
Chapter 5

Objects

Everything in R is an object; that is, a dynamically created, self-
describing container for data. This chapter presents techniques
for managing objects. Section 5.1 introduces the fundamental
reference technique: assigning a name in an environment. Sec-
tion 5.2, page 115, discusses the replacement operation, by which
assigned objects are modified. Section 5.3, page 119, discusses
the environments, in which objects are assigned. R allows as-
signments to nonlocal environments, discussed in Section 5.4,
page 125, and including the technique known as closures. The
final two sections discuss the transfer of R data and objects to
and from external media: Section 5.5, page 131, describes con-
nections, the R technique for dealing with an external medium;
Section 5.6, page 135, covers the techniques for transferring data
and objects.

5.1 Objects, Names, and References

The central computation in R is a function call, defined by the function
object itself and the objects that are supplied as the arguments. In the
functional programming model, the result is defined by another object, the
value of the call. Hence the traditional motto of the S language: everything
is an object—the arguments, the value, and in fact the function and the call
itself: All of these are defined as objects.

Think of objects as collections of data of all kinds. The data contained
and the way the data is organized depend on the class from which the object
was generated. R provides many classes, both in the basic system and in

111

112 CHAPTER 5. OBJECTS

various packages. Defining new classes is an important part of programming
with R. Chapter 6 discusses existing classes and the functions that compute
on them. Chapters 9 and 10 discuss new classes and new functional com-
putational methods. The present chapter explores computations to create
and organize objects, regardless of their class or contents. The fundamental
dualism in all aspects of R and the S language, the dualism between function
calls and objects, is reflected in all these discussions.

As in any programming language, it’s essential to be able to refer to
objects, in a particular context, in a way that is consistent and clear. In
the S language, there is one and only one way to refer to objects: by name.
More precisely, the combination of a name (that is, a non-empty character
string) and an environment (or context) in which the name is evaluated is the
fundamental reference to an object in R. So, the value of the expressions pi

or lm in the global environment, or the value of x inside a particular function
call, will refer to a specific object (or generate an error, if no corresponding
object can be found). The next section elaborates on environments and
related ideas: basically, any computation in R takes place in an environment
that defines how the evaluator will search for an object by name.

Whenever we talk about a reference to an object, in any language, the
key is that we expect to use that reference repeatedly, in the confidence
that it continues to refer to the same object. References do usually include
the ability to change the object, what is sometimes called a mutable object
reference, but which in R we can reduce to an assignment. Unless some
explicit assignment has occurred, using an object reference means we can be
confident that successive computations will see consistent data in the object.
It’s essentially a sanity requirement for computing: otherwise, there is no
way to understand what our computations mean.

A name, with an associated environment, provides a reference in exactly
this sense in R, for normal objects and programming style. As for that qual-
ification, “normal”, it excludes two kinds of abnormality. R permits some
non-standard functions that explicitly reach out to perform non-local as-
signments. They have their place, and are discussed in section 5.4, but we’ll
exclude them from the current discussion. In addition, there are some non-
standard classes of objects whose behavior also breaks the general model, as
discussed beginning on page 114. These too are excluded by the term “nor-
mal”. (Notice again the duality of functions and objects in the exceptions
to normal behavior.)

The reference of a name to an object is made by an assignment, for
example:

5.1. OBJECTS, NAMES, AND REFERENCES 113

lmFit <- lm(survival ∼ ., study2004)

This expression creates an object named lmFit in the current environment.
Having created the object, we can now use it, perhaps to generate some
printed or plotted summaries, or to create some further named objects:

lmResid <- lmFit$residuals

As long as no second assignment for the name lmFit took place in the same
context, we can be confident that the new object was computed from the
lmFit object created above—the same object in all respects, regardless of
what other computations took place involving lmFit.

The assurance of consistency is key for providing clear and valid software.
Suppose, between the two assignments you saw an expression such as

verySubtleAnalysis(lmFit)

Suppose you had no clue what this function was doing internally, except
that all its computations are normal in our current sense, and that lmfit

is a normal object. You can then be quite confident that the intermedi-
ate computations will not have modified lmFit. Such confidence allows a
top-down analysis of the computations, contributing directly to trustworthy
software and to our Prime Directive.

We said that names are the only general form of reference in R, and that
statement is important to understand. In the second assignment above,
lmFit$residuals extracts a component of the lmFit object. To emphasize,
the computation extracts the information, as a new object, rather than
creating a reference to the portion of lmFit that contains this information.
If a following computation changes lmFit, there will be no change in lmResid.

The statement that nearly all object references in R start from assign-
ments needs some elaboration, too. As later sections in this chapter discuss,
there are many ways to get access to objects in R: from packages, saved
images, and other files. However, these objects were nearly always created
by assignments, and then saved in other forms.

The most important objects not created by an assignment are the ar-
guments in a function call. The R evaluator creates an association between
the name of the argument and the expression supplied in the actual call.
If you are writing a function with an argument named x, then inside the
function definition, you can use the name x and be confident that it refers
to the corresponding argument in the call. The mechanism involved is ex-
tremely important in the way R works, and is somewhat different from an
assignment. Section 13.3, page 460, discusses the details. For the most part,

114 CHAPTER 5. OBJECTS

however, you just use the argument names in the body of the function in
the same way as any other names.

Exceptions to the object model

Most classes of objects in R behave according to the model described in this
section, but a few do not. You need to be careful in using such objects,
because they do not give you the usual safety of knowing that local changes
really are local. Three classes of such exceptional objects are connections,
environments, and external pointers. The discussion here summarizes how
and why these objects are exceptions to the normal object behavior.

Connections: The class of connection objects represents streams of bytes
(characters, usually). Files on disc and other data streams that behave
similarly can be used in R by creating a connection object that refers to
the data stream. See Section 5.5, page 131, for a general discussion of
connections.

