fixation points has prevented these ap-
proaches from yielding benefits over conventional human interfaces. Fixations
and saccades are used to analyze eye movements, but it is evident that the
statistical approaches to interpretation (such as clustering, summation and
differentiation) are insufficient for identifying interests due to the differences
in humans’ perception of image content.

Although eye tracking has not yet been implemented on mobile devices,
research is underway on how the detection of regions of interest that catch
the eye can be used to improve the quality of images presented on small
screens. In the future, eye trackers could automate this process for individual
users. Xin Fan et al. [155] proposed an image viewing technique based on
an adaptive attention shifting model, which enabled the browsing of large
images on limited and heterogeneous screen zones of mobile phones. Xin’s
paper focused on facilitating image viewing on devices with limited display
sizes.

Nokia [447] conducted a usability evaluation on two mobile Internet sites
and identified a demand for search on mobile phones contrary to the initial
hypothesis that users would be discouraged by the effort of keying inputs. The
research also showed that customers preferred any interface that produced a
successful search despite any extra effort required. The Collage Machine [253]
is an agent of web recombination. It deconstructs web sites and re-presents
them in collage form. It can be taught to bring media of interest to the user on
the basis of the user’s interactions. The evolving model provides an extremely
flexible way of presenting relevant visual information to the user on a variety
of devices.

Eye tracking experiments have been conducted to investigate the informa-
tiveness of images and the speed of eye tracking interfaces. Arising from this
work an eye tracking interface has been developed which rapidly converges to
target images. This work is described and discussed in the next sections.

14.3 An Eye Tracking System for Searching Image
Databases

The best interfaces are natural and easy to use. They are unobtrusive and
provide relevant information quickly and in ways that do not interfere with the
task itself. This system has been designed to provide an interface for searching
visual digital data in an image database (Fig. 14.1). A pre-computed network
of similarities between image regions in an image collection is traversed using
eye tracking, always assuming that the users’ gaze behaviors yield suitable
information about their intentions. It is reasonable to believe that users will
look at the objects in which they are interested during a search and this
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provides the machine with the necessary information to retrieve plausible
candidate target images for the user. Retrieved images will contain regions
that possess similarity links with the previously gazed regions, and can be
presented to the user in a variety of ways.

14.3.1 Eye Tracking Equipment

The Eyegaze System was used in the experiments to generate raw gazepoint
location data at the camera field rate of 50 Hz (units of 20ms). A clamp with
chin rest provided support for chin and forehead in order to minimize the
effects of head movements, although the eye tracker does accommodate head
movement of up to 1.5 inches (3.8cm). It was not essential to use the chin
rest, but this removed a potential source of error and eliminated any variance
in head movement across subjects. The system setup is shown in Fig. 14.2.
Calibration is needed to measure the properties of each subject’s eye before
the start of the experiments. The images were displayed on a 15” LCD Flat
Panel Monitor at a resolution of 1024 × 768 pixels.

In the second experiment, the loading of 25 images in the 5×5 grid display
took an average of 110ms on a Pentium IV 2.4GHz PC with 512MB of RAM. In
the third experiment, the loading of 16 images in the 4×4 grid display took an
average of 100ms on the same system. Gaze data collection and measurement
of variables were suspended while the system loaded the next set of images
into memory. During this period the display remained unchanged and was
updated instantaneously as soon as the contents of the next display had been
composed.

The processing of information from the eye tracker is carried out on a
128MB Intel Pentium III system with a video frame grabber board.

Fig. 14.1. Proposed System Architecture.
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Fig. 14.2. Eyegaze Set-up.

14.3.2 Experimental Strategy

A series of experiments was devised to establish the feasibility of an eye gaze
driven search mechanism. The first experiment investigated whether users
looked more frequently at salient regions as determined by the attention model
and whether any other eye behavior was apparent. A negative result would
indicate a potential lack of information in gaze data relevant to image retrieval.

The second experiment investigated the effectiveness of an interface con-
trolled by gaze behavior when compared with other interfaces. In this exper-
iment, the speed of operation was compared with that of a mouse interface.
Again a negative result would cast doubt on the benefits of using eye move-
ment in such an interface.

Finally the proposed system was implemented with the aim of investigat-
ing whether eye tracking can be used to reach target images in fewer steps
than by chance. The effect of the intrinsic difficulty of finding specific images
and the time allowed for the consideration of successive selections were also
investigated.

14.4 Gaze Behavior

It has been shown that attention mechanisms can be directly related to sim-
ilarity measures [507] and affect the strength of those measures. During a
search the human eye is attracted first to salient regions and those regions
probably have most impact and contribute most towards recognition and user
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search strategies. Such regions might include anomalous objects and areas of
high contrast. This work makes use of both aspects; first an attention model
[507] is used to automatically identify candidate regions of interest for valida-
tion against eye tracking data where we would expect most fixations to occur;
second an attention-based similarity metric is used to define visual relation-
ships in a database of images for exploration with an eye tracking interface.
The visual attention (VA) model used in this work employs an algorithm that
assigns high attention scores to pixels where neighboring pixel configurations
do not match identical positional arrangements in other randomly selected
neighborhoods in the image. This means, for example, that high scores will be
associated with anomalous objects, or edges and boundaries, providing those
features do not predominate in the image. For display purposes the attention
scores for each pixel are displayed as a map using a continuous spectrum of
false colors with the scores being marked with a distinctive color or gray level
as in Fig. 14.3 and 14.4.

The similarity measure [507] used in this work is not dependent upon
intuitively selected features, but instead upon the notion that the similarity of
two patterns is determined by the number of features in common. This means
that the measure can make use of a virtually unlimited universe of features,
rather than a tiny manually selected subset that will be unable to characterize
many unseen classes of images. Moreover the features are deliberately selected
from image regions that are salient according to the model and, if validated,
reflect similarity as judged by a human.

14.4.1 Experiment Design

In this experiment, four participants were presented with a sequence of 6
images for 5 seconds each separated by displays of a blank screen followed for
3 seconds by a central black dot on a white background. Three of the images
contained easily discernible subjects and three did not. All participants were
encouraged to minimize head movement and were asked to focus on the dot
before each image was displayed. The participants were not given any specific
task apart from being asked simply to look at the images. All participants had
normal or corrected-to-normal vision and had no knowledge of the purpose of
the study. Participants included a mix of graduates and administrative staff.

14.4.2 Results

The locations of saccades and fixations performed by the subjects on each
of the images were recorded by the eye tracking system. The VA score that
corresponded to the pixel at each fixation point was associated with the time
of the fixation and plotted for study in units of 20ms as illustrated in Fig. 14.3
and 14.4. It can be seen that there was considerable variation in behavior over
the four participants, but all looked at regions with the highest VA scores
early in the display period. Table 14.1 shows the total length of time in ms.
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spent fixating on regions of high VA score for each participant on each image.
This shows that in all cases a large proportion of the 5 seconds exposure
time was spent observing the salient regions than the background, if such
a salient region was present in the image. Images without obvious subjects
did not give such a pronounced result. This confirmed that users’ gaze was
attracted by regions of high VA score, but also it showed that the eye tracking
system was able to gather data related to users’ interests and therefore that
this information might be available for image retrieval through a suitable
interface.

Fig. 14.3. No obvious subject image, VA map and plots.

14.5 Relative Speeds of Eye and Mouse

14.5.1 Experiment Design

A task-oriented experiment was conducted to compare the speed of the eye and
the mouse as an input mode to control an interface. Participants were asked
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Fig. 14.4. Obvious subject image, VA map and plots.

Table 14.1. Times (ms) spent fixating on regions of high VA score.

Images Subjects

1 2 3 4

Unclear ROI 1 40 60 20 140

2 (Fig. 14.3) 580 420 500 400

3 100 0 40 20

Obvious ROI 4 2820 2340 2420 1280

5 (Fig. 14.4) 3680 1480 2220 1960

6 4240 980 1620 1240

to find a target image in a series of displays with the aim of comparing the
response times of searching and selecting the target image using the computer
mouse and the eye under varying conditions.

