
Chapter 1

Fundamentals

The aim of this chapter is to introduce the basic concepts, notations, and
elementary results that are used throughout the book. Moreover, the results
in this chapter may be found in most standard books on functional analysis.

1.1 Topological spaces

Let X be a nonempty set and d : X ×X → R
+ := [0,∞) a function. Then d is

called a metric on X if the following properties hold:
(d1) d(x, y) = 0 if and only if x = y for some x, y ∈ X;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The value of metric d at (x, y) is called distance between x and y, and the
ordered pair (X, d) is called metric space.

Example 1.1.1 The real line R with d(x, y) = |x − y| is a metric space. The
metric d is called the usual metric for R.

For any r > 0 and an element x in a metric space (X, d), we define
Br(x) := {y ∈ X : d(x, y) < r}, the open ball with center x and radius r;
Br[x] := {y ∈ X : d(x, y) ≤ r}, the closed ball with center x and radius r;
∂Br(x) := {y ∈ X : d(x, y) = r}, the boundary of ball with center x and

radius r.

For a subset C of X and a point x ∈ X, the distance between x and C,
denoted by d(x,C), is defined as the smallest distance from x to elements of C.
More precisely,

d(x,C) = inf
x∈C

d(x, y).

The number sup{d(x, y) : x, y ∈ C} is referred to as the diameter of set C and
is denoted by diam(C). If diam(C) is finite, then C is said to be bounded, and
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if not, then C is said to be unbounded. In other words, C is bounded if there
exists a sufficiently large ball that contains C.

Interior points and open set – Let G be a subset of a metric space (X, d).
Then x ∈ G is said to be an interior of G if there exists an r > 0 such that
Br(x) ⊂ G. The set G is said to be open if all its points are interior or is the
empty set. The interior of set G is denoted by int(G).

Observation
• int(G) ⊂ G for any subset G of metric space X.

• For any open set G ⊂ X, int(G) = G.

• The empty set ∅ and entire space X are open.

Definition 1.1.2 Let X be a nonempty set and τ a collection of subsets of X.
Then τ is said to be a topology on X if the following conditions are satisfied:

(i) ∅ ∈ τ and X ∈ τ ,
(ii) τ is closed under arbitrary unions,
(iii) τ is closed under finite intersections.
The ordered pair (X, τ) is called topological space.

Observation

• The members of τ are called τ -open sets or simply open sets.

Definition 1.1.3 A topological space is said to be metrizable if its topology can
be obtained from a metric on the underlying space.

Denoting the class of all open sets of a metric space (X, d) by τd, then we
have

(1) ∅ and X are in τd,
(2) an arbitrary union of open sets is open,
(3) a finite intersection of open sets is open.

The class τd is called a metric topology on X.

Definition 1.1.4 Let C be a subset of a topological space X. Then the interior
of C is the union of all open subsets of C. It is denoted by int(C).

In other words, if {Gi : i ∈ Λ} are all open subsets of C, then int(C) =
∪i∈Λ{Gi : Gi ⊂ C}.

Observation
• int(C) is open, because it is union of open sets.

• int(C) is the largest open set of C.

• If G is an open subset of C, then G ⊂ int(C) ⊂ C.
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Definition 1.1.5 A set F in a topological space X whose complement F c =
X − F is open is called a closed set.

Theorem 1.1.6 Let C be a collection of all closed sets in a topological space
(X, τ). Then C has the following properties:

(i) ∅ ∈ C and X ∈ C,
(ii) C is closed under arbitrary intersections,
(iii) C is closed under finite unions.

Definition 1.1.7 Let C be a subset of a topological space X. Then the closure
of C is the intersection of all closed supersets of C. The closure of C is denoted
by C.

In other words, if {Fi : i ∈ Λ} is a collection of all closed supersets of C in
X, then C = ∩i∈ΛFi.

Observation
• C is closed, because it is the intersection of closed sets.

• C is the smallest closed superset of C.

• If F is a closed subset of X containing C, then C ⊂ C ⊂ F .

Theorem 1.1.8 Let C be a subset of a topological space X. Then C is closed
if and only if C = C.

Exterior points and boundary of sets – Let C be a subset of a topological
space X. Then the exterior of C, written by ext(C), is the interior of the
complement of C, i.e., ext(C) = int(Cc). The boundary of C is a set of points
that do not belong to the interior or the exterior of C. The boundary of set C
is denoted by ∂(C). Obviously, ∂(C) = C ∩ (X \ C) is a closed set.

Proposition 1.1.9 Let A and B be two subsets of a topological space X. Then
the following properties hold:

Properties of interiors Properties of closures
int(int(A)) = int(A) (A) = A
int(A ∩B) = int(A) ∩ int(B) A ∩B ⊂ A ∩B
int(A ∪B) ⊃ int(A) ∪ int(B) (A ∪B) = A ∪B

A ⊂ B ⇒ int(A) ⊂ int(B) A ⊂ B ⇒ A ⊂ B

Definition 1.1.10 Let τ1 and τ2 be two topologies on a topological space X.
Then τ1 is said to be weaker than τ2 if τ1 ⊂ τ2.

Note that if τ1 and τ2 are two topologies on X such that τ = τ1 ∩ τ2. Then
the topology τ is weaker than τ1 and τ2 both.

Theorem 1.1.11 Let {τi : i ∈ Λ} be a collection of topologies on a topological
space X. Then the intersection ∩i∈Λτi is also a topology on X.
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We now turn to the notion of a base for the topology τ .

Definition 1.1.12 Let (X, τ) be a topological space. Then a subclass B of τ is
said to be a base for τ if every member of τ can be expressed as the union of
some members of B.

Observation
• Every topology has a base. In fact, we can take B = τ .

• In a metric space (X, d), collection of all open balls Br(x) (x ∈ X, r > 0)

is a base for the metric topology.

Then, we have the following theorem:

Theorem 1.1.13 Let (X, τ) be a topological space and B ⊂ τ . Then B is a
base for τ if and only if, for every x ∈ X and every open set G containing x,
there exists B ∈ B such that x ∈ B and B ⊂ G.

We now consider a base of open sets at a point.

Definition 1.1.14 Let (X, τ) be a topological space and x0 ∈ X. Then the
collection Bx0⊂ τ is called a base at a point x0 if, for any open set G containing
x0, there exists B ∈ Bx0 such that x0 ∈ B ⊂ G.

Observation
• In the metric topology of a metric space (X, d), the collection of all Br(x0), where

r runs through the positive real numbers, constitutes a base at a point x0 ∈ X.

Neighborhoods – Let X be a topological space and G an open set. Then
G is called an open neighborhood of a point x0 ∈ X if x0 ∈ G. The set G with-
out x0, i.e., G \ {x0}, is called a deleted open neighborhood of a point x0 ∈ X.
A subset C of X is said to be a neighborhood of a point x0 ∈ X if there exists
an open set G ∈ τ such that x0 ∈ G ⊂ C.

Let (X, τ) be a topological space. Then a collection ν of neighborhoods of
x0 ∈ X is said to be a neighborhood base at a point x0 if every neighborhood of
x0 contains a member of ν.

A collection σ of subsets of a topological space (X, τ) is said to be a subbase
for τ if σ ⊂ τ and every member of τ is a union of finite intersections of sets
from σ. In other words, σ is a subbase for τ if σ ⊂ τ and for all G ∈ τ and
x ∈ G, there are sets U1, U2, · · · , Un in σ such that x ∈ ∩n

i=1Ui ⊂ G.

Let (X, τ) be a topological space. Then X is said to be

1. a T0-space if x and y are any two distinct points in X, then there exists
an open set that contains one of them, but not the other;

2. a T1-space if x and y are two distinct points in X, there exists an open set
U containing x and not y, and there exists another open set V containing
y, but not x;
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3. a T2-space or Hausdorff topological space if x and y are two distinct points
in X, there exist two open sets G and H such that x ∈ G, y ∈ H, and
G ∩H = ∅.

Observation
• Every Hausdorff space is a T1-space.

• A topological space X is T1-space if and only if every subset consisting of a single
point is closed.

• Every metric space is a Hausdorff space.

A topological space (X, τ) is said to be compact if every open cover has a
finite subcover, i.e., if whenever X = ∪i∈ΛGi, where Gi is an open set, then
X = ∪i∈Λ0Gi for some finite subset Λ0 of Λ.

A subset C of a topological space (X, τ) is said to be compact if every open
cover has finite open subcover, i.e., if whenever C ⊆ ∪i∈ΛGi, where Gi is an
open set, then C ⊆ ∪i∈Λ0Gi for some finite subset Λ0 of Λ.

Observation
• Every finite set of a topological space is compact.

• Every closed subset of a compact space is compact.

• In a compact Hausdorff space, a set is compact if and only if it is closed.

Net – Let D be a nonempty set and  a relation on D. Then the ordered
pair (D,) is said to be directed if

(i)  is reflexive: α  α for all α ∈ D;

(ii)  is transitive: whenever α  β and β  y ⇒ α  y for all α, β, γ ∈ D;

(iii) for any two elements α and β, there exists γ such that α  γ and β  γ.

Observation
• (N,≥) is a directed set.

• If X �= ∅, then (P (X),⊆) and (P (X),⊇) are directed sets, where P (X) is the

power set of X.

• Every lattice is a directed set.

A net, or a generalized sequence in a set X is a mapping S from a directed
set D into X. The net {xα : α ∈ D} is simply written as {xα}.

Let {xα : α ∈ D} be a net in a set X and let E be another directed set.
Then a net {xαβ

: β ∈ E} in X is said to be a subnet of {xα : α ∈ D} if it
satisfies the following conditions:

(i) {xαβ
: β ∈ E} ⊂ {xα : α ∈ D};

(ii) for any α0 ∈ D, there exists β0 ∈ E such that α0  αβ exists β0  β.
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A net {xα : α ∈ D} in a topological space X is said to converge to the point
x in X if for every neighborhood U of x, there exists α0 ∈ D such that xα ∈ U
whenever α � α0. In this case, we write

xα → x, or lim
α

xα = x.

A point x in a topological space X is said to be a cluster point of a net
{xα : α ∈ D} if for every neighborhood U of x and every α ∈ D, there exists
β ∈ D such that β � α and xβ ∈ U .

Theorem 1.1.15 Let {xα}α∈D be a net in a topological space X and let x ∈ X.
Then x is a cluster point of the net {xα}α∈D if and only if the net {xα}α∈D has
a subnet converging to x.

In a metric space (X, d), a sequence {xn} in X is convergent to x ∈ X if
lim

n→∞
d(xn, x) = 0, i.e., if given ε > 0, there exists an integer n0 ∈ N such that

d(xn, x) < ε for all n ≥ n0. A sequence {xn} in a metric space (X, d) is said to
be Cauchy if lim

m,n→∞
d(xn, xm) = 0. A metric space (X, d) is said to be complete

if every Cauchy sequence in X is convergent in X.

Observation
• In a Hausdorff topological space, the limit of a net is unique.

• In a metric space, every convergent sequence is Cauchy.

A subset E of a directed set D is said to be eventual if there exists β ∈ D
such that for all α ∈ D, α  β implies that α ∈ E. A net S : D → X is said to
be eventually in a subset C of X if the set S−1(C) is an eventual subset of D.
A net {xα} in a set X is called a universal net if for each subset C of X, either
{xα} is eventually in C or {xα} eventually in X \ C.

The following facts are important:

(a) Every net in a set has a universal subnet.

(b) If f : X1 → X2 is a mapping and if {xα} is a universal net in X1, then
{f(xα)} is a universal net in X2.

(c) If X is compact and if {xα} is a universal net in X, then lim
α

xα exists.

We now state the following important result:

Theorem 1.1.16 For a topological space (X, τ), the following statements are
equivalent:

(a) X is compact.
(b) For any collection of closed sets {Fi}i∈Λ having the finite intersection

property (i.e., the intersection of any finite number of sets from the collection
is nonempty), then

⋂
i∈Λ Fi �= ∅.
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(c) Every net in X has a limit point (or, equivalently, every net has a
convergent subnet).

(d) Every filter in X has a limit point (or, equivalently, every net has a
convergent subfilter).

(e) Every ultrafilter in X is convergent.

We now turn our attention to the concept of continuity in topological spaces.

Definition 1.1.17 Let (X, τ) and (Y, τ ′) be two topological spaces. Then a
function f : X → Y is said to be continuous relative to τ and τ ′ (more precisely,
τ − τ ′ continuous) or simply continuous at a point x ∈ X if for each V ∈ τ ′

with f(x) ∈ V, there exists U ∈ τ such that x ∈ U and f(U) ⊂ V .

