
Chapter 2

Convexity, Smoothness, and
Duality Mappings

Geometric structures such as convexity and smoothness of Banach spaces play
an important role in the existence and approximation of fixed points of nonlinear
mappings. This chapter presents a substantial number of useful properties of
duality mappings and Banach spaces having these geometric structures.

2.1 Strict convexity

Let X be a linear space. The line segment or interval joining the two points
x, y ∈ X is the set [x, y] := {λx + (1− λ)y : 0 ≤ λ ≤ 1}, i.e., [x, y] = co({x, y})
is convex hull of x and y.

The basic property of a norm of a Banach space X is that it is always convex,
i.e.,

‖(1− λ)x + λy‖ ≤ (1− λ)‖x‖+ λ‖y‖ for all x, y ∈ X and λ ∈ [0, 1].

A number of Banach spaces do not have equality when x �= y, i.e.,

‖(1− λ)x + λy‖ < (1− λ)‖x‖+ λ‖y‖
for all x, y ∈ X with x �= y and λ ∈ (0, 1). (2.1)

We use SX to denote the unit sphere SX = {x ∈ X : ‖x‖ = 1} on Banach
space X. If x, y ∈ SX with x �= y, then (2.1) reduces to

‖(1− λ)x + λy‖ < 1 for all λ ∈ (0, 1),

which says that the unit sphere SX contains no line segments. This suggests
strict convexity of norm.
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Definition 2.1.1 A Banach space X is said to be strictly convex if

x, y ∈ SX with x �= y ⇒ ‖(1− λ)x + λy‖ < 1 for all λ ∈ (0, 1).

This says that the midpoint (x + y)/2 of two distinct points x and y in the
unit sphere SX of X does not lie on SX . In other words, if x, y ∈ SX with
‖x‖ = ‖y‖ = ‖(x + y)/2‖, then x = y.

Example 2.1.2 Consider X = R
n, n ≥ 2 with norm ‖x‖2 defined by

‖x‖2 =
( n∑

i=1

x2
i

)1/2

, x = (x1, x2, · · · , xn) ∈ R
n.

Then X is strictly convex.

Example 2.1.3 Consider X = R
n, n ≥ 2 with norm ‖ · ‖1 defined by

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|, x = (x1, x2, · · · , xn) ∈ R
n.

Then X is not strictly convex. To see it, let

x = (1, 0, 0, · · · , 0) and y = (0, 1, 0, · · · , 0).

It is easy to see that x �= y, ‖x‖1 = 1 = ‖y‖1, but ‖x + y‖1 = 2.

Example 2.1.4 Consider X = R
n, n ≥ 2 with norm ‖ · ‖∞ defined by

‖x‖∞ = max
1≤i≤n

|xi|, x = (x1, x2, · · · , xn) ∈ R
n.

Then X is not strictly convex. Indeed, for x = (1, 0, 0, · · · , 0) and y = (1, 1,
0, · · · , 0), we have, x �= y, ‖x‖∞ = 1 = ‖y‖∞, but ‖x + y‖∞ = 2.

The other equivalent conditions of strict convexity are given in the following:

Proposition 2.1.5 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is strictly convex.

(b) For each nonzero f ∈ X∗, there exists at most one point x in X with
‖x‖ = 1 such that 〈x, f〉 = f(x) = ‖f‖∗.

Proof. (a) ⇒ (b). Let X be a strictly convex Banach space and f an element
in X∗. Suppose there exist two distinct points x, y in X with ‖x‖ = ‖y‖ = 1
such that f(x) = f(y) = ‖f‖∗. If t ∈ (0, 1), then

‖f‖∗ = tf(x) + (1− t)f(y) (as f(x) = f(y) = ‖f‖∗)
= f(tx + (1− f)y)
≤ ‖f‖∗‖tx + (1− t)y‖
< ‖f‖∗, (as ‖tx + (1− t)y‖ < 1)
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which is a contradiction. Therefore, there exists at most one point x in X with
‖x‖ = 1 such that f(x) = ‖f‖∗.

(b) ⇒ (a). Suppose x, y ∈ SX with x �= y such that ‖(x + y)/2‖ = 1.
By Corollary 1.6.6, there exists a functional j ∈ SX∗ such that

‖j‖∗ = 1 and 〈(x + y)/2, j〉 = ‖(x + y)/2‖.

Because 〈x, j〉 ≤ 1 and 〈y, j〉 ≤ 1, we have 〈x, j〉 = 〈y, j〉. This implies, by
hypothesis, that x = y. Therefore, (b)⇒ (a) is proved.

Proposition 2.1.6 Let X be a Banach space. Then the following statements
are equivalent:

(a) X is strictly convex.

(b) For every 1 < p <∞,

‖tx+(1−t)y‖p < t‖x‖p+(1−t)‖y‖p for all x, y ∈ X, x �= y and t ∈ (0, 1).

Proof. (a) ⇒ (b). Let X be strictly convex. Suppose x, y ∈ X with x �= y.
By strict convexity of X,

‖tx + (1− t)y‖p < (t‖x‖+ (1− t)‖y‖)p for all t ∈ (0, 1). (2.2)

If ‖x‖ = ‖y‖, then

‖tx + (1− t)y‖p < ‖x‖p = t‖x‖p + (1− t)‖y‖p.

We now assume that ‖x‖ �= ‖y‖. Consider the function t �→ tp for 1 < p < ∞.
Then it is a convex function and

(
a + b

2

)p

<
ap + bp

2
for all a, b ≥ 0 and a �= b.

Hence from (2.2) with t = 1/2, we have
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

p

≤
(
‖x‖+ ‖y‖

2

)p

<
1
2
(‖x‖p + ‖y‖p). (2.3)

If t ∈ (0, 1/2], then from (2.2), we have

‖tx + (1− t)y‖p =
∥
∥
∥
∥2t

x + y

2
+ (1− 2t)y

∥
∥
∥
∥

p

≤
(

2t

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥+ (1− 2t)‖y‖

)p

< 2t

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

p

+ (1− 2t)‖y‖p

≤ t‖x‖p + (1− t)‖y‖p. (by (2.3))

The proof is similar if t ∈ (1/2, 1).
(b)⇒ (a). It is obvious.
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Proposition 2.1.7 Let X be a strictly convex Banach space. If ‖x + y‖ =
‖x‖+ ‖y‖ for 0 �= x ∈ X and y ∈ X, then there exists t ≥ 0 such that y = tx.

Proof. Let x, y ∈ X\{0} be such that ‖x+y‖ = ‖x‖+‖y‖. From Corollary 1.6.6,
there exists j ∈ X∗ such that

〈x + y, j〉 = ‖x + y‖ and ‖j‖∗ = 1.

Because 〈x, j〉 ≤ ‖x‖ and 〈y, j〉 ≤ ‖y‖, we must have 〈x, j〉 = ‖x‖ and
〈y, j〉 = ‖y‖. This means that 〈x/‖x‖, j〉 = 〈y/‖y‖, j〉 = 1. By strict con-
vexity of X, it follows from Proposition 2.1.5 that x/‖x‖ = y/‖y‖. Therefore,
result holds.

We now present the existence and uniqueness of elements of minimal norm
in convex subsets of strictly convex Banach spaces.

Proposition 2.1.8 Let X be a strictly convex Banach space and C a nonempty
convex subset of X. Then there is at most one point x in C such that ‖x‖ =
inf{‖z‖ : z ∈ C}.

Proof. Suppose, there exist two points x, y ∈ C, x �= y such that

‖x‖ = ‖y‖ = inf{‖z‖ : z ∈ C} = d (say).

If t ∈ (0, 1), then by strict convexity of X we have that

‖tx + (1− t)y‖ < d,

which is a contradiction, as tx + (1− y) ∈ C by the convexity of C.

Proposition 2.1.9 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. Then there exists a unique point x ∈ C such
that ‖x‖ = inf{‖z‖ : z ∈ C}.

Proof. Existence: Let d := inf{‖z‖ : z ∈ C}. Then there exists a sequence
{xn} in C such that lim

n→∞
‖xn‖ = d. By the reflexivity of X, there exists a

subsequence {xni
} of {xn} that converges weakly to an element x in C. The

weak lower semicontinuity (w-lsc) of the norm (see Theorem 1.9.10) gives

‖x‖ ≤ lim
n→∞

‖xn‖ = d.

Therefore, d = ‖x‖.

Uniqueness: It follows from Proposition 2.1.8 .

The following result has important applications in the existence and unique-
ness of best approximations.
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Proposition 2.1.10 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. Then for x ∈ X, there exists a unique point
zx ∈ C such that ‖x− zx‖ = d(x,C).

Proof. Let x ∈ C. Because C is a nonempty closed convex subset Banach
space X, then D = {y − x : y ∈ C} is a nonempty closed convex subset
of X. By Proposition 2.1.9, there exists a unique point ux ∈ D such that
‖ux‖ = inf{‖y − x‖ : y ∈ C}. For ux ∈ D, there exists a point zx ∈ C such
that ux = zx − x. Thus, there exists a unique point zx ∈ C such that
‖zx − x‖ = d(x,C).

2.2 Uniform convexity

The strict convexity of a normed space X says that the midpoint (x + y)/2 of
the segment joining two distinct points x, y ∈ SX with ‖x − y‖ ≥ ε > 0 does
not lie on SX , i.e., ∥

∥
∥
∥

x + y

2

∥
∥
∥
∥ < 1.

In such spaces, we have no information about 1 − ‖(x + y)/2‖, the distance of
midpoints from the unit sphere SX . A stronger property than strict convexity
that provides information about the distance 1−‖(x+y)/2‖ is uniform convexity.

Definition 2.2.1 A Banach space X is said to be uniformly convex 1 if for any
ε, 0 < ε ≤ 2, the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε imply there
exists a δ = δ(ε) > 0 such that ‖(x + y)/2‖ ≤ 1− δ.

This says that if x and y are in the closed unit ball BX := {x ∈ X : ‖x‖ ≤ 1}
with ‖x− y‖ ≥ ε > 0, the midpoint of x and y lies inside the unit ball BX at a
distance of at least δ from the unit sphere SX .

Example 2.2.2 Every Hilbert space H is a uniformly convex space. In fact,
the parallelogram law gives us

‖x + y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x− y‖2 for all x, y ∈ H.

Suppose x, y ∈ BH with x �= y and ‖x− y‖ ≥ ε. Then

‖x + y‖2 ≤ 4− ε2,

so it follows that
‖(x + y)/2‖ ≤ 1− δ(ε),

where δ(ε) = 1−
√

1− ε2/4. Therefore, H is uniformly convex.

Example 2.2.3 The spaces 1 and ∞ are not uniformly convex. To see it,
take x = (1, 0, 0, 0 · · · ), y = (0,−1, 0, 0, · · · ) ∈ 1 and ε = 1. Then

‖x‖1 = 1, ‖y‖1 = 1, ‖x− y‖1 = 2 > 1 = ε.

1The concept of uniform convexity was introduced by Clarkson in 1936.
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However, ‖(x+y)/2‖1 = 1 and there is no δ > 0 such that ‖(x+y)/2‖1 ≤ 1−δ.
Thus, 1 is not uniformly convex.

Similarly, if we take x = (1, 1, 1, 0, 0, · · · ), y = (1, 1,−1, 0, 0 · · · ) ∈ ∞ and
ε = 1, then

‖x‖∞ = 1, ‖y‖∞ = 1, ‖x− y‖∞ = 2 > 1 = ε.

Because ‖(x + y)/2‖∞ = 1, ∞ is not uniformly convex.

Observation
• The Banach spaces �p, �n

p (whenever n is a nonnegative integer), and Lp[a, b]
with 1 < p < ∞ are uniformly convex.

• The Banach spaces �1, c, c0, �∞, L1[a, b], C[a, b] and L∞[a, b] are not strictly

convex.

We derive some consequences from the definition of uniform convexity.

Theorem 2.2.4 Every uniformly convex Banach space is strictly convex.

Proof. Let X be a uniformly convex Banach space. It easily follows from
Definition 2.2.1 that X is strictly convex.

Remark 2.2.5 The converse of Theorem 2.2.4 is not true in general. Let β > 0
and let X = co with the norm ‖ · ‖β defined by

‖x‖β = ‖x‖co
+ β

( ∞∑

i=1

(
xi

i

)2)1/2

, x = {xi} ∈ co.

The spaces (co, ‖ · ‖β) for β > 0 are strictly convex, but not uniformly convex,
while c0 with its usual norm is not strictly convex.

Theorem 2.2.6 Let X be a uniformly convex Banach space. Then we have the
following:

(a) For any r and ε with r ≥ ε > 0 and elements x, y ∈ X with ‖x‖ ≤ r,
‖y‖ ≤ r, ‖x− y‖ ≥ ε, there exists a δ = δ(ε/r) > 0 such that

‖(x + y)/2‖ ≤ r[1− δ(ε/r)].

(b) For any r and ε with r ≥ ε > 0 and elements x, y ∈ X with ‖x‖ ≤ r,
‖y‖ ≤ r, ‖x− y‖ ≥ ε, there exists a δ = δ(ε/r) > 0 such that

‖tx + (1− t)y‖ ≤ r[1− 2min{t, 1− t}δ(ε/r)] for all t ∈ (0, 1).

Proof. (a) Suppose that ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε > 0. Then we have
that ∥

∥
∥
∥

x

r

∥
∥
∥
∥ ≤ 1,

∥
∥
∥
∥

y

r

∥
∥
∥
∥ ≤ 1 and

∥
∥
∥
∥

x

r
− y

r

∥
∥
∥
∥ ≥

ε

r
> 0.
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By the definition of uniform convexity, there exists δ = δ(ε/r) > 0 such that
∥
∥
∥
∥

x + y

2r

∥
∥
∥
∥ ≤ 1− δ,

which yields ∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ r(1− δ).

(b) When t = 1/2, we are done by Part (a). If t ∈ (0, 1/2], we have

‖tx + (1− t)y‖ = ‖t(x + y) + (1− 2t)y‖ ≤ 2t‖x + y

2
‖+ (1− 2t)‖y‖. (2.4)

From part (a), there exists a δ = δ(ε/r) > 0 such that
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ r

[

1− δ

(
ε

r

)]

.

From (2.4), we have

‖tx + (1− t)y‖ ≤ 2t

[

1− δ

(
ε

r

)]

r + (1− 2t)r (as ‖y‖ ≤ r)

≤ r

[

1− 2tδ

(
ε

r

)]

.

Now by the choice of t ∈ [1/2, 1), we have

‖tx + (1− t)y‖ = ‖(2t− 1)x + (1− t)(x + y)‖

≤ (2t− 1)‖x‖+ 2(1− t)
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

≤ (2t− 1)r + 2(1− t)r
[

1− δ

(
ε

r

)]

= r

[

1− 2(1− t)δ
(

ε

r

)]

.

Therefore,

‖tx + (1− t)y‖ ≤ r

[

1− 2min{t, 1− t}δ
(

ε

r

)]

.

Theorem 2.2.7 Let X be a Banach space. Then the following are equivalent:

(a) X is uniformly convex.

(b) For two sequences {xn} and {yn} in X,

‖xn‖ ≤ 1, ‖yn‖ ≤ 1 and lim
n→∞

‖xn + yn‖ = 2⇒ lim
n→∞

‖xn − yn‖ = 0. (2.5)
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Proof. (a) ⇒ (b). Suppose X is uniformly convex. Let {xn} and {yn} be
two sequences in X such that ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 for all n ∈ N and
lim

n→∞
‖xn + yn‖ = 2. Suppose, for contradiction, that lim

n→∞
‖xn − yn‖ �= 0. Then

for some ε > 0, there exists a subsequence {ni} of {n} such that

‖xni
− yni

‖ ≥ ε.

Because X is uniformly convex, there exists δ(ε) > 0 such that

‖xni
+ yni

‖ ≤ 2(1− δ(ε)). (2.6)

Because lim
n→∞

‖xn + yn‖ = 2, it follows from (2.6) that

2 ≤ 2(1− δ(ε)),

a contradiction.
(b)⇒ (a). Suppose condition (2.5) is satisfied. If X is not uniformly convex,

for ε > 0, there is no δ(ε) such that

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε⇒ ‖x + y‖ ≤ 2(1− δ(ε)),

and then we can find sequences {xn} and {yn} in X such that
(i) ‖xn‖ ≤ 1, ‖yn‖ ≤ 1,

(ii) ‖xn + yn‖ ≥ 2(1− 1/n),
(iii) ‖xn − yn‖ ≥ ε.

Clearly ‖xn − yn‖ ≥ ε, which contradicts the hypothesis, as (ii) gives
lim

n→∞
‖xn + yn‖ = 2. Thus, X must be uniformly convex.

For the class of uniform convex Banach spaces, we have the following
important results:

Theorem 2.2.8 Every uniformly convex Banach space is reflexive.

Proof. Let X be a uniformly convex Banach space. Let SX∗ := {j ∈ X∗ :
‖j‖∗ = 1} be the unit sphere in X∗ and f ∈ SX∗ . Suppose {xn} is a sequence in
SX such that f(xn) → 1. We show that {xn} is a Cauchy sequence. Suppose,
for contradiction, that there exist ε > 0 and two subsequences {xni

} and {xnj
}

of {xn} such that ‖xni
−xnj

‖ ≥ ε. The uniform convexity of X guarantees that
there exists δ(ε) > 0 such that ‖(xni

+ xnj
)/2‖ < 1− δ. Observe that

|f((xni
+ xnj

)/2)| ≤ ‖f‖∗‖(xni
+ xnj

)/2‖ < ‖f‖∗(1− δ) = 1− δ

and f(xn) → 1, yield a contradiction. Hence {xn} is a Cauchy sequence and
there exists a point x in X such that xn → x. Clearly, x ∈ SX . In fact,

‖x‖ = ‖ lim
n→∞

xn‖ = lim
n→∞

‖xn‖ = 1.

Using the James theorem (which states that a Banach space is reflexive if and
only if for each f ∈ SX∗ , there exists x ∈ SX such that f(x) = 1), we conclude
that X is reflexive.
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Remark 2.2.9 Every finite-dimensional Banach space is reflexive, but it need
not be uniformly convex, for example, X = R

n, n ≥ 2 with the norm ‖x‖1 =
n∑

i=1

|xi|.

Combining Proposition 2.1.9 and Theorems 2.2.4 and 2.2.8, we obtain the
following interesting result:

Theorem 2.2.10 Let C be a nonempty closed convex subset of a uniformly
convex Banach space X. Then C has a unique element of minimum norm, i.e.,
there exists a unique element x ∈ C such that ‖x‖ = inf{‖z‖ : z ∈ C}.

We now introduce a useful property.

Definition 2.2.11 A Banach space X is said to have the Kadec-Klee property if
for every sequence {xn} in X that converges weakly to x where also ‖xn‖ → ‖x‖,
then {xn} converges strongly to x.

Remark 2.2.12 In Definition 2.2.11, the sequence {xn} can be replaced by the
net {xα} for the definition of the Kadec property.

The following result has a very useful property:

Theorem 2.2.13 Every uniformly convex Banach space has the Kadec-Klee
property.

Proof. Let X be a uniformly convex Banach space. Let {xn} be a sequence
in X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. If x = 0, then lim

n→∞
‖xn‖ = 0,

which yields that lim
n→∞

xn = 0.
Suppose x �= 0. Then we show that xn → x. Suppose, for contradiction, that

lim
n→∞

xn �= x, i.e., xn/‖xn‖� x/‖x‖. Then for ε > 0, there exists a subsequence

{xni
/‖xni

‖} of {xn/‖xn‖} such that
∥
∥
∥
∥

xni

‖xni
‖ −

x

‖x‖

∥
∥
∥
∥ ≥ ε > 0.

Because X is uniformly convex, there exists δ(ε) > 0 such that

1
2

∥
∥
∥
∥

xni

‖xni
‖ +

x

‖x‖

∥
∥
∥
∥ ≤ 1− δ.

Because xn ⇀ x and ‖xn‖ → ‖x‖ imply xn/‖xn‖⇀ x/‖x‖, it follows that
∥
∥
∥
∥

x

‖x‖

∥
∥
∥
∥ ≤ lim inf

n→∞

1
2

∥
∥
∥
∥

xni

‖xni
‖ +

x

‖x‖

∥
∥
∥
∥ ≤ 1− δ,

a contradiction. Therefore, {xn} converges strongly to x ∈ X.
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2.3 Modulus of convexity

Definition 2.3.1 Let X be a Banach space. Then a function δX : [0, 2]→ [0, 1]
is said to be the modulus of convexity of X if

δX(ε) = inf

{

1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}

.

It is easy to see that δX(0) = 0 and δX(t) ≥ 0 for all t ≥ 0.

Example 2.3.2 For the case of a Hilbert space H (see Example 2.2.2),

δH(ε) = 1−
√

1− ε2

4
, ε ∈ (0, 2].

We now give the modulus of convexity for p (2 ≤ p < ∞) spaces. The
following result gives an analogue of the parallelogram law in p (2 ≤ p < ∞)
spaces.

Proposition 2.3.3 In p (2 ≤ p <∞) spaces,

‖x + y‖p + ‖x− y‖p ≤ 2p−1(‖x‖p + ‖y‖p) for all x, y ∈ p. (2.7)

Proof. We observe from Lemma A.1.1 of Appendix A that for a, b ∈ R and
p ∈ [2,∞)

|a + b|p + |a− b|p ≤ [|a + b|2 + |a− b|2]p/2

≤ [2|a|2 + 2|b|2]p/2

= 2p/2(|a|2 + |b|2)p/2

≤ 2p/22(p−2)/2(|a|p + |b|p)
= 2p−1(|a|p + |b|p).