A total of 12 participants took part in the experiment. Participants in-
cluded a mix of students and university staff. All participants had normal or
corrected-to-normal vision and provided no evidence of color blindness. Par-
ticipants were asked to locate a target image in each of a series of 50 5 × 5
arrays of 25 thumbnail images After finding the target, the participants made
a selection by clicking with the mouse or fixating on it for longer than 40ms
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with the eye. The array was then re-displayed with the positions of the im-
ages rearranged with the target image appearing two times in every location
during the 50 displays. Participants were randomly divided into two groups;
the first group used the eye tracking interface first then the mouse, and the
second group used the interfaces in the reverse order. This enabled any vari-
ance arising from the ordering of the input modes to be identified. Different
sequences of the 50 target positions were also employed to remove any con-
founding effects arising from the ordering of the individual image search tasks.
All participants experienced the same sequence of target positions as well as
different sequences while using the two input modes. A typical participant in
the mouse first group performed four runs: mouse (target sequence 1), eye
(target sequence 1), mouse (target sequence 2) and eye (target sequence 3).
There was a 1 minute rest between runs.

14.5.2 Results

There was a significant main effect of input, F (1, 10) = 8.72, p = 0.015 with
faster response times when the eye was used as an input (2.08sec.) than
when the mouse was used (2.43sec.) as shown in Table 14.2 (where F is
the F test statistic and p is a rejection probability as used in analysis of
variance, ANOVA). The main effect of the order was not significant with
F (1, 10) = 0.43, p = 0.53. The main effect of target positions was not signifi-
cant, F (1, 10) = 0.58, p = 0.47.

Table 14.2. Mean response times for target image identification task.

Order Target Positions Input Mode Response Time

Mean St Dev

Mouse First (6 participants) Same-sequence Mouse 2.33 0.51

Eye 1.79 0.35

Different-sequence Mouse 2.43 0.38

Eye 1.96 0.42

Eye First (6 participants) Same-sequence Mouse 2.35 0.82

Eye 2.29 0.74

Different-sequence Mouse 2.59 1.44

Eye 2.27 0.73

14.6 Image Retrieval

14.6.1 Experiment Design

This experiment was designed to explore the performance of an image retrieval
interface driven by an eye tracker. Thirteen participants were asked to find
target images in a database and their performance measured.
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1000 images were selected from the Corel image library. Images of 127 kilo-
bytes and 256× 170 pixel sizes were loaded into the database. The categories
included boats, landscapes, vehicles, aircrafts, birds, animals, buildings, ath-
letes, people and flowers. Four easy-to-find and four hard-to-find target images
were selected for the experiment by using a random gaze strategy to explore
the image database. Screens of thumbnail images were displayed as 229× 155
pixels in 4×4 arrays. The initial screen is shown on the left of Fig. 14.5 where
the target image that the participant has to find is located at the top left.

Participants began by viewing the initial screen and endeavoring to find the
target image among the other 15 images. The display automatically changed
when the accumulation of all fixations greater than 80ms on a specific image
position exceeded a threshold. In this way the display would change relatively
quickly if the participant concentrated on a relevant image, but would take
longer if the gaze was less definite. This selected image determined the next
15 thumbnails to be displayed as indicated by the highest of the pre-computed
similarity scores for other images in the database. The participant was pre-
sented with a succession of such screens until the target image was retrieved
whereupon the run halted and the successfully found target was highlighted
with a border as shown on the right of Fig. 14.5. Each participant performed 8
runs using both easy-to-find and hard-to-find images. The maximum number
of screen changes was limited to 26.

Fig. 14.5. Initial screen leading to final screen with retrieved target.

Two fixation cumulative thresholds of 400ms and 800ms were employed as
a factor in the experiment. Another factor was introduced to allow the display
to include either one or no randomly retrieved images. It was thought that this
would reduce the likelihood of displays repeating due to occasional incorrect
similarity values. In this case one of the images was retrieved randomly from
the database (“Randomly-retrieved” = 1), rather than on the basis of simi-
larity with the previously selected image. A random gaze generation strategy
in which images in each screen are selected randomly was then simulated for
comparison with selection by gaze.
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14.6.2 Results

As measures of performance the number of steps to target, the time to target
(F1), and the number of fixations (F2) of 80ms and above were monitored
and recorded during the experiment (Table 14.3). The results of the ANOVA
performed on the steps to target revealed a significant main effect of image
type, F (1, 12) = 23.90, p < 0.0004 with fewer steps to target for easy-to-find
images (14 steps) than the hard-to-find images (22 steps). The main effect of
the fixation threshold was not significant with F (1, 12) = 1.50, p < 0.25. The
main effect of randomly-retrieved was also not significant, F (1, 12) = 0.17,
p < 0.69. The analysis of the time to target produced similar results to the
analysis of the number of fixations. There was a significant main effect of
image type, F1(1, 12) = 24.11, p < 0.0004, F2(1, 12) = 21.93, p < 0.0005,
with shorter time to target and fewer fixations for easy-to-find images (40.5sec.
and 125 fixations) than the hard-to-find images (71.3sec. and 229 fixations).
The main effect of the fixation threshold was also similarly significant with
F1(1, 12) = 18.27, p < 0.001 and F2(1, 12) = 16.09, p < 0.002. The main
effect of randomly-retrieved was not significant, F1(1, 12) = 1.49, p < 0.25
and F2(1, 12) = 0.76, p < 0.40.

Table 14.3. Analysis of Human Eye Behavior on the Interface (rounded-off mean
figures).

Image Type Fixation Threshold Randomly-retrieved A B C D

Easy-to-find 400ms 0 38.5% 14 34.9 99

1 53.8% 18 36.8 109

800ms 0 38.5% 14 55.8 153

1 15.4% 11 51.3 140

Hard-to-find 400ms 0 69.2% 23 52.7 166

1 84.6% 23 50.0 167

800ms 0 92.3% 24 105.0 327

1 69.2% 19 83.5 258
ATarget not found (frequency); BSteps to target; CTime to Target; DFixation numbers.

The same treatment combinations experienced by all participants were ap-
plied to the random gaze generation tool to obtain steps to target under same
conditions (Table 14.4). In summary, the results of the ANOVA revealed a
main effect of the selection mode, F (2, 23) = 3.81, p < 0.037, with fewer steps
to target when the eye gaze is used (18 steps) than when random selection is
used (22 steps). There was also a main effect of image type, F (2, 23) = 28.95,
p < 0.00001 with fewer steps to target for easy-to-find images (16 steps)
than the hard-to-find images (24 steps). Further analysis of simple main ef-
fect revealed that there was a significant difference between the modes for the
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hard-to-find images, F (2, 23) = 3.76, p < 0.039, as opposed to the easy-to-find
images, F (2, 23) = 2.02, p < 0.16.

Table 14.4. Comparison of Eye and Random Selection (rounded-off mean figures).

Selection Mode Image Type Randomly-retrieved A B

Eye gaze Easy-to-find 0 38.5% 14

1 34.6% 15

Hard-to-find 0 80.8% 23

1 76.9% 21

Random selection Easy-to-find 0 57.7% 20

1 38.5% 16

Hard-to-find 0 96.2% 25

1 92.3% 26
ATarget not found (frequency); BSteps to target;

14.7 Discussion

The first experiment tested whether users looked at regions declared salient
by the visual attention model. The results showed that this was the case for
the images and participants involved, but more images and a larger number of
participants would be necessary to obtain statistical significance. This result
was also indicative that users fixate on foreground material in images and that
this behavior may be employed to drive a prototype search interface.

The second experiment went further to explore the speeds of visual pro-
cessing involved in an image target identification task when compared with a
conventional input device such as a mouse. The 25 stimuli presented to each
participant and the predetermined choice of image target produced a diffi-
cult task and the experiment imposed a high cognitive load. The participant
had to search for the target and then make a selection. Our results indicated
slower mouse responses and was supported by the significant main effect of
input (p = 0.015), with the eye interface having faster response times than the
mouse interfaces, and was consistent with Ware and Mikaelian’s conclusions
[562]. When using the mouse the participant had to spend time locating both
the cursor and the item to be selected, and then use the mouse to move the
cursor to the item. On the other hand, the eye tracker interface was quicker
because only the selected item needed to be located. However, the speed dif-
ference was not just dependent on extra mouse movement because the eye
tracker required the user to fixate on the target for longer than 40ms before
a screen change.

