
Chapter 6

Basic Data and
Computations

This chapter surveys a variety of topics dealing with different
kinds of data and the computations provided for them. The
topics are “basic” in two senses: they are among those most often
covered in introductions to R or S-Plus; and most of them go back
to fairly early stages in the long evolution of the S language.

On the data side, we begin with the various ways of organiz-
ing data that have evolved in R. Then object types (Section 6.2,
page 141), which characterize data internally; vectors and vec-
tor structures (6.3, 143); and data frames (6.5, 166). Matrices
and their computations are discussed together in Section 6.8,
page 200. Other computational topics are: arithmetic and other
operators (6.6, 184); general numeric computations (6.7, 191);
statistical models (6.9, 218); random generators and simulation
(6.10, 221); and the special techniques known as “vectorizing”
(6.4, 157).

Many of the topics deserve a whole chapter to themselves, if
not a separate book, given their importance to data analysis.
The present chapter focuses on some concepts and techniques
of importance for integrating the data and computations into
programming with R, particularly viewed from our principles of
effective exploration and trustworthy software. Further back-
ground on the topics is found in many of the introductions to R,
as well as in the online R documentation and in some more spe-
cific references provided in the individual sections of the chapter.
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6.1 The Evolution of Data in the S Language

Since its beginnings in 1976, the S language has gone through an evolution of
concepts and techniques for representing data and organizing computations
on data structures. Four main epochs can be identified, all of which are still
with us, and all of which need to be understood to some extent to make use
of existing software, and sometimes for new programming as well. Labeled
by the names used for the corresponding mechanisms in R, the main epochs
are:

1. Object types, a set of internal types defined in the C implementation,
and originally called modes in S;

2. Vector structures, defined by the concept of vectors (indexable objects)
with added structure defined by attributes;

3. S3 classes, that is, objects with class attributes and corresponding
one-argument method dispatch, but without class definitions;

4. Formal classes with class definitions, and corresponding generic func-
tions and general methods, usually called S4 classes and methods in
R.

This section summarizes the relevance of each approach, with pointers to
further details in this chapter and elsewhere. The main recommendation is
to use formal classes and methods when developing new ideas in data struc-
ture, while using the other approaches for specialized areas of computing.

Object types: All implementations of the S language have started from
an enumeration of object types or modes, implied by the very first design
documents (such as the figure on page 476). In R, this takes the form of a
field in the internal C structure, and the corresponding function typeof().
You need to deal with object types for some C extensions and when defining
classes that extend a specific type. Section 6.2 gives details.

Vectors and vector structures: The concept of objects as dynamically in-
dexable by integer, logical and perhaps character expressions also goes back
to the early days. The S3 version of the language around 1988 added the
notion of vector structures defined by named attributes, seen as complemen-
tary to the vector indexing. Section 6.3, page 143, discusses these concepts,
which remain important for computing effectively with the language. The
term vectorizing has evolved for computations with vectors that avoid in-
dexing, by expressing computations in “whole object” terms. In favorable
applications, efficiency and/or clarity benefits; see Section 6.4, page 157.
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S3 classes: As part of the software for statistical models, developed
around 1990 and after, a class attribute was used to dispatch single-argument
methods. The attribute contained one or more character strings, providing
a form of inheritance. Otherwise, the change to data organization was min-
imal; in particular, the content of objects with a particular class attribute
was not formally defined. S3 classes are needed today to deal with soft-
ware written for them (for example, the statistical model software (Section
6.9, page 218) and also for incorporating such data into modern classes and
methods (see Section 9.6, page 362 for programming with S3 classes).

Formal (S4) classes: The S3 classes and methods gave a useful return
on a small investment in changes to the language, but were limited in flex-
ibility (single-argument dispatch) and especially in supporting trustworthy
software. Classes with explicit definitions and methods formally incorpo-
rated into generic functions have been developed since the late 1990s to
provide better support. That is the programming style recommended here
for new software—chapters 9 and 10, for classes and methods respectively.

6.2 Object Types

For most purposes, class(x) is the way to determine what kind of thing
object x really is. Classes are intended to be the official, public view, with
as clear and consistent a conceptual base as possible. Deep down, though,
objects in R are implemented via data structures in C. By definition, the
object type corresponds to the set of possible types encoded in those struc-
tures. For a complete list of the internal types at the C level, see the R
Internals manual in the R documentation or at the CRAN Web site. The
function typeof() returns a character string corresponding to the internal
object type of an object.

Table 6.1 lists the object types commonly encountered in R programming.
The first column gives the class name for simple objects of the object type
named in the second column. The expressions in the third column will
evaluate to an object of the corresponding object type.

The classes in the rows down to the first line in the table are the basic
vector classes; these correspond to a object type of the same name, except
for type "double", indicating the specific C declaration for numeric data. For
more discussion of these, see section 6.3. The classes in the second group
of rows are the basic classes for dealing with the language itself. The first
three object types correspond to function objects in R: "closure" for ordi-
nary functions, "builtin" and "special" for primitive functions. (For details
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Class(es) Object Type(s) Examples
"logical" "logical" TRUE; FALSE

"numeric" "double" 1; 0.5; 1e3

"integer" "integer" as.integer(1)

"character" "character" "Carpe \n Diem"

"list" "list" list(a=1,b=plot)

"complex" "complex" 1 + .5i

"raw" "raw" as.raw(c(1,4,15))

"expression" "expression" expression(a,1)

"function" "closure" function(x)x+1

"builtin" `sin`

"special" `if`

"call" "language" quote(x+1)

"{", etc. quote({})
(many) "S4" new("track")

"name" "symbol" quote(x)

"environment" "environment" .GlobalEnv

Table 6.1: Object Types in R. The types in the first group are vectors, the
types in the first and second behave as non-reference objects. See the text
for details, and for types generated from C.

on primitive functions, see Section 13.4, page 463.) Primitive functions are
an R implementation extension, not part of the S language definition; for this
reason, objects of all three object types have class "function". Conversely,
one object type, "language", corresponds to essentially all the unevaluated
expressions other than constants or names. Function calls, braced subex-
pressions, assignments, and other control structures have specific classes as
objects, but all are in fact implemented by one object type. In effect, R

organizes all "language" objects as if they were function calls. The last row
in the second group, "S4", is used for objects generated from general S4
classes.

All the classes down to the second line in the table behave normally
as arguments in calls, and can be used in class definitions. Classes can be
defined to extend these classes, an important ability in programming with
R. We might want a new class of data with all the properties of character
vectors, but with some additional features as well. Similarly, programming
techniques using the language might need to define objects that can behave
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as functions but again have extra features. Examples of such classes are
shown in Chapter 9, on pages 370 and 356. Objects from such classes retain
the corresponding basic type, so that legacy code for that type works as it
should. If x has a class extending "character" or "function", then the value
of typeof(x) will be "character" or "function" correspondingly. Objects
from classes that do not extend one of the basic object types have type
"S4".

In contrast to the types in the first two groups of the table, the object
types in the third group are essentially references. Passing .GlobalEnv as an
argument to a function does not create a local version of the environment.
For this reason, you should not attach attributes to such objects or use them
in the contains= part of a class definition, although they can be the classes
for slots.

Besides the object types in the table, there are a number of others that
are unlikely to arise except in very specialized programming, and in the
internal C code for R. These include "pairlist", "promise", "externalptr",
and "weakref". Except for the first of these, all are reference types. For a
complete table of types, see Chapter 2 of the R Language Definition manual.

6.3 Vectors and Vector Structures

The earliest classes of objects in the S language, and the most thoroughly
“built-in” are vectors of various object types. Essentially, a vector object is
defined by the ability to index its elements by position, to either extract or
replace a subset of the data. If x is a vector, then

x[i]

is a vector with the same type of data, whenever i defines a set of indices
(in the simplest case, positive integer values). If y is also a vector (in the
simplest case, with the same type of data as x), then after evaluating

x[i] <- y

the object x will be a vector of the same type of data. The range of possibil-
ities for i and y is much more general than the simple cases, but the simple
cases define the essence of the vector class, and the general cases can be
understood in terms of the simplest case, as discussed on page 146.

An early concept for organizing data in the S language was the vector
structure, which attached attributes to vectors in order to imply structure,
such as that of a multi-way array. Vector structures were a step on the way
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to classes of objects, and usually can be subsumed into class definitions.
However, there are some objects and computations in R that still work di-
rectly on attributes, so an understanding of vector structures is included,
starting on page 154.

Basic classes of vectors

Table 6.2 shows the basic classes of vectors built into R. Identically named
functions (numeric(), logical(), etc.) generate vectors from the correspond-
ing classes.

Class Data Contained
"logical" Logicals: (TRUE, FALSE).
"numeric" Numeric values.
"character" Character strings.
"list" Other R objects.
"complex" Complex numbers.
"raw" Uninterpreted bytes.
"integer" Integer numeric values.
"single" For C or Fortran only
"expression" Unevaluated expressions.

Table 6.2: The vector classes in R.

The basic vector classes are the essential bottom layer of data: indexable
collections of values. Single individual values do not have a special character
in R. There are no scalar objects, either in the sense of separate classes or
as an elementary, “sub-class” layer, in contrast to other languages such as
C or Java. Computations in the language occasionally may make sense only
for single values; for example, an if() test can only use one logical value.
But these are requirements for the result of a particular computation, not
a definition of a different kind of data (for computations that need a single
value, see page 152).

For the basic vectors, except for "list" and "expression", the individual
elements can only be described in terms of the implementation, in C. In terms
of that language, the data in each vector class corresponds to an array of
some C type. Only when writing code in C to be used with R are you likely
to need the explicit type, and even then the best approach is to hide the
details in C macros (see Section 11.3, page 420).

Numeric data occasionally involves considering two other classes, "integer"
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and "single." The type for data of class "numeric", as returned by typeof(),
is "double", indicating that the internal data is double-precision floating
point. There is also a separate class and type for "integer" data. You
can force data into integer (via function as.integer()) and a few functions
do return integer results (function seq() and operator `:`), but because R

does not do separate integer computations very often, trying to force integer
representation explicitly can be tricky and is usually not needed.

Users sometimes try to force integer representation in order to get “ex-
act” numerical results. In fact, the trick required is not integer representa-
tion, but integral (i.e., whole number) values. These are exactly represented
by type "double", as long as the number is not too large, so arithmetic will
give exact results. Page 192 shows an example to generate “exact” values
for a numeric sequence.

The "single" class is still more specialized. Essentially, it exists to notify
the interface to C or Fortran to convert the data to single precision when
passing the vector as an argument to a routine in those languages. R does
not deal with single-precision numeric data itself, so the class has no other
useful purpose.

The S language includes a built-in vector type representing points in the
complex plane, class "complex".1 See ?complex for generating complex vec-
tors and for manipulating their various representations. The class has its
own methods for arithmetic, trigonometric, and other numerical computa-
tions, notably Fourier transforms (see ?fft). Most functions for numerical
computations do accept complex vectors, but check the documentation be-
fore assuming they are allowed. Complex data is also suitable for passing to
subroutines in Fortran or C. Fortran has a corresponding built-in type, which
can be used via the .Fortran() interface function. There is a special C struc-
ture in R for calls to .C(), which also matches the complex type built into
modern C compilers on “most” platforms. Section 11.2, page 415 discusses
the interfaces to C and Fortran; for the latest details, see section 5.2 of the
Writing R Extensions manual.

Vectors of type "raw" contain, as the name suggests, raw bytes not as-
sumed to represent any specific numeric or other structure. Although such
data can be manipulated using x[i]-style expressions, its essential advantage
is what will not be done to it. Aside from explicitly defined computations,
raw vectors will not likely be changed, and so can represent information

1Statistics research at Bell Labs in the 1970s and before included important work in
spectral analysis and related areas, relying on computations with complex data. Complex
vectors became a built-in object type with S3.
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outside standard R types, exactly and without accidental changes. Neither
of these properties applies, for example, if you try to use numeric data to
represent exact values. Even if the initial data is exactly as expected, nu-
meric computations can easily introduce imprecision. On the other hand,
you can generally count on "raw" data remaining exactly as created, unless
explicitly manipulated. For this reason, objects of class "raw" may be used
to pass data from arbitrary C structures through R, for example.

Vectors of type "expression" contain unevaluated expressions in the lan-
guage. The main advantages of such an object over having a "list" object
with the same contents are the explicit indication that all elements should be
treated as language expressions and the generating function, expression(),
which implicitly quotes all its arguments:

> transforms <- expression(sin(x), cos(x), tan(x))

You can mix such literal definitions with computed expressions by replacing
elements of the vector:

> transforms[[4]] <- substitute(f(x), list(f=as.name(fname)))

Indexing into vectors

The most important data manipulation with vectors is done by extracting or
replacing those elements specified by an index expression, using the function
in R represented by a pair of single square brackets:

x[i]
x[i] <- y

These are the fundamental extraction and replacement expressions for vec-
tors.

When i is a vector of positive values, these index the data in a vector,
from 1 for the first element to length(x) for the last. Indexing expressions
of type "logical" are also basic, with the obvious interpretation of selecting
those elements for which the index is TRUE. If you have used R or the S

language at all, you have likely used such expressions. It’s valuable, however,
to approach them from the general concept involved, and to relate various
possibilities for the objects x, i, and y in the example to the general concept.

In contrast to programming languages of the C/Java family, expressions
like x[i] are not special, but are evaluated by calling a reasonably normal R

function, with the name `[`. As with any functional computation in the S

language, the value is a new object, defined by the arguments, x and i. The
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expression does not “index into” the vector object in the sense of a reference
as used in other languages. Instead, evaluating x[i] creates a new object
containing the elements of x implied by the values in i. As an example, let’s
use the sequence function, seq(), to generate a vector, and index it with
some positive values.

> x <- seq(from=1.1, to=1.7, by=.1)
> x
[1] 1.1 1.2 1.3 1.4 1.5 1.6 1.7
> length(x)
[1] 7
> x[c(1,3,1,5,1,7)]
[1] 1.1 1.3 1.1 1.5 1.1 1.7

Repeated values in the positive index are entirely within the standard def-
inition, returning the values selected in the order of the index. Positive
index values are silently truncated to integers: x[1.9], x[1.01], and x[1] all
return the same subset.

When the index is a logical vector, it arises most naturally as the value
of a test applied to x itself and/or to another vector indexed like x.

> x[x>1.45]
[1] 1.5 1.6 1.7

Logical indexes are applied to the whole vector; in particular, if i has length
less than that of x, it is interpreted as if it were replicated enough times to
be the same length as x. The logical index c(TRUE, FALSE) extracts the
odd-numbered elements of any vector:

> x[c(TRUE, FALSE)]
[1] 1.1 1.3 1.5 1.7

Note the second special rule below, however, for the case that i is longer
than x.

The behavior of the replacement expression, x[i] <- y, is to create and
assign a new version of x in the current evaluation environment. In the
new version, the values in x indexed by i have been replaced by the corre-
sponding elements of y. Replacement expressions are evaluated by calling
the corresponding replacement function, as discussed in Section 5.2, page
117. In this case the replacement function is `[<-`, and the expression is
equivalent to:

x <- `[<-`(x, i, y)
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The behavior of replacement functions is still within a simple functional
model: A replacement function computes and returns a new object, which
is then assigned in the current environment, with the same name as before.
In this case the new object is a copy of the old, with the indexed values
replaced.

Unlike extraction, replacement can change the type of x. There is an
implied ordering of basic vector types from less information to more. Log-
icals have only two values, numerics many, strings can represent numbers,
and lists can hold anything. If the type of y is more general than that of x,
the replacement will convert x to the type of y. For example:

> x[2] <- "XXX"
> x
[1] "1.1" "XXX" "1.3" "1.4" "1.5" "1.6" "1.7"

The numeric vector is converted to a character vector, on the reasoning
that this would preserve all the information in x and in y. More details on
conversions between basic types are given on page 149.

For simple positive or logical indexing expressions, the interpretation
follows naturally from the concept of a vector. There are in addition a num-
ber of extensions to the indexing argument in the actual implementation.
These can be convenient and you need to be aware of the rules. For your
own computing, however, I would discourage taking too much advantage of
them, at least in their more esoteric forms. They can easily lead to errors
or at least to obscure code. With that in mind, here are some extensions,
roughly ordered from the innocuous to the seriously confusing.

1. The index can be a vector of negative values. In this case, the inter-
pretation is that the value should be all the elements of x except the
elements corresponding to -i.

> x[-c(1,7)]
[1] 1.2 1.3 1.4 1.5 1.6

With this interpretation, the order of the negative values is ignored,
and so are repeated values. You cannot mix positive and negative
values in a single index.

2. An index for extraction or replacement can be longer than the current
length of the vector. The interpretation is that the length of x is set
to the largest index (implicitly) and the expression is applied to the
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“stretched” version. Replacements can change the length of a vector
by assigning beyond its current length.

Increasing the length of a vector is interpreted as concatenating the
appropriate number of NA items, with NA being interpreted as an un-
defined value suitable for the type of the vector.

> length(x)
[1] 7
> x[c(1,9)]
[1] 1.1 NA
> x[c(1,9)] <- -1
> x
[1] -1.0 1.2 1.3 1.4 1.5 1.6 1.7 NA -1.0

Logical, numeric, character and complex object types have a built-in
NA form; lists and expressions use NULL for undefined elements; type
"raw" uses a zero byte.

3. Integer index arguments can contain 0 values mixed in with either all
positive or all negative indices. These are ignored, as if all the 0 values
were removed from the index.

4. When the index contains an undefined value, NA, the interpretation for
extraction is to insert a suitable NA or undefined value in the corre-
sponding element of the result, with the interpretation of undefined as
above for the various types. In replacements, however, NA elements in
the index are ignored.

R also has single-element extraction and replacement expressions of the
form x[[i]]. The index must be a single positive value. A logical or negative
index will generate an error in R, even if it is equivalent to a single element
of the vector.

Conversion of vector types

The basic vector types have some partial orderings from more to less “sim-
ple”, in the sense that one type can represent a simpler type without losing
information. One ordering, including the various numeric types, can be
written:

"logical", "integer", "numeric", "complex", "character", "list"
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If a simpler vector type (to the left in the ordering) is supplied where a
less simple vector type is wanted, an automatic conversion will take place
for numeric and comparison operators (see Section 6.6, page 186). The
conversion rules are implemented in the internal code and are not part of
the inheritance relations used when methods are dispatched. Defining a
method corresponding to an argument of class "numeric", for example, does
not result in that method being used when the argument is of class "logical"
or "integer", even though those classes are “simpler” in terms of the listing
above. That implementation decision could be argued, but it’s perhaps best
just to realize that the two parts of the language—basic code for operators
and formal class relations—were written at very different times. In the early
coding, there was a tendency to make as many cases “work” as possible. In
the later, more formal, stages the conclusion was that converting richer
types to simpler automatically in all situations would lead to confusing, and
therefore untrustworthy, results.

The rules of conversion are basically as follows.

• Logical values are converted to numbers by treating FALSE as 0 and
TRUE as 1.

• All simpler types are converted to "character" by converting each
element individually (as, for example, in a call to cat() or paste()).

• All simpler types are converted to "list" by making each element into
a vector of length 1.

• Numeric values are converted to "complex" by taking them to be the
real part of the complex number.

Class "raw" is not included in the ordering; generally, your best approach is
to assume it is not automatically converted to other types. Vectors of type
"raw" are not numeric, and attempts to use them in numeric expressions will
cause an error. They are allowed with comparison operators, however, with
other vectors of any of the basic types except "complex". The implementa-
tion of the comparisons with types "logical", "integer", and "numeric" uses
roughly the following logic. Interpret each of the elements (single bytes, re-
member) in the "raw" vector as a corresponding integer value on the range 0

to 255 (28−1), and then use that conversion in the comparison. This should
be equivalent to applying the comparison to as.numeric(x) where x is the
vector of type "raw". Watch out for comparisons with "character" vectors
however. The rule, natural in itself, is that the comparison should be done
as if with as.character(x). But as.character() converts "raw" vectors by
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replacing each element by the two hexadecimal characters that represent it,
basically because this is how "raw" vectors are printed. As a result, the com-
parison is not at all the same as if the"raw" vector had first been converted
to the numeric vector of its byte code. On the whole, avoid comparisons
of "raw" vectors with "character" vectors, because they are only sensible if
the character elements are each the print version of byte codes (and in this
case they probably should have been converted to "raw" anyway). And just
to make things worse, there is another conversion, rawToChar(), which inter-
prets the bytes as character codes, entirely different from as.character().
The situation is further complicated by the existence in modern R of multi-
ple character encodings to deal with international character sets. Read the
documentation carefully and proceed with caution.

Besides automatic conversions, explicit coercion can be performed be-
tween essentially any of the basic vector classes, using as(). For the general
behavior of as(), see Section 9.3, page 348; in the case of basic vector classes
the methods used are identical to the corresponding class-specific functions,
as.integer(), as.character(), etc. Some additional general rules for coer-
cion include:

• Numeric values are coerced to logical by treating all non-zero values
as TRUE.

• General numeric values are converted to integer by truncation towards
zero.

• Complex values are converted to numeric by taking their real part.

• Character data is coerced to simpler types roughly as if the individ-
ual values were being read, say by scan(), as the simpler type. On
elements for which scan would fail, the result is NA, and a warning is
issued (but not an error as scan() would produce).

• Lists are converted to simpler types only if each element of the list is
a vector of length one, in which case the coercion works one element
at a time. (If an element is itself a list of length 1, that produces an
NA, perhaps accidentally.)

• Conversion from "raw" to all numeric types generally treats each byte
as an integer value; conversion to "raw" generally converts numeric
values to integer, uses values that fit into one byte and sets all others
to 00 (which is generally used instead of NA with type "raw").