Hence for x = {xi}∞i=1, y = {yi}∞i=1 ∈ p, we have

∞∑

i=1

|xi + yi|p +
∞∑

i=1

|xi − yi|p ≤ 2p−1

( ∞∑

i=1

|xi|p +
∞∑

i=1

|yi|p
)

,

which implies that points x, y ∈ p (2 ≤ p < ∞) satisfy the following analogue
of the parallelogram law:

‖x + y‖p + ‖x− y‖p ≤ 2p−1(‖x‖p + ‖y‖p).

Example 2.3.4 For the p (2 ≤ p <∞) space,

δ�p
(ε) = 1−

(

1−
(

ε

2

)p)1/p

, ε ∈ (0, 2).
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To see this, let ε ∈ (0, 2) and x, y ∈ p such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and
‖x− y‖ ≥ ε. Then from (2.7), we have

‖x + y‖p ≤ 2p − ‖x− y‖p,

which implies that

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤

(

1−
(

ε

2

)p)1/p

= 1−
[

1−
(

1−
(

ε

2

)p)1/p]

≤ 1− δ�p
(ε),

where δ�p
(ε) ≥ 1−

(

1−
(

ε
2

)p)1/p

.

Observation

• δH(ε) = 1 −
√

1 − (ε/2)2.

• δ�p(ε) = 1 − (1 − (ε/2)p)p/2.

• δ�p(ε), the modulus of convexity for �p (1 < p ≤ 2) satisfies the following implicit
formula: ∣

∣
∣
∣1 − δ�p(ε) +

ε

2

∣
∣
∣
∣

p

+

∣
∣
∣
∣1 − δ�p(ε) − ε

2

∣
∣
∣
∣

p

= 2.

• δ�p(ε) > 0 for all ε > 0 (1 < p < ∞).

• δX(ε) ≤ δH(ε) for any Banach spaces X and any Hilbert space H, i.e., a Hilbert

space is the most convex Banach space.

We now give some important properties of the modulus of convexity of
Banach spaces.

Theorem 2.3.5 A Banach space X is strictly convex if and only if δX(2) = 1.

Proof. Let X be a strictly convex Banach space with modulus of convexity δX .
Suppose ‖x‖ = ‖y‖ = 1 and ‖x − y‖ = 2 with x �= −y. By strict convexity of
X, we have

1 =
∥
∥
∥
∥

x− y

2

∥
∥
∥
∥ =
∥
∥
∥
∥

x + (−y)
2

∥
∥
∥
∥ < 1,

a contradiction. Hence x = −y. Therefore, δX(2) = 1.
Conversely, suppose δX(2) = 1. Let x, y ∈ X such that ‖x‖ = ‖y‖ =

‖(x + y)/2‖ = 1. Then
∥
∥
∥
∥

x− y

2

∥
∥
∥
∥ =

∥
∥
∥
∥

x + (−y)
2

∥
∥
∥
∥ ≤ 1− δX(‖x− (−y)‖) = 1− δX(2) = 0,

which implies that x = y. Thus, ‖x‖ = ‖y‖ and ‖x + y‖ = 2 = ‖x‖+ ‖y‖ imply
that x = y. Therefore, X is strictly convex.
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Theorem 2.3.6 A Banach space X is uniformly convex if and only if δX(ε) > 0
for all ε ∈ (0, 2].

Proof. Let X be a uniformly convex Banach space. Then for ε > 0, there
exists δ(ε) > 0 such that

0 < δ(ε) ≤ 1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε. Therefore, from the
definition of modulus of convexity, we have δX(ε) > 0.

Conversely, suppose X is a Banach space with modulus of convexity δX such
that δX(ε) > 0 for all ε ∈ (0, 2]. Let x, y ∈ X such that ‖x‖ = 1, ‖y‖ = 1 with
‖x− y‖ ≥ ε for fixed ε ∈ (0, 2]. By the modulus of convexity δX(ε), we have

0 < δX(ε) ≤ 1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥,

which implies that ∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ 1− δ(ε),

where δ(ε) = δX(ε), which is independent of x and y. Therefore, X is uniformly
convex.

Theorem 2.3.7 Let X be a Banach space with modulus of convexity δX . Then
we have the following:

(a) For all ε1 and ε2 with 0 ≤ ε1 < ε2 ≤ 2,

δX(ε2)− δX(ε1) ≤
ε2 − ε1

2− ε1
(1− δX(ε1)) ≤

ε2 − ε1

2− ε1
.

In particular, δX is a continuous function on [0, 2).
(b) δX(s)/s is a nondecreasing function on (0, 2].
(c) δX is a strictly increasing function if X is uniformly convex.

Proof. (a) We define the set

Su,v = {(x, y) : x, y ∈ BX ;x−y = au, x+y = bv for some u, v ∈ X and a, b ≥ 0}

and the function

δu,v(ε) = inf
{

1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ : x, y ∈ Su,v, ‖x− y‖ ≥ ε

}

.

Note that δu,v(0) = 0. For given ε1 and ε2 in (0, 2] and η > 0, we can choose
(xi, yi) in Su,v such that

‖xi − yi‖ ≥ εi and δu,v(εi) + η ≥ 1−
∥
∥
∥
∥

xi + yi

2

∥
∥
∥
∥ for i = 1, 2.
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Now for t ∈ [0, 1], let x3 = tx1 + (1 − t)x2 and y3 = ty1 + (1 − t)y2. Because
xi, yi ∈ BX for i = 1, 2, it follows that

‖x3‖ ≤ t‖x1‖+ (1− t)‖x2‖ ≤ 1

and
‖y3‖ ≤ t‖y1‖+ (1− t)‖y2‖ ≤ 1.

Because (xi, yi) ∈ Su,v, there exist positive constants ai, bi ≥ 0 with i = 1, 2 such
that xi−yi = aiu and xi+yi = biv. Set α := ta1+(1−t)a2 and β := tb1+(1−t)b2.
Then

x3 − y3 = t(x1 − y1) + (1− t)(x2 − y2)
= ta1u + (1− t)a2u

= (ta1 + (1− t)a2)u
= αu.

Similarly, x3 + y3 = βv. Thus, (x3, y3) is in Su,v.
Observe that

‖x3 − y3‖ = (ta1 + (1− t)a2)‖u‖
= t‖x1 − y1‖+ (1− t)‖x2 − y2‖
≥ tε1 + (1− t)ε2 by the choice of xi, yi,

and ‖x3 + y3‖ = t‖x1 + y1‖+ (1− t)‖x2 + y2‖.
By the definition of the function δu,v(·), we have

δu,v(tε1 + (1− t)ε2) ≤ 1−
∥
∥
∥
∥

x3 + y3

2

∥
∥
∥
∥

≤ 1− t

∥
∥
∥
∥

x1 + y1

2

∥
∥
∥
∥− (1− t)

∥
∥
∥
∥

x2 + y2

2

∥
∥
∥
∥

= t

(

1−
∥
∥
∥
∥

x1 + y1

2

∥
∥
∥
∥

)

+ (1− t)
(

1−
∥
∥
∥
∥

x2 + y2

2

∥
∥
∥
∥

)

≤ t

(

δu,v(ε1) +
η

2

)

+ (1− t)
(

δu,v(ε2) +
η

2

)

= tδu,v(ε1) + (1− t)δu,v(ε2) +
η

2
.

Because η is arbitrary, it follows that δu,v(ε) is a convex function of ε.
Note that

δX(ε) ≤ δu,v(ε) for all u, v

and
(x, y) ∈ Su,v with ‖x‖ ≤ 1 and ‖y‖ ≤ 1 for some u, v ∈ X;

and hence
δX(ε) = inf{δu,v(ε) : u, v ∈ X \ {0}}.
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Now for any real number ε > 0, there exist u, v ∈ X such that

δu,v(ε1) ≤ δX(ε1) + ε.

Hence

δu,v(ε2) = δu,v

(

2
ε2 − ε1

2− ε1
+
(

1− ε2 − ε1

2− ε1

)

ε1

)

≤ ε2 − ε1

2− ε1
δu,v(2) +

(

1− ε2 − ε1

2− ε1

)

δu,v(ε1),

which implies that

δu,v(ε2)− δu,v(ε1) ≤ ε2 − ε1

2− ε1
(δu,v(2)− δu,v(ε1))

≤ ε2 − ε1

2− ε1
(1− δX(ε1)).

Then we have

δX(ε2)− δX(ε1) ≤ δu,v(ε2)− δu,v(ε1) + ε

≤ ε2 − ε1

2− ε1
(1− δX(ε1)) + ε.

Because ε > 0 is arbitrary, we have

δX(ε2)− δX(ε1) ≤
ε2 − ε1

2− ε1

(

1− δX(ε1)
)

.

Because δX(ε1) ≥ 0, we have

δX(ε2)− δX(ε1) ≤
ε2 − ε1

2− ε1
,

which implies that δX(·) is continuous on [0, 2).

(b) Fix s ∈ (0, 2] with s ≤ ε and x, y ∈ SX and ‖x− y‖ = ε.
Set

t :=
s

ε
, u := tx + (1− t)

x + y

‖x + y‖ and v := ty + (1− t)
x + y

‖x + y‖ .

Then

u− v = t(x− y), ‖u− v‖ = s and
u + v

2
=

x + y

‖x + y‖

(
t

2
‖x + y‖+ 1− t

)

.

Thus,
∥
∥
∥
∥

x + y

‖x + y‖ −
u + v

2

∥
∥
∥
∥ = t− t

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

= 1−
(

1− t + t

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

)

= 1−
∥
∥
∥
∥

u + v

2

∥
∥
∥
∥.
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Observe that
∥
∥
∥
∥

x + y

‖x + y‖ −
x + y

2

∥
∥
∥
∥ =
(

1
‖x + y‖ −

1
2

)

‖x + y‖ = 1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

and
∥
∥
∥
∥

x + y

‖x + y‖ −
u + v

2

∥
∥
∥
∥

/

‖u− v‖ =
(

1−
∥
∥
∥
∥

u + v

2

∥
∥
∥
∥

)/

s

=
(

1− (1− t)− t

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

)/

s

=
(

1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

)/

‖x− y‖.

Hence

δX(s)
s

≤ (1− ‖(u + v)/2‖)/‖u− v‖

= (‖(x + y)/‖x + y‖ − (u + v)/2‖)/‖u− v‖ = (1− ‖(x + y)/2‖)/ε.

By taking the infimum over all possible x and y with ε = ‖x−y‖ and x, y ∈ SX ,
we obtain

δX(s)
s

≤ δX(ε)
ε

.

(c) Observe that

δX(s)
s

≤ δX(t)
t

for s < t ≤ 2 and δX(t) > 0.

Hence
tδX(s) ≤ sδX(t) < tδX(t),

which implies that
δX(s) < δX(t).

Therefore, δX is a strictly increasing function.

Remark 2.3.8 The modulus of convexity δX need not be convex on [0,2] and
need not be continuous at t = 2.

Theorem 2.3.9 Let X be a Banach space with modulus of convexity δX . Then

‖tx + (1− t)y‖ ≤ 1− 2min{t, 1− t}δX(‖x− y‖)

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].

Proof. The result follows from Theorem 2.2.6(b).

Corollary 2.3.10 Let X be a Banach space with modulus convexity δX . Then

‖(1− t)x + ty‖ ≤ 1− 2t(1− t)δX(‖x− y‖)

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].
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Proof. Because t(1 − t) ≤ min{t, 1 − t} for all t ∈ [0, 1], the result follows
Theorem 2.3.9.

Corollary 2.3.11 Let X be a uniformly convex Banach space with modulus of
convexity δX . If r > 0 and x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r, then

‖tx + (1− t)y‖ ≤ r

[

1− 2min{t, 1− t}δX

(
‖x− y‖

r

)]

for all t ∈ (0, 1).

Theorem 2.3.12 Let X be a uniformly convex Banach space X. Then there
exists a strictly increasing continuous convex function g : R

+ → R
+ with

g(0) = 0 such that

2t(1− t)g(‖x− y‖) ≤ 1− ‖(1− t)x + ty‖

for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and all t ∈ [0, 1].

Proof. Let δX be the modulus of convexity of X. Define a function g : R
+ →

R
+ by

g(λ) =
{

1
2

∫ λ

0
δX(s)ds if 0 ≤ λ ≤ 2,

g(2) + 1
2δX(2)(λ− 2) if λ > 2.

For t ∈ (0, 2], we have

0 < g(t) =
1
2

∫ t

0

δX(s)ds ≤ t

2
δX(t) ≤ δX(t). (as δX(s) ≤ δX(t))

From the definition of g, we have

g′(t) =
1
2
δX(t) for all t ∈ [0, 2].

Hence g′ is increasing with g′(2) = δX(2)/2 = 1/2, and it follows that g is
convex.

Now, let ‖x‖ ≤ 1, ‖y‖ ≤ 1 and t ∈ [0, 1]. Then, we have (see Coroll-
ary 2.3.10)

‖(1− t)x + ty‖ ≤ 1− 2t(1− t)δX(‖x− y‖). (2.8)

Hence from (2.8) we have

2t(1− t)g(‖x− y‖) = t(1− t)
∫ ‖x−y‖

0

δX(s)ds

≤ t(1− t)δX(‖x− y‖)‖x− y‖
≤ 2t(1− t)δX(‖x− y‖)
≤ 1− ‖(1− t)x + ty‖.
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Moreover, for rs < 2, the function s �→ g(rs)/s is increasing (as (g(rs)/s)′ =
[rsδX(rs)/2 − g(rs)]/s2 ≥ 0). Therefore, g is a strictly increasing continuous
convex function.

Using Corollary 2.3.11, we obtain the following, which has important
applications in approximation of fixed points of nonlinear mappings in Banach
spaces.

Theorem 2.3.13 Let X be a uniformly convex Banach space and let {tn} be
a sequence of real numbers in (0,1) bounded away from 0 and 1. Let {xn} and
{yn} be two sequences in X such that

lim sup
n→∞

‖xn‖ ≤ a, lim sup
n→∞

‖yn‖ ≤ a and lim sup
n→∞

‖tnxn + (1− tn)yn‖ = a

for some a ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Proof. The case a = 0 is trivial. So, let a > 0. Suppose, for contradiction, that
{xn−yn} does not converge to 0. Then there exists a subsequence {xni

−yni
} of

{xn−yn} such that infi ‖xni
−yni

‖ > 0. Note {tn} is bounded away from 0 and
1, and there exist two positive numbers α and β such that 0 < α ≤ tn ≤ β < 1
for all n ∈ N. Because lim sup

n→∞
‖xn‖ ≤ a and lim sup

n→∞
‖yn‖ ≤ a, we may assume

an r ∈ (a, a + 1) for a subsequence {ni} such that ‖xni
‖ ≤ r, ‖yni

‖ ≤ r, a < r.
Choose r ≥ ε > 0 such that

2α(1− β)δX(ε/r) < 1 and ‖xni
− yni

‖ ≥ ε > 0 for all i ∈ N.

From Corollary 2.3.11, we have

‖tni
xni

+ (1− tni
)yni
‖ ≤ r[1− 2tni

(1− tni
)δX(ε/r)]

≤ r[1− 2α(1− β)δX(ε/r)] < a for all i ∈ N,

which contradicts the hypothesis.

We now present the following intersection theorem:

Theorem 2.3.14 (Intersection theorem) – Let {Cn} be a decreasing
sequence of nonempty closed convex bounded subsets of a uniformly convex
Banach space X. Then ∩n∈NCn is a nonempty closed convex subset of X.

Proof. Let z ∈ X be a point such that z /∈ C1, rn = d(z, Cn) and r = lim
n→∞

rn.

Let {εn} be a sequence of positive numbers that decreases to zero. Set

Dn := Br+εn
[z] = {x ∈ Cn : ‖z − x‖ ≤ r + εn},

dn : = diam(Dn),
d : = lim

n→∞
dn.
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Suppose x and y are two elements in Dn such that ‖x − y‖ ≥ dn − εn. Then
Corollary 2.3.11 gives

∥
∥
∥
∥z −

x + y

2

∥
∥
∥
∥ ≤
(

1− δX

(
‖x− y‖
r + εn

))

(r + εn)

and hence

rn ≤
(

1− δX

(
dn − εn

r + εn

))

(r + εn).

This yields a contradiction unless d = 0. This in turn implies that ∩n∈NDn is
nonempty, and so is ∩n∈NCn.

Remark 2.3.15 Theorem 2.3.14 remains valid if the sequence {Cn} is replaced
by an arbitrary decreasing net of nonempty closed convex bounded subsets of X.

We now study a weaker type convexity of Banach spaces that is called locally
uniform convexity.

Definition 2.3.16 A Banach space X is said to be locally uniformly convex if
for any ε > 0 and x ∈ SX , there exists δ = δ(x, ε) > 0 such that

‖x− y‖ ≥ ε implies that
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ 1− δ for all y ∈ SX .

The modulus of local convexity of the Banach space X is

δX(x, ε) = inf
{

1−‖x+y‖
2

: y ∈ SX , ‖x−y‖ ≥ ε

}

for each x ∈ SX and 0 < ε ≤ 2.

One may easily see that the Banach space X is locally uniformly convex if
δX(x, ε) > 0 for all x ∈ SX and ε > 0.

Observation
• Every uniformly convex Banach space is locally uniformly convex.

• By Definition 2.3.16, every locally uniformly convex Banach space is strictly

convex.

We now give interesting properties of locally uniformly convex Banach spaces:

Proposition 2.3.17 Let X be a Banach space. Then the following are equiva-
lent:

(a) X is locally uniformly convex.
(b) Every sequence {xn} in SX and x ∈ SX with ‖xn + x‖ → 2 implies that

xn → x.

Proof. (a) ⇒ (b). By locally uniformly convexity of X, δX(x, ε) > 0 for all
ε > 0. Therefore,

1− ‖xn + x‖
2

→ 0 implies that ‖xn − x‖ → 0.
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(b) ⇒ (a). Let {xn} be a sequence in SX such that ‖xn + x‖ → 2 implies that
xn → x. Then

‖xn − x‖ ≥ ε > 0 implies that
∥
∥
∥
∥

xn + x

2

∥
∥
∥
∥ < 1.

Hence, by the definition of modulus of locally uniform convexity, δX(x, ε) > 0.
Therefore, X is locally uniformly convex.

The following theorem is a generalization of Theorem 2.2.13.

Theorem 2.3.18 Every locally uniformly convex Banach space has the Kadec-
Klee property.

Proof. Let X be a locally uniformly convex Banach space. Let {xn} be
a sequence in X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. For x = 0, ‖xn‖ → 0
implies that xn → 0. Suppose x �= 0. Then

xn

‖xn‖
⇀

x

‖x‖ ⇒
xn

‖xn‖
+

x

‖x‖ ⇀ 2
x

‖x‖ .

By w-lsc of the norm, we have

2 = 2
∥
∥
∥
∥

x

‖x‖

∥
∥
∥
∥ ≤ lim inf

n→∞

∥
∥
∥
∥

xn

‖xn‖
+

x

‖x‖

∥
∥
∥
∥

≤ lim sup
n→∞

(
‖xn‖
‖xn‖

+
‖x‖
‖x‖

)

= 2,

which implies that ‖xn/(‖xn‖) + x/(‖x‖)‖ → 2. By Proposition 2.3.17, we
conclude that xn/‖xn‖ → x/‖x‖. Therefore, xn → x.

2.4 Duality mappings

Definition 2.4.1 Let X∗ be the dual of a Banach space X. Then a multivalued
mapping J : X → 2X∗

is said to be a (normalized) duality mapping if

Jx = {j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2∗}.

Example 2.4.2 In a Hilbert space H, the normalized duality mapping is the
identity. To see this, let x ∈ H with x �= 0. Note that H = H∗ and

〈x, x〉 = ‖x‖ · ‖x‖ implies x ∈ Jx.

Suppose y ∈ Jx. Then by the definition of J , we have 〈x, y〉 = ‖x‖‖y‖ and
‖x‖ = ‖y‖. Because

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉,

it follows that x = y. Therefore, Jx = {x}.
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For a complex number, we define the “sign” function by

sgn α =
{

0 if α = 0,
α/|α| if α �= 0.

Observation

• |sgn α| =

{
0 if α = 0,
1 if α �= 0.

• α sgn α =

{
0 if α = 0,
αα/|α| = |α| if α �= 0.

Example 2.4.3 In the 2 space,

Jx = (|x1|sgn(x1), |x2|sgn(x2), · · · , |xi|sgn(xi), · · · ), x = {xi} ∈ 2.

Example 2.4.4 In the L2[0, 1] (1 < p <∞) space, the duality mapping is given
by

Jx =
{
|x| sgn(x)/‖x‖, if x �= 0,
0 if x = 0.

Before giving fundamental properties of duality mappings, we need the
following notations and definitions:

Let T : X → 2X∗
a multivalued mapping. The domain Dom(T ), range

R(T ), inverse T−1, and graph G(T ) of T are defined as

Dom(T ) = {x ∈ X : Tx �= ∅},
R(T ) = ∪x∈Dom(T )Tx,

T−1(y) = {x ∈ X : y ∈ Tx},
G(T ) = {(x, y) ∈ X ×X∗ : y ∈ Tx, x ∈ Dom(T )}.

The graph G(T ) of T is a subset of X ×X∗.

The mapping T is said to be

(i) monotone if 〈x−y, jx−jy〉 ≥ 0 for all x, y ∈ Dom(T ) and jx ∈ Tx, jy ∈ Ty.

(ii) strictly monotone if 〈x− y, jx − jy〉 > 0 for all x, y ∈ Dom(T ) with x �= y
and jx ∈ Tx, jy ∈ Ty.