Finally, in the image retrieval experiment, the participants using the eye
tracking interface found the target in fewer steps than an automated random
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gaze strategy (p < 0.037) and the analysis of the simple effect attributed the
significant difference to the hard-to-find images. This meant that the prob-
ability of finding the hard-to-find images was significantly increased due to
human cognitive abilities, as opposed to the indiscriminate selection by the
simulated random gaze strategy using the same similarity information. The
main effect of the fixation threshold was not significant which indicates that
there is scope for using smaller thresholds than 400ms. Future experiments if
successful, would indicate that unconscious pre-attentive vision may be play-
ing a significant part in visual search. Additional discussion and results can
be found in [384, 385, 243, 386].

14.8 Conclusions and Future Directions

An eye controlled interface can provide a more natural mode of retrieval as it
requires a minimum of manual effort and cognitive load, and almost uncon-
scious operation. It has been shown that the eye is attracted to image regions
that are predicted to be salient by the attention model and that the eye track-
ing system was able to gather data related to users’ interests. Secondly the
eye tracking interface yielded a significantly better speed performance than
the mouse in a target location task. In an image retrieval task users were
able to successfully navigate their way to target images in a database using
only eye gaze, with significantly better performance than randomly generated
selections.

There is much development to be carried out before eye trackers can be-
come as pervasive as keyboards and mice. The accuracy, cost and usability
of equipment must improve before laboratory results can be reproduced on
PCs, laptops, and even PDAs. We might expect cheap eye trackers to emerge
in the games market where “look and shoot” would give faster gratification
than painful button pressing or joystick pushing. Small cameras embedded in
monitors and laptop lids or glasses would be obvious locations for the cheaper
devices. Gaze contingent displays have great potential where additional infor-
mation may be displayed dependent on eye movement. For example, larger
scale maps may be offered at the focus of attention or additional details sup-
plied related to an object being studied. Eye behavior may also be used to
drive PTZ cameras in ways that enable people to “see” their way around re-
mote locations. Eye trackers are already a great asset to the disabled, but only
as an awkward and costly replacement for existing devices, and not as a com-
puter interface to be used just as effectively as an able-bodied person. Further
reading on eye tracking applications may be found in Duchowski [144].

The results reported here indicate that eye trackers have the potential for
eliciting human intentions extremely rapidly and may be applied to certain
visual search tasks. It seems reasonable that reducing costs and advancing
camera technology will mean that eye trackers will appear in many more
applications within the next few years.
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Smart phones have the potential to become the default physical user interface
for ubiquitous mobile multimedia computing applications [40]. However, the
conventional tiny keypad of a mobile phone is unsuitable for many situations;
for example, typing a simple URL like http://www.google.com/ might require
over 70 key presses. The fast development of mobile devices provides new pos-
sibilities for user interaction methods. Accessing large amounts of multimedia
information requires specialized methods for searching and data mining. Be-
sides direct interaction with keyboard, keypad, joystick, touchscreen or even
speech recognition, interaction with mobile devices can be enhanced by ana-
lyzing the location or motion of the device. Furthermore, it is possible to fine
tune the location information with the device’s direction and orientation in-
formation using visual markers or various sensors. In addition, the movement
of the device can be analyzed using accelerometers or analyzing optical flow
of the attached camera. Augmented reality is a related technology, providing
new interaction possibilities with a visual link between physical and virtual
worlds.

15.1 Evolution of Mobile Multimedia

Multimedia applications have existed as long as there have been personal com-
puters supporting the playback of audiovisual (AV) content. Especially after
PCs were equipped with a network access for downloading content, the devel-
opment of multimedia applications has been very rapid. After the emergence
of the Internet and the world-wide-web, multimedia content has evolved to-
wards more and more rich content including various kinds of textual, aural,
and visual content.

Multimedia content includes, e.g., images, audio, music, video, films, news,
documentaries, advertisements. The application types can be classified in
two main categories, namely local and networked/streamed applications. PC
games are a typical example of local applications, whereas video conferencing,
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e-commerce, e-learning, IP-telephony and IP-TV are examples of streaming
applications. Various data formats and standards are being used for multi-
media content, e.g., MP3 for music, MPEG4 for video, and various W3C
specifications for web content.

During the time mobile phones have been on the market, various PC based
applications have been ported into mobile platform, as far as it has been tech-
nically feasible. In recent years, the processing power, amount of memory,
multimedia capabilities, and access speeds of mobile phones have approached
that of PCs, which has made this transition easier and faster. Thus, the typ-
ical office applications, i.e., email, calendar, document viewers, editors, etc.
have successfully been ported to mobile environment. Another important cat-
egory are web applications, based on new mobile browsers and the increased
bandwidth available for wireless data transmission.

In addition, there are several mobile applications which take the charac-
teristics of a mobile terminal and user into account. A good example of this
is SMS, which has not a direct predecessor in the PC environment. Following
SMS, ring-tone downloads and image screen-savers have been surprise suc-
cesses for mobile phones. As in the PC environment, local applications have
been easier to implement on mobile devices, although the development goes
towards real-time streaming applications.

As the display and keyboard of a mobile phone are small, mobile multime-
dia applications meet particular challenges for the supported content types,
usability and interaction. The interaction in mobile applications has long been
based on miniature versions of a mouse, joystick, and keyboard. Today, the
mobile phone’s camera is also increasingly used for interaction, e.g., for point-
ing and tracking (some mobile phones even provide an integrated accelerom-
eter that can be used for the same purpose).

A specific opportunity in mobile applications, particularly challenged by
usability issues, is providing authoring and editing functionalities for multime-
dia content, e.g., for either downloaded or user generated video clips. Recently,
the number of location and community based mobile applications has been
rapidly rising, supported for example by the integration of mobile phones with
a camera and a locationing device (GPS).

A comprehensive collection of various mobile multimedia related research
activities is given in [221].

15.2 Mobile Multimedia Terminals

The prerequisites for mobile multimedia solutions are the availability of: (i)
suitable, e.g., powerful enough mobile terminals, (ii) intelligent, fast and re-
liable software, and (iii) applicable networks, i.e., modes for communication.
Considerable amount of memory and computational power is required espe-
cially for capturing and processing (e.g., compressing) of images or video,
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displaying of 3D graphics, as well as for managing the transmission and con-
nectivity, e.g., protocols and algorithms to cope with roaming.

Today, mobile phones, PDAs (Personal Digital Assistant) and other mo-
bile devices are already quite capable to see, hear and sense the surrounding
environment by various means. Mobile phones and other hand-held devices
are advancing towards powerful communicators with multiple network access
(GSM/GPRS, 3G, WLAN, Bluetooth), multimedia capabilities (digital cam-
eras, high-resolution color displays, MMS), open platforms for applications
(Java, Symbian, etc.) as well as for Internet connectivity.

The classification between the devices is becoming vague as they are pro-
viding more and more common features; for example PDAs providing in-built
mobile network access and camera, and mobile phones providing larger dis-
plays and more advanced user interaction mechanisms, e.g., keyboards and
input pens. Therefore we can think that in the future the different mobile
device categories will merge into a smart mobile terminal containing all the
needed functionality.

Miniaturization of tablet PCs has led to a new class of devices, nowadays
called Ultra Mobile PCs (UMPC). As example of UMPCs, the recent Sony
Vaio UX models is equipped with a slide-in keyboard, two built-in cameras,
wireless Bluetooth, WLAN and 3G connectivity. Also, PDAs are available in
a variety of models, with various operating systems, with adequate processing
power, battery life, and display capabilities for mobile multimedia.

The latest smart phones, e.g., Nokia N95 and E90, have more process-
ing power and even better 3D graphics support than super computers used
to have ten or fifteen years ago. Among the different manufacturers, Sam-
sung has been particularly active to provide the phones with new integrated
functionality, such as high accuracy cameras, accelerometers and other sen-
sors. Apple iPhone is leading the way for new interaction methods on mobile
phones, with multi-touch screens and 3D visual browsing techniques.