152 CHAPTER 6. BASIC DATA AND COMPUTATIONS

Conversion from "raw" to "character" produces the hexadecimal codes,
from "00" to "ff". Unfortunately, conversion from "character" to
"raw" first converts to integer, not likely to be what you want. The
inverse of the conversion to "character" is scan(x, raw()).

As will perhaps be clear, the wise approach is to look for ambiguous conver-
sions and either deal with them as makes sense for your own application or
else generate an error. The rules are pretty reasonable for most cases but
should not be taken as universally appropriate.

Single values when you need them

Vectors in the S language play a particularly important role in that there are
no scalar object types underlying them, and more fundamentally there is no
lower layer beneath the general model for objects in the language. Contrast
this with Java, for example. Java has a general model of classes, objects
and methods that forms the analogous programming level to programming
with R. The implementation of a Java method, however, can contain scalar
variables of certain basic types, which are not objects, as well as arrays,
which are objects (sort of) but not from a class definition. The situation in
R is simpler: everything is an object and anything that looks like a single
value of type numeric, logical or character is in fact a vector. The lower
layer is provided instead by the inter-system interface to C, as discussed in
Chapter 11.

However, some computations really do need single values. To ensure
that you get those reliably and that the values make sense for the context
may require some extra care.

By far the most common need for single values comes in tests, either
conditional computations or iterations.

if(min(sdev) > eps)
Wt <- 1/sdev

The condition in the if expression only makes sense if min(sdev) > eps eval-
uates to a single value, and that value must be unambiguously interpretable
as TRUE or FALSE. Similarly, the condition in a while loop must provide a
single TRUE or FALSE each time the loop is tested.

So, what’s the problem? Often no problem, particularly for early stages
of programming. If we know that eps was supplied as a single, positive
numeric value and that sdev is a non-empty vector of numbers (none of them
missing values and, most likely, none of them negative), then min(sdev) is a
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single numeric value and the comparison evaluates to a single TRUE or FALSE.
The test will either pass or not, but in any case will be computable.

Problems can arise when such a computation occurs inside a function
with the objects eps and sdev passed in or computed from arguments. Now
we are making assertions about the way in which the function is called.
As time goes by, and the function is used in a variety of contexts, these
assertions become more likely to fail. For the sake of the Prime Directive
and trustworthy software, tests of the arguments should be made that ensure
validity of the conditional expression. The tests are best if they are made
initially, with informative error messages.

As your functions venture forth to be used in unknown circumstances,
try to add some tests on entry that verify key requirements, assuming you
can do so easily. Don’t rely on conditional expressions failing gracefully
deep down in the computations. Failure of assumptions may not generate
an error, and if it does the error message may be difficult to relate to the
assumptions.

Consider two failures of assumptions in our example: first, that sdev was
of length zero; second, that it contained NAs. For trustworthy computation
we might reasonably want either to be reported as an error to the user.
As it happens, the second failure does generate an error, with a reasonable
message:

> if(min(sdev) > eps) Wt <- 1/sdev
Error in if (min(sdev) > eps) Wt <- 1/sdev :

missing value where TRUE/FALSE needed

With a zero length vector, however, min() returns infinity, the test succeeds
and Wt is set to a vector of length zero. (At least there is a warning.)

If the test is computationally simple, we can anticipate the obvious fail-
ures. For more elaborate computations, the test may misbehave in unknown
ways. Having verified all the obvious requirements, we may still feel nervous
about obscure failures. A strategy in such situations is to guarantee that
the computation completes and then examine the result for validity.

Evaluating the expression as an argument to the function try() guar-
antees completion. The try() function, as its name suggests, attempts to
evaluate an expression. If an error occurs during the evaluation, the func-
tion catches the error and returns an object of class "try-error". See ?try

for details and Section 3.7, page 74, for a related programming technique.
Here is an ultra-cautious approach for this example:

testSd <- try(min(sdev) > eps)
if(identical(testSd, TRUE))
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Wt <- 1/sdev
else if(!identical(testSd, FALSE))

if(is(testSd, "try-error"))
stop("Encountered error in testing sdev "̈,

testSd, ""̈)
else

stop("Testing sdev produced an invalid result: ",
summaryString(testSd))

The only legitimate results of the test are TRUE and FALSE. We check for
either of these, identically. If neither is the result, then either there was
an error, caught by try(), or some other value was computed (for example,
NA if there were any missing values in sdev). With try(), we can re-issue
an error message identifying it as a problem in the current expression. For
more complicated expressions than this one, the message from the actual
error may be obscure, so our extra information may be helpful.

In the case of an invalid result but no error, one would like to describe the
actual result. In the example, the function summaryString() might include
the class and length of the object and, if it is not too large, its actual
value, pasted into a string. Writing a suitable summaryString() is left as an
exercise. A reasonable choice depends on what you are willing to assume
about the possible failures; in the actual example, there are in fact not very
many possibilities.

Some situations require single values other than logicals for testing; for
example, computing the size of an object to be created. Similar guard
computations to those above are possible, with perhaps additional tests for
being close enough to a set of permitted values (positive or non-negative
integers, in the case of an object’s size, for example).

Overall, trustworthy computations to produce single values remain a
challenge, with the appropriate techniques dependent on the application.
Being aware of the issues is the important step.

Vector structures

The concept of the vector structure is one of the oldest in the S language,
and one of the most productive. It predates explicit notions of classes of ob-
jects, but is best described using those notions. In this section we describe
the general "structure" class, and the behavior you can expect when com-
puting with objects from one of the classes that extend "structure", such
as "matrix", "array", or "ts". You should keep the same expectations in
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mind when writing software for structure classes, either methods for existing
classes or the definition of new classes. We use the name of the correspond-
ing formal class, “structure”, to mean “vector structure” throughout this
section, as is common in discussions of R.

A class of objects can be considered a structure class if it has two prop-
erties:

1. Objects from the class contain a data part that can be any type of
basic vector.

2. In addition to the data part, the class defines some organizational
structure that describes the layout of the data, but is not itself depen-
dent on the individual values or the type of the data part.

For example, a matrix contains some data corresponding to a rectangular
two-way layout, defined by the number of rows and columns, and optionally
by names for those rows and columns. A time-series object, of class "ts",
contains some data corresponding to an equally-spaced sequence of “times”.

Matrices and time-series are regular layouts, where the structure infor-
mation does not grow with the total size of the object, but such regularity is
not part of the requirement. An irregular time series, with individual times
for the observations, would still satisfy the structure properties.

The importance of the "structure" class comes in large part from its im-
plications for methods. Methods for a number of very heavily used functions
can be defined for class "structure" and then inherited for specific structure
classes. In practice, most of these functions are primitives in R, and the base
code contains some of the structure concept, by interpreting certain vector
objects with attributes as a vector structure. The base code does not always
follow the structure model exactly, so the properties described in this section
can only be guaranteed for a formal class that contains "structure".

The two properties of vector structures imply consequences for a number
of important R functions. For functions that transform vectors element-by-
element, such as the Math() group of functions (trigonometric and logarith-
mic functions, abs(), etc.), the independence of data and structure implies
that the result should be a structure with the data transformed by the func-
tion, but with the other slots unchanged. Thus, if x is a matrix, log(x) and
floor(x) are also matrices.

Most of the functions of this form work on numeric data and return
numeric data, but this is not required. For example, format(x) encodes
vectors as strings, element-by-element, so that the data returned is of type
"character". If x is a vector structure, the properties imply that format(x)
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should be a structure with the same slots as x; for example, if x is a matrix,
then format(x) should be a character matrix of the same dimensions.

Binary operators for arithmetic, comparisons, and logical computations
are intrinsically more complicated. For vectors themselves, the rules need to
consider operands of different lengths or different types. Section 6.6, page
186, gives a summary of the R behavior. What if one or both of the operands
is a vector structure? If only one operand is a structure, and the result would
have the same length as the structure, the result is a structure with the same
slots. If both operands are structures, then in general there will be no ratio-
nal way to merge the two sets of properties. The current method for binary
operators (function Ops()) returns just the vector result. In principle, the
structure might be retained if the two arguments were identical other than
in their data part, but testing this generally is potentially more expensive
than the basic computation. Particular structure classes such as "matrix"

may have methods that check more simply (comparing the dimensions in
the "matrix" case).

The base package implementation has rules for matrices, arrays, and
time-series. If one argument is one of these objects and the other is a
vector with or without attributes, the result will have the matrix, array, or
time-series structure unless it would have length greater than that of the
structure, in which case the computation fails. The rule applies to both
arithmetic and comparisons. Operations mixing arrays and time-series or
arrays with different dimensions produce an error. See Section 6.8, page
200, for more discussion of computations with matrix arguments.

For vectors with arbitrary attributes, the current base code in R for op-
erators and for element-by-element functions is not consistent with treating
these as a vector structure. Numeric element-by-element functions usually
retain attributes; others, such as format() drop them. For arithmetic oper-
ators, if one argument has attributes, these are copied to the result. If both
arguments have attributes, then if one argument is longer than the other,
arithmetic operators use its attributes; if the arguments are of equal length,
the result combines all the attributes from either argument, with the left-
hand value winning for attributes appearing in both arguments. Comparison
operators drop all attributes, except for the names attribute.

The overall message is clear: For consistent vector structure behavior,
you should create an explicit class, with "structure" as a superclass.

To create a vector structure class formally, call setClass() with the
contains= argument specifying either class "structure" or some other S4
vector structure class. Class "structure" is a virtual class that extends
class "vector", which in turn extends all the basic vector object types in R.
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For example, here is a class "irregTS" for an irregular time-series structure,
with an explicit time slot.

setClass("irregTS", representation(time = "DateTime"),
contains = "structure")

Objects from this class will inherit the structure methods, providing much
of the desired behavior automatically. Methods then need to be added for
the particular behavior of the class (at the least, a show() method and some
methods for `[`.)

One can program methods for various functions with class "structure"

in the signature. The methods will be inherited by specific vector structure
classes such as "irregTS". In addition, methods are supplied in R itself
for the formal "structure" class that implement the vector structure view
described in this section. For a list of those currently defined:

showMethods(classes = "structure")

This will list the corresponding signatures; another showMethods() call for a
particular function with includeDefs = TRUE will show the definitions.

An important limitation arises because the informal vector structures
such as matrices, arrays, time-series, and S3 classes will not inherit formal
methods for class "structure", at least not with the current version of R.
Nor does it generally work to have such informal vector structures in the
contains= argument of a formal class definition, largely for the same reason.
So formal and informal treatment of vector structures don’t currently benefit
each other as much as one would like.

6.4 Vectorizing Computations

Over the history of R and of S, there has been much discussion of what
is variously called “avoiding loops”, “vectorizing computations”, or “whole-
object computations”, in order to improve the efficiency of computations.
The discussion must appear rather weird to outsiders, involving unintuitive
tricks and obscure techniques. The importance of vectorizing is sometimes
exaggerated, and the gains may depend subtly on the circumstances, but
there are examples where computations can be made dramatically faster.
Besides, re-thinking computations in these terms can be fun, and occasion-
ally revealing.

The original idea, and the name “vectorizing”, come from the contrast
between a single expression applied to one or more R vectors, compared to
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a loop that computes corresponding single values. Simple vector objects
in R consist of n elements, typically numbers. The value of n is often the
number of observed values in some data, or a similar parameter describ-
ing the size of our application. Very important practical problems involve
large applications; n may of necessity be large, and in any case we would
like our computations to be reasonably open to large-data applications. A
computation of interest that takes one or more such vectors and produces a
new vector nearly always takes computing time proportional to n, when n
is large. (At least proportional: for the moment let’s think of computations
that are linear in the size of the problem. The interest in vectorizing will
only be stronger if the time taken grows faster than linearly with n.)

Vectorizing remains interesting when the parameter n is not the size of
a vector, but some other parameter of the problem that is considered large,
such as the length of loops over one or more dimensions of a multiway array;
then n is the product of the dimensions in the loops. In other examples, the
loop is an iteration over some intrinsic aspect of the computation, so that
n is not a measure of the size of the data but may still be large enough to
worry about. In an example below, n is the number of bits of precision in
numeric data, not a variable number but still fairly large.

We’re considering linear computations, where elapsed time can be mod-
eled reasonably well, for large n, by a+bn, for some values of a and b, based
on the assertion that some multiple of n calls to R functions is required.
The goal of vectorizing is to find a form for the computation that reduces
the proportionality, b. The usual technique is to replace all or part of the
looping by a single expression, possibly operating on an expanded version
of the data, and consisting of one or more function calls. For the change to
be useful, these functions will have to handle the larger expanded version
of the data reasonably efficiently. (It won’t help to replace a loop by a call
to a function that does a similar loop internally.) The usual assumption is
that “efficiently” implies a call to functions implemented in C. Notice that
the C code will presumably do calculations proportional to n. This is not
quantum computing! The hope is that the time taken per data item in C

will be small compared to the overhead of n function calls in R.
The fundamental heuristic guideline is then:

Try to replace loops of a length proportional to n with a smaller
number of function calls producing the same result, usually calls
not requiring a loop in R of order n in length.

Functions likely to help include the following types.
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1. Functions that operate efficiently on whole objects to produce other
whole objects, usually of the same size and structure; examples include
the arithmetic and other binary operators, numerical transformation,
sorting and ordering computations, and some specialized filtering func-
tions, such as ifelse().

2. Operations that extract or replace subsets of objects, using expressions
of the form x[i], provided that the indexing is done on a significantly
sizable part of x.

3. Functions that efficiently transform whole objects by combining indi-
vidual elements in systematic ways, such as diff() and cumsum().

4. Functions to transform vectors into multi-way arrays, and vice versa,
such as outer() and certain matrix operations;

5. Functions defined for matrix and array computations, such as matrix
multiplication, transposition, and subsetting (these are used not just
in their standard roles, but as a way to vectorize other computations,
as the example below shows).

6. New functions to do specialized computations, implemented specially
in C or by using some other non-R tools.

A different approach uses functions that directly replace loops with se-
quences of computations. These are the apply() family of functions. They
don’t precisely reduce the number of function calls, but have some other
advantages in vectorizing. The apply() functions are discussed in Section
6.8, page 212.

The craft in designing vectorized computations comes in finding equiva-
lent expressions combining such functions. For instance, it’s fairly common
to find that a logical operation working on single values can be related to
one or more equivalent numerical computations that can apply to multiple
values in one call. Other clues may come from observing that a related,
vectorized computation contains all the information needed, and can then
be trimmed down to only the information needed. None of this is purely
mechanical; most applications require some reflection and insight, but this
can be part of the fun.

First, a simple example to fix the idea itself. Suppose we want to trim
elements of a vector that match some string, text, starting from the end
of the vector but not trimming the vector shorter than length nMin (the
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computation arises in summarizing available methods by signature). The
obvious way in most programming languages would be something such as:

n <- length(x)
while(n > nMin && x[[n]] == text)

n <- n-1
length(x) <- n

Quite aside from vectorizing, the use of `==` in tests is a bad idea; it can
return NA and break the computation. Instead, use an expression that will
always produce TRUE or FALSE.

Back to vectorizing. First, let’s think object rather than single number.
We’re either looking for the new object replacing x, or perhaps the condition
for the subset of x we want (the condition is often more flexible). The key in
this example is to realize that we’re asking for one of two logical conditions
to be true. Can we express these in vector form, and eliminate the loop? If
you’d like an exercise, stop reading here, go off and think about the example.

The idea is to compute a logical vector, call it ok, with TRUE in the first
n elements and FALSE in the remainder. The elements will be TRUE if either
they come in the first nMin positions or the element of x does not match
text. The two conditions together are:

seq(along = x) <= nMin # c(1,2,...,n) <= nMin;
| is.na(match(x, text))

The use of seq() here handles the extreme case of zero-length x; the func-
tion match() returns integer indices or NA if there is no match. See the
documentation for either of these if you’re not familiar with them.

The vectorized form of the computation is then:

ok <- seq(along = x) <= nMin | is.na(match(x, text))

Chances are that either ok or x[ok] does what we want, but if we still wanted
the single number n, we can use a common trick for counting all the TRUE

values:

n <- sum(ok)

The computations are now a combination of a few basic functions, with no
loops and so, we hope, reasonably efficient. Examining is.na(), match(),
and sum() shows that all of them go off to C code fairly quickly, so our hopes
are reasonable.

If that first example didn’t put you off, stay with us. A more extended
example will help suggest the process in a more typical situation.
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Example: Binary representation of numeric data

Our goal is to generate the internal representation for a vector of numeric
data. Numeric data in R is usually floating point, that is, numbers stored
internally as a combination of a binary fraction and an integer exponent
to approximate a number on the real line. As emphasized in discussing
numeric computations (Section 6.7, page 191), it’s occasionally important to
remember that such numbers are only an approximation and in particular
that most numbers displayed with (decimal) fractional parts will not be
represented exactly.

Suppose we wanted to look at the binary fractions corresponding to some
numbers. How would we program this computation in R?

To simplify the discussion, let’s assume the numbers have already been
scaled so .5 <= x < 1.0 (this is just the computation to remove the sign
and the exponent of the numbers; we’ll include it in the final form on page
165). Then all the numbers are represented by fractions of the form:

b12−1 + b22−2 + · · · + bm2−m

where m is the size of the fractional part of the numerical representation,
and bi are the bits (0 or 1) in the fraction. It’s the vector b of those bits we
want to compute. (Actually, we know the first bit is 1 so we only need the
rest, but let’s ignore that for simplicity.)

This is the sort of computation done by a fairly obvious iteration: replace
x by 2x; if x >= 1 the current bit is 1 (and we subtract 1 from x); otherwise
the current bit is zero. Repeat this operation m times. In a gloriously C-like
or Perl-like R computation:

b <- logical(m)
for(j in 1:m) {

x <- x * 2
b[[j]] <- (x >= 1)
if(b[[j]])

x <- x - 1
}

We will vectorize this computation in two ways. First, the computation as
written only works for x of length 1, because the conditional computation
depends on x >= 1 being just one value. We would like x to be a numeric
vector of arbitrary length; otherwise we will end up embedding this compu-
tation in another loop of length n. Second, we would like to eliminate the
loop of length m as well. Admittedly, m is a fixed value. But it can be large
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enough to be a bother, particularly if we are using 64-bit numbers. The sit-
uation of having two parameters, either or both of which can be large, is a
common one (think of the number of variables and number of observations).

Eliminating the loop over 1:m can be done by a conversion rather typical
of vectorizing computations. Notice that the iterated multiplication of x by
2 could be vectorized as multiplying x by a vector of powers of 2:

pwrs <- 2∧(1:m)
xpwrs <- x*pwrs

Getting from here to the individual bits requires, excuse the expression, a
bit of imaginative insight. Multiplying (or dividing) by powers of 2 is like
shifting left (or right) in low-level languages. The first clue is that the i-th
element of xpwrs has had the first i bits of the representation shifted left of
the decimal point. If we truncate xpwrs to integers and shift it back, say as

xrep <- trunc(xpwrs)/pwrs

the i-th element is the first i bits of the representation: each element of xrep
has one more bit (0 or 1) of the representation than the previous element.
Let’s look at an example, with x <- .54321:

> xrep
[1] 0.5000000 0.5000000 0.5000000 0.5000000 0.5312500 0.5312500
[7] 0.5390625 0.5429688 0.5429688 0.5429688 0.5429688 0.5429688
[13] 0.5430908 0.5431519 0.5431824 0.5431976 0.5432053 0.5432091
[19] 0.5432091 0.5432091 0.5432096 0.5432098 0.5432099 0.5432100

Next, we isolate those individual bits, as powers of two (bj2−j): the first
bit is xrep[[1]], and every other bit j is xrep[[j]] - xrep[[j-1]]. The
difference between successive elements of a vector is a common computation,
done by a call to the function diff(). Using that function:

bits <- c(xrep[[1]], diff(xrep)

We would then need to verify that the method used for diff() is reasonably
efficient. An alternative is to realize that the m−1 differences are the result
of subtracting xrep without the first element from xrep without the last
element: xrep[-1] - xrep[-m], using only primitive functions. When we
account for multiple values in x, however, we will need a third, more general
computation.

Assuming we want the individual bits to print as 0 or 1, they have to be
shifted back left, which is done just by multiplying by pwrs. Now we have a
complete vectorization for a single value. With the same value of x:
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> pwrs <- 2∧(1:m)
> xpwrs <- x*pwrs
> xrep <- trunc(xpwrs)/pwrs
> bits <- c(xrep[[1]], diff(xrep))*pwrs
> bits
[1] 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1

The computations all operate on vectors of length m; in particular, in the
second line, the single value in x is replicated in the multiplication.

The remaining task is to generalize the computation to n values in x. We
need n instances of each of the length-m computations. As is often the case,
we can get the desired result by expanding the objects into matrices, here
with n rows and m columns. To begin, we replicate the x into m columns and
define pwrs as a matrix with n identical rows. All the computations down
to defining xrep expand to compute n*m values at once:

n <- length(x)
x <- matrix(x, n, m)
pwrs <- matrix(2^(1:m), n, m, byrow = TRUE)
xpwrs <- x*pwrs
xrep <- trunc(xpwrs)/pwrs

What about c(xrep[[1]], diff(xrep))? Now we want this computation to
apply to each row of the matrix, indexing on the columns. Remember that
diff() was just a function to subtract x[[2]] from x[[1]], etc. We could
introduce a loop over rows, or use the apply() function to do the same loop
for us.

But in fact such patterned row-and-column combinations can usually
be done in one function call. Here we do need a “trick”, but fortunately
the trick applies very widely in manipulating vectors, so it’s worth learn-
ing. Differences of columns are simple versions of linear combinations of
columns, and all linear combinations of columns can be written as a matrix
multiplication.

bits <- xrep %*% A

with A some chosen m by m matrix. The definition of matrix multiplication
is that, in each row of bits, the first element is the linear combination of
that row of xrep with the first column of A, and so on for each element.