(iii) α-monotone if there exists a continuous strictly increasing function
α : [0,∞)→ [0,∞) with α(0) = 0 and α(t)→∞ as t→∞ such that

〈x− y, jx − jy〉 ≥ α(‖x− y‖)‖x− y‖

for all x, y ∈ Dom(T ), jx ∈ Tx, jy ∈ Ty.

(iv) strongly monotone if T is α-monotone with α(t) = kt for some constant
k > 0.

(v) injective if Tx ∩ Ty = ∅ for x �= y.
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The monotone operator T : Dom(T ) ⊂ X → 2X∗
is said to be maximal

monotone if it has no proper monotone extensions, i.e., if for (x, y) ∈ X ×X∗

〈x− z, y − jz〉 ≥ 0 for all z ∈ Dom(T ) and jz ∈ Tz implies y ∈ Tx.

The mapping T : Dom(T ) ⊂ X → X∗ is said to be coercive on a subset C
of Dom(T ) if there exists a function c : (0,∞) → [−∞,∞] with c(t) → ∞ as
t→∞ such that 〈x, Tx〉 ≥ c(‖x‖)‖x‖ for all x ∈ C.

In other words, T is coercive on C if 〈x,Tx〉
‖x‖ →∞ as ‖x‖ → ∞, x ∈ C.

Observation

• Every monotonically increasing mapping is monotone.

• If H is a Hilbert space and T : H → H is nonexpansive, then I−T is monotone.

We are now in a position to establish fundamental properties of duality
mappings in Banach spaces.

Proposition 2.4.5 Let X be a Banach space and let J : X → 2X∗
be the

normalized duality mapping. Then we have the following:
(a) J(0) = {0}.
(b) For each x ∈ X,Jx is nonempty closed convex and bounded subset of

X∗.
(c) J(λx) = λJx for all x ∈ X and real λ, i.e., J is homogeneous.
(d) J is multivalued monotone, i.e., 〈x − y, jx − jy〉 ≥ 0 for all x, y ∈ X,

jx ∈ Jx and jy ∈ J(y).
(e) ‖x‖2 − ‖y‖2 ≥ 2〈x− y, j〉 for all x, y ∈ X and j ∈ Jy.
(f) If X∗ is strictly convex, J is single-valued.
(g) If X is strictly convex, then J is one-one, i.e., x �= y ⇒ Jx ∩ Jy = ∅.
(h) If X is reflexive with strictly convex dual X∗, then J is demicontinuous.
(i) If X is uniformly convex, then for x, y ∈ Br[0], jx ∈ Jx, jy ∈ Jy

〈x− y, jx − jy〉 ≥ wr(‖x− y‖)‖x− y‖,

where wr : R
+ → R

+ is a function satisfies the conditions:

wr(0) = 0, wr(t) > 0 for all t > 0 and t ≤ s⇒ wr(t) ≤ wr(s).

Proof. (a) It is obvious.
(b) If x = 0, we are done by Part(a). If x is a nonzero element in X, then

by the Hahn-Banach theorem (see Corollary 1.6.6), there exists f ∈ X∗ such
that 〈x, f〉 = ‖x‖ and ‖f‖∗ = 1. Set j := ‖x‖f. Then 〈x, j〉 = ‖x‖〈x, f〉 =
‖x‖2 and ‖j‖∗ = ‖x‖, and it follows that Jx is nonempty for each x �= 0.

Now suppose f1, f2 ∈ Jx and t ∈ (0, 1). Because

〈x, f1〉 = ‖x‖‖f1‖∗, ‖x‖ = ‖f1‖∗



70 2. Convexity, Smoothness, Duality Mappings

and
〈x, f2〉 = ‖x‖‖f2‖∗, ‖x‖ = ‖f2‖∗,

we obtain

〈x, tf1 + (1− t)f2〉 = ‖x‖(t‖f1‖∗ + (1− t)‖f2‖∗) = ‖x‖2.

Observe that

〈x, tf1 + (1− t)f2〉 ≤ ‖tf1 + (1− t)f2‖∗‖x‖
≤ (t‖f1‖∗ + (1− t)‖f2‖∗)‖x‖
= ‖x‖2.

Then
‖x‖2 ≤ ‖x‖‖tf1 + (1− t)f2‖∗ ≤ ‖x‖2,

which gives us
‖x‖2 = ‖x‖‖tf1 + (1− t)f2‖∗,

i.e.,
‖tf1 + (1− t)f2‖∗ = ‖x‖.

Thus,

〈x, tf1 + (1− t)f2〉 = ‖x‖‖tf1 + (1− t)f2‖∗ and ‖x‖ = ‖tf1 + (1− t)f2‖∗,

and this means that tf1 + (1− t)f2 ∈ Jx, i.e., Jx is a convex set.
Similarly, one can show that Jx is a closed and bounded set in X∗.
(c) For λ = 0, it is obvious that J(0x) = 0Jx. Assume that j ∈ J(λx) for

λ �= 0. First, we show that J(λx) ⊆ λJx. Because j ∈ J(λx), we have

〈λx, j〉 = ‖λx‖‖j‖∗ and ‖λx‖ = ‖j‖∗,

and it follows that 〈λx, j〉 = ‖j‖2∗. Hence

〈x, λ−1j〉 = λ−1〈λx, λ−1j〉 = λ−2〈λx, j〉 = λ−2‖λx‖‖j‖∗ = ‖λ−1j‖2∗ = ‖x‖2.

This shows that λ−1j ∈ Jx, i.e., j ∈ λJx. Thus, we have J(λx) ⊆ λJx.
Similarly, one can show that λJx ⊆ J(λx). Therefore, J(λx) = λJx.

(d) Let jx ∈ Jx and jy ∈ Jy for x,y ∈ X. Hence

〈x− y, jx − jy〉 = 〈x, jx〉 − 〈x, jy〉 − 〈y, jx〉+ 〈y, jy〉
≥ ‖x‖2 + ‖y‖2 − ‖x‖‖jy‖∗ − ‖y‖‖jx‖∗
≥ ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖
= (‖x‖ − ‖y‖)2 ≥ 0. (2.9)

(e) Let j ∈ Jx, x ∈ X. Then

‖y‖2 − ‖x‖2 − 2〈y − x, j〉
= ‖x‖2 + ‖y‖2 − 2〈y, j〉
≥ ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖
= (‖x‖ − ‖y‖)2 ≥ 0. (2.10)
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(f) Let j1, j2 ∈ Jx for x ∈ X. Then

〈x, j1〉 = ‖j1‖2∗ = ‖x‖2

and
〈x, j2〉 = ‖j2‖2∗ = ‖x‖2.

Adding the above identities, we have

〈x, j1 + j2〉 = 2‖x‖2.

Because
2‖x‖2 = 〈x, j1 + j2〉 ≤ ‖x‖‖j1 + j2‖∗,

this implies that
‖j1‖∗ + ‖j2‖∗ = 2‖x‖ ≤ ‖j1 + j2‖∗.

It now follows from the fact ‖j1 + j2‖∗ ≤ ‖j1‖∗ + ‖j2‖∗ that

‖j1 + j2‖∗ = ‖j1‖∗ + ‖j2‖∗.

Because X∗ is strictly convex and ‖j1 + j2‖∗ = ‖j1‖∗ + ‖j2‖∗, then there exists
λ ∈ R such that j1 = λj2. Because

〈x, j2〉 = 〈x, j1〉 = 〈x, λj2〉 = λ〈x, j2〉,

this implies that λ = 1 and hence j1 = j2. Therefore, J is single-valued.
(g) Suppose that j ∈ Jx ∩ Jy for x, y ∈ X. Because j ∈ Jx and j ∈ Jy, it

follows from ‖j‖2∗ = ‖x‖2 = ‖y‖2 = 〈x, j〉 = 〈y, j〉 that

‖x‖2 = 〈(x + y)/2, j〉 ≤ ‖(x + y)/2‖‖x‖,

which gives that
‖x‖ = ‖y‖ ≤ ‖(x + y)/2‖ ≤ ‖x‖.

Hence ‖x‖ = ‖y‖ = ‖(x + y)/2‖. Because X is strictly convex and ‖x‖ = ‖y‖ =
‖(x + y)/2‖, we have x = y. Therefore, J is one-one.

(h) It suffices to prove demicontinuity of J on the unit sphere SX . For this,
let {xn} be a sequence in SX such that xn → z in X. Then ‖Jxn‖∗ = ‖xn‖ = 1
for all n ∈ N, i.e., {Jxn} is bounded. Because X is reflexive and hence X∗ is
also reflexive. Then there exists a subsequence {Jxnk

} of {Jxn} in X∗ such that
{Jxnk

} converges weakly to some j in X∗. Because xnk
→ z and Jxnk

⇀ j,
then we have

〈z, j〉 = lim
k→∞

〈xnk
, Jxnk

〉 = lim
k→∞

‖xnk
‖2 = 1.

Moreover,

‖j‖∗ ≤ lim
k→∞

‖Jxnk
‖∗ = lim

k→∞
(‖Jxnk

‖∗ ‖xnk
‖)

= lim
k→∞

〈xnk
, Jxnk

〉 = 〈z, j〉 = ‖j‖∗.
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This shows that
〈z, j〉 = ‖j‖∗‖z‖ and ‖j‖∗ = ‖z‖.

This implies that j = Jz. Thus, every subsequence {Jxni
} converging weakly

to j ∈ X∗. This gives Jxn ⇀ Jz. Therefore, J is demicontinuous.
(i) Let r > 0 and wr : R

+ → R
+ a function defined by

⎧
⎪⎪⎨

⎪⎪⎩

wr(0) = 0;
wr(t) = inf{ 〈x−y,jx−jy〉

‖x−y‖ : x, y ∈ Br[0], ‖x− y‖ ≥ t, jx ∈ Jx, jy ∈ Jy}
if t ∈ (0, 2r];

wr(t) = wr(2r); if t ∈ (2r,∞).

By (d), we have
〈x− y, jx − jy〉 ≥ 0,

and it follows that wr(t) ≥ 0 for all t ∈ R
+. It can be readily seen that wr is

nondecreasing. So it remains to prove that wr(t) > 0 for all t > 0.
Suppose, for contradiction, that there exists λ ∈ (0, 2r] such that wr(λ) = 0.

Then there exist sequences {xn}, {yn} in Br[0] such that

‖xn − yn‖ ≥ λ > 0 and 〈xn − yn, jxn
− jyn

〉 → 0,

where jxn
∈ Jxn, jyn

∈ Jyn. We know from (2.9) that

(‖xn‖ − ‖yn‖)2 ≤ 〈xn − yn, jxn
− jyn

〉.

We may assume that

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = a > 0 (say).

Notice

〈xn + yn, jxn
+ jyn

〉 = 2‖xn‖2 + 2‖yn‖2 − 〈xn − yn, jxn
− jyn

〉
→ 4a2 (2.11)

and
lim sup

n→∞
‖xn + yn‖ ≤ lim sup

n→∞
(‖xn‖+ ‖yn‖) = 2a.

Moreover, from (2.11), we have

4a2 = lim
n→∞

〈xn + yn, jxn
+ jyn

〉

≤ lim inf
n→∞

‖xn + yn‖(‖xn‖+ ‖yn‖) = 2a lim inf
n→∞

‖xn + yn‖,

which implies that
2a ≤ lim inf

n→∞
‖xn + yn‖.

Thus, we have that lim
n→∞

‖xn + yn‖ = 2a. By the uniform convexity of X (see

Theorem 2.3.13), we obtain that lim
n→∞

‖xn − yn‖ = 0, which contradicts our

assumption that ‖xn − yn‖ ≥ λ > 0.

The inequalities given in the following results are very useful in many
applications.
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Proposition 2.4.6 Let X be a Banach space and J : X → 2X∗
the duality

mapping. Then we have the following:
(a) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, jx〉 for all x, y ∈ X, where jx ∈ Jx.
(b) ‖x + y‖2 ≤ ‖y‖2 + 2〈x, jx+y〉 for all x, y ∈ X, where jx+y ∈ J(x + y).

Proof. (a) Replacing y by x + y in (2.10), we get the inequality.
(b) Replacing x by x + y in (2.10), we get the result.

Proposition 2.4.7 Let X be a Banach and J : X → 2X∗
a normalized duality

mapping. Then for x, y ∈ X, the following are equivalent:
(a) ‖x‖ ≤ ‖x + ty‖ for all t > 0.

(b) There exists j ∈ Jx such that 〈y, j〉 ≥ 0.

Proof. (a)⇒ (b). For t > 0, let ft ∈ J(x+ ty) and define gt = ft/‖ft‖∗. Hence
‖gt‖∗ = 1. Because gt ∈ ‖ft‖−1

∗ J(x + ty), it follows that

‖x‖ ≤ ‖x + ty‖ = ‖ft‖−1
∗ 〈x + ty, ft〉

= 〈x + ty, gt〉 = 〈x, gt〉+ t〈y, gt〉
≤ ‖x‖+ t〈y, gt〉. (as ‖gt‖∗ = 1)

By the Banach-Alaoglu theorem (which states that the unit ball in X∗ is
weak*ly-compact), the net {gt} has a limit point g ∈ X∗ such that

‖g‖∗ ≤ 1, 〈x, g〉 ≥ ‖x‖ and 〈y, g〉 ≥ 0.

Observe that
‖x‖ ≤ 〈x, g〉 ≤ ‖x‖‖g‖∗ = ‖x‖,

which gives that
〈x, g〉 = ‖x‖ and ‖g‖∗ = 1.

Set j = g‖x‖, then j ∈ Jx and 〈y, j〉 ≥ 0.
(b) ⇒ (a). Suppose for x, y ∈ X with x �= 0 there exists j ∈ Jx such that

〈y, j〉 ≥ 0. Hence for t > 0,

‖x‖2 = 〈x, j〉 ≤ 〈x, j〉+ 〈ty, j〉 = 〈x + ty, j〉 ≤ ‖x + ty‖‖x‖,

which implies that
‖x‖ ≤ ‖x + ty‖.

Observation
• Dom(J) = X.

• J is odd, i.e., J(−x) = −Jx.

• J is homogeneous (hence J is positive homogeneous, i.e., J(λx) = λJx for all
λ > 0).

• J is bounded.

We now consider the duality mappings that are more general than the
normalized duality mappings.



74 2. Convexity, Smoothness, Duality Mappings

Definition 2.4.8 A continuous strictly increasing function μ : R
+ → R

+ is
said to be gauge function if μ(0) = 0 and lim

t→∞
μ(t) =∞.

Definition 2.4.9 Let X be a normed space and μ a gauge function. Then the
mapping Jμ : X → 2X∗

defined by

Jμ(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = μ(‖x‖)}, x ∈ X

is called the duality mapping with gauge function μ.

In the particular case μ(t) = t, the duality mapping Jμ = J is called the
normalized duality mapping .

In the case μ(t) = tp−1, p > 1, the duality mapping Jμ = Jp is called the
generalized duality mapping and it is given by

Jp(x) := {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖p−1}, x ∈ X.

Note that if p = 2, then Jp = J2 = J is the normalized duality mapping.

Remark 2.4.10 For the gauge function μ, the function Φ : R
+ → R

+

defined by

Φ(t) =
∫ t

0

μ(s)ds

is a continuous convex strictly increasing function on R
+. Therefore, Φ has a

continuous inverse function Φ−1.

Example 2.4.11 Let x = (x1, x2, · · · ) ∈ p (1 < p <∞), set

Jμ(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), · · · )

and let μ(t) = tp−1 = tp/q, where 1/p + 1/q = 1. Observe that

( ∞∑

i=1

|xi|(p−1)q

)1/q

=
( ∞∑

i=1

|xi|p
)1/q

and Jμ(x) ∈ q.

Moreover,
μ(‖x‖) = ‖x‖p/q = ‖Jμ(x)‖∗

and

〈x, Jμ(x)〉 =
∞∑

i=1

xi|xi|p−1sgn(xi) =
∞∑

i=1

|xi|p = ‖x‖p

= ‖x‖‖x‖p−1 = ‖x‖μ(‖x‖) = ‖x‖‖Jμ(x)‖∗.

Thus, Jμ is a duality mapping with gauge function μ. Therefore, the generalized
duality mapping Jp in p space is given by

Jp(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), · · · ), x ∈ p.
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One can easily see the following facts:

(i) Jμ(x) is a nonempty closed convex set in X∗ for each x ∈ X,

(ii) Jμ is a function when X∗ is strictly convex.

(iii) If Jμ(x) is single-valued, then

Jμ(λx) =
sign(λ)μ(‖λx‖)

μ(‖x‖) Jμ(x) for all x ∈ X and λ ∈ R

and

〈x− y, Jμ(x)− Jμ(y)〉 ≥ (μ(‖x‖)− μ(‖y‖))(‖x‖ − ‖y‖) for all x, y ∈ X.

We now give other interesting properties of the duality mappings Jμ in
reflexive Banach spaces.

Theorem 2.4.12 Let X be a Banach space and Jμ a duality mapping with
gauge function μ. Then X is reflexive if and only if

⋃
x∈X Jμ(x) = X∗, i.e., Jμ

is onto.

Proof. Let X be reflexive and let j ∈ X∗. By the Hahn-Banach theorem, there
is an x ∈ SX such that 〈x, j〉 = ‖x‖.

Because μ has the property of Darboux, there exists a constant t ≥ 0 such
that

μ(||tx||) = μ(t) = ‖j‖∗.

Because 〈tx, j〉 = ‖tx‖‖j‖∗, it follows that j ∈ Jμ(tx).
Conversely, suppose that for each j ∈ X∗, there is x ∈ X such that j ∈ Jμ(x).

Set y := x/‖x‖. Then ‖y‖ = 1 and 〈y, j〉 = ‖j‖∗. Hence each continuous
functional attains its supremum on the unit ball. By the James theorem, X is
reflexive.

Theorem 2.4.13 Let X be a reflexive Banach space and J a duality mapping
with gauge function μ. Then J−1 is the duality mapping with gauge μ−1.

Proof. From Theorem 2.4.12, we obtain

J−1(j) = {x ∈ X : j ∈ Jμ(x)} �= ∅ for all j ∈ X∗.

Let J∗ be the duality mapping on X∗ with gauge μ−1. Observe that x ∈ J−1(j)
if and only if 〈x, j〉 = ‖x‖‖j‖∗ and ‖x‖ = μ−1(‖j‖∗) or equivalently if and only
if x ∈ J∗(j). Thus,

J∗(j) = J−1(j) = {x ∈ X : 〈x, j〉 = ‖x‖‖j‖∗, ‖x‖ = μ−1(‖j‖∗)}.
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Corollary 2.4.14 Let X be a reflexive Banach space and J∗ : X∗ → X the
inverse of the normalized duality mapping J : X → X∗. Then

J∗J = I and JJ∗ = I∗ (identity mappings on X and X∗, respectively).

Theorem 2.4.15 Let X be a Banach space and let Jμ be the duality mapping
with gauge function μ. If X∗ is uniformly convex, then Jμ is uniformly continu-
ous on each bounded set in X, i.e., for ε > 0 and K > 0, there is a δ > 0 such
that

‖x‖ ≤ K, ‖y‖ ≤ K and ‖x− y‖ < δ ⇒ ‖Jμ(x)− Jμ(y)‖∗ < ε.

Proof. Because X∗ is strictly convex, Jμ is single-valued. Suppose {xn} and
{yn} are sequences in X such that ‖xn‖ ≤ K, ‖yn‖ ≤ K and ‖xn − yn‖ → 0.

Assume that xn → 0, then yn → 0. Moreover,

‖Jμ(xn)‖∗ = μ(‖xn‖)→ 0 and ‖Jμ(yn)‖∗ = μ(‖yn‖)→ 0.

Hence ‖Jμ(xn)− Jμ(yn)‖∗ → 0 and we are done.
Suppose {xn} does not converge strongly to zero. There exist α > 0 and a

subsequence {xnk
} of {xn} such that ‖xnk

‖ ≥ α. Because ‖xn − yn‖ → 0, one
can assume that ‖ynk

‖ ≥ α/2. Without loss of generality, we may assume that

‖xn‖ ≥ β and ‖yn‖ ≥ β for some β > 0.

Set un := xn/‖xn‖ and vn := yn/‖yn‖ so that ‖un‖ = ‖vn‖ = 1 and

‖un − vn‖ =
∥
∥
∥
∥

xn‖yn‖ − ‖xn‖yn

‖xn‖‖yn‖

∥
∥
∥
∥

≤ 1
β2

∥
∥
∥
∥xn‖yn‖ − xn‖xn‖+ xn‖xn‖ − ‖xn‖yn

∥
∥
∥
∥

≤ 1
β2

(∣
∣
∣
∣‖yn‖ − ‖xn‖

∣
∣
∣
∣‖xn‖+ ‖xn‖‖xn − yn‖

)

≤ 1
β2

(‖yn − xn‖K + ‖xn − yn‖K)→ 0 as n→∞.

Because ‖Jμ(un)‖∗ = μ(‖un‖) = μ(1) and ‖Jμ(vn)‖∗ = μ(‖vn‖) = μ(1), we have

μ(1) + μ(1)− μ(1)‖un − vn‖ ≤ 〈un, Jμ(un)〉+〈vn, Jμ(vn)〉+〈un− vn, Jμ(vn)〉
= 〈un, Jμ(un)〉+〈un, Jμ(vn)〉
= 〈un, Jμ(un)+Jμ(vn)〉
≤ ‖Jμ(un) + Jμ(vn)‖∗ ≤ 2μ(1).