15.3 Mobile Displays

The screens of hand held devices are obviously the most common displays for
mobile multimedia applications; however there are also other options available.
Besides wearable devices such as video glasses, also projector displays are
developed as display extensions for mobile devices [338].

The application specifies which features are critical and the application
type defines the best display type for it. On mobile phones factors, such as
the small display size and resolution have to be accounted for, while on PDA
and UMPC devices the screen brightness and power consumption can be more
critical factors. Handheld mobile devices are generally preferred if the task
does not require hands-free operation or immersive display; otherwise, head
mounted or projected displays can be a better choice [64].
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15.3.1 Stereo Displays

Conventional displays are monographic, but various methods are available to
upgrade even standard displays to reproduce stereographic view. The standard
methods can be divided into two groups named active and passive stereo. Both
active and passive stereo require that the user wears special glasses meant for
this purpose. With active stereo the display alternates the image meant for
left and right eyes rapidly so the shutter glasses show the right image for each
eye. With passive stereo, both images are shown at the same time and the
glasses filter the correct image for each eye, e.g., red-green-glasses.

The third group of stereographic displays are called autostereoscopic dis-
plays that do not require any separate glasses to be worn. They usually show
the left and right images for separate viewing segments, either by track-
ing where the viewer is located or just by offering several discrete viewing
segments. Samsung has already demonstrated such stereo displays on smart
phones. The primary application for stereo displays on camera phones would
be mobile 3D games.

At the software level, StereoGames [576] is a solution based on anaglyph
technology to enable changing originally monographic 3D applications to
stereo. Besides PCs and game consoles, StereoGames works also for mobile
devices like mobile phones, and it can be applied to create stereo effect for
both passive and active as well as autostereoscopic displays.

15.3.2 Head Mounted Displays

Head mounted displays (HMDs) are wearable display devices ranging from
helmets providing deep immersion and full field-of-view, down to miniaturized
data glasses or “goggles”. There are two types of HMDs, based either on video
or optical see-through approach [64].

The most popular multimedia application for HMDs is watching movies
on portable MP3 and DVD players. Other uses for HMDs are found in mobile
games (using video glasses), and in augmented reality (using either video
or optical see-through approach). Recently one of the leading HMD display
companies MicroOptical changed name to MyVu and is now providing video
glasses for the iPod [352].

Some visionaries and researchers are developing concepts and prototypes
where the reproduced image is not shown on any display; instead the image
is drawn directly to the user’s retina. Thus, the technology is called virtual
retinal display (VRD). However, commercial VRD products are not yet avail-
able.

15.4 Interaction Modalities

According to Foley et al. [167], input devices can be categorized by the graph-
ics subtasks they can perform. Those tasks are: position, orient, select, path,
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quantify and text entry. The ability to perform these tasks and the ability to
interact with the environment are essential for future ubiquitous multimedia
devices. In the following, we explore various interaction modalities, starting
from various methods available for text entry, up to a discussion on motion
estimation for gestural interaction on camera phones.

15.4.1 Text Entry: Keyboards, Strokes and Dynamic Selection

Text entry methods with mobile devices can be divided broadly into following
categories: keyboards, gestural alphabets and dynamic selection techniques.
Next, we describe briefly some popular text entry methods. More detailed
summaries can be found in [561, 315].

Currently the most common input method with a 12-key telephone keypad
is multitap, where the user presses each key one or more times to write each
letter. The 12-key input can be optimized by adding language knowledge to the
system. One example is the T9 solution licensed by many phone manufacturers
[109]. In T9, the keys are pressed only once for each letter and the linguistic
model predicts the most probable word for the key sequence.

Touchscreen displays, e.g., on PDAs and some multimedia phones, provide
the option of a screen keyboard. Some other devices, e.g. ultra mobile PCs,
provide a larger keyboard that is normally hidden but can be slid or flipped out
when needed. Alternatively, a full size keyboard can be a separate accessory
connected using, e.g., Bluetooth. A novel approach for fitting a full QWERTY
keyboard on a small device is to project the keyboard on a table with a laser
beam and recognize the keyboard taps optically [309].

Keyboards and screen keyboards may also be rearranged, either to fit
into smaller space or to provide faster interaction. The number of keys can
be reduced either by allowing toggle operations between different letter sets,
or by using key-combinations, a.k.a. chords. A good example of reduced key
set is half-QWERTY keyboard which allows writing speeds up to 73% com-
pared to writing with a full keyboard [315]. Another example is the Twiddler
chord keyboard [110] which is particularly popular with wearable computing
researchers.

Free-form handwriting recognition is a widely available, though not very
reliable text entry method on PDA devices. An alternative to normal hand-
writing is the Graffiti system on Palm devices, in which each letter is written
using a single stroke that is similar enough with normal hand-written char-
acters. Another approach for gesture based writing is Quikwriting introduced
in 1998. It is based on 3x3 grid where the strokes are started and ended in
the center; shortest strokes need to visit only one grid position while more
infrequent letters need to make a curve through several grid positions [397].

In dynamic selection techniques, the shown alphabet is changed dynam-
ically. For example, in FOCL (Fluctuating Optimal Character Layout), the
choices for the most probable next letters are always shown near the center
[51]. In Dasher [561], the possible first letters are shown in a column of boxes
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where the box sizes reflect the letter frequency; within each of these boxes
the possible next letters are presented in a similar box column, and typing is
performed by moving a pointer to continuously zoom deeper and deeper in
the nested boxes.

15.4.2 Joysticks

Besides the traditional keyboard or keypad, current mobile devices provide
various other ways for direct interaction including joystick, trackball, touch-
pad, and camera. Practically all mobile phones today include four- or eight-
direction navigation joysticks. Usually these navigation buttons have only bi-
nary resolution but there has also been some research using isometric joysticks
[489].

15.4.3 Multi-Touch Screens

Many recent mobile devices provide a touchscreen with a natural pointing
and drawing user interface. Apple has developed this idea further with the
iPhone by providing a multi-touch interface. The iPhone interface is based
on a capacitive touch panel and it can recognize several gestures with one
or multiple touch points. The gestures are used creatively in applications for
example for scaling photos, zooming in maps or for flipping through music
albums or photos. The iPhone incorporates also an intelligent touchscreen
keyboard that compensates the small keyboard key-size by using dictionary
for favoring the more probable keys and correcting spelling mistakes on the
run.

Multi-touch interfaces are currently a hot research topic as they are be-
lieved to provide more natural and more versatile interaction possibilities com-
pared to single-touch displays. In the “non-mobile” world, interesting inter-
action possibilities have been presented for example by Jeff Han [195]. Also
Microsoft is releasing a commercial Microsoft Surface product based on multi-
touch [337]. Besides multi-touch, the upcoming Microsoft surface promises also
a natural interaction with mobile devices. One presented example application
includes moving photographs from your digital camera into your cell phone.
In the example, this is done just by placing both devices on the multi-touch
surface and dragging the photos between them.

15.4.4 Haptic Systems and Tactile Feedback

Haptic systems often refer to virtual reality input/output devices where the
user can not only manipulate virtual objects directly, but also gain tactile
feedback of how the virtual object feels like. With mobile devices, the most
common haptic feedback is given using vibration actuator common in many
phone models. This can be used for example to produce a “poor man’s force
feedback” in mobile games.
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Several more advanced haptic systems have been presented, though less
suitable for mobile use. Most typically the sense of touch is created by using
mechanical or pneumatic construction, e.g., [475]. Some other methods do not
restrict the motion of the user’s fingers and hands, but instead they generate
vibrations, e.g., using array of pins against fingertip.

15.4.5 Gesture Based Interaction

Physical manipulation of the handheld device is an integral part of an embod-
ied user interface [162]. This may involve, e.g., moving or shaking the device,
leading to interaction paradigms such as “squeeze me, hold me, tilt me” [198].
Gestures by tilting or moving the device may be used in positioning and
pointing tasks or to indicate commands. For example, the user could scroll a
menu on the phone’s display by tilting the phone up- and downwards, select
the command by shaking the phone to the left, and get to previous menu by
shaking to the right.