The function f is called continuous if it is continuous at each point of X.
Using the concept of net, we have the following result for continuity of a function
in a topological space.

Theorem 1.1.18 Let X and Y be two topological spaces and let f be a mapping
from X into Y . Then f is continuous at a point x in X if and only if for every
net {xα} in X,

xα → x⇒ f(xα)→ f(x).

Some other formulations for continuous functions are the following:

Theorem 1.1.19 Let f be a function from a topological space (X, τ) into
another topological space (Y, τ ′). Then the following statements are equivalent:

(1) f is continuous (i.e., τ − τ ′ continuous).

(2) For each V ∈ τ ′, f−1(V ) ∈ τ .

(3) For each closed subset A of Y , f−1(A) is closed in X.

(4) For all A ⊂ X, f(A) ⊂ f(A).

(5) There exists a subbase σ of τ ′ such that f−1(V ) ∈ τ for all V ∈ σ.

The following result shows that continuous image of a compact set is
compact.

Theorem 1.1.20 Let X and Y be two topological spaces and let T : X → Y be
a continuous mapping. If C ⊆ X is compact, then T (C) is compact.

The following result shows that there exists the smallest topology for which
each member of {fi : i ∈ Λ} is continuous.

Theorem 1.1.21 Let {(Xi, τi) : i ∈ Λ} be an indexed family of topological
spaces, X any set, and {fi : i ∈ Λ} an indexed collection of functions such that
for each i ∈ Λ, fi is a function from X to Xi. Then there exists the smallest
topology τ on X that makes each fi continuous (i.e., τ − τi continuous).
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Proof. Let σ = {f−1
i (Vi) : Vi ⊂ Xi is open in τi (i ∈ Λ)} be a subbase for the

topology τ given by

τ = {∪F∈F ∩C∈F C : F ⊂ σ} ∪ {∅,X}, (1.1)

where σ is the set of all finite subsets of σ. Thus, G ⊂ X is open in τ if and
only if for every x ∈ G, there are i1, i2, · · · , in ∈ Λ and Vi1 ∈ τi1 , Vi2 ∈ τi2 , · · · ,
Vin
∈ τin

such that x ∈ ∩n
k=1f

−1
ik

(Vik
) ⊂ G.

Remark 1.1.22 The topology τ on X defined by (1.1) making each fi continu-
ous (τ−τ ′ continuous) is called the weak topology generated by F and is denoted
by σ(X,F).

Product space – Let X1,X2, · · · ,Xn be n arbitrary sets with the Cartesian
product X = X1 ×X2 × · · · ×Xn. For each i = 1, 2, · · · , n, define πi : X → Xi

by πi(x1, x2, · · · , xn) = xi. Then πi is called the projection on Xi or the ith

projection. If x ∈ X, then πi(x) is called the ith coordinate of x.

Theorem 1.1.23 Let {(Xi, τi) : i = 1, 2, · · · , n} be a collection of topological
spaces and (X, τ) their topological product, i.e., X =

∏
i Xi and τ =

⋂
i τi. Then

each projection πi is continuous. Moreover, if Y is any topological space, then
a function f : Y → X is continuous if and only if the mapping πiof : Y → Xi

is continuous for all i = 1, 2, · · · , n.

Theorem 1.1.24 (Tychonoff’s theorem) – The Cartesian product X of an
arbitrary collection {Xi}i∈Λ of compact spaces is compact (with respect to product
topology).

1.2 Normed spaces

A linear space or vector space X over the field K (the real field R or the complex
field C) is a set X together with an internal binary operation “+” called addition
and a scalar multiplication carrying (α, x) in K ×X to αx in X satisfying the
following for all x, y, z ∈ X and α, β ∈ K:

1. x + y = y + x,
2. (x + y) + z = x + (y + z),
3. there exists an element 0 ∈ X called the zero vector of X such that

x + 0 = x for all x ∈ X,
4. for every element x ∈ X, there exists an element −x ∈ X called the

additive inverse or the negative of x such that x + (−x) = 0,
5. α(x + y) = αx + αy,

6. (α + β)x = αx + βx,
7. (αβ)x = α(βx),
8. 1 · x = x.
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The elements of a vector space X are called vectors, and the elements of
K are called scalars. In the sequel, unless otherwise stated, X denotes a linear
space over field R.

Observation
• With the usual addition and multiplication, R and C are linear spaces over R.

• X = {x = (a1, a2, · · · ) : ai ∈ R} is a linear space.

• The set of solutions of a linear differential equation (and linear partial differential

equation) is a linear space.

A subset S of a linear space X is a linear subspace (or a subspace) of X if S
is itself a linear space, i.e., αx + βy ∈ S for all α, β ∈ K and x, y ∈ S.

If S is a subset of a linear space X, then the linear span of S is the intersection
of all linear subspaces containing S. It is the smallest linear subspace of X
containing S. The linear span of set S is denoted by [S].

Given the points x1, x2, · · · , xn of a linear space X, then the element

x = a1x1 + a2x2 + · · ·+ anxn, ai ∈ K

is called linear combination of {x1, x2, · · · , xn}.
Proposition 1.2.1 Let S be a nonempty subset of a linear space X. Then the
linear span of S is the set of all linear combinations of elements of S.

A linear space X is said to be finite-dimensional if it is generated by the
linear combination of a finite number of points (which are linearly indepen-
dent). Otherwise, it is infinite-dimensional. The dimension of a linear space X
is denoted by dim(X).

Convex set – Let C be a subset of a linear space X. Then C is said to
be convex if (1− λ)x + λy ∈ C for all x, y ∈ C and all scalar λ ∈ [0, 1].

By definition of convexity, we have the following fact:

Proposition 1.2.2 Let C be a subset of a linear space X. Then C is convex if
and only if λ1x1 +λ2x2 + · · ·+λnxn ∈ C for any finite set {x1, x2, · · · , xn} ⊆ C
and any scalars λi ≥ 0 with λ1 + λ2 + · · ·+ λn = 1.

Convex hull – Let C be an arbitrary subset (not necessarily convex) of a linear
space X. Then the convex hull of C in X is the intersection of all convex subsets
of X containing C. It is denoted by co(C). Hence

co(C) = ∩{D ⊆ X : C ⊆ D, D is convex}.
Thus, co(C) is the unique smallest convex set containing C. Clearly,

co(C) =
{

α1x1 + α2x2 + · · ·+ αnxn : xi ∈ C,αi ≥ 0 and
n∑

i=1

αi = 1
}

= the set of all convex combination of elements of C.
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The closure of convex hull of C is denoted by co(C). Thus,

co(C) =
{

α1x1 + α2x2 + · · ·+ αnxn : xi ∈ C,αi ≥ 0 and
n∑

i=1

αi = 1
}

.

The closed convex hull of C in X is the intersection of all closed convex
subsets of X containing C. It is denoted by co(C). Thus,

co(C) = ∩{D ⊆ X : C ⊆ D, D is closed and convex}.

One may easily see that closure of convex hull of C is closed convex hull of C,
i.e., co(C) = co(C).

Observation
• The empty set ∅ is convex.

• For two convex subsets C and D in a linear space X, we have
(i) C + D is convex,
(ii) λC is convex for any scalar λ.

• Any translate C + x0 of a convex set C is convex.

• If {Ci : i ∈ Λ} is any family of convex sets in a linear space X, then ∩iCi is
convex.

• If C is a convex subset of a linear space X, then

(i) the closure C and the interior int(C) are convex,

(ii) co(C) = C.

• If C is a subset of a linear space, co(C) = co(C).

• In general, co(C) �= co(C).

The vector space axioms only describe algebraic properties of the elements
of the space: vector addition, scalar multiplication, and other combinations of
these. For the topological concepts such as openness, closure, convergence, and
completeness, we need a measure of distance in a space.

Definition 1.2.3 Let X be a linear space over field K (R or C) and f : X → R
+

a function. Then f is said to be a norm if the following properties hold:
(N1) f(x) = 0 if and only if x = 0; (strict positivity)
(N2) f(λx) = |λ|f(x) for all x ∈ X and λ ∈ K; (absolute homogeneity)
(N3) f(x + y) ≤ f(x) + f(y) for all x, y ∈ X.

(triangle inequality or subadditivity)

The ordered pair (X, f) is called a normed space.

Observation
• f(x) ≥ 0 for all x ∈ X.
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• |f(x) − f(y)| ≤ f(x − y) and |f(x) − f(y)| ≤ f(x + y) for all x, y ∈ X.

• f is a continuous function, i.e., xn → x ⇒ f(xn) → f(x).

• f is a convex function, i.e., f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) for all x, y ∈ X
and λ ∈ [0, 1].

• Addition and scalar multiplication are jointly continuous, i.e., if xn → x and

xn → y, then xn + yn → x + y and if xn → x and λn → λ, then λnxn → λx.

We use the notation ‖ · ‖ for norm. Then every normed space (X, ‖ · ‖) is a
metric space (X, d) with induced metric d(x, y) = ‖x−y‖ and a topological space
with the induced topology. It means that the induced metric d(x, y) = ‖x− y‖
in turn, defines a topology on X, the norm topology.

Observation
• In every linear space X, we can easily define a function ρ : X × X → R

+ by

ρ(x, y) =

{
0 if x = y,
1 if x �= y,

(1.2)

which is a metric on X. It shows that every linear space (not necessarily normed

space) is always a metric space.

At this stage, there arises a natural question:

Under what conditions will any metric on a linear space be a normed space?
Such sufficient conditions are given in following proposition:

Proposition 1.2.4 Let d be a metric on a linear space X. Then function
‖ · ‖ : X → R

+ defined by

‖x‖ = d(x, 0) for all x ∈ X

is a norm if d satisfies the following conditions:

(d1) d is homogeneous : d(λx, λy) = |λ|d(x, y) for all x, y ∈ X and λ ∈ K;

(d2) d is translation invariant : d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X.

Remark 1.2.5 The metric ρ defined by (1.2) is not homogeneous and the linear
space X is a metric space under metric ρ, but not a normed space.

The following example also demonstrates that a metric space is not neces-
sarily a normed space.

Example 1.2.6 Let X be a space of all complex sequences {xi}∞i=1 and d(·, ·)
a metric on X defined by

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi|

, x = {xi}, y = {yi} ∈ X. (1.3)
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Then d is not a norm under the relation d(x, y) = ‖x− y‖. In fact,

d(λx, λy) =
∞∑

i=1

1
2i
· |λ||xi − yi|
1 + |λ||xi − yi|

�= |λ|
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi|

= |λ|d(x, y),

i.e., d is not homogeneous.

Remark 1.2.7 The metric d defined by (1.3) is bounded, because

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi|

≤
∞∑

i=1

1
2i

<∞.

This metric is called a Fréchet metric for X.

We now consider some examples of normed spaces:

Example 1.2.8 Let X = R
n, n > 1 be a linear space. Then R

n is a normed
space with the following norms:

‖x‖1 =
n∑

i=1

|xi| for all x = (x1, x2, · · · , xn) ∈ R
n;

‖x‖p =
( n∑

i=1

|xi|p
)1/p

for all x = (x1, x2, · · · , xn) ∈ R
n and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, · · · , xn) ∈ R
n.

Remark 1.2.9 (a) R
n equipped with the norm defined by ‖x‖p =(

∑n
i=1|xi|p)1/p

is denoted by n
p for all 1 ≤ p <∞.

(b) R
n equipped with the norm defined by ‖x‖∞ = max

1≤i≤n
|xi| is denoted by n

∞.

Example 1.2.10 Let X = 1, the linear space whose elements consist of all
absolutely convergent sequences (x1, x2, · · · , xi, · · · ) of scalars (real or complex
numbers), i.e.,

1 =
{

x : x = (x1, x2, · · · , xi, · · · ) and

∞∑

i=1

|xi| <∞
}

.

Then 1 is a normed space with the norm defined by ‖x‖1 =
∑∞

i=1 |xi|.

Example 1.2.11 Let X = p (1 < p < ∞), the linear space whose elements
consist of all p-summable sequences (x1, x2, · · · , xi, · · · ) of scalars, i.e.,

p =
{

x : x = (x1, x2, · · · , xi, · · · ) and
∞∑

i=1

|xi|p <∞
}

.

Then p is a normed space with the norm defined by ‖x‖p = (
∑∞

i=1 |xi|p)1/p.
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Example 1.2.12 Let X = ∞, the linear space whose elements consist of all
bounded sequences (x1, x2, · · · , xi, · · · ) of scalars, i.e.,

∞ = {x : x = (x1, x2, · · · , xi, · · · ) and {xi}∞i=1 is bounded}.

Then ∞ is a normed space with the norm defined by ‖x‖∞ = sup
i∈N

|xi|.