The connection refers to a data stream that often has some sort of phys-
ical reality in the computer; as a result, any computation that uses the
connection object will deal with the same data stream. Reading from a con-
nection in one function call will alter the state of the stream (for example,
the current position for reading from a file). As a result, computations in
other functions will be affected. Connection objects in a function call are not
local. Ignoring the non-local aspect of a connection object leads to obvious,
but easy-to-make, errors such as the following.

wRead <- function (con) {
w <- scan(con, numeric(), n=1)
if(w > 0)

w * scan(con, numeric(), n=1)
else

NA
}

The function wread() is intended to read a weight w from connection con

and then to return either the weight times the following data value on the
connection, if the weight is positive, or NA otherwise. The danger is that
wRead sometimes reads one field from the connection, and sometimes two. If
connections were ordinary objects (if, say, we were just picking items from
a list), the difference would not matter because the effect would be local to
the single call to wRead. But con is a connection. If it contained pairs of
numbers, as it likely would, then the first non-positive value of w will cause

5.2. REPLACEMENT EXPRESSIONS 115

wRead to leave the following field on the connection. From then on, disaster
is likely.

The recommended fix, here and in general, is that all computations on
a connection should leave the connection in a well-defined, consistent state.
Usually that means reading (or writing) a specific sequence of fields. Each
function’s specification should include a description of what it does to the
connection. Unfortunately, most of the base functions dealing with con-
nections are implemented as internal C code. Their definition is not easily
understood, and different functions can behave inconsistently.

Environments: As discussed in section 5.3, one can access a reference to
the environment containing objects as if it were itself an object. In detailed
programming tasks, you may need to pass such objects to other functions, so
they can search in the right place for a particular name, for example. But
environments are not copied or made local to a particular function. Any
changes made to the environment will be seen by all software using that
environment from now on.

Given that environment objects have this highly non-standard behavior,
it might have been better if standard R computations were not allowed for
them. Unfortunately a number of basic functions do appear to work nor-
mally with environments, including replacement functions for components
("$") and attributes (attr). Don’t be fooled: the effects are very different.
Avoid using these replacement functions with environments.

External pointers: These are a much more specialized kind of object, so
the temptation to misuse them arises less often. As the name suggests, they
point to something external to R, or at least something that the R evaluator
treats that way. As a result, the evaluator does none of the automatic
copying or other safeguards applied to normal objects. External pointers
are usually supplied from some code, typically written in C, and then passed
along to other such code. Stick to such passive use of the objects.

For all such non-standard objects, one important current restriction in
programming is that they should not be extended by new class definitions.
They can, with care, be used as slots in class definitions.

5.2 Replacement Expressions

In discussing names as references, we stated that an object assigned in an
environment would only be changed by another assignment. But R compu-
tations frequently have replacement expressions such as:

diag(x) <- diag(x) + epsilon

116 CHAPTER 5. OBJECTS

z[[i]] <- lowerBound
lmFit$resid[large] <- maxR

Don’t these modify the objects referred to by x, z and lmFit? No, technically
they do not: A replacement creates a new assignment of an object to the
current name. The distinction usually makes little difference to a user, but it
is the basis for a powerful programming technique and affects computational
efficiency, so we should examine it here.

The expressions above are examples of a replacement expression in the
S language; that is, an assignment where the left side is not a name but
an expression, identifying some aspect of the object we want to change.
By definition, any replacement expression is evaluated as a simple assign-
ment (or several such assignments, for complex replacement expressions),
with the right side of the assignment being a call to a replacement function
corresponding to the expression. The first example above is equivalent to:

x <- `diag<-`(x, value = diag(x) + epsilon)

The mechanism is completely general, applying to any function on the left
side of the assignment defined to return the modified object. The implica-
tion is that a new complete object replaces the existing object each time a
replacement expression is evaluated.

It may be important to remember how replacements work when replacing
portions of large objects. Each replacement expression evaluates to a new
assignment of the complete object, regardless of how small a portion of the
object has changed. Sometimes, this matters for efficiency, but as with
most such issues, it’s wise not to worry prematurely, until you know that
the computation in question is important enough for its efficiency to matter.
The classic “culprit” is an expression of the form:

for(i in undefinedElements(z))
z[[i]] <- lowerBound

The loop in the example will call the function for replacing a single element
some number of times, possibly many times, and on each call a new version
of z will be assigned, or at least that is the model. In this example, there
is no doubt that the programmer should have used a computation that is
both simpler and more efficient:

z[undefinedElements(z)] <- lowerBound

In the jargon that has grown up around S-language programming the distinc-
tion is often referred to as “vectorizing”: the second computation deals with

5.2. REPLACEMENT EXPRESSIONS 117

the whole object (in this case, a vector). Some suggestions and examples
are provided in Section 6.4, page 157.

However, as is often the case, predicting the actual effect on efficiency
requires considerable knowledge of the details, another reason to delay such
considerations in many applications. The example above, in fact, will usu-
ally prove to be little more efficient in the vectorized form. The replacement
function `[[<-` is one of a number of basic replacements that are defined as
primitives; these can, sometimes, perform a replacement in place. The dis-
tinction is relevant for efficiency but does not contradict the general model.
Primitive replacement functions generally will modify the object in place,
without duplication, if it is local. If so, then no difference to the overall
result will occur from modification in place.

As a result, a simple loop over primitive replacements will at most tend
to produce one duplicate copy of the object. Even if the object is not local,
the first copy made and assigned will be, so later iterations will omit the
duplication.

The argument for this particular vectorizing is still convincing, but be-
cause the revised code is a clearer statement of the computation. It’s also
likely to be slightly faster, because it eliminates the setup and execution of
some number of function calls. Even this distinction is not likely to be very
noticeable because the replacement function is a primitive.

Replacement functions

The ability to write new replacement functions provides an important pro-
gramming tool. Suppose you want to define an entirely new form of replace-
ment expression, say:

undefined(z) <- lowerBound

No problem: just define a function named `undefined<-`. For an existing re-
placement function, you may often want to define a new replacement method
to replace parts of objects from a class you are designing; for example, meth-
ods for replacements using `[` or `[[` on the left of the assignment. Again,
no special mechanism is needed: just define methods for the corresponding
replacement function, `[<-` or `[[<-`.

