Chapter 12

Interfaces II: Between R
and Other Systems

This chapter discusses general inter-system interfaces between
computations in R and those done in other languages and sys-
tems. “Other” generally has two senses here: The implementa-
tion usually involves communicating with another application;
and more fundamentally, the computational model for the other
system may be different from that in R.

The chapter discusses several approaches, the best choice de-
pending on the other system and on the nature of the particular
task: file or text-based (Section 12.2, page 432), functional (12.3,
433), or object-based (12.4, 435). Moving down the list generally
provides greater flexibility and efficiency, paid for by more effort
in installing the interface and programming the application. The
programming model of some systems needs to be considered ex-
plicitly, as with OOP systems (Section 12.5, page 437), and C++
in particular (12.6, 440), and with database or spreadsheet sys-
tems (12.7, 446).

With our emphasis on programming with R, most of the examples
invoke computations in another system from R, but a number of
the packages implementing the interface support communication
to R as well. In addition, some applications benefit from inter-
faces that avoid R altogether (Section 12.8, page 450).

429

430 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

12.1 Choosing an Interface

Chapter 11 discussed computations in R that called routines written in C or
related languages. These routines could be called directly in the R session,
so long as the routine was loaded with a package or from a library, thanks
to the fact that R itself is implemented in C.

Once we think of software in other languages and systems, the picture
changes. Now we are communicating in a more equal sense: The other
system will typically have its own ideas of how programming is expressed
(its “programming model”) and quite likely its own ideas of objects and
data. We have a number of choices to make in communicating between the
systems.

Many such systems are of potential value for data analysis. Interfaces to

some important systems are summarized in Table 12.1. Unless noted, the

System Applications Package Source
Perl Text, WWW, coding, | RSPerl omegahat
interfaces, ...
Python (similar to Perl) RSPython omegahat
rpy (to R) Sourceforge
Java User interfaces, events, | rJava (from R) | CRAN
graphics, ...
JRI (to R) RForge
RSJava omegahat
C++ Algorithms, processes | .C(), .Call() (built in)
Oracle, Relational databases ROracle CRAN
MySQL, ... RmySQL CRAN
Tecl/Tk User interface tcltk (built in)

Table 12.1: Some inter-system interfaces. (Web pages for the sources:
cran.r-project.org, omegahat.org, sourceforge.net, rforge.net)

interfaces provide for communication both from R and to R. Communication
from R generally means that the user calls an R function that then invokes
the other system as an application, communicates with a running evaluator
for that system, or invokes some built-in or compiled code. Communication
in the other direction usually involves embedding or dynamically linking R
to a process or application running the other system. Installing an interface
in this form does require some extra steps beyond a minimal installation of
R, so that the embedding or linking of the R software is possible. Interfaces

12.1. CHOOSING AN INTERFACE 431

that are built-in run as code in the R process itself; for these interfaces, com-
munication to R is usually through the mechanisms for evaluating function
calls in R from C.

This chapter concentrates on obtaining computations in R from other
systems, given our focus on building software for data analysis, and on
programming with R.

Forms of interface

There are many variations in how the computations are done and commu-
nicated. We can usefully group these into three types.

1. Text based: In this form, text is communicated including a command
that the other system executes. Text output from the command is
communicated back. In effect, this is the model provided by the func-
tion system() in R, also sometimes referred to as the “Unix pipe” model
for computation.

2. Function based: One or more functions in R communicate requests to
the other system and return a resulting value. Usually, the arguments
to the R functions identify a function or something similar in the other
system and then provide arguments to that function. The interface
functions to C, such as .C(), are the paradigm for this approach.

3. Object based: At least some of the computations may create and refer
to objects in the other system. In particular, there may be what we
call proxy objects in R that stand for objects in the other system.

The three models for communication are listed in order of increasing gen-
erality, in terms of what can be done, and also of an increasing level of
organization required. Setup requirements also tend to increase as we go
down the list, although these also depend on which system is involved.
Text- or file-based interfaces can often avoid installing an explicit in-
terface package, in two ways. If it’s sufficient to occasionally export data
from one system and import it into the other, one can use the techniques
of Section 8.2, page 294, on importing text or those of Section 6.5, page
173, on exporting and importing in spreadsheets and database systems. If
the other system can be invoked as a “shell” command, one can use the
system() function as described in section 12.2. Otherwise, and generally
for both function-based and object-based interfaces, there must be an inter-
system interface package, such as those in Table 12.1. The interface package
needs to be installed on your computer, if it isn’t already. Installation may

432 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

not be quite as simple as with other packages, since both R and the other
system must be available in a compatible form. If you encounter problems,
check the hints and instructions on the package’s Web site and also search
for relevant discussions on the R mailing lists. Unfortunately, there are no
definitive techniques for all situations.

The distinctions among the levels are not rigid; each level is capable of
implementing the next level down, at least partially. We could also have
added a fourth level, Component based. In this model, the interfaces are
made up of components that advertise services or methods. Interfaces of
this form have much promise for future work, but at the time of writing the
activity is either restricted to the Windows operating system (DCOM) or to
specialized communication systems that are not much used with statistical
computing.