Example 1.2.13 Let X = c, the sequence space of all convergent sequences of
scalars, i.e.,

c = {x : x = (x1, x2, · · · , xi, · · · ) and {xi}∞i=1 is convergent}.

Then c space is a normed space with the norm ‖ · ‖∞.

Example 1.2.14 Let X = c0, the sequence space of all convergent sequences of
scalars with limit zero, i.e.,

c0 = {x = (x1, x2, · · · , xi, · · · ) : {xi}∞i=1 is convergent to zero}.

The c0 space is a normed space with norm ‖ · ‖∞.

Example 1.2.15 Let X = c00, the sequence space defined by

c00 = {x = {xi}∞i=1 ∈ ∞ : {xi}∞i=1 has only a finite number of nonzero terms}.

Then c00 space is a normed space with norm ‖ · ‖∞.

Observation
• c00 ⊂ �p ⊂ c0 ⊂ c ⊂ �∞ for all 1 ≤ p < ∞.

• If 1 ≤ p < q ≤ ∞, then �p ⊂ �q. In fact, let x = (1, 1/2, · · · , 1/n, · · · ), and we
have

∞∑

i=1

|xi| =
∞∑

i=1

1

i
= ∞, and

∞∑

i=1

|xi|2 =
∞∑

i=1

1

i2
=

π2

6
< ∞.

Note that x ∈ �2, but x /∈ �1. Hence an element of �2 is not necessarily an
element of �1. But each element of �1 is an element of �2.

Example 1.2.16 Let X = Lp[a, b] (1 ≤ p <∞), the linear space of all equiva-
lence classes of p-integrable functions on [a, b]. Then Lp[a, b] space is a normed
space with the norm defined by

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

<∞.

Example 1.2.17 Let X = L∞[a, b], the linear space of all equivalence classes
of essentially bounded functions on [a, b]. Then L∞[a, b] space is a normed space
with the norm defined by

‖f‖∞ = ess sup|f(t)| <∞.
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Example 1.2.18 Let X = C[a, b], the set of all continuous scalar-valued func-
tions and let “ + ” and “ · ” be operations defined by

(f + g)(t) = f(t) + g(t) for all f, g ∈ C[a, b];
(λf)(t) = λf(t) for all f ∈ C[a, b] and scalar λ ∈ K.

Then C[a, b] is a linear space and is also a normed space with the norms:

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

, 1 ≤ p <∞; (1.4)

‖f‖∞ = sup
t∈[a,b]

|f(t)|. (1.5)

Observation
• The norm ‖ · ‖p defined by (1.4) on C[a, b] is called a Lp-norm.

• The norm ‖ ·‖∞ defined by (1.5) on C[a, b] is called a uniform convergence norm.

Equivalent norms – Let X be a linear space over K and let ‖ · ‖′ and ‖ · ‖′′

be two norms on X. Then ‖ · ‖′ is said to be equivalent to ‖ · ‖′′ (written as
‖ · ‖′ ∼ ‖ · ‖′′) if there exist positive numbers a and b such that

a‖x‖′ ≤ ‖x‖′′ ≤ b‖x‖′ for all x ∈ X,

or
a‖x‖′′ ≤ ‖x‖′ ≤ b‖x‖′′ for all x ∈ X.

Observation
• The relation ∼ is an equivalence relation on the set of all norms on X.

• In a finite-dimensional normed space X, all norms on X are equivalent.

• If ‖ ·‖′
and ‖ ·‖′′

are equivalent norms on a linear space X, then a sequence {xn}
that is convergent (Cauchy) with respect to ‖ · ‖′

is also convergent (Cauchy)

with respect to ‖ · ‖′′
and vice versa.

• If ‖ · ‖′
and ‖ · ‖′′

are equivalent norms on a linear space X, then the class of

open sets with respect to ‖ · ‖′
is same as the class of open sets with respect to

‖ · ‖′′
and vice versa.

Seminorm – Let X be a linear space over field K (R or C). Then a function
p : X → R

+ is said to be a seminorm on X if (N2) and (N3) (see Definition 1.2.3)
are satisfied. The ordered pair (X, p) is called seminormed space. Note that a
seminorm p is a norm if p(x) = 0⇒ x = 0.

Example 1.2.19 Let X = R
2 and define p : X → R

+ by

p(x) = p((x1, x2)) = |x1|, x ∈ X.

Then p is a seminorm, but not a norm, because p(x1, x2) = 0 implies that only
the first component of x is zero, i.e., x1 = 0.
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We now consider the notion of topological linear spaces.

Definition 1.2.20 A linear space X over K is said to be a topological linear
space if on X, there exists a topology τ such that X × X and K × X with the
product topology have the property that vector addition + : X × X → X and
scalar multiplication · : K×X → X are continuous functions.

In this case, τ is called a linear topology on X.

Definition 1.2.21 A linear topology on a topological linear space X is said to
be a locally convex topology if every neighborhood of 0 (the zero of X) includes
a convex neighborhood of 0. Then X is called a locally convex topological space.

Then we have the following interesting result.

Proposition 1.2.22 If X is a locally convex topological linear space over K,
then a topology of X is determined by a family of seminorms {pi}i∈I .

Inner product – Let X be a linear space over field C. An inner product on X
is a function 〈·, ·〉 : X ×X → C with the following three properties:

(I1) 〈x, x〉 ≥ 0 for all x ∈ X and 〈x, x〉 = 0 if and only if x = 0;

(I2) 〈x, y〉 = 〈y, x〉, where the bar denotes complex conjugation;

(I3) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ X and α, β ∈ C.

The ordered pair (X, 〈·, ·〉) is called an inner product space. Sometimes,
it is called a pre-Hilbert space. 〈x, y〉 is called inner product of two elements
x, y ∈ X.

Example 1.2.23 Let X = R
n, the set of n-tuples of real numbers. Then the

function 〈·, ·〉 : R
n × R

n → R defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ R
n

is an inner product on R
n. R

n with this inner product is called real Euclidean
n-space.

Example 1.2.24 Let X = C
n, the set of n-tuples of complex numbers. Then

the function 〈·, ·〉 : C
n × C

n → C defined by

〈x, y〉 =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ C
n

is an inner product on C
n. C

n with this inner product is called a complex
Euclidean n-space.
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Example 1.2.25 Let X = 2, the set of all sequences of complex numbers
(a1, a2, · · · , ai, · · · ) with

∑∞
i=1 |ai|2 <∞. Then the function 〈·, ·〉 : 2 × 2 → C

defined by

〈x, y〉 =
∞∑

i=1

xiyi for all x = {xi}∞i=1, y = {yi}∞i=1 ∈ X (1.6)

is an inner product on 2.

We note that the series (1.6) converges by the Cauchy-Schwarz inequality
(see Proposition 1.2.28).

Example 1.2.26 Let X = C[a, b], the linear space of all scalar-valued
continuous functions on [a, b]. Then the function 〈·, ·〉 : C[a, b] × C[a, b] → C

defined by

〈f, g〉 =
∫ b

a

f(t)g(t)dt for all f, g ∈ C[a, b] (1.7)

is an inner product on C[a, b].

We now give some interesting characterizations of linear spaces having inner
products.

Proposition 1.2.27 Let X be an inner product space. Then the function ‖ · ‖ :
X → R

+ defined by
‖x‖ =

√
〈x, x〉, x ∈ X

is a norm on X.

Proposition 1.2.28 (The Cauchy-Schwarz inequality) – Let X be an
inner product space. Then the following holds:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ X,

i.e.,
|〈x, y〉| ≤ ‖x‖ · ‖y‖ for all x, y ∈ X.

Proposition 1.2.29 (The parallelogram law) – Let X be an inner product
space. Then ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

Proposition 1.2.30 The norm on a normed linear space X is given by an
inner product if and only if the norm satisfies the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

Proposition 1.2.31 (The polarization identity) – Let X be an inner prod-
uct space. Then

〈x, y〉 =
1
4

{

‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2
}

for all x, y ∈ X.
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Orthogonality of vectors – Let x and y be two vectors in an inner product
space X. Then x and y are said to be orthogonal if 〈x, y〉 = 0.

Remark 1.2.32 If x and y are orthogonal, then we denote x⊥y and we say “x
is perpendicular to y.”

Proposition 1.2.33 Let X be an inner product space and let x, y ∈ X such
that x⊥y. Then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Observation
• 0⊥x for all x ∈ X.

• x⊥x if and only if x = 0.

• Every inner product space is a normed space.

• Every normed space is an inner product space if and only if its norm satisfies the

parallelogram law.

Convergent sequence – A sequence {xn} in a normed space X is said to
be convergent to x if lim

n→∞
‖xn − x‖ = 0. In this case, we write xn → x or

lim
n→∞

xn = x.

Observation
• xn → x ⇒ ‖xn‖ → ‖x‖ (this fact can be easily shown by the continuity of norm).

The converse of this fact is not true in general (see Theorem 2.2.13).

• The limit of convergent sequence is unique. To see it, suppose xn → x and

xn → y. Then ‖x − y‖ ≤ ‖xn − x‖ + ‖xn − y‖ → 0.

Cauchy sequence – A sequence {xn} in a normed space X is said to be
Cauchy if lim

m, n→∞
‖xm − xn‖ = 0, i.e., for ε > 0, there exists an integer n0 ∈ N

such that ‖xm − xn‖ < ε for all m,n ≥ no.

Observation

• A sequence in (R, | · |) is convergent if and only if it is Cauchy sequence.

• Every convergent sequence is a Cauchy, but the converse need not be true in
general. In fact, if xn → x, then

‖xm − xn‖ ≤ ‖xm − x‖ + ‖x − xn‖ → 0 as m, n → ∞.

Conversely, suppose X = c00 is the linear space of finitely nonzero sequences
(x1, x2, · · · , xi, 0, · · · ) with the norm ‖x‖ = sup

i∈N

|xi|. Let {xn = (1, 1/2, 1/3, · · · ,

1/n, · · · )} be a sequence in X. Now

‖xn − xm‖ = max{1/n, 1/m} → 0 as m, n → ∞,

i.e., {xn} is a Cauchy sequence. Clearly, the limit x has infinitely nonzero
elements. Thus, x /∈ X. Therefore, a Cauchy sequence is not convergent in X.
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• Every Cauchy sequence is bounded.

• Every Cauchy sequence is convergent if and only if it has a convergent sub-

sequence.

Hilbert space and Banach space – A normed space (X, ‖ · ‖) is said to be
complete if it is complete as a metric space (X, d), i.e., every Cauchy sequence
is convergent in X.

A complete normed space (inner product space) is called a Banach space
(Hilbert space).

Example 1.2.34 n
p (1 ≤ p ≤ ∞) are (finite-dimensional) Banach spaces.

Example 1.2.35 p and Lp[0, 1], 1 ≤ p ≤ ∞ are (infinite-dimensional) Banach
spaces.

Example 1.2.36 The linear space C[a, b] of continuous functions on closed and
bounded interval [a, b] is a Banach space with the uniform convergence norm
‖f‖∞ = sup

t∈[a,b]

|f(t)|, but an incomplete normed space with the norm

‖f‖p =
(∫ b

a

|f(t)|pdt

)1/p

, 1 ≤ p <∞.

Example 1.2.37 c00 is not complete.

Theorem 1.2.38 Every finite-dimensional normed space is a Banach space.

The topological property closedness has an important role in the construction
of Banach spaces from its subspaces. A point x in a normed space X is said to
be a limit point of a subset C ⊆ X if there exists a sequence {xn} in C such
that lim

n→∞
xn = x. Also a subset C of a normed space is said to be closed if it

contains all of its limit points, i.e., C = C.

Theorem 1.2.39 A closed subspace of a Banach space is a Banach space.

Theorem 1.2.40 Let C be a subset of a normed space X and let x ∈ X. Then
x ∈ C if and only if there exists a sequence {xn} in C such that lim

n→∞
xn = x.

Observation

• The subspaces c and c0 are closed subspaces of �∞ (and hence are Banach
spaces). The space c00 is only a subspace in c0, but not closed in c0 (and hence
not in �∞). Therefore, c00 is not a Banach space.

• The subspace C[a, b] is not closed in Lp[a, b] for 1 ≤ p < ∞. Hence C[a, b] is not

a Banach space with the Lp-norm ‖ · ‖p (1 ≤ p < ∞) defined by (1.4).