To work correctly, replacement functions have two requirements. They
must always return the complete object with suitable changes made, and
the final argument of the function, corresponding to the replacement data
on the right of the assignment, must be named "value".

118 CHAPTER 5. OBJECTS

The second requirement comes because the evaluator always turns a
replacement into a call with the right-hand side supplied by name, value=,
and that convention is used so that replacement functions can have optional
arguments. The right-hand side value is never optional, and needs to be
supplied by name if other arguments are missing.

Let’s define a replacement function for undefined(), assuming it wants
to replace missing values with the data on the right-hand side. As an extra
feature, it takes an optional argument codes that can be supplied as one or
more numerical values to be interpreted as undefined.

`undefined<-` <- function(x, codes = numeric(), value) {
if(length(codes) > 0)

x[x %in% codes] <- NA
x[is.na(x)] <- value
x

}

If the optional codes are supplied, the `%in%` operator will set all the ele-
ments that match any of the codes to NA.

Notice that one implication of the mechanism for evaluating replacement
expressions is that replacement functions can be defined whether or not the
ordinary function of the same name exists. We have not shown a function
undefined() and no such function exists in the core packages for R. The
validity of the replacement function is not affected in any case. However, in
a nested replacement, where the first argument is not a simple name, both
functions must exist; see Section 13.5, page 466.

Replacement methods

Methods can be written for replacement functions, both for existing func-
tions and for new generic functions. When a class naturally has methods
for functions that describe its conceptual structure, it usually should have
corresponding methods for replacing the same structure. Methods for `[`,
`[[`, length(), dim(), and many other similar functions suggest methods
for `[<-`, `[[<-`, etc.

New replacement functions can also be made generic. To create a generic
function similar to the `undefined<-` example:

setGeneric("undefined<-",
function(x, ..., value) standardGeneric("undefined<-"),
useAsDefault = FALSE)

5.3. ENVIRONMENTS 119

The argument, code, in the original function was specific to the particular
method that function implemented. When turning a function into a generic,
it often pays to generalize such arguments into "...".

We chose not to use the previous function as the default method. The
original function above was fine for casual use, but the operator `%in%` calls
the match() function, which is only defined for vectors. So a slightly better
view of the function is as a method when both x and value inherit from class
"vector". A default value of NULL for code is more natural when we don’t
assume that x contains numeric data.

setMethod("undefined<-",
signature(x="vector", value = "vector"),
function(x, codes = NULL, value) {

if(length(codes) > 0)
x[x %in% codes] <- NA

x[is.na(x)] <- value
x

})

Class "vector" is the union of all the vector data types in R: the numeric
types plus "logical", "character", "list", and "raw". A method for class
"vector" needs to be checked against each of these, unless it’s obvious that
it works for all of them (it was not obvious to me in this case). I leave it
as an exercise to verify the answer: it works for all types except "raw", and
does work for "list", somewhat surprisingly. A separate method should be
defined for class "raw", another exercise.

A convenience function, setReplaceMethod(), sets the method from the
name of the non-replacement function. It’s just a convenience, to hide the
addition "<-" to the name of the replacement function.

5.3 Environments

An environment consists of two things. First, it is a collection of objects each
with an associated name (an arbitrary non-empty character string). Second,
an environment contains a reference to another environment, technically
called the enclosure of that environment, but also referred to as the parent,
and returned by the function parent.env().

Environments are created by several mechanisms. The global environ-
ment contains all the objects assigned there during the session, plus possibly
objects created in a few other ways (such as by restoring some saved data).

120 CHAPTER 5. OBJECTS

The environment of a function call contains objects corresponding to the
arguments in the function call, plus any objects assigned so far during the
evaluation of the call. Environments associated with packages contain the
objects exported to the session or, in the package’s namespace, the objects
visible to functions in the package. Generic functions have environments
created specially to store information needed for computations with meth-
ods. Environments created explicitly by new.env() can contain any objects
assigned there by the user.

When the R evaluator looks for an object by name, it looks first in the
local environment and then through the successive enclosing environments.
The enclosing environment for a function call is the environment of the
function. What that is varies with the circumstances (see page 123), but in
the ordinary situation of assigning a function definition, it is the environment
where the assignment takes place. In particular, for interactive assignments
and ordinary source files, it is the global environment.

The chain of enclosing environments for any computation determines
what functions and other objects are visible, so you may need to understand
how the chaining works, in order to fully understand how computations will
work.

In this section we give some details of environments in various contexts,
and also discuss some special programming techniques using environments.
A general warning applies to these techniques. As mentioned earlier in the
chapter, the combination of a name and an environment is the essential
object reference in R. But functional programming, which is central to R

(section 3.2), generally avoids computing with references. Given that, it’s
not surprising that computing directly with environments tends to go outside
the functional programming model. The techniques may still be useful, but
one needs to proceed with caution if the results are to be understandable
and trustworthy.

Environments and the R session

An R session always has an associated environment, the global environment.
An assignment entered by a user in the session creates an object with the
corresponding name in the global environment:

sAids <- summary(Aids2)

Expressions evaluated directly in the session are also evaluated in the global
environment. For the expression above, the evaluator needs to find a func-
tion named "summary" and then, later, an object named "Aids2". As always,

5.3. ENVIRONMENTS 121

the evaluator looks up objects by name first in the current environment
(here the global environment) and then successively in the enclosing or par-
ent environments.

The chain of environments for the session depends on what packages
and other environments are attached. The function search() returns the
names of these environments, traditionally called the “search list” in the S

language. It’s not a list in the usual sense. The best way of thinking of the
search list is as a chain of environments (and thus, conceptually a list).

At the start of a session the search list might look as follows:

> search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The global environment comes first. Its enclosing environment is the second
environment on the search list, which has the third environment as its parent,
and so on. We can see this by calling parent.env():

> ev2 <- parent.env(.GlobalEnv); environmentName(ev2)
[1] "package:stats"
> ev3 <- parent.env(ev2); environmentName(ev3)
[1] "package:graphics"

(If you wonder why the call to environmentName(), it’s because the printed
version of packages as environments is confusingly messy; environmentName()
gets us back to the name used by search().)