12.2 Text- and File-Based Interfaces

Interfaces can be established from R to any system that can be invoked
as a shell-style command. The function system() is the general tool to
invoke a command. How well an interface of this form works in practice,
however, depends on the other system and somewhat on the platform. Shell
commands are at the heart of the UNIX operating system’s programming
model, and are fully compatible with Linux or Mac OS X; on Windows some
extra software may need to intervene to provide UNIX-style commands, but
the system() function itself has been designed to be platform-independent.
The function provides for specifying standard input as a character vector in
R, or any class of objects that can be interpreted as a character vector. The
catch, particularly on Windows, is that the commands invoked via system()
must be available. If you plan to do any significant programming with
non-R software on Windows, see the Appendix on the Windows toolset in the
Installing and Administering R manual at the R Web site.

Interfaces to scripting languages such as Perl or Python often fit easily into
a command-style interface. In Section 8.5, page 310, a simple Perl program
was shown that removed HTML tags. In the form shown, the program used
the UNIX style of reading data from its input and writing to its output,
which fits naturally with the system() function, using its input= argument
to specify the standard input.

A command-style interface for Perl and similar languages must start the
interpreter for the language each time and open files or other connections for
input and output. If the application involves many evaluations of small text

12.3. FUNCTIONAL INTERFACES 433

processing jobs, a more efficient mechanism is to start the interpreter and
give it successive tasks directly—the approach of the functional interface. A
functional interface may be more natural as well, if there are several related
tasks to be requested, since those may naturally map into corresponding
functions or methods in the other system.

The balance shifts in favor of text-based interfaces when the text comes
from an external source and is either extensive or structured in a non-trivial
way by another language. Both conditions often apply. If the text arises
as a document or data stream in some markup or display language (XML
or HTML, for example), extracting the relevant text for R may need some
flexible programming in Perl.

12.3 Functional Interfaces

Functional interfaces, such as .Perl() in the RSPerl package, allow the R
programmer to execute a function or similar programming construction in
another system, and retrieve the result in R. At a basic level, the arguments
and result may be treated as R objects, provided there are unambiguous
analogs in the two systems. This level is functional, in the sense we use
the term frequently in the book: the effect of the computation can be en-
tirely described functionally, in terms of the arguments and value with no
discussion of side effects.

In a simple functional interface, all arguments will be converted to the
foreign system and all results converted back. This is the model for the
.CQO) interface to C. If we examine the way that interface works a little more
closely, it will illustrate the essential points to understand in other interfaces
with a similar model.

Each of the arguments to be passed through .C() is required to be an
array of one of the basic vector datatypes (those listed in Table 11.1 on page
415). Furthermore, all results are returned by the C routine by modifying the
contents of these arrays. So only a very special set of routines will qualify.
The strategy may not be perfect, but it is one approach to managing the
different programming models of C and R.

Interfaces to other systems will also impose some restrictions in order
to make a simple functional interface possible. For a particular interface,
see what the documentation says about converting arguments and results.
Some experimentation may be needed, and perhaps some extra techniques
to convert objects you need to work with. For example, tables of objects
indexed by strings are important in many systems (hashes in Perl and dic-

434 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

tionaries in Python, for example). If you are supplying such data as an
argument or getting it back as the value of a call, you need to know whether
there is an automatic conversion and, if so, what the corresponding object
in R will be. If there are no practical conversions for objects appearing as
arguments or as the value returned, then you may need to use the notion
of proxy objects in the other system as discussed in the next section. Even
if a conversion is possible, there may be computational advantages to the
object-based approach.

For a specific example of a functional interface, consider .Per1(). This
function in package RSPerl constructs and evaluates a call to a Perl function.
For a simple functional interface to work in this case, it’s important to
understand how arguments are passed to a function in Perl. Basically, the
argument list is a single array of scalars, either basic types such as numbers
or strings, or else references to other Perl objects. The .Per1() interface
applies some heuristics to interpret arbitrary R objects, but these inevitably
are imperfect; for trustworthy software, don’t rely on them. Supply the
argument as a list, each element of which is a single basic value or a reference
to a proxy object, and ensure that each value has been coerced in R to a
type that corresponds to what the Perl function expects as that element of
the argument array.

Consider the Perl function "ewords in the Text: :ParseWords module.
Given an array of strings representing lines of text, it returns the separate
words in all the text, based on specified delimiters and taking account of
quotes to group words together. This function appears to take three argu-
ments, with Perl types as follows:

"ewords ($delim, $keep, @lines);

where $delim is a string with the delimiter as a regular expression, $keep is
a flag saying whether to keep quotes, and @lines is an array of the text to
process. Watch out, however: The third argument is an array, and not a
reference to an array, and Perl flattens all the arrays in argument lists. So if
the third argument is a vector of n strings, Perl in effect expects n + 2 scalar
values as arguments. Don’t give .Perl1() three arguments, the third being a
character vector of arbitrary length; that might generate an array reference.
Instead, we need to pass a list with n + 2 “scalar” elements, as is done by
the simple interface function in R:

quotewords <- function(x, delim = "\\s+") {
.PerlPackage ("Text: :ParselWords")
.Perl("quotewords", .args = c(list(delim, 1), x))

12.4. OBJECT-BASED INTERFACES 435

The .args argument to .Perl1 () is interpreted as a list, each element of which
will be one element in the argument to the Perl function. The call to c()
concatenates a list of 2 elements with the character vector, which has the
desired effect of converting the latter to a list of length-1 vectors.

