
Chapter 4

Existence Theorems in
Metric Spaces

In this chapter, we study asymptotic fixed point theorems for contraction
mappings and for mappings that are more general than contraction mappings
in metric spaces.

4.1 Contraction mappings and their
generalizations

In this section, we establish a fundamental asymptotic fixed point theorem that
is known as the “Banach contraction principle” and further we give its genera-
lizations in metric spaces.

By an asymptotic fixed point theorem for the mapping T , we mean a theorem
that guarantees the existence of a fixed point of T , if the iterative Tn possess
certain properties. Before to establish the Banach contraction principle, we
discuss some basic definitions and results:

Let (X, d) be a metric space and let Lip(X) denote the class of mappings
T : X → X such that

σ(Tn) = sup
{

d(Tnx, Tny)
d(x, y)

: x, y ∈ X,x �= y

}

<∞

for all n ∈ N.

Members of Lip(X) are called Lipschitzian mappings and σ(Tn) is the
Lipschitz constant of Tn. Note that σ(T ) = 0 if and only if T is constant
on X. For two Lipschitzian mappings T : X → X and S : X → X such that
S(X) ⊆ Dom(T ), we have

σ(T ◦ S) ≤ σ(T )σ(S).
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176 4. Existence Theorems in Metric Spaces

It is clear that the mapping T ∈ Lip(X) if there exists a constant Ln ≥ 0
such that

d(Tnx, Tny) ≤ Lnd(x, y) for all x, y ∈ X and n ∈ N. (4.1)

Moreover, the smallest constant Ln for which (4.1) holds is the Lipschitz
constant of Tn. A Lipschitzian mapping T : X → X is said to be uniformly
L-Lipschitzian if Ln = L for all n ∈ N. A Lipschitzian mapping is said to be
contraction (nonexpansive) if σ(T ) < 1 (σ(T ) = 1).

The following result plays an important role in proving several existence
theorems in metric spaces.

Proposition 4.1.1 Let (X, d) be a complete metric space and ϕ : X → (−∞,∞]
a bounded below lower semicontinuous function. Suppose that {xn} is a sequence
in X such that

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1) for all n ∈ N0 = N ∪ {0}.

Then {xn} converges to a point v ∈ X and d(xn, v) ≤ ϕ(xn) − ϕ(v) for all
n ∈ N0.

Proof. Because

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), n ∈ N0,

it follows that {ϕ(xn)} is a decreasing sequence. Moreover, for m ∈ N0

m∑

n=0

d(xn, xn+1) ≤ d(x0, x1) + d(x1, x2) + · · ·+ d(xm, xm+1)

≤ ϕ(x0)− ϕ(xm+1)
≤ ϕ(x0)− inf

n∈N0
ϕ(xn).

Letting m→∞, we have
∞∑

n=0

d(xn, xn+1) <∞.

This implies that {xn} is a Cauchy sequence in X. Because X is complete,
there exists v ∈ X such that lim

n→∞
xn = v. Let m,n ∈ N0 with m > n. Then

d(xn, xm) ≤
m−1∑

i=n

d(xi, xi+1)

≤ ϕ(xn)− ϕ(xm).

Letting m→∞, we obtain

d(xn, v) ≤ ϕ(xn)− lim
m→∞

ϕ(xm) ≤ ϕ(xn)− ϕ(v) for all n ∈ N0.
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We now begin with Caristi’s fixed point theorem. To prove it, we need the
following important result.

Theorem 4.1.2 Let X be a complete metric space and ϕ : X → (−∞,∞] a
proper, bounded below and lower semicontinuous function. Suppose that, for
each u ∈ X with inf

x∈X
ϕ(x) < ϕ(u), there exists a v ∈ X such that

u �= v and d(u, v) ≤ ϕ(u)− ϕ(v).

Then there exists an x0 ∈ X such that ϕ(x0) = inf
x∈X

ϕ(x).

Proof. Suppose that inf
x∈X

ϕ(x) < ϕ(y) for every y ∈ X. Let u0 ∈ X with

ϕ(u0) < ∞. If inf
x∈X

ϕ(x) = ϕ(u0), then we are done. Otherwise inf
x∈X

ϕ(x) <

ϕ(u0), and there exists a u1 ∈ X such that u0 �= u1 and d(u0, u1) ≤ ϕ(u0) −
ϕ(u1).

Define inductively a sequence {un} in X, starting with u0. Suppose un−1 ∈
X is known. Then choose un ∈ Sn, where

Sn := {w ∈ X : d(un−1, w) ≤ ϕ(un−1)− ϕ(w)}

such that

ϕ(un) ≤ inf
w∈Sn

ϕ(w) +
1
2
{ϕ(un−1)− inf

w∈Sn

ϕ(w)}. (4.2)

Because un ∈ Sn, we get

d(un−1, un) ≤ ϕ(un−1)− ϕ(un), n ∈ N.

Proposition 4.1.1 implies that un → v ∈ X and d(un−1, v) ≤ ϕ(un−1) − ϕ(v).
By hypothesis, there exists a z ∈ X such that z �= v and d(v, z) ≤ ϕ(v)− ϕ(z).
Observe that

ϕ(z) ≤ ϕ(v)− d(v, z)
≤ ϕ(v)− d(v, z) + ϕ(un−1)− ϕ(v)− d(un−1, v)
= ϕ(un−1)− [d(v, z) + d(un−1, v)]
≤ ϕ(un−1)− d(un−1, z).

This implies that z ∈ Sn. It follows from (4.2) that

2ϕ(un)− ϕ(un−1) ≤ inf
w∈Sn

ϕ(w) ≤ ϕ(z).

Thus,
ϕ(z) < ϕ(v) ≤ lim

n→∞
ϕ(un) ≤ ϕ(z),

a contradiction. Therefore, there exists a point x0 ∈ X such that ϕ(x0) =
inf

x∈X
ϕ(x).
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Theorem 4.1.3 (Caristi’s fixed point theorem) – Let X be a complete
metric space and ϕ : X → (−∞,∞] a proper, bounded below and lower semi-
continuous function. Let T : X → X be a mapping such that

d(x, Tx) ≤ ϕ(x)− ϕ(Tx) for all x ∈ X. (4.3)

Then there exists a point v ∈ X such that v = Tv and ϕ(v) <∞.

Proof. Because ϕ is proper, there exists u ∈ X such that ϕ(u) <∞. Let

C = {x ∈ X : d(u, x) ≤ ϕ(u)− ϕ(x)}.

Then C is a nonempty closed subset of X. We show that C is invariant under
T . For each x ∈ C, we have

d(u, x) ≤ ϕ(u)− ϕ(x)

and hence from (4.3), we have

ϕ(Tx) ≤ ϕ(x)− d(x, Tx)
≤ ϕ(x)− d(x, Tx) + ϕ(u)− ϕ(x)− d(u, x)
= ϕ(u)− [d(x, Tx) + d(u, x)]
≤ ϕ(u)− d(u, Tx),

and it follows that Tx ∈ C.
Suppose, for contradiction, that x �= Tx for all x ∈ C. Then, for each x ∈ C,

there exists w ∈ C such that

x �= w and d(x,w) ≤ ϕ(x)− ϕ(w).

By Theorem 4.1.2, there exists an x0 ∈ C with ϕ(x0) = inf
x∈C

ϕ(x). Hence for

such an x0 ∈ C, we have

0 < d(x0, Tx0) ≤ ϕ(x0)− ϕ(Tx0) ( inf
x∈C

ϕ(x) = ϕ(x0) ≤ ϕ(Tx0))

≤ ϕ(Tx0)− ϕ(Tx0)
= 0,

a contradiction.

Remark 4.1.4 The fixed point of the mapping T in Theorem 4.1.3 need not be
unique.

We now state and prove the Banach contraction principle, which gives a
unique fixed point of the mapping.

Theorem 4.1.5 (Banach’s contraction principle) – Let (X, d) be a com-
plete metric space and T : X → X a contraction mapping with Lipschitz con-
stant k ∈ (0, 1). Then we have the following:
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(a) There exists a unique fixed point v ∈ X.
(b) For arbitrary x0 ∈ X, the Picard iteration process defined by

xn+1 = Txn, n ∈ N0

converges to v.
(c) d(xn, v) ≤ (1− k)−1knd(x0, x1) for all n ∈ N0.

Proof. (a) Define the function ϕ : X → R
+ by ϕ(x) = (1 − k)−1d(x, Tx),

x ∈ X. Hence ϕ is a continuous function. Because T is a contraction mapping,

d(Tx, T 2x) ≤ kd(x, Tx), x ∈ X, (4.4)

which implies that

d(x, Tx)− kd(x, Tx) ≤ d(x, Tx)− d(Tx, T 2x).

Hence

d(x, Tx) ≤ 1
1− k

[d(x, Tx)− d(Tx, T 2x)]

= ϕ(x)− ϕ(Tx). (4.5)

Let x be an arbitrary element in X and define the sequence {xn} in X by

xn = Tnx, n ∈ N0.