This shows that lim
n→∞

‖Jμ(un) + Jμ(vn)‖∗ = 2μ(1). Because X∗ is uniformly

convex, we have ‖Jμ(un)− Jμ(vn)‖∗ → 0 as n→∞. Hence

Jμ(xn)− Jμ(yn)
= [μ(‖xn‖)(Jμ(un)− Jμ(vn)) + (μ(‖xn‖)− μ(‖yn‖))Jμ(vn)]/μ(1),

and it follows that ‖Jμ(xn)− Jμ(yn)‖∗ → 0 as n→∞.
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Observation

• If Jμ : X → 2X∗
is a duality mapping with gauge function μ then

(i) Jμ is norm to weak* upper semicontinuous.

(ii) for each x ∈ X, the set Jμ(x) is convex and weakly closed in X∗;

(iii) Jμ(−x) = −Jμ(x) and Jμ(λx) = μ(‖λx‖)
μ(‖x‖) Jμ(x) for all x ∈ X, λ > 0;

(iv) each selection of Jμ is a homogeneous single-valued mapping j : X → X∗

satisfying j(x) ∈ Jμ(x) for all x ∈ X,

(v) Jμ is monotone, i.e., 〈x − y, jx − jy〉 ≥ 0 for all x, y ∈ X and jx ∈ Jμ(x),
jy ∈ Jμ(y);

(vi) the strict convexity of X implies that Jμ is strictly monotone, i.e.,

〈x − y, jx − jy〉 > 0 for all x, y ∈ X and jx ∈ Jμ(x), jy ∈ Jμ(y);

(vii) the reflexivity of X and strict convexity of X∗ imply that Jμ is single-valued
monotone and demicontinuous.

One can easily see that the following are reflexive Kadec-Klee Banach spaces:
(a) a Banach space of finite-dimension,
(b) a reflexive Banach space that is locally uniformly convex,
(c) a uniformly convex Banach space.

We now conclude this section with an interesting result concerning a Banach
space whose dual has the Kadec-Klee property.

Theorem 2.4.16 Let X be a reflexive Banach space such that X∗ has the
Kadec-Klee property. Let {xα}α∈D be a bounded net in X and x, y∈ww({xα}α∈D).
Suppose lim

α∈D
‖txα + (1− t)x− y‖ exists for all t ∈ [0, 1]. Then x = y.

Proof. Because lim
α∈D

‖txα + (1 − t)x − y‖ exists (say, r), for each ε > 0, there

exists α0 ∈ D such that

‖txα + (1− t)x− y‖ ≤ r + ε for all α � α0.

It follows that for all α � α0 and j(x− y) ∈ J(x− y),

〈txα + (1− t)x− y, j(x− y)〉 ≤ (r + ε)‖x− y‖.

Because x ∈ ωw({xα}α∈D), we obtain

‖x− y‖2 = 〈tx + (1− t)x− y, j(x− y)〉
≤ ‖x− y‖( lim

α∈D
‖txα + (1− t)x− y‖+ ε),

= (r + ε)‖x− y‖.

Taking the limit as ε→ 0, we obtain

‖x− y‖ ≤ r. (2.12)
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By Proposition 2.4.6 (b), we have

‖txα + (1− t)x− y‖2 ≤ ‖x− y‖2 + 2t〈xα − x, j(txα + (1− t)x− y)〉

for all t ∈ (0, 1] and j(txα + (1− t)x− y) ∈ J(txα + (1− t)x− y). By (2.12), we
have

lim inf
α∈D

〈xα − x, j(txα + (1− t)x− y)〉 ≥ 0.

Hence there exists a sequence {αn}n∈N such that αn � αm for n ≥ m and
〈

xα − x, j

(
1
n

xα +
(

1− 1
n

)

x− y

)〉

≥ − 1
n

for all n ∈ N and α � αn. (2.13)

Set D1 = {α : α � α1}. Without loss of generality, we may assume that
D = D1,

ωw({xα}α∈D) = ωw{xα}α∈D1

and

lim
α∈D

‖txα + (1− t)x− y‖ = lim
α∈D1

‖txα + (1− t)x− y‖ for all t ∈ [0, 1].

Set tα = inf{1/n : α � αn} for all α ∈ D.

We now consider two cases:
Case 1. α ∈ D and tα > 0.
Set jα := j(tαxα + (1− tα)x− y). Then

〈x− y, jα〉 = ‖tαxα + (1− tα)x− y‖2 − tα〈xα − x, jα〉 (2.14)

and

‖jα‖ = ‖tαxα + (1− tα)x− y‖. (2.15)

By (2.13), we have

〈xα − x, jα〉 ≥ −tα. (2.16)

Case 2. α ∈ D and tα = 0.
In this case, we can choose a subsequence {j((1/nk)xα+(1−1/nk)x−y)}k∈N

which is weakly convergent to j, and set jα := j. It follows from (2.13) that

〈xα − x, jα〉 ≥ 0. (2.17)

Observe that

‖jα‖ ≤ lim inf
k→∞

∥
∥
∥
∥j

(
1
nk

xα +
(

1− 1
nk

)

x− y

)∥
∥
∥
∥

= lim
k→∞

∥
∥
∥
∥

1
nk

xα +
(

1− 1
nk

)

x− y

∥
∥
∥
∥ = ‖x− y‖.
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On the other hand, we have

〈x− y, jα〉 = lim
k→∞

〈

x− y, j

(
1
nk

xα +
(

1− 1
nk

)

x− y

)〉

= lim
k→∞

(

‖ 1
nk

xα +
(

1− 1
nk

)

x− y‖2

− 1
nk

〈

xα − x, j

(
1
nk

xα +
(

1− 1
nk

)

x− y

)〉)

= ‖x− y‖2. (2.18)

Therefore,

‖jα‖ = ‖x− y‖ (2.19)

and jα ∈ J(x− y).
We note that by the Kadec-Klee property of X∗, the sequence {j((1/nk)xα+

(1− 1/nk)x− y)}k∈N converges strongly to jα.
Now from the net {xα}α∈D, we choose a subset {αβ}β∈D such that {xαβ

}β∈D

converges weakly to y ∈ ww({xα}α∈D) and {jαβ
}β∈D converges weakly to j.

Then by (2.15) and (2.19) we get

‖j‖∗ ≤ ‖x− y‖

and by (2.14) and (2.18), we get

〈x− y, j〉 = ‖x− y‖2.

Hence j ∈ J(x − y). Because X is reflexive and X∗ has the Kadec-Klee pro-
perty, the space X∗ has also the Kadec property and this implies that {jαβ

}β∈D

converges strongly to j. It follows from (2.16) and (2.17) that

〈y − x, j〉 ≥ 0,

i.e., ‖x− y‖2 ≤ 0. Therefore, x = y.

Corollary 2.4.17 Let X be a reflexive Banach space such that its dual X∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in X and p, q ∈
ωw({xn}). Suppose lim

n→∞
‖txn +(1− t)p−q‖ exists for all t ∈ [0, 1]. Then p = q.

2.5 Convex functions

Let X be a linear space and f : X → (−∞,∞] a function. Then
(i) f is said to be convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for

all x, y ∈ X and λ ∈ [0, 1];
(ii) f is said to be strictly convex if f(λx+(1−λ)y) < λf(x)+(1−λ)f(y) for

all λ ∈ (0, 1) and x, y ∈ X with x �= y, f(x) <∞, f(y) <∞;
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(iii) f is said to be proper if there exists x ∈ X such that f(x) <∞;
(iv) Dom(f) = {x ∈ X : f(x) <∞} is called domain or effective domain;
(v) f is said to be bounded below if there exists a real number α such that

α ≤ f(x) for all x ∈ X;
(vi) the set epif = {(x, α) : x ∈ X,α ∈ R, f(x) ≤ α} is called the

epigraph of f .

Let C be a subset of X. Then the function iC on X defined by

iC(x) =
{

0 if x ∈ C,
∞ if x /∈ C

is called the indicator function.

Observation
• iC is proper if and only if C is nonempty.

• dom(iC) = C.

• The set C is convex if and only if its indicator function iC is convex.

• The domain of each convex function is convex.

Let X be a topological space and f : X → (−∞,∞] a proper function. Then
f is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x0) = sup
V ∈Ux0

inf
x∈V

f(x),

where Ux0 is a base of neighborhoods of the point x0 ∈ X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for
each x ∈ X

xn → x⇒ f(x) ≤ lim inf
n→∞

f(xn).

We now discuss some elementary properties of convex functions:

Proposition 2.5.1 Let X be a linear space and f : X → (−∞,∞] a function.
Then f is convex if and only if its epigraph is a convex subset of X × R.

Proof. Suppose f is convex. Then for (x, α), (y, β) in epif , we have

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) ≤ (1− t)α + tβ for all t ∈ [0, 1].

This implies that ((1− t)x + ty, (1− t)α + tβ) ∈ epif .
Conversely, suppose that epif is convex. Then Dom(f) is also convex.

Because for x, y ∈ Dom(f) and (x, f(x)), (y, f(y)) ∈ epif , we have

((1− t)x + ty, (1− t)f(x) + tf(y)) ∈ epif for all t ∈ [0, 1].

Thus, by the definition of epif ,

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y).
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Proposition 2.5.2 Let X be a topological space and f : X → (−∞,∞] a
function. Then the following statements are equivalent:

(a) f is lower semicontinuous.
(b) For each α ∈ R, the level set {x ∈ X : f(x) ≤ α} is closed.
(c) The epigraph of the function f , {(x, α) ∈ X × R : f(x) ≤ α} is closed.

Proof. We recall that

lim inf
x→x0

f(x) = sup
V ∈Ux0

inf
x∈V

f(x).

(a) ⇒ (b). Let α ∈ R and let x0 ∈ X with f(x0) > α. Because f is lower
semicontinuous, there exists V0 ∈ Ux0 such that inf

x∈V0
f(x) > α. Hence V0 ⊂

{x ∈ X : f(x) > α}. Consequently, {x ∈ X : f(x) > α} is open and hence
{x ∈ X : f(x) ≤ α} is closed.

(b) ⇒ (a). Let x0 ∈ Dom(f), ε > 0 and Vε = {x ∈ X : f(x) > f(x0) − ε}.
Because each level set of f is closed, it follows that Vε ∈ U(x0). Because
inf

x∈Vε

f(x) ≥ f(x0)−ε, it follows that lim inf
x→x0

f(x) ≥ f(x0)−ε. As ε is arbitrarily

chosen, we conclude that (a) holds.
(a)⇔ (c). Define ϕ : X × R→ (−∞,∞] by ϕ(x, α) = f(x)− α. Then, f is

l.s.c. on X ⇔ ϕ is l.s.c. on X × R. Because epif is a level set of ϕ, therefore,
the conclusion holds.

Proposition 2.5.3 Let C be a nonempty closed convex subset of a Banach
space X and f : C → (−∞,∞] a convex function. Then f is lower semicontin-
uous in the norm topology if and only if f is lower semicontinuous in the weak
topology.

Proof. Set Fα := {x ∈ C : f(x) ≤ α}, α ∈ R. Then Fα is convex. Indeed, for
x, y ∈ Fα

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
≤ λα + (1− λ)α = a for all λ ∈ [0, 1].

It follows from Proposition 1.9.13 (which states that for a convex subset C in a
normed space X, C is closed if and only if C is weakly closed) that Fα is closed
if and only if Fα is weakly closed, i.e., Fα is closed in the weak topology.

Before presenting an important result, we first establish a preliminary result:

Theorem 2.5.4 Let X be a compact topological space and f : X → (−∞,∞] a
lower semicontinuous function. Then there exists an element x0 ∈ X such that

f(x0) = inf{f(x) : x ∈ X}.
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Proof. Set Gα := {x ∈ X : f(x) > α}, α ∈ R. One may easily see that each Gα

is open and X =
⋃

α∈R
Gα. By compactness of X, there exists a finite family

{Gαi
}ni=1 of {Gα}α∈R such that

X =
n⋃

i=1

Gαi
.

Suppose α0 = min{α1, α2, · · · , αn}. This gives f(x) > α0 for all x ∈ X.
It follows that inf{f(x) : x ∈ X} exists. Let m = inf{f(x) : x ∈ X}.
Let β be a number such that β > m. Set Fβ := {x ∈ X : f(x) ≤ β}. Then Fβ

is a nonempty closed subset of X; and hence, by the intersection property, we
have ⋂

β>m

Fβ �= ∅.

Therefore, for any point x0 of this intersection, we have m = f(x0).

Theorem 2.5.5 Let C be a weakly compact convex subset of a Banach space
and f : C → (−∞,∞] a proper lower semicontinuous convex function. Then
there exists x0 ∈ Dom(f) such that f(x0) = inf{f(x) : x ∈ C}.
Proof. Because f is proper, there exists u ∈ C such that f(u) < ∞. Then
the set C0 = {x ∈ C : f(x) ≤ f(u)} is nonempty. Because the set C0 is
closed and convex subset of C, it follows that C0 is weakly compact. Applying
Proposition 2.5.3, we have that f is lower semicontinuous in the weak topology.
By Theorem 2.5.4, there exists x0 ∈ C0 ⊂ C such that

f(x0) = inf{f(x) : x ∈ C0} = inf{f(x) : x ∈ C}.
Remark 2.5.6 If f is strictly convex function in Theorem 2.5.5, then x0 ∈ C
is the unique point such that f(x0) = inf

x∈C
f(x).

Recall that every closed convex bounded subset of a reflexive Banach space
is weakly compact. Using this fact, we have

Theorem 2.5.7 Let X be a reflexive Banach space and f : X → (−∞,∞] a
proper lower semicontinuous convex function. Then for every nonempty closed
convex bounded subset C of X, there exists a point x0 ∈ Dom(f) such that
f(x0) = inf

x∈C
f(x).

In Theorem 2.5.7, the boundedness of C may be replaced by the weaker
assumption

lim
x∈C,‖x‖→∞

f(x) =∞.

Theorem 2.5.8 Let C be a nonempty closed convex subset of a reflexive Banach
space X and f : C → (−∞,∞] a proper lower semicontinuous convex function
such that f(xn)→∞ as ‖xn‖ → ∞. Then there exists x0 ∈ Dom(f) such that

f(x0) = inf{f(x) : x ∈ C}.
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Proof. Let m = inf{f(x) : x ∈ C}. Choose a minimizing sequence {xn} in
C, i.e., f(xn) → m. If {xn} is not bounded, there exists a subsequence {xni

}
of {xn} such that ‖xni

‖ → ∞. From the hypothesis, we have f(xni
) → ∞,

which contradicts m �=∞. Hence {xn} is bounded. By the reflexivity X, there
exists a subsequence {xnj

} of {xn} such that xnj
⇀ x0 ∈ C. Because f is lower

semicontinuous in the weak topology, we have

m ≤ f(x0) ≤ lim inf
j→∞

f(xnj
) = lim

n→∞
f(xn) = m.

Therefore, f(x0) = m.

Differentiation of convex functions – Let X be a normed space and
ϕ : X → (−∞,∞] a function. Then the limit

lim
t→0

ϕ(x + ty)− ϕ(x)
t

= inf
t>0

ϕ(x + ty)− ϕ(x)
t

is said to be the directional derivative of ϕ at the point x ∈ X in the direction
y ∈ X. If it exists, it is denoted by ϕ′(x, y).

The function ϕ is said to be Gâteaux differentiable at a point x ∈ X if there
exists a continuous linear functional j on X such that 〈y, j〉 = ϕ′(x, y) for all
y ∈ X. The element j, denoted by ϕ′(x) or �ϕ(x) (i.e., gradϕ(x)) is called the
Gâteaux derivative of ϕ at x.

One can easily see from the definition of Gâteaux derivative of ϕ that
(i) ϕ′(x)(0) = 0,

(ii) ϕ′(x)(λy) = λ lim
t→0

ϕ(x + tλy)− ϕ(x)
t

= λϕ′(x)(y) for all λ ∈ R, i.e.,

ϕ′(x)(·) is homogeneous over R.

Remark 2.5.9 If the function ϕ is Gâteaux differentiable at x ∈ X, then there
exists j = ϕ′(x) ∈ X∗ such that

d

dt
ϕ(x + ty)

∣
∣
∣
∣
t=0

= 〈y, ϕ′(x)〉 = 〈y, j〉 for all y ∈ X.

Let X be a normed space and ϕ : X → (−∞,∞] a function. The function ϕ
is said to be Fréchet differentiable at a point x ∈ X if there exists a continuous
linear functional j on X such that

lim
‖y‖→0

|ϕ(x + y)− ϕ(x)− 〈y, j〉|
‖y‖ = 0.

In this case, the element j denoted by dϕ(x) is called the Fréchet derivative
of ϕ at the point x.

Proposition 2.5.10 Let X be a normed space and ϕ : X → (−∞,∞] a
function. If ϕ is Fréchet differentiable at x, then ϕ is Gâteaux differentiable
at x.
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Proof. Because ϕ is Fréchet differentiable at x,

lim
‖y‖→0

|ϕ(x + y)− ϕ(x)− dϕ(x)y|
‖y‖ = 0. (2.20)

Set y = ty0 for t > 0 and for any fixed y0 �= 0. From (2.20), we obtain

lim
t→0

|ϕ(x + ty0)− ϕ(x)− tdϕ(x)y0|
t‖y0‖

= 0,

which implies that

lim
t→0

ϕ(x + ty0)− ϕ(x)
t

= dϕ(x)y0.

Hence dϕ ∈ X∗ and ϕ is Gâteaux differentiable at x.

The following example shows that the converse of Proposition 2.5.10 is not
true.

Example 2.5.11 Let X = R
2 be a normed space with norm ‖·‖2 and ϕ : X → R

a function defined by

ϕ(x, y) =
{

x3y/(x4 + y2) if (x, y) �= (0, 0),
0 if (x, y) = (0, 0).

One may easily see that ϕ is Gâteaux differentiable at 0 with Gâteaux derivative
ϕ′(0) = 0. Because for (h, k) ∈ X, we have

|ϕ(h, k)|
‖(h, k)‖2

=
|h3k|

(h4 + k2)(h2 + k2)1/2
=

1
2(1 + h2)1/2

for k = h2.

Therefore, ϕ is not Fréchet differentiable.

Observation

• Every Fréchet differentiable function is Gâteaux differentiable.

• If ϕ is Fréchet differentiable at x, then ϕ is continuous at x.

• If ϕ is Gâteaux differentiable at x, then ϕ is not necessarily continuous at x
(e.g., the function ϕ : R

2 → R defined by

ϕ(x, y) =
2y exp(−x−2)

y2 + exp(−2x−2)
, x �= 0 and ϕ(x, y) = 0, x = 0

is Gâteaux differentiable at zero, but not continuous at zero).

• If ϕ is Gâteaux differentiable at x, then ϕ(x + ty) → ϕ(x) as t → 0 (i.e., if

xn → x along a line, then ϕ(xn) → ϕ(x)).
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Let X be a Banach space and ϕ : X → (−∞,∞] a proper convex function.
Then an element j ∈ X∗ is said to be a subgradient of ϕ at the point x ∈ X if

ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X.

The set (possibly nonempty)

{j ∈ X∗ : ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X},

of subgradients of ϕ at x ∈ X is called the subdifferential of ϕ at x ∈ X.
Thus, the subdifferential of a proper convex function ϕ is a mapping ∂ϕ : X →
2X∗

(generally multivalued) defined by

∂ϕ(x) = {j ∈ X∗ : ϕ(x)− ϕ(y) ≤ 〈x− y, j〉 for all y ∈ X}.

The domain of the subdifferential ∂ϕ is denoted and defined by

Dom(∂ϕ) = {x ∈ X : ∂ϕ(x) �= ∅}.

Remark 2.5.12 If ϕ is not the constant ∞, then Dom(∂ϕ) is a subset of
Dom(ϕ).

Observation
• ∂ϕ(x) is always for every x ∈ X nonempty if ϕ is continuous.

• ∂ϕ(x) is always a closed convex set in X∗.

• ∂(λϕ(x)) = λ∂ϕ(x), i.e., ∂ϕ(x) is homogeneous.

• ϕ has a minimum value at x0 ∈ Dom(∂ϕ) if and only if 0 ∈ ∂ϕ(x0).

• Dom(∂ϕ) = Dom(ϕ) if ϕ is lower semicontinuous on X.

• For a lower semicontinuous proper convex function ϕ on a reflexive Banach space

X, ∂ϕ is maximal monotone.

The following results are of fundamental importance in the study of convex
functions. We begin with a basic result.

Proposition 2.5.13 Let C be a nonempty closed convex subset of a Banach
space X and iC the indicator function of C, i.e.,

iC(x) =
{

0 if x ∈ C,
∞ otherwise.

Then ∂iC(x) = {j ∈ X∗ : 〈x− y, j〉 ≥ 0 for all y ∈ C}, x ∈ C.

Proof. Because the indicator function is convex and lower semicontinuous
function on X, by the subdifferentiability of iC , we have

∂iC(x) = {j ∈ X∗ : iC(x)− iC(y) ≤ 〈x− y, j〉 for all y ∈ C}.



86 2. Convexity, Smoothness, Duality Mappings

Remark 2.5.14 Dom(iC) = Dom(∂iC) = C and ∂iC(x) = {0} for each x ∈
int(C).

We now give a relation between Gâteaux differentiability and subdiffer-
entiability.

Theorem 2.5.15 Let X be a Banach space and ϕ : X → (−∞,∞] a proper
convex function. If ϕ is Gâteaux differentiable at a point x0 ∈ X, then ∂ϕ(x0) =
{ϕ′(x0)}, i.e., the subdifferential of ϕ at x0 ∈ X is a singleton set {ϕ′(x0)} in
X∗.

