
Chapter 2

Using R

This chapter covers the essentials for using R to explore data in-
teractively. Section 2.1 covers basic access to an R session. Users
interact with R through a single language for both data analy-
sis and programming (Section 2.3, page 19). The key concepts
are function calls in the language and the objects created and
used by those calls (2.4, 24), two concepts that recur through-
out the book. The huge body of available software is organized
around packages that can be attached to the session, once they
are installed (2.5, 25). The system itself can be downloaded and
installed from repositories on the Web (2.6, 29); there are also
a number of resources on the Web for information about R (2.7,
31).

Lastly, we examine aspects of R that may raise difficulties for
some new users (2.8, 34).

2.1 Starting R

R runs on the commonly used platforms for personal computing: Windows R©,
Mac OS X R©, Linux, and some versions of UNIX R©. In the usual desktop en-
vironments for these platforms, users will typically start R as they would
most applications, by clicking on the R icon or on the R file in a folder of
applications.

An application will then appear looking much like other applications
on the platform: for example, a window and associated toolbar. In the

11

12 CHAPTER 2. USING R

standard version, at least on most platforms, the application is called the
"R Console". In Windows recently it looked like this:

The application has a number of drop-down menus; some are typical of most
applications ("File", "Edit", and "Help"). Others such as "Packages" are
special to R. The real action in running R, however, is not with the menus
but in the console window itself. Here the user is expected to type input to R

in the form of expressions; the program underlying the application responds
by doing some computation and if appropriate by displaying a version of the
results for the user to look at (printed results normally in the same console
window, graphics typically in another window).

This interaction between user and system continues, and constitutes an
R session. The session is the fundamental user interface to R. The following
section describes the logic behind it. A session has a simple model for
user interaction, but one that is fundamentally different from users’ most
common experience with personal computers (in applications such as word
processors, Web browsers, or audio/video systems). First-time users may
feel abandoned, left to flounder on their own with little guidance about what
to do and even less help when they do something wrong. More guidance is
available than may be obvious, but such users are not entirely wrong in their

2.2. AN INTERACTIVE SESSION 13

reaction. After intervening sections present the essential concepts involved
in using R, Section 2.8, page 34 revisits this question.

2.2 An Interactive Session

Everything that you do interactively with R happens in a session. A session
starts when you start up R, typically as described above. A session can
also be started from other special interfaces or from a command shell (the
original design), without changing the fundamental concept and with the
basic appearance remaining as shown in this section and in the rest of the
book. Some other interfaces arise in customizing the session, on page 17.

During an R session, you (the user) provide expressions for evaluation
by R, for the purpose of doing any sort of computation, displaying results,
and creating objects for further use. The session ends when you decide to
quit from R.

All the expressions evaluated in the session are just that: general ex-
pressions in R’s version of the S language. Documentation may mention
“commands” in R, but the term just refers to a complete expression that
you type interactively or otherwise hand to R for evaluation. There’s only
one language, used for either interactive data analysis or for programming,
and described in section 2.3. Later sections in the book come back to ex-
amine it in more detail, especially in Chapter 3.

The R evaluator displays a prompt, and the user responds by typing a
line of text. Printed output from the evaluation and other messages appear
following the input line.

Examples in the book will be displayed in this form, with the default
prompts preceding the user’s input:

> quantile(Declination)
0% 25% 50% 75% 100%

-27.98 -11.25 8.56 17.46 27.30

The "> " at the beginning of the example is the (default) prompt string. In
this example the user responded with

quantile(Declination)

The evaluator will keep prompting until the input can be interpreted as a
complete expression; if the user had left off the closing ")", the evaluator
would have prompted for more input. Since the input here is a complete
expression, the system evaluated it. To be pedantic, it parsed the input text

14 CHAPTER 2. USING R

and evaluated the resulting object. The evaluation in this case amounts to
calling a function named quantile.

The printed output may suggest a table, and that’s intentional. But in
fact nothing special happened; the standard action by the evaluator is to
print the object that is the value of the expression. All evaluated expressions
are objects; the printed output corresponds to the object; specifically, the
form of printed output is determined by the kind of object, by its class (tech-
nically, through a method selected for that class). The call to quantile()

returned a numeric vector, that is, an object of class "numeric". A method
was selected based on this class, and the method was called to print the
result shown. The quantile() function expects a vector of numbers as its
argument; with just this one argument it returns a numeric vector containing
the minimum, maximum, median and quartiles.

The method for printing numeric vectors prints the values in the vec-
tor, five of them in this case. Numeric objects can optionally have a names

attribute; if they do, the method prints the names as labels above the num-
bers. So the "0%" and so on are part of the object. The designer of the
quantile() function helpfully chose a names attribute for the result that
makes it easier to interpret when printed.

All these details are unimportant if you’re just calling quantile() to
summarize some data, but the important general concept is this: Objects
are the center of computations in R, along with the function calls that create
and use those objects. The duality of objects and function calls will recur
in many of our discussions.

Computing with existing software hinges largely on using and creating
objects, via the large number of available functions. Programming, that is,
creating new software, starts with the simple creation of function objects.
More ambitious projects often use a paradigm of creating new classes of
objects, along with new or modified functions and methods that link the
functions and classes. In all the details of programming, the fundamental
duality of objects and functions remains an underlying concept.