We now give examples of Banach spaces that are not Hilbert spaces.
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Example 1.2.41 n
p is a finite-dimensional Banach space that is not a Hilbert

space for p �= 2. Indeed, for x = (1, 1, 0, 0, · · · ) and y = (1,−1, 0, 0, · · · ), we have
x + y = (2, 0, 0, 0, · · · ) and x− y = (0, 2, 0, 0, · · · ). Hence

‖x‖ =
( n∑

i=1

|xi|p
)1/p

= (1p + 1p)1/p = 21/p,

‖y‖ = (1p + 1p) = 21/p,

‖x + y‖ = (2p)1/p = 2,

‖x− y‖ = (2p)1/p = 2.

If p = 2, then the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

is satisfied, which shows that n
2 is a Hilbert space. If p �= 2, then the paralle-

logram law is not satisfied. Therefore, n
p is not a Hilbert space for p �= 2.

The following example shows that there exists an infinite-dimensional Banach
space that is not a Hilbert space.

Example 1.2.42 Let X = C[0, 2π], the space of all real-valued continuous func-
tions on [0, 2π] with “sup” norm. Then (C[0, 2π], ‖ · ‖∞) is a Banach space, but
‖ · ‖∞ does not satisfy the parallelogram law. In fact, for x(t) = max{sin t, 0},
y(t) = min{sin t, 0}, we have

‖x‖∞ = 1, ‖y‖∞ = 1, ‖x + y‖∞ = 1, ‖x− y‖∞ = 1,

i.e., the parallelogram law:

‖x + y‖2∞ + ‖x− y‖2∞ = 2‖x‖2∞ + 2‖y‖2∞
is not satisfied.

Remark 1.2.43 C[a, b] is an inner product space with the inner product defined
by (1.7), but not a Hilbert space.

Observation
• �n

2 , �2, L2[a, b] are Hilbert spaces.

• �n
p , �p, Lp[a, b] (p �= 2) are not Hilbert spaces.

We conclude this section with some important facts about the completeness
property.

Definition 1.2.44 A subset C of a normed space X is said to be complete if
every Cauchy sequence in C converges to a point in C.

Definition 1.2.45 Let
∑∞

n=1 xn be an infinite series of elements x1, x2, · · · ,
xn, · · · in a normed space X. Then the series

∑∞
n=1 xn is said to converge to

an element x ∈ X if lim
n→∞

‖sn − x‖ = 0, where sn = x1 + x2 + · · · + xn is nth

partial sum of series
∑∞

n=1 xn.
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Definition 1.2.46 The series
∑∞

n=1 xn in a normed space X is said to be
absolutely convergent if

∑∞
n=1 ‖xn‖ converges.

The following result shows that completeness and closure are equivalent in
a Banach space.

Theorem 1.2.47 In a Banach space, a subset is complete if and only if it is
closed.

Remark 1.2.48 Notice every normed space is closed, but not necessarily
complete.

Theorem 1.2.49 A normed space X is a Banach space if and only if every
absolutely convergent series of elements in X is convergent in X.

Theorem 1.2.50 (Cantor’s intersection theorem) – A normed space X
is a Banach space if and only if given any descending sequence {Fn} of closed
bounded subsets of X,

lim
n→∞

diam(Fn) = 0⇒ ∩∞
n=1Fn �= ∅. (1.8)

Proof. Let X be a Banach space and {Fn} a descending sequence of nonempty
closed bounded subsets of X for which lim

n→∞
diam(Fn) = 0. For each n, select

xn ∈ Fn. Then given ε > 0, there exists an integer n0 ∈ N such that n ≥ n0 ⇒
diam(Fn) < ε. If m,n ≥ n0, both xn and xm are in Fn0 , then ‖xn − xm‖ ≤ ε.
Hence {xn} is a Cauchy sequence. Because X is a Banach space, there exists
x ∈ X such that lim

n→∞
xn = x. This shows that x ∈ Fn = Fn if n ≥ n0. Because

the sequence {Fn} is descending, x ∈ ∩∞
n=1Fn.

Conversely, suppose that the condition (1.8) holds. Suppose {xn} ⊆ X
is a Cauchy sequence. For each n ∈ N, let Fn = {xn, xn+1, · · · }. Then {Fn}
is a descending sequence of nonempty closed subsets of X for which
lim

n→∞
diam(Fn) = 0. By assumption, there exists a point x ∈

⋂∞
n=1 Fn. Let

ε > 0 and choose N ∈ N so large that

n ≥ N ⇒ diam(Fn) < ε.

Then clearly for such n we have that ‖xn − x‖ ≤ ε. Hence lim
n→∞

xn = x.

Therefore, X is complete.

1.3 Dense set and separable space

A sequence {xn} in a normed space X is said to be a (Schauder) basis of X if
each x ∈ X has a unique expansion x =

∑∞
n=1 αnxn for some scalars α1, α2, · · · ,

αn, · · · .
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Observation

• {xn} is a basis of a normed space X if for each x ∈ X, there exists a unique

sequence {αn} of scalars such that lim
n→∞

‖x −
n∑

i=1

αixi‖ = 0.

• The elements
en = (0, 0, 0, · · · , 1, 0, · · · ), n ∈ N

↑
nth position

from a basis for c00, c0 and �p (1 ≤ p < ∞).

• {en}n∈N is not a Schauder basis of �∞.

• The sequence (1, e1, e2, · · · ) is a basis for c, where 1 = (1, 1, 1, · · · ).
A subset C of a metric space (X, d) is said to be dense in X if C = X. This

means that C is dense in X if and only if C∩Br(x) �= ∅ for all x ∈ X and r > 0.

A metric space (X, d) is said to be separable if it contains a countable dense
subset, i.e., there exists a countable set C in X such that C = X.

Observation
• If X is a separable metric space, then C ⊂ X is separable in the induced metric.

• A metric space X is separable if and only if there is a countable family {Gi} of
open sets such that for any open set G ⊂ X,

G = ∪Gi⊂GGi.

Next, we give some examples of separable and nonseparable spaces.

Example 1.3.1 The space p, 1 ≤ p <∞ is separable metric space.

Example 1.3.2 The ∞ space is not a separable space.

Example 1.3.3 The linear space X of all infinite sequences of real numbers
with metric d defined by

d(x, y) =
∞∑

i=1

1
2i
· |xi − yi|
1 + |xi − yi|

,

x = (x1, x2, · · · , xi, · · · ), y = (y1, y2, · · · , yi, · · · ) ∈ X

is a separable complete metric space.

Theorem 1.3.4 Every normed space with basis is separable.

Theorem 1.3.5 Every subset of a separable normed space is separable.

Theorem 1.3.6 Every finite-dimensional normed space is separable.

Observation
• R, R

n, c, C[0, 1], �p, Lp (1 ≤ p < ∞) are separable normed spaces.

• �∞, L∞ are not separable.
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1.4 Linear operators

Let X and Y be two linear spaces over the same field K and T : X → Y an
operator with domain Dom(T ) and range R(T ). Then T is said to be a linear
operator if

(i) T is additive: T (x + y) = Tx + Ty for all x, y ∈ X;

(ii) T is homogeneous: T (αx) = αTx for all x ∈ X,α ∈ K.

One may easily check that T is linear if and only if

T (αx + βy) = αTx + βTy for all x, y ∈ X and α, β ∈ K.

Otherwise, the operator is called nonlinear. The linear operator is called a
linear functional if Y = R.

Example 1.4.1 Let X = R
n, Y = R, and T : X → R an operator defined by

Tx =
n∑

i=1

xiyi for all x = (x1, x2, · · · , xn),

where y = (y1, y2, · · · , yn) is the fixed element in R
n. Then T is a linear func-

tional on R
n.

Example 1.4.2 Let X = Y = 2 and T : 2 → 2 an operator defined by

Tx =
(

0, x1,
x2

2
,
x3

3
, · · · , xn

n
, · · ·
)

for all x = (x1, x2, x3, · · · , xn, · · · ) ∈ 2.

Then T is a linear operator on 2.

Example 1.4.3 Let X = C[a, b], the linear space of all continuous real-valued
functions on closed bounded interval [a, b]. Then the operator T : C[a, b] →
C[a, b] defined by

T (f)t =
∫ t

a

f(u)du, t ∈ [a, b]

is a linear operator.

Example 1.4.4 Let X = L2[0, 1], Y = R and T : X → R an operator defined
by

Tx =
∫ 1

0

x(t)y(t)dt for all x ∈ L2[0, 1],

where y is a fixed element in L2[0, 1]. Then T is a linear functional on L2[0, 1].

The following result is very useful for linear operators:

Proposition 1.4.5 Let X and Y be two linear spaces over the same field K

and T : X → Y a linear operator. Then we have the following:
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(a) T (0) = 0.

(b) R(T ) = {y ∈ Y : y = Tx for some x ∈ X}, the range of T is a linear
subspace of Y .

(c) T is one-one if and only if Tx = 0⇒ x = 0.

(d) If T is one-one operator, then T−1 exists on R(T ) and T−1 : R(T ) → X
is also a linear operator.

(e) If dim(Dom(T )) = n < ∞ and T−1 exists, then dim(R(T )) =
dim(Dom(T )).

Recall an operator T from a normed space X into another normed space Y is
continuous if for any sequence {xn} in X with xn → x ∈ X ⇒ Txn → Tx. The
following Theorem 1.4.6 is very interesting because the continuity of any linear
operator can be verified by only verifying Txn → 0 for any sequence {xn} ⊆ X
with xn → 0.

Theorem 1.4.6 Let X and Y be two normed spaces and T : X → Y a linear
operator. If T is continuous at a single point in X, then T is continuous through-
out space X.

Proof. Suppose T is continuous at a point x0 ∈ X. Let {xn} be a sequence in
X such that lim

n→∞
xn = x ∈ X. By the linearity of T , we have

‖Txn − Tx‖ = ‖T (xn − x + x0)− Tx0‖.
Because T is continuous at x0,

lim
n→∞

(xn − x + x0) = x0 ⇒ lim
n→∞

T (xn − x + x0) = Tx0,

it follows that ‖Txn − Tx‖ = ‖T (xn − x + x0)− Tx0‖ → 0 as n→∞. Thus, T

is a continuous operator at an arbitrary point x ∈ X.

Boundedness of linear operator – Let X and Y be two normed spaces
and T : X → Y a linear operator. Then T is said be bounded if there exists a
constant M > 0 such that

‖Tx‖ ≤M‖x‖ for all x ∈ X.

A linear functional f : X → R is called bounded if there exists a constant M > 0
such that

|f(x)| ≤M‖x‖ for all x ∈ X.

We now present an example of a linear operator that is unbounded.

Example 1.4.7 Let X = c00, the linear space of finitely nonzero real sequences
with “sup” norm and T : X → R a functional defined by

Tx =
n∑

i=1

ixi for all x = (x1, x2, · · · , xn, 0, 0, · · · ) ∈ X.

Then T is clearly a linear functional, but it is unbounded.
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With this example, we remark that linearity of the operator does not imply
boundedness. Hence we require additional assumption for boundedness of any
linear operator. The following important result shows that such an additional
assumption is continuity of the linear operator.

Theorem 1.4.8 A linear operator on a normed space is bounded if and only if
it is continuous.

Proof. Let T be a bounded linear operator from a normed space X into another
normed space Y . Then there exists a constant M > 0 such that

‖Tx‖ ≤M‖x‖ for all x ∈ X.

Then if xn → 0, we have that

‖Txn‖ ≤M‖xn‖ → 0 as n→∞,

and it follows that T is continuous at zero. By Theorem 1.4.6, we conclude that
T is continuous on X.

Conversely, suppose T is continuous. We show that T is bounded. Suppose,
for contradiction, that T is unbounded. Hence there exists a sequence {xn} in
X such that

‖Txn‖ > n‖xn‖ for all n ∈ N.

Because T0 = 0, this implies that xn �= 0. Set yn := xn/(n‖xn‖), n ∈ N. Then
‖yn‖ = ‖xn/(n‖xn‖)‖ = 1/n → 0, which implies that lim

n→∞
yn = 0. Observe

that

‖Tyn‖ = ‖T
(

xn

n‖xn‖

)

‖ =
1

n‖xn‖
‖Txn‖ > 1 for all n ∈ N

and hence {Tyn} does not converge to zero. This means that T is not continuous
at zero, a contradiction.

If the dimension of X is finite, it also forces the boundedness of a linear
operator.

Theorem 1.4.9 Let X and Y be two normed spaces. If X is a finite-dimensional
normed space, then all linear operators T : X → Y are continuous (hence
bounded).

Remark 1.4.10 Example 1.4.7 shows that the conclusion of Theorem 1.4.9
is not true in general (in infinite-dimensional normed spaces). Thus, linear
operators may be discontinuous in infinite-dimensional normed spaces.
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1.5 Space of bounded linear operators

Let X and Y be two normed spaces. Given two bounded linear operators
T1, T2 : X → Y, we define

(T1 + T2)x = T1x + T2x,

(αT1)x = αT1x for all x ∈ X and α ∈ K.

