Chapter 2

Convexity, Smoothness, and
Duality Mappings

Geometric structures such as convexity and smoothness of Banach spaces play
an important role in the existence and approximation of fixed points of nonlinear
mappings. This chapter presents a substantial number of useful properties of
duality mappings and Banach spaces having these geometric structures.

2.1 Strict convexity

Let X be a linear space. The line segment or interval joining the two points
z,y € X isthe set [z,y] .= {dz+ (1 — Ny :0< A <1}, ie, [z,y] = co({z,y})
is convex hull of x and y.

The basic property of a norm of a Banach space X is that it is always convex,
ie.,

(1= XNz + Xyl < (1= N)||z]| + A|y|]| for all z,y € X and X € [0,1].
A number of Banach spaces do not have equality when = # vy, i.e.,

[T =Nz + Ayl < (@ =Mllz] + Ayl
for all x,y € X with z # y and A € (0,1). (2.1)

We use Sx to denote the unit sphere Sx = {x € X : ||z|| = 1} on Banach
space X. If x,y € Sx with z # y, then (2.1) reduces to

(1= XNz + Ay|]| <1 for all A € (0,1),

which says that the unit sphere Sx contains no line segments. This suggests
strict convexity of norm.
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50 2. Convexity, Smoothness, Duality Mappings

Definition 2.1.1 A Banach space X is said to be strictly convex if
x,y € Sx with z #y=||[(1 =Nz + Ay| <1 forall X € (0,1).

This says that the midpoint (z + y)/2 of two distinct points = and y in the
unit sphere Sx of X does not lie on Sx. In other words, if z,y € Sx with
[z]] = llyll = [I(z 4+ y) /2], then z = y.

Example 2.1.2 Consider X = R"™ n > 2 with norm ||z||s defined by

n 1/2

ol = (3022) 1 o= (onaniees ) € B

i=1
Then X s strictly convex.
Example 2.1.3 Consider X = R",n > 2 with norm || - ||1 defined by

[zl = lza] + o + -+ fanl, @ = (21,22, ,20) € R™
Then X is not strictly convex. To see it, let
x=(1,0,0,---,0) and y = (0,1,0,---,0).

It is easy to see that x # y, ||z||l1 =1 = ||y||1, but ||z + y|1 = 2.
Example 2.1.4 Consider X = R",n > 2 with norm || - || defined by

||m||00 = 1léllagxn|xl|7 €T = ('Tlax27' o 71‘71) € R™.

Then X is not strictly convexr. Indeed, for x = (1,0,0,---,0) and y = (1,1,
07' o 30)7 we hCLU@, x # Y, ||xH0<> =1= ||y||00) but ||.’K +y||00 =2.

The other equivalent conditions of strict convexity are given in the following:

Proposition 2.1.5 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is strictly convex.

(b) For each nonzero f € X*, there exists at most one point x in X with

[zl =1 such that (z, f) = f(x) =[]+

Proof. (a) = (b). Let X be a strictly convex Banach space and f an element
in X*. Suppose there exist two distinct points z,y in X with ||z]| = [Jy|]| = 1
such that f(z) = f(y) = ||f|l« If t € (0,1), then

1/l tf(z) + (1 =0)f(y) (as f(x) = f(y) = If]+)
fltz+ (1= fy)

[f 1l [tz + (1 = )y]|

£l (as [ltz + (1 = t)y[ < 1)

AN
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which is a contradiction. Therefore, there exists at most one point z in X with
Joll = 1 such that f(z) = [|f]l.

(b) = (a). Suppose x,y € Sy with © # y such that [[(x + y)/2| =
By Corollary 1.6.6, there exists a functional j € Sx~ such that

7]+ =1 and ((z +y)/2,5) = [[(x +y)/2]|.
Because (x,7) < 1 and (y,j) < 1, we have (z,5) = (y,j). This implies, by
hypothesis, that 2 = y. Therefore, (b) = (a) is proved.

Proposition 2.1.6 Let X be a Banach space. Then the following statements
are equivalent:

(a) X is strictly convex.
(b) For every 1 < p < o0,
[tz+(1=t)y||? < t|z[|P+1—=)|y||? forall z,y € X, x #yandt € (0,1).

Proof. (a) = (b). Let X be strictly convex. Suppose z,y € X with z # y.
By strict convexity of X,

[tz + (1 = t)yl|? < (¢l|=]| + (1 — t)|y[))? for all ¢ € (0,1). (2.2)
If fJzf} = [ly[l, then
[tz + (1 = yllP <l|[" = tllz[|” + (1 = &)][y]*.

We now assume that ||z|| # ||y||. Consider the function ¢ — t? for 1 < p < oc.
Then it is a convex function and

p D
(a—;—b) <a ;bp for all a,b > 0 and a # b.

Hence from (2.2) with ¢ = 1/2, we have

< <|$|| ;‘ |y||) < %(”xnp_,_ yl®). (2.3)

If t € (0,1/2], then from (2.2), we have

Tty
2

p
Itz + (1— )yllP = H2t—+ (1-2t)y
T+ p
< (2|22 + a-20m)
xr+y P »
< 2| 22+ (-2l

IN

tll” + @ =)lyl?.  (by (2.3))
The proof is similar if ¢ € (1/2,1).
(b) = (a). It is obvious.
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Proposition 2.1.7 Let X be a strictly convex Banach space. If ||z + y|| =
llz|| + |ly|| for 0 # = € X and y € X, then there exists t > 0 such that y = tx.

Proof. Let z,y € X\{0} be such that ||z+y| = ||=]|+||y||. From Corollary 1.6.6,
there exists j € X™* such that

(+y,j) = llz +yll and [j]|. = 1.

Because (x,j) < ||z]| and (y,7) < |ly||, we must have (z,j) = |z| and
(y,5) = llyll. This means that (z/|lz[,5) = (y/llyl,s) = 1. By strict con-
vexity of X, it follows from Proposition 2.1.5 that =/|z| = y/|ly||. Therefore,

result holds.

We now present the existence and uniqueness of elements of minimal norm
in convex subsets of strictly convex Banach spaces.

Proposition 2.1.8 Let X be a strictly convex Banach space and C' a nonempty
convex subset of X. Then there is at most one point x in C such that ||z| =

inf{l|z]] : z € C}.

Proof. Suppose, there exist two points x,y € C,x # y such that
Izl = llyll = nf{[[2] : z € C} = d (say).

If t € (0,1), then by strict convexity of X we have that

[tz + (1 =)yl < d,
which is a contradiction, as tx 4+ (1 — y) € C by the convexity of C. I

Proposition 2.1.9 Let C' be a nonempty closed convexr subset of a reflexive
strictly convex Banach space X. Then there exists a unique point x € C such
that ||z|| = inf{||z| : 2 € C}.

Proof. Euistence: Let d := inf{]|z]| : z € C'}. Then there exists a sequence
{zy,} in C such that lim |lz,| = d. By the reflexivity of X, there exists a
n—oo

subsequence {z,,} of {x,} that converges weakly to an element z in C. The
weak lower semicontinuity (w-lsc) of the norm (see Theorem 1.9.10) gives

ol < lim ] =
Therefore, d = ||z||.
Uniqueness: It follows from Proposition 2.1.8 . I

The following result has important applications in the existence and unique-
ness of best approximations.
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Proposition 2.1.10 Let C' be a nonempty closed convex subset of a reflexive
strictly convexr Banach space X. Then for x € X, there exists a unique point
2z € C such that ||x — z,|| = d(x,C).

Proof. Let x € C. Because C is a nonempty closed convex subset Banach
space X, then D = {y —x : y € C} is a nonempty closed convex subset
of X. By Proposition 2.1.9, there exists a unique point u, € D such that
lluz]| = inf{||ly — =] : y € C}. For u, € D, there exists a point z, € C such
that u, = z, — x. Thus, there exists a unique point z, € C such that

lze — 2| = d(z,0). |

2.2 Uniform convexity

The strict convexity of a normed space X says that the midpoint (x + y)/2 of
the segment joining two distinct points z,y € Sx with ||z — y|| > ¢ > 0 does
not lie on Sy, i.e.,

Tty
2
In such spaces, we have no information about 1 — ||(z + y)/2||, the distance of
midpoints from the unit sphere Sx. A stronger property than strict convexity
that provides information about the distance 1—||(z+y)/2]| is uniform convexity.

<1

Definition 2.2.1 A Banach space X is said to be uniformly convex ' if for any
g, 0 < e < 2, the inequalities ||z|| < 1,||ly|| < 1 and ||x — y|| > & imply there
exists a 0 = 0(g) > 0 such that ||(x +y)/2|| <1-6.

This says that if # and y are in the closed unit ball Bx := {z € X : ||z| < 1}
with ||z —y|| > € > 0, the midpoint of = and y lies inside the unit ball Bx at a
distance of at least ¢ from the unit sphere Sx.

Example 2.2.2 FEvery Hilbert space H is a uniformly convexr space. In fact,
the parallelogram law gives us

lz + gl = 2([l2) + yll*) = llz = yllI* for all z,y € H.
Suppose x,y € By with © # vy and ||x — y|| > . Then
o +yl* <4 - €%

so it follows that
(@ +y)/2] <1-46(e),
where 6(e) =1 — /1 —€2/4. Therefore, H is uniformly convez.

Example 2.2.3 The spaces {1 and l» are not uniformly convex. To see it,
take x = (1,0,0,0---),y = (0,-1,0,0,---) € ¢4 and e = 1. Then

el =Lyl =1 lz —ylh =2>1=e.

IThe concept of uniform convexity was introduced by Clarkson in 1936.
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However, ||(x+vy)/2||1 = 1 and there is no 6 > 0 such that ||[(x+y)/2]1 <1-6.
Thus, £1 is not uniformly convex.

Similarly, if we take x = (1,1,1,0,0,---),y = (1,1,—-1,0,0--+) € o, and
e =1, then
[#]lc = 1, [[ylloc =L, lz = yllc =2 > 1 =e.

Because ||[(z +y)/2|loo = 1, loo is not uniformly convex.

Observation

e The Banach spaces ¢p, £, (whenever n is a nonnegative integer), and Ly|a, b]
with 1 < p < oo are uniformly convex.

e The Banach spaces {1, ¢, co, lso, Li[a,b], Cla,b] and Ls[a,b] are not strictly
convex.

We derive some consequences from the definition of uniform convexity.
Theorem 2.2.4 Every uniformly conver Banach space is strictly conver.

Proof. Let X be a uniformly convex Banach space. It easily follows from
Definition 2.2.1 that X is strictly convex.

Remark 2.2.5 The converse of Theorem 2.2.4 is not true in general. Let 3 > 0
and let X = ¢, with the norm || - ||g defined by

0o 7\ 2\ /2
fells = ol +6( 30 (%) ) o=t} eco
=1

The spaces (co, || - ||g) for B > 0 are strictly convex, but not uniformly convez,
while co with its usual norm is not strictly convex.

Theorem 2.2.6 Let X be a uniformly convexr Banach space. Then we have the
following:

(a) For any r and € with r > ¢ > 0 and elements x,y € X with ||z] < r,
lyll <7, |l —yl|| > e, there exists a 6 = §(e/r) > 0 such that
@ +y)/2l < 1 =d(e/r)].
(b) For any r and & with r > ¢ > 0 and elements z,y € X with ||z|| < r,

lyll <7, |l —yl|| > e, there exists a 6 = §(e/r) > 0 such that

Itz + (1 —t)y| < r[l — 2min{t, 1 — t}d(e/7)] for all t € (0,1).

Proof. (a) Suppose that ||z|| <, ||y|]| <r and ||z — y| > & > 0. Then we have

that
T

r

i,

g”<1andH£—— 2£>0.
r r
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By the definition of uniform convexity, there exists § = d(¢/r) > 0 such that

rz+y
<1-9¢
2r H - ’
which yields
$+yH <r(l—9).

(b) When ¢t = 1/2, we are done by Part (a). If t € (0,1/2], we have
x+y
[tz + (1 =)yl = [tz +y) + (1 = 2t)yl| < 2tl|——= [ + (L = 20)[}yll. ~ (2.4)

From part (a), there exists a § = §(g/r) > 0 such that
0]
2 T

ot =t < 2ef1=5(E)]re-20r el <0

r

()

Now by the choice of ¢ € [1/2,1), we have

From (2.4), we have

IA

[tz + @ =ty = (2t =1z + (1 -t)(=+y)l
r+y
2

< (2t =Dzl +2(1 —1¢)

< (2t—1r+201 —t)r{l - 5(;)}

- o)

Itz + (1 — t)y|| < 7[1 ~ 2min{t,1— t}é(;)]. |

Therefore,

Theorem 2.2.7 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convex.

(b) For two sequences {x,} and {y,} in X,

lznll < 1, |lynll <1 and lim ||z, + yu|| =2 = lim ||z, —ys| = 0. (2.5)
n— 00 n—0o0
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Proof. (a) = (b). Suppose X is uniformly convex. Let {z,} and {y,} be
two sequences in X such that [[z,]| < 1, [[y,] < 1 for all n € N and
lim ||z, + yn| = 2. Suppose, for contradiction, that lim ||z, —y,|| # 0. Then
n—oo n—o0
for some ¢ > 0, there exists a subsequence {n;} of {n} such that

||xni - y'fbi || 2 €.
Because X is uniformly convex, there exists d(¢) > 0 such that

£)
<2(1—6(e)). (2.6)

Zn; + Yn,

Because lim ||z, + yn|| = 2, it follows from (2.6) that

2.<2(1-5(e)),

a contradiction.
(b) = (a). Suppose condition (2.5) is satisfied. If X is not uniformly convex,
for € > 0, there is no d(¢) such that
lzl <Lyl < 1L llz -yl = e = [z +yll < 2(1-d(e)),

and then we can find sequences {x,} and {y,} in X such that
@) llznll <1, flynll <1,
(if) [lzn +ynll = 2(1 = 1/n),
(iii) [|2n — ynll > €.
Clearly ||z, — yn| > €, which contradicts the hypothesis, as (ii) gives

lim ||z, 4+ yn|| = 2. Thus, X must be uniformly convex.
n—oo

For the class of uniform convex Banach spaces, we have the following
important results:

Theorem 2.2.8 FEvery uniformly convexr Banach space is reflexive.

Proof. Let X be a uniformly convex Banach space. Let Sx- := {j € X* :
ll7]l« = 1} be the unit sphere in X* and f € Sx~. Suppose {x,} is a sequence in
Sx such that f(x,) — 1. We show that {z,} is a Cauchy sequence. Suppose,
for contradiction, that there exist ¢ > 0 and two subsequences {z,, } and {z,, }
of {x,,} such that |z,, —z,,|| > . The uniform convexity of X guarantees that
there exists 0(¢) > 0 such that ||(z,, +2x,)/2| <1 — 4. Observe that

[f (@ + 20,) /2] < A Fll(@ns 4+ 2n,) /2] < [ Fll(1=0) =16

and f(z,) — 1, yield a contradiction. Hence {z,} is a Cauchy sequence and
there exists a point = in X such that x,, — x. Clearly, x € Sx. In fact,

[l = || Tim || = lim_[lz,| = 1.
n— n—oo

Using the James theorem (which states that a Banach space is reflexive if and
only if for each f € Sx-, there exists # € Sx such that f(z) = 1), we conclude

that X is reflexive.
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Remark 2.2.9 FEvery finite-dimensional Banach space is reflexive, but it need

not be uniformly convex, for example, X = R™ n > 2 with the norm |z|; =
n

> |l

i=1

Combining Proposition 2.1.9 and Theorems 2.2.4 and 2.2.8, we obtain the
following interesting result:

Theorem 2.2.10 Let C' be a nonempty closed convexr subset of a uniformly
conver Banach space X. Then C has a unique element of minimum norm, i.e.,
there exists a unique element x € C' such that ||z| = int{||z]| : z € C}.

We now introduce a useful property.

Definition 2.2.11 A Banach space X is said to have the Kadec-Klee property if
for every sequence {x,} in X that converges weakly to x where also ||z, || — ||z]|,
then {x,} converges strongly to x.

Remark 2.2.12 In Definition 2.2.11, the sequence {x,} can be replaced by the
net {xq} for the definition of the Kadec property.

The following result has a very useful property:

Theorem 2.2.13 FEvery uniformly convexr Banach space has the Kadec-Klee
property.

Proof. Let X be a uniformly convex Banach space. Let {x,} be a sequence

in X such that z, — z € X and ||z,| — |z|. If x =0, then lim |x,|| =0,
n—oo
which yields that lim z, = 0.
n—oo

Suppose = # 0. Then we show that x,, — x. Suppose, for contradiction, that
hm Tn # x, 1e., xp/||zn] = 2/|z|]. Then for € > 0, there exists a subsequence

{2/ .1} of {zn/[}all} such that

Because X is uniformly convex, there exists d(¢) > 0 such that

T,

i

2e>0
E]

ol

cuid
EAME

Because x,, = x and ||, || — ||z|| imply z,/||z.| — 2/||x|, it follows that

a contradiction. Therefore, {z,} converges strongly to 2 € X. I

T T, T

_|_ JEE—
lznll el

’Sl_da

1
hmf‘

e n—oo 2
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2.3 Modulus of convexity

Definition 2.3.1 Let X be a Banach space. Then a function dx : [0,2] — [0, 1]
18 said to be the modulus of convexity of X if

Sx(e) = mf{1 _ x;y

H el < 1yl < 1, o — gl }

It is easy to see that dx(0) =0 and dx(¢) > 0 for all ¢ > 0.

Example 2.3.2 For the case of a Hilbert space H (see Ezample 2.2.2),

5H(5):1—\/1—§, e € (0,2].

We now give the modulus of convexity for ¢, (2 < p < oo) spaces. The
following result gives an analogue of the parallelogram law in £, (2 < p < o)
spaces.