Various sensing techniques already exist for mobile interaction, including
accelerometers, touch sensors, proximity sensors, and pressure or squeezing
sensors [211, 162]. In addition, the orientation of the mobile device can be
analyzed in relation to earth gravity using tilt sensors, or in relation to earth
magnetic field using compass. However, such sensors are seldom available as
standard components on phones or other mobile devices; instead they have
to be attached to the device as bulky accessories, which ordinary users have
seldom available. Although this situation may change in the future (accelerom-
eters are already integrated in some mobile phones), the most common “sens-
ing” accessory on smart phones for the next few years will still be the camera.

15.4.6 Methods for Camera Motion Estimation

Solutions using camera image based tracking span from simple motion track-
ing implementations up to 3D feature tracking. The most sophisticated fea-
ture detection and tracking algorithms are able to derive 3D coordinates of
the physical world from the camera view, e.g., SLAM (Simultaneous Local-
ization and Mapping) [124]. In theory, the camera’s optical flow gives enough
information for 3D reconstruction of the scene and the 6 degrees-of-freedom
motion path within that scene [199].

For interaction purposes, the global optical flow motion in the mobile
device’s camera view can be used to approximate the device’s movement. Mo-
tion estimation is typically implemented by searching image blocks in various
displacements within the previous image frame. As an exhaustive search is
usually too tedious, the motion search process typically has to be simplified
on mobile devices.

For example, the TinyMotion algorithm [558] reduces the computation
complexity by using grid sampling (a multi-resolution sampling technique)
for the input image before making full-search block matching algorithm. The
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Projection Shift Analysis (PSA) [142] approximates 2D motion by using hor-
izontal and vertical projection buffers of the camera image instead of image
blocks.

The complexity can be reduced by tracking only “easy-to-track” features
of the image. For example, Hannuksela et al. [196] propose using pixels having
maximum squared differences compared to adjacent pixels. Another common
feature selection method is to track corner features in the image, which in turn
are found by Harris or SUSAN corner detection algorithms, or by eigenvalue
methods [482].

Usually for all vision based motion or feature detection methods, horizontal
and vertical camera movements are much easier to analyze than motion in the
camera’s depth direction; the reason being that there is not much change in
the image when the camera is moved back or forth. Modern twin camera
phones offer a convenient solution to partly overcome this problem: depth
motion can be analyzed from the camera facing the user, having the user’s
face as a close target for depth comparisons.

In order to solve the motion detection problem accurately, flexibly and
fast enough, a hybrid method, i.e., combination of different algorithms and
sensors, is often required. A typical hybrid solution is to apply vision based
camera tracking while the camera is relatively stationary, and accelerometers
during fast camera movement.

15.4.7 Further Interaction Modalities

Instead of keyboard, touchpad, joystick or gestures, mobile interaction may
be based also on gaze tracking, or even on user’s breath [223]. These more
exotic ways of interacting are suitable especially for disabled users. Spoken
dialogue and multimodal interfaces are also important modes of text entry for
mobile phones.

15.5 Context Aware Applications

15.5.1 Mobile Context Categories

Research for context-aware mobile applications has been reported since the
early ’90s. Context can be divided into four categories: computing context,
user context, physical context and time context [466]. Computing context con-
tains, e.g., network connectivity, communication bandwidth and nearby com-
puting resources. User context includes information like user’s preferences,
current location and nearby people. Physical context describes physical con-
ditions like lighting, noise levels, and temperature. Time context defines the
date and time based information. Besides using the current context informa-
tion, the context history is also useful for some applications. Further, context-
aware applications may actively adapt their behavior based on the discovered
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context (active context), or leave the decision on its use to the user (passive
context) [92]. Context information may be used in various ways. For example,
the application font size can be made larger when the user is walking, and
the mobile phone ring volume and vibrate option may be adjusted depending
on the situation. One important application area for context aware services is
giving guidance for the user. The location information may be used, e.g., to
inform the user about nearby services, suggest routes or give more information
about observed attractions. The museum visitors may be given personalized
TV-like presentations depending on their location, their facing direction, de-
vice orientation and their interests during the visit [439].

Various other concepts, definitions and classifications for context exist.
Next, in Section 15.5.2 we consider context aware interaction with spatially
bound information. Especially, we discuss physical browsing, where the con-
text is determined using nearby electronic or visual tags. For more thorough
surveys on context-aware services see [92].

15.5.2 Spatial Information and Interaction: Physical Browsing

Spatial information consists of the physical location, orientation, and the in-
formation associated (or bound) to the respective visual view. The location
can be derived either manually, by using satellites (GPS, Galileo), mobile
network positioning, local network (WLAN) based methods, or short-range
methods (Bluetooth, RFID , NFC , etc.). More advanced functionality can be
built when taking also orientation (viewing direction) into consideration; the
orientation may be derived, e.g., by electronic compasses or cameras.

In applications using spatially bound information, means are needed to
search for, discover, and browse information in the environment. This is gen-
erally referred to as physical browsing, which also includes optical/camera
based methods. In physical browsing, tags are typically used to provide the
user with access points for available information or services. A variety of tag
types are used: visual tags (e.g., barcodes and matrix codes), RFID tags (Ra-
dio Frequency Identifier), NFC (Near Field Communication) tags, Bluetooth
tags, Infrared tags, etc. [18]. RFID/NFC tags typically communicate over rel-
atively short distances.

Usually electronic tags are indicated by some visual sign as well. Pointing is
perhaps the most natural user interface, and therefore the basic user paradigm
in physical browsing. Children use pointing inherently in all cultures even
before learning to speak. Remote controllers for home appliances are typical
pointing devices at home. In addition to “point me”, other user paradigms
introduced in physical browsing are “sweep me”, and “touch me” [406].

When noticing an access point, the user typically points at the tag with
his/her mobile device to see the available information and/or make the desired
action. A tag itself, either electronic or visual, may contain encoded/stored
information and metadata telling what to do with the information, e.g., this
is a phone number, make a phone call; this is a web address, start browser.
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The user may for example establish a phone call just by pointing at a tag
attached to the picture of a person [491]. A tag-based user interface can also
be built to support multimodal interactions [252].

A further benefit of visual tags is that they can be used to derive additional
information about the movements of the camera, including tilt, rotation, and
distance in relation to the tag. Thus using visual tags for context-aware mobile
applications can support free augmentation of the physical environment with
spatially bound information, including efficient functionality for information
detection, interaction, authoring and sharing [190].

Drag-and-drop is a paradigm where the user clicks a virtual object and
drags it to different location or to another virtual object. Related to the drag-
and-drop concept is the term hyper-dragging, where the user can transfer
information from one computer to another (or from a mobile device to a
computer), by only knowing the physical relationship between them [435].

15.6 Mobile Augmented Reality

Augmented reality (AR) is a relatively new concept within computer graphics
and video processing research, yet with high potential of becoming an inte-
gral part of future mobile multimedia interfaces and services. The 2007 MIT
Technology Review [241] lists mobile augmented reality (MAR) as one of the
ten technologies “most likely to alter industries, fields of research, and even
the way we live”.

Basically, augmented reality means superimposing digital objects into the
user’s view of the environment [36]. The real world and a totally virtual rep-
resentation are the two ends of the Mixed Reality (MR) continuum [339];
augmented reality is situated in the middle of this continuum. Besides 3D
presentations, simple graphics elements such as augmented text and symbols
can be applied for providing guidelines and additional information to the
physical world. Instead of static content on the mobile terminal, in the future,
augmented content will be increasingly provided by ubiquitous connections to
Internet and local services.

The potential of wearable augmented reality has been investigated at the
early stages of AR research, but until recently wearable AR systems have often
been too heavy and resource demanding for practical applications. Today, the
rapid development of mobile devices has lead to small devices with enough
processing capacity, 3D graphics support, high resolution displays, built-in
cameras and long lasting batteries to enable light-weight mobile AR systems
[194]. Some examples of how tablet PCs, UMPCs, PDAs and camera phones
have been successfully used in various mobile AR applications are provided by
[390, 214, 207, 441]. Fig. 15.1 shows a lightweight augmented reality system
[213] running on camera phone.