This trick is useful in many computations, not just in examples similar
to the current one. For example, if one wanted to sum the columns of a
matrix, rather than doing any looping, one simply multiplies by a matrix
with a single column of 1s:
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x %*% rep(1, ncol(x))

The vector on the right of the operator will be coerced into a 1-column
matrix.

To see the form of A, consider what we want in elements 1, 2, . . . of each
row—that determines what columns 1, 2, . . . of A should contain. The first
element of the answer is the first element of the same row of xrep, meaning
that the first column of A has 1 in the first element and 0 afterwards. The
second element must be the second element minus the first, equivalent to
the second column being -1, 1, 0, 0, . . .. The form required for A then
has just an initial 1 in the first column, and every other column j has 1 in
row j and -1 in row j − 1:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 -1 0 0 0 0 0 0 0 0
[2,] 0 1 -1 0 0 0 0 0 0 0
[3,] 0 0 1 -1 0 0 0 0 0 0

· · ·

Constructing this sort of matrix is the other part of the trick. We take
account of the way R stores a matrix; namely, by columns. If we lay out all
the columns one after the other, the data in A starts off with 1 followed by
m-1 zeroes, followed by -1, and then followed by the same pattern again. By
repeating a pattern of m+1 values, we shift the pattern down by one row each
time in the resulting matrix. We can create the matrix by the expression:

A <- matrix(c(1, rep(0, m-1), -1), m, m)

The general thought process here is very typical for computing patterned
combinations of elements in matrices. The example in Section 6.8, page 206,
constructs a general function to produce similarly patterned matrices.

This is clearly a computation with enough content to deserve being a
function. Here is a functional version. We have also added the promised
code to turn an arbitrary x into a sign, an exponent, and a binary fraction
on the range .5 <= x < 1.0. The complete representation is then made up
of three parts: sign, exponent, and the bits corresponding to the fraction.

We express this result in the form of a new class of objects. The three
parts of the answer are totally interdependent, and we would be inviting
errors on the part of users if we encouraged arbitrary manipulations on them.
Having a special class allows us to be specific about what the objects mean
and what computations they should support. Some extra work is required
to create the class, but the results of the computations will be easier to
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understand and to work with when their essential structure is captured in
a class definition. Our users will benefit in both insightful exploration (the
Mission) and trustworthy software (the Prime Directive) from our extra
effort. (The details are explored in Section 9.2, page 343; for now, just
consider them part of the background.)

binaryRep <-
function(data, m = .Machine$double.digits) {

x <- data
n <- length(x)

xSign <- sign(x)
x <- xSign * x
exponent <- ifelse(x > 0, floor(1+log(x, 2)), 0)
x <- x/2 ∧ exponent
pwrs <- binaryRepPowers(n, m)
x <- matrix(x, n, m)
xpwrs <- x * pwrs
xrep <- trunc(xpwrs)/pwrs
bits <- (xrep %*% binaryRepA(m)) *pwrs

bits[] <- as.integer(bits[])
new("binaryRep", original = data,

sign = as.integer(xSign),
exponent = as.integer(exponent),
bits = binaryRepBits(bits))

}

The body of the function is in three parts, separated by empty lines. It’s
the middle part that we are concerned with here, the rest has to do with
the class definition and is discussed on page 343.

The function sign() returns ±1, and multiplying by the sign shifts x to
positive only. The next line computes the exponent, specifically the largest
integer power of 2 not larger than x (play with the expression floor(1+log(x,

2)) to convince yourself). Dividing by 2 to this power shifts x to be larger
than .5 but not larger than 1. The rest of the computation is just as we
outlined it before.

This has been a long example, but in the process we have touched on
most of the mechanisms listed on page 158. We have also worked through
heuristic thinking typical of that needed in many vectorizing computations.
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6.5 Statistical Data: Data Frames

Through most of this book, we use the term data in the computational
sense, meaning numerical or other information in some form that can be
stored and processed. But in statistics, and more generally in science, the
term has an older meaning, from the Latin “datum” for a “given”, and so
for an observed value.2 We examine in this section one concept central to
data in this sense, the data frame, and its implementation in a variety of
computational contexts.

The topic is large and important, so while this section is not short, we
can only cover a few aspects. The plan is as follows. We start with some re-
flections on the concept (as usual, you can skip this to get on to techniques).
Next, we examine how data frames as a concept can be used in several lan-
guages and systems: in R (page 168 ), in Excel and other spreadsheets (page
173), and in relational database systems (page 178). Each of these discus-
sions focuses on aquiring and using data corresponding to data frames in the
corresponding system. Finally, on page 181, we consider transferring data
frames between systems, mostly meaning between R and other systems.

The data frame concept

The concept of a data frame lies at the very heart of science. Gradually, very
long ago, and in more than one place, people began to act on the belief that
things could be meaningfully observed, and that taking these observations
as given could lead to true, or at least useful, predictions about the future.
This is in fact the central notion for our computational discussion: that
there are things that can be observed (in data analysis called variables),
and that it’s meaningful to make multiple observations of those variables.
The computational version of the concept is the data frame. This section
deals mainly with practical computations that implement the data frame
concept.

If we look for early evidence of the underlying concept, we must go back
long before science as such existed. Consider, for example, the structures
known as “calendar stones” and the like. These are structures created to
behave in a particular way at certain times of the year (typically the summer
or winter solstice). Stonehenge in England, built some five thousand years
ago, is designed so that the rising sun on the winter solstice appears in a

2The American Heritage Dictionary [13] has a nice definition including both senses. It
also disposes of the pedantry that “data” is always plural: in modern usage it can be a
“singular mass entity like information”.
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particular arch of the monument. Some modern interpretations suggest that
the monument is designed to match several patterns in the sun/earth/moon
system (for example, the book by John North [20]). Similar devices existed
in the ancient Near East and Central America.

Think of the process of designing such a calendar stone. Someone must
observe the positions of the sun as it rises each day. At Stonehenge, this
position will appear to move farther south each day as winter approaches,
until at the solstice the sun “stands still”, and then begins to move back
north. If the site is designed also to correspond to changes in the appearance
and position of the moon, corresponding observations for its changes had to
be made.

The builders of Stonehenge had no written language, so they probably
did not record such data numerically. But they must have made systematic
observations and then drew inferences from them. From the inferences they
designed a huge structure whose orientation came from a fundamentally
scientific belief that observing data (in particular, observing variables such
as length of day and sunrise position) would lead to a useful prediction.
Where the sun stood still last year predicts where it will stand still in the
years to come.

We seem to have digressed a long way indeed from software for data
analysis, but not really. It can’t be stressed too emphatically how funda-
mental the data frame concept is for scientific thinking or even for more
informal empirical behavior. We select observable things, variables, and
then make observations on them in the expectation that doing so will lead
to understanding and to useful models and prediction.

Two consequences for our needs arise from the fundamental role of data
frame concepts. First, the concepts have influenced many areas of comput-
ing, scientific and other. Software ranging from spreadsheets to database
management to statistical and numerical systems are all, in effect, realizing
versions of the data frame concept, different in terminology and organiza-
tion, but sharing ideas. We will benefit from being able to make use of many
such systems to capture and organize data for statistical computation. Sec-
ond and related, in order to exploit these diverse systems, we need some
central framework of our own, some statement of what data frames mean
for us. Given that, we can then hope to express our computations once,
but have them apply to different realizations of the data frame ideas. From
the perspective of R, it is the class definition mechanism that gives us the
essential tools for a central description of data frames. Section 9.8, page 375
outlines one such framework.
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The "data.frame" class in R

The S language has included the specific "data.frame" class since the in-
troduction of statistical modeling software (as described in the Statistical
Models in S book [6]). This is an informal (“S3”) class, without an explicit
definition, but it is very widely used, so it’s well worth describing it here and
considering its strengths and limitations. Section 9.8, page 375, discusses
formal class definitions that might represent "data.frame" objects.

A "data.frame" object is essentially a named list, with the elements of
the list representing variables, in the sense we’re using the term in this
section. Therefore, each element of the list should represent the same set
of observations. It’s also the intent that the object can be thought of as a
two-way array, with columns corresponding to variables. The objects print
in this form, and S3 methods for operators such as `[` manipulate the data
as if it were a two-way array. The objects have some additional attributes
to support this view, for example to define labels for “rows” and “columns”.
Methods allow functions such as dim() and dimnames() to work as if the
object were a matrix. Other computations treat the objects in terms of the
actual implementation, as a named list with attributes. The expression

w$Time

is a legal way to refer to the variable Time in data frame w, and less typing
than

w[, "Time"]

However, using replacement functions to alter variables as components of
lists would be dangerous, because it could invalidate the data frame by
assigning a component that is not a suitable variable. In practice, a large
number of S3 methods for data frames prevent most invalid replacements.

Because of the focus on software for statistical models, the variables
allowed originally for "data.frame" objects were required to be from one
of the classes that the models software could handle: numerical vectors,
numerical matrices, or categorical data ("factor" objects). Nothing exactly
enforced the restriction, but other classes for variables were difficult to insert
and liable to cause strange behavior. R has relaxed the original restrictions,
in particular by providing a mechanism to read in other classes (see the
argument colClasses in the documentation ?read.table and in the example
below).

As a first example, let’s read in some data from a weather-reporting
system as a data frame, and then apply some computations to it in R.
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value form. Here are the first 10 lines of an exported file:

Time,TemperatureF,DewpointF,PressureIn,WindDirection,WindDirectionDegrees,\
WindSpeedMPH,WindSpeedGustMPH,Humidity,HourlyPrecipIn,Conditions,Clouds,\
dailyrainin,SoftwareType

2005-06-28 00:05:22,72.7,70.6,30.13,ESE,110,3,6,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:15:46,72.7,70.6,30.12,ESE,105,2,5,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:35:28,72.7,70.3,30.12,East,100,3,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 00:45:40,72.5,70.1,30.12,ESE,113,6,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 01:05:04,72.5,70.1,30.11,ESE,110,0,7,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:15:34,72.5,70.1,30.10,East,91,1,2,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:35:09,72.3,70.2,30.10,SE,127,0,5,93,0.02,,OVC009,0.02,VWS V12.07

2005-06-28 01:45:33,72.3,70.5,30.09,ESE,110,2,2,94,0.04,,OVC009,0.04,VWS V12.07

2005-06-28 02:05:21,72.3,70.5,30.09,ESE,110,1,6,94,0.04,,OVC009,0.04,VWS V12.07

The first line contains all the variable names; to show it here we have broken
it into 3, but in the actual data it must be a single line. R has a function,
read.table(), to read files that represent "data.frame" objects, with one
line of text per row of the object, plus an optional first line to give the
variable names.

Two file formats are widely used for data that corresponds to data
frames: comma-separated-values files (as in the example above) and tab-
delimited files. Two corresponding convenience functions, read.csv() and

For the data above:

weather1 <- read.csv("weather1.csv")

The result has the desired structure of a data frame with the variables named
in the first line of the file:

> colnames(weather1)
[1] "Time" "TemperatureF"
[3] "DewpointF" "PressureIn"
[5] "WindDirection" "WindDirectionDegrees"
[7] "WindSpeedMPH" "WindSpeedGustMPH"
[9] "Humidity" "HourlyPrecipIn"

[11] "Conditions" "Clouds"
[13] "dailyrainin" "SoftwareType"
> dim(weather1)
[1] 92 14

All is not quite well, however. The first column, Time, does not fit the origi-
nally planned variable classes, not being either numeric or categorical. The

Software for a weather station provides for data export in comma-separated

read.delim(), correspond to such files. Both functions then call read.table().
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entries for the column contain date-times in the international standard for-
mat: 2005-06-28 00:05:22, for example. Some R software does understand
time formats but they are not automatically converted in read.table(). Be-
cause the text is not numeric, the default action is to treat the column as
a factor, but because each time is distinct, the factor has as many levels as
there are observations.

> wTime <- weather1$Time
> class(wTime)
[1] "factor"
> length(levels(wTime))
[1] 92

R has an S3 class "POSIXct" that corresponds to time represented numeri-
cally. S3 methods exist to convert from character data to this class. The
function read.table() allows variables from this class, and from any class
that can be coerced from a character vector, through an optional argu-
ment colClasses, in which the user specifies the desired class for columns of
the data frame. If told that the Time column should have class "POSIXct",
read.table() will make the correct conversion.

So with a slight extension to the previous call, we can set the Time

variable to an appropriate class:

> weather1 <- read.csv("weather1.csv",
+ colClasses = c(Time = "POSIXct"))

Now the variable has a sensible internal form, with the advantage that it
can be treated as a numeric variable in models and other computations.

The colClasses argument is one of several helpful optional arguments
to read.table() and its friends:

colClasses: The colClasses argument supplies the classes (the names, as
character strings) that you want for particular columns in the data.
Thus, for example, "character" keeps the column as character strings,
where the default is to turn text data into factors, but see as.is below.
This argument can also be used to skip columns, by supplying "NULL"

as the class.

skip: The number of initial lines to omit.

header: Should the first row read in be interpreted as the names for the
variables?
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as.is: Should text be treated as character vectors, rather than the tradi-
tional default, which turns them into factors? It can be a per-column
vector, but if factors are irrelevant, just supply it as TRUE.

There are many other arguments; see ?read.table. Similar choices arise
when importing data into other systems, such as spreadsheet or database
programs. The discussion continues on page 182.

Once data frame objects are created, they can be used with a variety
of existing R packages, principally for statistical models (see Section 6.9,
page 218) and for the trellis/lattice style of plotting (see Section 7.6, page
280). These both use the idea of formula objects to express compactly some
intended relation among variables. In the formula, the names of the variables
appear without any indication that they belong to a particular data frame
(and indeed they don’t need to). The association with the data frame is
established either by including it as an extra argument to the model-fitting
or plotting function, or else by attaching the data frame to make its variables
known globally in R expressions. The attachment can be persistent, by using
the attach() function, or for a single evaluation by using the with() function,
as shown on page 172.

For example, to plot temperature as a function of time in our example,
one could use the xyplot() function of the lattice package to produce Figure
6.1 on page 172:

> xyplot(TemperatureF ∼ Time, data = weather1)

The labels on the horizontal axis in the plot need some help, but let’s con-
centrate here on the relationship between the data and the computations.
The data argument to xyplot() and to similar plotting and model-fitting
functions supplies a context to use in evaluating the relevant expressions
inside the call to the function. The details are sometimes important, and
are explored in the discussions of model software and lattice graphics. The
essential concept is that the object in the data argument provides references
for names in the formula argument. Formulas are special in that the explicit
operator, `∼`, is symbolic (if you evaluate the formula, it essentially returns
itself). In the xyplot() call, the left and right expressions in the formula are
evaluated to get the vertical and horizontal coordinates for the plot. You
could verbalize the call to xyplot() as:

Plot: TemperatureF ∼ (as related to) Time

The data frame concept then comes in via the essential notion that the
variables in the data frame do define meaningful objects, namely the obser-
vations made on those named variables.
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Figure 6.1: Scatter plot of variables from a data frame of weather data.

One can use the same conceptual framework in general computations,
either locally by explicitly evaluating an expression using with():

> with(weather1, mean(diff(Time)))
Time difference of 15.60678 mins

or persistently by attaching the data frame to the session:

> attach(weather1)
> mean(diff(Time))
Time difference of 15.60678 mins

Using attach() has the advantage that you can type an arbitrary expression
involving the variables without wrapping the expression in a call to with().
But the corresponding disadvantage is that the variable names may hide or
be hidden by other objects. R will warn you in some cases, but not in all.
For this reason, I recommend using a construction such as with() to avoid
pitfalls that may seem unlikely, but could be disastrous.

As an example of the dangers, suppose you had earlier been studying
a different set of weather data, say weather2, and for convenience “copied”
some of the variables to the global environment:

> Time <- weather2$Time
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The global Time object hides the one in the attached data frame, and if
the attach() occurred earlier, no warning is issued. You’re supposed to
remember the explicit assignment. But if you were, say, to evaluate a model
formulated in terms of several variables in the weather1 data, you could
easily forget that just one of those happened to have been hidden. Nothing
in the expression itself would reveal that you had just computed an incorrect
answer, seriously violating the Prime Directive.

Therefore, the general advice is always: if the answer is important, make
the computations explicit about what data is used, as the with() function
did above. The data supplied to with() will be searched first, so that other
sources of data will not override these. There is still a chance to mistakenly
use an object that is not in the supplied data (perhaps a mistyped name),
because R insists on looking for objects in the chain of parent environments of
the data object. To be strict about all the available objects in a call to with()

requires constructing an environment with a suitable parent environment.
For example, if ev is an environment object:

parent.env(ev) <- baseenv()

will set the parent environment of ev to the environment of the base package,
essentially the minimum possible. If you’re starting with a "data.frame"

object rather than an environment, the same restriction can be enforced by
using the enclos argument to eval() or evalq(). The strict way to evaluate
diff(Tiime) as above would be

evalq(diff(Time), weather1, baseenv())

If the expression requires functions from a package, you need something
more generous than baseenv(). It’s often useful to evaluate an expression
using the namespace of a relevant package. For example, to evaluate an
expression using the namespace of package "lattice":

evalq(xyplot(TemperatureF ∼ Time), weather1,
asNamespace("lattice"))

Data frame objects in spreadsheet programs

Because spreadsheets are all about two-way layouts, they have a natural
affinity for the data frame concept. In fact, Excel and other spreadsheets are
very widely used for computations on data that can be viewed as a data
frame. It has been asserted, not always facetiously, that Excel is the world’s
most widely used statistical software. Spreadsheets include facilities for
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summaries and plotting that are applied in many data-intensive activities.
They are less likely to have a wide range of modern data analysis built in,
making R a natural complement for serious applications.

This section will present some techniques for using data frame objects
inside spreadsheet programs. Combined with techniques for exporting data
from R, these will allow the results of analysis to be brought into the spread-
sheet. More sophisticated techniques for interfacing to R from a spreadsheet
are possible and desirable, but considerably more challenging to program.
See, for example, RDCOMEvents and related packages at the omegahat Web site;
this approach would in principle allow sufficiently intrepid programmers to
access R functions and objects from the spreadsheet, at least for Windows

applications. The interface in the other direction, for analysis based in R, is
discussed in Chapter 12.

Excel is very widely used, but is not the only spreadsheet program.
Its competitors include several open-source systems, notably OpenOffice.org.
Most of the techniques discussed below are found in OpenOffice.org and other
spreadsheets as well, perhaps with some variation in user interface. In the
discussion below, using “spreadsheet” to describe a system means Excel or
one of its major competitors.

Let’s begin by importing into Excel the same csv file shown on page 169.
To import the file, select the menu item for importing external data from a
text file. In the version of Excel I’m using, the import menu selection is:

Data > Get External Data > Import Text File...

You then interact with an Excel “Wizard” in a sequence of dialogs to identify
the file, choose the delimiter (comma) and specify the format for individual
columns (usually "General", but see below). The text file is then imported
as a worksheet, in Excel terminology. Here’s the upper left corner:
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With the spreadsheet, as in the previous section with R, there are a few
details to get right, which will also raise some points of general interest.

In an R "data.frame" object the variable names are attributes of the
data, but in a spreadsheet essentially everything resides in the worksheet
itself. Concepts of slots or attributes are uncommon; instead, spreadsheets
use individual cells informally to store items other than data values. It’s a
typical convention to take the first row, or several rows, to include names
for the columns and other contextual information. Formally, however, the
columns are always "A", "B", "C", etc. and the rows are always "1", "2", "3",
etc. The first row happens to contain text items "Time", "TemperatureF",
"DewpointF", etc. that we will use to label variables. The remaining rows
contain the actual data in the usual sense.

Having a column that contains its name as the first element would pose
a problem in R if the data were numeric or any other class than "character".
The class of the variable would have to be something able to contain either
a string or a number, and computations on the variable would be more
complicated. Fortunately, the presence of a name in the first row of every
column is less crippling in Excel. For one thing, many computations are
defined for a range in the worksheet, a rectangular subset of the worksheet
defined by its upper-left and lower-right corners cells. So the data-only
part of the worksheet starts at the "$A$2" cell, in spreadsheet terminology,
meaning the first column and the second row.

Names in the first row can cause problems, however, when specifying the
format for importing the csv file. The Excel wizard allows you to choose a
format (numeric, text, date) for each column. Because the variable names
are stored in the first row, you cannot choose numeric for TemperatureF or
date for Time. Instead, Excel allows and suggests choosing format "General",
which means that each cell is formatted according to a heuristic interpre-
tation of its contents. Typically, the first cell in each column is text and
the rest will be date, number, or text appropriately. If you do this in the
present example, however, you will see some strange cells labeled "Name?"

in the column for the Clouds variable. That’s because several cells for this
column are recorded in the file as "-RA" and the Excel heuristic throws up its
hands for this entry: it starts out looking like a number but then turns into
text. The fix is to specify this column manually as "Text" to the wizard, so
as not to lose information. The result then looks as it did in the file:
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Take a warning from the example, however. Although the spreadsheet may
seem to be dealing with objects in a similar sense to R, that is not really
the case. The spreadsheet model for computation is quite different, with
an emphasis on cells and ranges of cells as basic concepts. Rather than
using class definitions to add extra information, spreadsheet programs tend
to differentiate cells within the table.

Nevertheless, there is enough commonality between the systems to allow
for exporting and importing data. For the example we’ve been looking at,
the only catch is that dates are by default saved in the local format, not the
international standard. Inferring the format of dates is an example in the
discussion of computing with text in Chapter 8 (see Section 8.6, page 321).