Essentially all expressions are evaluated as function calls, but the lan-
guage includes some forms that don’t look like function calls. Included are
the usual operators, such as arithmetic, discussed on page 21. Another use-
ful operator is `?`, which looks up R help for the topic that follows the
question mark. To learn about the function quantile():

> ?quantile

In standard GUI interfaces, the documentation will appear in a separate
window, and can be generated from a pull-down menu as well as from the

2.2. AN INTERACTIVE SESSION 15

`?` operator.
Graphical displays provide some of the most powerful techniques in data

analysis, and functions for data visualization and other graphics are an es-
sential part of R:

> plot(Date, Declination)

Here the user typed another expression, plot(Date, Declination); in this
case producing a scatter plot as a side effect, but no printed output. The
graphics during an interactive session typically appear in one or more sepa-
rate windows created by the GUI, in this example a window using the native
quartz() graphics device for Mac OS X. Graphic output can also be produced
in a form suitable for inclusion in a document, such as output in a general
file format (PDF or postscript, for example). Computations for graphics are
discussed in more detail in Chapter 7.

The sequence of expression and evaluation shown in the examples is es-
sentially all there is to an interactive session. The user supplies expressions
and the system evaluates them, one after another. Expressions that pro-
duce simple summaries or plots are usually done to see something, either
graphics or printed output. Aside from such immediate gratification, most
expressions are there in order to assign objects, which can then be used in
later computations:

> fitK <- gam(Kyphosis ∼ s(Age, 4) + Number, family = binomial)

Evaluating this expression calls the function gam() and assigns the value of
the call, associating that object with the name fitK. For the rest of the

16 CHAPTER 2. USING R

session, unless some other assignment to this name is carried out, fitK can
be used in any expression to refer to that object; for example, coef(fitK)
would call a function to extract some coefficients from fitK (which is in this
example a fitted model).

Assignments are a powerful and interesting part of the language. The
basic idea is all we need for now, and is in any case the key concept: As-
signment associates an object with a name. The term “associates” has a
specific meaning here. Whenever any expression is evaluated, the context
of the evaluation includes a local environment, and it is into this environ-
ment that the object is assigned, under the corresponding name. The object
and name are associated in the environment, by the assignment operation.
From then on, the name can be used as a reference to the object in the en-
vironment. When the assignment takes place at the “top level” (in an input
expression in the session), the environment involved is the global environ-
ment. The global environment is part of the current session, and all objects
assigned there remain available for further computations in the session.

Environments are an important part of programming with R. They are
also tricky to deal with, because they behave differently from other objects.
Discussion of environments continues in Section 2.4, page 24.

A session ends when the user quits from R, either by evaluating the
expression q() or by some other mechanism provided by the user interface.
Before ending the session, the system offers the user a chance to save all the
objects in the global environment at the end of the session:

> q()
Save workspace image? [y/n/c]: y

If the user answers yes, then when a new session is started in the same
working directory, the global environment will be restored. Technically, the
environment is restored, not the session. Some actions you took in the
session, such as attaching packages or using options(), may not be restored,
if they don’t correspond to objects in the global environment.

Unfortunately, your session may end involuntarily: the evaluator may be
forced to terminate the session or some outside event may kill the process.
R tries to save the workspace even when fatal errors occur in low-level C

or Fortran computations, and such disasters should be rare in the core R

computations and in well-tested packages. But to be truly safe, you should
explicitly back up important results to a file if they will be difficult to re-
create. See documentation for functions save() and dump() for suitable
techniques.

2.2. AN INTERACTIVE SESSION 17

Customizing the R session

As you become a more involved user of R, you may want to customize your
interaction with it to suit your personal preferences or the goals motivating
your applications. The nature of the system lends itself to a great variety
of options from the most general to trivial details.

At the most general is the choice of user interface. So far, we have
assumed you will start R as you would start other applications on your
computer, say by clicking on the R icon.

A second approach, available on any system providing both R and a
command shell, is to invoke R as a shell command. In its early history,
S in all its forms was typically started as a program from an interactive
shell. Before multi-window user interfaces, the shell would be running on
an interactive terminal of some sort, or even on the machine’s main console.
Nowadays, shells or terminal applications run in their own windows, either
supported directly by the platform or indirectly through a client window
system, such as those based on X11. Invoking R from a shell allows some
flexibility that may not be provided directly by the application (such as run-
ning with a C-level debugger). Online documentation from a shell command
is printed text by default, which is not as convenient as a browser interface.
To initiate a browser interface to the help facility, see the documentation for
help.start().

A third approach, somewhat in between the first two, is to use a GUI
based on another application or language, potentially one that runs on mul-
tiple platforms. The most actively supported example of this approach is
ESS, a general set of interface tools in the emacs editor. ESS stands for Emacs
Speaks Statistics, and the project supports other statistical systems as well
as R; see ess.r-project.org. For those who love emacs as a general com-
putational environment, ESS provides a variety of GUI-like features, plus
a user-interface programmability characteristic of emacs. The use of a GUI
based on a platform-independent user interface has advantages for those who
need to work regularly on more than one operating system.

Finally, an R session can be run in a non-interactive form, usually invoked
in a batch mode from a command shell, with its input taken from a file or
other source. R can also be invoked from within another application, as part
of an inter-system interface.

In all these situations, the logic of the R session remains essentially the
same as shown earlier (the major exception being a few computations in R

that behave differently in a non-interactive session).