Proposition 2.3.3 In ¢, (2 < p < 00) spaces,

-+ yll? + llz = yl” < 227 ([l + [ly[|P) for all z,y € . (2.7)
Proof. We observe from Lemma A.1.1 of Appendix A that for a,b € R and
P E[2,00)
la+b” +la—b" < [la+b+]a—0bPP/?
< [2laf® +2pp)Pr?
= 22 (jaf? + by
< p/29=2/2(|g P 4 |b|P)

2"~ (laf” + [b[").

Hence for x = {x;}32,, y={y:}2, € {,, we have

o0 o0 o0 o0
S fos P+ Jos — il < QPI(ZW 3 ym),
1=1 =1 =1 =1

which implies that points z,y € ¢, (2 < p < c0) satisfy the following analogue
of the parallelogram law:

o+ 9l + Il = yli? < 2271l + gl B

Example 2.3.4 For the ¢, (2 <p < c0) space,

5o (e) = 1— (1 - (;)p>1/p, £ € (0,2).
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To see this, let ¢ € (0,2) and x,y € £, such that ||z|| < 1, |ly|| < 1 and
|z —y|| >e. Then from (2.7), we have

lz+ylP <20 = [lz -y,

which implies that

p\ 1/p p\ 1/p
S (-G)) b)) ]
2 2 2
< 1- 5Zp(5)a
p\ 1/p
where g, (c) > 1 — (1 - (;) ) .
Observation

o du(e)=1—/1—(/2)2.
o 5y, () =1—(1—(g/2)7)P/2

® 0¢,(¢), the modulus of convexity for £, (1 < p < 2) satisfies the following implicit

formula:

P P

‘1—<Sgp(e)+E =2

2

+ ‘1—5%(5) -

€
2
® 0¢,() >0foralle>0 (1 <p<oo).

® x(g) < dm(e) for any Banach spaces X and any Hilbert space H, i.e., a Hilbert
space is the most convex Banach space.

We now give some important properties of the modulus of convexity of
Banach spaces.

Theorem 2.3.5 A Banach space X is strictly convez if and only if §x(2) = 1.

Proof. Let X be a strictly convex Banach space with modulus of convexity dx.
Suppose |[z|| = [ly]| = 1 and ||z — y|| = 2 with = # —y. By strict convexity of
X, we have

-yl _[z+(=v)
1= = 1
=<
a contradiction. Hence = —y. Therefore, dx(2) = 1.
Conversely, suppose 0x(2) = 1. Let z,y € X such that ||z]| = |y|| =
|(z +y)/2|| = 1. Then
r—y x4 (~y)
2| = | <1 o= com =1 - o

which implies that = y. Thus, ||z|| = ||y|| and ||z + y|| = 2 = ||z|| + ||ly|| imply

that x = y. Therefore, X is strictly convex.
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Theorem 2.3.6 A Banach space X is uniformly convez if and only if dx () > 0
for all e € (0,2].

Proof. Let X be a uniformly convex Banach space. Then for € > 0, there
exists d(g) > 0 such that

0<d(e)<1-—

ac-i-yH

for all z,y € X with ||z|| <1, |ly|| <1 and ||z — y|| > €. Therefore, from the
definition of modulus of convexity, we have dx (g) > 0.

Conversely, suppose X is a Banach space with modulus of convexity §x such
that dx(e) > 0 for all € € (0,2]. Let z,y € X such that |[z| =1, ||y|]| = 1 with
|z — y|| > € for fixed e € (0,2]. By the modulus of convexity dx(¢), we have

0<dx(e) <1—|ZY)
which implies that
x;yH Sl*(S(E),

where 0(¢) = dx (), which is independent of x and y. Therefore, X is uniformly

convex. I

Theorem 2.3.7 Let X be a Banach space with modulus of convezity 6 x. Then
we have the following:

(a) For all &1 and ey with 0 < g1 < &3 < 2,

€y — €1

Ix(e2) —0x(e1) < 5 27 c

o (1—(5)((51)) S 2_51 .

In particular, dx is a continuous function on [0,2).
(b) 0x(s)/s is a nondecreasing function on (0,2].

(c) 0x is a strictly increasing function if X is uniformly convex.
Proof. (a) We define the set
Suw ={(z,y) : x,y € Bx;x—y = au,x+y = bv for some u,v € X and a,b > 0}
and the function

r+y

duv(e) = inf {1 -

H XY € Su,v; ||£E - y” 2 6}'

Note that d,,,(0) = 0. For given ;1 and &2 in (0,2] and 1 > 0, we can choose
(x4,y;) in Sy, such that

Ti +Yi

lz; — yil| > €; and 6y p(gi) +1 > 1 — H fori=1,2.
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Now for ¢t € [0,1], let w5 =ty + (1 — t)x2 and y3 = ty; + (1 — t)y2. Because
zi,y; € Bx for i = 1,2, it follows that

IN
—_

sl < tllzafl + (1 = )]z

and
lysll < tllyall + (1 = )[[yell < 1.

Because (x;,y;) € Su,v, there exist positive constants a;,b; > 0 with ¢ = 1,2 such
that z;—y; = a;u and x;+y; = b;v. Set o := tay+(1—t)as and [ := tby+(1—1t)bs.
Then

r3—y3 = twr—y1)+ (1 —1)(r2 —y2)
= taju+ (1 —t)agu
= (tar + (1 —t)az)u

= Qu.

Similarly, x3 4+ y3 = Bv. Thus, (z3,y3) is in Sy,..
Observe that

s —wsll = (tax + (1 = t)ag)llul|
tlzr — il + A = 1) [|lz2 — g2l
> teq + (1 — t)eq by the choice of x;, y;,

and [|z3 + ysl| = tllz1 + y1ll + (1 = 1)llw2 + vz
By the definition of the function d, ,(-), we have

Sunlter +(1—t)es) < 1 x3;y3
1+ Y1 To + Y2
< 1-—t —(1—1
< )
1+ Y1 T2 + Y2
= t(1-— 1—-¢)1-—
(- [=22]) +a-o(-[=22))
<

t(éuyv@l) + g) (-1 (au,v@z) n g)

= t0u0(e1) + (1= t)duw(ea) + g

Because 7 is arbitrary, it follows that d,,,(¢) is a convex function of e.
Note that
0x (&) < 0yp(e) for all u,v

and
(x,y) € Syu,» with |lz]] <1 and ||y|| < 1 for some u,v € X;

and hence
Ox(e) = inf{dy(€) : u,v € X \ {0}}.
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Now for any real number € > 0, there exist u,v € X such that

Suw(e1) < dx(e1) +e.

€9 — € €9 — €
5%1,(62) = 5%1,(2 22—511+(1_ 22_511)81>

9 — &1
2 1-—
>~ 9 _ £ 6u,v( ) + ( >6u7v<51)7

Hence

E9 — €1
2—61

which implies that

g9 —¢€
Bun(2) = bun(e) S 2 (0u(2) — un(er))
— &1
€9 — €1
< — (1 - .
< 5L (1 —0dx(e1))
Then we have
dx(e2) —0x(e1) < dywle2) —duw(er) +e
€9 — €1
< — (1 - .
= 5, ( dx(e1)) +¢

Because € > 0 is arbitrary, we have

Sx(e2) — dx(e1) < 522 = (1 - 5X(gl)>.

Because 0x (1) > 0, we have

which implies that dx(-) is continuous on [0, 2).

(b) Fix s € (0,2] with s <e and z,y € Sx and ||l — y|| = .
Set

S r+y r+vy
t:i=—u:=tr+(1—-1t) and v =ty + (1 —¢t) .
€ [ +yl [z +yl
Then
U+ v r+y [t
u—v=tlx—y),|lu—v|]=sand = (— |93+y||+1t>.
2 Iz +yll \2
Thus,
r+vy u—+v r+vy
— | = t—t
lz+yll 2 2
= 1—(1—t—|—t x“’”)
2
u—+v
= ]_—
[
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Observe that

T4y _a:-l—yH_( 1 _1)x+y|_1_ x—l—yH
2+ yll 2 lz+yll 2 2
and
’ x4y U+ v /” B ( U+ v >/
— u—v|| = 1-— s
2 4yl 2 2
_ <1—(1—t)—tz;yH)/s
T +
= (== fre-m
Hence
dx (s
B8 o (1t v)/20) o

(@ +y)/lle+yll = (wtv)/20)/l[u = ol = 1 = [I(z +y)/2[)/e.

By taking the infimum over all possible 2 and y with ¢ = || —y|| and z,y € Sx,

we obtain
ox(s) _ 0x(e)
s — e

(c) Observe that

5x(5)<5x(t)
s =t

for s <t <2and dx(t) > 0.

Hence
tox(s) < sdx(t) < tox(t),

which implies that
Ox(s) < dx(t).

Therefore, dx is a strictly increasing function. I

Remark 2.3.8 The modulus of convezity 6x need not be convex on [0,2] and
need not be continuous at t = 2.

Theorem 2.3.9 Let X be a Banach space with modulus of convezity 6 x. Then
[tz + (1 = t)yl| <1 —2min{t, 1 —t}ox ([lz —yl))
Jor all xz,y € X with ||z|| <1, [ly|| <1 and all t € [0, 1].
Proof. The result follows from Theorem 2.2.6(b). |
Corollary 2.3.10 Let X be a Banach space with modulus convezity dx. Then
11 = t)z +tyl| <1 —2¢(1 = t)ox(|lz - yl)
forall z,y € X with ||z|| < 1,|ly]| <1 and all t € [0,1].
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Proof. Because t(1 —¢) < min{t, 1 — ¢} for all ¢ € [0, 1], the result follows
Theorem 2.3.9.

Corollary 2.3.11 Let X be a uniformly convex Banach space with modulus of
convezity dx. If r >0 and z,y € X with ||z|| <r, |ly|]| <r, then

[tz + (1 — t)y|| < |1 — 2min{t, 1 — t}ox (f”_z”'ﬂ for all t € (0,1).
T

Theorem 2.3.12 Let X be a uniformly convex Banach space X. Then there
exists a strictly increasing continuous convex function g : RT — RT with
g(0) =0 such that

2t(1 = t)g(llz —yl) <1 = [I(1 =)z + ty]|
forall x,y € X with ||z|| <1,|ly]| <1 and all t € [0,1].

Proof. Let x be the modulus of convexity of X. Define a function g : RT —
R* by

_ [ L5 ox(s)ds if 0<A<2,
9() { o(2) +X%5X(2)()\—2) if A>2.

For t € (0,2], we have
I t
0<g(t):§ dx(s)ds < 3 Ox(t) <dx(t). (asdx(s) <dx(t))
0
From the definition of g, we have
, 1
gt)= §5X(t) for all ¢ € [0, 2].
Hence ¢’ is increasing with ¢'(2) = 0x(2)/2 = 1/2, and it follows that g is

convex.

Now, let ||lz|] < 1, |yl < 1 and t € [0,1]. Then, we have (see Coroll-
ary 2.3.10)

11 =)z +tyl| <1 —2¢(1 = )ox ([l — yl)- (2.8)

Hence from (2.8) we have

lz—yll
21— gz —yl) = t1—1t) / 5y (5)ds

t(1 = )ax ([l = yDll= = vl
2t(1 = t)ox (= —yl)
1—|(1—t)x+ty].

IA N IA
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Moreover, for rs < 2, the function s — g(rs)/s is increasing (as (g(rs)/s)’ =
[rséx(rs)/2 — g(rs)]/s®> > 0). Therefore, g is a strictly increasing continuous

convex function.

Using Corollary 2.3.11, we obtain the following, which has important
applications in approximation of fixed points of nonlinear mappings in Banach
spaces.

Theorem 2.3.13 Let X be a uniformly convexr Banach space and let {t,} be
a sequence of real numbers in (0,1) bounded away from 0 and 1. Let {x,} and
{yn} be two sequences in X such that

limsup ||z, || < a, limsup||y,|| < a and limsup ||t 2, + (1 —tn)yn] = a
n—oo n—oo n—oo
for some a > 0. Then lim ||z, — y,| = 0.
n—oo

Proof. The case a = 0 is trivial. So, let a > 0. Suppose, for contradiction, that
{Zn—yn} does not converge to 0. Then there exists a subsequence {x,,, —yy, } of
{zy, —yn} such that inf; ||z, — yn,|| > 0. Note {t,,} is bounded away from 0 and
1, and there exist two positive numbers « and (8 such that 0 < a« <t, < (<1
for all n € N. Because hm 1 Sup [lzn|l < a and hm 1 Sup lynll < a, we may assume

anr € (a,a+ 1) for a bubbequence {n;} such that lzn || <7y llyn, ]l <7y a <.
Choose r > ¢ > 0 such that

2a(1 = B)ox(e/r) <1 and ||z, — yn,|| =€ >0 for all i € N.

From Corollary 2.3.11, we have

||t’ﬂi‘r7li + (1 - tni)yni T‘[l - 2tni(1 - tni)éx(&‘/?“)]

<
< r[l =2a(l = B)ox(e/r)] < aforall i € N,

which contradicts the hypothesis. I

We now present the following intersection theorem:

Theorem 2.3.14 (Intersection theorem) - Let {C,} be a decreasing
sequence of nonempty closed convex bounded subsets of a uniformly conver
Banach space X. Then NypenC,, is a nonempty closed convex subset of X.

Proof. Let z € X be a point such that z ¢ Cy,r, = d(z,C,,) and r = lim 7.

n—oo

Let {e,} be a sequence of positive numbers that decreases to zero. Set

Dn = Br+€n [Z} = {(E S C’ﬂ : ||Z - .’L’H S T+ E"}7
dn: = diam(D,),
d: = lim d,.

n—oo
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Suppose z and y are two elements in D,, such that ||z — y|| > d,, — &,,. Then
Corollary 2.3.11 gives

552
Iy < (1 —ox (Ci”;;"» (r +&n).

This yields a contradiction unless d = 0. This in turn implies that N,enD,, is

and hence

nonempty, and so is NyenCh. I

Remark 2.3.15 Theorem 2.5.14 remains valid if the sequence {Cy,} is replaced
by an arbitrary decreasing net of nonempty closed convex bounded subsets of X .

We now study a weaker type convexity of Banach spaces that is called locally
uniform convexity.

Definition 2.3.16 A Banach space X is said to be locally uniformly convex if
for any e >0 and x € Sx, there exists 6 = §(x,e) > 0 such that

|z —y|| > € implies that

‘JC;yH <1-6 forally € Sx.

The modulus of local convexity of the Banach space X is

Ox(z,e) = inf {1 Hx;yn cy € Sx, ||lz—y| > 5} for eachz € Sx and 0 < e < 2.

One may easily see that the Banach space X is locally uniformly convex if
Ox(z,e) >0 for all z € Sx and € > 0.

Observation

e Every uniformly convex Banach space is locally uniformly convex.

e By Definition 2.3.16, every locally uniformly convex Banach space is strictly

convex.

We now give interesting properties of locally uniformly convex Banach spaces:
Proposition 2.3.17 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is locally uniformly convez.

(b) Every sequence {x,} in Sx and x € Sx with ||z, + x| — 2 implies that

Ty — T

Proof. (a) = (b). By locally uniformly convexity of X, dx(z,e) > 0 for all
€ > 0. Therefore,

[ 2n + 2|

1—
2

— 0 implies that ||z, — z|| — 0.
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(b) = (a). Let {x,} be a sequence in Sx such that ||z, + x| — 2 implies that
z, — x. Then

Ty + @

|z, — | > > 0 implies that H <1

Hence, by the definition of modulus of locally uniform convexity, dx (z,£) > 0.

Therefore, X is locally uniformly convex. I

The following theorem is a generalization of Theorem 2.2.13.

Theorem 2.3.18 FEvery locally uniformly convex Banach space has the Kadec-
Klee property.

Proof. Let X be a locally uniformly convex Banach space. Let {z,} be
a sequence in X such that z,, =z € X and ||z, || — |z|. For =0, ||,] — 0
implies that x,, — 0. Suppose x # 0. Then

N N W
lenll Nl el A2l ]

By w-Isc of the norm, we have

2:2‘”3’ < liminf ||t +x’
] n—oo || [zn]l [l
< limsup (||$n|| + M) =2,
n—oo \llZall [

which implies that ||, /(||z.|]) + «/(]|z|)|]]| — 2. By Proposition 2.3.17, we

conclude that z,/||z,| — «/|z||. Therefore, z, — x.

2.4 Duality mappings

Definition 2.4.1 Let X* be the dual of a Banach space X. Then a multivalued
mapping J : X — 2% is said to be a (normalized) duality mapping if

Jr={j € X" (z,j) = |l=[I* = [IjIIZ}.

Example 2.4.2 In a Hilbert space H, the normalized duality mapping is the
identity. To see this, let v € H with x # 0. Note that H = H* and

(x,x) = ||z| - ||z|| implies x € Jx.

Suppose y € Jx. Then by the definition of J, we have (z,y) = |||lly| and
llz|]| = ||lyll. Because

lz = yl* = [l + Iyl — 2¢z, y),

it follows that x =y. Therefore, Jo = {x}.
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For a complex number, we define the “sign” function by

som o — 0 if =0,
g a= aflal if a #£0.
Observation
0 if o =0,
o lsgn ol =14 4 if a#0.

e o sgn a= 0 ifo=0,
ITE= ad@/lal =|a| ifa#£0.

Example 2.4.3 In the {5 space,
Jo = (|lz1|sgn(z1), [w2]sgn(z2), - -, [wilsgn(zi), - - ), « = {z;} € Lo

Example 2.4.4 In the L2[0,1] (1 < p < 00) space, the duality mapping is given

by
_ [ |zl sgn(z)/||lzll, if = #0,
Jo = { 0 if © = 0.

Before giving fundamental properties of duality mappings, we need the
following notations and definitions:

Let T : X — 2% a multivalued mapping. The domain Dom(T), range
R(T), inverse T~ and graph G(T') of T are defined as

Dom(T) = {zxeX:Tx# 0},
R(T) = Uzepom)Tz,
T 'y) = {ze€X:yeTx},
GT) = {(v,y) e X xX":yeTx,x € Dom(T)}.

The graph G(T') of T is a subset of X x X*.
The mapping T is said to be
(i) monotoneif (x—y, jz—7jy) > 0for allz,y € Dom(T') and j, € Tz, j, € Ty.