Worksheets can be exported into the same csv format used to import
the data. To illustrate exporting data frames, let’s look at a truly classic
data set, the observations taken by Tycho Brahe and his colleagues on the
declination of Mars (the angle the planet makes with the celestial equator).
There are over 900 observations taken in the late 16th century. This fasci-
nating dataset, which inspired Johannes Kepler to his studies of the orbit
of Mars, was made available in an Excel spreadsheet by Wayne Pafko at the
Web site pafko.com/tycho. Suppose we want to export the data, to be
used as a data frame in R. The data may be read into Excel, or into other
spreadsheet programs that accept Excel files. A menu selection, typically
Save As, will give you an option to save as a comma-separated-values, or
".csv" file. The upper-left corner of the worksheet looks like this:
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In this example, we use OpenOffice.org rather than Excel to open and then save
the spreadsheet. The program provides some useful flexibility, including a
simple option to save the data with quoted text fields. The first few lines
of the resulting ".csv" file (with lines truncated to fit on the printed page)
are:

"Tycho Brahe’s Mars Observations",,,,,,,,,,,,,,,,,,,
,"Source: Tychonis Brahe Dani Opera Omnia",,,,,,,,,,,,,,,,,,,
,"Imput by: Wayne Pafko (March 24, 2000)",,,,,,,"Brahe’s Declinati
,"[MS] = Mars Symbol (you know...the ""male"" sign)",,,,,,,"(not a
,,,,,,,,,,,,,,,,,,,,
,"Year","Day","Time","Quote","Volume","Page",,"Year","Month","Day"
,1582,"DIE 12 NOUEMBRIS, MANE.",,"Declinatio [MS] 23 7 B",10,174
,1582,"DIE 30 DECEMBRIS",,"Afc. R. [MS] 107o 56’ Declin. 26o 3
,1582,"DIE 27 DECEMBRIS",,"declinatio [MS] 26o 22 1/3’ et Afcenfi

The row numbers and the column letters shown in the spreadsheet are not
part of the actual data and are not saved.

Then the read.csv() function can import the data into R, as in the
example on page 169. The first five lines of the file are comments, which
we’d like to skip. Also, the text data is just text, so we need to suppress
the default computations to turn text into factor variables, by supplying the
option as.is = TRUE. With two optional arguments then, we can read in the
data and examine it:

> mars <- read.csv("mars.csv", skip = 5, as.is = TRUE)
> dim(mars)
[1] 923 21
> sapply(mars, class)

X Year Day Time
"logical" "integer" "character" "character"

Quote Volume Page X.1
"character" "integer" "integer" "logical"

Year.1 Month Day.1 Day..adj.
"integer" "integer" "integer" "integer"

Hour Min Days.since.1.AD Date
"integer" "numeric" "numeric" "numeric"

X.2 Dec..deg. Dec..min. Dec..sec.
"numeric" "integer" "integer" "integer"

Declination
"numeric"

The call to sapply() computes and displays the class of each of the variables
in the data frame, exploiting its implementation as a list.
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In this example, we might have chosen to preprocess the text data to
remove uninteresting columns, such as two empty fields, X and X.1. However,
these do no particular harm. Cleaning up after reading into R is probably
easier in this case. In case you’re wondering what the 21 variables are
doing: The spreadsheet contains a number of intermediate variables used to
arrive at numeric estimates of time and declination, starting from the highly
irregular journal entries (in variable Quote). The computation is nontrivial
and the data would be fascinating to examine as an example of text analysis.

Data frames in a relational database

From the perspective of statistical computing, the most essential feature
of relational databases is that their model for data centers on the table, a
two-way organization of columns (our variables) by rows (our observations),
providing a thoroughly natural analog to a data frame. The analogy is
very useful. In this section, we concentrate on using the tools of relational
database software directly to store and access data from the data frame
perspective. In addition, R packages provide inter-system interfaces to such
software, so that SQL queries, such as those illustrated here, can be invoked
from R. A discussion of the intersystem interface aspect is provided in Section
12.7, page 446. In addition, database systems usually allow exporting of
tables as comma-separated-values files, so that the techniques discussed on
page 181 can be used.

Relational databases intersect statistical computing most frequently be-
cause such databases are sources of data for analysis. The databases have
often been organized and collected for purposes such as business transac-
tions, commercial record keeping, or government information, as well as for
scientific data collection. In this context, the data analysis is usually only
concerned with extracting data (queries in database terminology), possibly
also applying some summary calculation at the same time. Frequently these
databases are very large, relative to the size of data objects used directly
for analysis. In fact, relational databases may also be worth considering for
data that is constructed or modified during the analysis (data manipulation
or transactions in database terminology), either because of the software’s
ability to handle large amounts of data or to interface both read-only and
modifiable portions of the data.

Access to data in relational databases other than for whole tables uses
queries expressed in SQL, the S tructured Query Language. SQL is common
to essentially all relational database systems, and is in fact an international
standard language. In spite of its name, the language includes data manip-
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ulation and transaction commands as well as queries.
It’s fortunate that SQL is supported by essentially all relational database

systems, because there are many of these, and when the database was created
for purposes other than data analysis, the analyst usually must use whatever
particular system was chosen for this database. Of the many such systems,
three will usefully stand in for the range of options.

SQLite: An open-source system implemented as a C library and therefore
embeddable in other applications, including R.

MySQL
R©: Also an open-source system, emphasizing competitive capability

for large applications.

Oracle
R©: One of the most successful commercial systems.

SQLite is usually the easiest to interface to R and to install on a particular
platform. All three systems are implemented on a wide range of platforms,
however. The other two are more likely to be competitive for large applica-
tions, and they do explicitly compete for such applications. In the following
discussion we use DBMS to stand for one of these three or some other rea-
sonably compatible relational database system.

SQL’s design dates back to the 1970s, when computer languages for busi-
ness applications often tried to look like human languages, specifically En-
glish. “Wouldn’t it be nice if you could talk to your computer in English?”
Perhaps, and modern technology does make that possible for some purposes,
where simple tasks and voice recognition get us close to being able to talk
to the machine in more-or-less ordinary English. Unfortunately, that was
not what SQL and similar languages provided; instead, they introduced com-
puter languages whose grammar was expressed in terms of English-language
keywords and a syntax that combined the keywords into a fixed range of
“phrases”. English input not matching the grammar would be unintelli-
gible to the parser, however natural to the programmer. In addition, the
grammars of such languages tended to enumerate the expected requirements
rather than starting with higher-level concepts such as objects, classes, and
functional computing. The absence of such concepts makes the use of these
languages less convenient for our purposes.

Most of these languages have faded from view, but SQL is definitely still
with us. Fortunately, its English-like grammar is fairly simple, particularly
if we’re concerned largely with extracting data from tables.

Queries are performed by the SELECT command in SQL. (We follow a com-
mon convention by showing all command names and other reserved words
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in SQL in upper case, but beware: SQL is usually case-insensitive, so don’t
rely on upper case and lower case to distinguish names.)

The SELECT command plays the role of expressions using the operator
`[` in R for extracting subsets from two-way tables. The command takes
three “arguments”, modifiers that correspond to the table object, the col-
umn subset, and the row subset. (There are also a number of optional
modifiers.) In the terminology of English or other natural languages, the
column subset is given by the direct object of the SELECT verb, the table by
a FROM phrase, and the row subset by a WHERE clause. Suppose weather is a
table in a DBMS database, with columns including Date, TemperatureF, and
Conditions. Then a query that selects TemperatureF and Conditions from
the rows for a particular date could be written:

SELECT TemperatureF, Conditions
FROM weather
WHERE Date == 2005-06-28 ;

Columns are specified by a comma-separated list of names or by "*" to
select all columns. The table modifier is usually just a name, but it can also
construct a table by combining information from several existing tables (the
JOIN operation in SQL).

The WHERE clause is a logical expression involving columns of the table.
The rows for which the expression is TRUE will be in the selected data. Simple
expressions look familiar to users of R or other C-style languages, as above.
To combine simple comparisons, use the AND and OR infix operators.

Notice that only expressions involving data in the columns can be used
as row subsets: there are no intrinsic row numbers; unlike "data.frame"

objects in R or a worksheet in spreadsheet, tables in SQL are not stored in
a specific order by rows. This design decision was made partly for practical
reasons, so that storage and updating could be done in a flexible, efficient
way. But it makes considerable sense intrinsically as well. If we think of
data frames in a general sense, the assumption that the “row numbers” of
observations are meaningful is often not correct, and can lead to misleading
results. One sometimes thinks of rows as representing the time when the
observations are made, but those times may be unknown or meaningless
(if observations were made at several recording sites, for example). Better
in most cases to require time, place and/or other ordering variables to be
included explicitly when they make sense.

Queries in SQL can have additional modifiers to add various features: to
order the output, either by grouping together rows having the same value(s)
on some column(s) or by sorting according to some column(s) (the GROUP and
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ORDER modifiers); to filter the selected data on further criteria (the HAVING

modifier); to direct the output to a file (the INTO modifier); and several
others.

From a modern language perspective, it’s easy to deplore the ad hoc
nature of SQL, but its wide availability and efficiency in handling large
amounts of data compensate for programming ugliness. In any case, if your
applications are large, you’re unlikely to avoid programming with relational
databases forever. Do be careful, however, if you want to create SQL software
that is portable among database systems. Nearly all major systems extend
the standard SQL language definition, in sometimes inconsistent ways. A
good SQL manual for a particular system should clarify the nonstandard
parts, but don’t count on it.

External files for data frames

A "data.frame" object in R or a table in a spreadsheet or relational database
implements a version of the data frame concept. In many applications, you
will need to add such data directly or communicate it between systems.
There are several approaches, but two that work for most applications are
either to enter data from a file of text in a standard format or to use an
inter-system interface in one system to access data managed by another.
Inter-system interfaces are described in Chapter 12. For large or otherwise
computationally intensive applications, they have advantages of efficiency
and flexibility over using files. They do require some initial setup and pos-
sibly customization, so it’s reasonable to start with external files for less
demanding applications. Files are also needed for getting data into a sys-
tem or for communicating where an inter-system interface is not available.
We consider here some questions that arise when preparing files to contain
data-frame-style data, and techniques for dealing with the questions.

Once again, the basic data frame concept of observations and variables
is the key: files are simplest when organized as lines of text corresponding
to observations in the data frame, with each line containing values for the
variables, organized as fields by some convention. R, spreadsheets, and most
DBMS can import data from a text file laid out as lines of fields, with the
fields separated by a specified character (with the tab and the comma the
usual choices). Many other software systems also either export or import
data in one of these forms. There are differences in detail among all the
systems, so expect to do some cleaning of the data, particularly if you’re
exporting it from a more specialized system.

Text files using tabs or commas are often called “tab delimited files” or
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“comma-separated-values files” respectively. They work roughly the same
way, again up to the inevitable details. Here again is the beginning of the
weather-station data introduced on page 169 and used to illustrate input of
such data into R:

Time,TemperatureF,DewpointF,PressureIn,WindDirection,WindDirectionDegrees,\
WindSpeedMPH,WindSpeedGustMPH,Humidity,HourlyPrecipIn,Conditions,Clouds,\
dailyrainin,SoftwareType

2005-06-28 00:05:22,72.7,70.6,30.13,ESE,110,3,6,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:15:46,72.7,70.6,30.12,ESE,105,2,5,93,0.00,,-RA,,VWS V12.07

2005-06-28 00:35:28,72.7,70.3,30.12,East,100,3,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 00:45:40,72.5,70.1,30.12,ESE,113,6,6,92,0.00,,OVC024,,VWS V12.07

2005-06-28 01:05:04,72.5,70.1,30.11,ESE,110,0,7,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:15:34,72.5,70.1,30.10,East,91,1,2,92,0.00,,OVC100,,VWS V12.07

2005-06-28 01:35:09,72.3,70.2,30.10,SE,127,0,5,93,0.02,,OVC009,0.02,VWS V12.07

2005-06-28 01:45:33,72.3,70.5,30.09,ESE,110,2,2,94,0.04,,OVC009,0.04,VWS V12.07

2005-06-28 02:05:21,72.3,70.5,30.09,ESE,110,1,6,94,0.04,,OVC009,0.04,VWS V12.07

The basic idea seems trivial, just values separated by a chosen character.
Triviality here is a good thing, because the concept may then apply to a
wide variety of data sources.

Here is a checklist of some questions you may need to consider in practice.

1. The first line: Variable names or not?

2. One line per observation or free-format values?

3. What are the field types (classes)?

4. What about special values in the fields?

For each question, you need to understand the requirements of the system
that will import the data. Options in the system may let you adapt to the
details of the file at hand, but expect to do some data cleaning in many cases.
Data cleaning in this context requires computing with text, the subject of
Chapter 8; that chapter presents some additional techniques related to the
questions above.

First, variable names: Are they included in the data; does the target
system want them; and do you want them? The answer to the first part de-
pends on where the data came from. Many specialized systems that support
data export in one of the data-frame-like formats do generate an initial line
of column names. The names will be meaningful to the originating system,
so they may not be in the natural vocabulary of the data analysis, but it’s
a good default to leave them alone, to reduce the chance of confusion when
you look back at the documentation of the originating system to understand
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what some variable means. As for the target system, R’s read.table() func-
tion allows them optionally, spreadsheets have no concept of variable names
but an initial row of labels is a common convention, and for a relational
database, you can’t usually provide variable names in the imported table
(and in any case you will have to have defined names and types for the
variables before doing the import). Once you have decided what you need
to do, removing/adding/changing the first line should be easy, but you may
want to check that the line does really look like variable names if it should
(and doesn’t if it shouldn’t).

For the free-format question, we usually need to ensure that lines in the
file correspond to rows in the data frame. All three systems we’ve discussed
really believe in importing lines of text. A line with p fields has p−1 delimiter
characters, as shown in our example where p == 14. If the exporting system
takes “comma separated values” literally, however, it may include a trailing
delimiter at the end of each line or, worse, believe the input can be in free
format ignoring the one-line/one-row correspondence. Excel does not mind
the trailing comma, but the other systems do; and none of them will accept
input in free format.

Turning free form input into regular lines is an exercise in computing with
text, and can be handled either in R or in a language such as Perl or Python.
The comparison is a good example of the tradeoffs in many applications:
R is simpler, partly because it absorbs all the data in free form, and then
just recasts it in a fixed number of fields per row. Perl has to do some more
complicated book-keeping to read free-form lines and write fixed-form when
enough fields have been read. But the extra logic means that the Perl code
deals more efficiently with data that is large enough to strain memory limits
in R. The details are presented as an example of computing with text in
Section 8.6, page 325.

The third question, specifying the types or classes, may require attention
to ensure that the contents of each variable conform to what the receiving
system expects in that variable. All three systems need some specification of
the “class” of data expected, although in both R and spreadsheets the vari-
ables can contain arbitrary character strings, so specification is only needed
when something more specialized is expected. Standard SQL on the other
hand is throughly old-fashioned in requiring declarations for the columns
when the table is created (prior to actually filling the table with any data).
The declarations even require widths (maximum number of characters) for
text fields. A declaration for the table in our example might look something
like:
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CREATE TABLE weather (Time DATETIME, TemperatureF FLOAT, DewpointF FLOAT,

WindSpeedMPH FLOAT, WindSpeedGustMPH FLOAT, Humidity FLOAT,

HourlyPrecipIn FLOAT, Conditions VARCHAR(20), Clouds VARCHAR(20),

dailyrainin FLOAT, SoftwareType VARCHAR(20)

);

The weather data has an initial field giving the date and time, and then a
variety of fields containing either numeric values or character strings, the
strings usually coding information in a more-or-less standardized way. For
all the systems, date/time and numeric fields are common occurrences, but
each system has its own view of such data, and the data in the input needs
to be checked for conformity.

The fourth question, special values, arises because transferring data from
one system to another may require attention to conventions in the two sys-
tems about how values are represented. There are many potential issues:
different conventions according to locale for dates and even for decimal num-
bers, techniques for quoting strings and escaping characters, and conventions
for missing values. Techniques may be available in the receiving system to
adjust for some such questions. Otherwise, we are again into text compu-
tations. For example, Section 8.6, page 321, has computations to resolve
multiple formats for dates.

6.6 Operators: Arithmetic, Comparison, Logic

The S language has the look of other languages in the C/Java family, in-
cluding a familiar set of operators for arithmetic, comparisons and logical
operations. Table 6.3 lists them. Operators in the S language are more in-
tegrated, less specialized, and open to a wider role in programming than in
many languages. In C, Java, and similar languages, the operators are nearly
always built in. They translate into low-level specialized computations, and
often assume that arguments are simple data. In languages that support
OOP-style classes and methods, methods are not natural for operators, be-
cause method invocation is itself an operator (usually ".").

In R, each operator is a function, with the rights and generality of other
functions, for the most part. Operator expressions are evaluated as function
calls; all that is fundamentally different is that one can write these function
calls in the familiar operator form. In fact

x+1

could legally be written as `+`(x, 1), and would return the same value.

PressureIn FLOAT, WindDirection VARCHAR(10), WindDirectionDegrees FLOAT,
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An operator in R is in fact anything the parser is willing to treat as one.
Binary and unary operators (sometimes called infix and prefix operators)
are any pattern op for which the parser will interpret the forms

e1 op e2 # or
op e1

as equivalent to the function calls

`op`(e1, e2) # or
`op`(e1)

Here e1 and e2 stand for arbitrary expressions. The "`" quotes mean that
the string will be treated as a name, to be looked up as the name of a
function object.

It is true that many built-in operators are primitive functions, which
does occasionally make them special for programming (for the way primitives
work, see Section 13.4, page 463). However, this only becomes relevant after
finding the particular object corresponding to the operator’s name, and does
not differ fundamentally from the treatment of any primitive function.

Table 6.3 on page 186 shows operators found in the base package of R.
This section examines the implementations, particularly of the arithmetic
and comparison operators. The implementations handle arguments from
commonly occurring classes, such as vectors of the various basic R object
types, matrices, arrays and time-series. For more information on the other
operators, see the function index of the book and/or the online documenta-
tion for the operators.

From a programming view, operators in R are part of its extensible func-
tional model. They can be extended to apply to new classes of objects, by
defining methods to use when the arguments come from such classes. Op-
erator methods are discussed in Section 10.3, page 389. If a group name is
shown in a row of Table 6.3, methods for all the operators in the group may
be provided by defining a method for the corresponding group generic (see
Section 10.5, page 404).

New operators can be introduced using a lexical convention that %text%

can appear as a binary operator. Just define a function of two arguments,
assign it a name matching this pattern, and users can insert it as an opera-
tor. R has added operators `%in%` and `%x%` to the language, for example,
to carry out matching and compute Kronecker products respectively. The
grammar only recognizes such operators in binary form; you cannot define
a new unary operator.
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Operator Group Comment
`+`, `-`, `*`, `/`,
`∧`, `%%`, `%/%`

Arith() Operations for numerical arithmetic,
the last two being modulus and
truncated division. The arguments
are, or are coerced to, "numeric" or
"complex".

`>`, `<`, `>=`, `<=`,
`==`, `!=`

Compare() Comparison operations, defined for ar-
guments that are, or are coerced to,
"numeric", "character", or "complex".

`&`, `|`, `!` Logic() Logical operations “and”, “or”, and
“not”.

`&&`, `||` Control operations, only valid with
single logical values as arguments.

`%%`, `%in%`, `%o%`,
`%*%`, `%x%`

Binary operators using the general
convention that `%text%` is an oper-
ator name.

`$`, `?` `@`, `∼`,
`:`, `::`, `:::`

Other binary operators.

Table 6.3: Binary and unary operators defined in the base package of R.

Table 6.3 is not quite complete. The various assignment operators are all
treated as binary operators (with limited programming allowed; for example,
methods cannot be defined for them). Among the miscellaneous operators,
`?` and `∼` can also be used as unary operators.

Rules for operator expressions with vector arguments

There are general rules for the arithmetic and comparison operators, spec-
ifying the objects returned from calls to the corresponding functions, de-
pending on the class and length of the arguments. The rules date back to
the early design of the S language. Restricting our attention to the basic
vector object types, the following summarizes the current rules in the base

package implementation.

1. If the arguments are of the same type and length, the operation is
unambiguous. The value returned will be of that length and either of
the same type or "logical", depending on the operator.

Arithmetic operators work on "logical", "numeric", and "complex"
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data, but not on "raw","character", or "list". Comparison operators
work on all types, but not if both arguments are lists.

2. Given two arguments of different type, one will be coerced to the type
of the other argument before the operation takes place. Arithmetic
operations are limited to the four types mentioned in item 1, but
for comparisons nearly anything goes, other than a few comparisons
with "complex" data. Conversions are made to the less simple type,
according to the rules discussed in Section 6.3, page 149.

3. If one argument is shorter than the other, it will be implicitly replicated
to the length of the other argument before the operation takes place,
except that a zero-length operand always produces zero-length results.
A warning is given if the longer length is not an exact multiple of the
shorter.

For more details on conversions see Section 6.3, page 149.
As mentioned, most of these rules date back to early in the evolution

of the S language, and are unlikely to change. With hindsight though, I’m
inclined to think the original design was too eager to produce an answer,
for any arguments. Some of the rules, such as those for replicating shorter
objects, were heuristics designed to work silently when operating on a matrix
and one of its rows or columns.

For important computations, stricter rules that only allow unambigu-
ous mixing of types and lengths would be more trustworthy. The function
withStrictOps() in the SoDA package allows you to evaluate any expression
applying such rules. A call to withStrictOps() either returns the value of
the expression or generates an error with an explanation of the ambiguities.
Mixtures of types are allowed only for numeric types, including complex
(no logical/numeric conversion, for example). Unequal lengths are allowed
only if one operand is a “scalar”, of length 1. I would recommend running
examples whose validity is important with these rules in place; in other
words, when the Prime Directive weighs heavily on you, it pays to check for
ambiguous code.