Conversely, if ϕ is continuous at x0 and ∂ϕ(x0) contains a singleton element,
then ϕ is Gâteaux differentiable at x0 and ϕ′(x0) = ∂ϕ(x0).

Proof. Let ϕ be Gâteaux differentiable at x0 ∈ X. Then

〈y, ϕ′(x0)〉 = lim
t→0

ϕ(x0 + ty)− ϕ(x0)
t

for all y ∈ X.

Notice

ϕ(x0 + λ(z− x0)) = ϕ((1−λ)x0 + λz) ≤ (1−λ)ϕ(x0) + λϕ(z) for all λ ∈ (0, 1).

Set y := z − x0. Then, we have

ϕ(x0 + λy) ≤ ϕ(x0) + λ[ϕ(x0 + y)− ϕ(x0)].

Thus,
ϕ(x0 + λy)− ϕ(x0)

λ
≤ ϕ(x0 + y)− ϕ(x0),

which implies that

ϕ(x0)− ϕ(x0 + y) ≤ −〈y, ϕ′(x0)〉 = 〈x0 − (x0 + y), ϕ′(x0)〉 for all y ∈ X,

i.e., ϕ′(x0) ∈ ∂ϕ(x0).

Now, let jx0 ∈ ∂ϕ(x0). Then, we have

ϕ(x0)− ϕ(u) ≤ 〈x0 − u, jx0〉 for all u ∈ X.

Therefore,
ϕ(x0 + λh)− ϕ(x0)

λ
≥ 〈h, jx0〉 for all λ > 0,

it follows that
〈h, ϕ′(x0)− jx0〉 ≥ 0 for all h ∈ X,

i.e., jx0 = ϕ′(x0). Thus, ϕ is Gâteaux differentiable at x0 and ϕ′(x0) =
∂ϕ(x0).
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Corollary 2.5.16 Let X be a Banach space and ϕ : X → (−∞,∞] a proper
convex function. Then ϕ is Gâteaux differentiable at x ∈ int(dom(ϕ)) if and
only if it has a unique subgradient ∂ϕ(x) = {ϕ′(x)}, i.e., the subdifferential of
ϕ at x is a singleton set in X∗. In this case

d

dt
ϕ(x + ty)

∣
∣
∣
∣
t=0

= 〈y, ∂ϕ(x)〉 = 〈y, ϕ′(x)〉 for all y ∈ X.

Theorem 2.5.17 Let X be a Banach space, Jμ : X → 2X∗
a duality mapping

with gauge function μ, and Φ(‖x‖) =
∫ ‖x‖
0

μ(s)ds, 0 �= x ∈ X. Then

Jμ(x) = ∂Φ(‖x‖).
Proof. Because μ is a strictly increasing and continuous function, it follows
that Φ is differentiable and hence Φ′(t) = μ(t), t ≥ 0. Then Φ is a convex
function.

First, we show Jμ(x) ⊆ ∂Φ(‖x‖). Let x �= 0, and j ∈ Jμ(x). Then 〈x, j〉 =
‖x‖‖j‖∗, ‖j‖∗ = μ(‖x‖). In order to prove j ∈ ∂Φ(‖x‖), i.e., Φ(‖x‖)−Φ(‖y‖) ≤
〈x− y, j〉 for all y ∈ X, we assume that ‖y‖ > ‖x‖. Then

‖j‖∗ = μ(‖x‖) = Φ′(‖x‖) ≤ Φ(‖y‖)− Φ(‖x‖)
‖y‖ − ‖x‖ ,

which yields

Φ(‖x‖)− Φ(‖y‖) ≤ ‖j‖∗(‖x‖ − ‖y‖)
≤ 〈x, j〉 − 〈y, j〉
= 〈x− y, j〉.

In a similar way, if ‖x‖ > ‖y‖, we have

Φ(‖x‖)− Φ(‖y‖) ≤ 〈x− y, j〉.
In the case when ‖x‖ = ‖y‖, we have

〈y − x, j〉 = 〈y, j〉 − 〈x, j〉
≤ ‖y‖‖j‖∗ − ‖x‖‖j‖∗ (as 〈x, j〉 = ‖x‖‖j‖∗)
≤ ‖j‖∗(‖y‖ − ‖x‖),

and it follows that

Φ(‖x‖)− Φ(‖y‖) = 0 = ‖j‖∗(‖x‖ − ‖y‖) ≤ 〈x− y, j〉.
Hence j ∈ ∂Φ(‖x‖). Thus, Jμ(x) ⊆ ∂Φ(‖x‖) for all x �= 0.

We now prove ∂Φ(‖x‖) ⊆ Jμ(x) for all x �= 0. Suppose j ∈ ∂Φ(‖x‖) for
0 �= x ∈ X. Then

‖x‖‖j‖∗ = sup{〈y, j〉‖x‖ : ‖y‖ = 1}
= sup{〈y, j〉 : ‖x‖ = ‖y‖ = 1}
≤ sup{〈y, j〉 : ‖x‖ = ‖y‖}
≤ sup{〈x, j〉+ Φ(‖y‖)− Φ(‖x‖) : ‖x‖ = ‖y‖}
≤ ‖x‖‖j‖∗. (as 〈y, j〉 ≤ 〈x, j〉+ Φ(‖y‖)− Φ(‖x‖)).
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Thus, 〈x, j〉 = ‖x‖‖j‖∗. To see j ∈ Jμ(x), we show that ‖j‖∗ = μ(‖x‖) =
Φ′(‖x‖). Because

Φ(‖x‖)− Φ(t‖x‖) ≤ 〈x− tx, j〉 = (1− t)‖x‖‖j‖∗ for all t > 0,

this implies that

‖j‖∗ ≤
Φ(t‖x‖)− Φ(‖x‖)

t‖x‖ − ‖x‖ . (2.21)

It follows from (2.21) that

‖j‖∗ ≤
Φ(t‖x‖)− Φ(‖x‖)

t‖x‖ − ‖x‖ if t > 1

and
Φ(‖x‖)− Φ(t‖x‖)
‖x‖ − t‖x‖ ≤ ‖j‖∗ if t < 1.

Taking the limit as t→ 1, we get

‖j‖∗ = Φ′(‖x‖) = μ(‖x‖).

Thus, ∂Φ(‖x‖) ⊆ Jμ(x). Therefore, Jμ(x) = ∂Φ(‖x‖) for all x �= 0.

Remark 2.5.18 Both the sets Jμ(x) and ∂Φ(‖x‖) are equal to {0} if x = 0.

Corollary 2.5.19 For p ∈ (1,∞), the generalized duality mapping Jp is the
subdifferential of the functional ‖ · ‖p/p.

Proof. Define μ(t) = tp−1, p > 1. Hence

Φ(t) =
∫ t

0

μ(s)ds =
∫ t

0

sp−1ds =
tp

p
.

Therefore, Jp(·) = ∂(‖ · ‖p/p).

Corollary 2.5.20 Let X be a Banach space and ϕ(x) = ‖x‖2/2. Then the
subdifferential ∂ϕ coincides with the normalized duality mapping J : X → 2X∗

defined by

Jx = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖}, x ∈ X.

Theorem 2.5.21 Let X be a Banach space. Then

∂‖x‖ = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = 1} for all x ∈ X \ {0}.
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Proof. Let j ∈ ∂‖x‖. Then

〈y − x, j〉 ≤ ‖y‖ − ‖x‖ ≤ ‖y − x‖ for all y ∈ X. (2.22)

It follows that j ∈ X∗ and ‖j‖∗ ≤ 1. It is clear from (2.22) that ‖x‖ ≤ 〈x, j〉,
which gives

〈x, j〉 = ‖x‖ and ‖j‖∗ = 1.

Thus,
∂‖x‖ ⊆ {j ∈ X∗ : 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1}.

Now suppose j ∈ X∗ such that j ∈ {f ∈ X∗ : 〈x, f〉 = ‖x‖ and ‖f‖∗ = 1}. Then
〈x, j〉 = ‖x‖ and ‖j‖∗ = 1. Thus,

〈y − x, j〉 = 〈y, j〉 − ‖x‖ ≤ ‖y‖ − ‖x‖ for all y ∈ X,

i.e., j ∈ ∂‖x‖. It follows that

{j ∈ X∗ : 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1} ⊆ ∂‖x‖.

Therefore, ∂‖x‖ = {j ∈ X∗ : 〈x, j〉 and ‖j‖∗ = 1}.

Using Corollary 2.5.19, we establish an inequality in a general Banach space
that is a generalization of the inequality given in Proposition 2.4.6(b).

Theorem 2.5.22 Let X be a Banach space and let Jp : X → 2X∗
, 1 <

p < ∞ be the generalized duality mapping. Then for any x, y ∈ X, there exists
jp(x + y) ∈ Jp(x + y) such that ‖x + y‖p ≤ ‖x‖p + p〈y, jp(x + y)〉.

Proof. By Corollary 2.5.19, Jp is the subdifferential of the functional ‖ · ‖p/p.
By the subdifferentiability of ‖ · ‖p/p, for x, y ∈ X, there exists jp(x + y) ∈
Jp(x + y) such that ‖x + y‖p ≤ ‖x‖p + p〈y, jp(x + y)〉.

The following result is very useful in the approximation of solution of non-
linear operator equations.

Theorem 2.5.23 Let X be a Banach space and Jμ : X → 2X∗
a duality map-

ping with gauge function μ. If Jμ is single-valued, then

Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X.

Proof. Because Jμ is single-valued, it follows from Theorem 2.5.17 that
∂Φ(‖x‖) = {Jμ(x)}. Hence Corollary 2.5.16 implies that Jμ is the Gâteaux
gradient of Φ(‖x‖), i.e.,

d

dt
Φ(‖x + ty‖)

∣
∣
∣
∣
t=0

= 〈y, Jμ(x)〉.
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Hence
d

dt
Φ(‖x + ty‖)

∣
∣
∣
∣
t=r

=
d

ds
Φ(‖x + ry + sy‖)

∣
∣
∣
∣
s=0

= 〈y, Jμ(x + ry)〉, r ∈ R.

Because the function t �→ 〈y, Jμ(x + ty)〉 is continuous, hence
∫ 1

0

〈y, Jμ(x + ry)〉dr =
∫ 1

0

d

dt
Φ(‖x + ty‖)

∣
∣
∣
∣
t=r

dr = Φ(‖x + y‖)− Φ(‖x‖).

Corollary 2.5.24 Let X be a Banach space. If X∗ is strictly convex, then we
have the following:

(a) Φ(‖x + y‖) = Φ(‖x‖) +
∫ 1

0

〈y, Jμ(x + ty)〉dt for all x, y ∈ X;

(b) ‖x + y‖p = ‖x‖p + p

∫ 1

0

〈y, Jp(x + ty)〉dt for all x, y ∈ X and p > 1;

(c) ‖x + y‖2 = ‖x‖2 + 2
∫ 1

0

〈y, J(x + ty)〉dt for all x, y ∈ X.

Proposition 2.5.25 Let X be a Banach space with strictly convex dual and C
a nonempty convex subset of X. Let x0 be an element in C and Jμ : X → X∗

a duality mapping with gauge function μ. Then

‖x0‖ = inf
x∈C

‖x‖ if and only if 〈x0 − x, Jμ(x0)〉 ≤ 0 for all x ∈ C.

Proof. Let x0 be a point in C such that 〈x0 − x, Jμ(x0)〉 ≤ 0 for all x ∈ C.
Then

‖x0‖‖Jμ(x0)‖∗ = 〈x0, Jμ(x0)〉 ≤ ‖x‖‖Jμ(x0)‖∗ for all x ∈ C.

Therefore, ‖x0‖ = inf
x∈C

‖x‖.

Conversely, suppose that x0 ∈ C such that ‖x0‖ = inf
x∈C

‖x‖. Then

‖x0‖ ≤ ‖x0 + t(x− x0)‖ for all x ∈ C and t ∈ [0, 1],

which implies that

Φ(‖x0‖)− Φ(‖x0 + t(x− x0)‖) ≤ 0.

Because Jμ(z) = ∂Φ(‖z‖), it follows that

Φ(‖x0 + t(x− x0)‖)− Φ(‖x0‖) ≤ 〈x0 + t(x− x0)− x0, Jμ(x0 + t(x− x0))〉,
which implies that

t〈x0 − x, Jμ(x0 + t(x− x0))〉 ≤ Φ(‖x0‖)− Φ(‖x0 + t(x− x0)‖) ≤ 0.

Thus,
〈x0 − x, Jμ(x0 + t(x− x0))〉 ≤ 0.

Letting t→ 0, we obtain 〈x0 − x, Jμ(x0)〉 ≤ 0.
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2.6 Smoothness

Let C be a nonempty closed convex subset of a normed space X such that
the origin belongs to the interior of C. A linear functional j ∈ X∗ is said
to be tangent to C at a point x0 ∈ ∂C if j(x0) = sup{j(x) : x ∈ C}.
If H = {x ∈ X : j(x) = 0} is the hyperplane, then the set H + x0 is called a
tangent hyperplane to C at x0.

Definition 2.6.1 A Banach space X is said to be smooth if for each x ∈ SX ,
there exists a unique functional jx ∈ X∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1.

Geometrically, the smoothness condition means that at each point x of the
unit sphere, there is exactly one supporting hyperplane {jx = 1}. This means
that the hyperplane {jx = 1} is tangent at x to the unit ball, and this unit ball
is contained in the half space {jx ≤ 1}.

Observation
• �p, Lp (1 < p < ∞) are smooth Banach spaces.

• c0, �1, L1, �∞, L∞ are not smooth.

Differentiability of norms of Banach spaces – Let X be a normed space
and SX = {x ∈ X : ‖x‖ = 1}, the unit sphere of X. Then the norm of X is
Gâteaux differentiable at point x0 ∈ SX if for y ∈ SX

d

dt
(‖x0 + ty‖)

∣
∣
∣
∣
t=0

= lim
t→0

‖x0 + ty‖ − ‖x0‖
t

exists (say, 〈y,�‖x0‖〉). �‖x0‖ is called the gradient of the norm ϕ(x) = ‖x‖
at x = x0. The norm of X is said to Gâteaux differentiable if it is Gâteaux
differentiable at each point of SX . The norm of X is said to be uniformly
Gâteaux differentiable if for each y ∈ SX , the limit is approached uniformly for
x ∈ SX .

Example 2.6.2 Let H be a Hilbert space. Then the norm of H is Gâteaux
differentiable with �‖x‖ = x/‖x‖, x �= 0. Indeed, for each x ∈ X with x �= 0,
we have

lim
t→0

‖x + ty‖ − ‖x‖
t

= lim
t→0

‖x + ty‖2 − ‖x‖2
t(‖x + ty‖+ ‖x‖)

= lim
t→0

2t〈y, x〉+ t2‖y‖2
t(‖x + ty‖+ ‖x‖) = 〈y, x/‖x‖〉.

Therefore, the norm of H is Gâteaux differentiable with �‖x‖ = x/‖x‖.

Remark 2.6.3 In view of Example 2.6.2, we have the following:
(i) at x �= 0, ϕ(x) = ‖x‖ is Gâteaux differentiable with �‖x‖ = x/‖x‖,
(ii) at x = 0, ϕ(x) = ‖x‖ is not differentiable, but it is subdifferentiable. Indeed,

∂ϕ(0) = ∂‖0‖ = {j ∈ H : 〈x, j〉 ≤ ‖x‖ for all x ∈ H}
= {j ∈ H : ‖j‖∗ ≤ 1}.
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Theorem 2.6.4 Let X be a Banach space. Then we have the following:
(a) If X∗ is strictly convex, then X is smooth.

(b) If X∗ is smooth, then X is strictly convex.

Proof. (a) Suppose X is not smooth. There exist x0 ∈ SX and j1, j2 ∈ SX∗

with j1 �= j2 such that 〈x0, j1〉 = 〈x0, j2〉 = 1. This means that x0 determines
a continuous linear functional on X∗ that takes its maximum value on BX∗ at
two distinct points j1 and j1. Hence X∗ is not strictly convex.

(b) Suppose X is not strictly convex. There exist j ∈ SX∗ and x, y ∈ SX

with x �= y such that 〈x, j〉 = 〈y, j〉 = 1. Thus, two supporting hyperplanes pass
through j ∈ SX∗ such that

〈x, f〉 = 〈y, f〉 = 1, f ∈ X∗.

Therefore, X∗ is not smooth.

It is well-known that for a reflexive Banach space X, the dual spaces X and
X∗ can be equivalently renormed as strictly convex spaces such that the duality
is preserved. Using the above fact, we have

Theorem 2.6.5 Let X be a reflexive Banach space. Then we have the follow-
ing:
(a) X is smooth if and only if X∗ is strictly convex.
(b) X is strictly convex if and only if X∗ is smooth.

The following theorem establishes a relation between smoothness and Gâteaux
differentiability of the norm.

Theorem 2.6.6 A Banach space X is smooth if and only if the norm is Gâteaux
differentiable on X\{0}.

Proof. Because the proper convex continuous function ϕ is Gâteaux differen-
tiable if and only if it has a unique subgradient, we have

norm is Gâteaux differentiable at x
⇔ ∂‖x‖ = {j ∈ X∗ : 〈x, j〉 = ‖x‖, ‖j‖∗ = 1} is singleton
⇔ there exists a unique j ∈ X∗ such that 〈x, j〉 = ‖x‖ and ‖j‖∗ = 1
⇔ smooth.

Next, we establish a relation between smoothness of a Banach space and a
property of the duality mapping with gauge function μ.

Theorem 2.6.7 Let X be a Banach space. Then X is smooth if and only if
each duality mapping Jμ with gauge function μ is single-valued; in this case

d

dt
Φ(‖x + ty‖)

∣
∣
∣
∣
t=0

= 〈y, Jμ(x)〉 for all x, y ∈ X. (2.23)
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Proof. The Banach space X is smooth if and only if there exists a unique
j ∈ X∗ satisfying

〈xμ(||x||), j〉 = ‖x‖μ(‖x‖) and‖j‖∗ = 1;

in this case μ(‖x‖)j = Jμ(x) = ∂Φ(‖x‖), and hence by Corollary 2.5.16, we

obtain the formula (2.23).

Corollary 2.6.8 Let X be a Banach space and Jμ : X → 2X∗
a duality mapping

with gauge function μ. Then j ∈ Jμ(x), x ∈ X if and only if H = {y ∈ X :
〈y, j〉 = ‖x‖μ(‖x‖)} is a supporting hyperplane for the closed ball B‖x‖[0] at x.

Corollary 2.6.9 Let X be a Banach space and J : X → 2X∗
a duality mapping.

Then the following are equivalent:

(a) X is smooth.

(b) J is single-valued.

(c) The norm of X is Gâteaux differentiable with �‖x‖ = ‖x‖−1Jx.

We now study the continuity property of duality mappings.

Theorem 2.6.10 Let X be a Banach space and J : X → X∗ a single-valued
duality mapping. Then J is norm to weak* continuous.

Proof. We show that xn → x⇒ Jxn → Jx in the weak* topology. Let xn → x
and set fn := Jxn. Then

〈xn, fn〉 = ‖xn‖‖fn‖∗, ‖xn‖ = ‖fn‖∗.

Because {xn} is bounded, {fn} is bounded in X∗. Then there exists a subse-
quence {fnk

} of {fn} such that fnk
→ f ∈ X∗ in the weak* topology. Because

the norm of X∗ is lower semicontinuous in weak* topology, we have

‖f‖∗ ≤ lim inf
k→∞

‖fnk
‖∗ = lim inf

k→∞
‖xnk

‖ = ‖x‖.

Because 〈x, f − fnk
〉 → 0 and 〈x− xnk

, fnk
〉 → 0, it follows from the fact

|〈x, f〉 − ‖xnk
‖2| = |〈x, f〉 − 〈xnk

, fnk
〉|

≤ |〈x, f − fnk
〉|+ |〈x− xnk

, fnk
〉| → 0

that
〈x, f〉 = ‖x‖2.

As a result
‖x‖2 = 〈x, f〉 ≤ ‖f‖∗‖x‖.

Thus, we have 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖∗. Therefore, f = Jx.
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Theorem 2.6.11 Let X be a Banach space with a uniformly Gâteaux differ-
entiable norm. Then the duality mapping J : X → X∗ is uniformly demicon-
tinuous on bounded sets, i.e., J is uniformly continuous from X with its norm
topology to X∗ with the weak* topology.

Proof. Suppose the result is not true. Then there exist sequences {xn} and
{zn}, a point y0 and a positive ε such that

‖xn‖ = ‖zn‖ = ‖y0‖ = 1, zn − xn → 0 and 〈y0, Jzn − Jxn〉 ≥ ε for all n ∈ N.

Set
an := t−1(‖xn + ty0‖ − ‖xn‖ − t〈y0, Jxn〉)

and
bn := t−1(‖zn − ty0‖ − ‖zn‖+ t〈y0, Jzn〉).

If t > 0 is sufficiently small, then both an and bn are less than ε/2. On the
other hand, we have

an ≥ t−1(〈xn + ty0, Jzn〉 − 〈xn + ty0, Jxn〉)
= 〈y0, Jzn − Jxn〉+ t−1〈xn, Jzn − Jxn〉

and

bn ≥ t−1(〈zn − ty0, Jxn〉 − 〈zn − ty0, Jzn〉)
= 〈y0, Jzn − Jxn〉 − t−1〈zn, Jzn − Jxn〉.

Thus,

an + bn ≥ 2〈y0, Jzn − Jxn〉+ t−1〈xn − zn, Jzn − Jxn〉
≥ 2ε− 2t−1‖xn − zn‖,

a contradiction by choosing t = 2‖xn − zn‖/ε for sufficiently large n.