The most challenging task for mobile augmented reality is tracking, i.e.,
accurate and fast mapping of coordinates between physical and 3D virtual
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Fig. 15.1. Example of augmented reality on mobile phone: virtual sofa in real
environment.

worlds. The mapping is most typically done using information acquired with
the mobile device’s video camera. Tracking with stationary AR applications is
most typically based on using visual markers; this approach can be used also
with camera phones as long as the user does not move around too much [207,
441]. However, markers are generally too restrictive for mobile applications
and markerless solutions are called for.

Markerless augmented reality is typically based on 3D feature tracking,
using methods such as mentioned in Section 15.4.6. Additionally, the aug-
menting system has to be initialized with some a priori information of the
view, for example, in the form of visual markers or beacons, or by having a
virtual model of the scene as reference. The augmentation can also be simpli-
fied by making the process semi-automatic; using manual interaction in tasks
that would be complex to automate but are easy for the user and accurate
enough for the application.

Another approach for simplifying the augmenting task is to use just still
images for augmenting. This enables for example the use of more sophisticated
3D mapping/tracking algorithms as speed is not a critical factor; also if re-
quired some parts of the computation and/or rendering can then be offloaded
to a server machine. In many applications, the still image principle works ac-
tually more ergonomically than keeping the augmented information in real
time video view. In addition, still images provide better image resolution and
thus improved accuracy for augmented reality.

A good introduction to augmented reality interaction on camera phones
is provided by Henrysson et al. [207]. They describe and compare several
marker-based methods for interactive 3D object manipulation, e.g., selection,
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translation and rotation. Evaluation of markerless augmented reality interac-
tion on mobile phones is an important topic for future research.

Different users have different preferences regarding how to interact with
an augmented reality system. For example, a demo system to test multimodal
user interface in AR aided assembly task is presented by [490]. This system
has three input modalities (traditional keyboard, speech and gesture control)
and visual feedback (output) modality. Test users favored a multimodal input
interface and desired more feedback on the output side.

15.7 Example Applications

The following sections give examples of some new generation mobile multi-
media applications. Gesture based interaction is discussed in Section 15.7.1,
and outdoors augmented reality applications in Section 15.7.2. Section 15.7.3
presents an application of map-based music content interfaces.

15.7.1 Gesture Based Applications

SymBall [193] is a virtual table tennis game on camera phones, using the
phone’s movement as the sole interaction method to control the game. The
movement of the phone is detected using the optical flow of the camera, which
is transformed to the movement of the virtual racket in the game. The user
can adjust sounds, ball speed, racket shape, etc. for the game. The game
can be played in single player mode against “the wall/machine” or against
another player over Bluetooth connection. The implementation has also been
extended to use GPRS/3G connections. Furthermore, the game also exists as
stereo version; see Fig. 15.2.

Gesture based interfaces can also be used to control external devices, for
example using Bluetooth connection with mobile phones. The Phonecam-
based sweep technique [41] is used to interact with large displays, making the
phone act as optical mouse. Similarly, the PhoneMouse software [552] makes
the camera phone work as an optical mouse for a PC: moving the phone in
the air moves the cursor on PC screen, while the phone keys simulate mouse
buttons and launch actions such drawing. See Fig. 15.3.

Viewing of panoramic images is a further example of multimedia appli-
cations that can be implemented intuitively based on the camera’s motion
detection: turning the camera phone around shows views in the panorama
image accordingly. Applications for this include presentations of real estate
and apartments, display of public places and related information, as well as
viewing of 3D virtual architectural models of past and future.

15.7.2 Outdoors Augmented Reality

One of the earliest mobile AR implementations is the Tinmith backpack sys-
tem, which since its introduction in 1998 has undergone various developments
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Fig. 15.2. SymBall virtual table tennis game on camera phones[193], using Stere-
oGames software [576] to create depth illusion.

Fig. 15.3. Using PhoneMouse [552] to annotate a Powerpoint presentation over
Bluetooth connection.
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in both performance and size [374]. Tinmith includes various hardware devices
such as immersive HMD display, GPS locationing, compass and gyrometer.
As a special feature, Tinmth provides also the possibility for user interaction
with the augmented data using data gloves. A well-known application example
with the Tinmith system is mobile real-life implementation of the ARQuake
game.

In a more recent architectural application, AROnSite [214], the virtual
building’s scale and orientation are deduced automatically based on its place-
ment in Google Earth and the user’s GPS coordinates. However the actual
placement to the scene is done interactively by visually aligning the virtual
object to the scenery. After the manual initialization, the camera’s optical
flow is analyzed to keep the augmented object in place. See Fig. 15.4.

Fig. 15.4. Virtual building added to Google Earth, and visualized on site with a
mobile device using AROnsite [214].

.

An impressive hybrid tracking approach for outdoor mobile augmented
reality is presented by Reitmayr et al. [434]. Their approach uses an edge-
based tracker for matching the scenery with a coarse textured 3D model of
the existing environment. Very good accuracy and robustness is obtained by
using an additional sensor pack providing gyroscopic measurements and 3D
magnetic field vector.

On mobile phones, Nokia has developed the MARA prototype system for
sensor based mobile augmented reality [371]. The system consists of Nokia S60
platform phone and attached external sensor box with accelerometer, tilt com-
pensated compass and GPS providing position and orientation information to
the phone via Bluetooth connection. The application augments the camera
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view with graphics and text in real time, annotating the user’s surroundings
with location-based Internet content, e.g., tourist information.

15.7.3 Map-Based Audio Retrieval Applications

Since digital music collections are growing constantly, especially on mobile
devices, it is getting more and more important to provide easy and intuitive
access to these collections. Today it is possible to have thousands of songs
on mobile devices but we still miss more adequate ways of accessing music
than merely scrolling through directories or hierarchical structures. A possible
solution to this is to use a music map.

To create music maps, first of all a feature extraction algorithm is used,
in order to automatically extract semantic descriptors from the audio, which
form the basis of determining similarities between pieces of music. Afterward,
different clustering algorithms, e.g., a Self-Organizing Map, can be applied to
the extracted feature vectors, in order to create a representation of a music col-
lection on a map. The basic idea of clustering is the identification of coherent
sub-groups of similar instances, i.e., pieces of audio. As a consequence, pieces
of music will be represented on the resulting map and grouped according to
acoustic similarity.

User interfaces for music based on the SOM have been researched by sev-
eral teams, resulting in miscellaneous applications on the desktop [343, 265].
For mobile devices, however, interfaces have to fulfill special requirements.
In addition to the size of the display itself, input possibilities for mobile de-
vices are heavily restricted. The most difficult question, however, is how to
adequately display and provide access to a large-scale dataset using these
minimal interface capabilities.

Fig. 15.5. The PocketSOM application running on a Nokia 7710 emulator.

PocketSOM is a light-weight version of the PlaySOM application (an
overview of which is given in Section 11.2), which provides a simple but intu-
itive interface. The interface presents a graphical landscape with the metaphor
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of islands in the sea (“Islands of Music”). The islands represent the clusters,
where music which is acoustically very similar (from the perspective of the fea-
tures extracted from it) has been aggregated together. In the sea in-between
the islands, music that is less strongly represented can be found, with smooth
transitions in terms of genre or style from one cluster (island) to another.
These music maps are generated by the PlaySOM application and then ex-
ported to the PocketSOM on the mobile device.

PocketSOM’s functionality focuses on the interaction of the user with the
music map to directly retrieve music and create playlists. Using the touch-
screen the user can draw a path on the map, which will result in a playlist.
By drawing a path from one island (cluster) to another, smooth transitions
from one musical style (or genre) to another can be generated. The resulting
playlist is presented to the user who can refine it by re-sorting or deleting ti-
tles, and then play it back in different ways: The music can be instantly played
on the device with an audio player (if the music is stored on the device) or
streamed via an Internet connection from a remote server. Alternatively, the
playlist can be also exported, and opened later with a player either locally
or on another device. As another possibility, PocketSOM can be used also as
a remote control by sending the playlist to a player on another device, e.g.,
having a PC with the entire music collection playing it back.

As a conclusion, PocketSOM offers an intuitive and convenient alternative
to traditional music selection by browsing and constitutes a new model of how
to access a music collection on portable audio players.