The arrangement of enclosing environments, whereby each package has
the next package in the search list as its parent, exists so that R can follow
the original rule of the S language that the evaluator searches for names in
the search list elements, in order.

In evaluating summary(Aids2), the evaluator finds the function object
summary in the base package. However, object "Aids2" is not found in any
of the elements of the search list:

> find("summary")
[1] "package:base"
> find("Aids2")
character(0)

That object is contained in the package MASS. To obtain it, the package must
be attached to the search list, or the object must be explicitly extracted
from the package. Attaching the package, say by calling require(), alters
the search list, and therefore the pattern of enclosing environments.

122 CHAPTER 5. OBJECTS

> require(MASS)
Loading required package: MASS
[1] TRUE
> search()
[1] ".GlobalEnv" "package:MASS" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
> ev2 <- parent.env(.GlobalEnv); environmentName(ev2)
[1] "package:MASS"
> ev3 <- parent.env(ev2); environmentName(ev3)
[1] "package:stats"

The search by name for objects now looks in the environment for package
MASS before the previous environments in the search list. If there happened
to be a function summary() in that package, it would be chosen rather than
the function in the base package. The function require() would have warned
the user if attaching the package introduced any name conflicts.

However, possible conflicts between packages are a worry; with the very
large number of packages available, some conflicts are inevitable. Package
mgcv and package gam on CRAN both have a function gam(). The two func-
tions are similar in purpose but not identical, so one might want to compare
their results. To do so, one needs to be explicit about which function is
being called. The `::` operator prepends the name of the package to the
function name, so that mgcv::gam() and gam::gam() refer uniquely to the
two functions.

For programming rather than interactive analysis, the problem and the
approach are slightly different. If your function calls functions from other
packages, you would like to be assured that the intended function is called
no matter what other packages might be used in some future session. If
the function was loaded into the global environment, say by using source(),
such assurance is not available. In our previous example, you cannot ensure
that a future user has the intended package in the search list, ahead of the
unintended one, when you call gam(), and similarly for every other function
called from a package. The problem remains when your function is in a
simple package, because the original R model for package software is basically
that of source-ing the code in the package when the package is attached. In
either case, the environment of the function is the global environment. If
a name is encountered in a call to any such function, then by the general
rule on page 120, the evaluator searches first in the call, then in the global
environment, and then in its enclosing environments. So the object found
can change depending on what packages are attached.

5.3. ENVIRONMENTS 123

Using `::` on every call is clearly unreasonable, so a more general mech-
anism is needed to clarify what software your software expects. This is one
of the main motivations for introducing the NAMESPACE mechanism for R

packages. A "NAMESPACE" file in the package source contains explicit direc-
tives declaring what other packages are imported, potentially even what
individual objects are imported from those packages. The mechanism im-
plementing the imports can be understood in terms of the current discussion
of environments. If the package SoDA had no namespace file, then a function
from the package, say binaryRep() would have the global environment as its
environment. But SoDA does have a namespace file and:

> environment(binaryRep)
<environment: namespace:SoDA>

The namespace environment constructed for the package restricts the visible
objects to those in the namespace itself, those explicitly imported, and the
base package. To implement this rule, the parent of the package’s namespace
is an environment containing all the imports; its parent is the base package’s
namespace.

In most circumstances, the namespace mechanism makes for more trust-
worthy code, and should be used in serious programming with R. See Section
4.6, page 103 for the techniques needed.

Environments for functions (continued)

Functions are usually created by evaluating an expression of the form:

function (formal arguments) body

As discussed in Section 3.3, page 50, the evaluation creates a function object,
defined by its formal arguments, body, and environment. The function is
basically just what you see: the same definition always produces the same
object, with one important exception. When it is created, the function
object gets a reference to the environment in which the defining expression
was evaluated. That reference is a built-in property of the function.

If the expression is evaluated at the command level of the session or in a
file sourced in from there, the environment is the global environment. This
environment is overridden when packages have a namespace, and replaced
by the namespace environment. There are two other common situations
in programming that generate function environments other than the global
environment.

124 CHAPTER 5. OBJECTS

Function definitions can be evaluated inside a call to another function.
The general rule applies: the function is given a reference to the environment
created for the evaluation of that call. Ordinarily, the environment of the
call disappears after the call is complete, whenever storage is cleaned up by
a garbage collection.

However, there is an R programming technique that deliberately cre-
ates functions that share a more persistent version of such an environment.
The goal is usually to go beyond a purely functional approach to program-
ming by sharing other objects, within the same environment, among several
functions. The functions can then update the objects, by using non-local
assignments.

For a discussion of programming this way, and of alternatives, see Section
5.4, page 125. Software that is used by calling functions from a list of
functions (in the style of z$f(· · ·)), or that discusses R closures, likely makes
use of this mechanism.

The other commonly encountered exception is in generic functions (those
for which methods are defined). These mainly exist for the purpose of select-
ing methods, and are created with a special environment, whose enclosure is
then the function’s usual environment (typically the namespace of the pack-
age where the function is defined). The special environment is used to store
some information for rapid selection of methods and for other calculations.
A few other objects involved in method dispatch, such as methods includ-
ing a callNextMethod(), also have specialized environments to amortize the
cost of searches. Unlike package namespaces, the special environments for
method dispatch don’t change the fundamental rules for finding names. The
specialized environments are an implementation detail, and might in prin-
ciple disappear in later versions of R.

Computing with environment objects

Environments arise mostly in the background when expressions are evalu-
ated, providing the basic mechanism for storing and finding objects. They
can themselves be created (by new.env()) and used as objects, however.
Doing so carries risks because environments are not standard R objects.
An environment is a reference. Every computation that modifies the en-
vironment changes the same object, unlike the usual functional model for
computing with R.