Arithmetic and comparison operators deal with vector structures as well
as simple vectors, both in general and specifically for matrices, multi-way
arrays, and time-series. Classes can be formally defined to be vector struc-
tures (see Section 6.3, page 154), in which case they inherit methods from
class "structure". As noted on page 156, the current base package rules
do not treat vectors with arbitrary attributes as a vector structure. You
should use a formal class definition that extends "structure" rather than
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relying on the base package behavior to obtain trustworthy results for vector
structures.

Arithmetic operators

Arithmetic operations with numeric arguments go back to the early history
of computing with “floating-point numbers”. Down to the 1970s, software
for these computations was complicated by a variety of representations and
word lengths. An essential step forward was the adoption of the IEEE
floating point standard, which mandated aspects of both the representation
and the way computations should behave. The standard included a model
for the numbers, with parameters expressing the range of numbers and the
accuracy. The model also included both Inf, to stand for numbers too large
to be represented, and NaN for the result of a computation that was N ot a
Number; for example,

> 0/0
[1] NaN

The S language adopted the model, and R includes it. The object .Machine

has components for the parameters in the model; see its documentation. We
look at some details of numeric computations in Section 6.7, page 191.

For most numeric computations in R, numeric means double-precision,
type "double". This is certainly true for arithmetic. The operators will take
arguments of type logical or integer as well as numeric, but the results will
nearly always be of type "double", aside from a few computations that pre-
serve integers. Logicals are interpreted numerically by the C convention that
TRUE is 1 and FALSE is 0. Complex arithmetic accepts "numeric" arguments
with the usual convention that these represent the real part of the complex
values. Raw and character data are not allowed for arithmetic.

Arithmetic operators allow operands of different lengths, according to
the rules described on page 186, calling for replicating the shorter operand.
R warns if the two lengths are not exact multiples. The following examples
illustrate the rules.

> 1:5 + 1
[1] 2 3 4 5 6
> 1:6 + c(-1, 1)
[1] 0 3 2 5 4 7
> 1:5 + c(-1, 1)
[1] 0 3 2 5 4
Warning message:
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longer object length
is not a multiple of shorter object length in: 1:5 + c(-1, 1)

The second and third examples would be errors if the strict rules imple-
mented by the function withStrictOps() were applied.

Comparison and logical operators.

The comparison operators (`>`, `>=`, `<`, `<=`, `==`, and `!=`), when given
two vectors as arguments return a logical vector with elements TRUE, FALSE, or
NA reflecting the result of the element-by-element comparisons. Arguments
will be implicitly replicated to equal length and coerced to a common type,
according to the ordering of types shown in Section 6.3, page 149. So,
for example, comparing numeric and character data implicitly converts the
numbers to character strings first.

Comparison expressions in R look much like those in languages such as
C, Java, or even Perl. But they are designed for different purposes, and need
to be understood on their own. The purpose of a comparison in R is to
produce a vector of logical values, which can then be used in many other
computations. One typical use is to select data. The logical vector can be
used to select those elements of any other object for which the comparison
is TRUE.

y[ y > 0 ]; trafficData[ day != "Sunday", ]

Comparisons are often combined using the logical operators:

weekend <- trafficData[ day == "Sunday" | day == "Saturday", ]

Combinations of comparisons and logical operators work in R similarly to
conditions in database selection. If you’re familiar with database software
queries, using SQL for example, then consider the comparison and logical
operators as a way to obtain similar data selection in R.

One consequence of the general operator rules on page 186 needs to be
emphasized: The comparison operators are not guaranteed to produce a sin-
gle logical value, and if they do, that value can be NA. For really trustworthy
programming, try to follow a rule such as this:

Don’t use comparison operators naked for control, as in if()

expressions, unless you are really sure the result will be a single
TRUE or FALSE. Clothe them with an expression guaranteed to
produce such a value, such as a call to identical().
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Violations of this rule abound, even in core R software. You may get away
with it for a long time, but often that is the bad news. When the expression
finally causes an error, the original programming experience may be long
gone, possibly along with the programmer responsible.

The most commonly occurring unsafe practice is to use the "==" operator
for control:

if(parameters$method == "linear") # Don’t do this!

value <- lm(data)

What can go wrong? Presumably parameters is meant to be an object with
components corresponding to various names, usually an R list with names.
If one of the names matches "method" and the corresponding component is a
single character string or something similar, the computation will proceed.
Someday, though, the assumption may fail. Perhaps the computations that
produced parameters changed, and now do not set the "method" component.
Then the unfortunate user will see:

Error in if (parameters$method == "linear") ... :
argument is of length zero

The if expression may have looked reasonable, particularly to someone used
to C-style languages, but it did not actually say what it meant. What we
meant to say was:

if(the object parameters$method is identical to

the object "linear" )

A function defined to implement this definition would return TRUE if the
condition held and FALSE in all other circumstances. Not surprisingly, there
is such a function, identical(). The condition should have been written:

if(identical(parameters$method, "linear"))
value <- lm(data)

For more on techniques to produce such single values, see Section 6.3, page
152.

The two operators `&&` and `||`, however, are specifically designed for
control computations. They differ from `&` and `|` in that they are expected
to produce a single logical value and they will not evaluate the second ar-
gument if that argument cannot change the result. For example, in the
expression

if(is(x, "vector") && length(x)>0) x[] <- NA
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the expression length(x)>0 will not be evaluated if is(x, "vector") evalu-
ates to FALSE. Here too, however, the evaluation rules of R can be dangerously
generous. Arguments to these operators can be of length different from 1.
Only the first element will be used, but no warning is issued, and if one ar-
gument is of length zero, the result is silently NA. Therefore, the arguments
to `&&` and `||` themselves need to follow the guidelines for computing
single logical values.

6.7 Computations on Numeric Data

Numeric data in R can in principle be either "double" or "integer", that is,
either floating-point or fixed-point in older terminology. In practice, numeric
computations nearly always produce "double" results, and that’s what we
mean by the term "numeric" in this discussion. Serious modern numeric
computation assumes the floating-point standard usually known as “IEEE
574” and R now requires this. The standard enforces a number of important
rules about how numeric data is represented and how computations on it
behave. Most of those don’t need to concern us explicitly, but a brief review
of floating-point computation will be useful here.

Standard floating-point numbers have the form ±b2k where b, known as
the significand,3 is a binary fraction represented by a field of m bits:

b12−1 + b22−2 + · · ·+ bm2−m

and k, the exponent is an integer field of fixed width. Given the size of the
floating-point representation itself (say, 32 or 64 bits) the standard specifies
the width of the fraction and exponent fields. Floating-point numbers are
usually normalized by choosing the exponent so that the leading bit, b1, is
1, and does not need to be stored explicitly. The fraction is then stored as a
bit field b2 · · · bm. The ± part is conceptually a single sign bit. The exponent
represents both positive and negative powers, but not by an internal sign
bit; rather, an unsigned integer is interpreted as if a specific number was
subtracted from it. All that matters in practice is that the exponent behaves
as if it has a finite range −ku < k <= ku. In the standard, only a few
choices are allowed, mainly single and double precision. However, the model
is general, and future revisions may add further types.

In addition to the general patterns for floating-point numbers, the stan-
dard defines some special patterns that are important for its operations.

3In my youth, this was called the mantissa, but the standard deprecates this term
because it has a conflicting usage for logarithms.
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Zero, first off, because that cannot be represented as a normalized number;
in fact, the standard includes both ±0. Then a pattern to represent “in-
finity”; that is, numbers too large in absolute value for the representation.
This we will write as ±Inf. Finally, a pattern called NaN (N ot a Number)
indicates a result that is undefined as a number. This is related to the
long-standing value NA in the S language standing for a N ot Available, or
missing value. The latter is more general and should be used in most R

programming; see page 194.
The standard also set down requirements for arithmetic operations and

for rounding. If you want to understand more about floating-point compu-
tations and the standard, there is a huge literature. One of the best items is
an unpublished technical report by one of numerical analysis’ great figures
and eccentrics, W. Kahan [18].

Details of numerical representation are usually far from your thoughts,
and so they should be. A few important consequences of floating-point
representation are worth noting, however. The finite set of floating-point
numbers represented by the standard, for a given word size, are essentially a
model for the mathematical notion of real numbers. The standard models all
real numbers, even though only a finite subset of real numbers correspond
exactly to a particular floating-point representation. The general rule of
thumb is that integer values can be represented exactly, unless they are very
large. Numbers expressed with decimal fractions can be represented exactly
only if they happen to be equal to an integer multiplied by a negative power
of 2. Otherwise, the stored value is an approximation. The approximation
is usually hidden from the R user, because numbers are approximated from
decimal input (either parsed or read from a file), and printed results usually
round the numbers to look as if they were decimal fractions.

The approximate nature of the floating-point representation sometimes
shows up when computations are done to produce numbers that we think
should be exactly zero. For example, suppose we want the numbers (-.3,

-.15, 0., .15, .3). The function seq() computes this, taking the first
element, the last, and the step size as arguments. But not quite:

> seq(-.45, .45, .15)
[1] -4.500000e-01 -3.000000e-01 -1.500000e-01 -5.551115e-17
[5] 1.500000e-01 3.000000e-01 4.500000e-01

Did something go wrong? (Every so often, someone reports a similar exam-
ple as a bug to the R mailing lists.)

No, the computation did what it was asked, adding a number to the
initial number to produce the intermediate results. Neither number is rep-
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resented exactly as a binary fraction of a power of 2, as we can see using
the binaryRep() function developed as an example in Section 6.4, page 161:

> binaryRep(c(-.45, .15))
Object of class "binaryRep"
1: -.11100110011001100110011001100110011001100110011001101 * 2∧-1

(-0.45)
2: .10011001100110011001100110011001100110011001100110011 * 2∧-2

(0.15)

In fact, we can see what probably happens in the computation:

> binaryRep(c(3 * .15))
Object of class "binaryRep"
1: .11100110011001100110011001100110011001100110011001100 * 2∧-1

(0.45)

Notice that the last bit is different from the representation of -.45; the
difference is in fact, 2−54, or 5.551115e-17.

There is nothing numerically incorrect in the computed result, but if you
prefer to get an exact zero in such sequences, remember that integer values
are likely to be exact. Rescaling an integer sequence would give you the
expected result:

> seq(-3, 3, 1) * .15
[1] -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45

Although seq() returns a result of type "integer", that is not the essential
point here. Integer values will be represented exactly as "double" numbers
so long as the absolute value of the integer is less than 2m, the length of the
fractional part of the representation (254 for 32-bit machines).

Numbers that are too large positively or negatively cannot be repre-
sented even closely; the floating-point standard models these numbers as
Inf and -Inf. Another range of numbers cannot be represented because
they are too close to zero (their exponents are too negative for the model).
These numbers are modeled by 0. In terms of arithmetic operations, these
two ranges of numbers correspond to overflow and underflow in older termi-
nology; in R, overflow and underflow just produce the corresponding values
in the floating-point standard, with no error or warning.

The standard specifies that arithmetic operations can also produce NaN.
If either operand is a NaN, the result will be also. In addition certain com-
putations, such as 0/0, will generate a NaN.
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The NaN pattern will immediately remind R users of the NA pattern, which
also represents an undefined value, although not just for floating-point num-
bers. The two patterns arose separately, but R treats NaN in numeric data
as implying NA. Therefore, for most purposes you should use the function
is.na() to test for undefined values, whether they arose through numerical
computations or from other sources. There is also a function is.nan() that
in principle detects only values generated from floating-point operations.
Much more important in thinking about undefined values than the distinc-
tion between NA and NaN is to be careful to treat either as a pattern, not
as a value. Always use the functions to detect undefined values rather than
testing with identical(), and certainly never use the `==` operator:

identical(x, NaN) # Never do this! Use is.nan() instead.

x == NA; x == NaN # Always wrong!

The first expression is lethally dangerous. The floating-point standard de-
fines NaN in such a way that there are many distinct NaN patterns. There is
no guarantee which pattern an internal computation will produce. There-
fore identical(x, NaN) may sometimes be TRUE and at other times FALSE

on numerical results for which is.nan(x) is TRUE. The second and third ex-
pressions always evaluate to NA and NaN, and so will always be wrong if you
meant to test for the corresponding condition.

Having warned against comparisons using the objects NA and NaN, we now
have to point out that they are quite sensible in some other computations.
For example, if input data used a special value, say 9999 to indicate missing
observations, we could convert those values to the standard NA pattern by
assigning with the NA object.

x[ x == 9999] <- NA

Just a moment, however. If you have been reading about the generally
inexact numeric representation of decimal numbers, you would be wise to ask
whether testing for exact equality is dangerous here. The answer depends
on how x arose; see below on page 196 for some discussion.

Similar computations can set elements to the floating-point NaN pattern:

x[ x < 0 ] <- NaN

When does it make sense to use NaN versus NA? Because the NaN pattern
is part of the floating-point standard, it’s natural to insert it as part of
a numeric calculation to indicate that the numeric value of the result is
undefined for some range of inputs. Suppose you wanted a function inv to
be 1/x, but only for positive values, with the transform being undefined for
negative values.
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invPos <- function(x) {
ifelse( x<0, NaN, 1/x)

}

Regular missing values (NA) will now be distinguished from numerically un-
defined elements.

> xx <- c(NA, -1, 0, 1, 2)
> invPos(xx)
[1] NA NaN Inf 1.0 0.5

Similar built-in mathematical functions follow the same pattern (for exam-
ple, log() and sqrt()), but with a warning message when NaN is generated.
The use of ifelse() here makes for simple and clear programming, but keep
in mind that the function evaluates all its arguments, and then selects ac-
cording to the first. That’s fine here, but you might need to avoid computing
the values that will not be used in the result, either because an error might
occur or because the computations would be too slow. If so, we would be
thrown back on a computation such as:

invPos <- function(x) {
value <- rep(NaN, length(x))
OK <- x >= 0
value[OK] <- 1/x[OK]

}

As an exercise: This version fails if x has NAs; how would you fix it?
Turning back to general treatment of NA, you may encounter a replace-

ment version of is.na():

is.na(x) <- (x == 9999)

The right side of the assignment is interpreted as an index into x and internal
code sets the specified elements to be undefined. The catch with using
the replacement function is interpretation: What is it supposed to do with
elements that are already missing? Consider:

> x <- c(NA, 0, 1)
> is.na(x) <- c(FALSE, FALSE, TRUE)

What should the value of is.na(x) be now? You could expect it to be the
pattern on the right of the assignment, but in fact the replacement does not
alter existing NA elements. (What value would it use for those elements?)

> is.na(x)
[1] TRUE FALSE TRUE

Given the ambiguity, I suggest using the direct assignment.



196 CHAPTER 6. BASIC DATA AND COMPUTATIONS

Numerical comparisons

Numerical comparisons are generally applied in R for one of two purposes:
filtering or testing. In filtering, a computation is to be applied to a portion
of the current data, with a numerical comparison determining that portion:

x[ x<0 ] <- NaN

In testing, a single logical value will control some step in a calculation,
maybe the convergence of an iterative computation:

if(abs(xNew - xOld) < xeps)
break

Discussions of numerical accuracy often mix up these situations, but the
whole-object computational picture in R makes them quite distinct. Con-
siderations of numerical accuracy and in particular of the effect of numer-
ical error in floating-point representation (so-called “rounding error”) have
some relevance to both. But it’s testing that provides the real challenge,
and rounding error is often secondary to other limitations on accuracy.

Having said that, we still need a basic understanding of how numerical
comparisons behave in order to produce trustworthy software using them.
The six comparison operators will produce logical vectors. The rules for
dealing with arguments of different length are those for operators generally
(see page 189). As with other operators, the wise design sticks to arguments
that are either the same length and structure, or else with one argument a
single numeric value.

The elements of the object returned from the comparison will be TRUE,
FALSE, or NA, with NA the result if either of the corresponding elements in the
arguments is either NA or NaN.

The two equality operators, `==` and `!=`, are dangerous in general sit-
uations, because subtle differences in how the two arguments were computed
can produce different floating-point values, resulting in FALSE comparisons
in cases where the results were effectively equal. Some equality comparisons
are safe, if we really understand what’s happening; otherwise, we usually
need to supply some information about what “approximately equal” means
in this particular situation.

Floating-point representation of integer numbers is exact as long as the
integers are within the range of the fractional part as an integer (for 64-bit
double precision, around 1017). Therefore, provided we know that all the
numeric computations for both arguments used only such integer values,
equality comparisons are fine.
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x[ x == 9999 ] <- NA

If the data were scanned from decimal text, for example, this test should be
valid. A safer approach is to apply the tests to the data as character vectors,
before converting to numeric, but this might not be simple if a function such
as read.table() was reading a number of variables at once.

As should be obvious, just the appearance of integer values when an
object is printed is no guarantee that equality comparisons are safe. The
following vector looks like integers, but examining the remainder modulo 1

shows the contrary:

> x
[1] 10 9 8 7 6 5 4 3 2 1 0
> x%%1
[1] 0.000000e+00 1.776357e-15 0.000000e+00 8.881784e-16
[5] 0.000000e+00 0.000000e+00 8.881784e-16 0.000000e+00
[9] 4.440892e-16 8.881784e-16 0.000000e+00

No surprise, after we learn that x<-seq(1.5,0,-.15)/.15, given the example
on page 192.

Using greater-than or less-than comparisons rather than equality com-
parisons does not in itself get around problems of inexact computation, but
just shifts the problem to considering what happens to values just on one
side of the boundary. Consider:

x[ x<0 ] <- NaN

This converts all negative numbers to numerically undefined; the problem is
then whether we are willing to lose elements that came out slightly negative
and to retain elements that came out slightly positive. The answer has to
depend on the context. Typically, the filtering comparison here is done so
we can go on to another step of computation that would be inappropriate
or would fail for negative values. If there is reason to retain values that
might be incorrectly negative as a result of numerical computations, the
only safe way out is to know enough about the computations to adjust
small values. It’s not just comparison operations that raise this problem,
but any computation that does something discontinuous at a boundary. For
example,

xx <- log(x)

has the same effect of inserting NaN in place of negative values. Once again, if
we need to retain elements computed to be slightly negative through inexact
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computation, some adjustment needs to be made and that in turn requires
considerable understanding of the context.

When we turn from filtering during the computation to testing for control
purposes, we have the additional requirement of choosing a single summary
value from the relevant object. R deals with objects, but tests and condi-
tional computations can only use single TRUE or FALSE values. Typical tests
discussed in the numerical analysis literature involve comparisons allowing
for a moderate difference in the low-order bits of the floating-point repre-
sentation, plus some allowance for the special case of the value 0. We saw
on page 192 that seemingly identical computations can produce small dif-
ferences in the floating-point representation of the result. For a non-zero
correct result, then, the recommendation is to allow for relative error cor-
responding to a few ulps (units in the last place). A correct value 0 is a
special case: If the correct test value is 0 then the computed value has to be
tested for sufficiently small absolute value, because relative error is mean-
ingless. There are some good discussions of how to do such comparisons
very precisely (reference [18]; also search the Web, for example for “IEEE
754”).

The first problem in applying tests in this spirit in practice is to deal
with objects, not single values. The function all.equal.numeric() in basic R

implements a philosophy designed to treat objects as equal if they differ only
in ways that could plausibly reflect inexact floating-point calculations. Given
arguments current and target and a suitable small number, tolerance, it
tests roughly:

mean(abs(current - target))/mean(abs(target)) < tolerance

as long as mean(abs(target)) is non-zero, and

mean(abs(current - target)) < tolerance

otherwise. Tests of this sort are fine as far as they go, but unfortunately
only apply to a small minority of practical situations, where there is a clear
target value for comparison and usually where deviations from the target
can be expected to be small.

We created the all.equal methods originally to test software for sta-
tistical models, when it was installed in a new computing environment or
after changes to the software itself. The tests compared current results to
those obtained earlier, not “exact” but asserted to be correct implemen-
tations, run in an environment where the needed numerical libraries also
worked correctly for these computations. (This is “regression” testing in
the computational, not statistical, sense.) Numerical deviations were only
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one aspect; all.equal() methods also check various structural aspects of
the current and target objects.

The general problem, unfortunately, is much harder and no automatic
solution will apply to all cases. Testing numerical results is an important
and difficult part of using statistical software. Providing numerical tests is
an equally important and difficult part of creating software. Most of the
difficulty is intrinsic: It is often harder to test whether a substantial numer-
ical computation has succeeded (or even to define clearly what “succeeded”
means) than it is to carry out the computation itself. Computing with R

does have the advantage that we can work with whole objects representing
the results of the computation, providing more flexibility than computa-
tions with single numbers or simple arrays. Also, the interactive context of
most R computation provides rich possibilities for choosing from a variety of
tests, visualizations, and summaries. It’s never wise to base an important
conclusion on a single test.

With all these disclaimers firmly in mind, we can still consider a sim-
ple style of test, analogous to the all.equal.numeric() logic above, to be
adapted to specific testing situations. Two relevant considerations corre-
spond to convergence and uncertainty. In convergence tests, one would
like to test how near the iterative computation is to the target, but natu-
rally the target is generally unknown. With luck, some auxiliary criterion
should apply at the target. In linear least-squares regression, for example, at
the target model the residuals are theoretically orthogonal to the predictor;
therefore, comparing the inner products of residuals with columns of X to
the value 0 would be a way of testing an iterative computation. Care is still
needed in choosing tolerance values for the comparison.