(ii) strictly monotone if (x —y, j» — j,) > 0 for all ,y € Dom(T) with « # y
and j, € Tz, j, € Ty.

(iii) a-monotone if there exists a continuous strictly increasing function
a:[0,00) — [0,00) with «(0) = 0 and «(t) — oo as t — oo such that

(= y,Je — dy) = oz —yl)llz -yl
for all z,y € Dom(T), j, € Tz, j, € Ty.

(iv) strongly monotone if T is c-monotone with «(t) = kt for some constant
k> 0.

(v) injective if Te N Ty = O for x # y.
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The monotone operator 7' : Dom(T) € X — 2% is said to be mazimal
monotone if it has no proper monotone extensions, i.e., if for (z,y) € X x X*

(x — z,y — j.) > 0 for all z € Dom(T) and j, € Tz implies y € Tx.

The mapping T : Dom(T) C X — X* is said to be coercive on a subset C
of Dom(T) if there exists a function ¢ : (0,00) — [—00,00] with ¢(t) — oo as
t — oo such that (z,Tz) > c(||z|)||z|| for all z € C.

(xz,Tx)

- — 00 as |z]| — o0, z € C.

In other words, T' is coercive on C'if

Observation

e Every monotonically increasing mapping is monotone.
e If H is a Hilbert space and T': H — H is nonexpansive, then I — T is monotone.

We are now in a position to establish fundamental properties of duality
mappings in Banach spaces.

Proposition 2.4.5 Let X be a Banach space and let J : X — 2% be the
normalized duality mapping. Then we have the following:

(a) J(0) = {0}.

(b) For each x € X, Jx is nonempty closed convex and bounded subset of
X*.

(c) J(A\x) = AJz for all x € X and real X, i.e., J is homogeneous.

(d) J is multivalued monotone, i.e., (x —y,jz — jy) > 0 for all z,y € X,
Jz € Jx and j, € J(y).

(¢) =l = [lylI* = 2(z — y, 5} for all z,y € X and j € Jy.

(f) If X* is strictly convex, J is single-valued.

(g9) If X is strictly convez, then J is one-one, i.e., x =y = JrNJy = 0.

(h) If X is reflexive with strictly convex dual X*, then J is demicontinuous.

(1) If X is uniformly convex, then for x,y € B,[0], j. € Jx, j, € Jy

(# =y, Ja = Jy) Z we([l2 = ylDllz —yll,
where w, : RT — RT is a function satisfies the conditions:
wy(0) = 0,w,(t) >0 for allt >0 and t < s = w,(t) < w,(s).

Proof. (a) It is obvious.

(b) If = 0, we are done by Part(a). If = is a nonzero element in X, then
by the Hahn-Banach theorem (see Corollary 1.6.6), there exists f € X* such
that (z, f) = ||z|| and |[f[l. = 1. Set j := ||z[|f. Then (x,5) = [lz|{z, f) =
|lz||? and |||« = ||z||, and it follows that Jz is nonempty for each x # 0.

Now suppose fi, fo € Jx and t € (0,1). Because

(@, fr) = 2/l fulls [l = (1 Fll
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and
(@, f2) = [zl f2ll; [|2]] = [[ f2ll,

we obtain

(z,tfy + (1= t) fa) = &l|(tl] foll« + (1 =D f2ll«) = [J=]|*.
Observe that

(z,tfi + (1 —1)f2) [£f1+ (1 = 1) fall« |||
@l fulle + =B f2ll) ]|

[Elke

INIA

Then
Iz]* < lz|[lltfr + (1 —t) fall« < [|l]|?,

which gives us
] = llelllltfr + (1 =) falls,
i.e.,
[tf1+ (1 =t) fall« = ||=]].
Thus,
(z,tfr + (1 =1)f2) = llz[l[tfr + (1 = ) foll« and |[z]| = [[tfr + (1 =€) f2l+,

and this means that ¢f; + (1 —t)f2 € Jx, i.e., Jx is a convex set.
Similarly, one can show that Jx is a closed and bounded set in X*.

(¢) For A = 0, it is obvious that J(0z) = 0Jz. Assume that j € J(Az) for
A # 0. First, we show that J(Ax) C AJz. Because j € J(Ax), we have

Az, j) = [IAz (||l and [[Az][ = [j]],
and it follows that (A\z,j) = ||j||?. Hence
(@, A7) = A7 0w, A7) = A7 0, ) = A7 e[ = I = el

This shows that A\™'j € Jz, i.e., 5 € AJa. Thus, we have J(Az) C A\Jx.
Similarly, one can show that AJx C J(Ax). Therefore, J(Ax) = AJx.

(d) Let j, € Jx and j, € Jy for z y € X. Hence

>zl + llyll® = Nz lllgyll = lylllliz]«
> 2|+ [lyll* = 2] [y
= (ll=ll = ly])* > 0. (2.9)
(e) Let j € Jx, x € X. Then
Ilyl* = llzl* - 2{y — 2, 5)

)1 + llyll* = 24y, 5)
(1 + llyl* = 2ll= | llyl
(lz[l = llylh* > 0. (2.10)

Y
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(f) Let j1,72 € Jx for x € X. Then

(@, j1) = [lill = [l
and

(,j2) = 172112 = l|[|*.
Adding the above identities, we have

(@, 1 + g2) = 2]j]|*.
Because
2ll|* = (x, ju + g2) < llllljn + g2l

this implies that
71l + Mgzl = 2[lzll < [ljx + g2l

It now follows from the fact ||j1 + jall« < ||71ll« + ||j2||« that

1 + Jall« = lgall« + ll72ll-

Because X* is strictly convex and |[j1 + ja|l« = [[j1[l« + [|72]|«, then there exists
A € R such that j; = Ajo. Because

<1‘,j2> = <$,j1> = <1‘,>\j2> = )\<1’7j2>,

this implies that A = 1 and hence j; = js. Therefore, J is single-valued.

(g) Suppose that j € Jz N Jy for z,y € X. Because j € Jr and j € Jy, it
follows from ||7][2 = [lz[|* = [ly[|* = (z,j) = (y, ) that

l]1* = (= +)/2,5) < (@ +y)/2ll]l,

which gives that
Izl = llyll < Iz +y) /2] < [l

Hence ||z|| = ||y|| = ||(z +v)/2]|. Because X is strictly convex and ||z| = [|y|| =
l(z +v)/2||, we have = y. Therefore, J is one-one.

(h) It suffices to prove demicontinuity of J on the unit sphere Sx. For this,
let {x,} be a sequence in Sx such that ,, — z in X. Then || Jz,|l« = |z,] =1
for all n € N, i.e., {Jx,} is bounded. Because X is reflexive and hence X* is
also reflexive. Then there exists a subsequence {Jx,,, } of {Jx,} in X* such that
{Jxp,} converges weakly to some j in X*. Because x,, — z and Jx,, — 7J,
then we have

<Z,.7> = kli_>H<:O<x"k’ank> = kli_{?go ”xnkH2 =1

Moreover,

IN

1111 im |[Jap, [« = Hm ([[J2zn, |« [2n,])
k—o0 k—o0

= lim (zy,, Jon,) = (2,7) = 7]

k—o0
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This shows that

(2,3) = lldll«l1zll and |||« = ||z[|.
This implies that j = Jz. Thus, every subsequence {Jx,,} converging weakly
to j € X*. This gives Jx,, — Jz. Therefore, J is demicontinuous.

(i) Let » > 0 and w, : Rt — R™ a function defined by

w-(0) =0;
w(t) = inf{Edd gy € B0, o — yl| > t, 4. € T2, jy € Ty}
if ¢ € (0,2r];

wyr(t) = wy(2r);if t € (2r,00).
By (d), we have
<I - yv]af —Jy> Z Oa
and it follows that w,(t) > 0 for all ¢ € RT. It can be readily seen that w, is
nondecreasing. So it remains to prove that w,(¢) > 0 for all ¢ > 0.

Suppose, for contradiction, that there exists A € (0, 2r] such that w,.(X) = 0.
Then there exist sequences {x,}, {y,} in B,.[0] such that

||xn - yn” >A>0and <-Tn - ynajzn _jyn> — 0,
where j,, € J2n, jy, € Jyn. We know from (2.9) that
(lznll = llyal)? < (@n = Yn, Jon = Jya)-

We may assume that

Jim ]| = Jimflgal] = @ >0 (sa)
Notice
(@n +YnsJow TIya) = 2Dzl + 2yal® = (@ = Yns Jon — Gya)
—  4a? (2.11)
and

limsup ||z, + yn || < limsup(||lz,]| + [|ynl]) = 2a.

n—o0 n—oo
Moreover, from (2.11), we have
40> = lm (Tp + Yn, Jon + Ty
n—oo

< liminf [z, + g [ ([2nll + [[ynl)) = 20 Timinf [z, + y,|],
n—0oo n—oo

which implies that
2a < liminf ||z, + yn||.
n—oo

Thus, we have that lim |z, + y,| = 2a. By the uniform convexity of X (see
n—oo
Theorem 2.3.13), we obtain that lim ||z, — y,| = 0, which contradicts our
n—oo

assumption that ||z, — y.|| > A > 0. 1

The inequalities given in the following results are very useful in many
applications.
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Proposition 2.4.6 Let X be a Banach space and J : X — 2% the duality
mapping. Then we have the following:

(a) ||z +y||* > ||z]|* + 2(y, ju) for all z,y € X, where j, € Jx.

() lz +ylI> < [[ylI> + 2(z, juty) for all 2,y € X, where joiy € J(x +y).
Proof. (a) Replacing y by 2 + y in (2.10), we get the inequality.
(b) Replacing by  + y in (2.10), we get the result.
Proposition 2.4.7 Let X be a Banach and J : X — 2% a normalized duality
mapping. Then for x,y € X, the following are equivalent:

(a) ||z]| < ||z +ty|| for allt > 0.

(b) There exists j € Jx such that (y,j) > 0.

Proof. (a) = (b). Fort > 0, let f; € J(x+ty) and define g, = f, /|| fi||+. Hence
llgell« = 1. Because g € || fi||s*J (z + ty), it follows that

Izl < e+ tyll = 1l @ + ty, fo)
(@ +ty, g0) = (x, 9¢) + Yy, 9t)
2]l +t(y, 90). (as [lgell« = 1)
By the Banach-Alaoglu theorem (which states that the unit ball in X* is
weak*ly-compact), the net {g;} has a limit point g € X* such that

lgll« <1, (x,g) > ||| and (y,g) > 0.

IN

Observe that
Izl < (2, 9) < lzllllgll« = [l=],
which gives that
(z,9) = ||=[| and |lg[l« = 1.
Set j = g||x||, then j € Jz and (y, j) > 0.

(b) = (a). Suppose for x,y € X with 2z # 0 there exists j € Jx such that
(y,7) > 0. Hence for ¢ > 0,

Izl|> = (@,5) < (2, 5) + (ty, ) = (@ + ty, 5) < |lz + tyl|[|],
which implies that
e < flz+tyl. N
Observation
e Dom(J) = X.
e Jisodd, ie., J(—z) = —Jz.

e J is homogeneous (hence J is positive homogeneous, i.e., J(Ax) = AJz for all
A>0).

e J is bounded.

We now consider the duality mappings that are more general than the
normalized duality mappings.
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Definition 2.4.8 A continuous strictly increasing function p : RY — R* is
said to be gauge function if 1(0) = 0 and tlim p(t) = oo.
—00

Definition 2.4.9 Let X be a normed space and p a gauge function. Then the
mapping J, : X — 2% defined by

Ju(@) ={j € X7 : (z,5) = [z[lll7ll, [l = u(llzD}, zeX
is called the duality mapping with gauge function p.

In the particular case p(t) = t, the duality mapping J,, = J is called the
normalized duality mapping .

In the case pu(t) = t*P~1, p > 1, the duality mapping J, = J, is called the
generalized duality mapping and it is given by

Ip(a) == {j € X"+ (z,5) = |llljll«, lll« = lz[IP~}, =€ X.
Note that if p = 2, then J, = J = J is the normalized duality mapping.

Remark 2.4.10 For the gauge function u, the function ® : Rt — RT
defined by

@(t):/o wu(s)ds

is a continuous convex strictly increasing function on RT. Therefore, ® has a
continuous inverse function ®~ 1.

Example 2.4.11 Let x = (21,22, --) € £, (1 <p < 00), set
Ju(@) = (|1 [P~ sgn(an), [w2P~ sgn(as), - -)
and let p(t) = P~ = tP/9 where 1/p+1/q = 1. Observe that

1/q

oo 1/q oo
(Z|$i|(p_1)q> = (Z|$Z|p> and J,(z) € {,.
i—1 i=1

Moreover,
ulllz])) = )P4 = (|7, )]+
and

o0

(@, Ju(@) = Y wilelP sgn(e) =) lel? = |||
i=1

i=1
lzllllzlP= = Nl ulll) = el T @)l

Thus, J, is a duality mapping with gauge function u. Therefore, the generalized
duality mapping Jp, in £, space is given by

Tp(x) = (Je1 [P~ sgn(er), [e2P " sgn(a), <), @ € £
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One can easily see the following facts:
(i) Ju(x) is a nonempty closed convex set in X* for each z € X,
(ii) J, is a function when X* is strictly convex.

(iii) If J,(x) is single-valued, then
Lgn(A) (]| A
J, () = WJH(x) for all z € X and A € R

and
(@ =y, Ju(@) = Ju(y)) = (ulllzl) = u(ly D)zl = llyl]) for all 2,y € X.

We now give other interesting properties of the duality mappings J, in
reflexive Banach spaces.

Theorem 2.4.12 Let X be a Banach space and J, a duality mapping with
gauge function . Then X is reflexive if and only if U, e x Ju(x) = X, ice., J,
18 onto.

Proof. Let X be reflexive and let j € X*. By the Hahn-Banach theorem, there
is an z € Sx such that (z,j) = ||z||.

Because p has the property of Darboux, there exists a constant ¢ > 0 such
that

p(lft]l) = pt) = [17]l+
Because (tz,j) = |[tz||||j||«, it follows that j € J,(tz).

Conversely, suppose that for each j € X*, there is € X such that j € J,(x).
Set y := x/||z||. Then |y|| = 1 and (y,j) = |j|l«. Hence each continuous
functional attains its supremum on the unit ball. By the James theorem, X is

reflexive. I

Theorem 2.4.13 Let X be a reflexive Banach space and J a duality mapping

with gauge function p. Then J~' is the duality mapping with gauge p~'.

Proof. From Theorem 2.4.12, we obtain
J i) ={reX:je (o)} #0forall j e X*.
Let J* be the duality mapping on X* with gauge p~!. Observe that z € J~1(j)

if and only if (x, ) = ||z|||lj|l« and ||z]| = p~=(]|j|«) or equivalently if and only
if x € J*(j). Thus,

TG) = J7G) = e € X {wd) = el el = w2 L3
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Corollary 2.4.14 Let X be a reflexive Banach space and J* : X* — X the
inverse of the normalized duality mapping J : X — X*. Then

J'J=1and JJ* =1 (identity mappings on X and X*, respectively).

Theorem 2.4.15 Let X be a Banach space and let J,, be the duality mapping
with gauge function p. If X* is uniformly convex, then J, is uniformly continu-
ous on each bounded set in X, i.e., fore >0 and K > 0, there is a 6 > 0 such
that

2] < K, [lyll < K and ||z —y|| <6 = [|Ju(z) = Ju(y)ll+ <e.

Proof. Because X* is strictly convex, J, is single-valued. Suppose {z,} and
{yn} are sequences in X such that ||z,|| < K, ||yn|| < K and ||z, — yn|| — 0.
Assume that x,, — 0, then y,, — 0. Moreover,

[ Tu(@n)lle = pllznll) = 0 and [ Ju(yn)ll« = u(llynl)) —

Hence ||J,(zr) — J.(yn)||+ — 0 and we are done.

Suppose {x,} does not converge strongly to zero. There exist o > 0 and a
subsequence {x,, } of {z,} such that ||z,,| > «a. Because ||z, — y,| — 0, one
can assume that ||y,, || > /2. Without loss of generality, we may assume that

|z || > 8 and ||y,|| > B for some S > 0.

Set Uy, 1= xp/||n || and v, = yn/||ynl| so that ||u,|| = ||va] = 1 and
”u —w ” xn”ynH — ||xn||yn
n n
I Hlynl

1

< @ Tollynll = znllzall + zallzn | = [l2nllyn
1

< g\ lwell = lallflizall + lznlllen = yall
1

< rllvn = ol K+ flon = ynllK) — 0 as n — oo,

Because ||.J,, (un)[|+ = p([[unl]) = p(1) and [T (vn) ||« = p([[on]]) = p(1), we have

'u(l) + M(l) - M(l)Hun - 'Un” > <un7 ( )>+<Un, Ju('Un)>+<Un— Un, Ju(vn»
= (Un, Ju(un)) + (i, I (v3))

(un, Ju(tn)+Ju(vn))
< N Ju(un) + (v ||+ < 2p(1).

This shows that nILH;O | Ju(un) + Ju(vn)|l« = 21(1). Because X* is uniformly

convex, we have ||.J,(un) — J,(vp) |« — 0 as n — oco. Hence

Ju(xn) - Ju(yn)
= [zl (Ju(un) = Ju(vn)) + (ulllzall) — £llynll)) Ju(vn)]/1(1),

and it follows that ||.J,(2n) — Ju(yn)|lx — 0 as n — oo. |

A\
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Observation

e If J,: X — 2X" is a duality mapping with gauge function p then
(i) J, is norm to weak® upper semicontinuous.
(ii) for each z € X, the set J,,(z) is convex and weakly closed in X™;
(iii) Ju(—x) = —Ju(2) and J,(Az) = 2UX2D 7 () for all 2 € X, A > 0;
(

w(ll=ll) “H
iv) each selection of J, is a homogeneous single-valued mapping j : X — X*
satisfying j(x) € Ju(x) for all x € X,
(v) J, is monotone, i.e., (x — y,jo — jy) > 0 for all z,y € X and j, € Ju(x),
Ju € Ju(y);
(vi) the strict convexity of X implies that J,, is strictly monotone, i.e.,

(x —y,Ja — Jy) >0 forall z,y € X and j. € Ju(x),5y € Ju(y);

vii) the reflexivity o and strict convexity o imp a is single-value
ii) the reflexivity of X and strict ity of X* imply that J,, is singl lued
monotone and demicontinuous.