If you do want to use environments directly, consider using the following
basic functions to manipulate them, in order to make your programming
intentions clear. The functions actually predate environments and R itself,

5.4. NON-LOCAL ASSIGNMENTS; CLOSURES 125

and form the traditional set of techniques in the S language for manipulating
“database” objects. A 1991 Bell Labs technical report [4] proposed them for
database classes. Explicit computation with environments often treats them
essentially as database objects. For a more modern approach to a database
interface to R, see the DBI package, and Section 12.7, page 446.

The five basic computations, in their R form with environments, are:

assign(x, value, envir =) Store the object value in the environment,
as the character string name, x.

get(x, envir =) Return the object associated with the name from the
environment..

exists(x, envir =) Test whether an object exists associated with the
name.

objects(envir =) Return the vector of names for the objects in the en-
vironment.

remove(list = , envir =) Remove the objects named as list from the
environment.

The five functions are widely used, but are presented here with somewhat
specialized arguments, needed in order to use them consistently with envi-
ronments. In addition, both functions get() and exists() should be called
with the optional argument inherits = FALSE, if you want to search only in
the specified environment and not in its enclosures.

If your programming includes defining new classes, it’s natural to em-
bed computations with environments in a special class, to clarify the inten-
tions and hide confusing details. Be warned however: You cannot make
class "environment" a superclass of a new class, such as by contains =

"environment" in the call to setClass(). Because environment objects are
references, objects from the new class will actually have the same reference,
including all slots and other properties.

You can use an environment as a slot in a new class, provided as always
that your computations take account of the environment’s non-standard
behavior.

5.4 Non-local Assignments; Closures

Many computational objects are naturally thought of as being repeatedly
updated as relevant changes occur. Whenever an object represents a sum-
mary of an ongoing process, it requires computations to change the object

126 CHAPTER 5. OBJECTS

when new data arrives in the process. Other objects that represent physical
or visual “real things” also lend themselves to updating; for example, an
object representing a window or other component of a user interface will be
updated when some preference or other internal setting is changed.

The S language provides a very general mechanism for updating a local
object, via replacement expressions (Section 5.2, page 115).

R introduces an alternative mechanism, in which functions share a com-
mon environment and update non-local objects in that environment. The
mechanism is inspired by other languages; in particular, it has something in
common with reference-based object-oriented programming systems, but it
does not use formal class definitions. As such, it departs significantly from
a functional programming style. All the same, it does enable some use-
ful computations, so let’s examine it, show an example, along with a more
functional alternative, and then assess the pros and cons.

The trick is made possible by two techniques: non-local assignments and
the environment created by a function call. Any assignment or replacement
with the `<-` or `=` operator can be made non-local by using the operator
`<<-` instead. The meaning is quite different, however, and also different
from the same operator in S-Plus. Consider the assignment:

dataBuf <<- numeric(0)

The rule for such assignments in R is to search for the name through all
the enclosing environments, starting from the environment of the function
in which the assignment is evaluated. If an existing object of this name is
found, the assignment takes place there; otherwise, the object is assigned
in the global environment. This is an unusual rule and can have strange
consequences (for example, if the name is first encountered in one of the
attached packages, an attempt is made to assign in that package, usually
failing because the package environment is locked). The intended use in
most cases is that an object will have been initialized with this name in an
enclosing environment; the `<<-` operator then updates this object.

The other part of the trick involves assigning one or more functions inside
a function call, by evaluating an ordinary definition, but inside another
call. The primitive code that evaluates the `function` expression sets the
environment of the function object to the environment where the evaluation
takes place, in this case the local environment of the call. Because the
assignment is local, both function and environment normally disappear when
the call is completed, but not if the function is returned as part of the value of
the call. In that case, the object returned preserves both the function and its
environment. If several functions are included in the object returned, they

5.4. NON-LOCAL ASSIGNMENTS; CLOSURES 127

all share the same environment. The R programming mechanism referred
to as a closure uses that environment to keep references to objects that can
then be updated by calling functions created and returned from the original
function call.

Here is an example that illustrates the idea. Suppose a large quantity of
data arrives in a stream over time, and we would like to maintain an estimate
of some quantiles of the data stream, without accumulating an arbitrarily
large buffer of data. The paper [7] describes a technique, called Incremental
Quantile estimation (IQ), for doing this: a fixed-size data buffer is used
to accumulate data; when the buffer is full, an estimate of the quantiles
is made and the data buffer is emptied. When the buffer fills again, the
existing quantile estimates are merged with the new data to create a revised
estimate. Thus a fixed amount of storage accumulates a running estimate
of the quantiles for an arbitrarily large amount of data arriving in batches
over time.

Here’s an implementation of the updating involved, using closures in R.

newIQ <- function(nData = 1000, probs = seq(0, 1, 0.25)) {
dataBuf <- numeric(0)
qBuf <- numeric(0)

addData <- function(newdata) {
n <- length(newdata);
if(n + length(dataBuf) > nData)

recompute(newdata)
else

dataBuf <<- c(dataBuf, newdata)
}

recompute <- function(newdata = numeric(0)) {
qBuf <<- doQuantile(qBuf, c(dataBuf, newdata), probs)
dataBuf <<- numeric(0)

}

getq <- function() {
if(length(dataBuf) > 0)

recompute()
qBuf

}

list(addData = addData, getQ = getQ)
}

128 CHAPTER 5. OBJECTS

Our implementation is trivial and doesn’t in fact illustrate the only tech-
nically interesting part of the computation, the actual combination of the
current quantile estimate with new data using a fixed buffer, but that’s not
our department; see the reference. We’re interested in the programming for
updating.