From (4.5), we have

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), n ∈ N0,

and it follows from Proposition 4.1.1 that

lim
n→∞

xn = v ∈ X

and

d(xn, v) ≤ ϕ(xn), n ∈ N0. (4.6)

Because T is continuous and xn+1 = Txn, it follows that v = Tv. Suppose z is
another fixed point of T . Then

0 < d(v, z) = d(Tv, Tz) ≤ kd(v, z) < d(v, z),

a contradiction. Hence T has unique fixed point v ∈ X.
(b) It follows from part (a).
(c) From (4.4) we have that ϕ(xn) ≤ knϕ(x0). This implies from (4.6) that

d(xn, v) ≤ knϕ(x0).

Let us give some examples of contraction mappings.
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Example 4.1.6 Let X = [a, b] and T : X → X a mapping such that T is
differentiable at every x ∈ (a, b) such that |T ′

(x)| ≤ k < 1. Then, by the mean
value theorem, if x, y ∈ X, there is a point ξ between x and y such that

Tx− Ty = T
′
(ξ)(x− y).

Thus,
|Tx− Ty| = |T ′

(ξ)| |x− y| ≤ k|x− y|.

Therefore, T is contraction and it has a unique fixed point.

Example 4.1.7 Let X = R and T : R→ R a mapping defined by

Tx =
1
2
x + 1, x ∈ R.

Then T is contraction and F (T ) = {2}.

The following example shows that there exists a mapping that is not a con-
traction, but it has a unique fixed point.

Example 4.1.8 Let X = [0, 1] and T : [0, 1]→ [0, 1] a mapping defined by

Tx = 1− x, x ∈ [0, 1].

Then T has a unique fixed point 1/2, but T is not a contraction.

Let (X, d) be a metric space. Then a mapping T : X → X is said to be
contractive if

d(Tx, Ty) < d(x, y) for all x, y ∈ X, x �= y.

It is clear that the class of contractive mappings falls between the class of
contraction mappings and that of nonexpansive mappings.

Observation
• A contractive mapping can have at most one fixed point.

The contractive mapping may not have a fixed point. It can be seen from
the following example.

Example 4.1.9 Let X be the space c0 consisting of all real sequences x = {xi}
with lim

i→∞
xi = 0 and d(x, y) = ‖x − y‖ = sup

i∈N

|xi − yi|, x = {xi}, y = {yi} ∈ c0.

Let BX = {x ∈ c0 : ‖x‖ ≤ 1}. For each x ∈ BX , define

T (x1, x2, · · · , xi, · · · ) = (y1, y2, · · · , yi, · · · ),

where y1 = (1 + ‖x‖)/2 and yi = (1 − 1/2i+1)xi−1 for i = 2, 3, · · · . Note that
|y1| ≤ 1 and |yi| ≤ |xi−1| ≤ 1 for all i = 2, 3, · · · . Hence T : BX → BX .
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Suppose x and y are two distinct points in BX . Then

‖Tx− Ty‖ = sup
{
‖x‖ − ‖y‖

2
,

(

1− 1
2i+1

)

|xi−1 − yi−1| : i = 2, 3, · · ·
}

≤ sup
{
‖x− y‖

2
,

(

1− 1
2i+1

)

|xi−1 − yi−1| : i = 2, 3, · · ·
}

< ‖x− y‖.

Suppose that there is a point v∈BX such that Tv= v. Then v1 = (1+ ‖v‖)/2>0
and for i ≥ 2

|vi| =
(

1− 1
2i+1

)

|vi−1|.

This implies for all i ≥ 2

|vi| =
(

1− 1
2i+1

)

|vi−1|

=
(

1− 1
2i+1

)(

1− 1
2i

)

|vi−2|
. . .

=
i−2∏

k=0

(

1− 1
2i+1−k

)

|v1|

≥
(

1−
i−2∑

k=0

1
2i+1−k

)

|v1|

=
(

1−
i+1∑

j=3

1
2j

)

|v1| >
3
4
|v1|.

This is not possible, because vi → 0 as i → ∞. Thus, T has no fixed point
in BX .

We note that completeness and boundedness of a metric space do not ensure
the existence of fixed points of contractive mappings. However, contractive
mappings always have fixed points in compact metric spaces.

Theorem 4.1.10 Let X be a compact metric space and T : X → X a con-
tractive mapping. Then T has a unique fixed point v in X. Moreover, for each
x ∈ X, the sequence {Tnx} of iterates converges to v.

Proof. For each x ∈ X, define a function ϕ : X → R
+ by ϕ(x) = d(x, Tx).

Then ϕ is continuous on X and by compactness of X, ϕ attains its minimum,
say ϕ(v), at v ∈ X. Then ϕ(v) = min

x∈X
ϕ(x). If v �= Tv, then

ϕ(Tv) = d(Tv, T 2v) < d(v, Tv) = ϕ(v),

a contradiction. Hence v = Tv. Uniqueness of v follows from the contractive
condition of T .
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Now, let x0 ∈ X and define a sequence {xn} in X by xn = Tnx0 for all
n ∈ N. Set cn := d(Tnx0, v), n ∈ N0. Because

cn+1 = d(Tn+1x0, v) < d(Tnx0, v) = cn,

{cn} is a nonincreasing sequence in R
+. Hence lim

n→∞
cn exists. Suppose lim

n→∞
cn =

c ≥ 0. Assume that c > 0. Because X is compact, there exists a subsequence
{xni

} of {xn} such that xni
→ z ∈ X. Observe that

0 < c = lim
i→∞

cni
= lim

i→∞
d(Tnix0, v) = d(z, v),

i.e., z �= v. Because T is contractive and continuous,

c = lim
i→∞

d(Tni+1x0, v) = d(Tz, v) < d(z, v) = c,

a contradiction. Thus, c = 0, i.e., z = v. This means that every conver-
gent subsequence of {Tnx0} must converge to v. Therefore, {Tnx0} converges
to v.

The following example shows that in general, even in a Hilbert space for
contractive mappings we cannot have that Tnx → x0 for every x ∈ BX and
x0 = Tx0.

Example 4.1.11 Let X = 
2 = {(x1, x2, · · · , xi, · · · ) : xi real for each i ∈ N

and
∑∞

i=1 |xi|2 <∞} and BX = {x ∈ X : ‖x‖2 = (
∑∞

i=1 |xi‖2)1/2 ≤ 1}. Define
a mapping T : BX → BX by

Tx = (0, α1x1, α2x2, · · · , αixi · · · ), x = (x1, x2, · · · , xi, · · · ) ∈ BX ,

where α1 = 1; αi = (1−1/i2), i = 2, 3, · · · . It is easy to see that T is contractive
with fixed point (0, 0, · · · , 0, · · · ).

Now, let x = (1, 0, · · · , 0, · · · ) ∈ BX , then

Tnx = (0, 0, · · · ,
n∏

i=1

αi, 0, · · · ) for all n ∈ N.

Thus,

‖Tnx‖ =
n + 2

2(n + 1)
→ 1

2
as n→∞,

and hence Tnx � 0.

We now consider some important generalizations of the Banach contraction
principle in which the Lipschitz constant k is replaced by some real-valued con-
trol function.

Theorem 4.1.12 (Boyd and Wong’s fixed point theorem) – Let X be a
complete metric space and T : X → X a mapping that satisfies

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X, (4.7)
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where ψ : R
+ → R

+ is upper semicontinuous function from the right (i.e.,
λi ↓ λ ≥ 0 ⇒ lim sup

i→∞
ψ(λi) ≤ ψ(λ)) such that ψ(t) < t for each t > 0. Then T

has a unique fixed point v ∈ X. Moreover, for each x ∈ X, lim
n→∞

Tnx = v.

Proof. Fix x ∈ X and define a sequence {xn} in X by xn = Tnx, n ∈ N0. Set
dn := d(xn, xn+1). We divide the proof into three steps:

Step 1. lim
n→∞

dn = 0.

Note

dn+1 = d(xn+1, xn+2) = d(Txn, Txn+1) ≤ ψ(dn), n ∈ N0.

Hence {dn} is monotonic decreasing and bounded below. Hence lim
n→∞

dn exists.
Let lim

n→∞
dn = δ ≥ 0. Assume that δ > 0. By the right continuity of ψ,

δ = lim
n→∞

dn+1 ≤ lim
n→∞

ψ(dn) ≤ ψ(δ) < δ,

so δ = 0.

Step 2. {xn} is Cauchy sequence.
Assume that {xn} is not Cauchy. Then there exist ε > 0 and integers

mk, nk ∈ N0 such that mk > nk ≥ k and

d(xnk
, xmk

) ≥ ε for k = 0, 1, 2, · · · .

Also, choosing mk as small as possible, it may be assumed that

d(xmk−1, xnk
) < ε.

Hence for each k ∈ N0, we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xmk−1) + d(xmk−1, xnk

)
≤ d(xmk−1, xmk

) + ε

= dmk−1 + ε,

and it follows from the fact dmk
→ 0 that lim

k→∞
d(xmk

, xnk
) = ε. Observe that

d(xmk
, xnk

) ≤ d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk

)
≤ dmk

+ ψ(d(xmk
, xnk

)) + dnk
.

Letting k → ∞ and using the upper semicontinuity of ψ from the right, we
obtain

ε = lim
k→∞

d(xmk
, xnk

) ≤ lim
k→∞

ψ(d(xmk
, xnk

)) ≤ ψ(ε),

which is a contradiction. Hence {xn} is a Cauchy sequence in X.
Step 3. Existence and uniqueness of fixed points.
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Because {xn} is Cauchy and X is complete, lim
n→∞

xn = v ∈ X. By continuity

of T, we have v = Tv. Uniqueness of v easily follows from condition (4.7).