One can easily see that the following are reflexive Kadec-Klee Banach spaces:
(a) a Banach space of finite-dimension,
(b) a reflexive Banach space that is locally uniformly convex,

(¢) a uniformly convex Banach space.

We now conclude this section with an interesting result concerning a Banach
space whose dual has the Kadec-Klee property.

Theorem 2.4.16 Let X be a reflexive Banach space such that X* has the
Kadec-Klee property. Let {xo}acp be a bounded net in X and x,y € wy,({tatacn)-
Suppose 111% [tza + (1 —t)x — y|| ewists for all t € [0,1]. Then x =y.

[e1S

Proof. Because lin'[l) [tze + (1 — )z — y|| exists (say, r), for each £ > 0, there
ae

exists ag € D such that
[tza + (1 —t)z —y| <7+ e forall a = ap.
It follows that for all @ = ag and j(z —y) € J(z — y),
(tra + (1 - )z —y,j(z —y)) < (r+ &)z —yll.
Because = € wy, ({za}aep), we obtain

le—yl? = (ot (=t -y, i)
< o=yl (ling 1tz + (1= 2 — ]| +2),

= (r+e)lz—yl.
Taking the limit as ¢ — 0, we obtain

lz =yl <r (2.12)
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By Proposition 2.4.6 (b), we have
[tza + (1 =tz =yl < llz —ylI* + 2t(za — 2, j(tza + (1 — )z —y))

for all t € (0,1] and j(tze + (1 —t)z —y) € J(txq + (1 —t)z —y). By (2.12), we
have

linéilr)lf@:a —z,j(tre + (1 —t)z —y)) > 0.

Hence there exists a sequence {a, }nen such that oy, = a,, for n > m and

1 1 1
<xa —x,j(Exa + (1 — E)a:—y>> > - for all n € N and a > a,. (2.13)

Set D1 = {a : a = «1}. Without loss of generality, we may assume that
D= Dla
ww({xa}aeD) = Ww{xa}ozeDl

and
li treg + (1 —1)z — =l tre + (1 —t)xr — f 1¢e|0,1].
lim ltza + ( Yz —yl| aéml [tza + ( )z — y|| for all ¢t € [0,1]

Set to = inf{1/n:a > «a,} for all « € D.

‘We now consider two cases:
Case 1. a« € D and t, > 0.
Set jo = j(taxa + (1 —ty)x —y). Then

(T =Y Ja) = tara + (1 —ta)z — y||2 —ta(Ta — T, ja) (2.14)
and
lJall = lta®a + (1 — ta)z — yl|. (2.15)
By (2.13), we have
<xo¢ - x7]a> > —tq. (2.16)

Case 2. a € D and t, = 0.

In this case, we can choose a subsequence {j((1/ng)zqs+(1—1/nk)x—y) b ren
which is weakly convergent to j, and set j, := j. It follows from (2.13) that

(o — Ty o) > 0. (2.17)

(e (=) )
i —tat+ (1-—)z—y
ng ng

1 1
lim H—xa + <1 - —)x — yH =z —yl.
ng Nk

k—o0

Observe that

IN

l7c ]l likm inf

— 00
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On the other hand, we have

1 1
k—o0 Ng ny
1 1

Therefore,

lgall = llz =yl (2.19)

and j, € J(z —y).

We note that by the Kadec-Klee property of X*, the sequence {j((1/nx)xa+
(1 —=1/nk)x — y) }ren converges strongly to j,.

Now from the net {za }aep, we choose a subset {as} 5.5 such that {za, } 55

converges weakly to y € wy({Zataep) and {ja,}gcp converges weakly to j.
Then by (2.15) and (2.19) we get

50 < llz =yl

and by (2.14) and (2.18), we get
(@ —y.7) = llz —yl*

Hence j € J(x — y). Because X is reflexive and X* has the Kadec-Klee pro-
perty, the space X* has also the Kadec property and this implies that {ja, } )

converges strongly to j. It follows from (2.16) and (2.17) that
<y -, 3> Z 0)

i.e., ||z — y||* < 0. Therefore, x = y. 1

Corollary 2.4.17 Let X be a reflexive Banach space such that its dual X*
has the Kadec-Klee property. Let {x,} be a bounded sequence in X and p,q €
ww({zn}). Suppose lim |[tz,, + (1 —t)p—q|| exists for allt € [0,1]. Thenp = q.

2.5 Convex functions

Let X be a linear space and f : X — (—o0, 0] a function. Then
(i) f is said to be convez if f(Ax + (1 — Ny) < Af(x) + (1 — X)f(y) for
all z,y € X and X\ € [0,1];
(ii) f is said to be strictly converif f(Az+(1—=N)y) < Af(x)+(1—X)f(y) for
all A € (0,1) and =,y € X with « #y, f(z) < 0o, f(y) < o0;



80 2. Convexity, Smoothness, Duality Mappings

(iii) f is said to be proper if there exists x € X such that f(z) < oo;
(iv) Dom(f)={z € X : f(z) < oo} is called domain or effective domain;

(v) f is said to be bounded below if there exists a real number « such that
a < f(z) for all x € X;

(vi) the set epif = {(z,a) : ® € X,a € R, f(z) < a} is called the
epigraph of f.

Let C be a subset of X. Then the function ic on X defined by

. 0 if =xzeC,
ZC(QU):{OO if v¢C

is called the indicator function.

Observation
e ic is proper if and only if C' is nonempty.
e dom(ic) = C.
e The set C' is convex if and only if its indicator function ic is convex.

e The domain of each convex function is convex.

Let X be a topological space and f : X — (—o00, c0] a proper function. Then
f is said to be lower semicontinuous (l.s.c.) at g € X if

f(zo) <liminf f(z¢) = sup inf f(z),
T—T0 VEUJ,’O zeV

where U,, is a base of neighborhoods of the point ¢y € X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for
each r € X

Ty —x = fz) < hnrrilgff(xn)

We now discuss some elementary properties of convex functions:

Proposition 2.5.1 Let X be a linear space and f: X — (—00,00] a function.
Then f is convex if and only if its epigraph is a convex subset of X x R.

Proof. Suppose f is convex. Then for (z,«), (y,3) in epif, we have
f(=tz+ty) < (A—=t)f(x)+tf(y) <(1—t)a+t3 forallt e [0,1].

This implies that ((1 —¢)x + ty, (1 — t)a + t5) € epif.
Conversely, suppose that epif is convex. Then Dom(f) is also convex.
Because for z,y € Dom/(f) and (z, f(x)), (y, f(y)) € epif, we have

(1—=t)x+ty, (1 —t)f(x) +tf(y)) € epif for all t € [0, 1].
Thus, by the definition of epif,

=tz +ty) < (1= f (@) +tf(y). |
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Proposition 2.5.2 Let X be a topological space and f : X — (—o00,00] a
function. Then the following statements are equivalent:

(a) | is lower semicontinuous.
(b) For each oo € R, the level set {x € X : f(x) < a} is closed.
(¢) The epigraph of the function f, {(z,a) € X xR : f(z) < a} is closed.

Proof. We recall that

liminf f(x) = sup inf f(x).

Tr—x0 VEUIO zeV

(a) = (b). Let a € R and let zyp € X with f(x9) > «. Because f is lower
semicontinuous, there exists Vy € U,, such that 1;15 f(z) > a. Hence Vs C
xr 0

{zr € X : f(x) > a}. Consequently, {z € X : f(x) > a} is open and hence
{r € X: f(z) < a} is closed.

(b) = (a). Let g € Dom(f),e > 0and V. = {z € X : f(z) > f(xo) — €}
Because each level set of f is closed, it follows that V. € U(xzg). Because
in‘li f(z) > f(xo) —e, it follows that liminf f(x) > f(z¢) —e. As ¢ is arbitrarily
z€V. T—x
chosen, we conclude that (a) holds.

(a) & (c). Define p : X X R — (=00, 0] by ¢(x,a) = f(x) — . Then, f is
l.s.c.on X < @ is l.s.c. on X x R. Because epif is a level set of ¢, therefore,

the conclusion holds. I

Proposition 2.5.3 Let C' be a nonempty closed convex subset of a Banach
space X and f : C' — (—o00, 0] a convex function. Then f is lower semicontin-
wous in the norm topology if and only if f is lower semicontinuous in the weak

topology.

Proof. Set F,, :={x € C: f(x) < a}, « € R. Then F, is convex. Indeed, for
z,y € Fy

fOz+ (1 =Ny) < Af(@)+ (1 =Nf(y)
< Xa+(1=XNa=aforall X €[0,1].

Tt follows from Proposition 1.9.13 (which states that for a convex subset C' in a
normed space X, C' is closed if and only if C' is weakly closed) that F, is closed

if and only if F,, is weakly closed, i.e., F, is closed in the weak topology. I

Before presenting an important result, we first establish a preliminary result:

Theorem 2.5.4 Let X be a compact topological space and f: X — (—o0, 0] a
lower semicontinuous function. Then there exists an element xo € X such that

f(xo) =nf{f(x) : 2z € X}.
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Proof. Set G, :={x € X : f(x) > a}, o € R. One may easily see that each G,
is open and X = (J,cp Ga- By compactness of X, there exists a finite family
{Gu,; }q of {G4}aer such that

Suppose g = min{ay, g, -+ ,ay}. This gives f(x) > «p for all z € X.
It follows that inf{f(z) : € X} exists. Let m = inf{f(z) : z € X}.
Let 8 be a number such that 8 > m. Set Fjz := {x € X : f(z) < 8}. Then Fj
is a nonempty closed subset of X; and hence, by the intersection property, we

have
() Fs #0.

B>m
Therefore, for any point xg of this intersection, we have m = f(xo). 1

Theorem 2.5.5 Let C' be a weakly compact convex subset of a Banach space

and f : C — (—o00,00] a proper lower semicontinuous convexr function. Then
there exists xo € Dom(f) such that f(xo) = inf{f(x): 2 € C}.

Proof. Because f is proper, there exists v € C such that f(u) < oo. Then
the set Cy = {x € C : f(z) < f(u)} is nonempty. Because the set Cy is
closed and convex subset of C, it follows that C is weakly compact. Applying
Proposition 2.5.3, we have that f is lower semicontinuous in the weak topology.
By Theorem 2.5.4, there exists zo € Cy C C such that

f(zo) =inf{f(x):z € Co} =inf{f(z) :x € C}. 1

Remark 2.5.6 If f is strictly convex function in Theorem 2.5.5, then zoy € C
is the unique point such that f(xg) = ingf(z).
re

Recall that every closed convex bounded subset of a reflexive Banach space
is weakly compact. Using this fact, we have

Theorem 2.5.7 Let X be a reflexive Banach space and f : X — (—o0,0] a
proper lower semicontinuous convex function. Then for every nonempty closed
convex bounded subset C of X, there exists a point xg € Dom(f) such that

flwo) = inf f(a).

In Theorem 2.5.7, the boundedness of C' may be replaced by the weaker
assumption
lim  f(z) = cc.

zeC,||z||—oo

Theorem 2.5.8 Let C' be a nonempty closed convex subset of a reflexive Banach
space X and f : C' — (—o0, 0] a proper lower semicontinuous convez function
such that f(x,) — oo as ||z,|| — co. Then there exists xg € Dom(f) such that

flxo) =inf{f(x) : z € C}.
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Proof. Let m = inf{f(z) : + € C'}. Choose a minimizing sequence {x,} in
C, ie., f(xn) — m. If {z,} is not bounded, there exists a subsequence {x, }
of {z,} such that ||z,,|| — oo. From the hypothesis, we have f(z,,) — oo,
which contradicts m # oco. Hence {z,,} is bounded. By the reflexivity X, there
exists a subsequence {x,, } of {x,} such that z,,, — xo € C. Because f is lower
semicontinuous in the weak topology, we have

m < f(xo) < liminf f(z,,) = lim f(z,) =m.
J—00 n—oo
Therefore, f(zg) = m. |

Differentiation of convex functions — Let X be a normed space and
¢ : X — (—00,00] a function. Then the limit

ty) — ty) —
i Pty — (@) . cp(@tty) — o)
t—0 t t>0 t
is said to be the directional derivative of ¢ at the point x € X in the direction
y € X. If it exists, it is denoted by ¢'(z,y).

The function ¢ is said to be Gateaur differentiable at a point x € X if there
exists a continuous linear functional j on X such that (y,j) = ¢'(z,y) for all
y € X. The element j, denoted by ¢'(z) or y¢(x) (i.e., grade(x)) is called the
Gateaux derivative of ¢ at x.

One can easily see from the definition of Gateaux derivative of ¢ that

(i) ¢'(x)(0) = 0,
(ii) ¢'(2)(\y) = Alim ple + tkiﬁ — p(z)

¢'(x)(+) is homogeneous over R.

= X (z)(y) for all A € R, i.e.,

Remark 2.5.9 If the function ¢ is Gateaux differentiable at x € X, then there
exists j = ¢'(x) € X* such that

d .
P = (y¢' (@) = (y.j) for all yeX.
t=0
Let X be a normed space and ¢ : X — (—o00, 00] a function. The function ¢
is said to be Fréchet differentiable at a point € X if there exists a continuous
linear functional 7 on X such that

i 1@ +Y) —el@) — (g, 5)

= 0.
llyll—0 [yl

In this case, the element j denoted by dp(x) is called the Fréchet derivative
of ¢ at the point z.

Proposition 2.5.10 Let X be a normed space and ¢ : X — (—o00,00| a
function. If ¢ is Fréchet differentiable at x, then ¢ is Gateauzx differentiable
at x.
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Proof. Because ¢ is Fréchet differentiable at z,

L 12 +Y) — o) —dp(z)y|
lyli—0 lyll

= 0. (2.20)

Set y = tyo for t > 0 and for any fixed yo # 0. From (2.20), we obtain

iy [P+ tyo) — () — tdp(x)yol

= ()7
=0 tlloll

which implies that

Hence dp € X™* and ¢ is Gateaux differentiable at x. I

The following example shows that the converse of Proposition 2.5.10 is not
true.

Example 2.5.11 Let X = R? be a normed space with norm ||-||2 and p : X — R
a function defined by

[ ety i (o) £ (0,0),
*"(””’y)‘{oy " o - 000,

One may easily see that p is Gateaux differentiable at 0 with Gateauz derivative

©'(0) = 0. Because for (h,k) € X, we have

lp(h, K)l - _ |h3k| - 1 .
I(h,k)l2 (b4 + k2)(h2 + E2)1/2 7~ 2(1 + h2)L/2 for k= h*.

Therefore, p is not Fréchet differentiable.

Observation
e Every Fréchet differentiable function is Gateaux differentiable.
e If p is Fréchet differentiable at x, then ¢ is continuous at x.

e If ¢ is Gateaux differentiable at x, then ¢ is not necessarily continuous at x
(e.g., the function ¢ : R*> — R defined by

2y eap(—z~2)

W’ x#Oandtp(m,y):(), =0

o(x,y) =
is Gateaux differentiable at zero, but not continuous at zero).

o If ¢ is Gateaux differentiable at x, then p(z + ty) — ¢(z) as t — 0 (i.e., if
z, — x along a line, then ¢(z,) — ¢(z)).
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Let X be a Banach space and ¢ : X — (—00, 00] a proper convex function.
Then an element j € X* is said to be a subgradient of ¢ at the point x € X if

o(x) —o(y) < (x —y,j) for ally € X.

The set (possibly nonempty)

1€ X" p(@) —py) < (x—y,j) forally € X},

of subgradients of ¢ at © € X is called the subdifferential of ¢ at x € X.
Thus, the subdifferential of a proper convex function ¢ is a mapping dp : X —
2% (generally multivalued) defined by

Ip(x) ={j € X" 1 p(z) — p(y) < (z —y,j) forall y € X}.
The domain of the subdifferential dy is denoted and defined by

Dom(dp) = {z € X : dp(z) # 0}.

Remark 2.5.12 If ¢ is not the constant oo, then Dom(Op) is a subset of
Dom(ep).

Observation
e Jp(x) is always for every x € X nonempty if ¢ is continuous.
e Jp(x) is always a closed convex set in X*.
e I(A\p(x)) = Ndp(x), i.e., Op(x) is homogeneous.
e © has a minimum value at g € Dom/(d¢) if and only if 0 € dp(zo).
e Dom(0p) = Dom(yp) if ¢ is lower semicontinuous on X.

e For a lower semicontinuous proper convex function ¢ on a reflexive Banach space
X, Oy is maximal monotone.

The following results are of fundamental importance in the study of convex
functions. We begin with a basic result.

Proposition 2.5.13 Let C' be a nonempty closed convex subset of a Banach
space X and i the indicator function of C, i.e.,

. _J o if veC,|
ic(x) = { 00 otherwise.

Then dic(x) ={j € X* : (x —y,j) >0 forally € C}, x € C.

Proof. Because the indicator function is convex and lower semicontinuous
function on X, by the subdifferentiability of ic, we have

dic(z) = {jeX* ic(r)—icly) < (z—y.j) forallyecy. |
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Remark 2.5.14 Dom(ic) = Dom(dic) = C and dic(x) = {0} for each x €
int(C).

We now give a relation between Gateaux differentiability and subdiffer-
entiability.

Theorem 2.5.15 Let X be a Banach space and ¢ : X — (—00,00] a proper
convex function. If p is Gateaux differentiable at a point xg € X, then Op(xg) =
{¢'(x0)}, i.e., the subdifferential of ¢ at xog € X is a singleton set {¢'(xg)} in
X*.