18 CHAPTER 2. USING R

Encoding of text

A major advance in R’s world view came with the adoption of multiple
locales, using information available to the R session that defines the user’s
preferred encoding of text and other options related to the human language
and geographic location. R follows some evolving standards in this area.
Many of those standards apply to C software, and therefore they fit fairly
smoothly into R.

Normally, default locales will have been set when R was installed that
reflect local language and other conventions in your area. See Section 8.1,
page 293, and ?locales for some concepts and techniques related to locales.
The specifications use standard but somewhat unintuitive terminology; un-
less you have a particular need to alter behavior for parsing text, sorting
character data, or other specialized computations, caution suggests sticking
with the default behavior.

Options during evaluation

R offers mechanisms to control aspects of evaluation in the session. The
function options() is used to share general-purpose values among functions.
Typical options include the width of printed output, the prompt string
shown by the parser, and the default device for graphics. The options()

mechanism maintains a named list of values that persist through the session;
functions use those values, by extracting the relevant option via getOption():

> getOption("digits")
[1] 7

In this case, the value is meant to be used to control the number of digits
in printing numerical data. A user, or in fact any function, can change this
value, by using the same name as an argument to options():

> 1.234567890
[1] 1.234568
> options(digits = 4)
> 1.234567890
[1] 1.235

For the standard options, see ?options; however, a call to options() can
be used by any computation to set values that are then used by any other
computation. Any argument name is legal and will cause the corresponding
option to be communicated among functions.

2.3. THE LANGUAGE 19

Options can be set from the beginning of the session; see ?Startup. How-
ever, saving a workspace image does not cause the options in effect to be
saved and restored. Although the options() mechanism does use an R ob-
ject, .Options, the internal C code implementing options() takes the object
from the base package, not from the usual way of finding objects. The code
also enforces some constraints on what’s legal for particular options; for ex-
ample, "digits" is interpreted as a single integer, which is not allowed to be
too small or too large, according to values compiled into R.

The use of options() is convenient and even necessary for the evalu-
ator to behave intelligently and to allow user customization of a session.
Writing functions that depend on options, however, reduces our ability to
understand these functions’ behavior, because they now depend on exter-
nal, changeable values. The behavior of code that depends on an option
may be altered by any other function called at any earlier time during the
session, if the other function calls options(). Most R programming should
be functional programming, in the sense that each function call performs
a well-defined computation depending only on the arguments to that call.
The options() mechanism, and other dependencies on external data that
can change during the session, compromise functional programming. It may
be worth the danger, but think carefully about it. See page 47 for more on
the programming implications, and for an example of the dangers.

2.3 The Language

This section and the next describe the interactive language as you need to
use it during a session. But as noted on page 13, there is no interactive lan-
guage, only the one language used for interaction and for programming. To
use R interactively, you basically need to understand two things: functions
and objects. That same duality, functions and objects, runs through every-
thing in R from an interactive session to designing large-scale software. For
interaction, the key concepts are function calls and assignments of objects,
dealt with in this section and in section 2.4 respectively. The language also
has facilities for iteration and testing (page 22), but you can often avoid
interactive use of these, largely because R function calls operate on, and
return, whole objects.

Function Calls

As noted in Section 2.2, the essential computation in R is the evaluation
of a call to a function. Function calls in their ordinary form consist of

20 CHAPTER 2. USING R

the function’s name followed by a parenthesized argument list; that is, a
sequence of arguments separated by commas.

plot(Date, Declination)
glm(Survived ∼ .)

Arguments in function calls can be any expression. Each function has
a set of formal arguments, to which the actual arguments in the call are
matched. As far as the language itself is concerned, a call can supply any
subset of the complete argument list. For this purpose, argument expressions
can optionally be named, to associate them with a particular argument of
the function:

jitter(y, amount = .1 * rse)

The second argument in the call above is explicitly matched to the formal
argument named amount. To find the argument names and other information
about the function, request the online documentation. A user interface to R

or a Web browser gives the most convenient access to documentation, with
documentation listed by package and within package by topic, including
individual functions by name. Documentation can also be requested in the
language, for example:

> ?jitter

This will produce some display of documentation for the topic "jitter",
including in the case of a function an outline of the calling sequence and
a discussion of individual arguments. If there is no documentation, or you
don’t quite believe it, you can find the formal argument names from the
function object itself:

> formalArgs(jitter)
[1] "x" "factor" "amount"

Behind this, and behind most techniques involving functions, is the simple
fact that jitter and all functions are objects in R. The function name is a
reference to the corresponding object. So to see what a function does, just
type its name with no argument list following.

> jitter
function (x, factor = 1, amount = NULL)
{

if (length(x) == 0)
return(x)

if (!is.numeric(x))
stop("’x’ must be numeric")

etc.

2.3. THE LANGUAGE 21

The printed version is another R expression, meaning that you can input such
an expression to define a function. At which point, you are programming in
R. See Chapter 3. The first section of that chapter should get you started.

In principle, the function preceding the parenthesized arguments can be
specified by any expression that returns a function object, but in practice
functions are nearly always specified by name.