Let Φ denote the class of all mappings ϕ : R
+ → R

+ satisfying:
(i) ϕ is continuous,
(ii) ϕ(t) < t for all t > 0.

As an immediate consequence of the Boyd-Wong’s fixed point theorem, we
have the following important result, which will be useful in establishing existence
theorems concerning asymptotic contraction mappings.

Corollary 4.1.13 Let X be a complete metric space and T : X → X a mapping
that satisfies

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X,

where ϕ ∈ Φ. Then T has a unique fixed point v ∈ X. Moreover, for each
x ∈ X, lim

n→∞
Tnx = v.

We now introduce a wider class of mappings that we call “asymptotic con-
tractions.”

Definition 4.1.14 Let (X, d) be a metric space. A mapping T : X → X is said
to be an asymptotic contraction if for each n ∈ N

d(Tnx, Tny) ≤ ϕn(d(x, y)) for all x, y ∈ X, (4.8)

where ϕn : R
+ → R

+ and ϕn → ϕ ∈ Φ uniformly on the range of d.

The following theorem shows that asymptotic contractions have unique fixed
points.

Theorem 4.1.15 Let X be a complete metric space and T : X → X a con-
tinuous asymptotic contraction for which the mappings ϕn in (4.8) are also
continuous. Assume also that some orbit of T is bounded. Then T has a unique
fixed point v ∈ X and for each x ∈ X, {Tnx} converges to v.

Proof. Because the sequence {ϕi} is uniformly convergent, it follows that ϕ is
continuous. For any x, y ∈ X,x �= y, we have

lim sup
n→∞

d(Tnx, Tny) ≤ lim sup
n→∞

ϕn(d(x, y)) = ϕ(d(x, y)) < d(x, y).

If there exist x, y ∈ X and ε > 0 such that lim sup
n→∞

d(Tnx, Tny) = ε, then

there exists k ∈ N such that ϕ(d(T kx, T ky)) < ε because ϕ is continuous, and
ϕ(ε) < ε. It follows that

lim sup
n→∞

d(Tnx, Tny) = lim sup
n→∞

d(Tn(T kx), Tn(T ky)

≤ lim sup
n→∞

ϕn(d(T kx, T ky))

= ϕ(d(T kx, T ky)) < ε,
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a contradiction. Hence

lim
n→∞

d(Tnx, Tny) = 0 for any x, y ∈ X. (4.9)

Thus, all sequences of the Picard iterates defined by T , are equi-convergent and
bounded.

Now let z0 ∈ X be arbitrary, {zn} be a sequence of Picard iterates of T at the
point z0, C = {zn} and Fn = {x ∈ C : d(x, T kx) ≤ 1/n, k = 1, · · · , n}. Because
{zn} is bounded, C is bounded. It follows from (4.9) that Fn is nonempty.
Because T is continuous, we have Fn is closed, for any n. Also, we have Fn+1 ⊆
Fn. Let {xn} and {yn} be two arbitrary sequences such that xn, yn ∈ Fn. Let
{nj} be a sequence of integers such that lim

j→∞
d(xnj

, ynj
) = lim sup

n→∞
d(xn, yn).

Observe that

lim
j→∞

d(xnj
, ynj

) ≤ lim
j→∞

(d(xnj
, Tnj xnj

) + d(Tnj xnj
, Tnj ynj

) + d(ynj
, Tnj ynj

))

= lim
j→∞

ϕnj
(d(xnj

, ynj
))

= ϕ( lim
j→∞

d(xnj
, ynj

)),

and hence lim
j→∞

d(xnj
, ynj

) = ϕ( lim
j→∞

d(xnj
, ynj

)), which implies that

lim
j→∞

d(xnj
, ynj

) = 0, because C is bounded. Thus, lim sup
n→∞

d(xn, yn) = 0 and

hence lim
n→∞

d(xn, yn) = 0. This implies that lim
n→∞

diam(Fn) = 0. By the com-

pleteness of C, it follows that there exists v ∈ X such that ∩∞
n=1Fn = {v}.

Because d(v, Tv) ≤ 1/n for any n, we have Tv = v. From (4.9), we have
lim

n→∞
d(Tnx, v) = 0 for any x ∈ X.

We now study an important generalization of the Boyd and Wong’s fixed
point theorem in which the control function ϕ is extended in a different direction.
Interestingly, in the following result the continuity condition on ϕ is replaced
by lim

n→∞
ϕn(t) = 0 for all t > 0.

Theorem 4.1.16 (Matkowski’s fixed point theorem) – Let X be a com-
plete metric space and T : X → X a mapping that satisfies

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X,

where ψ : (0,∞) → (0,∞) is nondecreasing and satisfies lim
n→∞

ψn(t) = 0 for
all t > 0. Then T has a unique fixed point v ∈ X and for each x ∈ X,
lim

n→∞
Tnx = v.

Proof. Fix x0 ∈ X and let xn = Tnx0, n ∈ N. Observe that

0 ≤ lim sup
n→∞

d(xn, xn+1) ≤ lim sup
n→∞

ψn(d(x0, x1)) = 0.
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Hence lim
n→∞

d(xn, xn+1) = 0. Because ψn(t) → 0 for t > 0, ψ(s) < s for any

s > 0. Because lim
n→∞

d(xn, xn+1) = 0, given any ε > 0, it is possible to choose n

such that
d(xn+1, xn) ≤ ε− ψ(ε).

Now for z ∈ Bε[xn] = {x ∈ X : d(x, xn) ≤ ε}, we have

d(Tz, xn) ≤ d(Tz, Txn) + d(Txn, xn)
≤ ψ(d(z, xn)) + d(xn+1, xn)
≤ ψ(ε) + (ε− ψ(ε)) = ε.

Therefore, T : Bε[xn]→ Bε[xn] and it follows that d(xm, xn) ≤ ε for all m ≥ n.
Hence {xn} is a Cauchy sequence. The conclusion of the proof follows as in
Theorem 4.1.12.

We now introduce the concept of nearly Lipschitzian mappings:
Let (X, d) be a metric space and fix a sequence {an} in R

+ with an → 0.
A mapping T : X → X is said to be nearly Lipschitzian with respect to {an} if
for each n ∈ N, there exists a constant kn ≥ 0 such that

d(Tnx, Tny) ≤ kn(d(x, y) + an) for all x, y ∈ C. (4.10)

The infimum of constants kn for which (4.10) holds is denoted by η(Tn) and
called the nearly Lipschitz constant.

Notice that

η(Tn) = sup
{

d(Tnx, Tny)
d(x, y) + an

: x, y ∈ C, x �= y

}

.

A nearly Lipschitzian mapping T with sequence {(η(Tn), an)} is said to be
(i) nearly contraction if η(Tn) < 1 for all n ∈ N,
(ii) nearly nonexpansive if η(Tn) = 1 for all n ∈ N,
(iii) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and

limn→∞ η(Tn) ≤ 1,
(iv) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N,
(v) nearly uniformly k-contraction if η(Tn) ≤ k < 1 for all n ∈ N.

Example 4.1.17 Let X = [0, 1] with the usual metric d(x, y) = |x − y| and
T : X → X a mapping defined by

Tx =
{

1/2 if x ∈ [0, 1/2],
0 if x ∈ (1/2, 1].

Thus, T is discontinuous and non-Lipschitzian. However, it is nearly non-
expansive mapping. Indeed, for a sequence {an} with a1 = 1/2 and an → 0, we
have

d(Tx, Ty) ≤ d(x, y) + a1 for all x, y ∈ X
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and
d(Tnx, Tny) ≤ d(x, y) + an for all x, y ∈ X and n ≥ 2,

because
Tnx =

1
2

for all x ∈ [0, 1] and n ≥ 2.

We now develop a technique for studying the existence and uniqueness of
fixed points of nearly Lipschitzian mappings.

Theorem 4.1.18 Let X be a complete metric space and T : X → X a contin-
uous nearly Lipschitzian mapping with sequence {(η(Tn), an)}, i.e., for a fixed
sequence {an} in R

+ with an → 0 and for each n ∈ N, there exists a constant
η(Tn) > 0 such that

d(Tnx, Tny) ≤ η(Tn)(d(x, y) + an) for all x, y ∈ X.

Suppose η∞(T ) = lim sup
n→∞

[η(Tn)]1/n < 1. Then we have the following:

(a) T has a unique fixed point v ∈ X.
(b) For each x ∈ X, the sequence {Tnx} converges to v.
(c) d(Tnx, v) ≤

∑∞
i=n η(T i)(d(x, Tx)+M) for all n ∈ N, where M = sup

n∈N

an.