2.7 Modulus of smoothness

Recall that the modulus of convexity of a Banach space X is a function
δX : [0, 2]→ [0, 1] defined by

δX(t) = inf{1− ‖(x + y)/2‖ : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ t}.

We now introduce the modulus of smoothness of a Banach space.

Definition 2.7.1 Let X be a Banach space. Then a function ρX : R
+ → R

+

is said to be the modulus of smoothness of X if

ρX(t) = sup
{
‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = t

}

= sup
{
‖x + ty‖+ ‖x− ty‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}

, t ≥ 0.

It is easy to check that ρX(0) = 0 and ρX(t) ≥ 0 for all t ≥ 0.
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The following result contains important properties of the modulus of
smoothness.

Proposition 2.7.2 Let ρX be the modulus of smoothness of a Banach space X.
Then ρX is an increasing continuous convex function.

Proof. Because for fixed x, y ∈ X with ‖x‖ = 1, ‖y‖ = 1, the function

f(t) =
‖x + ty‖+ ‖x− ty‖

2
− 1, t ∈ R

is convex and continuous on R, it follows that the modulus of smoothness ρX is
also continuous and a convex function.

Moreover, f(−t) = f(t) for each t ∈ R, f is nondecreasing on R
+. Hence ρX

is nondecreasing.

The following theorem gives us an important relation between the modulus
of convexity of X (respectively, X∗) and that of smoothness of X∗

(respectively, X).

Theorem 2.7.3 Let X be a Banach space. Then we have the following:

(a) ρX∗(t) = sup
{

tε
2 − δX(ε) : 0 ≤ ε ≤ 2

}

for all t > 0.

(b) ρX(t) = sup
{

tε
2 − δX∗(ε) : 0 ≤ ε ≤ 2

}

for all t > 0.

Proof. (a) By the definition of modulus of smoothness of X∗, we have

2ρX∗(t) = sup{‖x∗ + ty∗‖∗ + ‖x∗ − ty∗‖∗ − 2 : x∗, y∗ ∈ SX∗}
= sup{〈x, x∗〉+t〈x, y∗〉+〈y, x∗〉−t〈y, y∗〉−2 : x, y ∈ SX , x∗, y∗ ∈ SX∗}
= sup{‖x + y‖+ t‖x− y‖ − 2 : x, y ∈ SX}
= sup{‖x + y‖+ tε− 2 : x, y ∈ SX , ‖x− y‖ = ε, 0 ≤ ε ≤ 2}
= sup{tε− 2δX(ε) : 0 ≤ ε ≤ 2}.

Part (b) can be obtained in the same manner.

As an immediate consequence of Theorem 2.7.3 (b), we have

Corollary 2.7.4 Let X be a Banach space. Then ρX(t)/t is increasing function
and ρX(t) ≤ t for all t > 0.

Theorem 2.7.3 allows us to estimate ρX for Hilbert spaces. Indeed, we have

Proposition 2.7.5 Let H be a Hilbert space. Then for t > 0

ρH(t) = sup
{
tε/2− 1 + (1− ε2/4)1/2 : 0 < ε ≤ 2} = (1 + t2)1/2 − 1.
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Observation

• If X is a Banach space and H is a Hilbert space, then ρX(t) ≥ ρH(t) =√
1 + t2 − 1 for all t ≥ 0.

Let X be a Banach space. Then the characteristic of convexity or the
coefficient of convexity of the Banach space X is the number

ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}.

The Banach space X is said to be uniformly convex if ε0(X) = 0 and uniformly
nonsquare if ε0(X) < 2. One may easily see that the modulus of convexity δX

is strictly increasing on [ε0, 2].

Example 2.7.6 Let X = R
2 with norm ‖ · ‖∞ defined by

‖x‖∞ = ‖(x1, x2)‖∞ = max{|x1|, |x2|}.

Then X has a square-shaped unit ball for which δX(ε) = 0 for ε ∈ [0, 2]. Hence
ε0(X) = 2.

The following theorem gives an important relation between the modulus of
smoothness of a Banach space and the characteristic of convexity of its dual
space.

Theorem 2.7.7 Let X be a Banach space. Then the following statements are
equivalent:

(a) lim
t→0

ρX(t)
t

< ε/2 for all ε ≤ 2.

(b) ε0(X∗) < ε for all ε ≤ 2.

Proof. (a) ⇒ (b). Let ε ∈ [0, 2]. Suppose, for contradiction, that ε0(X∗) ≥ ε.
Then there exist {fn} and {gn} in SX∗ such that

‖fn − gn‖∗ ≥ ε and lim
n→∞

‖fn + gn‖∗ = 2. (2.24)

From the definition of ρX , we get

ρX(t) ≥
∥
∥
∥
∥

x + ty

2

∥
∥
∥
∥+
∥
∥
∥
∥

x− ty

2

∥
∥
∥
∥− 1 for all t > 0 and x, y ∈ SX .

Therefore,

ρX(t) ≥
∣
∣
∣
∣
f(x) + g(x)

2

∣
∣
∣
∣+ t

∣
∣
∣
∣
f(y)− g(y)

2

∣
∣
∣
∣− 1 for all f, g ∈ SX∗ .

Because x and y were arbitrary, we get

ρX(t) ≥
∥
∥
∥
∥

f + g

2

∥
∥
∥
∥
∗

+ t

∥
∥
∥
∥

f − g

2

∥
∥
∥
∥
∗
− 1.
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In particular, we have

ρX(t) ≥
∥
∥
∥
∥

fn + gn

2

∥
∥
∥
∥
∗

+ t

∥
∥
∥
∥

fn − gn

2

∥
∥
∥
∥
∗
− 1 for all n ∈ N.

It follows from (2.24) that

ρX(t) ≥ tε

2
.

(b) ⇒ (a). Assume that ε0(X∗) < ε and let ε′ ∈ (ε0(X∗), ε). Set t′ = δX∗(ε′)
and consider t ∈ [0, 2]. There are two possibilities :

(i) Assume that t < ε′. Then tλ/2 < λε′/2 and so tλ/2− δX∗(t) < λε′/2.
(ii) Assume that ε′ ≤ t. Then δX∗(t) ≥ δX∗(ε′) = t′, because the

modulus of convexity is an increasing function. Therefore,

λt

2
≤ λ < t′ < δX∗(t) for any λ < t′.

This implies that
tλ

2
− δX∗(t) < 0.

Therefore, in any case we have for λ < t′

sup
{

tλ

2
− δX∗(t) : t ∈ [0, 2]

}

≤ λε′

2
.

Using Theorem 2.7.3, we get ρX(λ) ≤ λε′/2, which gives that lim
λ→0

ρX(λ)/λ ≤

ε′/2. Our choice of ε′ implies that (b) is true.

Let X be a Banach space. Then the characteristic of smoothness of X is the
number

ρ0(X) = lim
t→0

ρX(t)
t

.

The following theorem allows us to estimate ρ0(X) for Banach spaces X.

Theorem 2.7.8 Let X be a Banach space. Then

ρ0(X) = ρ′X(0) = lim
t→0

ρX(t)
t

=
ε0(X∗)

2
.

Proof. Assume first that ε0(X∗) = 2. Then δX∗(ε) = 0 for every ε ∈ [0, 2].
Therefore, using Theorem 2.7.3, we get ρX(t) = t for every t > 0. Hence

lim
t→0

ρX(t)
t

= 1 =
ε0(X∗)

2
.

Now if we assume that ε0(X∗) < 2, then from Theorem 2.7.7 we get the desired
conclusion.
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Using Theorem 2.7.3 and 2.7.8, we have

Theorem 2.7.9 Let X be a Banach space. Then we have the following:
(a) ρ0(X) = ε0(X∗)/2.
(b) ρ0(X∗) = ε0(X)/2.

2.8 Uniform smoothness

Recall that the Banach space X is uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2].

We now define uniform smoothness of a Banach space.

Definition 2.8.1 A Banach space X is said to be uniformly smooth if

ρ′X(0) = lim
t→0

ρX(t)
t

= 0.

Example 2.8.2 The p spaces (1 < p ≤ 2) are uniformly smooth. In fact,

lim
t→0

ρ�p
(t)
t

= lim
t→0

(1 + tp)1/p − 1
t

= 0.

Uniform smoothness has a close relation with differentiability of norm.

Theorem 2.8.3 Every uniformly smooth Banach space X is smooth.

Proof. Suppose, for contradiction, that X is not smooth. Then there exist
x ∈ X\{0}, and i, j ∈ X∗ such that i �= j, ‖i‖ = ‖j‖ = 1 and 〈x, i〉 = 〈x, j〉 =
‖x‖. Let y ∈ X such that ‖y‖ = 1 and 〈y, i− j〉 > 0. For each t > 0, we have

0 < t〈y, i− j〉
= t〈y, i〉 − t〈y, j〉

=
〈x + ty, i〉+ 〈x− ty, j〉

2
− 1

≤ ‖x + ty‖+ ‖x− ty‖
2

− 1,

and it follows that

0 < 〈y, i− j〉 ≤ ρX(t)
t

for each t > 0.

Hence X is not uniformly smooth.

Next, we establish the duality between uniform convexity and uniform smooth-
ness.

Theorem 2.8.4 Let X be a Banach space. Then X is uniformly smooth if and
only if X∗ is uniformly convex.
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Proof. Recall that

ρX(t) = sup
{

tε

2
− δX∗(ε) : 0 < ε ≤ 2

}

for all t > 0. (2.25)

Suppose, for contradiction, that X∗ is not uniformly convex. Then there exists
ε0 ∈ (0, 2] with δX∗(ε0) = 0. From (2.25), we have

tε0

2
− δX∗(ε0) ≤ ρX(t)

which gives us that

0 <
ε0

2
≤ ρX(t)

t
for all t > 0,

and this means that X is not uniformly smooth.
Conversely, assume that X is not uniformly smooth. Then ρ′X(0) =

lim
t→0

ρX(t)
t

�= 0. Hence for ε > 0 with lim
t→0

ρX(t)
t

= ε, there exists a sequence

{tn} in (0, 1) such that

tn → 0 and lim
n→∞

ρX(tn)
tn

= ε.

From (2.25), there exists a sequence {εn} in (0, 2] such that

ε

2
tn ≤

tnεn

2
− δX∗(εn),

which implies that

0 < δX∗(εn) ≤ tn
2

(εn − ε).

It follows from the condition tn < 1 that ε < εn. Because δX∗ is a nondecreasing
function, we have δX∗(ε) ≤ δX∗(εn)→ 0, i.e., X∗ is not uniformly convex.

Theorem 2.8.5 Let X be a Banach space. Then X is uniformly convex if and
only if X∗ is uniformly smooth.

Proof. Notice

ρX∗(t) = sup
{

tε

2
− δX(ε) : 0 < ε ≤ 2

}

for all t > 0.

By interchanging the roles of X and X∗, we obtain the result by Theo-
rem 2.8.4.

Theorem 2.8.6 Every uniformly smooth Banach space is reflexive.
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Proof. Let X be a uniformly smooth Banach space. Then X∗ is uniformly
convex and hence X∗ is reflexive. It follows from Theorem 1.9.26 (which states
that the reflexivity of X∗ implies the reflexivity of X) that X is reflexive.

Fréchet differentiability of norm and uniform smoothness

Uniform smoothness can be characterized by uniform Fréchet differenti-
ability of the norm.

The norm of a Banach space X is said to Fréchet differentiable if for each

x ∈ SX , lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly for y ∈ SX .

In the other words, there exists a function εx(s) with εx(s) → 0 as s → 0
such that

∣
∣
∣
∣‖x + ty‖ − ‖x‖ − t〈y, Jx〉

∣
∣
∣
∣ ≤ |t|εx(|t|) for all y ∈ SX .

In this case, the norm is Gâteaux differentiable and

lim
t→0

sup
y∈SX

∣
∣
∣
∣

1
2‖x + ty‖2 − 1

2‖x‖2
t

− 〈y, Jx〉
∣
∣
∣
∣ = 0 for all x ∈ X.

On the other hand,

1
2
‖x‖2 + 〈h, Jx〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, Jx〉+ b(‖h‖)

for all bounded x, h ∈ X, where b is a function defined on R
+ such that

lim
t→0

b(t)
t

= 0.

We say that the norm of a Banach space X is uniformly Fréchet differentiable
if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly for all x, y ∈ SX .

We now establish some results concerning Fréchet differentiability of the
norm of Banach spaces.

Theorem 2.8.7 Let X be a Banach space with a Fréchet differentiable norm.
Then the duality mapping J : X → X∗ is norm to norm continuous.

Proof. It is sufficient to prove that xn → x ∈ SX ⇒ Jxn → Jx ∈ SX∗ . Let
{xn} be a sequence in SX such that xn → x. Then x ∈ SX . Because X has a
Fréchet differentiable norm,

lim
t→0

‖x + ty‖ − ‖x‖
t

= 〈y, Jx〉 uniformly in y ∈ SX ,
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i.e., for any ε > 0, there exists δ > 0 such that
∣
∣
∣
∣
‖x + ty‖ − ‖x‖

t
− 〈y, Jx〉

∣
∣
∣
∣ < ε for all y ∈ SX and all t with 0 < |t| ≤ δ.

Hence

‖x + ty‖ − ‖x‖ < t(〈y, Jx〉+ ε) and ‖x− ty‖ − ‖x‖ < −t(〈y, Jx〉 − ε),

so that

‖x + ty‖ − 1 < t(〈y, Jx〉+ ε) and ‖x− ty‖ − 1 < t(ε− 〈y, Jx〉).

Note

0 ≤ 1− 〈x, Jxn〉 = 〈xn, Jxn〉 − 〈x, Jxn〉
≤ 〈xn − x, Jxn〉
≤ ‖xn − x‖‖Jxn‖∗ = ‖xn − x‖ → 0,

i.e., 〈x, Jxn〉 → 1 as n→∞. Then there exists n0 ∈ N such that

1 ≤ 〈x, Jxn〉+ tε for all n ≥ n0.

Because

1− tε ≤ 〈x, Jxn〉 = 〈x, Jx + Jxn〉 − 1
= 〈x + ty, Jx〉+ 〈x− ty, Jxn〉 − t〈y, Jx− Jxn〉 − 1
≤ ‖x + ty‖‖Jx‖∗ + ‖x− ty‖‖Jxn‖∗ − t〈y, Jx− Jxn〉 − 1
≤ t〈y, Jx〉+ tε + 1 + 1 + tε− t〈y, Jx〉 − t〈y, Jx− Jxn〉 − 1
= 2tε− t〈y, Jx− Jxn〉+ 1,

this implies that
〈y, Jx− Jxn〉 ≤ 3ε for all y ∈ SX .

Similarly, we can show that

〈y, Jxn − Jx〉 ≤ 3ε for all y ∈ SX .

Thus, ∣
∣〈y, Jxn − Jx〉

∣
∣ ≤ 3ε for all n ≥ n0 and y ∈ SX

which gives us
‖Jxn − Jx‖∗ < 3ε for all n ≥ n0.

Therefore, xn → x in X implies Jxn → Jx in X∗.

Theorem 2.8.8 Let X be a Banach space. Then the following are equivalent:
(a) X has a uniformly Fréchet differentiable norm.
(b) X∗ is uniformly convex.
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Proof. (a) ⇒ (b). Suppose the norm of X is uniformly Fréchet differentiable.
Then for any ε > 0, there exists δ > 0 such that
∣
∣
∣
∣
‖x + ty‖ − ‖x‖

t
− 〈y, Jx〉

∣
∣
∣
∣ <

ε

8
for all x, y ∈ SX and all t with 0 < |t| ≤ δ.

Then for fixed t with 0 < t < δ, we have

‖x + ty‖ <
tε

8
+ t〈y, Jx〉+ 1

and
‖x− ty‖ <

tε

8
− t〈y, Jx〉+ 1.

As a result
‖x + ty‖+ ‖x− ty‖ <

tε

4
+ 2 for all x, y ∈ SX .

Now, let i, j ∈ SX∗ with ‖i− j‖∗ ≥ ε > 0, then there exists y0 ∈ SX such that

〈y0, i− j〉 >
ε

2
.

Note

‖i + j‖∗ = sup
x∈SX

〈x, i + j〉

= sup
x∈SX

(〈x + ty0, i〉+ 〈x− ty0, j〉 − 〈ty0, i− j〉)

< sup
x∈SX

(

‖x + ty0‖+ ‖x− ty0‖ −
tε

2

)

≤ tε

4
+ 2− tε

2

≤ 2− tε

2
.

This implies ‖(i + j)/2‖∗ < 1− δ(ε). Hence X∗ is uniformly convex.
(b)⇒ (a). Let x, y ∈ SX . Then for t > 0,

〈y, Jx〉
‖x‖ =

〈x + ty, Jx〉 − ‖x‖2
t‖x‖

≤ ‖x + ty‖‖x‖ − ‖x‖2
t‖x‖

=
‖x + ty‖ − ‖x‖

t

=
‖x + ty‖2 − ‖x + ty‖‖x‖

t‖x + ty‖

≤ 〈x + ty, J(x + ty)〉 − 〈x, J(x + ty)〉
t‖x + ty‖

=
〈y, J(x + ty)〉
‖x + ty‖



2.8. Uniform smoothness 103

and for t < 0,

〈y, J(x + ty)〉
‖x + ty‖ ≤ ‖x + ty‖ − ‖x‖

t
≤ 〈y, Jx〉

‖x‖ .

By Theorem 2.4.15, X has a uniformly Fréchet differentiable norm.

Theorem 2.8.9 Let X be a Banach space with uniformly Fréchet differentiable
norm. Then the duality mapping J : X → X∗ is uniformly continuous on each
bounded set in X.

Proof. Because X∗ is uniformly convex, the result follows from Theorem 2.4.15

We now study the duality mapping from X∗ to X. To do so, we define the
conjugate function f∗ : X∗ → (−∞,∞] of any function f : X → (−∞,∞] by

f∗(j) = sup{〈x, j〉 − f(x) : x ∈ X}, j ∈ X∗. (2.26)

The conjugate of f∗, i.e., the function on X defined by

f∗∗(x) = sup{〈x, j〉 − f∗(j) : j ∈ X∗}, x ∈ X

is called the biconjugate of f .

Observation
• f is lower semicontinuous proper convex on X if and only if f∗∗ = f .

Example 2.8.10 Let C be a nonempty subset of normed space X. Then the
conjugate of the indicator function iC of C is given by

i∗C(j) = sup{〈x, j〉 : x ∈ C}, j ∈ X∗.

The function i∗C is called the support function of C.

We now give some basic properties of conjugate functions.

Proposition 2.8.11 Let f∗ be the conjugate function f . Then

f(x) + f∗(j) ≥ 〈x, j〉 for all x ∈ X, j ∈ X∗. (2.27)

Proof. It easily follows from (2.26).

The inequality (2.27) is known as the Young inequality. Observe also that if
f is a proper function, then the relation (2.26) can be written as

f∗(j) = sup{〈x, j〉 − f(x) : x ∈ Dom(f)}, j ∈ X∗.
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Proposition 2.8.12 Let f∗ be the conjugate function of f . Then

(cf)∗(j) = cf∗(c−1j) for all c > 0 and j ∈ X∗.

Proof. For j ∈ X∗, we have

(cf)∗(j) = sup{〈x, j〉 − (cf)(x) : x ∈ X}
= c sup{c−1〈x, j〉 − f(x) : x ∈ X}
= c sup{〈x, c−1j〉 − f(x) : x ∈ X}
= cf∗(c−1j).

Proposition 2.8.13 Let X be a normed space and f : X → (−∞,∞] a proper
convex function. Then the following statements are equivalent:

(a) j ∈ ∂f(x) for x ∈ X.
(b) f(x) + f∗(j) ≤ 〈x, j〉.
(c) f(x) + f∗(j) = 〈x, j〉.

Proof. (b) ⇔ (c). The Young inequality (2.27) shows that (b) and (c) are
equivalent.

(c)⇔ (a). Suppose condition (c) holds. Then from the Young inequality (2.27),
we find that

f(y)− f(x) ≥ 〈y − x, j〉 for all y ∈ X,

i.e., j ∈ ∂f(x).

Using a similar argument, it follows that (c) ⇒ (a).

Proposition 2.8.14 Let X be a normed space and f : X → (−∞,∞] a lower
semicontinuous proper convex function. Then j ∈ ∂f(x)⇔ x ∈ ∂f∗(j).

Proof. Because f is a lower semicontinuous convex function, f∗∗ = f . Observe
that

j ∈ ∂f(x) ⇔ f(x) + f∗(j) = 〈x, j〉
⇔ f∗∗(x) + f∗(j) = 〈x, j〉
⇔ x ∈ ∂f∗(j).

Proposition 2.8.15 Let X be a Banach space. If f(x) = ‖x‖p/p, p > 1, then

f∗(j) = ‖j‖q∗/q, 1/p + 1/q = 1.

Proof. Because Jp(x) = ∂(‖x‖p/p) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ =
‖x‖p−1}, we have

f∗(j) = sup
x∈X
{〈x, j〉 − f(x)〉 = sup

x∈X
{‖x‖p − ‖x‖p/p} = sup

x∈X
{‖x‖p/q}.

Note ‖j‖∗ = ‖x‖p−1 so ‖j‖q∗ = ‖x‖q(p−1) = ‖x‖p. Therefore, f∗(j) =
‖j‖q∗/q.
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Theorem 2.8.16 Let p > 1. Let X be a uniformly smooth Banach space and
let Jp : X → X∗ and J∗

q : X∗ → X be the duality mappings with gauge functions
μp(t) = tp−1 and μq(t) = tq−1, respectively. Then J−1

p = J∗
q .