For each separate data stream, a user would create an IQ “object”:

myData <- newIQ()

The actual returned object consists of a list of two functions. Every call to
newIQ() returns an identical list of functions, except that the environment of
the functions is unique to each call, and indeed is the environment created
dynamically for that call. The shared environment is the business end of
the object. It contains all the local objects, including dataBuf and qBuf,
which act as buffers for data and for estimated quantiles respectively, and
also three functions. Whenever data arrives on the stream, a call to one of
the functions in the list adds that data to the objects in the environment:

> myData$addData(newdata)

When the amount of data exceeds the pre-specified maximum buffer size,
quantiles are estimated and the function recompute(), conveniently stored
in the environment, clears the data buffer. Whenever the user wants the
current quantile estimate, this is returned by the other function in the list:

> quants <- myData$getQ()

This returns the internal quantile buffer, first updating that if data is waiting
to be included.

Because the computation is characteristic of programming with closures,
it is worth examining why it works. The call to newIQ() assigns the two
buffers, in the environment of the call. That environment is preserved be-
cause the functions in the returned list have a reference to it, and therefore
garbage collection can’t release it.

When the addData() function does a non-local assignment of dataBuf, it
applies the rule on page 126 by looking for an object of that name, and finds
one in the function’s environment. As a result, it updates dataBuf there;
similarly, function recompute() updates both dataBuf and qBuf in the same
environment. Notice that recompute() shares the environment even though
it is not a user-callable function and so was not returned as part of the list.

It’s helpful to compare the closures implementation to one using replace-
ment functions. In the replacement version, the buffers are contained explic-
itly in the object returned by newIQ() and a replacement function updates

5.4. NON-LOCAL ASSIGNMENTS; CLOSURES 129

them appropriately, returning the revised object. Here’s an implementation
similar to the closure version.

newIQ <- function(nData = 1000, probs = seq(0, 1, 0.25))
list(nData = nData, probs = probs,

dataBuf = numeric(0), qBuf = numeric(0))

`addData<-` <- function(IQ, update = FALSE, value) {
n <- length(value);
if(update || (n + length(IQ$dataBuf) > IQ$nData))

recompute(IQ, value)
else {

IQ$dataBuf <- c(IQ$dataBuf, value)
IQ

}
}

recompute <- function(IQ, newdata = numeric(0)) {
IQ$qBuf <- doQuantile(qBuf, c(IQ$dataBuf, newdata), probs)
IQ$dataBuf <- numeric(0)
IQ

}

getq <- function(IQ) {
if(length(IQ$dataBuf) > 0)

IQ <- recompute(IQ)
IQ$qBuf

}

This version of addData() is a replacement function, with an option to up-
date the quantile estimates unconditionally. The logic of the computation is
nearly the same, with the relevant objects now extracted from the IQ object,
not found in the environment. Typical use would be:

> myData <- newIQ()
.......

> addData(myData) <- newdata
.......

> getq(myData)

The user types apparently similar commands in either case, mainly distin-
guished by using the `$` operator to invoke component functions of the IQ
object in the closure form, versus an explicit replacement expression in the
alternate version. Even the implementations are quite parallel, or at least
can be, as we have shown here.

130 CHAPTER 5. OBJECTS

What happens, however, follows a very different concept. Closures cre-
ate a number of object references (always the same names, but in unique
environments), which allow the component functions to alter the object in-
visibly. The component functions correspond to methods in languages such
as C++, where objects are generally mutable, that is, they can be changed
by methods via object references.

The replacement function form follows standard S-language behavior.
General replacement functions have often perplexed those used to other
languages, but as noted in section 5.2, they conform to the concept of local
assignments in a functional language.

Are there practical distinctions? Closures and other uses of references
can be more efficient in memory allocation, but how much that matters may
be hard to predict in examples.

The replacement version requires more decisions about keeping the quan-
tile estimates up to date, because only an assignment can change the object.
For example, although getq() always returns an up-to-date estimate, it can-
not modify the non-local object (fortunately for trustworthy software). To
avoid extra work in recomputing estimates, the user would need to reassign
the object explicitly, for example by:

myData <- recompute(myData)

Another difference between the versions arises if someone wants to add
functionality to the software; say, a summary of the current state of the
estimation. The replacement version can be modified in an ordinary way,
using the components of any IQ object. But notice that a new function in
the closure version must be created by newIQ() for it to have access to the
actual objects in the created environment. So any changes can only apply
to objects created after the change, in contrast to the usual emphasis on
gradual improvement in R programming.

Finally, I think both versions of the software want to evolve towards a
class-and-method concept. The IQ objects really ought to belong to a class,
so that the data involved is well-defined, trustworthy, and open to extension
and inheritance. The replacement version could evolve this way obviously;
what are currently components of a list really want to be slots in a class.

The closure version could evolve to a class concept also, but only in a
class system where the slots are in fact references; again, this has much of
the flavor of languages such as C++ or Java.

5.5. CONNECTIONS 131

5.5 Connections

Connection objects and the functions that create them and manipulate them
allow R functions to read and interpret data from outside of R, when the data
can come from a variety of sources. When an argument to the R function is
interpreted as a connection, the function will work essentially the same way
whether the data is coming from a local file, a location on the web, or an R

character vector. To some extent, the same flexibility is available when an
R function wants to write non-R information to some outside file.

Connections are used as an argument to functions that read or write; the
argument is usually the one named file= or connection=. In most cases, the
argument can be a character string that provides the path name for a file.

This section discusses programming with connection objects, in terms of
specifying and manipulating them. Section 5.6 discusses the functions most
frequently used with connections.

Programming with connections

For programming with R, the most essential fact about connections may
be that they are not normal R objects. Treating them in the usual way
(for example, saving a connection object somewhere, expecting it to be self-
describing, reusable, and independent of other computations) can lead to
disaster. The essential concept is that connections are references to a data
stream. A paradigm for defensive programming with connections has the
form:

con <- create (description , open)
now do whatever input or output is needed using con
close(con)

where create is one of the functions (file(), etc.) that create connections,
description is the description of the file or command, or the object to be
used as a text connection, and open is the string defining the mode of the
connection, as discussed on page 134.

Two common and related problems when programming with connections
arise from not explicitly closing them and not explicitly opening them (when
writing). The paradigm shown is not always needed, but is the safest ap-
proach, particularly when manipulating connections inside other functions.