Operators

Function calls can also appear as operator expressions in the usual scientific
notation.

y - mean(y)
weight > 0
x < 100 | is.na(date)

The usual operators are defined for arithmetic, comparisons, and logical
operations (see Chapter 6). But operators in R are not built-in; in fact,
they are just special syntax for certain function calls. The first line in the
example above computes the same result as:

`-`(y, mean(y))

The notation `-` is an example of what are called backtick quotes in R. These
quotes make the evaluator treat an arbitrary string of characters as if it was
a name in the language. The evaluator responds to the names "y" or "mean"

by looking for an object of that name in the current environment. Similarly
`-` causes the evaluator to look for an object named "-". Whenever we
refer to operators in the book we use backtick quotes to emphasize that this
is the name of a function object, not treated as intrinsically different from
the name mean.

Functions to extract components or slots from objects are also provided
in operator form:

mars$Date
classDef@package

And the expressions for extracting subsets or elements from objects are also
actually just specialized function calls. The expression

y[i]

is recognized in the language and evaluated as a call to the function `[`,
which extracts a subset of the object in its first argument, with the subset
defined by the remaining arguments. The expression y[i] is equivalent to:

22 CHAPTER 2. USING R

`[`(y, i)

You could enter the second form perfectly legally. Similarly, the function
`[[` extracts a single element from an object, and is normally presented as
an operator expression:

mars[["Date"]]

You will encounter a few other operators in the language. Frequently
useful for elementary data manipulation is the `:` operator, which produces
a sequence of integers between its two arguments:

1:length(x)

Other operators include `∼`, used in specifying models, `%%` for modulus,
`%*%` for matrix multiplication, and a number of others.

New operators can be created and recognized as infix operators by the
parser. The last two operators mentioned above are examples of the general
convention in the language that interprets

%text%

as the name of an operator, for any text string. If it suits the style of
computation, you can define any function of two arguments and give it, say,
the name `%d%`. Then an expression such as

x %d% y

will be evaluated as the call:

`%d%`(x, y)

Iteration: A quick introduction

The language used by R has the iteration and conditional expressions typical
of a C-style language, but for the most part you can avoid typing all but the
simplest versions interactively. The following is a brief guide to using and
avoiding iterative expressions.

The workhorse of iteration is the for loop. It has the form:

for(var in seq) expr

2.3. THE LANGUAGE 23

where var is a name and seq is a vector of values. The loop assigns each
element of seq to var in sequence and then evaluates the arbitrary expression
expr each time. When you use the loop interactively, you need to either
show something each time (printed or graphics) or else assign the result
somewhere; otherwise, you won’t get any benefit from the computation. For
example, the function plot() has several “types” of x-y plots (points, lines,
both, etc.). To repeat a plot with different types, one can use a for() loop
over the codes for the types:

> par(ask=TRUE)
> for(what in c("p","l","b")) Declination, type = what)

The call to par() caused the graphics to pause between plots, so we get to
see each plot, rather then having the first two flash by. The variables Date

and Declination come from some data on the planet Mars, in a data frame
object, mars (see Section 6.5, page 176). If we wanted to see the class of
each of the 17 variables in that data frame, another for() loop would do it:

for(j in names(mars)) print(class(mars[,j]))

But this will just print 17 lines of output, which we’ll need to relate to the
variable names. Not much use.

Here’s where an alternative to iteration is usually better. The workhorse
of these is the function sapply(). It applies a function to each element of
the object it gets as its first argument, so:

> sapply(mars,class)
Year X Year.1 Month

"integer" "logical" "integer" "integer"
Day Day..adj. Hour Min

etc.

The function tries to simplify the result, and is intelligent enough to include
the names as an attribute. See ?sapply for more details, and the “See Also”
section of that documentation for other similar functions.

The language has other iteration operators (while() and repeat), and
the usual conditional operators (if ... else). These are all useful in pro-
gramming and discussed in Chapter 3. By the time you need to use them
in a non-trivial way interactively, in fact, you should consider turning your
computation into a function, so Chapter 3 is indeed the place to look; see
Section 3.4, page 58, in particular, for more detail about the language.

plot(Date,

24 CHAPTER 2. USING R

2.4 Objects and Names

A motto in discussion of the S language has for many years been: every-
thing is an object. You will have a potentially very large number of objects
available in your R session, including functions, datasets, and many other
classes of objects. In ordinary computations you will create new objects or
modify existing ones.

As in any computing language, the ability to construct and modify ob-
jects relies on a way to refer to the objects. In R, the fundamental reference
to an object is a name. This is an essential concept for programming with
R that arises throughout the book and in nearly any serious programming
project.

The basic concept is once again the key thing to keep in mind: references
to objects are a way for different computations in the language to refer to
the same object; in particular, to make changes to that object. In the S

language, references to ordinary objects are only through names. And not
just names in an abstract, global sense. An object reference must be a name
in a particular R environment. Typically, the reference is established initially
either by an assignment or as an argument in a function call.

Assignment is the obvious case, as in the example on page 15:

> fitK <- gam(Kyphosis ∼ s(Age, 4) + Number, family = binomial)

Assignment creates a reference, the name "fitK", to some object. That ref-
erence is in some environment. For now, just think of environments as tables
that R maintains, in which objects can be assigned names. When an assign-
ment takes place in the top-level of the R session, the current environment
is what’s called the global environment. That environment is maintained
throughout the current session, and optionally can be saved and restored
between sessions.