Conversely, if ¢ is continuous at xo and dp(xg) contains a singleton element,
then ¢ is Gdteaux differentiable at xo and ¢'(xg) = Op(xo).

Proof. Let ¢ be Gateaux differentiable at ¢ € X. Then

t —
(y, ¢ (x0)) = }E,% P20 + yt) #(xo) for all y € X.

Notice
o(xo+ Az —1x0)) = (1 =N+ Az) < (1 =XN)p(zo) + Ap(2) for all A € (0,1).
Set y := z — xg. Then, we have
e(xo + Ay) < p(x0) + Alp(zo +y) — (o).
Thus,

o(zo + )\Zj\) — (o) < o(xo +y) — ©(x0),

which implies that
o(xo) — (o +y) < —(y,¢'(20)) = (x0 — (xo +y), ¢ (x0)) for all y € X,

ie., ¢'(20) € (o).
Now, let j,, € Op(xg). Then, we have

o(zo) — p(u) < (@ — U, g, ) for all u € X.
Therefore,

o(xo 4+ Ah) — p(z0)
A

> (h, ju,) for all X > 0,

it follows that
(h, ' (20) — juo) > 0 for all h € X,

ie, Jz, = ¢ (x0). Thus, ¢ is Gateaux differentiable at xo and ¢'(x¢) =
dp(wo).
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Corollary 2.5.16 Let X be a Banach space and ¢ : X — (—00, 00| a proper
convex function. Then ¢ is Gateaux differentiable at x € int(dom(y)) if and
only if it has a unique subgradient Op(x) = {¢'(x)}, i.e., the subdifferential of
@ at x is a singleton set in X*. In this case

Soletty)| = {,00(@) = (y. ¢/ () for ally € X.
t=0

Theorem 2.5.17 Let X be a Banach space, J, : X — 2X" 4 duality mapping
with gauge function u, and ®(||z||) = Hm“ wu(s)ds, 0 # x € X. Then

Ju(z) = 3@(lell)-

Proof. Because pu is a strictly increasing and continuous function, it follows
that @ is differentiable and hence ®'(t) = u(t), t > 0. Then ® is a convex
function.

First, we show J,(z) C 0®(||x]]). Let z # 0, and j € J,(x). Then (z,j) =
[z l17 ], 1]l = p([|])). In order to prove j € 9(||z[]), i-e., 2([|lz[) — ([lyll) <
(x —y,j) for all y € X, we assume that |ly|| > ||z||. Then

il = wlel) = #(lef) < L=,
which yields
a(llel) 2yl < Gl — lyl)
< <.Z‘,j> - <ya]>
= <.’IJ _y7j>'

In a similar way, if ||z] > ||ly||, we have

O([l=[) = @(llyl) < (& =y, ).

In the case when ||z|| = ||y||, we have
< Nwlllgll = Nllllgll (as (2, 5) = [l=[l7]]+)
< alllyll = 1D,

and it follows that

(llzll) — @(lyl) = 0 = [l7ll- (=l = [lyll) <z =y, 5)-
Hence j € 0®(||z||). Thus, J,(x) € 0®(||z|) for all z # 0.

)
We now prove 99(||z|]) C J,(z) for all x # 0. Suppose j € 0®(||z|) for
0# 2z € X. Then

Iz|[l7lls = sup{{y, j)llz[l : [[yll = 1}
= sup{(y,J) : llzl| = [lyll = 1}
< sup{(y,J) : [l=] = [lvll}
< sup{(z,5) + @(|lyll) — (|lz|) : [|=]| = [lyll}
< Alzllllglle (as (. 4) < (@, 4) + ([lyll) — 2([|=)))-
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Thus, (z,j) = |z||||j]l«. To see j € J,(x), we show that |j]« = p(|z|]) =
®'(||z]|]). Because

O(fJz[l) = @(tl]l) < (z —tx, j) = (L= O)|[z[l|lj]l« for all £>0,

this implies that

e(tlll) — 2(ll«l)

7]l <
’ tlll =l

(2.21)

It follows from (2.21) that

O(tl])) — 2(]l=[])

ift>1
tlzll — [l

171 <

and
O(||=])) — @(tl=l)
)l — tlzl

< |15l if t < 1.
Taking the limit as ¢t — 1, we get
171 = @"(llz]l) = p(liz])-
Thus, 0®(||z||) C Ju(x). Therefore, J,(x) = 0P(||x||) for all « # 0. |

Remark 2.5.18 Both the sets J,,(x) and 0®(||x||) are equal to {0} if x = 0.

Corollary 2.5.19 For p € (1,00), the generalized duality mapping J, is the
subdifferential of the functional || - ||”/p.

Proof. Define u(t) = t*~!, p > 1. Hence

¢ ¢ »
d(t) = / wu(s)ds = / sPlds = —.
0 0 p

Therefore, J,(-) = a(|| - |?/p). |
Corollary 2.5.20 Let X be a Banach space and p(x) = ||x||?/2. Then the
subdifferential Op coincides with the normalized duality mapping J : X — 2X"
defined by

Jr={j € X" :(z,5) = llzlllljll«, llill« = ll=zl}, = € X.
Theorem 2.5.21 Let X be a Banach space. Then

Olzll = {5 € X : (. 5) = [lz[ll3ll, 5]« = 1} for all x € X\ {0}.
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Proof. Let j € 0||z|. Then
(y—2,5) <llyll = llz]| < [ly — [l for all y € X. (2.22)

It follows that j € X* and ||j|l. < 1. Tt is clear from (2.22) that ||z| < (z,j),
which gives
(x,7) = ||=[| and [|j]l. = 1.

Thus,
Izl € {j € X* : (x,j) = [lz[| and [j]|. = 1}.

Now suppose j € X* such that j € {f € X*: (x, f) = ||z| and || f||« = 1}. Then
{z,7) = ||=[| and [7]|. = 1. Thus,

(y—w,5) = (y,9) = ll=ll < llyll = ll=[| for all y € X,
ie., j € d|z|. It follows that

{7 € X7 (2, j) = ||zl and [|j]|l. = 1} € Of|«].

Therefore, dz|| = {j € X* : (z,5) and ||j||, = 1}. |

Using Corollary 2.5.19, we establish an inequality in a general Banach space
that is a generalization of the inequality given in Proposition 2.4.6(b).

Theorem 2.5.22 Let X be a Banach space and let J, : X — 2X 1 <
p < oo be the generalized duality mapping. Then for any x,y € X, there exists
Jp(x +y) € Jp(x +y) such that ||z +y||? < |[z]|” + ply, jp(z +y))-

Proof. By Corollary 2.5.19, J, is the subdifferential of the functional || - ||” /p.
By the subdifferentiability of || - [|”/p, for z,y € X, there exists j,(z + y) €
Jp(x +y) such that [lz +y[|” < [lz]|” + p{y, jp(x + ).

The following result is very useful in the approximation of solution of non-
linear operator equations.

Theorem 2.5.23 Let X be a Banach space and J, : X — 2X" a duality map-
ping with gauge function u. If J, is single-valued, then

1
‘I’(llx+y||)=@(||$||)+/0 (y, Ju(z + ty))dt for all z,y € X.

Proof. Because J, is single-valued, it follows from Theorem 2.5.17 that
0®(||z||) = {Ju.(x)}. Hence Corollary 2.5.16 implies that J, is the Gateaux
gradient of ®(||z|]), i.e.,

= (Y, Ju ().

d
—d t
)|
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Hence
—@(||lz + tyl]) =y, Julz+ry)), reR.

d
= =0
H0U+ry )|

t=r

Because the function t — (y, J,,(z + ty)) is continuous, hence

A? Tz +ry)d /' B (|l + ty])

Corollary 2.5.24 Let X be a Banach space. If X* is strictly convex, then we
have the following:

dr = (e +y|) — o). 1

t=r

1
(a) @(flz +yl) = @(]|=]]) +/ (y, Ju(x +ty))dt for all x,y € X;
0
1
®) |z +y||? = ||z||P —|—p/ (y, Jp(z + ty))dt for all z,y € X and p > 1;
0

1
(€) llz +ylI* = [l +2/0 (y, J(z +ty))dt for all z,y € X.

Proposition 2.5.25 Let X be a Banach space with strictly conver dual and C
a nonempty convexr subset of X. Let xg be an element in C and J, : X — X*
a duality mapping with gauge function p. Then

|zol| = 1I€1£|\x|| if and only if (xo —x,J,(x0)) <0 for all x € C.

Proof. Let zo be a point in C such that (zo — x, J,(z)) < 0 for all z € C.
Then

[zollll-T(xo)ll« = (o, Ju(z0)) < [l[[[|Ju(z0)ll+ for all z € C.
Therefore, ||zo|| = inf |z].
xeC

Conversely, suppose that xy € C such that ||z¢| = ing ||z]]. Then
FAS

[lzoll < |lo + t(x — zp)|| for all x € C and ¢ € [0, 1],
which implies that
O([[zoll) — @(|lzo + t(z — 2o)l[) <0
Because J,,(z) = 0®(]|z||), it follows that
O([|lzo + t(x — zo)l) — R([lzoll) < (w0 + t(x — m0) — x0, Ju(wo + t(x — T0))),
which implies that
txo — 2, Ju(wo + t(x — 20))) < B([|ol]) — ([0 + t(x — zo)]) <O

Thus,
(xo — x, Ju(xo + t(x — x0))) < 0.

Letting t — 0, we obtain (zo — x, J,(z0)) < 0. 1
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2.6 Smoothness

Let C' be a nonempty closed convex subset of a normed space X such that
the origin belongs to the interior of C'. A linear functional j € X* is said
to be tangent to C at a point zog € 9C if j(xg) = sup{j(z) : = € C}.
If H={z € X :j(x) =0} is the hyperplane, then the set H + ¢ is called a
tangent hyperplane to C at x.

Definition 2.6.1 A Banach space X is said to be smooth if for each x € Sx,
there exists a unique functional j, € X* such that (z,j,) = ||z| and ||j.| = 1.

Geometrically, the smoothness condition means that at each point = of the
unit sphere, there is exactly one supporting hyperplane {j, = 1}. This means
that the hyperplane {j, = 1} is tangent at x to the unit ball, and this unit ball
is contained in the half space {j, < 1}.

Observation
e /y, L, (1 <p< o0) are smooth Banach spaces.
e co, V1, L1, Voo, Lo are not smooth.

Differentiability of norms of Banach spaces — Let X be a normed space
and Sy = {z € X : ||z|]| = 1}, the unit sphere of X. Then the norm of X is
Gateauz differentiable at point xg € Sx if for y € Sx

d . Mlzo + tyll — [J=ol|

%(”‘TOJFUIH) tzo*}ﬂ% ;
exists (say, (y, V||zol|)). Vol is called the gradient of the norm p(z) = ||z||
at = xg. The norm of X is said to Gateaux differentiable if it is Gateaux
differentiable at each point of Sx. The norm of X is said to be uniformly
Gateauzx differentiable if for each y € Sx, the limit is approached uniformly for
r e Sy.

Example 2.6.2 Let H be a Hilbert space. Then the norm of H is Gateaux
differentiable with </||z|| = z/||x||, x # 0. Indeed, for each x € X with x # 0,
we have

O e T R P o
t—0 t =0 t([|l + tyl| + [|[])
24y, @) + lyl1?

= lim = (y,z/||z|).

=0 t(||x + tyl| + [|=[))
Therefore, the norm of H is Gateauz differentiable with <7||z|| = z/||z||.

Remark 2.6.3 In view of Example 2.6.2, we have the following:
(i) at © # 0, 0(x) = ||z|| is Gateauz differentiable with 7||z| = z/||x||,
(ii) at x = 0, p(z) = ||z|| is not differentiable, but it is subdifferentiable. Indeed,
9p(0) = 0|0l = {jeH:(zj)<|z| foral z e H}
= {jeH:|jl. <1}
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Theorem 2.6.4 Let X be a Banach space. Then we have the following:
(a) If X* is strictly convex, then X is smooth.
(b) If X* is smooth, then X is strictly conver.

Proof. (a) Suppose X is not smooth. There exist 29 € Sx and ji,j2 € Sx~
with j; # jo such that (xg,j1) = (x0,j2) = 1. This means that zy determines
a continuous linear functional on X* that takes its maximum value on Bx+ at
two distinct points j; and j;. Hence X ™ is not strictly convex.

(b) Suppose X is not strictly convex. There exist j € Sx+ and z,y € Sx

with o # y such that (x, j) = (y, j) = 1. Thus, two supporting hyperplanes pass
through j € Sx« such that

(x,f)={y, f)=1LfeX"

Therefore, X* is not smooth. I

It is well-known that for a reflexive Banach space X, the dual spaces X and
X* can be equivalently renormed as strictly convex spaces such that the duality
is preserved. Using the above fact, we have

Theorem 2.6.5 Let X be a reflexive Banach space. Then we have the follow-
mg:

(a) X is smooth if and only if X* is strictly convez.

(b) X is strictly convex if and only if X* is smooth.

The following theorem establishes a relation between smoothness and Gateaux
differentiability of the norm.

Theorem 2.6.6 A Banach space X is smooth if and only if the norm is Gateaux
differentiable on X\{0}.

Proof. Because the proper convex continuous function ¢ is Gateaux differen-
tiable if and only if it has a unique subgradient, we have

norm is Gateaux differentiable at x
& Ollzll ={j € X7 : (2,5) = [lzll, 7]« =1} is singleton
< there exists a unique j € X* such that (z,j) = ||z|| and ||j||. =1
< smooth.

Next, we establish a relation between smoothness of a Banach space and a
property of the duality mapping with gauge function pu.

Theorem 2.6.7 Let X be a Banach space. Then X is smooth if and only if

each duality mapping J,, with gauge function p is single-valued; in this case

d
%(I)(Hl‘ + tyl|) =(y,J,(z)) for all z,y € X. (2.23)
t=0
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Proof. The Banach space X is smooth if and only if there exists a unique
J € X* satisfying
(eulllzl). ) = lela(lel) andlj]. = 1

in this case p(||z])j = Ju(z) = 0®(||z||), and hence by Corollary 2.5.16, we
obtain the formula (2.23).

Corollary 2.6.8 Let X be a Banach space and J,, : X — 2X" 4 duality mapping
with gauge function p. Then j € J,(x), x € X if and only if H = {y € X :
(,7) = llzl|u(l|x]])} is a supporting hyperplane for the closed ball B, [0] at x.

Corollary 2.6.9 Let X be a Banach space and J : X — 25" a duality mapping.
Then the following are equivalent:

(a) X is smooth.
(b) J is single-valued.
(¢) The norm of X is Gateaux differentiable with 7||z|| = ||z| = Jx.

We now study the continuity property of duality mappings.

Theorem 2.6.10 Let X be a Banach space and J : X — X* a single-valued
duality mapping. Then J is norm to weak™ continuous.

Proof. We show that =, — = = Jx,, — Jz in the weak™ topology. Let z,, — z
and set f, := Jx,,. Then

(@ns fn) = llzallllfalle llznll = [[fall-

Because {z,} is bounded, {f,} is bounded in X*. Then there exists a subse-
quence {fy,, } of {fn} such that f,, — f € X* in the weak™® topology. Because
the norm of X* is lower semicontinuous in weak* topology, we have

I£]l < timin |y . = lmin [, | = 2]
Because (x, f — fn,) — 0 and (z — z,,, fn,) — 0, it follows from the fact

|<I>f>*||xnk”2| - |<:C’f>*<xnkafnk>‘
(@, f = frud| + (@ = 2ps fri)] — 0

IN

that
(@, f) = llz|>.

As a result

lI* = (2, £) < I flll]l-

Thus, we have (z, f) = ||z||?, |z|| = ||f||+- Therefore, f = Jux. |
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Theorem 2.6.11 Let X be a Banach space with a uniformly Gateaux differ-
entiable norm. Then the duality mapping J : X — X* is uniformly demicon-
tinuous on bounded sets, i.e., J is uniformly continuous from X with its norm
topology to X* with the weak™ topology.

Proof. Suppose the result is not true. Then there exist sequences {x,} and
{2z, }, a point yo and a positive ¢ such that

lznll = [znll = llvoll = 1, 2, — @, — 0 and (yo, Jz,, — Ja,) > € for all n € N.
Set
an =t (|ln + tyoll — lznll — t{yo, Jzn))
and
b, = t_l(Hzn —tyol| — llznll + t{yo, J2n)).
If ¢ > 0 is sufficiently small, then both a,, and b, are less than /2. On the
other hand, we have
= t71(<xn + tyo, JZn> - <xn + tyo, an>)
= (yo,Jzn — Jxn) +t N wp, T2, — J)

an

and
by >t {(zn — tyo, Jxn) — (20 — tyo, J2n))
= (o, Jzn — Jxn) —t Nz, J2, — Jz,).
Thus,
an +bn > 2o, Jzn — Jan) +t7 N a, — 20, T2, — J)
> 2 =2t |an — zall,
a contradiction by choosing t = 2||a,, — 2,/ for sufficiently large n. 1

2.7 Modulus of smoothness

Recall that the modulus of convexity of a Banach space X is a function
dx :[0,2] — [0, 1] defined by

ox(t) =inf{l —[[(z +y)/2l : 2,y € X, [[z[| < L, [ly < 1, |z —y| = t}.
We now introduce the modulus of smoothness of a Banach space.

Definition 2.7.1 Let X be a Banach space. Then a function px : Rt — RT
18 said to be the modulus of smoothness of X if

=+ vl + |1z ~ o]
() = sup { LI gy =

_ {IIwHyII + [l — tyll
= sup —

: Liflell = Il =1}, t20.

Tt is easy to check that px(0) =0 and px(t) > 0 for all £ > 0.
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The following result contains important properties of the modulus of
smoothness.

Proposition 2.7.2 Let px be the modulus of smoothness of a Banach space X .
Then px is an increasing continuous convex function.

Proof. Because for fixed z,y € X with ||z]| =1, ||y|| = 1, the function

_ Nzt tyll + ll= = tyll
2

f(t) —1,teR

is convex and continuous on R, it follows that the modulus of smoothness px is
also continuous and a convex function.