Proof. (a) Fix x ∈ X and let xn = Tnx, n ∈ N. Set dn := d(xn, xn+1). Hence

dn = d(Tnx, Tn+1x) ≤ η(Tn)(d(x, Tx) + an),

which implies that

∞∑

n=1

dn ≤ (d(x, Tx) + M)
∞∑

n=1

η(Tn)

for some M > 0, because lim
n→∞

an = 0. By the Root Test for convergence of

series, if η∞(T ) = lim sup
n→∞

[η(Tn)]1/n < 1, then
∑∞

n=1 η(Tn) < ∞. It follows

that
∑∞

n=1 dn <∞ and hence {xn} is a Cauchy sequence. Thus, lim
n→∞

xn exists

(say v ∈ X). By the continuity of T , v is fixed point of T . Let w be another
fixed point T . Then

∞ =
∞∑

n=1

d(v, w) =
∞∑

n=1

d(Tnv, Tnw) ≤
∞∑

n=1

η(Tn)(d(v, w) + an)

≤ (d(u,w) + M)
∞∑

n=1

η(Tn) <∞,

a contradiction, hence T has a unique fixed point v ∈ X.
(b) It follows from part (a).



188 4. Existence Theorems in Metric Spaces

(c) If m ∈ N, we have

d(xn, xn+m) = d(Tnx, Tn+mx)

≤
n+m−1∑

i=n

d(T ix, T i+1x)

≤
n+m−1∑

i=n

η(T i)(d(x, Tx) + ai)

≤
n+m−1∑

i=n

η(T i)(d(x, Tx) + M).

Letting m→∞, we obtain
d(xn, v) ≤

∑∞
i=n η(T i)(d(x, Tx) + M).

Remark 4.1.19 In the case of a nearly uniformly k-Lipschitzian mapping, we
have

lim sup
n→∞

[η(Tn)]1/n = lim sup
n→∞

(k)1/n = 1.

Therefore, the assumptions of Theorem 4.1.18 do not hold for nearly uniformly
k-Lipschitzian mappings.

4.2 Multivalued mappings

Let A be a nonempty subset of a metric space X. For x ∈ X, define

d(x,A) = inf{d(x, y) : y ∈ A}.

Let CB(X) denote the set of nonempty closed bounded subsets of X and K(X)
denote the set of nonempty compact subsets of X. It is clear that K(X) is
included in CB(X).

For A,B ∈ CB(X), define

δ(A,B) = sup{d(x,B) : x ∈ A},

H(A,B) = max{δ(A,B), δ(B,A)} = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Example 4.2.1 Let X = R, A = [1, 2] and B = [2, 3]. Then

δ(A,B) = sup
a∈A

d(a,B) = 1 and δ(B,A) = sup
b∈B

d(b, A) = 1.

Hence H(A,B) = max{δ(A,B), δ(B,A)} = 1.

Note that set distance δ is not symmetric. However, δ and H have the
following properties:
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Proposition 4.2.2 Let (X, d) be a metric space. Let A,B,C ∈ CB(X). Then
we have the following:

(a) δ(A,B) = 0⇔ A ⊂ B.
(b) B ⊂ C ⇒ δ(A,C) ≤ δ(A,B).
(c) δ(A ∪B,C) = max{δ(A,C), δ(B,C)}.
(d) δ(A,B) ≤ δ(A,C) + δ(C,B).

Proof. (a) By the definition δ, we have

δ(A,B) = 0 ⇔ sup
x∈A

d(x,B) = 0

⇔ d(x,B) = 0 for all x ∈ A.

Because B is closed in X,

d(x,B) = 0⇔ x ∈ B.

Thus,
δ(A,B) = 0⇔ A ⊂ B.

(b) Observe that

B ⊂ C ⇒ d(x,C) ≤ d(x,B) for all x ∈ X.

(c) Observe that

δ(A ∪B,C) = sup
x∈A∪B

d(x,C) = max{sup
x∈A

d(x,C), sup
x∈B

d(x,C)}.

(d) Let a ∈ A, b ∈ B and c ∈ C. Then

d(a, b) ≤ d(a, c) + d(c, b),

which implies that
d(a,B) ≤ d(a, c) + d(c,B)

and hence
d(a,B) ≤ d(a, c) + δ(C,B).

Because c ∈ C is arbitrary, we have

d(a,B) ≤ d(a,C) + δ(C,B).

Similarly, because a ∈ A is arbitrary, we have

δ(A,B) ≤ δ(A,C) + δ(C,B).

Proposition 4.2.3 Let (X, d) be a metric space. Then H is a metric on
CB(X).
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Proof. By the definition of H, we have

H(A,B) ≥ 0 and H(A,B) = H(B,A).

Observe that

H(A,B) = 0 ⇔ max{δ(A,B), δ(B,A)} = 0
⇔ δ(A,B) = 0 and δ(B,A) = 0
⇔ A ⊂ B and B ⊂ A

⇔ A = B.

Using Proposition 4.2.2, we obtain

H(A,B) = max{δ(A,B), δ(B,A)}
≤ max{δ(A,C) + δ(C,B), δ(B,C) + δ(C,A)
≤ max{δ(A,C), δ(C,A)}+ max{δ(B,C), δ(C,B)}
= H(A,C) + H(C,B).

The metric H on CB(X) is called the Hausdorff metric. The metric H
depends on the metric d. It is easy to see that the completeness of (X, d)
implies the completeness of (CB(X),H) and (K(X),H).

Remark 4.2.4 Let A,B ∈ CB(X) and a ∈ A. Then for ε > 0, there must
exist a point b ∈ B such that d(a, b) ≤ H(A,B) + ε.

The following proposition gives a characteristic property of the Hausdorff
metric that will be used in Section 8.1.

Proposition 4.2.5 Let X be a metric space. Then

H(A ∪B,C ∪D) ≤ max{H(A,C),H(B,D)} for all A,B,C,D ∈ CB(X).

Proof. Observe that

δ(A ∪B,C ∪D) = max{δ(A,C ∪D), δ(B,C ∪D)}
≤ max{δ(A,C), δ(B,D)}
≤ max{H(A,C),H(B,D)}.

Similarly, we have

δ(C ∪D,A ∪B) ≤ max{H(A,C),H(B,D)}

By definition of H, we have

H(A ∪B,C ∪D) = max{δ(A ∪B,C ∪D), δ(C ∪D,A ∪B)}
≤ max{H(A,C),H(B,D)} for all A,B,C,D ∈ CB(X).

Let F (X) denote the family of nonempty closed subsets of a metric space
(X, d). Then we have
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Proposition 4.2.6 Let C be a nonempty subset of a metric space (X, d).
Suppose the mapping T : C → F (X) is an upper semicontinuous at x0 ∈ C.
Then the mapping ϕ : C → R

+ defined by ϕ(x) = d(x, Tx), x ∈ C is lower
semicontinuous at x0.

Proof. Let ε > 0. By the upper semicontinuity of T at x0, there exists δ > 0
such that y ∈ Bδ[x0] ∩ C implies Ty lies in an ε/4-neighborhood of Tx0, and
moreover we may suppose δ ≤ ε/4. Select u ∈ Ty such that

d(y, u) ≤ d(y, Ty) +
ε

2

and select v ∈ Tx0 so that d(u, v) ≤ ε/4. Then

d(x0, Tx0)−
[

d(y, Ty) +
ε

2

]

≤ d(x0, Tx0)− d(y, u)

≤ d(x0, v)− d(y, u)
≤ d(x0, y) + d(y, u) + d(u, v)− d(y, u)
≤ d(x0, y) + d(u, v)

≤ δ +
ε

4
=

ε

2
,

and hence
d(x0, Tx0) ≤ d(y, Ty) + ε.

Therefore, ϕ is lower semicontinuous at x0.

We now introduce the class of multivalued contraction mappings and obtain
a fixed point theorem for this class of mappings:

Let T be a mapping from a metric space (X, d) into CB(X). Then T is said
to be Lipschitzian if there exists a constant k > 0 such that

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

A multivalued Lipschitzian mapping T is said to be contraction (nonexpansive)
if k < 1 (k = 1). Let F (T ) denote the set of fixed points of T , i.e., F (T ) =
{x ∈ X : x ∈ Tx}.

Theorem 4.2.7 (Nadler’s fixed point theorem) – Let X be a complete
metric space and T : X → CB(X) a contraction mapping. Then T has a fixed
point in X.

Proof. Let k, 0 < k < 1 be the Lipschitz constant of T . Let x0 ∈ X and
x1 ∈ Tx0. By Remark 4.2.4, there must exist x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) + k.

Similarly, there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) + k2.



192 4. Existence Theorems in Metric Spaces

Thus, there exists a sequence {xn} in X such that xn+1 ∈ Txn and

d(xn, xn+1) ≤ H(Txn−1, Txn) + kn for all n ∈ N.

Notice for each n ∈ N, xn+1 ∈ Txn and so

d(xn, xn+1) ≤ H(Txn−1, Txn) + kn

≤ kd(xn−1, xn) + kn

≤ k[kd(xn−2, xn−1) + kn−1] + kn

≤ k2d(xn−2, xn−1) + 2kn

· · ·
≤ knd(x0, x1) + nkn.

Because
∑∞

n=0 kn <∞ and
∑∞

n=0 nkn <∞, we have

∞∑

n=0

d(xn, xn+1) ≤ d(x0, x1)
∞∑

n=0

kn +
∞∑

n=0

nkn <∞.

Hence {xn} is a Cauchy sequence. By completeness of X, there exists v ∈ X
such that lim

n→∞
xn = v. Again, by the continuity of T ,

lim
n→∞

H(Txn, T v) = 0.