Connections opened for reading implement the concept of some entity
that can be the source of a stream of bytes. Similarly, connections opened
for writing represent the corresponding concept of sending some bytes to

132 CHAPTER 5. OBJECTS

the connection. Actually, hardly any R operations on connections work
at such a low level. The various functions described in this chapter and
elsewhere are expressed in terms of patterns of data coming from or going
to the connection. The lower level of serial input/output takes place in the
underlying C code that implements operations on connections.

Connections in R implement computations found at a lower level in C.
The most useful property of a connection as an object is its (S3) class.
There exist S3 methods for connection objects, for functions print() and
summary(), as well as for a collection of functions that are largely meaningful
only for connection-like objects (open(), close(), seek(), and others).

However, connections are distinctly nonstandard R objects. As noted
on page 114, connections are not just objects, but in fact references to an
internal table containing the current state of active connections. Use the
reference only with great caution; the connection object is only usable while
the connection is in the table, which will not be the case after close()

is called. Although a connection can be defined without opening it, you
have no guarantee that the R object so created continues to refer to the
internal connection. If the connection was closed by another function, the
reference could be invalid. Worse still, if the connection was closed and
another connection opened, the object could silently refer to a connection
totally unrelated to the one we expected. From the view of trustworthy
software, of the Prime Directive, connection objects should be opened, used
and closed, with no chance for conflicting use by other software.

Even when open and therefore presumably valid, connections are non-
standard objects. For example, the function seek() returns a “position”
on the connection and for files allows the position to be set. Such position
information is a reference, in that all R function calls that make use of the
same connection see the same position. It is also not part of the object
itself, but only obtained from the internal implementation. If the position
is changed, it changes globally, not just in the function calling seek().

Two aspects of connections are relevant in programming with them:
what they are and how information is to be transferred. These are, respec-
tively, associated with the connection class of the object, an enumeration
of the kinds of entities that can act as suitable sources or sinks for input or
output; and with what is known as the connection mode, as specified by the
open argument to the functions that create a connection object.

5.5. CONNECTIONS 133

Connection classes

Connections come from the concept of file-like entities, in the C program-
ming tradition and specifically from the Posix standards. Some classes of
connections are exactly analogous to corresponding kinds of file structures
in the Posix view, other are extensions or analogs specific to R. The first group
includes "file", "fifo", "pipe", and "socket" connection objects. Files are
the most common connections, the others are specialized and likely to be
familiar only to those accustomed to programming at the C level in Linux or
UNIX. Files are normally either specified by their path in the file system or
created as temporary files. Paths are shown UNIX-style, separated by "/",
even on Windows. There are no temporary files in the low-level sense that
the file disappears when closed; instead, the tempfile() function provides
paths that can be used with little danger of conflicting with any other use
of the same name.

Three classes of connections extend files to include compression on input
or output: . They differ in the kind of compression done. Classes "gzfile"

and "bzfile" read and write through a compression filter, corresponding to
the shell commands gzip and bzip2. The "unz" connections are designed
to read a single file from an archive created by the zip command. All
of these are useful in compressing voluminous output or in reading data
previously compressed without explicitly uncompressing it first. But they
are not particularly relevant for general programming and we won’t look at
examples here.

The "url" class of connections allow input from locations on the Web
(not output, because that would be a violation of security and not allowed).
So, for example, the “State of the Union” summary data offered by the
swivel.com Web site is located by a URL:

http://www.swivel.com/data sets/download file/1002460

Software in R can read this remote data directly by using the connection:

url("http://www.swivel.com/data_sets/download_file/1002460")

Text connections (class "textConnection") use character vectors for in-
put or output, treating the elements of the character vector like lines of text.
These connections operate somewhat differently from file-like connections.
They don’t support seeking but do support pushBack() (see that function’s
documentation). When used for output, the connections write into an object
whose name is given in creating the connection. So writing to a text con-
nection has a side effect (and what’s more, supports the idea of a non-local
side effect, via option local=FALSE).

134 CHAPTER 5. OBJECTS

Modes and operations on connections

The modes and operations on connections, like the objects themselves, come
largely from the C programming world, as implemented in Posix-style soft-
ware. The operation of opening a connection and the character string ar-
guments to define the mode of the connection when opened were inspired
originally by corresponding routines and arguments in C. You don’t need to
know the C version to use connections in R; indeed, because the R version
has evolved considerably, knowing too much about the original might be a
disadvantage.

Connections have a state of being open or closed. While a connection
is open, successive input operations start where the previous operation left
off. Similarly, successive output operations on an open connection append
bytes just after the last byte resulting from the previous operation.

The mode of the connection is specified by a character-string code sup-
plied when the connection is opened. A connection can be opened when it is
created, by giving the open= argument to the generating function. The con-
nection classes have generating functions of the name of the class (file(),
url(), etc.) A connection can also be opened (if it is not currently open) by
a call to the open() function, taking an open= argument with the same mean-
ing. Connections are closed by a call to close() (and not just by running
out of input data, for example).

The mode supplied in the open= argument is a character string encoding
several properties of the connection in one or two characters each. In its
most general form, it’s rather a mess, and not one of the happier borrowings
from the Posix world. The user needs to answer two questions:

• Is the connection to be used for reading or writing, or both? Character
"r" means open for reading, "w" means open for writing (at the be-
ginning) and "a" means open for appending (writing after the current
contents).

Confusion increases if you want to open the connection for both read-
ing and writing. The general notion is to add the character "+" to one
of the previous. Roughly, you end up reading from the file with and
without initially truncating it by using "w+" and "a+".

• Does the connection contain text or binary data? (Fortunately, if you
are not running on Windows you can usually ignore this.) Text is the
default, but you can add "t" to the mode if you want. For binary
input/output append "b" to the string you ended up with from the
first property.

5.6. READING AND WRITING OBJECTS AND DATA 135

So, for example, open="a+b" opens the connection for both appending and
reading, for binary data.