Assignments appear inside function definitions as well. These assign-
ments take place during a call to the function. They do not use the global
environment, fortunately. If they did, every assignment to the name "x"

would overwrite the same reference. Instead, assignments during function
calls use an environment specially created for that call. So another reason
that functions are so central to programming with R is that they protect
users from accidentally overwriting objects in the middle of a computation.

The objects available during an interactive R session depend on what
packages are attached; technically, they depend on the nested environments
through which the evaluator searches, when given a name, to find a corre-
sponding object. See Section 5.3, page 121, for the details of the search.

2.5. FUNCTIONS AND PACKAGES 25

2.5 Functions and Packages

In addition to the software that comes with any copy of R, there are many
thousands of functions available to be used in an R session, along with a
correspondingly large amount of other related software. Nearly all of the
important R software comes in the form of packages that make the software
easily available and usable. This section discusses the implications of using
different packages in your R session. For much more detail, see Chapter 4,
but that is written more from the view of writing or extending a package.
You will get there, I hope, as your own programming efforts take shape.
The topic here, though, is how best to use other people’s efforts that have
been incorporated in packages.

The process leading from needing some computational tool to having it
available in your R session has three stages: finding the software, typically in
a package; installing the package; and attaching the package to the session.

The last step is the one you will do most often, so let’s begin by assuming
that you know which package you need and that the required package has
been installed with your local copy of R. See Section 2.5, page 26, for finding
and installing the relevant package.

You can tell whether the package is attached by looking for it in the
printed result of search(); alternatively, you can look for a particular ob-
ject with the function find(), which returns the names of all the attached
packages that contain the object. Suppose we want to call the function
dotplot(), for example.

> find("dotplot")
character(0)

No attached package has an object of this name. If we happen to know that
the function is in the package named lattice, we can make that package
available for the current session. A call to the function library() requests
this:

library(lattice)

The function is library() rather than package() only because the original S

software called them libraries. Notice also that the package name was given
without quotes. The library() function, and a similar function require(),
do some nonstandard evaluation that takes unquoted names. That’s another
historical quirk that saves users from typing a couple of quote characters.

If a package of the name "lattice" has been installed for this version of
R, the call will attach the package to the session, making its functions and
other objects available:

26 CHAPTER 2. USING R

> library(lattice)
> find("dotplot")
[1] "package:lattice"

By “available”, we mean that the evaluator will find an object belonging
to the package when an expression uses the corresponding name. If the
user types dotplot(Declination) now, the evaluator will normally find the
appropriate function. To see why the quibbling “normally” was added, we
need to say more precisely what happens to find a function object.

The evaluator looks first in the global environment for a function of this
name, then in each of the attached packages, in the order shown by search().
The evaluator will generally stop searching when it finds an object of the
desired name, dotplot, Declination, or whatever. If two attached packages
have functions of the same name, one of them will “mask” the object in the
other (the evaluator will warn of such conflicts, usually, when a package is
attached with conflicting names). In this case, the result returned by find()

would show two or more packages.
For example, the function gam() exists in two packages, gam and mgcv. If

both were attached:

> find("gam")
[1] "package:gam" "package:mgcv"

A simple call to gam() will get the version in package gam; the version in
package mgcv is now masked.

R has some mechanisms designed to get around such conflicts, at least
as far as possible. The language has an operator, `::`, to specify that an
object should come from a particular package. So mgcv::gam and gam::gam

refer unambiguously to the versions in the two packages. The masked version
of gam() could be called by:

> fitK <- mgcv::gam(Kyphosis ∼ s(Age, 4) + etc.

Clearly one doesn’t want to type such expressions very often, and they
only help if one is aware of the ambiguity. For the details and for other
approaches, particularly when you’re programming your own packages, see
Section 5.3, page 121.

Finding and installing packages

Finding the right software is usually the hardest part. There are thousands
of packages and smaller collections of R software in the world. Section 2.7,
page 31, discusses ways to search for information; as a start, CRAN, the

2.5. FUNCTIONS AND PACKAGES 27

central repository for R software, has a large collection of packages itself,
plus further links to other sources for R software. Extended browsing is
recommended, to develop a general feel for what’s available. CRAN supports
searching with the Google search engine, as do some of the other major
collections.

Use the search engine on the Web site to look for relevant terms. This
may take some iteration, particularly if you don’t have a good guess for the
actual name of the function. Browse through the search output, looking for
a relevant entry, and figure out the name of the package that contains the
relevant function or other software.

Finding something which is not in these collections may take more in-
genuity. General Web search techniques often help: combine the term "R"

with whatever words describe your needs in a search query. The e-mail lists
associated with R will usually show up in such a search, but you can also
browse or search explicitly in the archives of the lists. Start from the R home
page, r-project.org, and follow the link for "Mailing Lists".

On page 15, we showed a computation using the function gam(), which
fits a generalized additive model to data. This function is not part of the
basic R software. Before being able to do this computation, we need to find
and install some software. The search engine at the CRAN site will help out,
if given either the function name "gam" or the term "generalized additive

models". The search engine on the site tends to give either many hits or no
relevant hits; in this case, it turns out there are many hits and in fact two
packages with a gam() function. As an example, suppose we decide to install
the gam package.