We denote by B(X,Y ), the family of all bounded linear operators from X
into Y . Then B(X,Y ) is a linear space. The space B(X,Y ) becomes a normed
space by assigning a norm as below:

‖T‖B = inf{M : ‖Tx‖ ≤M‖x‖, x ∈ X}

= sup
{
‖Tx‖
‖x‖ : x �= 0, x ∈ X

}

= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

Theorem 1.5.1 The normed space B(X,Y ) is a Banach space if Y is a Banach
space.

We now state an important result:

Theorem 1.5.2 (Uniform boundedness principle) – Let X be a Banach
space, Y a normed space, and {Ti}i∈Λ ⊆ B(X,Y ) a family of bounded linear
operators of X into Y such that {Tix} is bounded set in Y for each x ∈ X, i.e.,
for each x ∈ X, there exists Mx > 0 such that

‖Tix‖ ≤Mx for all i ∈ N.

Then {‖Ti‖B} is a bounded set in R
+, i.e., Ti are uniformly bounded.

As an immediate consequence of Theorem 1.5.2 (uniform boundedness
principle), we have

Theorem 1.5.3 Let X and Y be two Banach spaces and {Tn} a sequence in
B(X,Y ). For each x ∈ X, let {Tnx} converges to Tx. Then we have the
following:

(a) T is a bounded linear operator, i.e., T ∈ B(X,Y );
(b) ‖T‖B ≤ lim inf

n→∞
‖Tn‖B .

Proof. (a) Because each Tn is linear, it follows that

T (αx + βy) = lim
n→∞

Tn(αx + βy) = lim
n→∞

Tn(αx) + lim
n→∞

Tn(βy)

= α lim
n→∞

Tnx + β lim
n→∞

Tny

= αTx + βTy
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for all x, y ∈ X and α, β ∈ K. Further, because the norm is continuous,

lim
n→∞

‖Tnx‖ = ‖Tx‖ for all x ∈ X,

it follows that {Tnx} is a bounded set in Y . By the uniform boundedness
principle, there exists a positive constant M > 0 such that sup

n∈N

‖Tn‖B ≤ M.

Thus,

‖Tnx‖ ≤ ‖Tn‖B‖x‖ ≤M‖x‖.

Taking the limit as n→∞, we have

‖Tx‖ ≤M‖x‖,

so T is bounded. Therefore, T ∈ B(X,Y ).

(b) Because

‖Tnx‖ ≤ ‖Tn‖B‖x‖,

this implies that

lim inf
n→∞

‖Tnx‖ ≤ lim inf
n→∞

‖Tn‖B‖x‖.

Hence ‖Tx‖ ≤ lim inf
n→∞

‖Tn‖B‖x‖. Thus, ‖T‖B ≤ lim inf
n→∞

‖Tn‖B .

Dual space – The space of all bounded linear functionals on a normed space
X is called the dual of X and is denoted by X∗. Clearly, X∗ = B(X, R) and is
a normed space with norm denoted and defined by

‖f‖∗ = sup{|f(x)| : x ∈ SX}.

In view of Theorem 1.5.1, we have the following interesting result, which is
very useful for the construction of Banach spaces from normed spaces.

Corollary 1.5.4 The dual space (X∗, ‖ · ‖∗) of a normed space X is always a
Banach space.

We now give basic dual spaces:

The dual of R
n – Let R

n be a normed space of vectors x = (x1, x2, · · · , xn)
with norm ‖x‖2 = (

∑n
i=1 x2

i )
1/2. Then for y = (y1, y2, · · · , yi, · · · , yn) ∈ R

n, any
functional f : R

n → R of the form

f(x) =
n∑

i=1

xiyi, x = (x1, x2, · · · , xi, · · · , xn) ∈ R
n

is linear. Further, from the Cauchy-Schwarz inequality,

|f(x)| =
∣
∣
∣
∣

n∑

i=1

xiyi

∣
∣
∣
∣ ≤
( n∑

i=1

x2
i

)1/2( n∑

i=1

y2
i

)1/2

=
( n∑

i=1

y2
i

)1/2

‖x‖2,
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which shows that f is bounded with ‖f‖∗ ≤ (
∑n

i=1 y2
i )1/2. However, because

for x = (y1, y2, · · · , yn) equality is achieved in the Cauchy-Schwarz inequality,
we must in fact have ‖f‖∗ = (

∑n
i=1 y2

i )1/2.

Now, let j be any bounded linear functional on X = R
n. Define the basis

vectors ei in R
n by

ei = (0, 0, · · · , 1, 0, · · · , 0).
↑
ith position

Suppose j(ei) = ai. Then for any x = (x1, x2, · · · , xn), we have x =∑n
i=1 xiei. By the linearity of j, we have

j(x) =
n∑

i=1

j(eixi) =
n∑

i=1

j(ei)xi =
n∑

i=1

aixi.

Thus, the dual space X∗ of X = R
n is itself R

n in the sense that the space X∗

consists of all functionals of the form f(x) =
∑n

i=1 aixi and the norm on X∗ is
‖f‖∗ = (

∑n
i=1 |ai|2)1/2 = ‖a‖, where a = (a1, a2, · · · , an) ∈ R

n.

The dual of p, 1 ≤ p <∞p, 1 ≤ p <∞p, 1 ≤ p <∞ – For 1 ≤ p < ∞, the dual space of p is q

(1/p + 1/q = 1) in the sense that there is a one-one correspondence between
elements y ∈ q and bounded linear functionals fy on p such that

fy(x) =
∞∑

i=1

xiyi, x = {xi}∞i=1 ∈ p,

where
y = {yi}∞i=1 ∈ q

and

‖fy‖∗ = ‖y‖q =

⎧
⎪⎨

⎪⎩

(
∑∞

i=1 |yi|q)1/q, if 1 < p <∞,

sup
i∈N

|yi| if p = 1.

Observation
• The dual of �1 is �∞.

• The dual of �p is �q, 1 < p < ∞ and 1/p + 1/q = 1.

• The dual of �∞ is not �1.

The dual of c0 – The Banach space c0 of all real sequences x = {xi} such
that lim

i→∞
xi = 0 with norm ‖x‖∞ = sup

i∈N

|xi| is a subspace of ∞. The dual

of c0 is 1 in the usual sense that the bounded linear functionals on c0 can be
represented as

fy(x) =
∞∑

i=1

xiyi, x = {xi}∞i=1 ∈ c0,

where y = {yi}∞i=1 ∈ 1 and ‖fy‖∗ = ‖y‖1 =
∑∞

i=1 |yi|.
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The dual of Lp[0,1],1 ≤ p <∞ – For 1 ≤ p < ∞, the dual space of Lp[0, 1]
is Lq[0, 1], (1/p + 1/q = 1) in the sense that there is one-one correspondence
between elements y ∈ Lq[0, 1] and bounded linear functionals fy : Lp[0, 1] → R

such that

fy(x) =
∫ 1

0

x(t)y(t)dt and ‖fy‖∗ = ‖y‖q.

We now state an important theorem in Hilbert space that is called the Riesz
representation theorem. This theorem demonstrates that any bounded linear
functional on a Hilbert space H can be represented as an inner product with a
unique element in H.

Theorem 1.5.5 (Reisz representation theorem) – Let H be a Hilbert space
and f ∈ H∗. Then we have the following:

(1) There exists a unique element y0 ∈ H such that f(x) = 〈x, y0〉 for each
x ∈ H.

(2) Moreover, ‖f‖∗ = ‖y0‖.

Remark 1.5.6 In a Hilbert space H, (distinct) bounded linear functionals f
on H are generated by (distinct) elements y of the space H itself, i.e., there is
one-one correspondence between f ∈ H∗ and y ∈ H. Therefore, H∗ = H.

1.6 Hahn-Banach theorem and applications

The Hahn-Banach theorem is one of the most important theorems in functional
analysis. To state it, we need the following definitions:

Sublinear functional – Let X be a linear space and p : X → R a functional.
Then p is said to be a sublinear functional on X if

(i) p is subadditive: p(x + y) ≤ p(x) + p(y) for all x, y ∈ X,
(ii) p is positive homogeneous: p(αx) = αp(x) for all x ∈ X and α ≥ 0.

It is evident that every norm is a sublinear functional.

The sublinear functional p on X is called convex functional on X if p(x) ≥ 0
for all x ∈ X. Obviously, every norm is a convex functional also.

Example 1.6.1 Let p : ∞ → R be a functional defined by

p(x) = lim sup
n→∞

xn for all x = (x1, x2, · · · , xn, · · · ) ∈ ∞.

Then p is a sublinear functional on ∞.

Extension mapping – Let C be a proper subset of a linear space X and
f a mapping from C into another linear space Y . If there exists a mapping
F : X → Y such that

F (x) = f(x), x ∈ C,

then F is called an extension of f .
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Example 1.6.2 Let X = [0, 1], C = [0, 1) and f : C → R defined by

f(x) = x2, x ∈ [0, 1).

Then

F1(x) =
{

f(x) if x ∈ C,
0 if x = 1

and

F2(x) =
{

f(x) if x ∈ C,
1 if x = 1

are two extensions of f , where F2 is continuous, but F1 is not.

Simply, the Hahn-Banach theorem states that a bounded linear functional
f defined only on a subspace C of a normed space X can be extended to a
bounded linear functional F defined on the entire space and with norm equal
to that of f on C, i.e.,

‖F‖X = ‖f‖C = sup
x∈C

|f(x)|
‖x‖ .

We now state the theorem without proof.

Theorem 1.6.3 (Hahn-Banach theorem) – Let C be a subspace of a real
linear space X, p a sublinear functional on X, and f a linear functional defined
on C satisfying the condition:

f(x) ≤ p(x) for all x ∈ C.

Then there exists a linear extension F of f such that F (x) ≤ p(x) for all x ∈ X.

Corollary 1.6.4 Let C be a subspace of a real normed space X and f a bounded
linear functional on C. Then there exists a bounded linear functional F defined
on X that is an extension of f such that ‖F‖∗ = ‖f‖C .

Proof. Take p(x) = ‖f‖C‖x‖, x ∈ X.

The following corollary gives the existence of nontrivial bounded linear func-
tionals on an arbitrary normed space.

Corollary 1.6.5 Let x be an element of a normed space X. Then there exists
(nonzero) j ∈ X∗ such that j(x) = ‖j‖∗‖x‖ and ‖j‖∗ = ‖x‖.

Corollary 1.6.6 Let x be a nonzero element of a normed space X. Then there
exists j ∈ X∗ such that j(x) = ‖x‖ and ‖j‖∗ = 1.

Corollary 1.6.7 Let X be a normed space. Then for any x ∈ X,

‖x‖ = sup
‖j‖∗≤1

|j(x)|.
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Corollary 1.6.8 If X is a normed space and x0 ∈ X such that j(x0) = 0 for
all j ∈ X∗, then x0 = 0.

Proof. Suppose x0 �= 0. By Corollary 1.6.6, there exists a functional j ∈ X∗

such that
j(x0) = ‖x0‖ and ‖j‖∗ = 1.

This implies that j(x0) �= 0, which is a contradiction. Hence j(x0) = 0 for all
j ∈ X∗ ⇒ x0 = 0.

The following theorems are very useful in many applications.

Theorem 1.6.9 Let C be a subspace of a normed space X and x0 an element
in X such that d(x0, C) = d > 0. Then there exists a bounded linear functional
j ∈ X∗ with norm 1 such that j(x0) = d and j(x) = 0 for all x ∈ C.

Theorem 1.6.10 (Separability) – If X∗ is the dual space of a normed space
X and X∗ is separable, then X is also separable.

Next, we discuss geometric forms of the Hahn-Banach theorem. We need
the following:
Hyperplane – A subset H of a linear space X is said to be a hyperplane if
there exists a linear functional f �= 0 on X such that

H = {x ∈ X : f(x) = α}, α ∈ R.

f(x) = α is called the equation of the hyperplane.

Example 1.6.11 Let X = R, f(x) = 3x, α = 2. Then the set

H = {x ∈ X : f(x) = α} = {x ∈ X : 3x = 2} = {2/3}.

Hence H is a hyperplane.

We have the following interesting result.

Proposition 1.6.12 Let X be a topological linear space. Then the hyperplane
{x ∈ X : f(x) = α} is closed if and only if f is continuous.

Let f(x) = α, α ∈ R, be the equation of hyperplane in a linear space X.
Then we have the following:

(i) {x ∈ X : f(x) < α} and {x ∈ X : f(x) > α} are open half-spaces.
(ii) {x ∈ X : f(x) ≤ α} and {x ∈ X : f(x) ≥ α} are closed half-spaces.