12.4 Object-Based Interfaces

Objects are certainly involved in the functional interface described above,
but there is no need for the user to consider objects in the other system
that are not convertible to local classes of data. In the interface defined
for C by .c(), there is no attempt to consider C types that have no analog
as R objects. The interface to Perl provided by .Perl() is more general, in
that objects can be returned that do not correspond to R objects and Perl
functions can expect such objects or references to them as arguments.

The ability to refer in R to an object in another system, even when it
does not correspond exactly to any R object, opens up many valuable tech-
niques; after all, it’s often precisely the ability to do computations outside
the current system’s tools that makes an inter-system interface valuable. We
call the R reference a prozy object, standing in for an object reference in the
other system. And the proxy object is indeed a reference; that is, it refers
to some object in the other system that can be modified, in most cases, and
such that the reference will then be to the modified object. In contrast, the
functional model applying to most R computations deals with objects, not
references, so that modifications are local to the function involved.

The form of the proxy object reference—how its contents are extracted
or modified—depends on the other system. Section 12.6, page 440, discusses
proxy objects for “object-oriented” systems and Section 12.7, page 446, for
relational database management systems, two important special cases. In
the rest of this section, we will look at object references for Perl, which is a
simpler case in some respects and so can usefully introduce general points
that will apply to the other systems as well.

The most basic issue with proxy objects is to arrange for them to be
created and to persist for as long as they are needed. (And then, in some
cases, to arrange that they will not persist after they are needed.) When
you are computing in R, such questions don’t usually require your attention
in any detail. If you need some object, you assign it a name in the current
context, inside a function that you are writing or interactively at the top

436 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

level. Assignments inside a function persist until the call to that function
returns, then R will clean up at some point without your intervention.

Proxy object references, in contrast, are generated first in the interface.
An object will be created in the other system and a reference to that object
will be passed back as the proxy in R. Something will likely have happened
in the other system so that the reference persists there, otherwise your proxy
object would not be of much use. Then what? On the R side, you would
assign the proxy like any object. However, can you count on the foreign
object it refers to persisting and disappearing along with the proxy? In
computing terminology, what is the scope of the object referred to? Many of
the inter-system interface packages will maintain a table of such references
(RSPerl and rJava, for example). In addition, packages may to varying
degrees arrange to delete the referenced object and/or to modify the proxy
when the reference is no longer valid. The RSPerl package arranges to zero-
out a reference when the proxy object is saved, so that using the reference in
a new session will just warn you about a zero reference, rather than giving
an addressing error because the pointer referred to the old process.

In general, you should read the documentation for the particular inter-
face package carefully and/or do some experiments to see when objects in
the foreign system are saved and whether the user is expected to explicitly
delete them. Fortunately, the really serious danger is that the object will be
prematurely deleted, and this is less likely. Most interfaces use a mechanism
such as a hash table or global environment to assign the object when passing
back a reference. The reference should then persist through the life of the
current session. Users of the interface may need to arrange for explicitly
deleting objects no longer needed. The issue here is one of wasting memory,
potentially serious for efficiency but at least not likely to destroy valuable
information.

As an example, let’s write an interface to some Perl routines for text
data.

Example: Perifunctions for counting chunks of text

In Section 8.5, page 316, we showed two Perl functions that took a reference
to a Perl hash object and an array of strings. The hash contains counts of
strings. The functions either added or subtracted to the appropriate count
for each of the new strings. The intent is to maintain counts of patterns in
text.

R functions chunksAdd() and chunksDrop() in package SoDA are interfaces
to the Perl functions. A slightly simplified version of chunksAdd() is:

12.5. INTERFACES TO OOP LANGUAGES 437

chunksAdd <- function(
table = .PerlExpr("\\%{0};", .convert = FALSE),
data = character(),
convert = length(data) == 0) {
if('is(table, "PerlHashReference"))
stop(
"Argument table must be reference to a Perl hash object;",
" got an object of class ", class(table))
args <- c(list(table), as.list(as.character(data)))
.Perl("chunks_add", .args = args, convert = convert)

}

The function takes three arguments: table is the proxy for the hash; data
is the new data; convert is a flag saying whether to return the reference or
convert the hash (which RSPerl does by making a named vector of, in this
case, the numeric counts). If table is omitted the function initializes it to
an empty hash. Omitting the data argument, on the other hand, is the easy
way to get the converted counts back, without modifying the hash—that’s
why the default for convert is TRUE when no data is being added.

The function assembles the proxy reference and the new data as a list,
which when transmitted to Perl will give the suitable argument array for
routine chunks_add. Initialization (of the table) and most error checking
are done in R. That reflects our general preference for programming with
R, including its facilities for interactive debugging. The Perl code can do
error checking as well, and does, validating the individual data items. But
as a general rule, giving the other system as clean and well-checked a set of
arguments as possible is likely to save you time learning about debugging
other systems.