There are two choices at this point, in order to get and install the pack-
age(s) in question: a binary or a source copy of the package. Usually,
installing from binary is the easy approach, assuming a binary version is
available from the repository. Binary versions are currently available from
CRAN only for Windows and Mac OS X platforms, and may or may not be
available from other sources. Otherwise, or if you prefer to install from
source, the procedure is to download a copy of the source archive for the
package and apply the "INSTALL" command. From an R session, the function
install.packages() can do part or all of the process, again depending on
the package, the repository, and your particular platform. The R GUI may
also have a menu-driven equivalent for these procedures: Look for an item
in the tool bar about installing packages.

First, here is the function install.packages(), as applied on a Mac OS

X platform. To obtain the gam package, for example:

28 CHAPTER 2. USING R

install.packages("gam")

The function will then invoke software to access a CRAN site, download
the packages requested, and attempt to install them on the same R system
you are currently using. The actual download is an archive file whose name
concatenates the name of the package and its current version; in our example,
"gam 0.98.tgz".

Installing from inside a session has the advantage of implicitly specifying
some of the information that you might otherwise need to provide, such as
the version of R and the platform. Optional arguments control where to put
the installed packages, whether to use source or binary and other details.

As another alternative, you can obtain the download file from a Web
browser, and run the installation process from the command shell. If you
aren’t already at the CRAN Web site, select that item in the navigation frame,
choose a mirror site near you, and go there.

Select "Packages" from the CRAN Web page, and scroll or search in the
list of packages to reach a package you want (it’s a very long list, so searching
for the exact name of the package may be required). Selecting the relevant
package takes you to a page with a brief description of the package. For the
package gam at the time this is written:

At this stage, you can access the documentation or download one of the
proffered versions of the package. Or, after studying the information, you
could revert to the previous approach and use install.packages(). If you
do work from one of the source or binary archives, you need to apply the
shell-style command to install the package. Having downloaded the source
archive for package gam, the command would be:

2.6. GETTING R 29

R CMD INSTALL gam_0.98.tar.gz

The INSTALL utility is used to install packages that we write ourselves as
well, so detailed discussion appears in Chapter 4.

The package for this book

In order to follow the examples and suggested computations in the book,
you should install the SoDA package. It is available from CRAN by any of the
mechanisms shown above. In addition to the many references to this package
in the book itself, it will be a likely source for new ideas, enhancements, and
corrections related to the book.

2.6 Getting R

R is an open-source system, in particular a system licensed under the GNU
Public license. That license requires that the source code for the system
be freely available. The current source implementing R can be obtained
over the Web. This open definition of the system is a key support when
we are concerned with trustworthy software, as is the case with all similar
open-source systems.

Relatively simple use of R, and first steps in programming with R, on the
other hand, don’t require all the resources that would be needed to create
your local version of the system starting from the source. You may already
have a version of R on your computer or network. If not, or if you want a
more recent version, binary copies of R can be obtained for the commonly
used platforms, from the same repository. It’s easier to start with binary,
although as your own programming becomes more advanced you may need
more of the source-related resources anyway.

The starting point for obtaining the software is the central R Web site,
r-project.org. You can go there to get the essential information about R.
Treat that as the up-to-date authority, not only for the software itself but
also for detailed information about R (more on that on page 31).

The main Web site points you to a variety of pages and other sites for
various purposes. To obtain R, one goes to the CRAN repository, and from
there to either "R Binaries" or "R Sources". Downloading software may
involve large transfers over the Web, so you are encouraged to spread the
load. In particular, you should select from a list of mirror sites, preferably
picking one geographically near your own location. When we talk about the

30 CHAPTER 2. USING R

CRAN site from now on, we mean whichever one of the mirror sites you have
chosen.

R is actively maintained for three platforms: Windows, Mac OS X, and
Linux. For these platforms, current versions of the system can be obtained
from CRAN in a form that can be directly installed, usually by a standard in-
stallation process for that platform. For Windows, one obtains an executable
setup program (a ".exe" file); for Mac OS X, a disk image (a ".dmg" file) con-
taining the installer for the application. The Linux situation is a little less
straightforward, because the different flavors of Linux differ in details when
installing R. The Linux branch of "R Binaries" branches again according to
the flavors of Linux supported, and sometimes again within these branches
according to the version of this flavor. The strategy is to keep drilling down
through the directories, selecting at each stage the directory that corre-
sponds to your setup, until you finally arrive at a directory that contains
appropriate files (usually ".rpm" files) for the supported versions of R.

Note that for at least one flavor of Linux (Debian), R has been made a
part of the platform. You can obtain R directly from the Debian Web site.
Look for Debian packages named "r-base", and other names starting with
"r-". If you’re adept at loading packages into Debian, working from this
direction may be the simplest approach. However, if the version of Debian

is older than the latest stable version of R, you may miss out on some later
improvements and bug fixes unless you get R from CRAN.

For any platform, you will eventually download a file (".exe", "dmg",
".rpm", or other), and then install that file according to the suitable ritual
for this platform. Installation may require you to have some administration
privileges on the machine, as would be true for most software installations.
(If installing software at all is a new experience for you, it may be time
to seek out a more experienced friend.) Depending on the platform, you
may have a choice of versions of R, but it’s unlikely you want anything
other than the most recent stable version, the one with the highest version
number. The platform’s operating system will also have versions, and you
generally need to download a file asserted to work with the version of the
operating system you are running. (There may not be any such file if you
have an old version of the operating system, or else you may have to settle
for a comparably ancient version of R.) And just to add further choices, on
some platforms you need to choose from different hardware (for example,
32-bit versus 64-bit architecture). If you don’t know which choice applies,
that may be another indication that you should seek expert advice.