It is easy to see that the boundary of each of the four half-spaces is just a
hyperplane.

Remark 1.6.13 In a topological linear space X, we have
(i) open half-spaces are open sets,
(ii) the closed half-spaces are closed sets if and only if f is continuous, i.e.,

the hyperplane {x ∈ X : f(x) = α} is closed.
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Let X be a linear space. We say that the hyperplane {x ∈ X : f(x) = α}
separates two sets A ⊂ X and B ⊂ X if f(x) ≤ α for all x ∈ A and f(x) ≥ α
for all x ∈ B. We say that the hyperplane {x ∈ X : f(x) = α} strictly separates
two sets A ⊂ X and B ⊂ X if f(x) < α for all x ∈ A and f(x) > α for all
x ∈ B.

Theorem 1.6.14 (Hahn-Banach separation theorem) – Let X be a normed
space and let A ⊂ X,B ⊂ X be two nonempty disjoint convex sets. Suppose
that A is open. Then there exists a closed hyperplane that separates A and B,
i.e., there exist j ∈ X∗ and a number α ∈ R such that

j(x) > α if x ∈ A and j(x) ≤ α if x ∈ B.

Proposition 1.6.15 Let C be a nonempty open convex subset of a normed
space X. Then for x0 ∈ X, x0 /∈ C, there exists f ∈ X∗ such that

f(x) < α for all x ∈ C,

where f(x0) = α.

An immediate consequence of the separation theorem shows that co(C) is
the intersection of all closed half-spaces containing C. Indeed,

Theorem 1.6.16 Let C be a nonempty subset of a normed space X. Then

co(C) = {x ∈ X : f(x) ≤ sup
y∈C

f(y) for all f ∈ X∗}.

Theorem 1.6.17 Let C be a nonempty closed convex subset of a normed space
X. If x is not an element in C, there exists a continuous linear functional
j ∈ X∗ such that

j(x) < inf{j(y) : y ∈ C}.

Theorem 1.6.18 (Hahn-Banach strictly separation theorem) – Let A
and B be two nonempty disjoint convex subsets of a normed space X. Suppose
A is closed and B is compact. Then there exists a closed hyperplane that strictly
separates A and B.

Supporting hyperplane – Let C be a convex subset of a normed space X
with int(C) �= ∅ and x0 ∈ ∂C. Then a nonzero functional f ∈ X∗ is said to be
a support functional for C at x0 if f(x) ≤ f(x0) for all x ∈ C. The correspond-
ing hyperplane {x ∈ X : f(x) = f(x0)} is called a supporting hyperplane for
C at x0.

A point of C through which a supporting hyperplane passes is called a point
of support of C.

Observation
• Any supporting hyperplane of a set C with nonempty interior is closed.

• An interior point of C cannot be a point of support.
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We give some conditions on C under which a boundary point is a point of
support.

Theorem 1.6.19 Let C be a convex subset of a normed space X with
int(C) �= ∅. Then every boundary point of C is a point of support, i.e., for
every x0 ∈ ∂C, there exists an f ∈ X∗ such that f �= 0 and f(x0) = sup

x∈C
f(x).

1.7 Compactness

Let (X, d) be a metric space. Recall that a subset C of X is called compact if
every open cover of C has a finite subcover. Equivalently, a subset C of X is
compact if every sequence in C contains a convergent subsequence with a limit
in C.

A subset C of X is said to be totally bounded if for each ε > 0, there exists a
finite number of elements x1, x2, · · · , xn in X such that C ⊆ ∪n

i=1 Bε(xi). The
set {x1, x2, · · · , xn} is called a finite ε-net.

Observation
• Every subset of a totally bounded set is totally bounded.

• Every totally bounded set is bounded, but a bounded set need not be totally

bounded.

Proposition 1.7.1 A subset of a compact metric space is compact if and only
if it closed.

Proposition 1.7.2 Let X be a metric space. Then the following are equivalent:
(a) X is compact.
(b) Every sequence in X has a convergent subsequence.
(c) X is complete and totally bounded.

Proposition 1.7.3 Let C be a subset of a complete metric space X. Then we
have the following:

(a) C is compact if and only if C is closed and totally bounded.

(b) C is compact if and only if C is totally bounded.

Observation

• X = (0, 1) with usual metric is totally bounded, but not compact.

• X = R with usual metric is complete. But it is not totally bounded and hence

not compact.

A subset C of a topological space is said to be relatively compact if its closure
is compact, i.e., C is compact. In particular, we have an interesting result:
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Proposition 1.7.4 Let C be a closed subset of a complete metric space. Then
C is compact if and only if it is relatively compact.

We now state the following fundamental theorems concerning compactness.

Theorem 1.7.5 (The Heine-Borel theorem) – A subset C of R is compact
if and only if it is closed and bounded.

Corollary 1.7.6 A set C ⊂ R
n is compact if and only if it is closed and

bounded.

Theorem 1.7.7 (Weierstrass theorem) – Let C be a nonempty compact
subset of a metric space (X, d) and f : C → R a continuous function. Then f
attains its maximum and minimum, i.e., there exist x, x ∈ C such that

f(x) = inf
x∈C

f(x) and f(x) = sup
x∈C

f(x).

Theorem 1.7.8 (Mazur’s theorem) – The closed convex hull co(C) of a
compact set C of a Banach space is compact.

Observation
• R

n, n ≥ 1 is not compact. However, every closed bonded subset of R
n is compact.

For example, C = [0, 1] ⊂ R is compact, but R itself is not compact.

• C[0, 1] and �2 are not compact.

• The subset C = {{xn} ∈ �2 : |xn| ≤ 1/n, n ∈ N} of �2 is compact.

• The closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1} in infinite-dimensional normed

space is not compact in the topology induced by norm (see Proposition 1.7.14).

Proposition 1.7.9 A subset C of p space is compact if C is bounded and for
ε > 0, there exists n0(ε) ∈ N such that

∑∞
i=n+1 |xi|p < εp for all n ≥ n0 and

x = {xi}∞i=1 ∈ C.

Proposition 1.7.10 Every compact subset of a normed space X is closed, but
the converse may not be true.

Observation
• R

n is closed.

Proposition 1.7.11 Every compact subset of a normed space X is complete,
but the converse may not be true.

Proposition 1.7.12 Every compact subset of a normed space is bounded, but
the converse may not be true.

Proposition 1.7.13 Every compact subset of a normed space is separable.

Proposition 1.7.14 A closed and bounded subset of a normed space need not
be compact.
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Proof. Let X = 2. Then the unit ball BX = {x ∈ 2 : ‖x‖2 = (
∑∞

i=1 |xi|2)1/2 ≤
1} is closed and bounded. We now show that BX is not compact. Let {xn} be
a sequence in BX defined by

xn = (0, 0, · · · , 1, 0, · · · ), n ∈ N.

↑
nth position

Hence for m �= n,
‖xn − xm‖2 =

√
2,

i.e., there is no convergent subsequence of {xn}. Therefore, BX is not totally
bounded and hence it is not compact.

Remark 1.7.15 B�2 is compact in the weak topology (see Theorem 1.9.26).

Proposition 1.7.16 A normed space X is finite-dimensional if and only if
every closed and bounded subset of X is compact.

1.8 Reflexivity

Let X1,X2, · · · ,Xm be m linear spaces over the same field K. Then a func-
tional f : X1 × X2 × · · · × Xm → R is said to be an m-linear (multilinear)
functional on X = X1×X2× · · · ×Xm if it is linear with respect to each of the
variables separately. For m = 2, such a functional is called a bilinear functional .

Duality pairing - Given a normed space X and its dual X∗, we define the
duality pairing as the functional 〈·, ·〉 : X ×X∗ → K such that

〈x, j〉 = j(x) for all x ∈ X and j ∈ X∗.

The properties of duality pairing can be easily derived from the definition:

Proposition 1.8.1 Let X∗ be the dual of a normed space X. Then we have
the following:

(a) The duality pairing is a bilinear functional on X ×X∗:
(i) 〈ax + by, j〉 = a〈x, j〉+ b〈y, j〉 for all x, y ∈ X; j ∈ X∗ and a, b ∈ K;
(ii) 〈x, αj1+βj2〉 = α〈x, j1〉+β〈y, j2〉 for all x ∈ X; j1, j2 ∈ X∗; α, β ∈ K.

(b) 〈x, j〉 = 0 for all x ∈ X implies j = 0.

(c) 〈x, j〉 = 0 for all j ∈ X∗ implies x = 0.

Natural embedding mapping - Let (X, ‖ · ‖) be a normed space. Then
(X∗, ‖ · ‖∗) is a Banach space. Let j ∈ X∗. Hence for given x ∈ X, the equation

fx(j) = 〈x, j〉
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defines a functional fx on the dual space X∗. The functional fx is linear by
Proposition 1.8.1. Moreover, for j ∈ X∗ we have

|fx(j)| = |〈x, j〉| ≤ ‖x‖‖j‖∗. (1.9)

This shows that fx is bounded and hence fx is a bounded linear functional
on X∗.

The space of all bounded linear functionals on X∗ is denoted by X∗∗ and is
called the second dual of X. Then fx ∈ X∗∗. Note that X∗∗ is a Banach space.
Let ‖ · ‖∗∗ denote a norm on X∗∗. From (1.9), we have

‖fx‖∗∗ ≤ ‖x‖.

By Corollary 1.6.5, there exists a nonzero functional j ∈ X∗ such that

〈x, j〉 = ‖x‖‖j‖∗ and ‖j‖∗ = ‖x‖.

This implies that ‖fx‖∗∗ = ‖x‖.
Define a mapping ϕ : X → X∗∗ by ϕ(x) = fx, x ∈ X. Then ϕ is called the

natural embedding mapping from X into X∗∗. It has the following properties:
(i) ϕ is linear: ϕ(αx + βy) = αϕ(x) + βϕ(y) for all x, y ∈ X,α, β ∈ K;
(ii) ϕ(x) is isometry: ‖ϕ(x)‖ = ‖x‖ for all x ∈ X.

Generally, however, the natural embedding mapping ϕ from X into X∗∗ is
not onto. It means that there may be elements in X∗∗ that cannot be represented
by elements in X.

In the case when ϕ is onto, we have an important class of normed spaces.

Definition 1.8.2 A normed space X is said to be reflexive if the natural
embedding mapping ϕ : X → X∗∗ is onto. In this case, we write X ∼= X∗∗

or X = X∗∗.

Observation
• R

n is reflexive. (In fact, every finite-dimensional Banach space is reflexive.)

• �p and Lp for 1 < p < ∞ are reflexive Banach spaces.

• Every Hilbert space is a reflexive Banach space, i.e., H∗∗ = H.

• �1, �∞, L1 and L∞ are not reflexive.

• c and c0 are not reflexive Banach spaces.

We now state the following facts for the class of reflexive Banach spaces.

Proposition 1.8.3 (a) Any reflexive normed space must be complete and, hence,
is a Banach space.

(b) A closed subspace of a reflexive Banach space is reflexive.
(c) The Cartesian product of two reflexive spaces is reflexive.
(d) The dual of a reflexive Banach space is reflexive.
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Theorem 1.8.4 (James theorem) – A Banach space X is reflexive if and
only if for each j ∈ SX∗ , there exists x ∈ SX such that j(x) = 1.

1.9 Weak topologies

Let X∗ be the dual space of a Banach space X. The convergence of a sequence
in a Banach space X is the usual norm convergence or strong convergence, i.e.,
{xn} in X converges to x if lim

n→∞
‖xn − x‖ = 0. This is related to the strong

topology on X with neighborhood base Br(0) = {x ∈ X : ‖x‖ < r}, r > 0 at
the origin. There is also a weak topology on X generated by the bounded linear
functionals on X. Indeed, G ⊂ X is open in the weak topology (we say G is
w-open) if and only if for every x ∈ G, there are bounded linear functionals
f1, f2, · · · , fn and positive real numbers ε1, ε2, · · · , εn such that

{y ∈ X : |fi(x)− fi(y)| < εi, i = 1, 2, · · · , n} ⊂ G.

Hence a subbase σ for the weak topology on X generated by a base of neigh-
borhoods of x0 ∈ X is given by the following sets:

V (f1, f2 · · · , fn : ε) = {x ∈ X : |〈x− x0, fi〉| < ε, for every i = 1, 2, · · · , n}.

In particular, a sequence {xn} in X converges to x ∈ X for weak topology
σ(X,X∗) if and only if 〈xn, f〉 → 〈x, f〉 for all f ∈ X∗.