See the code in package SoDA for more details.

12.5 Interfaces to OOP Languages

Throughout this book, the term “object-oriented programming” and its
acronym OOP are reserved for the languages or systems with a program-
ming model having the following features.

1. Objects are generated from class definitions. The data content of the
objects is usually defined in terms of named slots which have a specified
class or type. The terms property or attribute may be used instead of
slot depending on the system.

438 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

2. Programming with these objects is exclusively, or at least largely, done
by invoking methods on the objects.

3. The definitions of the methods come from the definition of the object’s
class, directly or through inheritance.

4. Although it’s not a requirement, nearly all OOP objects are passed by
reference, so that methods can alter the object.

The OOP programming model differs from the S language in all but the first
point, even though S and some other functional languages support classes
and methods. Method definitions in an OOP system are local to the class;
there is no requirement that the same name for a method means the same
thing for an unrelated class. In contrast, method definitions in R do not
reside in a class definition; conceptually, they are associated with the generic
function. Class definitions enter in determining method selection, directly
or through inheritance. Programmers used to the OOP model are sometimes
frustrated or confused that their programming does not transfer to R directly,
but it cannot. The functional use of methods is more complicated but also
more attuned to having meaningful functions, and can’t be reduced to the
OOP version.

Languages such as Java use the OOP model as essentially their only pro-
gramming style. Other languages such as Perl, Python and C++ have added
OOP programming to a functional or procedural language. Interfaces from
R to these languages open up many new computations.

Method invocation usually has a different appearance from a function
call, emphasizing that the method definition comes from the class defini-
tion. Usually, the expression for the object comes first, then some operator
symbol, then the name of the method followed by a parenthesized list of
additional arguments. The dot, ".", is a common choice for the opera-
tor symbol, used by Java and Python, among others. In these languages, a
method named print defined for an object x might be called in the form:

x.print ()
C++ and Perl (version 5) use the operator "->" instead of "." (but the
proposed Perl6 uses ".").
Invoking methods in the OOP system

Interfaces from R to systems that support the OOP programming model must
provide a mechanism to invoke methods. The requirements vary from one

12.5. INTERFACES TO OOP LANGUAGES 439

system to another but are basically that one starts with a proxy reference in
R to an object in the other system, along with the name of the method, and
any additional arguments the method requires. For systems supporting both
functions and OOP methods, some indication may be needed as to which is
wanted. It is quite feasible to mimic the syntax of method invocation in R,
but as this book is written most interfaces don’t do so, but instead use their
functional interface.

For example, in the rJava interface package, the function .jcall() in-
vokes Java methods. The equivalent to the example above would be:

.jcall(x, method = "print")

Similarly, in the RSPerl package, the function .Perl() handles methods if
given a proxy object via the ref= argument:

.Perl("print", ref = x)

In either case, the interface code will arrange to dispatch the appropriate
method in the OOP system applied to the OOP object for which x is the
proxy.

Finding the “appropriate” method is the job of the foreign system. In
some systems (Java, for example) there will be metadata which determines
the method corresponding to the method name and the class of the object.
In other systems (current Perl, for example) an interpreter for the language
will evaluate the equivalent method invocation. In any case, the R software
does not select the method, as it would for an R generic function.

Constructors and class methods

The notation for invoking a method in an OOP language suggests that the
method belongs to the object. In fact, nearly all OOP systems associate the
methods with the class of the object, not with the instance (the individual
object itself). Method dispatch uses the known class of x to select a method
with a given name; the selection will be identical for all objects with the same
class. The object for which the method is invoked plays two roles: it defines
the method, but only through its class; and it is passed as an argument to
that method. (For example, the discussion of “method invocation” in the
Programming Perl book [25] describes the mechanism.)

If programming is only by invoking methods on objects, how are new
objects from a class generated in the first place? Methods whose purpose is
to generate new objects are usually called constructors in OOP languages.
Some languages have a separate syntax for constructors (Java, for example),

440 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

but a more revealing version has constructors invoked as a method, but on
the class itself, with no instance involved. Such methods are called class
methods to emphasize that they are invoked by providing the name of the
class in place of an object. So if Chunks is a class in Perl and new() is a class
method that generates a new object from the class, that method is invoked
on the class name, whereas an ordinary method, say add() is invoked on an
object from the class (to be precise, in Perl, a reference to such an object).
The following piece of Perl code creates an object and invokes one of its
methods.

my $counter = Chunks->new();
$counter->add(data) ;

The class method is invoked on the literal "Chunks" whereas the instance
method is invoked on the variable "$counter". Class methods in Java are
distinguished in a similar way, but by the use of declarations rather than
through syntax. Constructors are the obvious example of a class method,
and no ordinary class can get along without them. Other class methods can
exist in most systems as well, and would be invoked in a similar way.

Functional interfaces from R, such as .jcall() or .Perl(), will expect
a class method if the argument referring to an object is a character string
(the name of a class), rather than a proxy object. Constructors are often
supplied as a special case, with their own interface function (.jnew() and
.PerlNew(), for example).