Once the binary distribution has been downloaded and installed, you
should have direct access to R in the appropriate mechanism for your plat-

2.7. ONLINE INFORMATION ABOUT R 31

form.

Installing from source

Should you? For most users of R, not if they can avoid it, because they
will likely learn more about programming than they need to or want to. For
readers of this book, on the other hand, many of these details will be relevant
when you start to seriously create or modify software. Getting the source,
even if you choose not to install it, may help you to study and understand
key computations.

The instructions for getting and for installing R from source are contained
in the online manual, R Installation and Administration, available from the
Documentation link at the r-project.org Web site.

2.7 Online Information About R

Information for users is in various ways both a strength and a problem with
open-source, cooperative enterprises like R. At the bottom, there is always
the source, the software itself. By definition, no software that is not open to
study of all the source code can be as available for deep study. In this sense,
only open-source software can hope to fully satisfy the Prime Directive by
offering unlimited examination of what is actually being computed.

But on a more mundane level, some open-source systems have a reputa-
tion for favoring technical discussions aimed at the insider over user-oriented
documentation. Fortunately, as the R community has grown, an increasing
effort has gone into producing and organizing information. Users who have
puzzled out answers to practical questions have increasingly fed back the
results into publicly available information sources.

Most of the important information sources can be tracked down starting
at the main R Web page, r-project.org. Go there for the latest pointers.
Here is a list of some of the key resources, followed by some comments about
them.

Manuals: The R distribution comes with a set of manuals, also available
at the Web site. There are currently six manuals: An Introduction
to R, Writing R Extensions, R Data Import/Export, The R Language
Definition, R Installation and Administration, and R Internals. Each
is available in several formats, notably as Web-browsable HTML docu-
ments.

32 CHAPTER 2. USING R

Help files: R itself comes with files that document all the functions and
other objects intended for public use, as well as documentation files
on other topics (for example, ?Startup, discussing how an R session
starts).

All contributed packages should likewise come with files documenting
their publicly usable functions. The quality control tools in R largely
enforce this for packages on CRAN.

Help files form the database used to respond to the help requests from
an R session, either in response to the Help menu item or through the
`?` operator or help() function typed by the user.

The direct requests in these forms only access terms explicitly labeling
the help files; typically, the names of the functions and a few other
general terms for documentation (these are called aliases in discussions
of R documentation). For example, to get help on a function in this
way, you must know the name of the function exactly. See the next
item for alternatives.

Searching: R has a search mechanism for its help files that generalizes
the terms available beyond the aliases somewhat and introduces some
additional searching flexibility. See ?help.search for details.

The r-project.org site has a pointer to a general search of the files
on the central site, currently using the Google search engine. This pro-
duces much more general searches. Documentation files are typically
displayed in their raw, LATEX-like form, but once you learn a bit about
this, you can usually figure out which topic in which package you need
to look at.

And, beyond the official site itself, you can always apply your favorite
Web search to files generally. Using "R" as a term in the search pattern
will usually generate appropriate entries, but it may be difficult to
avoid plenty of inappropriate ones as well.

The Wiki: Another potentially useful source of information about R is the
site wiki.r-project.org, where users can contribute documentation.
As with other open Wiki sites, this comes with no guarantee of accu-
racy and is only as good as the contributions the community provides.
But it has the key advantage of openness, meaning that in some “sta-
tistical” sense it reflects what R users understand, or at least that
subset of the users sufficiently vocal and opinionated to submit to the
Wiki.

2.7. ONLINE INFORMATION ABOUT R 33

The strength of this information source is that it may include material
that users find relevant but that developers ignore for whatever reason
(too trivial, something users would never do, etc.). Some Wiki sites
have sufficient support from their user community that they can func-
tion as the main information source on their topic. As of this writing,
the R Wiki has not reached that stage, so it should be used as a sup-
plement to other information sources, and not the primary source, but
it’s a valuable resource nevertheless.

The mailing lists: There are a number of e-mail lists associated officially
with the R project (officially in the sense of having a pointer from the
R Web page, r-project.org, and being monitored by members of R
core). The two most frequently relevant lists for programming with
R are r-help, which deals with general user questions, and r-devel,
which deals generally with more “advanced” questions, including fu-
ture directions for R and programming issues.

As well as a way to ask specific questions, the mailing lists are valu-
able archives for past discussions. See the various search mechanisms
pointed to from the mailing list Web page, itself accessible as the
Mailing lists pointer on the r-project.org site. As usual with tech-
nical mailing lists, you may need patience to wade through some long
tirades and you should also be careful not to believe all the assertions
made by contributors, but often the lists will provide a variety of views
and possible approaches.

Journals: The electronic journal R News is the newsletter of the R Foun-
dation, and a good source for specific tutorial help on topics related
to R, among other R-related information. See the Newsletter pointer
on the cran.r-project.org Web site.

The Journal of Statistical Software is also an electronic journal; its
coverage is more general as its name suggests, but many of the articles
are relevant to programming with R. See the Web site jstatsoft.org.

A number of print journals also have occasional articles of direct or in-
direct relevance, for example, Journal of Computational and Graphical
Statistics and Computational Statistics and Data Analysis.