Observation
• The weak topology is not metrizable if X is infinite-dimensional.

• Under the weak topology, the normed space X is a locally convex topological
space.

• The weak topology of a normed space is a Hausdorff topology.

We are now in a position to define convergence, closedness, completeness,
and compactness with respect to the weak topology.

Weakly convergent – A sequence {xn} in a normed space X is said to con-
verge weakly to x ∈ X if f(xn) → f(x) for all f ∈ X∗. In this case, we write
xn ⇀ x or weak- lim

n→∞
xn = x.

Weakly closed – A subset C of a Banach space X is said to be a weakly
closed if it is closed in the weak topology.

Weak Cauchy sequence – A sequence {xn} in a normed space X is said
to be a weak Cauchy if for each f ∈ X∗, {f(xn)} is a Cauchy sequence in K.

Weakly complete – A normed space X is said to be weakly complete if every
weak Cauchy sequence in X converges weakly to some element in X.
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Weakly compact – A subset C of a normed space X is said to be weakly
compact if C is compact in the weak topology.

Schur property – A Banach space is said to satisfy Schur property if there
exist weakly convergent sequences that are norm convergent.

Theorem 1.9.1 (Schur’s theorem) – In 1, weak and norm convergences of
sequences coincide.

We have the following basic properties of weakly convergent sequences in
normed spaces:

Proposition 1.9.2 (Uniqueness of weak limit) – Let {xn} be a sequence
in a normed space X such that xn ⇀ x and xn ⇀ y. Then x = y.

Proof. Because {f(xn)} is a sequence of scalars such that f(xn) → f(x) and
f(xn) → f(y), it follows that f(x) = f(y). This implies that f(x − y) = 0.
Therefore, x = y by Corollary 1.6.8.

Proposition 1.9.3 (Strong convergence implies weak convergence) –
Let {xn} be a sequence in a normed space X such that xn → x. Then xn ⇀ x.

Proof. Because xn → x, ‖xn − x‖ → 0. Hence

|f(xn)− f(x)| ≤ ‖f‖∗‖xn − x‖ → 0 for all f ∈ X∗.

Therefore, xn ⇀ x.

The converse of Proposition 1.9.3 is not true in general. It can be seen from
the following example:

Example 1.9.4 Let X = 2 and {xn} be a sequence in 2 such that

xn = (0, 0, 0, · · · , 1, 0, · · · ), n ∈ N.

↑

nth position

For any y = (y1, y2, · · · , yn, · · · ) ∈ X∗ = 2, we have

(xn, y) = yn → 0 as n→∞.

Hence xn ⇀ 0 as n → ∞. However, {xn} does not converge strongly because
‖xn‖ = 1 for all n ∈ N. Therefore, a weakly convergent sequence need not be
convergent in norm.

Theorem 1.9.5 (Weak convergence in ppp space, 1 < p <∞1 < p <∞1 < p <∞) – For 1 <
p <∞, let

xn = (α(n)
1 , α

(n)
2 , · · · , αn

i , · · · ) ∈ p, n ∈ N
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and
x = (α1, α2, · · · , αi, · · · ) ∈ p.

Then xn ⇀ x if and only if
(i) {xn} is bounded, i.e., ‖xn‖ ≤M for all n ∈ N and for some M ≥ 0;

(ii) for each i, α
(n)
i → αi as n→∞.

Theorem 1.9.6 Let X be a finite-dimensional normed space. Then strong con-
vergence is equivalent to weak convergence.

Theorem 1.9.7 Every reflexive normed space is weakly complete.

Convergence of sequences in B(X,Y) – Let X and Y be two normed spaces.
A sequence {Tn} in B(X,Y ) is said to be

(i) uniformly convergent to T ∈ B(X,Y ) in the norm of B(X,Y ) if
‖Tn − T‖B → 0 as n → ∞, i.e., for ε > 0, there exists an integer n0 ∈ N

such that sup
‖x‖≤1

‖Tnx− Tx‖ < ε for all n ≥ n0,

[uniform convergence of {Tn}]

(ii) strongly convergent to T ∈ B(X,Y ) if lim
n→∞

‖Tnx− Tx‖ = 0 for all x ∈ X,

[strong convergence of {Tn}]

(iii) weakly convergent to T ∈ B(X,Y ) if |f(Tnx)− f(Tx)| → 0 for all x ∈ X
and f ∈ Y ∗.

[weak convergence of {Tn}]
It follows immediately from the inequality

‖Tnx− Tx‖ ≤ ‖Tn − T‖B‖x‖, x ∈ X

that the uniform convergence implies strong convergence. It can be easily ob-
served for the sequence of operators in B(X,Y ) that

uniform convergence ⇒ strong convergence ⇒ weak convergence.

We note that the converse is not true in general.

Weak* topology - We have seen that if τ is the norm topology of a normed
space X, then the weak topology σ(X,X∗) is a subset of the original norm topo-
logy τ . Let τ∗ be the norm topology of X∗ generated by the norm ‖·‖∗ (of X∗).
Then there exists a topology denoted by σ(X∗,X) on X∗ such that σ(X∗,X) ⊂
τ∗. The topology σ(X∗,X) is called the weak* topology on X∗. Thus, we
can speak about strong neighborhood, strongly closed, strongly bounded, weak
convergence in (X∗, ‖ · ‖∗) and weak* neighborhood, weak*ly closed, weak*ly
bounded, weak*ly convergence in (X∗, σ(X∗,X)), respectively.

We now study some basic properties of the weak topology and weak* topo-
logy. We begin with a simple characterization for the convergence of sequences
in the weak topologies.
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Proposition 1.9.8 Let X be a normed space and {fn} a sequence in X∗. Then
we have the following:

(a) {fn} converges strongly to f in the norm topology on X∗ (denoted by
fn → f) if

‖fn − f‖∗ → 0.

(b) {fn} converges to f in the weak topology on X∗ (denoted by fn ⇀ f) if

〈fn − f, g〉 → 0 for all g ∈ X∗∗.

(c) {fn} converges to f in the weak* topology on X∗ (denoted by fn → f
weak*ly or fn ⇀∗ f) if

〈x, fn − f〉 → 0 for all x ∈ X.

On the other hand, the following result is an immediate consequence of
Theorem 1.5.3.

Corollary 1.9.9 Let C be a nonempty subset of a Banach space X. For each
f ∈ X∗, let f(C) = ∪x∈C〈x, f〉 be a bounded set in R. Then C is bounded.

Proof. Set X := X∗, Y := R, and Tx(f) := 〈x, f〉, x ∈ C. Then Tx ∈ B(X∗, R).
Because f(C) is bounded, it follows that

sup
x∈C

|Tx(f)| = sup
x∈C

|〈x, f〉| ≤ K,

for some K > 0. By the uniform boundedness principle, there exists a constant
M > 0 such that

‖Tx‖ ≤M for all x ∈ C.

This implies that

|〈x, f〉| = |Tx(f)| ≤ ‖Tx‖‖f‖∗ ≤M‖f‖∗.

By Corollary 1.6.7, we have

‖x‖ ≤M for all x ∈ C.

Therefore, C is bounded.

Applying Corollary 1.9.9, we have

Theorem 1.9.10 Let {xn} be a sequence in a Banach space X. Then we have
the following:

(a) xn ⇀ x (in X) implies {xn} is bounded and ‖x‖ ≤ lim inf
n→∞

‖xn‖.

(b) xn ⇀ x in X and fn → f in X∗ imply fn(xn)→ f(x) in R.
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Proof. (a) Because xn ⇀ x, then f(xn)→ f(x) for all f ∈ X∗. Hence {f(xn)}
is bounded for all f ∈ X∗. Thus, by Corollary 1.9.9, {xn} is bounded.

Moreover,
|〈xn, f〉| ≤ ‖xn‖‖f‖∗.

Taking liminf in the above inequality, we have

|〈x, f〉| ≤ lim inf
n→∞

‖xn‖‖f‖∗.

By Corollary 1.6.7, we obtain

‖x‖ = sup
‖f‖∗≤1

|〈x, f〉| ≤ sup
‖f‖∗≤1

(lim inf
n→∞

‖xn‖‖f‖∗) ≤ lim inf
n→∞

‖xn‖.

(b) Because xn ⇀ x in X, it follows that 〈xn − x, f〉 = f(xn) − f(x) → 0 and
{xn} is bounded (by part (a)). Hence

|〈xn, fn〉 − 〈x, f〉| ≤ |〈xn, fn〉 − 〈xn, f〉|+ |〈xn, f〉 − 〈x, f〉|
= |〈xn, fn − f〉|+ |〈xn − x, f〉|
≤ ‖xn‖ ‖fn − f‖∗ + |〈xn − x, f〉|
≤ M‖fn − f‖∗ + |〈xn − x, f〉| → 0

for some constant M > 0. Therefore, fn(xn)→ f(x).

Observation
• Let {xn} be a sequence in a Banach space X with xn ⇀ x ∈ X and {αn} a

sequence of scalars such that αn → α. Then {αnxn} converges weakly to αx.

Theorem 1.9.11 Let X be a Banach space and {xn} a sequence in X such
that xn ⇀ x ∈ X. Then there exists a sequence of convex combinations of {xn}
that converges strongly to x, i.e., there exists convex combination {yn} such that

yn =
m∑

i=n

λixi, where

m∑

i=n

λi = 1 and λi ≥ 0, n ≤ i ≤ m,

which converges strongly to x.

Corollary 1.9.12 Let C a nonempty subset of a Banach space X and {xn} a
sequence in C such that xn ⇀ x ∈ X. Then x ∈ co(C).

The weak topology is weaker than the norm topology, and every w-closed
set is also norm closed. The following result shows that for convex sets, the
converse is also true.

Proposition 1.9.13 Let C be a convex subset of a normed space X. Then C
is weakly closed if and only if C is closed.

The following proposition is a generalization of Theorem 1.7.8.
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Proposition 1.9.14 Let C be a weakly compact subset of a Banach space X.
Then co(C) is also weakly compact.

The following result is a direct consequence of the uniform bounded principle:

Proposition 1.9.15 Let C be a weakly compact subset of a Banach space X.
Then C is bounded.

Theorem 1.9.16 (Eberlein-Smulian theorem) – Let C be a weakly closed
subset of a Banach space. Then the following are equivalent:

(a) C is weakly compact.

(b) C is weakly sequentially compact, i.e., each sequence {xn} in C has a
subsequence that converges weakly to a point in C.

Corollary 1.9.17 Let C be a closed convex subset of a Banach space. Then
the following are equivalent:

(a) C is weakly compact.

(b) Each sequence {xn} in C has a subsequence that converges weakly to a
point in C.

Proposition 1.9.18 Any closed convex subset of a weakly compact set is itself
weakly compact.

Theorem 1.9.19 (Kakutani’s theorem) – Let X be a Banach space. Then
X is reflexive if and only if the unit closed ball BX := {x ∈ X : ‖x‖ ≤ 1} is
weakly compact (i.e., BX is compact in the weak topology of X).

Using Proposition 1.9.13 and Kakutani’s theorem, we obtain

Theorem 1.9.20 Let X be a Banach space. Then X is reflexive if and only
if every closed convex bounded subset of X is weakly compact (compact in weak
topology).

Theorem 1.9.21 Let C be a subset of a reflexive Banach space. Then
C is weakly compact ⇔ C is bounded

(compactness in weak topology) (boundedness in strong topology)

Theorem 1.9.22 Let {xn} be a sequence in a weakly compact convex subset of
a Banach space X and ωw({xn}) denote the set of all weak subsequential limits
of {xn}. Then co(ωw({xn})) = ∩∞

n=1co({xk}k≥n).

Proof. Set W := ωw({xn}), An := co({xk}k≥n), and A := ∩∞
n=1An. We now

show that co(W ) = A. The inclusion W ⊂ A (and hence co(W ) ⊂ A) is trivial.
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Hence it suffices to prove that A ⊂ co(W ). Suppose, for contradiction, that
x ∈ A \ co(W ). Then there exists j ∈ X∗ such that

〈x, j〉 > sup{〈y, j〉 : y ∈ co(W )} = sup{〈y, j〉 : y ∈W 〉. (1.10)

Because x ∈ A ⊂ An,

〈x, j〉 ≤ sup{〈y, j〉 : y ∈ An} = sup{〈xk, j〉 : k ≥ n}.

Therefore,
〈x, j〉 ≤ lim sup

n→∞
〈xn, j〉.

It follows from the Eberlein-Smulian theorem that there exists a subsequence
{xni

} of {xn} such that

xni
⇀ x′ and 〈x, j〉 ≤ 〈x′, j〉.