12.6 Interfaces to C++

The C++ language started as a preprocessor to C, and is still compiled into
object code compatible with C. The close relation between the languages
and the fact that R is itself based on an implementation in C simplify some
aspects of interfacing to C++. Instead of calling a general interpreter for
the other system or communicating with another process, the computations
will use one of the C interface functions, .C() or .Call(). The interface
code in C++ can be included in the standard src directory where C code
would be kept, but in a file with a suffix such as "cpp" that identifies it
as C++. We began the discussion of interfacing to C++, therefore, in the
previous chapter, in Section 11.4, page 425. We continue it here because the
computational model for C++ is similar to other OOP languages and because
some extra steps are needed to write the interfacing C code.

As shown in section 11.4, the usual approach is to write some special code
in your package that contains one C-callable routine for each computation

12.6. INTERFACES TO C++ 441

needed from C++. The mechanism is simple: Write the new C code in a
C++ source file and enclose the definitions of the C routines in a declaration
that says the external names should be interpreted as C, not C++:

extern "C" {

}

While using this mechanism, there is a range of possible strategies as to how
much of the C++ structure to make available to the R user, from “None” to
a mirror image of the C++4 methods, and corresponding questions about the
R objects that should be returned to the user.

As an example, and to make the general approach clearer, let’s look at
the CRAN package gbm written by Greg Ridgeway. This package provides
an interface to some C++ code, mostly by Jerome Friedman, for “gradi-
ent boosting”, a technique for fitting statistical models. For the statistical
techniques, see Chapter 10 of Elements of Statistical Learning [15] and the
overview documentation for the gbm package. All we need to keep in mind
is that the techniques iteratively refine a statistical model using the gen-
eral structure we’ve discussed in Section 6.9, page 218, including a formula
and optionally an associated data frame. The user can fit a model with an
expression of the form

gbml <- gbm(formula, data, ...)

The formula and data arguments are similar to linear regression models
and the like; in addition, there are a number of arguments special to the
boosting techniques. After fitting, the user has access to plotting and other
general summaries, as well as specialized performance analysis for boosting.
The function gbm.more () continues the iterative fitting of an existing model.
The gbm package is valuable as a bridge between the specialized computations
of the C++ software and the familiar ideas provided in R for dealing with
statistical models.

Functions gbm() and gbm.more() both call a C routine that creates and
manipulates a CGBM object from a C4+ class, CGBYM, representing the models.
C++ methods exist to construct and initialize the objects, to iterate fitting
and to provide utilities such as prediction. The interface to the C++ com-
putations in the R function gbm.fit () uses the .Call() interface to call the
C subroutine gbm:

gbm.obj <- .Call("gbm",
Y = as.double(y),

... and many more arguments ...
PACKAGE = "gbm")

442 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

Here is a sketch of some important steps in the C routine gbm. Arguments,
allocation of R objects and error checking have all been omitted, but what’s
left gives an idea of the essential steps, and helps illustrate alternative strate-
gies.

extern "C" {

SEXP gbm (
// The corresponding arguments

) A

CGBM *pGBM,

// initialize R’s random number generator
GetRNGstate();

// initialize some things
gbm_setup(....);

pGBM = new CGBM();
pGBM->Initialize(....);
pGBM->iterate(....);
gbm_transfer to R(....);

// dump random number generator seed
PutRNGstate();

delete pGBM;
return rAns;

}

} // end extern "C"

The call to GetRNGState is a core R routine that initializes the random num-
ber generator in C to its current state (see Section 6.10, page 234); the
gbm_setup call does other initialization. As with any estimation procedure
using simulated random values, some extra steps would be needed to make
the results reproducible; see Section 6.10, page 229.

The next lines of C++ code create and work with the object represent-
ing the model: the new expression creates the object, and the methods
Initialize() and Iterate() do what their names imply. As usual in OOP
computations, the object referred to by pGBM is modified to reflect the it-
erative fitting that has been applied. The routine gbm_transfer_to R copies
information from that C+4 object into various components of the R ver-

12.6. INTERFACES TO C++ 443

sion of the model. The C++ directive delete removes the object now that
information has been copied.

One point to note is that the single C routine gbm takes the key C++
object, pGBM, through its entire lifetime: initializing, iterating, extracting
information to return to R, and finally deleting it. The R object representing
the model does not contain any proxy to a C++ object.

Hiding the C++ structure from the user has the effect, in this package,
of emphasizing the similarity to other software for models in R. Users new
to the package will find much of the functionality familiar, with no need to
adjust to a different programming model. Their ability to explore data with
these techniques will be enhanced, and that is indeed the Mission.

For applications in which the user needs to control computations at the
level of individual C++ methods, a different organization is needed.