The recommended rules for functions that read or write from connections
are:

1. If the connection is initially closed, open it and close it on exiting from
the function.

2. If the connection is initially open, leave it open after the input/output
operations.

As the paradigm on page 131 stated, you should therefore explicitly open a
connection if you hope to operate on it in more than one operation.

Consider the following piece of code, which writes the elements of a
character vector myText, one element per line, to a file connection, to the file
"myText.txt" in the local working directory:

txt <- file("./myText.txt")
writeLines(myText, txt)

The output is written as expected, and the connection is left closed, but with
mode "w". As a result, the connection would have to be explicitly re-opened
in read mode to read the results back. The default mode for connections is
read-only ("r"), but writeLines() set the mode to "wt" and did not revert
it; therefore, a call to a read operation or to open() with a read mode would
fail. Following the paradigm, the first expression should be:

txt <- file("./myText.txt", "w+")

Now the connection stays open after the call to writeLines(), and data can
be read from it, before explicitly closing the connection.

5.6 Reading and Writing Objects and Data

R has a number of functions that read from external media to create objects
or write data to external media. The external media are often files, specified
by a character string representing the file’s name. Generally, however, the
media can be any connection objects as described in Section 5.5.

In programming with these functions, the first and most essential dis-
tinction is between those designed to work with any R object and those
designed for specific classes of objects or other restricted kinds of data. The
first approach is based on the notion of serializing, meaning the conversion

136 CHAPTER 5. OBJECTS

of an arbitrary object to and from a stream of bytes. The content of the
file is not expected to be meaningful for any purpose other than serializing
and unserializing, but the important property for programming is that any
object will be serialized. The second type of function usually deals with files
that have some particular format, usually text but sometimes binary. Other
software, outside of R, may have produced the file or may be suitable to deal
with the file.

Serializing: Saving and restoring objects

The serializing functions write and read whole R objects, using an internal
coding format. Writing objects this way and then reading them back should
produce an object identical to the original, in so far as the objects written be-
have as normal R objects. The coding format used is platform-independent,
for all current implementations of R. So although the data written may be
technically “binary”, it is suitable for moving objects between machines,
even between operating systems. For that reason, files of this form can be
used in a source package, for example in the "data" directory (see Section
4.3, page 87).

There are two different approaches currently implemented. One, repre-
sented by the save() and load() functions, writes a file containing one or
more named objects (save()). Restoring these objects via load() creates
objects of the same names in some specified R environment. The data for-
mat and functions are essentially those used to save R workspaces. However,
the same mechanism can be used to save any collection of named objects
from a specified environment.

The lower-level version of the same mechanism is to serialize() a single
object, using the same internal coding. To read the corresponding object
back use unserialize(). Conceptually, saving and loading are equivalent to
serializing and unserializing a named list of objects.

By converting arbitrary R objects, the serialize() function and its rel-
atives become an important resource for trustworthy programming. Not
only do they handle arbitrary objects, but they consider special objects
that behave differently from standard R objects, such as environments. To
the extent reasonable, this means that such objects should be properly pre-
served and restored; for example, if there are multiple references to a single
environment in the object(s) being serialized, these should be restored by
unserialize() to refer to one environment, not to several. Functions built
on the serializing techniques can largely ignore details needed to handle a
variety of objects. For example, the digest package implements a hash-

5.6. READING AND WRITING OBJECTS AND DATA 137

style table indexed by the contents of the objects, not their name. Using
serialize() is the key to the technique: rather than having to deal with dif-
ferent types of data to create a hash from the object, one uses serialize()

to convert an object to a string of bytes. (See Section 11.2, page 416, for an
example based on digest.)

Two caveats are needed. First, references are only preserved uniquely
within a single call to one of the serializing functions. Second, some objects
are only meaningful within the particular session or context, and no magic
on the part of serialize() will save all the relevant context. An example
is an open connection object: serializing and then unserializing in a later
process will not work, because the information in the object will not be valid
for the current session.

Reading and writing data

The serializing techniques use an internal coding of R objects to write to a
file or connection. The content of the file mattered only in that it had to be
consistent between serializing and unserializing. (For this reason, serializing
includes version information in the external file.)

A different situation arises when data is being transferred to or from
some software outside of R. In the case of reading such data and constructing
an R object, the full information about the R object has to be inferred from
the form of the data, perhaps helped by other information. General-purpose
functions for such tasks use information about the format of character-string
data to infer fairly simple object structure (typically vectors, lists, or data-
frame-like objects). Many applications can export data in such formats,
including spreadsheet programs, database software, and reasonably simple
programs written in scripting, text manipulation, or general programming
languages. In the other direction, R functions can write text files of a similar
form that can be read by these applications or programs.

Functions scan() and read.table() read fields of text data and interpret
them as values to be returned in an R object. Calls to scan() typically return
either a vector of some basic class (numeric or character in most cases), or
a list whose components are such vectors. A call to read.table() expects
to read a rectangular table of data, and to return a data.frame object, with
columns of the object corresponding to columns of the table. Such tables
can be generated by the export commands of most spreadsheet and database
systems. Section 8.2, page 294, has an example of importing such data.

A variety of functions can reverse the process to write similar files: cat()

is the low-level correspondence to scan(), and write.table() corresponds to

138 CHAPTER 5. OBJECTS

read.table().
These functions traditionally assume that file arguments are ordinary

text files, but they can in fact read or write essentially any connection. Also,
functions exist to deal with binary, raw, data on the connection rather than
text fields. See the documentation for functions readBin() and writeBin().

For many applications, these functions can be used with modest human
effort. However, there are limitations, particularly if you need an interface
to other software that deals with highly structured or very large objects.
In principle, specialized inter-system interfaces provide a better way to deal
with such data. Some interfaces are simple (but useful) functions that read
the specialized files used by other systems to save data. At the other ex-
treme, inter-system interfaces can provide a model in one language or sys-
tem for computing in another, in a fully general sense. If a suitable general
inter-system interface is available and properly installed, some extra work to
adapt it to your particular problem can pay off in a more powerful, general,
and accurate way of dealing with objects in one system when computing in
another. See Chapter 12 for a discussion.