New methods for complicated problems often have no such outside crite-
rion. The natural inclination is then to test the iteration itself. The target

and current objects are taken to be the parameters of the model or some
other relevant quantity, from the current and previous iteration. Such a test
may work, and in any case may be all you can think of, but it is rarely
guaranteed and can be dangerously over-optimistic. Use it by all means,
if you must, but try to experiment thoroughly and if possible replace it or
calibrate by whatever theory you can manage to produce. Some examples
of related test criteria are discussed when we consider software for statistical
models in Section 6.9, page 218.

Issues of uncertainty, on the other hand, correspond to questions about
the data being used. Limitations in our ability to measure the data used in
a model or other statistical computation, or even limitations in our ability
to define what is being measured, must naturally translate into uncertainty
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in any parameters or other summaries computed. Some tests or measures
based on these uncertainties are essential as part of reporting a model if we
are not to run the risk of implying more accurate knowledge than we really
possess. If nothing else, it’s a good idea to do some simulations using as
plausible assumptions as can be made about the uncertainties in the data,
to see how reproducible are the results of the computation.

6.8 Matrices and Matrix Computations

Matrix computations are the implementation for much fundamental statis-
tical analysis, including model-fitting and many other tasks. They also have
a central role in a wide variety of scientific and engineering computations
and are the basis for several software systems, notably MATLAB R©. Matrices
play an important role in R as well, but less as the basic objects than as an
example of some general approaches to data and computation.

In spite of the conceptual difference, many matrix computations will look
similar in R to those in other systems. A matrix object can be indexed by
rows and columns. R includes most of the widely used numerical methods for
matrices, either in the base package or in add-on packages, notably Matrix.
The usual search lists and tools will likely find some functions in R to do
most common matrix computations.

This single section has no hope of covering matrix computations in de-
tail, but it examines the concept of a matrix in R, its relation to some other
concepts, such as general vector structures, and a variety of techniques of-
ten found useful in programming with matrix objects. We discuss different
techniques for indexing matrices and use these in an extended example of
constructing matrices with a particular pattern of elements (page 206). We
discuss the apply() family of functions (page 212), consider some basic nu-
merical techniques (page 214), and finally look briefly at numerical linear
algebra (page 216).

Moving from the inside out, first, the "matrix" class extends the "array"

class: a matrix is a multi-way array in which “multi” happens to be “two”.
The defining properties of an R matrix, its dimension and optional dimnames
are simply specializations of the same properties for a general multi-way
array. Indexing of elements is also the same operator, specialized to two
index expressions.

An array, in turn, is a special case of the classic S language concept of
a vector structure discussed in Section 6.3, page 154; that is, a vector that
has additional properties to augment what one can do, without losing the
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built-in vector computations, such as ordinary indexing by a single variable
and the many basic functions defined for vectors.

As a result of what a matrix is in R, there are some important things
it is not; most importantly, it is not itself a basic concept in the system,
contrasting with MATLAB, for example. Neither is the multi-way array a
basic concept, contrasting with the APL language, from which many of the
array ideas in the S language were derived. Arrays never stop being vectors
as well. Many useful computational techniques come from combining vector
and matrix ways of thinking within a single computational task.

To make a vector, x, into a matrix, information is added that defines
dim(x), its dimensions. For a matrix, dim(x) is the vector of the number of
rows and columns. The elements of x are then interpreted as a matrix stored
by columns. For general k-way arrays, the same information is added, but
dim(x) has length k. As a result, any vector can be made a matrix, not just
a numeric vector. The data part of a matrix can be a vector of any of the
basic types such as "logical", "character", or even "list".

The programming model for matrices, and for arrays in general, includes
the mapping between matrix indexing and vector indexing. That mapping
is defined by saying that the first index of the matrix or array varies most
rapidly. Matrices are stored as columns. Three-way arrays are stored as
matrices with the third index constant, and so on. Fortran prescribed the
same storage mechanism for multi-way arrays (not a coincidence, given the
history of S).

Because matrices in R are an extension of basic vectors rather than a
built-in structure at the lowest level, we might expect more specialized ma-
trix languages, such as MATLAB, to perform more efficiently on large matrix
objects. This is fairly often the case, particularly for computations that in
R are not directly defined in C.

Extracting and Replacing Subsets of a Matrix

To see how matrix and vector ideas work together, let’s consider expressions
to manipulate pieces of a matrix. Subsets of a matrix can be extracted or
replaced by calls to the `[` operator with four different forms for the index
arguments:

1. two index arguments, indexing respectively the rows and columns;

2. a single index argument that is itself a two-column matrix, each row
specifying the row and column of a single element;
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3. a single logical expression involving the matrix and/or some other
matrix with the same number of rows and columns;

4. a single numeric index, using the fact that matrices are stored by
column to compute vector index positions in the matrix.

All four techniques can be useful, and we will look at examples of each. The
first case returns a matrix (but see the discussion of drop= on page 203),
the other three return a vector. All four can be used on the left side of an
assignment to replace the corresponding elements of the matrix.

The third and fourth methods for indexing are not specially restricted to
matrices. In fact, we’re using some basic properties of any vector structure:
logical or arithmetic operations produce a parallel object with the same
indexing of elements but with different data. And any structure can be
subset by a logical vector of the same size as the object. Because a matrix or
other structure is also a vector by inheritance, comparisons and other logical
expressions involving the object qualify as indexes. This is the fundamental
vector structure concept in R at work.

Similarly, the indexing in the fourth form is matrix-dependent only in
that we have to know how the elements of the matrix are laid out. Similarly
for time-series or any other structure class, once we use knowledge of the
layout, any vector indexing mechanism applies.

Indexing rows and columns

The obvious way to index a matrix, x[i, j], selects the rows defined by
index i and the columns defined by index j. Any kind of indexing can be
used, just as if one were indexing vectors of length nrow(x) and ncol(x),
respectively. Either index can be empty, implying the whole range of rows
or columns. Either index can be positive or negative integers, or a logical
expression. Consider, for example:

x[ 1:r, -1 ]

The first index extracts the first r rows of the matrix, and in those rows the
second index selects all the columns except the first. The result will be an
r by ncol(x)-1 matrix. As with vectors, the same indexing expressions can
be used on the left of an assignment to replace the selected elements.

The result of selecting on rows and columns is itself a matrix, whose
dimensions are the number of rows selected and the number of columns
selected. However, watch out for selecting a single row or column. In this
case there is some question about whether the user wanted a matrix result or
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a vector containing the single row or column. Both options are provided, and
the choice is controlled by a special argument to the `[` operator, drop=.
If this is TRUE, single rows and columns have their dimension “dropped”,
returning a vector; otherwise, a matrix is always returned. The default is,
and always has been, drop=TRUE; probably an unwise decision on our part
long ago, but now one of those back-compatibility burdens that are unlikely
to be changed. If you have an application where maintaining matrix subsets
is important and single rows or columns are possible, remember to include
the drop=FALSE argument:

model <- myFit(x[whichRows,,drop=FALSE], y[whichRows])

Indexing with a row-column matrix

Row and column indices can be supplied to `[` as a single argument, in
the form of a two-column matrix. In this form, the indices are not applied
separately; instead, each row i of the index matrix defines a single element
to be selected, with [i, 1] and [i, 2] being the row and column of the element
to select. For an example, suppose we wanted to examine in a matrix, x, the
elements that corresponded to the column-wise maxima in another matrix,
x0 (maybe x0 represents some initial data, and x the same process at later
stages). Here’s a function, columnMax(), that returns a matrix to do this
indexing.

columnMax <- function(x0) {
p <- ncol(x0)
value <- matrix(nrow = p, ncol = 2)
for(i in seq(length = p))

value[i,1] = which.max(x0[,i])
value[,2] <- seq(length = p)
value

}

The function which.max() returns the first index of the maximum value
in its argument. The matrix returned by columnMax() has these (row) in-
dices in its first column and the sequence 1:p in its second column. Then
x[columnMax(x0)] can be used to extract or replace the corresponding ele-
ments of x.

> x0
[,1] [,2] [,3]

[1,] 11.4 11.0 9.2
[2,] 10.0 10.1 10.4
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[3,] 9.2 8.9 8.7
[4,] 10.7 11.5 11.2
> columnMax(x0)

[,1] [,2]
[1,] 1 1
[2,] 4 2
[3,] 4 3
> x

[,1] [,2] [,3]
[1,] 11.1 11.0 9.0
[2,] 9.6 10.1 10.5
[3,] 9.2 8.7 9.0
[4,] 10.7 11.6 11.0
> x[columnMax(x0)]
[1] 11.1 11.6 11.0

It takes a little thought to keep straight the distinction between indexing
rows and columns separately, versus indexing individual elements via a ma-
trix of row and column pairs. In the example above, suppose we take the
row indices, the first column, from columnMax(x0), and index with that:

> rowMax <- unique(columnMax(x0)[,1]); x[rowMax,]
[,1] [,2] [,3]

[1,] 11.1 11.0 9
[2,] 10.7 11.6 11

This does something different: it creates a new matrix by selecting those
rows that maximize some column of x0, but keeps all the corresponding
columns of x.

Notice the use of unique(), so that we don’t get multiple copies of the
same row. In indexing any object, R allows a positive integer index to appear
any number of times, and then repeats the same selection each time. Your
application may or may not want to replicate the selection, so remember to
eliminate any duplicates if it does not.

Indexing matrices with logical expressions

Logical index expressions typically involve the matrix whose values we want
to select or replace, or perhaps some companion matrix of the same dimen-
sions. For example, the value of a comparison operation on a matrix can be
used as a single index to subset that matrix. To set all the negative values
in x to NA:

x[ x < 0 ] <- NA
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(When dealing with missing values, watch out for the opposite computation,
however. To refer to all the missing values in x, use x[is.na(x)], and never
use NA in comparisons; see Section 6.7, page 192.)

Indexing in this form applies to any vector or vector structure, and
uses nothing special about matrices. However, two auxiliary functions for
matrices can be useful in logical indexing, row() and col(). The value of
row(x) is a matrix of the same shape as x whose elements are the index of the
rows; similarly, col(x) is a matrix containing the index of the columns of x.
The function triDiag() on page 207 shows a typical use of these functions.

Indexing matrices as vectors

The fourth indexing technique for matrices is to use knowledge of how a
matrix is laid out as a vector; namely, by columns. Logical indices are in a
sense doing this as well, because the logical expression ends up being treated
as a vector index. However, when the expression involves the matrix itself
or other matrices of related shape, the code you write should not require
knowledge of the layout.

In contrast, we now consider numeric index expressions explicitly involv-
ing the layout. Using these is somewhat deprecated, because the reliance on
the physical storage of matrix elements in R tends to produce more obscure
and error-prone software. On the other hand, knowledge of the layout is
required if you write C software to deal with matrices (Section 11.3, page
424). And computations for some general indexing are more efficient if done
directly. Don’t worry that the column-wise layout of matrix elements might
change. It goes back to the original desire to make objects in the S language
compatible with matrix data in Fortran.

If the matrix x has n rows and p columns, elements 1 through n of x

are the first column, elements n + 1 through 2n the second, and so on.
When you are programming in R itself, the arrangement works identically
regardless of the type of the matrix: "numeric", "logical", "character", or
even "list". Be careful in using non-numeric matrix arguments in the C

interface, because the declaration for the argument corresponding to the R

matrix must match the correct C type for the particular matrix (Section
11.3, page 424).

From examination of data manipulation functions in R, particularly the
seq() function and arithmetic operators, you can construct many special
sections of a matrix easily. For example, suppose we wanted to select or
replace just the elements of x immediately to the right of the diagonal; that
is, elements in row-column positions [1,2], [2,3], and so on. (Sections such
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as this arise often in numerical linear algebra.) As vector indices, these are
positions n + 1, 2n + 2, . . .. A function that returns them is:

upper1 <- function(x) {
n <- nrow(x); p <- ncol(x)
seq(from = n+1, by = n+1, length = min(p-1, n))

}

There is one small subtlety in defining functions of this form: computing
the length of the sequence. Often the length depends on the shape of the
matrix, specifically whether there are more columns or rows. Try out your
computation on matrices that are both short-and-wide and long-and-skinny
to be sure.

> xLong <- matrix(1:12, nrow = 4)
> xLong

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> xLong[upper1(xLong)]
[1] 5 10
> xWide <- matrix(1:12, nrow = 2)
> xWide

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> xWide[upper1(xWide)]
[1] 3 6

Example: Matrix indexing and tridiagonal matrices

To illustrate some additional techniques and to clarify the different mecha-
nisms, we will develop a function that can be implemented in different ways
by three of the four matrix indexing techniques. Let’s consider what are
called banded matrices, and in particular tri-diagonal matrices. A number
of numerical techniques with matrices involve special forms in which all the
elements are zero except for those on the diagonal or next to the diagonal.
In general, this means there are at most 3 nonzero elements in each row or
column, leading to the term tri-diagonal matrix. Multiplication by a banded
matrix applies linear combinations to nearby elements of each column or row
of another matrix. This technique aids in vectorizing a computation that
might otherwise involve looping over the rows of the matrix. We used this
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technique in the example on computing binary representations (Section 6.4,
page 163).

Suppose we wanted a function to construct a general tri-diagonal matrix.
The natural way to define the matrix is usually by specifying three vectors of
numbers, the diagonal, the values above the diagonal, and the values below
the diagonal. For example a 5 by 5 matrix of this form is:

[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 0 0 0
[2,] -1 2 1 0 0
[3,] 0 -1 2 1 0
[4,] 0 0 -1 2 1
[5,] 0 0 0 -1 2

In this case the diagonal is rep(2, 5), the upper off-diagonal elements are
rep(1, 4), and the lower off-diagonal elements rep(-1, 4). A nice utility
would be a function:

triDiag(diagonal, upper, lower, nrow, ncol)

If it adopted the usual R convention of replicating single numbers to the
length needed, and set ncol = nrow by default, we could create the matrix
shown by the call:

triDiag(2, 1, -1, 5)

Three different matrix indexing techniques can be used to implement func-
tion triDiag(). (All three versions are supplied with the SoDA package, so
you can experiment with them.)

An implementation using logical expressions is the most straightforward.
The expressions row(x) and col(x) return matrices of the same shape as x

containing the corresponding row and column indices.

> row(x)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
[4,] 4 4 4 4 4
[5,] 5 5 5 5 5

This immediately tells us how to implement the triDiag() function: the
upper diagonal elements always have a column index one greater than the
row index, and conversely the lower diagonal elements have row index one
greater than the column index. The diagonal has equal row and column
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indices, but another useful auxiliary matrix function, diag(), lets us con-
struct the matrix with its diagonal elements already in place, and all other
elements set to 0. Here, then, is a definition of triDiag():

triDiag <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- diag(diagonal, nrow, ncol)
R <- row(value)
C <- col(value)
value[C == R + 1] <- upper
value[C == R - 1] <- lower
value

}

The value is created initially with the specified diagonal elements. Then the
upper and lower off-diagonal elements are inserted using logical expressions,
on the left of an assignment, to replace the correct elements. The function
diag() and the two replacements use the standard R rule of replicating single
values to the necessary length.

A second version of tridiag() can be implemented using a single matrix.
The implementation is not as simple, but has some efficiency advantages for
large problems that are typical of using explicit indices. Once again we
use the fact that the upper diagonal has column indices one greater than
row indices, and the lower diagonal has column indices one less than row
indices. But in this case we will construct explicitly the two-column matrix
with the row and column indices for each of these. For the moment, assume
the desired matrix is square, say r by r. Then the upper diagonal is the
elements [1, 2], [2, 3], . . ., [r-1, r]. The matrix index corresponding to
the upper diagonal has 1:(r-1) in its first column and 2:r in its second
column. Given these two expressions as arguments, the function cbind()

computes just the index required. The whole computation could then be
done by:

value <- diag(diagonal, nrow = nrow, ncol = ncol)
rseq <- 2:r
value[cbind(rseq-1, rseq)] <- upper
value[cbind(rseq, rseq-1)] <- lower

What makes this version more efficient than the logical expressions above
for large problems? Only that it does not create extra matrices of the same
size as x, as the previous implementation did. Instead it only needs to create
two matrices of size 2*r. Don’t take such considerations too seriously for
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most applications, but it’s the sort of distinction between “quadratic” and
“linear” requirements that can be important in extreme situations.

What makes this version more complicated is that the precise set of
elements involved depends on whether there are more rows or columns. The
expressions shown above for the case of a square matrix will not work for the
non-square case. There will be nrow upper-diagonal elements, for example,
if ncol>nrow, but only nrow-1 otherwise. Conversely, there are min(ncol,

nrow-1) lower diagonal elements.

> triDiag(2, 1, -1, 4, 6)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2 1 0 0 0 0
[2,] -1 2 1 0 0 0
[3,] 0 -1 2 1 0 0
[4,] 0 0 -1 2 1 0
> triDiag(2, 1, -1, 6, 4)

[,1] [,2] [,3] [,4]
[1,] 2 1 0 0
[2,] -1 2 1 0
[3,] 0 -1 2 1
[4,] 0 0 -1 2
[5,] 0 0 0 -1
[6,] 0 0 0 0

The general implementation of triDiag() using matrix index arguments
then has the following form.

triDiag2 <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- diag(diagonal, nrow = nrow, ncol = ncol)
n <- min(nrow, ncol-1)
if(n>0) {

rseq <- 1:n
value[cbind(rseq, rseq+1)] <- upper

}
n <- min(nrow-1, ncol)
if(n > 0) {

rseq <- 1:n
value[cbind(rseq+1, rseq)] <- lower

}
value

}

We also needed to look out for “degenerate” cases, where the resulting lower-
or upper- diagonal was missing altogether (of length 0). Convince yourself
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that the logical expressions involving row(x) and col(x) take care of all these
variations.

As a third implementation, let’s consider using the explicit layout of a
matrix to analyze the index values needed to fill in the data elements, and
derive a simple computation to generate them. The implementation will
repay presenting in detail (perhaps somewhat more than the actual function
deserves) because the process of analysis illustrates a useful approach to
many problems. We will derive a pattern for the data needed, and find
some R utilities that generate this pattern as an object.

Let’s look again at the example of a tridiagonal matrix, but this time
thinking about the storage layout.

[,1] [,2] [,3] [,4] [,5]
[1,] 2 1 0 0 0
[2,] -1 2 1 0 0
[3,] 0 -1 2 1 0
[4,] 0 0 -1 2 1
[5,] 0 0 0 -1 2

Starting with the first column, what are the index values for the non-zero
elements? The first and second row of the first column are the first two
elements; then the first three elements in the second column; then the second
through fourth in the third column; and so on, shifting down one index for
the three non-zero elements in each successive column. With a matrix having
n rows, the non-zero elements appear in positions with the following pattern:
1, 2, n + 1, n + 2, n + 3, 2n + 2, 2n + 3, 2n + 4, 3n + 3, 3n + 4, 3n + 5,
. . .. These come in triples, except for the first two. Let’s make each triple
correspond to the row of a matrix. Notice that the first element of each row
is a multiple of n + 1, the second adds 1 to the first and the third adds 2 to
the first. 

−− 1 2
(n + 1) (n + 1) + 1 (n + 1) + 2

2(n + 1) 2(n + 1) + 1 2(n + 1) + 2
· · ·


If we fill the empty upper-left element with 0, it becomes obvious that the
matrix can be computed by adding (0, 1, 2) for the columns and (0, (n +
1), 2(n + 1), . . . for the rows.

The pattern of applying a function to a set of row values and a set of
column values occurs in many matrix computations. It is handled by the
R function outer(), which takes row values, column values, and the applied
function as its arguments. The name outer refers to the outer product of
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two vectors, but instead of multiplying elements here, we add them; with
n = 5,

> outer((0:4)*6, 0:2, `+`)
[,1] [,2] [,3]

[1,] 0 1 2
[2,] 6 7 8
[3,] 12 13 14
[4,] 18 19 20
[5,] 24 25 26

Convince yourself that the 3 columns are in fact the positions of the upper-
diagonal, diagonal, and lower-diagonal non-zero elements of a 5 by 5 matrix,
with the exception that the [1,1] element and the [5,3] element of the index
matrix are outside the range, and have to be dropped out by our function.
The third argument to outer() uses “backtick” quotes to pass in a name for
the operator, `+`.

By extracting the suitable elements of the three columns from the index
matrix, we can insert the correct upper, diagonal, and lower values. Here
then is a third definition of triDiag():

triDiag3 <- function(diagonal, upper, lower,
nrow = length(diagonal), ncol = nrow) {

value <- matrix(0, nrow = nrow, ncol = ncol)
r <-max(nrow, ncol)
if(r > 1) {

nu <- min(nrow, ncol-1)
nl <- min(nrow-1, ncol)
index <- outer((0:nu)*(nrow+1), 0:2, `+`)
value[index[1:min(nrow, ncol), 2]] <- diagonal
if(nu > 0)

value[index[-1, 1]] <- upper
if(nl > 0)

value[index[1:nl, 3]] <- lower
}
value

}

As with the second version of triDiag(), the number of lower- and upper-
diagonal elements depends on whether there are more rows or columns in
the matrix. By experimenting with the function (supplied in package SoDA),
you can test whether the range of values inserted is indeed correct for square,
wide, and skinny matrices.
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In this version, we need to be even more careful about special cases. The
compensation is that the call to outer() does all the actual index calculations
at once. This version also generalizes to an arbitrary “bandwidth”, that is
to upper- or lower-diagonal elements removed by more than just one place
from the diagonal.

The apply() functions

One frequently wants to assemble the results of calling a function repeatedly
for all of the rows or all of the columns of a matrix. In the columnMax()

example on page 203, we assembled a vector of all the row indices maximizing
the corresponding columns, by iterating calls to the function which.max()

for each column. The function apply() will perform this computation, given
three arguments: a matrix, a choice of which dimension to “apply” the
function to (1 for rows, 2 for columns), and a function to call. A single call
to apply() will then produce the concatenated result of all the calls.