15.8 Conclusions and Future Directions

Future multimedia applications and systems will evolve towards more ubiqui-
tous, user and situation (i.e., context) aware, adaptive, proactive, and intel-
ligent solutions. The trend is towards embedded wearable mobile computers
with new displays for mobile and ubiquitous multimedia. Solutions for the
perception, sensing, and modeling of the environment will be increasingly im-
portant.

As another main trend, user created content has begun to play an in-
creasingly important role in mobile multimedia. Application platforms such
as Microsoft’s Photosynth will offer means for massively multi-user content
creation, by augmenting of virtual worlds with photos of the real one, and
fusing these into new representations such as panorama views and 3D recon-
structions. Such alternative representations will in turn promote both new
multimedia content and applications for augmented reality and related ubiq-
uitous solutions.

New client-server solutions are needed taking also security and rights man-
agement issues into consideration. Reaching “beyond the SMS era” in mobile
applications still requires work on new service platforms and terminal appli-
cations, especially to demonstrate and evaluate new mobile multimedia com-
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munity service concepts. Software components and prototypes for enriching,
managing and provisioning of mobile content must be demonstrated and pro-
moted for these communities. User experiences and evolving usage cultures
must also be analyzed, as well as suitable business models for community-
based services.

Overall usability is a particularly important issue in mobile multimedia
applications. This is mostly due to the restricted size of a mobile device,
especially the small display and keypad. In addition, natural and intuitive
gestures vary in people with different backgrounds. A lot of work is still needed
to overcome these difficulties. This work includes research in human-computer
interaction (HCI) technologies, user-centered studies for mobile devices, as
well as user evaluations and field trials of new applications and services.
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219. S. Huet, G. Gravier, and P. Sébillot, “Morphosyntactic processing of N-best
lists for improved recognition and confidence measure computation,” in Proc.
Int’l Conf. on Speech Communication and Technology, 2007.

220. Q. Huo and C. Lee, “A bayesian predictive approach to robust speech recog-
nition,” IEEE Trans. Speech Audio Process., pp. 200–204, 2000.

221. I. K. Ibrahim, Handbook of Research on Mobile Multimedia. Hershey, PA,
USA: IGI Publishing, 2006.

222. F. Idris and S. Panchanathan, “Review of image and video indexing tech-
niques,” Journal of Visual Communication and Image Representation, vol. 8,
no. 2, pp. 146–166, 1997.

223. C. Inferense Group, Cavendish Laboratory, “Dasher developments,”
http://www.inference.phy.cam.ac.uk/dasher/development/.

224. Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Query databases
through multiple examples,” in Proc. Int’l Conf. on Very Large Data Bases,
New York. USA, 1998, pp. 218–227.

225. U. Iurgel, R. Meermeier, S. Eickeler, and G. Rigoll, “New approaches to audio-
visual segmentation of TV news for automatic topic retrieval,” in Proc. IEEE
Int’l Conf. Acous., Speech, and Signal Processing, 2001, pp. 1397–1400.

226. H. Iwata, “Haptic interfaces,” in The human-computer interaction handbook:
Fundamentals, evolving technologies and emerging applications, J. Jacko and
A. Sears, Eds. Mahwah, NJ, USA: Lawrence Erlbaum, 2003, pp. 206–219.

227. R. Iyer and M. Ostendorf, “Modeling long distance dependence in language:
Topic mixtures versus dynamic cache models,” IEEE Trans. Speech Audio
Process., vol. 7, no. 1, pp. 30–39, 1999.

228. J.-Hu and A. Bagga, “Identifying story and preview images in news web pages,”
in Proc. 7th Int’l Conf. on Document Analysis and Recognition (ICDAR’2003),
Edinburgh, Scotland, Aug. 2003, pp. 640–644.

229. F. Jabloun and A. E. Cetin, “The teager energy based feature parameters
for robust speech recognition in car noise,” in Proc. IEEE Int’l Conf. Acous.,
Speech, and Signal Processing. Washington, DC, USA: IEEE Computer So-
ciety, 1999, pp. 273–276.

230. R. J. K. Jacob, “The use of eye movements in human-computer interaction
techniques: what you look at is what you get,” ACM Transactions on Infor-
mation Systems, vol. 9, no. 2, pp. 152–169, 1991.

231. R. Jacob, “Eye movement-based human-computer interaction techniques: To-
ward non-command interfaces,” Advances in Human-Computer Interaction,
vol. 4, pp. 150–190, 1993.



344 References

232. A. Jaimes, J. B. Pelz, T. Grabowski, J. Babcock, and S. F. Chang, “Using
human observers’ eye movements in automatic image classifiers,” in Proceedings
of SPIE Human Vision and Electronic Imaging VI, San Jose, CA, 2001.

233. A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal
biometric systems,” Pattern Recognition, vol. 38, no. 12, pp. 2270–2285, De-
cember 2005.

234. A. K. Jain and A. Ross, “Multibiometric systems,” Communications of the
ACM, vol. 47, no. 1, pp. 34–40, January 2004.

235. A. Jameson, “Adaptive interfaces and agents,” in The human-computer inter-
action handbook: Fundamentals, evolving technologies and emerging applica-
tions, J. Jacko and A. Sears, Eds. Mahwah, NJ, USA: Lawrence Erlbaum,
2003, pp. 305–330.

236. F. Jensen, S. Lauritzen, and K. Olsen, “Bayesian updating in recursive graphi-
cal models by local computations,” Computational Statistics Quarterly, vol. 4,
pp. 269–282, 1990.

237. M. Johnston, “Unification-based multimodal parsing,” in Proc. of the 36th an-
nual meeting on Association for Computational Linguistics, Montreal, Canada,
1998, pp. 624–630.

238. M. Johnston and S. Bangalore, “Finite-state multimodal integration and un-
derstanding,” Natural Language Engineering, vol. 11, no. 2, pp. 159–187, 2005.

239. M. Johnston, P. R. Cohen, D. McGee, S. L. Oviatt, J. A. Pittman, and I. Smith,
“Unification-based multimodal integration,” in Proc. of the 8th conference of
European chapter of the Association for Computational Linguistics, Madrid,
Spain, 1997, pp. 281–288.

240. M. J. Jones and J. M. Rehg, “Statistical color models with application to skin
detection.” Int’l J. of Comp. Vis., vol. 46, no. 1, pp. 81–96, 2002.

241. E. Jonietz, “Augmented reality: Special issue 10 emerging technologies 2007,
MIT technology review,” 2007.

242. S. X. Ju, M. J. Black, S. Minneman, and D. Kimber, “Summarization of video-
taped presentations: automatic analysis of motion and gesture,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 5, pp. 686–696, 1998.

243. O. O. K. and S. F. W. M., “Perceptual image retrieval using eye movements,”
in Proceedings of International Workshop on Intelligent Computing in Pattern
Analysis/Synthesis, 2007, xi’an, China, 26-27 August.

244. J. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,” in
Proc. IEEE Int’l Conf. Acous., Speech, and Signal Processing, Albuquerque
N.M., Apr 1990, pp. 381–384.

245. ——, “Construction and evaluation of a robust multifeature speech/music dis-
criminator,” in Proc. IEEE Int’l Conf. Acous., Speech, and Signal Processing,
1997, pp. 1331–1334.

246. E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science. Stamford,
Connecticut: McGraw-Hill, 4 edition, 2000.

247. A. Katsamanis, G. Papandreou, and P. Maragos, “Audiovisual-to-articulatory
speech inversion using active appearance models for the face and hidden
markov models for the dynamics,” in Proc. IEEE Int’l Conf. Acous., Speech,
and Signal Processing, 2008.

248. A. Katsamanis, G. Papandreou, V. Pitsikalis, and P. Maragos, “Multimodal
fusion by adaptive compensation for feature uncertainty with application to au-
diovisual speech recognition,” in Proc. European Signal Processing Conference,
2006.



References 345

249. M. Kay, “Functional grammar,” in Proc. of the 5th Annual Meeting of the
Berkeley Linguistics Society, 1979, pp. 142–158.

250. C. Kayser, C. Petkov, M. Lippert, and N. Logothetis, “Mechanisms for allo-
cating auditory attention: an auditory saliency map,” Current Biology, vol. 15,
no. 21, pp. 1943–1947, 2005.