C++ objects in R

Once we decide not to insulate R users from the C4++ objects and methods,
we need a way to represent such objects. The C++ object is handled by a
pointer (a reference, to sound more elegant), which will not be manipulated
at all in R. In the example sketched above, pGBM was a pointer to an object
of C++ class CGBM. To handle such objects in R, data of the "externalptr"
type is the natural choice. Objects of this basic type have a single pointer
as their value, only set and used in C. A value is inserted in such an object
by C code and left untouched in R functions. To create explicit access to the
objects and methods requires only two basic programming techniques.

e An initializing routine returns the pointer to the object, in the value
field of an "externalptr" object;

e To each C++ method to be called from R there corresponds a C-callable
routine of a known name, designed to be invoked via a .Call() inter-
face and taking as its arguments the "externalptr" object plus what-
ever other arguments the method requires.

There are other ways to do it, but these choices are simple and natural.

The R package will usually have one function for each of the routines
implied by these steps, each function using the .Call() interface to call
the corresponding routine. A minimal rearrangement of the gbm example
above to expose the C++ structure in R would have four new routines, each
wrapping a corresponding C++ method:

444 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

1. gbmnew, a constructor to create and initialize an object of the C4+
"CGBM" class;

2. gbm_iterate, a routine to invoke the Iterate method on the object;

3. gbm_results, a routine to return in R form the information in the cur-
rent object;

4. gbm_delete, a destructor to delete the object.

The invocation of methods in the gbm routine is now broken up into separate
user-callable pieces. Each of the four routines has its value and all arguments
declared as pointers to R objects, conforming to the requirements for any C
software to be called from the .Call() interface (see Section 11.3, page 422,
for an example).

extern "C" {

SEXP gbm new (SEXP ext,

) A

GetRNGstate();

// initialize some things
gbm_setup(....);

CGBM *pGBM = new CGBM(Q);
pGBM->Initialize(....);

R_SetExternalPtrAddr(ext, (void *)pGBM);
return ext;

}

SEXP gbm_iterate (SEXP ext)

{
CGBM *pGBM = (CGBM #*) R_ExternalPtrAddr(ext);
pGBM->iterate(....);
return ext;

}

SEXP gbm results(SEXP ext)

{

CGBM *pGBM = (CGBM *) R_ExternalPtrAddr(ext);
gbm_transfer_toR(....);
// construct list as in routine gbm

12.6. INTERFACES TO C++ 445

return(rAns);
}
SEXP gbm delete(SEXP ext)
{
CGBM *pGBM = (CGBM *) R_ExternalPtrAddr(ext);
delete pGBM;
return ext;
}

} // end extern "C"

Each of the four C routines takes as an argument a pointer to an R object of
class "externalptr" and returns the same object. The constructor, gbm_new
fills in the pointer value with the newly allocated and initialized object; all
the other routines extract the corresponding pointer and operate on the C++
object. (The two routines R_ExternalPtrAddr and R_SetExternalPtrAddr are
R utilities that extract and set the pointer contained in an "externalptr"
object.) Everything else in the example, including the code we haven’t
shown in this sketch, essentially rearranges the same computations done
before, but now the programming model is that computations in R will
control the sequence of creating, iterating, extracting and deleting.

The R software to complete the interface can be as simple as one function
for each C routine, doing little more than using .Cal1() for the correspond-
ing routine. If there are additional arguments to the C+4 method, however,
these need to be coerced to the correct datatype, either in the R function
(usually the best place) or in the C routine. The construction and initializa-
tion of the CGBM object, for example, takes a number of inputs that would be
arguments to gbm new and to the corresponding R function. Here’s a sketch
of a fairly minimal version.

gbmNew <- function(x, y,
(Many more arguments)) {
.Call("gbm new",
new("externalptr"),
as.double(x), as.double(y),
-)
}

The arguments all need to be carefully coerced to a specific basic datatype
since the C routine gbm_new just passes the arguments on without checking
them. The first argument is the "externalptr" object into which the C4+

446 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

pointer will be inserted, and the object then returned, to be supplied in
future calls to the other routines in the interface to the C++ class.

We now have a working interface to the C++ software, but usually one
more layer is desirable: an R class for the objects. C++ proxy objects don’t go
through a single interface function, in contrast to the case for Java or other
external systems; because the interface can use the standard C interface
functions, no metadata is provided automatically to identify the C+4 class
corresponding to the object. The responsibility falls to the programmer,
and for many reasons the extra effort is worth taking. In this example, a
class corresponding to the C++ class would have a slot for the "externalptr"
proxy, plus whatever additional slots are needed to complete the definition
of the model (including states for the random number generator, in order to
make the computations reproducible, as discussed in Section 6.10, page 229).
Note that "externalptr" objects do not follow the standard R model to be
duplicated when needed, so that the new class can not extend "externalptr".

For extensive C++ software it would be better to create the mappings to
C and to R automatically. Why take a chance on human error in reading the
C++ definitions? As this book is written, we aren’t quite able to hand over
the job, but some promising work has been done, based on data available
from the gcc compiler; see, for example, the RGCCTranslationUnit package
by Duncan Temple Lang at the omegahat Web site. Check out the current
status if such automation would be helpful in your application.

