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Introduction 

Cyanobacteria produce a wide array of bioactive secondary metabolites 
(see Table A.1 in Appendix A), some which are toxic (Namikoshi and 
Rinehart 1996; Skulberg 2000). Those toxic to mammals include the mi-
crocystins, cylindrospermopsins, saxitoxins, nodularins, anatoxin-a, ho-
moanatoxin-a, and anatoxin-a(s). It has been recently suggested that β-
methylamino alanine (BMAA) may be a new cyanobacterial toxin (Cox et 
al. 2003; Cox et al. 2005). The public health risks of cyanotoxins in drink-
ing water have recently been reviewed (Falconer and Humpage 2005b). 
The aim of this paper is to concisely review our current knowledge of their 
acute toxicity, mechanisms of action, toxicokinetics and toxicodynamics. 

Microcystins 

Microcystins (MCs) are a group of at least 80 variants based on a cyclic 
heptapeptide structure (Fig. 1). All toxic microcystin structural variants 
contain a unique hydrophobic amino acid, 3-amino-9-methoxy-10-phenyl-
2,6,8-trimethyl-deca-4(E),6(E)-dienoic acid (ADDA). The prototype-
compound is MC-LR, which has leucine and arginine at the two hypervari-
able positions in the ring structure (X and Y, respectively, in Fig. 1). Sub-
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stitution of other amino acids at these sites, or methylation of residues at 
other sites, leads to wide structural variability (Namikoshi et al. 1990; 
Namikoshi et al. 1992d; Namikoshi et al. 1992b; Namikoshi et al. 1992c; 
Namikoshi et al. 1992a; Namikoshi et al. 1995; Namikoshi et al. 1998; 
Sivonen and Jones 1999). These toxins are produced by a wide variety of 
planktonic cyanobacteria including Microcystis aeruginosa, M. viridis, M. 
ichthyoblabe, M. botrys, Planktothrix argardhii, P. rubescens, P. mougeo-
tii, Anabaena flos-aquae, A. circinalis, A. lemmermannii, Nostoc spp., and 
Snowella lacustris (Botes et al. 1982; Codd and Carmichael 1982; Botes et 
al. 1985; Kusumi et al. 1987; Krishnamurthy et al. 1989; Sivonen et al. 
1990; Harada et al. 1991; Watanabe et al. 1991; Sivonen et al. 1992; Ueno 
et al. 1996; Vezie et al. 1998; Marsalek et al. 2000; Fastner et al. 2001). 
The species most often cited as microcystin producers are M. aeruginosa 
(worldwide) and the Planktothrix species (Northern Europe). Microcystin 
production has also been linked with some benthic species: Haphalosiphon 
hibernicus and Oscillatoria limnosa (Prinsep et al. 1992b; Mez et al. 
1997). Other benthic species have been implicated, but the difficulty of 
culturing these species has precluded clear identification of the organisms 
responsible.  
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Fig. 1. General structure of the microcystins 

The primary site of toxic action of the microcystins is the active site of 
protein phosphatases 1 and 2A (Eriksson et al. 1990; MacKintosh et al. 
1990; Runnegar et al. 1995b). This activity is mediated principally by the 

A.
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ADDA group (Goldberg et al. 1995) although most microcystin variants 
contain dehydroalanine, which can undergo covalent linkage to a cysteinyl 
sulphur on the phosphatase. This makes the inhibition irreversible. 