251. R. Keiller, “Using VoiceXMl 2.0 in the VxOne unified messaging application,”
in Practical Spoken Dialog Systems, D. A. Dahl, Ed. Kluwer Academic Pub-
lishers, 2004, pp. 143–163.

252. H. Keränen, L. Pohjanheimo, and H. Ailisto, “Tag manager: a mobile phone
platform for physical selection services,” in IEEE International Conference on
Pervasive Services 2005 (ICPS’05), 2005, pp. 405 – 412.

253. A. Kerne, “Collage machine: an interactive agent of web recombination,”
Leonardo, vol. 33, no. 5, pp. 347–350, 2000.

254. M. Kherfi, D. Ziou, and A. Bernardi, “Image retrieval from the world wide web:
Issues, techniques, and systems,” ACM Computing Surveys, vol. 36, no. 1, pp.
35–67, March 2004.

255. E. Kidron, Y. Y. Schechner, and M. Elad, “Cross-modal localization via spar-
sity,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1390–1404, Apr. 2007.

256. E. Kijak, G. Gravier, P. Gros, L. Oisel, and F. Bimbot, “Hmm based struc-
turing of tennis videos using visual and audio cues,” in Proc. of IEEE Int’l
Conference on Multimedia and Expo, vol. 3, July 2003, pp. 309–312.

257. E. Kijak, G. Gravier, L. Oisel, and P. Gros, “Audiovisual integration for sport
broadcast structuring,” Multimedia Tools and Applications, vol. 30, pp. 289–
312, 2006.

258. A. Kilgarriff and M. Palmer, “Special Issue on Senseval,” Computers and the
Humanities, vol. 34, no. 1/2, Apr. 2000.

259. C. W. Kim, R. Ansari, and A. E. Cetin, “A class of linear-phase regular
biorthogonal wavelets,” in Proc. IEEE Int’l Conf. Acous., Speech, and Signal
Processing, 1992, pp. 673–676.

260. J. Kim and J. Peal, “A computational model for causal and diagnostic reason-
ing in inference systems,” in Proc. Int’l Joint Conf. on Artificial Intel., 1983,
pp. 190–193.

261. M. Kipp, “ANVIL - A generic annotation tool for multimodal dialogue,” in
Proc. European Conf. on Speech Communication and Technology, 2001, pp.
1367–1370.

262. J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998.

263. D. Klakow, “Selecting articles from the language model training corpus,” in
Proc. IEEE Int’l Conf. Acous., Speech, and Signal Processing, 2000.

264. J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal
of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

265. P. Knees, M. Schedl, T. Pohle, and G. Widmer, “An innovative three-
dimensional user interface for exploring music collections enriched with meta-
information from the web,” in Proc. ACM Int’l Conference on Multimedia,
Santa Barbara, California, USA, October 23-26 2006, pp. 17–24.

266. P. Knees, M. Schedl, and G. Widmer, “Multiple lyrics alignment: Automatic
retrieval of song lyrics,” in Proc. Int’l Conf. on Music Information Retrieval,
London, UK, September 11-15 2005, pp. 564–569.



346 References

267. D. C. Knill, D. Kersten, and A. L. Yuille, Perception as Bayesian Inference.
Cambridge Univ. Press, 1996, ch. Introduction: A Bayesian Formulation of
Visual Perception, pp. 1–21.

268. C. Koch and S. Ullman, “Shifts in selective visual attention: towards the un-
derlying neural circuitry,” Human Neurobiology, vol. 4, no. 4, pp. 219–227, Jun
1985.

269. K. Koffka, Principles of Gestalt Psychology. Routledge, 1935, 1999.
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measurement noise compensation 111
mixed-initiative 284
mobile augmented reality see

augmented reality
mobile interfaces 74
modality efficiency 291
modality synergy 280, 293

modality-selection 288
model based parsing 128, 134
Model-View-Controller see MVC
moment invariants 263
monomodal 3
morpho-syntactic knowledge 206
morpho-syntactic rescoring 208
morphology 205
most ambiguous and orthogonal

examples 232
most ambiguous examples 232
motion estimation 315, 317
Motion Field 131
motion trajectories 131
MPEG 131
MPEG-7 23
MPEG-7 Standard 157
mulitstream models 92
multi-agent architectures 81
multi-touch 56
multi-touch screen 313, 316
multicue 5
multimedia 3
multimedia fission 62
multimedia maps 79
multimedia retrieval 70
multimedia skimming 79
multimedia summarization 79
multimedia systems

adaptive 70
multimodal 3, 5

architectures 81
frameworks 82
integration pattern 67
mutual disambiguation 67
synergistic error correction 67

multimodal dialogue systems 279
multimodal fusion 62, 63, 92
multimodal interfaces 62, 279
multimodal processing 179
multimodal synergy 62
multistream HMM 92
music information retrieval 243

content-based 243
cultural data 243
song lyrics 242, 243

lyrics fetching 246
music map 325
music maps 326
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MVC 52, 72
paradigm 53, 54, 66, 80

MVC paradigm 281

n-class model 202
n-gram model 202
Natural Language Generation (NLG)

57
natural language processing 201
Natural Language Understanding

(NLU) 57
NFC 319

object actions 131
object classification 148
ontology 224
open-mike 288

PageRank 260
parsing 135
pca 130
perception 3, 7
periodicity 132
philosophy 8
PhoneMouse 322
physical browsing 319
PicASHOW 261
PlaySOM 325
PocketSOM 325
pornographic 127, 132
pragmatics 205
Principal Component Analysis 130

queries by example 260
queries by example image 260
query expansion 269
query focused graph 266
query point movement 269
query uncertainty 260

RBF kernel 231
relevance feedback 71, 73, 229, 260,

268
retrieval by image annotations 260
retrieval by image content 260
retrieval module 273
RFID 319
rotation 138

Scenes 158

score-oriented Viterbi search 104
segment models 91, 98
segmentation 145
Self-Organizing Map 243

adaptation function 244
BMU selection 244
multimodal 249
quantitative evaluation 249
visualization 244

semantic
annotation 78
fusion 63, 64
gap 78
multimedia understanding 78
parsing

robust 57
unification 65
web 82

semantic gap 222, 242
semantic persistence 286
semantic projection 228
semantic similarity 224, 261
Semantic Similarity Retrieval Model

264
semantics 205
sensation 7
Shot accuracy 161
Shots 158
shout detection 150
silhouette 148
similarity adaptation 269
similarity measure 225
skin 131, 137
smart mobile terminal 313
snooker 129, 130, 135, 141
SOM based user interfaces see map

based user interfaces
speech dictation 59
speech interfaces 58
speech recognition 56, 57
speech synthesis 57
Spoken Dialogue Systems (SDS) 57,

59
sport action tracking 130
sport analysis 128
sport media analysis 127
SSRM 264
state machine 135
stereo display 314
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Stereogames 323
storage module 273
Story unit 159
stream weights 112, 115
strong fusion 22
SVM scale invariance 231
SymBall 322
symmetric multimodality 287
synergistic error correction 288
syntactics 205

tactile 316
tagging, ASR transcripts 207
tagging, part-of-speech 206
talking heads 68
tennis 129, 141
TEOCEP 150
term re-weighting 269
text features 246

tf × idf model 246
bag-of-words models 246
term weighing 246

text segmentation 213, 214
text-to-speech synthesis (TTS) 58
topic adaptation 212
topic segmentation 107
touchscreen 326
trademark 261
trajectory 135
turn-taking 285

unification integration 64
usability 51, 52
usability principles 52

consistency 53
familiarity 53

predictability 53
transparency 53

user model 69
adaptation 69
application 69

user-initiative 284

Vector Space Model 264
video annotation 179
video processing 179
Video shot string 165
video structuring 91
video summarization 179
view classification 129
virtual reality 61
visemes 68
visual dominance effect 51
visual marker 321
visual tag 319
Viterbi 130, 137–139
voice browser 84
VoiceXML 83

wavelet 148
weak fusion 20
Weighted PicASHOW 267
WIMP interface 55
word error minimization 209
WordNet 264
Wordnet 224
World Wide Web 259
WPicASHOW 267
WWW 259
WYSIWYG 55

Zooming User Interfaces (ZUI) 56
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