Moreover, f(—t) = f(t) for each t € R, f is nondecreasing on R*. Hence px

is nondecreasing.

The following theorem gives us an important relation between the modulus
of convexity of X (respectively, X*) and that of smoothness of X*
(respectively, X).

Theorem 2.7.3 Let X be a Banach space. Then we have the following:

(a) px=(t) :sup{tg —ox(e):0<e< 2} for allt > 0.
(b) px(t) sup{t; —ox+(e):0<e< 2} for allt > 0.

Proof. (a) By the definition of modulus of smoothness of X*, we have

2px+(t) = sup{[|a” + ty" ||« + [[#" — ty*[l« = 2: 2", y" € Sx+}

sup{{(z, ™) +t(x,y" )+ (y, ™) —t{y,y")—2 : x,y € Sx,z",y" € Sx~}
sup{[|z + yl| + tz —yl| —2: 2,y € Sx}

— sup{lz gl +te—2:my € Sx. -yl =0 <c<2)

= sup{te —20x(e) : 0 < e < 2}.

Part (b) can be obtained in the same manner. 1
As an immediate consequence of Theorem 2.7.3 (b), we have

Corollary 2.7.4 Let X be a Banach space. Then px (t)/t is increasing function
and px (t) <t for all t > 0.

Theorem 2.7.3 allows us to estimate px for Hilbert spaces. Indeed, we have
Proposition 2.7.5 Let H be a Hilbert space. Then fort >0

pr(t) = sup{te/2—1+ (1 -/ :0<e <2} =1 +tH)/2 -1
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Observation

e If X is a Banach space and H is a Hilbert space, then px(¢t) > pu(t) =

vV1+4+1t2—1forallt>0.

Let X be a Banach space. Then the characteristic of converity or the
coefficient of convexity of the Banach space X is the number

€0(X) =sup{e € [0,2] : 6x () = 0}.

The Banach space X is said to be uniformly convez if eq(X) = 0 and uniformly
nonsquare if €9(X) < 2. One may easily see that the modulus of convexity dx
is strictly increasing on [e, 2].

Example 2.7.6 Let X = R? with norm || - ||s defined by

[£]loo = [I(z1, 22) |00 = max{|z1], |2}

Then X has a square-shaped unit ball for which dx(g) =0 for e € [0,2]. Hence
€0 (X) =2.

The following theorem gives an important relation between the modulus of
smoothness of a Banach space and the characteristic of convexity of its dual
space.

Theorem 2.7.7 Let X be a Banach space. Then the following statements are

equivalent:
px(t)

(a) PH(I)T < ¢e/2 for alle < 2.

(b) €0(X*) < e foralle <2.

Proof. (a) = (b). Let € € [0,2]. Suppose, for contradiction, that ey(X™*) > e.
Then there exist {f,} and {g,} in Sx~ such that

Ilfn — gnll« > € and nlggo | fr + gnllx = 2. (2.24)

From the definition of px, we get

T —ty
2

px(t) >

T +ty
2

H—lforallt>0andx,y€5’x.

Therefore,

H‘f(y) g(y)‘

—1forall f,g e Sx~.

Because = and y were arbitrary, we get

+tHf_g

-1
2

f+g
2

* *
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In particular, we have

px(t) > ‘ f”;gn —|—t‘ f”;gn —1forallneN.
It follows from (2.24) that
OEE-
PX =5

(b) = (a). Assume that €y(X™*) < € and let &' € (e9(X™*),e). Set ' = dx~ (&)
and consider ¢ € [0,2]. There are two possibilities :
(i) Assume that ¢t < &’. Then tA/2 < Ae’/2 and so tA/2 — dx«(t) < \e’/2.
(ii) Assume that ¢ < ¢. Then dx«(t) > dx«(¢') = t/, because the
modulus of convexity is an increasing function. Therefore,

A
5 <A<t <dx«(t) for any A < t'.

This implies that
tA
5 = dx+(t) < 0.

Therefore, in any case we have for A < ¢/

/
sup{t; —ox«(t): te [0,2]} < /\76

Using Theorem 2.7.3, we get px(A) < Ae’/2, which gives that PH%) px(N)/X\ <
¢’ /2. Our choice of ¢’ implies that (b) is true. |

Let X be a Banach space. Then the characteristic of smoothness of X is the

number
px(t)

po(X) = }E}% 7t

The following theorem allows us to estimate pg(X) for Banach spaces X.

Theorem 2.7.8 Let X be a Banach space. Then

Proof. Assume first that ¢o(X*) = 2. Then dx+(¢) = 0 for every € € [0,2].
Therefore, using Theorem 2.7.3, we get px (t) =t for every ¢ > 0. Hence
lim 2X®) _ 40X
t—0 t 2

Now if we assume that eg(X™) < 2, then from Theorem 2.7.7 we get the desired

conclusion. I
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Using Theorem 2.7.3 and 2.7.8, we have

Theorem 2.7.9 Let X be a Banach space. Then we have the following:
(a) po(X) = eo(X™)/2.
(b) po(X™) = €o(X)/2.

2.8 Uniform smoothness
Recall that the Banach space X is uniformly convex if dx () > 0 for all e € (0, 2].

We now define uniform smoothness of a Banach space.

Definition 2.8.1 A Banach space X is said to be uniformly smooth if

/ _
PX(O) 20

Example 2.8.2 The ¢, spaces (1 < p < 2) are uniformly smooth. In fact,

. pe,(t) L (1tr)P—1
lim = lim =
t—0 t t—0 t

0.

Uniform smoothness has a close relation with differentiability of norm.
Theorem 2.8.3 Every uniformly smooth Banach space X is smooth.

Proof. Suppose, for contradiction, that X is not smooth. Then there exist
x € X\{0}, and 4,j € X* such that ¢ # j, ||i|| = ||j|| = 1 and (x,7) = (z,j) =
|lz]|. Let y € X such that ||y|| =1 and (y,7 — j) > 0. For each ¢ > 0, we have

O < t<y7z _.]>
= Hy,i) =y, ])
_ ettty i+ z—tyg)
N 2
< ety +llz —ty o,
- 2
and it follows that
px(t)

O<<y,ifj>§Tforeacht>0.

Hence X is not uniformly smooth. I

Next, we establish the duality between uniform convexity and uniform smooth-
ness.

Theorem 2.8.4 Let X be a Banach space. Then X is uniformly smooth if and
only if X* is uniformly convez.
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Proof. Recall that
t
pX(t):sup{;—cSX*(s) :0<5<2} for all ¢ > 0. (2.25)

Suppose, for contradiction, that X* is not uniformly convex. Then there exists
g0 € (0,2] with dx+(g9) = 0. From (2.25), we have

te
70 — dx~(g0) < px(t)
which gives us that
t
0<5—20§pXT()for all t >0,

and this means that X is not uniformly smooth.
Conversely, assume that X is not uniformly smooth. Then p(0) =

t t
}in% pLU # 0. Hence for ¢ > 0 with }iH(l) pXT() = ¢, there exists a sequence
{t,,} in (0,1) such that
123
t, — 0 and lim pXt( =ec.

From (2.25), there exists a sequence {e, } in (0, 2] such that

€ tneEn
7tn < _6 *\en /)y
pin s =5 ~ox(en)
which implies that
ln
0 <dx=(en) < 5(6” —¢)

It follows from the condition ¢,, < 1 that ¢ < &,,. Because dx~ is a nondecreasing

function, we have Jx« () < dx=(g,) — 0, i.e., X* is not uniformly convex. |
Theorem 2.8.5 Let X be a Banach space. Then X is uniformly convex if and
only if X* is uniformly smooth.

Proof. Notice

t
px~(t) =Sup{2€—5x(6)20<6§2} for all ¢ > 0.

By interchanging the roles of X and X*, we obtain the result by Theo-
rem 2.8.4.

Theorem 2.8.6 FEvery uniformly smooth Banach space is reflexive.
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Proof. Let X be a uniformly smooth Banach space. Then X* is uniformly
convex and hence X* is reflexive. It follows from Theorem 1.9.26 (which states

that the reflexivity of X* implies the reflexivity of X) that X is reflexive.

Fréchet differentiability of norm and uniform smoothness

Uniform smoothness can be characterized by uniform Fréchet differenti-
ability of the norm.

The norm of a Banach space X is said to Fréchet differentiable if for each
= + ty|| — |||l

. exists uniformly for y € Sx.

r € Sx, lim
X t—0

In the other words, there exists a function €,(s) with £,(s) — 0 as s — 0
such that

[z +tyll = llz]| = #(y, J2)| < [tlex(|t]) for all y € Sx.

In this case, the norm is Gateaux differentiable and

sllz + tyl|* — )l=)?

. =0 forall z € X.

lim sup
t—0 yESx

(y, Jz)

On the other hand,

1 1
slell®+ (b Jz) < Sllz+hl* < 5ll2]® + (b, Jz) + b(([A]])

1
- -2

for all bounded z,h € X, where b is a function defined on R™ such that
lim @ =0.
t—0 ¢
We say that the norm of a Banach space X is uniformly Fréchet differentiable
if
Ll gyl — ]

lim ; exists uniformly for all z,y € Sx.

We now establish some results concerning Fréchet differentiability of the
norm of Banach spaces.

Theorem 2.8.7 Let X be a Banach space with a Fréchet differentiable norm.
Then the duality mapping J : X — X* is norm to norm continuous.

Proof. It is sufficient to prove that z,, — x € Sx = Jx, — Jxr € Sx-. Let
{z,} be a sequence in Sx such that x,, — x. Then x € Sx. Because X has a
Fréchet differentiable norm,

t —
tlin(l) w = (y, Jx) uniformly in y € Sx,
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i.e., for any € > 0, there exists § > 0 such that

[+ tyll = ll=ll

; (y, Jxy| < e forall y € Sx and all ¢t with 0 < [t] < 4.

Hence

[z +tyl| = llz|| <t((y, Jz) +¢) and |z — ty|| — |l=[| < =t((y, Jz) =€),

so that
|z +ty|| — 1 <t((y,Jz) +¢) and ||z — ty|| — 1 < t(e — (y, Jz)).
Note
0<1—(z,Jay) = (z,,Ja,) — (x,Jx,)
< Axp—x,Jxy,)
< lzn =2l Jznl« = llzn — 2l =0,

ie., (z,Jx,) — 1 as n — oo. Then there exists ng € N such that
1 < {(x,Jx,) + te for all n > ng.
Because
1—te <(x,Jzx,) = (x,Je+Jx,)—1
= (x+ty, Jz)+ (x —ty, Jz,) — t{y, Jr — Jz,) — 1
&+ tyllI Tzl + 2 — tyll | Tzall, — g, Jo — Jo) — 1

t(y, Jo) +te + 1+ 1+ te — t{y, Ja) — t{y, Jo — Jx,) — 1
2te — t{y, Jr — Ja,) + 1,

INIA

this implies that
(y, Jo — Jx,) < 3¢ for all y € Sx.

Similarly, we can show that
(y, Jx,, — Jay < 3e for all y € Sx.

Thus,
’(y, Jx, — Jx>| < 3efor all n > ng and y € Sx
which gives us
|Jz,, — Jz||. < 3e for all n > ny.

Therefore, x,, — x in X implies Jx,, — Jx in X*. I

Theorem 2.8.8 Let X be a Banach space. Then the following are equivalent:
(a) X has a uniformly Fréchet differentiable norm.

(b) X* is uniformly conve.
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Proof. (a) = (b). Suppose the norm of X is uniformly Fréchet differentiable.
Then for any £ > 0, there exists 6 > 0 such that

[z +tyll = ll=ll _

; (y, Jxy| < % for all z,y € Sx and all ¢ with 0 < |¢] < 4.

Then for fixed ¢t with 0 < ¢t < §, we have
te
lz +tyll < o +t{y, Jo) +1
and

te

r—ty|| <
o —tyll < 3

—t(y, Jz) + 1.

As a result ;
€
|z + ty|| + ||z — ty|| < i 2 for all z,y € Sx.

Now, let i,j € Sx+ with ||i — j|l« > € > 0, then there exists yo € Sx such that
o €
{o.i=7) >3-
Note
li+jlls = sup(z,i+j)

TESx

= sup (<$+tyo,l>+<1'—ty0,]>—<ty0,Z—]>)
rESx

te
< sup (|lz+tyoll + ||z — tyoll — =

r€Sx 2
te te

< —4+2—-—

- 4+ 2

< o

- 2

This implies ||(¢ + 7)/2][« < 1 — d(¢). Hence X* is uniformly convex.
(b) = (a). Let z,y € Sx. Then for t > 0,

y,Jz) _ (z+ty, Jo) — |z
(B4 |||
= + tylll|l=|| — [J=]*
ta]
e+ tyll — Il
t
2 +tyl* — [|= + ty]|[| =]
tz + ty||
(x +ty, J(z + ty)) — (z, J(z + ty))
tljz +ty||
(y, J(z +ty))
|+ ty||

IN

IA
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and for ¢t < 0,

(v, + 1)) _ o tyll = el J2)
el ¢t

By Theorem 2.4.15, X has a uniformly Fréchet differentiable norm. I

Theorem 2.8.9 Let X be a Banach space with uniformly Fréchet differentiable
norm. Then the duality mapping J : X — X* is uniformly continuous on each
bounded set in X.

Proof. Because X* is uniformly convex, the result follows from Theorem 2.4.15

We now study the duality mapping from X* to X. To do so, we define the
conjugate function f* : X* — (—o0,00] of any function f: X — (—o0, 0] by

[G) =suwp{(z,j) — f(z) 0w € X}, jeX" (2.26)
The conjugate of f*, i.e., the function on X defined by
[ (@) =sup{(z,j) = [*(j):j € X}, weX
is called the biconjugate of f.

Observation

e f is lower semicontinuous proper convex on X if and only if f** = f.

Example 2.8.10 Let C be a nonempty subset of normed space X. Then the
conjugate of the indicator function ic of C' is given by

ie(j) =sup{{z,j) :x € C}, jeX".
The function ¢, is called the support function of C.
We now give some basic properties of conjugate functions.
Proposition 2.8.11 Let f* be the conjugate function f. Then

f@)+ f*(4) = (x,j) forallz € X,j € X*. (2.27)

Proof. It easily follows from (2.26). |

The inequality (2.27) is known as the Young inequality. Observe also that if
/ is a proper function, then the relation (2.26) can be written as

f7(G) = sup{(z,j) — f(x) : x € Dom(f)}, j € X~
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Proposition 2.8.12 Let f* be the conjugate function of f. Then
(cf)*(j) = cf*(c719) for allc > 0 and j € X*.
Proof. For j € X*, we have
(cf)(G) = sup{(z,j) — (cf)(z) 1z € X}
csup{c Nz, j) — f(x) : x € X}
= csup{(z,c ) — f(z) :z € X}
= cf*(cy). 1

Proposition 2.8.13 Let X be a normed space and f : X — (—o0, 0] a proper
convez function. Then the following statements are equivalent:

(a) j € Of(x) forx € X.

(b) F(@)+ F*(j) < (,).

(c) F(@) + F7(j) = (,J).

Proof. (b) & (¢). The Young inequality (2.27) shows that (b) and (c¢) are
equivalent.

)

x)

(¢) & (a). Suppose condition (c) holds. Then from the Young inequality (2.27),
we find that

fy) = @) 2 (y — x,j) for ally € X,
ie., j€adf(x).
Using a similar argument, it follows that (¢) = (a). |

Proposition 2.8.14 Let X be a normed space and f: X — (—o00,00] a lower
semicontinuous proper convex function. Then j € 0f(x) < x € df*(j).

Proof. Because f is a lower semicontinuous convex function, f** = f. Observe
that

jedf(@) & fl@)+ ()= (x7)
& [T @)+ 0) = (,9)
= zear(). 1
Proposition 2.8.15 Let X be a Banach space. If f(x) = ||z||?/p, p > 1, then
@) =15l¢/q, 1/p+1/q=1.

Proof. Because Jy(z) = O(||z[|P/p) = {j € X* : (z,5) = [[llljll+ il =
|lz||P~1}, we have

f7(3) = sup{(z,j) — f(x)) = sup{l|||” —[l«[|"/p} = sup{l|=]"/q}.
reX reX reX

Note [ljll. = ll«["~" so [ljl|f = fJz[|**~ = |lz||P. Therefore, f*(j) =
1711%/4-
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Theorem 2.8.16 Let p > 1. Let X be a uniformly smooth Banach space and
let J, : X — X* and J; : X* — X be the duality mappings with gauge functions
pp(t) = P~ and pg(t) = 771, respectively. Then J; = Jr.

Proof. The uniform smoothness of X implies that X is reflexive (see
Theorem 2.8.6) and that X* is uniformly convex and reflexive. Note also J, is
surjective if and only if X is reflexive. Because .J, is single-valued, it follows

that the inverse J, ! : X* = Dom (J, ') — X = X** exists and is given by

J7NG) ={z € X :j=Jy(x)} for all j € X*.

P
Now, let ®(¢) = tP/p, t > 0. It is easy to see that ®(||-]|) = ||-||”/p is a continuous
convex function and that its conjugate is given by ®*(||j|l«) = |7]|%/q for all

j € X*. Note Jyp(x) = 0@(||z|) and J;(j) = 0@*(|[j[|«) for all x € X,j € X*.
Using Proposition 2.8.14, we have

j € (||z) if and only if z € dB*(||j]|.).

Therefore, J, ' (j) = J7(j) for all j € X*. |

The following inequality is very useful in the existence and approximation
of solutions of nonlinear operator equations.
Theorem 2.8.17 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convez.
(b) For any p, 1 < p < oo and r > 0, there exists a strictly increasing convex
function g, : RT — RT such that g.(0) =0 and
[tz + (1 = )y||” < tljz]|” + (1 = )l[yl” — (1 = t)gr (= — yl) (2.28)
for all z,y € B,.[0] and t € [0,1].