12.7 Interfaces to Relational Database Systems
and to Spreadsheets

Database and spreadsheet programs share typical roles and data models in
their relation to data analysis, even though they differ from each other in
form. The typical role is as a data repository: These are the systems where
the data often resides, where the underlying process keeps information. We
need to interface to these repositories to have direct access to the data.
The data model suitable for both kinds of programs is the general data
frame model discussed many times in the book; that is, the notion of some
defined observable variables, for each of which values will be recorded for
a range of observations. Spreadsheets and relational databases essentially
visualize data frames as tables, with columns for variables and rows for
observations (not that either the creators or the users of these systems would
necessarily think of their data in terms of variables and observations). It’s
natural then that interfaces to these systems should relate tables to data

12.7. INTERFACES TO DATABASES AND SPREADSHEETS 447

frames, both in the general sense of this book and in the narrower sense of
the "data.frame" class of objects.

The simplest interface from database and spreadsheet programs to R is
to create files from the other system that can be read as data frames in
R, in other words a text-based interface. There are a number of possible
file formats, but the most widely available and convenient to use are the
comma-separated-values files and the tab-delimited files. These are both
standard file formats, which can be read into and exported from nearly any
spreadsheet program and many database systems. Section 6.5, page 169,
showed how to read such files into R, how to import and export the files in
spreadsheet programs (page 173), and how to create tables from database
systems (page 178).

For spreadsheet programs, this form of interface is the way to start, so
long as a text-based interface is suitable for your application (mainly, that
you can live with getting a copy of the non-R data and that rapid, dynamic
change in the data is unlikely). Follow the discussion in Chapter 6. For
database programs, such files may still be a reasonable option. Importing
data from a ".csv" file is usually straightforward, but exporting a table to
one may not be as simple, depending on the particular program. If your
database setup does support easy export, you can follow the same route.
(For example, MySQL supports ".csv" files as one of its engines; if that option
is suitable to your application, it could provide an excellent interface.)

For spreadsheet programs, and in particular for Excel, some more special-
ized options may be available. On the Windows platform, the R-DCOM interface
provides a very flexible and potentially very sophisticated communication
mechanism based on the notion of components and services. On a non-
Windows platform, the practical interface is to use the data export/import
features in Excel.

Interfaces to database systems

For most database systems, interface packages allow flexible access with
less human intervention than required to export tables explicitly. These
interfaces support a functional or object-based view. Whole tables can be
accessed straightforwardly. Portions of tables can be accessed using the
standard query language, SQL, as supported by all major database systems.
SQL was introduced briefly in Section 6.5, page 178. If you are willing to
program in SQL, a functional interface is available for very general queries.
Access can be functional (returning the result as a data frame) or object-
based, using proxy objects as the basis for further queries or incremental

448 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

access. An additional advantage is that the related R packages provide a
uniform programming interface from R to the major database systems.

The packages use a standardization provided by the DBI package of David
James. This package defines a uniform interface for the R programmer, via
generic functions and virtual classes. Functions in the DBI package define
access to databases, tables, SQL queries, and other computations, expressed
in an essentially identical form regardless of the actual database system.
The specific database interface package implements methods and defines
subclasses to realize the programming interface for a particular database
system. If the specific interface is “DBI-compliant”, software can be written
once and used on any of the database systems. Compliant interfaces exist
for Oracle (ROracle), MySQL (RMysSQL), and SQLite (RSQLite).

The key concept is the mapping between a table in the database system
and a data frame in R. Related tables are organized into a database, as files
are organized in directories (in some database systems this is actually the
implementation). The DBI package reflects this organization, top-down from
choosing a database system, to specifying a database, to techniques that
manipulate individual tables.

The database system corresponds to a driver, created and kept through
a session. If we’re using the SQLite system:

drv <- dbDriver("SQLite")

The driver is now used to open a connection to a particular database in
this system. Depending on the system, you may need to supply user and
password information, as well as the name of the database. SQLite just needs
the name of the database:

conn <- dbConnect(drv, "myDatabase")

It’s relevant that we call these database connections; they do act much like
the R connections in Section 5.5, page 131. The difference is that data
transfer uses the facilities of the database system here rather than low-level
input and output. The units of data are tables. So, if "MarsData" has
been established as a table in "myDatabase" to hold our example of the Mars
declination data, then reading the whole table is just a call to dbReadTable():

> mars <- dbReadTable(conn, "MarsData")
> dim(mars)
[1] 923 21

Similarly, functions dbWriteTable(), dbExistsTable(), and dbRemoveTable ()
perform the operations their names suggest. The concepts here are again

12.7. INTERFACES TO DATABASES AND SPREADSHEETS 449

closely tied to the ideas of the S language, and in particular to the basic
computations on environments as databases in Section 5.3, page 124.

Database tables may be very large, so that suitable access must be to a
selected portion of the table. Also, a database may contain related tables
and a selection may combine information from more than one of them. This
is the stuff of classical relational database computation and the SQL lan-
guage. Queries more complex than transferring whole tables will need to be
expressed in SQL, but can be transmitted via the dbSendQuery () function.
This takes as arguments a connection and a string containing the SQL query.
If myQuery is an object containing such a query, the result of the query is
obtained as:

res <- dbSendQuery(conn, myQuery)

We introduced SQL in Section 6.5, page 178, but for learning how to write
queries, I'm afraid you will have to look up some books or other references
on SQL itself. Whatever the actual query, the result is conceptually another
table-like data object made up from information in one or more tables in the
database. Query results are not data frames, however. In the terminology of
this chapter they are proxy objects, standing in for an object in the database.