Proof. The uniform smoothness of X implies that X is reflexive (see
Theorem 2.8.6) and that X∗ is uniformly convex and reflexive. Note also Jμ is
surjective if and only if X is reflexive. Because Jp is single-valued, it follows
that the inverse J−1

p : X∗ = Dom (J−1
p )→ X = X∗∗ exists and is given by

J−1
p (j) = {x ∈ X : j = Jp(x)} for all j ∈ X∗.

Now, let Φ(t) = tp/p, t > 0. It is easy to see that Φ(‖·‖) = ‖·‖p/p is a continuous
convex function and that its conjugate is given by Φ∗(‖j‖∗) = ‖j‖q∗/q for all
j ∈ X∗. Note Jp(x) = ∂Φ(‖x‖) and J∗

q (j) = ∂Φ∗(‖j‖∗) for all x ∈ X, j ∈ X∗.
Using Proposition 2.8.14, we have

j ∈ ∂Φ(‖x‖) if and only if x ∈ ∂Φ∗(‖j‖∗).

Therefore, J−1
p (j) = J∗

q (j) for all j ∈ X∗.

The following inequality is very useful in the existence and approximation
of solutions of nonlinear operator equations.

Theorem 2.8.17 Let X be a Banach space. Then the following are equivalent:
(a) X is uniformly convex.
(b) For any p, 1 < p <∞ and r > 0, there exists a strictly increasing convex

function gr : R
+ → R

+ such that gr(0) = 0 and

‖tx + (1− t)y‖p ≤ t‖x‖p + (1− t)‖y‖p − t(1− t)gr(‖x− y‖) (2.28)

for all x, y ∈ Br[0] and t ∈ [0, 1].

Proof. (a) ⇒ (b). Let X be a uniformly convex Banach space. Assume that
1 < p < ∞. It suffices to prove that (2.28) is true for r = 1. Now we define a
function γ by

γ(ε) = inf{2p−1(‖x‖p + ‖y‖p)− ‖x + y‖p : x, y ∈ BX and ‖x− y‖ ≥ ε}
for all ε ∈ (0, 2].

Because
(

a + b

2

)p

<
ap + bp

2
for all a, b ≥ 0 and a �= b, (2.29)

we have
γ(ε) ≥ 0 for all 0 < ε ≤ 2.

Suppose that γ(ε) = 0 for some ε > 0. Then there exist sequences {xn} and
{yn} in BX such that ‖xn − yn‖ ≥ ε for all n ∈ N and

lim
n→∞

2p−1(‖xn‖p + ‖yn‖p)− ‖xn + yn‖p = 0.
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We may assume a subsequence of {xn} denoted by {xn} such that

a = lim
n→∞

‖xn‖, b = lim
n→∞

‖yn‖ and c = lim
n→∞

‖xn + yn‖

exist. Thus, (
a + b

2

)p

=
ap + bp

2
,

i.e., equality of inequality (2.29) holds with c = a + b. For a = b > 0, c =
2a = lim

n→∞
‖xn + yn‖, it follows from Theorem 2.2.7 that lim

n→∞
‖xn − yn‖ = 0, a

contradiction. Therefore,

γ(ε) > 0 for all ε, 0 < ε ≤ 2.

Now set

μ(ε) := inf
{

λ‖x‖p + (1− λ)‖y‖p − ‖λx + (1− λ)y‖p
λ(1− λ)

}

,

where the infimum is taken over all x, y ∈ BX with ‖x− y‖ ≥ ε and λ ∈ (0, 1).
Note μ(ε) ≥ γ(ε)/2p−1 > 0 for all ε, 0 < ε ≤ 2. Thus, it suffices to take as g1

the double dual Young’s function μ∗∗.
(b) ⇒ (a). Suppose (2.28) is satisfied. For x, y ∈ BX and ‖x − y‖ = ε, we

have
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥ ≤ 1− 1

4
g1(ε)

≤ 1− δX(ε),

i.e., δX(ε) ≥ g1(ε)/4, which shows that X is a uniformly convex Banach
space.

2.9 Banach limit

In this section, we generalize the concept of limit by introducing Banach limits
and we discuss its properties.

Let  : c→ K be the “limit functional” defined by

(x) = lim
i→∞

xi for x = {xi} ∈ c.

Then  is a linear functional on c. In order to extend limit  on ∞, use the
following notations and results.

Let S be a nonempty set and let B(S) be the Banach space of all bounded
real-valued functions on S with supremum norm.

Example 2.9.1 Let S = N = {1, 2, 3, · · · }. Then B(S) = l∞.
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Let X be a subspace of B(S) and let j be an element of X∗. Let e be a
constant function on X defined by e(s) = 1 for all s ∈ S. We will denote j(e) by
j(1). When X contains constants, a linear functional j on X is called a mean
on X if ‖j‖∗ = j(1) = 1.

The following example shows that there is a subspace of ∞ for which the
mean exists.

Example 2.9.2 Let ∞ = {x = {xi} : sup
i∈N

|xi| < ∞} and X a subset of ∞

such that

X =
{

x = {xi} ∈ ∞ : lim
n→∞

1
n

n∑

i=1

xi exists

}

.

Then X is a linear subspace of ∞. In fact, for x = {xi} and y = {yi} in X,
we have

lim
n→∞

1
n

n∑

i=1

xi exists and lim
n→∞

1
n

n∑

i=1

yi exists. (2.30)

Hence for scalars α, β, we have

αx + βy = (αx1 + βy1, · · · , αxi + βyi, · · · ).

Using (2.30), we obtain that

lim
n→∞

1
n

n∑

i=1

(αxi + βyi) = α( lim
n→∞

1
n

n∑

i=1

xi) + β( lim
n→∞

1
n

n∑

i=1

yi)

exists. It follows that X is a linear subspace of ∞. We now define j : X → R

by

j(x) = lim
n→∞

1
n

n∑

i=1

xi for all x ∈ X.

Note j(1) = 1 and

|j(x)| =
∣
∣
∣
∣ lim

n→∞

1
n

n∑

i=1

xi

∣
∣
∣
∣

≤ lim sup
n→∞

1
n

n∑

i=1

|xi|

≤ ‖x‖∞,

and it follows that ‖j‖∗ = 1. Therefore, j is linear and ‖j‖∗ = j(1) = 1, i.e., j
is a mean on X.

We now give an equivalent condition for mean.
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Theorem 2.9.3 Let X be a subspace of B(S) containing constants and j ∈ X∗.
Then the following are equivalent:

(a) j is a mean on X, i.e., ‖j‖∗ = j(1) = 1.
(b) The inequalities

inf
s∈S

x(s) ≤ j(x) ≤ sup
s∈S

x(s)

hold for each x ∈ X.

Proof. (a) ⇒ (b). First, we show that j(x) ≥ 0 for all x ≥ 0. Suppose, for
contraction, that j(x) < 0. Choose a positive number K with x ≤ K. Then

j(K − x) = Kj(1)− j(x) = K − j(x) > K.

Because

j(K − x) ≤ ‖j‖∗‖K − x‖ = ‖K − x‖ = sup
s∈S
|K − x(s)| ≤ K,

it follows that
K < j(K − x) ≤ K,

a contradiction. Therefore, j(x) ≥ 0.
Observe that

inf
s∈S

x(s) ≤ x ≤ sup
s∈S

x(s) for each x ∈ X.

Because j(x) ≥ 0 for x ≥ 0, we have

inf
s∈S

x(s) = j( inf
s∈S

x(s)) ≤ j(x) ≤ j(sup
s∈S

x(s)) = sup
s∈S

x(s).

(b) ⇒ (a). For x = 1, we have 1 ≤ j(1) ≤ 1 and hence j(1) = 1. Note for each
x ∈ X,

j(x) ≤ sup
s∈S

x(s) ≤ sup
s∈S
|x(s)| = ‖x‖

and
−j(x) = j(−x) ≤ ‖ − x‖ = ‖x‖,

so |j(x)| ≤ ‖x‖ for each x ∈ X. Thus, ‖j‖∗ = 1. Therefore, ‖j‖∗ = j(1) = 1,
i.e., j is a mean on X.

Let f ∈ ∞. We denote fn(xn+m) for f(xm+1, xm+2, xm+3, · · · , xm+n, · · · ),
m = 0, 1, 2, · · · . A continuous linear functional j on l∞ is called a Banach limit
if

(L1) ‖j‖∗ = j(1) = 1,
(L2) jn(xn) = jn(xn+1) for each x = (x1, x2, · · · ) ∈ l∞.

It is denoted by LIM .
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Theorem 2.9.4 (The existence of Banach limits) – There exists a linear
continuous functional j on l∞ such that ‖j‖∗ = j(1) = 1 and jn(xn) = jn(xn+1)
for each x = {xn}n∈N ∈ ∞.

Proof. Let p : ∞ → R be the functional defined by

p(x) = lim sup
n→∞

x1 + x2 + · · ·+ xn

n
.

Then
−p(−x) = lim inf

n→∞

x1 + x2 + · · ·+ xn

n
.

For x ∈ c, we have

(x) = lim
n→∞

xn = lim
n→∞

x1 + x2 + · · ·+ xn

n
= p(x).

Moreover,
p(x + y) ≤ p(x) + p(y) for all x, y ∈ c

and
p(αx) = αp(x) for all x ∈ c and α ≥ 0.

Thus, p is a sublinear functional with (x) = p(x). By the Hahn-Banach
theorem, there is an extension L : ∞ → R of  (from c to ∞) such that

L(x) ≤ (x) for all x ∈ ∞

and
−p(−x) ≤ L(x) ≤ p(x) for all x ∈ ∞.

Thus, we have
p(1, 1, 1, · · · ) = 1

and

p((x1, x2, · · · , xn, · · · )− (x2, x3, · · · , xn+1, · · · )) = lim sup
n→∞

x1 − xn+1

n
= 0.

Hence
L((x1, x2, · · · , xn, · · · )− (x2, x3, · · · , xn+1, · · · )) = 0,

which implies that

L(x1, x2, · · · , xn, · · · ) = L(x2, x3, · · · , xn+1 · · · )

for all x = (x1, x2, · · ·xn, · · · ) ∈ ∞.

Therefore, L is a Banach limit.

Observation
• Every Banach limit is a positive functional on �∞, i.e., LIMn(x) ≥ 0 for all

x ∈ �∞.

• LIM(1, 1, · · · 1, · · · ) = 1.

We now give elementary properties of Banach limits.
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Proposition 2.9.5 Let LIM be a Banach limit. Then

lim inf
n→∞

xn ≤ LIM(x) ≤ lim sup
n→∞

xn for each x = (x1, x2, · · · ) ∈ l∞.

Moreover, if xn → a, then LIM(x) = a.

Proof. For each m ∈ N, we have

LIMn(xn) = LIMn(xn+1) = · · · = LIMn(xn+(m−1)) ≥ inf
n≥m

xn

and hence LIMn(xn) ≥ sup
m∈N

inf
n≥m

xn = lim inf
n→∞

xn.

Similarly, since LIMn(xn) ≤ sup
n≥m

xn, we have LIMn(xn) ≤ lim sup
n→∞

xn.

Therefore,

lim inf
n→∞

xn ≤ LIM(x) ≤ lim sup
n→∞

xn for each x = (x1, x2, · · · ) ∈ l∞.

Letting xn → a, we have lim inf
n→∞

xn = lim sup
n→∞

xn = a and hence LIM(x)

= a.

Proposition 2.9.6 Let a be a real number and let (x1, x2, · · · ) ∈ ∞. Then the
following are equivalent:

(a) LIMn(xn) ≤ a for all Banach limits LIM.

(b) For each ε > 0, there exists m0 ∈ N such that

xn + xn+1 + · · ·+ xn+m−1

m
< a + ε for all m ≥ m0 and n ∈ N. (2.31)

Proof. (a)⇒ (b). Suppose that for {xn} ∈ ∞, we have LIMn(xn) ≤ a for all
Banach limits LIM. Define a sublinear functional q : ∞ → R by

q(y1, y2, · · · ) = lim sup
m→∞

(

sup
n∈N

1
m

n+m−1∑

i=n

yi

)

, {yn} ∈ ∞.

By the Hahn-Banach theorem, there exists a linear functional j : ∞ → R such
that

j ≤ q and jn(xn) = qn(xn).

It is easy to see that j is a Banach limit. From the assumption, we have

qn(xn) = lim sup
m→∞

(

sup
n∈N

1
m

n+m−1∑

i=n

xi

)

≤ a.

Thus, for ε > 0, there exists m0 ∈ N such that

xn + xn+1 + · · ·+ xn+m−1

m
< a + ε for all m ≥ m0 and n ∈ N.
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(b)⇒ (a). Suppose for each ε > 0, there exists m0 ∈ N such that (2.31) holds.
Let LIM be a Banach limit. Then

LIMn(xn) = LIMn

(
xn + xn+1 + · · ·+ xn+m0−1

m0

)

≤ a + ε.

Because ε is an arbitrary positive real number, we have LIMn(xn) ≤ a.

Proposition 2.9.7 Let a be a real number and let (x1, x2, · · · ) ∈ ∞ such that
LIMn(xn) ≤ a for all Banach limits LIM and lim sup

n→∞
(xn+1 − xn) ≤ 0. Then

lim sup
n→∞

xn ≤ a.

Proof. Let ε > 0. By Proposition 2.9.6, there exists m ≥ 2 such that

xn + xn+1 + · · ·+ xn+m−1

m
< a +

ε

2
for all n ∈ N.

Choose n0 ∈ N such that

xn+1 − xn <
ε

m− 1
for all n ≥ n0.

Let n ≥ n0 + m. Observe that

xn = xn−i + (xn−i+1 − xn−i) + · · ·+ (xn − xn−1)

≤ xn−i +
iε

m− 1
for each i = 0, 1, · · · ,m− 1.

Thus,
lim sup

n→∞
xn ≤ a + ε.

Because ε is arbitrary positive number, we get the conclusion.

We note that if a linear functional j on l∞ satisfying:

lim inf
n→∞

xn ≤ j(x) ≤ lim sup
n→∞

xn for each x = (x1, x2, · · · ) ∈ l∞,

then j is a mean on ∞. Thus, every Banach limit on ∞ is a mean on ∞.

Let X be a Banach space, {xn} a bounded sequence in X, and LIM a Banach
limit. Then a point x0 ∈ X is said to be a mean point of {xn} concerning a
Banach limit LIM if

LIMn〈xn, j〉 = 〈x0, j〉 for all j ∈ X∗.

We establish two preliminary results related to mean points.

Proposition 2.9.8 (Existence of mean points) – Let X be a reflexive
Banach space and {xn} a bounded sequence in X. Then, for a Banach limit
LIM , there exists a point x0 in X such that

LIMn〈xn, j〉 = 〈x0, j〉 for all j ∈ X∗.
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Proof. Note the function LIMn〈xn, j〉 is linear in j. Further, as

|LIMn〈xn, j〉| ≤ (sup
n∈N

‖xn‖) · ‖j‖∗,

the function LIMn〈xn, j〉 is also bounded in j. So, we have j∗0 ∈ X∗∗ such that

LIMn〈xn, j〉 = 〈j∗0 , j〉 for every j ∈ X∗.

Because X is reflexive, there exists x0 ∈ X such that LIMn〈xn, j〉 = 〈x0, j〉 for
all j ∈ X∗.

Proposition 2.9.9 Let {xn} be a bounded sequence in a Banach space X and
x0 ∈ X a mean point of {xn} concerning a Banach limit LIM . Then x0 ∈⋂∞

n=1 co({xk}k≥n).

Proof. If not, there exists n0 ∈ N such that x0 /∈ co{xn : n ≥ n0}. By the
separation theorem, we obtain a point j ∈ X∗ such that

〈x0, j〉 < inf{〈z, j〉 : z ∈ co{xn : n ≥ n0}}.

Thus, we have

LIMn〈xn, j〉 = 〈x0, j〉 < inf{(xn, j) : n ≥ n0}
≤ LIMn{〈xn, j〉 : n ≥ n0} = LIMn〈xn, j〉,

a contradiction.

We now characterize the sequences in ∞ for which all Banach limits coincide.
It is obvious that for any element x ∈ c,

LIM(x) = (x) = lim
n→∞

xn for all Banach limit LIM.

However, there exist nonconvergent sequences for which all Banach limits
coincide.

Example 2.9.10 Let x = (1, 0, 1, 0, · · · ) ∈ ∞. Then

(x1, x2, · · ·xn, · · · ) + (x2, x3, · · · , xn+1, · · · ) = (1, 1, 1, · · · ),

and it follows that

LIMn(xn) + LIMn(xn+1) = LIMn(1) = 1 for all LIM.

Using (L2), we have

LIMn(xn) =
1
2

for all Banach limit LIM.
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A bounded sequence x = {xi} is said to be almost convergent if all its
Banach limits have the same value at x. Equivalently, x = {xi} ∈ ∞ is almost
convergent if

lim
i→∞

xn + xn+1 · · ·+ xn+i−1

i
exists uniformly in n.

We have seen in Example 2.9.10 that the sequence (1, 0, 1, 0, · · · ) is not conver-
gent, but it is almost convergent.

In optimization theory, the structure of M defined in our next result is of
much interest.

Theorem 2.9.11 Let C be a nonempty closed convex subset of a reflexive
Banach space X, {xn} a bounded sequence in C, LIM a Banach limit, and
ϕ a real-valued function on C defined by ϕ(z) = LIMn‖xn − z‖2, z ∈ C. Then
the set M defined by

M = {u ∈ C : LIMn‖xn − u‖2 = inf
z∈C

LIMn‖xn − z‖2} (2.32)

is a nonempty closed convex bounded set. Moreover, if X is uniformly convex,
then M has exactly one point.

Proof. First, we show that ϕ is continuous and convex. Let {ym} be a sequence
in C such that ym → y ∈ C. Set L := sup{‖xn − ym‖ + ‖xn − y‖ : m,n ∈ N}.
Observe that

‖xn − ym‖2 − ‖xn − y‖2 ≤ (‖xn − ym‖+ ‖xn − y‖)(‖xn − ym‖ − ‖xn − y‖)
≤ L| ‖xn − ym‖ − ‖xn − y‖ |
≤ L‖ym − y‖ for all n,m ∈ N.

Then
LIMn‖xn − ym‖2 ≤ LIMn‖xn − y‖2 + L‖ym − y‖.

Similarly we have

LIMn‖xn − y‖2 ≤ LIMn‖xn − ym‖2 + L‖ym − y‖.

Thus, we have
|ϕ(ym)− ϕ(x)| ≤ L‖ym − x‖.

Hence ϕ is continuous on C. Now, let x, y ∈ C and λ ∈ [0, 1]. It is easy to see
that

ϕ((1− λ)x + λy) ≤ (1− λ)ϕ(x) + λϕ(y).

Hence ϕ is convex.
Using the fact ((a + b)/2)2 ≤ (a2 + b2)/2 for all a, b ≥ 0, we have

‖ym‖2 ≤ 2‖ym − xn‖2 + 2‖xn‖2,
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and hence
‖ym‖2 ≤ 2ϕ(ym) + 2 sup

n∈N

‖xn‖2,

i.e., ϕ(ym)→∞ as ‖ym‖ → ∞. Thus, ϕ is a continuous convex functional and
ϕ(z) → ∞ as ‖z‖ → ∞. Because X is reflexive, ϕ attains its infimum over C
by Theorem 2.5.8. Then M is a nonempty closed convex set. Moreover, M is
bounded. Indeed, let u ∈M . Because

‖u‖2 ≤ 2‖u− xn‖2 + 2‖xn‖2 for all n ∈ N,

this implies that

‖u‖2 ≤ 2ϕ(u) + 2K = 2 inf
z∈C

ϕ(z) + 2K

for some K ≥ 0.

Now, suppose X is uniformly convex. Let z1, z2 ∈M . Then (z1+z2)/2 ∈M .
Choose r > 0 large enough so that {xn} ∪M ⊂ Br[0]. Then xn − z1, xn − z2 ∈
B2r[0] for all n ∈ N. By Theorem 2.8.17, we have

∥
∥
∥
∥xn −

z1 + z2

2

∥
∥
∥
∥

2

≤ 1
2
‖xn − z1‖2 +

1
2
‖xn − z2‖2 −

1
4
g2r(‖z1 − z2‖).

If z1 �= z2, we have

inf
z∈C

ϕ(z) ≤ ϕ

(
z1 + z2

2

)

≤ 1
2
ϕ(z1) +

1
2
ϕ(z2)−

1
4
g2r(‖z1 − z2‖)

= inf
z∈C

ϕ(z)− 1
4
g2r(‖z1 − z2‖)

< inf
z∈C

ϕ(z),

a contradiction. Therefore, M has exactly one element.

Let LIM be a Banach limit and let {xn} be a bounded sequence in a Banach
space X. We observe that if ψ : X → R is bounded, Gâteaux differentiable
uniformly on bounded sets, then a function f : X → R defined by f(z) =
LIMnψ(xn + z) is Gâteaux differentiable with Gâteaux derivative given by
〈y, f ′(z)〉 = LIMn〈y, ψ′(xn + z)〉 for each y ∈ X.

Using the above facts, we give the following result, which will be used in
convergence of sequences {xn} in Banach spaces with Gâteaux differentiable
norm.