Proof. (a) = (b). Let X be a uniformly convex Banach space. Assume that
1 < p < oo. It suffices to prove that (2.28) is true for r = 1. Now we define a
function v by

v(e) = mf{2P(|lz]]P + [[yll?) = [l + y|IP : 2,y € Bx and [z —y| > ¢}
for all € € (0,2].
Because
b\ P P pp
(a; ) < ot for all a,b > 0 and a # b, (2.29)
we have

v(e)>0forall0<e <2,

Suppose that y(¢) = 0 for some ¢ > 0. Then there exist sequences {z,,} and
{yn} in Bx such that ||z, — y,|| > ¢ for all n € N and

lim 277 ([|zn [P + [lynl?) = |zn + yul/” = 0.
n—oo
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We may assume a subsequence of {z,,} denoted by {x,} such that
a= lim ||z,|, b= lm |y,|| and ¢ = lim ||z, + y,||
n—oo n—oo n—oo

exist. Thus,

a+b\"  aP 4P
2 2

i.e., equality of inequality (2.29) holds with ¢ = a +b. Fora = b > 0, ¢ =
2a = lim |@, + yn||, it follows from Theorem 2.2.7 that lim |z, —y,|| =0, a

contradiction. Therefore,
v(e) >0foralle, 0<e<2.

Now set

e S AP A (= Myl = Az + (1 = Myl
u(e) == mf{ A=) },

where the infimum is taken over all z,y € Bx with ||z —y|| > € and X € (0,1).
Note u(e) > v(g)/2P~1 > 0 for all £, 0 < & < 2. Thus, it suffices to take as g;
the double dual Young’s function p**.

(b) = (a). Suppose (2.28) is satisfied. For x,y € Bx and ||z — y|| = &, we
have

Tty 1
1— =
B H = 491(5)
S 1—(5}((6),

ie., dx(e) > g¢1(e)/4, which shows that X is a uniformly convex Banach

space.

2.9 Banach limit

In this section, we generalize the concept of limit by introducing Banach limits
and we discuss its properties.

Let £ : ¢ — K be the “limit functional” defined by
l(z) = lim z; for z = {z;} € c.

Then ¢ is a linear functional on ¢. In order to extend limit £ on £, use the
following notations and results.

Let S be a nonempty set and let B(S) be the Banach space of all bounded
real-valued functions on S with supremum norm.

Example 2.9.1 Let S=N=1{1,2,3,---}. Then B(S) = .
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Let X be a subspace of B(S) and let j be an element of X*. Let e be a
constant function on X defined by e(s) = 1 for all s € S. We will denote j(e) by
j(1). When X contains constants, a linear functional j on X is called a mean

on X if [[j]l. = j(1) = L.

The following example shows that there is a subspace of ¢, for which the

mean exists.

Example 2.9.2 Let (oo = {x = {x;} : sup|z;| < oo} and X a subset of loo
1€EN

such that

1 n
X = = it €l i i — i ,Sts p.
{x {z;} nergoan eris s}

i=1

Then X is a linear subspace of bos. In fact, for x = {x;} and y = {y;} in X,

we have

n—oo 1

I ‘ I ‘
nlirr;o -~ E 1 x; exists and lim — E 1 Y; erists.
i= i=

Hence for scalars a, 3, we have

Oél‘+6y:(04$1 +/6y1a 7a$z+ﬁyla)

Using (2.30), we obtain that

n

1 RS 1
li *g i i) = o li *E i li *g i
Jim -~ (ax; + By;) a(ngn - x)+ﬂ(n1m - Yi)

i=1 i=1 i=1

(2.30)

exists. It follows that X is a linear subspace of £o,. We now define j : X — R

by
1 n
j(z) = li fE i Il X.
j(x) "Lnéoni,lx forallz €

Note j(1) =1 and

: RS
i) = nh_{gogzxz
1=1
1 n
< - :
< lrrlnjolianm'
i=1
< 7]l

and it follows that ||j||« = 1. Therefore, j is linear and ||j||« = j(1) =1, i.e., j

is a mean on X.

We now give an equivalent condition for mean.
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Theorem 2.9.3 Let X be a subspace of B(S) containing constants and j € X*.
Then the following are equivalent:

(a) j is a mean on X, i.e., ||j]l« = j(1) = 1.
(b) The inequalities

inf z(s) < j(z) < supx(s)
s€S sES

hold for each x € X.

Proof. (a) = (b). First, we show that j(x) > 0 for all # > 0. Suppose, for
contraction, that j(x) < 0. Choose a positive number K with < K. Then

JK —x)=Kj1) - j(z) =K — j(z) > K.
Because

JK =) < |Gl [K ==l = [|[K -] = 81615|fo(5)| <K,

it follows that
K <j(K-z)<K,
a contradiction. Therefore, j(z) > 0.
Observe that

inf z(s) < x < supx(s) for each x € X.
ses s€S

Because j(z) > 0 for > 0, we have

inf 2(s) = j(inf 2(s)) < j(2) < j(ilelgx(S)) = sup (s).

(b) = (a). For x = 1, we have 1 < j(1) < 1 and hence j(1) = 1. Note for each
reX,

Jj(@) < supa(s) < supla(s)| = ||
ses sES

and

—j(@) =j(=2) < || — =l = [|l=[,
so |j(z)] < ||lz|| for each # € X. Thus, ||j||« = 1. Therefore, |j|l. = j(1) = 1,
i.e., j is a mean on X.

Let f € {o. We denote fn(xn+m) for f(xm+17zm+23xm+37 T, )a
m=20,1,2,--- . A continuous linear functional j on [, is called a Banach limit
if

(L1) Il = 3(1) =1,

(L2) jn(xn) = jn(xns1) for each © = (21,29, ) € loo.

It is denoted by LIM.
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Theorem 2.9.4 (The existence of Banach limits) — There exists a linear
continuous functional j on lo such that ||j||« = j(1) = 1 and j,(zn) = ju(Tnt1)
for each x = {xy }nen € loo-

Proof. Let p: {o, — R be the functional defined by

. T+ X2+ Tp
p(z) = limsup .

n—oo n

Then

—p(—x) = liminf Tttt o
n— 00 n

For x € ¢, we have
x1+x2++1~n

(x) = lim z, = lim = p(a).
n—o0o n—o0 n
Moreover,
p(z+vy) < plx)+ply) for all z,y € ¢
and

p(ax) = ap(x) for all x € ¢ and a > 0.

Thus, p is a sublinear functional with ¢(x) = p(xz). By the Hahn-Banach
theorem, there is an extension L : £o, — R of £ (from ¢ to £,) such that

L(z) < {(z) for all € {

and
—p(—z) < L(z) < p(x) for all x € lo.

Thus, we have
p(17 17 17) =1

and

. T — T
p((@1, @2, gy ) = (X2,23, 7+, Tpsr, -+ +)) = limsup % = 0.

n—oo

Hence

L((xthu"' ,.’L’n7"') - (1'2,1'37"' ,"En+1,"')) :07
which implies that
L(xl’x27... 7xn,...) :L(l‘g,ﬂfg,'” ’x7b+1...)

for all z = (1,2, Tp, ) € loo-
Therefore, L is a Banach limit. I

Observation

e Every Banach limit is a positive functional on fo, i.e., LIMy(z) > 0 for all
T € loo.

o LIM(1,1,-+-1,--) =1.

We now give elementary properties of Banach limits.
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Proposition 2.9.5 Let LIM be a Banach limit. Then

liminf 2, < LIM(z) < limsupz, for each © = (21,22, ) € l.

n— o0 n—00
Moreover, if x,, — a, then LIM () = a.
Proof. For each m € N, we have

LIMy(t0) = LIMy(@ns1) = -+ = LIMu(ni(m-1) > inf

and hence LIM, (x,) > sup inf x, = liminfz,.
meNn=>m n—00

Similarly, since LIM,(z,) < sup z,, we have LIM,(z,) < limsupz,.

n>m n—oo
Therefore,

liminf x,, < LIM(z) < limsupx,, for each x = (21,22, ) € .

n—00 n— oo
Letting =, — a, we have liminfz, = limsupz, = a and hence LIM/(x)
n—oo

n—oo

—a. |

Proposition 2.9.6 Let a be a real number and let (x1,x2, ) € los. Then the
following are equivalent:

(a) LIM,(x,) < a for all Banach limits LIM.
(b) For each € > 0, there exists mo € N such that

Tn + Tn41 +---+ Tn+m—1
m

<a+e forall m>mgandneN. (2.31)

Proof. (a) = (b). Suppose that for {x,} € lo, we have LIM, (z,) < a for all
Banach limits LIM. Define a sublinear functional ¢ : £, — R by

n+m—1
q(yhyz,---):limsup(supm > y) {yn} € Lo

m—o0o neN .
i=n

By the Hahn-Banach theorem, there exists a linear functional j : /o, — R such
that
J < qand jn(zn) = gn(zn).

It is easy to see that j is a Banach limit. From the assumption, we have

n+m—1
1
Gn(x,) = limsup <sup — Z 1’Z> < a.

m—oo neN M “
i=n

Thus, for € > 0, there exists mg € N such that

Tn + Tn41 + -+ Tn4+m—1
m

< a+ ¢ for all m > mg and n € N.
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(b) = (a). Suppose for each € > 0, there exists my € N such that (2.31) holds.
Let LIM be a Banach limit. Then

L[Mn(xn> _ LIM”(.%‘TL + Tpp1+ o +-’17n+m0—1> <a+e.
mo
Because ¢ is an arbitrary positive real number, we have LIM, (z,) < a. I
Proposition 2.9.7 Let a be a real number and let (x1,xa, ) € oo such that
LIM,(z,) < a for all Banach limits LIM and limsup(z,+1 — 2,) < 0. Then

n—oo
limsup z, < a.

n—oo
Proof. Let ¢ > 0. By Proposition 2.9.6, there exists m > 2 such that

Tn + Tn41 +---+ Tn+m—1
m

<a+gforalln€N.

Choose ng € N such that

Tptl — Tp < for all n > ng.

Let n > ng + m. Observe that

Tn = Tp—qt (xnfiJrl - xnfi) +--+ (wn - xnfl)
i€ .
< Tp_;+ foreach:=0,1,--- ,m — 1.
m—1
Thus,
limsupz, <a-+e.
n—oo
Because ¢ is arbitrary positive number, we get the conclusion. I

We note that if a linear functional j on [, satisfying:

liminf z,, < j(z) < limsupx, for each z = (x1,22, ) € loo,
n—00 n— o0

then j is a mean on /... Thus, every Banach limit on £, is a mean on f.

Let X be a Banach space, {x,} a bounded sequence in X, and LI M a Banach
limit. Then a point zg € X is said to be a mean point of {x,} concerning a
Banach limit LIM if

LIM,(xy,j) = (xo,j) for all j € X™.
We establish two preliminary results related to mean points.

Proposition 2.9.8 (Existence of mean points) — Let X be a reflexive
Banach space and {x,} a bounded sequence in X. Then, for a Banach limit
LIM, there exists a point xo in X such that

LIM;(xn,j) = (x0,j) for all j € X~
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Proof. Note the function LIM, (x,,j) is linear in j. Further, as

|LIMy (2, j)| < (Sugllafnll) Nl
ne

the function LIM, (x,, j) is also bounded in j. So, we have jj € X** such that
LIM,(xn,j) = (j§,j) for every j € X™.

Because X is reflexive, there exists zg € X such that LIM, (x,,j) = (zo,j) for
alljexs |

Proposition 2.9.9 Let {x,} be a bounded sequence in a Banach space X and
xo € X a mean point of {x,} concerning a Banach limit LIM. Then xzy €

Moy C0({Tk frn)-

Proof. If not, there exists ng € N such that z¢ ¢ ¢o{z, : n > ng}. By the
separation theorem, we obtain a point j € X* such that

(x0,7) < inf{(z,j) : z €eo{xn :n >ng}}.
Thus, we have

LIMn<£naj> = <'1:07j> < inf{(zn,j) tn 2z nO}
LIMn{<$mj> 2> nO} = LIMn<xnvj>7

IN

a contradiction. I

We now characterize the sequences in £, for which all Banach limits coincide.
It is obvious that for any element x € ¢,

LIM (z) = ¢(x) = lim =z, for all Banach limit LIM.

n—oo

However, there exist nonconvergent sequences for which all Banach limits
coincide.

Example 2.9.10 Let x = (1,0,1,0,---) € fs. Then
($1,$2,"'$n,"')—‘1-(.132,563,"' ,x7l+1’...) = (1’1,17...)7
and it follows that
LIM,(2n) + LIM,(2ps1) = LIMy(1) = 1 for all LIM.

Using (Ls), we have

1
LIM,(z,) = B for all Banach limit LIM.
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A bounded sequence z = {z;} is said to be almost convergent if all its
Banach limits have the same value at x. Equivalently, x = {z;} € (s is almost
convergent if
lim £ T Tng1 -+ Tpgiol

—00 7

exists uniformly in n.

We have seen in Example 2.9.10 that the sequence (1,0,1,0,---) is not conver-
gent, but it is almost convergent.

In optimization theory, the structure of M defined in our next result is of
much interest.

Theorem 2.9.11 Let C be a nonempty closed convex subset of a reflexive
Banach space X, {x,} a bounded sequence in C, LIM a Banach limit, and
¢ a real-valued function on C defined by p(z) = LIM,||z, — 2||?>, 2 € C. Then
the set M defined by

AI:{UGC:LHWan—uW::mgLUWan—zW} (2.32)
zE

18 a nonempty closed convex bounded set. Moreover, if X is uniformly convex,
then M has exactly one point.

Proof. First, we show that ¢ is continuous and convex. Let {y,,} be a sequence
in C such that y,, — y € C. Set L := sup{|zp, — ym| + ||xn — y|| : m,n € N}.
Observe that

< (zn = ymll + 20 = yIDlzn = ymll = ll2n = yl)
< Ll lzn = ymll = llzn =yl |
< L|ym —y| for all n,m € N.

|zn — ymH2 - Hxn - y”2

Then
LIM,||zn — ymHQ < LIM,||zn — yH2 + L||ym — yl|.

Similarly we have
LIM,||zn — sz < LIMy ||z, — ymH2 + Ll|ym — yll-
Thus, we have

P(ym) = p(@)] < Lilym — x|

Hence ¢ is continuous on C. Now, let x,y € C' and X € [0,1]. Tt is easy to see
that

(1 =Nz +Ay) < (1= M) + Ap(y).
Hence ¢ is convex.
Using the fact ((a + b)/2)? < (a® + b?)/2 for all a,b > 0, we have

5 1* < 2llym — zal® + 2llzal,
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and hence
[yml* < 20(ym) + 2sup ||z 1%,
neN

i.e., ©(ym) — 00 as ||ym|| — oo. Thus, ¢ is a continuous convex functional and
p(z) = o0 as ||z| — oo. Because X is reflexive, ¢ attains its infimum over C'
by Theorem 2.5.8. Then M is a nonempty closed convex set. Moreover, M is
bounded. Indeed, let w € M. Because

lull? < 2|ju — 2, || + 2||2n||? for all n € N,
this implies that
lull> < 2¢(u) + 2K =2 inf p(2) + 2K
ze

for some K > 0.

Now, suppose X is uniformly convex. Let 21,29 € M. Then (z;+22)/2 € M.
Choose r > 0 large enough so that {x,} UM C B,.[0]. Then z, — 21,2, — 22 €
Bs,[0] for all n € N. By Theorem 2.8.17, we have

|-

If z; # 29, we have

. Z1 +Z2 1 1 1
f <o) <« 2 - — Zgor(llz1 —
ZlgcsO(Z) < so( 5 ) < 2s0(21) + 2<P(22) 192 (I[z1 = 22

2
21+ 29
"

1 1 1
< Sllon = 22 + 5lle — 22l = 7020 (1 = 2.

. 1
= inf p(2) — —gor([l21 — 22]|)

zeC 4
< inf ,
2o
a contradiction. Therefore, M has exactly one element. I

Let LIM be a Banach limit and let {z, } be a bounded sequence in a Banach
space X. We observe that if ¢ : X — R is bounded, Gateaux differentiable
uniformly on bounded sets, then a function f : X — R defined by f(z) =
LIM,(z,, + z) is Géateaux differentiable with Gateaux derivative given by
(y, f'(2)) = LIM,(y,¢'(zy, + 2)) for each y € X.

Using the above facts, we give the following result, which will be used in
convergence of sequences {x,} in Banach spaces with Géateaux differentiable
norm.

Theorem 2.9.12 Let X be a Banach space with a uniformly Gateaux differen-
tiable norm and {x,} a bounded sequence in X. Let LIM be a Banach limit
and v € X. Then

LIM, ||z, — u||* = inf LIM,|z, — z|?
zeX

if and only if
LIM,(z, J(zy, —u)) =0 for all z € X.
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Proof. Let u € X be such that LIM,|x, — u|? = in)f{LIMnH:vn — 2|
ze

Then u minimizes the continuous convex function ¢ : X — RT defined by
@é(z) = LIM,||z,, — z||?, so we have ¢ (u) = 0.

Note that the norm of X is Gateaux differentiable, and Jz is the subdiffer-
ential of the convex function ¢(z) = ||z||?/2 at x as the Gateaux differential of

. Hence
LIM,(z, J(xp, —u)) = (z,¢ (u)) = 0 for all z € X.

Conversely, suppose that LIM,{u — z,J(x, —w)) = 0 for all z € X.
IfreX,

lzn — z||? = |zn — ul|* > 2(u — 2, J(x, —u)) for all n € N.
Because LIM,, (u — x, J(x, —u)) = 0 for all z € X, we obtain

LIM |l — ul* = inf LIM, |z, — af/* |
xre

Corollary 2.9.13 Let X be a Banach space with a uniformly Gateauz differ-
entiable norm and C a nonempty closed convex subset of X. Let {x,} be a
bounded sequence in C. Let LIM be a Banach limit and w € C'. Then

uw€ M if and only if LIM,(z, J(xz, —u)) <0 for all z € C.