Because xn+1 ∈ Txn,
lim

n→∞
d(xn+1, T v) = 0,

which implies that d(v, Tv) = 0. Because Tv is closed, it follows that
v ∈ Tv.

Example 4.2.8 Let X = [0, 1] and f : [0, 1]→ [0, 1] a mapping such that

f(x) =
{

x/2 + 1/2, 0 ≤ x ≤ 1/2,
−x/2 + 1, 1/2 ≤ x ≤ 1.

Define T : X → 2X by Tx = {f(x)} ∪ {0}, x ∈ X. Then T is a multivalued
contraction mapping with F (T ) = {0, 2/3}.

Remark 4.2.9 Example 4.2.8 shows that the fixed point of a multivalued con-
traction mapping is not necessarily unique.

We now discuss a stability result (Theorem 4.2.11) for multivalued contrac-
tion mappings.

Proposition 4.2.10 Let X be a complete metric space and let S, T : X →
CB(X) be two contraction mappings each having Lipschitz constant k < 1, i.e.,

H(Sx, Sy) ≤ kd(x, y) and H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.

Then H(F (S), F (T )) ≤ (1− k)−1 sup
x∈X

H(Sx, Tx).
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Proof. Let ε > 0 and c > 0 be such that c
∑∞

n=1 nkn < 1. For x0 ∈ F (S),
select x1 ∈ Tx0 such that

d(x0, x1) ≤ H(Sx0, Tx0) + ε.

Because H(Tx0, Tx1) ≤ kd(x0, x1), it is possible to select x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) +
cεk

1− k

≤ kd(x0, x1) +
cεk

1− k
.

Define {xn} inductively by

xn+1 ∈ Txn and d(xn+1, xn) ≤ kd(xn, xn−1) +
cεkn

1− k
.

Set η := cε/(1− k). Observe that

d(xn+1, xn) ≤ kd(xn, xn−1) + ηkn

≤ k(kd(xn−1, xn−2) + ηkn−1) + ηkn

≤ k2d(xn−1, xn−2) + 2ηkn

· · ·
≤ knd(x0, x1) + nηkn.

Because
∑∞

n=1 kn <∞ and
∑∞

n=1 nkn <∞, it follows that {xn} is a Cauchy sequ-
ence in X and it converges to some point v ∈X. Because lim

n→∞
H(Txn, T v) = 0

by continuity of T , it follows from xn+1 ∈ Txn that v ∈ F (T ). Observe that

d(x0, v) ≤
∞∑

n=0

d(xn, xn+1) ≤
∞∑

n=0

knd(x0, x1) + η

∞∑

n=0

nkn

≤ (1− k)−1d(x0, x1) + η

∞∑

n=0

nkn

≤ (1− k)−1(d(x0, x1) + ε)
≤ (1− k)−1(H(Sx0, Tx0) + 2ε).

Interchanging the roles of S and T , we conclude:
For each y0 ∈ F (T ), there exist y1 ∈ Sy0 and u ∈ F (S) such that

d(y0, u) ≤ (1− k)−1(H(Sy0, T y0) + 2ε).

Because ε > 0 is arbitrary, the conclusion follows.

Theorem 4.2.11 Let X be a complete metric space and let Tn : X → CB(X)
(n = 1, 2, · · · ) be contraction mappings each having Lipschitz constant k < 1,
i.e.,

H(Tnx, Tny) ≤ kd(x, y) for all x, y ∈ X and n ∈ N.

If lim
n→∞

H(Tnx, T0x) = 0 uniformly for x ∈ X, then lim
n→∞

H(F (Tn), F (T0)) = 0.
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Proof. Let ε > 0. Because lim
n→∞

H(Tnx, T0x) = 0 uniformly for x ∈ X, it is
possible to select n0 ∈ N such that

sup
x∈X

H(Tnx, T0x) ≤ (1− k)ε for all n ≥ n0.

By Proposition 4.2.10, we have H(F (Tn), F (T0)) < ε for all n ≥ n0.

Next, we extend Nadler’s fixed point theorem for non-self multivalued map-
pings in a metric space. First, we define a metrically convex metric space.

Definition 4.2.12 A metric space (X, d) is said to be metrically convex 1 if for
any x, y ∈ X with x �= y, there exists z ∈ X, x �= y �= z such that

d(x, z) + d(z, y) = d(x, y).

We note that in such a space, each two points are the end points of at least
one metric segment. This fact immediately yields a very useful lemma.

Lemma 4.2.13 If C is a nonempty closed subset of a complete and metrically
convex metric space (X, d), then for any x ∈ C, y /∈ C, there exists a point
z ∈ ∂C (the boundary of C) such that

d(x, z) + d(z, y) = d(x, y).

Now we are in a position to establish a fundamental result on the existence
of fixed points for non-self multivalued contraction mappings.

Theorem 4.2.14 (Assad and Kirk’s fixed point theorem) – Let (X, d) be
a complete and metrically convex metric space, C a nonempty closed subset of
X, and T : C → CB(X) a contraction mapping, i.e.,

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X,

where k ∈ (0, 1). If Tx ⊂ C for each x ∈ ∂C, then T has a fixed point in C.

Proof. We construct a sequence {pn} in C in the following way:
Let p0 ∈ C and p′1 ∈ Tp0. If p′1 ∈ C, let p1 = p′1. Otherwise, select a point

p1 ∈ ∂C such that
d(p0, p1) + d(p1, p

′
1) = d(p0, p

′
1).

Thus, p1 ∈ C. By Remark 4.2.4, we may choose p′2 ∈ Tp1 such that

d(p′1, p
′
2) ≤ H(Tp0, Tp1) + k.

Now, if p′2 ∈ C, let p′2 = p2, otherwise, let p2 ∈ ∂C such that

d(p1, p2) + d(p2, p
′
2) = d(p1, p

′
2).

Continuing in this manner, we obtain sequences {pn} and {p′n} such that for
n ∈ N,

1The concept of metric convexity was introduced by K. Menger in 1953.
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(i) p′n+1 ∈ Tpn;

(ii) d(p′n+1, p
′
n) ≤ H(Tpn, Tpn−1) + kn,

where p′n+1 = pn+1, if p′n+1 ∈ C or

d(pn, pn+1) + d(pn+1, p
′
n+1) = d(pn, p′n+1) if p′n+1 /∈ C and pn+1 ∈ ∂C. (4.11)

Now, set

P : = {pi ∈ {pn} : pi = p′i, i ∈ N};
Q : = {pi ∈ {pn} : pi �= p′i, i ∈ N}.

Observe that if pi ∈ Q for some i, then pi+1 ∈ P be the boundary condition.
We wish to estimate the distance d(pn, pn+1) for n ≥ 2. For this, we consider

three cases:

Case I. pn ∈ P and pn+1 ∈ P .
In this case, we have

d(pn, pn+1) = d(p′n, p′n+1) ≤ H(Tpn, Tpn−1) + kn

≤ kd(pn, pn−1) + kn.

Case II. pn ∈ P and pn+1 ∈ Q.
By (4.11), we have

d(pn, pn+1) ≤ d(pn, p′n+1) = d(p′n, p′n+1)
≤ H(Tpn−1, Tpn) + kn

≤ kd(pn−1, pn) + kn.

Case III. pn ∈ Q and pn+1 ∈ P .
By the above observation, two consecutive terms of {pn} cannot be in Q,

hence pn−1 ∈ P and p′n−1 = pn−1. Using this fact, we obtain

d(pn, pn+1) ≤ d(pn, p′n) + d(p′n, pn+1)
= d(pn, p′n) + d(p′n, p′n+1)
≤ d(pn, p′n) + H(Tpn−1, Tpn) + kn

≤ d(pn, p′n) + αd(pn−1, pn) + kn

< d(pn−1, p
′
n) + kn

= d(p′n−1, p
′
n) + kn

≤ H(Tpn−2, Tpn−1) + kn−1 + kn

≤ kd(pn−2, pn−1) + kn−1 + kn.

The only other possibility, pn ∈ Q, pn+1 ∈ Q cannot occur. Thus, for n ≥ 2,
we have

d(pn, pn+1) =
{

kd(pn, pn−1) + kn, or
kd(pn−2, pn−1) + kn + kn−1.

(4.12)
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Set δ := k−1/2 max{d(p0, p1), d(p1, p2)}. We now prove that

d(pn, pn+1) ≤ kn/2(δ + n), n ∈ N. (4.13)

For n = 1
d(p1, p2) ≤ k1/2(δ + 1).

For n = 2, we use (4.12) and taking each case separately, we obtain

d(p2, p3) ≤ kd(p1, p2) + k2

≤ kk1/2(δ + 1) + k2

≤ k(δ + 2);
d(p2, p3) ≤ kd(p0, p1) + k2 + k

≤ k(k1/2δ + k + 1)
≤ k(δ + 2).