MC-LR has a LD50 (ip, mice, 24hr) of 60 μg kg-1. The primary acute ef-
fect of protein phosphatase inhibition is hyperphosphorylation of many 
cellular proteins including the hepatocellular cytoskeleton, which causes 
loss of cell-cell contacts and intra-hepatic haemorrhage. Death is due to 
hypovolemic shock (Runnegar and Falconer 1986; Falconer and Yeung 
1992; Runnegar et al. 1993). Other acute effects include altered mitochon-
drial membrane permeability, generation of reactive oxygen species and 
induction of apoptosis (Fladmark et al. 1999; Humpage and Falconer 1999; 
Ding et al. 2000; Hooser 2000), most likely due to a fatal loss of control of 
regulatory phosphorylation. Uptake is via specific organic anion transport 
proteins (Runnegar et al. 1991; Runnegar et al. 1995a; Fischer et al. 2005); 
hence MCs exhibit a predominantly hepatic organotropism, although en-
teric and even dermal effects have been demonstrated in certain circum-
stances (Falconer and Buckley 1989; Falconer et al. 1992). Studies of tis-
sue distribution using radio-labelled toxin have confirmed the liver as the 
main site of toxin accumulation (~70% of a sub-lethal iv dose) and that the 
toxin level in this organ remains constant for up to 6 days post treatment 
(Falconer et al. 1986; Runnegar et al. 1986; Brooks and Codd 1987; Rob-
inson et al. 1989; Robinson et al. 1990; Robinson et al. 1991). Bile acids 
and compounds that block bile acid uptake inhibit microcystin hepatic up-
take and toxicity (Runnegar et al. 1981; Thompson et al. 1988; Thompson 
and Pace 1992; Runnegar et al. 1995a). Formation of glutathione metabo-
lites of MC-LR and MC-RR has been demonstrated (Kondo et al. 1996). 
Toxin is rapidly cleared from the blood, after which time the main albeit 
slow route of excretion is via the faeces (Robinson et al. 1991). Human 
acute intoxication via renal dialysis (possibly in combination with cylin-
drospermopsin) resulted in visual disturbances, nausea, vomiting and death 
from liver failure (Carmichael et al. 2001; Azevedo et al. 2002), whereas 
sub-lethal exposure resulted in elevation of liver enzyme activities in the 
serum (Falconer et al. 1983). 

Lower microcystin concentrations (pM) appear to suppress apoptosis 
and promote cell division in polyploid hepatocytes in vitro (Humpage and 
Falconer 1999), effects which may be linked to the enhancement of the 
growth of hepatic and colonic pre-cancerous lesions in animal models (Fu-
jiki and Suganuma 1993; Ito et al. 1997; Humpage et al. 2000b). Micro-
cystin exposure has been linked to human liver and colon cancer incidence 
(Yu 1995; Fleming et al. 2002; Zhou et al. 2002).  
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Cylindrospermopsins 

The cylindrospermopsins (CYNs, Fig. 2) are alkaloids comprised of a tri-
cyclic guanidino moiety linked via a hydroxylated bridging carbon (C7) to 
uracil (Ohtani et al. 1992). Structural variants are 7-epi-CYN and 7-deoxy-
CYN (Norris et al. 1999; Banker et al. 2000), the latter having slightly 
lower potency than the 7-hydroxylated variants (Looper et al. 2005). The 
uracil moiety is required for toxicity (Banker et al. 2001; Runnegar et al. 
2002). CYN’s are produced by Cylindrospermopsis raciborskii, Apha-
nizomenon ovalisporum, Anabaena bergii, Umezakia natans, Raphidiopsis 
curvata, and as yet other unidentified species (Hawkins et al. 1985; Harada 
et al. 1994; Banker et al. 1997; Hawkins et al. 1997; Shaw et al. 1999; Li et 
al. 2001a; Schembri et al. 2001). 

 

 
Fig. 2.  Structure of cylindrospermopsin 

The LD50 of CYN indicates a delayed toxicity (2.0 mg kg-1, ip mouse, 
after 24 hrs but 0.2 mg kg-1 after 5 days; Ohtani et al. 1992). The primary 
toxic effect of the parent compound appears to be irreversible protein syn-
thesis inhibition (Terao et al. 1994; Froscio et al. 2001, 2003; Looper et al. 
2005). However, there is also evidence for metabolic activation as inhibi-
tors of CYP450’s are able to reduce acute toxicity (Runnegar et al. 1994; 
Froscio et al. 2003), CYN-dependent inhibition of glutathione synthesis 
(Runnegar et al. 1995c), and genotoxicity (Humpage et al. 2005). The evi-
dence for CYP450 involvement in the in vivo toxicosis is less clear (Norris 
et al. 2002). Acute CYN poisoning results in lipid accumulation in the liver 
followed by hepatocellular necrosis (Terao et al. 1994; Seawright et al. 
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1999). Non-hepatic effects include destruction of the proximal tubules of 
the kidney (Falconer et al. 1999), as well as cytotoxic and thrombotic ef-
fects in other tissues. Intraperitoneal injection of radio-labelled CYN re-
sulted in predominantly hepatic and, to a lesser extent, renal distribution of 
the toxin (Norris et al. 2001). There was some evidence for the formation 
of metabolites, but these were not characterised. Sub-chronic oral exposure 
resulted in mainly hepatic and renal effects (Humpage and Falconer 2003). 
Effects of poisoning in humans included hepatoenteritis and renal insuffi-
ciency (Byth 1980). 