2.10 Metric projection and retraction mappings

Let C' be a nonempty subset of a normed space X and let x € X. An element
yo € C is said to be a best approximation to x if

2 = yoll = d(x, ©),

where d(z,C) = ing |z — y||. The number d(z,C) is called the distance from x
yeE

to C or the error in approximating x by C.

The (possibly empty) set of all best approximations from z to C' is denoted
by
Po(z) ={y e C: [z —yll = d(z,C)}.
This defines a mapping Pe from X into 2¢ and is called the metric projection

onto C'. The metric projection mapping is also known as the nearest point
projection mapping, prorimity mapping, and best approximation operator.

The set C is said to be a proziminal ? (respectively, Chebyshev) set if each
x € X has at least (respectively, exactly) one best approximation in C'.

2The term “proximinal” is a combination of the words “proximity” and “minimal” and
was coined by Killgrove.
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Observation
e (' is proximinal if Po(z) # 0 for all z € X.
e C is Chebyshev if Po(x) is singleton for each z € X.

e The set of best approximations is convex if C' is convex.
Some fundamental results on proximinal sets are the following:
First, we observe that every proximinal set must be closed.

Proposition 2.10.1 Let C be a proziminal subset of a Banach space X. Then
C is closed.

Proof. Suppose, for contradiction, that C' is not closed. Then there exists a
sequence {x,} in C such that 2, — 2 and 2 ¢ C, but € X. Tt follows that

d(z,C) < ||z, — x| — 0,
so that d(z,C') = 0. Because = ¢ C, it means that

[l —y|| >0 forall yeC.

This implies Peo(z) = 0. This contradicts Po(z) # 0. |

Theorem 2.10.2 (The existence of best approximations) — Let C be a
nonempty weakly compact convex subset of a Banach space X and x € X. Then
x has a best approzimation in C, i.e., Po(x) # (.

Proof. The function f: C — RT defined by

f)=lz—yll, yeC

is obviously lower semicontinuous. Because C' is weakly compact, we can
apply Theorem 2.5.5, and then there exists yo € C such that || — yo|| =

inf ||z — y|.
inf flz =yl

Corollary 2.10.3 Let C be a nonempty closed conver subset of a reflexive
Banach space X. Then each element x € X has a best approximation in C.

Theorem 2.10.4 (The uniqueness of best approximations) — Let C be
a nonempty convex subset of a strictly convexr Banach space X. Then for each
element x € X, C has at most one best approzimation.

Proof. Suppose, for contradiction, that y;, yo € C are best approximations
to z € X. Because the set of best approximations is convex, it follows that

(y1 + y2)/2 is also a best approximation to x. Set r := d(z,C). Then

0<r=llz—yill = e = 2]l = o = (g1 +y2)/2,
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and it follows that
(@ =) + (z =)l = 2r = lz =l + ||z — 2.
By the strict convexity of X we have
x—y =tlx—y2), t>0.

Taking the norm in this relation, we obtain r = tr, i.e., t = 1, which gives

us yi1 = y2- I

The following example shows that the strict convexity cannot be dropped in
Theorem 2.10.4.

Example 2.10.5 Let X = R? with norm || - ||1. It is easy to check that X is
not strictly convex. Now, let

C={(z,y) eR?: |[(z,y)llh <1} = {(z,y) € R®: [2| + [y| < 1}.

Then C' is a closed convex set. The distance from z = (—1,—1) to the set C is
one, and this distance is realized by more than one point of C.

In Theorem 2.10.4, uniqueness of best approximations need not be true for
nonconvex sets.

Example 2.10.6 Let X = R? with the norm || - |2 and C = Sx = {(z,y)} €
R? : 22 +9y% = 1}. Then X is strictly convex and C is a nonconvex set. However,
all points of C are best approzimations to (0,0) € X.

Theorem 2.10.7 If in a Banach space X, every element possesses at most a
best approximation with respect to every convex set, then X 1is strictly convex.

Proof. Suppose, for contradiction, that X is not strictly convex. Then there
exist z,y € X, x # y with

[zl = llyll = (= +y)/2[| = 1.

Furthermore,

Itz + (1 —t)y|| =1 for all ¢ € [0,1].
Set C := co({z,y}). Then ||0 — z|| = d(0,C) for all z € C. This means that
every element of C'is the best approximation to zero and this clearly contradicts

the uniqueness.

From Corollary 2.10.3 and Theorem 2.10.4 (see also Proposition 2.1.10), we
obtain some important results:

Theorem 2.10.8 Let C be a nonempty weakly compact convex subset of a
strictly convex Banach space X. Then for each x € X, C has the unique best
approzimation, i.e., Po(-) is a single-valued metric projection mapping from X
onto C.
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Corollary 2.10.9 Let C be a nonempty closed convex subset of a strictly convex
reflexive (e.g., uniformly convex) Banach space X and let x € X. Then there
exists a unique element xo € C' such that ||x — xo|| = d(z, C).

Observation
e Every closed convex subset C of a reflexive Banach space is proximinal.

e Every closed convex subset C of a reflexive strictly convex Banach is a Chebyshev
set.

e For every Chebyshev set C, we have
(i) Pc(x) is singleton set, i.e., P is a function from X onto C.
(i) ||z — Pc(2)|| = d(z,C) for all x € X.

We now study useful properties of metric projection mappings.

Theorem 2.10.10 Let C' be a subset of a normed space X and T € X. Then
Po(T) C OC.

Proof. Let y € Po(T). Suppose y € int(C). Then there exists an € > 0 such
that B.(y) C C. For each n € N, let z,, = (1/n)Z + (1 — 1/n)y. Then
lzn =yl = (1/n)[z = yl|
For sufficiently large N € N, |zy — y|| < e. Thus, zy € B:(y) C C. On the
other hand,
[T —znll = (1 = 1/N)|z -yl <7 -yl = d(z,C),

which contradicts the fact that y € Po(Z). Therefore, y € 9C. 1

Corollary 2.10.11 Let C be a nonempty closed convex subset of a strictly con-
ver reflexive Banach space X and let © € X. Then we have the following:

(a) If x € C, then Po(z) = x.
(b) If x ¢ C, then Pc(x) € 9C.
Theorem 2.10.12 Let C be a nonempty closed convex subset of a reflexive

strictly convexr Banach space X. If X has the Kadec-Klee property, then the
projection mapping Pc of X onto C' is continuous.

Proof. Suppose, for contradiction, that Pg is not continuous. Then for the
sequence {z,} in X with lim x, =x € X, there exists ¢ > 0 such that

|Po(xy) — Pe(x)|| > e forall neN.

Because
(2, C) — d(z,C)| < [|zn — 2|,

it follows that

llen = Po(za)ll = llo = Po(@)] < [lzn — =]
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This implies that

i [l — Po(e)l| = o — Po(@)]). (2:33)

Because {Pc(z,)} is bounded in C' by (2.33), there exists a subsequence
{Pc(xn,)} of {Pc(xy,)} such that w — lim Po(z,,) = 2 € C. Note

w— lm (x,, — Po(zp,)) =z — z. (2.34)
1— 00
By w-lsc of the functional || - ||, we have

o = 2l < lim inf [lrn, — Po(en,)l = |l — Pe(@)]|

This implies z = Po(z) by definition of the function Pe. From (2.33) and (2.34)

w— lim (xm _PC(xm)) =2z —Pc(z) and lim ”xm _Pc(xm)” =z _PC('I)H'
11— 00

71— 00

Because X has the Kadec-Klee property, we obtain
lim (2,,, — Po(zp,)) =« — Po(x),

i—00

which implies that lim Po(2z,,) = Pc(z), which is a contradiction to the

11— 00

assumption that ||Po(x,) — Po(x)]| > €. |

Then following Proposition 2.5.25, we have

Theorem 2.10.13 Let C' be a nonempty convexr subset of a smooth Banach
space X and let x € X and y € C. Then the following are equivalent:

(a) y is a best approzimation to x: ||z — y|| = d(z,C).

(b) y is a solution of the variational inequality:
(y—2z,Ju(x—y)) >0 forall z € C,
where J,, is a duality mapping with gauge function p.
As an immediate consequence of Theorem 2.10.13, we have

Corollary 2.10.14 Let C be a nonempty convex subset of a Hilbert space H
and Pc be the metric projection mapping from H onto C. Let x be an element
in H. Then the following are equivalent:

(a) ||z = Po(z)|| = d(z, C).
(b) {(x — Po(x), Pc(x) —z) >0 forall z € C.

Proposition 2.10.15 Let C' be a nonempty closed convexr subset of a Hilbert
space X and Pgo the metric projection from X onto C. Then the following hold:

(a) Pc is “idempotent”: Po(Po(x)) = Po(x) for all z € X.
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(b) Pc is “firmly nonexpansive”:
(x =y, Pe(x) = Pe(y)) > |[Pe(e) — Pe(y))l® for all z,y € X.

(¢) Pc is “nonexpansive”: ||Pc(z) — Po(y)|| < l|lx —y|| for all z,y € X.
(d) Po is “monotone”: (Po(x) — Po(y),x —y) >0 for all x,y € X.
(e) Po is “demiclosed”: x, — xo and Po(x,) — yo = Po(zo) = yo.

Proof. (a) Observe that Po(x) € C for all z € X and Po(z) = z for all z € C.
Then Po(Po(x)) = Po(x) for all x € X, ie., P2 = Pc.

(b) Set j := Po(x) — Po(y) for z,y € X. We have
(x —y,j) = (z = Pa(x),4) + (J,4) + (Poy) — v, 4)-
Because from Corollary 2.10.14, we get
(x = Pe(z),j) = 0 and (y — Pc(y), j) = 0,

it follows that
(x—y,9) > 7>

(c¢) This is an immediate consequence of (b).
(d) Tt follows from (b).
(e) From Corollary 2.10.14, we have
(xn, — Po(xn), Po(zy) —2z) >0 forall z e C.
Because x,, — xg and Pco(z,) — yo, we have
(xo — Yo,yo — z) > 0 for all z € C.

Using Theorem 2.10.13, we obtain |[zg — yol| = d(xo,C). Therefore,
Pe(x0) = yo. I

Remark 2.10.16 Proposition 2.10.15(c) shows that in a Hilbert space, a metric
projection operator is not only continuous, but also it is Lipschitz continuous and
hence it is uniformly continuous.

The following result is of fundamental importance. It shows that every point
on line segment joining = € X to its best approximation Px(x) € C has Po(x)
as its best approximation.

Proposition 2.10.17 Let C be a Chebyshev set in a Hilbert space H and
x € H. Then Pe(x) = Pe(y) for ally € co({z, Po(x)}).
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Proof. Suppose, for contradiction, that there exist y € co({z, Pc(x)}) and
z € C such that

ly =zl < lly = Po (@)l
Set y := Ax + (1 — A\) P (z) for some A € (0,1). Then

o=zl < fle—yl+ly— =l
< Nz =yl +lly = Po(2)]
(1 =Nz = Po(z)[| + Allz = Po(2)|| = d(z, C),

a contradiction. I

If C is a Chebyshev set in a Hilbert space H, then
Podx+ (1 =N Pe(z)] = Po(x), x€ H, 0 <A< 1.
Motivated by this fact, we introduce the following:
A Chebyshev subset C' of a normed space X is said to be sun if
Po[Az+ (1 = N)Po(x)] = Po(z) for all z € X and A > 0.
In other words, C' is a sun if and only if each point on the ray from Px(x)

through z also has Po(x) as its best approximation in C.

Let C' be a nonempty subset of a topological space X and D a nonempty
subset of C. Then a continuous mapping P : C' — D is said to be a retraction
if Px = 2 for all x € D, i.e., P2 = P. In such case, D is said to be a retract

of C.
Example 2.10.18 FEvery closed convex subset C' of R™ is a retract of R™.

We have seen in Theorem 2.10.8 that for every weakly compact convex subset
C of a strictly convex Banach space, there exists a metric projection mapping
Pe : X — C that may not be continuous. However, every single-valued metric
projection mapping is a retraction if it is continuous.

Theorem 2.10.19 Ewvery closed convex subset C' of a uniformly convexr Banach
space X is a retract of X.

Proof. By Theorem 2.10.8, there exists a metric projection mapping Po : X —
C such that Po(z) = « for all € C. By Theorem 2.10.12, P¢ is continuous.

Therefore, Pe is retraction.

We now show that every retraction P with condition (2.35) is sunny non-
expansive (and hence continuous).

Proposition 2.10.20 Let C' be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. If P is a retraction of C onto D such
that

(x — Px,J(y — Px)) <0 forallz € C and y € D, (2.35)

then P is sunny nonerpansive.
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Proof. P is sunny: For x € C, set x; := Px + t(x — Px) for all ¢ > 0. Because
C' is convex, it follows that z; € C for all ¢ € (0, 1]. Hence

(x — Pz, J(Px — Pxy)) > 0 and (x; — Pxy, J(Pzy — Px)) > 0. (2.36)
Because x; — Px = t(x — Px) and (t(x — Pz), J(Pxz — Px;)) > 0, we have

(x¢ — Pz, J(Pxz — Pxy)) > 0. (2.37)

Combining (2.36) and (2.37), we get

(

|Px — th||2

Px — x4y + ¢y — Pxy, J(Px — Pxy))
—(xy — Px, J(Px — Pat)) + (v — Pay, J(Px — Pxy))
0.

IAIA

Thus, Px = Px;. Therefore, P is sunny.

P is nonexpansive : For z,z € C', we have from (2.35) that

(x — Pz, J(Px — Pz)) > 0 and (z — Pz, J(Pz — Pz)) > 0.
Hence
(x — z— (Px — Pz),J(Px — Pz)) > 0.
This implies that
(x — 2, J(Px — Pz)) > ||Px — Pz|?
and hence P is nonexpansive. I

We now give equivalent formulations of sunny nonexpansive retraction
mappings.

Proposition 2.10.21 Let C' be a nonempty convexr subset of a smooth Banach
space X, D a nonempty subset of C', and P : C — D a retraction. Then the
following are equivalent:

(a) P is the sunny nonexpansive.
(b) {x — Pz, J(y — Px)) <0 forallz € C and y € D.
(c) x —y, J(Px — Py)) > ||Px — Py| for all 2,y € C.
Proof. (a)= (b). Let P be the sunny nonexpansive retraction and z € C.

Then Px € D and there exists a point z € D such that Px = z. Set M :=
{z+t(x — 2) : t > 0}. Then M is nonempty convex set. Hence for v € M

ly—=z|| = ||Py— Pv| (as P issunny, ie., Pv=z)
< Jly—v||=|y—z+t(z—a)|| for ally € D.

Hence from Proposition 2.4.7, we have

(x — Pz, J(y — Px)) <0.
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(b) = (a). It follows from Proposition 2.10.20.
(b) = (c). Let 2,y € C. Then Px, Py € D and hence from (b), we have
(x — Pz, J(Py — Px)) <0 and (y — Py, J(Pz — Py)) <0.
Combining the above inequalities, we get
(Px— Py — (z —y),J(Pz — Py)) <0.
Hence

(Px — Py, J(Px — Py))
= (Pz—Py—(v—y),J(Pr—Py)) + (x —y,J(Px — Py))
< (x—y,J(Pxz— Py)).

1Pz — Py]*

(¢) = (b). Suppose (c) holds. Let z € C' and y € D. Replacing y by y = Py in
(c), we have

(x — Py, J(Px — P2y) > ||Px— P2y|\27

which implies that
(@ —y,J(Pr —y)) > ||Pz —y|*.

Therefore,

<I—PI7J(PI—y)> = <£E—y,J(PI—y)>+<y—PI,J(PI—y)
1Pz —y|? = [Pz —y|?=0. |

Y

Finally, we give uniqueness of sunny nonexpansive retraction mappings.
Proposition 2.10.22 Let C' be a nonempty convexr subset of a smooth Banach
space X and D a nonempty subset of C. If P is a sunny nonexpansive retraction

from C onto D, then P is unique.

Proof. Let @) be another sunny nonexpansive retraction from C onto D. Then,
we have, for each x € C

(x — Pz, J(y — Pz)) <0 and (z — Qz,J(y — Qz)) <0 for all y € D.
In particular, because Px and Qz are in D, we have
(x — Pz, J(Qx — Pz)) <0 and (x — Qz, J(Px — Qz)) <0,

which imply that ||Pz — Qx||? < 0. Therefore, Pz = Qx for all x € C. 1
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Exercises
2.1 Let X be a strictly convex Banach space and let z,y € X with x # y.

If lz — 2| = lz —wl, |z —yll = [[w -yl and |z —y[ = |l — 2| + ||z — yl],
show that z = w.

2.2 Let X be a uniformly convex Banach space and let dx be the modulus of
convexity of X. Let 0 < ¢ < r < 2R. Show that dx(e/R) > 0 and

Az + (1= Ay < r{l —2M(1 = M)y (;)}

for all x,y € X with ||z]| <, |ly]| <7 and ||z —y|| > € and X € [0,1].

2.3 Let X be a Banach space. Show that X is uniformly convex if and only if
~(t) > 0 for all t € (0, 2], where

y(t) = inf{(z —y, 2" —y*) : x,y € Sx, ||z —y|| > t,2* € J(z),y" € J(y)}.

2.4 If 1 < p < oo, and if the X! s are all strictly convex Banach spaces, show
that

(H Xn)p={z={z,} 2, € X,, for all n € N and Z lzn|%, < oo}
neN neN
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endowed with norm

lzll = D el )7

neN

is strictly convex.

2.5 On L?([0,1],dt), we consider the norm

1 1/2
151 = {508+ 1180

Show that this norm is equivalent to | - ||2, but is not smooth.

2.6 On /;, we consider the norm ||z| = (||2||3 + ||lz]|3)"/?

lzlly =Y~ leals lallz = (D lzal®)'/?).

neN neN
Show that this norm is equivalent to the /;-norm and that it is strictly

convex.

)y L= {"Tn}nGN (Where

2.7 Let C be a nonempty closed convex subset of a strictly convex Banach
space X and D a nonempty subset of C. Let z € C' and P be a sunny
nonexpansive retraction of C' onto D such that ||[Px — y|| = || — y|| for
some y € D. Then Px = .
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