Now assume that (4.13) holds for 1 ≤ n ≤ m. Observe that for m ≥ 2

d(pm+1, pm+2) ≤ kd(pm, pm+1) + km+1

≤ k[km/2(δ + m)] + km+1

≤ k(m+1)/2(δ + m) + k(m+1)/2k(m+1)/2

≤ k(m+1)/2[δ + (m + 1)]

or

d(pm+1, pm+2) ≤ kd(pm−1, pm) + km+1 + km

≤ k[k(m−1)/2(δ + m− 1)] + km+1 + km

≤ k(m+1)/2(δ + m− 1) + k(m+1)/2k(m+1)/2 + k(m+1)/2k(m−1)/2

≤ k(m+1)/2(δ + m− 1) + k(m+1)/2 + k(m+1)/2

= k(m+1)/2(δ + m + 1),

and it follows that (4.13) is true for all n ∈ N. Using (4.13) we obtain

d(pn, pm) ≤ δ
∞∑

i=m

(k1/2)i +
∞∑

i=m

i(k1/2)i, n > m ≥ 1.

This means that {pn} is a Cauchy sequence. Because C is closed, {pn} converges
to a point z ∈ C. By our choice of {pn}, there exists a subsequence {pni

} of
{pn} such that pni

∈ P , i.e., pni
= p′ni

, i = 1, 2, · · · . Note p′ni
∈ Tpni−1 for

i ∈ N by (i) and pni−1 → z imply that Tpni−1 → Tz as i→∞ in the Hausdorff
metric H. Because

d(pni
, T z) ≤ H(Tpni−1, T z)→ 0 as i→∞,

it follows that d(z, Tz) = 0. As Tz is closed, z ∈ Tz.
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4.3 Convexity structure and fixed points

Let C be a nonempty subset of a metric space X and T : C → C a mapping.
Then a sequence {xn} in C is said to be an approximating fixed point sequence
(in short AFPS) of T if lim

n→∞
d(xn, Txn) = 0.

We have seen in the Banach contraction principle that every contraction
mapping has an approximating fixed point sequence in a metric space. In fact,
the Picard iterative sequence (xn+1 = Txn, n ∈ N) is an approximating fixed
point sequence of the contraction mapping T .

The following example shows that the Picard iterative sequence is not
necessarily an approximating fixed point sequence of nonexpansive mappings.

Example 4.3.1 Let X = R and T : R→ R a mapping defined by

Tx = −x for all x ∈ R.

Note that T is nonexpansive with F (T ) = {0}. However for x0 > 0, the iterative
sequence of the Picard iteration process is

xn+1 = Txn = (−1)nx0, n ∈ N0.

Hence d(xn, Txn) = |(−1)n−1 − (−1)n|x0 = 2x0 � 0 as n→∞.

The following Proposition 4.3.9 shows that the convexity structure has an
important role in the existence of AFPS for nonexpansive mappings. We define
convexity structure in a metric space.

Definition 4.3.2 Let (X, d) be a metric space. A continuous mapping W :
X ×X × [0, 1] → X is said to be a convex structure2 on X, if for all x, y ∈ X
and λ ∈ [0, 1] the following condition is satisfied:

d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y) for all u ∈ X. (4.14)

A metric space X with convex structure is called a convex metric space.

A subset C of a convex metric space X is said to be convex if W (x, y;λ) ∈ C
for all x, y ∈ C and λ ∈ [0, 1]. A convex metric space X is said to have property
(B) if

d(W (u, x;λ),W (u, y;λ)) = (1− λ)d(x, y) for all u, x, y ∈ X and λ ∈ (0, 1).

Example 4.3.3 A normed space and each of its convex subsets are convex
metric spaces with convexity structure W (x, y;λ) = λx + (1− λ)y.

2The convexity structure in a metric space was introduced by W. Takahashi in 1970.
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Example 4.3.4 Let X be a linear space that is also a metric space with the
following properties:

(i) d(x, y) = d(x− y, 0) for all x, y ∈ X;
(ii) d(λx + (1− λ)y, 0) ≤ λd(x, 0) + (1− λ)d(y, 0) for all x, y ∈ X and

λ ∈ [0, 1].
Then X is a convex metric space.

Example 4.3.5 A Fréchet space is not necessarily a convex metric space.

The following propositions are very useful in various applications.

Proposition 4.3.6 Let {Cα : α ∈ Λ} be a family of convex subsets of a convex
metric space X. Then ∩α∈ΛCα is also a convex subset of X.

Proposition 4.3.7 The open balls Br(x) and the closed balls Br[x] in a convex
metric space X are convex subsets of X.

Proof. For y, z ∈ Br(x) and λ ∈ [0, 1], there exists W (y, z;λ) ∈ X. Because X
is a convex metric space,

d(x,W (y, z;λ)) ≤ λd(x, y) + (1− λ)d(x, z)
< λr + (1− λ)r = r.

Therefore, W (y, z;λ) ∈ Br(x). Similarly, Br[x] is a convex subset of X.

Proposition 4.3.8 Let X be a convex metric space. Then

d(x, y) = d(x,W (x, y;λ)) + d(W (x, y;λ), y) for all x, y ∈ X and λ ∈ [0, 1].

Proof. Because X is a convex metric space, we obtain

d(x, y) ≤ d(x,W (x, y;λ)) + d(W (x, y;λ), y)
≤ λd(x, x) + (1− λ)d(x, y) + λd(x, y) + (1− λ)d(y, y)
= λd(x, y) + (1− λ)d(x, y)
= d(x, y)

for all x, y ∈ X and λ ∈ [0, 1]. Therefore,

d(x, y) = d(x,W (x, y;λ) + d(W (x, y;λ), y) for all x, y ∈ X and λ ∈ [0, 1].

We now apply the convexity structure defined in Definition 4.3.2 to obtain
AFPS for nonexpansive mappings in a metric space. Note, similar results are
also discussed in Chapter 5.

Proposition 4.3.9 Let X be a complete convex metric space with property (B),
C a nonempty closed convex subset of X, and T : C → C a nonexpansive
mapping. Then we have the following:

(a) For u ∈ C and t ∈ (0, 1), there exists exactly one point xt ∈ C such that

xt = W (u, Txt; 1− t)

(b) If C is bounded, then d(xt, Txt)→ 0 as t→ 1, i.e., T has an AFPS.
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Proof. (a) For t ∈ (0, 1), consider the mapping Tt : C → C defined by

Ttx = W (u, Tx; 1− t).

By property (B), we have

d(Ttx, Tty) = td(Tx, Ty) ≤ td(x, y) for all x, y ∈ C.

By the Banach contraction principle, Tt has exactly one fixed point xt in C.
Therefore,

xt = W (u, Txt; 1− t).

(b) By boundedness of C, we get

d(xt, Txt) = d(Txt,W (u, Txt; 1− t))

≤ (1− t)d(Txt, u) ≤ (1− t) diam(C)→ 0 as t→ 1.

Applying Proposition 4.3.9, we have

Theorem 4.3.10 Let X be a complete convex metric space X with property
(B), C a nonempty compact convex subset of X, and T : C → C a nonexpansive
mapping. Then T has a fixed point in C.

Proof. By Proposition 4.3.9, there exists a sequence {xn} in C such that

lim
n→∞

d(xn, Txn) = 0. (4.15)

Because C is compact, there exists a subsequence {xnk
} of {xn} such that

xnk
→ v ∈ C. Hence from (4.15), we have v = Tv.

In Theorem 4.3.14, we will see that compactness can be dropped if C has
normal structure. To see this, we extend the notion of normal structure in
metric space X.

For C ⊂ X, we denote the following, which will be used throughout the
remainder of this chapter:

rx(C) = sup{d(x, y) : y ∈ C}, x ∈ C,

r(C) = inf{rx(C) : x ∈ C},
ZC = {x ∈ C : rx(C) = r(C)}.

A point x0 ∈ C is said to be a diametral point of C if

sup{d(x0, y) : y ∈ C} = diam(C).

A convex metric space X is said to have normal structure if for each closed
convex bounded subset C of X that contains at least two points, there exists
x0 ∈ C that is not a diametral point of C.
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Example 4.3.11 Every compact convex metric space has normal structure.

A convex metric space X is said to have property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty inter-
section. By Smulian’s theorem, every weakly compact convex subset of a Banach
space has property (C).

Using property (C), we have

Proposition 4.3.12 If a convex metric space X has property (C), then ZC is
nonempty, closed, and convex.

Proof. Let Cn(x) = {y ∈ C : d(x, y) ≤ r(C) + 1/n} for n ∈ N and x ∈ X.
It is easily seen that the sets Cn = ∩x∈XCn(x) form a decreasing sequence of
nonempty closed convex sets, and hence ∩∞

n=1Cn is nonempty closed convex by
property (C). Because ZC = ∩∞

n=1Cn, the proof is complete.

Proposition 4.3.13 Let C be a nonempty compact subset of a convex metric
space X and let D be the least closed convex set containing C. If diam(C) > 0,
then there exists an element x0 ∈ D such that sup{d(x, x0) : x ∈ C} < diam(C).

Proof. Because C is compact, we may find x1, x2 ∈ C such that d(x1, x2) =
diam(C). Let C0 ⊂ C be maximal so that C0 ⊃ {x1, x2} and d(x, y) = 0
or diam(C) for all x, y ∈ C0. It is easy to see that C0 is finite. Let C0 =
{x1, x2, · · · , xn}. Because X is a convex metric space, we can define

y1 = W (x1, x2;
1
2
),

y2 = W (x3, y1;
1
3
),

· · ·
yn−2 = W (xn−1, yn−3;

1
n− 1

),

yn−1 = W (xn, yn−2;
1
n

) = u.