Genotoxic effects of CYN have been demonstrated in vitro using the cy-
tokinesis-blocked micronucleus assay (Humpage et al. 2000a) and the 
comet assay (Humpage et al. 2005). Strand breakage and loss of whole 
chromosomes were demonstrated to occur at concentrations below those 
that caused overt cytotoxicity. Hepatic DNA fragmentation has also been 
demonstrated in vivo after a single intraperitoneal dose of cylindrosper-
mopsin (Shen et al. 2002). There is some evidence of carcinogenicity in 
vivo (Falconer and Humpage 2001), but more work is required to confirm 
this.  

Saxitoxins (Paralytic Shellfish Toxins (PSTs)) 

The saxitoxins (Fig. 3) have been extensively studied due to their involve-
ment in paralytic shellfish poisoning where toxigenic marine dinoflagel-
lates are consumed by shellfish, which concentrate the toxins and can de-
liver toxic quantities to consumers of the shellfish (Kao 1993). Saxitoxins 
are alkaloids based on a 3,4,6-trialkyl tetrahydropurine skeleton which can 
be further carbamylated, sulphated or N-sulphocarbamylated to produce a 
range of perhaps 30 analogues (Shimizu 2000), some of which are found 
only in freshwater cyanobacteria (Onodera et al. 1997b; Lagos et al. 1999; 
Molica et al. 2002). They are produced in the freshwater environment by 
Aphanizomenon spp., Anabaena circinalis, Cylindrospermopsis racibor-
skii, Lyngbya wollei, Planktothrix spp., and other unidentified species 
(Jackim and Gentile 1968; Ikawa et al. 1982; Humpage et al. 1994; Carmi-
chael et al. 1997; Lagos et al. 1999; Kaas and Henriksen 2000; Pomati et 
al. 2000; Li et al. 2000; Li et al. 2003). 
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Fig. 3. General structure of the saxitoxins 

 
Toxin R1 R2 R3 R5 Net Charge Relative mouse 

toxicity 
R4 = CONH2 (carbamate toxins) 
STX H H H OH +2 1.000 
neoSTX OH H H OH +2 0.924 
GTX1 OH H OSO3

- OH +1 0.994 
GTX2 H H OSO3

- OH +1 0.359 
GTX3 H OSO3

- H OH +1 0.638 
GTX4 OH OSO3

- H OH +1 0.726 
R4 = CONHSO3

- (n-sulfocarbamoyl (sulfamate) toxins) 
GTX5 (B1) H H H OH +1 0.064 
GTX6 (B2) OH H H OH +1 - 
C1 H H OSO3

- OH 0 0.006 
C2 H OSO3

- H OH 0 0.096 
C3 OH H OSO3

- OH 0 0.013 
C4 OH OSO3

- H OH 0 0.058 
R4 = H (decarbamoyl toxins) 
dcSTX H H H OH +2 0.513 
dcneoSTX OH H H OH +2 - 
dcGTX1 OH H OSO3

- OH +1 - 
dcGTX2 H H OSO3

- OH +1 0.651 
dcGTX3 H OSO3

- H OH +1 0.754 
dcGTX4 OH OSO3

- H OH +1 - 
LWTX4 H H H H +2 <0.004 
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R4 = COCH3 (Lyngbya wollei toxins) 
LWTX1 H OSO3