Because x′ ∈W by definition, this is a contradiction of (1.10).

Corollary 1.9.23 Let X be a Banach space and {xn} a sequence in X weakly
convergent to z. Let An = co({xk}k≥n). Then ∩∞

n=1An = {z}.

Proposition 1.9.24 Let {xn} be a bounded sequence in reflexive Banach space
X and An = co({xn}k≥n). If ∩∞

n=1 An = ∩∞
n=1co({xn, xn+1, · · · }) = {x}, then

xn ⇀ x.

Proposition 1.9.25 Let {xn} be a weakly null sequence in a Banach space X
and {jn} a bounded sequence in X∗. Then for each ε > 0, there exists an
increasing sequence {nk} in N such that |〈xni

, jnk
〉| < ε if i �= k.

Proof. Without loss of generality, we may assume that X is a separable space.
We can assume that {jn} converges weak*ly to some j ∈ BX∗ . Given ε > 0, we
find n1 such that |〈xn, j〉| < ε/2 for all n ≥ n1. Next, having n1 < n2 < · · · <
nk−1, we pick nk > nk−1 with |〈xnk

, jni
〉| < ε and |〈xni

, jnk
− j〉| < ε/2 for all

i = 1, 2, · · · , k − 1. Then |〈xni
, jnk

〉| < ε.

We now list several properties that characterize reflexivity.

Theorem 1.9.26 Let X be a Banach space. Then following statements are
equivalent:

(a) X is reflexive.

(b) BX is weakly compact.

(c) Every bounded sequence in X in strong topology has a weakly convergent
subsequence.

(d) For any f ∈ X∗, there exists x ∈ BX such that f(x) = ‖f‖∗.



1.10. Continuity of mappings 43

(e) X∗ is reflexive.

(f) σ(X∗,X) = σ(X∗,X∗∗), i.e., on X∗ the weak topology and the weak*
topology coincide.

(g) If {Cn} is any descending sequence of nonempty closed convex bounded
subsets of X, then ∩∞

n=1Cn �= ∅.

(h) For any closed convex bounded subset C of X and any j ∈ X∗, there exists
x ∈ C such that 〈x, j〉 = sup{〈y, j〉 : y ∈ C}.

Finally, we give the fundamental result concerning the weak* topology.

Theorem 1.9.27 (Banach-Alaoglu’s theorem) – The unit ball BX∗ of the
dual of a normed space X is compact in the weak* topology.

1.10 Continuity of mappings

In this section, we discuss various forms of continuity of mappings with their
properties.

Definition 1.10.1 Let T be a mapping from a metric space (X, d) into another
metric space (Y, ρ). Then T is said to be

(i) continuous at x0 ∈ X if xn → x0 implies Txn → Tx0 in Y , i.e., for each
ε > 0, there is a δ = δ(ε, x0) > 0 such that ρ(Tx0, T y) < ε whenever
d(x0, y) < δ for all y ∈ X,

(ii) uniformly continuous on X if for given ε > 0, there exists δ = δ(ε) > 0
such that

ρ(Tx, Ty) < ε whenever d(x, y) < δ for all x, y ∈ X.

Example 1.10.2 Let X = (0, 1] and Y = R and let X and Y have usual metric
defined by absolute value. Then the mapping T : X → Y defined by Tx = 1/x
is continuous, but not uniformly continuous.

Observation

• Every uniformly continuous mapping from X into Y is continuous at each point

of X, but pointwise continuity does not necessary imply uniform continuity.

• Every uniformly continuous mapping T from a metric space X into another

metric space Y maps a Cauchy sequence in X into a Cauchy sequence in Y .

Proposition 1.10.3 Let T be a continuous mapping from a compact metric
space (X, d) into another metric space (Y, ρ). Then T is uniformly continuous.
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A mapping T from a metric space (X, d) into another metric space (Y, ρ) is
said to satisfy Lipschitz condition on X if there exists a constant L > 0 such
that

ρ(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X.

If L is the least number for which Lipschitz condition holds, then L is called
Lipschitz constant. In this case, we say that T is an L-Lipschitz mapping or
simply a Lipschitzian mapping with Lipschitz constant L. Otherwise, it is called
non-Lipschitzian mapping. An L-Lipschitz mapping T is said to be contraction
if L < 1 and nonexpansive if L = 1. The mapping T is said to be contractive if

ρ(Tx, Ty) < d(x, y) for all x, y ∈ X, x �= y.

Remark 1.10.4 Every Lipschitz continuous mapping T from a metric space
X into another metric space Y is uniformly continuous on X. Indeed, choose
δ < ε/L (independent of x), and we get

ρ(Tx, Tx0) ≤ Ld(x, x0) < ε.

The following example shows that the distance functional f(x) = d(x,C) is
nonexpansive.

Example 1.10.5 Let C be a nonempty subset of a normed space X. Then for
each pair x, y in X

|d(x,C)− d(y, C)| ≤ ‖x− y‖.
In particular, the function x �→ d(x,C) is nonexpansive and hence uniformly
continuous.

The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 1.10.6 Let T : [a, b] ⊂ R → R be a differentiable function on
(a, b). Suppose T ′ is continuous on [a, b]. Then T is a Lipschitz continuous
function (and hence is uniformly continuous).

Proof. By the Lagrange’s theorem, we have

Ty − Tx = T ′(c)(y − x) for all a ≤ x < y ≤ b,

where c ∈ (x, y) ⊂ [a, b]. Because T ′ is continuous and interval [a, b] is compact
in R, by Weierstrass theorem, there exists x0 ∈ [a, b] such that

L = |T ′(x0)| = sup
c∈[a,b]

|T ′(c)|.

Thus, |Tx− Ty| ≤ L|x− y|, which proves that T is Lipschitz continuous.

The following example shows that there is a Lipschitzian mapping for which
T ′ does not exist.
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Example 1.10.7 The function Tx = |x|, x ∈ [−1, 1] satisfies Lipschitz condi-
tion with L = 1, i.e., |Tx − Ty| ≤ |x − y| for all x, y ∈ [−1, 1]. Note T is not
differentiable at zero.

We now give an example of a non-Lipschitzian mapping that is continuous.

Example 1.10.8 Let T :
[
− 1

π , 1
π

]
→
[
− 1

π , 1
π

]
be a mapping defined by

Tx =
{

0 if x = 0,
x
2 sin(1/x) if x �= 0.

Then T is continuous, but not Lipschitz continuous.

For linear mappings, the continuity condition can be restated in terms of
uniform continuity.

Proposition 1.10.9 Let X and Y be two normed spaces and T : X → Y a
linear mapping. Then the following conditions are equivalent:

(a) T is continuous.
(b) T is Lipschitz function: there exists M > 0 such that ‖Tx‖ ≤M‖x‖ for

all x ∈ X.
(c) T is uniformly continuous.

Let X and Y be two Banach spaces and let T be a mapping from X into Y .
Then the mapping T is said to be

1. bounded if C is bounded in X implies T (C) is bounded;

2. locally bounded if each point in X has a bounded neighborhood U such
that T (U) is bounded;

3. weakly continuous if xn ⇀ x in X implies Txn ⇀ Tx in Y ;

4. demicontinuous if xn → x in X implies Txn ⇀ Tx in Y ;

5. hemicontinuous at x0 ∈ X if for any sequence {xn} converging to x0

along a line implies Txn ⇀ Tx0, i.e., Txn = T (x0 + tnx) ⇀ Tx0 as tn →
0 for all x ∈ X;

6. closed if xn → x in X and Txn → y in Y imply Tx = y;

7. weakly closed if xn ⇀ x ∈ X and Txn ⇀ y in Y imply Tx = y;

8. demiclosed if xn ⇀ x in X and Txn → y in Y imply Tx = y;

9. compact if C is bounded implies T (C) is relatively compact (T (C) is com-
pact), i.e., for every bounded sequence {xn} in X, {Txn} has convergent
subsequence in Y ;
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10. completely continuous if it is continuous and compact;

11. demicompact if any bounded sequence {xn} in X such that {xn − Txn}
converges strongly has a convergent subsequence.

In the case of linear mappings, the concepts of continuity and boundedness
are equivalent, but it is not true in general.

Proposition 1.10.10 Every continuous linear mapping T : X → Y is weakly
continuous.

Proposition 1.10.11 Let X be a reflexive Banach space and Y a general
Banach space. Then every weakly continuous mapping T : X → Y is bounded.

Proposition 1.10.12 A completely continuous mapping maps a weakly con-
vergent sequence into a strongly convergent.

Proposition 1.10.13 Every linear mapping is hemicontinuous.

Proof. Every linear and demicontinuous mapping is continuous.
It is clear that every demicontinuous mapping is hemicontinuous, but the

converse is not true.

Example 1.10.14 Let X = R
2, Y = R, and T : X → Y a mapping defined by

T (x, y) =

{
x2y

x4+y2 , (x, y) �= (0, 0),
0, (x, y) = (0, 0).

Then T is hemicontinuous at (0, 0), but not demicontinuous at (0, 0).

Let X and Y be two sets. A multivalued T from X to Y , denoted by
T : X → Y , is a subset T ⊆ X × Y . The inverse of T : X → Y is a multivalued
function T−1 : Y → X defined by (y, x) ∈ T−1 if and only if (x, y) ∈ T. The
values of T are the sets Tx = {y ∈ Y : (x, y) ∈ T}; the fibers of T are the sets
T−1(y) = {x ∈ X : (x, y) ∈ T} for y ∈ Y .

For A ⊂ X, the set

T (A) = ∪x∈ATx = {y ∈ Y : T−1(y) ∩A �= ∅}

is called the image of A under T ; for B ⊂ Y , the set

T−1(B) = ∪y∈BT−1(y) = {x ∈ X : Tx ∩B �= ∅},

the image of B under T−1, is called inverse image of B under T . A point of
a set that is invariant under any transformation is called a fixed point of the
transformation. A point x0 ∈ X is said to be a fixed point of T if x0 ∈ Tx0.

Let X and Y be two topological spaces. Then a multivalued function T :
X → Y is said to be upper semicontinuous (lower semicontinuous) if the inverse
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image of a closed set (open set) is closed (open). A multivalued function is
continuous if it is both upper and lower semicontinuous.

Finally, we conclude the chapter with the following important fixed point
theorems.

Theorem 1.10.15 (Brouwer’s fixed point theorem) – Every continuous
mapping from the unit ball of R

n into itself has a fixed point.

Theorem 1.10.16 (Schauder’s fixed point theorem) – Let C be a non-
empty closed convex bounded subset of a Banach space X. Then every continu-
ous compact mapping T : C → C has a fixed point.

Theorem 1.10.17 (Tychonoff’s fixed point theorem) – Let C be a non-
empty compact convex subset of a locally convex topological linear space X and
T : C → C a continuous mapping. Then T has a fixed point.

Exercises

1.1 Let (X, d) be a metric space. Show that ρ(x, y) = min{1, d(x, y)} for all
x, y ∈ X is also a metric space.

1.2 Give an example of a seminorm that is not a norm.

1.3 Let 〈·, ·〉 be an inner product on a linear space X and T : X → X a one-one
linear mapping. Let 〈x, y〉T = 〈Tx, Ty〉 for all x, y ∈ X. Show that 〈·, ·〉T
is an inner product space.

1.4 Show that the space c0 of all real sequences converging to 0 is a normed
space with norm ‖x‖ =

∑∞
n=1 |xn − xn+1| <∞.

1.5 Let c00 be a normed space with p-norm (1 ≤ p ≤ ∞) and {fn} a sequence of
functional on c00 defined by fn(x) = nxn for all x = (x1, x2, · · · , xn, · · · ).
Show that fn(x)→ 0 for every x ∈ c00, but ‖fn‖ = n for all n.

1.6 Show that the space p (1 < p <∞) is reflexive, but 1 is not reflexive.

1.7 Let C be a nonempty closed convex subset of a normed space X and {xn}
a sequence in C such that xn ⇀ x in X. Show that x ∈ C.

1.8 Let {xn} be a sequence in a normed space X such that xn ⇀ x. Show that
x ∈ span {xn}.

1.9 Let {xn} be a sequence in normed space X such that xn ⇀ x. Show that
{xn} is bounded.

1.10 Let X = c00 or c0 with norm ‖ · ‖∞. Show that xn ⇀ x in X if and only
if {xn} is bounded in X and xn,i → xi as n→∞ for each i = 1, 2, · · · .


	Fundamentals
	Topological spaces
	Normed spaces
	Dense set and separable space
	Linear operators
	Space of bounded linear operators
	Hahn-Banach theorem and applications
	Compactness
	Reflexivity
	Weak topologies
	Continuity of mappings



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