In the case of columnMax(), using apply() allows the function to be
rewritten:

columnMax <- function(x0) {
p <- ncol(x0)
cbind(apply(x0, 2, which.max),

seq(length = p))
}

We showed apply() used with a matrix, and this indeed is the most common
case. The function is defined, however, to take a general multi-way array
as its first argument. It also caters to a wide range of possibilities for de-
tails such as the shape of the results from individual function calls and the
presence or not of dimnames labels for the array. See ?apply for details.

The apply() idea is more general than arrays, and corresponds to the
common notion of an iteration operator found in many functional languages.
The array version came first, and stole the general name "apply", but a
number of other functions apply a function in iterated calls over elements
from one or more lists: lapply(), mapply(), rapply(), and sapply(). The
first three differ in the way they iterate over the list object(s), while the
last attempts to simplify the result of a call to lapply(). For an example of
mapply(), see Section 8.6, page 319.

There are at least two reasons to prefer using apply() and friends to an
explicit iteration.

1. The computation becomes more compact and clearer.
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2. The computation should run faster.

The first of these is often true, and certainly applies to the columnMax() ex-
ample. The second reason, however, is more problematic, and quite unlikely
for apply() itself, which is coded in R, though carefully. The other functions
do have a chance to improve efficiency, because part of their computation
has been implemented in C. However, none of the apply mechanisms changes
the number of times the supplied function is called, so serious improvements
will be limited to iterating simple calculations many times. Otherwise, the
n evaluations of the function can be expected to be the dominant fraction
of the computation.

So, by all means use the apply() functions to clarify the logic of com-
putations. But a major reprogramming simply to improve the computation
speed may not be worth the effort.

One detail of apply() that sometimes causes confusion is its behavior
when we expect to construct a matrix or array result. The function works
by concatenating the results of successive calls, remembering each time the
length of the result. If the length is identical each time, the result will be
a vector (for results of length 1) or a matrix (for vector results of length
greater than 1). But the matrix is defined, naturally enough, by taking the
length as the first dimension, because that’s the way the values will have
been concatenated.

Users may be surprised, then, if they apply a function to the rows that
always returns a result that looks like the row (i.e., of length ncol(x)). They
might expect a matrix of the same shape as x, but instead the result will be
the transpose of this shape. For example:

> xS
[,1] [,2] [,3]

[1,] 6 9 12
[2,] 2 3 5
[3,] 8 11 10
[4,] 1 4 7
> apply(xS,1,order)

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 3 2
[3,] 3 3 2 3
> apply(xS,2,order)

[,1] [,2] [,3]
[1,] 4 2 2
[2,] 2 4 4
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[3,] 1 1 3
[4,] 3 3 1

Just remember to transpose the result when applying over rows.

Numerical computations with matrices

Numerical matrix computations, including those based on mathematical
ideas of linear algebra, are fundamental to many statistical modeling and
analysis techniques. Matrix computations are also useful ways to formulate
computations that might otherwise be programmed as iterations of elemen-
tary arithmetic, with the matrix version being significantly more efficient
for large problems.

In fact, some numerical computations with matrices may be measur-
ably more efficient in terms of CPU time than other computations that do
the same number of arithmetic operations. Examples include matrix mul-
tiplication and other similar operations, usually based on inner products,∑n

i=1 xiyi, or scalar products, {yi + axi, i = 1, · · · , n}. Subprograms for
these, usually in Fortran, are known as Basic Linear Algebra Subroutines, or
BLAS. The computations done by these subprograms are themselves quite
simple and capable of being programmed efficiently. But at the same time
a number of higher-level operations can be programmed to do much of their
computation through calls to the BLAS routines, leading to efficient im-
plementations, even for quite large problems. Matrix multiplication, for
example, is just an iteration of inner products. Many decompositions of
numerical linear algebra use BLAS for most of their numerical computation.
Linear least-squares fitting, in turn, can be written in terms of numerical
decompositions and other efficient matrix operations.

R users don’t need to be aware of the underlying operations directly.
Functions for numerical linear algebra, statistical models and other applica-
tions will make use of the operations through interfaces to compiled code..
If you are installing R from source on a special computing platform, some
extra steps may be needed to ensure you get efficient versions of the sub-
programs. See the installation instructions and related Web pages and FAQ
lists for your particular platform.

But when does the speed really matter? Throughout this book, our
Mission is exploring data—asking questions and trying out new ideas—and
the other essential criterion is the Prime Directive—providing trustworthy
software. Blazingly fast numerical computation does not directly relate to
the Prime Directive and only serves the Mission when it widens the range
of potential computations. The CPU unit on your computer is likely to be
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idle most of the time, and so it should be if you are spending that time
constructively thinking about what you want to do or contemplating some
interesting data analysis. For many applications the difference between a
very fast numerical method and a similar, less optimized computation would
be barely noticeable. It would be a mistake to choose a computation because
of numerical speed, if an alternative choice would give more informative
results. Having said all that, there remain applications that test the speed
of even current computers. Knowing about fast methods can occasionally let
us ask questions for such applications that would otherwise not be practical.
If you think you have computing needs at this level, by all means try to
apply the matrix techniques to your application (see, for example, Section
6.4, page 161, where some of these techniques are applied to “vectorize” a
computation).

Matrix operations and matrix arithmetic

Matrices in R that contain numerical data can be used with all the standard
arithmetic and comparison operators. The computations work element-by-
element and generally return a matrix of the same dimension as the argu-
ments. Consider computations such as:

x + y; x / y; x ∧ y; x %% y; x >= y;

When either x or y is a matrix, the correct answer is obvious if the other
argument is either another matrix of the same dimensions or a numeric
vector of length 1 (a “scalar”). So, if x is an n by p matrix, the result of
each of the following expressions is also a matrix of this shape:

x ^ 2; x + 1/x; abs(x) >= .01

As the third example shows, the various mathematical and other functions
that operate elementwise return a matrix with unchanged dimensions when
called with a matrix argument.

Operators called with matrix arguments other than the two cases above
are always less clearly defined. R allows a few without comment, warns on
some, and generates an error on others.

1. An error results if the arguments are two matrices of different dimen-
sions.

2. An error also results if one argument is a vector larger than the matrix
(i.e., of length greater than np).
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3. If one argument is a vector exactly of length np, the computation
completes silently.

4. If one argument is a vector of length less than np, the vector is im-
plicitly repeated to be of length np. If the original vector was the
length of a column, n, the computation silent; otherwise, a warning is
generated.

Getting the answer you expect from the last two cases depends on knowing
the representation of a matrix; namely, as a structure with data stored by
columns.

Numerical linear algebra

This section outlines some of the central tools for numerical computations
on matrices, the functions implementing key concepts in numerical linear
algebra, particularly computations related to statistical computing. Most of
the functions interface to implementations in Fortran or C of corresponding
algorithms. Many of the algorithms are taken directly or with some modifi-
cation from LAPACK, a collection of Fortran subroutines well tuned for both
accuracy and speed.

Applications of linear algebra in statistical computing largely come from
considering linear combinations of quantitative variables. The standard
functions for linear models and analysis of variance, as supplied in the stats

package, and extended in a number of other R packages, provide users with
an interface to the models that largely hides the underlying linear algebra.
You should use functions at that higher level unless you really need to work
with the fundamental linear algebra relations directly. If you’re uncertain,
read the documentation for related statistical model software and determine
whether it could meet your needs. If so, use it, because many details will
be handled that could otherwise compromise the quality of the computed
results.

If you really do want to deal with the linear algebra directly, press on,
but you may still want to use utilities from the statistical models software
to convert from variables such as factors into the matrix arguments used for
linear algebra; see, for example, ?data.matrix and ?model.frame.

The fundamental role of linear algebra in statistical computing dates
back a couple of centuries, and is based on the ability to solve two related
computational problems. The first is to find a vector or matrix β that
satisfies a set of linear equations. Using the S language operator, `%*%`, for
matrix multiplication:
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a %*% β = b

where a is a square, p by p, matrix and b is either a vector of length p or
a matrix with p rows. The second problem is linear least-squares, finding a
vector or matrix β that minimizes the column sums of squares

y - x %*% β

where x is an n by p matrix and y is either a vector of length n or a matrix
with n rows.

R functions to solve both of these problems are available and apply to
most applications. They are solve() for linear equations and lm.fit() for
least squares. If your application seems to be expressed naturally as one or
the other of the two numerical problems, you can probably go away now and
use the appropriate function. If you think you need to dig deeper, read on.

The main computational tools for these problems use some fundamental
matrix decompositions, that is, the computation of special matrices and
vectors which if combined, usually by matrix multiplication, would closely
approximate the original matrix. The special forms of the decomposition
allow them to express the solution to the two problems straightforwardly in
most cases, and also make them useful tools in other problems. To see how
these relate to modern numerical linear algebra, a little history is needed.

Prior to large-scale electronic computing, the linear least-squares prob-
lem would be solved by reducing it to a special linear equation. Linear
equations, in turn, could be solved for at least single-digit values of p. When
computers came along, software to solve linear equations was very high prior-
ity, particularly motivated by military applications and problems in physics.
From about the 1960’s, software based on matrix decompositions was de-
veloped for linear equations, for direct solutions to least-squares problems,
and for other problems, such as solving differential equations. The program
libraries implementing these results have continually improved in accuracy,
speed, and reliability. In particular, the LAPACK software for linear algebra
is the current reference for numerical linear algebra, and forms the base for
these computations in R.

What does this history imply for modern statistical computing? First,
that computations expressed in terms of the standard operations of linear
algebra can be applied with confidence, even for quite large problems. If
the matrices involved are not so large that manipulating them in R at all is
impractical, then at least some operations of linear algebra will also likely be
practical for them. Second, a fairly wide range of other computations can be
usefully solved by reducing them to operations in linear algebra, either di-
rectly through some imaginative re-casting (see the discussion of vectorizing
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in Section 6.4, page 158) or by an iterative computation where each iteration
is carried out by linear computations (as is the case for some important sta-
tistical models). The speed and accuracy provided by LAPACK and similar
software means that iterated linear computations may be competitive with
other implementations, even though the amount of “arithmetic” seems to
be larger.

In addition to the functions for fitting statistical models and the func-
tions solve() and lm.fit() to solve equations and least-squares problems,
the base code for R provides access to several matrix decompositions. These
organize themselves naturally on two dimensions; first, on whether the ma-
trix in question is rectangular or square; and, second, between simple de-
compositions and those that maximize an approximation for each submatrix.
The simple decompositions are mainly the qr() function for the QR decom-
position, for rectangular matrices; and the chol() function for the Choleski
decomposition, essentially for cross-products and other matrices with similar
form. The maximizing decompositions are function svd() for the singular-
value decomposition of rectangular matrices and eigen() for the eigenvalue
decomposition of symmetric square matrices. See the online documentation
and the references there for some of the details. To really understand the
decomposition will require digging into the numerical analysis background.
Try the documentation of LAPACK and good books on the subject, such as
Matrix Algorithms by G. W. Stewart [22].

Beyond the base code for R, there are now a number of packages that
extend the range of numerical linear algebra software available. If you have
special needs, such as computations for sparse matrices or other decomposi-
tions, browse in the documentation for the Matrix package by Douglas Bates
and Martin Maechler.

6.9 Fitting Statistical models

R and S-Plus both contain software for fitting and studying the types of sta-
tistical model considered in the book Statistical Models in S [6]. Many of
the techniques described in the book are supplied in the stats package; a
number of other packages fill in the gaps and add other similar types of
models or additional techniques. From a programming viewpoint the essen-
tial property of the software is that it takes a functional, object-based view
of models. For software details, see documentation of the stats package.
In addition to the original reference, nearly all the general introductions
to statistics using R cover the basics; Modern Applied Statistics with S by
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Venables and Ripley [23] gives a broad, fairly advanced treatment.
There are many other sources of software for statistical models as well

(notably for Bayesian model inference and graph-based model formulations).
We will not cover any of these here; in many cases, there are either R im-
plementations or R interfaces to software implemented in other languages.
Good starting points for a search are the "Related Projects" pointer on the
R home page and the usual Web search resources, such as rseek.org.

In the Statistical Models in S approach, the functions to fit various types
of model all take two primary arguments, a formula expressing the structure
of the model and a source of data; they then return an object representing
a fitted model estimated according to the arguments. The type of model
(linear least-squares, etc.) depends on the choice of function and possibly
also on other arguments.

The various top-level fitting functions can be viewed as generators for
corresponding classes of objects. For example, the function lm() fits a lin-
ear model using least-squares to estimate coefficients corresponding to the
formula and data supplied, and returns an object of (S3) class "lm", whose
elements define the fit.

Other functions then take the fitted model object as an argument and
produce auxiliary information or display the model in graphical or printed

and fitted(), with the interpretation depending on the type of model. The
function update() will allow modification of the fitted model for changes
in the data or model. These are S3 generic functions, with methods corre-
sponding to the class of the fitted model. General functions such as plot(),
print(), and summary() also have S3 methods for most classes of models.

The various model-fitting functions share the same main arguments and,
for the most part, similar computational structure. Here are the main steps,
using lm() as an example. The functions generally have arguments formula

and data, and it is from the combination of these that the model-fitting
proceeds:

lm(formula, data, ...)

Caution: formula is always the first argument, but data is not always the
second: check the arguments for the particular function.

The formula argument must be an object of the corresponding "formula"

class, which is generated by a call to the `∼` operator. That operator
returns its call as its value, promoted to the "formula" class, meaning that
the formula is essentially a symbolic constant describing the structure of

form. Functions specifically related to the model software include residuals()
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the model, with one sometimes crucial addition: It has an attribute with a
reference to the environment in which the call took place.

The convention is to read the `∼` as “is modeled by”, so the left-side
argument to the operator is the variable or derived quantity being modeled
and the right-side argument is the expression for the predictor. Just how the
arguments are interpreted depends on the kind of model. Linear models and
their extensions use conventions about the meaning of other operators (`+`,
`*`, and `:`) to indicate combinations of terms, along with other functions
that are interpreted as they usually would be in R. Other models will use
other conventions.

The data argument is optional and if supplied is usually an object of S3
class "data.frame", containing named variables, each of which corresponds
to values on the same n observations. Some of the names will typically
appear in the formula object, and if so, those variables will be used in
fitting the model.

Section 6.5, page 168 discusses "data.frame" objects generally. For
model-fitting, some classes of variables that are valid in a data frame may
not be valid in a particular type of model. Linear models and their exten-
sions in glm() and gam() essentially only allow numeric predictors, which can
be supplied as "numeric", "matrix" or "factor" objects. The matrix must
be numeric with n rows. A factor is included by being coded numerically
using contrasts to differentiate observations according to the levels of the
factor.

The formula and data arguments are used to prepare the more explicit
data required to fit the model. The form depends on the type of model but
again linear models provide an example typical of many types of model.

The preparation of a linear model for actual fitting by lm.fit() proceeds
in two steps. First, a data frame containing the specific variables implied by
the formula and data arguments is computed by the model.frame() function.
Then the matrix for the linear model fitting itself is computed from the
model frame by the model.matrix() function.

The computation of the model frame brings the formula and the supplied
data frame together, evaluating expressions derived from the formula by an
explicit call to eval(). The purpose of the call is to form a data frame
containing all the variables appearing in the formula; this is the “model
frame” object. The model frame also has a "terms" object as an attribute;
essentially, this is the formula with some extra attributes. When the data

argument is supplied and all the variables in the model are found in that
object, the result is to select the suitable variables, and all is well. That’s
the trustworthy approach: Assemble all the relevant variables explicitly in a
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data frame, and supply that data frame to the model-fitting function (lm(),
gam(), etc.).

Otherwise, the computations for the model frame must look elsewhere
for some or all of the variables. The critical fact is that the computations
look in the environment of the formula object, stored in the object as the
environment where the formula was created.

If the formula was typed by the user interactively, then the call came
from the global environment, meaning that variables not found in the data
frame, or all variables if the data argument was missing, will be looked up in
the same way they would in ordinary evaluation. But if the formula object
was precomputed somewhere else, then its environment is the environment
of the function call that created it. That means that arguments to that call
and local assignments in that call will define variables for use in the model
fitting. Furthermore, variables not found there will be looked up in the
parent (that is, enclosing) environment of the call, which may be a package
namespace. These rules are standard for R, at least once one knows that an
environment attribute has been assigned to the formula. They are similar
to the use of closures described in Section 5.4, page 125.

Where clear and trustworthy software is a priority, I would personally
avoid such tricks. Ideally, all the variables in the model frame should come
from an explicit, verifiable data source, typically a data frame object that
is archived for future inspection (or equivalently, some other equally well-
defined source of data, either inside or outside R, that is used explicitly to
construct the data for the model).

Once the model formula and (in the case of linear-style models) the
model matrix have been constructed, the specific fitting mechanism for this
class of models takes over, and returns an object from the corresponding
S3 class, such as "lm", "gam", "nls" and many more. The mechanisms
and the interpretation of the fitted model objects that result vary greatly.
Generally, however, you can get a good picture of the programming facilities
provided by looking for S3 methods associated with the generic functions for
models (residuals(), update(), etc.) and for printed or graphical summaries
(print(), summary(), plot(), etc.).

6.10 Programming Random Simulations

This section considers some programming questions related to the use of

Carlo method.
pseudo-random generators, or less directly, computations involving the Monte-
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We begin by summarizing the overall organization of simulation func-
tions in R, with an assessment of the level of trust one can have in their
“correctness”. A second issue for trustworthy simulation results is that oth-
ers can reproduce them; on page 226 we discuss techniques for this goal.
We then show a related example that examines how robust a simulation
is to small failures in reproducibility (page 230). Finally, on page 234, we
consider the use of generators in low-level code, such as C or C++, which we
may want to use for efficiency.

The starting point for simulating in R is a set of “random generator”
functions that return a specified number of values intended to behave like a
sample from a particular statistical distribution. Because no common gen-
erators in practice use an external source thought to be truly random, we
are actually talking about pseudo-random generators; that is, an ordinary
computation that is meant to simulate randomness. We follow common cus-
tom in this section by dropping the “pseudo-” when we talk about random
generators; you can mentally put it back in, and prepend it to statements
about how “likely” some event is, or to other properties of sequences from
pseudo-random generators.

Basic concepts and organization

R provides random generators for a variety of statistical distributions as
well as some related generators for events, such as sampling from a finite
set. Conceptually, all the generators in the stats package work through the
package’s uniform generator, either at the R level or the C level. This leads
to the key techniques for achieving trustworthy software for simulation, as
we explore on page 226, but the concept is worth noting now.

Random generators don’t follow the functional programming model, as
implemented in R or in most other systems, because they depend on a cur-
rent global state for the generator. How would we formulate a functional
approach to simulation? Given that all generators work through the uni-
form generator, we could imagine an object that is our personal stream of
uniform random numbers. If this stream was an argument to all the actual
generators and to any other function for simulation, then all the remaining
computations can be defined in terms of the stream. In practice, this would
require quite a bit of reorganization, but the essential point is that no other
external dependence is required.

In practice, such a stream is represented by a seed for the generator. A
combination of techniques in the stats package and some extensions in the
SoDA package can get us trustworthy software, essentially by incorporating
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sufficient state information with the computed results.
Functions for probability distributions in R are organized by a naming

tradition in the S language in which the letters "r", "p", "q", and "d" are
prepended to a fixed name for a distribution to specify functions for random
numbers, cumulative probability, quantiles, and density function values for
the distribution. So, "unif" is the code for the uniform distribution, result-
ing in functions runif(), punif(), qunif(), and dunif() (admittedly, none
but the first of these is hard to program). Similar functions are defined for
the normal ("norm"), Poisson ("pois"), and a number of others, all on the
core package stats; to look for the distribution you need, start with:

help.search("distribution", package = "stats")

Some distributions may not have all four functions. If no random generator
is provided but a quantile function does exist, you can get a random sample
by what’s known as the probability integral transformation, which just says to
compute the quantiles corresponding to a sample from the standard uniform
distribution. The Studentized range ("tukey") distribution has a quantile
version but no random generator, so you could define a rough version for it
as:

rtukey <- function(n, ...)
qtukey(runif(n), ...)

Where some functions are missing, there may be numerical issues to consider,
so it’s a good idea to check the documentation before putting too much faith
in the results.

Additional random generators are supplied in other packages on CRAN

and elsewhere; for these non-stats generators, especially, you should check
whether they are integrated with the basic uniform generator if trustworthy
results are important.

Are pseudo-random generators trustworthy?

From early days, statistical users of generators have asked: “Can the num-
bers be treated as if they were really random?”. The question is difficult
and deep, but also not quite the relevant one in practice. We don’t need
real randomness; instead, we need to use a computed simulation as the ap-
proximate value of an integral (in simple cases) or an object defined as a
probabilistic limit (for example, a vector of values from the limiting distri-
bution of a Markov chain). All we ask is that the result returned be as good
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an approximation to the limit value as probability theory suggests. (We’d
even settle for “nearly as good”, if “nearly” could be quantified.)

Good current generators justify cautious confidence, with no absolute
guarantees, for all reasonably straightforward computations. Popular gen-
erators, such as the default choice in R, have some theoretical support
(although limited), have performed adequately on standard tests, and are
heavily used in an increasingly wide range of applications without known
calamitous failures. R’s default generator is also blazingly fast, which is an
important asset as well, because it allows us to contemplate very extensive
simulation techniques.

If this sounds like a lukewarm endorsement, no radically better support
is likely in the near future, as we can see if we examine the evidence in a
little more detail.

As in the stats package, we assume that all simulations derive from
a uniform pseudo-random generator, that is, a function that simulates the
uniform distribution on the interval 0 < x < 1. Function runif() and
a corresponding routine, unif_rand, at the C level are the source of such
numbers in R.