34 CHAPTER 2. USING R

2.8 What’s Hard About Using R?

This chapter has outlined the computations involved in using R. An R session
consists of expressions provided by the user, typically typed into an R console
window. The system evaluates these expressions, usually either showing the
user results (printed or graphic output) or assigning the result as an object.
Most expressions take the form of calls to functions, of which there are many
thousands available, most of them in R packages available on the Web.

This style of computing combines features found in various other lan-
guages and systems, including command shells and programming languages.
The combination of a functional style with user-level interaction—expecting
the user to supply functional expressions interactively—is less common. Be-
ginning users react in many ways, influenced by their previous experience,
their expectations, and the tasks they need to carry out. Most readers of
this book have selected themselves for more than a first encounter with the
software, and so will mostly not have had an extremely negative reaction.
Examining some of the complaints may be useful, however, to understand
how the software we create might respond (and the extent to which we can
respond). Our mission of supporting effective exploration of data obliges us
to try.

The computational style of an R session is extremely general, and other
aspects of the system reinforce that generality, as illustrated by many of the
topics in this book (the general treatment of objects and the facilities for
interacting with other systems, for example). In response to this generality,
thousands of functions have been written for many techniques. This diversity
has been cited as a strength of the system, as indeed it is. But for some
users exactly this computational style and diversity present barriers to using
the system.

Requiring the user to compose expressions is very different from the
mode of interaction users have with typical applications in current com-
puting. Applications such as searching the Web, viewing documents, or
playing audio and video files all present interfaces emphasizing selection-
and-response rather than composing by the user. The user selects each step
in the computation, usually from a menu, and then responds to the op-
tions presented by the software as a result. When the user does have to
compose (that is, to type) it is typically to fill in specific information such
as a Web site, file or optional feature desired. The eventual action taken,
which might be operationally equivalent to evaluating an expression in R, is
effectively defined by the user’s interactive path through menus, forms and
other specialized tools in the interface. Based on the principles espoused

2.8. WHAT’S HARD ABOUT USING R? 35

in this book, particularly the need for trustworthy software, we might ob-
ject to a selection-and-response approach to serious analysis, because the
ability to justify or reproduce the analysis is much reduced. However, most
non-technical computing is done by selection and response.

Even for more technical applications, such as producing documents or
using a database system, the user’s input tends to be relatively free form.
Modern document-generating systems typically format text according to
selected styles chosen by the user, rather than requiring the user to express
controls explicitly. These differences are accentuated when the expressions
required of the R user take the form of a functional, algebraic language rather
than free-form input.

This mismatch between requirements for using R and the user’s experi-
ence with other systems contributes to some common complaints. How does
one start, with only a general feeling of the statistical goals or the “results”
wanted? The system itself seems quite unhelpful at this stage. Failures are
likely, and the response to them also seems unhelpful (being told of a syntax
error or some detailed error in a specific function doesn’t suggest what to
do next). Worse yet, computations that don’t fail may not produce any
directly useful results, and how can one decide whether this was the “right”
computation?

Such disjunctions between user expectations and the way R works be-
come more likely as the use of R spreads. From the most general view, there
is no “solution”. Computing is being viewed differently by two groups of
people, prospective users on one hand, and the people who created the S

language, R and the statistical software extending R on the other hand.
The S language was designed by research statisticians, initially to be used

primarily by themselves and their colleagues for statistical research and data
analysis. (See the Appendix, page 475.) A language suited for this group
to communicate their ideas (that is, to “program”) is certain to be pitched
at a level of abstraction and generality that omits much detail necessary for
users with less mathematical backgrounds. The increased use of R and the
growth in software written using it bring it to the notice of such potential
users far more than was the case in the early history of S.

In addition to questions of expressing the analysis, simply choosing an
analysis is often part of the difficulty. Statistical data analysis is far from
a routine exercise, and software still does not encapsulate all the expertise
needed to choose an appropriate analysis. Creating such expert software
has been a recurring goal, pursued most actively perhaps in the 1980s, but
it must be said that the goal remains far off.

So to a considerable extent the response to such user difficulties must

36 CHAPTER 2. USING R

include the admission that the software implemented in R is not directly
suited to all possible users. That said, information resources such as those
described earlier in this chapter are making much progress in easing the
user’s path. And, those who have come far enough into the R world to be
reading this book can make substantial contributions to bringing good data
analysis tools to such users.

1. Specialized selection-and-response interfaces can be designed when the
data analysis techniques can be captured with the limited input pro-
vided by menus and forms.

2. Interfaces to R from a system already supporting the application is
another way to provide a limited access expressed in a form familiar
to the user of that system. We don’t describe such interfaces explicitly
in this book, but see Chapter 12 for some related discussion.

3. Both educational efforts and better software tools can make the use
of R seem more friendly. More assistance is available than users may
realize; see for example the suggestions in Section 3.5. And there
is room for improvement: providing more information in a readable
format for the beginning user would be a valuable contribution.

4. Last but far from least in potential value, those who have reached a
certain level of skill in applying data analysis to particular application
areas can ease their colleagues’ task by documentation and by provid-
ing specialized software, usually in the form of an R package. Reading
a description in familiar terminology and organized in a natural struc-
ture for the application greatly eases the first steps. A number of such
packages exist on CRAN and elsewhere.