Theorem 2.9.12 Let X be a Banach space with a uniformly Gâteaux differen-
tiable norm and {xn} a bounded sequence in X. Let LIM be a Banach limit
and u ∈ X. Then

LIMn‖xn − u‖2 = inf
z∈X

LIMn‖xn − z‖2

if and only if
LIMn〈z, J(xn − u)〉 = 0 for all z ∈ X.
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Proof. Let u ∈ X be such that LIMn‖xn − u‖2 = inf
z∈X

LIMn‖xn − z‖2.
Then u minimizes the continuous convex function φ : X → R

+ defined by
φ(z) = LIMn‖xn − z‖2, so we have φ′(u) = 0.

Note that the norm of X is Gâteaux differentiable, and Jx is the subdiffer-
ential of the convex function ϕ(x) = ‖x‖2/2 at x as the Gâteaux differential of
ϕ. Hence

LIMn〈z, J(xn − u)〉 = 〈z, φ′(u)〉 = 0 for all z ∈ X.

Conversely, suppose that LIMn〈u − z, J(xn − u)〉 = 0 for all z ∈ X.
If x ∈ X,

‖xn − x‖2 − ‖xn − u‖2 ≥ 2〈u− x, J(xn − u)〉 for all n ∈ N.

Because LIMn〈u− x, J(xn − u)〉 = 0 for all x ∈ X, we obtain

LIMn‖xn − u‖2 = inf
x∈X

LIMn‖xn − x‖2.

Corollary 2.9.13 Let X be a Banach space with a uniformly Gâteaux differ-
entiable norm and C a nonempty closed convex subset of X. Let {xn} be a
bounded sequence in C. Let LIM be a Banach limit and u ∈ C. Then

u ∈M if and only if LIMn〈z, J(xn − u)〉 ≤ 0 for all z ∈ C.

2.10 Metric projection and retraction mappings

Let C be a nonempty subset of a normed space X and let x ∈ X. An element
y0 ∈ C is said to be a best approximation to x if

‖x− y0‖ = d(x,C),

where d(x,C) = inf
y∈C
‖x− y‖. The number d(x,C) is called the distance from x

to C or the error in approximating x by C.

The (possibly empty) set of all best approximations from x to C is denoted
by

PC(x) = {y ∈ C : ‖x− y‖ = d(x,C)}.
This defines a mapping PC from X into 2C and is called the metric projection

onto C. The metric projection mapping is also known as the nearest point
projection mapping, proximity mapping, and best approximation operator.

The set C is said to be a proximinal 2 (respectively, Chebyshev) set if each
x ∈ X has at least (respectively, exactly) one best approximation in C.

2The term “proximinal” is a combination of the words “proximity” and “minimal” and
was coined by Killgrove.
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Observation
• C is proximinal if PC(x) �= ∅ for all x ∈ X.

• C is Chebyshev if PC(x) is singleton for each x ∈ X.

• The set of best approximations is convex if C is convex.

Some fundamental results on proximinal sets are the following:

First, we observe that every proximinal set must be closed.

Proposition 2.10.1 Let C be a proximinal subset of a Banach space X. Then
C is closed.

Proof. Suppose, for contradiction, that C is not closed. Then there exists a
sequence {xn} in C such that xn → x and x /∈ C, but x ∈ X. It follows that

d(x,C) ≤ ‖xn − x‖ → 0,

so that d(x,C) = 0. Because x /∈ C, it means that

‖x− y‖ > 0 for all y ∈ C.

This implies PC(x) = ∅. This contradicts PC(x) �= ∅.

Theorem 2.10.2 (The existence of best approximations) – Let C be a
nonempty weakly compact convex subset of a Banach space X and x ∈ X. Then
x has a best approximation in C, i.e., PC(x) �= ∅.

Proof. The function f : C → R
+ defined by

f(y) = ‖x− y‖, y ∈ C

is obviously lower semicontinuous. Because C is weakly compact, we can
apply Theorem 2.5.5, and then there exists y0 ∈ C such that ‖x − y0‖ =
inf
y∈C
‖x− y‖.

Corollary 2.10.3 Let C be a nonempty closed convex subset of a reflexive
Banach space X. Then each element x ∈ X has a best approximation in C.

Theorem 2.10.4 (The uniqueness of best approximations) – Let C be
a nonempty convex subset of a strictly convex Banach space X. Then for each
element x ∈ X, C has at most one best approximation.

Proof. Suppose, for contradiction, that y1, y2 ∈ C are best approximations
to x ∈ X. Because the set of best approximations is convex, it follows that
(y1 + y2)/2 is also a best approximation to x. Set r := d(x,C). Then

0 ≤ r = ‖x− y1‖ = ‖x− y2‖ = ‖x− (y1 + y2)/2‖,
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and it follows that

‖(x− y1) + (x− y2)‖ = 2r = ‖x− y1‖+ ‖x− y2‖.

By the strict convexity of X we have

x− y1 = t(x− y2), t ≥ 0.

Taking the norm in this relation, we obtain r = tr, i.e., t = 1, which gives
us y1 = y2.

The following example shows that the strict convexity cannot be dropped in
Theorem 2.10.4.

Example 2.10.5 Let X = R
2 with norm ‖ · ‖1. It is easy to check that X is

not strictly convex. Now, let

C = {(x, y) ∈ R
2 : ‖(x, y)‖1 ≤ 1} = {(x, y) ∈ R

2 : |x|+ |y| ≤ 1}.

Then C is a closed convex set. The distance from z = (−1,−1) to the set C is
one, and this distance is realized by more than one point of C.

In Theorem 2.10.4, uniqueness of best approximations need not be true for
nonconvex sets.

Example 2.10.6 Let X = R
2 with the norm ‖ · ‖2 and C = SX = {(x, y)} ∈

R
2 : x2+y2 = 1}. Then X is strictly convex and C is a nonconvex set. However,

all points of C are best approximations to (0, 0) ∈ X.

Theorem 2.10.7 If in a Banach space X, every element possesses at most a
best approximation with respect to every convex set, then X is strictly convex.

Proof. Suppose, for contradiction, that X is not strictly convex. Then there
exist x, y ∈ X, x �= y with

‖x‖ = ‖y‖ = ‖(x + y)/2‖ = 1.

Furthermore,
‖tx + (1− t)y‖ = 1 for all t ∈ [0, 1].

Set C := co({x, y}). Then ‖0 − z‖ = d(0, C) for all z ∈ C. This means that
every element of C is the best approximation to zero and this clearly contradicts
the uniqueness.

From Corollary 2.10.3 and Theorem 2.10.4 (see also Proposition 2.1.10), we
obtain some important results:

Theorem 2.10.8 Let C be a nonempty weakly compact convex subset of a
strictly convex Banach space X. Then for each x ∈ X, C has the unique best
approximation, i.e., PC(·) is a single-valued metric projection mapping from X
onto C.
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Corollary 2.10.9 Let C be a nonempty closed convex subset of a strictly convex
reflexive (e.g., uniformly convex) Banach space X and let x ∈ X. Then there
exists a unique element x0 ∈ C such that ‖x− x0‖ = d(x,C).

Observation
• Every closed convex subset C of a reflexive Banach space is proximinal.

• Every closed convex subset C of a reflexive strictly convex Banach is a Chebyshev
set.

• For every Chebyshev set C, we have

(i) PC(x) is singleton set, i.e., PC is a function from X onto C.

(ii) ‖x − PC(x)‖ = d(x, C) for all x ∈ X.

We now study useful properties of metric projection mappings.

Theorem 2.10.10 Let C be a subset of a normed space X and x ∈ X. Then
PC(x) ⊆ ∂C.

Proof. Let y ∈ PC(x). Suppose y ∈ int(C). Then there exists an ε > 0 such
that Bε(y) ⊂ C. For each n ∈ N, let zn = (1/n)x + (1− 1/n)y. Then

‖zn − y‖ = (1/n)‖x− y‖.

For sufficiently large N ∈ N, ‖zN − y‖ < ε. Thus, zN ∈ Bε(y) ⊂ C. On the
other hand,

‖x− zN‖ = (1− 1/N)‖x− y‖ < ‖x− y‖ = d(x,C),

which contradicts the fact that y ∈ PC(x). Therefore, y ∈ ∂C.

Corollary 2.10.11 Let C be a nonempty closed convex subset of a strictly con-
vex reflexive Banach space X and let x ∈ X. Then we have the following:

(a) If x ∈ C, then PC(x) = x.
(b) If x /∈ C, then PC(x) ∈ ∂C.

Theorem 2.10.12 Let C be a nonempty closed convex subset of a reflexive
strictly convex Banach space X. If X has the Kadec-Klee property, then the
projection mapping PC of X onto C is continuous.

Proof. Suppose, for contradiction, that PC is not continuous. Then for the
sequence {xn} in X with lim

n→∞
xn = x ∈ X, there exists ε > 0 such that

‖PC(xn)− PC(x)‖ ≥ ε for all n ∈ N.

Because
|d(xn, C)− d(x,C)| ≤ ‖xn − x‖,

it follows that
∣
∣‖xn − PC(xn)‖ − ‖x− PC(x)‖

∣
∣ ≤ ‖xn − x‖.
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This implies that

lim
n→∞

‖xn − PC(xn)‖ = ‖x− PC(x)‖. (2.33)

Because {PC(xn)} is bounded in C by (2.33), there exists a subsequence
{PC(xni

)} of {PC(xn)} such that w − lim
i→∞

PC(xni
) = z ∈ C. Note

w − lim
i→∞

(xni
− PC(xni

)) = x− z. (2.34)

By w-lsc of the functional ‖ · ‖, we have

‖x− z‖ ≤ lim inf
i→∞

‖xni
− PC(xni

)‖ = ‖x− PC(x)‖.

This implies z = PC(x) by definition of the function PC . From (2.33) and (2.34)

w− lim
i→∞

(xni
−PC(xni

)) = x−PC(x) and lim
i→∞

‖xni
−PC(xni

)‖ = ‖x−PC(x)‖.

Because X has the Kadec-Klee property, we obtain

lim
i→∞

(xni
− PC(xni

)) = x− PC(x),

which implies that lim
i→∞

PC(xni
) = PC(x), which is a contradiction to the

assumption that ‖PC(xn)− PC(x)‖ ≥ ε.

Then following Proposition 2.5.25, we have

Theorem 2.10.13 Let C be a nonempty convex subset of a smooth Banach
space X and let x ∈ X and y ∈ C. Then the following are equivalent:

(a) y is a best approximation to x: ‖x− y‖ = d(x,C).
(b) y is a solution of the variational inequality:

〈y − z, Jμ(x− y)〉 ≥ 0 for all z ∈ C,

where Jμ is a duality mapping with gauge function μ.

As an immediate consequence of Theorem 2.10.13, we have

Corollary 2.10.14 Let C be a nonempty convex subset of a Hilbert space H
and PC be the metric projection mapping from H onto C. Let x be an element
in H. Then the following are equivalent:

(a) ‖x− PC(x)‖ = d(x,C).
(b) 〈x− PC(x), PC(x)− z〉 ≥ 0 for all z ∈ C.

Proposition 2.10.15 Let C be a nonempty closed convex subset of a Hilbert
space X and PC the metric projection from X onto C. Then the following hold:

(a) PC is “idempotent”: PC(PC(x)) = PC(x) for all x ∈ X.
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(b) PC is “firmly nonexpansive”:

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y))‖2 for all x, y ∈ X.

(c) PC is “nonexpansive”: ‖PC(x)− PC(y)‖ ≤ ‖x− y‖ for all x, y ∈ X.

(d) PC is “monotone”: 〈PC(x)− PC(y), x− y〉 ≥ 0 for all x, y ∈ X.

(e) PC is “demiclosed”: xn ⇀ x0 and PC(xn)→ y0 ⇒ PC(x0) = y0.

Proof. (a) Observe that PC(x) ∈ C for all x ∈ X and PC(z) = z for all z ∈ C.
Then PC(PC(x)) = PC(x) for all x ∈ X, i.e., P 2

C = PC .

(b) Set j := PC(x)− PC(y) for x, y ∈ X. We have

〈x− y, j〉 = 〈x− PC(x), j〉+ 〈j, j〉+ 〈PC(y)− y, j〉.

Because from Corollary 2.10.14, we get

〈x− PC(x), j〉 ≥ 0 and 〈y − PC(y), j〉 ≥ 0,

it follows that
〈x− y, j〉 ≥ ‖j‖2.

(c) This is an immediate consequence of (b).

(d) It follows from (b).

(e) From Corollary 2.10.14, we have

〈xn − PC(xn), PC(xn)− z〉 ≥ 0 for all z ∈ C.

Because xn ⇀ x0 and PC(xn)→ y0, we have

〈x0 − y0, y0 − z〉 ≥ 0 for all z ∈ C.

Using Theorem 2.10.13, we obtain ‖x0 − y0‖ = d(x0, C). Therefore,
PC(x0) = y0.

Remark 2.10.16 Proposition 2.10.15(c) shows that in a Hilbert space, a metric
projection operator is not only continuous, but also it is Lipschitz continuous and
hence it is uniformly continuous.

The following result is of fundamental importance. It shows that every point
on line segment joining x ∈ X to its best approximation PC(x) ∈ C has PC(x)
as its best approximation.

Proposition 2.10.17 Let C be a Chebyshev set in a Hilbert space H and
x ∈ H. Then PC(x) = PC(y) for all y ∈ co({x, PC(x)}).
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Proof. Suppose, for contradiction, that there exist y ∈ co({x, PC(x)}) and
z ∈ C such that

‖y − z‖ < ‖y − PC(x)‖.
Set y := λx + (1− λ)PC(x) for some λ ∈ (0, 1). Then

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖
< ‖x− y‖+ ‖y − PC(x)‖
= (1− λ)‖x− PC(x)‖+ λ‖x− PC(x)‖ = d(x,C),

a contradiction.

If C is a Chebyshev set in a Hilbert space H, then

PC [λx + (1− λ)PC(x)] = PC(x), x ∈ H, 0 ≤ λ ≤ 1.

Motivated by this fact, we introduce the following:

A Chebyshev subset C of a normed space X is said to be sun if

PC [λx + (1− λ)PC(x)] = PC(x) for all x ∈ X and λ ≥ 0.

In other words, C is a sun if and only if each point on the ray from PC(x)
through x also has PC(x) as its best approximation in C.

Let C be a nonempty subset of a topological space X and D a nonempty
subset of C. Then a continuous mapping P : C → D is said to be a retraction
if Px = x for all x ∈ D, i.e., P 2 = P . In such case, D is said to be a retract
of C.

Example 2.10.18 Every closed convex subset C of R
n is a retract of R

n.

We have seen in Theorem 2.10.8 that for every weakly compact convex subset
C of a strictly convex Banach space, there exists a metric projection mapping
PC : X → C that may not be continuous. However, every single-valued metric
projection mapping is a retraction if it is continuous.

Theorem 2.10.19 Every closed convex subset C of a uniformly convex Banach
space X is a retract of X.

Proof. By Theorem 2.10.8, there exists a metric projection mapping PC : X →
C such that PC(x) = x for all x ∈ C. By Theorem 2.10.12, PC is continuous.
Therefore, PC is retraction.

We now show that every retraction P with condition (2.35) is sunny non-
expansive (and hence continuous).

Proposition 2.10.20 Let C be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. If P is a retraction of C onto D such
that

〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D, (2.35)

then P is sunny nonexpansive.
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Proof. P is sunny: For x ∈ C, set xt := Px + t(x− Px) for all t > 0. Because
C is convex, it follows that xt ∈ C for all t ∈ (0, 1]. Hence

〈x− Px, J(Px− Pxt)〉 ≥ 0 and 〈xt − Pxt, J(Pxt − Px)〉 ≥ 0. (2.36)

Because xt − Px = t(x− Px) and 〈t(x− Px), J(Px− Pxt)〉 ≥ 0, we have

〈xt − Px, J(Px− Pxt)〉 ≥ 0. (2.37)

Combining (2.36) and (2.37), we get

‖Px− Pxt‖2 = 〈Px− xt + xt − Pxt, J(Px− Pxt)〉
≤ −〈xt − Px, J(Px− Pxt)〉+ 〈xt − Pxt, J(Px− Pxt)〉
≤ 0.

Thus, Px = Pxt. Therefore, P is sunny.

P is nonexpansive : For x, z ∈ C, we have from (2.35) that

〈x− Px, J(Px− Pz)〉 ≥ 0 and 〈z − Pz, J(Pz − Px)〉 ≥ 0.

Hence
〈x− z − (Px− Pz), J(Px− Pz)〉 ≥ 0.

This implies that
〈x− z, J(Px− Pz)〉 ≥ ‖Px− Pz‖2

and hence P is nonexpansive.

We now give equivalent formulations of sunny nonexpansive retraction
mappings.

Proposition 2.10.21 Let C be a nonempty convex subset of a smooth Banach
space X, D a nonempty subset of C, and P : C → D a retraction. Then the
following are equivalent:

(a) P is the sunny nonexpansive.
(b) 〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D.
(c) 〈x− y, J(Px− Py)〉 ≥ ‖Px− Py‖2 for all x, y ∈ C.

Proof. (a)⇒ (b). Let P be the sunny nonexpansive retraction and x ∈ C.
Then Px ∈ D and there exists a point z ∈ D such that Px = z. Set M :=
{z + t(x− z) : t ≥ 0}. Then M is nonempty convex set. Hence for v ∈M

‖y − z‖ = ‖Py − Pv‖ (as P is sunny, i.e., Pv = z)
≤ ‖y − v‖ = ‖y − z + t(z − x)‖ for all y ∈ D.

Hence from Proposition 2.4.7, we have

〈x− Px, J(y − Px)〉 ≤ 0.
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(b) ⇒ (a). It follows from Proposition 2.10.20.

(b) ⇒ (c). Let x, y ∈ C. Then Px, Py ∈ D and hence from (b), we have

〈x− Px, J(Py − Px)〉 ≤ 0 and 〈y − Py, J(Px− Py)〉 ≤ 0.

Combining the above inequalities, we get

〈Px− Py − (x− y), J(Px− Py)〉 ≤ 0.

Hence

‖Px− Py‖2 = 〈Px− Py, J(Px− Py)〉
= 〈Px− Py − (x− y), J(Px− Py)〉+ 〈x− y, J(Px− Py)〉
≤ 〈x− y, J(Px− Py)〉.

(c) ⇒ (b). Suppose (c) holds. Let x ∈ C and y ∈ D. Replacing y by y = Py in
(c), we have

〈x− Py, J(Px− P 2y) ≥ ‖Px− P 2y‖2,

which implies that

〈x− y, J(Px− y)〉 ≥ ‖Px− y‖2.

Therefore,

〈x− Px, J(Px− y)〉 = 〈x− y, J(Px− y)〉+ 〈y − Px, J(Px− y)

≥ ‖Px− y‖2 − ‖Px− y‖2 = 0.

Finally, we give uniqueness of sunny nonexpansive retraction mappings.

Proposition 2.10.22 Let C be a nonempty convex subset of a smooth Banach
space X and D a nonempty subset of C. If P is a sunny nonexpansive retraction
from C onto D, then P is unique.

Proof. Let Q be another sunny nonexpansive retraction from C onto D. Then,
we have, for each x ∈ C

〈x− Px, J(y − Px)〉 ≤ 0 and 〈x−Qx, J(y −Qx)〉 ≤ 0 for all y ∈ D.

In particular, because Px and Qx are in D, we have

〈x− Px, J(Qx− Px)〉 ≤ 0 and 〈x−Qx, J(Px−Qx)〉 ≤ 0,

which imply that ‖Px−Qx‖2 ≤ 0. Therefore, Px = Qx for all x ∈ C.
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Exercises

2.1 Let X be a strictly convex Banach space and let x, y ∈ X with x �= y.
If ‖x− z‖ = ‖x−w‖, ‖z− y‖ = ‖w− y‖ and ‖x− y‖ = ‖x− z‖+ ‖z− y‖,
show that z = w.

2.2 Let X be a uniformly convex Banach space and let δX be the modulus of
convexity of X. Let 0 < ε < r ≤ 2R. Show that δX(ε/R) > 0 and

‖λx + (1− λ)y‖ ≤ r

{

1− 2λ(1− λ)δX

(
ε

R

)}

for all x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ε and λ ∈ [0, 1].

2.3 Let X be a Banach space. Show that X is uniformly convex if and only if
γ(t) > 0 for all t ∈ (0, 2], where

γ(t) = inf{〈x− y, x∗ − y∗〉 : x, y ∈ SX , ‖x− y‖ ≥ t, x∗ ∈ J(x), y∗ ∈ J(y)}.

2.4 If 1 < p < ∞, and if the X ′
ns are all strictly convex Banach spaces, show

that

(
∏

n∈N

Xn)p = {x = {xn} : xn ∈ Xn for all n ∈ N and
∑

n∈N

‖xn‖pxn
<∞}
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endowed with norm
‖x‖ = (

∑

n∈N

‖xn‖pxn
)1/p

is strictly convex.

2.5 On L2([0, 1], dt), we consider the norm

‖f‖ =
[
1
2
(‖f‖22 + ‖f‖21)

]1/2

.

Show that this norm is equivalent to ‖ · ‖2, but is not smooth.

2.6 On 1, we consider the norm ‖x‖ = (‖x‖21 + ‖x‖22)1/2, x = {xn}n∈N (where
‖x‖1 =

∑

n∈N

|xn|, ‖x‖2 = (
∑

n∈N

|xn|2)1/2).

Show that this norm is equivalent to the 1-norm and that it is strictly
convex.

2.7 Let C be a nonempty closed convex subset of a strictly convex Banach
space X and D a nonempty subset of C. Let x ∈ C and P be a sunny
nonexpansive retraction of C onto D such that ‖Px − y‖ = ‖x − y‖ for
some y ∈ D. Then Px = x.
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