- H H +1 <0.004 
LWTX2 H OSO3

- H OH +1 0.072 
LWTX3 H H OSO3

- OH +1 0.021 
LWTX5 H H H OH +2 0.139 
LWTX6 H H H H +2 <0.004 
R4 = COC6H4OH (Gymnodinium catenatum toxins) 
GC1 H H OSO3

- OH +1 - 
GC2 H OSO3

- H OH +1 - 
GC3 H H H OH +2 - 

Modified from Nicholson and Burch (2001) 

Fig. 3 (cont). General structure of the saxitoxins 

These toxins are potent voltage-gated sodium channel antagonists, caus-
ing numbness, paralysis and death by respiratory arrest.  Analogue potency 
varies greatly, with saxitoxin having an LD50 (ip mouse) of 10 μg kg-1, but 
C1 being at least 160-fold less toxic (Oshima 1995). Toxin uptake and 
toxicokinetics of a number of analogues have been studied in cats (Andri-
nolo et al. 1999; Andrinolo et al. 2002b; Andrinolo et al. 2002a). Oral up-
take was efficient, and toxin distributed rapidly throughout the body, in-
cluding the brain. Clearance was via simple glomerular filtration, and there 
was no evidence of metabolism of the toxins. Toxicological studies to date 
have assumed the acute exposure paradigm of shellfish poisoning rather 
than sub-chronic low-dose as might be expected from drinking water. Evi-
dence for development of tolerance to PSTs has been presented (Kuiper-
Goodman et al. 1999). Neuro-developmental disturbances have been dem-
onstrated in fish (Lefebvre 2002) but these have not been studied in mam-
mals. 

Nodularins 

Nodularins (Fig. 4) are hepatotoxic cyclic peptides of similar structure to 
the microcystins except that they are composed of 5 amino acids rather 
than 7 (Rinehart and Namikoshi 1994). Variants due to substitution of ar-
ginine with homoarginine or valine (motuporin) have been described (de 
Silva et al. 1992; Namikoshi et al. 1993; Namikoshi et al. 1994), but these 
appear to be relatively rare. ADDA is still present but dehydroalanine is 
replaced by N-methyl-dehydrobutyrine (Rinehart et al. 1988). The smaller 
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ring size prevents this latter moiety from coordinating with the phos-
phatase cysteine, and so nodularin does not bind covalently (Lanaras et al. 
1991; Craig et al. 1996; Bagu et al. 1997). However, due to the high affin-
ity of ADDA for the active site, this lack of covalent binding does not af-
fect toxin potency, which is similar to that of microcystin-LR (Ki’s are of 
the order 0.1 – 1.5 nM; Honkanen et al. 1990; MacKintosh et al. 1990; 
Honkanen et al. 1991). This lack of covalent binding may allow nodularin 
to reach other sites in the cell, and this has been suggested as a mechanism 
by which this toxin might act as a direct carcinogen (Ohta et al. 1994; 
Bagu et al. 1997). Nodularia spumigena appears to be the sole freshwater 
cyanobacterial source of nodularin (motuporin was isolated from a marine 
sponge). N. spumigena generally prefers brackish waters and so has had 
only localised impacts on human drinking water sources (for example, in 
Lake Alexandrina, South Australia in the early 1990’s).  
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Fig. 4.  Structure of nodularin 