Because C is compact, we can find y0 ∈ C such that

d(y0, u) = sup{d(x, u) : x ∈ C}.

From (4.14), we obtain

d(y0, u) ≤ 1
n

d(y0, xn) +
n− 1

n
d(y0, yn−2)

≤ 1
n

d(y0, xn) +
n− 1

n

(
1

n− 1
d(y0, xn−1) +

n− 2
n− 1

d(y0, yn−3)
)

=
1
n

d(y0, xn) +
1
n

d(y0, xn−1) +
n− 2

n
d(y0, yn−3)

· · ·

≤ 1
n

n∑

k=1

d(y0, xk) ≤ diam(C).
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Therefore, if d(y0, u) = diam(C), then we must have d(y0, xk) = diam(C) > 0
for all k = 1, 2, · · · , n. Hence y0 ∈ C0 by definition of C0. But, then we must
have y0 = xk for some k = 1, 2, · · · , n. This is a contradiction. Therefore,

sup{d(x, u) : x ∈ C} = d(y0, u) < diam(C).

A closed convex subset C of a convex metric space X is said to have the fixed
point property for nonexpansive mappings if every nonexpansive T : C → C has
a fixed point.

We now prove that every closed convex subset of a convex metric space has
fixed point property for nonexpansive mappings under normal structure.

Theorem 4.3.14 Let X be a convex metric space with property (C). Let C be
a nonempty closed convex bounded subset of X with normal structure and T a
nonexpansive mapping from C into itself. Then T has a fixed point in C.

Proof. Let F be the family of all nonempty closed convex subsets of C, each of
which is mapped into itself by T . By property (C) and Zorn’s lemma, F has a
minimal element C0. We show that C0 consists of a single point. Let x ∈ ZC0 .
Then

d(Tx, Ty) ≤ d(x, y) ≤ rx(C0) for all y ∈ C0.

Hence T (C0) is contained in the ball B = Br(C0) [Tx]. Because T (C0 ∩ B) ⊂
C0 ∩ B, the minimality of C0 implies that C0 ⊂ B. Hence rTx(C0) ≤ r(C0).
Because r(C0) ≤ rx(C0) for all x ∈ C0, we have rTx(C0) = r(C0). Hence
Tx ∈ ZC0 and T (ZC0) ⊂ ZC0 . By Proposition 4.3.12, ZC0 ∈ F . If z, w ∈ ZC0 ,
then d(z, w) ≤ rz(C0) = r(C0). Hence, by normal structure,

δ(ZC0) ≤ r(C0) < δ(C0).

Because this contradicts the minimality of C0, diam(C0) = 0 and C0 consists
of a single point.

4.4 Normal structure coefficient and fixed points

In this section, we discuss another convexity structure on metric space and the
existence of fixed points of uniformly L-Lipschitzian mappings in a metric space
with uniformly normal structure.

Let F(X) denote a nonempty family of subsets of a metric space (X, d).
We say that F(X) defines a convexity structure on X if F(X) is stable by
intersection and that F(X) has property (R) if any decreasing sequence {Cn}
of nonempty closed bounded subsets of X with Cn ∈ F(X) has nonvoid inter-
section.

A subset of X is said to be admissible if it is an intersection of closed balls.
We denote by A(X) the family of all admissible subsets of X. It is obvious that
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A(X) defines a convexity structure on X. In this section, any other convexity
structure F(X) on X is always assumed to contain A(X).

For a bounded subset C of X, we define the admissible hull of C, denoted
by ad(C), as the intersection of all those admissible subsets of X that contain
C, i.e.,

ad(C) = ∩{B : C ⊆ B ⊆ X with B admissible}.
A basic property of admissible hull is given in the following proposition.

Proposition 4.4.1 Let C be a bounded subset of a metric space X and x ∈ X.
Then

rx(ad(C)) = rx(C).

Proof. Suppose r = rx(ad(C)) > rx(C). Then C ⊆ Br[x] for any r with
rx(C) < r < r. It follows that ad(C) ⊆ Br[x]. Hence

rx(ad(C)) = sup{d(x, y) : y ∈ ad(C)} ≤ r < r,

a contradiction.

We introduce normal structure and uniformly normal structure with respect
to convexity structure F(X) in a metric space X, respectively.

Definition 4.4.2 A metric space (X, d) is said to have normal structure if there
exists a convexity structure F(X) such that r(C) < diam(C) for all C ∈ F(X)
that is bounded and consists of more than one point. We say that F(X) is
normal.

Definition 4.4.3 A metric space (X, d) is said to have uniformly normal struc-
ture if there exists a convexity structure F(X) such that r(C) ≤ α ·diam(C) for
some constant α ∈ (0, 1) and for all C ∈ F(X) that is bounded and consists of
more than one point. We also say that F(X) is uniformly normal.

We now define the normal structure coefficient of X (with respect to a given
convexity structure F(X)):

The number N(X) is said to be the normal structure coefficient if

N(X) = inf
{

diam(C)
R(C)

}

,

where the infimum is taken over all bounded C ∈ F(X) with diam(C) > 0.
It is easy to see that X has uniformly normal structure if and only if N(X) > 1.

The following theorem shows that every convexity structure with uniformly
normal structure has property (R).

Theorem 4.4.4 Let X be a complete metric space with a convexity structure
F(X) that is uniformly normal. Let {Cn} be a decreasing sequence of nonempty
bounded subsets of X with Cn ∈ F(X). Then ∩∞

n=1Cn �= ∅.
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Proof. Without loss of generality, we may assume that diam(Cn) > 0 for all
n ∈ N. Let η be a real number with Ñ(X) < η < 1, where Ñ(X) = N(X)−1.
Define a sequence {xn,k} in X as follows:

For arbitrary xn,1 ∈ Cn, n ∈ N, select xn,k ∈ ad({xm,k−1}m≥n) such that

sup{d(xn,k, x) : x ∈ ad({xm,k−1}m≥n) ≤ η diam(ad{xm,k−1}m≥n).

Set An,k := ad({xm,k}m≥n). Observe that

An,k ⊆ Cn for all n, k ∈ N

and for m ≥ n,

d(xn,k, xm,k) ≤ sup{d(xn,k, x) : x ∈ An,k−1}
≤ η diam(An,k−1)
≤ η diam({xi,k−1}i≥1).

For k ≥ 2, we have

diam({xn,k}) ≤ η diam({xn,k−1})
≤ η2 diam({xn,k−2})
· · ·
≤ ηk−1 diam({xn,1})
≤ ηk−1 diam(C1).

Now we consider a subsequence {xn,n} of {xn,k}. Then {xn,n} is Cauchy,
because

d(xn,n, xm,m) ≤ ηn−1 diam(C1) for m ≥ n.

Therefore, there exists an x ∈ ∩∞
n=1Cn such that {xn,n} converges to x, i.e.,

∩∞
n=1Cn �= ∅.

Corollary 4.4.5 Let X be a complete bounded metric space and F(X) a con-
vexity structure of X with uniformly normal structure. Then F(X) has property
(R).

We now introduce the property (P) for metric spaces.

Definition 4.4.6 A metric space (X, d) is said to have property (P) if given any
two bounded sequences {xn} and {zn} in X, one can find some z ∈ ∩∞

n=1ad({zj :
j ≥ n}) such that

lim sup
n→∞

d(z, xn) ≤ lim sup
j→∞

lim sup
n→∞

d(zj , xn).

Remark 4.4.7 If X has property (R), then ∩∞
n=1ad({zj : j ≥ n}) �= ∅. Also, if

X is a weakly compact convex subset of a normed space, then admissible hulls
are closed convex and ∩∞

n=1ad{zj : j ≥ n} �= ∅ by weak compactness of X, and
that X possesses property (P) follows directly from the w-lsc of the function
lim sup

n→∞
‖xn − x‖.
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We establish the following key result that can be viewed as the metric space
formulation of Theorem 3.4.20.

Theorem 4.4.8 Let (X, d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure. Let N(X) be the normal structure
coefficient with respect to the given convexity structure F(X). Then for any
sequence {xn} in X and any constant α > Ñ(X), there exists a point z ∈ X
satisfying the properties:

(a) d(z, y) ≤ lim sup
n→∞

d(xn, y) for all y ∈ X,

(b) lim sup
n→∞

d(z, xn) ≤ α diam({xn}).

Proof. (a) For each n ∈ N, let An = ad({xj : j ≥ n}). Then {An} is a
decreasing sequence of admissible subsets of X and hence A := ∩An �= ∅ by
Corollary 4.4.5. We observe by Proposition 4.4.1 that

diam(An) = sup{rx(An) : x ∈ An}
= sup

x∈An

sup
j≥n

d(x, xj)

= sup
j≥n

sup
x∈An

d(x, xj) = sup
j≥n

rxj
(An)

= sup
j≥n

sup
i≥n

d(xj , xi)

≤ sup{d(xi, xj) : i, j ∈ N} = diam({xn}).

For any z ∈ A and any y ∈ X, we have

sup
j≥n

d(y, xj) = ry(An) ≥ ry(A) ≥ d(y, z).

It follows that
d(y, z) ≤ lim sup

n→∞
d(y, xn).