The only thing you can do in general with the result is to call function
fetch() to fetch a specified number of “records” from the result. A record
is a row of the implied table and the result of the call is a data frame with
that many rows and with whatever columns were defined by the query.

The fetched results can be processed anyway you like. The paradigm is
to check for the end of data by calling dbHasCompleted(), and then to fetch
as much data as you want to handle at one time. If you wanted to just
create the entire data frame:

> out <- NULL
> while(!dbHasCompleted(res))
+ out <- rbind(out, fetch(res, n))

However, if you really wanted to do this, just call dbGetQuery() instead of
dbSendQuery (). The direct use of fetch() is usually to do some computations
that don’t require the entire data frame.

The concepts and terminology derive from the old days when records
really were records, perhaps on a magnetic tape. As a consequence, bare
SQL in this form does not support general manipulations of results, although
database systems often do support various extensions. The simple version is
adequate for many applications, and does scale well to very large datasets.

450 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

Once you have mastered enough SQL for your applications, the DBI-based
interface should be straightforward to use.
As with regular connections, but sometimes even more, it may be es-

sential to close down your connection to the database when computation is
finished:

> dbClearResult(res)
> dbDisconnect (conn)
> dbUnloadDriver (drv)

12.8 Interfaces without R

Other users, not just those of us doing data analysis, can benefit from inter-
system interfaces; as a result, many systems offer convenient access to other
software. Keep these in mind for applications where there is no need to
bring data into R from another system just to pass it on to a third. Using
an interface between the other two systems can simplify programming and
save computing time.

For example, many systems will have interfaces to both spreadsheet soft-
ware and relational databases, for the same reasons such interfaces are useful
in R: that’s often where data resides. This gives us some more choices when-
ever data in a database or spreadsheet is to be used eventually in some
other non-R computations: Either access the data indirectly through R or
write some code in Perl to access the data directly, in addition to the text
manipulation software.

As an example consider applying some text manipulation in Perl to data
residing in a relational database. What are some tradeoffs to guide the
choices?

e If the original data from the database is not needed in R for other
purposes, there will be some computational efficiency to direct access,
particularly if the programming style of access is made more natural
for the other system (see the example below). My usual caution about
“efficiency” applies: Does it matter in this case?

e The additional programming effort required for direct access will vary.
If R creates a data frame from the database and then presents part of
it in a different form, such as a single variable, the existing Perl code
will not likely be directly usable given Perl’s approach to a database
interface.

12.8. INTERFACES WITHOUT R 451

The best solution in different applications can vary from ignoring R for
database access (when only the results of the Perl-processed data are needed)
to using only R for database access (when the data needed for Perl is more
naturally supplied as columns of the data frame formed in R).

To see the different styles of database access, we can compare typical use
of the DBI package in R and the DBI module in Perl. The two share a name
and a basic design: to act as an interface to relational database software,
including the SQL query language, with programming that is independent of
the specific database system. They also take a similar approach to the initial
programming required. The user establishes a connection to a particular
database. In the OOP form of Perl, one invokes the connect() method of
the module:

my $dbcon = DBI->connect (’DBI:MySQL:myData’) ;

As with the function dbConnect () in the DBI package, this returns a connec-
tion that can then be used for all queries on this database in this session.

The next step in both systems is to obtain a result set, the database’s
version of the result of executing a query. Using the DBI package in R, we
call dbSendQuery(). The actual SQL is essentially the same for access from
Perl, but the standard approach includes an intermediate step to prepare the
query. The prepared but unexecuted query is returned as an object.

my $query = $dbcon->prepare($someQueryString) ;

Preparing is essentially compiling the SQL query; one can leave parameters
(typically to be filled in by names) unspecified. The execute() method of
the query then creates the result set; if there are parameters in the prepared
query, these are supplied as arguments to execute(), as in:

$query—>execute ($thisName) ;

We are now at the same state that the interface from R would be after evalu-
ating a call to dbSendQuery (), with two minor differences. The standard DBI
interface in R does not include preparing queries, although specific database
interface packages may do so; also, the Perl execution of the query does not
return a result set as an object, but instead modifies the $query object to
be ready for fetching data.

In both interfaces, the actual data transfer takes place by fetching rows
from the result set. As usual, the Perl method is oriented to iteration: The
method fetchrow_array () always fetches a single row, which is returned as a
Perl array. The elements of the array are the (scalar) values for each variable

452 CHAPTER 12. INTERFACES II: OTHER SYSTEMS

in the result set, for the next available row. The R function fetch() fetches
an arbitrary number of rows, as a data frame.

It’s the one-row-at-a-time nature of the Perl fetch that suggests organiz-
ing the Perl computation differently when accessing data from a database
rather than from R. In the first case, typical Perl style would do all the im-
mediately relevant computations on all the variables, incrementally one row
at a time, rather than collecting one or more variables as separate arrays.
The second approach is feasible, but then it may be simpler just to collect
the data in R.