If one completely trusted the uniform generator, then that trust would
extend to general simulations, as far as approximating the probabilistic limit
was concerned. There would still be questions about the logical correctness
of the transformation from uniforms to the target simulation, and possibly
issues of numerical accuracy as well. But given reassurances about such
questions, the statistical properties of the result could be counted on.

The evidence for or against particular generators is usually a combination
of mathematical statements about the complete sequence, over the whole
period of the generator, and empirical tests of various kinds. A complete
sequence is a sequence from the generator with an arbitrary starting point
such that, after this sequence, the output of the generator will then repeat.

Generators going back to the early days provide equidistribution on the
complete sequence. That is, if one counts all the values in the sequence that
fall into bins corresponding to different bit representations of the fractions,
the counts in these bins will be equal over the complete sequence. More
recent generators add to this equidistribution in higher dimensions; that is,
if we take k successive numbers in the sequence to simulate a point in a
k-dimensional unit cube, then the counts in these k-dimensional bins will
also be equal over the complete sequence.

Such results are theoretically attractive, but a little reflection may con-
vince you that they give at best indirect practical reassurance. The period
of most modern generators is very long. The default generator for R, called
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the “Mersenne-Twister” has a period a little more than 106000, effectively
infinite. (To get a sense of this number, I would estimate that a computer
producing one random uniform per nanosecond would generate about 1025

numbers, an infinitesimal fraction of the sequence, before the end of the
earth, giving the earth a rather generous 10 billion years to go.)

Sequences of a more reasonable length are not directly predictable, nor
would you want them to be. Exact equidistribution over shorter subse-
quences is likely to bias results.

A more fundamental limitation of equidistribution results, however, is
that most use of generators is much less regular than repeated k-dimensional
slices. Certainly, if one is simulating a more complex process than a sim-
ple sample, the sequence of generated numbers to produce one value in the
final set of estimates will be equally complex. Even for samples from dis-
tributions, many algorithms involve some sort of “rejection” method, where
candidate values may be rejected until some criterion is satisfied. Here too,
the number of uniform values needed to generate one derived value will be
irregular. Some implications are considered in the example on page 230.

Turning to empirical results, certainly a much wider range of tests is pos-
sible. At the least, any problem for which we know the limiting distribution
can be compared to long runs of a simulation to test or compare the gener-
ators used. Such results are certainly useful, and have in the past shown up
some undesirable properties. But it is not easy to devise a clear test that
is convincingly similar to complex practical problems for which we don’t
know the answer. One needs to be somewhat wary of the “standardized test
syndrome” also, the tendency to teach students or design algorithms so as
to score well against standardized tests rather than to learn the subject or
do useful computations, respectively.

The results sound discouraging, but experience suggests that modern
generators do quite well. Lots of experience plus specific tests have tended
to validate the better-regarded generators. Subjective confidence is justified
in part by a feeling that serious undiscovered flaws are fairly unlikely to
coincide with the pattern of use in a particular problem; based on something
of a paraphrase of Albert Einstein to the effect that God is mysterious but
not perverse.

To obtain this degree of confidence does require that our results have
some relation to the theoretical and empirical evidence. In particular, it’s
desirable that the sequence of numbers generated actually does correspond
to a contiguous sequence from the chosen generator. Therefore, all the
generators for derived distributions should be based in a known way on
uniform random numbers or on compatible R generators from the standard
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packages. New generators implemented at the level of C code should also
conform, by using the standard R routines, such as unif_rand. One wants
above all to avoid a glitch that results in repeating a portion of the generated
sequence, as could happen if two computations used the same method but
inadvertently initialized the sequence at two points to the same starting
value. Taking all the values from a single source of uniforms, initialized
once as discussed below, guards against that possibility.

In using packages that produce simulated results, try to verify that they
do computations compatible with R. There are packages on CRAN, for ex-
ample, that do their simulation at the C level using the rand routine in the
C libraries. You will be unable to coordinate these with other simulations
in R or to control the procedures used. If you are anxious to have reliable
simulations, and particularly to have simulations that can be defended and
reproduced, avoid such software.

Reproducible and repeatable simulations

Ensuring that your simulation results can be verified and reproduced re-
quires extra steps, beyond what you would need for a purely functional
computation. Reproducible simulations with R require specifying which gen-
erators are used (because R supports several techniques) and documenting
the initial state of the generator in a reproducible form. Another computa-
tion that uses the same generators and initial state will produce the same
result, provided that all the numerical computations are done identically.
The extra requirement is not just so that the last few bits of the results will
agree; it is possible, although not likely, that numerical differences could
change the simulation itself. The possibility comes from the fact we noted
earlier: Nearly all simulations involve some conditional computation based
on a numerical test. If there are small numeric differences, and if we run a
simulation long enough, one of those conditional selections may differ, caus-
ing one version to accept a possible value and the other to reject the value.
Now the two sequences are out of sync, a condition we discuss as random
slippage on page 230. To avoid this possibility, the numerical represen-
tations, the arithmetic operations, and any computational approximations
used in the two runs must be identical.

The possibility of numerical differences that produce random slippage
emphasizes the need to verify that we have reproduced the simulation, by
checking the state of the generator after the second run. To do so, we need
to have saved the final state after the initial run. Verification is done by
comparing this to the state after supposedly reproducing the result. Both
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the two simulation results and the two states should match.
But reproducing a simulation exactly only tests that the asserted compu-

tations produced the results claimed, that is, the programming and software
questions. For simulations, another relevant question is often, “How do the
results vary with repeated runs of this computation?”. In other words, what
is the statistical variability? Repeated runs involve two or more evaluations
of the computation, conceptually using a single stream of random numbers,
in the sense introduced on page 222.

A simulation result is repeatable if the information provided al-
lows the same simulation to be repeated, with the same result
as running the simulation twice in a single computation.

The technique to assure repeatability is to set the state of the generator
at the beginning of the second run to that at the end of the first run.
Once more, we see that saving the state of the generator at the end of the
simulation is essential.

The SoDA package has a class, "simulationResult", and a related function
of the same name that wraps all this up for you. It records the result of an
arbitary simulation expression, along with the expression itself and the first
and last states of the generator. An example is shown on page 230.

The state, or seed as it is usually called, is a vector of numbers used by
a particular uniform generator. Intuitively, the generator takes the numbers
and scrambles them in its own fashion. The result is both a new state and
one or more pseudo-random uniform numbers. The generators are defined
so that n requests for uniform variates, starting from a given initial state
will produce the same final state, regardless of whether one asks for n vari-
ates at once or in several steps, provided no other computations with the
generator intervene. The information needed in the state will depend on
which generator is used.

The user’s control over the generator comes from two steps. First, the
generating method should be chosen. R actually has options for two gen-
erators, for the uniform and normal distributions. For completeness you
need to know both, and either can be specified, via a call to the function
RNGkind(). The call supplies the uniform and normal generator by name,
matched against the set of generators provided. For those currently avail-
able, see the documentation ?RNGkind. If you’re happy with the default
choices, you should nevertheless say so explicitly:

RNGkind("default", "default")
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Otherwise R will continue to use whatever choice might have been made
before. Provided we know the version of R, that specifies the generators
unambiguously.

Second, the numerical seed is specified. The simplest approach is to call:

set.seed(seed)

where seed is interpreted as a single integer value. Different values of seed

give different subsequent values for the generators. For effective use of
set.seed(), there should be no simple relation of the state to the numerical
value of seed. So, for example, using seed+1 should not make a sequence
“nearer” to the previous one than using seed+1000. On the other hand,
calling set.seed() with the same argument should produce the same sub-
sequent results if we repeat exactly the same sequence of calls to the same
generators.

The use of an actual seed object can extend the control of the generators
over more than one session with R. As mentioned before, the generators must
save the state after each call. In R, the state is an object assigned in the top-
level, global environment of the current session, regardless of where the call
to the generator occurred. This is the fundamentally non-functional mech-
anism. The call to set.seed() also creates the state object,.Random.seed,
in the global environment. After any calls to the uniform generator in R,
the state is re-saved, always in the global environment. Note, however, that
random number generation in C does not automatically get or save the state;
the programmer is responsible for this step. See the discussion and examples
on page 234.

When the generator is called at the beginning of a session, it looks for
.Random.seed in the global environment, and uses it to set the state before
generating the next values. If the object is not found, the generator is
initialized using the time of day. As you might imagine, the least significant
part of the time of day, say in milliseconds, would plausibly not be very
reproducible, and might even be considered “random”.

To continue the generator sequence consistently over sessions, it is suffi-
cient to save .Random.seed at the end of the session, for example by saving
the workspace when quitting. The .Random.seed object can also be used to
rerun the generator from a particular point in the middle of a simulation,
as the following example illustrates.
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Example: Reproducible computation using simulations for
model-fitting

One aspect of the Prime Directive is the ability to reproduce the result
of a computation: To trust the result from some software, one would at
least like to be able to run the computation again and obtain the same
result. It’s natural to assume that a fitted model is reproducible, given the
data and knowledge of all the arguments supplied to the fitting function
(and, perhaps, some information about the computing platform on which
the computation ran).

For classical statistical models such as linear regression, reproducibility is
usually feasible given this information. But a number of more modern tech-
niques for model-fitting, statistical inference, and even general techniques
for optimization make use of simulations in one form or another. Modern
Bayesian techniques do so extensively. But other techniques often use sim-
ulated values internally and here the dependence may be less obvious. A
whole range of optimization techniques, for example, use pseudo-random
perturbations.

The package gbm by Greg Ridgeway fits models by the technique of “gra-
dient boosting”. In Section 12.6, page 441, we look at the software as an
example of an interface to C++. Examining the code shows that the method
uses random numbers, but a casual reader of the literature might easily not
discover this fact. If not, the non-reproducibility of the results might be a
shock.

Running example(gbm) from the package produces gbm1, a model fitted
to some constructed data, and then continues the iteration on that model
to produce a refined fit, gbm2. If the results are reproducible, we should be
able to redo the second stage and get an object identical to gbm2:

> gbm2 <- gbm.more(gbm1,100,
+ verbose=FALSE) # stop printing detailed progress

> gbm22 = gbm.more(gbm1,100,verbose=FALSE)
> all.equal(gbm2, gbm22)

[1] "Component 2: Mean relative difference: 0.001721101"
[2] "Component 3: Mean relative difference: 0.0007394142"
[3] "Component 4: Mean relative difference: 0.0004004237"
[4] "Component 5: Mean relative difference: 0.4327455"

And many more lines of output

Component 2 is the fitted values. A difference of .1% is not huge, but it’s not
a reproducible computation, perhaps weakening our trust in the software.
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In fact, nothing is wrong except that we don’t have control of the state of
the generator.

Examining the implementation shows that the C++ code is import-
ing the R random number generator, but is not providing a mechanism
to set the seed. Once this is seen, a solution is straightforward. The
simulationResult() function in the SoDA package wraps the result of an
arbitrary expression to include the starting and ending states of the gener-
ator.

run2 <- simulationResult(
gbm.more(gbm1, 100, verbose = FALSE))

By making the previous expression the argument to simulationResult(), we
can at any time reset the generator to either the first or last state corre-
sponding to the run.

> .Random.seed <- run2@firstState
> gbm22 <- gbm.more(gbm1,100,verbose=FALSE)
> all.equal(run2@result, gbm22)
[1] TRUE

Remember that the generator looks for the seed only in the global environ-
ment; if the computation above were done in a function, the first step would
require:

assign(".Random.seed", run2@firstState, envir = .GlobalEnv)

Example: Are pseudo-random sequences robust?

Our next example investigates what happens when a sequence of generated
numbers is perturbed “a little bit”. As mentioned earlier, such slippage can
occur in an attempt to reproduce a simulation, if small numerical differences
cause a conditional result to be accepted in one case and rejected in the other.
To catch such an event is tricky, but we can emulate it and study the effect.
Does such a small change completely alter the remainder of the simulation
or is there a resynchronization, so that only a limited portion of the results
are changed?

Consider the following experiment. We simulate n = n1 + n2 values
from the normal distribution, in two versions. In the first version, nothing
else is generated. In the second version, we make the smallest possible
perturbation, namely that after n1 values are generated, we generate one
uniform variate, then go on to generate n2 more normals, as before. What
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should happen? And how would we examine the results of the two runs to
describe the perturbation?

In the simplest concept of a generator, each normal variate is generated
from a uniform variate. The obvious method is to compute the quantile
corresponding to the generated uniform, in this case qnorm(runif(1)). With
this computation, the second sample lost out on one normal value, but from
then on the samples should match, but just be off by one.

As it happens, the default normal generator in R is indeed defined as this
computation, known in Monte-Carlo terminology as the inversion method.
We might expect the slippage as described, but in fact that does not happen.
All the generated values in the second version are different from those in the
first version. Why? Because the inversion code uses two uniforms in order
to get a more extended argument for the quantile function. As a result, if
the slippage involves an even number, 2k, of uniforms, then the output will
resynchronize after k values, but slippage by an odd number of uniforms will
never resynchronize.

The default algorithm for normals shows the fragility, but an alternative
algorithm gives a more typical example. Let’s set the normal generator
technique by:

RNGkind(normal.kind = "Ahrens-Dieter")

This technique uses some tests to choose among alternative approximations,
so that the number of uniform values needed per normal variate is random
(well, pseudo-random). To see how slippage affects this algorithm, let’s
program our experiment. The computation in a general form is done by the
function randomSlippage() in the SoDA package, which does essentially the
following computation.

We carry out the preliminary simulation, and save the state:

g1 <- rnorm(n1)
saveSeed <- .Random.seed

Now we carry out the second simulation and save the result, twice. The
second time we reset the seed, but this time generate some uniforms (1 in
the simplest experiment), before the repeated simulation:

g21<-rnorm(n2)
assign(".Random.seed", saveSeed, envir = .GlobalEnv)
u1<-runif(slip)
g22<-rnorm(n2)
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The next step is to compare the second batch of normal variates, g21 and g22

from the two branches. The question of interest is whether the two sequences
resynchronize and if so, where. The generator starts off producing values
under the two situations. If at some point the two batches contain exactly
the same number, we expect this to have been produced by the same set of
uniforms in both cases, given our overall confidence in the uniform generator.
From this point on, the two sequences should be exactly identical, after
having slipped some amount on each sequence. The two slippage amounts
measure how much we have perturbed the simulation.

How to program this? Whenever the word “exactly” comes up in com-
parisons, it’s a clue to use the function match(). We’re dealing with numer-
ical values but are uninterested in these as numbers, only in equality of all
the bits. Suppose we match the two second-part sequences:

m <- match(g21, g22)

What do we expect in m? Because the second sequence inserted slip uni-
forms, we expect the first few elements of g21 won’t appear in g22. The
corresponding elements of m will be NA. If the sequence resynchronizes, some
element will match beyond some point, after whihc all the elements of m

should be successive positive integers. The two numbers representing the
slippage are the index of the first non-NA value in m, and the corresponding
element of m. In the following code, we find this index, if it exists, and
insert the two numbers into a row of the matrix of slippage values being
accumulated.

seqn2 <-() seq(along = g21)
m <- match(g21, g22)
k <- seqn2[!is.na(m)]
if(length(k) > 0) {

k <- k[[1]]
slippage[i,] <- c(k, m[[k]])

}

If the normal generator uses just one uniform, then we expect the second
item in the unperturbed generator to match the first in the perturbed gener-
ator if slip is 1. The corresponding row of the test results would be c(2, 1).
The Ahrens-Dieter generator uses one value most of the time, and applies
various tests using more uniform values to match the generated distribution
to the normal. Here is an example, doing 1000 runs, and then making a
table of the results:

> RNGkind("default", "Ahrens")



6.10. PROGRAMMING RANDOM SIMULATIONS 233

> set.seed(211)
> xx <- randomSlippage(1000, rnorm(10), rnorm(10))
> table(xx[,1], xx[,2])

1 2 3 4 5 6 7 8
2 891 49 5 24 9 2 3 1
3 0 4 1 2 1 1 0 0
4 0 2 1 1 1 0 0 0
5 0 0 1 0 0 0 0 0
6 0 1 0 0 0 0 0 0

As expected, about 90% of the time the generator resynchronizes after miss-
ing one of the original values. The remainder of the pattern is more complex,
depending on the algorithm’s choices of alternative computation in the per-
turbed or unperturbed sequence.

Notice that the experiment specified both the initial seed and the types of
generator to use. The initial value of .Random.seed will contain the internal
version of both the seed and the choices of generator. This seed is included
as an attribute of the value returned by randomSlippage(), so to redo the
computations:

.Random.seed <- attr(xx, "seed")
newXX <- randomSlippage(1000, rnorm(10), rnorm(10))

The various other arguments could be inferred from the previously returned
value as well. When designing simulation experiments for serious applica-
tions, try to include such information in the object returned, particularly
the initial seed.

A few programming comments on randomSlippage(). It takes two literal
expressions as arguments, the computations to be done before and after the
slippage, as well as a third argument for the slippage itself, which defaults
to runif(1). As often in programming with R, we have turned the specific
experiment into a rather general technique with only a little extra work, by
computing with the language itself. The expression for the simulation after
the slippage can do anything at all, so long as it returns an object for which
the matching comparison makes sense. See the listing of the function in the
SoDA package for details.

A note on vectorizing : Because the result returned uses only the first
matching position, on the assumption that the two series are then synchro-
nized, one might object to matching the whole object. However, because
match() operates by creating a hash table, it is fast for comparing a number
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of values in its first argument. Testing for the first element, then the second
if necessary, and so on, would tend in fact to be slower.

The extra information from the full match also allows us to test our
assumption that the two sequences are synchronized if they ever have equal
elements. The randomSlippage() function includes a check argument, FALSE
by default, that optionally tests the assumption:

if(check && k1 < n2
&& ( any(diff(k) != 1) || any(diff(m[k]) != 1)))

stop("Non-synchronized .....")

In a sufficiently large simulation, exactly identical values could in principle
occur without the generator being resynchronized.

Pseudo-random generators in C

Simulating a process that is not simply a large sample of independently gen-
erated values often leads to a one-number-at-a-time computation. The next
value to be generated requires tests based on the preceding values and/or
involves trying various alternatives. It’s natural to look for computationally
efficient software in a language such as C in these cases. Software for simula-
tion is not trivial, however, and when written in such languages needs to be
both flexible to use and trustworthy, our two guiding principles. Whether
you are evaluating someone else’s software or planning your own, here are
some suggested guidelines.

The low-level implementation of techniques should not compromise users’
flexibility, their ability to use the simulation software to explore freely (the
Mission). That’s a guideline for all low-level code, and largely means that
the C code should be a small set of clear, functionally designed tools. The
standard approach via the .C() or .Call() interface would be to design a set
of R functions. The functions should have a clear purpose, be well-defined
in terms of their arguments and together give the user a flexible coverage of
the new simulation techniques.

From the viewpoint of trustworthy software (the Prime Directive), extra
care is particularly important with simulation, because programming errors
can be hard to detect. Because the computations are by definition (pseudo-
)random, some aspects of the code will only be tested rarely, so bugs may
only show up much later. Some special requirements come from the repro-
ducibility aspects noted above. For trustworthiness as well as convenience,
the techniques should conform to standard conventions about setting seeds
and choice of basic generators, in order for results of the new functions to
be reproducible and therefore testable.
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C-level access to the basic R generators is supplied by a simple interface
with access to the uniform, normal and exponential distributions. The offi-
cial interface is described in the Writing R Extensions manual, and consists
of the routines:

double unif rand();
double norm rand();
double exp rand();

For most purposes, the uniform generator is likely to be the essential inter-
face. It is essential for consistency with other simulation computations that
the C code get the state of the generator (that is, the seed) before calling
any of these routines and save the state after finishing the simulation. These
two operations are carried out by calling the C routines:

GetRNGstate();
PutRNGstate();

Therefore, any C routine that does some simulation and then returns
control to R should be organized somewhat like the following, imaginary
example. The following snippet uses the .C() interface, to a C routine
my simulation taking arguments for a vector pars of parameters defining
the simulation and a vector x in which to store and return some computed
values. The lower-level routine called in the loop will do something involv-
ing unif_rand and/or the normal or exponential routines, and return one
numeric value from the simulation. The simulation in the loop is bracketed
by getting the state of the generator and putting it back.

void my simulation(double *x, double *pars,
double *nx ref, double *npars ref) {

long nx = *nx ref, npars = *npars ref, i;

GetRNGstate(); /* initialize random seed */
for(i = 0; i <nx; i++) {

x[i] = do some simulation(pars, npars);
}

PutRNGstate(); /* save random seed before returning */

}

A more extensive computation may prefer to use C++, as is the case with
several packages on CRAN. For an example of a C++ interface to the R

generators, see Section 12.6, page 442.
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There are many libraries of random number generators, other than those
in R. However, from our guiding principles of usefulness and trustworthy
software, I think the burden of proof is on having a good reason not to use
the interface to the R generators. The basic generators have been carefully
studied and very extensively used in practice. They include a number of
currently competitive algorithms, and have facilities for introducing user-
defined generators (although that’s an activity probably best left to those
who specialize in the field). Most importantly, they can be combined with a
wide variety of other R software, both for simulation and for general support.

If you are using some simulation software in a package, I would recom-
mend testing whether the software is properly integrated with the basic R

simulation mechanism. The test is easy: set the seed to anything, do a
calculation, then reset the seed to the same value and repeat the calcula-
tion. If the two values are not identical (and you really have asked for the
identical computation from the package), then there is some "slippage" as
in our example. Quite possibly the slippage is total, in that the package is
using a different generator, such as that supplied with the basic C library.
Unless there is a good alternative mechanism, it’s a definite negative for the
package.