(b) Without loss of generality, we may assume that diam({xn}) > 0. Then
for α > Ñ(X), we choose ε > 0 so small that

Ñ(X)diam({xn}) + ε ≤ α diam({xn}).

By definition, one can find a zn ∈ An such that

rzn
(An) < r(An) + ε

≤ Ñ(X) diam(An) + ε

≤ Ñ(X)diam({xn}) + ε

≤ α diam({xn}).

Hence for each i ≥ 1,

lim sup
m→∞

d(zi, xm) ≤ α diam({xi}).
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Now property (P) yields a point z ∈ ∩∞
i=1ad({zn : n ≥ i}) such that

lim sup
m→∞

d(z, xm) ≤ lim sup
i→∞

lim sup
m→∞

d(zi, xm).

Thus, z ∈ A and satisfies

lim sup
m→∞

d(z, xm) ≤ α diam({xi}).

We now present the existence theorem for uniformly L-Lipschitzian map-
pings in a metric space.

Theorem 4.4.9 Let (X, d) be a complete bounded metric space with both pro-
perty (P) and uniformly normal structure and T : X → X a uniformly
L-Lipschitzian mapping with L < Ñ(X)−1/2. Then T has a fixed point in X.

Proof. Choose a constant α, 1 > α > Ñ(X), such that L < α−1/2. Let x0 ∈ X.
By Theorem 4.4.8, we can inductively construct a sequence {xm}∞m=1 in X:

for each integer m ≥ 0,
(a) lim sup

i→∞
d(xm+1, T

ixm) ≤ α diam({T ixm});

(b) d(xm+1, y) ≤ lim sup
i→∞

d(T ixm, y) for all y ∈ X.

Set rm := lim sup
i→∞

d(xm+1, T
ixm) and h := αL2 < 1. Note for each i > j ≥ 0,

d(T jxm, T ixm) ≤ Ld(xm, T i−jxm)
≤ L lim sup

n→∞
d(Tnxm−1, T

i−jxm) (by (b))

≤ L2 lim sup
n→∞

d(Tnxm−1, xm)

≤ L2rm−1.

Observe that

rm = lim sup
i→∞

d(xm+1, T
ixm)

≤ α diam({T ixm})
≤ αL2rm−1 = hrm−1

· · ·
≤ hmr0.

Hence for each integer i ≥ 0,

d(xm+1, xm) ≤ d(xm+1, T
ixm) + d(xm, T ixm)

≤ d(xm+1, T
ixm) + lim sup

j→∞
d(T jxm−1, T

ixm)

≤ d(xm+1, T
ixm) + L lim sup

j→∞
d(T jxm−1, xm)

≤ d(xm+1, T
ixm) + Lrm−1,
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which implies that

d(xm+1, xm) ≤ rm + Lrm−1 ≤ (hm + Lhm−1)r0.

This implies that {xm} is Cauchy. Let lim
m→∞

xm = v ∈ X. Observe that

d(v, Tv) ≤ d(v, xm+1) + d(xm+1, T
ixm) + d(T ixm, T v)

≤ d(z, xm+1) + d(xm+1, T
ixm) + Ld(T i−1xm, v)

≤ d(v, xm+1) + d(xm+1, T
ixm) + Ld(T i−1xm, xm+1) + Ld(xm+1, v),

which implies that

d(v, Tv) ≤ (1 + L)d(v, xm+1) + (1 + L)rm → 0 as m→∞.

Therefore, v is a fixed point of T .

4.5 Lifschitz’s coefficient and fixed points

In this section, we give an existence theorem concerning uniformly
L-Lipschitzian mappings in a metric space.

First, we define the Lifschitz’s coefficient of a metric space:

Let (X, d) be a metric space. Then the Lifschitz’s coefficient κ(X) is a
number defined by

κ(X) = sup{β > 0 : ∃ α > 1 such that for all x, y ∈ X, for all r > 0,

[d(x, y) > r ⇒ ∃ z ∈ X such thatBαr[x] ∩Bβr[y] ⊆ Br[z]]}.

It is clear that κ(X) ≥ 1 for any metric space X. For a strictly convex
Banach space X, κ(X) > 1 and for a Hilbert space H, κ(H) =

√
2.

We are now in a position to prove a fundamental existence theorem for
uniformly L-Lipschitzian mappings in a metric space with Lifschitz’s coefficient
κ(X).

Theorem 4.5.1 Let (X, d) be a bounded complete metric space and T : X → X
a uniformly L-Lipschitzian mapping with L < κ(X). Then T has a fixed point
in X.

Proof. If κ(X) = 1, then T is contraction and hence T has a unique fixed
point. So, suppose κ(X) > 1. For b ∈ (L, κ(X)), there exists a > 1 such that

∀ u, v ∈ X, r > 0 with d(x, y) > r ⇒ ∃z ∈ X : Bbr[u] ∩Bar[v] ⊂ Br[z]. (4.16)

For any x ∈ X, let

r(x) = inf{R > 0 : there exists y ∈ X such that lim sup
n→∞

d(Tnx, y) ≤ R}.
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Observe that r is a lower semicontinuous and r(x) = 0 implies x = Tx.
Take λ ∈ (0, 1) such that γ = min{λa, λb/L} > 1. We now show that there

exists a sequence {ym} in X that satisfies the following:

r(ym+1) ≤ λr(ym) and d(ym, ym+1) ≤ (λ + γ)r(ym) for all m ∈ N0. (4.17)

Indeed, consider an arbitrary point y0 ∈ X and assume that y0, y1, · · · , ym

are given. We now construct ym+1. If r(ym) = 0, then ym+1 = ym. If r(ym) > 0,
then for a number λr(ym), there exists n ∈ N such that

d(ym, Tnym) > λr(ym).

From the definition of r(ym), there exists x ∈ X such that

lim sup
n→∞

d(ym, Tnx) ≤ r(ym) < γr(ym).

Hence for i > j
d(T ix, T jym) ≤ L d(T i−jx, ym),

which implies that

lim sup
i→∞

d(T ix, T jym) ≤ L lim sup
i→∞

d(T i−jx, ym) ≤ Lγ r(m).

Because

Bγr(ym)[ym] ∩BLγr(ym)[Tnym] ⊂ Baλr(ym)[ym] ∩Bbλr(ym)[Tnym] = C,

the set C is contained in a closed ball centered at w with radius λr(ym) (Condi-
tion (4.16)). Thus, lim sup

n→∞
d(Tnx,w) ≤ λr(ym). Take w = ym+1, and it follows

from above that {ym} satisfies (4.17).
Note

r(ym+1) ≤ λr(ym) ≤ · · · ≤ λm+1r(y0)→ 0 as m→∞

and
d(ym, ym+1) ≤ (λ + γ)r(ym)→ 0 as m→∞.

Hence {ym} converges to v ∈ M . But because r(v) = 0, v is a fixed point
of T .
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proved in Nadler [115]. It was extended for multivalued non-self contraction
mappings by Assad and Kirk [4].

The results describes in Sections 4.3∼4.5 can be found in Lifschitz [97], Lim
and Xu [99], and Takahashi [154].

Exercises

4.1 Let X be a complete metric space and T : X → X a mapping such that
Tm is contraction for some m ∈ N. Show that T has a unique fixed point.

4.2 Let (X, d) be a metric space and T : X → X a mapping. T is said to be
a Zamfirescu mapping if there exist the real number a, b, and c satisfying
0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y in X, at least one of
the following is true:

(Z1) d(Tx, Ty) ≤ ad(x, y),

(Z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(Z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

If (X, d) is a complete metric space and T : X → X a Zamfirescu mapping,
show that T has a unique fixed point z ∈ X and for each x ∈ X, {Tnx}
converges to z.

4.3 Let T be a mapping from a complete metric space X into itself satisfying
the condition:

d(Tx, Ty) ≤ ad(x, y) + b[d(x, Tx) + d(y, Ty)] + c[d(y, Tx) + d(x, Ty)]

for all x, y ∈ X, where a, b, c are nonnegative real numbers such that
a + 2b + 2c < 1. Show that T has a unique fixed point z ∈ X and for each
x ∈ X, {Tnx} converges to z.

4.4 Let T be a mapping from a complete metric space into itself. Assume that
for each ε > 0, there exists δ > 0 such that

d(x, Tx) < δ ⇒ T (Bε[x]) ⊂ Bε[x].

If d(Tnx, Tn+1x) → 0 for some x ∈ X, show that the sequence {Tnx}
converges to z, which is a fixed point of T .



4.5. Lifschitz’s coefficient and fixed points 209

4.5 Let X be a complete metric space and T : X → X an expansion mapping,
i.e., there exists constant k > 1 such that

d(Tx, Ty) ≥ kd(x, y) for all x, y ∈ X.

Assume that T (X) = X. Show that

(a) T is one to one,

(b) T has a unique fixed point z ∈ X with Tnx→ z as n→∞ for some

x ∈ X.

4.6 Let (X, d) be a complete metric space and T : X → CB(X) a mapping.
If α is a function from (0,∞) to [0, 1) such that lim sup

r→t+
α(r) < t for every

t ∈ [0,∞) and if
H(Tx, Ty) ≤ α(d(x, y))d(x, y)

for each x, y ∈ X, show that T has a fixed point in X.
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