Anatoxin-a/Homoanatoxin-a 

Anatoxin-a (2-acetyl-9-azabicyclo(4-2-1)non-2-ene; (Fig. 5) and/or homo-
anatoxin-a (propionyl residue replaces acetyl at C2) are produced by Ana-
baena flos-aquae, A. planktonica, Aphanizomenon spp., Planktothrix for-
mosa, and a benthic Oscillatoria spp. (Carmichael et al. 1975; Carmichael 
and Gorham 1978; Sivonen et al. 1989; Edwards et al. 1992; Skulberg et 
al. 1992; Bruno et al. 1994; Bumke-Vogt et al. 1999). These toxins are 
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nicotinic acetylcholine receptor agonists having a LD50 of 200 μg kg-1 
(Carmichael et al. 1979; Carmichael 1994). Residence of these toxins at 
post-synaptic cholinergic receptors results in nerve depolarisation (Swan-
son et al. 1990; Huby et al. 1991; Swanson et al. 1991; Wonnacott et al. 
1991). Typical symptoms in mice are loss of muscle coordination, gasping, 
convulsions and death within minutes from respiratory arrest (Carmichael 
et al. 1979). Dog deaths have been attributed to poisoning by these toxins 
when the animals have licked their coats after swimming (Codd et al. 
1992; Edwards et al. 1992; Falconer and Nicholson, personal communica-
tion). A single human fatality has been attributed to poisoning by anatoxin-
a after the victim swam in a scum-covered pond (Behm 2003), but further 
investigation suggests that this is unlikely to be correct (Carmichael et al. 
2004). Anatoxins have not been linked to human poisoning via drinking 
water, although evidence has been presented that such a risk may exist in 
Florida (Burns 2005). 
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Fig. 5.  Structure of anatoxin-a 

Anatoxin-a(s) 

Anatoxin-a(s) (Fig. 6) is a phosphorylated cyclic N-hydroxyguanine, with 
a structure and action similar to organophosphate pesticides (Mahmood 
and Carmichael 1986, 1987; Hyde and Carmichael 1991). It is a potent 
acetylcholinesterase inhibitor with a LD50 (ip, mouse) of 20 μg kg-1. The in 
vivo toxic effects are similar to those of anatoxin-a but with the addition of 
salivation (hence the “s”) and lacrimation (Mahmood and Carmichael 
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1986, 1987; Matsunaga et al. 1989). Anatoxin-a(s) is produced by Ana-
baena flos-aquae and A. lemmermannii (Matsunaga et al. 1989; Onodera et 
al. 1997a), and the latter has been implicated in the deaths of water birds in 
Denmark (Onodera et al. 1997a). No human illness has been attributed to 
this toxin. 

 
 
 
 
 

N
N

N

N

O

P
O

O
O

CH3

H

H2
+

-

Anatoxin-a(s)

CH3

CH3

 
Fig. 6. Structure of anatoxin-a(s) 

-Methylamino alanine 

β-Methylamino alanine (BMAA) (Fig. 7) is an old toxin that has recently 
been found to be of cyanobacterial origin (Cox et al. 2005). Whether 
cyanobacteria are the only source is not known. BMAA was described in 
1967 in extracts of cycad seeds from Guam, and suggested as a possible 
causative agent of certain neurodegenerative disorders that were prevalent 
on the island (Vega and Bell 1967). Early studies in monkeys dosed with 
high levels of BMAA produced effects similar to those seen in humans 
(Spencer et al. 1987). BMAA was found to be a glutaminergic agonist ca-
pable of producing excitotoxicity, but only at relatively high concentra-
tions (EC50 in cell-lines of 300 μM; Weiss et al. 1989a; Weiss et al. 
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1989b). Sodium bicarbonate is required as a cofactor due to the spontane-
ous formation of the carbamate, turning the monocarboxylic BMAA into a 
dicarboxylic glutamate mimic (Myers and Nelson 1990). Toxicokinetic 
studies in rats and monkeys demonstrated rapid and virtually complete up-
take via the oral route, and distribution throughout the body, including the 
brain (Duncan et al. 1991; Duncan et al. 1992), although the latter organ 
only contained about 0.08% of the administered dose by 48 hrs. There was 
evidence of active transport across the blood-brain barrier via the large 
neutral amino acid carrier (Km=2.9mM), but this would not be rapid when 
BMAA is in competition with normal levels of natural amino acids (Dun-
can et al. 1992; Jalaludin and Smith 1992). Approximately 1.4% of an oral 
dose, and 1.8% of an iv dose, were excreted unmetabolised in the urine by 
48 hrs, whereas approximately 22% could be accounted for in total (unme-
tabolised plus acid hydrolysable; Duncan et al. 1992; Jalaludin and Smith 
1992). L-amino acid oxidase has been shown to metabolise BMAA, even-
tually leading to N-methylglycine, but the rate appears to be quite slow 
(Hashmi and Anders 1991). Multiple sub-lethal doses were shown to be 
non-cumulative (Seawright et al. 1990). Based on these and other studies, 
and the likely concentrations of BMAA in cycad seed flour, it was sug-
gested that this toxin was unlikely to be the sole causative agent of the 
Guam neurodegenerative disease (Duncan et al. 1990). The hypothesis that 
BMAA might bio-accumulate in cycad seed-consuming flying foxes (Cox 
and Sacks 2002), and then the demonstration of high levels of the toxin not 
only in museum exhibits of flying foxes, but also in the brains of patients 
who died from neurodegenerative disorders in both Guam and Canada, has 
re-ignited the debate (Banack and Cox 2003; Cox et al. 2003; Murch et al. 
2004a; Murch et al. 2004b). Finally, the demonstration that many species 
of cyanobacteria produce BMAA (Cox et al. 2005) has made this an issue 
of potential concern for the provision of safe drinking water. Much more 
work needs to be done before a proper assessment can be made of this 
“new” cyanotoxin. 
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β-N-methylamino-L-alanine (BMAA)
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(from Myers and Nelson, 1990. JBC 265:10193)  
Fig. 7. Structure of BMAA and its reaction with CO2. 

Undiscovered cyanotoxins and other cyanobacterial 
bioactive compounds 

Given the range of bioactive compounds known to be produced by cyano-
bacteria (see Table A.1 in Appendix A for a non-exhaustive list of “non-
cyanotoxin” cyanobacterial bioactive compounds) it is not surprising that a 
few have turned out to be toxic to mammals. It is unlikely that we have 
found all of the toxins because unexplained toxicity has been observed, for 
example, in C. raciborskii (Hawkins et al. 1997; Bernard et al. 2003; Fast-
ner et al. 2003; Saker et al. 2003), in Anabaena spp. (Baker and Humpage 
1994), and in a Phormidium spp. (Baker et al. 2001). Furthermore, new 
toxin analogues continue to be reported (Onodera et al. 1997b; Banker et 
al. 2000; Molica et al. 2002; Negri et al. 2003). The fact that known toxins 
are usually found in new locations once people look for them, for example, 
recent discoveries of CYN in New Zealand (Stirling and Quilliam 2001), 
Thailand (Li et al. 2001b), Germany (Fastner et al. 2003), Brazil (Carmi-
chael et al. 2001) and Florida (Burns 2005), suggests that the toxigenic 
species are widespread and that no country should consider itself immune 
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from the risk to public health even from the known toxins. A further point 
that needs reinforcing is that single microcystins or single cylindrosper-
mopsins almost never occur in nature. Instead mixtures of toxins are the 
norm, and so we need to understand toxin interactions. This will enable the 
calibration of studies done using MC-LR and the formulation of regula-
tions to be based on toxicity equivalents rather than quantities of individual 
compounds. 

Research Needs 

Research into the toxicology of cyanotoxins is still lacking in a number of 
important areas: 
• Microcystins:  

- Epidemiological studies into links with human cancer. This requires 
a biomarker of low dose exposure for which ELISA may be an 
option (Hilborn et al. 2005).  

- Chronic animal studies into links with cancer.  
- Effects of mixtures of microcystin analogues, and of microcystins 

with cylindrospermopsin. 
• Cylindrospermopsin:  

- Human effects – An opportunity exists for follow-up of exposed 
humans on Palm Island, Australia. 

- Animal studies for Guideline formulation: Toxicokinetics, Chronic 
exposure, Carcinogenicity, Reproductive toxicity.  

- Effects of mixtures (with microcystins). 
- Cell-based studies: To better understand mechanism(s) of toxic and 

genotoxic action, leading to identification of biomarkers of exposure 
& effect (Falconer and Humpage 2005a). 

• Neurotoxins: 
- Episodic and chronic low dose exposures – particularly any effect on 

neural development. 
• BMAA: 

- Confirm association with neurodegenerative disease.  
- Mechanism of bioaccumulation. 
- Mechanism of toxicity (glutaminergic excitotoxicity or other effects 

eg disruption of protein structure/function?).  
- Trophic studies to determine routes of human exposure.  
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